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Chapter 1

Introduction

Circular (or directional) data, i.e. observations with support the unit circle, arise naturally

in many scientific fields, for example meteorology (Bulla et al., 2012), social sciences

(Gill and Hangartner, 2010), biology (Morales et al., 2004; Patterson et al., 2008) and

musicology (Beran, 2004; Resa, 2010).

Due to the circular domain, to the sensitivity of descriptive and inferential results

to the starting point and orientation on the circle (Mastrantonio et al., 2015), analysis

of circular data is more challenging than for linear (or inline) ones. Standard statistical

methods, as the sample mean and variance, loose their meaning if used on circular data

and must be replaced by their circular counterparts; for a general discussion see the books

of Fisher (1996), Mardia and Jupp (1999) or Jammalamadaka and SenGupta (2001).

Dating back to Von Mises (1918), the attention in circular data has increased over

time (Mardia, 1972; Fisher, 1996; Mardia and Jupp, 1999; Jammalamadaka and Sen-

Gupta, 2001; Pewsey et al., 2013), leading to important probability distributions theory

and inferential results. Many univariate distributions have been proposed to model cir-

cular data (Mardia and Jupp, 1999), and there are few multivariate extensions, generally

bivariate: the bivariate circular distributions proposed by Mardia (1975a), Mardia (1975b)

Singh et al. (2002), the bivariate wrapped normal of Johnson and Wehrly (1977), the mul-

tivariate von Mises of Mardia et al. (2008) and the multivariate wrapped normal of Baba

(1981), while Ong and SenGupta (2012) propose a mixture approach to built multivariate

distributions. In the late years the analysis became less descriptive and more inferential:

for example have been proposed linear models (Harrison and Kanji, 1988; Kato et al.,

2008), spatial models (Modlin et al., 2012; Jona Lasinio et al., 2012; Wang and Gelfand,

2014), temporal models (Holzmann et al., 2006; Bulla et al., 2012; Maruotti et al., 2015)

and spatio-temporal models (Lagona et al., 2014; Mastrantonio et al., 2015b,a).

Often circular variables are recorded along with linear ones, e.g. wind direction and

velocity or wave height and direction, and hence a joint modeling of mixed type variables

is often needed. The circular and linear variables live on different spaces and there is not

an obvious way to define multivariate circular-linear distributions. Up to now there are

few proposals and among all of them the most interesting are capable to model cylindrical
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data (one linear variable and one circular), for example SenGupta (2004) and Sengupta

and Ong (2014) offer various methods to construct circular-linear distributions and Abe

and Ley (2015) proposed a distribution based on the Weibull and the wrapped Cauchy.

Although the Bayesian framework has proved to be well suited to model complex data,

there is little in the way of formal theory for circular variables in the fully Bayesian setting,

some examples are the spatial models of Jona Lasinio et al. (2012) and Mastrantonio et al.

(2015a), the spatio-temporal models of Wang et al. (2015) and Mastrantonio et al. (2015b)

or the model for longitudinal data of Nuñez-Antonio and Gutiérrez-Peña (2014).

1.1 Overview

The primary objective of this Thesis is to propose models for temporal and spatio-temporal

circular and circular-linear data. We show that, under a Bayesian framework, the complex

nature of circular data and the difficulties in a joint modelling of circular-linear variables,

can be easily overcome. In the Thesis two main research frameworks are touched. The first

deals with the build of spatio-temporal models for circular variables, while the seconds

addresses topics in the joint temporal classification of circular and linear variables. In

all the models proposed, exploiting data augmentation techniques, we are able to define

efficient, and easy to implement, Markov chain Monte Carlo (MCMC) algorithms.

This Thesis is based on a selection of 4 articles produced during the three years Ph.D.

In these papers, among other things, we introduce processes with non-separable spatio-

temporal correlation function and nugget effect (Chapter 3.1), a new circular processes

(Chapter 3.2), a cylindrical hidden Markov model (HMM) (Chapter 4.1), a new multivari-

ate circular-linear distribution, a non-parametric HMM based on the Dirichlet process,

and a new algorithm to estimate the projected normal parameters (Chapter 4.2).

The Thesis is organized as follows. In Chapter 2 we formalize the circular random

variables and we show how to obtain a circular distribution starting from a linear one,

namely the wrapping (Chapter 2.1) ad the projection (Chapter 2.2). In Chapter 3 we

first introduce the basic ideas in spatio-temporal modeling of circular data necessary to

understand the new developments obtained in Chapters 3.1 and 3.2.

• Chapter 3.1 - “Spatio-temporal circular models with non-separable covariance struc-

ture”.

We extend the wrapped (Jona Lasinio et al., 2012) and projected Gaussian (Wang

and Gelfand, 2014) processes by i) introducing a flexible correlation structure, i.e.

the Gneiting non-separable function (Gneiting, 2002), ii) a nugget effect for circular

variables and iii) modelling the circular mean and variance with linear covariates.

The predictive performances of the models proposed, are evaluated and compared

on a real data example.

• Chapter 3.2 - “The wrapped skew Gaussian process for analyzing spatio-temporal

data”.
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In Chapter 3.1 we show that the projected Gaussian process is more flexible than

the wrapped Gaussian, but it is more difficult to implement and the associated

parameters have not a straightforward interpretation. In this Chapter, we introduce

a new spatio-temporal process based on the wrapped skew normal (Pewsey, 2000),

i.e. the wrapped skew Gaussian process. The new process retains straightforward

parametric interpretation and it is more flexible than the wrapped Gaussian one. We

show, with simulated and real data examples, that, in terms of predictive ability,

the wrapped skew Gaussian process outperforms the wrapped Gaussian, even if the

data are simulated from the latter.

In Chapter 3 we formalize the HMM for multivariate linear variables and then we show

how to obtain the circular-linear extensions of Chapters 4.1 and 4.2.

• Chapter 4.1 - “Bayesian hidden Markov modelling using circular-linear general pro-

jected normal distribution”.

In this work we introduce an HMM suitable to model cylindrical data. The emission

distribution of the HMM is based on the normal and the general projected normal

(Wang and Gelfand, 2013). The distribution allows to have dependence among the

circular and linear variables and a bimodal marginal circular distribution. If the

circular-linear dependence is ignored, we empirically demonstrate that the number

of latent states are generally overestimated

• Chapter 4.2 - “A Bayesian hidden Markov model for telemetry data”.

The work is motivated by a real data example of six free-ranging Maremma sheep-

dogs. The data are a time series of six linear variables (step-lengths) and six circular

variables (turning-angles). The multivariate nature of the data requires the def-

inition of a multivariate circular-linear distribution with multivariate interaction.

The time series is modelled using a non-parametric HMM based on the hierarchical

Dirichlet process. We show that our proposed emission distribution outperforms the

most used in the literature.

The Thesis ends with a discussion (Chapter 5).
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Chapter 2

Circular variables and

distributions

Let {S,A, P} be a probability space, where the sample space S = {(u1, u2) : u2
1 + u2

2 = 1}
is the unit circle, A is the σ−algebra on S and P : S → [0, 1] is the normalized Lebesgue

measure on the measurable space {S,A}. Let D be a subset of R, such that its length

is 2π, and consider the measurable function Θ : S → D, with Θ−1(d) = (u1, u2) =

(cos d, sin d), d ∈ D. Let D = σ(D)) be the σ−algebra of D induced by Θ and AΘ,D ≡
{(x, y) : Θ(x, y) ∈ D} and PΘ(D) = P (Θ−1(D)) = P (AΘ,D) , ∀D ∈ D. The measurable

space induced by Θ is (D,D,PΘ) with

1. PΘ(D) = P (AΘ,D) ≥ 0, ∀D ∈ D;

2. PΘ(D) = P (AΘ,D) = 1;

3. for any countable sequence of disjoint sets {Dj}∞j=1 of D,

PΘ

(
∪∞j=1Dj

)
= P

(
AΘ,∪∞j=1Dj

)
= P

(
∪∞j=1AΘ,Dj

)
=
∞∑

j=1

P
(
AΘ,Dj

)
=
∞∑

j=1

PΘ(Dj),

i.e. (D,D,PΘ) is a probability space. It follows that Θ is a random variable and PΘ

is its probability distribution. Θ represents an angle over the unit circle and it is called

a circular random variable. Accordingly, for all d ∈ D, Θ−1(d) = Θ−1(d mod 2π) and,

without loss of generality, we can represent any circular variable in [0, 2π). D can be either

continuous or discrete. In the latter case, it is generally assumed that it is composed of

l distinct points equally spaced, e.g. D ≡ {2πj/l}l−1
j=0. If D is a continuous domain, Θ is

a continuous circular variable and PΘ is the Lebesgue measure. On the other hand, if D
is discrete, Θ is a discrete circular variable or a lattice circular variable (see Mardia and

Jupp, 1999), and PΘ is the counting measure. In both cases fΘ = dPΘ/dPΘ : D → R+ is

the Radon-Nicodym derivative of PΘ, i.e. PΘ(D) =
∫
D fΘdPΘ.
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There are different approaches to specify valid circular distributions, see for example

Jammalamadaka and SenGupta (2001). In this Thesis we will focus on two methods that

allow to built a circular distribution starting from a linear one, namely the wrapping

(Chapter 2.1) and the projection (Chapter 2.2). Under both methods, the resulting dis-

tribution has a complex functional forms but introducing a suitable latent variable, the

joint distribution of observed and latent variables are easy to handle in a fully Bayesian

framework.

2.1 The wrapping approach

Let Y ∈ R be a linear random variable with probability density function (pdf) fY (·|ψ),

where ψ is a generic vector of parameters. We can obtain a circular random variable using

the following transformation:

Θ = Y mod 2π ∈ [0, 2π). (2.1)

The pdf of Θ is

fΘ(θ|ψ) =
∞∑

k=−∞
fY (θ + 2πk|ψ). (2.2)

Between Y and Θ there is the following relation: Y = Θ + 2πK, where K is called the

winding number. Equation (2.2) wraps fY (·|ψ) around the unit circle and Θ is called the

wrapped version of Y with period 2π, e.g. if Y is normally distributed, then Θ follows a

wrapped normal (WN) distribution.

It is not easy to work directly with equation (2.2), since it requires the evaluation

of an infinite sum. Following Coles and Casson (1998), if we consider K as (latent)

random variable we can see that fΘ,K(θ, k|ψ) = fY (θ + 2πk|ψ), i.e. fY (θ + 2πk|ψ) is the

joint density of (Θ,K), and a marginalization over K gives equation (2.2). The marginal

distribution of K is

fK(k|ψ) =

∫ 2π

0
fY (θ + 2πk|ψ)dθ.

The conditional distributions of K|Θ,ψ and Θ|K,ψ are respectively

fY (θ + 2πk|ψ)∑∞
k=−∞ fY (θ + 2πk|ψ)

,

and
fY (θ + 2πk|ψ)∫ 2π

0 fY (θ + 2πk|ψ)dθ
.

It is generally easier to work with the joint density of Θ,K|ψ, with respect to the one of

Θ|ψ, since the former does not require the evaluation of the infinite sum. For example if

Y is Gaussian, then the joint density of (Θ,K|ψ) is the normal pdf evaluated at θ+ 2πk.

The wrapping approach can be easily extended to a multivariate setting (Jona Lasinio
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et al., 2012). Let Y = (Y1, . . . , Yp)
′ be a p-variate vector with pdf fY(·|ψ), then Θ =

(Θ1, . . . ,Θp)
′, with

Θi = Yi mod 2π ∈ [0, 2π)

is a vector of circular variables with pdf

fΘ(θ|ψ) =
∞∑

k1=−∞
· · ·

∞∑

kp=−∞
fY(θ + 2πk|ψ). (2.3)

Here again, it is easier to work with the joint density of Θ,K|ψ with respect to the one

of Θ|ψ, treating K as a vector of latent random variables.

2.2 The projection approach

Let Y = (Y1, Y2) be a bivariate vector of linear variables with pdf fY(·|ψ). The unit

vector

U =
Y

||Y||
represents a point over the unit circle and the associated angle Θ, where U1 = cos(Θ) and

U2 = sin(Θ), is a circular random variable. We have that

tan(Θ) =
Y2

Y1
=
U2

U1
. (2.4)

Since the period of the tangent is π, inversion of this function, to obtain Θ in equation (2.4),

requires some care. A common choice is the atan∗, formally defined in Jammalamadaka

and SenGupta (2001), pag. 13, that takes into account the signs of Y1 and Y2 to determine

the right portion of the unit circle where Θ is located. Between Θ and Y the following

relation exists

Y =

[
Y1

Y2

]
= R

[
cos θ

sin θ

]
= RU,

with R = ||Y||.
The pdf of Θ|ψ is

fΘ(θ|ψ) =

∫

R+

rfY((r cos(θ), r sin(θ))′|ψ)dr. (2.5)

The integral in equation (2.5) is not easy to solve and, even when a closed form exists, the

resulting pdf has a complicated functional structure. For example if Y ∼ N2(µ,Σ), with

µ = (µ1, µ2)′ and

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
1

)
,
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then (Wang and Gelfand, 2013)

fΘ(θ|ψ) =
φ2(µ|02,Σ) + aD(θ)Φ(D(θ)|0, I2)φ(aC(θ)−

1
2 (µ1 sin(θ))− µ2 cos(θ))

C(θ)
,

where φn(·|·, ·) and Φn(·|·, ·) are, respectively, the n−variate normal pdf and cumulative

density function, with

a =
(
σ1σ2

√
1− ρ2

)−1
,

C(θ) = a2
(
σ2

2 cos2(θ) + σ2
1 sin2(θ)− ρσ1σ2 sin(2θ)

)
,

D(θ) = a2C(θ)−
1
2 (µ1σ2(σ2 cos(θ)− ρσ1 sin(θ)) + µ2σ1(σ1 sin(θ)− ρσ2 cos(θ))) .

Note that the joint density of Θ, R|ψ is

fY((r cos(θ), r sin(θ))|ψ),

see equation (2.5) and, for example, if Y ∼ N2(µ,Σ) then

fΘ,R(θ, r|ψ) = rφ2

(
(r cos(θ), r sin(θ))′|µ,Σ

)
.

Since the distribution of Θ does not change if Y is scaled by c > 0, i.e.

Θ = atan∗
(
Y2

Y1

)
= atan∗

(
cY2

cY1

)
, (2.6)

a constraint on the density parameters is needed for identifiability purpose, e.g. if Y is

bivariate normal, it is sufficient to set σ2
2 = 1.

The projection approach can be easily adapted to obtain a distribution for multivari-

ate circular variable (Wang and Gelfand, 2014). If Y is a 2p−variate linear variable, a

p−variate vector of (projected) circular variables is obtained with the following transfor-

mation:

Θi = atan∗
(

Y2i

Y2i−1

)
, i = 1, . . . , p. (2.7)

The pdf of Θ|ψ, where Θ = (Θ1, . . . ,Θp)
′, is

fΘ(θ|ψ) =

∫

R+

. . .

∫

R+

p∏

i=1

rifY(y|ψ)dr1 . . . drp, (2.8)

where ri = ||(y2i−1, y2i)
′|| and, in equation (2.8), y is a function of θ and r = (r1, . . . , rp).

Although this procedure is straightforward, the p constraints needed to identify the

density, one for each transformation (2.7), poses difficulties in the parameter estimations.

Those difficulties can be overcome if the multivariate dependence is structured, e.g. spa-

tially or temporally, but until our work, see Mastrantonio (2015) or Section 4.32, in the
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general case no feasible proposals for the estimation were available.

In the multivariate case, as in the univariate one, it is generally easier to work with

the joint density of Θ,R|ψ (the integrand in (2.8)) than the one of Θ|ψ.
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Chapter 3

Spatio-temporal processes for

circular variables

A stochastic process can be defined through its finite dimensional distribution, i.e. the dis-

tribution of an n−dimensional realization, that is a multivariate pdf (Gelfand et al., 2010).

As we showed in the previous Chapter, starting from a distribution for linear variables,

we can use the wrapping or the projection approach to obtain circular distributions. Then

from an n−dimensional realization of a linear process, we can obtain an n−dimensional

realization of a circular one.

More precisely, let Y(s) ∈ Rp, with s ∈ S ⊂ Rd, be a p−variate stochastic process,

defined over a d−dimensional domain, and suppose that an n−dimensional realization of

the process Y(s), y, has pdf fY(·|ψ).

Wrapped circular process Let p = 1 and let y = (y(s1), . . . , y(sn)) be the n−dimensional

realization of Y(s). If we apply the transformation (2.1) to each component of y, we obtain

a vector of dimension n of wrapped circular variables: θ = (θ(s1), . . . , θ(sn))′, with pdf

(2.3). Jona Lasinio et al. (2012) show that the vector θ is the n−dimensional realization

of the circular process

Θ(s) = Y(s) mod 2π,

with Y(s) = Θ(s) + 2πK(s).

The evaluation of the n−dimensional circular distribution requires the evaluation of

the infinite sum, equation (2.3). Here again, we can bypass the problem by introducing the

realization of the (latent) discrete process K(s), i.e. k = (k(s1), . . . , k(sn))′, and working

with the joint density of θ,k|ψ.

Projected circular process Let p = 2, then Y(s) = (Y1(s), Y2(s))′ is a bivariate pro-

cess and y = (y(s1), . . . ,y(sn))′, its finite-dimensional realization, is a vector of bivariate
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variables, i.e. y(si) = (y1(si), y2(si))
′ ∈ R2. The projected circular process is obtained as

Θ(s) = atan∗
(
Y2(s)

Y1(s)

)
, (3.1)

i.e. we apply the transformation (3.1) to the process Y(s) (Wang and Gelfand, 2014).

The finite dimensional realization of the circular process is θ = (θ(s1), . . . , θ(sn))′, where

θ(si) = atan∗
(
y2(si)

y1(si)

)
, i = 1, . . . , n.

The pdf of θ|ψ is given by (2.5).

Let R(s) = ||Y(s)|| ∈ R+ be a (latent) process and r = (r(s1), . . . , r(sn))′ be its

n−dimensional realization. Then, instead of θ, we can work with the joint density of

θ, r|ψ, that is the integrand in (2.8).
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1 Introduction

Circular data, i.e., observations with support on the unit circle, arise in many contexts.
Examples include natural directions, such as wind directions (meteorology), animal
movement directions (biology) and rock fracture orientations (geology). Another type
of circular data arises by wrapping periodic time data with period L (say, day or week)
onto a circle with circumference L and then rescaling the circumference to 2π , that of
the unit circle. Two-dimensional directional data may be observed in space and time,
along with linear variables, as in marine studies where, for example wave heights
and directions are jointly observed, or in atmospheric modeling where wind fields
are represented by wind intensity as well as direction. Due to the restriction of the
domain to the circle, analysis of circular data must be treated differently from linear
data. Customary statistical summaries are replaced with their circular counterparts.
For a discussion of inference with circular variables see, e.g., Fisher (1996), Mardia
and Jupp (1999), Jammalamadaka and SenGupta (2001) or the recent paper by Lee
(2010).

The contribution of this paper is to extend recent spatial and spatio-temporal cir-
cular data models. In particular, Jona Lasinio et al. (2012) consider the use of the
wrapped normal approach by developing the wrapped Gaussian process while Wang
and Gelfand (2014) consider the use of the projected normal approach by developing
the projected Gaussian process. Here we: (i) extend both processes to the spatio-
temporal setting, introducing space–time dependence; (ii) introduce space and time
varying covariate information; (iii) show how to implement fully model-based kriging
and forecasting; (iv) allow a nugget which can be time dependent, and (v) provide
an extensive comparison between the more sparsely parametrized wrapped Gaussian
process with the more flexible projected Gaussian process. We do this illustratively
using simulation, as a proof of concept, as well as with data in the form of computer
model output for wave directions in the Adriatic Sea off the coast of Italy. The models
are fitted under a Bayesian framework, introducing suitable latent variables, enabling
full inference.

Modeling of circular data has progressed well beyond the i.i.d. case. Examples
include linear models (Harrison and Kanji 1988; Fisher 1996; Kato and Shimizu
2008), linear models in a Bayesian context (Guttorp and Lockhart 1988; Damien and
Walker 1999), models for circular time series (Breckling 1989; Fisher and Lee 1992;
Coles 1998; Holtzman et al. 2006; Ravindran and Ghosh 2011), and hidden Markov
models to address classification issues (Lagona and Picone 2011; Bulla et al. 2012;
Mastrantonio et al. 2015). In Kato (2010) a Markov process for circular variables is
presented. Jona Lasinio et al. (2012) consider a spatial wrapped Gaussian process.
Wang and Gelfand (2013) explore the general projected normal model while in Wang
and Gelfand (2014) Bayesian analysis of space–time circular data is developed using
projected Gaussian processes. In Wang et al. (2015), directional wave data is modeled
jointly with linear wave height data.

The format of the remainder of the paper is as follows. In Sect. 2, we review the
wrapping approach and offer a non-separable space–time model for circular data. In
Sect. 3, an analogous model is presented using the projected normal process. Section 4
presents several simulation examples giving insight into the inferential performance
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of the models, while Sect. 5 analyzes the behavior of the models for wave directions.
Section 6 extends the modeling approach to enable space–time varying covariates
reflecting sea state at a location and time. Some concluding remarks are provided in
Sect. 7. Implementation details, further simulated examples and more details on the
real data application are available in the Supplementary Online Material, Sections S1,
S2 and S3.

2 A brief review of the wrapped modeling approach

Let Y ∈ R be a random variable on the real line and let g(y) andG(y) be, respectively,
its probability density function and cumulative distribution function. The random
variable

X = Ymod 2π, 0 ≤ X < 2π

is the wrapped version of Y having period 2π . The probability density function of X ,
f (x), is obtained by wrapping the probability density function of Y , g(y), around
a circle of unit radius via the transformation Y = X + 2πK , with K ∈ Z ≡
{0,±1,±2, . . .}, and takes the form

f (x) =
∞∑

k=−∞
g(x + 2πk), (1)

that is, a doubly infinite sum.
Equation (1) shows that g(x + 2πk) is the joint distribution of (X, K ). Hence, the

marginal distribution of K is P(K = k) = ∫ 2π
0 g(x + 2πk)dx , the conditional distri-

butions P(K = k|X = x) = g(x+2πk)/
∑∞

j=−∞ g(x+2π j) and the distribution of

X |K = k is g(x +2πk)/
∫ 2π
0 g(x +2πk)dx . The introduction of K as latent variable

facilitates model fitting (Jona Lasinio et al. 2012).
Following Coles (1998), we can extend the wrapping approach to multivariate

distributions. Let Y = (Y1,Y2, . . . ,Yp) ∼ g(·), with g(·) a p-variate distribution on
R

p indexed by say θ and let K = (K1, K2, . . . , Kp) be such that Y = X + 2πK.
Then the distribution of X is

f (X) =
+∞∑

k1=−∞

+∞∑

k2=−∞
. . .

+∞∑

kp=−∞
g(X + 2πK). (2)

From (2) we see, as in the univariate case, that the joint density of (X, K) is g(X +
2πK). If g(·; θ) is a p-variate normal density, with θ = (μ,Σ), then X has a p-
variate wrapped normal distribution with parameters (μ,Σ). Here, we introduce the
latent random vector of winding numbers K to facilitate model fitting. Mardia and
Jupp (1999) point out that only a few values of K are needed to obtain a reasonable
approximation of the wrapped distribution and Jona Lasinio et al. (2012) show, when
g(·; θ) is Gaussian, how to choose the set of values of K based on the variance of the
associated conditional distribution.
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Let Y (s) be a Gaussian process (GP) with s ∈ R
2, mean function μ(s) and

covariance function say σ 2ρ(||si − s j ||;ψ), where ψ is a set of parameters. For a
set of locations s1, s2, . . . , sn , Y = (Y (s1), Y (s2), . . . ,Y (sn)) ∼ N (μ, σ 2C(ψ)),
where μ = (μ(s1), . . . , μ(sn)) and C(ψ)i j = ρ(si − s j ;ψ). As a consequence
X = (X (s1), X (s2), . . . , X (sn)) ∼ WrapN (μ, σ 2C(ψ)) (Jona Lasinio et al. 2012),
where WrapN (·, ·) indicates the wrapped normal distribution.

