Adeegso tilmaantan si aad u carrabbaabdo ama ugu samayso link qoraalkan http://hdl.handle.net/2307/5212
Cinwaan: Large deviations for generalized polya urns with general urn functions
Qore: Franchini, Simone
Tifaftire: Caputo, Pietro
Ereyga furaha: URN MODELS
MARKOV CHAINS
LARGE DEVIATIONS
Taariikhda qoraalka: 27-Jan-2015
Tifaftire: Università degli studi Roma Tre
Abstract: We consider a generalized two-colorPolya urn (black and withe balls) first introduced by Hill, Lane, Sudderth, where the urn composition evolves as follows: let : [0; 1] ! [0; 1], and denote by xn the fraction of black balls at step n, then at step n + 1 a black ball is added with probability (xn) and a white ball is added with probability 1 􀀀 (xn). We discuss large deviations for a wide class of continuous urn functions. In particular, we prove that this process satis es a Sample-Path Large Deviations principle (SPLDP), also providing a variational representation for the rate function. Then, we derive a variational representation for the limit (s) = limn!1 1 n log P (fnxn = bsncg) ; s 2 [0; 1] ; where nxn is the number of black balls at time n, and use it to give some insight on the shape of (s). Under suitable assumptions on we are able to identify the optimal trajectory. We also find a non-linear Cauchy problem for the cumulant generating function and provide an explicit analysis for some selected examples. In particular, we discuss the linear case, which is strictly related to the so-called Bagchi-Pal urn, giving the exact implicit expression for in therms of the Cumulant Generating Function.
URI : http://hdl.handle.net/2307/5212
Xuquuqda Gelitaanka: info:eu-repo/semantics/openAccess
Wuxuu ka dhex muuqdaa ururinnada:Dipartimento di Matematica e Fisica
T - Tesi di dottorato

Fayl ku dhex jira qoraalkan:
Fayl Sifayn BaacFayl
franchini.tesi.pdf948.82 kBAdobe PDFMuuji/fur
Muuji xogta qoraalka Ku tali qoraalkan

Page view(s)

186
Last Week
0
Last month
0
checked on Nov 23, 2024

Download(s)

51
checked on Nov 23, 2024

Google ScholarTM

Check


Dhammaan qoraallada lagu kaydiyay DSpace waxay u dhowrsanyihiin xuquuqda qoraha.