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Introduction

In algebraic geometry, the problem of constructing a variety whose points are in natural bijection
with a given set of equivalence classes of geometric objects is called moduli problem. If such a
variety exists, it is called a moduli space. Usually, the geometric objects which we are dealing with
come equipped with lots of automorphisms. As observed by Grothendieck, this is an obstruction
to the existence of the solution.

La conclusion pratique à laquelle je suis arrivé dès maintenant, c’est que chaque fois que
en vertu de mes critères, une variété de modules (ou plutôt, un schéma de modules) pour
la classification des variations (globales, ou infinitésimales) de certaines structures (variétés
complètes non singulières, fibrés vectoriels, etc.) ne peut exister, malgré de bonnes hy-
pothèses de platitude, propreté, et non singularité éventuellement, la raison en est seule-
ment l’existence d’automorphismes de la structure qui empêche la technique de descente de
marcher.

Grothendieck’s letter to Serre, 1959 Nov 5.

It is possible to overcome this technical difficulty in many ways. One of them is to include
the information of the automorphisms in the moduli problem. The new space is not a variety
anymore, but a new object which it is usually called moduli stack.

The stacks were first defined in 1966 by Giraud ([Gir66], [Gir71]). They appear with the
French word champ, which means “field”. The term stack was proposed later by Deligne and
Mumford in [DM69]. As explained by Edidin (see [Edi03]), a possible reason of this choice is that
the stacks considered by Deligne and Mumford are related to a particular class of champs called
gerbes. Two possible translations for the French word gerbe are “sheaf” and “stack”. Since
the first one was already in use, it was chosen the last one. Deligne and Mumford, in the same
paper, introduced a new class of stacks, now called Deligne-Mumford stacks and with this new
machinery they proved the irreducibility of the moduli space of curves of fixed genus in arbitrary
characteristic. This is one of the first successful results obtained by using the idea of moduli
stack. Later, the more general concept of Artin stack was introduced by Artin in [Art73].

Roughly speaking, an Artin stack is a category with a geometric structure which allows to
define the basic properties coming from the algebraic geometry (i.e. smoothness, irreducibility,
etc). These properties reflect the inner structure of the underlying category. Since the Deligne-
Mumford’s work, this subject has been widely developed and nowadays the literature is quite
vast. Algebraic stacks have coherent sheaves, cohomology, and intersection theory all of which
have been extensively studied.

A very interesting invariant of a stack is its Picard group. It was introduced by Mumford
in his paper ”Picard groups of moduli problems” [Mum65], where he also computed the Picard
group of the moduli stack of elliptic curves. In the same way that the Picard group of a projective
variety contains important information about its geometry, especially birational geometry, the
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Picard group of a moduli stack carries information on the geometry of the associated moduli
problem. A remarkable example where the Picard group is known is the moduli stack Mg of
stable curves of genus g. There are several variations on this theme (by adding marked points,
level structure, polarizations, etc.). Another one is the Picard group of the moduli stack Ag,n

of principally polarized abelian variety with level structure. Other examples, where the Picard
group is computed in high generality, are the moduli stacks of principal bundles over a fixed
smooth curve.

Following this tradition, in this thesis we present an explicit description of the Picard groups
of two moduli problems. In the first chapter we have studied the Picard group of the moduli stack
of vector bundles on movable semistable curves. In the second one, we have treated the Picard
group of the universal abelian variety over the moduli stack of principally polarized abelian
varieties with a symplectic level structure. Both the chapters have a paper-like form. We have
tried to make them self-contained and independent of each other. Moreover, any paper/chapter
has an abstract, a table of contents and an introduction. However, in the next two sections, we
will give a quick introduction to each problem and we refer the reader directly to the papers’
introductions for a more detailed overview of the results.

We assume the reader is familiar with the theory of moduli and of algebraic stacks.

Outline of Paper A: the Picard group of the universal mod-
uli space of vector bundles on stable curves.

Let C be a connected projective smooth curve of genus g > 1 over the complex numbers. The
Jacobian variety Jd(C) of degree d is a fine moduli space for the set of equivalence classes of
line bundles of degree d on C. On the other hand, it is well-known that does not exist a variety
which parametrizes the set of isomorphism classes of vector bundles of rank greater than 1 and
fixed degree over C. One of the reasons is that the moduli functor is not-separated. In other
words, the limit of a family of vector bundles over a punctured disk can be non unique (for
example we can construct a non-trivial extension of two line bundles as limit of the trivial one).
However, it has been proved that if we restrict to the subset of the stable vector bundles such a
variety Us

r,d(C) exists and it is smooth and quasi-projective. It has a natural compactification
Ur,d(C) obtained by adding semistable vector bundles. Since limits of families of semistable
vector bundles are not unique, the correspondence between the closed points of Ur,d(C) and the
isomorphism classes of semistable vector bundles is not one-to-one (it is if we restrict to the
stable locus). We overcome this problem weakening the equivalence relation. More precisely, the
variety Ur,d(C) is the moduli space of the, usually called, aut-equivalence classes of semistable
vector bundles of degree d and rank r (with this description we can include also the rank 1 case,
because any line bundle is stable). It is a projective normal variety. In general this moduli space
does not admit a universal object. It has been proved that it exists if and only if the rank and
the degree are coprime or equivalently all semistable vector bundles are stable. This fact was
proved by Drezet and Narasimhan in [DN89]. In the same work they also computed the Picard
group of Ur,d(C). They showed that it is freely generated by the pull-back of the Picard group
of the Jacobian via the determinant morphism detC : Ur,d(C) → Jd(C) and a line bundle which
generates the Picard group of any closed fiber of detC .

The aim of the paper A is to compute the Picard group of the same moduli problem when
the curve C moves in the moduli space of curves. We review some known results in this topic.
There exists a quasi-projective variety Ur,d,g which parametrizes the aut-equivalence classes of
semistable vector bundles of rank r and degree d over smooth curves of genus g. It admits a

ii



proper forgetful map onto the moduli space Mg of smooth curves of genus g. Kouvidakis in
[Kou91], using this map, gave a description of the Picard group of Ur,d,g in the rank 1 case.
He proved that it is torsion-free of rank 2 and it is generated by the pull-back of the Picard
group of Mg via the forgetful map U1,d,g → Mg and a line bundle which generates a subgroup
of index 2g−2

GCD(2g−2,d+1−g) of the Neron-Severi group of a very general Jacobian variety of degree

d. Then, in another paper [Kou93], he extended the computation to higher rank. He showed
that the Picard group of Ur,d,g is torsion-free of rank 3 and it is generated by the pull-back of
the Picard group of U1,d,g via the determinant morphism det : Ur,d,g → U1,d,g and a line bundle
whose restriction on the Picard group of any closed fiber of det generates a subgroup of finite
index (corresponding to the integer kr,d at page 508 of loc. cit.).

Since all the results of the thesis are expressed in terms of moduli stacks, we now switch
to the language of stacks. This approach presents several advantages. For example, in the
moduli stack Vecssr,d,g of semistable vector bundles of degree d and rank r over smooth curves of
genus g, differently from Ur,d,g, there is no identification between different isomorphism classes of
geometric objects. Other advantages are that it is smooth and the universal object always exists.
The disadvantage is that, as explained at the beginning, is not separated anymore. Anyway, the
forgetful morphism onto the moduli stack of smooth curves of genus g is universally closed,
i.e. it satisfies the existence part of the valuative criterion of properness. Unfortunately, if we
enlarge the moduli problem, adding slope-semistable (respect with the canonical polarization)
vector bundles on stable curves, the morphism to the moduli stack Mg of stable curves is not
universally closed anymore. There exist two natural ways to make it universally closed. The first
one is adding slope-semistable torsion free sheaves (respect with the canonical polarization) and
this was done by Pandharipande in [Pan96]. The disadvantage is that such a stack, as Faltings
has shown in [Fal96], is singular if the rank is greater than one. The second approach, which is
better for our purposes, is to consider vector bundles on semistable curves. Gieseker in [Gie84]
used this idea to compactify the moduli space of vector bundles of rank 2 and degree odd over
a fixed irreducible curve with one node and he solved a conjecture of Newstead and Ramanan.
Then Nagaraj and Seshadri in [NS99] extended the construction to any rank and degree. The
generalization to the entire moduli space of stable curves was done by Caporaso in [Cap94] in the
rank one case and then by Schmitt in [Sch04], who, using a slight variation of the GIT problem
proposed by Teixidor i Bigas in [TiB98], constructed a compactification in the higher rank case

over Mg. In our paper the Schmitt’s compactification is denoted with VecHss

r,d,g and in the line
bundles case it coincides with the Caporaso’s one. The advantages are that this stack is regular
and the boundary is a divisor with normal-crossing singularities. But, for rank greater than one,
we do not have an easy description of the objects.

Using the Kouvidakis’ result in rank one case, Melo and Viviani in [MV14] gave an explicit
computation of the the Picard group of the Caporaso’s compactification J acd,g. They proved
that it is freely generated by the Picard group of Mg, the boundary divisors (the irreducible
substacks of codimension 1 which parametrizes the singular curves) and the determinants of
cohomology of the following line bundles over the universal curve on J acd,g: the universal line
bundle and the universal line bundle twisted by the relative dualizing line bundle. Using the

Melo-Viviani’s result, we have computed the Picard group of Schmitt’s moduli stack VecHss

r,d,g.

A motivation for this work comes from the study of modular compactifications of the moduli
stack Vecssr,d,g and of the moduli space Ur,d,g from the point of view of the log-minimal model
program (LMMP). One would like to mimic the so called Hassett-Keel program for the moduli
space Mg of stable curves, which aims at giving a modular interpretation to every step of the
LMMP for Mg. In other words, the goal is to construct a compactification of the universal moduli
space of semistable vector bundles over each step of the minimal model program for Mg. In the
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rank one case, the conjectural first two steps for the Caporaso’s compactification Jd,g have
been described by Bini-Felici-Melo-Viviani in [BFMV14]. From the stacky point of view, the
first step (resp. the second step) is constructed as the compactified Jacobian over the Schubert’s
moduli stack Mps

g of pseudo-stable curves (resp. over the Hyeon-Morrison’s moduli stack Mwp

g of
weakly-pseudo-stable curves). For higher rank, Grimes in [Gri] constructed, using the torsion free

approach, a compactification Ũps
r,d,g of the moduli space of slope-semistable vector bundles over

M
ps

g . In order to construct birational compact models for the Pandharipande compactification
of Ur,d,g, it is useful to have an explicit description of its rational Picard group, which naturally
embeds into the rational Picard group of the moduli stack T F ss

r,d,g of slope-semistable torsion free
sheaves over stable curves. Indeed our first idea was to study directly the Picard group of T F ss

r,d,g

. For technical difficulties due to the fact that such stack is not smooth, we have preferred to

study first VecHss

r,d,g, whose Picard group contains Pic(T F ss
r,d,g).

Since it is not easy to describe the geometric objects at the boundary of VecHss

r,d,g, we have
introduced a bigger stack which contains the Schmitt’s one as open subset: the universal moduli
stack Vecr,d,g of properly balanced vector bundles of rank r and degree d on semistable curves of
genus g. It can be seen as the ”right” stacky-generalization in higher rank of the Caporaso’s
compactification. The main result of the paper is computing and giving explicit generators
for the Picard groups of this moduli stack and of its open subset Vecr,d,g of vector bundles

on smooth curves. It turns out that they are isomorphic to the Picard groups of VecHss

r,d,g and
Vecssr,d,g respectively. Roughly speaking, they are generated by the boundary line bundles and

the determinant of cohomology of three suitable line bundles over the universal curve on Vecr,d,g.
We have also proved some results about the gerbe structure of the moduli stack Vecr,d,g over its
rigidification by the natural action of the multiplicative group. In particular, we have obtained
a new proof of the Kouvidakis’ computation of the Picard group of Ur,d,g, together with a
criterion for the existence of the universal object over an open subset of the moduli space Ur,d,g,
generalizing a result of Mestrano-Ramanan.

Outline of Paper B: The Picard group of the universal abelian
variety and the Franchetta conjecture for abelian varieties.

In algebraic geometry, the abelian varieties play an important role. They have roots in the theory
of abelian functions. The first who used the term ”abelian variety” was Lefschetz in the 1920s.
The modern foundations in the language of algebraic geometry is due to Weil in the 1950s. For
a detailed history of the subject in relation to Grothendieck’s theory of the Picard scheme, we
suggest the introduction of the Kleiman’s survey ”The Picard scheme” contained in [FGI+05].
Moreover, by the Torelli theorem, the Jacobian of a curve together with its theta divisor encode
all properties of the curve itself. Then it is reasonable to study curves through their Jacobians
and moreover determines when an abelian variety is a Jacobian (the so-called Schottky problem).
In the moduli language, it corresponds to study the image of the Torelli morphism τg : Mg → Ag

from the moduli of smooth curves to the moduli of (principally polarized) abelian variety, which
sends a curve to the associated Jacobian polarized by the theta divisor. This makes the study
of the moduli stack Ag very important.

An important object attached to Ag is its universal object: the universal abelian variety
Xg → Ag. A motivation for the study of this space comes from the Schottky problem. Andreotti
and Mayer studied the problem by looking at the properties of the singular locus of the divisor
defining the polarization. This approach has led to the introduction of new loci inside Ag, defined
by imposing some conditions on the singularities of this divisor. A successful approach to the
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study of these loci is via degeneration techniques. In other words, we look at the intersection of
their closure with the boundary of a suitable compactification of Ag. An important class of com-
pactifications of Ag are the so-called toroidal compactifications, introduced by Ash, Mumford,
Rapoport and Tai in [AMRT75]. There is not a canonical choice of a toroidal compactification.
However they coincide along a subspace, which is known with the name of Mumford’s partial
compactification. As stack is the disjoint union of Ag and the universal family Xg−1. Thus
the knowledge of the universal abelian variety plays an important role in the application of the
degenerations methods.

The paper B is a joint work with Roberto Pirisi started at June 2015 during the Research
School Pragmatic: Moduli of Curves and Line Bundles at University of Catania (Italy). The main
result is an explicit computation of the Picard group of the universal abelian variety Xg,n over
the moduli stack Ag,n of principally polarized abelian variety of dimension g with a symplectic
level n-structure. We resume some known facts on this topic. The Picard group of Ag is freely
generated by the Hodge line bundle. Some result about the higher level case was obtained by
Putman in [Put12]. It is well-known that the Picard group of Xg,n with rational coefficients is
generated by the Hodge line bundle and the universal theta divisor. On the other hand, if we
restrict to the integer coefficients the things become unclear. The Picard group with integral
coefficient seems well-understood when Ag,n is a variety (i.e. when the level structure is greater
than 2). In this case, by a theorem of Silverberg, we know the torsion of Pic(Xg,n). Moreover,
when n is even the universal theta divisor exists over the family Xg,n → Ag,n.

The paper B complete the picture. Roughly speaking, we have showed that if n is even (resp.
if n is odd) the Picard group of Xg,n decomposes as direct sum of the Picard group of Ag,n, of
the group of line bundles which are n-roots of the trivial bundle and the group freely generated
by the universal theta divisor (resp. 2-times the universal theta divisor). This also answer to a
question posed by Schröer in [Sch03].

Open questions.

We list some open problems, related to the results of this thesis, which we are planning to solve
in the near future.

The Schmitt’s compactification of the moduli space of semistable vector

bundles over M g.

Schmitt’s moduli space is obtained as a GIT quotient of a suitable Hilbert scheme H, parametriz-
ing curves inside a suitable Grassmannian, by the natural action of the general linear group GL
(with a choice of a linearization). The points at the boundary are vector bundles over semistable
curves. At the best of our knowledge, we do not have an easy description of when a vector bundle
over a semistable curve is in such space or not. Motivated by the study of the GL-orbits of H, we
are trying to give an answer to this problem (see [Sch04], [TiB98] and Paper A for some partial
results in that direction).

The divisor class group and the Picard group of the Schmitt’s compact-
ification as variety.

Another motivation to study the previous problem is the description of the divisor class group
and of the Picard group of Schmitt’s moduli variety. At first sight, some boundary divisors on
the moduli stacks, which we are called extremal, collapse when we pass to the moduli variety.
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This give some difficulties to complete the description of the divisor class group (and in particular
the Picard group) of the moduli variety. A good understanding of the GIT orbits would allow
to complete the picture.

The Picard group of the universal moduli stack of torsion free sheaves

over M g.

Pandharipande in [Pan96], using GIT, constructed a compactification of the moduli space of
semistable vector bundles on Mg. Except in the rank one case, this space is not isomorphic to
the Schmitt compactification. The Schmitt space, as stack, is smooth, but we do not have an
easy moduli interpretation of its points. Instead the Pandharipande’s space has a good modular
interpretation and we know exactly the behavior of its orbits. Unfortunately, also as stack, it is
singular. Its integral divisor class group (in the sense of Edidin-Graham [EG98]) is isomorphic
to the Picard group of Vecr,d,g, which was computed in the Paper A. Using this relation, we are
planning to study the Picard group of the Pandharipande’s compactification.

The Picard group of the universal moduli space of G-bundles over Mg.

The Picard group of the moduli space of G-bundles over a fixed smooth curve has been studied
intensively, also motivated by the relation to conformal field theory and the Verlinde formula.
When G is a simply connected, almost simple group over the complex number the problem
was solved by Kumar-Narasimhan [KN97] (for the coarse moduli space of semistable G-bundles)
and by Laszlo-Sorger [LS97], [Sor99] (for the entire moduli stack of G-bundles). Then Faltings
[Fal03] has generalized the result to families of curves over an arbitrary noetherian base scheme
with sections, in particular to positive characteristic. Finally Biswas-Hoffmann [BH12] solved
the problem when G is a reductive algebraic group over an algebraically closed field of arbitrary
characteristic. The strategy adopted in the Paper A seems to work for the universal moduli stack
of G-bundles over the moduli of smooth curves when G is simply connected and almost simple.
With that in mind, we are planning to generalize the result to the case of G-bundles, when G is
any reductive algebraic group.
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de l’Université de Montréal, Montreal, Que., 1973. En collaboration avec Alexandru
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THE PICARD GROUP OF THE UNIVERSAL MODULI SPACE

OF VECTOR BUNDLES ON STABLE CURVES.

ROBERTO FRINGUELLI

Abstract. We construct the moduli stack of properly balanced vector bundles on semistable
curves and we determine explicitly its Picard group. As a consequence, we obtain an explicit

description of the Picard groups of the universal moduli stack of vector bundles on smooth

curves and of the Schmitt’s compactification over the stack of stable curves. We prove some
results about the gerbe structure of the universal moduli stack over its rigidification by the

natural action of the multiplicative group. In particular, we give necessary and sufficient

conditions for the existence of Poincaré bundles over the universal curve of an open substack
of the rigidification, generalizing a result of Mestrano-Ramanan.
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2 ROBERTO FRINGUELLI

Introduction.

Let Vec(s)sr,d,g be the moduli stack of (semi)stable vector bundles of rank r and degree d on
smooth curves of genus g. It turns out that the forgetful map Vecssr,d,g →Mg is universally closed,
i.e. it satisfies the existence part of the valuative criterion of properness. Unfortunately, if we
enlarge the moduli problem, adding slope-semistable (with respect to the canonical polarization)
vector bundles on stable curves, the morphism to the moduli stack Mg of stable curves is not
universally closed anymore. There exists two natural ways to make it universally closed. The
first one is adding slope-semistable torsion free sheaves and this was done by Pandharipande in
[Pan96]. The disadvantage is that such stack, as Faltings has shown in [Fal96], is not regular
if the rank is greater than one. The second approach, which is better for our purposes, is to
consider vector bundles on semistable curves: see [Gie84], [Kau05], [NS99] in the case of a fixed
irreducible curve with one node, [Cap94], [Mel09] in the rank one case over the entire moduli
stack Mg or [Sch04], [TiB98] in the higher rank case over Mg. The advantages are that such
stacks are regular and the boundary has normal-crossing singularities. Unfortunately, for rank
greater than one, we do not have an easy description of the objects at the boundary. We will
overcome the problem by constructing a non quasi-compact smooth stack Vecr,d,g, parametrizing
properly balanced vector bundles on semistable curves (see §1.1 for a precise definition). In some
sense, this is the right stacky-generalization in higher rank of the Caporaso’s compactification
Jd,g of the universal Jacobian scheme. Moreover it contains some interesting open substacks,
like:

- The moduli stack Vecr,d,g of (not necessarily semistable) vector bundles over smooth
curves.

- The moduli stack VecP (s)s

r,d,g of vector bundles such that their push-forwards in the stable
model of the curve is a slope-(semi)stable torsion free sheaf.

- The moduli stack VecH(s)s

r,d,g of H-(semi)stable vector bundles constructed by Schmitt in
[Sch04].

- The moduli stack of Hilbert-semistable vector bundles (see [TiB98]).

The main result of this paper is computing and giving explicit generators for the Picard groups
of the moduli stacks Vecr,d,g and Vecr,d,g for rank greater than one, generalizing the results in
rank one obtained by Melo-Viviani in [MV14], based upon a result of Kouvidakis (see [Kou91]).
As a consequence, we will see that there exist natural isomorphisms of Picard groups between

Vecssr,d,g and Vecr,d,g, among VecHssr,d,g, Vec
Pss

r,d,g and Vecr,d,g and between VecPsr,d,g and VecHsr,d,g.

The motivation for this work comes from the study of modular compactifications of the moduli
stack Vecssr,d,g and the coarse moduli space Ur,d,g of semistable vector bundles on smooth curves

from the point of view of the log-minimal model program (LMMP). One would like to mimic the
so called Hassett-Keel program for the moduli space Mg of stable curves, which aims at giving

a modular interpretation to the every step of the LMMP fot Mg. In other words, the goal is to
construct compactifications of the universal moduli space of semistable vector bundles over each
step of the minimal model program for Mg. In the rank one case, the conjectural first two steps

of the LMMP for the Caporaso’s compactification Jd,g have been described by Bini-Felici-Melo-
Viviani in [BFMV14]. From the stacky point of view, the first step (resp. the second step) is

constructed as the compactified Jacobian over the Schubert’s moduli stackMps

g of pseudo-stable

curves (resp. over the Hyeon-Morrison’s moduli stack Mwp

g of weakly-pseudo-stable curves). In
higher rank, the conjectural first step of the LMMP for the Pandharipande’s compactification

Ũr,d,g has been described by Grimes in [Gri]: using the torsion free approach, he constructs a

compactification Ũpsr,d,g of the moduli space of slope-semistable vector bundles over M
ps

g . In order

4
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to construct birational compact models for the Pandharipande compactification of Ur,d,g, it is
useful to have an explicit description of its rational Picard group which naturally embeds into
the rational Picard group of the moduli stack T F ssr,d,g of slope-semistable torsion free sheaves
over stable curves. Indeed our first idea was to study directly the Picard group of T F ssr,d,g . For
technical difficulties due to the fact that such stack is not smooth, we have preferred to study
first Vecr,d,g, whose Picard group contains Pic(T F ssr,d,g), and we plan to give a description of
T F ssr,d,g in a subsequent paper.

In Section 1, we introduce and study our main object: the universal moduli stack Vecr,d,g of
properly balanced vector bundles of rank r and degree d on semistable curves of arithmetic genus
g. We will show that it is an irreducible smooth Artin stack of dimension (r2 + 3)(g − 1). The
stacks of the above list are contained in Vecr,d,g in the following way

(0.0.1)
VecPsr,d,g ⊂ VecHsr,d,g ⊂ VecHssr,d,g ⊂ VecPssr,d,g ⊂ Vecr,d,g
∪ ∪ ∪
Vecsr,d,g ⊂ Vecssr,d,g ⊂ Vecr,d,g.

The stack Vecr,d,g is endowed with a morphism φr,d to the stack Mg which forgets the vector
bundle and sends a curve to its stable model. Moreover, it has a structure of Gm-stack, since the
group Gm naturally injects into the automorphism group of every object as multiplication by
scalars on the vector bundle. Therefore, Vecr,d,g becomes a Gm-gerbe over the Gm-rigidification

Vr,d,g := Vecr,d,g (Gm. Let νr,d : Vecr,d,g → Vr,d,g be the rigidification morphism. Analogously,
the open substacks in (0.0.1) are Gm-gerbes over their rigidifications

(0.0.2)
VPsr,d,g ⊂ VHsr,d,g ⊂ VHssr,d,g ⊂ VPssr,d,g ⊂ Vr,d,g
∪ ∪ ∪
Vsr,d,g ⊂ Vssr,d,g ⊂ Vr,d,g.

The inclusions (0.0.1) and (0.0.2 give us the following commutative diagram of Picard groups:

(0.0.3) Pic
(
Vecr,d,g

)
// // Pic

(
VecPssr,d,g

)
// // Pic

(
VecPsr,d,g

)

����

Pic
(
Vr,d,g

)*



77

// //

����

����

Pic
(
VPssr,d,g

)*

 77

// //

����

����

Pic
(
VPsr,d,g

)*

 77

����

Pic
(
VecHssr,d,g

)
// // Pic

(
VecHsr,d,g

)

����

Pic
(
VHssr,d,g

)*

 77

// //

����

����

Pic
(
VHsr,d,g

)*

 77

����

Pic (Vecr,d,g) // // Pic
(
Vecssr,d,g

)
// // Pic

(
Vecsr,d,g

)

Pic (Vr,d,g)
* 


77

// // Pic
(
Vssr,d,g

)*

 77

// // Pic
(
Vsr,d,g

)*

 77

where the diagonal maps are the inclusions induced by the rigidification morphisms, while the
vertical and horizontal ones are the restriction morphisms, which are surjective because we are
working with smooth stacks. We will prove that the Picard groups of diagram (0.0.3) are gener-
ated by the boundary line bundles and the tautological line bundles, which are defined in Section
2.
In the same section we also describe the irreducible components of the boundary divisor Vecr,d,g\Vecr,d,g.

5



4 ROBERTO FRINGUELLI

Obviously the boundary is the pull-back via the morphism φr,d : Vecr,d,g →Mg of the boundary

of Mg. It is known that Mg\Mg =
⋃bg/2c
i=0 δi, where δ0 is the irreducible divisor whose generic

point is an irreducible curve with just one node and, for i 6= 0, δi is the irreducible divisor
whose generic point is the stable curve with two irreducible smooth components of genus i and

g − i meeting in one point. In Proposition 2.6.2, we will prove that δ̃i := φ
∗
r,d (δi) is irreducible

if i = 0 and, otherwise, decomposes as
⋃
j∈Ji δ̃

j
i , where Ji is a set of integers depending on i

and δ̃ji are irreducible divisors. Such δ̃ji will be called boundary divisors. For special values
of i and j, the corresponding boundary divisor will be called extremal boundary divisor. The
boundary divisors which are not extremal will be called non-extremal boundary divisors (for a

precise description see §2.6). By smoothness of Vecr,d,g, the divisors {δ̃ji } give us line bundles.

We will call them boundary line bundles and we will denote them with {O(δ̃ji )}. We will say that

O(δ̃ji ) is a (non)-extremal boundary line bundle if δ̃ji is a (non)-extremal boundary divisor. The

irreducible components of the boundary of Vr,d,g are the divisors νr,d(δ̃
j
i ). The associated line

bundles are called boundary line bundles of Vr,d,g. We will denote with the the same symbols

used for Vecr,d,g the boundary divisors and the associated boundary line bundles on Vr,d,g.
In §2.7 we define the tautological line bundles. They are defined as determinant of cohomology
and as Deligne pairing (see §2.2 for the definition and basic properties) of particular line bundles
along the universal curve π : V ecr,d,g,1 → Vecr,d,g. More precisely they are

K1,0,0 := 〈ωπ, ωπ〉,
K0,1,0 := 〈ωπ,det E〉,
K−1,2,0 := 〈det E ,det E〉,

Λ(m,n, l) := dπ(ωmπ ⊗ (det E)n ⊗ E l).

where ωπ is the relative dualizing sheaf for π and E is the universal vector bundle on V ecr,d,g,1.
Following the same strategy of Melo-Viviani in [MV14], based upon the work of Mumford in
[Mum83], we apply Grothendieck-Riemann-Roch theorem to the morphism π : V ecr,d,g,1 →
Vecr,d,g in order to compute the relations among the tautological line bundles in the rational
Picard group. In particular, in Theorem 2.7.1 we prove that all tautological line bundles can be
expressed in the (rational) Picard group of Vecr,d,g in terms of Λ(1, 0, 0), Λ(0, 1, 0), Λ(1, 1, 0),
Λ(0, 0, 1) and the boundary line bundles.

Finally we can now state the main results of this paper. In Section 3, we prove that all
Picard groups on diagram (0.0.3) are free and generated by the tautological line bundles and the
boundary line bundles. More precisely, we have the following.

Theorem A. Assume g ≥ 3 and r ≥ 2.

(i) The Picard groups of Vecr,d,g, Vecssr,d,g, Vecsr,d,g are freely generated by Λ(1, 0, 0), Λ(1, 1, 0),

Λ(0, 1, 0) and Λ(0, 0, 1).

(ii) The Picard groups of Vecr,d,g, VecPssr,d,g, VecHssr,d,g are freely generated by Λ(1, 0, 0), Λ(1, 1, 0),
Λ(0, 1, 0), Λ(0, 0, 1) and the boundary line bundles.

(iii) The Picard groups of VecPsr,d,g, VecHsr,d,g are freely generated by Λ(1, 0, 0), Λ(1, 1, 0), Λ(0, 1, 0),
Λ(0, 0, 1) and the non-extremal boundary line bundles.

Let vr,d,g and nr,d be the numbers defined in the Notations 0.0.1 below. Let α and β be (not
necessarily unique) integers such that α(d+ 1− g) + β(d+ g − 1) = − 1

nr,d
· v1,d,gvr,d,g

(d+ r(1− g)).

We set

Ξ := Λ(0, 1, 0)
d+g−1
v1,d,g ⊗ Λ(1, 1, 0)

− d−g+1
v1,d,g , Θ := Λ(0, 0, 1)

r
nr,d
· v1,d,gvr,d,g ⊗ Λ(0, 1, 0)α ⊗ Λ(1, 1, 0)β .

6
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Theorem B. Assume g ≥ 3 and r ≥ 2.

(i) The Picard groups of Vr,d,g, Vssr,d,g, Vsr,d,g are freely generated by Λ(1, 0, 0), Ξ and Θ.

(ii) The Picard groups of Vr,d,g, VPssr,d,g, VHssr,d,g are freely generated by Λ(1, 0, 0), Ξ, Θ and the
boundary line bundles.

(iii) The Picard groups of VPsr,d,g and VHsr,d,g are freely generated by Λ(1, 0, 0), Ξ, Θ and the
non-extremal boundary line bundles.

If we remove the word ”freely” from the assertions, the above theorems hold also in the genus
two case. This will be shown in appendix A, together with an explicit description of the relations
among the generators.

