Please use this identifier to cite or link to this item: http://hdl.handle.net/2307/5071
DC FieldValueLanguage
dc.contributor.advisorPappalardi, Francesco-
dc.contributor.authorCihan, Pehlivan-
dc.date.accessioned2016-07-18T09:02:51Z-
dc.date.available2016-07-18T09:02:51Z-
dc.date.issued2015-05-08-
dc.identifier.urihttp://hdl.handle.net/2307/5071-
dc.description.abstractLet 􀀀 _ Q_ be a _nitely generated subgroup and let p be a prime number such that the reduction group 􀀀p is a well de_ned subgroup of the multiplicative group F_p. Firstly, given that 􀀀 _ Q_, assuming the Generalized Riemann Hypothesis, we determine an asymptotic formula for the average over prime numbers, powers of the order of the reduction group modulo p. The problem was previously considered by Pomerance and Kulberg for the rank 1 case. When 􀀀 contains only positive numbers, we are also able to give an explicit expression for the involved density in terms of an Euler product. The _rst part is concluded with some numerical computations. In the second part, for any m 2 N we prove an asymptotic formula for the average of the number of primes p _ x for which the index [F_p : 􀀀p] = m. The average is performed over all _nitely generated subgroups 􀀀 = ha1; : : : ; ari _ Q_, with ai 2 Z and ai _ Ti with a range of uniformity: Ti > exp(4(log x log log x) 1 2 ) for every i = 1; : : : ; r. We also prove an asymptotic formula for the mean square of the error terms in the asymptotic formula with a similar range of uniformity. The case of rank 1 and m = 1 corresponds to the classical Artin conjecture for primitive roots and has already been considered by Stephens in 1969.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli studi Roma Treit_IT
dc.subjectprimitive rootsit_IT
dc.subjectaverage resultsit_IT
dc.titleSome average results connected with reductions of groups of rational numbersit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informatiche::ALGEBRAit_IT
dc.subject.isicruiCategorie ISI-CRUI::Scienze matematiche e informatiche::Mathematicsit_IT
dc.subject.anagraferoma3Scienze matematiche e informaticheit_IT
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Matematica e Fisica*
item.languageiso639-1other-
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:Dipartimento di Matematica e Fisica
T - Tesi di dottorato
Files in This Item:
File Description SizeFormat
2015_04_30-Thesis_Pehlivan.pdf472.5 kBAdobe PDFView/Open
Show simple item record Recommend this item

Page view(s)

108
checked on Nov 26, 2024

Download(s)

46
checked on Nov 26, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.