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Abstract

Let Γ ⊂ Q∗ be a finitely generated subgroup and let p be a prime number such that the reduction

group Γp is a well defined subgroup of the multiplicative group F∗p. Firstly, given that Γ ⊆ Q∗,

assuming the Generalized Riemann Hypothesis, we determine an asymptotic formula for the aver-

age over prime numbers, powers of the order of the reduction group modulo p. The problem was

previously considered by Pomerance and Kulberg for the rank 1 case. When Γ contains only pos-

itive numbers, we are also able to give an explicit expression for the involved density in terms of

an Euler product. The first part is concluded with some numerical computations. In the second

part, for any m ∈ N we prove an asymptotic formula for the average of the number of primes

p ≤ x for which the index [F∗p : Γp] = m. The average is performed over all finitely gener-

ated subgroups Γ = 〈a1, . . . , ar〉 ⊂ Q∗, with ai ∈ Z and ai ≤ Ti with a range of uniformity:

Ti > exp(4(log x log log x)
1
2 ) for every i = 1, . . . , r. We also prove an asymptotic formula for the

mean square of the error terms in the asymptotic formula with a similar range of uniformity. The

case of rank 1 and m = 1 corresponds to the classical Artin conjecture for primitive roots and has

already been considered by Stephens in 1969.
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Notations and Terminology

• Z - The ring of integers

• N - {1, 2, ...}

• Z/pZ - The ring of integers modulo prime number p

• F∗p - Multiplicative group of the field of p elements

• 〈a〉 - Subgroup of F∗p generated by a

• gcd(a, b) - Greatest common divisor of the integers a, b ∈ Z

• lcm[a, b] - Least common multiple of the integers a, b ∈ Z

• `p(a) - Order of an element a ∈ F∗p

• ω(n) - Number of distinct prime factors of n

• δ(η) - The field discriminant of Q(
√
η)

• ϕ(n) - Euler totient function

• µ(n) - Möbius function

• rad(n) - Product of distinct prime numbers dividing n

• p, q, ` - Denotes prime numbers

•
∏
p,
∏
q,
∏
` - Denotes the product taken over prime numbers

• Jt(k) - Jordan’s totient function: kt
∏
p|k

(
1− 1

pt

)
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• f(x) = O(g(x)) or f(x) � g(x) - There exists a positive real number C and a real number

x0 such that |f(x)| ≤ C|g(x)| for all x > x0

• f(x) ∼ g(x) - limx→∞
f(x)
g(x) = 1

• f(x)�λ g(x) - Denotes that the implied constant depends on a given parameter λ

• f(x) = o(g(x)) - limx→∞
f(x)
g(x) = 0

• π(x) - Denotes the number of primes up to a number x

• Li(x) -
∫ x

2
dt

log t

v



Chapter 1

Introduction

In his classic work Disquisitones Arithmeticae, Carl F. Gauss questioned why the rational number

1
7 has a period of length 6, whereas 1

11 has a period of length 2. In the same work, he observed that

for any prime number p 6= 2, 5, 1
p has the same period with the order of 10 mod p, and that the

period of 1
p is long when 10 is a primitive root modulo p, where an integer a is said to be a primitive

root modulo p if 〈a (mod p)〉 = F∗p. With this observation, Gauss further questioned whether 10

would be a primitive root for infinitely many prime numbers.

Later on, in 1927, Artin conjectured that any non-zero integer a 6= ±1, which is not a perfect

square, is a primitive root for infinitely many primes. Letting p be a prime number, and denoting

the multiplicative order of an integer a modulo p by `a(p), we say that the integer a is primitive

root modulo p if `a(p) = p − 1. Also defining Na(x) as the number of primes up to x for which

`a(p) = p− 1, we may formulate Artin’s initial conjecture as:

Conjecture 1.1. Let a be a fixed integer such that a 6= ±1, 0 or a perfect square. Write a = bh

where b ∈ Z is not a perfect power and h ∈ N. Then,

Na(x) ∼ Ah
x

log x

1



as x→∞ where

Ah =
∏
q|h

q prime

(
1− 1

q − 1

) ∏
q-h

q prime

(
1− 1

q(q − 1)

)
.