We sketch the strategy of the proofs of the Theorems A and B. First, in §3.1, we will prove
that the boundary line bundles are linearly independent. Since the stack Vecr,d,g is smooth and
it contains quasi-compact open substacks which are ”large enough” and admit a presentation as
quotient stacks, we have a natural exact sequence of groups

(0.0.4)
⊕

i=0,...,bg/2c
⊕j∈Ji〈O(δ̃ji )〉 −→ Pic(Vecr,d,g)→ Pic(Vecr,d,g) −→ 0

In Theorem 3.1.1, we show that such sequence is also left exact. The strategy that we will use is
the same as the one of Arbarello-Cornalba for Mg in [AC87] and the generalization for J acd,g
done by Melo-Viviani in [MV14]. More precisely, we will construct morphisms B → Vecr,d,g
from irreducible smooth projective curves B and we show that the intersection matrix between
these test curves and the boundary line bundles on Vecr,d,g is non-degenerate.
Furthermore, since the homomorphism of Picard groups induced by the rigidification morphism
νr,d : Vecr,d,g → Vr,d,g is injective and it sends the boundary line bundles of Vr,d,g to the

boundary line bundles of Vecr,d,g, we see that also the boundary line bundles in the rigidification

Vr,d,g are linearly independent (see Corollary 3.1.9). In other words we have an exact sequence:

(0.0.5) 0 −→
⊕

i=0,...,bg/2c
⊕j∈Ji〈O(δ̃ji )〉 −→ Pic(Vr,d,g) −→ Pic(Vr,d,g) −→ 0.

We will show that the sequence (0.0.4, (resp. (0.0.5), remains exact if we replace the middle

term with the Picard group of VecPssr,d,g (resp. VPssr,d,g) or VecHssr,d,g (resp. VHssr,d,g). This reduces the
proof of Theorem A(ii) (resp. of Theorem B(ii)) to proving the Theorem A(i) (resp. to Theorem

B(i)). While for the stacks VecPsr,d,g and VecHsr,d,g (resp. VPsr,d,g and VHsr,d,g) the sequence (0.0.4)
(resp. (0.0.5)) is exact if we remove the extremal boundary line bundles. This reduces the proof
of Theorem A(iii) (resp. of Theorem B(iii)) to proving the Theorem A(i) (resp. the Theorem
B(i)).

The stack Vecr,d,g admits a natural map det to the universal Jacobian stack J acd,g, which
sends a vector bundle to its determinant line bundle. The morphism is smooth and the fiber over
a polarized curve (C,L) is the irreducible moduli stack Vec=L,C of pairs (E , ϕ), where E is a vector
bundle on C and ϕ is an isomorphism between det E and L (for more details see §2.5). Hoffmann
in [Hof12] showed that the pull-back to Vec=L,C of the tautological line bundle Λ(0, 0, 1) on

Vecr,d,g freely generates Pic (Vec=L,C) (see Theorem 2.5.1). Moreover, as Melo-Viviani have
shown in [MV14], the tautological line bundles Λ(1, 0, 0), Λ(1, 1, 0), Λ(0, 1, 0) freely generate the
Picard group of J acd,g (see Theorem 2.4.1). Since the the Picard groups of Vecr,d,g, Vecssr,d,g,
Vecsr,d,g are isomorphic (see Lemma 3.1.5), Theorem A(i) (and so Theorem A) is equivalent to
prove that we have an exact sequence of groups

(0.0.6) 0 −→ Pic(J acd,g) −→ Pic(Vecssr,d,g) −→ Pic(Vecss=L,C) −→ 0

7



6 ROBERTO FRINGUELLI

where the first map is the pull-back via the determinant morphism and the second one is the
restriction along a fixed geometric fiber. We will prove this in §3.2. If we were working with
schemes, this would follow from the so-called seesaw principle: if we have a proper flat morphism
of varieties with integral geometric fibers then a line bundle on the source is the pull-back of a
line bundle on the target if and only if it is trivial along any geometric fiber. We generalize this
principle to stacks admitting a proper good moduli space (see Appendix B) and we will use this
fact to prove the exactness of (0.0.6).
In §3.3, we use the Leray spectral sequence for the lisse-étale sheaf Gm with respect to the
rigidification morphism νr,d : Vecr,d,g −→ Vr,d,g, in order to conclude the proof of Theorem
B. Moreover we will obtain, as a consequence, some interesting results about the properties
of Vr,d,g (see Proposition 3.3.4). In particular we will show that the rigidified universal curve
Vr,d,g,1 → Vr,d,g admits a universal vector bundle over an open substack of Vr,d,g if and only
if the integers d + r(1 − g), r(d + 1 − g) and r(2g − 2) are coprime, generalizing the result of
Mestrano-Ramanan ([MR85, Corollary 2.9]) in the rank one case.

The paper is organized in the following way. In Section 1, we define and study the moduli stack
Vecr,d,g of properly balanced vector bundles on semistable curves. In §1.1, we give the definition
of a properly balanced vector bundle on a semistable curve and we study the properties. In §1.2
we prove that the moduli stack Vecr,d,g is algebraic. In §1.3 we focus on the existence of good

moduli spaces for an open substack of Vecr,d,g, following the Schmitt’s construction. In §1.4 we

list some properties of our stacks and we introduce the rigidified moduli stack Vr,d,g. We will use

the deformation theory of vector bundles on nodal curves for study the local structure of Vecr,d,g
(see §1.5). In Section 2, we resume some basic facts about the Picard group of a stack. In §2.1
we explain the relations between the Picard group and the Chow group of divisors of stacks. We
illustrate how to construct line bundles on moduli stacks using the determinant of cohomology
and the Deligne pairing (see §2.2). Then we recall the computation of the Picard group of the
stack Mg, resp. J acd,g, resp. Vec=L,C (see §2.3, resp. §2.4, resp. §2.5). In §2.6 we describe the

boundary divisors of Vecr,d,g, while in §2.7 we define the tautological line bundles and we study
the relations among them. Finally, in Section 3, as explained before, we prove Theorems A and
B. The genus two case will be treated separately in the Appendix A. In Appendix B, we recall the
definition of a good moduli space for a stack and we develop, following the strategy adopted by
Brochard in [Bro12, Appendix], a base change cohomology theory for stacks admitting a proper
good moduli space.

Acknowledgements: The author would like to thank his advisor Filippo Viviani, for in-
troducing the author to the problem, for his several suggests and comments without which this
work would not have been possible.

Notations.

0.0.1. Let g ≥ 2, r ≥ 1, d be integers. We will denote with g the arithmetic genus of the curves,
d the degree of the vector bundles and r their rank. Given two integers s, t we will denote with
(s, t) the greatest common divisor of s and t. We will set

nr,d := (r, d), vr,d,g :=

(
d

nr,d
+

r

nr,d
(1− g), d+ 1− g, 2g − 2

)
, kr,d,g :=

2g − 2

(2g − 2, d+ r(1− g))
.

Given a rational number q, we denote with bqc the greatest integer such that bqc ≤ q and with
dqe the lowest integer such that q ≤ dqe.
0.0.2. We will work with the category Sch/k of (not necessarily noetherian) schemes over an
algebraically closed field k of characteristic 0. When we say commutative, resp. cartesian,

8
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diagram of stacks we will intend in the 2-categorical sense. We will implicitly assume that all
the sheaves are sheaves for the site lisse-étale, or equivalently for the site lisse-lisse champêtre
(see [Bro, Appendix A.1]).
The choice of characteristic is due to the fact the explicit computation of the Picard group of
Mg is known to be true only in characteristic 0 (if g ≥ 3). Also the computation of J acd,g in
[MV14] is unknown in positive characteristic, because its computation is based upon a result of
Kouvidakis in [Kou91] which is proved over the complex numbers. If these two results could be
extended to arbitrary characteristics then also our results would automatically extend.

1. The universal moduli space Vecr,d,g.
Here we introduce the moduli stack of properly balanced vector bundles on semistable curves.

Before giving the definition, we need to define and study the objects which are going to be
parametrized.

Definition 1.0.1. A stable (resp. semistable) curve C over k is a projective connected nodal
curve over k such that any rational smooth component intersects the rest of the curve in at
least 3 (resp. 2) points. A family of (semi)stable curves over a scheme S is a proper and flat
morphism C → S whose geometric fibers are (semi)stable curves. A vector bundle on a family
of curves C → S is a coherent S-flat sheaf on C which is a vector bundle on any geometric fiber.

To any family C → S of semistable curves, we can associate a new family Cst → S of stable
curves and an S-morphism π : C → Cst, which, for any geometric fiber over S, is the stabilization
morphism, i.e. it contracts the rational smooth subcurves intersecting the rest of the curve in
exactly 2 points. We can construct this taking the S-morphism π : C → P(ω⊗3

C/S) associated to

the relative dualizing sheaf of C → S and calling Cst the image of C through π.

Definition 1.0.2. Let C be a semistable curve over k and Z be a non-trivial subcurve. We set
Zc := C\Z and kZ := |Z ∩Zc|. Let E be a vector bundle over C. If C1, . . . Cn are the irreducible
components of C, we call multidegree of E the n-tuple (deg EC1 , . . . ,deg ECn) and total degree of
E the integer d :=

∑
deg ECi .

With abuse of notation we will write ωZ := deg(ωC |Z) = 2gZ − 2 + kZ , where ωC is the
dualizing sheaf and gZ := 1− χ(OZ). If E is a vector bundle over a family of semistable curves
C → S, we will set E(n) := E ⊗ ωnC/S . By the projection formula we have

Riπ∗E(n) := Riπ∗(E ⊗ ωnC/S) ∼= Riπ∗(E)⊗ ωnCst/S
where π is the stabilization morphism.

1.1. Properly balanced vector bundles. We recall some definitions and results from [Kau05],
[Sch04] and [NS99].

Definition 1.1.1. A chain of rational curves (or rational chain) R is a connected projective
nodal curve over k whose associated graph is a path and whose irreducible components are
rational. The lenght of R is the number of irreducible components.

Let R1, . . . , Rk be the irreducible components of a chain of rational curves R, labeled in the
following way: Ri ∩Rj 6= ∅ if and only if |i− j| ≤ 1. For 1 ≤ i ≤ k− 1 let xi := Ri ∩Ri+1 be the
nodal points and x0 ∈ R1, xk ∈ Rk closed points different from x1 and xk−1. Let E be a vector
bundle on R of rank r. By [TiB91, Proposition 3.1], any vector bundle E over a chain of rational
curves R decomposes in the following way

E ∼=
r⊕

j=1

Lj , where Lj is a line bundle for any j = 1, . . . , r.

9
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Using these notations we can give the following definitions.

Definition 1.1.2. Let E be a vector bundle of rank r on a rational chain R of lenght k.

• E is positive if degLj|Ri ≥ 0 for any j ∈ {1, . . . , r} and i ∈ {1, . . . , k},
• E is strictly positive if E is positive and for any i ∈ {1, . . . , k} there exists j ∈ {1, . . . , r}

such that degLj|Ri > 0,
• E is stricly standard if E is strictly positive and degLj|Ri ≤ 1 for any j ∈ {1, . . . , r} and
i ∈ {1, . . . , k}.

Definition 1.1.3. Let R be a chain of rational curves over k and R1, . . . , Rk its irreducible
components. A strictly standard vector bundle E of rank r over R is called admissible, if one of
the following equivalent conditions (see [NS99, Lemma 2] or [Kau05, Lemma 3.3]) holds:

• h0(R, E(−x0)) =
∑

deg ERi = deg E ,
• H0(R, E(−x0 − xk)) = 0,
• E =

⊕r
i=1 Li, where Li is a line bundle of total degree 0 or 1 for i = 1, . . . , r.

Definition 1.1.4. Let C be a semistable curve C over k. The subcurve of all the chains
of rational curves will be called exceptional curve and will be denoted with Cexc and we set

C̃ := Ccexc. A connected subcurve R of Cexc will be called maximal rational chain if there is no
rational chain R′ ⊂ C such that R ( R′.

Definition 1.1.5. Let C be a semistable curve and E be a vector bundle of rank r over C. E
is (strictly) positive, resp. strictly standard, resp. admissible vector bundle if the restriction to
any rational chain is (strictly) positive, resp. strictly standard, resp. admissible. Let C → S
be a family of semistable curves with a vector bundle E of relative rank r. E is called (strictly)
positive, resp. strictly standard, resp. admissible vector bundle if it is (strictly) positive, resp.
strictly standard, resp. admissible for any geometric fiber.

Remark 1.1.6. Let (C, E) be a semistable curve with a vector bundle. We have the following
sequence of implications: E is admissible ⇒ E is strictly standard ⇒ E is strictly positive ⇒ E
is positive. Moreover if E is admissible of rank r then any rational chain must be of lenght ≤ r.

The role of positivity is summarized in the next two propositions.

Proposition 1.1.7. [Sch04, Prop 1.3.1(ii)] Let π : C ′ → C be a morphism between semistable
curves which contracts only some chains of rational curves. Let E be a vector bundle on C ′ positive
on the contracted chains. Then Riπ∗(E) = 0 for i > 0. In particular Hj(C ′, E) = Hj(C, π∗E)
for all j.

Proposition 1.1.8. Let C → S be a family of semistable curves, S locally noetherian scheme
and consider the stabilization morphism

C

��

π // Cst

~~
S

Suppose that E is a positive vector bundle on C → S and for any point s ∈ S consider the induced
morphism πs∗ : Cs → Csts . Then

π∗(E)Csts = πs∗(ECs).
Moreover π∗E is S-flat.

Proof. It follows from [NS99, Lemma 4] and [Sch04, Remark 1.3.6]. �
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The next results gives us a useful criterion to check if a vector bundle is strictly positive or
not.

Proposition 1.1.9. [Sch04, Proposition 1.3.3]. Let C be a semistable curve containing the

maximal chains R1, . . . , Rk. We set C̃j := Rcj, and let pj1, pj2 be the points where Rj is attached

to C̃j, for j = 1, . . . , k. Suppose that E is a strictly positive vector bundle on C which satisfies
the following conditions:

(i) H1
(
C̃j , Ipj1,pj2EC̃j

)
= 0 for j = 1, . . . , k.

(ii) The homomorphism

H0
(
C̃j , Ipj1,pj2EC̃j

)
−→

(
Ipj1,pj2EC̃j

)/(
I2
pj1,p

j
2

EC̃j
)

is surjective for j = 1, . . . , k.

(iii) For any x ∈ C̃\{pj1, pj2, j = 1, . . . , k}, the homomorphism

H0 (C, ICexcE) −→ EC̃
/(
I2
xEC̃

)

is surjective.

(iv) For any x1 6= x2 ∈ C̃\{pj1, pj2, j = 1, . . . , k}, the evaluation homomorphism

H0 (C, ICexcE) −→ E{x1} ⊕ E{x2}

is surjective.

Then E is generated by global sections and the induced morphism in the Grassmannian

C ↪→ Gr(H0(C, E), r)

is a closed embedding.

Using [Sch04, Remark 1.3.4], we deduce the following useful criterion

Corollary 1.1.10. Let E be a vector bundle over a semistable curve C. E is strictly positive
if and only if there exists n big enough such that the vector bundle E(n) is generated by global
sections and the induced morphism in the Grassmannian C → Gr(H0(C, E(n)), r) is a closed
embedding.

Remark 1.1.11. Let F be a torsion free sheaf over a nodal curve C. By [Ses82, Huitieme Partie,
Proposition 3], the stalk of F over a nodal point x is of the form

• Or0C,x ⊕Or1C1,x
⊕Or2C2,x

, if x is a meeting point of two irreducible curves C1 and C2.

• Or−aC,x ⊕ma
C,x, if x is a nodal point belonging to a unique irreducible component.

If F has uniform rank r (i.e. it has rank r on any irreducible component of C), we can always
write the stalk at x in the form Or−aC,x ⊕ma

C,x for some α. In this case we will say that F is of
type a at x.

Now we are going to describe the properties of an admissible vector bundle. The following
proposition (and its proof) is a generalization of [NS99, Proposition 5].

Proposition 1.1.12. Let E be a vector bundle of rank r over a semistable curve C, and π : C →
Cst the stabilization morphism, then:

(i) E is admissible if and only if E is strictly positive and π∗E is torsion free.
(ii) Let R be a maximal chain of rational curves and x := π(R). If E is admissible then π∗E is

of type deg ER at x.

11
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Proof. Part (i). By hypothesis E is strictly positive. Let C̃ be the subcurve of C complementary
to the exceptional one. Consider the exact sequence:

0 −→ IC̃E −→ E −→ EC̃ −→ 0.

We can identify IC̃E with IDECexc , where D := Cexc ∩ C̃ with its reduced scheme structure.
Then we have:

0 −→ π∗(IDECexc) −→ π∗E −→ π∗(EC̃).

Now π∗(EC̃) is a torsion-free sheaf and π∗(IDECexc) is a torsion sheaf, because its support is
D. So π∗E is torsion free if and only if π∗(IDECexc) = 0. Let R be a maximal rational chain
which intersects the rest of the curve in p and q and x := π(R). By definition the stalk of the
sheaf π∗(IDECexc) at x is the k-vector space H0(R, Ip,qER) = H0(R, ER(−p− q)). Applying this
method for any rational chain we have that π∗E is torsion free if and only if for any chain R if a
global section s of ER vanishes on R ∩ Rc then s ≡ 0. In particular, if E is admissible then π∗E
is torsion free and E is strictly positive.
Conversely, suppose that π∗E is torsion free and E is strictly positive. The definition of admis-
sibility requires that the vector bundle must be strictly standard, so a priori it seems that the
viceversa should not be true. However we can easily see that if E is strictly positive but not
strictly standard then there exists a chain R such that H0(R, Ip,qER) 6= 0. So π∗E cannot be
torsion free, giving a contradiction. In other words, if π∗E is torsion free and E is strictly positive
then E is strictly standard. By the above considerations the assertion follows.
Part (ii). Let R be a maximal chain of rational curves. By hypothesis and part (i), π∗E is torsion
free and we have an exact sequence:

0 −→ π∗E −→ π∗(EC̃) −→ R1π∗(IDECexc) −→ 0.

The sequence is right exact by Proposition 1.1.7. Using the notation of part (i), we have that the
stalk of the sheaf R1π∗(IDECexc) at x is the k-vector space H1(R, ER(−p − q)). If deg(ER) = r
is easy to see that H1(R, ER(−p − q)) = 0, thus π∗E is isomorphic to π∗(EC̃) locally at x. The
assertion follows by the fact that π∗(EC̃) is a torsion free sheaf of type deg(ER) = r at x. Suppose
that deg(ER) = r − s < r. Then we must have that ER = OsR ⊕F . Using the sequence

0 −→ E −→ ERc ⊕ ER −→ E{p} ⊕ E{q} −→ 0

we can found a neighbourhood U of x in Cst such that Eπ−1(U) = Osπ−1(U) ⊕ E ′ reducing to the

case deg(ER) = r. �

The proposition above has some consequence, which will be useful later. For example in
§1.3, where we will prove that a particular subset of the set of admissible vector bundles over a
semistable curve is bounded. The following results are generalizations of [NS99, Remark 4].

Corollary 1.1.13.

(i) Let C be a stable curve, π : N → C a partial normalization and F1, F2 two vector bundles
on N . Then

HomON (F1,F2) ∼= HomOC (π∗(F1), π∗(F2)).

In particular F1
∼= F2 ⇐⇒ π∗(F1) ∼= π∗(F2).

(ii) Let C be a semistable curve with an admissible vector bundle E, let R be a subcurve composed

only by maximal chains. We set C̃ := Rc and D the reduced subscheme R ∩ C̃. Let
π : C → Cst be the stabilization morphsim and Dst be the reduced scheme π(D). Then

π∗ (IRER) = π∗
(
IDEC̃

)
= IDst (π∗E) .

12
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(iii) We set C̃ := Ccexc. We have that π∗E determines EC̃ , i.e. consider two pairs (C, E), (C ′, E ′)
of semistable curves with admissible vector bundles such that (Cst, π∗E) ∼= (C ′st, π′∗E ′) , then

(C̃, EC̃) ∼= (C̃ ′, E ′
C̃′

). Observe that Cexc and C ′exc can be different.

Proof. Part (i). Adapting the proof of [NS99, Remark 4(ii)] to our more general case, we obtain
the assertion.
Part (ii). Consider the following exact sequence

0 −→ IRE −→ E −→ ER −→ 0.

We can identify IRE with IDEC̃ . Applying the left exact functor π∗, we have

0 −→ π∗
(
IDEC̃

)
−→ π∗(E) −→ π∗(ER) −→ 0.

The sequence is right exact because E is positive. Moreover π∗(ER) is supported at Dst and
annihilated by IDst . By Proposition 1.1.12(ii), the morphism π∗(E) −→ π∗(ER) induces an
isomorphism of vector spaces at the restriction to Dst. This means that π∗

(
IDEC̃

)
= IDst (π∗E).

Part (iii). Suppose that (Cst, π∗E) ∼= (C ′st, π′∗E ′), i.e. there exist an isomorphism of curves
ψ : Cst → C ′st and an isomorphism of sheaves φ : π∗E ∼= ψ∗π∗E ′. By (ii), we have

π∗(IDEC̃) ∼= ψ∗π∗(ID′E ′C̃′).

First we observe that C̃ and C̃ ′ are isomorphic and ψ induces an isomorphism ψ̃ between them,
such that

ψ∗π∗(ID′E ′C̃′). ∼= π∗(IDψ̃∗E ′C̃′).
Now by (i), we obtain an isomorphism of vector bundles IDEC̃ ∼= IDψ̃∗E ′C̃′ . Twisting by I−1

D ,

we have the assertion. �

Definition 1.1.14. Let E be a vector bundle of rank r and degree d on a semistable curve C.
E is balanced if for any subcurve Z ⊂ C it satisfies the basic inequality :

∣∣∣∣deg EZ − d
ωZ
ωC

∣∣∣∣ ≤ r
kZ
2
.

E is properly balanced if is balanced and admissible. If C → S is a family of semistable curves
and E is a vector bundle of relative rank r for this family, we will call it (properly) balanced if is
(properly) balanced for any geometric fiber.

Remark 1.1.15. We have several equivalent definitions of balanced vector bundle. We list some
which will be useful later:

(i) E is balanced;
(ii) the basic inequality is satisfied for any subcurve Z ⊂ C such that Z and Zc are connected;
(iii) for any subcurve Z ⊂ C such that Z and Zc are connected, we have the following inequality

deg EZ − d
ωZ
ωC
≤ r kZ

2
;

(iv) for any subcurve Z ⊂ C such that Z and Zc are connected, we have the following inequality

χ(F)

ωZ
≤ χ(E)

ωC
,

where F is the subsheaf of EZ of sections vanishing on Z ∩ Zc;
(v) for any subcurve Z ⊂ C such that Z and Zc are connected, we have χ(GZ) ≥ 0, where G is

the vector bundle

(det E)
⊗2g−2 ⊗ ω⊗−d+r(g−1)

C/S ⊕O⊕r(2g−2)−1
C .

13
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Lemma 1.1.16. Let (p : C → S, E) be a vector bundle of rank r and degree d over a family
of reduced and connected curves. Suppose that S is locally noetherian. The locus where C is a
semistable curve and E strictly positive, resp. admissible, resp. properly balanced, is open in S.

Proof. We can suppose that S is noetherian and connected. Suppose that there exists a point
s ∈ S such that the geometric fiber is a properly balanced vector bundle over a semistable curve.
It is known that the locus of semistable curves is open on S (see [ACG11, Chap. X, Corollary
6.6]). So we can suppose that C → S is a family of semistables curves of genus g. Up to twisting
by a suitable power of ωC/S we can assume, by Corollary 1.1.10, that the rational S-morphism

i : C 99K Gr(p∗E , r)
is a closed embedding over s. By [Kau05, Lemma 3.13], there exists an open neighborhood S′

of s such that i is a closed embedding. Equivalently ES′ is strictly positive by Corollary 1.1.10.
We denote as usual with π : C → Cst the stabilization morphism. By Proposition 1.1.8, the
sheaf π∗(ES′) is flat over S′ and the push-forward commutes with the restriction on the fibers.
In particular, it is torsion free at the fiber s, and so there exists an open subset S′′ of S′ where
π∗(ES′′) is torsion-free over any fiber (see [HL10, Proposition 2.3.1]). By Proposition 1.1.12, ES′′
is admissible. Putting everything together, we obtain an open neighbourhood S′′ of s such that
over any fiber we have an admissible vector bundle over a semistable curve. Let 0 ≤ k ≤ d,
0 ≤ i ≤ g be integers. Consider the relative Hilbert scheme

Hilb
OC(1),P (m)=km+1−i
C/S′′

where OC(1) is the line bundle induced by the embedding i. We call Hk,i the closure of the locus

of semistable curves in Hilb
OC(1),P (m)=km+1−i
C/S′′ and we let Zk,i ↪→ C ×S′′ Hk,i be the universal

curve. Consider the vector bundle G over C → S′′ as in Remark 1.1.15(v). Let Gk,i its pull-back
on Zk,i. The function

χ : h 7→ χ(Gk,ih )

is locally constant on Hk,i. Now π : Hk,i → S′′ is projective. So the projection on S′′ of the
connected components of ⊔

0≤k≤d
0≤i≤g

Hk,i

such that χ is negative is a closed subscheme. Its complement in S is open and, by Remark
1.1.15(v), it contains s and defines a family of properly balanced vector bundles over semistable
curves. �

1.2. The moduli stack of properly balanced vector bundles Vecr,d,g. Now we will intro-

duce our main object of study: the universal moduli stack Vecr,d,g of properly balanced vector
bundles of rank r and degree d on semistable curves of arithmetic genus g. Roughly speaking, we
want a space such that its points are in bijection with the pairs (C, E) where C is a semistable
curve on k and E is a properly balanced vector bundle on C. This subsection is devoted to the
construction of such space as Artin stack.

Definition 1.2.1. Let r ≥ 1, d and g ≥ 2 be integers. Let Vecr,d,g be the category fibered in
groupoids over Sch/k whose objects over a scheme S are the families of semistable curves of
genus g with a properly balanced vector bundle of relative total degree d and relative rank r.
The arrows between the objects are the obvious cartesian diagrams.

The aim of this subsection is proving the following

14
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Theorem 1.2.2. Vecr,d,g is an irreducible smooth Artin stack of dimension (r2 + 3)(g − 1).

Furthermore, it admits an open cover {Un}n∈Z such that Un is a quotient stack of a smooth
noetherian scheme by a suitable general linear group.

Remark 1.2.3. In the case r = 1, Vec1,d,g is quasi compact and it corresponds to the compactifi-

cation of the universal Jacobian overMg constructed by Caporaso [Cap94] and later generalized

by Melo [Mel09]. Following the notation of [MV14], we will set J acd,g := Vec1,d,g.
The proof consists in several steps, following the strategies adopted by Kausz [Kau05] and

Wang [Wan]. First, we observe that Vecr,d,g is clearly a stack for the Zariski topology. We now
prove that it is a stack also for the fpqc topology (defined in [FGI+05, Section 2.3.2]). With
that in mind, we will first prove the following lemma which allows us to restrict to families of
semistable curves with properly balanced vector bundles over locally noetherian schemes.

Lemma 1.2.4. Let E be a properly balanced vector bundle over a family of semistable curves
p : C → S. Suppose that S is affine. Then there exists

• a surjective morphism φ : S → T where T is a noetherian affine scheme,
• a family of semistable curves CT → T ,
• a properly balanced vector bundle ET over CT → T ,

such that the pair (C → S, E) is the pull-back by φ of the pair (CT → T, ET ).

Proof. We can write S as a projective limit of affine noetherian k-schemes (Sα). By [Gro67,
8.8.2 (ii)] there exists an α, a scheme Cα and a morphism Cα → Sα such that C is the pull-back
of this scheme by S → Sα. By [Gro67, 8.10.5 (xii)] and [Gro67, 11.2.6 (ii)] we can assume that
Cα → Sα is flat and proper. By [Gro67, 8.5.2 (ii)] there exists a coherent sheaf Eα on Cα such
that its pull-back on S is E . Moreover, by [Gro67, 11.2.6 (ii)] we may assume that Eα is Sα-flat.
Set Sα =: T , Cα =: CT and Eα =: ET . Now the family CT → T will be a family of semistable
curves. The vector bundle E is properly balanced because this condition can be checked on the
geometric fibers. �
Proposition 1.2.5. Let S′ → S be an fpqc morphism of schemes, set S′′ := S′×S S′ and πi the
natural projections. Let (C → S′, E ′) ∈ Vecr,d,g(S′). Then every descent data

ϕ : π∗1(C → S′, E) ∼= π∗2(C → S′, E)

is effective.

Proof. First we reduce to the case where S′ and S are noetherian schemes. By [Gro67, (8.8.2)(ii),
(8.10.5)(vi), (8.10.5)(viii) (11.2.6)(ii)] there exists an fpqc morphism of noetherian affine schemes
S′0 → S0 and a morphism S → S0, such that the diagram

S′ //

��

S

��

S′0 // S0

is cartesian. By Lemma 1.2.4, there exists a pair (C0 → S′0, E ′0) ∈ Vecr,d,g(S′0) such that its pull-

back via S′ → S′0 is isomorphic to (C → S′, E ′) ∈ Vecr,d,g(S′). By [Gro67, (8.8.2)(i), (8.5.2)(i),
(8.8.2.4), (8.5.2.4)] we can assume that ϕ comes from a descent data

ϕ0 : π∗1(C → S′0, E ′0) ∼= π∗2(C → S′0, E ′0).

So we can assume that S and S′ are noetherian. By the properly balanced condition, up to
twisting by some power of the dualizing sheaf, we can suppose that det E ′ is relatively ample on
S′, in particular ϕ induces a descent data for (C → S′,det E ′) and this is effective by [FGI+05,

15
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Theorem. 4.38]. So there exists a family of curves C → S such that its pull-back via S′ → S is
C ′ → S′. In particular, C ′ → C is an fpqc cover and ϕ induces a descent data for E ′ on C ′ → C,
which is effective by [FGI+05, Theorem. 4.23]. �

Proposition 1.2.6. Let S be an affine scheme. Let (C → S, E), (C ′ → S, E ′) ∈ Vecr,d,g(S).
The contravariant functor

(T → S) 7→ IsomT ((CT , ET ), (C ′T , E ′T ))

is representable by a quasi-compact separated S-scheme. In other words, the diagonal of Vecr,d,g
is representable, quasi-compact and separated.

Proof. Using the same arguments above, we can restrict to the category of locally noetherian
schemes. Suppose that S is an affine connected noetherian scheme. Consider the contravariant
functor

(T → S) 7→ Isom (CT , C
′
T ) .