2.1 Space–time model specification and model fitting

Turning to space and time, suppose we seek {X (s, t) ∈ [0, 2π), s ∈ S ⊆ R
2, t ∈

T ⊆ Z
+}, a spatio-temporal process of angular variables. We can model X (s, t) as

a spatio-temporal wrapped Gaussian process through its linear counterpart Y (s, t),
extending the above approach. We assume that the linear process is a spatio-temporal
Gaussian process having non-separable covariance structure with variance σ 2 and the
stationary correlation function due to Gneiting [see equation (14) in Gneiting 2002]:

Cor(Y (s, t),Y (s′, t ′)) ≡ ρ(h, u) = 1

(a|u|2α + 1)τ
exp

(
− c‖h‖2γ

(a|u|2α + 1)βγ

)
, (3)

where (h, u) ∈ R
d × R, h = s − s′ and u = t − t ′. Here d = 2, a and c are

non-negative scaling parameters for time and space, respectively. The smoothness
parameters α and γ take values in (0, 1], the space–time interaction parameter β is in
[0, 1], and τ ≥ d/2 = 1 is, in fact, fixed at 1 following Gneiting (2002). Attractively,
as β decreases toward zero, we tend to separability in space and time.

We write the linear GP Y (s, t) as Y (s, t) = μY + ωY (s, t) + ε̃Y (s, t) where μY

is a constant mean function, ωY (s, t) is a zero mean space–time GP with covariance

function σ 2ρ(h, u), and ε̃(s, t)
i id∼ N (0, φ2

Y ), i.e., is pure error. It is convenient to work
with the marginalized model where we integrate over all of the ωY (s, t), see Banerjee
et al. (2014). That is,

Y (s, t) = μY + εY (s, t). (4)

Then, ε(s, t) is a zero mean Gaussian process with covariance function

Cov(εY (si , t j ), εY (si ′ , t j ′)) = σ 2
YCor(hi,i ′ , u j, j ′) + φ2

Y 1(i=i ′)1( j= j ′).

To complete the model specification, we need to specify prior distributions. We
suggest the following choices. Since a and c are positive, a and c ∼ G(·, ·) where
G(·, ·) denotes a gamma distribution. Since α, β, and γ are bounded between 0 and 1,
we adopt a beta distribution (B(·, ·)). Priors for the variances and themean direction are
given the usual normal-inverse gamma form, i.e., σ 2

Y , φ2
Y ∼ IG(·, ·), where IG(·, ·)

denotes the inverse gamma, and μy ∼ WrapN (·, ·). In the sequel, this model will be
denoted by WN.
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2.2 Kriging and forecasting

We clarify prediction of the process at a new location and time, say (s0, t0), given
what we have observed. We provide a full predictive distribution, extending Jona
Lasinio et al. (2012) who only provide a posterior mean. Let D ⊂ R

2 × Z
+ be the

set of n observed points. Let X = {X (s, t), (s, t) ∈ D} be the vector of observed
circular variables. Let Y = {Y (s, t), (s, t) ∈ D} be the associated linear ones and
let K = {K (s, t), (s, t) ∈ D} be the associated vector of winding numbers. The
predictive distribution we seek is g(X (s0, t0)|X). We use usual composition sampling
within Markov chain Monte Carlo (MCMC) to obtain samples from it. Here, again we
move from the circular process to the linear one, i.e., a sample from the distribution of
Y (s0, t0)|X can be considered as a sample from X (s0, t0), K (s0, t0)|X. If we let Ψ Y

be the vector of all parameters, we can write

g(X (s0, t0), K (s0, t0)|X)

=
∑

K∈Zn

∫

Ψ Y

g(X (s0, t0), K (s0, t0)|Ψ Y , K , X)g(Ψ Y , K |X)dΨ Y .

So, suppose, for each posterior sample of K and Ψ Y in {K∗
l ,Ψ

∗
Y,l , l = 1, 2, . . . , L}

we generate a value from the distribution of X (s0, t0), K (s0, t0)| Ψ Y , K , X. Then, we
will obtain the set of posterior samples {X∗

l (s0, t0), K
∗
l (s0, t0), l = 1, 2, . . . , L} from

X (s0, t0), K (s0, t0)|X. If, we retain the set {X∗
l (s0, t0), l = 1, 2, . . . , L}, we will have

samples from the desired predictive distribution.
Therefore, we need to sample from the distribution of X (s0, t0), K (s0, t0)|

Ψ Y , K , X or equivalently Y (s0, t0)|Y,Ψ Y . Let 1m be the m × 1 vector of 1s, let
CY be the correlation matrix of Y , and letCY,Y (s0,t0) be the correlation vector between
Y and Y (s0, t0). Then, the joint distribution of Y (s0, t0), Y|Ψ Y is

(
Y (s0, t0)

Y

)
|Ψ Y ∼ N

((
μY

μY 1n

)
, σ 2

Y

(
1 C′

Y,Y (s0,t0)
CY,Y (s0,t0) CY

)
+ φ2

Y In+1

)
.

As a result, the conditional distribution of Y (s0, t0)|Y,Ψ Y is Gaussian with mean

MY (s0,t0) = μY + σ 2
YC

′
Y,Y (s0,t0)

(
σ 2
YCY + φ2

Y In
)−1

(Y − μY 1n)

and variance

VY (s0,t0) = σ 2
Y + φ2

Y − σ 2
YC

′
Y,Y (s0,t0)

(
σ 2
YCY + φ2

Y In
)−1

σ 2
YCY,Y (s0,t0).

Finally, suppose, for each posterior sample, we simulate Y ∗
l (s0, t0) from

N (M∗
Y (s0,t0),l

,V∗
Y (s0,t0),l

), where M∗
Y (s0,t0),l

and V∗
Y (s0,t0),l

are MY (s0,t0) and VY (s0,t0)
computed with the lth sample. then, X∗

l (s0, t0) = Y ∗
l (s0, t0) mod 2π is a posterior

sample from the predictive distribution.
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3 The spatio-temporal projected normal process

Let (Z1, Z2) be a bivariate vector normally distributed with mean μZ = (μZ1 , μZ2)

and covariance matrix

Ṽ =
(

σ 2
Z1

σZ1σZ2ρz

σZ1σZ2ρz σ 2
Z2

)
.

The vector Z is mapped into an angular variable Θ by the transformation Θ =
atan∗(Z2/Z1), where the function atan∗(S/C) is defined as atan(S/C) if C > 0
and S ≥ 0, π/2 if C = 0 and S > 0, atan(S/C) + π if C < 0, atan(S/C) + 2π if
C ≥ 0 and S < 0, undefined if C = S = 0. Θ is referred to as a projected normal
random variable (Mardia 1972, p. 52) with parameters μZ and Ṽ. Wang and Gelfand
(2013) note that the distribution of Θ does not change if we multiply (Z1, Z2) by a
positive constant, so, following their lead, to identify the distribution we set σ 2

Z2
= 1

and the covariance matrix becomes

V =
(

σ 2
Z1

σZ1ρz

σZ1ρz 1

)
.

Again, it is convenient to introduce a latent variable. Here, it is R = ||Z||, obtaining
the joint density of (Θ, R):

(2π)−1|V|1/2 exp
(

− (r(cos θ, sin θ)′ − μZ )′V−1(r(cos θ, sin θ)′ − μZ )

2

)
r.

We canmove back and forth between the linear variables and the pair (Θ, R) using the
transformation Z1 = R cosΘ , Z2 = R sinΘ and the equation Θ = atan∗(Z2/Z1).

Consider a bivariate spatio-temporal process Z(s, t) = (Z1(s, t), Z2(s, t)) with
constant mean μZ and cross covariance function C

(
Z(si , t j ), Z(si ′ , t j ′)

) = Cor(si −
si ′ , t j − t j ′)V where Cor(·, ·) is a given space–time correlation function and V is as
above. Then the circular processΘ(s, t) induced by Z(s, t)with the atan∗ transforma-
tion is a projected Gaussian process with mean μZ and covariance function induced
by C

(
Z(si , t j ), Z(si ′ , t j ′)

)
. More details on the properties of the process can be found

in Wang and Gelfand (2014). Now, latent R(s, t)s are introduced to facilitate model
fitting.

3.1 Model specification and model fitting

We define the bivariate linear process as

Z�(s, t) = μZ�
+ ωZ�

(s, t) + ε̃Z�
(s, t), � = 1, 2, (5)

where μZ = (μZ1 , μZ2)
′ is the mean level, ωZ (s, t) = (ωZ1(s, t), ωZ2(s, t))

′
is a bivariate Gaussian process with zero mean and covariance Cov(ωZ (si , t j ),
ωZ (si ′ , t j ′)) = Cor(hi,i ′ , u j, j ′)V where Cor(hi,i ′ , u j, j ′) is defined in (3). Finally,
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ε̃Z (s, t) = (ε̃Z1(s, t), ε̃Z2(s, t)) is bivariate pure error with zero mean, independent
components, and variance φ2

Z . Marginalizing over the ω process in (5) yields

Z�(s, t) = μZ�
+ εZ�

(s, t), � = 1, 2,

where εZ (s, t) is a mean zero bivariate Gaussian process with covariance function
Cov(εZ (si , t j ), εZ (si ′ , t j ′) = Cor(hi,i ′ , u j, j ′)V + φ2

Z I21(i=i ′)1( j= j ′).
Θ(s, t) = atan∗(Z2(s, t)/Z1(s, t)) is a circular process and, as in the WN setting,

correlation between the circular variables is induced by the Gneiting spatio-temporal
correlation function. To specify the prior distributions for μZ1 , μZ2 , σ

2
Z1

and φ2
Z , we

adopt the customary normal-inverse gamma specification. That is,μZ1 , μZ2 ∼ N (·, ·),
σ 2
Z1

, φ2
Z ∼ IG(·, ·) while, since ρZ is a correlation parameter, we adopt a truncated

normal: ρZ ∼ N (·, ·)I (−1, 1). In the sequel, this model will be denoted by PN.
We seek the predictive distribution at an unobserved location and time, (s0, t0).

Let Θ be the vector of observed circular values and Z = {Z(s, t), (s, t) ∈ D} be the
associated linear ones. Let Z(s0, t0) = (Z1(s0, t0), Z2(s0, t0))′, R = {R(s, t), (s, t) ∈
D} and let Ψ Z be all the parameters of the projected model.

Specifically, the predictive distribution we seek is Θ(s0, t0)|Θ . If we sample from
the distribution of Z(s0, t0)|Θ then Θ(s0, t0) = atan∗(Z2(s0, t0)/Z1(s0, t0)) is a sam-
ple from the desired predictive distribution. We have that

g(Z(s0, t0)|Θ) =
∫

R

∫

Ψ Z

g(Z(s0, t0)|Ψ Z , R,Θ)g(Ψ Z , R|Θ)dΨ ZdR.

So, we need to obtain g(Z(s0, t0)|Ψ Z , R,Θ) and be able to sample from it. We start
from the joint distribution of Z(s0, t0), Z|Ψ Z :

(
Z(s0, t0)

Z

)
|Ψ Z

∼ N

((
μZ

1n ⊗ μZ

)
,

(
1 C′

Z,Z(s0,t0)
CZ,Z(s0,t0) CZ

)
⊗ V + φ2

Z I2n+2

)
,

whereCZ andCZ,Z(s0,t0) are the analogous ofCY andCY,Y (s0,t0) for the processZ(s, t).
The conditional distribution of Z(s0, t0)|Z,Ψ Z (equivalently Z(s0, t0)|Θ, R,Ψ Z ) is
bivariate normal with mean

MZ(s0,t0) = μZ + C′
Z,Z(s0,t0) ⊗ V

(
CZ ⊗ V + φ2

Z I2n
)−1

(Z − 1n ⊗ μZ )

and variance

VZ(s0,t0) = V − C′
Z,Z(s0,t0) ⊗ V

(
CZ ⊗ V + φ2

Z I2n
)−1

CZ,Z(s0,t0) ⊗ V.

Using the posterior samples {R∗
l ,Ψ

∗
Z ,l , l = 1, 2, . . . , L} we can collect samples of

Θ∗
l (s0, t0) from its posterior predictive distribution.
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4 Simulated examples

The Gneiting correlation function (3) has not been widely investigated within a
Bayesian framework. The aim of this simulation study is essentially to provide a
proof of concept. If space–time dependence, captured through the Gneiting correla-
tion function, is driving an observed spatio-temporal circular dataset, can we learn
about this dependence and can we demonstrate improved predictive performance by
incorporating it in our modeling? We explore several different choices of parameters
in (3).

For each proposed model, we simulated 48 datasets with n = 240 (20 locations
and 12 time points) with spatial coordinates uniformly generated in [0, 10] × [0, 10].
24 datasets for the WN model were simulated from all possible combinations of
(a, c) = {(1, 0.2), (0.2, 1)}, β = {0, 0.5, 1}, α = {0.5, 0.8}, γ = {0.5, 0.8} and
(μY , σ 2

Y , φ2
y) = (π, 0.1, 0.01). In the other 24 datasets we used the same combina-

tions of correlation parameters but with (μY , σ 2
Y , φ2

y) = (π, 1, 0.1). The datasets cover
a wide range of situations in terms of spatio-temporal correlation: strong spatial cor-
relation with weak temporal correlation ((a, c) = (1, 0.2)), weak spatial correlation
with strong temporal correlation ((a, c) = (0.2, 1)), fully separable spatio-temporal
correlation (β = 0), non-separable (β = {0.5, 0.9}) and two levels for the smoothing
parameters. The difference between the two collections of 24 datasets is that the first
24 have smaller circular variance than the remaining ones, where the circular variance
was computed as one minus the mean resultant length divided by the sample size
(Jammalamadaka and SenGupta 2001, p. 15).

The projected normal datasets were built according to the same rationale adopted
for the wrapped normal, i.e., we built 24 datasets with small circular variance and 24
datasets with large circular variance. We simulated from unimodal projected distrib-
utions adopting the following sets of parameters:

– all possible combinations of (a, c) = {(1, 0.2), (0.2, 1)}, β = {0, 0.5, 1}, α =
{0.5, 0.8}, γ = {0.5, 0.8} with (μZ1 , μZ2 , σ

2
Z1

, ρZ , φ2
Z ) = (2.5, 2.5, 1, 0, 0.01)

which yields a circular variance close to the WN examples with σ 2
Y = 0.1.

– all possible combinations of (a, c) = {(1, 0.2), (0.2, 1)}, β = {0, 0.5, 1}, α =
{0.5, 0.8}, γ = {0.5, 0.8} with (μZ1 , μZ2 , σ

2
Z1

, ρZ , φ2
Z ) = (0.85, 0.85, 1, 0, 0.1)

which, again, yields a circular variance close to the WN examples with σ 2
Y = 1.

The parameters for the prior distributions were chosen so that the priors were centered
on the “true” values used to simulate each dataset:

– correlation parameters: a = 0.2 ⇒ a ∼ G(2, 5), a = 1 ⇒ a ∼ G(5, 4),
c = 0.2 ⇒ c ∼ G(2, 5), c = 1 ⇒ c ∼ G(5, 4), α = 0.5 ⇒ α ∼ B(5, 5),
α = 0.8 ⇒ α ∼ B(6, 1.5), β = 0 ⇒ β ∼ B(1, 4), β = 0.5 ⇒ β ∼ B(5, 5),
β = 0.9 ⇒ β ∼ B(6, 1.5), γ = 0.5 ⇒ γ ∼ B(5, 5), γ = 0.8 ⇒ γ ∼ B(6, 1.5);

– parameters of the WN model: μY = 5 ⇒ μY ∼ WN (π, 5), σ 2
Y = 0.1 ⇒

σ 2
Y ∼ IG(4.5, 0.55), σ 2

Y = 1 ⇒ σ 2
Y ∼ IG(2.01, 4.01), φ2

Y = 0.01 ⇒ φ2
Y ∼

IG(2.001, 0.03), φ2
Y = 0.1 ⇒ φ2

Y ∼ IG(4.5, 0.55);
– parameters of the PN model: μZ1 = 2.5 ⇒ μZ1 ∼ N (2.5, 5), μZ1 =
0.85 ⇒ μZ1 ∼ N (0.85, 5) μZ2 = 2.5 ⇒ μZ2 ∼ N (2.5, 5), μZ2 = 0.85 ⇒
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μZ2 ∼ N (0.85, 5), σ 2
Z1

= 1 ⇒ σ 2
Z1

∼ IG(2.01, 4.01), ρZ = 0 ⇒ ρZ ∼
N (0, 1)I (−1, 1), φ2

Z = 0.01 ⇒ φ2
Z ∼ IG(2.001, 0.03), φ2

Z = 0.1 ⇒ φ2
Z ∼

IG(4.5, 0.55).

Among the 240 simulated observations in each dataset, 170 points, chosen between
the first and tenth time points, were used for estimation and the remaining 70 points
were set aside for validation purposes. The predictive performancewas evaluated using
two criteria. We computed an average prediction error (APE), defined as the average
circular distance between a validation dataset and model predicted values, where we
adopted as circular distance d(α, β) = 1−cos(α−β) (Jammalamadaka and SenGupta
2001, p. 15). In particular, suppose the validation set has n∗ observations, the APE for
the models based on the wrapped normal is 1

n∗
∑

(s0,t0) d(μ(s0, t0|X), x(s0, t0)) and
1
n∗

∑
(s0,t0) d(μ(s0, t0|Θ), θ(s0, t0)) for the projected normal ones. Here, x(s0, t0) and

θ(s0, t0) are the realizations of the processes at (s0, t0) andμ(s0, t0|X) andμ(s0, t0|Θ)

are the posterior mean directions.
We also computed the continuous ranked probability score (CRPS) for circular

variables as defined in Grimit et al. (2006):

CRPS(F, δ) = E(d(�, δ)) − 1

2
E(d(�,�∗)), (6)

where F is a predictive distribution, δ is a holdout value, and� and�∗ are independent
copies of a circular variable with distribution F . In this form, small values of CRPS
are preferred.

For both models we do not know F in closed form, but we can compute a Monte
Carlo approximation of (6). For the wrapped model, the CRPS for a held-out space–
time point (s0, t0) is

1

L

L∑

l=1

d(x∗
l (s0, t0), x(s0, t0)) − 1

2L2

L∑

l=1

L∑

j=1

d(x∗
l (s0, t0), x∗

j (s0, t0))

and for the projected model it is

1

L

L∑

l=1

d(θ∗
l (s0, t0), θ(s0, t0)) − 1

2L2

L∑

l=1

L∑

j=1

d(θ∗
l (s0, t0), θ∗

j (s0, t0)).

For each of the 48 simulated datasets, the values of the mean CRPS under the two
models, computed over the set of points used for model validation, are shown in Fig. 1.
For both models we see that the CRPS depends heavily on the variance of the process,
but seems unaffected by changes in the other parameters.

A potentially important difference between the two models is the computational
time required to fit them. The WN model is computationally more efficient than the
PN model; the main issue is computational complexity (see Supplementary Online
Material, Section S1). The PN requires, at each MCMC iteration, roughly 8 times as
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Fig. 1 Simulation study: CRPS comparing performances of the two proposed models. a WN. b PN

many operations as the WN to be fitted. If computational time is a relevant issue, then
the WN may be more attractive.

5 Real data

We model wave directions obtained as outputs from a deterministic computer model
implemented by Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA).
The computer model starts from a wind forecast model predicting the surface wind
over the entire Mediterranean. The hourly evolution of sea wave spectra is obtained
by solving energy transport equations using the wind forecast as input. Wave spectra
are locally modified using a source function describing the wind energy, the energy
redistribution due to nonlinear wave interactions, and energy dissipation due to wave
fracture. The model produces estimates every hour on a grid with 10 × 10km cells
(Speranza et al. 2004, 2007). The ISPRA dataset has forecasts for a total of 4941
grid points over the Italian Mediterranean. Over the Adriatic Sea area, there are 1494
points.

Our aim is to compare the performance of the WN and PN models. From a phe-
nomenological perspective, the PN model is arguably the more natural choice since
we are not wrapping a linear scale to obtain the directions. However, the WN model
does provide a suitable model and, as suggested above, it may be attractive in terms
of computational efficiency and interpretability of parameters. In the selected dataset,
the three sea states, calm, transition and storm are present. The sea state is defined
through the wave height (which is also supplied by the computer model output): when
this height is below 1m, we have calm, when it is between 1 and 2m we have tran-
sition (between calm and storm) and when it is greater than 2m we have a storm.
Wave directions vary more in calm than in storm. Here, we seek to learn about the
spatio-temporal structure of the data relying only on the specification of the correla-
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Fig. 2 Time windows for different sea states used for validation. The four panels represent the observed
wave direction over the entire area at: a 12:00 on 5/5/2010 (storm); b 00:00 on 6/5/2010 (transition between
storm and calm); c 00:00 on 7/5/2010 (calm); d 12:00 on 7/5/2010 (one-step prediction, calm)

tion function. We will use the information given by the wave heights in the models
proposed in Sect. 6.1.

We fitted the model using 100 spatial points× 10 time points 6 h apart (1000 obser-
vations in total) in order to have a dataset including all sea states. Notice that spatial
distances are evaluated in kilometers. Then, we developed four validation datasets,
each with 350 spatial points and 1 time point. Specifically, we have one dataset for
each sea state plus one for a one-step forward prediction. Finally, we used the model
fitted over the 1000 points to predict each validation dataset. Three of the datasets are
inside the time window used for model estimation, one in calm sea, one in transition
and one during a storm. The fourth validation set is at 12:00 on May 7, 2010, 6h after
the last time used for model fitting. The observed circular process in each of these four
time windows can be seen in Fig. 2. For each time window and model we computed
the mean CRPS and APE, see Table 1. Furthermore, we computed the mean CRPS
and APE over the four time windows.
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Table 1 Real data example:
CRPS and APE for the WN and
PN models computed on each
validation dataset

WN PN

Average

CRPS 0.655 0.629

APE 0.437 0.421

Calm

CRPS 1.450 1.398

APE 0.995 0.973

Transition

CRPS 0.082 0.074

APE 0.033 0.028

Storm

CRPS 0.063 0.042

APE 0.026 0.009

One-step prediction

CRPS 1.024 1.001

APE 0.693 0.674

Following our discussion in Sects. 2.1 and 3, we used the following priors:
a ∼ G(1.5, 1), c ∼ G(1.5, 1), α ∼ B(2, 2.5), β ∼ B(1.1, 2), γ ∼ B(2, 2.5),
σ 2
Y ∼ IG(2, 2), φ2

Y ∼ IG(1, 0.25), μY ∼ WrapN (π, 10), μZ1 ∼ N (0, 10),
μZ2 ∼ N (0, 10), ρZ ∼ N (0, 5)I (−1, 1), σ 2

Z ∼ IG(2, 2) and φ2
Z ∼ IG(1, 0.25).

Notice that all distributions are weakly informative. Also, the prior for β is centered
near 0.1, i.e., close to the separable model. Decay parameters in space and time are
related to the minimum and maximum distances in space and time, chosen to ensure
that they concentrate the probability mass over such intervals.

As we expected, the predictive capability of the two models, in terms of both CRPS
and APE, is poorest in a calm state, the variance being larger than in other states. On
the other hand, it is very accurate during a storm or a transition for both models as we
can see in Table 1. The PN always performs better that the WN. The largest difference
between the APE values of the two models (0.022) is observed during the calm sea
time window.

In Table 2 we give credible intervals and posterior mean estimates for the value of
the parameters of the correlation function. For both models non-separable correlation
structure is strongly supported. The point estimates of the spatial (c) and temporal (a)

decay are smaller in the PN model. Notice that data are bimodal whenever the wave
directions look like those in Fig. 2c, d, i.e., when over a large region at a given time a
storm is rotating or two different weather systems are meeting. Then, scalar statistics,
such as the overall mean direction or the overall concentration, may not be informative
regarding this behaviour.

