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BACKGROUND 
 
The number of natural proteins represents a small fraction of all the possible 
protein sequences and there is an enormous number of proteins never 
sampled by nature, the so called “never born proteins” (NBPs). A 
fundamental question in this regard is if the ensemble of natural proteins 
possesses peculiar chemical and physical properties or if it is just the 
product of contingency coupled to functional selection. A key feature of 
natural proteins is their ability to form a well defined 3D structure. Thus, 
the structural study of NBPs can help to understand if natural protein 
sequences were selected for their peculiar properties or if they are just one 
of the possible stable and functional ensembles.  
 
TECHNICAL IUSSUES 
  
The structural characterization of a huge number of random proteins cannot 
be approached experimentally, thus the problem has been tackled using a 
computational approach. A large random protein sequences library (2×10

4 

sequences) was generated, discarding amino acid sequences with significant 
similarity to natural proteins, and the corresponding structures were 
predicted using Rosetta. Given the highly computational demanding 
problem, Rosetta was ported in grid and a user friendly job submission 
environment was developed within the GENIUS Grid Portal. Protein 
structures generated were analysed in terms of net charge, secondary 
structure content, surface/volume ratio, hydrophobic core composition, etc..  
 
RESULTS 
  
The vast majority of NBPs, according to the Rosetta model, are 
characterized by a compact three-dimensional structure with a high 
secondary structure content. Structure compactness and surface polarity are 
comparable to those of natural  
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proteins, suggesting similar stability and solubility. Deviations are observed 
in α helix-β sheet relative content and in hydrophobic core composition, as 
NBPs appear to be richer in helical structure and aromatic amino acids with 
respect to natural proteins.  
 
CONCLUSIONS  
 
The results obtained suggest that the ability to form a compact, ordered and 
water-soluble structure is an intrinsic property of polypeptides. The 
tendency of random sequences to adopt α helical folds indicate that all-α 
proteins may have emerged early in prebiotic evolution. Further, the lower 
percentage of aromatic residues observed in natural proteins has important 
evolutionary implications as far as tolerance to mutations is concerned. 
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INTRODUZIONE 
 
Il numero di proteine naturali rappresenta una piccola frazione di tutte le 
possibili sequenze immaginabili. Esiste quindi un numero enorme di 
proteine potenzialmente non esplorate dalla natura, le cosiddette "Never 
Born Proteins" (NBPs). Una questione fondamentale, a questo riguardo, è 
chiarire se l'insieme delle proteine naturali possieda proprietà chimiche e 
caratteristiche fisiche peculiari, le quali in qualche modo rendano le 
proteine oggi osservabili in natura, un qualcosa di “irripetibile” o se, meno 
prosaicamente, esse possano essere solo il prodotto della contingenza unita 
ad una forte pressione evolutiva operata dalla selezione naturale. Una 
caratteristica fondamentale delle proteine naturali è la loro capacità di dar 
luogo ad una struttura tridimensionale ben definita. Lo studio della struttura 
fine di NBPs può aiutare a capire se le sequenze di proteine naturali siano 
state scelte per le loro proprietà particolari o se esse stesse rappresentino 
solo una delle possibili soluzioni in grado di dare luogo ad una struttura 
stabile e allo stesso tempo funzionale per la vita. Le NBPs proprio per la 
vastità numerica che ne caratterizza la loro stessa concezione rappresentano 
una interessante sfida per le attuali tecniche di studio.  
Studiarne la struttura significa infatti escogitare un nuovo approccio che 
permetta di sondare “in maniera massiva” un così ampio bacino di 
informazioni. Le metodiche sperimentali che si basano su di un approccio 
computazionale possono aiutare questa esplorazione e fornire allo stesso 
tempo nuovi mezzi di indagine per lo studio di problemi di complessità 
analoga, per numero di elementi e qualità della ricerca, come lo studio 
massivo di interi proteomi. 
 
APPROCCIO METODOLOGICO 
 
La caratterizzazione strutturale di un gran numero di proteine a sequenza 
casuale non può essere affrontata sperimentalmente, quindi il problema è 
stato affrontato con un approccio computazionale. E’ stata quindi generata 
una grande libreria di sequenze proteiche casuali (pari a 2×104 sequenze), 
scartando le sequenze amminoacidiche omologhe a proteine note. Le 
strutture tridimensionali corrispondenti sono stati predette attraverso 
l’utilizzo del software Rosetta abinitio. Data la grande potenza di calcolo 
richiesta per questo progetto, Rosetta abinitio è stato adattato per essere 
usato in un sistema di calcolo parallelo condiviso: le cosidette GRID. Il 
porting di tale software è stata anche l’occasione per la creazione, attraverso 
i tool di sviluppo offetti dal GENIUS Grid Portal, di un’interfaccia grafica 
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che ne rendesse più familiare l’utilizzo in ambiente GRID. Le strutture 
proteiche generate sono state analizzate in termini di carica netta, nel 
contenuto di struttura secondaria, nel rapporto superficie/volume, 
composizione del nucleo idrofobico, ecc. 
Si è inoltre proceduto a sviluppare una metodica statistica che partendo dai 
risultati ottenuti dall’analisi delle proprietà strutturali, permetta di 
comprendere quali proprietà rendono una proteina ascrivibile al grande 
gruppo che forma le proteine naturali. Una siffatta infrastruttura è stata 
infine usata per affrontare problemi di complessità analoga come la 
predizione di un gran numero di proteine a funzione ignota da patogeni 
umani. 
 
RISULTATI 
 
La maggioranza delle NBPs, secondo il modello proprio di Rosetta, sono 
caratterizzate da una struttura tridimensionale compatta e da un peculiare 
alto contenuto di struttura secondaria. La struttura generale, la compattezza 
e la polarità di superficie sono paragonabili a quelli delle proteine naturali, 
suggerendone pertanto una stabilità e solubilità simili. Deviazioni 
significative si osservano nel contenuto relativo in α elica e struttura di tipo 
β e nella composizione del nucleo idrofobico. In generale è possibile 
affermare che le NBPs sembrano essere più ricche di struttura elicoidale e di 
residui aromatici rispetto alle proteine naturali. Non meno interessante e’ 
l’osservazione che un campione di NBPs, seppur ristretto, sembra essere 
caratterizzato dall’avere strutture simili a quelle di proteine esistenti. I 
risultati finora ottenuti applicando i protocolli sviluppati nella ricerca alle 
proteine putative del patogeno umano Streptococcus mutans evidenziano da 
un lato la maturità dell’infrastruttura stessa, dall’altro il grande vantaggio 
che un simile approccio può costituire nello studio di patogeni. 
 
