Please use this identifier to cite or link to this item: http://hdl.handle.net/2307/4401
DC FieldValueLanguage
dc.contributor.advisorGennaretti, Massimo-
dc.contributor.authorPiccione, Emanuele-
dc.date.accessioned2015-05-06T10:11:48Z-
dc.date.available2015-05-06T10:11:48Z-
dc.date.issued2013-06-17-
dc.identifier.urihttp://hdl.handle.net/2307/4401-
dc.description.abstractThe present research activities is aimed to the development of aeroelastic models of advanced helicopter rotor blades and theirs application to opti- mal design of low-vibration rotors. To this purpose, two di erent solvers, for composite advanced geometry rotor blades, characterized by arbitrary curved/swept elastic axis, have been developed. The rst one is numeri- cally integrated through implementation within the COMSOL Multiphysics Finite-Element-Method (FEM) software code, while the second one is based on a Galerkin spectral approach for numerical integration. The FEM model is based on a nonlinear beam-like formulation already developed in the past for a straight rotor blade, and it has been extended to rotor blades with arbi- trary elastic axis shape, while for the implementation of the Galerkin-based solver having similar capabilities of the FEM-based one, the development of an original curved beam formulation has been necessary. Several numerical results concerning comparisons with numerical and experimental data avail- able in the literature are presented to validate both solvers developed. Then, an optimization procedure for the design of helicopter main rotors that gen- erate low vibratory hub loads in advancing ight is implemented where blade shape and structural properties are the design parameters to be identi ed within a binary genetic optimization algorithm, under aeroelastic stability constraint. The Galerkin-based solver is adopted within the optimization process for the evaluation of the objective function, with the inclusion of a non-conventional, computationally e cient, surrogate wake in ow model for the analysis of sectional aerodynamic loads. Numerical results are pre- sented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades.it_IT
dc.language.isoitit_IT
dc.publisherUniversità degli studi Roma Treit_IT
dc.subjectmodellazione aerolasticait_IT
dc.subjectprogettazione ottimizzatait_IT
dc.subjectrotoriit_IT
dc.subjectelicotteroit_IT
dc.titleModellazione aeroelastica e progettazione ottimizzata di rotori di elicottero innovativi a basso livello vibratorioit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurSettori Disciplinari MIUR::Ingegneria industriale e dell'informazione::COSTRUZIONI E STRUTTURE AEROSPAZIALIit_IT
dc.subject.miurIngegneria industriale e dell'informazione-
dc.subject.isicruiCategorie ISI-CRUI::Ingegneria industriale e dell'informazione::Aerospace Engineeringit_IT
dc.subject.isicruiIngegneria industriale e dell'informazione-
dc.subject.anagraferoma3Ingegneria industriale e dell'informazioneit_IT
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Ingegneria*
item.languageiso639-1other-
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:X_Dipartimento di Ingegneria
T - Tesi di dottorato
Files in This Item:
File Description SizeFormat
Tesi - Modellazione aeroelastica e progettazione ottimizzata.pdf3.48 MBAdobe PDFView/Open
Show simple item record Recommend this item

Page view(s)

150
Last Week
0
Last month
4
checked on Nov 25, 2024

Download(s)

229
checked on Nov 25, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.