In the Supplementary Online Material, we provide the parameter estimates for the
wrapped and projected distributionswith associated 95%credible intervals (Table S1).
Since μY is defined on a circular domain (recall that the prior on μY isWrapN (·, ·)),
following Jona Lasinio et al. (2012), we can compute a 95% credible interval as the
arc that contains the central 95% of the posterior samples.
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Table 2 Real data example: mean point estimate (PE) and 95% credible interval (CI) for the correlation
parameters for the WN and PN models

WN PN

a

PE 0.076 0.009

(CI) (0.019, 0.200) (0.005, 0.019)

c

PE 3.2 × 10−4 1.4 × 10−4

(CI) (1.3 × 10−4, 7.1 × 10−4) (7.0 × 10−4, 2.9 × 10−4)

α

PE 0.495 0.693

(CI) (0.288, 0.744) (0.562, 0.819)

β

PE 0.592 0.430

(CI) (0.158, 0.915) (0.101, 0.774)

γ

(PE) 0.797 0.872

(CI) (0.697, 0.897) (0.779, 0.939)

6 Extending the models

In the framework of the wrapped and projected normal models, introducing covari-
ate information to explain the angular response is straightforward. For the wrapped
approach we revise the linear version (4) to Y (s, t) = μY (s, t) + εY (s, t).

The external variables can be introduced by modeling the mean of the circular
process. Linear specification induces a circular likelihood for the regression coeffi-
cients that has infinitely many maxima of comparable size since this model wraps the
line infinitelymany times around the circle, (see for example Johnson andWehrly 1978;
Fisher and Lee 1992). To address this problem it is customary to limit the domain of
μY (s, t) using a link function, i.e., μY (s, t) = L(H (s, t) η), where L(·) : R → I
is the link function and I is some interval of R of length equal to the circular
variable period, in our case 2π . We employ the inverse tan link (Fisher and Lee,
1992).

If only categorical covariates are available we do not need a link function; we can
adopt an ANOVA representation for the relation between circular response and dis-
crete covariates. This is computationally more efficient (see Supplementary Online
Material, Section S1). Illustratively, suppose we have two predictors, with m1 and
m2 levels, respectively, say H1 = (H1,1, . . . , H1,m1) and H2 = (H2,1, . . . , H2,m2).
Then, to simplify the condition ensuring μY (s, t) ∈ I , we use the following
parametrization:

μY (s, t) =
m1∑

i=1

m2∑

j=1

μY,im2+ j1(H1(s,t)=H1,i)1(H2(s,t)=H2, j).
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Table 3 Real data example:
CRPS and APE for WNR,
WNA, PNR and PNA models
computed on each validation
dataset

WNR WNA PNR PNA

Average

CRPS 0.668 0.644 0.507 0.588

APE 0.502 0.431 0.496 0.450

Calm

CRPS 1.548 1.409 1.129 1.342

APE 1.158 0.997 0.985 0.984

Transition

CRPS 0.095 0.094 0.092 0.093

APE 0.033 0.030 0.046 0.038

Storm

CRPS 0.057 0.054 0.118 0.053

APE 0.016 0.013 0.110 0.012

One-step prediction

CRPS 0.971 1.018 0.689 0.866

APE 0.802 0.685 0.841 0.765

We can also introduce the covariates into the specifications for the variances,
creating σ 2

Y (s, t) and φ2
Y (s, t). Again, we consider ANOVA-type models, e.g.,

σ 2
Y (s, t) = ∑m1

i=1

∑m2
j=1 σ 2

Y,im2+ j1(H1(s,t)=H1,i) 1(H2(s,t)=H2, j) and φ2
Y (s, t) =

∑m1
i=1

∑m2
j=1 φ2

Y,im2+ j1(H1(s,t)=H1,i)1(H2(s,t)=H2, j).

We investigate two models, both with an ANOVA parametrization for σ 2
Y (s, t) and

φ2
Y (s, t)while for the mean, one has an ANOVA parametrization (WNA) and the other

has a regression form (WNR). Below, we obtain an ANOVA form if we work with
sea state and a regression form if we work with wave height. As prior distributions
we propose: N (·, ·) for ηY,i , i = 1, 2, . . ., that is, a customary prior for a regression
coefficient; WrapN (·, ·) for μY,i , i = 1, 2, . . ., the circular equivalent of a normal
prior overmean level; and IG(·, ·) forσ 2

Y,i andφ2
Y,i , i = 1, 2, . . ., that is, the customary

prior for a variance. To sample from the predictive distribution, we adopt the same
procedure used above for the WN model.

To introduce dependence on covariates in the projected normal model, following
Wang and Gelfand (2013), we revise Eq. (5) to Z�(s, t) = μZ�

(s, t) + ωZ�
(s, t) +

ε̃Z�
(s, t), � = 1, 2 where the mean of the linear bivariate process is a function of space

and/or time and ε̃Z�
(s, t)

i id∼ N (0, φ2
Z (s, t)). Then we marginalize over ωZ (s, t) to

obtain Z�(s, t) =μZ�
(s, t)+εZ�

(s, t), � = 1, 2.WewriteμZ�
(s, t) = H(s, t)ηZ�

, � =
1, 2 and φ2

Z (s, t) = ∑m1
i=1

∑m2
j=1 φ2

Z ,im2+ j1(H1(s,t)=H1,i)1(H2(s,t)=H2, j), where ηZ�
=

(ηZ�,1, ηZ�,2, . . .)
′. Note that, depending on the types of variables in H(s, t), continu-

ous or categorical, we can specify a (projected normal) regression (PNR) or (projected
normal) ANOVA (PNA). As noted in Wang and Gelfand (2014), there is complex
interaction among the parameters in the general projected normal, complicating inter-
pretation of the behavior of the resulting projected normal distributions as we vary
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Fig. 3 Real data example: CRPS surfaces for the WN (first column) and PN (second column) models,
under calm (first row), transition (second row) and storm (third row) states. Scales differ across states

them. With the same rationale used for the priors of the WNA and WNR models, we
propose ηZ�,i ∼ N (·, ·), l = 1, 2, i = 1, 2, . . . and φZ ,i ∼ IG(·, ·), i = 1, 2, . . ..
Here, again, we can sample from the predictive distribution adopting the same proce-
dure as illustrated in Sect. 3.1.

123

Page 31



G. Mastrantonio et al.

Table 4 Real data example: mean point estimate (PE) and 95% credible interval (CI) for the correlation
parameters of the WNA, WNR, PNA and PNR models

WNR WNA

a

PE 0.015 0.008

(CI) (0.005, 0.035) (0.003, 0.020)

c

PE 6.1 × 10−5 4.0 × 10−5

(CI) (2.0 × 10−5, 1.4 × 10−4) (2.0 × 10−5, 7.0 × 10−5)

α

PE 0.620 0.611

(CI) (0.445, 0.786) (0.434, 0.765)

β

PE 0.396 0.539

(CI) (0.070, 0.830) (0.181, 0.868)

γ

(PE) 0.705 0.936

(CI) (0.620, 0.794) (0.880, 0.976)

PNR PNA

a

PE 0.119 0.108

(CI) (0.042, 0.267) (0.042, 0.225)

c

PE 3.0 × 10−3 1.0 × 10−3

(CI) (1.01 × 10−3, 1.35 × 10−3) (4.60 × 10−4, 3.46 × 10−3)

α

PE 0.575 0.506

(CI) (0.345, 0.763 (0.340, 0.706)

β

PE 0.082 0.063

(CI) (0.000, 0.402) (0.000, 0.300)

γ

(PE) 0.561 0.541

(CI) (0.435, 0.677) (0.441, 0.645)

6.1 Application to the wave data

We fitted the new models using the same dataset as in Sect. 5. For the ANOVA
representation we used, as a categorical variable, the state of the sea while for the
regression setting we used the significant wave height. Adopting the same ratio-
nale as in Sect. 5, the prior distributions for the regression coefficients (ηY, j,i and
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Table 5 Real data example: mean point estimate (PE) and 95% credible interval (CI) of the parameters of
the WNA and WNR models

WNA

μY,calm σ 2
Y,calm φ2

Y,calm

PE 0.095 1.524 0.051

(CI) (5.232, 1.328) (0.959, 2.387) (0.039, 0.068)

μY,tran σ 2
Y,tran φ2

Y,tran

PE 5.998 0.541 0.018

(CI) (5.278, 0.490) (0.332, 0.876) (0.013, 0.026)

μY,storm σ 2
Y,storm φ2

Y,storm

PE 5.860 0.385 0.009

(CI) (5.254, 0.281) (0.246, 0.582) (0.007, 0.012)

WNR

ηY,0,calm ηY,1,calm σ 2
Y,calm φ2

Y,calm

PE 0.997 4.918 5.000 0.041

(CI) (0.360, 1.901) (2.433, 7.619) (2.313, 9.494) (0.027, 0.058)

ηY,0,tran ηY,1,tran σ 2
Y,tran φ2

Y,tran

PE 3.166 2.526 1.825 0.018

(CI) (0.763, 5.894) (0.174, 6.844) (1.013, 3.046) (0.012, 0.025)

ηY,0,storm ηY,1,storm σ 2
Y,storm φ2

Y,storm

PE 3.470 1.933 1.322 0.010

(CI) (0.666, 6.445) (0.064, 5.870) (0.660, 2.167) (0.007, 0.013)

ηZ�, j,i , j = 0, 1, i = calm, trans, storm) were all N (0, 10). For the ANOVA coef-
ficients, μY,i and μZ�,i , they were all WrapN (π, 10). For the σ 2

Y,i , they were all
IG(2, 2) and for the φY,i and φZ ,i they were all IG(1, 0.25). The prior distributions
for the other parameters were the same as those used in Sect. 5.

From Table 3 we see that the WNA model is generally preferred to the WNR.
For the projected models, APE and CRPS are almost indistinguishable between PNA
and PNR during transition. With one-step ahead predictions, the two criteria return
contradicting choices; PNR is preferred with CRPS, PNAwith the APE.With the calm
sea state, the CRPS chooses PNR while APE does not yield a clear decision. With the
storm state, both criteria are lower with the PNA model. Overall, our selection would
be the PNA model but, more importantly, we value the informative comparison our
approach enables. In fact, the remarkable improvement of PNA over PNR in storm
is likely due to the very high predictability of direction during a storm period. In this
regard, the PNmodels are generally preferred to theWNmodels except in stormwhere
WNR, WNA, and PNA are essentially equivalent.

To analyze the local behavior of model fitting, in Fig. 3 we report CRPS surfaces,
evaluated in calm, transition and storm for the two “best average APE” models, the
WNA (see Table 3) and PN (see Table 1). We see that the local behavior of the
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Table 6 Real data example: mean point estimate (PE) and 95% credible interval (CI) for the parameters
of the PNA and PNR models

PNA

μZ1,calm μZ2,calm φ2
Z ,calm

PE 0.841 −0.404 0.027

(CI) (−1.112, 2.706) (−2.408, 1.427) (0.014, 0.051)

μZ1,tran μZ2,tran φ2
Z ,tran

PE 0.697 −0.724 0.047

(CI) (−1.281, 2.640) (−2.600, 1.173) (0.018, 0.099)

μZ1,storm μZ2,storm φ2
Z ,storm

PE 0.615 −0.615 0.037

(CI) (−1.376, 2.615) (−2.543, 1.289) (0.016, 0.076)

σ 2
Z ,1 ρZ

(PE) 2.072 −0.161

(CI) (1.425, 2.938) (−0.320, 0.003)

PNR

ηZ1,0,calm ηZ1,1,calm ηZ2,0,calm ηZ2,1,calm φ2
Z ,calm

PE 0.997 0.875 −0.925 0.840 0.110

(CI) (−0.989, 3.026) (−1.160, 2.927) (−2.878, 1.091) (−1.162, 2.798) (0.033, 0.250)

ηZ1,0,tran ηZ1,1,tran ηZ2,0,tran ηZ2,1,tran φ2
Z ,tran

PE 0.916 0.976 −1.117 −0.554 0.127

(CI) (−1.195, 3.015) (−1.258, 3.117) (−3.322, 0.893) (−2.601, 1.649) (0.037, 0.322)

ηZ1,0,storm ηZ1,1,storm ηZ2,0,storm ηZ2,1,storm φ2
Z ,storm

PE 0.768 1.088 −0.974 −1.190 0.091

(CI) (−1.424, 2.899) (−1.083, 3.235) (−3.146, 1.177) (−3.281, 0.955) (0.031, 0.201)

σ 2
Z ,1 ρZ

PE 2.293 −0.191

(CI) (1.602, 3.212) (−0.358, −0.013)

models is very similar. The worst predictions are found around the Gargano peninsula
during calm. This is consistent with the physics of wave movement since, around the
peninsula, local winds play amore relevant role, inducing very high variability in wave
directions. The same behavior is shown with the other models. In terms of parameter
estimation theWNA and PNmodels suggest a non-separable model (Tables 2, 4) with
very strong spatial (c) and temporal (a) dependence. WNA suggests that a different
nugget is necessary for each sea state. In fact analyzing the credible intervals of these
parameters we observe that, for each sea state, nuggets are significantly different
among them as their credible intervals do not overlap (Table 5). For the projected
normal models (Table 6), all nugget credible intervals are substantially overlapping,
suggesting that one nugget should be enough to model all sea states.
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7 Conclusions

We have presented a range of models for spatio-temporal circular data based on the
wrapped and projected normal distributions, incorporating space–time dependence,
allowing explanatory variables, introducing a nugget, implementing kriging and fore-
casting. The models based on the projected normal are more flexible since they allow
bimodal and asymmetric distributions while the wrapped normal is unimodal and
symmetric. On the other hand, the wrapped normal models are easy to interpret and
are computationally better behaved and more efficient. Predictions obtained under the
two models are very close and almost indistinguishable when data are roughly uni-
modal and symmetric (see Supplementary Online Material, Section S2). Then, if fast
computation is sought, WN models become attractive.

The projected normal process can be straightforwardly extended to general direc-
tional fields on the sphere since the projected normal distribution is well defined in
this case, see Mardia and Jupp (1999). The wrapped Gaussian process is not easily
extended to a sphere. In fact, we are unaware of any approach to wrap multivariate
linear data onto spheres. Conceptually, such wrapping would not appear to be well
defined.

Future work will find us enriching wrapped modeling to allow asymmetry through
the use of skewed distributions. Skewness is easy to introduce by wrapping skew
normal distributions. In a completely different direction, we are also extending the
modeling to explore spatio-temporal data consisting of geo-coded locations with peri-
odic (in time) behaviour that can be represented as a circular variable. There, we work
with trivariate GPs in space and time, incorporating temporal projection.
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The wrapped skew Gaussian process for analyzing
spatio-temporal data
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Abstract We consider modeling of angular or directional

data viewed as a linear variable wrapped onto a unit circle.

In particular, we focus on the spatio-temporal context,

motivated by a collection of wave directions obtained as

computer model output developed dynamically over a

collection of spatial locations. We propose a novel wrapped

skew Gaussian process which enriches the class of wrapped

Gaussian process. The wrapped skew Gaussian process

enables more flexible marginal distributions than the

symmetric ones arising under the wrapped Gaussian pro-

cess and it allows straightforward interpretation of

parameters. We clarify that replication through time

enables criticism of the wrapped process in favor of the

wrapped skew process. We formulate a hierarchical model

incorporating this process and show how to introduce

appropriate latent variables in order to enable efficient

fitting to dynamic spatial directional data. We also show

how to implement kriging and forecasting under this

model. We provide a simulation example as a proof of

concept as well as a real data example. Both examples

reveal consequential improvement in predictive perfor-

mance for the wrapped skew Gaussian specification com-

pared with the earlier wrapped Gaussian version.

Keywords Directional data � Hierarchical model �
Kriging � Markov chain Monte Carlo � Space–time data �
Wave directions

1 Introduction

There is increasing interest in analyzing directional data

which are collected over space and time. Examples arise,

for instance, in oceanography (wave directions), meteo-

rology (wind directions), biology (study of animal move-

ment). They also arise from periodic data, e.g., event times

might be wrapped according to a daily period to give a

circular view (eliminating end effects). We wrap time

around a circle by a modulus transformation and, without

loss of generality, can rescale to degrees or angles on a unit

circle. Time wrapping with spatial data occurs naturally in

applications such as locations and times of crime events,

locations and times of automobile accidents, and residence

address with time of admission for hospitalizations.

Jona Lasinio et al. (2012) introduced a Bayesian hier-

archical model to handle angular data, enabling full infer-

ence regarding all model parameters and prediction under

the model. Their context was multivariate directional

observations arising as angular data measurements taken at

spatial locations, anticipating structured dependence

between these measurements. They proposed the wrapped

spatial Gaussian process, induced from a linear spatial

Gaussian process. They explored dependence structure and

showed how to implement kriging of mean directions and

concentrations in this setting.

The current state of the art for modeling circular space–

time data includes the wrapped Gaussian process and the

projected Gaussian process. The second, although more

flexible, is based upon a four parameter model such that
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complex interactions among the parameters make inter-

pretation difficult. In this paper our contribution is to

overcome a key limitation of the wrapped Gaussian pro-

cess, that the marginal distributions at all locations are

symmetric. Here we introduce the wrapped skew Gaussian

process. This new circular process allows for asymmetric

marginal distributions while retaining straightforward

parametric interpretation. Our wrapping approach is

developed from the skew normal distribution proposed by

Azzalini (1985) and the process extension constructed by

Zhang et al. (2010).

By now, there is a fairly rich literature on skew multi-

variate normal models (Azzalini 2005; Sahu et al. 2003;

Ma and Genton 2004; Wang et al. 2004) but all are inline,

i.e., on a linear scale.

The first attempt to wrap the skew normal distribution

for circular data can be found in Pewsey (2000) where its

basic properties are derived. Follow-on work appears in

Pewsey (2006), Hernández-Sánchez and Scarpa (2012).

To our knowledge, we propose the first extension to

multivariate wrapped skew distributions, in particular, to a

spatial and spatio-temporal setting. In what follows we

review the univariate wrapped skew normal distribution,

showing the flexibility of shapes and do the same for

bivariate wrapped skew normal distributions. Then, we turn

to a hierarchical model for dynamic spatial data and show

how, using suitable latent variables, to fit it efficiently. We

also show how to implement kriging under this model.

A critical point emerges: though we can fit both models

with a single sample of spatially referenced directions, in

terms of kriging performance, we can not criticize the

wrapped spatial Gaussian process in favor of the wrapped

skew spatial Gaussian process. This is not surprising.

Consider the linear situation. With a single sample of data

from a set of locations, it is difficult to criticize the

Gaussian process in favor of a more complex stochastic

process specification, i.e., it is difficult to criticize a mul-

tivariate normal model with a single sample of multivariate

data. However, with replicates, we are able to demonstrate

substantially improved predictive performance for the

wrapped skew Gaussian process. We do this both with

simulated data, as a proof of concept, and with real data,

making direct comparison. In our setting replicates arise

through a dynamic spatial data where we envision i.i.d.

spatial increment processes.

Inference for spatial data is challenging due to the

restriction of support to the unit circle, ½0; 2pÞ, and to the

sensitivity of descriptive and inferential results to the start-

ing point on the circle. There exists a substantial early lit-

erature on circular data [see e.g. Mardia (1972) and Mardia

and Jupp (1999), Jammalamadaka and SenGupta (2001) or

Fisher (1996)] primarily confined to descriptive statistics

and limited inference for simple univariate models.

Computational procedures such as MCMC methods and

the EM algorithm, have substantially advanced inference

opportunities for directional data. Some examples include

linear models (Harrison and Kanji 1988; Fisher 1996; Kato

and Shimizu 2008), linear models in a Bayesian context

(Guttorp and Lockhart 1988; Damien and Walker 1999),

models for circular time series (Breckling 1989; Coles

1998; Mardia and Jupp 1999; Ravindran and Ghosh 2011;

Hughes 2007; Fisher and Lee 1992; Holzmann et al. 2006)

or model for space–time circular-linear data (Lagona et al.

2015). Recently, Kato (2010), building upon earlier work

(Kato et al. 2008), proposed a discrete time Markov pro-

cess for circular data. He uses the Möbius circle transfor-

mation, connecting it with an early Markov process model

of Fisher and Lee (1994).

With regard to multivariate theory for circular data,

particularly in the fully Bayesian setting, the work of Coles

(1998) is foundational for ours. He also employs wrapped

distributions, noting that, in the Gaussian case, they can be

readily given a multivariate extension. Coles mostly works

with independent replicates of multivariate circular data in

low dimension with an unknown covariance matrix and

develops some theory and examples for the time series

setting. He mentions possible extensions to the spatial

setting but offers no development, in particular, no

thoughts on regression or kriging (Sects. 3.5 and 3.6

below). Coles and Casson (1998) include spatial depen-

dence in looking at the direction of maximum wind speed.

With little detail, they propose conditionally independent

directions modeled with a von Mises distribution, intro-

ducing spatial structure in the modal direction and con-

centration parameters, a second stage specification. Our

view, again following Jona Lasinio et al. (2012), is to

introduce spatial structure at the first stage of the modeling,

directly on the angular variables, resulting in a spatial

process model with smooth process realizations.

Following a different strand, the projected normal and

the associated projected Gaussian process (Wang and

Gelfand 2013, 2014) have generated recent interest. In

particular, a general bivariate normal distribution is pro-

jected to an angle, extending work of Presnell et al. (1998)

and Nuñez-Antonio and Gutiérrez-Peña (2005). The

extension to a stochastic process for variables on the circle

over a continuous spatial domain, the projected Gaussian

process, is induced from a linear bivariate spatial Gaussian

process. The projected Gaussian process has marginal

distributions that can be asymmetric, possibly bimodal, an

advantage over the wrapped Gaussian process. Wang and

Gelfand (2014) also investigate properties of this process,

including the nature of joint distributions for pairs of

directions at different locations. Working within a hierar-

chical Bayesian framework, they show that model fitting is

straightforward using suitable latent variable augmentation
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in the context of Markov chain Monte Carlo (MCMC). In

very recent work, Mastrantonio et al. (2015) offer com-

parison between the wrapping and the projection modeling

approaches.

We remark that we have explored the possibility of

introducing skewness into the projected Gaussian process.

The overall process model is induced by a bivariate skewed

Gaussian process. This is a more challenging process to

work with; the resulting directional process model is

extremely messy and has proved very difficult to fit. It

likely exceeds what the data is capable of supporting. We

do not discuss it further.

Our motivating example is drawn from marine data.

Wave heights and outgoing wave directions, the latter

being measured in degrees relative to a fixed orientation,

are the main outputs of marine forecasts. Numerical models

for weather and marine forecasts need statistical post-pro-

cessing. Wave directions, being angular variables, cannot

be treated through standard post-processing techniques [see

Engel and Ebert (2007); Bao et al. 2009), and references

therein]. In Bao et al. (2009) bias correction and ensemble

calibration forecasts of surface wind direction are pro-

posed. The authors use circular–circular regression as in

Kato et al. (2008) for bias correction and Bayesian model

averaging with the von Mises distribution for ensemble

calibration. However, their approach does not explicitly

account for spatial structure.

Lastly, it is worth commenting that, in our setting, wave

direction data is viewed differently from wind direction

data. The former is only available as an angle while the

latter is customarily associated with wind speed, emerging

as the resultant of North–South and East–West wind speed

components.

The format of the paper is as follows. In Sect. 2 we

review, develop and illustrate the univariate wrapped skew

normal distribution. Section 3 extends to the wrapped skew

Gaussian process, including distribution theory, model fit-

ting, and kriging. Section 4 provides the dynamic version

which we then pursue through simulation in Sect. 5 and a

wave direction data analysis in Sect. 6. Section 7 offers a

brief summary and some future research possibilities.