This functor is represented by a scheme B (see [ACG11, pp. 47-48]). More precisely: let
HilbC×SC′/S be the Hilbert scheme which parametrizes closed subschemes of C ×S C ′ flat over
S. B is the open subscheme of HilbC×SC′/S with the property that a morphism f : T →
HilbC×SC′/S factorizes through B if and only if the projections π : ZT → CT and π′ : ZT → C ′T
are isomorphisms, where ZT is the closed subscheme of C ×S C ′ represented by f . Consider the
universal pair (

ZB , ϕ := π′ ◦ π−1 : CB ∼= ZB ∼= C ′B
)
.

Now we prove that B is quasi-projective. By construction it is enough to show that B is contained

in HilbP,LC×SC′/S , which parametrizes closed subschemes of C×S C ′/S with Hilbert polynomial P

respect to the relatively ample line bundle L on C×S C ′/S. Let L (resp. L′) be a relatively very
ample line bundle on C/S (resp. C ′/S). We can take L = (det E)m and L′ = (det E ′)m for m
big enough. Then the sheaf L�S L′ is relatively very ample on C×S C ′/S. Using the projection
π we can identify ZB and CB . The Hilbert polynomial of ZB with respect to the polarization
L�S L′ is

P (n) = χ((L�S L′)n) = χ(Ln ⊗ ϕ∗L′n) = deg(Ln) + deg(L′n) + 1− g.
It is clearly independent from the choice of the point in B and from ZB , proving the quasi-
projectivity. In particular, B is quasi-compact and separated over S. The proposition follows
from the fact that the contravariant functor

(T → B) 7→ IsomCT (ET , ϕ∗E ′T )

is representable by a quasi-compact separated scheme over B (see the proof of [LMB00, Theorem
4.6.2.1]). �

Putting together Proposition 1.2.5 and Proposition 1.2.6, we get

Corollary 1.2.7. Vecr,d,g is a stack for the fpqc topology.

We now introduce a useful open cover of the stack Vecr,d,g. We will prove that any open
subset of this cover has a presentation as quotient stack of a scheme by a suitable general linear
group. In particular, Vecr,d,g admits a smooth surjective representable morphism from a locally

noetherian scheme. Putting together this fact with Proposition 1.2.6, we get that Vecr,d,g is an
Artin stack locally of finite type.

Proposition 1.2.8. For any scheme S and any n ∈ Z, consider the subgrupoid Un(S) of
Vecr,d,g(S) of pairs (p : C → S, E) such that

(1) Rip∗E(n) = 0 for any i > 0,
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(2) E(n) is relatively generated by global sections, i.e. the canonical morphism p∗p∗E(n) →
E(n) is surjective, and the induced morphism C → Gr(p∗E(n), r) is a closed embedding.

Then the sheaf p∗E(n) is flat on S and E(n) is cohomologically flat over S. In particular, the
inclusion Un ↪→ Vecr,d,g makes Un into a fibered full subcategory.

Proof. We set F := E(n). By [Wan, Proposition 4.1.3], we know that p∗F is flat on S and F is
cohomologically flat over S. Consider the following cartesian diagram

CT

pT

��

// C

p

��

T
φ
// S

By loc. cit., we have that RipT∗(FT ) = 0 for any i > 0 and that FT is relatively generated
by global sections. It remains to prove that the induced T -morphism CT → Gr(pT∗FT , r) is a
closed embedding. This follows easily by cohomological flatness and the base change property of
the Grassmannian. �

Lemma 1.2.9. The subcategories
{
Un
}
n∈Z form an open cover of Vecr,d,g.

Proof. Let S be a scheme, (p : C → S, E) an object of Vecr,d,g(S) and n an integer. We must
prove that exists an open Un ⊂ S with the universal property that T → S factorizes through Un
if and only if ET is an object of Un(T ).
We can assume S affine. Lemma 1.2.4 implies that the morphism S → Un factors through a
noetherian affine scheme. So we can suppose that S is affine and noetherian. Let F := E(n) and
Un the subset of points of S such that:

(1) Hi(Cs,Fs) = 0 for i > 0,
(2) H0(Cs,Fs)⊗OCs → Fs is surjective,
(3) the induced morphism in the Grassmannian Cs → Gr(H0(Cs,Fs), r) is a closed embed-

ding.

We must prove that Un is open and it satifies the universal property. As in the proof of [Wan,
Lemma 4.1.5], consider the open subscheme Vn ⊂ S satisfying the first two conditions above.
By definition it contains Un and it satisfies the universal property that any morphism T → S
factorizes through Vn if and only if RipT∗FT = 0 for any i > 0 and FT is relatively generated by
global sections. By [Wan, Proposition 4.1.3], FVn is cohomologically flat over Vn. This implies
that the fiber over a point s of the morphism

CVn → Gr(pVn∗FVn , r)
is exactly Cs → Gr(H0(Cs,Fs), r). Since the property of being a closed embedding for a mor-
phism of proper Vn-schemes is an open condition (see [Kau05, Lemma 3.13]), it follows that Un
is an open subscheme and FUn ∈ Un(Un).
Viceversa, suppose now that φ : T → S is such that FT ∈ Un(T ). The morphism factors through
Vn and for any t ∈ T

Ct → Gr(H0(Ct,Ft), r)
is a closed embedding. Since the morphism φ restricted to a point t ∈ T onto is image φ(t)
is fppf, by descent the morphism Cφ(t) → Gr(H0(Cφ(t),Fφ(t)), r) is a closed embedding, or in
other words φ(t) ∈ Un.
It remains to prove that {Un} is a covering. It is sufficient to prove that for any point s exists n
such that Es(n) satisfies the conditions (1), (2) and (3). By Proposition 1.1.8, the push-forward
of E in the stabilized family is S-flat and the cohomology groups on the fibers are the same, so

17
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for any point s in S there exists n big enough such that (1) is satisfied, and by Corollary 1.1.10
the same holds for (2) and (3). �

Remark 1.2.10. As in [Wan, Remark 4.1.7] for a scheme S and a pair (p : C → S, E) ∈ Un(S),
the direct image p∗(E(n)) is locally free of rank d+ r(2n− 1)(g− 1). By cohomological flatness,
locally on S the morphism in the Grassmannian becomes C ↪→ Gr(Vn, r) × S, where Vn is a
k-vector space of dimension P (n) := d+ r(2n− 1)(g − 1).

We are now going to obtain a presentation of Un as a quotient stack. Consider the Hilbert
scheme of closed subschemes on the Grassmannian Gr(Vn, r)

Hilbn := Hilb
OGr(Vn,r)(1),Q(m)

Gr(Vn,r)

with Hilbert polinomial Q(m) = m(d + nr(2g − 2)) + 1 − g relative to the Plucker line bundle
OGr(Vn,r)(1). Let C(n) ↪→ Gr(Vn, r) × Hilbn be the universal curve. The Grassmannian is
equipped with a universal quotient Vn ×OGr(Vn,r) → E , where E is the universal vector bundle.
If we pull-back this morphism on the product Gr(Vn, r)×Hilbn and we restrict to the universal
curve, we obtain a surjective morphism of vector bundles q : Vn ⊗ OC(n)

→ E(n). We will call

E(n) (resp. q : Vn⊗OC(n)
→ E(n)) the universal vector bundle (resp. universal quotient) on C(n).

Let Hn be the open subset of Hilbn consisting of points h such that:

(1) C(n)h is semistable,
(2) E(n)h is properly balanced,

(3) Hi(C(n)h,E(n)h) = 0 for i > 0,

(4) H0(qh) is an isomorphism.

The restriction of the universal curve and of the universal vector bundle onHn defines a morphism
of stacks Θ : Hn → Un. Moreover, the Hilbert scheme Hilbn is equipped with a natural action
of GL(Vn) and Hn is stable for this action.

Proposition 1.2.11. The morphism of stacks

Θ : Hn → Un
is a GL(Vn)-bundle (in the sense of [Wan, 2.1.4]).

Proof. We set GL := GL(Vn). First we prove that Θ is GL-invariant, i.e.

(1) the diagram

Hn ×GL m //

pr1

��

Hn

Θ
��

Hn
Θ // Un

where pr1 is the projection on Hn and m is the multiplication map is commutative.
Equivalently, there exists a natural transformation ρ : pr∗1Θ→ m∗Θ.

(2) ρ satifies an associativity condition (see [Wan, 2.1.4]).

In our case ρ is the identity and it is easy to see that the second condition holds. We will fix a
pair (p : C → S, E) ∈ Un(S) and let f : S → Un be the associated morphism. It remains to prove
that morphism f∗Θ is a principal GL-bundle. More precisely, we will prove that there exists a
GL-equivariant isomorphism over S

Hn ×Un S ∼= Isom(Vn ⊗OS , pS∗E(n)).

For any S-scheme T , a T -valued point of Hn ×Un S corresponds to the following data:

(1) a morphism T → Hn,
(2) a T -isomorphism of schemes ψ : CT ∼= C(n)T ,
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(3) an isomorphism of vector bundles ψ∗E(n)T
∼= ET (n).

Consider the pull-back of the universal quotient of Hn through T → Hn

qT : Vn ⊗OC(n)T
→ E(n)T .

If we pull-back by ψ and compose with the isomorphism of (3), we obtain a surjective morphism

Vn ⊗OCT → ET (n).

We claim that the push-forward Vn ⊗ OT → pT∗(ET (n)) ∼= p∗(E(n))T is an isomorphism, or in
other words it defines a T -valued point of Isom(Vn ⊗ OS , pS∗E(n)). As explained in Remark
1.2.10, the sheaf pT∗(E(n)T ) is a vector bundle of rank P (n), so it is enough to prove the
surjectivity. We can suppose that T is noetherian and by Nakayama lemma it suffices to prove
the surjectivity on the fibers. On a fiber the morphism is

Vn ⊗OCt → H0(E(n)t) ∼= H0(Et(n))

which is an isomorphism by the definition of Hn.
Conversely, let T be a scheme and Vn ⊗ OT → p∗(E(n))T a T -isomorphism of vector bundles.
By hypothesis, ET (n) is relatively generated by global sections and the induced morphism in the
Grassmannian is a closed embedding. Putting everything together, we obtain a surjective map

Vn ⊗OCT ∼= p∗T pT∗ET (n)→ ET (n)

and a closed embedding CT ↪→ Gr(Vn, r)×T which defines a morphism T → Hn. If we set ψ equal
to the identity CT = C(n)T , we have a unique isomorphism of vector bundles ψ∗E(n)T

∼= ET (n).
Then we have obtained a T -valued point of Hn×Un S. The two constructions above are inverses
of each other, concluding the proof. �

Proposition 1.2.12. The map Θ : Hn → Un gives an isomorphism of stacks

Un ∼= [Hn/GL(Vn)]

Proof. This follows from [Wan, Lemma 2.1.1.]. �

From the above presentation of Un as a quotient stack, we can now prove the smoothness of
Vecr,d,g and compute its dimension. This will conclude the proof of Theorem 1.2.2 except for

the irreducibility of Vecr,d,g which will be proved in Lemma 1.5.2.

Corollary 1.2.13. The scheme Hn and the stack Vecr,d,g are smooth of dimension respectively
P (n)2 + (r2 + 3)(g − 1) and (r2 + 3)(g − 1).

Proof. We set Gr := Gr(Vn, r). Arguing as in [Sch04, Proposition 3.1.3.], we see that for any
k-point h := [C ↪→ Gr] ∈ Hn the co-normal sheaf IC/I2

C is locally free and we have an exact
sequence:

0 −→ IC/I2
C −→ Ω1

Gr|C −→ Ω1
C −→ 0.

Applying the functor HomOC (−,OC), we obtain the following exact sequence of vector spaces

0 −→ HomOC (Ω1
C ,OC) −→ H0(C, TGr|C) −→ HomOC (IC/I2

C ,OC) −→ Ext1
OC (Ω1

C ,OC) −→ 0

Now HomOC (IC/I2
C ,OC) is the tangent space of Hn at h. We can prove that its dimension is

P (n)2 + (r2 + 3)(g− 1) by using the sequence above as in the proof of loc. cit. This implies that
Hn is smooth of dimension P (n)2 + (r2 + 3)(g − 1). The assertion for the stack Vecr,d,g follows
immediately from Proposition 1.2.12. �
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1.3. The Schmitt compactification Ur,d,g. In this section we will resume how Schmitt in
[Sch04], generalizing a result of Nagaraj-Seshadri in [NS99], constructs via GIT an irreducible
projective variety, which is a good moduli space (for the definition see Appendix B) for an open
substack of Vecr,d,g.

First we recall the Seshadri’s definition of slope-(semi)stable sheaf for a stable curve in the
case of the canonical polarization.

Definition 1.3.1. Let C be a stable curve and let C1, . . . , Cs be its irreducible components.
We will say that a sheaf E is P-(semi)stable if it is torsion free of uniform rank r and for any
subsheaf F we have

χ(F)∑
siωCi

<
(≤)

χ(E)

rωC

where si is the rank of F at Ci. A P-semistable sheaf has a Jordan-Holder filtration with P-stable
factors. Two P-semistable sheaves are equivalent if they have the same Jordan-Holder factors.
Two equivalence classes are said to be aut-equivalent if they differ by an automorphism of the
curve.

Consider the stack T Fr,d,g of torsion free sheaves of uniform rank r and Euler characteristic
d + r(1 − g) on stable curves of genus g. Pandharipande has proved in [Pan96] that exists an
open substack T F ssr,d,g which admits a projective irreducible variety as good moduli space. More
precisely, this variety is a coarse moduli space for the aut-equivalence classes of P-semistable
sheaves over stables curves (see [Pan96, Theorem 9.1.1]). This is the reason why we prefer the
”P” instead of ”slope” in the definition above.

Consider the open substack VecP (s)s

r,d,g ⊂ Vecr,d,g of pairs (C, E) such that the sheaf π∗E over

the stabilized curve Cst is P-(semi)stable. Sometimes we will simply say that the pair (Cst, π∗E)
is P-(semi)stable. As we will see in the next proposition, the set of such pairs is bounded.

Proposition 1.3.2. The stack VecPssr,d,g is quasi-compact.

Proof. By construction, it is sufficient to prove that there exists n big enough such that VecPssr,d,g ⊂
Un. It is enough showing that there exists n big enough such that E(n) satisfies the conditions

of Proposition 1.1.9, for any k-point (C, E) in VecPssr,d,g.

Consider the set {(C, E)} of k-points in VecPssr,d,g. Denote with π : C → Cst the stabilization
morphism. Let C be a semistable curve, let R ⊂ C be a subcurve obtained as union of some

maximal chains. We set, as usual, C̃ = Rc and D := |C̃ ∩R|. Consider the exact sequence

0 −→ IDst(π∗E) −→ π∗E −→ (π∗E)Dst −→ 0,

Observe that the cokernel is a torsion sheaf. By construction χ((π∗E)Dst) = h0((π∗E)Dst) ≤ 2rN ,
where N is the number of nodes on Cst. A stable curve of genus g can have at most 3g−3 nodes.
By [Pan96], the set of P-semistable torsion free sheaves with χ = d + r(1 − g) on stable curves
of genus g is bounded. This allows us, using the theory of relative Quot schemes, to construct
a quasi-compact scheme which is the fine moduli space for the pairs (X, q : P → F) where X
is a stable curve of genus g, q is a surjective morphism of sheaves on X, P is a P-semistable
torsion free and F is a sheaf with constant Hilbert polynomial less or equal than 6r(g − 1). In
particular, up to twisting by a suitable power of the canonical bundle, we can assume that the
sheaf IDst(π∗E) is generated by global sections and that H1(Cst, IDst(π∗E)) = 0 for any k-point

(C, E) in VecPssr,d,g and any collection R of maximal chains in Cexc. By Corollary 1.1.13(ii), we
have

IDst(π∗E) ∼= π∗(IDEC̃) = π∗(IRE).
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Observe that Hi(Cst, π∗(IDEC̃)) = Hi(C̃, IDEC̃) for i = 0, 1. In particular E satisfies the
condition (i) of Proposition 1.1.9. Suppose that R is a maximal chain, D = {p, q} and Dst = x.
So, the fact that H0(Cst, π∗

(
IDEC̃

)
) generates π∗

(
IDEC̃

)
implies that

H0(C̃, Ip,qEC̃)→ π∗
(
Ip,qEC̃

)
{x} =

(
Ip,qEC̃

)
{p} ⊕

(
Ip,qEC̃

)
{q}

is surjective. In other words E satisfies the condition (ii) of loc. cit.
For the rest of the proof R will be the exceptional curve Cexc. Set G := IDEC̃ . Let p and q (not

necessarily distinct) points on C\R = C̃\D. Consider the exact sequence of sheaves on C̃.

0 −→ Ip,qG −→ G −→ G/Ip,qG −→ 0,

where, when p = q, we denote with Ip,pG the sheaf I2
pG. If we show that H1(C̃, Ip,qG) =

H1(Cst, π∗(Ip,qG)) is zero for any k-point (C, E) in VecPssr,d,g then the conditions (iii) and (iv)

are satisfied for any pair in VecPssr,d,g(k). We have already shown that the pairs (Cst, π∗G) are
bounded. As before the sheaf G/Ip,q is torsion and its Euler characteristic is 2r (not depend
from the choice of p and q). Arguing as above, we can conclude that H1(Cst, π∗(Ip,qG)) = 0. �

Schmitt proves in [Sch04] that there exists an open substack VecHssr,d,g ⊂ Vec
Pss

r,d,g which admits

a good moduli space Ur,d,g. We recall briefly the conctruction of such space following [Sch04,
pp. 174-175].
Gieseker has shown in [Gie82] that the coarse moduli space of stable curvesMg can be constructed

via GIT. More precisely Mg
∼= Hg �LHg SL(W ), where Hg is the Hilbert scheme of stable curves

embedded with ω10 in P(W ) = P10(2g−2)−g, while LHg is a suitable SL(W )-linearized ample line
bundle on Hg. Let Cg → Hg be the universal curve. Consider the relative Quot scheme

ρ : Q := Quot(Cg/Hg, Vn ⊗OCg , ω10
Cg/Hg

)→ Hg.

We have a natural action of SL(Vn) × SL(W ), linearized with respect to a suitable ρ-ample
line bundle LQ. With an abuse of notation, we will denote again with Q the open (and closed)
subscheme of Q consisting of sheaves with Euler characteristic equal to P (n) = dimVn and
uniform rank r. We set La := LQ ⊗ ρ∗LaHg . For a � 0 the GIT-quotient Q := Q �La SL(W )

exists and it is the coarse moduli space for the functor which sends a scheme S to the set of
isomorphism classes of pairs (CS → S, qS : Vn ⊗OCS → E) where CS → S is a family of stable
curve and qS is a surjective morphism of S-flat sheaves with χ(Es) = P (n) and uniform rank r.
Moreover Q is equipped with a SL(Vn)-linearized line bundle LQ.

Consider now the scheme Hn defined at page 16. It has a natural SL(Vn)-linearized line bundle
LHilb, the semistable points for this linearized action are called Hilbert semistable points and
their description is an open problem (see [TiB98] for some partial results in this direction). Let

(C(n), q : Vn ⊗OC(n)
→ E(n))

be the universal pair on Hn. Consider the stabilized curve π : C(n) → C st
(n). The push-forward

π∗(q) (as in [Sch04, p. 180]) defines a morphism Hn → Q. The closure of the graph Γ ↪→ Hn×Q
gives us a SL(Vn)-linearized ample line bundle LmHilb �LaQ. For a� 0, Schmitt has proved that

the semistable points are contained in the graph (see [Sch04, Theorem 2.1.2]). Therefore, we can
view such semistable points inside Hn and call them H-semistable.

Remark 1.3.3. An H-semistable point has the following properties (see [Sch04, Def. 2.2.10]): let,
as usual, π : C → Cst be the stabilization morphism and (C, E) is a pair in Un.

(i) Suppose that C is smooth. Then (C, E) is H-(semi)stable if and only if (C, E) is P -
(semi)stable. In this case we will say just (C, E) is (semi)-stable.
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(ii) We have the following chain of implications:
(Cst, π∗E) P-stable ⇒ (C, E) H-stable ⇒ (C, E) H-semistable ⇒ (Cst, π∗E) P-semistable.

(iii) Suppose that (Cst, π∗E) is strictly P-semistable. Then (C, E) is H-semistable if and only if
for every one-parameter subgroup λ of SL(Vn) such that (Cst, π∗E) is strictly P-semistable
with respect to λ then (C, E) is Hilbert-semistable with respect to λ.

A priori the H-semistability is a property of points in Hn, i.e. [C ↪→ Gr(Vn, r)]. However it
is easy to see that it depends only on the curve and the restriction of universal bundle to the
curve.
In his construction Schmitt just requires that a vector bundle must be admissible, but not nec-
essarily balanced. The next lemma proves that the vector bundles appearing in his construction
are indeed also properly balanced.

Lemma 1.3.4. If (Cst, π∗E) is P-semistable then E is properly balanced.

Proof. By considerations above, we must prove that E is balanced. By Remark 1.1.15(iv), we
have to prove that for any connected subcurve Z ⊂ C such that Zc is connected, we have

χ(F)

ωZ
≤ χ(E)

ωC
,

where F is the subsheaf of EZ of sections that vanishes on Z ∩ Zc. Observe that F is also a
subsheaf of E . The hypothesis and the fact that the push-forward is left exact imply

χ(π∗F)

ωZst
≤ χ(π∗E)

ωCst
=
χ(E)

ωC
,

where Zst is the reduced subcurve π(Z). It is clear that ωZst = ωZ . We have an exact sequence
of vector spaces

0 −→ H1
(
Zst, π∗F

)
−→ H1 (Z,F) −→ H0(Zst, R1π∗F) −→ 0.

This implies χ(F) ≤ χ(π∗F), concluding the proof. �

1.4. Properties and the rigidified moduli stack Vr,d,g. The stack Vecr,d,g admits a universal

curve π : Vecr,d,g,1 → Vecr,d,g, i.e. a stack Vecr,d,g,1 and a representable morphism π with the

property that for any morphism from a scheme S to Vecr,d,g associated to a pair (C → S, E)

there exists a morphism C → Vecr,d,g,1 such that the diagram

C //

��

Vecr,d,g,1
π

��

S // Vecr,d,g
is cartesian. Furthermore, the universal curve admits a universal vector bundle, i.e. for any
morphism from a scheme S to Vecr,d,g associated to a pair (C → S, E), we associate the vector

bundle E on C. This allows us to define a coherent sheaf for the site lisse-étale on Vecr,d,g,1 flat

over Vecr,d,g. The stabilization morphism induces a morphism of stacks

φr,d : Vecr,d,g −→Mg

which forgets the vector bundle and sends the curve in its stabilization. We will denote with
Vecr,d,g (resp. Un) the open substack of Vecr,d,g (resp. Un) of pairs (C, E) where C is a smooth

curve. In the next sections we will often need the restriction of φr,d to the open locus of smooth
curves

φr,d : Vecr,d,g −→Mg.
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The group Gm is contained in a natural way in the automorphism group of any object of
Vecr,d,g, as multiplication by scalars on the vector bundle. There exists a procedure for removing
these automorphisms, called Gm-rigidification (see [ACV03, Section 5]). We obtain an irreducible
smooth Artin stack Vr,d,g := Vecr,d,g ( Gm of dimension (r2 + 3)(g − 1) + 1, with a surjective

smooth morphism νr,,d : Vecr,d,g → Vr,d,g. The forgetful morphism φr,d : Vecr,d,g −→ Mg

factorizes through the forgetful morphism φr,d : Vr,d,g →Mg. Over the locus of smooth curves
we have the following diagram

Vecr,d,g
det

��

νr,d
// Vr,d,g

d̃et

��

J acd,g

##

ν1,d
// Jd,g

||

Mg

where det (resp. d̃et) is the determinant morphism, which send an object (C → S, E) ∈
Vecr,d,g(S) (resp. ∈ Vr,d,g(S)) to (C → S,det E) ∈ J acd,g(S) (resp. ∈ Jd,g(S)). Observe that

the obvious extension on Vecr,d,g of the determinant morphism does not map to the compactified

universal Jacobian J acd,g, because the basic inequalities for J acd,g are more restrictive.

1.5. Local structure. The local structure of the stack Vecr,d,g is governed by the deformation
theory of pairs (C, E), where C is a semistable curve and E is a properly balanced vector bundle.
Therefore we are going to review the necessary facts. First of all, the deformation functor DefC
of a semistable curve C is smooth (see [Ser06, Proposition 2.2.10(i), Proposition 2.4.8]) and it
admits a miniversal deformation ring (see [Ser06, Theorem 2.4.1]), i.e. there exists a formally
smooth morphism of functors of local Artin k-algebras

Spf kJx1, . . . , xN K→ DefC , where N := ext1(ΩC ,OC)

inducing an isomorphism between the tangent spaces. Moreover, if C is stable its deformation
functor admits a universal deformation ring (see [Ser06, Corollary 2.6.4]), i.e. the morphism of

functors above is an isomorphism. Let x be a singular point of C and ÔC,x the completed local
ring of C at x. The deformation functor DefSpecÔC,x admits a miniversal deformation ring kJtK
(see [DM69, pag. 81]). Let Σ be the set of singular points of C. The morphism of Artin functors

loc : DefC →
∏

x∈Σ

DefSpecÔC,x

is formally smooth (see [DM69, Proposition 1.5]). For a vector bundle E over C, we will denote
with Def(C,E) the deformation functor of the pair (for a more precise definition see [CMKV15,
Def. 3.1]). As in [CMKV15, Def. 3.4], the automorphism group Aut(C, E) (resp. Aut(C)) acts
on Def(C,E) (resp. DefC). Using the same argument of [CMKV15, Lemma 5.2], we can see that

the multiplication by scalars on E acts trivially on Def(C,E). By [FGI+05, Theorem 8.5.3], the
forgetful morphism

Def(C,E) → DefC

is formally smooth and the tangent space of Def(C,E) has dimension ext1(ΩC ,OC) + ext1(E , E).

Let h := [C ↪→ Gr(Vn, r)] be a k-point of Hn. Let ÔHn,h be the completed local ring of Hn at h.

Clearly, the ring ÔHn,h is a universal deformation ring for the deformation functor Defh of the
closed embedding h. Moreover
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Lemma 1.5.1. The natural morphism

Defh → Def(C,E)

is formally smooth.

Proof. For any k-algebra R, we will set Gr(Vn, r)R := Gr(Vn, r) ×k SpecR. We have to prove
that given

(1) a surjection B → A of Artin local k-algebras,
(2) a deformation hA := [CA ↪→ Gr(Vn, r)A] of h over A
(3) a deformation (CB , EB) of (C, E) over B, which is a lifting of (CA, EA),

then there exists an extension hB over B of hA which maps on (CB , EB). Since by hypothesis
H1(C, E(n)) = 0, we can show that the restriction map res : H0(CB , EB(n)) → H0(CA, EA(n))
is surjective. Now hA only depends on the vector bundle EA and on the choiche of a basis for
H0(CA, EA(n)). We can lift the basis, using the map res, to a basis B of H0(CB , EB(n)). The
basis B induces a morphism CB → Gr(Vn, r)B which is a lifting for hA. �

The next lemma concludes the proof of Theorem 1.2.2.

Proposition 1.5.2. The stack Vecr,d,g is irreducible.

Proof. Since the morphism loc : DefC →
∏
x∈Σ DefSpecÔC,x is formally smooth, Lemma 1.5.1

implies that the morphism Defh →
∏
x∈Σ DefSpecÔC,x is formally smooth. In particular, any

semistable curve with a properly balanced vector bundle can be deformed to a smooth curve
with a vector bundle. In other words, the open substack Vecr,d,g is dense in Vecr,d,g; hence

Vecr,d,g is irreducible if and only if Vecr,d,g is irreducible. And this follows from the fact that
Mg is irreducible and that the morphism Vecr,d,g →Mg is open (because is flat and locally of
finite presentation) with irreducible geometric fibers (by [Hof10, Corollary A.5]). �

We are now going to construct a miniversal deformation ring for Def(C,E) by taking a slice of
Hn.

Lemma 1.5.3. Let h := [C ↪→ Gr(Vn, r)] a k-point of Hn and let E be the restriction to C of
the universal vector bundle. Assume that Aut(C, E) is smooth and linearly reductive. Then the
following hold.

(i) There exists a slice for Hn. More precisely, there exists a locally closed Aut(C, E)-invariant
subset U of Hn, with h ∈ U , such that the natural morphism

U ×Aut(C,E) GL(Vn)→ Hn

is étale and affine and moreover the induced morphism of stacks

[U/Aut(C, E)]→ Un
is affine and étale.

(ii) The completed local ring ÔU,h of U at h is a miniversal deformation ring for Def(C,E).

Proof. The part (i) follows from [Alp10, Theorem 3]. We will prove the second one following
the strategy of [CMKV15, Lemma 6.4]. We will set F ⊂ Defh as the functor pro-represented

by ÔU,h, G := GL(Vn) and N := Aut(C, E). Since Defh → Def(C,E) is formally smooth, it is
enough to prove that the restriction to F (A) of Defh(A) → Def(C,E)(A) is surjective for any
local Artin k-algebra A and bijective when A = k[ε]. Let g (resp. n) be the deformation functor
pro-represented by the completed local ring of G (resp. N) at the identity. There is a natural
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map g/n → Defh given by the derivative of the orbit map. More precisely, for a local Artin
k-algebra A:

g/n(A) → Defh(A)
[g] 7→ g.vtriv

where vtriv is the trivial deformation over SpecA. First of all we will construct a morphism
Defh → g/n such that the derivative of the orbit map defines a section. The construction is the
following: up to étale base change, the morphism U ×N G → Hn of part (i), admits a section
locally on h. The morphism, obtained composing this section with the morphism U×NG→ G/N ,
which sends a class [(u, g]] to [g], induces a morphism of Artin functors

Defh → g/h

with the desired property. By construction, if A is a local Artin k-algebra then the inverse image
of 0 ∈ g/n(A) is F (A). If v ∈ Defh(A) maps to some element [g] ∈ g/n(A) then g−1v ∈ F (A).
Because both v and g−1v map to the same element of Def(C,E), we can conclude that F (A) →
Def(C,E)(A) is surjective.
It remains to prove the injectivity of F (k[ε])→ Def(C,E)(k[ε]). We consider the following complex
of k-vector spaces

0→ g/n→ Defh(k[ε])→ Def(C,E)(k[ε])→ 0

where the first map is the derivative of the orbit map. We claim that this is an exact sequence,
which would prove the injectivity of F (k[ε]) → Def(C,E)(k[ε]) by the definition of F . The only
non obvious thing to check is the exactness in the middle. Suppose that hk[ε] ∈ Defh(k[ε]) is
trivial in Def(C,E)(k[ε]), i.e. if qε : Vn ⊗ OCε → Eε represents the embedding hk[ε], then there
exists an isomorphism with the trivial deformation on k[ε]: ϕ : Cε ∼= C[ε] and ψ : ϕ∗Eε ∼= E [ε].
Consider the morphism

gε := ψ ◦ ϕ∗qε : Vn ⊗OC[ε] → E [ε]

which represents the same class hk[ε]. By definition of Hn, the push-forward of gε on k[ε] is an
isomorphism

Vn ⊗ k[ε]→ H0(C, E(n))⊗ k[ε]

and it defines uniquely the class hk[ε]. We can choose basis for Vn and H0(C, E(n)) such that gε
differs from the trivial deformation of Defh(k[ε]) by an invertible matrix g ≡ Id mod ε, which
concludes the proof. �

2. Preliminaries about line bundles on stacks.

2.1. Picard group and Chow groups of a stack. We will recall the definitions and some
properties of the Picard group and the Chow group of an Artin stack. Some parts contains
overlaps with [MV14, Section 2.9]. Let X be an Artin stack locally of finite type over k.

