Please use this identifier to cite or link to this item:
http://hdl.handle.net/2307/323
Title: | Assessment of novel chemical strategies for covalent attachment of adhesive peptides to rough titanium surfaces: XPS analysis and biological evaluation | Authors: | Dettin, Monica Thushari, Herat Gambaretto, Roberta Iucci, Giovanna Battocchio, Chiara Bagno, Andrea Ghezzo, Francesca Di Bello, Carlo Polzonetti, Giovanni Di Silvio, Lucy |
Keywords: | biomimetic surface cell adhesion titanium oxide peptide XPS |
Issue Date: | Nov-2009 | Publisher: | Wiley-Liss | Abstract: | Bioactive molecules have been proposed to promote beneficial interactions at bone-implant interfaces for enhancing integration. The main objective of this study was to develop novel methods to functionalize oxidized titanium surfaces by the covalent immobilization of bioactive peptides, through selective reaction involving single functional groups. In the first protocol, an aminoalkylsilane was covalently linked to the Ti oxide layer, followed by covalent binding of glutaric anhydride to the free NH2 groups. The carboxylic group Of glutaric anhydride was used to condense the free N-terminal group of the side-chain protected peptide sequence. Finally, the Surface was treated with trifluoroacetic acid to deprotect side-chain groups. In the second protocol, the peptide was directly anchored to the Ti oxide surface via UV activation of an arylazide peptide analogue. X-ray photoelectron spectroscopy analyses confirmed that modifications induced onto surface composition were in agreement with the reactions performed. The peptide density of each biomimetic Surface was determined on the basis of radiolabeling and XPS derived reaction yields. The in vitro cellular response of the biomimetic surfaces was evaluated using a primary human osteoblast cell model. Cell adhesion, proliferation, differentiation, and mineralization were examined at initial-, short-, and long-time periods. In was shown that the biomimetic surface obtained through photoprobe-marked analogue that combines an easily-performed modification provides a favorable surface for an enhanced cellular response. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 91A: 463-479, 200 | URI: | http://hdl.handle.net/2307/323 | DOI: | 10.1002/jbn.a.32222 |
Appears in Collections: | A - Articolo su rivista X_Dipartimento di Fisica 'Edoardo Amaldi' |
Files in This Item:
File | Description | Size | Format | Existing users please Login |
---|---|---|---|---|
JBiomedMatRes09b.pdf | 1.16 MB | Adobe PDF | Request a copy |
Page view(s)
107
Last Week
0
0
Last month
0
0
checked on Nov 23, 2024
Download(s)
20
checked on Nov 23, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.