2 The wrapped skew normal

2.1 The univariate case

We begin with the univariate wrapped skew normal dis-

tribution. Let X and W be two independent standard normal

variables, let r2 2 Rþ and k 2 R. Then, the random

variable

Z ¼ lþ rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p jXj þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p W � rk

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k2Þ
q ð1Þ

is said to be distributed as a skew normal variable (Azzalini

1985) with parameters l, r2 and k; i.e., ZjW� SNðl; r2; kÞ,
where W denotes the vector of parameters. Let /ð�Þ and

Uð�Þ be the probability density function (pdf) and the

cumulative density function (cdf), respectively, of a stan-

dard normal. Then, the pdf of ZjW is

2

r
/

z� lþ rk
ffiffi

2
p
ffiffiffiffiffiffiffiffiffiffiffiffi

pð1þk2Þ
p
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0
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@
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and from (1) we can easily derive the mean and the vari-

ance of Z, respectively. They are l (the definition in (1)

was made in order to center Z at l) and

r2k2=ð1þ k2Þ 1� 2=pð Þ þ r2=ð1þ k2Þ:

With the transformation

H ¼ Z mod 2p; implying H 2 ½0; 2pÞ; ð2Þ

we obtain a random variable with support on the unit circle.

We can express the inline variable as Z ¼ Hþ 2pK, where
K, the winding number, assumes values in

Z ¼ f0;�1;�2; . . .g. The transformation (2) defines what

is called a wrapped skew normal (WSN) distribution, as

introduced in Pewsey (2000). It wraps the skew normal

distribution, defined on the real line, onto the unit circle.

Details on the wrapping approach can be found in Jam-

malamadaka and SenGupta (2001) or Mardia and Jupp

(1999).

The pdf of HjW is

X

k2Z

2

r
/

hþ 2pk � lþ rk
ffiffi

2
p
ffiffiffiffiffiffiffiffiffiffiffiffi

pð1þk2Þ
p
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@
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A

� U k
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ffiffi

2
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ffiffiffiffiffiffiffiffiffiffiffiffi

pð1þk2Þ
p

r

0

B

@

1

C

A

0

B

@

1

C

A

: ð3Þ

The infinite sum in (3) is impossible to evaluate but, to

display the density, as with the wrapped normal case, we

can obtain an accurate approximation by appropriately

truncating the sum. Figure 1 illustrates the effect of intro-

duction of skewness into the wrapped normal density. To

obtain a sample from a wrapped skew normal we first

obtain a sample from the skew normal and then transform it

to a circular variable via (2). Also, note that, if we let K be

a random variable, the density inside the sum in (3) is the

joint density of ðH;KjWÞ whence, we marginalize over

K to obtain the density of the circular variable.
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Pewsey (2000) gives the fundamental properties of the

WSN along with closed forms for the cosine and sine

moments. Let l� ¼ l� rk
ffiffi

2
p
ffiffiffiffiffiffiffiffiffiffiffiffi

pð1þk2Þ
p and J ðaÞ ¼

R a

0

ffiffi

2
p

q

exp

u2

2

� �

du the cosine and sine moments become

ap ¼ Eðcos pHjWÞ ¼ exp � p2r2

2

� �

� cosðpl�Þ � J krp
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

 !

sinðpl�Þ
 !

ð4Þ

and

bp ¼ Eðsin pHjWÞ ¼ exp � p2r2

2

� �

� sinðpl�Þ þ J krp
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

 !

cosðpl�Þ
 !

: ð5Þ

The trigonometric moments (4) and (5) are useful to

compute the circular mean of H, ~l ¼ atan � a1
b1
1, and the

circular concentration, ~c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ b21

q

. However, unfortu-

nately we need to compute J ð�Þ, which is not available in

closed form. Pewsey (2000) suggests to use deterministic

numerical integration methods but we note that ap and bp
can be computed using Monte Carlo approximation.

Indeed, from (1) we can see that

ZjX;W�N lþ rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p jXj � rk

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k2Þ
q ;

r2

1þ k2

0

B

@

1

C

A

ð6Þ

and as a consequence

HjX;W�WN lþ rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p jXj � rk

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k2Þ
q ;

r2

1þ k2

0

B

@

1

C

A

;

ð7Þ

where WNð�Þ indicates the wrapped normal distribution.

Let fXbgBb¼1 be a set of B samples from the distribution of

X. Then, we can write the cosine moments as

ap ¼ Eðcos pHjWÞ ¼ EXjWEHjX;Wðcos pHjX;WÞ, since

EHjX;Wðcos pHjX;WÞ is the cosine moment of HjX;W.

Following Jona Lasinio et al. (2012), a Monte Carlo

approximation of ap is

âp �
exp �p2 r2

2ð1þk2Þ

� �

B

�
X

B

b¼1

cos p lþ rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p jXj � rk

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k2Þ
q

0

B

@
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C

A

0
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A

:

Similarly, we find

b̂p �
exp �p2 r2

2ð1þk2Þ

� �

B

�
X

B
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sin p lþ rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffi
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and then ~̂l ¼ atan� â1
b̂1

and ~̂c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

â21 þ b̂21

q

.

2.2 The bivariate case

Let Z1 and Z2 be two random variables skew normal dis-

tributed with, respectively, parameters ðl1; r21; k1Þ and

ðl2; r22; k2Þ:

Z1 ¼ l1 þ
r1k1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k21

q jX1j þ
r1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k21

q W1 �
r1k1

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k21Þ
q ;

Z2 ¼ l2 þ
r2k2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k22

q jX2j þ
r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k22

q W2 �
r2k2

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k22Þ
q :

We introduce dependence between Z1 and Z2 by letting

CorðX1;X2jWÞ ¼ qx and CorðW1;W2jWÞ ¼ qw. Then, we

(a) λ = 3 (b) λ = 10

(c) λ = −10

Fig. 1 Densities of the wrapped skew normal (solid line) with l ¼ p,
r2 ¼ 1 and different values of k along with the associated densities of

the wrapped normal (dashed line) having the same circular mean and

variance

1 For the definition of atan� see Jammalamadaka and SenGupta

(2001), p. 13
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say that ðZ1; Z2jWÞ is distributed as a bivariate skew normal

with the additional parameters, qx and qw. This specification
of the bivariate skew normal, due to Zhang and El-Shaarawi

(2010), differs from the one that can be derived using the

multivariate normal of Azzalini and Valle (1996) and it is

more suitable to built a stationary process, see Sect. 3.

Using the transformation (2) we can obtain the circular

variables H1 ¼ Z1 mod 2p and H2 ¼ Z2 mod 2p associ-

ated with ðZ1; Z2Þ. The parameters qx and qw govern the

dependence between H1 and H2 and if both are 0, H1 and

H2 are independent as with the associated linear variables.

Let gð�jWÞ be the density of ðZ1; Z2jWÞ0, let K ¼
ðK1;K2Þ0 be the vector of winding numbers and

H ¼ ðH1;H2Þ0, with Z ¼ Hþ 2pK. As in the univariate

case, we obtain the density of H, a bivariate wrapped skew

normal, through marginalization over K of the joint density

of ðH;KjWÞ:

f ðhjWÞ ¼
X

k12Z

X

k22Z
gðhþ 2pkjWÞ:

In Fig. 2 we show plots of the bivariate wrapped skew

normal distributions.

3 The wrapped skew Gaussian process

A natural way to construct a wrapped skew Gaussian

process HðsÞ; s 2 Rd is to start from a skew Gaussian

process ZðsÞ on the line and define, for each s,

HðsÞ ¼ ZðsÞ mod 2p, following the approach of

Jona Lasinio et al. (2012). To capture stationarity we use

the following stationary skew Gaussian process, proposed

by Zhang and El-Shaarawi (2010):

ZðsÞ ¼ lþ rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p jXðsÞj þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p WðsÞ

� rk
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k2Þ
q : ð8Þ

Here, XðsÞ and WðsÞ are independent zero mean Gaussian

process with isotropic parametric correlation functions,

qxðh;wxÞ and qwðh;wwÞ, respectively.
The process in (8) is not the only stationary skew

Gaussian process proposed in the literature. However,

Minozzo and Ferracuti (2012) point out that most of them

are in fact not stationary. For example Kim and Mallick

(2004) or Allard and Naveau (2007) built stochastic skew

normal processes where the n-finite dimensional distribu-

tions have, as special case, the multivariate skew normal of

Azzalini and Capitanio (1999). But, the class of multi-

variate skew normal of Azzalini and Capitanio (1999) is

not closed under marginalization. Each marginal is still a

skew normal but not of the same form, and Minozzo and

Ferracuti (2012) demonstrate that the stationarity property

of an n-dimensional finite distribution in this case is not

passed onto the marginals. Note that if in (8) we let the

process XðsÞ to be spatially constant, i.e. XðsÞ 	 X, the

associated n-finite dimensional distributions are the Azza-

lini and Capitanio (1999)’s multivariate skew normal and

then, from above, the process is not stationary. On the other

hand, if the process WðsÞ is spatially constant, it is easy to

demonstrate that (8) can be written as

ZðsÞ ¼ lþ rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p jX�ðsÞj � rk

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k2Þ
q ;

where X�ðsÞ is a process with finite dimensional distribu-

tions that are a mixture of folded normal with mode at 0 and

covariance matrix that depends on the covariance matrix of

XðsÞ and on the parameters r2 and k. As a consequence the
resulting process is not a skew Gaussian process.

The correlation in each of the XðsÞ and WðsÞ processes

induces association for the HðsÞ process. However, because
circular variables have no magnitude (they only acquire a

numerical value given an orientation), there is no unique

way to define the correlation between two circular variables

HðsÞ and Hðs0Þ. A common choice, which exhibits most of

the desirable properties of a correlation, is the one proposed

by Jammalamadaka and Sarma (1988), that is,

E½cosðHðsÞ �Hðs0ÞjWÞ � cosðHðsÞ þHðs0Þ þ 2~ljWÞ


2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðsin2ðHðsÞ � ~lÞjWÞEðsin2ðHðs0Þ � ~lÞjWÞ
q :

ð9Þ

(a) ρx = 0.2 and ρw = 0.2 (b) ρx = 0.2 and ρw = 0.2

(c) ρx = 0.2 and ρw = 0.8 (d) ρx = 0.8 and ρw = 0.2

Fig. 2 Bivariate densities of the wrapped skew normal with l ¼ p,
r2 ¼ 1, k ¼ 3 in the first column and k ¼ 10 in the second column

and several values of qx and qw
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In our setting (9) is not a valid correlation function; it is not

a positive definite function. Moreover, we cannot compute

(9) in closed form but, again, we can resort to Monte Carlo

approximation. Figure 3 provides an illustrative display of

the inline and corresponding circular correlations arising

from the exponential correlation functions qxðh;wxÞ ¼
expð�hwxÞ and qwðh;wwÞ ¼ expð�hwwÞ.

3.1 Implementation and kriging

Working directly with the wrapped skew Gaussian process

is not feasible since the likelihood for a n-dimensional

realization of the circular process involves n doubly infinite

sums, i.e. let H ¼ ðHðs1Þ; Hðs2Þ; . . .;HðsnÞÞ0 and K ¼
ðKðs1Þ; Kðs2Þ; . . .;KðsnÞÞ0, the density of Hjw is

f ðhjWÞ ¼
X

k12Z

X

k22Z
. . .
X

kn2Z
gðhþ 2pkjWÞ;

where gð�jWÞ is the density of Z ¼ Hþ 2pK, the realiza-

tion of the skew Gaussian process. When dealing with

wrapped distributions the winding numbers are treated as

latent random variables (see Jona Lasinio et al. 2012;

Coles 1998, for details and ideas). Hence, the joint distri-

bution of the circular variables and the winding numbers

coincides with the joint distribution of the associated linear

variables, i.e., gð�jWÞ, and we can work directly with the

process ZðsÞ.
A critical point is the following. To simplify the model

fitting, recalling (6) and (7) and extending them to n-variate

random variables, ZjX;W is normal, hence the process

ZðsÞjXðsÞ;W is Gaussian and HðsÞjXðsÞ;W is wrapped

Gaussian. This implies that, in the model fitting, if we

further introduce the realization of the latent Gaussian

process, XðsÞ, along with the set of winding numbers, the

KðsiÞs, then the MCMC implementation follows directly

from the work of Jona Lasinio et al. (2012) on the wrapped

Gaussian process. In this setting, kriging is straightforward.

More precisely, let s0 be the spatial location where we want

to predict the circular process and let X ¼
ðXðs1Þ;Xðs2Þ; . . .; XðsnÞÞ0. As is customary in the Bayesian

framework, to perform kriging we draw samples from the

predictive distribution of Hðs0ÞjH:

f ðHðs0ÞjHÞ ¼
X

K2Zn

Z

W

f ðHðs0ÞjXðs0Þ;X;K;W;HÞ

� f ðXðs0ÞjX;WÞf ðX;K;WjHÞdW: ð10Þ

Let Wb, Xb and Kb be the bth sample from the posterior

distribution f ðX;K;WjHÞ. We can sample from (10) with

composition sampling. That is, if for each posterior sam-

ple we simulate Xbðs0Þ from the distribution Xðs0ÞjXb;Wb

and Hbðs0Þ from the distribution Hðs0ÞjXbðs0Þ; Xb;Kb;

Wb;H, then each Hbðs0Þ can be considered as a sample

from (10).

We can easily simulate Xbðs0Þ since Xðs0Þ;XbjWb is

Gaussian and then Xðs0ÞjXb;Wb is univariate normal with

mean and covariance that can be derived using standard

results. If we simulate Zbðs0Þ from Zðs0ÞjZb;

Xbðs0Þ;Xb;Wb, where Zb ¼ Hþ 2pKb, we can immedi-

ately obtain Hbðs0Þ as Hbðs0Þ ¼ Zbðs0Þ mod 2p, that is a

sample from Hðs0ÞjXbðs0Þ; Xb;Kb;Wb;H. Remark that to

obtain a sample of Zbðs0Þ is really easy since

Zðs0Þ
Z

� �

jX;Xðs0Þ;W

�N

l� þ rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p jXðs0Þj

l�1n þ
rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p jXj

;
r2

1þ k2
1 q00;w

q0;w !

 !

0

B

B

B

@

1

C

C

C

A

where 1n is a vector of 1s of dimension n, ð!Þij ¼
qwðjjsi � sjjj;wwÞ and ðq0;wÞi ¼ qwðjjsi � s0jj;wwÞ. Then

the distribution of Zðs0ÞjZb;Xbðs0Þ;Xb;Wb is normal.

4 A dynamic extension of the wrapped skew
Gaussian process

We extend our model to the dynamic setting following

ideas in Banerjee et al. (2014). We start by specifying an

inline process ZtðsÞ, t 2 ½1; . . .; T
, as

Fig. 3 Correlation functions for the inline (empty symbols) and

circular (solid symbols) process with r2 ¼ 1, d ¼ 0:95 and exponen-

tial correlation function for the processes XðsÞ and WðsÞ with

respectively decays parameters 0.5 and 0.5 (circle), 0.5 and 0.2

(triangle), 0.2 and 0.5 (rhombus), 0.2 and 0.2 (square)
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Z1ðsÞ ¼ lþ rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p jX1ðsÞj

þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p W1ðsÞ �

rk
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k2Þ
q ; ð11Þ

ZtðsÞ ¼ lþ cðZt�1ðsÞ � lÞ þ rk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p jXtðsÞj

þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p WtðsÞ �

rk
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k2Þ
q ; t 6¼ 1; ð12Þ

where c 2 ½�1; 1
, 8t we have XtðsÞjW�GPð0; qxðh;wxÞÞ,
WtðsÞjW�GPð0; qwðh;wwÞÞ and Cov ðXtðsÞ;Xt0 ðs0ÞjWÞ ¼
Cov ðWtðsÞ;Wt0 ðs0ÞjWÞ ¼ 0 if t 6¼ t0. Expressions (11) and
(12) provide a mean-centered, first order auto-regressive

model with i.i.d. process increments. Moreover, the process

increments are skew GP’s with parameters r; k; qx; qw.
Equivalently, we see that Z1ðsÞjW� SGPðl; r2; kÞ and

ZtðsÞjZt�1ðsÞ;W� SGPðlþ cðZt�1ðsÞ � lÞ; r2; kÞ.
Under the dynamic spatial setting, we are generally

interested in predicting the process (i) at an observed

spatial location at time T þ h, h 2 Zþ (usually h ¼ 1) or

(ii) at an unobserved spatial location s0 inside the observed

time window. Suppose we let lb, ðr2Þb, kb and cb be the

samples of the parameters of the bth iteration of the MCMC

algorithm, ðl�Þb ¼ lb � rbkb
ffiffiffi

2
p

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ ðkbÞ2Þ
q

, Xb
t ðsÞ

and Kb
t ðsÞ the bth realization of the processes XtðsÞ and

KtðsÞ at site s and time t and Zb
t ðsÞ ¼ XtðsÞ þ 2pKb

t ðsÞ. B
samples from the predictive distribution HTþhðsÞjH, where

H is the observed circular data, can be obtained if, for each

MCMC sample, we draw a value Zb
TþhðsÞ from a normal

distribution with mean

ðl�Þb þ ðcbÞhðZb
TðsÞ � lbÞ þ rbkb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðkbÞ2
q jXb

TþhðsÞj

and variance

ðr2Þb

1� ðkbÞ2
:

The set fHb
Tþ1ðsÞg

B
b¼1 is from the desired predictive

distribution.

To obtain the bth posterior sample of the predictive

distribution of Htðs0ÞjH we adopt the usual composition

sampling by first sampling Xb
t ðs0Þ from the distribution of

Xtðs0ÞjX;Wb and then sampling Zb
t ðs0Þ from Ztðs0ÞjZ;X;

Xb
t ðs0Þ;Wb. Finally, Hb

t ðs0Þ ¼ Zb
t ðs0Þ mod 2p is a draw

from the predictive distribution Htðs0ÞjH.

The distribution of Ztðs0Þ;ZjX;Xb
t ðs0Þ;Wb is again mul-

tivariate normal and for spatial locations si; i ¼ 1; 2; . . .; n,

let Zt ¼ ðZtðs1Þ; Ztðs2Þ; . . .; ZtðsnÞÞ0, Z ¼ ðZ1;Z2; . . .;ZTÞ0
and X be the associated realization of the process XðsÞ. Let
C be a T � T correlation matrix with i, jth element equal to

cji�jj, Cl be the lower triangular part of C and C be the

correlation matrix of Wt ¼ ðWtðs1Þ;Wtðs2Þ; . . .;WtðsnÞÞ0.
Let D be a vector of length n with ith element equal to

Cor ðWtðs0Þ;WðsiÞÞ, Ft be a vector of length T with ith

element equal to cjt�ij, In be the identity matrix of dimension

n and let � indicates the Kronecker product. Altogether, we

have that

Ztðs0Þ
Z

� �

jX;Xtðs0Þ;W

�N
l�þ rk

ffiffiffiffiffiffiffiffiffiffiffiffi

1�k2
p jXtðs0Þj

d

;
r2

1�k2
1 ðFt�DÞ0

Ft�D C�C

 !

0

@

1

A

where

d ¼ l1nT þ rk=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p

Cl � Inð ÞjXj

� rk
ffiffiffi

2
p

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ k2Þ
q

Cl � Inð Þ1nT :

Here, again Ztðs0ÞjZ;X;Xb
t ðs0Þ;Wb is univariate normal

and sampling from it is easy.

5 A brief simulation study

We fit and estimate the model proposed in Sect. 4 to 8

datasets simulated with l ¼ p, r2 ¼ 1 and 4 levels of the

skew parameter k ¼ f0:0; 1:5; 3; 10g. For the AR(1)

parameter we chose c ¼ 0:5; we experimented with several

values of c 2 ð0; 1Þ obtaining similar results, so we report

estimates using the central value of the interval. We work

with 2 sample sizes, 110 spatial locations and 60 time

points, (N ¼ n� T ¼ 110� 60), 220 spatial locations and

60 time points, N ¼ 220� 60), to assess whether there are

differences in the parameter estimates when the sample

size increases. The coordinates are uniformly generated

over ½0; 10
2 and for both processes, XtðsÞ and WtðsÞ, we
adopt exponential correlation functions. We choose wx ¼
0:5 and ww ¼ 0:2 and notice that, as k varies, we obtain

different spatial correlations as shown in Fig. 4.

The model is estimated with 90 % of the spatial loca-

tions, i.e. 100 for the first sample size and 200 for the

second, using the first 50 time points. Therefore, the

training set is made of 100 � 50 and 200 � 50 points. We

select observations using simple random sampling on the

spatial locations (probability of inclusion in the training set

1 / n). The remaining spatial locations and 10 final time

points are used to define two types of validation sets:

(i) prediction at observed times, i.e. we use observations
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between time 1 and time 50 not used to estimate the

models. To simplify we call this set the spatial validation

set; (ii) prediction at unobserved times, i.e. we use obser-

vations from time 51 to time 60 at spatial locations used to

estimate the models. We call this set the temporal vali-

dation set. We repeat the sampling procedure 40 times.

As prior distributions we use l�Uð0; 2pÞ,
c�Uð�1; 1Þ, wx �Uð0:1; 1Þ and ww �Uð0:1; 1Þ. To

choose the prior on r2 and k we note that, as for the

wrapped Normal case (Jona Lasinio et al. 2012), if the

variance of the associated inline distribution increases we

are unable to tell the difference between the wrapped skew

normal and a circular uniform. As we noted in Sect. 2.1, the

variance of the skew normal is

r2k2=ð1þ k2Þ 1� 2=pð Þ þ r2=ð1þ k2Þ;

i.e., it is a function of both r2 and k. In this regard, when

r2 ¼ 10, with sample size of 200, independently of k, the
Rayleigh test of (circular) uniformity fails to discriminate

between the wrapped skew normal and the circular uni-

form. So, we chose r2 �Uð0; 10Þ and a weak informative

prior for k, k�Nð0; 100Þ.
For each dataset we also fit a wrapped normal model

(setting k ¼ 0) and we compare the models with regard to

posterior point estimates and predictive ability. The pre-

dictive ability of the models is evaluated by computing the

continuous rank probability score (CRPS) for circular

variables (Grimit et al. 2006). The CRPS is a proper

scoring rules defined, for circular variables, as

CRPSðF; nÞ ¼ EðdðN; nÞÞ � 1

2
EðdðN;N�ÞÞ; ð13Þ

where F is the predictive distribution, n is the holdout value,
N and N� are independent copies of a circular variable with
distributionF, and dðN;N�Þ ¼ 1� cosðN� N�Þ, the circular
distance (Jammalamadaka and SenGupta 2001, p.15). Exact

calculation of (13) is not possible since we can not obtain the

predictive distribution under the skew or the non skew

Gaussian process in closed form.However, for the validation

point htðs0Þwe can compute aMonteCarlo approximation as

1

B

X

B

b¼1

dðhbt ðs0Þ; htðs0ÞÞ �
1

2B2

X

B

l¼1

X

B

b¼1

dðhltðs0Þ; h
b
t ðs0ÞÞ

where hbt ðs0Þ denotes the simulated value of htðs0Þ using

the bth posterior parameters and B is the total number of

posterior samples.

As an example, in Tables 1 and 2 we present the pos-

terior mean estimates and credible intervals for all the

parameters in all simulated datasets using one training set,

i.e. the same locations and times for each dataset. For the

fourth dataset and for both sample sizes, the skew model

well estimates the parameters [the true value is inside the

credible interval (C.I.)]. In the first dataset k is far from 0.

The wrapped skew normal process shows a substantial gain

relative to the wrapped Gaussian process in terms of pre-

dictive ability for locations inside the observed time win-

dows, even if the true model used to simulate the data is the

wrapped Gaussian (Data1), see Table 3. As for forecasting

(temporal validation set), we see that there is no difference

between the models in terms of CPRS. Illustrative com-

parison of the predictive distributions under the two models

can be seen in Fig. 5. As we expect,in the fourth dataset the

predictive distribution is highly skewed while, in the first, it

is essentially symmetric.

6 The wave direction data example

The real data we use come from a deterministic wave model

implemented by Istituto Superiore per la Protezione e la

Ricerca Ambientale (ISPRA) that gives hourly prediction

over a grid of about 12.5 9 12.5 Km on the Adriatic sea

(Speranza et al. 2004). Over the Adriatic Sea area, there are

1494 points, with minimum and maximum distance of about

7 and 852 km respectively. The computer model starts from

a wind forecast model predicting the surface wind over the

entire Mediterranean and then the prediction of the wave

direction is obtained solving energy transport equations

using the wind forecast as input.