Definition 2.1.1. [Mum65, p.64] A line bundle L on X is the data consisting of a line bundle
L(FS) ∈ Pic(S) for every scheme S and morphism FS : S → X such that:

• For any commutative diagram

S

FS ��

f
// T

FT��

X
there is an isomorphism φ(f) : L(FS) ∼= f∗L(FT ).
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• For any commutative diagram

S

FS ��

f
// T

FT
��

g
// Z

FZ~~

X
we have the following commutative diagram of isomorphisms

L(FS)
φ(f)

//

φ(g◦f)

��

f∗L(FT )

f∗φ(g)

��

(g ◦ f)∗L(FZ)
∼= // f∗g∗L(FZ)

The abelian group of isomorphism classes of line bundles on X is called the Picard group of X
and is denoted by Pic(X ).

Remark 2.1.2. The definition above is equivalent to have a locally free sheaf of rank 1 for the
site lisse-étale ([Bro, Proposition 1.1.1.4.]).

If X is a quotient stack [X/G], where X is a scheme of finite type over k and G a group scheme
of finite type over k, then Pic(X ) ∼= Pic(X)G (see [ACG11, Chap. XIII, Corollary 2.20]), where
Pic(X)G is the group of isomorphism classes of G-linearized line bundles on X.

In [EG98, Section 5.3] (see also [Edi13, Definition 3.5]) Edidin and Graham introduce the
operational Chow groups of an Artin stack X , as generalization of the operational Chow groups
of a scheme.

Definition 2.1.3. A Chow cohomology class c on X is the data consisting of an element c(FS)
in the operational Chow group A∗(S) = ⊕Ai(S) for every scheme S and morphism FS : S → X
such that for any commutative diagram

S

FS ��

f
// T

FT��

X
we have c(FS) ∼= f∗c(FT ), with the obvious compatibility requirements. The abelian group
consisting of all the i-th Chow cohomology classes on X together with the operation of sum is
called the i-th Chow group of X and is denoted by Ai(X ).

If X is a quotient stack [X/G], where X is a scheme of finite type over k and G a group scheme
of finite type over k, then Ai(X ) ∼= AiG(X) (see [EG98, Proposition 19]), where AiG(X) is the
operational equivariant Chow group defined in [EG98, Section 2.6]. We have a homomorphism
of groups c1 : Pic(X )→ A1(X ) defined by the first Chern class.

The next theorem resumes some results on the Picard group of a smooth stack, which will be
useful for our purposes.

Theorem 2.1.4. Let X be a (not necessarily quasi-compact) smooth Artin stack over k. Let
U ⊂ X be an open substack.

(i) The restriction map Pic(X )→ Pic(U) is surjective.
(ii) If X\U has codimension ≥ 2 in X , then Pic(X ) = Pic(U).

Suppose that X = [X/G] where G is an algebraic group and X is a smooth quasi-projective variety
with a G-linearized action
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(iii) The first Chern class map c1 : Pic(X )→ A1(X ) is an isomorphism.
(iv) If X\U has codimension 1 with irreducible components Di, then we have an exact sequence

⊕

i

Z〈OX (Di)〉 −→ Pic(X ) −→ Pic(U) −→ 0

Proof. The first two points are proved in [BH12, Lemma 7.3].The third point follows from [EG98,
Corollary 1]. The last one follows from [EG98, Proposition 5] �
2.2. Determinant of cohomology and Deligne pairing. There exists two methods to pro-
duce line bundles on a stack parametrizing nodal curves with some extra-structure (as our stacks):
the determinant of cohomology and the Deligne pairing. We will recall the main properties of
these construction, following the presentation given in [ACG11, Chap. XIII, Sections 4 and 5]
and the resume in [MV14, Section 2.13].
Let p : C → S be a family of nodal curves. Given a coherent sheaf F on C flat over S, the
determinant of cohomology of F is a line bundle dp(F) ∈ Pic(S) defined as it follows. Locally
on S (by Proposition B.4), there exists a complex of vector bundles f : V0 → V1 such that
kerf = p∗(F) and cokerf = R1p∗(F) and then we set

dp(F) := detV0 ⊗ (detV1)−1.

This definition does not depend on the choice of the complex V0 → V1; in particular this defines
a line bundle globally on S. The proof of the next theorem can be found in [ACG11, Chap. XIII,
Section 4].

Theorem 2.2.1. Let p : C → S be a family of nodal curves and let F be a coherent sheaf on C
flat on S.

(i) The first Chern class of dp(F) is equal to

c1(dp(F)) = c1(p!(F)) := c1(p∗(F))− c1(R1p∗(F)).

(ii) Given a cartesian diagram

C ×S T
g

//

q

��

C

p

��

T
f

// S

we have a canonical isomorphism

f∗dp(F) ∼= dq(g
∗F).

Given two line bundlesM and L over a family of nodal curves p : C → S, the Deligne pairing
of M and L is a line bundle 〈M,L〉p ∈ Pic(S) which can be defined as

〈M,L〉p := dp(M⊗L)⊗ dp(M)−1 ⊗ dp(L)−1 ⊗ dp(OC).

The proof of the next theorem can be found in [ACG11, Chap. XIII, Section 5].

Theorem 2.2.2. Let p : C → S be a family of nodal curves.

(i) The first Chern class of 〈M,L〉p is equal to

c1(〈M,L〉p) = p∗(c1(M) · c1(L)).

(ii) Given a Cartesian diagram

C ×S T
g

//

q

��

C

p

��

T
f

// S

27



26 ROBERTO FRINGUELLI

we have a canonical isomorphism

f∗〈M,L〉p ∼= 〈g∗M, g∗L〉q
Remark 2.2.3. By the functoriality of the determinant of cohomology and of the Deligne pair-
ing, we can extend their definitions to the case when we have a representable, proper and flat
morphism of Artin stacks such that the geometric fibers are nodal curves.

2.3. Picard group of Mg. The universal family π : Mg,1 → Mg is a representable, proper,
flat morphism with stable curves as geometric fibers. In particular we can define the relative
dualizing sheaf ωπ on Mg,1 and taking the determinant of cohomology dπ(ωnπ) we obtain line

bundles on Mg. The line bundle Λ := dπ(ωπ) is called the Hodge line bundle.
Let C be a stable curve and for every node x of C, consider the partial normalization C ′ at

x. If C ′ is connected then we say x node of type 0, if C ′ is the union of two connected curves
of genus i and g − i, with i ≤ g − i (for some i), then we say that x is a node of type i. The
boundary Mg/Mg decomposes as union of irreducible divisors δi for i = 0, . . . , bg/2c, where δi
parametrizes (as stack) the stable curves with a node of type i. The generic point of δ0 is an
irreducible curve of genus g with exactly one node, the generic point of δi for i = 1, . . . , bg/2c is
a stable curve formed by two irreducible smooth curves of genus i and g − i meeting in exactly
one point. We set δ :=

∑
δi. By Theorem 2.1.4 we can associate to any δi a unique (up to

isomorphism) line bundle O(δi). We set O(δ) =
⊗

iO(δi).
The proof of the next results for g ≥ 3 can be found in [AC87, Theorem. 1] based upon a

result of [Har83]. If g = 2 see [Vis98] for Pic(M2) and [Cor07, Proposition 1] for Pic(M2).

Theorem 2.3.1. Assume g ≥ 2. Then

(i) Pic(Mg) is freely generated by the Hodge line bundle, except for g = 2 in which case we
add the relation Λ10 = OM2 .

(ii) Pic(Mg) is freely generated by the Hodge line bundle and the boundary divisors, except for
g = 2 in which case we add the relation Λ10 = O (δ0 + 2δ1).

2.4. Picard Group of J acd,g. The universal family π : J acd,g,1 → J acd,g is a representable,
proper, flat morphism with smooth curves as geometric fibers. In particular, we can define the
relative dualizing sheaf ωπ and the universal line bundle L on J acd,g,1. Taking the determinant
of cohomology Λ(n,m) := dπ(ωnπ ⊗ Lm), we obtain several line bundles on J acd,g.

The proof of next theorem can be found in [MV14, Theorem A(i) and Notation 1.5], based
upon a result of [Kou91].

Theorem 2.4.1. Assume g ≥ 2. Then Pic(J acd,g) is freely generated by Λ(1, 0), Λ(1, 1) and
Λ(0, 1), except in the case g = 2 in which case we add the relation Λ(1, 0)10 = OJ acd,g .

2.5. Picard Groups of the fibers. Fix now a smooth curve C with a line bundle L. Let
Vec=L,C be the stack whose objects over a scheme S are the pairs (E , ϕ) where E is a vector
bundle of rank r on C × S and ϕ is an isomorphism between the line bundles det E and L�OS .
A morphism between two objects over S is an isomorphism of vector bundles compatible with
the isomorphism of determinants. Vec=L,C is a smooth Artin stack of dimension (r2− 1)(g− 1).

We denote with Vec(s)s=L,C the open substack of (semi)stable vector bundles. Since the set of
isomorphism classes of semistable vector bundles on C is bounded, the stack Vecss=L,C is quasi-

compact. Consider the set of equivalence classes (defined as in Section 1.3) of semistable vector
bundles over the curve C with determinant isomorphic to L. There exists a normal projective
variety UL,C which is a coarse moduli space for this set. Observe the stack Vec=L,C is the fiber
of the determinant morphism det : Vecr,d,g → J acd,g with respect to the k-point (C,L).

Theorem 2.5.1. Let C be a smooth curve with a line bundle L. Let E be the universal vector
bundle over π : Vec=L,C × C → Vec=L,C of rank r and degree d. Then:
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(i) We have natural isomorphisms induced by the restriction

〈(dπ(E)〉 ∼= Pic(Vec=L,C) ∼= Pic(Vecss=L,C).

(ii) UL,C is a good moduli space for Vecss=L,C .

(iii) The good moduli morphism Vecss=L,C → UL,C induces an exact sequence of groups

0→ Pic(UL,C)→ Pic(Vecss=L,C)→ Z/ r
nr,d

Z→ 0

where the second map sends dπ(E)k to k.

Proof. Part (i) is proved in [Hof12, Theorem 3.1 and Corollary 3.2]. Part (ii) follows from [Hof12,
Section 2]. Part (iii) is proved in [Hof12, Theorem 3.7]. �

Remark 2.5.2. By [Hof12, Corollary 3.8], the variety UL,C is locally factorial. Moreover, except
the cases when g = r = 2 and degL is even, the closed locus of strictly semistable vector bundles
is not a divisor. So, by Theorem 2.1.4, when (r, g, d) 6= (2, 2, 0) ∈ Z× Z× (Z/2Z) we have that
Pic(Vec=L,C) ∼= Pic(Vecs=L,C) and, since UL,C is locally factorial, Pic(UL,C) ∼= Pic(UsL,C).

2.6. Boundary divisors. The aim of this section is to study the boundary divisors of Vecr,d,g.
We first introduce some divisors contained in the boundary of Vecr,d,g.
Definition 2.6.1. The boundary divisors of Vecr,d,g are:

• δ̃0 := δ̃0
0 is the divisor whose generic point is an irreducible curve C with just one node

and E is a vector bundle of degree d,
• if kr,d,g|2i− 1 and 0 < i < g/2:

δ̃ji for 0 ≤ j ≤ r is the divisor whose generic point is a curve C composed by two
irreducible smooth curves C1 and C2 of genus i and g − i meeting in one point and E a
vector bundle over C with multidegree

(deg EC1 ,deg EC2) =

(
d

2i− 1

2g − 2
− r

2
+ j, d

2(g − i)− 1

2g − 2
+
r

2
− j
)
,

• if kr,d,g - 2i− 1 and 0 < i < g/2:

δ̃ji for 0 ≤ j ≤ r − 1 is the divisor whose generic point is a curve C composed by two
irreducible smooth curves C1 and C2 of genus i and g − i meeting in one point and E a
vector bundle over C with multidegree

(deg EC1
,deg EC2

) =

(⌈
d

2i− 1

2g − 2
− r

2

⌉
+ j,

⌊
d

2(g − i)− 1

2g − 2
+
r

2

⌋
− j
)
,

• if g is even:

δ̃jg
2

for 0 ≤ j ≤ b r2c is the divisor whose generic point is a curve C composed by two

irreducible smooth curves C1 and C2 of genus g/2 meeting in one point and E a vector
bundle over C with multidegree

(deg EC1
,deg EC2

) =

(⌈
d− r

2

⌉
+ j,

⌊
d+ r

2

⌋
− j
)
.

If i < g/2 and kr,d,g|2i− 1 (resp. g and d+ r even) we will call δ̃0
i and δ̃ri (resp. δ̃0

g
2
) the extremal

boundary divisors. We will call non-extremal boundary divisors the boundary divisors which are
not extremal.
By Theorem 2.1.4, we can associate to δ̃ji a line bundle on Un for any n, which glue to a line bundle

O(δ̃ji ) on Vecr,d,g, we will call them boundary line bundles. Moreover, if δ̃ji is a (non)-extremal

divisor, we will call O(δ̃ji ) (non)-extremal boundary line bundle.
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Indeed, it turns out that the boundary of Vecr,d,g is the union of the above boundary divisors.

Proposition 2.6.2.

(i) The boundary δ̃ := Vecr,d,g/Vecr,d,g of Vecr,d,g is a normal crossing divisor and its irre-

ducible components are δ̃ji for 0 ≤ i ≤ g/2 and j ∈ Ji where

Ji =





0 if i = 0,

{0, . . . , r} if kr,d,g|2i− 1 and 0 < i < g/2,

{0, . . . , r − 1} if kr,d,g - 2i− 1 and 0 < i < g/2,

{0, . . . , br/2c} if g even and i = g/2.

(ii) Let φr,d : Vecr,d,g →Mg be the forgetful map. For 0 ≤ i ≤ g/2, we have

φ
∗
r,dO(δi) = O


∑

j∈Ji
δ̃ji


 .

Proof. Part (i). Observe that δ̃ := Vecr,d,g\Vecr,d,g = φ
−1

r,d(Mg\Mg). Clearly, we have a set-
theoretically equality

φ
−1

r,d(δi) =
⋃

j∈Ji
δ̃ji .

We can easily see that δji = δkt if and only if j = k and i = t. Now we are going to prove that

they are irreducible. Let δ̃∗ be the locus of δ̃ of curves with exactly one node. As in [DM69,

Corollary 1.9] we can prove that δ̃ is a normal crossing divisor and δ̃∗ is a dense smooth open

substack in δ̃. Moreover, setting δ̃∗ji := δ̃∗ ∩ δ̃ji , we see that δ̃ji is irreducible if and only if δ̃∗ji is

irreducible. It can be shown also that they are disjoint, i.e. δ∗ji ∩ δ∗kt 6= ∅ if and only if j = k
and i = t.
Consider the forgetful map φ : δ̃∗ji → δ∗i , where δ∗i is the open substack of δi of curves with
exactly one node. In §1.5, we have seen that the morphism of Artin functors Def(C,E) → DefC
is formally smooth for any nodal curve. This implies that the map φ is smooth, in particular
is open. Since δ∗i is irreducible (see [DM69, pag. 94]), it is enough to show that the geometric
fibers of φ are irreducible.
Let C be a nodal curve with two irreducible components C1 and C2, of genus i and g− i, meeting

at a point x, this defines a geometric point [C] ∈ δ∗i . Consider the moduli stack δ̃jC of vector
bundles on C of multidegree

(d1, d2) := (degC1
E ,degC2

E) =

(⌈
d

2i− 1

2g − 2
− r

2

⌉
+ j,

⌊
d

2(g − i)− 1

2g − 2
+
r

2

⌋
− j
)
.

It can be shown that there exists an isomorphism of stacks δ̃jC → φ∗([C]). Observe that defining

a properly balanced vector bundle on δ̃jC is equivalent to giving a vector bundle on C1 of degree
d1, a vector bundle on C2 of degree d2 and an isomorphism of vector spaces between the fibers at
the node. Consider the moduli stack Vecr,d1,C1

parametrizing vector bundles on C1 of degree d1

and rank r. Let E be the universal vector bundle on Vecr,d1,C1
×C1. We fix an open (and dense)

substack V such that EV×{x} is trivial. Analogously, letW be an open subset of the moduli stack
Vecr,d2,C2 , parametrizing vector bundles on C2 of degree d2 and rank r, such that the universal
vector bundle on Vecr,d2,C2

× C2 is trivial along W × {x}. Via glueing procedure, we obtain

a dominant morphism V × W × GLr −→ δ̃jC . The source is irreducible (because V and W are

irreducible by [Hof10, Corollary A.5]), so the same holds for the target δ̃jC .
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Part (ii). By part (i), for 0 ≤ i ≤ g/2 we have

φ
∗
r,dO(δi) = O


∑

j∈Ji
aji δ̃

j
i




where aji are integers. We have to prove that the coefficients are 1. We can reduce to prove it

locally on δ̃. The generic element of δ̃ is a pair (C, E) such that C is stable with exactly one node
and Aut(C, E) = Gm. By Lemma 1.5.3, locally at such (C, E), φr,d looks like

[
Spf kJx1, . . . , x3g−3, y1, . . . , yr2(g−1)+1K/Gm

]
→ [Spf kJx1, . . . , x3g−3K/Aut(C)] .

We can choose local coordinates such that x1 corresponds to smoothing the unique node of C.
For such a choice of the coordinates, we have that the equation of δi locally on C is given by

(x1 = 0) and the equation of δ̃ji locally on (C, E) is given by (x1 = 0). Since φ
∗
r,d(x1) = x1, the

theorem follows. �

With an abuse of notation we set δ̃ji := νr,d(δ̃
j
i ) for 0 ≤ i ≤ g/2 and j ∈ Ji, where νr,d :

Vecr,d,g → Vr,d,g is the rigidification map. From the above proposition, we deduce the following

Corollary 2.6.3. The following hold:

(1) The boundary δ̃ := Vr,d,g/Vecr,d,g of Vr,d,g is a normal crossing divisor, and its irre-

ducible components are δ̃ji for 0 ≤ i ≤ g/2 and j ∈ Ji.
(2) For 0 ≤ i ≤ g/2, j ∈ Ji we have ν∗r,dO(δ̃ji ) = O(δ̃ji ).

2.7. Tautological line bundles. In this subsection, we will produce several line bundles on the
stack Vecr,d,g and we will study their relations in the rational Picard group of Vecr,d,g. Consider

the universal curve π : Vecr,d,g,1 → Vecr,d,g. The stack Vecr,d,g,1 has two natural sheaves, the
dualizing sheaf ωπ and the universal vector bundle E . As explained in §2.2, we can produce the
following line bundles which will be called tautological line bundles:

K1,0,0 := 〈ωπ, ωπ〉,
K0,1,0 := 〈ωπ,det E〉,
K−1,2,0 := 〈det E ,det E〉,

Λ(m,n, l) := dπ(ωmπ ⊗ (det E)n ⊗ E l).

With an abuse of notation, we will denote with the same symbols their restriction to any open
substack of Vecr,d,g. By Theorems 2.2.1 and 2.2.2, we can compute the first Chern classes of the
tautological line bundles:

k1,0,0 := c1(K1,0,0) = π∗
(
c1(ωπ)2

)
,

k0,1,0 := c1(K0,1,0) = π∗ (c1(ωπ) · c1(E))
k−1,2,0 := c1(K−1,2,0) = π∗

(
c1(E)2

)

λ(m,n, l) := c1(Λ(m,n, l)) = c1
(
π!

(
ωmπ ⊗ (det E)n ⊗ E l

))

Theorem 2.7.1. The tautological line bundles on Vecr,d,g satisfy the following relations in the

rational Picard group Pic(Vecr,d,g)⊗Q.

(i) K1,0,0 = Λ(1, 0, 0)12 ⊗O(−δ̃).
(ii) K0,1,0 = Λ(1, 0, 1)⊗ Λ(0, 0, 1)−1 = Λ(1, 1, 0)⊗ Λ(0, 1, 0)−1.

(iii) K−1,2,0 = Λ(0, 1, 0)⊗ Λ(1, 1, 0)⊗ Λ(1, 0, 0)−2.
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(iv) For (m,n, l) integers we have:

Λ(m,n, l) = Λ(1, 0, 0)r
l(6m2−6m+1−n2−l)−2rl−1nl−rl−2l(l−1) ⊗

⊗Λ(0, 1, 0)r
l(−mn+(n+1

2 ))+rl−1l(n−m)+rl−2(l2) ⊗
⊗Λ(1, 1, 0)r

l(mn+(n2))+rl−1l(m+n)+rl−2(l2) ⊗

⊗Λ(0, 0, 1)r
l−1l ⊗O

(
−rl
(
m

2

)
δ̃

)
.

Proof. As we will see in the Lemma 3.1.5, we can reduce to proving the equalities on the quasi-

compact open substack VecPssr,d,g. We follow the same strategy in the proof of [MV14, Theorem
5.2]. The first Chern class map is an isomorphism by Theorem 2.1.4. Thus it is enough to prove

the above relations in the rational Chow group A1
(
VecPssr,d,g

)
⊗Q. Applying the Grothendieck-

Riemann-Roch Theorem to the universal curve π : Vecr,d,g,1 → Vecr,d,g, we get:

(2.7.1) ch
(
π!

(
ωmπ ⊗ (det E)n ⊗ E l

))
= π∗

(
ch
(
ωmπ ⊗ (det E)n ⊗ E l

)
· Td (Ωπ)

−1
)

where ch is the Chern character, Td the Todd class and Ωπ is the sheaf of relative Kahler
differentials. Using Theorem 2.2.1, the degree one part of the left hand side becomes
(2.7.2)

ch
(
π!

(
ωmπ ⊗ (det E)n ⊗ E l

))
1

= c1
(
π!

(
ωmπ ⊗ (det E)n ⊗ E l

))
= c1 (Λ(m,n, l)) = λ(m,n, l).

In order to compute the right hand side, we will use the fact that c1 (Ωπ) = c1 (ωπ) and

π∗ (c2 (Ωπ)) = δ̃ (see [ACG11, p. 383]. Using this, the first three terms of the inverse of
the Todd class of Ωπ are equal to

(2.7.3) Td (Ωπ)
−1

= 1−c1 (Ωπ)

2
+
c1 (Ωπ)

2
+ c2 (Ωπ)

12
+. . . = 1−c1 (ωπ)

2
+
c1 (ωπ)

2
+ c2 (Ωπ)

12
+. . .

By the multiplicativity of the Chern character, we get

(2.7.4) ch
(
ωmπ ⊗ (det E)n ⊗ E l

)
= ch (ωπ)

m
ch(det E)nch (E)

l
=

=

(
1 + c1 (ωπ) +

c1 (ωπ)
2

2
+ . . .

)m
·
(

1 + c1 (E) +
c1 (E)

2

2
+ . . .

)n
·

·
(
r + c1 (E) +

c1 (E)
2 − 2c2 (E)

2
+ . . .

)l
=

=

(
1 +mc1 (ωπ) +

m2

2
c1 (ωπ)

2
+ . . .

)
·
(

1 + nc1 (E) +
n2

2
c1 (E)

2
+ . . .

)
·

·
(
rl + lrl−1c1 (E) +

lrl−2

2

(
(r + l − 1)c1 (E)

2 − 2rc2 (E))
)

+ . . .

)
=

= rl + [rmc1 (ωπ) + (rn+ l)c1 (E)] rl−1 +

[
rl
m2

2
c1 (ωπ)

2
+ rl−1m (rn+ l) c1 (ωπ) c1 (E)

+
rl−2

2

(
r2n2 + lr(2n+ 1) + l(l − 1)

)
c1 (E)

2 − lrl−1c2 (E)

]
.
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Combining (2.7.3) and (2.7.4), we can compute the degree one part of the right hand side of
(2.7.1):

(2.7.5)[
π∗
(
ch
(
ωmπ ⊗ (det E)n ⊗ E l

)
· Td (Ωπ)

−1
)]

1
= π∗

([
ch
(
ωmπ ⊗ (det E)n ⊗ E l

)
· Td (Ωπ)

−1
]

2

)
=

= π∗

(
rl

12
(6m2 − 6m+ 1)c1(ωπ)2 +

rl−1

2
(rn+ l)(2m− 1)c1 (ωπ) c1 (E) +

+
rl−2

2

(
r2n2 + lr(2n+ 1) + l(l − 1)

)
c1 (E)

2 − lrl−1c2 (E) +
rl

12
c2 (Ωπ)

)
=

=
rl

12
(6m2 − 6m+ 1)k1,0,0 +

rl−1

2
(rn+ l)(2m− 1)k0,1,0+

+
rl−2

2

(
r2n2 + lr(2n+ 1) + l(l − 1)

)
k−1,2,0 − lrl−1π∗c2 (E) +

rl

12
δ̃.

Combining with (2.7.2), we have:

(2.7.6) λ(m,n, l) =
rl

12
(6m2 − 6m+ 1)k1,0,0 +

rl−1

2
(rn+ l)(2m− 1)k0,1,0+

+
rl−2

2

(
r2n2 + lr(2n+ 1) + l(l − 1)

)
k−1,2,0 − lrl−1π∗c2 (E) +

rl

12
δ̃.

As special case of the above relation, we get

(2.7.7) λ(1, 0, 0) =
k1,0,0

12
+

δ̃

12
.

If we replace (2.7.7) in (2.7.6), then we have

(2.7.8) λ(m,n, l) = rl(6m2 − 6m+ 1)λ(1, 0, 0) +
rl−1

2
(rn+ l)(2m− 1)k0,1,0+

+
rl−2

2

(
r2n2 + lr(2n+ 1) + l(l − 1)

)
k−1,2,0 − lrl−1π∗c2 (E)− rl

(
m

2

)
δ̃.

Moreover from (2.7.8) we obtain:

(2.7.9)





λ(0, 1, 0) = λ(1, 0, 0)− k0,1,0
2 +

k−1,2,0

2

λ(1, 1, 0) = λ(1, 0, 0) +
k0,1,0

2 +
k−1,2,0

2

λ(0, 0, 1) = rλ(1, 0, 0)− k0,1,0
2 +

k−1,2,0

2 − π∗c2 (E)

λ(1, 0, 1) = rλ(1, 0, 0) +
k0,1,0

2 +
k−1,2,0

2 − π∗c2 (E)

which gives

(2.7.10)





k0,1,0 = λ(1, 0, 1)− λ(0, 0, 1) = λ(1, 1, 0)− λ(0, 1, 0)

k−1,2,0 = −2λ(1, 0, 0) + λ(0, 1, 0) + λ(1, 1, 0)

π∗c2 (E) = (r − 1)λ(1, 0, 0) + λ(0, 1, 0)− λ(0, 0, 1).
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Substituing in (2.7.8), we finally obtain

r2−lλ(m,n, l) =
(
r2(6m2 − 6m+ 1− n2 − l)− 2rnl − l(l − 1)

)
λ(1, 0, 0) +(2.7.11)

+

(
r2

(
−mn+

(
n+ 1

2

))
+ rl (n−m) +

(
l

2

))
λ(0, 1, 0) +

+

(
r2

(
mn+

(
n

2

))
+ rl (m+ n) +

(
l

2

))
λ(1, 1, 0) +

+ rlλ(0, 0, 1)− r2

(
m

2

)
δ̃.

�

Remark 2.7.2. As we will see in the next section the integral Picard group of Pic(Vecr,d,g) is

torsion free for g ≥ 3. In particular the relations of Theorem 2.7.1 hold also for Pic(Vecr,d,g).

3. The Picard groups of Vecr,d,g and Vr,d,g.
The aim of this section is to prove the Theorems A and B. We will prove them in several

steps. For the rest of the paper we will assume r ≥ 2.

3.1. Independence of the boundary divisors. The aim of this subsection is to prove the
following

Theorem 3.1.1. Assume that g ≥ 3. We have an exact sequence of groups

0 −→
⊕

i=0,...,bg/2c
⊕j∈Ji〈O(δ̃ji )〉 −→ Pic(Vecr,d,g) −→ Pic(Vecr,d,g) −→ 0

where the right map is the natural restriction and the left map is the natural inclusion.

For the rest of this subsection, with the only exceptions of Proposition 3.1.2 and Lemma
3.1.11, we will always assume that g ≥ 3. We recall now a result from [TiB95].

Proposition 3.1.2. [TiB95, Proposition 1.2]. Let C a nodal curve of genus greater than one
without rational components and let E be a balanced vector bundle over C with rank r and degree
d. Let C1, . . . , Cs be its irreducible components. If ECi is semistable for any i then E is P-
semistable. Moreover if the basic inequalities are all strict and all the ECi are semistable and at
least one is stable then E is P-stable.

Remark 3.1.3. Recall that for a smooth curve of genus greater than 1 the generic vector bundle
is stable. On the other hand for an elliptic curve the stable locus is not empty if and only if the
degree and the rank are coprime. In this case any semistable vector bundle is stable. In general
for an elliptic curve the generic vector bundle of degree d and rank r is direct sum of nr,d stable
vector bundles of degree d/nr,d and rank r/nr,d; in particular it will be semistable.

We deduce from this

Lemma 3.1.4. The generic point of δ̃ji is a curve C with exactly one node and a properly
balanced vector bundle E such that

(i) if i = 0 the pull-back of E at the normalization is a stable vector bundle,
(ii) if i = 1 the restriction EC1

is direct sum of stable vector bundles with same rank and degree
and EC2

is a stable vector bundle.
(iii) if 2 ≤ i ≤ bg/2c the restrictions EC1

and EC2
are stable vector bundles.
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Furthermore the generic point of δ̃ji is a curve with exactly one node with a P-stable vector bundle

if δ̃ji is a non-extremal divisor and a curve with exactly one node with a strictly P-semistable

vector bundle if δ̃ji is an extremal divisor.

Proof. The case i = 0 is obvious. We fix i ∈ {1, . . . , bg/2c} and j ∈ Ji. By definition the generic

point of δ̃ji is a curve with two irreducible components C1 and C2 of genus i and g − i meeting
at one point and a vector bundle E with multidegree

(degC1
E ,degC2

E) =

(⌈
d

2i− 1

2g − 2
− r

2

⌉
+ j,

⌊
d

2(g − i)− 1

2g − 2
+
r

2

⌋
− j
)
.

