Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2307/6008
Titolo: The Picard group of the universal moduli space of vector bundles over the moduli space of stable curves.
Autori: Fringuelli, Roberto
Relatore: Viviani, Filippo
Parole chiave: Moduli space
Algebric curves
Vector bundles
Data di pubblicazione: 16-giu-2016
Editore: Università degli studi Roma Tre
Abstract: The thesis is divided in two chapters. In the rst one we construct the moduli stack of properly balanced vector bundles on semistable curves and we determine explicitly its Picard group. As a consequence, we obtain an explicit description of the Picard groups of the universal moduli stack of vector bundles on smooth curves and of the Schmitt's compacti cation over the stack of stable curves. We prove some results about the gerbe structure of the universal moduli stack over its rigidi cation by the natural action of the multiplicative group. In particular, we give necessary and su cient conditions for the existence of Poincar e bundles over the universal curve of an open substack of the rigidi cation, generalizing a result of Mestrano-Ramanan. In the second chapter we compute the Picard group of the universal abelian variety over the moduli stack Ag;n of principally polarized abelian varieties over C with a symplectic principal level n-structure. We then prove that over C the statement of the Franchetta conjecture holds in a suitable form for Ag,n.
URI: http://hdl.handle.net/2307/6008
Diritti di Accesso: info:eu-repo/semantics/openAccess
È visualizzato nelle collezioni:Dipartimento di Matematica e Fisica
T - Tesi di dottorato

File in questo documento:
File Descrizione DimensioniFormato
Tesi (1).pdf1.07 MBAdobe PDFVisualizza/apri
Visualizza tutti i metadati del documento Suggerisci questo documento

Page view(s)

150
Last Week
0
Last month
0
checked on 21-nov-2024

Download(s)

351
checked on 21-nov-2024

Google ScholarTM

Check


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.