Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2307/6008
Campo DCValoreLingua
dc.contributor.advisorViviani, Filippo-
dc.contributor.authorFringuelli, Roberto-
dc.date.accessioned2018-07-12T09:33:25Z-
dc.date.available2018-07-12T09:33:25Z-
dc.date.issued2016-06-16-
dc.identifier.urihttp://hdl.handle.net/2307/6008-
dc.description.abstractThe thesis is divided in two chapters. In the rst one we construct the moduli stack of properly balanced vector bundles on semistable curves and we determine explicitly its Picard group. As a consequence, we obtain an explicit description of the Picard groups of the universal moduli stack of vector bundles on smooth curves and of the Schmitt's compacti cation over the stack of stable curves. We prove some results about the gerbe structure of the universal moduli stack over its rigidi cation by the natural action of the multiplicative group. In particular, we give necessary and su cient conditions for the existence of Poincar e bundles over the universal curve of an open substack of the rigidi cation, generalizing a result of Mestrano-Ramanan. In the second chapter we compute the Picard group of the universal abelian variety over the moduli stack Ag;n of principally polarized abelian varieties over C with a symplectic principal level n-structure. We then prove that over C the statement of the Franchetta conjecture holds in a suitable form for Ag,n.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli studi Roma Treit_IT
dc.subjectModuli spaceit_IT
dc.subjectAlgebric curvesit_IT
dc.subjectVector bundlesit_IT
dc.titleThe Picard group of the universal moduli space of vector bundles over the moduli space of stable curves.it_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informatiche::GEOMETRIAit_IT
dc.subject.isicruiCategorie ISI-CRUI::Scienze matematiche e informatiche::Mathematicsit_IT
dc.subject.anagraferoma3Scienze matematiche e informaticheit_IT
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Matematica e Fisica*
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
È visualizzato nelle collezioni:Dipartimento di Matematica e Fisica
T - Tesi di dottorato
File in questo documento:
File Descrizione DimensioniFormato
Tesi (1).pdf1.07 MBAdobe PDFVisualizza/apri
Visualizza la scheda semplice del documento Suggerisci questo documento

Page view(s)

339
Last Week
0
Last month
0
checked on 20-dic-2025

Download(s)

1.162
checked on 20-dic-2025

Google ScholarTM

Check


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.