As observed in Remark 3.1.3 the generic vector bundle over a smooth curve of genus > 1 (resp. 1)
is stable (resp. direct sum of stable vector bundles). Giving a vector bundle over C is equivalent to
give a vector bundle on any irreducible component and an isomorphism of vector spaces between
the fibers at the nodes. With this in mind, it is easy to see that we can deform any vector bundle
E in a vector bundle E ′ which is stable (resp. is a direct sum of stable vector bundles with same
rank and degree) over any component of genus > 1 (resp. 1). By Proposition 3.1.2, the generic

point of δ̃ji is P-semistable. Moreover if δ̃ji is a non-extremal divisor the basic inequalities are

strict. By the second assertion of loc. cit., if δ̃ji is a non-extremal divisor the generic point of δ̃ji
is P-stable. It remains to prove the assertion for the extremal divisors. Suppose that δ̃0

i is an

extremal divisor, the proof for the δ̃ri is similar. It is easy to prove that

degC1
E = d

2i− 1

2g − 2
− r

2
⇐⇒ χ (EC1

)

ωC1

=
χ (E)

ωC
.

In other words, EC1
is a destabilizing quotient for E , concluding the proof. �

Lemma 3.1.5. The Picard group of Vecr,d,g (resp. Vr,d,g), is naturally isomorphic to the Picard
group of the open substacks Vecssr,d,g (resp. Vssr,d,g) and Un (resp. Un (Gm) for n big enough.

The Picard group of Vecr,d,g (resp. Vr,d,g), is naturally isomorphic to the Picard group of the

open substacks VecPssr,d,g (resp. VPssr,d,g) and Un (resp. Un (Gm) for n big enough.

Proof. We have the following equalities

dimVecr,d,g = dimJ acd,g + dimVec=L,C ,
dim

(
Vecr,d,g\Vecssr,d,g

)
≤ dimJ acd,g + dim

(
Vec=L,C\Vecss=L,C

)
.

Thus cod(Vecr,d,g\Vecssr,d,g,Vecr,d,g) ≥ cod(Vec=L,C\Vecss=L,C ,Vec=L,C) ≥ 2 (see proof of [Hof12,

Corollary 3.2]). By Proposition 1.3.2, there exists n∗ � 0 such that VecPssr,d,g ⊂ Un for n ≥ n∗.

In particular cod(Un\Vecssr,d,g,Un) ≥ 2. Suppose that cod(Vecr,d,g\Vec
Pss

r,d,g,Vecr,d,g) = 1, so

Vecr,d,g\Vec
Pss

r,d,g contains a substack of codimension 1. By the observations above this stack

must be contained in some irreducible components of δ̃. The generic point of any divisor δ̃ji is

P-semistable by Lemma 3.1.4, then we have a contradiction. So cod(Vecr,d,g\Vec
Pss

r,d,g,Vecr,d,g) ≥
cod(Un\Vec

Pss

r,d,g,Un) ≥ 2. The same holds for the rigidifications. By Theorem 2.1.4, the lemma
follows. �

By Lemma 3.1.5, Theorem 3.1.1 is equivalent to proving that there exists n∗ � 0 such that
for n ≥ n∗ we have an exact sequence of groups

0 −→
⊕

i=0,...,bg/2c
⊕j∈Ji〈O(δ̃ji )〉 −→ Pic(Un) −→ Pic(Un) −→ 0.
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By Theorem 2.1.4, the sequence exists and it is exact in the middle and at right. It remains
to prove the left exactness. The strategy that we will use is the same as the one of Arbarello-
Cornalba for Mg in [AC87] and the generalization for J acr,g done by Melo-Viviani in [MV14].

More precisely, we will construct morphisms B → Un from irreducible smooth projective curves
B and we compute the degree of the pull-backs of the boundary divisors of Pic(Un) to B. We will
construct liftings of the families Fh (for 1 ≤ h ≤ (g−2)/2), F and F ′ used by Arbarello-Cornalba
in [AC87, pp. 156-159]. Since Vecr,d,g ∼= Vecr,d′,g if d ≡ d′ mod (r(2g − 2)), in this section we
can assume that 0 ≤ d < r(2g − 2).

The Family F̃ .
Consider a general pencil in the linear system H0(P2,O(2)). It defines a rational map P2 99K P1,
which is regular outside of the four base points of the pencil. Blowing the base locus we get a
conic bundle φ : X → P1. The four exceptional divisors E1, E2, E3, E4 ⊂ X are sections of φ. It
can be shown that the conic bundle has 3 singular fibers consisting of rational chains of length
two. Fix a smooth curve C of genus g − 3 and p1, p2, p3, p4 points of C. Consider the following
surface

Y =
(
X q (C × P1)

)
/(Ei ∼ {pi} × P1).

We get a family f : Y → P1 of stable curves of genus g. The general fiber of f is as in Figure 1
where Q is a smooth conic.

C

Q

Figure 1. The general fiber of f : Y → P1

While the 3 special components are as in Figure 2 where R1 and R2 are rational curves.

R1 R2

C

Figure 2. The three special fibers of f : Y → P1

Choose a vector bundle of degree d on C, pull it back to C × P1 and call it E. Since E is trivial
on {pi} × P1, we can glue it with the trivial vector bundle of rank r on X obtaining a vector
bundle E on f : Y → P1 of relative rank r and degree d.

Lemma 3.1.6. E is properly balanced.
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Proof. E is obviously admissible because is defined over a family of stable curves. Since being
properly balanced is an open condition, we can reduce to check that E is properly balanced on
the three special fibers. By Remark 1.1.15, it is enough to check the basic inequality for the
subcurves R1 ∪R2, R1 and R2. And by the assumption 0 ≤ d < r(2g− 2) is easy to see that the
inequalities holds. �

We call F̃ the family f : X → P1 with the vector bundle E . It is a lifting of the family F
defined in [AC87, p. 158]. So we can compute the degree of the pull-backs of the boundary

bundles in Pic(Vecr,d,g) to the curve F̃ . Consider the commutative diagram

P1

F

""

F̃ // Vecr,d,g
φr,d
��

Mg

By Proposition 2.6.2, we have degF̃ O(δ̃0) = degF O(δ0) and degF O(δ0) = −1 by [AC87, p.

158]. Since F̃ does not intersect the other boundary divisors, we have:
{

degF̃ O(δ̃0) = −1,

degF̃ O(δ̃ji ) = 0 if i 6= 0 and j ∈ Ji.

The Families F̃ ′j1 and F̃ ′j2 (for j ∈ J1).
We start with the same family of conics φ : X → P1 and the same smooth curve C used for

the family F̃ . Let Γ be a smooth elliptic curve and take points p1 ∈ Γ and p2, p3, p4 ∈ C. We
construct a new surface

Z =
(
X q (C × P1)q (Γ× P1)

)
/(Ei ∼ {pi} × P1).

We obtain a family g : Z → P1 of stable curves of genus g. The general fiber is as in Figure
3 where Q is a smooth conic. The three special fibers are as in Figure 4 where R1 and R2 are
rational smooth curves.

Γ

Q

C

Figure 3. The general fibers of g : Z → P1.

Let j be an integer. We choose two vector bundles of degree d − j and d − 3j on C, pull them
back to C × P1 and call them Gj1 and Gj2. We choose a vector bundle of degree j on Γ, pull it

back to Γ× P1 and call it M j . We glue the vector bundle Gj1 (resp. Gj2) on C × P1, the vector

bundle M j on Γ× P1 and the vector bundle OrX (resp. φ∗OP1(j)⊗ ω−jX/P1 ⊕Or−1
X ), obtaining a

vector bundle Gj1 (resp. Gj2) on Z of relative rank r and degree d.
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Γ
C

R1

R2

Figure 4. The three special fibers of g : Z → P1.

Lemma 3.1.7. Let j be an integer such that
∣∣∣∣j −

d

2g − 2

∣∣∣∣ ≤
r

2

Then Gj1 is properly balanced if 0 ≤ d ≤ r(g − 1) and Gj2 is properly balanced if r(g − 1) ≤ d <
r(2g − 2).

Proof. As before we can check the condition on the special fibers. By Remark 1.1.15 we can
reduce to check the inequalities for the subcurves Γ, C,R1 and R2 ∪ Γ. Suppose that 0 ≤ d ≤
r(g − 1) and consider Gj1. The inequality on Γ follows by hypothesis. The inequality on C is

∣∣∣∣d− j − d
2g − 5

2g − 2

∣∣∣∣ ≤
3

2
r ⇐⇒

∣∣∣∣j − d
3

2g − 2

∣∣∣∣ ≤
3

2
r,

and this follows by these inequalities (true by hypothesis on j and d)
∣∣∣∣j − d

3

2g − 2

∣∣∣∣ ≤
∣∣∣∣j −

d

2g − 2

∣∣∣∣+

∣∣∣∣
d

g − 1

∣∣∣∣ ≤
r

2
+ r.

The inequality on R1 is ∣∣∣∣
d

2g − 2

∣∣∣∣ ≤
3

2
r,

and this follows by the hypothesis on d. Finally the inequality on R2 ∪ Γ is
∣∣∣∣j −

d

g − 1

∣∣∣∣ ≤ r,

and this follows by the following inequalities (true by hypothesis on j and d)
∣∣∣∣j −

d

g − 1

∣∣∣∣ ≤
∣∣∣∣j −

d

2g − 2

∣∣∣∣+

∣∣∣∣
d

2g − 2

∣∣∣∣ ≤
r

2
+
r

2
.

Suppose next that r(g − 1) ≤ d < r(2g − 2) and consider Gj2. The inequality on Γ follows by
hypothesis. On C, the inequality gives

∣∣∣∣d− 3j − d2g − 5

2g − 2

∣∣∣∣ ≤
3

2
r ⇐⇒

∣∣∣∣j −
d

2g − 2

∣∣∣∣ ≤
r

2
,

which follows by hypothesis on j. The inequality on R1 is
∣∣∣∣j −

d

2g − 2

∣∣∣∣ ≤
3

2
r,
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and this follows by hypothesis on j. The inequality on R2 ∪ Γ is∣∣∣∣2j −
d

g − 1

∣∣∣∣ ≤ r,

and this follows by the inequalities (true by hypothesis on j)
∣∣∣∣2j −

d

g − 1

∣∣∣∣ ≤ 2

∣∣∣∣j −
d

2g − 2

∣∣∣∣ ≤ r.

�

Let k ∈ J1. If 0 ≤ d ≤ r(g− 1), we call F̃ ′
k

1 the family g : Z → P1 with the properly balanced

vector bundle Gd
d

2g−2− r2 e+k
1 . If r(g − 1) ≤ d < r(2g − 2) we call F̃ ′

k

2 the family g : Z → P1 with

the properly balanced vector bundle Gd
d

2g−2− r2 e+k
2 . As before we compute the degree of boundary

line bundles to the curves F̃ ′
k

1 and F̃ ′
k

2 (in the range of degrees where they are defined) using the
fact that they are liftings of the family F ′ in [AC87, p. 158]. If 0 ≤ d ≤ r(g − 1) then we have





deg
F̃ ′
k

1

O(δ̃k1 ) = −1,

deg
F̃ ′
k

1

O(δ̃j1) = 0 if j 6= k,

deg
F̃ ′
k

1

O(δ̃ji ) = 0 if i > 1, for any j ∈ Ji.
Indeed the first two relations follow from

deg
F̃ ′
k

1

O


∑

j∈Ji
δ̃j1


 = degF ′ O(δ1) = −1

(see [AC87, p. 158]) and the fact that F̃ ′
k

1 does not meet δ̃j1 for k 6= j. The last follows by the fact

that F̃ ′
k

1 does not meet δ̃ji for i > 1. Similarly for F̃ ′
k

2 we can show that for r(g−1) ≤ d < r(2g−2),
we have 




deg
F̃ ′
k

2

O(δk1 ) = −1,

deg
F̃ ′
k

2

O(δj1) = 0 if j 6= k,

deg
F̃ ′
k

2

O(δji ) = 0 if i > 1.

The Families F̃ jh (for 1 ≤ h ≤ g−2
2 and j ∈ Jh).

Consider smooth curves C1, C2 and Γ of genus h, g − h − 1 and 1, respectively, and points
x1 ∈ C1, x2 ∈ C2 and γ ∈ Γ. Consider the surface Y2 given by the blow-up of Γ × Γ at (γ, γ).
Let p2 : Y2 → Γ be the map given by composing the blow-down Y2 → Γ × Γ with the second
projection, and π1 : C1×Γ→ Γ and π3 : C2×Γ→ Γ be the projections along the second factor.
As in [AC87, p. 156] (and [MV14]), we set (see also Figure 5):

A = {x1} × Γ,

B = {x2} × Γ,

E = exceptional divisor of the blow-up of Γ× Γ at (γ, γ),

∆ = proper transform of the diagonal in Y2,

S = proper transform of {γ} × Γ in Y2,

T = proper transform of Γ× {γ} in Y2.

Consider the line bundles OY2
, OY2

(∆), OY2
(E) over the surface Y2. From [MV14, p. 16-17], we

obtain the Table 1.
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A

? ?

ΓΓ Γ

π1 π3C1
B

S

Γ ∆

T

E

C2

Figure 5. Constructing f : X → Γ.

degE degT restriction to ∆ restriction to S
OY2

0 0 OΓ OΓ

OY2
(∆) 1 0 OΓ(−γ) OΓ

OY2
(E) −1 1 OΓ(γ) OΓ(γ)

Table 1

We construct a surface X by identifying S with A and ∆ with B. The surface X comes equipped
with a projection f : X → Γ. The fibers over all the points γ′ 6= γ are shown in Figure 6, while
the fiber over the point γ is shown in Figure 7.

C1
h

Γ
1

C2

g − h− 1

Figure 6. The general fiber of f : X → Γ.

E

C1 C2 Γ

Figure 7. The special fiber of f : X → Γ.

Let j, k, t be integers. Consider a vector bundle on C1 of rank r − 1 and degree j, we pull-back
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it on C1 × Γ and call it Hj . Similarly consider a vector bundle on C2 of rank r − 1 and degree
k, we pull-back it on C2 × Γ and call it P k. Consider the following vector bundles

M j,k,t
C1×Γ := Hj ⊕ π∗1OΓ(tγ) on C1 × Γ,

M j,k,t
C2×Γ := P k ⊕ π∗3OΓ(j + k + t− d)γ) on C2 × Γ,

M j,k,t
Y2

:= Or−1
Y2
⊕OY2

((d− j − k)∆ + tE)) on Y2.

By Table 1 we have M j,k,t
C1×Γ|A ∼= M j,k,t

Y2
|S and M j,k,t

C2×Γ|B ∼= M j,k,t
Y2
|∆. So we can glue the vector

bundles in a vector bundleMj,k,t
h on the family f : X → Γ. Moreover, by Table 1, on the special

fiber we have 



degC1
(Mj,k,t

h |f−1(γ)) = degπ−1
1 (γ)(M

j,k,t
C1×Γ) = j,

degC2
(Mj,k,t

h |f−1(γ)) = degπ−1
3 (γ)(M

j,k,t
C2×Γ) = k,

degΓ(Mj,k,t
h |f−1(γ)) = degT (M j,k,t

Y2
) = t,

degE(Mj,k,t
h |f−1(γ)) = degE(M j,k,t

Y2
) = d− j − k − t.

In particular Mj,k,t
h has relative degree d.

Lemma 3.1.8. If j, k, t satisfies:
∣∣∣∣j − d

2h− 1

2g − 2

∣∣∣∣ ≤
r

2
;

∣∣∣∣k − d
2g − 2h− 3

2g − 2

∣∣∣∣ ≤
r

2
;

∣∣∣∣t−
d

2g − 2

∣∣∣∣ ≤
r

2

then Mj,k,t
h is properly balanced.

Proof. We can reduce to check the condition just on the special fiber. By Remark 1.1.15, it
is enough to check the inequalities on C1, C2 and Γ; this follows easily from the numerical
assumptions. �

For any 1 ≤ h ≤ g−2
2 choose j(h), resp. t(h), satisfying the first, resp. third, inequality of

lemma (observe that such numbers are not unique in general). For every k ∈ Jh+1 we call F̃ kh
the family f : X → Γ with the properly balanced vector bundle

Mj(h),bd 2g−2h−3
2g−2 + r

2 c−k,t(h)

h .

As before we compute the degree of the boundary line bundles to the curves F̃ kh using the fact
that they are liftings of families Fh of [AC87, p. 156]. We get





degF̃kh
O(δ̃kh+1) = −1,

degF̃kh
O(δ̃jh+1) = 0 if j 6= k,

degF̃kh
O(δji ) = 0 if h+ 1 < i, for any j ∈ Ji.

Indeed, the first two relations follow by

degF̃kh
O


 ∑

j∈Jh+1

δ̃jh+1


 = degFh O(δh+1) = −1

(see [AC87, p. 157]) and the fact that F̃ kh does not meet δ̃jh+1 for j 6= k. The last follows from

the fact F̃ kh does not meet δ̃ji for i > h+ 1.

Proof of Theorem 3.1.1. We know that there exists n∗ such that Vecr,d,g and Un have the
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same Picard groups for n ≥ n∗. We can suppose n∗ big enough such that families constructed
before define curves in Un for n ≥ n∗. Suppose that there exists a linear relation

O


∑

i

∑

j∈Ji
aji δ̃

j
i


 ∼= O ∈ Pic(Un)

where aji are integers. Pulling back to the curve F̃ → Un we deduce a0 = 0. Pulling back to

the curves F̃ ′
j

1 → Un and F̃ ′
j

2 → Un (in the range of degrees where they are defined) we deduce

aj1 = 0 for any j ∈ J1. Pulling back to the curve F̃ jh → Un we deduce ajh+1 = 0 for any j ∈ Jh+1

and 1 ≤ h ≤ g−2
2 . This concludes the proof. 2

We have a similar result for the rigidified stack Vr,d,g.
Corollary 3.1.9. We have an exact sequences of groups

0 −→
⊕

i=0,...,bg/2c
⊕j∈Ji〈O(δ̃ji )〉 −→ Pic(Vr,d,g) −→ Pic(Vr,d,g) −→ 0

where the right map is the natural restriction and the left map is the natural inclusion.

Proof. As before the only thing to prove is the independence of the boundary line bundles in
Pic(Vr,d,g). By Theorem 3.1.1 and Corollary 2.6.3, we can reduce to prove the injectivity of

ν∗r,d : Pic(Vr,d,g) → Pic(Vecr,d,g). A quick way to prove this it is using the Leray spectral

sequence associated to the rigidification morphism νr,d : Vecr,d,g → Vr,d,g as in the §3.3. �
Remark 3.1.10. As observed before we have that the boundary line bundles are independent on

the Picard groups of Vecr,d,g, Vec
Pss

r,d,g, Vr,d,g, V
Pss

r,d,g. A priori we do not know if δ̃ji is a divisor

of VecHssr,d,g for any i and j ∈ Ji, because it can be difficult to check when a point (C, E) is H-
semistable if C is singular. But as explained in Remark 1.3.3, if (C, E) is P-stable then it is also

H-stable. By Proposition 3.1.2, we know that if δ̃ji is a non-extremal divisor the generic point of

δ̃ji is P-stable, in particular it is H-stable.

The end of the section is devoted to prove that also the extremal divisors are in VecHssr,d,g, more

precisely the generic points of the extremal divisors in Vecr,d,g are strictly H-semistable. To this
aim, we will use the following criterion to prove strictly H-semistability.

Lemma 3.1.11. Assume that g ≥ 2. Let (C, E) ∈ Vecr,d,g such that C has two irreducible
smooth components C1 and C2 of genus 1 ≤ gC1 ≤ gC2 meeting at N points p1, . . . , pN . Suppose
that EC1 is direct sum of stable vector bundles with the same rank q and same degree e such that
e/q is equal to the slope of EC1

and EC2
is a stable vector bundle. If E has multidegree

(degC1
E , degC2

E) =

(
d
ωC1

ωC
−N r

2
, d
ωC2

ωC
+N

r

2

)
∈ Z2

then (C, E) is strictly P-semistable and strictly H-semistable.

Proof. By Proposition 3.1.2, E is P-semistable. We observe that multidegree condition is equiv-
alent to ωCχ(EC1) = ωC1χ(E), so E is strictly P-semistable. Suppose that M is a destabilizing
subsheaf of E of multirank (m1,m2). Consider the exact sequence

0 // EC2
(−∑N

1 pi) // E // EC1
// 0

0 //M2
//

?�

OO

M //
?�

OO

M1
//

?�

OO

0
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From this we have

χ(M) = χ(M1) + χ(M2) ≤ m1

r
χ(EC1

) +
m2

r
χ(EC2

(−
∑

pi)) =
m1ωC1

+m2ωC2

rωC
χ(E).

By hypothesis, EC2 stable. So we have two possibilities: M2 is 0 or EC2(−∑N
1 pi), because

otherwise the inequality above is strict. Suppose that M2 = 0. Then M = M1 which implies
thatM⊂ EC1

(−∑ pi) so the inequality above is strict. Thus we have just one possibility: ifM
is destabilizing sheaf then EC2(−∑N

1 pi) ⊂M.

In [Sch04, §2.2] there is the following criterion to check if a point is H-semistable. A point
(C, E) is H-semistable if and only if (Cst, π∗E) is P-semistable and for any one-parameter sub-
group λ such that E is strictly P-semistable for λ then (C, E) is Hilbert-semistable for λ. Observe
that, in our case, (C, E) = (Cst, π∗E).

Let n be a natural number big enough such that VecPssr,d,g ⊂ Un, set Vn := H0(C, E(n)) and let
Bn := {v1, . . . , vdimVn} be a basis for Vn such that λ is given with respect to this basis by the
weight vector

dimVn−1∑

i=1

αi(i− dimVn, . . . , i− dimVn︸ ︷︷ ︸
i

, i, . . . , i︸ ︷︷ ︸
i−dimVn

)

where αi are non-negative rational numbers. E is strictly P-semistable with respect to λ if and
only if there exists a chain of subsheaves F1 ⊂ . . . ⊂ Fk such that

• ∑k
i αi

(
χ(E(n))

(∑
j rk

(
Fi|Cj

)
ωCj

)
− χ(Fi(n))rωC

)
= 0, in other words Fj are desta-

bilizing sheaves.
• H0(qC)(Zj) = H0(Fj(n)) where qC : Vn ⊗ OC → E(n) is any surjective morphism of

vector bundles and Z• is the filtration induced by the one-parameter λ.

Now, we fix the morphism qC and we set det E(n) := Ln. Consider the morphism Sm
∧r

Vn →
H0(C,Lmn ) induced by qc. The one-parameter subgroup λ acts on this morphism. Let w(m) be
the minimum among the sums of the weights of the elements of the basis Sm

∧r
Bn of Sm

∧r
Vn

which induce, by using qC , a basis of H0(C,Lmn ). So (C, E) is Hilbert-semistable for λ if and
only if w(m) ≤ 0 for m � 0 (see [TiB98, Recall 1.5]). It is enough to check the Hilbert-
semistability for the one-parameter subgroups λ such that the associated chain of destabilizing

sheaves is maximal. By hypothesis EC1
=
⊕k

i=0 Gi, where G0 = 0 and Gi stable bundle of

rank q and same slope of EC1
. Observe that Fj/EC2

(−∑N
i pi)

∼=
⊕j

i=0 Gi. Moreover if we set

Z̃j := 〈vdimZj−1+1, . . . , vdimZj 〉 for j = 1, . . . , k and Z̃0 := Z0 we have

r∧
Vn =

⊕

ρ0,...,ρk|
∑
ρj=r

Wρ0,...,ρk , where Wρ0,...,ρk :=

ρ0∧
Z̃0 ⊗ . . .⊗

ρk∧
Z̃k.

An element of the basis
∧r

Bn contained in Wρ1,...,ρk has weight wρ0,...,ρk(n) = ρ0γ0(n) + . . . +

ρkγk(n). Where γj(n) is the weight of an element of Bn inside Z̃j , i.e.

γj(n) =

k−1∑

i=0

αiχ(Fi(n))−
k∑

i=j

αiχ(E(n)) where αk = 0

As in [Sch04, p. 186-187] the space of minimal weights which produces sections which do not
vanish on C1 is W 1

min := W0,q,...,q. The associated weight is

w1,min(n) :=
k−1∑

i=0

αi (χ(Fi(n))r − χ(E(n))iq) .
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Moreover a general section of W 1
min does not vanish at pi. By [Sch04, Corollary 2.2.5] the space

SmW 1
min generates H0

(
C1,

(
Ln|C1

)m)
, so that the elements of Sm

∧r
Bn inside SmW 1

min will
contribute with weight

K1(n,m) := m(m(deg EC1 + nrωC1) + 1− gC1)w1,min(n)

to a basis of H0
(
C1,

(
Ln|C1

)m)
.

On the other hand the space of minimal weights which produces sections which do not vanish
on C2 is W 2

min := Wr,0,...,0. The associated weight is

w2,min(n) :=

k−1∑

i=0

αi(χ(Fi(n))− χ(E(n)))r

A general section of W 2
min vanishes at pi with order r. By [Sch04, Corollary 2.2.5], the space

SmW 2
min generates H0

(
C1,

(
Ln|C2

(−r∑ pi)
)m)

, in particular the elements of Sm
∧r

Bn inside

SmW 2
min will contribute with weight

K2(n,m) := m(m(deg EC2 − rN + nrωC2) + 1− gC2)w2,min(n)

to a basis of H0
(
C2,

(
Ln|C2

)m)
. It remains to find the elements in Sm

∧r
Bn which produce

sections of minimal weight in H0
(
C2,

(
Ln|C2

)m)
vanishing with order less than mr on pi for

i = 1, . . . , N . By a direct computation, we can see that the space of minimal weights which gives
us sections with vanishing order r − s at pi such that tq ≤ s ≤ (t+ 1)q (where 0 ≤ t ≤ k − 1) is

Or−s := Wr−s,q . . . , q︸ ︷︷ ︸
t

,s−tq,0,...,0.

The associated weight is

wr−s2,pi
(n) :=

k−1∑

i=0

αi (χ(Fi(n))− χ(E(n))) r +
t∑

i=0

(s− iq)αiχ(E(n)).

For any 0 ≤ ν ≤ mr−1 and 1 ≤ i ≤ N , we must find an element of minimal weight in Sm
∧r

Bn
which produces a section in H0

(
C2,

(
Ln|C2

)m)
vanishing with order ν at pi. Observe first that

we can reduce to check it on the subspace

SmO =
⊕

m0,...,mr|
∑
mi=m

Sm0O0 ⊗ . . .⊗ SmrOr.

A section in Sm0O0 ⊗ . . .⊗ SmrOr vanishes with order at least ν = m1 + 2m2 + . . .+ rmr at pi
and we can find some with exactly that order. As explained in [Sch04, p. 191-192], an element
of Sm

∧r
Bn of minimal weight, such that it produces a section of order ν at pi, lies in

SjOt−1 ⊗ Sm−jOt

where ν = mt−j and 1 ≤ j ≤ m. So the mininum among the sums of the weights of the elements
in Sm

∧r
Bn which give us a basis of

H0
(
C2,

(
Ln|C2

)m)
/H0

(
C2,

(
Ln|C2

(−r
∑

pi)
)m)
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is

D2(n,m) = N

(
m2(w1

2,pi(n) + . . .+ wr2,pi(n)) +
m(m+ 1)

2
(w0

2,pi(n)− wr2,pi(n))

)
=

= N
k−1∑

i=0

αi

(
m2

(
χ(Fi(n))r2 − χ(E(n))

(
r2 − (r − iq − 1)(r − iq)

2

))
+

+
m(m+ 1)

2
(r − iq)χ(E(n))

)
.

Then a basis for H0
(
C2,

(
Ln|C2

)m)
will have minimal weight K2(n,m) +D2(n,m).

As in [Sch04, p.192-194] we obtain that (C, E) will be Hilbert-semistable for λ if and only if
exists n∗ such that for n ≥ n∗

P (n,m) = K1(n,m) +K2(n,m) +D2(n,m)−mNw1,min(n) ≤ 0

as polynomial in m. A direct computation shows that P (n,m) ≤ 0 as polynomial in m. So
(C, E) is H-semistable.
It remains to check that (C, E) is not H-stable. It is enough to construct a one-parameter
subgroup λ such that (C, E) is strictly P-semistable respect to λ and P (n,m) ≡ 0 as polynomial in
m. Fix a basis of Wn := H0(C, E(n)C2

(−∑ pi)) and complete to a basis Bn := {v1, . . . , vdimVn}
of Vn := H0(C, E(n)). We define the one-paramenter subgroup λ of SL(Vn) diagonalized by the
basis Bn with weight vector

(dimWn − dimVn, . . . ,dimWn − dimVn︸ ︷︷ ︸
dimWn

,dimWn, . . . ,dimWn︸ ︷︷ ︸
dimWn−dimVn

).

A direct computation shows P (n,m) ≡ 0 (observe that it is the case when α1 = 1 and αi = 0 for
2 ≤ i ≤ k−1 in the previous computation), which implies that (C, E) is stricly H-semistable. �

Proposition 3.1.12. The generic point of an extremal boundary divisor is strictly P-semistable
and strictly H-semistable.

Proof. Fix i ∈ {0, . . . , bg/2c} such that δ̃0
i is an extremal divisor. By Lemma 3.1.4 the generic

point of the extremal boundary δ̃0
i is a curve C with two irreducible smooth components C1 and

C2 of genus i and g − i and a vector bundle E such that EC1
is a stable vector bundle (or direct

sum of stable vector bundles with same slope of EC1
if i = 1) and EC2

is stable vector bundle.

By Lemma 3.1.11 the generic point of δ̃0
i is strictly P-semistable and stricly H-semistable.

Suppose now that i 6= g/2 and consider the extremal boundary divisor δ̃ri . Take a point (C, E) ∈
δ̃0
i as above. Consider the destabilizing subsheaf EC2

(−p) ⊂ E , where p is the unique node of
C. Fix a basis of Wn := H0(C, E(n)C2

(−p)) and complete to a basis V := {v1, . . . , vdimVn} of
Vn = H0(C, E(n)). We define the one-parameter subgroup λ of SL(Vn) given with respect to the
basis V by the weight vector

(dimWn − dimVn, . . . ,dimWn − dimVn︸ ︷︷ ︸
dimWn

,dimWn, . . . ,dimWn︸ ︷︷ ︸
dimWn−dimVn

).

