Please use this identifier to cite or link to this item: http://hdl.handle.net/2307/5212
DC FieldValueLanguage
dc.contributor.advisorCaputo, Pietro-
dc.contributor.authorFranchini, Simone-
dc.date.accessioned2016-09-02T12:52:53Z-
dc.date.available2016-09-02T12:52:53Z-
dc.date.issued2015-01-27-
dc.identifier.urihttp://hdl.handle.net/2307/5212-
dc.description.abstractWe consider a generalized two-colorPolya urn (black and withe balls) first introduced by Hill, Lane, Sudderth, where the urn composition evolves as follows: let : [0; 1] ! [0; 1], and denote by xn the fraction of black balls at step n, then at step n + 1 a black ball is added with probability (xn) and a white ball is added with probability 1 􀀀 (xn). We discuss large deviations for a wide class of continuous urn functions. In particular, we prove that this process satis es a Sample-Path Large Deviations principle (SPLDP), also providing a variational representation for the rate function. Then, we derive a variational representation for the limit (s) = limn!1 1 n log P (fnxn = bsncg) ; s 2 [0; 1] ; where nxn is the number of black balls at time n, and use it to give some insight on the shape of (s). Under suitable assumptions on we are able to identify the optimal trajectory. We also find a non-linear Cauchy problem for the cumulant generating function and provide an explicit analysis for some selected examples. In particular, we discuss the linear case, which is strictly related to the so-called Bagchi-Pal urn, giving the exact implicit expression for in therms of the Cumulant Generating Function.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli studi Roma Treit_IT
dc.subjectURN MODELSit_IT
dc.subjectMARKOV CHAINSit_IT
dc.subjectLARGE DEVIATIONSit_IT
dc.titleLarge deviations for generalized polya urns with general urn functionsit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informatiche::FISICA MATEMATICAit_IT
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informatiche::FISICA MATEMATICAit_IT
dc.subject.isicruiCategorie ISI-CRUI::Scienze fisiche::Physicsit_IT
dc.subject.isicruiCategorie ISI-CRUI::Scienze fisiche::Physicsit_IT
dc.subject.anagraferoma3Scienze fisicheit_IT
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Matematica e Fisica*
item.languageiso639-1other-
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:Dipartimento di Matematica e Fisica
T - Tesi di dottorato
Files in This Item:
File Description SizeFormat
franchini.tesi.pdf948.82 kBAdobe PDFView/Open
Show simple item record Recommend this item

Page view(s)

186
Last Week
0
Last month
0
checked on Nov 23, 2024

Download(s)

51
checked on Nov 23, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.