Please use this identifier to cite or link to this item:
Title: Sviluppo di metodi per la predizione massiva della struttura e funzione di proteine attraverso l'utilizzo di infrastrutture di calcolo condiviso = Development of methods for high through-put proteins structure and function prediction through the use of GRID computing infrastructures
Authors: Minervini, Giovanni
metadata.dc.contributor.advisor: Polticelli, Fabio
Issue Date: 15-Dec-2009
Publisher: Università degli studi Roma Tre
Abstract: The number of natural proteins represents a small fraction of all the possible protein sequences and there is an enormous number of proteins never sampled by nature, the so called “never born proteins” (NBPs). A fundamental question in this regard is if the ensemble of natural proteins possesses peculiar chemical and physical properties or if it is just the product of contingency coupled to functional selection. A key feature of natural proteins is their ability to form a well defined 3D structure. Thus, the structural study of NBPs can help to understand if natural protein sequences were selected for their peculiar properties or if they are just one of the possible stable and functional ensembles. The structural characterization of a huge number of random proteins cannot be approached experimentally, thus the problem has been tackled using a computational approach. A large random protein sequences library (2×104 sequences) was generated, discarding amino acid sequences with significant similarity to natural proteins, and the corresponding structures were predicted using Rosetta. Given the highly computational demanding problem, Rosetta was ported in grid and a user friendly job submission environment was developed within the GENIUS Grid Portal. Protein structures generated were analysed in terms of net charge, secondary structure content, surface/volume ratio, hydrophobic core composition, etc.. The vast majority of NBPs, according to the Rosetta model, are characterized by a compact three-dimensional structure with a high secondary structure content. Structure compactness and surface polarity are comparable to those of natural proteins, suggesting similar stability and solubility. Deviations are observed in α helix-β sheet relative content and in hydrophobic core composition, as NBPs appear to be richer in helical structure and aromatic amino acids with respect to natural proteins. The results obtained suggest that the ability to form a compact, ordered and water-soluble structure is an intrinsic property of polypeptides. The tendency of random sequences to adopt α helical folds indicate that all-α proteins may have emerged early in prebiotic evolution. Further, the lower percentage of aromatic residues observed in natural proteins has important evolutionary implications as far as tolerance to mutations is concerned.
Appears in Collections:X_Dipartimento di Biologia
T - Tesi di dottorato

Files in This Item:
File Description SizeFormat
tesi_Minervini.pdf5.43 MBAdobe PDFView/Open
SFX Query Show full item record Recommend this item

Page view(s)

Last Week
Last month
checked on Sep 18, 2020

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.