We have seen in the proof of Lemma 3.1.11 that the pair (C, E) is strictly H-semistable respect
to λ. In particular the limit respect to λ is strictly H-semistable. The limit will be a pair (C ′, E ′)
such that C ′ is a semistable model for C and E ′ a properly balanced vector bundles such that
the push-forward in the stabilization is the P-semistable sheaf

EC2
(−p)⊕ EC1

.
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By Corollary 1.1.13(iii), E ′C1

∼= EC1 and E ′C2

∼= EC2(−p). In particular, E has multidegree

(
deg E ′C1

,deg E ′R,deg E ′C2

)
=
(
degC1

E , r,degC2
E − r

)
=

(
d

2i− 1

2g − 2
− r

2
, r, d

2(g − i)− 1

2g − 2
− r

2

)

Smoothing all nodal points on the rational chain R except the meeting point q between R and

C2, we obtain a generic point (C ′′, E ′′) in δ̃ri . It is H-semistable by the openess of the semistable
locus. Let W ′′n be a basis for H0 (C ′′, E ′′(n)C1

(−q)) and complete to a basis V ′′n of H0(C ′′, E ′′(n)).
Let λ′′ be the one parameter subgroup defined by the weight vector (with respect to the basis
B)

(dimW ′′n − dimV ′′n , . . . ,dimW ′′n − dimV ′′n︸ ︷︷ ︸
dimW ′′n

,dimW ′′n , . . . ,dimW ′′n︸ ︷︷ ︸
dimW ′′n−dimV ′′n

).

As in the proof of Lemma 3.1.11, a direct computation shows that (C ′′, E ′′) is strictly H-semistable
respect to λ′′, then also strictly P-semistable concluding the proof. �

Using this, we obtain

Corollary 3.1.13. We have an exact sequences of groups

0 −→
⊕

i=0,...,bg/2c
⊕j∈Ji〈O(δ̃ji )〉 −→ Pic(VecHssr,d,g) −→ Pic(Vecssr,d,g) −→ 0

where the right map is the natural restriction and the left map is the natural inclusion. The same

holds for the rigidification VHssr,d,g.

3.2. Picard group of Vecr,d,g. In this section we will prove Theorem A. Note that the first three
line bundles on the theorem are free generators for the Picard group of J acd,g (see Theorem
2.4.1) and the fourth line bundle restricted to Vec=L,C freely generates its Picard group (see
Theorem 2.5.1). By Lemma 3.1.5 together with Theorem 2.5.1(i) and Remark 2.5.2, we see that
Theorem A(i) is equivalent to:

Theorem 3.2.1. Assume that g ≥ 2. For any smooth curve C and L line bundle of degree d
over C we have an exact sequence.

0 −→ Pic(J acd,g) −→ Pic(Vecssr,d,g) −→ Pic(Vecss=L,C) −→ 0

For the rest of the subsection we will assume g ≥ 2. Observe that the above theorem together
with Lemma 3.1.5, Theorem 3.1.1 and Corollary 3.1.13 imply Theorem A(ii). Using Remark
3.1.10 together with Proposition 3.1.12, we deduce Theorem A(iii).

Let J acod,g (resp. J od,g) the open substack of J acd,g (resp. Jd,g) which parametrizes the pairs

(C,L) such that Aut(C,L) = Gm. Note that J od,g is a smooth irreducible variety, more precisely
it is a moduli space of isomorphism classes of line bundle of degree d over a curve C satisfying
the condition above.

Lemma 3.2.2. There are isomorphisms

Pic(J acd,g) ∼= Pic(J acod,g), Pic(Jd,g) ∼= Pic(J od,g)
induced by the restriction maps.

Proof. We will prove the lemma for J od,g, the assertion for J acod,g will follow directly. We set

J ∗d,g := Jd,g\J od,g. By Theorem 2.1.4, it is enough to prove that the closed substack J ∗d,g has
codimension ≥ 2. First we recall some facts about curves with non-trivial automorphisms: the
closed locus J Autd,g in Jd,g of curves with non-trivial automorphisms has codimension g−2 and it
has a unique irreducible component JHg of maximal dimension corresponding to the hyperellip-

tic curves (see [GV08, Remark 2.4]). Moreover in JHd,g the closed locus JHextrad,g of hyperelliptic
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curves with extra-automorphisms has codimension 2g − 3 and it has a unique irreducible com-
ponent of maximal dimension corresponding to the curves with an extra-involution (for details
see [GV08, Proposition 2.1]).
By definition, J ∗d,g ⊂ J Autd,g . By the facts above, it is enough to check the dimension of
J ∗d,g ∩ JHg ⊂ JHg. With an abuse of notation, the stack J ∗d,g ∩ JHd,g , i.e. the locus of

pairs (C,L) such that C is hyperelliptic and Aut(C,L) 6= Gm, will be called J ∗d,g.
If g ≥ 4, JHd,g has codimension ≥ 2, then the lemma follows. If g = 3 then JHd,3 is an
irreducible divisor. It is enough to show that J ∗d,3 6= JHd,3 and it is easy to check. If g = 2,

then all curves are hyperelliptic, dimJd,2 = 5 and JHextrad,g has codimension 1. Consider the
forgetful morphism J ∗d,2 → M2. The fiber at C, when is non empty, is the closed subscheme

of the Jacobian Jd(C) where the action of Aut(C) is not free. If C is a curve without extra-
automorphisms then the fiber has dimension 0. In particular if the open locus of such curves is
dense in J ∗d,2 then dimJ ∗d,2 ≤ dimM2 = 3 and the lemma follows. Otherwise, J ∗d,2 can have an

irreducible component of maximal dimension which maps in the divisor Hextra2 ⊂M2 of curves
with an extra-involution. In this case dimJ ∗d,2 < dimHextra2 + dimJd(C) = 4, which concludes
the proof. �

We denote with Vecor,d,g (resp. Vor,d,g) the open substack of Vecssr,d,g (resp. Vssr,d,g) of pairs

(C, E) such that Aut(C,det E) = Gm. By lemma above, Theorem 3.2.1 is equivalent to prove the
exactness of

0 −→ Pic(J acod,g) −→ Pic(Vecor,d,g) −→ Pic(V ecss=L,C) −→ 0.

The morphism det : Vecor,d,g −→ J acod,g is a smooth morphism of Artin stacks. Let Λ be a line
bundle over Vecor,d,g, which is obviously flat over J acod,g by flatness of the map det. The first
step is to prove the following

Lemma 3.2.3. Suppose that Λ is trivial over any geometric fiber. Then det∗Λ is a line bundle
on J acod,g and the natural map det∗det∗Λ −→ Λ is an isomorphism.

Proof. Consider the cartesian diagram

Vecor,d,g

��

VHoo

��

J acod,g Hoo

where the bottom row is an atlas for J acod,g. We can reduce to control the isomorphism locally
on VH → H. Suppose that the following conditions hold

(i) H is an integral scheme,
(ii) the stack VH has a good moduli scheme UH ,
(iii) UH is proper over H with geometrically irreducible fibers.

Then, by Seesaw Principle (see Corollary B.10), we have the assertion. So it is enough to find
an atlas H such that the conditions (i), (ii) and (iii) are satisfied.
We fix some notations: since the stack Vecor,d,g is quasi-compact, there exists n big enough such

that Vecor,d,g ⊂ Un = [Hn/GL(Vn)]. So we can suppose d big enough such that Vecor,d,g ⊂ U0. Let

Q be the open subset of H0 such that Vecor,d,g = [Q/G], where G := GL(V0). Analogously, we set

J acod,g = [H/Γ]. Denote by Z(Γ) (resp. Z(G)) the center of Γ (resp. of G) and set G̃ = G/Z(G),

Γ̃ = Γ/Z(Γ). Note that Z(G) ∼= Z(Γ) ∼= Gm. As usual we set BZ(Γ) := [Spec k/Z(Γ)]. Since
J acod,g is integral then H is integral, satisfying the condition (i). We have the following cartesian
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diagrams

Q

��

Q×J od,g Hoo

��

Q×J acod,g H
πoo

��

Vecor,d,g

yy

[Q×J od,g H/G]oo

qyy

��

[Q×J acod,g H/G] ∼= VH

��

p
oo

Vor,d,g

��

[Q×J od,g H/G̃]oo

��

Uor,d,g

��

��

UH

��

oo

J acod,g

yy

oo H × BZ(Γ)

yy

Hoo

J od,g Hoo

where Uor,d,g is the open subscheme in Ur,d,g of pairs (C, E) such that C is smooth and Aut(C,det E) =
Gm. Note that UH is proper over H, because Uor,d,g → J od,g is proper. In particular, the geomet-

ric fiber over a k-point of H which maps to (C,L) in J od,g is the irreducible projective variety
UL,C .
So it remains to prove that UH is a good moduli space for VH . Since VH is a quotient stack, it
is enough to show that UH is a good G-quotient of Q ×J acod,g H. The good moduli morphisms

are preserved by pull-backs [Alp13, Proposition 3.9], in particular UH is a good G-quotient of
Q×J od,g H. Consider the commutative diagram

Q×J acod,g H
π //

β

''

Q×J od,g H //

α

��

UH

yy
H

Claim: the horizontal maps makes UH a categorical G-quotient of Q×Jac0 H.
Suppose that the claim holds. Then UH is a good G-quotient also for Q×J acod,g H, because the

horizontal maps are affine (see [MFK94, 1.12]), and we have done.
It remains to prove the claim. The idea for this part comes from [Hof12, Section 2]. Since the
map Q → J od,g is G-invariant then Q ×J od,g H → H is G-invariant. In particular we can study

the action of Z(G) over the fibers of α. Fix a geometric point h on H and suppose that its image
in J acod,g is the pair (C,L). Then the fiber of β (resp. of α) over h is the fine moduli space of

the triples (E , B, φ) (resp. of the pairs (E , B)), where E is a semistable vector bundle on C, B a
basis of H0(C, E) and φ is an isomorphism between the line bundles det E and L. If g ∈ Z(G)
we have g.(E , B, φ) = (E , gB, φ) and g.(E , B) = (E , gB). Observe that the isomorphism g.IdE
gives us an isomorphism between the pairs (E , B) and (E , gB) and between the triples (E , B, φ)
and (E , gB, grφ). So g.(E , B, φ) = (E , B, g−rφ) and g.(E , B) = (E , B). On the other hand,
π : Q×J acod,gH → Q×J od,gH is a principal Z(Γ)-bundle and the group Z(Γ) acts in the following

way: if γ ∈ Z(Γ) we have γ.(E , B, φ) = (E , B, γφ) and γ.(E , B) = (E , B).
This implies that the groups Z(G)/µr (where µr is the finite algebraic group consisting of r-roots
of unity) and Z(Γ) induce the same action on Q×J acod,g H. Since π : Q×J acod,g H → Q×J od,g H
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is a principal Z(Γ)-bundle, any G-invariant morphism from Q×J acod,g H to a scheme factorizes

uniquely through Q×J od,g H and so uniquely through UH concluding the proof of the claim. �

The next lemma conclude the proof of Theorem 3.2.1.

Lemma 3.2.4. Let Λ be a line bundle on Vecor,d,g. Then Λ is trivial on a geometric fiber of det
if and only if Λ is trivial on any geometric fiber.

Proof. Consider the determinant map det : Vecor,d,g → J acod,g. Let T be the set of points h (in

the sense of [LMB00, Chap. 5]) in J acod,g such that the restriction Λh := Λdet∗h is the trivial

line bundle. By Theorem 2.5.1(iii), the inclusion

Pic(UL,C) ↪→ Pic(Vecss=L,C) ∼= Z

is of finite index. The variety UL,C is projective, in particular any non-trivial line bundle on it
is ample or anti-ample. This implies that χ(Λnh), as polynomial in the variable n, is constant if
and only if Λh is trivial. So T is equal to the set of points h such that the polynomial χ(Λnh)
is constant. Consider the atlas defined in the proof of precedent lemma H → J acod,g. The line
bundle Λ is flat over J acod,g so the function

χn : H → Z : h = (C,L, B) 7→ χ(Λnh)

is locally constant for any n, then constant because H is connected. Therefore, the condition
χn = χm for any n, m ∈ Z is either always satisfied or never satisfied, which concludes the
proof. �

3.3. Comparing the Picard groups of Vecr,d,g and Vr,d,g. Assume that g ≥ 2. Consider
the rigidification map νr,d : Vecr,d,g → Vr,d,g and the sheaf of abelian groups Gm. The Leray
spectral sequence

(3.3.1) Hp(Vr,d,g, Rqνr,d∗Gm)⇒ Hp+q(Vecr,d,g,Gm)

induces an exact sequence in low degrees

0→ H1(Vr,d,g, νr,d∗Gm)→ H1(Vecr,d,g,Gm)→ H0(Vr,d,g, R1νr,d∗Gm)→ H2(Vr,d,g, νr,d∗Gm).

We observe that νr,d∗Gm = Gm and that the sheafR1νr,d∗Gm is the constant sheafH1(BGm,Gm) ∼=
Pic(BGm) ∼= Z. Via standard coycle computation we see that exact sequence becomes

(3.3.2) 0 −→ Pic(Vr,d,g) −→ Pic(Vecr,d,g) res−−→ Z obs−−→ H2(Vr,d,g,Gm)

where res is the restriction on the fibers (it coincides with the weight map defined in [Hof07,
Def. 4.1]), obs is the map which sends the identity to the Gm-gerbe class [νr,d] ∈ H2(Vr,d,g,Gm)
associated to νr,d : Vecr,d,g → Vr,d,g (see [Gir71, IV, §3.4-5]).

Lemma 3.3.1. We have that:




res(Λ(1, 0, 0)) = 0,

res(Λ(0, 0, 1)) = d+ r(1− g),

res(Λ(0, 1, 0)) = r(d+ 1− g),

res(Λ(1, 1, 0)) = r(d− 1 + g).

Proof. Using the functoriality of the determinant of cohomology, we get that the fiber of Λ(1, 0, 0) =
dπ(ωπ) over a point (C, E) is canonically isomorphic to detH0(C,ωC)⊗ det−1H1(C,ωC). Since
Gm acts trivially on H0(C,ωC) and on H1(C,ωC), we get that res(Λ(1, 0, 0)) = 0.
Similarly, the fiber of Λ(0, 0, 1) over a point (C, E) is canonically isomorphic to detH0(C, E) ⊗
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det−1H1(C, E). Since Gm acts with weight one on the vector spaces H0(C, E) and H1(C, E),
Riemann-Roch gives that

res(Λ(0, 0, 1)) = h0(C, E)− h1(C, E) = χ(E) = d+ r(1− g).

The fiber of Λ(0, 1, 0) over a point (C, E) is canonically isomorphic to detH0(C,det E)⊗det−1H1(C,det E).
Now Gm acts with weight r on the vector spaces H0(C, det E) and H1(C, det E), so that Riemann-
Roch gives

res(Λ(0, 1, 0)) = r · h0(C,det E)− r · h1(C, det E) = r · χ(det E) = r(d+ 1− g).

Finally, the fiber of Λ(1, 1, 0) over a point (C, E) is canonically isomorphic to detH0(C,ωC ⊗
det E)⊗ det−1H1(C,ωC ⊗ det E). Since Gm acts with weight r on the vector spaces H0(C,ωC ⊗
det E) and H1(C,ωC ⊗ det E), Riemann-Roch gives that

res(Λ(1, 1, 0)) = r · h0(C,ωC ⊗ det E)− r · h1(C,ωC ⊗ det E) = r · χ(ωC ⊗ det E) = r(d− 1 + g).

�

Combining the Lemma above with Theorem A(i) and the exact sequence (3.3.2), we obtain

Corollary 3.3.2.

(i) The image of Pic(Vecr,d,g) via the morphism res of (3.3.2) is the subgroup of Z generated
by

nr,d · vr,d,g = (d+ r(1− g), r(d+ 1− g), r(d− 1 + g)) .

(ii) The Picard group of Vr,d,g is (freely) generated by the line bundles Λ(1, 0, 0), Ξ and Θ (when
g ≥ 3).

Now we are ready for

Proof of Theorem B. Corollary 3.3.2(ii) says that the Theorem B(i) is true for the stack Vr,d,g.
Using the Leray spectral sequence for the (semi)stable locus, we see that the Corollary 3.3.2

holds also for the stack V(s)s
r,d,g, concluding the proof of Theorem B(i).

By Corollary 3.1.9 and Theorem B(i), the Theorem B(ii) holds for Vr,d,g. Using the Lemma

3.1.5, the same is true for VPssr,d,g. Finally by Corollary 3.1.13, Theorem B(ii) holds also for VHssr,d,g.
The Theorem B(iii) follows using the previous parts together with Remark 3.1.10 and Proposition
3.1.12. 2

Remark 3.3.3. Let Ur,d,g be the coarse moduli space of aut-equivalence classes of semistable
vector bundles on smooth curves. Suppose that g ≥ 3. Kouvidakis in [Kou93] gives a description
of the Picard group of the open subset U∗r,d,g of curves without non-trivial automorphisms. As
observed in Section 3 of loc. cit., such locus is locally factorial. Since the locus of strictly
semistable vector bundles has codimension at least 2, we can restrict to study the open subset
U?r,d,g ⊂ Ur,d,g of stable vector bundles on curves without non-trivial automorphisms. The good
moduli morphism Ψr,d : Vssr,d,g −→ Ur,d,g is an isomorphism over U?r,d,g. In other words, we

have an isomorphism V?r,d,g := Ψ−1
r,d(U?r,d,g)

∼= U?r,d,g. Therefore, we get a natural surjective
homomorphism

ψ : Pic(Vssr,d,g) ∼= Pic(Vsr,d,g)� Pic(V?r,d,g) ∼= Pic(U?r,d,g)

where the first two homomorphisms are the restriction maps.
When g ≥ 4 the codimension of Vsr,d,g\V?r,d,g is at least two (see [GV08, Remark 2.4]). Then the

map ψ is an isomorphism by Theorem 2.1.4. If g = 3, the locus V(s)s
r,d,3\V∗r,d,3 is a divisor in V(s)s

r,d,3

(see [GV08, Remark 2.4]). More precisely is the pull-back of the hyperelliptic (irreducible) divisor
in M3. As line bundle, it is isomorphic to Λ9 in the Picard group of M3 (see [HM98, Chap. 3,
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Sec. E]). Therefore, by Theorem B(i), we get that Pic(U∗r,d,3) is the quotient of Pic(V(s)s
r,d,3) by

the relation Λ(1, 0, 0)9.
In particular, (when g ≥ 3) the line bundle Θs⊗Ξt⊗Λ(1, 0, 0)u, where (s, t, u) ∈ Z3, on U∗r,d,g has

the same properties of the canonical line bundle Lm,a in [Kou93, Theorem 1], where m = s · v1,d,gvr,d,g

and a = −s(α+ β)− t · k1,d,g.

As explained in Section 1.3, VecHssr,d,g admits a projective variety as good moduli space. This

means, in particular, that the stacks VecHssr,d,g and VHssr,d,g are of finite type and universally closed.

Since any vector bundle contains the multiplication by scalars as automorphisms, VecHssr,d,g is not

separated. The next Proposition tell us exactly when the rigidification VHssr,d,g is separated.

Proposition 3.3.4. The following conditions are equivalent:

(i) nr,d · vr,d,g = 1, i.e. nr,d = 1 and vr,d,g = 1.

(ii) There exists a universal vector bundle on the universal curve of an open substack of Vr,d,g.

(iii) There exists a universal vector bundle on the universal curve of Vr,d,g.

(iv) The stack VHssr,d,g is proper.
(v) All H-semistable points are H-stable.

(vi) VHssr,d,g is a Deligne-Mumford stack.

(vii) The stack VPssr,d,g is proper.
(viii) All P-semistable points are P-stable.

(ix) VPssr,d,g is a Deligne-Mumford stack.

Proof. The strategy of the proof is the following

(iii)

��

(i)
KS

��

ks (ix) +3 (v)
x�

ks +3
KS

��

(iv)

(ii)

8@

(viii) +3

7?

(vii)

8@

(vi)

(i) ⇒ (iii). By Corollary 3.3.2(i) and the exact sequence (3.3.2), any line bundle on Vecr,d,g
must have weight equal to c ·nr,d ·vr,d,g, where c ∈ Z. In particular the condition (i) is equivalent

to have a line bundle L of weight 1 on Vecr,d,g. Let
(
π : Vecr,d,g,1 → Vecr,d,g, E

)
be the universal

pair, we see easily that E ⊗ π∗L−1 descends to a vector bundle on Vr,d,g with the universal
property.
(iii)⇒ (ii) Obvious.
(ii) ⇒ (i) Suppose that there exists a universal pair (S1 → S,F) on some open substack S
of Vr,d,g. We can suppose that all the points (C, E) in S are such that Aut(C, E) = Gm. Let

νr,d : T := ν−1
r,dS → S be the restriction of the rigidification map and (π : T1 → T , E) the

universal pair on T ⊂ Vecr,d,g. Then

π∗
(
Hom

(
ν∗r,dF , E

))

is a line bundle of weight 1 on T and, by smoothness of Vecr,d,g, we can extend it to a line bundle

of weight 1 on Vecr,d,g.
(iv) ⇐⇒ (v). If all H-semistable points are H-stable, then by [MFK94, Corollary 2.5] the
action of GL(Vn) on the H-semistable locus of Hn is proper, i.e. the morphism PGL×HHss

n →
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HHss
n ×HHss

n : (A, h) 7→ (h,A.h) is proper (for n big enough). Consider the cartesian diagram

PGL×HHss
n

//

��

HHss
n ×HHss

n

��

VHssr,d,g
// VHssr,d,g × V

Hss

r,d,g

this implies that the diagonal is proper, i.e. the stack is separated. We have already seen that
it is always universally closed and of finite type, so it is proper. Conversely, if the diagonal is
proper the automorphism group of any point must be finite, in particular there are no strictly
H-semistable points.

(v) ⇐⇒ (vi). By [LMB00, Theorem 8.1], VHssr,d,g is Deligne-Mumford if and only if the diagonal
is unramified, which is also equivalent to the fact that the automorphism group of any point is
a finite group (because we are working in characteristic 0). As before, this happens if and only
if all semistable points are stable.
(v), (viii)⇒ (i). It is known that, on smooth curves, nr,d = 1 if and only if all semistable vector
bundles are stable. So we can suppose that nr,d = 1, so that vr,d,g = (2g−2, d+1−g, d+r(1−g)) =
(2g − 2, d+ r(1− g)). If vr,d,g 6= 1 we have kr,d,g < 2g − 2, we can construct a nodal curve C of
genus g, composed by two irreducible smooth curves C1 and C2 meeting at N points, such that
ωC1

= kr,d,g. In particular (d1, d2) := (d
ωC1

ωC
−N r

2 , d
ωC2

ωC
+N r

2 ) are integers. So we can construct

a vector bundle E on C with multidegree (d1, d2) and rank r satisfying the hypothesis of Lemma
3.1.11. This implies that the pair (C, E) must be strictly P-semistable and strictly H-semistable.
(i) ⇒ (viii). Suppose that there exists a point (C, E) in Vr,d,g such that (Cst, π∗E) is strictly
P-semistable. If C is smooth then nr,d 6= 1 and we have done. Suppose that nr,d = 1 and C
singular. By hypothesis there exists a destabilizing subsheaf F ⊂ π∗E , such that

χ(F)∑
siωCi

=
χ(E)

rωC
.

The equality can exist if and only if (χ(E), rωC) = (d + r(1 − g), r(2g − 2)) 6= 1. We have
supposed that d and r are coprime, so (d + r(1 − g), r(2g − 2)) = (d + r(1 − g), 2g − 2) =
(2g − 2, d+ 1− g, d+ r(1− g)) = vr,d,g, which concludes the proof.

(viii) ⇒ (vii), (ix). By hypothesis VPssr,d,g = VPsr,d,g = VHssr,d,g = VHsr,d,g, so (vi) and (viii) hold by
what proved above.
(vii), (ix)⇒ (v). Suppose that (v) does not hold, then there exists a strictly H-semistable point

with automorphism group of positive dimension. Thus VHssr,d,g, and in particular VPssr,d,g, cannot be
neither proper nor Deligne-Mumford. �

Appendix A. Genus Two case.

In this appendix we will extend the Theorems A and B to the genus two case. The main
results are the following

Theorem A.1. Suppose that r ≥ 2.

(i) The Picard groups of Vecr,d,2 and Vecssr,d,2 are generated by Λ(1, 0, 0), Λ(1, 1, 0), Λ(0, 1, 0)

and Λ(0, 0, 1) with the unique relation

(A.0.1) Λ(1, 0, 0)10 = O.
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(ii) The Picard groups of Vecr,d,2 and VecPssr,d,2 are generated by Λ(1, 0, 0), Λ(1, 1, 0), Λ(0, 1, 0),
Λ(0, 0, 1) and the boundary line bundles with the unique relation

(A.0.2) Λ(1, 0, 0)10 = O


δ̃0 + 2

∑

j∈J1
δ̃j1




Let vr,d,2 and nr,d be the numbers defined in the Notations 0.0.1. Let α and β be (not
necessarily unique) integers such that α(d− 1) + β(d+ 1) = − 1

nr,d
· v1,d,2vr,d,2

(d− r). We set

Ξ := Λ(0, 1, 0)
d+1
v1,d,2 ⊗ Λ(1, 1, 0)

− d−1
v1,d,2 , Θ := Λ(0, 0, 1)

r
nr,d
· v1,d,2vr,d,2 ⊗ Λ(0, 1, 0)α ⊗ Λ(1, 1, 0)β .

Theorem A.2. Suppose that r ≥ 2.

(i) The Picard groups of Vr,d,g and Vssr,d,g are generated by Λ(1, 0, 0), Ξ and Θ, with the unique

relation (A.0.1).

(ii) The Picard groups of Vr,d,2 and VPssr,d,2 are generated by Λ(1, 0, 0), Ξ, Θ and the boundary
line bundles with the unique relation (A.0.2).

Unfortunately, at the moment we can not say if the Theorems A and B hold also for the other
open substacks in the assertions.

Remark A.3. Observe that, using Proposition 3.1.2, we can prove that Lemma 3.1.5 holds also

in genus two case. In particular, by Theorem 2.1.4, we have that Pic(Vecr,d,2) ∼= Pic(VecPssr,d,2) ∼=
Pic(Un) and Pic(Vecr,d,2) ∼= Pic(Vecssr,d,2) ∼= Pic(Un) for n big enough.

We have analogous isomorphisms for the rigidified moduli stacks.

Proof of TheoremA.1(i) and A.2(i). By the precedent observation, it is enough to prove the
theorems for the semistable locus. Let (C,L) be a k-point of J acd,2. We recall that Theorem
3.2.1 says that the complex of groups

0 −→ Pic(J acd,2) −→ Pic(Vecssr,d,2) −→ Pic(Vecss=L,C) −→ 0

is exact. By Theorem 2.5.1, the cokernel is freely generated by the restriction of the line bun-
dle Λ(0, 0, 1) on the fiber Vecss=L,C . In particular the Picard groups of Vecr,d,2 and Vecssr,d,2
decomposes in the following way

Pic(J acd,2)⊕ 〈Λ(0, 0, 1)〉.
By Theorem 2.4, Theorem A.1(i) follows. By Corollary 3.3.2, Theorem A.2(i) also holds. 2

Now we are going to prove the Theorems A.1(ii) and A.2(ii). First of all, by Theorems A.1(i)
and 2.1.4, we know that the Picard group of Vecr,d,2 is generated by Λ(1, 0, 0), Λ(1, 1, 0), Λ(0, 1, 0),

Λ(0, 0, 1) and the boundary line bundles. Consider the forgetful map φr,d : Vecr,d,2 →M2. By

Theorem 2.3.1, the Picard group of M2 is generated by the line bundles δ0, δ1 and the Hodge
line bundle Λ, with the unique relation Λ10 = O(δ0 +2δ1). By pull-back along φr,d we obtain the
relation (A.0.2). So for proving Theorem A.1(ii), it remains to show that we do not have other
relations on Pic(Vecr,d,2).

Suppose there exists another relation, i.e.

(A.0.3) Λ(1, 0, 0)a ⊗ Λ(1, 1, 0)b ⊗ Λ(0, 1, 0)c ⊗ Λ(0, 0, 1)d ⊗O


e0δ̃0 +

∑

j∈J1
ej1δ̃

j
1


 = O
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where a, b, c, d, eo, e
j
1 ∈ Z. By Theorem A.1(i), the integers b, c, d must be 0 and a must be a

multiple of 10. We set a = 10t. Combining the equalities (A.0.2) and (A.0.3) we obtain:

(A.0.4) O


(e0 − t)δ̃0 +

∑

j∈J1
(ej1 − 2t)δ̃j1


 = O

where the integers (e0 − t), (ej1 − 2t) cannot be all equal to 0, because we have assumed that
the two relations are independent. In other words the existence of two independent relations is
equivalent to show that does not exist any relation among the boundary line bundles. We will
show this arguing as in §3.1. Observe that, arguing in the same way, we can arrive at same
conclusions for the rigidified moduli stack Vr,d,2.

The Family G̃.
Consider a double covering Y ′ of P2 ramified along a smooth sextic D. Consider on it a general
pencil of hyperplane sections. By blowing up Y ′ at the base locus of the pencil we obtain a
family ϕ : Y → P1 of irreducible stable curves of genus two with at most one node. Moreover the
two exceptional divisors E1, E2 ⊂ Y are sections of ϕ trough the smooth locus of ϕ. The vector

bundle E := OY (dE1)⊕Or−1
Y is properly balanced of relative degree d. We call G (resp. G̃) the

family of curves ϕ : Y → P1 (resp. the family ϕ with the vector bundle E). We claim that
{

degG̃O(δ̃0) = 30,

degG̃O(δ̃j1) = 0 for any j ∈ J1.

The second result comes from the fact that all fibers of ϕ are irreducible. We recall that, as §3.1:

degG̃O(δ̃0) = degGO(δ0). So our problem is reduced to check the degree on M2. Observe also

that Y is smooth and the generic fiber of ϕ is a smooth curve. Since any fiber of ϕ : Y → P−1 can

have at most one node and the total space Y is smooth, by [AC87, Lemma 1], degG̃O(δ̃0) is equal

to the number of singular fibers of ϕ. We can count them using the morphism ϕD : D → P1,
induced by the pencil restricted to the sextic D. By the generality of the pencil, we can as-
sume that over any point of P1 there is at most one ramification point and that its ramification

index at this point is 2. So degG̃O(δ̃0) is equal to the degree of the ramification divisor in D.
Using the Riemann-Hurwitz formula for the degree six morphism ϕD we obtain the first equality.

The Families G̃j1.
Consider a general pencil of cubics in P2. Blowing up the nine base points of the pencil, we
obtain a family of irreducible stable elliptic curves φ : X → P1. The nine exceptional divisors
E1, . . . , E9 ⊂ X are sections of φ trough the smooth locus of φ. The family will have twelve
singular fibers consisting of irreducible nodal elliptic curves. Fix a smooth elliptic curve Γ and a
point γ ∈ Γ. We construct a surface Y by setting

Y =
(
X
∐(

Γ× P1
))
/ (E1 ∼ {γ} × Γ)

We get a family f : X → P1 of stable curves of genus two. The general fiber is as in Figure 8
where C is a smooth elliptic curve. While the twelve special fibers are as in Figure 9 where C
is a nodal irreducible elliptic curve. Choose a vector bundle M j of degree

⌈
d−r

2

⌉
+ j on Γ, pull

it back to Γ× P1 and call it again M j . Since M j is trivial on {γ} × P1, we can glue it with the
vector bundle

OX
((⌊

d+ r

2

⌋
− j
)
E2

)
⊕Or−1

X
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C Γ

Figure 8. The general fiber of f : X → P1.