We developed two datasets. The first spans the period

April 2010 between the 2nd at 00:00 and the 4th at 22:00, a

Fig. 4 Spatial correlation functions for the simulated datasets: circles

are associated to Data1 (k ¼ 0), triangles to Data2 (k ¼ 1:5),
diamonds to Data3 (k ¼ 3) and squares to Data4 (k ¼ 10)
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Table 1 Parameter estimates

(mean) and credible intervals

(C.I.) for the wrapped skew

Gaussian model in the 4

simulated datasets

Data1 (k ¼ 0) Data2 (k ¼ 1:5) Data3 (k ¼ 3) Data4 (k ¼ 10)

n ¼ 110

l̂ 3.03 3.365 3.217 3.109

C.I. (2.762 3.321) (3.205 3.533) (3.106 3.334) (3.044 3.177)

r̂2 1.715 1.213 1.061 0.962

C.I. (1.390 2.186) (1.080 1.388) (0.976 1.177) (0.888 1.046)

k̂ 0.931 1.690 3.278 9.864

C.I. (0.689 1.275) (1.498 1.924) (2.881 3.716) (8.572 11.282)

ĉ 0.388 0.446 0.499 0.488

C.I. (0.35 0.42) (0.421 0.470) (0.479 0.518) (0.475 0.502)

ŵx
0.234 0.399 0.472 0.528

C.I. (0.139 0.483) (0.332 0.473) (0.413 0.528) (0.475 0.589)

ŵw
0.144 0.254 0.191 0.210

C.I. (0.109 0.186) (0.195 0.318) (0.141 0.251) (0.137 0.307)

n ¼ 220

l̂ 2.981 3.353 3.209 3.094

C.I. (2.713 3.261) (3.209 3.504) (3.067 3.346) (3.031 3.161)

r̂2 1.448 1.087 1.097 0.956

C.I. (1.266 1.701) (0.994 1.196) (1.005 1.211) (0.887 1.034)

k̂ �0.716 1.383 2.501 9.619

C.I. (�0.869 �0.589) (1.242 1.532) (2.227 2.777) (8.449 10.771)

ĉ 0.370 0.436 0.488 0.499

C.I. (0.349 0.390) (0.418 0.452) (0.474 0.503) (0.490 0.507)

ŵx
0.430 0.558 0.500 0.511

C.I. (0.323 0.625) (0.485 0.639) (0.444 0.558) (0.467 0.555)

ŵw
0.152 0.286 0.192 0.152

C.I. (0.119 0.186) (0.235 0.340) (0.143 0.245) (0.112 0.212)

Table 2 Parameter estimates

(mean) and credible intervals

(C.I.) for the wrapped Gaussian

model in the 4 simulated

datasets

Data1 (k ¼ 0) Data2 (k ¼ 1:5) Data3 (k ¼ 3) Data4 (k ¼ 10)

n ¼ 110

l̂ 2.986 3.313 3.208 3.138

C.I. (2.752 3.222) (3.211 3.409) (3.123 3.290) (3.082 3.199)

r̂2 1.141 0.596 0.465 0.369

C.I. (0.993 1.340) (0.556 0.645) (0.438 0.497) (0.35 0.39)

ĉ 0.415 0.417 0.489 0.488

C.I. (0.388 0.441) (0.392 0.441) (0.465 0.514) (0.463 0.514)

ŵw
0.225 0.67 0.796 1.182

C.I. (0.189 0.261) (0.611 0.726) (0.731 0.862) (1.099 1.265)

n ¼ 220

l̂ 3.023 3.308 3.181 3.143

C.I. (2.833 3.210) (3.216 3.403) (3.103 3.254) (3.090 3.205)

r̂2 1.061 0.602 0.473 0.370

C.I. (0.937 1.209) (0.564 0.647) (0.449 0.501) (0.354 0.390)

ĉ 0.365 0.426 0.468 0.503

C.I. (0.346 0.384) (0.407 0.444) (0.452 0.487) (0.486 0.519)

ŵw
0.273 0.678 0.867 1.152

C.I. (0.237 0.309) (0.626 0.730) (0.809 0.923) (1.081 1.218)
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calm period. The second spans the period April 2010 between

the 5th at 00:00 and the 7th at 22:00, a storm period.

We randomly select 220 spatial locations; the same

spatial locations are used for the calm and storm period

dataset.

Similarly to what we did in the simulated examples, we

use 90 % of the spatial locations, taking the first 48 time

points to estimate models while the remaining locations

and times are included in the building of the two types of

validation sets. Again, for each training set, we fitted a

skew Gaussian model and a wrapped Gaussian model. We

repeat the splitting procedure into training and validation

sets 40 times and each time we compute the CRPS to

compare the performance of the models.

As prior distributions we used the same choices as in

Sect. 5 with the exception of the spatial decays; for ww we

adopt a Uð10�3; 10�1Þ which corresponds to a maximum

and minimum practical range of 3000 and 30km while for

wx we adopt a Uð5�4; 5�2Þ which roughly corresponds to

the same practical spatial range for the process jXðsÞj.
In Table 4 we provide the parameters estimates for the

first selected training sets. The estimated spatial depen-

dence (ww) of theWðsÞ process is stronger during the storm

for both models while (wx) seems to remain the same in

both sea states for XðsÞ. Again, employing the CRPS, for

both validation sets under both sea states, the wrapped

skew Gaussian process shows a consequential gain in

predictive ability compared with the standard wrapped

Gaussian, see Table 5.

Finally, Fig. 6 shows examples of predictive distribu-

tions for a holdout sample during a calm and a storm state.

We showed in Fig. 1 that with jkj\3 there is little dif-

ference between the (symmetric) wrapped normal and the

(asymmetric) wrapped skew normal. Since, in these two

examples jk̂j\1:5, the predictive distributions under the

skew normal models are roughly symmetric.

7 Summary and future work

We have presented a novel process model for dynamic

spatial directional data. That is, we have a conceptual time

series of directions at each spatial location in the region

Table 3 Simulated datasets: mean CRPSs over 40 validation sets.

Models based on the wrapped skew normal (WS) and the wrapped

normal (W)

Data1 Data2 Data3 Data4

Spatial

n = 110 WS 0.173 0.146 0.118 0.116

W 0.221 0.179 0.176 0.160

n = 220 WS 0.170 0.149 0.116 0.091

W 0.205 0.179 0.168 0.148

Temporal

n = 110 WS 0.348 0.266 0.188 0.181

W 0.349 0.265 0.191 0.184

n = 220 WS 0.350 0.275 0.193 0.181

W 0.349 0.272 0.194 0.183

(a) Data1

(b) Data4

Fig. 5 Illustrative predictive distributions for a holdout site in the first

(a) and in the fourth simulated dataset (b). The solid line is the

predictive distribution under the wrapped Gaussian model while the

dashed one is under the wrapped skew Gaussian model. The vertical

line represents the true holdout simulated value
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and we observe these series for a finite collection of

locations. The model, referred to as a wrapped skew

Gaussian process, enables more flexible marginal distri-

butions for the locations than the symmetric ones that are

available under the previously published wrapped Gaussian

process. Using both simulation and a wave direction

dataset, we are able to show improved out-of-sample pre-

diction with the former.

Future work offers several opportunities. One is to note

that wave heights are available in addition to wave

directions. Wave heights inform about the sea state and

therefore whether we are in a calm, storm, or transition

state. In particular, predictive uncertainty varies with

wave height and/or sea state, e.g., prediction is more

precise during storm. So, we can attempt to extend the

proposed model to introduce covariates into the mean

model and also into the variance model for the wrapped

skew Gaussian process. Another possibility is to model

temporal data, where the time of the observed event is

treated as random. Then, upon wrapping, we would have

circular times. In addition, the locations of the events are

random. The data would be treated as a point pattern over

space and (circular) time.
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Chapter 4

Hidden Markov models for

circular-linear data

Often circular data take the form of a time series and they are observed along with

linear variables (see for example Holzmann et al. (2006) or Bulla et al. (2012)). In this

Chapter we propose HMMs for circular-linear time series. Similarly to what we did for

the stochastic processes (Chapter 3), we specify the models in term of multivariate linear

variables and then, using the transformation (2.6) to a subset of them, we obtain a model

for circular-linear variables.

Let πk = (πk1, . . . , πkK) be a vector of probabilities, i.e.
∑K

j=1 πkj = 1, let zt ∈
[1, . . . ,K] be a discrete variable and assume that z = (z1, . . . , zn)′ follows a Markov process

of the first order, i.e.

P (zt|zt−1, . . . , z1) = P (zt|zt−1) = πzt−1zt ,

Let y = (y1, . . . ,yT )′, where yt = (yt1, . . . , yt2p)
′ ∈ R2p, and x = (x1, . . . ,xT )′, where

xt = (xt1, . . . , xtq)
′ ∈ Rq, be time series of multivariate linear variables, and suppose that

the pdf of yt,xt|ψzt is fYt(·|Xt,ψzt)fXt(·|ψzt).
The HMM (Zucchini and MacDonald, 2009) is specified as

fY,X(y,x|z, {ψk}Kk=1) =
T∏

t=1

K∏

k=1

[fYt(yt|xt,ψk)fXt(xt|ψk)]I(zt=k)

zt|zt−1 ∼ πzt−1,

where I(zt=k) is a function that assumes value 1 if zt = k, and 0 otherwise.

Using (2.6), i.e. the projection, we can obtain an HMM for p−variate circular and

q−variate linear variables from the HMM for (2p + q)-variate linear variables specified
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above. More precisely let

θti = atan∗
(

y2i

y2i−1

)
, i = 1, . . . , p,

θt = (θt1, . . . θtp)
′ ∈ [0, 2π)p and θ = (θ1, . . . ,θT )′. The HMM that arises by applying the

projection is

fθ,x(θ,x|z, {ψk}Kk=1) =
T∏

t=1

K∏

k=1

[fΘt(θt|xt,ψk)fXt(xt|ψk)]I(zt=k) (4.1)

zt|zt−1 ∼ πzt−1,

The circular-linear density that arises by projecting is not easy to work with, see

Chapter 2. Let rti = ||(y2i, y2i−1)′||, the inference can be simplified if we introduce the

time series of p-variate (latent) variables r = (r1, . . . , rn)′, where ri = (ri1, . . . , rip)
′. The

augmented HMM is

fθ,r,x(θ, r,x|z, {ψk}Kk=1) =
T∏

t=1

K∏

k=1


fYt(yt|xt,ψk)

p∏

j=1

rtpfXt(xt|ψk)



I(zt=k)

(4.2)

zt|zt−1 ∼ πzt−1,

where yt must be seen as a function of θt and rt. A marginalization over r in (4.2) gives

(4.1).
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Bayesian hidden Markov modelling using
circular-linear general projected
normal distribution
Gianluca Mastrantonioa*, Antonello Maruottib,c and Giovanna Jona-Lasiniod

We introduce a multivariate hidden Markov model to jointly cluster time-series observations with different support, that is,
circular and linear. Relying on the general projected normal distribution, our approach allows for bimodal and/or skewed
cluster-specific distributions for the circular variable. Furthermore, we relax the independence assumption between the
circular and linear components observed at the same time. Such an assumption is generally used to alleviate the compu-
tational burden involved in the parameter estimation step, but it is hard to justify in empirical applications. We carry out
a simulation study using different data-generation schemes to investigate model behavior, focusing on well recovering the
hidden structure. Finally, the model is used to fit a real data example on a bivariate time series of wind speed and direction.
Copyright © 2015 John Wiley & Sons, Ltd.

Keywords: directional data; hidden Markov models; Markov chain Monte Carlo; wind data; multivariate time series; projected
normal distribution

1. INTRODUCTION
Hidden Markov models (HMMs) have become more frequently used to provide a natural and flexible framework for univariate and multivari-
ate time-dependent data (e.g. time-series and longitudinal data). They are a class of mixture models in which the data-generation distribution
depends on the state of an underlying and unobserved Markov process. Hidden Markov modelling has been used as a statistical tool for
density estimation (Langrock et al.; Dannemann, 2012), supervised and unsupervised classification (Lagona and Picone, 2012; Alfò and
Maruotti, 2010; Frühwirth Schnatter, 2006), and a wide range of empirical problems in environmetrics (Martinez-Zarzoso and Maruotti,
2013; Langrock et al., 2012), medicine (Langrock et al., 2013; Lagona et al., 2014), and education Bartolucci et al. (2011). For a compre-
hensive introduction to fundamental theory of HMMs encountered in practice, see the review papers of Bartolucci et al. (2014), Maruotti
(2011), and monographs by Bartolucci et al. (2012), Zucchini and MacDonald (2009) and Cappé et al. (2005).

The literature on multivariate hidden Markov modelling is dominated by Gaussian HMMs (Spezia, 2010; Bartolucci and Farcomeni,
2010; Geweke and Amisano, 2011). Modelling multivariate time series with non-normal components of mixed-type is challenging. The joint
distribution of multivariate (mixed-type) data is usually specified as a mixture having products of univariate distributions as components
(see e.g. Lagona et al., 2011; Lagona and Picone, 2011; Zhang et al., 2010). Bartolucci and Farcomeni (2009) is a notable exception.
In other words, random variables are assumed conditionally independent given the latent structure. Although conditional independence
facilitates parameters estimation, it is a too restrictive assumption in many empirical applications and may not properly accommodate for
the complex shape of multivariate distributions (Baudry et al., 2010). Moreover, an unnecessary number of latent states is often needed to
obtain reasonable fit, at the price of an increased computational burden and difficulties in interpreting results, as shown in the simulation
study section.

In this paper, we propose a bivariate distribution for circular-linear time-series in a HMM framework. We accommodate for nonstandard
features of data including correlation in time and across variables, mixed supports (circular and linear) of the data, the special nature of
circular measurements, and the occurrence of missing values. We relax the conditional independence assumption between circular and linear
variables by taking a fully parametric approach.
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This is not the first attempt to jointly modelling circular and linear variables in an HMM framework. Bulla et al. (2012) introduced a latent-
class approach to the analysis of multivariate mixed-type data by assuming that circular and linear variables are conditionally independent
given the states visited by a latent Markov chain while Kato et al. (2008) propose a hyper-cylindrical distribution. The latter is problematic (in
the HMM setting in particular), because little is known about efficient estimation procedures and identifiability issues under hyper-cylindrical
parametric models. In addition, mixtures of hyper-toroidal densities would group data according to clusters of difficult interpretation, without
necessarily improving the fit of the model.

We introduce a flexible structure, relying on the general projected normal (PN) distribution Wang and Gelfand (2014), to model circular
measurements, and extending Bulla et al. (2012) to a more general setting, allowing for (conditional) correlation between circular and linear
variables. We treat the circular response as projection onto the unit circle of a bivariate variable and define the joint circular-linear distribution
through the specification of a multivariate model in a multivariate linear setting, extending Wang et al. (2014) to a clustering framework.

The resulting hidden Markov model parameters are estimated in a Bayesian framework. We provide details on how to fit the model by using
Markov chain Monte Carlo (MCMC) methods, and we point out possible drawbacks in the implementation of the algorithm. Advantages
of the Bayesian approach, with respect to the expectation maximization (EM) algorithm, include a convenient framework to simultaneously
account for several data features, adjust for identifiability issues, and produce natural measures of uncertainty for model parameters. For a
general discussion see, for example, (Rydén and Titterington, 1998; Rydén, 2008; Yildirim et al., 2014).

We illustrate the proposal by a large-scale simulation study in order to investigate the empirical behavior of the proposed approach with
respect to several factors, such as the number of observed times, the association structure between the circular and linear variables, and the
fuzziness of the classification. We evaluate model performance in recovering the true model structure, we compare several models on the
basis of their ability to accurately estimate the vectors of state-dependent parameters and hidden parameters. Finally, we test the proposal
by analysing time series of semi-hourly wind directions and speeds, recorded in the period 12/12/2009, 12/1/2010 by the buoy of Ancona,
located in the Adriatic Sea at about 30 km from the coast.

The rest of the paper is organized as follows. In Section 2, we briefly review relevant aspects necessary for the introduction of our
approach and outline some results about the PN distribution. Section 3 discusses the specification of the circular-linear general PN hidden
Markov model and provides Bayesian inference. Computational details and parameters estimation are discussed as well. Section 4 presents
a large-scale simulation study. In Section 5, the application of the proposed methodology is illustrated through a real-world data set. Some
concluding remarks are given in Section 6.

2. PRELIMINARIES

Circular data are a particular class of directional data, specifically, they are directions in two dimensions. To analyze circular data is chal-
lenging because usual statistics, which have been developed for linear data (for example, the mean and variance), will not be meaningful and
will be misleading when applied to directional data without taking into account the particular definition of the domain. There are many ways
to define distributions in a circular domain; see the book of Mardia and Jupp (1999) for a comprehensive overview. The one we used in this
paper is to radially project onto the circle a probability distribution originally defined on the plane. Let Z D ŒZ1; Z2�0 be a 2D random vector

such that Pr.Z D 0/ D 0. Then, its radial projection W D
�
W1
W2

�
D Z
jjZjj is a random vector on the unit circle, which can be converted to a

random angle X relative to some direction treated as 0 via the transformation X D arctan� W2
W1
D arctan� Z2

Z1
2 Œ0; 2�/, where the function

arctan� is a quadrant specific inverse of the tangent function, sometimes called atan2, that takes into account the signs of W1 and W2 to

identify the right quadrant of X ; for a formal definition, see Jammalamadaka and SenGupta (2001), pag. 13. Note that W D
�

cosX
sinX

�
and

let R D jjZjj the following relation holds:

�
Z1
Z2

�
D

�
R cosX
R sinX

�
D RW.

By assuming Z � N2.�j�;†/, with † D

�
�21 �1�2�

�1�2� �22

�
and � D

�
�1
�2

�
, X is said to have a 2D PN distribution, denoted by

PN2.�j�;†/. Because the distribution of X does not change if we multiply Z for a positive constant c > 0, for identifiability purposes,
following Wang and Gelfand (2012), �22 is set to be 1. The PN distribution is specified as a four-parameter distribution:PN2.�j�1; �2; �21 ; �/.

We provide some examples to illustrate the flexibility of the PN distribution. The PN density can be symmetric, asymmetric, or possibly
bimodal, and apart from some special case, the interpretation of the parameters can be difficult. The number of modes and the shape depend
on the value of the all parameters and different sets of parameters can give really similar shapes. As a general comment, we highlight that
�1 and �2 are the means of the two Cartesian coordinates ´1 and ´2 and are, respectively, connected to the cosine and sine of the circular
variable. By fixing �21 D 1 and � D 0, the resulting distribution is unimodal, and symmetric and if �1 D �2 D 0, the distribution becomes
a circular uniform; see Figure 1 in the online supplement material. Departure from zero for the two means, in the case of identity covariance
matrix, creates one mode in the trigonometric quadrant with the same sign of the means, for example, if �1 > 0 and �2 < 0, then the mode is
in the quadrant with positive cosine and negative sine; higher values of a mean attract the mode to its correspondent axis; see Figure 1 in the
online supplement material. By allowing the � parameter to vary, we obtain very flexible shapes. The resulting distribution shows asymmetry
with more mass of probability near the axis with the highest �. By increasing j�j, bimodality is detected; Figure 1. Moreover, for �21 < 1, the
modes are closer to the sine axis; whereas for �21 > 1, the modes are closer to the cosine axis; see Figures in the online supplement material.

wileyonlinelibrary.com/journal/environmetrics Copyright © 2015 John Wiley & Sons, Ltd. Environmetrics 2015; 26: 145–158
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Figure 1. Shape of the projected normal distribution for �2 D 1 and different values of �, �1 and �2

3. THE CIRCULAR-LINEAR GENERAL PROJECTED NORMAL HIDDEN
MARKOV MODEL

3.1. The model

Let T D f0; 1; : : : ; T � 1; T g, in this paper, we consider a bivariate time series Œx; y� D fŒxt ; yt �I t 2 T nf0gg with circular, xt , and linear,
yt , components. Our aim is to jointly classify Œxt ; yt � in K classes, generally called regimes or states, with a HMM-based classifier.
Let �k;h indicate the probability to move from state k to state h, and let �tk be an indicator variable such that if we are in state k on time t
it is 1, otherwise is 0. Then, f .�th D 1j�t�1k D 1/ D �k;h and we set f .�0k/ D �k . We indicate with

� D

2
6664
�1;1 �1;2 � � � �1;K

�2;1 �2;2 � � � �2;K

� � � � � � � � � � � �

�K;1 �K;2 � � � �K;K

3
7775 ;

KX
hD1

�k;h D 1; k D 1; 2; : : : ; K;

the transition matrix that governs the evolution of the Markov chain, �0 D Œ�1; �2; : : : ; �K �
0 and � D Œ�0; �1; : : : ; �T �

0 where �t D
Œ�t1; �t2; : : : ; �tK �

0.
Let nk;h D

PT
tD1 �t�1k�th be the number of times we move from state k to state h, the joint density of the vector of states is

f .�j�;�0/ D
QK
kD1 �

�0k
k

QK
kD1

QK
hD1 �

nk;h
k;h

. In the literature on HMM for circular-linear variables, see for example Bulla et al. (2012)
and Holzmann et al. (2006), it is generally assumed that conditioning to the latent vector �, the pairs Œxt ; yt � and Œxg ; yg � are independent if
g ¤ t and at the same time xt ? yt . As a result, the conditional distribution of the observed process, given the latent process, takes the form
of a product density, say f .x; yj�/ D

QK
kD1

QT
tD1 Œf .xt j�tk D 1/f .yt j�tk D 1/�

�tk : We maintain the so-called conditional independence

Environmetrics 2015; 26: 145–158 Copyright © 2015 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics
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property: given the hidden state at time t , the distribution of the observation at this time is fully determined, but we relax the assumption
on independence between the circular and linear variables observed at the same time. Thus, we get a multivariate conditional distribution
f .x; yj�/ D

QK
kD1

QT
tD1 f .xt ; yt j�tk D 1/

�tk :

Let Zt j�tk D 1 � N .�k ;†k/, with Zt D
�
Zt1
Zt2

�
, �k D

�
�k1
�k2

�
†k D

�
�2
k1

�k1�k
�k1�k 1

�
and let Rt D jjZt jj. We define Xt as the

radial projection of Zt : Xt D arctan� Z1
Z2

and then Xt j�tk D 1 � PN2.�k ;†k/. We can write easily the joint density of ŒXt ; Rt � that is
the density that arises by a variable transformation from the bivariate normal Zt to its polar system representation. Let �h.	jM;V/ be the
probability density function of an h-variate normal distribution with mean M and covariance matrix V evaluated in 	, then

f .xt ; rt j�tk D 1/ D �2.rtwt j�k ;†k/rt (1)

We built the (conditional) joint density f .xt ; yt j�tk D 1/Df .yt jxt ; �tk D 1/f .xt j�tk D 1/ as a marginalization over the latent variable
Rt : f .xt ; yt j�tk D 1/D

R
rt
f .yt jxt ; rt ; �tkD1/f .xt ; rt j�tkD1/drt , where f .xt ; rt j�tkD1/ is specified in Eqn. 1, and yt jxt ; rt ; �tkD1

is defined through a circular-linear regression. However, there is not an obvious and standard way to formalize the relations between circular
and linear variables. Jammalamadaka and SenGupta (2001) propose a flexible approach using trigonometric polynomials while Mardia
(1976) and Johnson and Wehrly (1978) proposed a regression where the covariates are the sine and cosine components of the circular
variable. Here, following Wang et al. (2014), we specify the relation as ytD
k0C
k1rt cos xt C
k2rt sin xt C �tk , with �tk � N.0; �ky/.
Thus, yt jxt ; rt ; �tk D 1 is distributed as a normal variable with mean 
k0 C 
k1rt cos xt C 
k2rt sin xt and variance �2

ky
. Note that the

regression can be seen as a linear regression between yt and the inline variables rt cos xt and rt sin xt . This type of representation gives
more flexibility to the circular linear regression than the ones proposed by Mardia (1976) and Johnson and Wehrly (1978). Notice that with
the rt variable, for a given value of the circular variable at different time point, say xt Dxt 0 ; t ¤ t 0, the relation between xt and yt and xt 0
and yt 0 can be different as it depends on the realization of the non observed variable rt .

