Please use this identifier to cite or link to this item: http://hdl.handle.net/2307/5913
DC FieldValueLanguage
dc.contributor.authorMastrantonio, Gianluca-
dc.contributor.otherMaruotti, Antonello-
dc.date.accessioned2018-06-14T08:50:39Z-
dc.date.available2018-06-14T08:50:39Z-
dc.date.issued2016-04-08-
dc.identifier.urihttp://hdl.handle.net/2307/5913-
dc.description.abstractCircular data arise naturally in many scientific fields, for example oceanography (wave directions), meteorology (wind directions), biology (animal movement). Due to the circular domain, to the sensitivity of descriptive and inferential results to the starting point and orientation on the circle, analysis of circular data is challenging. We propose models for temporal and spatio-temporal circular and circular-linear data. We show that under a Bayesian framework, the complex nature of circular data and the difficulties in a joint modelling of circular-linear variables can be easily overcome. Two main research frameworks are touched. The first deals with the build of spatio-temporal models for circular variables, while the second address topics in the joint temporal classification of circular-linear variables. In all the models proposed, exploiting data augmentation techniques, we are able to propose efficient, and easy to implement, Markov chain Monte Carlo algorithm.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli studi Roma Treit_IT
dc.subjectCicular datait_IT
dc.subjectSpatio-temporal processit_IT
dc.subjectProcessit_IT
dc.subjectHidden Markov modelit_IT
dc.titleTemporal and spatio-temporal modes for circular and circular-linear datait_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurSettori Disciplinari MIUR::Scienze economiche e statisticheit_IT
dc.subject.isicruiCategorie ISI-CRUI::Scienze economiche e statisticheit_IT
dc.subject.anagraferoma3Scienze economiche e statisticheit_IT
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Economia*
item.grantfulltextrestricted-
item.languageiso639-1other-
item.fulltextWith Fulltext-
Appears in Collections:Dipartimento di Economia
T - Tesi di dottorato
Files in This Item:
File Description SizeFormat
Tesi.pdf5.48 MBAdobe PDFView/Open
Show simple item record Recommend this item

Page view(s)

155
Last Week
0
Last month
0
checked on Nov 21, 2024

Download(s)

124
checked on Nov 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.