Please use this identifier to cite or link to this item:
Title: Assessment of novel chemical strategies for covalent attachment of adhesive peptides to rough titanium surfaces: XPS analysis and biological evaluation
Authors: Dettin, Monica
Thushari, Herat
Gambaretto, Roberta
Iucci, Giovanna
Battocchio, Chiara
Bagno, Andrea
Ghezzo, Francesca
Di Bello, Carlo
Polzonetti, Giovanni
Di Silvio, Lucy
Keywords: biomimetic surface
cell adhesion
titanium oxide
Issue Date: Nov-2009
Publisher: Wiley-Liss
Abstract: Bioactive molecules have been proposed to promote beneficial interactions at bone-implant interfaces for enhancing integration. The main objective of this study was to develop novel methods to functionalize oxidized titanium surfaces by the covalent immobilization of bioactive peptides, through selective reaction involving single functional groups. In the first protocol, an aminoalkylsilane was covalently linked to the Ti oxide layer, followed by covalent binding of glutaric anhydride to the free NH2 groups. The carboxylic group Of glutaric anhydride was used to condense the free N-terminal group of the side-chain protected peptide sequence. Finally, the Surface was treated with trifluoroacetic acid to deprotect side-chain groups. In the second protocol, the peptide was directly anchored to the Ti oxide surface via UV activation of an arylazide peptide analogue. X-ray photoelectron spectroscopy analyses confirmed that modifications induced onto surface composition were in agreement with the reactions performed. The peptide density of each biomimetic Surface was determined on the basis of radiolabeling and XPS derived reaction yields. The in vitro cellular response of the biomimetic surfaces was evaluated using a primary human osteoblast cell model. Cell adhesion, proliferation, differentiation, and mineralization were examined at initial-, short-, and long-time periods. In was shown that the biomimetic surface obtained through photoprobe-marked analogue that combines an easily-performed modification provides a favorable surface for an enhanced cellular response. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 91A: 463-479, 200
DOI: 10.1002/jbn.a.32222
Appears in Collections:A - Articolo su rivista
X_Dipartimento di Fisica 'Edoardo Amaldi'

Files in This Item:
File Description SizeFormat Existing users please Login
JBiomedMatRes09b.pdf1.16 MBAdobe PDF    Request a copy
Show full item record Recommend this item

Page view(s)

Last Week
Last month
checked on Apr 13, 2024


checked on Apr 13, 2024

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.