Then, we have that

f .xt ; yt j�tk D 1/ D
�1.yt j
k0; �

2
ky
/�2.�k j02;†k/

h
mtkˆ

�
mtkp
vtk

�
C �1 .mtk j0; vtk/

i
�1 .mtk j0; vtk/

; (2)

where ˆ is the cumulative density function of a standard normal distribution, w D
�

cos xt
sin xt

�
, vtk D

�
c2
tk

�2
ky

C w0t†
�1
k

wt

��1
, mtk D

vtk

�
ctk.yt��k0/

�2
ky

C w0t†
�1
k
�k

�
and ctk D w0t

�

k1

k2

�
. For the computation of (2), see Section 1 in the online supplement material. The

circular linear general PN (CL-GPN) distribution with parameters
h
�k1; �k2; �

2
k1
; �k ; 
k0; 
k1; 
k2; �

2
ky

i0
is thus defined in (2). In this set-

ting, the parameter 
k1 and 
k2 govern the dependency between the two variables (linear and circular), 
k1 is connected to the correlation
between the linear variable and the cosine of the circular, 
k1 is connected to the correlation between the linear variable and the sine of the
circular.

Wang et al. (2014) and Wang and Gelfand (2012) argue that working with the PN density is not easy, and its form is practically intractable
(to see the closed form of the PN density, see Wang and Gelfand (2012)). because the CL-GPN is based on the PN is itself an intractable
distribution and the implementation of the MCMC algorithm can be difficult. However, the introduction of rt is of practical use as it simplifies
the implementation of the MCMC algorithm; see Section 3.3.

3.2. Posterior inference

Let ‰ be the vector of all the parameters of the CL-GPN in all the K regimes, we have the following posterior distribution

f .�; �;�0;‰ ; rjx; y/ D
f .r; x; yj‰ ; �/ f .��0j�0;�/ f .�/ f .�0j�0/ f .�0/ f .‰/

f .x; y/

where r D Œr1; : : : ; rt �
0 and f .x; y; rj�/ D

QK
kD1

QT
tD1 f .xt ; rt ; yt j�tk D 1/�tk . As prior distribution, we assume �ki � N.�; �/, �

2
k1
�

IG.�; �/, �k � N.�; �/I.�1; 1/, �
2
ky
� IG.�; �/, 
kj � N.�; �/ for k D 1; : : : ; K; i D 1; 2; j D 1; 2; 3, where IG.�; �/ indicates the inverse

gamma distribution, �0 � Dir.�/ and �k;: � Dir.�/ where Dir.�/ indicates the Dirichlet distribution and �k;: is the kth row of �: we
assume �k ? �k0 if k ¤ k0. The prior specification allows us to marginalize over � and �0 reducing of K2 the number of parameters to
simulate and leads to a more efficient and stable algorithm (see Banerjee et al. (2004) and Section 3.3). Note that we can always sample from

f .�k;:jx; y/ D
P
� f .�k;:j�/f .�jx; y/ and f .�0jx; y/ D

P
� f .�0j�/f .�jx; y/ given the set of B posterior samples

n
�b
oB
bD1

of �, with

an MCMC integration. For each sample �b , we draw a sample from �b
k;:
j�b � Dir

�
ˇ C

PT
tD2 �

b
t�1k

�bt1; : : : ; ˇ C
PT
tD2 �

b
t�1k

�b
tK

�
and

one from �b0j�
b � Dir

�
ˇ C �b01; : : : ; ˇ C �

b
0K

�
. The sets

n
�b
k;:

oB
bD1

and
n
�b0

oB
bD1

are draw from their, respectively, marginal posterior
distributions. The posterior distribution we will work with is then

f .�;‰ ; rjx; y/ D
f .r; x; yj‰ ; �/ f .‰/ f .��0j�0/f .�0/

f .x; y/
:
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where f .��0j�0/D
R
� f .��0j�0;�/ f .�/ d� and f .�0/D

R
�0
f .�0j�0/ f .�0/ d�0 can be computed in closed form: f .��0j�0/D

�.Kˇ/K

�.ˇ/
K2

QK
kD1

QK
hD1 �.nk;hCˇ/QK

kD1 �.nk��T;kCKˇ/
and f .�0/D

1
K

(for computational details, we refer the reader to the online supplement material, Section 2).

3.3. Computational details

Model parameters are estimated with a MCMC algorithm. More precisely, the �s, 
s, �2y s and � are simulated with a Gibbs sampler while
the remaining parameters require the introduction of a Metropolis step. The full conditionals of �s and 
s are normal distributions, those
of �2y s are inverse gamma. The full conditionals for the latent variables �t ; t 2 T are multinomial, and the vector of probabilities depends
on the entire vector of ��t D �nf�t g. More precisely, let s� and sC be the regimes on time t � 1 and t C 1, that is, �t�1s� D 1 and
�tC1sC D1, respectively, let n�t

0

k
D
PT

tD0
t¤t0

�tk and n�t
0

k;h
D
PT

tD1
t¤t0;t¤t0C1

�t�1k�t;h. On the online supplement material Section 3, we show

that if t 2 T nf0; T g.

f .�t jr; x; y; ��t ;‰/ /
KY
kD1

�
n�t
s�;k
C ˇ C as�;k;sC

� �
n�t
k;sC
C ˇ

�
�
n�t
k
� �T;k CKˇ

� f .rt ; xt ; yt j�t ;‰/

where as�;k;sC assumes value 1 if s� D k D sC, 0 otherwise, whereas

f .�T jr; x; y; ��T ;‰/ /
KY
kD1

�
n�Ts�;k C ˇ

�
f .rT ; xT ; yT j�T ;‰/ :

and

f .�0jr; x; y; ��0;‰/ /
KY
kD1

�
n�0
k;sC
C ˇ

�
�
n�0
k
� �T;k CKˇ

� :

It is well known that the MCMC sampler for HMM tends to mix really slow (Andrieu et al., 2010). To speed up the convergence, we
try to find an optimal proposal distribution for the Metropolis step, which samples K �21 variables, K � variables, and T r variables, using
the algorithm described in Robert and Casella (2009), page 258. With the goal to speed up the MCMC convergence, as a general advice,
is suggested to decrease the dimension of the parameters space, that is, do as much marginalization as possible (Banerjee et al., 2004).
In our model, we found it convenient to marginalize over the vectors �k:; k D 1; : : : ; K and �0 but not over r. Marginalization over r
decreases significantly the number of random variables to simulate but does not allow to have closed form for full conditional distributions
of 
k1, 
k2 and �k . Without employing the Gibbs step, the MCMC algorithm becomes considerably slower in moving toward its stationary
distribution, and then the computational burden increases as a larger number of iterations is required. On the other hand, marginalization
over �k:; k D 1; : : : ; K and �0 has impact only on the way we simulate �t ; t D 0; 1; : : : ; T , but their simulation is simple in both cases,
with or without �k:; k D 1; : : : ; K and �0, and can be carried out in a Gibbs step.

In the estimation step, we take into account the label-switching issue, common to all latent-class-based models. This problem occurs when
exchangeable priors are used for the state specific parameters, which is common practice if there are not prior informations about the hidden
states. In these cases, the posterior distribution is invariant to permutations of the state labels and, hence, the marginal posterior distributions
of the state specific parameters are identical for all states. Therefore, direct inferences about the state specific parameters are not available
from the MCMC output. Various approaches to deal with the label switching problem in finite mixture models have been proposed in the
literature; see Jasra et al. (2005) for a recent review. To tackle the label switching, we decide to use the post processing technique called
pivotal reordering, proposed in Spezia (2009) or in Marin and Robert (2013), Chapter 6.5.

3.4. Model selection

To decide the number of regimes, we considered the idea of use the reversible jump (Green, 1995) or a non-parametric approach, as the one
proposed by Teh et al. (2004). However, our main goal is to demonstrate that the CL-GPN is suitable in an HMM Bayesian framework to
model circular-linear variables. Thus, we do not want to further increase the complexity of an already highly complex model by introducing
K as random variable.

Common model choice criteria are Akaike information criterion (AIC), Bayesian information criterion (BIC), integrated classification
likelihood (ICL), and different classification-based information criteria, which are minimized among a set of potential models. We evaluate
these criteria using the set of parameters, among the MCMC draws, that maximize the posterior distribution (called maximum at posterior,
MAP or MAP estimator) (Frühwirth Schnatter, 2006, Section 4.4.2, 7.1.4) Let Q‰ be the MAP estimator, we compute the BIC and AIC as
BIC D�2 log

�
f
�
x; yj Q‰

��
C #parameters � log.T / and AIC D�2 log

�
f
�
x; yj Q‰

��
C 2 � #parameters.

The BIC and AIC are generally criticized because they do not take into account the quality of classification of the variables in the K
regimes. For classification purpose, Biernacki et al. (2000) propose to use the ICL; an index based on the likelihood of observed variables
and the vector of regimes indicator that is used by Celeux and Durand (2008) in a HMM context. We compute a BIC approximation of the
ICL D f .x; yj Q�; Q‰/ � 2 logf . Q�/ C #parameters � log.T /; (see for example Frühwirth Schnatter, 2006, p. 214) in the latter case, as
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suggested by McLachlan and Peel (2000), p. 216, we first obtain an estimator of �, that is, the MAP Q�, and then, as for the BIC and AIC, we
compute the ICL using the MAP estimator of ‰ conditioning on the value Q�.

4. SIMULATION STUDY
In this section, we carried out a simulation study to investigate the performance of the proposed approach in recovering model parameters
and the hidden structure of the data. We empirically demonstrate that the CL-GPN can be used in presence of both unimodal or bimodal
state-dependent circular distributions and that ignoring the dependencies between the circular and linear variable at a given time leads to a
higher number of states.

We plan the simulation study to cover schemes with different underlying null models assuming bimodal or almost uniform shapes for
the circular variable, and overlapping or well-separated state-dependent distributions for the linear variable. On each simulated datasets, we
estimate three models: (1) the CL-GPN model; (2) a constrained model, defined as diagonal CL-GPN (CL-DPN), with †k D I2, so that
the state-dependent circular distribution is symmetric and unimodal; (3) a CL-GPN model with all the 
k1 and 
k2 equal to zero, that is,
assuming independence between circular and linear variable given the latent state (indicated as Ind-CL-GPN).

4.1. Designing the simulation study

For each null model, we simulated 200 datasets considering two time-series lengths, T D 500 and T D 2000, with K D 3, �0 D 1 and
transition matrix � with diagonal elements equal to 0.8 and extradiagonal elements equal to 0.1. The considered schemes are summarized in
Figure 2 and are characterized by the following settings:

(a). distributions C1 and L1, C2 and L2, and C3 and L3 are considered as state-dependent distributions for the first, the second, and the
third regime, respectively. The joint representation through scatters is displayed in Figure 3. This scheme has bimodal state-dependent
circular distributions and well as separated linear ones. The following parameters are used to generate data:

� D

�
�11 �12 �13
�21 �22 �23

�
D

�
0:1 0:1 0:0

0:1 �1:0 �0:1

�

Figure 2. Marginal distributions used in the simulation examples
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Figure 3. Scatter plot of one simulated dataset for each set of parameters .T D 500/

� D

2
4 
01 
02 
03
11 
12 
13

21 
22 
23

3
5 D

2
4 5:0 0:0 �5:0

1:0 0:0 1:0

0:0 �1:0 1:0

3
5

�2k1 D

8<
:
1 k D 1

2 k D 2

0:1 k D 3

I �2ky D

8<
:
0:1 k D 1

0:2 k D 2

0:5 k D 3

I �k D

8<
:
0:9 k D 1

�0:9 k D 2

0:2 k D 3

(b). this setting shares circular distributions with scheme (a) while the state-dependent linear distributions are, respectively, the density
L4, L5, and L6 of Figure 2. The joint representation through scatters is displayed in Figure 3. With respect to scheme (a), we change
the values of �:

� D

2
4 
01 
02 
03
11 
12 
13

21 
22 
23

3
5 D

2
4 1:0 0:0 �1:0

1:0 0:0 1:0

0:0 �1:0 1:0

3
5

to have more overlapping state-dependent distributions for the linear variable.

(c). the state-dependent distributions for the linear variable are the same as in scheme (b), whereas the circular ones are, respectively, the
density C4, C5, and C6 of Figure 2. The joint representation through scatters is displayed in Figure 3. In this case, we simulate from a
CL-DPN because we use �211 D �

2
12 D �

2
13 D 1 and �1 D �2 D �3 D 0, that is, the circular variable has state-dependent unimodal

(almost uniforms) distributions.
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Table 1. Frequency distribution of predicted number of regimes

Predicted K (AIC) Predicted K (BIC) Predicted K (ICL)

T Model Scheme 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

500 CL-GPN (a) 0.00 0.62 0.35 0.03 0.00 0.00 0.82 0.18 0.00 0.00 0.00 0.91 0.09 0.01 0.00
500 CL-GPN (b) 0.00 0.68 0.25 0.07 0.00 0.00 0.67 0.30 0.03 0.00 0.00 0.90 0.09 0.01 0.00
500 CL-GPN (c) 0.00 0.98 0.02 0.00 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.99 0.01 0.00 0.00
500 CL-DPN (a) 0.00 0.59 0.37 0.04 0.00 0.00 0.80 0.18 0.02 0.00 0.00 0.87 0.10 0.03 0.00
500 CL-DPN (b) 0.00 0.61 0.31 0.08 0.00 0.00 0.63 0.33 0.04 0.00 0.00 0.86 0.12 0.02 0.00
500 CL-DPN (c) 0.00 0.98 0.01 0.01 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
500 Ind-CL-GPN (a) 0.00 0.00 0.01 0.08 0.91 0.00 0.00 0.00 0.09 0.91 0.00 0.00 0.08 0.26 0.66
500 Ind-CL-GPN (b) 0.00 0.00 0.02 0.08 0.90 0.00 0.00 0.05 0.03 0.92 0.03 0.00 0.00 0.07 0.90
500 Ind-CL-GPN (c) 0.00 0.00 0.00 0.09 0.91 0.00 0.00 0.00 0.09 0.91 0.48 0.41 0.06 0.03 0.02
2000 CL-GPN (a) 0.00 0.97 0.03 0.00 0.00 0.00 0.98 0.01 0.01 0.00 0.00 0.98 0.00 0.00 0.00
2000 CL-GPN (b) 0.00 0.97 0.01 0.02 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.98 0.02 0.00 0.00
2000 CL-GPN (c) 0.00 0.96 0.03 0.01 0.00 0.00 0.99 0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00
2000 CL-DPN (a) 0.00 0.90 0.08 0.02 0.00 0.00 0.91 0.05 0.04 0.00 0.00 0.93 0.07 0.00 0.00
2000 CL-DPN (b) 0.00 0.91 0.07 0.02 0.00 0.00 0.93 0.03 0.04 0.00 0.00 0.91 0.09 0.00 0.00
2000 CL-DPN (c) 0.00 0.98 0.02 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
2000 ind-CL-GPN (a) 0.00 0.00 0.02 0.31 0.67 0.00 0.00 0.02 0.27 0.71 0.00 0.04 0.21 0.31 0.44
2000 ind-CL-GPN (b) 0.00 0.00 0.03 0.07 0.90 0.00 0.00 0.02 0.08 0.90 0.03 0.06 0.22 0.41 0.28
2000 ind-CL-GPN (c) 0.00 0.00 0.00 0.29 0.71 0.00 0.00 0.00 0.25 0.75 0.06 0.27 0.39 0.24 0.04

CL-GPN, circular linear general projected normal.

Table 2. posterior median estimates of the parameter (O) and credibility intervals for scheme (c) and T D 500

CL-GPN CL-DPN

k D 1 k D 2 k D 3 k D 1 k D 2 k D 3

O�k1 0.12 0.12 �0.05 0.13 0.11 �0.06
CI (�0.04 0.28) (�0.09 0.33) (�0.26 0.15) (�0.03 0.31) (�0.11 0.34) (�0.27 0.16)
O�k2 0.04 �0.08 0.07 0.03 �0.09 0.09
CI (�0.12 0.19) (�0.30 0.12) (�0.14 0.27) (�0.13 0.18) (�0.32 0.14) (�0.12 0.29)
O�k 0.06 �0.09 0.14 � � �

CI ( �0.13 0.22 ) (�0.32 0.16) (�0.11 0.37) (� �) (� �) (� �)
O�2
k1

0.94 0.76 1.01 � � �

CI (0.65 1.35) (0.47 1.22) (0.63 1.57) (� �) (� �) (� �)
O
k0 0.98 �0.04 �1.04 0.98 �0.04 �1.05
CI (0.89 1.06) (�0.19 0.13) (�1.22 �0.86) (0.89 1.06) (�0.20 0.12) (�1.23 �0.88)
O
k1 1.04 0.14 0.82 1.01 0.15 0.86
CI (0.88 1.22) (�0.04 0.35) (0.60 1.07) (0.91 1.13) (�0.01 0.33) (0.68 1.06)
O
k2 �0.04 �1 1.04 �0.02 �0.96 1.05
CI (�0.11 0.05) (�1.18 �0.83) (0.82 1.28) (�0.09 0.05) (�1.12 �0.81) (0.87 1.26)
O�2
ky

0.14 0.32 0.42 0.14 0.3 0.41

CI (0.09 0.19) (0.18 0.52) (0.26 0.67) (0.10 0.19) (0.18 0.49) (0.25 0.63)

CI, credibility intervals; CL-GPN, circular linear general projected normal.

On each dataset, we estimate models with K from 2 to 6 and assuming the following prior distributions: �ki � N.0; 5/, 
kj � N.0; 5/,
�k � N.0; 5/I.�1; 1/, �

2
k1
� IG.2; 1/†, �2

ky
� IG.2; 1/, ˇ D 1 with i D 1; 2 and j D 1; 2; 3; that is, they do not depend on the regime.

4.2. Simulation study results

To evaluate the performance of AIC, BIC, and ICL as selection criteria for the number of regimes, in Table 1, we report the frequency
distribution of the predicted K under each simulation setting considered for the CL-GPN, CL-DPN, and Ind-CL-GPN models. With respect

†The two parameters are the shape and rate, respectively

wileyonlinelibrary.com/journal/environmetrics Copyright © 2015 John Wiley & Sons, Ltd. Environmetrics 2015; 26: 145–158

152

Page 60



BAYESIAN HMM USING CIRCULAR-LINEAR GENERAL PROJECTED NORMAL DISTRIBUTION Environmetrics

to the CL-GPN model, we can observe that ICL performs considerably well in all cases. In fact, the predictedK is only occasionally different
from the true one, and, when this happens, the former is always larger than the latter. On the other hand, AIC and BIC have an excellent
behavior with the exception of the cases T D 500, schemes (a) and (b). As may be expected, these criteria perform better as the amount of
information in the data increases.

Ignoring the (state-dependent) correlation between circular and linear measurements may strongly affect the hidden structure. Indeed, by
looking at information criteria for the Ind-CL-GPN model, we have that the latent structure is not well recovered and a higher number of
regimes than expected is estimated. Of course, this affects parameter estimates and results interpretation, as a not needed number of (latent)
regimes is identified in the data.

Here, we briefly summarize the results of the simulation study for scheme c). By looking at parameters estimates (see Table 2),
we have that the CL-GPN and the CL-DPN models lead essentially to the same results. Point estimates and credibility intervals are
very close, suggesting that the CL-GPN distribution can be used whenever we cast doubts on the unimodality of circular distributions.
Indeed, the CL-DPN distribution is a specific case of the CL-GPN one, in which conditional circular distribution are constrained to
be unimodal.

To further resemble empirical situations, we randomly drop 10% observation of a randomly selected dataset simulated accordingly to the
scheme (c) with T D 500 and estimate the CL-GPN and a CL-DPN models. Along with model parameters, we also simulate the missing
observations. We compute the average continuous ranked probability score (CRPS) for both the circular (Grimit et al., 2006) and linear
variable (Gneiting and Raftery, 2007) from the posterior samples of the missing observations, as well as the average prediction error (APE)
for the circular variable (Jona Lasinio et al., 2012) and the mean squared error for the linear ones (MSE). With the CRPS, we evaluate the
model performance regarding the entire predictive distribution. APE and MSE allow us to measure the distance between the true values and
the simulated ones. The CPRPs for the circular variable and the MSE are identical under the two models, whereas the CRPS for the linear
one is 0.66 under the CL-GPN and 0.67 under the CL-DPN, and the APE is, respectively, 0.76 and 0.75 for the CL-GPN and the CL-DPN.
Then, the two models have the same performances in dealing with the missing values as well.

From the computational point of view, in the datasets with T D 2000 our C++ implementation of the model needs 1 000 000 iterations
with a burnin of 700 000 and a thin of 100, whereas with T D 500, the iterations needed are 800 000, with a burnin of 400 000 and again
a thin of 100. The computational work for the simulation study and the real data application of Section 5 has been executed on the IT
resources made available by ReCaS, a project financed by the MIUR (Italian Ministry for Education, University and Research) in the ‘PON
Ricerca e Competività 2007–2013 - Azione I - Interventi di rafforzamento strutturale PONa3_00052, Avviso 254/Ric. The computational
time are of the order of 1 h for T D 500 and 5 h for T D 2000. All the results shown are from MCMC chains that reach the convergence,
checked using the standard tool on the R package coda.

5. REAL DATA EXAMPLE
Finally, we apply the CL-GPN hidden Markov model to a bivariate time series of wind directions and (log-transformed) speeds. Data are
recorded on a semi-hourly basis from 12/12/2009 to 12/1/2010 in Ancona (Italy) at a bouy located in the Adriatic Sea 30 km from the coast
(Figure 4). Data are recorded on T D 1500 times and have been previously analysed by Bulla et al. (2012).

As often arise in environmental studies, data are not complete. Recorded for directions and speeds, respectively, are 213 and 210 missing
values; 125 profiles are completely missing.

During wintertime, relevant wind events in the Adriatic Sea are typically generated by the south-eastern Sirocco, the north-eastern
Bora and the north-western Maestral. Sirocco arises from a warm, dry, tropical air mass that is pulled northwards by low-pressure cells
moving eastwards across the Mediterranean Sea. By contrast, Bora episodes occur when a polar high-pressure area sits over the snow-
covered mountains of the interior plateau behind the coastal mountain range, and a calm low-pressure area lies further south over the
warmer Adriatic. Finally, the Maestral is a sea breeze wind blowing northwesterly when the east Adriatic coast gets warmer than the
sea. While Bora and Sirocco episodes are usually associated with high-speed flows, Maestral is in general linked with good meteoro-
logical conditions. Hence, the marginal distribution of (log-transformed) wind speed may be interpreted as the result of mixing different
wind-speed regimes.

As for the simulation examples, we look at the AIC, BIC, and ICL to select the appropriated number of components. The ICL suggest
to use K D 3, whereas the AIC and BIC K D 4. To help decide between the two number of regimes, we look ar their predictive ability,
the CRPSc , and APE highlight loss of predictive ability on the circular variable if we choose K D 4 (CRPSc=0.59 and APE=0.75 with
K D 4 while CRPSc D 0:34 and APE D 0:35 with K D 3). For the linear variable, looking at the values of CRPSl and MSE, there is a
small difference between K D 3 and K D 4; however, both CRPSl and MSE favor K D 3 (CRPSl D 0:17 and APED 0:39 with K D 4,
whereas CRPSl=0.16 and APE = 0.34 with K D 3). We decide to adopt K D 3, that is also the choice of Bulla et al. (2012) following
their suggestion that three regimes provide well-separated and more interpretable states. The resulting classification is displayed in Figure 5
and all the credibility intervals and point estimates of the parameters are in Table 3. The estimated transition probabilities are displayed in
Table 4. As expected, the transition probability matrix is essentially diagonal, reflecting the temporal persistence of the regimes, that is, of
wind conditions. Furthermore, the small off-diagonal transition probabilities between states indicate that direct transitions between Sirocco
and Bora episodes are very unlikely. The model hence confirms that the Adriatic Sea typically alternates relevant wind events with periods
of good conditions.