C

Γ

Figure 9. The special fibers of f : X → P1.

on X obtaining a vector bundle Ej on f : X → P1 of relative rank r and degree d. The next
lemma follows easily

Lemma A.4. The vector bundle Ej is a properly balanced for j ∈ J1 = {0, . . . , br/2c}.

We call G1 (resp. G̃j1) the family of curves f : X → P1 (resp. the family f with the

vector bundle Ej). Moreover G̃j1 does not intersect δ̃k1 for j 6= k. In particular degG̃j1
O(δ̃j1) =

degG1
O(δ1). By [AC87, Lemma 1], the divisor O(δ1) restricted to the family G1 is isomorphic

to the tensor product between the normal bundle of E1 in X and the normal bundle of γ×P1 in
Γ × P1, i.e. NE1/X ⊗N{γ}×P1/Γ×P1 . The first factor has degree −1, while the second is trivial.
Putting all together, we get

{
degG̃k1

O(δ̃k1 ) = −1,

degG̃k1
O(δ̃j1) = 0 if j 6= k.

Now we can finally conclude the proof of Theorems A.1 and A.2.

Proof of Theorem A.1(ii) and A.2(ii). Suppose there exists a non-trivial relation O(a0δ̃0 +∑
aj1δ̃

j
1) = O. If we restrict this equality on G̃ we have a0 = 0. Pulling back to Gj1 we deduce

aj1 = 0 for any j ∈ J1. This concludes the proof of A.1(ii). Repeating the same arguments for

the rigidified moduli stack Vr,d,2 we prove Theorem A.2(ii). 2

Appendix B. Base change cohomology for stacks admitting a good moduli space.

We will prove that the classical results of base change cohomology for proper schemes continue
to hold again (not necessarily proper) stacks, which admit a proper scheme as good moduli space
(in the sense of Alper). The propositions and proofs are essentially equal to ones in [Bro12,
Appendix A], but we rewrite them, because our hypothesis are weaker.
In this section, X will be an Artin stack of finite type over a scheme S, and a sheaf F will be
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a sheaf for the site lisse-étale defined in [LMB00, Sec. 12] (see also [Bro, Appendix A]). Recall
first the definition of good moduli space.

Definition B.1. [Alp13, def 4.1] Let S be a scheme, X be an Artin Stack over S and X an
algebraic space over S . We call an S-morphism π : X → X a good moduli space if

• π is quasi-compact,
• π∗ is exact,
• The structural morphism OX → π∗OX is an isomorphism.

Remark B.2. Let X be a quotient stack of a quasi-compact k-schemeX by a smooth affine linearly
reductive group scheme G. Suppose that L is a G-linearization on X. By[Alp13, Theorem 13.6
and Remark 13.7], the GIT good quotient Xss

L �LG is a good moduli space for the open substack
[Xss
L /G].

Conversely, suppose that there exists an open U ⊂ X such that the open substack [U/G] admits a
good moduli space Y . By [Alp13, Theorem 11.14], there exists aG-linearized line bundle L overX
such that U is contained in Xss

L , [U/G] is saturated respect to the morphism [Xss
L /G]→ Xss

L �LG
and Y is the GIT good quotient U �L G.

Before stating the main result of this Appendix, we need to recall the following

Lemma B.3. ([Mum70, Lemma 1, II], see also [Bro12, Lemma 4.1.3]).

(i) Let A be a ring and let C• be a complex of A-modules such that Cp 6= 0 only if 0 ≤ p ≤ n.
Then there exists a complex K• of A-modules such that Kp 6= 0 only if 0 ≤ p ≤ n and Kp

is free if 1 ≤ p ≤ n, and a quasi-isomorphism of complexes K• → C•. Moreover, if the Cp

are flat, then K0 will be A-flat too.
(ii) If A is noetherian and if the Hi(C•) are finitely generated A-modules, then the Kp’s can

be chosen to be finitely generated.

Proposition B.4. Let X be a quasi-compact Artin stack over an affine scheme (resp. noetherian
affine scheme) S = Spec(A). Let π : X → X be a good moduli space with X separated (resp.
proper) scheme over S. Let F be a quasi-coherent (resp. coherent) sheaf on X that is flat over
S. Then there is a complex of flat A-modules (resp. of finite type)

0 −→M0 −→M1 −→ . . . −→Mn −→ 0

with M i free over A for 1 ≤ i ≤ n, and isomorphisms

Hi(M• ⊗A A′) −→ Hi(X ⊗A A′,F ⊗A A′)
functorial in the A-algebra A′.

Proof. We consider the Cech complex C•(U , π∗F) associated to an affine covering U = (Ui)i∈I
of X. It is a finite complex of flat (by [Alp13, Theorem 4.16(ix)]) A-modules. Moreover, since
X is separated, then we have Hi(C•(U , π∗F)) ∼= Hi(X,π∗F). If A′ is an A-algebra, then the
covering U ⊗A A′ is still affine by S-separateness of X. This implies that

Hi(C•(U , π∗F))⊗A A′ ∼= Hi(X ⊗A A′, (π∗F)⊗A A′).
By [Alp13, Proposition 4.5], we have

Hi(X ⊗A A′, (π∗F)⊗A A′) ∼= Hi(X ⊗A A′, π∗(F ⊗A A′)).
Since π∗ is exact, the Leray-spectral sequence Hi(X ⊗A A′, Rjπ∗(F ⊗A A′)) ⇒ Hi+j(X ⊗A
A′, (F⊗AA′)) (see [Bro, Theorem. A.1.6.4]) degenerates in the isomorphismsHi(X⊗AA′, π∗(F⊗A
A′)) ∼= Hi(X ⊗A A′,F ⊗A A′). Putting all together:

Hi(C•(U , π∗F))⊗A A′ ∼= Hi(X ⊗A A′,F ⊗A A′).
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It can be check that such isomorphisms are functorial in the A-algebra A′. Observe that if F is
coherent then also π∗F is coherent (see [Alp13, Theorem 4.16(x)]). So if X is proper, then the
modules Hi(X ,F) are finitely generated. In particular, the cohomology modules of the complex
C•(U , π∗F) are finitely generated. We can use the precedent lemma for conclude the proof. �

From the above results, we deduce several useful Corollaries.

Corollary B.5. Let S be a scheme and let q : X → S be a quasi-compact Artin Stack with an
S-separated scheme X as good moduli space. Let F be a quasi-coherent sheaf on X flat over S.
If all sheaves Riq∗F are flat over S then F is cohomologically flat.

Proof. See [Bro12, Corollary 2.6] �

The proofs of next results are the same of [Mum70, II.5].

Corollary B.6. Let X → X be a good moduli space over a scheme S, X proper scheme over S
and F coherent sheaf over X flat over S. Then we have:

(i) for any p ≥ 0 the function S → Z defined by s 7→ dimk(s)H
i(Xs,Fs) is upper semicontinu-

ous on S.
(ii) The function S → Z defined by s 7→ χ(Fs) is locally constant.

Corollary B.7. Let X → X be a good moduli space over an integral scheme S, X proper scheme
over S and F coherent sheaf over X flat over S. The following conditions are equivalent

(i) s 7→ dimk(s)H
i(Xs,Fs) is a constant function,

(ii) Riq∗(F) is locally free sheaf on S and for any s ∈ S the map

Riq∗(F)⊗ k(s)→ Hi(Xs,Fs)

is an isomorphism.

If these conditions are satisfied, then we have an isomorphism

Ri−1q∗(F)⊗ k(s)→ Hi−1(Xs,Fs)

Corollary B.8. Let X → X be a good moduli space over a scheme S, X proper scheme over
S and F coherent sheaf over X flat over S. Assume for some i that Hi(Xs,Fy) = (0) for any
s ∈ S. Then the natural map

Ri−1q∗(F)⊗OS k(s)→ Hi−1(Xs,Fy)

is an isomorphism for any s ∈ S.

Corollary B.9. Let X → X be a good moduli space over a scheme S, X proper scheme and F
coherent sheaf over X flat over S. If Riq∗(F) = (0) for i ≥ i0 then Hi(Xs,Fs) = (0) for any
s ∈ S and i ≥ i0.

Corollary B.10. [The SeeSaw Principle].
Let X → X be a good moduli space over an integral scheme S and L be a line bundle on X .
Suppose that q : X → S is flat and that X → S is proper with integral geometric fibers. Then
the locus

S1 = {s ∈ S|Ls ∼= OXs
}

is closed in S. Moreover if we call q1 : X ×S S1 → S1 the restriction of q on this locus, then
q1∗L is a line bundle on S and the natural morphism q∗1q1∗L ∼= L is an isomorphism.
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Proof. A line bundleM on a stack X with a proper integral good moduli space X is trival if and
only if h0(M) > 0 and h0(M−1) > 0. The necessity is obvious. Conversely suppose that these
conditions hold. Then we have two non-zero homomorphisms s : OX → M, t : OX → M−1.
If we dualize the second one and compose with the first one, we have a non-zero morphism
h : OX → OX . Now X is an integral proper scheme then H0(X,OX) = k so H0(X ,OX ) = k.
Hence h is an isomorphism. This implies that also s and t are isomorphisms. As a consequence,
we have

S1 = {s ∈ S|h0(Xs,Ls) > 0, h0(Xs,L−1
s ) > 0}.

In particular, S1 is closed by upper semicontinuity. Up to restriction we can assume S = S1,
so the function s 7→ h0(Xs,Ls) = 1 is constant. By Corollary B.7, q∗L is a line bundle on S
and the natural map q∗L⊗OS k(s)→ H0(Xs,Ls) is an isomorphism. Consider the natural map
π : q∗q∗L → L. Its restriction on any fiber Xs

OXs ⊗H0(Xs,Ls)→ Ls
is an isomorphism. In particular π is an isomorphism for any geometric point x ∈ X . Since it is
a map between line bundles, by Nakayama lemma, it is an isomorphism. �
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[Hof07] Norbert Hoffmann. Rationality and Poincaré families for vector bundles with extra structure on a

curve. Int. Math. Res. Not. IMRN, (3):Art. ID rnm010, 30, 2007.
[Hof10] Norbert Hoffmann. Moduli stacks of vector bundles on curves and the King-Schofield rationality proof.

In Cohomological and geometric approaches to rationality problems, volume 282 of Progr. Math., pages
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THE PICARD GROUP OF THE UNIVERSAL ABELIAN VARIETY AND

THE FRANCHETTA CONJECTURE FOR ABELIAN VARIETIES

ROBERTO FRINGUELLI AND ROBERTO PIRISI

Abstract. We compute the Picard group of the universal abelian variety over the moduli

stack Ag,n of principally polarized abelian varieties over C with a symplectic principal level
n-structure. We then prove that over C the statement of the Franchetta conjecture holds in a

suitable form for Ag,n.
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Introduction

Consider the moduli stackMg of smooth genus g curves. Let Cη the universal curve over the
generic point η ofMg. The weak Franchetta conjecture says that Pic(Cη) is freely generated by
the cotangent bundle ωCη . Arbarello and Cornalba in [AC87] proved it over the complex numbers.
Then Mestrano [Mes87] and Kouvidakis [Kou91] deduced over C the strong Franchetta conjec-
ture, which says that the rational points of the Picard scheme PicCη are precisely the multiples
of the cotangent bundle. Then Schröer [Sch03] proved both the conjectures over an algebraically
closed field of arbitrary characteristic. At the end of loc. cit., Schröer poses the question of
whether it is possible to generalize the Franchetta Conjecture to other moduli problems.

In this paper we focus on the universal abelian variety Xg,n over the moduli stack Ag,n of
principally polarized abelian varieties of dimension g (or p.p.a.v. in short) with a symplectic
principal level-n structure (or level-n structure in short). For the analogous of the Franchetta
conjecture in this new setting, we have chosen the name of abelian Franchetta conjecture.

First of all, observe that the universal abelian variety π : Xg,n → Ag,n comes equipped with
some natural line bundles:

- the rigidified canonical line bundle LΛ, i.e. a line bundle, trivial along the zero section,
such that over any closed point (A, λ, ϕ) ∈ Ag,n, the restriction of LΛ along the fiber
π−1 ((A, λ, ϕ)) induces twice the principal polarization λ.

- the rigidified n-roots line bundles, i.e. the line bundles, trivial along the zero section,
which are n-roots of the trivial line bundle OXg,n .

We can formulate the weak abelian Franchetta conjecture in terms of a description of the
Picard group of a generic universal abelian variety over Ag,n (observe that if n = 1, 2 the generic

1
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2 ROBERTO FRINGUELLI AND ROBERTO PIRISI

point of Ag,n is stacky, so it makes little sense to speak of “the” generic abelian variety), and
the strong one in terms of rational sections of the relative Picard scheme.

Question 1 (Weak abelian Franchetta Conjecture). Is there a principally polarized abelian va-
riety with level-n structure (A,Λ, Φ) over a field K such that A→ Xg,n is a dominant map, and
the Picard group of A is freely generated by the rigidified canonical line bundle and the rigidified
n-roots line bundles?

Question 2 (Strong abelian Franchetta Conjecture). Does every rational section of the relative
Picard sheaf PicXg,n/Ag,n

→ Ag,n come from one of the elements above?

At first sight, the two question seems different. The reason is because, in general, the Picard
group of a scheme f : X → S does not coincide with the S-sections of the associated Picard
sheaf PicX/S . However, they are isomorphic, if the scheme X → S admits a section and the
structure homomorphism OS → f∗OX is universally an isomorphism. Since the universal abelian
variety satisfies both these properties, the conjectures are equivalent. In other words, we can
formulate the abelian Franchetta conjecture in terms of the set of rational relative line bundles
on Xg,n → Ag,n: the set of the equivalence classes of line bundles on U ×Ag,n Xg,n → U where
U is an open substack of Ag,n. Two line bundles are in the same class if and only if they are
isomorphic along an open subset of Ag,n. Observe that the tensor product induces a well-defined
group structure on this set. Our main result is

Theorem A. Assume that g ≥ 4 and n ≥ 1. Then

Pic(Xg,n)
/

Pic(Ag,n) =

{
(Z/nZ)

2g ⊕ Z[
√LΛ] if n is even,

(Z/nZ)
2g ⊕ Z[LΛ] if n is odd,

where
√LΛ is, up to torsion, a square-root of the rigidified canonical line bundle LΛ and (Z/nZ)

2g

is the group of rigidified n-roots line bundles. Moreover, the line bundle
√LΛ, when it exists,

can be chosen symmetric.

The main difficulty in proving this theorem resides in the fact that differently from Mg,
the stack Ag is not generically a scheme. To solve this, we use the techniques of equivariant
approximation, first introduced by Totaro, Edidin and Graham in [EG96], [Tot99].

However, a description of the entire Picard group Pic(Xg,n) is still incomplete. Ideed, while it
is well known that the Picard group of Ag := Ag,1 is freely generated by the Hodge line bundle
det
(
π∗
(
ΩXg/Ag

))
(see [Put12, Theorem 5.4]), the same is not true in general. For some results

about the Picard group of Ag,n the reader can refer to [Put12].
The above theorem implies directly

Corollary B. [Abelian Franchetta conjecture]. Assume g ≥ 4 and n ≥ 1. The group of rational
relative rigidified line bundles on Xg,n → Ag,n is isomorphic to

(Z/nZ)
2g ⊕ Z[

√LΛ] if n is even,

(Z/nZ)
2g ⊕ Z[LΛ] if n is odd.

where
√LΛ is, up to torsion, a square-root of the rigidified canonical line bundle LΛ and (Z/nZ)

2g

is the group of rigidified n-roots line bundles. Moreover, the line bundle
√LΛ, when it exists,

can be chosen symmetric.

When g = 2, 3 and n > 1 we can prove Theorem A and Corollary B only when n is even. It
still remains to find out whether the torsion free part is generated by LΛ or

√LΛ, when n is odd.
When n = 1, we can use the Torelli morphism to extend the result to the genus two and three

cases. Let Jg be the universal Jacobian on Mg of degree 0. We have a cartesian diagram of
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THE PICARD GROUP OF THE UNIVERSAL ABELIAN VARIETY 3

stacks

Jg
τ̃g
//

��

Xg

��

Mg

τg
// Ag

where the map τg is the Torelli morphism. Observe that the Hodge line bundle on Xg,n restricts
to the Hodge line bundle det

(
π∗
(
ωMg,1/Mg

))
onMg. In particular the Torelli morphism induces

an isomorphism of Picard groups Pic(Ag) ∼= Pic(Mg) for g ≥ 3.
We will show that we have an analogous result for the universal families. More precisely

Theorem C. Assume that g ≥ 2. Then

Pic(Xg)
/

Pic(Ag) = Z[LΛ]

Furthermore, when g ≥ 3, the morphism τ̃g : Jg → Xg induces an isomorphism of Picard groups.

We sketch the strategy of the proof of Theorem A. For any p.p.a.v. A, we have the following
exact sequence of abstract groups

(1) 0 −→ HomAg,n(Ag,n,X∨g,n) −→ Pic(Xg,n)
/

Pic(Ag,n)
res−→ NS(A)

where X∨g,n is the universal dual abelian variety and the second map is obtained by composing the
restriction on the Picard group of the geometric fiber of Xg,n → Ag,n corresponding to (A, λ, ϕ)
with the first Chern class map.

Using the universal principal polarization, we can identify the kernel with the set of sections
of the universal abelian variety and we will prove that it is isomorphic to the group (Z/nZ)

2g

of the n-torsion points. This was obtained by Shioda in the elliptic case and then in higher
dimension by Silverberg when Ag,n is a variety, i.e. when n ≥ 3. We will extend their results to

the remaining cases. Then, using the universal principal polarization, we will identify (Z/nZ)
2g

with the group of rigidified n-roots line bundles.
Then, we will focus on the cokernel. We will fix a Jacobian variety J(C) with Neron-Severi

group generated by its theta divisor θ. Since the rigidified canonical line bundle LΛ restricted
to the Jacobian is algebraically equivalent to 2θ, the index of the image of res in NS(J(C)) can
be at most two. Then, by studying the existence of a line bundle on Xg,n inducing the universal
principal polarization, we will show that the inclusion Im(res) ⊂ NS(J(C)) is an equality if and
only if n is even, concluding the proof of Theorem A.

The paper is organized in the following way. In Section 1, we recall some known facts about
abelian varieties and their moduli spaces. In Section 2, we give an explicit description of the set
of sections of the universal abelian variety Xg,n → Ag,n. Then in Section 3, we prove the exact-
ness of the sequence (1) and we give a proof of Theorem C. Finally, in Section 4 we show that the
universal principal polarization of Xg,n → Ag,n is induced by a line bundle if and only if n is even.

We will work with the category of schemes locally of finite type over the complex numbers.
The choice of the complex numbers is due to the fact that our computation is based upon the
Shioda-Silverberg’s computation of the Mordell-Weil group of Xg,n → Ag,n for n ≥ 3 and the
Putman’s computation of the Picard group of Ag,n, which are proved over the complex numbers.
Moreover, Shioda proved that, in positive characteristic, the Mordell-Weil group of X1,4 → A1,4

can have positive rank (see [Shi73]). So, it seems that our statements are not true in positive
characteristic, but we do not have any evidence of this.
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4 ROBERTO FRINGUELLI AND ROBERTO PIRISI

1. The universal abelian variety Xg,n → Ag,n.
In this section we will introduce our main object of study: the universal abelian variety Xg,n

over the moduli stack Ag,n of principally polarized abelian varieties with level n-structure. Before
giving a definition, we need to recall some known facts about the abelian schemes. For more
details the reader can refer to [Mum70] and [MFK94, Chap. 6, 7].

Definition 1.1. A group scheme π : A → S is called an abelian scheme if π is smooth, proper
and the geometric fibers are connected.

It is known that an abelian scheme is a commutative group scheme and its group structure is
uniquely determined by the choice of the zero section. An homomorphism of abelian schemes is
a morphism of schemes which sends the zero section in the zero section.

Let A → S be a projective abelian scheme of relative dimension g and OA its zero section.
Consider the relative Picard functor

PicA/S : (Sch/S) −→ (Grp)

T → S 7→ Pic(T ×S A)
/

Pic(T ) .

We set PicA/S (Zar), resp. PicA/S (Et), resp. PicA/S (fppf) the associated sheaves with respect to

the Zariski, resp. Étale, resp. fppf topology. Since A→ S has sections, namely the zero section,
and the structure homomorphism is universally an isomorphism, the relative Picard functor and
the associated sheaves above are all isomorphic (see [FGI+05, Theorem 9.2.5]). Moreover, PicA/S
is isomorphic to the functor of rigidified (i.e. trivial along the zero section) line bundles on A→ S

Pic′A/S : (Sch/S) −→ (Grp)

T → S 7→ {L ∈ Pic(T ×S A)| O∗T×SAL ∼= OT }
where OT×SA is the zero section of T ×SA→ T induced by OA. This functor is represented by a
locally noetherian group S-scheme PicA/S (see [FGI+05, Theorem 9.4.18.1]), called the relative

Picard scheme. There is a subsheaf Pic0
A/S ⊂ PicA/S parametrizing rigidified line bundles which

are algebraically equivalent to 0 on all geometric fibers. It is represented by an abelian scheme:
the dual abelian scheme A∨ → S [FGI+05, 9.5.24]. By [FGI+05, 9.6.22], the definition of dual
abelian scheme in [MFK94] coincides with the definition above. From the theory of the Picard
functor of an abelian scheme, we have an homomorphism of group schemes over S

(2)
λ : PicA/S → HomS(A,A∨)

L 7→
(
a 7→ λ(L)(a) := t∗aL ⊗ L−1

)

where ta : A → A is the translation by a (see [MFK94, Ch. 6, §2]). The kernel is the dual
abelian scheme A∨ → S. In particular, when S = Spec(k), with k an algebraically closed field,
we can identify the image of λ with the Neron-Severi group NS(A) of the abelian variety A.

Definition 1.2. A principal polarization λ of a projective abelian scheme A → S is an S-
isomorphism λ : A → A∨ such that over the geometric points s ∈ S, it is induced by an ample
line bundle on As via the homomorphism (2) above. A principally polarized abelian scheme
(A→ S, λ) is a projective abelian scheme A→ S together with a principal polarization λ.

We denote with A[n] (resp. A∨[n]) the group of n-torsion points (resp. of n-roots of the trivial
line bundle OA). Up to étale base change S′ → S, they are isomorphic to the locally constant

group scheme (Z/nZ)2g
S′ . Observe that a principal polarization induces an isomorphism of group

schemes A[n] ∼= A∨[n]. For any principally polarized abelian scheme (A→ S, λ), we denote with

en : A[n]×A∨[n]→ µn,S (resp. eλn : A[n]×A[n]→ µn,S)
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THE PICARD GROUP OF THE UNIVERSAL ABELIAN VARIETY 5

the Weil pairing (resp. the pairing obtained by composing the Weil pairing with the isomorphism
(IdA ×S λ)|A[n]). The first one is non-degenerate, while the second one is non-degenerate and
skew-symmetric.

For the rest of the paper we fix ζn a primitive n-root of the unity over the complex numbers.
By this choice we have a canonical isomorphism between the constant group Z/nZ and the group
µn,C of the n-roots of unity, which sends 1 to ζn.

Definition 1.3. A symplectic principal level n-structure (or level n-structure in short) over
a principally polarized abelian scheme (A → S, λ) of relative dimension g is a isomorphism

ϕ : A[n] ∼= (Z/nZ)2g
S such that eλn(a, b) = e(ϕ(a), ϕ(b)), where e : (Z/nZ)2g

S × (Z/nZ)2g
S → µn,S is

the standard non-degenerate alternating form on (Z/nZ)2g
S defined by the 2g× 2g square matrix( 0 Ig

−Ig 0

)
composed with the isomorphism Z/nZ ∼= µn defined by ζn.

After these definitions we can finally introduce our main objects of study.

Definition 1.4. Let Ag,n → (Sch/C) the moduli stack whose objects over a scheme S are
the triples (A → S, λ, ϕ) where (A → S, λ) is a principally polarized abelian scheme of relative
dimension g with a level n-structure ϕ. A morphism between two triples (f, h) : (A→ S, λ, ϕ) −→
(A′ → S′, λ′, ϕ′) is a cartesian diagram

A

��

f
// A′

��

S
h // S′

such that f(OA) = O′A, where OA (resp. O′A) is the zero section of A (resp. A′), f∨ ◦ λ′ ◦ f = λ
and ϕ′ ◦ fA[n] =

(
Id(Z/nZ)2g × h

)
◦ ϕ.

A proof of the next theorem can be obtained adapting the arguments in [MFK94, ch. 7].

Theorem 1.5. For any n ≥ 1, Ag,n is an irreducible smooth Deligne-Mumford stack of dimen-

sion g(g+1)
2 . Moreover, if n ≥ 3 it is a smooth quasi-projective variety.

This stack comes equipped with the following objects:

- two stacks Xg,n and X∨g,n together with representable proper and smooth morphisms of
stacks π : Xg,n → Ag,n and π∨ : X∨g,n → Ag,n of relative dimension g;

- a closed substack Xg,n[n] ⊂ Xg,n, which is finite and étale over Ag,n;
- an isomorphism of stacks Λ : Xg,n → X∨g,n over Ag,n;

- an isomorphism of stacks Φ : Xg,n[n] ∼= (Z/nZ)2g
Ag,n over Ag,n,

such that for any morphism p : S → Ag,n associated to an object (A → S, λ, ϕ), we have two
commutative polygons

A //

�� λ

Xg,n

π
|| Λ

��

S
p

//

��

Ag,n

A∨

__

// X∨g,n
π∨

bb

A[n] //

zz
ϕ

Xg,n[n]

π
yy Φ

��

S
p

//

��

Ag,n

(Z/nZ)2g
Ag,n

cc

// (Z/nZ)2g
Ag,n

ee

where the faces with four edges are cartesian diagrams. In other words (Xg,n → Ag,n,Λ, Φ) is
the universal triple of the moduli stack Ag,n. We will call Xg,n → Ag,n the universal abelian
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variety over Ag,n and with OXg,n we will denote its zero section. The isomorphism Λ will be
called universal polarization and Φ the universal level n-structure. Observe that by definition
the stack π∨ : X∨g,n → Ag,n parametrises the line bundles on the universal abelian variety which
are algebraically trivial on each geometric fiber. We will call it universal dual abelian variety.

2. The Mordell-Weil group of Xg,n.
A first step to prove the Theorem A is to understand the sections of the universal dual abelian

variety X∨g,n → Ag,n restricted to all open substacks U ⊆ Ag,n. Using the universal polarization
Λ, this amounts to understanding the group of the rational sections of the universal abelian
variety, which is usually called Mordell-Weil group. We want to prove the following:

Theorem 2.1. Assume g ≥ 1. For all open substacks U ⊆ Ag,n the group of sections U →
Xg,n×Ag,n U is isomorphic to (Z/nZ)2g, the isomorphism being given by restricting the canonical

isomorphism Φ : Xg,n[n] ∼= (Z/nZ)2g
Ag,n .

In this section we will assume implicitly g ≥ 1. For n ≥ 3 the Theorem was proven by
Shioda in the elliptic case and then by Silverberg in higher dimension (see Theorem 2.8 below).
Starting from this, we will extend the Shioda-Silverberg’s results to the remaining cases. The
main problem here for n = {1, 2} is that differently from the case of Ag,mm ≥ 3, the stack Ag,n
is not generically a scheme, so we cannot really reduce the argument to considerations on the
fiber of the generic point, or more precisely, there is not generic point at all. To solve this we
introduce the technique of equivariant approximation:

Definition-Proposition 2.2. Let G be an affine smooth group scheme, and letM = [X/G] be
a quotient stack. Choose a representation V of G such that G acts freely on an open subset U
of V whose complement has codimension 2 or more. The quotient [X × U/G] will be called an
equivariant approximation of M. It has the following properties:

(1) [X × U/G] is an algebraic space. If X is quasiprojective and the action of G is linearized
then [X × U/G] is a scheme.

(2) [X × V/G] is a vector bundle over [X/G], and [X × U/G] ↪→ [X × V/G] is an open
immersion, whose complement has codimension 2 or more.

(3) The map [X × U/G] → [X/G] is smooth, surjective, separated and if K is an infinite

field then every map Spec(K)
p−→ [X/G] lifts to a map Spec(K)→ [X × U ]/G.

(4) If X is locally factorial, then the map [X × U/G] → [X/G] induces an isomorphism at
level of Picard groups.

Moreover, such a representation V always exists for an affine smooth groups scheme G over a
field k.

Proof. This is presented in [EG96], where all points above are proven. The only point that
needs further commenting is point 3. Let P : Spec(K) → [X/G], and consider the fiber
[X × U/G] ×[X/G] Spec(K). It is an open subset of a vector bundle over Spec(K), so if K
is infinite we know that its rational points are dense, and we have infinitely many liftings of P .

Note if K is a finite field it is possible for the fiber [X × U/G] ×[X/G] Spec(K) to have no
rational point at all, as the rational points in a vector bundle over a finite field form a closed
subset. This shows that if K is finite the point may not have any lifting.

The last statement is a direct consequence of the well-known fact that an affine smooth
algebraic group over a field k always admits a faithful finite dimensional representation, so we
just need to prove it for G = GLn. Such a representation can be constructed for example as in
[EG96, 3.1]. �
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Note that there exists r such that Ag,n is the quotient a quasiprojective scheme by a linearized
group action of the affine group scheme PGLr [MFK94, ch. 7]. Then we can take an equivariant

approximation Bg,n
π−→ Ag,n where Bg,n is a scheme, and by pulling back Xg,n we get an induced

family Xg,n → Bg,n.

Proposition 2.3. If Xg,n → Ag,n has two non isomorphic sections over some open subset
U ⊆ Ag,n, then Xg,n → Bg,n has two non isomorphic (i.e. distinct, as Xg,n, Bg,n are schemes)
sections over the open subset U := U ×Ag,n Bg,n.

Proof. Let U , U be as above. Let σ1, σ2 be two non isomorphic sections of Xg,n → Ag,n. By the
universal property of fibered product we get induced sections (Id, σ1◦π), (Id, σ2◦π) : Bg,n → Xg,n.
We get an obvious commutative diagram, and we can conclude that the two maps must be
different since π is an epimorphism, being a smooth covering. �

This way we have reduced our problem to showing that there are exactly n2g sections of
Xg,n → Bg,n. We now proceed to prove some lemmas.

Lemma 2.4. Let S be the spectrum of a DVR R, and let A→ S be an abelian scheme. Let p, P
be respectively the closed and generic point of S. Then for all m the order of the m-torsion in
the Mordell-Weil group of the closed fiber Ap is greater or equal than the order of the m-torsion
in the Mordell Weil group of the generic fiber AP .