Let us now briefly discuss Artin’s heuristic argument towards the conjecture. First note that

a is primitive root modulo p if and only if a
p−1
q 6≡ 1 modulo p for all prime divisor q of p − 1.

Equivalently, a is a primitive root mod p if and only if the following two conditions are not satisfied

simultaneously

p ≡ 1 mod q (1.1)

a
p−1
q 6≡ 1 mod p. (1.2)

Fixing a prime q, by Dirichlet’s Theorem, the number of primes p, that satisfies the first condition

has frequency
1

q − 1
.

Also, the number of primes p that satisfy the second condition (except integers a that are q-th

powers) has frequency 1
q . Now, assuming that the two conditions in (1.1) and (1.2) are independent,

one would expect that the probability of these two events occurring simultaneously is 1
q(q−1) . Since

we would like to have neither of these occur for any prime q, the natural guess for the probability

that a is primitive root (mod p) then would be

∏
q

(
1− 1

q(q − 1)

)
,

which is known as the Artin constant.

In 1957, Derrick H. Lehmer discovered some deviations from the constant suggested by Artin,

and after some correspondence between Artin and Lehmer (see [26]), Artin added a correction factor

to his initial conjecture. In 1967, Hooley [9] proved that Artin’s conjecture is true and that we may

obtain an asymptotic formula for Na(x), under the additional assumption that GRH (Generalized

Riemann Hypothesis) holds.

Theorem 1.2. [9] Suppose a ∈ Z \ {±1, 0} which is not a perfect square. If the GRH holds for

2



the Dedekind zeta functions for the fields Q(ζk, a
1/k) with k ∈ N square-free, and where ζk is a

primitive k-th root of unity, then

Na(x) = A(a)π(x) +O

(
x log log x

(log x)2

)

where A(a) is a constant depending on a.

Several generalizations of Artin’s conjecture have been studied by various authors during the

subsequent years (for an exhaustive survey see [16]).

Until so far, the best unconditional result about Artin’s conjecture is due to Heath-Brown [8],

Gupta and Murty [6]: One of 2, 3, or 5 is a primitive root modulo p for infinitely many primes p.

Next, we focus on results on average multiplicative order of an integer a. In 2005, V. I. Arnold

[1] conjectured that on average `a(n) ∼ c(a) n
logn , where c(a) is a positive constant depending on

a. His heuristic argument was based on the physical principle of turbulence, and it was noted by

Arnold that his reasoning was supported by billions of numerical experiments. Given co-prime

integers a, n with n > 0 and |a| > 0, if we define the average multiplicative order of a by

Ta(x) :=
1

x

∑
n≤x

(a,n)=1

`a(n),

then the conjecture of Arnold can be stated as: If |a| > 1 then

Ta(x) ∼ c(a)
x

log x
,

for some constant c(a).

However, in 2007, Shparlinski [23] showed under the GRH, if |a| > 1,

Ta(x)� x

log x
exp(c(a)(log log log x)

3
2 ),

for some constant c(a) > 0.

3



In 2012, Pomerance and Kulberg [10], sharpened Shparlinski’s result to

Ta(x) =
x

log x
exp

(
B log log x

log log log x
(1 + o(1))

)

as x → ∞, uniformly in a with 1 < |a| ≤ log x. The upper bound implicit in this result holds

unconditionally.

Our main interest in this thesis will be on average results over prime numbers. In this direction,

in 1976, Stephens [25] proved that, again under the GRH assumption, if a is an integer which is

not a perfect h power for any h ≥ 2, then

∑
p≤x

`a(p)

p− 1
= ca ·

x

log x
+O

(
x log log x

log2 x

)
,

where ca is a constant depend on a.

As another related result, Pomerance and Kulberg prove the following theorem in their afore-

mentioned paper [10].