For a more clear interpretation of the state dependent distributions, we compute some feature of the CL-GPN distribution. In detail, we
look at the posterior marginal mean and variance of the linear distribution for each regime ( N�ky and N�2

ky
), the circular mean ( N�kx) and
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Figure 4. Real data

concentration ( Ngkx) of the circular variable and a measure of correlation between the circular and linear variables ( N�2
kxy

) as in Mardia and
Jupp (1999), p. 245. Point estimates and credibility intervals are provided in Table 5). Further details can be found in the online material.

The regimes are ordered according to the marginal log-wind speed. In the three regimes, the point estimates are, respectively, O�ky D
1:42; 1:70; 2:11 (which correspond to 4.14, 5.47, and 8.25m/s in the natural scale). With the increases of the velocity, the distribution
becomes more concentrated: the marginal linear variance, ON�2

ky
, is, respectively, 0:17; 0:11; 0:04, for a plot of the distributions, see Figure 5.

The circular mean is 4.98 in the first regime, north-westerly Maestral episodes, 2.70 in the second, south-eastern Sirocco, and 6.04 in the
third, northern Bora jets, on the first regime, the circular marginal distribution is less concentrated than in the others (0.78 for k D 1, 0.83
for k D 2, and 0.82 for k D 3).

The correlations between the circular and linear variables are weak in all the regimes: ON�2
kxy

is 0.02 in the first and 0.05 in the others. Under

the hypothesis of no correlation, that is, N�2
kxy
D 0, the statistic QF D

N�2
kxy

.n�1/

1� N�2
kxy

is distributed as a F2;T�3 where in our case T D 1500.

The lower limits of the 95% credibility intervals of the posterior distributions of QF are 1.24, 4.80, and 4.95 in the calm, transition, and storm
conditions, respectively, and the 95% percentile of F2;T�3 is 3.00. Accordingly, circular-linear correlations are significant in the transition
and storm conditions only. This result is not present at all in previous analyses. This can be seen also with the value of 
k1 and 
k2 in
Table 3. In the first regime O
11 D 0:01 and O
12 D �0:04, both credibility intervals contain the 0. In the second, there is a negative relation
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Figure 5. Real data classification

Table 3. Real data: posterior median estimates of the parameter ( O )
and credibility intervals

k D 1 k D 2 k D 3

O�k1 0.45 �1.62 1.19
CI (0.28 0.63) (�1.83 �1.41 ) (1.02 1.32 )
O�k2 �1.80 0.67 �0.41
CI (�2.07 �1.57) (0.52 0.81 ) (�0.51 �0.30)
O�2
k

0.36 0.56 �0.27
CI ( 0.14 0.54 ) (0.38 0.71 ) (�0.46 �0.06 )
O�2
k1

2.03 0.94 0.15
CI (1.46 2.85 ) (0.71 1.28 ) (0.10 0.23)
O
k0 1.34 1.47 2.36
CI (1.21 1.49) (1.33 1.62 ) ( 2.25 2.45)
O
k1 0.01 �0.09 �0.22
CI (�0.03 0.05 ) (�0.16 �0.03) (�0.30 �0.13)
O
k2 �0.04 0.12 �0.02
CI (�0.11 0.03 ) (0.06 0.18 ) (�0.05 0.01)
O�2
ky

0.17 0.09 0.03

CI ( 0.14 0.19) (0.08 0.11 ) (0.03 0.06)

CI, credibility interval.
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Table 4. Real data: transition matrix

Destination state 1 2 3

1 0.96 0.02 0.02
(0.94, 0.97) (0.01, 0.04) ( 0.01, 0.04)

Origin state 2 0.02 0.97 0.00
(0.01 0.04) ( 0.95, 0.98) (0.00, 0.01)

3 0.02 0.00 0.98
(0.01, 0.03) (0.00, 0.01) (0.97, 0.99)

Table 5. Real data: posterior median estimates
( O ) and credibility intervals of the features of the
distribution circular linear general projected normal

k D 1 k D 2 k D 3

ON�kx 4.98 2.7 6.04
CI (4.81 5.16) (2.55 2.83) (5.90 6.19)
ONgkx 0.78 0.83 0.82
CI (0.71 0.84) (0.77 0.87) (0.76 0.86)
ON�ky 1.42 1.70 2.11
CI (1.34 1.50) (1.63 1.78) (2.02 2.20)
ON�2
ky

0.17 0.11 0.04

CI (0.15 0.20) (0.09 0.12) (0.03 0.07)
ON�2
kxy

0.02 0.05 0.05

CI (0.00 0.10) (0.00 0.18) (0.00 0.17)

CI, credibility interval.

between the linear variable and the cosine of the circular one (
1 D �0:09) and a positive relation with the sine (
2 D 0:12). In the third
regime, the dependence between the linear and circular variable is on the cosine direction (
1 D �0:22).

We estimate the model using 1 000 000 iterations, a burnin of 700 000 and a thin of 100. Here, again, we checked the convergence of the
MCMC chain using the standard tool on the R package coda.

6. DISCUSSION
In this work, we introduce, for the first time, the CL-GPN distribution in a Bayesian HMM framework, and we present the explicit expression
of the CL-GPN likelihood (Section 2 and online materials Section 1 for the details). This approach allows to easily model multivariate
processes with mixed support (circular-linear), by combining the bivariate representation of the circular component (i.e. the PN distribution)
and a Gaussian distribution for the linear part. Here, we considered one circular and one linear variable, although it is fairly easy to extend
the proposed model to more than one linear component.

The Bayesian framework allows us to overcome identifiability issues and computational problems that may arise in the classical setting.
Several implementation novelties are introduced to speed up algorithms convergence. We use an adaptive Metropolis whenever a Gibbs
sampler is not implementable (Section 3.3). Furthermore, we marginalize the transition matrix so to avoid its estimation to reduce the problem
size obtaining it as an a posteriori byproduct (Section 3.2) and we provide evidence that the marginalization does not affect parameters
estimation. We also demonstrate that assuming conditional independence between the circular and linear variable can make difficult to
correctly estimate the number of regimes.

We applied this methodology to wind data confirming previously obtained results and highlighting new data features. Circular parameters
interpretation is not straightforward; however, this does not limit the inferential richness of the model. Using MCMC simulations posterior
circular mean and concentration can be derived, as well as the circular-linear correlation. Of course, different areas of application can be
considered for the proposed approach, for example, animal movement modelling (Langrock et al.) and driving behavior (Jackson et al.,
2014).

Further developments will include the extension to more than one circular variable. This extension requires a careful definition of correla-
tion between circular variables that is not straightforward under the PN distribution. Another interesting extension of the proposed approach
is to allow the estimation of the number of states along with the model parameters. The latter can be obtained using a hierarchical Dirichlet
process on the states or a reversible jump.

A crucial assumption of our model is that the temporal dependence is well described by a first-order Markov chain, that is, the sojourn
time is geometrical. If we want to allow for different sojourn time distributions with finite support, the HMM formulation is exact. Similarly,
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by allowing the number of hidden states to grow with the sample size, we can allow for continuous time, that is, the hidden distribution can
be approximated with arbitrary accuracy using the proposed model. This can be seen as a possible solution to computational issues arising
with continuous-valued latent models (Langrock et al., 2012).
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A Bayesian hidden Markov model for
telemetry data

Gianluca Mastrantonio
Department of Economics, University of Roma Tre

Abstract

We introduce a new multivariate circular linear distribution suitable for modeling
direction and speed in (multiple) animal movement data. To properly account for
specific data features, such as heterogeneity and time dependence, a hidden Markov
model is used. Parameters are estimated under a Bayesian framework and we provide
computational details to implement the Markov chain Monte Carlo algorithm.

The proposed model is applied to a dataset of six free-ranging Maremma Sheep-
dogs. Its predictive performance, as well as the interpretability of the results, are
compared to those given by hidden Markov models built on all the combinations of
von Mises (circular), wrapped Cauchy (circular), gamma (linear) and Weibull (linear)
distributions

Keywords: Animal movement, Circular-linear distribution, Multivariate projected normal,
Multivariate skew normal, Dirichlet Process, Hidden Markov model
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1 Introduction

In the recent literature, the interest in modelling animal movement data, with the goal to

understand the animals behaviour, is increasing. Animal movement modeling has a long

history, dating back to the diffusion model of Brownlee (1912). A wide range of different

models have been proposed, such as stochastic differential equations (Blackwell, 2003),

mixture of random walks (Morales et al., 2004), Brownian bridge (Horne et al., 2007),

agent-based model (Hooten et al., 2010), mechanistic approach (McClintock et al., 2012)

or the continuous-time discrete-space model (Hanks et al., 2015).

Animal movement data often take the form of a bivariate time series of spatial coor-

dinates obtained by equipping an animal with a tracking device, e.g. a GPS collar, that

records locations at different times. These type of data are called telemetry data. From

telemetry data, movements are measured by computing the so-called movement metrics

(Patterson et al., 2008), such as step-length and turning-angle, see for example D’Elia

(2001), Jonsen et al. (2005) or Ciucci et al. (2009). Observed metrics are random variables

and, accordingly, a parametric distribution is often needed to model these data.

Improved communication systems, shrinking battery sizes and the prices drop of GPS

devices, have led to an increasing availability of datasets (Cagnacci et al., 2010). The data,

often freely available (see for example the movebank data repository at www.movebank.

org), have a complex structure because the animal behaviour changes over time and the

occurrences of behavioural modes are not time-independent (Houston and Mcnamara, 1999)

(temporal dependence) (Morales et al., 2004), each behaviour is characterized by different

distributions of the associated movement metrics (heterogeneity) and there is dependence

in the movement metrics between and within animals (multivariate associations) (Langrock

et al., 2014).

Time dependence and heterogeneity have been addressed, in the literature, by using

hidden Markov models (HMMs), see for example Franke et al. (2004), Holzmann et al.

(2006), Jonsen et al. (2007), Eckert et al. (2008), Patterson et al. (2009), Schliehe-Diecks

et al. (2012) or Langrock et al. (2014). In most of the animal movement applications, the

number of behavioural modes is fixed at priori using external knowledge.

The multivariate interactions between animals have been modeled in several ways. Jon-

sen et al. (2006) assume a common distribution for some individual-level parameters that al-

lows inference about population-level parameters. Langrock et al. (2014) propose a parent-

child structure, where the animals (the children) are all attracted to an abstract point (the

parent) while in Morales et al. (2010) the animals are treated as independent assuming

that the movement of one animal is representative of the group’s overall movement.

A natural way to model the multivariate interactions is to define a joint distribution
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for the movement metrics that, generally, are composed by measures of speed (e.g. the

step-length) and direction (e.g the turning-angle). The direction is a circular variable, it

represents an angle or a point over a circumference and due to the particular topology

of the circle must be treated differently from the linear (or inline) ones, e.g. variables

defined over R or R+; for an introduction on circular variables see the book of Mardia and

Jupp (1999) or Jammalamadaka and SenGupta (2001). A joint modelling of step-lengths

and turning-angles requires a multivariate distribution for circular-linear variables but in

the literature have been proposed only distribution for cylindrical data (SenGupta, 2004;

Sengupta and Ong, 2014; Mastrantonio et al., 2015a; Abe and Ley, 2015), i.e. one circular

and one linear variable.

In this work we are interested in finding the behavioural modes of six free-ranging

sheepdogs attending livestock (van Bommel and Johnson, 2014b,a) and understand how

they interact. Motivated by the data at hand we introduce a new flexible multivariate

circular-linear distribution with dependent components, called the projected-skew normal,

based on the skew normal of Sahu et al. (2003) and on a multivariate extension of the

projected normal (Wang and Gelfand, 2013). This distribution allows us to model jointly

the movement metrics, introducing dependence among animals. The proposal is used

as emission distribution in an HMM. We propose to estimate the parameters in a non-

parametric Bayesian framework, relying on the sticky hierarchical Dirichlet process-hidden

Markov model (sHDP-HMM) of Fox et al. (2011). This allows to jointly estimate model

parameters and the number of behavioural modes without fixing it a priori. We show how

to estimate the parameters using a Markov chain Monte Carlo (MCMC) algorithm. As

a by-product, our MCMC implementation solves the well-known identification problem of

the univariate projected normal distribution (Wang and Gelfand, 2013).

The paper is organized as follows. In Section 2 we introduce the proposed distribution

and in Section 3 we show how to estimate its parameters in a Bayesian framework. In

Section 4 we introduce the HMM (Section 4.1) and the non-parametric extension (Section

4.2). In Section 5 we apply the model to the real data example and in Section 5.3 we

compare the proposed emission distribution with the most used in the literature. The

paper ends with some conclusion remarks in Section 6.

2 The multivariate circular-linear distribution

In this Section we introduce the projected normal, its multivariate extension and the skew

normal of Sahu et al. (2003) used to built the new multivariate circular-linear distribution.
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2.1 The multivariate projected normal distribution

Let Wi = (Wi1,Wi2)
′ be a 2-dimensional random variable, normally distributed with mean

vector µwi and covariance matrix Σwi. The random variable

Θi = atan∗
Wi2

Wi1

∈ [0, 2π), 1 (1)

is a circular variable, i.e. a variable that represents an angle over the unit circle, distributed

as a projected normal (PN): Θ ∼ PN(µwi,Σwi). Let Ui = (Ui1, Ui2)
′, where Ui1 = cos Θi

and Ui2 = sin Θi, the following explicit relation exists between Wi and Θi:

Wi = Ri

(
cos Θi

sin Θi

)
= RiUi, Ri = ||Wi||. (2)

The couple (Θi, Ri) is the representation in polar coordinates of Wi.

A natural way to define an n−variate projected normal is to consider a 2n-dimensional

vector W = {Wi}ni=1 distributed as a 2n-variate normal with mean vector µw and covari-

ance matrix Σw. The random vector Θ = {Θi}ni=1, of associated circular variables, is said

to be distributed as an n−variate projected normal (PNn): Θ ∼ PNn(µw,Σw).

The projected normal distribution is often considered in a univariate setting. Multi-

variate extensions have been developed in a spatial or spatio-temporal framework only, see

for example Wang and Gelfand (2014) or Mastrantonio et al. (2015b).

2.2 The skew normal

To model the linear part of telemetry data, we consider a skew normal distribution. Let

Y = {Yj}qj=1 be a q−variate random variable, let µy be a vector of length q, Σy be a

q × q covariance matrix and Λ be a q × q matrix with elements belonging to R. Y is

distributed as a q−variate skew normal (Sahu et al., 2003) with parameters µy, Σy and Λ

(Y ∼ SNq(µy,Σy,Λ)) and it has probability density function (pdf)

2qφq
(
y|µy,Υ

)
Φq

(
Λ′Υ−1(y − µy)|0q,Γ

)
,

where φq(·|·, ·) and Φq(·|·, ·) indicate respectively the q−variate normal pdf and cumulative

distribution function, 0q is a vector of 0s of dimension q, Υ = Σy + ΛΛ′ and Γ = Iq −
Λ′Υ−1Λ. The parameter Λ is generally called the skew parameter and if all its elements

are 0, then Y ∼ Nq

(
µy,Σy

)
.

1 atan∗ is a modified arctangent function defined in Jammalamadaka and SenGupta (2001) pag. 13.
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The skew normal distribution has a nice stochastic representation, that follows from

Proposition 1 of Arellano-Valle et al. (2007). Let D ∼ HNq(0, Iq), where HNq(·, ·) indicates

the q−dimensional half normal distribution, and H ∼ Nq(0,Σy), then

Y = µy + ΛD + H, (3)

and Y ∼ SNq(µy,Σy,Λ). The mean vector and covariance matrix of Y are given by:

E(Y) = µy + Λ

√
2

π
,

Var(Y) = Σy +

(
1 +

2

π

)
ΛΛ′.

In the general case, the (multivariate or univariate) marginal distributions of Y are not

skew normal (Sahu et al., 2003) but if Λ = diag(λ), where λ = {λi}qi=1, then all the

marginal distributions are skew normal and λi affects only the mean and variance of Yi.

2.3 The joint linear-circular distribution

The new multivariate circular-linear distribution proposed is obtained as follows. Let

(W,Y)′ ∼ SN2n+q(µ,Σ, diag((02n,λ))),

with µ = (µw,µy) and Σ =

(
Σw Σwy

Σ′wy Σy

)
, where Σ is a (2n + q) × (2n + q) co-

variance matrix. The marginal distribution of W is a 2n-variate normal with mean

µw and covariance matrix Σw, since the associate skew parameters are all zeros, while

Y ∼ SNq(µy,Σy, diag(λ)).

If we apply the transformation (1) to the components Wi of (W,Y), then (Θ,Y)′ is

a multivariate vector of n circular and q linear variables and we say that is distributed as

an (n, q)-variate projected-skew normal (PSNn,q) with parameters µ, Σ and λ: (Θ,Y)′ ∼
PSNn,q(µ,Σ,λ). A closed form for the joint distribution is available by introducing suitable

latent variables (see Section 3)

As the skew matrix is diagonal, each marginal distribution of (W,Y)′ is still a skew

normal with parameters given by the appropriate subset of µ, Σ and λ. Accordingly all

the marginal distributions of (Θ,Y)′ are projected-skew normals.

The interpretation of the parameters µy, Σy and λ is straightforward. The interpreta-

tion of (µwi,Σwi)
′, i.e. the parameters of the univariate marginal projected distribution,

is not easy because there is a complex interaction between them and it is not clear how a

single component of µw or Σw affects the shape of the univariate density, that can be sym-

metric, asymmetric, unimodal or bimodal (for a discussion see Wang and Gelfand (2013)).
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However, in a Bayesian framework we can compute Monte Carlo approximations of all the

features of the marginal univariate circular distribution (Mastrantonio et al., 2015a), such

as the directional mean, the circular concentration and the posterior predictive density,

bypassing the difficult in the interpretation of the parameters (µwi,Σwi)
′.

The two components of Ui are respectively the cosine and sine of the circular variable

Θi, see (2), and the correlation matrix of (W,Y)′, Ω, is the same of (U,Y)′, where

U = {Ui}ni=1. We can easily interpret the circular-circular and circular-linear dependence

in terms of the correlation between the linear variables and the sine and cosine of the

circular ones.

The parameters of the projected-skew normal are not identifiable, since Wi and ciWi,

with ci > 0, produce the same Θi, and hence the same Θ. As consequence the distribution

of (Θ,Y)′ is unchanged if the parameters (Σ,µ,λ) are replaced by (Cµ,CΣC,λ), where

C = diag(c,1q) with c = {(ci, ci)′}ni=1; to identify the parameters a constraint is needed.

Without loss of generality, following and extending Wang and Gelfand (2013), we can fix

the scale of each Wi by setting to a constant, say 1, each second element of the diagonals

of the Σwis. The constrains create some difficult in the estimation of Σ since we have to

ensure that it is a positive definite (PD) matrix. To avoid confusion, from now to go on we

indicate with Σ̃ and µ̃ the identifiable version of Σ = CΣ̃C and µ = Cµ̃.

3 The Bayesian inference

Suppose to have T observations drawn from an (n, q)-variate projected-skew normal, (Θt,Yt)
′ ∼

PSNn,q(µ̃, Σ̃,λ) with t = 1, . . . , T , where Θt = {Θti}ni=1 and Yt = {Ytj}qj=1. With a slight

abuse of notation, let Θ = {Θt}Tt=1 and Y = {Yt}Tt=1 and suppose that given (Θ,Y) we

want to learn about µ̃, Σ̃ and λ in a Bayesian perspective using an MCMC algorithm, i.e.

obtaining samples from the posterior distribution

f(µ̃, Σ̃,λ|θ,y) ∝
T∏

t=1

f(θt,yt|µ̃, Σ̃,λ)f(µ̃, Σ̃,λ). (4)

We cannot work directly with the posterior (4) since f(θt,yt|µ̃, Σ̃,λ) is not known in

closed form and it is not easy to find an appropriate prior distribution f(µ̃, Σ̃,λ), even if we

assume independence between the parameters, i.e. f(µ̃, Σ̃,λ) = f(µ̃)f(Σ̃)f(λ), because

f(Σ̃) must be a valid distribution for a PD matrix with some of its diagonal elements

constrained.

To solve both problems let Wti be the bivariate linear variable associated with Θti, let

Rti = ||Wti|| and let Dt be the q−variate half normal random variable associated with Yt

in the stochastic representation given in (3). Let Rt = {Rti}ni=1, R = {Rt}Tt=1 and, again
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with a slight abuse of notation, D = {Dt}Tt=1. Instead of the posterior (4) we evaluate, i.e.

we obtain posterior samples, from the posterior

f(µ,Σ,λ, r,d|θ,y) ∝
T∏

t=1

f(θt, rt,yt,dt|µ,Σ,λ)f(µ,Σ,λ), (5)

where the joint density of (Θt,Rt,Yt,Dt) is

2qφ2n+q((wt,yt − diag(λ)dt)
′|µ,Σ)φq(dt|0, Iq)

n∏

i=1

rti. (6)

Equation (6) is the density that arises by transforming each Wti, in the joint density

of (Wt,Yt,Dt), to its representation in polar coordinate (equation (2)). Note that in

(5) we work with the unconstrained PD matrix Σ and then the definition of the prior

distribution is easier with respect to (4). The posterior distribution (5) is not iden-

tifiable, but nevertheless we can obtain samples from it. Suppose to have B samples

from (5), i.e. {µb,Σb,λb, rb,db}Bb=1. The subset {µb,Σb,λb}Bb=1 are samples from the

posterior distribution f(µ,Σ,λ|θ,y) and if we transform the set {µb,Σb,λb}Bb=1 to the

set {µ̃b, Σ̃b
,Cb,λb}Bb=1, the latter is a set of samples from f(µ̃, Σ̃,C,λ|u,y). As con-

sequence the subset {µ̃b, Σ̃b
,λb}Bb=1 are samples from (4), the posterior distribution of

interest. From a practical point of view, we can work with (5) and put a prior distri-

bution over (µ,Σ,λ). The posterior samples {µb,Σb,λb}Bb=1 are transformed to the set

{µ̃b, Σ̃b
,λb}Bb=1 that are posterior samples from (4). The prior distribution f(µ̃, Σ̃,λ) in

(4) is induced by f(µ,Σ,λ) in (5). To verify what is the real advantage of this approach,

let assume f(µ,Σ,λ) = f(µ,Σ)f(λ). The full conditional of (µ,Σ) is proportional to∏T
t=1 φ2n+q((wt,yt − diag(λ)dt)

′|µ,Σ)f(µ,Σ), i.e. the product of a (2n + q)-variate nor-

mal density and a prior distribution over its mean and covariance matrix. We can then

use the standard prior for the normal likelihood that gives the possibility to find in closed

form the full conditional of (µ,Σ).

We suggest µ,Σ ∼ NIW (·, ·, ·, ·), where NIW (·, ·, ·, ·) indicates the normal inverse

Wishart (NIW) distribution. This induces a full conditional for (µ,Σ) that is NIW and

then it is easy to simulate with a Gibbs step. We can apply our approach to obtain posterior

samples with a Gibbs step even when we have only circular variables, i.e. we are working

with the multivariate projected normal, and also in the univariate case where, till now,

the components of Σwi were sampled using Metropolis steps, see for example Wang and

Gelfand (2013), Wang and Gelfand (2014), Mastrantonio et al. (2015a) or Mastrantonio

et al. (2015b). Under the NIW we are not able to compute, in closed form, the induced

prior on (µ̃, Σ̃) but, if needed, it can always be evaluated through simulation. Of course

the NIW it is not the only possible choice, for example can be used the prior proposed by
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Huang and Wand (2013) or the one of O’Malley and Zaslavsky (2008), but we think that

the NIW is easiest to implement.