Proof. Let A [m] → S be the closed subscheme of n-torsion points of A. Then A [m]
π−→ S is

a proper étale morphism, as we are working in characteristic zero. We may suppose that R is
Henselian. Being étale and proper, the map π is finite. A finite extension of a local Henselian
ring is a product of local Henselian rings [Sta15, Tag 04GH]. Then for every lifting of P to
A [m] we have a corresponding map of local rings R′ → R that is étale of degree one, i.e. it
is an isomorphism. This implies that there is a corresponding lifting of p to A [m], proving the
lemma. �
Lemma 2.5. Let R a Noetherian local regular ring, and let p, P be the closed and generic and
closed points of Spec(R). Let A → Spec(R) be an abelian scheme. Then for all m > 0 the
order of the m-torsion in the Mordell-Weil group of Ap is greater or equal than the order of the
m-torsion in the Mordell Weil group of AP .

Proof. We prove the lemma by induction on the dimension of Spec(R). The case dim(Spec(R)) =
1 is the previous lemma. Now suppose dim(S) ≥ 2 and take a regular sequence (a1, . . . , ar) for
R. Then R1 = R(a1) and R2 := R/(a1) are both Noetherian local regular rings. If we see
Spec(R1),Spec(R2) as subschemes of Spec(R) the generic point of Spec(R1) is P , the generic
point of Spec(R2) is the closed point of Spec(R1), and the closed point of Spec(R2) is p.

Denote respectively by P1, P2 the generic points of Spec(R1),Spec(R2), and by p1, p2 their
closed points. Denote respectively by A1, A2 the pullbacks of A to Spec(R1),Spec(R2). Then

](A [m] (P )) = ](A1 [m] (P1)) ≤ ](A1 [m] (p1)) = ](A2 [m] (P2)) ≤ ](A2 [m] (p2)) = ](A [m] (p))

where the first equality comes from previous lemma, and the last comes from the inductive
hypothesis. �
Lemma 2.6. For all n > 0, g > 0 there is a field K, finitely generated over C, and a p.p.a.v. of
dimension g with level n-structure over K that has Mordell-Weil group isomorphic to (Z/nZ)2g,
where the isomorphism comes from the level structure.

Proof. For g = 1 it the result is proven in [Sch03, Prop. 3.2] when N = 1 and in [Shi72, Thm
5.5 + Rmk 5.6] for the other cases (see also [Shi73]). We can then take powers of these elliptic
curves to obtain the general statement. �
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Recall now that Xg,n → Ag,n is a smooth morphism with connected fibers, and Ag,n is smooth
and irreducible, so it the same goes for Xg,n. Consequently also Bg,n and Xg,n are smooth and
irreducible, being open subsets of vector bundles over Ag,n and Xg,n respectively.

Proposition 2.7. Let ξ be the generic point of Bg,n. Then the torsion of the Mordell-Weil group
of Xg,n ×Bg,n ξ is isomorphic to (Z/nZ)2g, the morphism coming from the level structure.

Proof. Consider any point P in Bg,n such that Xg,n ×Bg,n P Mordell-Weil group with torsion

exactly (Z/nZ)2g. This exists by the previous lemma and the fact that the map Bg,n → Ag,n
has the lifting property for points (2.2, point 4). Then we can apply Lemma (2.5) to the local
ring OBg,n,P and the fact that Xg,n ×Bg,n ξ comes with a canonical isomorphism of (Z/nZ)2g

with its n-torsion to conclude. �

Half of our work towards theorem (2.1) is done. Now we need to show that the Mordell Weil
group of the generic fiber Xg,n ×Bg,n ξ is torsion, so that it will be equal to (Z/nZ)2g. Next
theorem gives us an answer when Ag,n is a variety.

Theorem 2.8 (Shioda-Silverberg). Suppose n ≥ 3. Let ξ → An,g be the generic point. Then
the Mordell-Weil group of Xn,g×An,g ξ is isomorphic to (Z/nZ)2g, the isomorphism coming from
the level structure.

Proof. For a complete proof in the elliptic case (resp. higher dimension) we refer to [Shi72] (resp.
[Sil85]). The statement with a sketch of the proof can be found in [Lox90, Theorem 1 and 3, pp.
227-235]. �

For n = 1, 2 we need a few more steps.

Lemma 2.9. Let AF be a principally polarized abelian variety over a field F and let Q be a
finitely generated purely transcendental extension of F . Define AQ := AF ×F Q. Then the
homomorphism of Mordell-Weil groups AF (F )→ AQ(Q) is an isomorphism.

Proof. SinceAF is principally polarized, the Mordell-Weil group ofA is isomorphic to Pic0
AF /F (F ),

and the Mordell-Weil group of AQ is isomorphic to Pic0
AQ(Q). Both AQ and AF have a rational

point, so we have PicAF /F (F ) = Pic(AF ), PicAQ/Q(Q) = Pic(AQ) (see for example [FGI+05,
Remark 9.2.11]). Moreover AQ and AF are smooth and thus locally factorial, so their Picard
groups are isomorphic to the group of divisors modulo rational equivalence. Consider the follow-
ing commutative triangle:

AF × AnF
π

��

66

i

AQ // AF

Here n is the degree of transcendence of Q/F and the map i is the inclusion of the generic
fiber. The pullback through π is an isomorphism on Picard groups. The pullback through i is
surjective. The map Q → F is a smooth covering, so the pullback Pic(AF ) = PicAF /F (F ) →
PicAQ/Q(Q) = Pic(AQ) is injective. This shows that the pullback through AQ → AF induces an
isomorphism on Picard groups.

Now recall that PicAQ/Q is isomorphic to PicAF /F ×F Q as a Q-scheme, and in particular
the map PicAQ/Q → PicAF /F has connected fibers. This implies that if L ∈ Pic(AF ) pulls back

to L′ ∈ Pic0
AQ then L must belong to Pic0

AF , and the isomorphism on the Picard groups then

implies the isomorphism on the Pic0.

70



THE PICARD GROUP OF THE UNIVERSAL ABELIAN VARIETY 9

We can now conclude as by definition the image of a point p ∈ PicAQ/Q(Q) representing the
pullback of a line bundle L ∈ PicAF /F (F ) is L itself. Then putting everything together we proved
that the pull-back along the map AQ → AF induces an isomorphism on the Mordell-Weil groups,
which proves our claim. �

Proposition 2.10. The generic fiber of Xg,n → Bg,n has Mordell-Weil group equal to (Z/nZ)2g.

Proof. Consider the following cartesian cube:

Xg,3n Bg,3n

Xg,n Bg,n

Xg,3n Ag,3n

Xg,n Ag,n

φ′n

ρ′n

π′n

πn

φ
′

ρ′

π′
ρn

φ′ φ
ρ

π

The π maps are equivariant approximations, the φ maps are étale finite, the ρ maps are
families of abelian varieties. Let ζ be the generic point of Bg,3n. First we want to understand
the Mordell-Weil group of the generic fiber Xg,3n ×Bg,3n ζ. As Bg,3n is an open subset of a
vector bundle over Ag,3n the generic point of Bg,3n is a purely transcendental extension of the
generic point of Ag,3n. Then by Lemma (2.9) we can conclude that the Mordell-Weil group of
Xg,3n×Bg,3n ζ is isomorphic to the Mordell-Weil group of the generic fiber of Xg,3n → Ag,3n. As
3n is greater or equal to three he latter is torsion due to Silverberg’s theorem.

Now we already know that the Mordell-Weil group of Xg,n ×Bg,n ξ has torsion equal to

(Z/nZ)2g, and as the étale map Xg,n ×Bg,3n ζ → Xg,n ×Bg,n ξ is an epimorphism it must also
inject into the Mordell-Weil group of Xg,3n ×Bg,3n ζ. The latter is torsion, so the Mordell-Weil

group of Xg,n ×Bg,n ξ must be equal to (Z/nZ)2g. �

Proof of theorem 2.1. any two sections U ×Ag,n Bg,n → U ×Ag,n Xg,n that induce the same
rational point in the generic abelian variety above must be generically equal. But two maps
from an irreducible and reduced scheme to a separated scheme that are generically equal must
be the same [Sta15, Tag 0A1Y]. This, in addition to the fact that by definition there exist n2g

canonical distinct sections of Xg,n → Ag,n, coming from the level structure, concludes the proof
of our theorem. �

3. Preliminaries on the Picard group of Xg,n.
Let g ≥ 2 and n ≥ 1. In this section, we will give a partial description of the group of the

rigidified line bundles on Xg,n, which allows us to prove Theorem C.

First of all, we introduce some natural line bundles on the universal abelian variety.

Definition 3.1. We will call rigidified n-roots line bundles of Xg,n → Ag,n the rigidified line
bundles over Xg,n which are n-roots of the trivial line bundle OXg,n .

Observe that the rigidified n-roots line bundles correspond to the sections of a substack of X∨g,n,
which is finite and étale over Ag,n. Over any C-point (A, λ, ϕ), they correspond to the n-torsion
points A∨[n] of the dual abelian variety. Using the universal polarization Λ : Xg,n ∼= X∨g,n, we
obtain an isomorphism between the rigidified n-roots line bundles and the the group of n-torsion
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sections of Xg,n → Ag,n. Using the universal level n-structure Φ, we see immediately the this

group is isomorphic to (Z/nZ)
2g

.

Definition 3.2. Let (A→ S, λ) be a family of p.p.a.v. over S. Let A∨ the dual abelian scheme
and let P the rigidified Poincaré line bundle on A ×S A∨. Pulling back P through the map
(IdA, λ) : A→ A×S A∨, we get a rigidified line bundle on A. Since this line bundle is functorial
in S, it defines a line bundle over the universal abelian variety Xg,n: we will call this sheaf
rigidified canonical line bundle LΛ.

Remark 3.3. Let (A, λ, ϕ) be a C-point in Ag,n. There exists a line bundle M, unique up to
translation, over A inducing the polarization. The line bundle LΛ, restricted to a (A, λ, ϕ) is
equal to M2 in NS(A).

Indeed, this is equivalent to showing that λ(LΛ|(A,λ,ϕ)⊗M−2) = 0. By [MFK94, Proposition
6.1], we have that λ(LΛ) = 2Λ. Then, by definition of universal polarization, Λ|(A,λ,ϕ) = λ =
λ(M) from which the assertion follows immediately.

The proof of next lemma can be found in [MFK94, Proposition 6.1].

Lemma 3.4. Given a commutative diagram of schemes

X

p
��

f
// Y

q
��

S

where X is an abelian scheme over a connected scheme S. If, for one point s ∈ S, f(Xs) is
set-theoretically a single point, then there is a section 0 : S → Y such that f = 0 ◦ p.

Now we are going to study the image of the homomorphism (2).

Proposition 3.5. Let A be an abelian scheme over S and L a line bundle on A. Suppose
that there exists a closed point s ∈ S such that Ls = OAs in NS(As). Then λ(L) is the zero
homomorphism in HomS(A,A∨).

Proof. By hypothesis λ(L)s = λ(Ls) is the zero homomorphism. By Lemma 3.4, λ(L) factorizes
as the structure morphism A → S and a section of the dual abelian scheme. Since Λ is an
homomorphism of abelian schemes, it must be the zero homomorphism. �

Let (A, λ, ϕ) be a C-point of Ag,n. Consider the homomorphism

res : Pic(Xg,n)
/

Pic(Ag,n) −→ Pic(A) −→ NS(A)

where the first row is given by restriction and the second one is the first Chern class map. We
have the following

Proposition 3.6. For any C-point (A, λ, ϕ) in Ag,n, we have an exact sequence of abstract
groups

(3) 0 −→
(Z /nZ

)2g −→ Pic(Xg,n)
/

Pic(Ag,n)
res−→ NS(A)

where the kernel is the group of the rigidified n-roots line bundles.

Proof. Consider the cartesian diagram

Xg,n
//

��

Xg,n

��

Bg,n // Ag,n
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where Bg,n → Ag,n is an equivariant approximation as in the Definition-Proposition 2.2. It
induces a commutative diagram of Picard groups

Pic(Xg,n) Pic(Xg,n)oo

Pic(Bg,n)

OO

Pic(Ag,n).oo

OO

We can easily see that Xg,n → Xg,n is an equivariant approximation for Xg,n. In particular, in
the diagram of Picard groups, the horizontal arrows are isomorphisms (by Definition-Proposition
2.2(4)) and the vertical ones are injective.

Let s be a lifting of (A, λ, ϕ) over Bg,n, which exists by Definition-Proposition 2.2(3). Consider
the homomorphism of groups

PicXg,n/Bg,n(Bg,n) −→ PicXg,n/Bg,n(s) = Pic(A) −→ NS(A)

where the first row is given by restriction and the second one is the first Chern class map.
Proposition 3.5 implies that the sequence of groups

0 −→ X∨g,n(Bg,n) −→ PicXg,n/Bg,n(Bg,n) −→ NS(A)

is exact. As observed in Section 1, we can identify the abstract group PicXg,n/Bg,n(Bg,n) with
Pic(Xg,n)/Pic(Bg,n). By the diagram above, it is also isomorphic to the group Pic(Xg,n)/Pic(Ag,n).
The assertions about the kernel follows from the results of Section 2. �

Using this we can complete the description of the Picard group of the universal abelian variety
without level structure.

Proof of of Theorem C. By [ACGH85, Lemma p. 359] there exists a Jacobian variety J(C)
of a smooth curve of genus g with Neron-Severi group generated by the theta divisor θ. We set
m the index of the map res in the Proposition 3.6 with (A, λ, ϕ) = (J(C), θ, ϕ). Consider the
morphism of complexes

0 // Pic(Ag) //

��

Pic(Xg) //

��

m ·NS(J(C)) //

��

0

0 // Pic(Mg) // Pic(Jg) // 2 ·NS(J(C)) // 0

The top sequence is exact by Proposition 3.6 in the case n = 1. The exactness of the bottom
sequence comes from [Kou91, Theorem 1] (see also [MV14][Subsection 7]). Observe that the
last vertical map is surjective by the existence of the line bundle LΛ (see Remark 3.3). It must
be also injective, because otherwise we can construct a line bundle on Jg which generates the
Neron-Severi of J(C). Then m = 2 and the first assertion follows immediately. As recalled in
the introduction the first vertical is an isomorphism when g ≥ 3, so the second assertion will
follow by the snake lemma. 2

4. The universal theta divisor.

The main result of this section is the following

Theorem 4.1. Assume that g ≥ 4. There exists a line bundle over the universal abelian variety
Xg,n → Ag,n inducing the universal polarization if and only if n is even. Moreover, if it exists,
it can be chosen symmetric.
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The above theorem allows us to conclude the description of the Picard group of the universal
abelian variety.

Proof of of Theorem A. As in the proof of Theorem C, we fix a Jacobian variety J(C) of a
smooth curve of genus g with Neron-Severi group generated by the theta divisor θ. By Proposi-
tion 3.6 with (A, λ, ϕ) = (J(C), θ, ϕ), it is enough to compute the index of the image of the map
Pic(Xg,n)→ NS(J(C)) = Z[θ]. By Remark 3.3, the subgroup generated by LΛ has index two in
NS(J(C)). So the theorem follows from Theorem 4.1. 2

The rest of the section is devoted to prove Theorem 4.1.

Remark 4.2. The sufficient condition is well-known when Ag,n is a variety (i.e. n ≥ 3): see
for example the survey of Grushevsky and Hulek ([GH13, Section 1]) for a good introduction,
following [Igu72]. Due to the ignorance of the authors, it is not clear if the results can be extended
to the remaining case n = 2, using the same arguments of loc. cit. For this reason, we give a
new proof of this fact, following the arguments of Shepherd-Barron in [SB08, §3.4]. Such proof
works also when 2 ≤ g ≤ 4.

Instead the proof of the necessary condition uses a result of Putman [Put12], which implies
that the Hodge line bundle does not admit roots on the Picard group of Ag,n (modulo torsion)
when n is odd and g ≥ 4. Anyway, by the remarks that follow [Put12, Theorem E], it seems
that the same holds also in genus two and three, but we do not have any reference of this. For
this reason, in this section, we will assume g greater than three.

First we will resume some results and definitions from [SB08, §3.4].

Definition 4.3. An abelian torsor (A y P → S) is a projective scheme P over S which is
a torsor under an abelian scheme A → S. An abelian torsor is symmetric if the action of A
on P extends to an action of the semi-direct product A o (Z/2Z)S where (Z/2Z)S acts as the
involution i on A. We will denote with FixP the closed subscheme of P where i acts trivially.
Note that FixP is a torsor under the subscheme A[2] ⊂ A of the 2-torsion points.

The (fppf) sheaf PicτP/S of line bundles, which are the numerically trivial line bundles on

each geometric fiber, is represented by the dual abelian scheme A∨. In particular, an ample line
bundle M on an abelian torsor P → S defines a polarization λ on A by sending a point a ∈ A
to t∗aM⊗M−1 ∈ PicτP/S = A∨, where ta : P → P is the translation by a.

Definition 4.4. A relative effective divisor D on the abelian torsor (Ay P → S) is principal if
the line bundle O(D) defines a principal polarization on A. A principal symmetric abelian torsor
(p.s.a.t.) is a symmetric abelian torsor with an effective principal divisor that is symmetric, i.e.
it is i-invariant as hypersurface. A level n-structure on (A y P → S) is a level n-structure

ϕ : A[n] ∼= (Z/nZ)
2g
S on A.

Adapting the Alexeev’s idea [Ale02] of identifying the stack of p.p.a.v with the stack of torsors
with a suitable divisor, Shepherd Barron in [SB08] proves that the stack Ag is isomorphic to the
stack of principal symmetric abelian torsors (p.s.a.t). The proof works also if we add the extra
datum of the level structure, obtaining the following

Proposition 4.5. [SB08, Proposition 2.4]. The stack Ag,n is isomorphic to the stack whose
objects over a scheme S are the principal symmetric abelian torsors with level n-structure. A
morphism between two objects

(f, g, h) : (Ay P → S,D, ϕ)→ (A′ y P ′ → S′, D′, ϕ′)
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are two cartesian diagrams

P

��

g
// P ′

��

S
h // S′

A

��

f
// A′

��

S
h // S′

where (f, g, h) is a morphism of abelian torsors such that ϕ′ ◦ f |A[n] =
(
Id(Z/nZ)2g × h

)
◦ ϕ and

g−1(D′) = D.

Let Ng,n be the stack of the p.p.a.v. with a symmetric divisor defining the polarization. The
forgetful functor Ng,n → Ag,n is a Xg,n[2]-torsor. In particular, the universal abelian variety
Xg,n → Ag,n admits a universal symmetric divisor inducing the universal polarization if and
only if the torsor Ng,n → Ag,n admits a section. We can identify the stack Ng,n with the stack
of 4-tuples

(Ay P → S,D,ϕ, x)

where (A y P → S,D) is p.s.a.t with a level n-structure ϕ and x is a section of FixP → S.
A morphism between two objects is a morphism of Ag,n compatible with the section of the i-
invariant locus. Using this interpretation, if we call Pg,n the universal abelian torsor on Ag,n,
our problem is equivalent to showing that the Xg,n[2]-torsor FixPg,n → Ag,n has a section.

We are now going to give another modular description of Ng,n in terms of theta characteristics.

Definition 4.6. Let (A y P → S,D) be a p.s.a.t. and λ : A ∼= A∨ the principal polarization
induced by O(D). Let TP be the subsheaf of HomS(A[2], µ2,S) of morphisms c such that

c(a)c(b)c(a+ b) = eλ2 (a, b)

for any a, b ∈ A[2]. Any morphism with this property will be called theta characteristic of the
p.s.a.t. (Ay P → S,D). The sheaf TP is a torsor under the action of A[2]: b.c(a) = eλ2 (b, a)c(a)
for a, b ∈ A[2] and t ∈ TP . We will call TP the torsor of theta characteristics of the p.s.a.t
(Ay P → S,D).

We have the following

Proposition 4.7. The stack Ng,n is isomorphic to the stack Tg,n which parametrizes the 4-tuples
(Ay P → S,D, ϕ, c) where (Ay P → S,D) is a p.s.a.t. over S with a level n-structure ϕ and
theta characteristic c ∈ TP . A morphism between two objects

(f, g, h) : (Ay P → S,D, ϕ, c)→ (A′ y P ′ → S′, D′, ϕ′, c′)

is a morphism on Ag,n such that c′ ◦ f |A[2] = (Idµ2
× h) ◦ c.

First of all, we recall some preliminaries facts. Let A → S be an abelian scheme with a
symmetric line bundle. There exists a unique isomorphism ϕ : L ∼= i∗L such that O∗Aϕ is the
identity. For any x ∈ A[2](S) the isomorphism x∗ϕ : x∗L ∼= x∗i∗L = x∗L is a multiplication by
an element eL(x) of H0(S,O∗S) and it satisfies the following properties

(i) eL(OA) = 1S and eL(x) ∈ µ2(S) for any x ∈ A[2](S).
(ii) eL⊗M(x) = eL(x) · eM(x) for any x ∈ A[2](S) and for any symmetric line bundle M.

(iii) et
∗
yL(x) = eL(x+ y) · eL(y) where ty : A→ A is the traslation by y ∈ A[2](S).

(iv) If L is such that L2 ∼= OA then eL(x) = e2(x,L).

These properties (and their proofs) are slight generalizations of the ones in [Mum66, pp. 304-305].

Proof of Proposition 4.7. To prove the proposition it is enough to show that for any p.s.a.t.
(A y P → S,D) there exists a canonical isomorphism φ of A[2]-torsors between FixP and the
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torsor of theta characteristics TP , such that, for any morphism (f, g, h) : (A y P → S,D) →
(A′ y P ′ → S′, D′) in Ag, we have that φ′(g(δ)) ◦ f |A[2] = (Idµ2

× h) ◦ φ(δ) for any δ ∈ FixP .

Let (A y P → S,D) be a p.s.a.t. Let T an S-scheme and δ ∈ FixP (T ). Then we have
an isomorphism ϕδ : AT → PT , which sends a to ta(δ). Since D is a symmetric divisor, the
line bundle O(D) is symmetric, i.e. there exists a canonical isomorphism O(D) = O(i−1(D)) ∼=
i∗O(D) of line bundles on P . With abuse of notation, we will denote with the same symbol the
pull-back on PT of the line bundle O(D). The map ϕδ commute with the action of the involution,
then we have a canonical isomorphism ϕ∗δO(D) ∼= ϕ∗δi

∗O(D) ∼= i∗ϕ∗δO(D). This allows us to
define a morphism of T -schemes

cδ : AT [2] −→ µ2,T

a 7−→ cδ(a) := eϕ
∗
δO(D)(a).

Using the properties (i), (ii), (iii), (iv) of e, we can see that cδ is a theta characteristic. Indeed,
let a, b ∈ AT [2], then

(4)
eλ2 (a, b)

def
= e2

(
a, t∗bϕ

∗
δO(D)⊗ ϕ∗δO(D)−1

) (iv)
= et

∗
bϕ
∗
δO(D)⊗ϕ∗δO(D)−1

(a) =
(ii)
= et

∗
bϕ
∗
δO(D)(a) · eϕ∗δO(D)−1

(a).

Moreover

(5) eϕ
∗
δO(D)(a) · eϕ∗δO(D)−1

(a)
(ii)
= eOAT (a)

(iv)
= e2(a,OA∨T ) = 1T .

By (i), this implies that eϕ
∗
δO(D)(a) = eϕ

∗
δO(D)−1

(a). Observe that by (iii) we have

(6) et
∗
bϕ
∗
δO(D)(a) = eϕ

∗
δO(D)(a+ b) · eϕ∗δO(D)(b).

Putting all together, we see that cδ is a theta characteristic:

(7) eλ2 (a, b) = eϕ
∗
δO(D)(a+ b) · eϕ∗δO(D)(b) · eϕ∗δO(D)(a)

def
= cδ(a+ b)cδ(b)cδ(a),

Such construction is compatible with the base changes T ′ → T . In other words, it defines a
morphism of functors

φ : FixP −→ TP
δ 7−→ cδ.

Moreover, the properties (i), (ii), (iii), (iv) imply also that ctb(δ)(a) = eλ2 (b, a)cδ(a) for any
a, b ∈ AT [2], or, in other words, that φ is an isomorphism of A[2]-torsors.

Indeed, by definition ctb(δ)(a) = eϕ
∗
tb(δ)
O(D)(a) for any a, b ∈ AT [2]. Observe that ϕtb(δ) =

ϕδ ◦ tb (by an abuse of notation we have denoted with the same symbols the translation by b ∈ A
on P and on A). In particular

(8) eϕ
∗
tb(δ)
O(D)(a) = et

∗
bϕ
∗
δO(D)(a)

(iii)
= eϕ

∗
δO(D)(a+ b) · eϕ∗δO(D)(b)

def
= cδ(a+ b)cδ(b)

On the other hand,

(9) eλ2 (b, a)cδ(a) = cδ(a+ b)cδ(b)cδ(a)cδ(a)
(i)
= cδ(a+ b)cδ(b)

Showing that φ is an isomorphism of A[2]-torsors. The second assertion follows from the fact that
for any morphism (f, g, h) : (Ay P → S,D)→ (A′ y P ′ → S′, D′) we have ϕg(δ)◦f = g◦ϕδ. 2

Remark 4.8. Let (Ay P → S = Spec(k), D, ϕ) be a geometric point in Ag,n. For any k-point
δ of FixP , let m(δ) the multiplicity of the divisor D at δ. By [Mum66, Proposition 2], we have
cδ(a) = (−1)m(ta(δ))−m(δ).
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The Proposition 4.7 allows us to prove Theorem 4.1.

Proof of of Theorem 4.1.

(⇐). As observed before, there exists a symmetric line bundle on Xg,n inducing the universal
polarization if and only if the morphism of stacks Ng,n → Ag,n has a section. By Proposition
4.7, the existence of such a section is equivalent to showing that there exists a universal theta
characteristic c : Xg,n[2] → µ2,Ag,n . Since n is even, the level n-structure Φ induces a level

2-structure Φ̃ : Xg,n[2] → (Z/2Z)2g
Ag,n . Let e : (Z/2Z)2g

Ag,n × (Z/2Z)2g
Ag,n → µ2,Ag,n the standard

symplectic pairing and π1 (resp. π2) the endomorphism which sends (x′, x′′) ∈ (Z/2Z)2g to (x′, 0)

(resp. to (0, x′′)). For any a ∈ Xg,n[2](S), consider the map a 7→ c(a) := e(π1 ◦ Φ̃(a), π2 ◦ Φ̃(a)).
If we show that c is a theta characteristic, we have done. More precisely, we have to show that
for any a, b ∈ Xg,n[2] the morphism c satisfies the equality

(10) eΛ(a, b) = c(a+ b)c(a)c(b)

Indeed, on the left hand side we have

(11)

eΛ(a, b) = e(Φ̃(a), Φ̃(b)) = e(π1 ◦ Φ̃(a) + π2 ◦ Φ̃(a), π1 ◦ Φ̃(b) + π2 ◦ Φ̃(b)) =

= e(π1 ◦ Φ̃(a), π1 ◦ Φ̃(b) + π2 ◦ Φ̃(b)) · e(π2 ◦ Φ̃(a), π1 ◦ Φ̃(b) + π2 ◦ Φ̃(b)) =

= e(π1 ◦ Φ̃(a), π2 ◦ Φ̃(b)) · e(π2 ◦ Φ̃(a), π1 ◦ Φ̃(b)).

Instead, on the right hand side
(12)

c(a+ b)c(a)c(b) = e(π1 ◦ Φ̃(a+ b), π2 ◦ Φ̃(a+ b)) · c(a)c(b) =

= e(π1 ◦ Φ̃(a), π2 ◦ Φ̃(a+ b)) · e(π1 ◦ Φ̃(b), π2 ◦ Φ̃(a+ b)) · c(a)c(b) =

=
(
c(a) · e(π1 ◦ Φ̃(a), π2 ◦ Φ̃(b))

)
·
(

e(π1 ◦ Φ̃(b), π2 ◦ Φ̃(a)) · c(b)
)
· c(a)c(b)

Using these two equalities and the fact that we are working on µ2, the condition (10) follows
immediately.

(⇒) Fix n > 0. Suppose that there exists a line bundle L on π : Xg,n → Ag,n inducing the
universal polarization. Up to tensoring with a line bundle from Ag,n, we can suppose that L is
trivial along the zero section.
Claim: The line bundle (π∗L)−1 is, up to torsion, a square-root of the Hodge line bundle in the
Picard group of Ag,n.

Suppose that the claim holds. If n is odd and g ≥ 4 the Hodge line bundle does not admit a
square root in Pic(Ag,n) modulo torsion (see [Put12, Theorem E and Theorem 5.4]). Therefore
n must be even.

It remains to prove the claim. Consider the cartesian diagram

Xg,4n
φ
//

π′

��

Xg,n
π

��

Ag,4n
φ′
// Ag,n

By what we have already proved before, on Xg,4n there exists a rigidified symmetric line bundle
M inducing the universal polarization. By [FC90, Theorem 5.1, p.25], π′∗M is a line bundle such
that

(13) (π′∗M)8 = (π′∗(Ωπ′))
−4 ∈ Pic(Ag,4n).
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In particular (π′∗M)−1 is, up to torsion, a square-root of the Hodge line bundle. By Corollary
3.6, we have that φ∗L ⊗ P = M, where P is a rigidified 4n-root line bundle. Since L (resp.
M) is relative ample over Ag,n (resp. Ag,4n), we have that π!L = π∗L (resp. π′!M = π′∗M)
(see [MFK94, Prop. 6.13(i), p. 123]. Applying the Grothendieck-Riemann-Roch theorem to the
morphism π′, we have the following equalities (in the rational Chow group of divisors of Ag,4n)
(14)

c1(π′∗M) = c1(π′∗(φ
∗L ⊗ P)) = [ch(π′∗(φ

∗L ⊗ P))]1 = π′∗
(

[ch(φ∗L) ch(P) Td(Ω∨π′)]g+1

)
=

= π′∗
(∑g+1

k=0
c1(P)k

k! [ch(φ∗L) Td(Ω∨π′)]g+1−k

)
=

= π′∗
(

[ch(φ∗L) Td(Ω∨π′)]g+1

)
= [ch(π′(φ∗L))]1 = c1(π′∗φ

∗L).

The equality between the second and third row follows from the fact that c1(P)k (for k 6= 0) is
a torsion element. Since Ag,4n is a smooth variety, the first Chern class map c1 : Pic(Ag,4n) →
CH1(Ag,4n) is an isomorphism. This fact together with (13) and (14) implies that (π′∗φ

∗L)−1 =
(φ′∗π∗L)−1 is, up to torsion, a root of the Hodge line bundle in Pic(Ag,4n). Since the homomor-
phism φ′∗ : Pic(Ag,n)/Pic(Ag,n)Tors → Pic(Ag,4n)/Pic(Ag,4n)Tors is injective, the claim follows.

2
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