CONCLUSIONI 
 
I risultati riportati in questo lavoro evidenziano come lo studio 
computazionale di "NBPs", anche se di natura prettamente predittiva, può 
fornire una panoramica utile sulle proprietà strutturali di base dei polipeptidi 
e sulle proprietà specifiche delle proteine naturali. Le NBPs appaiono 
strutturalmente molto simili alle proteine naturali, suggerendo che l’enorme 
spazio di sequenze NBPs possa essere sfruttato a fini biotecnologici. Una 
differenza importante tra NBPs e proteine naturali risiede nel diverso 
rapporto tra aminoacidi aromatici ed alifatici, in particolare nel minor 
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contenuto di amminoacidi aromatici osservati nelle proteine naturali. Queste 
informazioni possono essere molto utili nella progettazione di esperimenti 
di evoluzione diretta ed in generale negli studi di ingegneria proteica. 
Infine, questo studio dimostra che lo sfruttamento di infrastrutture GRID, 
per progetti di predizione massiva di strutture proteiche è fattibile; da cui è 
facile immaginare un suo eventuale utilizzo per la predizione della struttura 
del proteoma di batteri patogeni, per la selezione di nuovi target 
farmaceutici e negli studi di progettazione di nuove molecole di interesse 
biomedico. 
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BACKGROUND 
 
The first crystal structure of a macromolecule was solved by Kendrew in 
1958, the myoglobin (Kendrew., et al. 1958). This event was a crucial step 
in biology: in that day, researchers, for the first time, were able to observe a 
protein in its real form. Fifty years later, however, the easy determination of 
a protein’s structure is considered an issue far from resolved. X-ray 
crystallography represents a very powerful way of investigation,  however it 
has a very strong limitation: it requires a protein crystal. The techniques 
used for the crystallization of proteins often require significant economic 
and technical efforts. To obtain quality crystals apt to yield a high resolution 
structure it is required the availability of a highly concentrated solution of 
the protein of interest with a very high degree of purity. It must be also 
considered that crystallization experiments require long processing times, in 
other words is quite common that a modern crystallography laboratory 
spends on average months to solve a single protein structure. Considering 
that the number of protein coding sequences available in RefSeq Release 38 
database (November 11, 2009, www.ncbi.nlm.nih.gov/RefSeq/) is equal to 
9.325.214 from 9.166  different organisms and that the number of already 
solved protein structures is ~ 40.000 (NCBI MMDB - 
www.ncbi.nlm.nih.gov/sites/entrez?db=structure), it is easy to imagine that 
the progress of the knowledge about the structure of proteins needs new 
methods to obtain comparable results in a significantly shorter time. A 
response to this need is provided by software tools for the prediction of 
proteins three-dimensional structure. In the last fifteen years in various 
international laboratories many different software packages have been 
developed whose clear objective is to allow the prediction of the three-
dimensional structure of a protein directly from its amino acid sequence 
without any prior knowledge of the evolutionary relationships linking the 
protein of interest to homologous with know structure. The main 
representatives of this family of programs are the “Rosetta abinitio 
software” (Bonneau et al., 2002, Rohl et al., 2004), the “i-Tasser web 
server” (Yang, 2008) and “BHAGEERATH web server” (Jayaram et al., 
2006). These programs, albeit with limitations, are able to predict the 
protein fold in a much shorter time if they are compared to crystallography. 
From this last statement, a reader may be led to think that the structural 
study of proteins has finally found a fast solution. This is true only in part: 
the usefulness of these software tools is severely limited by their 
computational demanding requirements and, more complicated to solve, by 
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the still limited scientific knowledge about the forces that govern the protein 
folding process. The predictive algorithms approach the simulation of the 
folding process essentially by simplifying the process through an 
approximation of the chemical-physical laws that govern protein folding. 
Moreover some of this algorithms, as the one implemented in Rosetta 
abinitio, combine this simulation procedures with an active search of 
structural properties on massive databases containing information derived 
from known protein structures. Computing power, storage space, and 
archiving of information and results represent a huge challenge even for 
modern computers. Historically, the first solution adopted to increase the 
computing power has been to create clusters of computers dedicated to the 
execution of large computations. A computer cluster is a group of linked 
computers, working together closely so that in many respects they form a 
single computer. The components of a cluster are commonly, but not 
always, connected to each other through fast local area networks. “Clusters 
are usually deployed to improve performance and/or availability over that of 
a single computer, while typically being much more cost-effective than 
single computers of comparable speed or availability” (Baker et al., 2001). 
The increase in computing power obtained with clusters, however, 
highlights the intrinsic limits of prediction software. The reliability of this 
software is good for predictions of proteins with amino acid sequence 
limited to 200-300 amino acids. Beyond this value the CPU time required 
for computation makes improper the use of ab initio software (several days 
of computation for each prediction). Nevertheless the protein structure 
predictions obtained in compliance with this limit clearly show the 
advantages of this “in silico” approach. The recent successes obtained by 
software packages such as Rosetta in CASP-5 (Critical Assessment of 
Structure Predictions) competitions confirm however that this kind of 
software tools can achieve a very high level of reliability (Chivian et al., 
2003). 
Ab initio protein structure prediction methods allow to undertake the study 
of large protein sequence datasets with no homology with known natural 
proteins which can shed light on the nature of the protein folding process. In 
fact, simple calculations show that the number of known natural proteins is 
just a tiny fraction of all the theoretically possible sequences. On the other 
hand, considering random polypeptides of just 100 amino acids in length 
(the average length of natural proteins being 367 amino acids [Bairoch et 
al., 2004]), with the 20 natural amino acids co-monomers it is possible to 
obtain 100

20 
chemically different proteins. This is an astronomically large 

number which leads to the consideration that there is a tremendous amount 
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of information hidden in these unknown proteins. Previous studies in the 
field of the origin of life, have identified these sequences as "Never born 
proteins" or NBPs (Chiarabelli et al., 2006). These studies arised the 
fundamental question if the set of known natural proteins have particular 
features which make them eligible for selection, in terms, for example, of 
particular thermodynamic, kinetic or functional properties. One of the key 
features of natural protein sequences is their ability to fold and form a stable 
and well defined three-dimensional structure which in turn dictates their 
specific biological function (Branden et al., 1999). From this viewpoint, the 
study of the structural features of NBPs can help to answer the question if 
the natural protein sequences were selected during molecular evolution 
because they have unique properties and which are such properties (for 
instance a peculiar amino acid composition, hydrophobic/hydrophilic amino 
acids ratio, etc.). Attempts have been made in this direction, often using 
innovative experimental techniques such as phage display (Chiarabelli et 
al., 2006). These tests indicate that a computational approach can be 
extremely useful: software tools as Rosetta, if properly supported by 
adequate computing power, would allow to produce results otherwise 
obtainable only through years of experimental activity. In addition, a 
computational approach allows to evenly sample the protein sequences 
space in different regions far away enough from the ensemble of natural 
proteins. However, to obtain statistically significant results the size of the 
sequence data base to be analyzed must be sufficiently large (at least 10

4 
to 

10
5 

sequences). This is a highly demanding problem from a computational 
viewpoint. In fact on a single CPU it would require years of computing time 
to predict the structure of such a large number of protein sequences. 
Fortunately, from a computational viewpoint this is an embarassingly 
parallel problem in that the same computation (i.e. the prediction of the 
three-dimensional structure of a protein sequence) must be repeated several 
times (i.e. on a large number of protein sequences). The use of a cluster of 
computers might provide a solution. However, the execution of thousands 
of calculations, even considering a scenario in which the code used has been 
heavily optimized for parallelization, requires years of computation; in 
addition in this same period the cluster would not be available to run other 
jobs. The ideal solution for this kind of problems is to use “grid computing” 
(GRID). 
GRID was developed in 1999 by Foster with the invention of the "Globus 
Kit" (a collection of libraries for writing highly parallel software). (Foster et 
al., 1999). Scientists active in the Physics of particles field had highlighted 
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the need of an innovative approach to computation. In fact physicists 
needed to run simple calculations (execution time of the order of a few 
minutes), but in numbers equal to or greater than millions (an example 
being the thousands of trajectories which have to be calculated to describe 
the movement of individual sub-atomic particles in hadron collider 
experiments) (Brodkin., 2008). It is easy to understand that a single 
computer, however powerful, is not a good choice to tackle this problem. 
The GRID is based on thousands of computers connected together via 
Internet and managed by a dedicated software infrastructure: the 
middleware (Berman et al., 2003, Parvin et al., 2005). GRID is mainly 
formed by groups of computers called "computing elements" grouped in 
working nodes. The working nodes are the entities which physically 
perform the calculations. Data retention is handled by "storage elements" 
(computer with low computing power, but with very large capacity hard 
drives). Everything is managed by a “virtual organizations system” which 
underpin the management of GRID users, data traffic control and ensure 
privacy and safety (Chau-Hsu., 2006) (Figure 1).  