To conclude the MCMC specification, we have to show how to sample the remaining

parameters and latent variables. Let µyt|wt
= µy + Σ′wyΣ

−1
w (wt − µw) and Σy|w = Σy −

Σ′wyΣ
−1
w Σwy. The full conditional of λ is proportional to

∏T
t=1 φq(yt|µyt|wt

+diag(dt)λ,Σy|w)f(λ)

and if we use a multivariate normal prior over λ, we obtain a multivariate normal full con-

ditional. Let Vd =
(
Λ′Σ−1y|wΛ + Iq

)−1
and Mdt = VdΛ

′Σ−1y|w
(
yt − µy|w

)
then the full

condition of dt is Nq (Mdt ,Vq) I0q,∞, where Nq (·, ·) I0q,∞ is a q−dimensional truncated

normal distribution with components having support R+. We are not able to find in closed

form the full conditionals of the rtis and then we sample them with Metropolis steps.

4 The hidden Markov model

In this Section, we introduce the HMM and its Bayesian non-parametric version, the sHDP-

HMM.

4.1 The model

Let zt ∈ K ⊆ Z+\{0} be a discrete variable which indicates the latent behaviour at time

t and let ψk be the vector of parameters of the PSN in the behaviour k, i.e. ψk =

(µk,Σk,λk).

In the HMM the observations are time independent given {zt}Tt=1 and {ψk}k∈K, i.e.:

f(θ,y|{zt}t∈T , {ψk}k∈K) =
∏

t∈T

∏

k∈K

[
f(θt,yt|ψzt)

]I(zt,k)
,

where I(zt, k), the indicator function, is equal to 1 if zt = k, 0 otherwise. The hidden

variables {zt}Tt=1 follow a first-order Markov chain with P (zt = k|zt−1 = j) = πjk and

zt|zt−1,πzt−1 ∼ πzt−1 ,

where πj = {πjk}k∈K. As pointed out by Cappé et al. (2005), the initial state z0 cannot be

estimated consistently since we have no observation at time 0 and then we set z0 = 1. The

distribution of Θt,Yt|ψzt , that in the HMM literature it is called the emission distribution,

is the projected-skew normal, i.e. Θt,Yt|zt,ψzt ∼ PSNn,q(µzt ,Σzt ,λzt). We remark that,

although the model is specified with respect to (µk,Σk), we can only estimate (µ̃k, Σ̃k)

We can equivalently express the hidden process in a more suitable way for the specifica-

tion of the sHDP-HMM. Let ηt = ψzt , with ψk ∈ Ψ, k ∈ K, and suppose that each element

of the sequence {ηt}t∈T , is drawn from a discrete space Ξ = {ψk}k∈K and the probability

8

Page 74



of drawing ηt depends only on the value ηt−1. We let P (ηt|ηt−1 = ψl) ∼ Gηt−1
≡ Gψl

,

with Gψl
=
∑

k∈K πlkδψk
where δψk

is the Dirac delta function placed on ψk. The above

HMM can be expressed as

f(θ,y|{ηt}t∈T ) =
∏

t∈T
f(θt,yt|ηt),

Θt,Yt|ηt ∼ PSNn,q(µzt ,Σzt ,λzt),

ηt|ηt−1, Gηt−1 ∼ Gηt−1 .

The standard way to estimate the cardinality of K (K∗) is to set it a priori and then run

models with different values of K∗. The models are compared using informational criteria

such as the AIC, BIC or ICL and the model that has the better value of the selected

criterion is chosen. They can suggest different values of K∗ and moreover they are used to

obtain the optimal K∗ but without any measurement of uncertainty.

In a Bayesian framework there are several ways to deal with an unknown number of

behaviours. We can use the Reversible Jump proposed by Green (1995) or the HDP by Teh

et al. (2006) and its modification, the sticky hierarchical Dirichlet process (sHDP), proposed

by Fox et al. (2011). Here we use the sHDP because it is easier to implement. This method

let K∗ → ∞ and estimates from the data the number of non-empty behaviours, K. K is

a random variable and we can have a measurement of uncertainty on its estimate.

4.2 The sHDP-HMM

In the sHDP-HMM is assumed the following:

Gηt
|τ, ρ, γ,H ∼ sHDP (τ, γ, ρ,H), τ > 0, γ > 0, ρ ∈ [0, 1], (7)

where with sHDP (·) we indicate the sticky hierarchical Dirichlet process (Fox et al., 2011)

with first level concentration parameter τ , second level concentration parameter γ, self-

transition parameter ρ and base measure H, where the base measure is a distribution over

the space Ψ. Fox et al. (2011) show that equation (7) can be written equivalently as

Gηt
|ρ, γ ∼ DP (γ, (1− ρ)G0 + ρδηt

),

G0|τ,H ∼ DP (τ,H),

where DP (v, L) indicates the Dirichlet process with base measure L and concentration

parameter a.
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We can write the sHDP-HMM as

f(θ,y|{ηt}t∈T ) =
∏

t∈T
f(θt,yt|ηt),

Θt,Yt|ηt ∼ PSNn,q(µzt ,Σzt ,λzt),

ηt|ηt−1, Gηt−1 ∼ Gηt−1 ,

Gηt
|ρ, γ ∼ DP (γ, (1− ρ)G0 + ρδηt

),

G0|τ,H ∼ DP (τ,H).

To simplify the implementation we write the model using the stick-breaking represen-

tation of the Dirichlet process (Sethuraman, 1994) and we introduce the latent variables

r = {rt}Tt=1 and d = {dt}Tt=1. Then, let β = {βk}∞k=1, the model we estimate with the

MCMC algorithm is

f(θ,y, r,d|{zt}t∈T , {ψk}k∈K) =
∏

t∈T

∏

k∈K
[f(θt, rt,yt,dt|ψk)]

I(k=zt) ,

zt|zt−1,πzt−1 ∼ πzt−1 ,

πk|ρ, γ,β,ψk ∼ DP
(
γ, (1− ρ)β + ρδψk

)
,

β|τ ∼ GEM(τ),

ψk|H ∼ H,

where GEM(·) indicates the stick-breaking process (Sethuraman, 1994).

To complete the model we have to specify the base measure H, that in the stick-

breaking representation acts as a prior distribution over the parameters (µk,Σk,λk). We

use µk,Σk ∼ NIW (µ0, η, ς,Ψ) and λ ∼ Nq(M,V) because, as noted in Section 2.3, these

choices lead to full conditionals easy to simulate.

We assume that the parameters of the sHDP, τ , γ and ρ, are random quantities and

following Fox et al. (2011) we choose as priors: τ ∼ G(aτ , bτ ), γ ∼ G(aγ, bγ) and ρ ∼
B(aρ, bρ), where G(·, ·) indicates the gamma distribution, expressed in terms of shape and

scale, and B(·, ·) is the beta. Since we treat ρ as a random variable we can estimate

through the data the strength of the self-transition. For the MCMC sampling of the

behaviour indicator variables we use the beam sampler (Van Gael et al., 2008). Despite

the complexity of the model, in terms of emission distribution and the underline Markov

structure, with the exception of the rits, all the other unknown quantities can be updated

in the MCMC with Gibbs steps.
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(a) First dog (b) Second dog (c) Third dog

(d) Fourth dog (e) Fifth dog (f) Sixth dog

Figure 1: Marginal densities of the turning-angles.

5 Real data example

In this Section we apply our proposal on a real dataset, taken from the movebank website

(van Bommel and Johnson, 2014a).

5.1 Data description

Data on free-ranging Maremma sheepdogs positions are recorded by tracking collars every

30 minutes. The behaviour of the dogs is unknown because there is minimal supervision

by their owners and the animals are allowed to range freely. The dataset was first analyzed

in van Bommel and Johnson (2014b) with the aim to understand how much space the dogs

utilize and the portion of time that the dogs spent with livestock. Even if the primary

purpose was not to identify behavioural modes, van Bommel and Johnson (2014b) results

show that the dogs can be clustered in two states, one characterized by low speeds and

tortuous path at the core of their home ranges (we call it state VB1), when they are resting

or attending livestock, and large step-lengths (i.e. high movement speeds) in relatively

straight lines, related to boundary patrolling or seeing off predators (we call it state VB2),

at the edge of their home ranges.
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(a) First dog (b) Second dog (c) Third dog

(d) Fourth dog (e) Fifth dog (f) Sixth dog

Figure 2: Marginal densities of the log-step-lengths.

We characterize the hidden behaviours by analyzing the turning-angles and the log-

arithm of the step-lengths2 (log-step-lengths) for each dog taken into consideration. We

model movement metrics belonging to dogs sharing the same property and observed on a

common time period. We select the data from the “Heatherlie” property where between

the 08/02/2012 5:30 and 10/03/2012 17:00, six dogs are observed, having then a time series

of 3000 points with 6 circular and 6 linear variables. The six dogs have respectively 107, 63,

231, 43, 31 and 63 missing circular observations and 95, 53, 117, 32, 22 and 45 linear ones.

The density estimates of the turning-angles and log-step-lengths can be seen in Figures

1 and 2. In the selected property and observational interval, van Bommel and Johnson

(2014b) note that four of the six dogs form one social group responsible for protecting all

livestock, one dog is old and mostly solitary and the last one suffers of an extreme social

exclusion which severely restrict its movements. The animals that are part of the social

group are often found together, but regularly they split into sub-groups.
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(a) First dog (b) Second dog (c) Third dog

(d) Fourth dog (e) Fifth dog (f) Sixth dog

Figure 3: Posterior marginal densities of the turning-angles. The dashed-dotted line is the

marginal density of the first behaviour, the dashed one is the second and the full the third.

K̂ = 3.

1 2 3

1 0.711 0.181 0.108

(0.679 0.741) (0.154 0.209) (0.085 0.132)

2 0.141 0.672 0.187

(0.121 0.164) (0.640 0.704) (0.161 0.215)

3 0.083 0.209 0.708

(0.065 0.103) (0.180 0.239) (0.676 0.739)

Table 1: Posterior mean estimates and 95 % credible intervals for the transition probability

matrix: K̂ = 3.
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(a) First dog (b) Second dog (c) Third dog

(d) Fourth dog (e) Fifth dog (f) Sixth dog

Figure 4: Posterior marginal densities of the log-step-lengths. The dashed-dotted line is

the marginal density of the first behaviour, the dashed one is the second and the full the

third. K̂ = 3.

5.2 Results

The model is estimated considering 400000 iterations, burnin 300000, thin 20 and by tak-

ing 5000 samples for inferential purposes. As prior distributions we choose µk,Σk ∼
NIW (06, 0.001, 25, I6) and λk ∼ N2 (02, 50I2) that are standard weak informative dis-

tributions. For the parameter ρ, that governs the self-transition probabilities, we decide to

use ρ ∼ B(1, 1), that is equivalent to a uniform distribution over [0, 1], while τ ∼ G(1, 0.01)

and γ ∼ G(1, 0.01). The priors of ρ, τ and γ induce a prior over K (Fox et al., 2011) that

we evaluated through simulation, by using the degree ` weak limit approximation (Ishwaran

and Zarepour, 2002) with ` = 1000; we found that K ∈ [4, 465] with a coverage of 95%.

The model estimates 3 behavioural modes with P (K = 3|θ,y) = 1. From the analysis

of the posterior marginal distributions, Figures 3 and 4, and the correlation matrices Ωk,

Figure 5, we can easily interpret the behaviour modes, we can confirm what van Bommel

and Johnson (2014b) found, we find connections between our estimated behavioural modes

2The logarithm is needed since the linear components of the projected-skew normal must be defined

over R.
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(a) First behaviour (b) Second behaviour

(c) Third behaviour

Figure 5: Graphical representation of the posterior means of the correlation matrices Ωks. A

filled square indicates a positive value while an empty one a negative; a square is depicted

only if the associated correlation is significantly different from 0. The dimension of the

square is proportional to the absolute value of the associated mean correlation coefficient.

The full lines separate the correlation matrix of the cosine and sine of the circular variables

(top-left), the correlation matrix of the linear ones (bottom-right) and the correlation

matrix between the linear variables and the sine and cosine of the circular ones (top-right).

K̂ = 3.

and the states VB1 and VB2 hypothesized by van Bommel and Johnson (2014b), and

we add some new results. There are three groups of dogs that share similar marginal

distributions: the dogs group one (DG1) composed by the dogs three and four, Figure 3

(c) and (d) and Figure 4 (c) and (d), the dog group two (DG2) is composed by the dogs

two and five, Figure 3 (b) and (e) and Figure 4 (d) and (e), and the dogs one and six form

the third group (DG3), Figure 3 (a) and (f) and Figure 4 (a) and (f).

In the first behaviour, all the dogs are in state VB1. They have small log-step-lengths

and there are few movements in a straight line, i.e. the circular densities have low values
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at 0. There are few correlations that differ significantly from 03, see Figure 5 (a), and they

have all mean posterior values (PEs) below 0.5. The stronger correlation (PE 0.474) is

between the linear variables of the first and sixth dogs, i.e. the one in the DG3.

In the second behaviour, the linear distributions of the dogs in the DG3 have more

mass of probability at higher values, but still having mass at low ones, and the correla-

tion between the log-step-lengths increases (PE 0.840). The dogs in the DG3 have more

movements in a straight line. The linear and circular distributions of the dogs in the DG1

and DG2 are similar to the ones of the first behaviour. The log-step-length of the dog two

is correlated with the one of the dog three (PE 0.568) and five (PE 0.757) and the linear

variables of the dogs five and six are correlated with PE 0.450. In this behaviour the dogs

in the DG3 move to the state VB2 while the ones of the DG1 and DG2 remain in the state

VB1.

In the third behaviour the linear distributions of the dogs in the DG3 put all the mass

of probability on high values and the circular distributions have two modes, with more or

less the same heights, at about 0 and 3.141. The correlation between the linear variables of

the dogs in the DG3 increases, with respect to the second behaviour, and it is almost one

(PE 0.982). The two dogs change direction one accordingly to the other, since the cosine

and sine of the circular variables are highly correlated (PEs 0.958 and 0.916). The linear

distributions of the dogs in the DG2 move their mass of probability to higher values and

the distributions resemble the ones of the dogs in the DG3, second behaviour. The circular

distributions of the dogs in the DG2 are close to the circular uniform. The circular and

linear distributions of the dogs in the DG1 are similar to the one of the first and second

behaviours but their linear variables are now correlated (PE 0.781). In this behaviour the

dogs in the DG3 remain in the state VB2 but, with respect to the second behaviour, they

increase the amount of movement (in terms of higher step-length and more tortuous path).

The dogs in the DG2 are in the state VB2 while the one in the DG1 remain in the state

VB1. The dogs in the DG2 and DG3 have all the linear variables correlated.

The fourth dog is the one that suffers of an extreme social exclusion since its variables

(circular and linear) are never correlated with the ones of the other dogs, with the exception

of the third. The third dog is, probably, the old one since it does not move a lot, see Figure

4 (c), it is solitary, i.e. it bonds (in terms of correlation) only with the socially excluded

one and, occasionally, with the dog two (second behaviour). The dogs in the DG2 and DG3

form one social group in the third behaviour, i.e. all the linear variables are correlated,

and they split into subgroup in the behaviours one and two.

From Table 1 we see that there is a strong self-transition in all three behaviours (re-

3A correlation differs significantly from 0 if its 95% credible interval (CI) does not contain the 0.
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PSN VMLG VMLW WCLG WCLW

K̂ 3 14 14 14 13

CRPSc 0.489 0.491 0.499 0.492 0.501

CRPSl 2.342 2.782 3.225 2.466 2.965

Table 2: Estimated number of non-empty behaviours (K̂), mean CRPS for circular

(CRPSc) and linear (CRPSl) variables, for the five models based on the PSN, VMLG,

VMLW, WCLG and WCLW.

(a) (b)

Figure 6: Posterior marginal densities of the turning-angle (a) and the log-step-length (b)

of the first dog estimated with the emission distribution WCLG.

spectively PE 0.711, 0.672 and 0.708). The CIs of the probabilities to move to a new empty

behaviour (
∑∞

k=4 πjk, j = 1, 2, 3), not shown in Table 1, have always right side limit below

0.00001.

5.3 Comparisons with other emission distributions

In this Section we show that our proposed emission distribution performs better, on the

data we used in Section 5.2, than the standard distributions used in the literature. We are

going to estimate sHDP-HMMs with different emission distributions and we compare the

results. Unfortunately there are not measures of goodness of fit, such as the AIC or the BIC,

when the model is based on the sHDP. Then we decide to base our comparison between

models in terms of missing observations estimate, i.e. predictive ability, and behavioural

modes interpretability.

To have a measure of how the model estimates the missing, we randomly select, for

each circular and linear variables, 10% of the observations. We treat them as missing and,
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using the continuous ranked probability score (CRPS) (Matheson and Winkler, 1976), we

compare the holdout values with the associated posterior distributions. The CRPS is a

proper scoring rule that can be easily computed for both circular (Grimit et al., 2006) and

linear (Gneiting and Raftery, 2007) variables using the MCMC output. Let Ci be the set of

time points where the ith value of the circular variable is setted as missing, Lj be the ones

of the jth linear variable and let θbti, t ∈ Ci and ybtj, t ∈ Lj be respectively the bth posterior

sample of θti and ytj. A Monte Carlo approximation of the CRPS for a circular variable is

computed as

CRPSci ≈
1

B

B∑

b=1

d(θti, θ
b
ti)−

1

2B2

B∑

b=1

B∑

b′=1

d(θbti, θ
b′
ti), t ∈ Ci,

where d(·, ·) is the angular distance. The CRPS for a linear variable is approximated with

CRPSlj ≈
1

B

B∑

b=1

|ytj − ybtj| −
1

2B2

B∑

b=1

B∑

b′=1

|ybtj − yb
′
tj|, t ∈ Lj.

We then compute the overall mean CRPS for the circular variables, CRPSc = 1
n

∑n
i=1CRPSci,

and the linear ones, CRPSl = 1
q

∑q
j=1CRPSlj, and we use these two indeces to measure

the ability of the model in estimating the missing observations.

It is generally supposed, in the literature, that the turning-angle is distributed as a

von Mises (Langrock et al., 2012; Holzmann et al., 2006; Eckert et al., 2008) or a wrapped

Cauchy (Langrock et al., 2012; Eckert et al., 2008; Morales et al., 2004; Holzmann et al.,

2006) while the gamma (Langrock et al., 2012; Holzmann et al., 2006) or the Weibull

(Langrock et al., 2012; Morales et al., 2004) are used for the step-length; these distributions

are compared with our proposal. In the model specification, Section 4.1, we assume that

each linear variable belongs to R and then, instead of the gamma and Weibull, we use

the log-gamma and log-Weibull, i.e. the distributions that arise by taking the log of,

respectively, a random variable gamma or Weibull distributed. The model in Section 4

is compared with the ones based on the von Mises and the log-gamma (VMLG), the von

Mises and the log-Weibull (VMLW), the wrapped Cauchy and the log-gamma (WCLG), the

wrapped Cauchy and the log-Weibull (WCLW). There is not an obvious way to introduce

dependence between the movement metrics on the model VMLG, VMLW, WCLG and

WCLW, and, in the literature, they are generally supposed to be independent (see for

example Morales et al. (2004) or Langrock et al. (2012)). Then, in these models, we

assume the following:

f(θ,y|{zt}t∈T {ψk}k∈K) =
∏

t∈T

∏

k∈K

[
n∏

i=1

f(θti|ψzt)

q∏

j=1

f(ytj|ψzt)

]I(zt,k)
.
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We use a G(1, 0.5) as prior for the shape and rate parameters of the log-gamma and the

log-Weibull, that is a standard weak-informative prior. For the two parameters of the

wrapped Cauchy, one defined over [0, 2π) and one over [0, 1], we use uniform distributions

in the respective domains while on the two parameters of the von Mises, one defined over

[0, 2π) and one over R+, we use respectively the non-informative U(0, 2π) and the weak

informative G(1, 0.5). As prior distributions for the sHDP parameters, we use the same

used in Section 5.

In Table 2 we can see the estimated number of non-empty behaviours (K̂), CRPScs

and CRPSls. The predictive ability of our model outperforms all the others in both CRPS

for circular and linear variables. The models based on the VMLG, VMLW, WCLG and

WCLW estimate a larger number of behaviours, with respect to our proposal, i.e. in three

of them K̂ =14 and in one K̂ =13; we can see an example of the estimated behaviours

in Figure 6. It is challenging to give an interpretation to these behaviours and moreover

such a large number of behaviours does not increase the predictive ability of the models,

see Table 2.

A possible explanation of why the models based on the VMLG, VMLW, WCLG and

WCLW estimate 13 or 14 behaviours can be found in Mastrantonio et al. (2015a). They

simulate datasets using bivariate emission distributions with dependent components, bi-

modal marginals for the circular variable, with the aim to understand what happens if, on

the simulated datasets, are estimated HMMs with emission distributions that do not allow

for dependent components and bimodality in the circular marginal. They found that the

number of behaviours is generally overestimated, since each behaviour is separated into

two, one for each mode of the circular distribution.

In our real data application, we have six circular and six linear variables, some of them are

correlated and often the marginal circular distributions have two modes, see Figure 3. If we

assume independence between the circular and linear variables, as we did in the model base

on the VMLG, VMLW, WCLG and WCLW, and the marginal circular distributions are

unimodal, as the von Mises and the wrapped Cauchy, then we can expect a large number

of behaviours.

6 Conclusions

The primary objective of this work, motivated by our real data, was to introduce an HMM

capable of modelling a group of animals, taking into account possible correlations between

the associated movement metrics. For this reason we introduced a new multivariate circular-

linear distribution, namely the projected-skew normal. The new distribution has dependent

components and it is used as emission distribution in the HMM. The HMM was estimated
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under a non-parametric Bayesian framework and we showed how to implement the MCMC

algorithm.

The model, applied to the real data example, confirmed known results and added new

ones. We showed that our emission distribution outperforms the most used in the literature

in terms of predictive ability and the estimated behaviours are more easily interpretable.

Future work will lead us to incorporate covariates to model the circular-linear mean and

variance of the projected-skew normal and we will explore different temporal dependence

structures, such as the semi-HMM or the autoregressive-HMM.
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Chapter 5

Discussion

The main contribution of this work is to provide new models for temporal and spatio-

temporal circular and circular-linear data, showing that complex models can be fitted in a

fully Bayesian framework, with efficient and easy to implement algorithms and introducing

joint and conditional modelling of circular and linear variables.

In Chapter 3.1, we extend the two state of the art models for spatio-temporal data,

namely the wrapped Gaussian and the projected Gaussian processes, introducing a flexible

correlation function and adding a nugget effect. We also use linear (discrete and contin-

uous) covariates to model the circular mean and variance of the circular processes. The

predictive performances of the models proposed are compared on a real data example.

The projected Gaussian process is highly flexible but parameters interpretation is

challenging. On the other hand, the wrapped Gaussian has a straightforward parameters

interpretation but, since its univariate distribution is unimodal and symmetric, it is not

flexible as the projected one. In Chapter 3.2, we propose a new spatio-temporal process,

the wrapped skew Gaussian, that is a generalization of the wrapped Gaussian. With a

simulation study we show that the new process is more flexible than the wrapped Gaussian

and, differently from the projected Gaussian process, retains and easy and straightforward

parameters interpretation.

In Chapter 4.1 we propose and HMM for cylindrical data. The marginal circular

distribution is based on the projected normal. With a simulation study we show the

important improvement obtained by adopting our proposal versus the common practice of

ignoring linear-circular dependence and/or circular bimodality. We are consistently able

to avoid the over estimation in the number of regimes that otherwise can easily occur.

The model in Chapter 4.2 extends the one of Chapter 4.1, allowing to model a multi-

variate time series of circular and linear data. We propose a new circular-linear distribution

with multivariate dependence, based on the projected normal (circular variables) and the

skew normal (linear variables) and we show how to estimate its parameters in a Bayesian

framework. The proposed HMM is based on the hierarchical Dirichlet process that allows

us to not fix at prior the number of latent regimes. The proposed model is estimated on a

real dataset and its predictive performance, as well as the posterior interpretation of the
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obtained regimes, are compare with the emission distributions most used in the literature.

Future work will be devoted to the development and improvement of models for discrete

circular variables as at present, a lack of efficient and general models for these type of

problems is in the literature. We will also focus in the use of circular variables to describe

periodic phenomena.
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