Adeegso tilmaantan si aad u carrabbaabdo ama ugu samayso link qoraalkan http://hdl.handle.net/2307/6008
Cinwaan: The Picard group of the universal moduli space of vector bundles over the moduli space of stable curves.
Qore: Fringuelli, Roberto
Tifaftire: Viviani, Filippo
Ereyga furaha: Moduli space
Algebric curves
Vector bundles
Taariikhda qoraalka: 16-Jun-2016
Tifaftire: Università degli studi Roma Tre
Abstract: The thesis is divided in two chapters. In the rst one we construct the moduli stack of properly balanced vector bundles on semistable curves and we determine explicitly its Picard group. As a consequence, we obtain an explicit description of the Picard groups of the universal moduli stack of vector bundles on smooth curves and of the Schmitt's compacti cation over the stack of stable curves. We prove some results about the gerbe structure of the universal moduli stack over its rigidi cation by the natural action of the multiplicative group. In particular, we give necessary and su cient conditions for the existence of Poincar e bundles over the universal curve of an open substack of the rigidi cation, generalizing a result of Mestrano-Ramanan. In the second chapter we compute the Picard group of the universal abelian variety over the moduli stack Ag;n of principally polarized abelian varieties over C with a symplectic principal level n-structure. We then prove that over C the statement of the Franchetta conjecture holds in a suitable form for Ag,n.
URI : http://hdl.handle.net/2307/6008
Xuquuqda Gelitaanka: info:eu-repo/semantics/openAccess
Wuxuu ka dhex muuqdaa ururinnada:Dipartimento di Matematica e Fisica
T - Tesi di dottorato

Fayl ku dhex jira qoraalkan:
Fayl Sifayn BaacFayl
Tesi (1).pdf1.07 MBAdobe PDFMuuji/fur
Muuji xogta qoraalka Ku tali qoraalkan

Page view(s)

150
Last Week
0
Last month
0
checked on Nov 21, 2024

Download(s)

351
checked on Nov 21, 2024

Google ScholarTM

Check


Dhammaan qoraallada lagu kaydiyay DSpace waxay u dhowrsanyihiin xuquuqda qoraha.