 
Although the GRID offers numerous benefits, it requires deep modifications 
of the software that has to be used on it. A shared environment on global 
scale is affected by inevitable data transmissions delays. For a software 
which is designed for processing sequential information this inconvenience 
must be intended as a lack of execution and computation failure. The 

Figure 1. Grid computing World Wide (from INFM web site) 
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software which does not have been natively written for operating in a GRID 
environment must be adapted through the use of special developing tools. 
This process is called gridification (Mateos et al., 2007). With this aim 
several programming languages have been written; one of the most famous 
is the “Job Description Language” (JDL) (Tierney et al., 2001, Burke et al., 
2008). The JDL is a scripting language, developed specifically for GRID, 
characterized by dedicated instructions for monitoring of computing 
resources, for allowing the jobs submission, for their identification and, not 
least, for checking the operator's credentials (Burke et al., 2008). JDL is 
however a very complex language, very powerful but not very easy to be 
handled by users who don’t have a strong informatics background. 
Important progress has been made with the introduction of appropriately 
programmed web interfaces, as the “Genius GRID Portal” 
(https://genius.ct.infn.it/,  http://www.infn.it/,  http://www.nice-italy.com/ ). 
These web portals can be seen as friendly graphical user interfaces for the 
utilization of GRID. The prediction of the three-dimensional structure of 
non natural proteins using Rosetta on a GRID environment, though yields 
only predictive results, allows to evenly sample the protein sequences space 
in different regions far away enough from the ensemble of natural proteins. 
The GRID infrastructure applied to the study of proteins may allow us to 
understand if natural protein sequences were selected during molecular 
evolution because they have unique physico-chemical properties or else 
they just represent a contingent subset of all the possible proteins with a 
stable and well defined fold. If the latter hypothesis were true, this would 
mean that the protein realm could be exploited to search for novel folds and 
functions of potential biotechnological and/or biomedical interest. The same 
protocols developed to predict the structure of an enormous number of 
random proteins can be very useful for the study of whole proteomes of 
biomedical interest. The genomes of several pathogens of medical interest 
are available in databases such as NCBI  (NCBI genome - 
www.ncbi.nlm.nih.gov/projects/genome/). Frequently many pathogens 
proteins display little or no homology with better known proteins. In other 
cases the three-dimensional structure of pathogens proteins has been 
determined by structural genomics initiatives, but there is no information 
about their function. Very often there is no other information available apart 



  15 

form the amino acid sequence. An example is the genome of  the bacterium 
Streptococcus mutans (S. mutans): it contains 1.963 ORFs (open reading 
frames), 63% of which have been assigned putative functions based on 
sequences homology (Figure 2). S. mutans is the principal causative agent 
of human dental caries (tooth decay). Dental caries is one of the most 
common infectious diseases afflicting humans, and tends to remain 
untreated in many underdeveloped areas, leading to considerable suffering 
that is often alleviated only by the loss or extraction of the infected tooth 
(World Health Organization, Geneva 1994). Although 200–300 bacterial 
species have been found associated with dental plaque, only the presence of 
S. mutans has been consistently linked with the formation of human dental 
caries (Loesche., 1986). Additionally, S. mutans is occasionally associated 
with non-oral infections, principally sub-acute bacterial endocarditis 
(Hezenberg., 2000)” (Ajdić et al., 2002). Since 2002, year of the sequencing 
of S. mutans genome,  up to now, out of the 63% of proteins with putative 
function a large part still retains this status 
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome&cmd=Retrieve&do
pt=Protein+Table&list_uids=263). Cases like this one highlight the need to 
have alternative methods for massive protein structures analyses. 
 
 

 
Figure 2. Circular representation of the S. mutans, strain UA159 
genome. The outer two circles show the position of the probable 
ORFs on the complementary DNA strands. TheORFs have been color 
coded by functional category (from NCBI web site) 
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AIM OF THE WORK 
 
Knowledge of the three-dimensional structure of proteins is a fundamental 
prerequisite for the understanding of biological systems and for the 
development of new molecules of biological interest. Classical methods 
such as X-ray crystallography or NMR, while very powerful, require large 
investments of time and money. On the other hand, the development of 
software packages for ab initio prediction of protein structures has 
revolutionized the current scientific landscape. These software tools while 
very promising, however, show their limitations in speed of computation 
and consequently in their applicability, especially in scenarios involving 
high flow of data. The shared computing seems to be a good opportunity to 
enhance the capability of these specific software tools. Unexplored systems 
such as random protein sequences represent a huge pool of potential 
compounds for the development of new (macro)molecules, but the huge 
number of sequences that characterizes NBPs, however, does not allow to 
approach their study with existing techniques. The first objective of this 
research is to adapt existing software packages for the prediction of protein 
structure on shared computing environments. At the same time our aim is to 
make computing grids accessible to a public not specialized in computer 
sciences, through the creation of workplace-based graphical user interfaces. 
The realization of a platform able to handle a large flow of information 
finds its natural application in studies with high scientific impact such as the 
NBPs problem or the prediction of the entire proteome of bacterial 
pathogens.  
 
TECHNICAL ISSUES 
 
Amino acid sequences library generation  
Random amino acid sequences (70 amino acids long) were generated using 
the utility RandomBLAST developed during this project (Evangelista et al., 
2007). Briefly, RandomBLAST consists of two main modules: a pseudo 
random sequence generation module and a BLAST software (Altschul et al., 
1990) interface module. The first module is a pseudo-random number 
generation wich uses the Mersenne Twister 19973 algorithm (Matsumoto et 
al., 1998) to generate pseudo-random numbers between 0 and 19. Random 
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numbers are translated in single character amino acid code using the 
conversion matrix show in Table 1 and then concatenated to reach the 
desired sequence length.  
 

 
Table 1. RandomBLAST random number to amino acid type conversion table 

 
Each sequence generated is then given in input to the second 
RandomBLAST module, an interface to the blastall program which invokes 
the following command:  
 
blastall -m 8 -p BLASTp  -d database -b 1;  
 
where database in our case stands for the NR database, and the parameters 
–m 8 and –b 1 indicate the alignment format (tabular form) and the number 
of sequences to be returned (just the first hit), respectively. BLASTall 
output is then retrieved by RandomBLAST and the Evalue extracted from 
it. If the Evalue is greater than or equals the threshold chosen by the user, 
the sequence is added to the output file. Note that in this case only the 
sequences that do not display significant similarity to any protein sequence 
present in the database are considered valid, so that, contrary to the normal 
BLAST usage, valid sequences are those displaying an Evalue higher than 
the threshold, set to a value of 1 (Karlin et al., 1990) (Figure 3). The total 
number of NBPs sequences generated was 20496. 
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Figure 3. Activity diagram showing the RandomBLAST workflow. The inset details the RandomBLAST input parameters 
(from Evangelista et al., 2007). 
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NBPs three-dimensional structure prediction 
NBPs three-dimensional structures have been predicted using Rosetta 
abinitio software. Rosetta abinitio is an ab initio protein structure prediction 
software which is based on the assumption that in a polypeptide chain local 
interactions bias the conformation of sequence fragments, while global 
interactions determine the three-dimensional structure with minimal energy 
which is also compatible with the local biases (Rohl et al., 2004). To derive 
the local sequence-structure relationships for a given amino acid sequence 
(the query sequence) Rosetta abinitio uses the Protein Data Bank (Berman 
et al., 2002) to extract the distribution of conformations adopted by short 
segments in known structures. The latter is taken as an approximation of the 
distribution adopted by the query sequence segments during the folding 
process (Rhol et al., 2004). 
In detail, Rosetta workflow can be divided into two modules: 
 
Module I - Input generation - The query sequence is divided in fragments 
of 3 and 9 amino acids. The software extracts from the data base of protein 
structures the distribution of three-dimensional structures adopted by these 
fragments, based on their specific sequence. For each query sequence a 
fragments data base is derived which contains all the possible local 
structures adopted by each fragment of the entire sequence. The procedure 
for input generation is rather complex due to the many dependencies of 
module I. In fact, to be executed the first Rosetta abinitio module needs the 
output generated by the programs BLAST (Altschul et al., 1990) and 
PSIPRED (McGuffin et al., 2000) in addition to the non redundant NCBI 
protein sequence database (Wheeler et al., 2005). On the other hand this 
procedure is computationally inexpensive (10 min of CPU time on a 
Pentium IV 3,2 GHz). Thus it has been chosen to generate the fragments 
database locally with a Perl script that automatizes the procedure for a large 
dataset of query sequences. The script retrieves query sequences from the 
random sequence database in FASTA format and executes Rosetta abinitio 
module I creating an input folder with all the files needed for the execution 
of Rosetta abinitio module II.  
 
Module II - Ab initio protein structure prediction – Using the derived 
fragments database and the PSIPRED secondary structure prediction 
generated by module I for each query sequence, the sets of fragments are 
assembled in a high number of different combinations by a Monte Carlo 
procedure by Rosetta abinitio module II. The resulting structures are then 
subjected to an energy minimization procedure using a semi-empirical force 
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field (Rohl et al., 2004). The principal non-local interactions considered by 
the software are hydrophobic interactions, electrostatic interactions, main 
chain hydrogen bonds and excluded volume. The structures compatible with 
both local biases and non-local interactions are ranked according to their 
total energy resulting from the minimization procedure. A single run with 
just the lowest energy structure as output takes approx. 10-40 min of CPU 
time, for a 70 amino acids long NBP and depending on the degree of 
refinement of the structure.  
 
Integration of Rosetta software on GRID enviroment 
Any software to be used in a GRID environment must be prepared through 
a process called "Gridification”. The porting from a local working 
environment to a shared system requires  an optimization process to operate 
in such an environment. Operations such as managing system calls to 
runtime libraries, management of I/O and memory usage must be adapted to 
the particolar requirements of a shared enviroment (processing unit and 
storage unit tipically located in different geographic areas). In a system 
GRID all these issues are solved by one elegant way: the program 
“believes” to be in a local system and all the necessary management calls 
are entrusted by a virtual operating system that is responsible for 
coordination (shared mainframe). All these aspects are managed through the 
use of a special programming language: Job Description Language (JDL) 
(www.grid.org.tr/servisler/dokumanlar/DataGrid-JDL-HowTo.pdf). Using 
ad hoc JDL files that describe necessary inputs, outputs are then generated 
on the resources required by the software. A typical example of a JDL file is 
as follows:  
 
Executable = "/ bin / echo"; 
Arguments = "Hello World"; 
StdOutput = "message.txt"; 
StdError = "stderror"; 
OutputSandbox = ( "message.txt", "stderror"); 
Requirements = other.LRMS; 
Type == "BPU";  
Rank = other.FreeCPUs;  
 
where “Executable” is the name of the binary file of the software ported on 
GRID sistem, “Arguments” is the name of eventual flags required by the 
binary for its execution, “StdOutput” is the name of the output file, 
“StdError” is an optional file where are written the error informations, 
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“OutputSandbox” is a list with the name and the number of output files 
produced at the end of one computation (generally one output file and one 
error log file), “Requirements” is a string for the hardware requirements  
(RAM memory amount, Hard Drive space, ecc), “BPU” is the type of CPU 
used by the binary file and “Rank” specifies the number of CPU necessary 
for job submission. In the example, the program requires a site with a 
generic Basic Processing Unit (BPU) tipically a x86 CPU. In this way the 
job will be submitted only on resources that satisfy this condition. If there is 
more than one resource satisfying the required conditions, then the rank is 
used to determine which is the most appropriate and then the one to which 
the job is submitted (higher values correspond to more resources suitable). 
JDL is based on Condor libraries (www.bo.infn.it ). To check the results of 
the matching resource without actually submitting a job, the edg-job-list-
match command can be used. This command returns an ordered list of 
resources, in which the most appropriate one appears at the top. A JDL file 
was created to run Rosetta abinitio Module II executable and proceed with 
workflow execution on the EUChinaGRID (www.euchinagrid.org/) GRID 
working nodes which use the gLite middleware 
(http://glite.web.cern.ch/glite/). 
 
Three-dimensional structures analysis  
The analysis of the physico-chemical properties of the predicted protein 
structures was carried out using a collection of different tools. Given the 
high number of NBPs to be analysed, for each tool the analysis procedure 
was automated using ad hoc Perl scripts. In detail, the programs used were 
MSMS (Scanner et al., 1996), for molecular volume calculation, SURFace 
Algorithms (Sridharan et al., 1992), for surface properties analysis (overall 
molecular surface, per residue solvent accessibility), Freqaa (Tekaia et al., 
2002), for amino acid composition analysis and DSSP (Kabsch et al., 1983) 
for secondary structure content analysis. Surface hydrophobicity was 
calculated as the ratio between the solvent exposed surface of hydrophobic 
amino acids and the total solvent exposed surface, both calculated using 
SURFace Algorithms (Sridharan et al., 1992). To compare the properties of 
NBPs structures to those of naturally occurring proteins structures, a dataset 
of natural proteins of length comparable to that of NBPs (55 to 95 amino 
acids long sequences as compared to NBPs 70 amino acids long sequences) 
was derived from the Protein Data Bank (Berman et al., 2000). The dataset 
was cleaned up eliminating protein fragments and proteins whose fold is 
determined by macromolecular complexes formation (tipically ribosomal 
proteins). The final natural proteins dataset was formed by 866 proteins.  
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Statistical analysis of the data  
A first exploratory data analysis has been developed to see if there were any 
significant differences in the structure observed in the two data-sets. 
Initially few outliers in the data that could affect the analyses were 
removed, generating a dataset of 18465 NBPs and a dataset of 839 natural 
proteins. For these sets measures of location, index of dispersions, 
correlations matrix were derived, and box-plots and scatterplots were built 
to compare the two data sets. This study was performed on different 
structure-related variables, which include: volume, surface, surface/volume 
ratio, net charge, secondary structure content, and surface hydrophobicity. 
Tests on the Gaussian distribution of the variables led to reject the 
hypothesis of Gaussianity for the majority of the variables investigated. 
With a test significance level of 0.05 almost all the variables result with 
statistically different mean and variance for the two data-sets. The analysis 
has been also conducted on smaller data-sets of comparable size: a random 
sample of 1000 observations has been drawn from NBPs dataset and 
comparisons have been developed. The two analyses generated similar 
conclusions, presented in the Results section. The statistical software used 
to analyse the data was R (http://www.R-project.org).  
 
Reliability of three-dimensional protein structure prediction software  
In a context of international cooperation related to the European 
Commission funded project EUChinaGRID and with the aim of testing the 
reliability of three-dimensional protein structure prediction software when 
used in an "exotic" context as the structures determination of random 
proteins, a close cooperation has been established with the research group of 
Prof. Irena Roterman of the Jagellonian University of Krakow (Poland). The 
structure of the random sequences library generated in the first phase of the 
research were predicted through an independent software and based on an 
alternative approach to that of Rosetta abinitio, currently in development by 
their group. The three-dimensional structures of NBPs were predicted with 
their “Fuzzy oil drop” method (Twostage program) (Brylinsk et al., 2006; 
Brylinski et al., 2006b). The resultant predictions were compared with the 
Rosetta abinitio output. The RMSD was calculated only for the backbone 
atoms. Couples with RMSD less than 6.80 Å were subjected to energy 
minimization using the software CHARMM (Brooks et al., 1083) in order 
to reduce the possible clashes between atoms introduced by the prediction 
software. The RMSD was recalculated for the resulting structure. The 
structure alignment and its graphic representation were obtained through the 
use of the CE protein structures alignment software (Shindyalov et al., 
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1998). 
 
Discrimination Tree 
In order to compare properties and functionalities of the random proteins 
with respect to natural proteins a classification tree was generated. The 
analysis has been conducted comparing 10 different variables: net charge, 
volume, surface, β turn, α helix, β strand, % α helix, % β turn, % of 
secondary structure content and surface hydrophobicity. A first description 
of the data by evaluating measures of location, dispersion indices, 
correlations matrices, and box-plots and scatterplots in order to evaluate 
differences and similarities of the two data sets was developed. With a 
significance level of 0.05 almost all the variables involved exhibited 
statistically different means and variances, and tests on the Gaussian 
distribution of the variables lead to reject the hypothesis of Gaussianity for 
the majority of the variables investigated. This exploratory data analysis 
shows significant differences in the structural components of the two data 
sets. The difference in mean and variance in the two groups of proteins, if 
highlighting the diversity of the two groups, on the other way prevents the 
study of the differences through the classical statistical methods. Especially 
the lack of Gaussianity makes complicated and methodologically incorrect 
the application of the common linear regression models which are 
conventionally applied to the study of biological systems. In order to 
discover and understand the basis of these differences a classification 
procedure was built by evolving populations of feedforward neural 
networks. We chose a class of multi-layers neural networks (Haykin et al., 
2009, De March et al., 2009) and built a genetic algorithm (De Jong 2006) 
to evolve the best classification rule.  
More specifically, a first random population of networks was generated with 
the topology of a 2-hidden layers neural networks. This population was 
formally described as a set of sequences with dichotomic variables (each 
sequence was a vector of zeros - ones values). Each element of the sequence 
describes the presence or the absence of a particular structural component of 
a protein. The topology of these networks, involving different variable 
compositions, was selected in a random way (first generation of networks), 
and the response of each network was derived with a two class structure: 
natural and synthetic proteins. Then, a genetic algorithm was built to evolve 
the population of networks in a number of generations with the aim of 
identifying a precise classification rule. Then the response of each network 
was evaluated deriving a net misclassification rate by 10-fold cross 
validation procedure: the sequences with smaller values were identified as 
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the more promising solutions. Then the classical genetic operators, such as 
natural selection, crossover and mutation was applied to the network 
population, in order to achieve the next generation of promising sequences. 
These genetic operators are needed to allow the proper learning, by 
algorithm, of the variability of the variables studied with the neural 
network. This process is repeated for a fixed number of times or until 
convergence is reached (end of the learning phase). 
 
 
Streptococcus mutans proteins three-dimensional structure prediction 
To evaluate the usefulness of the structure prediction computing platform 
developed in the study of bacterial proteomes, a feasibility study was 
carried out on the proteome of the human pathogen S. mutans. S. mutans 
protein sequences were retrieved from the NCBI web site, project genome 
section (http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome&cmd= 
Retrieve&dopt=Protein+Table&list_uids=263). The entire S. mutans 
proteome as of 20 march 2009 has approximately 800 protein noted as 
putative proteins for which do not exist three-dimensional structures or 
information of homology with known proteins. From this subset of putative 
proteins a reduced library was extracted consisting of proteins with amino 
acid sequence length between 25 and 200. During the development of this 
work a new version of the Rosetta software (Rosetta 2.0) has been released. 
This version is basically a rewrite of the original Fortran code in C++ 
programming language. Rosetta 2.0 is characterized by having a better 
performance and a greater ease of use. The new version differs from the 
first also for the integration of a module for clustering of the predicted 
structures. Through this procedure it is possible to isolate from a large set of 
intermediate models, the prediction that best describes all the predictions 
produced (in other words “the most similar between the group”). It was 
therefore decided to use the new version to conduct the prediction of the 
three dimensional structure of S. mutans proteins. To maximize the 
reliability of the used protocol, different calculations were carried out on 
samples of natural proteins whose structure was already present in the 
NCBI database. These preliminary tests showed that to obtain a reliable 
prediction (global variation compared to crystal structure with average 
RMSD value less than 3Å) about 990 intermediate structures are required. 
This value was chosen as the best compromise between computing time and 
similarity of the proposed model. The protocol used for the prediction of S. 
mutans proteins therefore takes the following form:  
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1) generation of fragments via the Rosetta fragment module;  
2) prediction of 990 intermediate models; 
3) clustering of the structures and extraction of the ideal model; 
4) refinement of the model. 
 
The computational time needed for the prediction of a single structure with 
this protocol is of the order of about a week per structure. 
 
 
Prediction of putative function 
The assignment of a putative function was conducted through the use of the 
Dali web server, which allows the comparison of the predicted structures 
with all the protein structures present in the Protein Data Bank and the 
retrieval of protein structures which display significant structural similarity, 
and hence similar function, with the input structure (Holm et al., 2008). 
 
RESULTS 
 
Integration of Rosetta Module II on the GILDA GRID infrastructure  
 
Single job execution on Grid Infrastructure - A single run of Rosetta 
abinitio Module II consists of two different phases. In the first phase an 
initial model of the protein structure is generated using the fragment 
libraries and the PSIPRED secondary structure prediction. The initial model 
is then used as input for the second phase in which it will be idealised. A 
shell script has been prepared which registers the program executable 
(pFold.lnx) and the required input files (fragment libraries and secondary 
structure prediction file) on the LFC catalog, calls the Rosetta abinitio 
Module II executable and proceeds with workflow execution. A JDL file 
was created to run the application on the EuChinaGrid working nodes 
which use the gLite middleware (gLite middleware - 
http://glite.web.cern.ch/glite/). 
 
Integration on the GENIUS web portal - A key issue to attract the biology 
community towards the exploiting of the GRID paradigm is to overcome 
the difficulties connected with the use of the grid middleware by users 
without a strong background in informatics. This is the main goal that has to 
be achieved in order to disseminate the use of GRID services by biology 
applications. To achieve this goal and allow a wide biologists community to 
run the software using a user friendly interface, Rosetta abinitio application 
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has been integrated on the GENIUS (Grid Enabled web eNvironment for 
site Independent User job Submission) GRID Portal (GENIUS Portal – 
https://genius.ct.infn.it/), a portal developed by a collaboration between the 
italian INFN Grid Project (INFN Grid Project – http://www.infn.it/ ) and the 
italian web technology company Nice (Nice – http://www.nice-italy.com/). 
Thanks to this GRID portal, non-expert users can access a GRID 
infrastructure, execute and monitor Rosetta abinitio application only using a 
conventional web browser. All the complexity of the underlying GRID 
infrastructure is in fact completely hidden by GENIUS to the end user. In 
our context, given the huge number of NBPs sequences to be simulated, an 
automatic procedure for the generation of parametric JDL files has been set 
up on the GENIUS Grid Portal. With this procedure, exploiting the features 
introduced by the last release of the gLite middleware, users can create and 
submit parametric jobs to the GRID. Each submitted job independently 
performs a prediction of the protein structure. Hereafter is described in 
detail the workflow adopted to run Rosetta abinitio application on GENIUS. 
After the user has correctly initialized his personal credentials on a 
MyProxy Server (security check), he can connect to the GENIUS portal and 
start to set up the attributes of the parametric JDL file that will be created 
“on the fly” and then submitted to the GRID. First the user specifies the 
number of runs, equivalent to the number of amino acid sequences to be 
simulated (Figure 4A). Then, the user specifies the working directory, the 
name of the shell script (Rosetta abinitio executable) to be executed on a 
GRID resource, loads a .tar.gz input file for each query sequence 
(containing the fragment libraries and the PSIPRED output file) and 
specifies the output files (initial and refined model coordinates) in 
parametric form (Figure 4B). The parametric JDL file is then automatically 
generated and visualised in order to be inspected by the user and submitted 
(Figure 4C).  
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Figure 4. Screenshots of the GENIUS GRID portal showing services for the specification of the number of structure 
predictions to run (top panel), of the input and output files (middle panel) and for the inspection of the parametric JDL file 
(bottom panel) (from Minervini et al., 2007). 
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The status of the parametric job as well as the status of individual runs of 
the same job can be also checked from within the GENIUS portal. When the 
prediction is done it is also possible, using the portal, to inspect the output 
produced in graphics form. In addition, in order to allow the user to analyse 
the predicted NBP structural model, the JMOL Java applet 
(http://www.jmol.org/) has been embedded into the GENIUS portal. Figure 
5 shows some, randomly chosen, examples of the approx. 2×104 NBPs 
three-dimensional structures predicted using Rosetta on grid (Rohl et al., 
2004). 
 

 
Figure 5.  Schematic representation of the three-dimensional structure of randomly chosen NBPs, α helices are coloured in 
magenta,  β strands in yellow (from Minervini et al., 2009). 

 
Amino acid composition analysis  
Figure 6 shows the amino acid composition of natural and random protein 
sequences datasets. For random proteins dataset, each amino acid relative 
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content is about 5%, an obvious consequence of the random nature of these 
amino acid sequences. Nonetheless, interesting differences are observed 
when random sequences composition is compared to that of natural 
proteins. In detail, for the natural proteins dataset five amino acids are 
significantly over represented: Lys (8.35%), Leu (8.30%), Ser (7.88%), Gly 
(7.69%) and  Glu (7.48%), while three amino acids are under represented: 
Trp (1,58%), Met (1,98%) and  Cys (0,13%) (Figure 6). These differences 
are not a peculiar characteristic of the subset of natural proteins chosen in 
this work. In fact similar amino acid composition is observed for the 
UniProt dataset containing all the known protein sequences (Bairoch et al., 
2004) (Figure 6), indicating that the natural proteins  subset used in this 
work is representative of all natural proteins, at least as far as amino acid 
composition is concerned. Notable differences are observed for Lys and Cys 
residues which display the highest and lowest percentage in the natural 
dataset. The former finding can be explained considering that a consistent 
number of natural proteins with a length in the 55-95 residues range display 
nucleic acid binding activity and thus a basic character. Cys residues 
percentage is less straightforward to explain even though it is probably 
connected to the high reactivity of this amino acid whose presence in 
natural proteins is tightly evolutionary controlled. Turning to the random 
proteins dataset, these display a significant excess of aromatic amino acids 
and a strikingly lower content in Leu, as also evidenced by the low ratio 
between aliphatics and aromatics as compared to the natural dataset (Table 
2). 
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Figure 6. Amino acid composition of NBPs and natural proteins A) Comparison between the amino acid composition of NBPs 
(blue bars) and that of selected natural proteins of comparable length (purple bars; see Methods). B) Comparison between the 
amino acid composition of the natural proteins subset  used in this work (purple bars) and that of the whole UniProt dataset 
(Bairoch et al., 2004) (green bars) (from Minervini et al., 2009). 
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Table 2.  Hydrophobic amino acids relative content of natural proteins and NBPs (from Minervini et al., 2009). 

 
 
Comparative structural analysis  
Several structure-related parameters (volume, surface, surface/volume ratio, 
secondary structure content, and surface hydrophobicity) have been 
computed for the two datasets in order to compare their statistical and 
structural properties (Table 3). As a general consideration, the average value 
of the analysed structural parameters and the corresponding standard 
deviation values are statistically different between NBPs and natural 
proteins with a significance level of 0.05. In particular natural proteins are 
characterised by a higher standard deviation whereas NBPs seem to be 
narrowly distributed around the experimental average. Despite the 
differences observed in amino acid composition between the two datasets, 
the structural analysis of NBPs reveals that these are in most cases 
characterized by a well ordered structure. In fact, secondary structure 
content of NBPs appears to be comparable to that of natural proteins, with 
an average total secondary structure content (including α helix, β sheet and 
β turn) slightly higher than 60% for both datasets (Table 3). However, NBPs 
appear to be less compact than natural proteins, as evidenced by the higher 
average volume (9294.0 Å and 8630.0 Å for NBPs and natural proteins, 
respectively, Table 3) and lower surface/volume ratio (0.43 Å and 0.46 Å 
for NBPs and natural proteins, respectively, Table 3) (Figure 7A). 
Interestingly, NBPs display a significantly higher α helix content, and a 
corresponding lower β sheet content, with respect to natural proteins (Figure 
7B), in the absence of any clear correlation between amino acid 
composition and amino acids propensities for formation of a specific 
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secondary structure. Surface hydrophobicity of the two datasets has also 
been calculated and results to be very similar (Figure 8A), indicating a 
predicted water solubility of NBPs structures comparable to that of natural 
proteins. Interestingly, comparison of the amino acid composition of the 
two datasets with data relative to solvent accessibility of different amino 
acids types highlights how aromatic amino acids are more represented in the 
hydrophobic core of NBPs with respect to natural proteins. As an example, 
Trp residues are approx. three times more frequent in NBPs with respect to 
natural proteins (Figure 6A). However, solvent accessible surface of NBPs 
Trp residues is, on average, only twice that of natural proteins Trp residues 
(Figure 8B), indicating that a higher proportion of Trp residues is buried 
within the hydrophobic core of NBPs. Similar considerations apply to Phe 
and Tyr residues (compare Figures 6A and 8B), leading to the conclusion 
that aromatic residues contribute to NBPs hydrophobic core formation to a 
higher degree than in natural proteins. 
 

 
Table 3.  Average values of the structure-related parameters calculated for natural proteins and NBPs (from Minervini et al., 
2009). 
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Figure 7.  Structural properties of NBPs and natural proteins A) Surface, volume and surface/volume ratio distribution for 
NBPs and natural proteins; B) Secondary structure content of NBPs and natural proteins. In this and in the following figure, 
boxplots are shown in the right panels (from Minervini et al., 2009) 
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Figure 8. Surface properties of NBPs and natural proteins. A) Surface hydrophobicity of NBPs and natural proteins; B) Amino 
acids solvent accessibility for NBPs (blue) and natural proteins (purple) (from Minervini et al., 2009). 
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Comparison of Rosetta abinitio and Twostage results 
In the framework of an international collaboration within the EU funded 
EUChinaGRID project (http://www.euchinagrid.org), NBPs structures 
predicted with Rosetta abinitio were compared to those predicted with a 
different software based on the “fuzzy oil drop” method (Twostage 
program) (Brylinski et al., 2006; Brylinski et al., 2006b). Table 4 clearly 
shows that RMSD values obtained are never lower than 5.86 Å which 
represents the best value produced by the pair of predictions for the NBPs 
sequence 7033. Although this is not an exciting result, it is important in that 
highlights the challenging conditions in which the two software packages 
were tested. For both methods, the predicted structure is formed largely by 
alpha helices (Figure 9, F1d and Figure 9, F1e). The related topology maps 
(Figure 9, F1a and Figure 9, F1b) show  that both predictions are 
characterized by the presence in the C-terminus region of two segments of 
alpha helix (Rosetta, residues 43-50 and 51-61; Twostage, 43-49 and 62-
58), the first of which can be viewed as the central axis of the molecule. 
Around this central axis are located two other alpha-helical regions 
interspersed by short loops, which seem to embrace the center with the 
shape of a ring (Rosetta, 20-28 and 29-36; Twostage, 21-29 and 35-39). In 
total disagreement however, is the prediction for the N-terminus region for 
which Rosetta predicts the presence of a short beta-sheet while Twostage 
identifies a further stretch of alpha helix (Rosetta, 5-2 and 8-12; Twostage, 
9 -14). The overlap of the predicted structures relative to sequence number 
7033 (Figure 9, F1f), illustrates some agreement between the two 
predictions. The structural alignment (Figure 9, F1c) clearly shows the 
presence of a good structural similarity and if the region of disagreement at 
the N-terminus is excluded, the calculated RMSD value decreases to ~4.39 
Å, reinforcing the agreement between the two methods.   
 
 

 
Table 4: List of the first nine structures arranged for better RMS-D value (from Minervini et al 2008). 
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Figure 9. Schematic representation of topology maps, structural alignment and graphics representation of predicted structures 
for sequence n° 7033. F1a and F1b, topology maps; F1c, structural alignment between structures predicted with two different 
methods; F1d and F1e, structures obtained with Rosetta and Twostage, respectively; F1f, superimposition of the two proposed 
predictions (from Minervini et al., 2008). 
 
 

Evolutionary Neural Network Approach 
The application of an Evolutionary Neural Network Approach (ENNA) to 
classify random versus natural protein sequences yielded interesting results. 
In figure 10 is reported, for 10 generations, the best sequence response value 
(black line) and mean sequence response value (blue line) in terms of 
misclassification rate, and the number of times in which each sequence 
element is selected in the last generation. More specifically in Figure 10, is 
showed how the error rate of discrimination between the two groups 
decreases dramatically at the tenth generation. This indicates that the 
algorithm developed is able, after ten cycles of learning, to distinguish the 
two groups with good confidence. Figure 10 also shows the average rate of 
correct classification obtained in comparison with a single sequence of 
known source which is used as benchmarck. The results show that when 
using a particular set of structural components, the method used is able to 
classify the proteins in a quite precise way. The best set of selected 



  38 

variables provides a classification accuracy equal to 89%: by evaluating the 
properties related to these variables it is thus possible to identify a natural 
protein from a random one and predict which protein structures potentially 
display specific and relevant functionalities. Furthermore a high degree of 
reliability of the components identified is observed, because of the high 
probability with which they are selected (as shown in figures 10b and 11). 
The small number of the selected structural components is also a relevant 
result and can be a very useful insight for protein engineering. Comparison 
with the classification tree approach (Hastie et al., 2009) shows the better 
performance of the evolutionary approach. The decision tree was built by 
the C4.5 algorithm using 10-fold cross validation and fixing to 10 the 
minimum number of observations per leaf. The decision tree has a 
classification accuracy of 90%. 
 

 
Figure 10. a) Best and mean misclassification rates in 10 generations; b) Number of times in which each variable is selected in 
the last generation. 
 
The classification tree has confirmed that is possible to distinguish natural 
proteins from NBP. Analysis of the variables that best discriminate the two 
groups shows that the set of natural proteins is significantly different for the 
variables volume, surface, helix and strand (Figure 11). It is very interesting 
to note that a small group of NBPs (approximately 300 proteins) has 
characteristics consistent with the average properties of natural proteins. 
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This group whose members were identified as "pseudo-natural proteins” is 
composed of random proteins which are identified by the classification 
algorithm as natural proteins. On this restricted set of pseudo-natural 
proteins the protocols developed for the study of S. mutans proteins are 
currently being applied. The first encouraging results (under validation) 
show that these particular NBPs not only exhibit chemical-physical 
properties comparable to those of natural proteins, but also general fold 
similar to proteins that actually exist in nature as is the case of protein_263 
showed in Figure 12. 
 

 
Figure 11. Variables that best discriminate the NBPs group from the natural proteins group; vol stands for volume, surf for 
surface, ss for secondary structure content and hydro for hydrophobicity. 
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Figure 12. Structural superimposition between protein_263 (turquoise) and cristal structure of a core domain of stomatin from 
Pyrococcus horikoshii (purple, PDB code 3BK6). 
 

Implementation of the protocols to the case of real proteomes: 
preliminary results  
The usefulness of the structure prediction computing platform developed in 
this thesis for the study of bacterial proteomes was tested using the human 
pathogen S. mutans as a test case. The three dimensional structure of about 
200 S. mutans proteins was predicted, which represent 10% of the entire 
proteome of the bacterium. This value takes on a greater significance when 
we consider that it represents about 30% of the proteins annotated as 
putative proteins in the bacterial genome. All predicted models are currently 
under verification and the assignment of putative functions to the proteins is 
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currently underway. To verify the reliability of the described approach, the 
structure of 5 additional proteins of S. mutans, for which is available the 
experimentally determined three-dimensional structure, have been 
predicted. All the predicted models show a good degree of agreement with 
the relative crystal structure and the average RMSD value is less than 3Å 
An example of this preparatory predictions is showed in Figure 13. The 
model obtained for the DnaD-like replication protein (PDB code 2ZC2, 
RMSD 2,20 Å) well explains the level of accuracy obtainable. 
 

 
 
Figure 13. Superimposition between the crystal structure of the DNAD-like replication protein from Streptococcus mutans 
UA159 (cyan, PDB code 2ZC2) and the model obtained with Rosetta abinitio (RMSD 2,20 Å). 
 

For the same group was also tested the accurancy of the function prediction 
offered by the utilization of DALI web server when it is used on a 
theoretical model. In figure 14 is possible to see how the abinitio model of 
2ZC2 is well recognized as DNA-D domain. 
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Figure 14. The results N°1-16 show how the correct function recognition can be obtained with DALI web server even when it 
is applied to theoretical models 

 
As an example of the results being obtained on S. mutans proteins with 
unknown structure and only putative function, the prediction of the structure 
of SMU.28 is shown in figure 15. SMU.28 is assigned to be a multidrug 
ABC transporter on the basis of its sequence homology with the protein 
Sav1866 from Staphylococcus aureus (PDB code 2ONJ). The comparison 
between the model obtained for SMU.28 and the crystal structure of 
Sav1866 shows that strong structural correlation exists (Figure 15). In this 
case, the assignment of function obtained by structural homology by DALI 
server, confirms the putative function assigned to the hypothetical protein 
SMU.28 (Figure 16). 
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Figure 15. Superimposition between the crystal structure of the multidrug ABC transporter Sav1866 from Staphylococcus 
aureus (cyan, PDB code 2ONJ) and the model obtained for the putative protein SMU.28 from S. mutans (green). 
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Figure 16. Functional assignament obtained for hypotetical protein SMU.28 using DALI web server. 
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An encouraging result for the validation of this approach is provided also by 
a publication appeared during the development of this research in which it is 
presented the crystal structure of the putative S. mutans protein SMU.440 
obtained with standard protocols (Nan et al., 2009). The figures 17A and 
17B show the superimposition of the crystal structure 3IJT and the model 
predicted using the protocols developed in this research 
 
 

 
 
Figure 17. Superimposition between the crystal structure of the putative protein SMU.440 (cyan) from S. mutans (PDB code 
3IJT) and the model obtained with the protocols developed in this research (green). A) front view; B) rear view. 
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DISCUSSION 
 
Meaningful interpretation of the results described in the present work rely 
heavily on the validity of the structure predictions obtained using Rosetta. 
However, the Rosetta model has been shown to perform fairly well and even 
yield near-atomic resolution structures in a number of cases (Bradley et al., 
2005). Results shown in Figure 18 for a sample of natural proteins confirm 
that Rosetta predictions are in most cases fairly accurate in terms of overall 
fold, secondary structure content and topology. In some cases the agreement 
between the experimental and predicted structures is even surprising, as is 
the case of the predicted structure of the protein nusa (indicated in figure 4 
with the PDB code 1UL9) which displays an overall backbone RMSD of 
only 1.74 Å with respect to the experimentally determined structure. 
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Figure 18. Sample natural proteins predicted three-dimensionalstructures. Schematic representation of the experimental (left 
panel) and predicted (right panel) three-dimensional structures of randomly chosen natural proteins. α helices are coloured in 
magenta, β strands in yellow. Protein Data Bank identification codes are indicated on the left for reference. (from Minervini et 
al., 2009). 



  48 

Analysis of the structural properties of the predicted NBPs structures 
yielded several interesting and in some cases counterintuitive results. In fact 
one would expect that in a large population of random amino acid 
sequences, a large proportion would be “unfoldable” and thus unstructured. 
Given the assumption of the Rosetta model, which however has been shown 
to perform fairly well, our results indicate that this is not the case. Indeed 
most of the NBPs structures are compact and well ordered, as indicated by 
the average surface/volume ratio and secondary structure content (Figure 
7A and Table 3). Surface polarity is similar to that of natural proteins 
(Figure 8) suggesting that water solubility is an intrinsic property of random 
polypeptides. The main differences observed between NBPs and natural 
proteins are the lower compactness and the higher α helix content of the 
former. The lower compactness observed for NBPs is probably related to 
their significantly higher aromatics/aliphatics ratio with respect to natural 
proteins (Table 2). In fact, a higher proportion of aromatic residues in NBPs 
results in a hydrophobic core composition more prone to packing “defects”, 
given the rigid character of aromatic sidechains with respect to branched 
aliphatic residues such as Leu. Indeed, Leu is largely over represented in 
natural proteins while the opposite is observed for aromatic residues. The 
latter finding has important evolutionary implications. In fact a hydrophobic 
core made up of branched aliphatic amino acids is probably more tolerant to 
mutations, in that residue substitutions are more easily accomodated by 
conformational changes of the flexible aliphatic side chains. Regarding 
secondary structure content, NBPs display a higher α helix content with 
respect to natural proteins and a very low β sheet content (Figure 7B and 
Table 3). This could be related to the local nature of the interactions within 
the α helix. In fact a helical fold can accommodate random sequences by 
packing together α helical elements interrupted by loops in which bad helix 
forming residues are located. This is much more difficult in β sheets in 
which precise pairing of β strands, far away from each other along the 
amino acid sequence, is required to form a stable structure. From this point 
of view it can be hypothesized that helical folds are more tolerant to random 
amino acid sequences. This is a fascinating hypothesis that would be very 
interesting to test experimentally. In fact in a prebiotic scenario, in which 
the first polypeptides were probably characterized by random amino acid 
sequences, α helix could have emerged early as an intrinsic structural 
property of polypeptides (Minervini et al., 2009). 
Based on the differences existent between the two groups is extremely 
fascinating the possibility to investigate more thoroughly about the 
properties still hidden in these NBPs. A ranking algorithm capable of 
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learning by its error seems to be a very promising way to identify what are 
the fundamental characteristics that make a protein "natural". If we stop to 
think that NBP is just a protein with a random sequence is not surprising the 
ability to discriminate correctly the natural proteins from random proteins. 
Nevertheless it is particularly interesting that a subset of NBPs are 
characterized by natural-like features. The observation that the three-
dimensional structure of these pseudo-natual proteins is somehow 
compatible with what already exists in nature tends to suggest that the 
variability of forms and folds that we see today in real proteins is largely 
due to initial conditions in which the first polypeptide chains were formed: 
an aqueous medium together with the limited availability of certain amino 
acids. In this light, therefore the proteins commonly found in organisms 
could be considered the result of a deep biological evolution made by nature 
on a small number of "keys common structures". 
From a technical viewpoint, this work has proved that is possible to use in a 
shared computing environment applications which were not designed for 
this purpose. This thesis work has also showed that, to be truly usable by the 
biologists scientific community, GRID infrastructure must be simplified in 
its basic commands and features, and in general should adopt a common 
graphical interface. Another result that emerges between the lines of this 
project is the goodness of Rosetta abinitio software. A semi-empirical 
approach as the generation of protein-fragments based on existing proteins 
results dramatically according to the evidence that the protein designed to 
be "different" from the natural like NBPs, are similar to existing fold. 
Unlike other methods such as the software "twostage", though promising, 
clearly bring to light the need to continue to study the principles that govern 
the protein fold. Considering the results obtained with the two software 
packages, it is clear that both are capable of simulating the formation of 
secondary structure fragments (obtaining in this respect also a very good 
agreement), but the comparison also shows that the program "Twostage" 
partly fails on the determination of the tertiary structure. Probably the 
“Twostage” assumption that the amino acid residues of a protein can be 
approximated with spheres and that the whole protein could be described by 
a spheroid (Brylinski et al., 2006; Brylinski et al., 2006b) is not always in 
agreement with the many different protein folds that exist in nature.  
The preliminary results obtained predicting proteins of unknown function in 
Streptococcus mutans indicates that the protocols and infrastructure used in 
the case of NBPs are mature. The structures generated show also that in the 
case of natural sequences the reliability of the abinitio prediction is fairly 
good. At the same time, however, the large number of intermediate models 
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that are needed to produce a good model makes clear the need of using a 
GRID infrastructure to face this kind of challenges. 
 
 
CONCLUSIONS 
 
Results reported in this work highlight how the computational study of 
“never born proteins”, though predictive in nature, can give a useful insight 
on the basic structural properties of polypeptides and on the specific 
properties of natural proteins. NBPs appear to be structurally very similar to 
natural proteins, suggesting that the enormous sequence space of NBPs 
could indeed be exploited for biotechnological purposes. An important 
difference between NBPs and natural proteins resides in the different 
aromatic/aliphatic amino acids content, in particular in the lower content of 
aromatic amino acids observed in natural proteins. This information can be 
very useful in the design of directed evolution and protein engineering 
studies. Finally, this study demonstrates that exploitation of grid 
infrastructures for massive structure prediction projects is feasible, possible 
applications including genome wide protein structure prediction of bacterial 
pathogens for target selection and drug design studies.  
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