Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2307/5212
Titolo: Large deviations for generalized polya urns with general urn functions
Autori: Franchini, Simone
Relatore: Caputo, Pietro
Parole chiave: URN MODELS
MARKOV CHAINS
LARGE DEVIATIONS
Data di pubblicazione: 27-gen-2015
Editore: Università degli studi Roma Tre
Abstract: We consider a generalized two-colorPolya urn (black and withe balls) first introduced by Hill, Lane, Sudderth, where the urn composition evolves as follows: let : [0; 1] ! [0; 1], and denote by xn the fraction of black balls at step n, then at step n + 1 a black ball is added with probability (xn) and a white ball is added with probability 1 􀀀 (xn). We discuss large deviations for a wide class of continuous urn functions. In particular, we prove that this process satis es a Sample-Path Large Deviations principle (SPLDP), also providing a variational representation for the rate function. Then, we derive a variational representation for the limit (s) = limn!1 1 n log P (fnxn = bsncg) ; s 2 [0; 1] ; where nxn is the number of black balls at time n, and use it to give some insight on the shape of (s). Under suitable assumptions on we are able to identify the optimal trajectory. We also find a non-linear Cauchy problem for the cumulant generating function and provide an explicit analysis for some selected examples. In particular, we discuss the linear case, which is strictly related to the so-called Bagchi-Pal urn, giving the exact implicit expression for in therms of the Cumulant Generating Function.
URI: http://hdl.handle.net/2307/5212
Diritti di Accesso: info:eu-repo/semantics/openAccess
È visualizzato nelle collezioni:Dipartimento di Matematica e Fisica
T - Tesi di dottorato

File in questo documento:
File Descrizione DimensioniFormato
franchini.tesi.pdf948.82 kBAdobe PDFVisualizza/apri
Visualizza tutti i metadati del documento Suggerisci questo documento

Page view(s)

186
Last Week
0
Last month
0
checked on 23-nov-2024

Download(s)

51
checked on 23-nov-2024

Google ScholarTM

Check


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.