Theorem 1.3. [10] Assume the GRH holds. Then for any given rational a 6= 0,±1

1

π(x)

∑
p≤x

`a(p) =
1

2
ca · x+O

(
x

(log x)2−4/ log log log x

)
,

where

ca :=

∞∑
k=1

ϕ(k) rad(k)(−1)ω(k)

k2[Q(ζk, a1/k) : Q]
,

and the series ca converges absolutely.

Indeed, it is known that ca is a rational multiple of c =
∏
p(1 −

p
p3−1

), which is again a result

of Pomerance and Kulberg. To formulate this rigorously, we first need some further notation.

Write a = ±(a0)h where h is a positive integer and a0 > 0 is not an exact power of a rational

number, and write a0 = a1a2 where a1 is a square-free integer and a2 is a rational number. Let

n = lcm[2e+1; δ(a1)] , for a > 0 and e be the 2-adic valuation v2(h). Also consider the multiplicative

4



function f(k) = (−1)ω(k) rad(k)(h, k)/k3, which for prime powers reduces to

f(pj) = −p1−3j+min(j,vp(h)).

Then, defining

F (p, t) :=
t−1∑
j=0

f(pj), F (p) :=
∞∑
j=0

f(pj),

the precise expression obtained for ca, a > 0, obtained by Pomerance and Kulberg in [10] is the

following representation

ca = c
∏
p|h

F (p)

1− p
p3−1

1 +
∏
p|n

F (p)− F (p, vp(n))

F (p)

 . (1.3)

In Chapter 2, we generalize the result of Pomerance and Kulberg (see Theorem 1.3) to any finitely

generated subgroup Γ ⊂ Q∗ of Q∗. This result is also submitted for publication [21].

Before stating our result rigorously, we need some other definitions. Let Γ ⊆ Q∗ be a finitely

generated multiplicative subgroup. The support of Γ is the (finite) set of prime numbers p for

which the p–adic valuation vp(g) 6= 0 for some g ∈ Γ. We denote this set by Supp Γ and define

σΓ =
∏
p∈Supp Γ p. For each prime number p - σΓ, the reduction of Γ modulo p is well defined. That

is,

Γp = {g (mod p) : g ∈ Γ}.

If Γ = 〈a1, a2, ..., ar〉 then we denote by Γ
1
k the group generated by

〈a
1
k
1 , a

1
k
2 , ..., a

1
k
r 〉.

The following theorem is one of our main results in this thesis, and its proof will be included in

Chapter 2.

Theorem 1.4. Let Γ ⊆ Q∗ be a finitely generated multiplicative subgroup with rank r ≥ 2 and

5



assume that the Generalized Riemann Hypothesis holds for Q(ζk,Γ
1/k), k ∈ N. Let

CΓ,t :=
∑
k≥1

Jt(k)(rad(k))t(−1)ω(k)

k2t[Q(ζk,Γ1/k) : Q]
. (1.4)

Then the series CΓ,t converges absolutely, and as x→∞

∑
p≤x
|Γp|t = li(xt+1)

(
CΓ,t +OΓ

(
log log x

(log x)r

))
, (1.5)

where the constant implied by the OΓ–symbol may depend on Γ.

Moreover, again in Chapter 2, we give an explicit expression for the involved density in terms of

an Euler product when Γ contains only positive numbers.

Let us next move to a discussion of Artin’s conjecture without the GRH assumption for which

we still do not have satisfactory results. Just one year after the work of Hooley, in 1968, Goldfeld

[5] showed unconditionally that for each D > 1

Na(x) = A lix+O

(
x

(log x)D

)
(1.6)

holds for all integers a ≤ N with at most c1N
9
10 (5 log x + 1)h+D+2 exceptions where h = x

logN , A

is Artin’s constant, c1 and constant of O-term are positive and depend on only D.

Later in 1969, Stephens [24] not only showed that in average the asymptotic formula 1.6 holds,

but also making use of the normal order method of Turan, he proved that the number of exceptions

is bounded by O(N) when

N > exp(6(log x log log x)
1
2 )

and as N, x tends to infinity. The following theorems are again due to Stephens and they were used

to prove his results just mentioned.

