Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/2307/5913
Titolo: | Temporal and spatio-temporal modes for circular and circular-linear data | Autori: | Mastrantonio, Gianluca | Parole chiave: | Cicular data Spatio-temporal process Process Hidden Markov model |
Data di pubblicazione: | 8-apr-2016 | Editore: | Università degli studi Roma Tre | Abstract: | Circular data arise naturally in many scientific fields, for example oceanography (wave directions), meteorology (wind directions), biology (animal movement). Due to the circular domain, to the sensitivity of descriptive and inferential results to the starting point and orientation on the circle, analysis of circular data is challenging. We propose models for temporal and spatio-temporal circular and circular-linear data. We show that under a Bayesian framework, the complex nature of circular data and the difficulties in a joint modelling of circular-linear variables can be easily overcome. Two main research frameworks are touched. The first deals with the build of spatio-temporal models for circular variables, while the second address topics in the joint temporal classification of circular-linear variables. In all the models proposed, exploiting data augmentation techniques, we are able to propose efficient, and easy to implement, Markov chain Monte Carlo algorithm. | URI: | http://hdl.handle.net/2307/5913 | Diritti di Accesso: | info:eu-repo/semantics/openAccess |
È visualizzato nelle collezioni: | Dipartimento di Economia T - Tesi di dottorato |
File in questo documento:
File | Descrizione | Dimensioni | Formato | |
---|---|---|---|---|
Tesi.pdf | 5.48 MB | Adobe PDF | Visualizza/apri |
Page view(s)
155
Last Week
0
0
Last month
0
0
checked on 21-nov-2024
Download(s)
124
checked on 21-nov-2024
Google ScholarTM
Check
Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.