Adeegso tilmaantan si aad u carrabbaabdo ama ugu samayso link qoraalkan
http://hdl.handle.net/2307/6008
Cinwaan: | The Picard group of the universal moduli space of vector bundles over the moduli space of stable curves. | Qore: | Fringuelli, Roberto | Tifaftire: | Viviani, Filippo | Ereyga furaha: | Moduli space Algebric curves Vector bundles |
Taariikhda qoraalka: | 16-Jun-2016 | Tifaftire: | Università degli studi Roma Tre | Abstract: | The thesis is divided in two chapters. In the rst one we construct the moduli stack of properly balanced vector bundles on semistable curves and we determine explicitly its Picard group. As a consequence, we obtain an explicit description of the Picard groups of the universal moduli stack of vector bundles on smooth curves and of the Schmitt's compacti cation over the stack of stable curves. We prove some results about the gerbe structure of the universal moduli stack over its rigidi cation by the natural action of the multiplicative group. In particular, we give necessary and su cient conditions for the existence of Poincar e bundles over the universal curve of an open substack of the rigidi cation, generalizing a result of Mestrano-Ramanan. In the second chapter we compute the Picard group of the universal abelian variety over the moduli stack Ag;n of principally polarized abelian varieties over C with a symplectic principal level n-structure. We then prove that over C the statement of the Franchetta conjecture holds in a suitable form for Ag,n. | URI : | http://hdl.handle.net/2307/6008 | Xuquuqda Gelitaanka: | info:eu-repo/semantics/openAccess |
Wuxuu ka dhex muuqdaa ururinnada: | Dipartimento di Matematica e Fisica T - Tesi di dottorato |
Fayl ku dhex jira qoraalkan:
Fayl | Sifayn | Baac | Fayl | |
---|---|---|---|---|
Tesi (1).pdf | 1.07 MB | Adobe PDF | Muuji/fur |
Page view(s)
150
Last Week
0
0
Last month
0
0
checked on Nov 21, 2024
Download(s)
351
checked on Nov 21, 2024
Google ScholarTM
Check
Dhammaan qoraallada lagu kaydiyay DSpace waxay u dhowrsanyihiin xuquuqda qoraha.