Theorem 1.5. [24] If

N > exp(4(log x log log x)
1
2 ),

6



then

1

N

∑
a≤N

Na(x) = A lix+O

(
x

(log x)D

)
,

where A is Artin’s constant, and the constant D > 1 is arbitrary.

Theorem 1.6. [24] Let A be Artin’s constant, and E > 2 be an arbitrary real number. Then, for

N > exp(6(log x log log x)
1
2 ),

we have

1

N

∑
a≤N

(Na(x)−A lix)2 � x2

(log x)E
.

For any integer |a| > 1 which is not a perfect square, Artin’s conjecture is about the number of

primes which satisfy the relation [F ∗p : 〈a (mod p)〉] = 1. We can define a new counting function to

enumerate the prime numbers which a generates a group of index m ∈ N in F ∗p ,

Na(x,m) = #{p ≤ x : p - a, [F ∗p : 〈a mod p〉] = m}. (1.7)

The following theorem was proven by Moree.

Theorem 1.7. [17] Let m be an arbitrary positive integer. Then for T > exp(4(log x log log x)1/2),

we have

1

T

∑
a≤T

Na,m(x) =
∑
p≤x

p≡1 (mod m)

ϕ((p− 1)/m)

p− 1
+O

(
x

(log x)E

)
(1.8)

for any constant E > 2.

In Chapter 3, we generalize the result of Moree given in Theorem 1.7 and the results of Stephens

given in Theorems 1.5 and 1.6 to the r–rank case, which is part of a joint work with Lorenzo Menici

[14]. Also, we prove an asymptotic formula for the average of the number of primes p ≤ x for which

the index [F∗p : Γp] = m. The average is performed over all finitely generated subgroups Γ =

7



〈a1, . . . , ar〉 ⊂ Q∗, with ai ∈ Z and ai ≤ Ti with a range of uniformity: Ti > exp(4(log x log log x)
1
2 )

for every i = 1, . . . , r. The main result of Chapter 3 is summarized in the following theorem.

Theorem 1.8. Assume T ∗ := min{Ti : i = 1, . . . , r} > exp(4(log x log log x)
1
2 ) and m ≤ (log x)D

for an arbitrary positive constant D. Then

1

T1 · · ·Tr

∑
ai∈Z

0<a1≤T1

...
0<ar≤Tr

N〈a1,··· ,ar〉,m(x) = Cr,m Li(x) +O

(
x

(log x)M

)
,

where Cr,m =
∑

n≥1
µ(n)

(nm)rϕ(nm) and M > 1 is arbitrarily large.

Furthermore, if T ∗ > exp(6(log x log log x)
1
2 ), then

1

T1 · · ·Tr

∑
ai∈Z

0<a1≤T1

...
0<ar≤Tr

{
N〈a1,··· ,ar〉,m(x)− Cr,m Li(x)

}2 � x2

(log x)M ′
,

where M ′ > 2 is arbitrarily large.

8



Chapter 2

Average Multiplicative Order of Γ

Over Primes

2.1 Preliminary Definitions and Results

We denote by Q(ζk,Γ
1/k) the extension of the cyclotomic field Q(ζk) obtained by adding the k–th

roots of all the elements in Γ. Q(ζk,Γ
1/k) is a finite Galois extension of Q and it is well known that

Gal(Q(ζk,Γ
1/k)/Q(ζk)) ∼= Γ(Q(ζk)

∗)/Q(ζk)
∗.

For details on the Theory of Kummer’s extensions see [12, Theorem 8.1]. If η ∈ Q∗, by δ(η) we

denote the field discriminant of Q(
√
η). So, if η ∈ Z is square-free, δ(η) = η if η = 1 mod (4) and

δ(η) = 4η otherwise. For any k ∈ N+,

Γ(k) = Γ ·Q∗k/Q∗k.

9



For any square-free integer η, let

tη =


∞ if for all t ≥ 0, η2tQ∗2

t+1 6∈ Γ(2t+1)

min{t ∈ N : η2tQ∗2
t+1 ∈ Γ(2t+1)} otherwise.

(2.1)

We define the index of subgroup ind(Γp) = p−1
|Γp| . