Please use this identifier to cite or link to this item:
Title: Modellazione aeroelastica e progettazione ottimizzata di rotori di elicottero innovativi a basso livello vibratorio
Authors: Piccione, Emanuele
metadata.dc.contributor.advisor: Gennaretti, Massimo
Keywords: modellazione aerolastica
progettazione ottimizzata
Issue Date: 17-Jun-2013
Publisher: Università degli studi Roma Tre
Abstract: The present research activities is aimed to the development of aeroelastic models of advanced helicopter rotor blades and theirs application to opti- mal design of low-vibration rotors. To this purpose, two di erent solvers, for composite advanced geometry rotor blades, characterized by arbitrary curved/swept elastic axis, have been developed. The rst one is numeri- cally integrated through implementation within the COMSOL Multiphysics Finite-Element-Method (FEM) software code, while the second one is based on a Galerkin spectral approach for numerical integration. The FEM model is based on a nonlinear beam-like formulation already developed in the past for a straight rotor blade, and it has been extended to rotor blades with arbi- trary elastic axis shape, while for the implementation of the Galerkin-based solver having similar capabilities of the FEM-based one, the development of an original curved beam formulation has been necessary. Several numerical results concerning comparisons with numerical and experimental data avail- able in the literature are presented to validate both solvers developed. Then, an optimization procedure for the design of helicopter main rotors that gen- erate low vibratory hub loads in advancing ight is implemented where blade shape and structural properties are the design parameters to be identi ed within a binary genetic optimization algorithm, under aeroelastic stability constraint. The Galerkin-based solver is adopted within the optimization process for the evaluation of the objective function, with the inclusion of a non-conventional, computationally e cient, surrogate wake in ow model for the analysis of sectional aerodynamic loads. Numerical results are pre- sented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades.
Access Rights: info:eu-repo/semantics/openAccess
Appears in Collections:T - Tesi di dottorato
Dipartimento di Ingegneria

Files in This Item:
File Description SizeFormat
Tesi - Modellazione aeroelastica e progettazione ottimizzata.pdf3.48 MBAdobe PDFView/Open
SFX Query Show full item record Recommend this item

Page view(s)

Last Week
Last month
checked on Sep 18, 2020


checked on Sep 18, 2020

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.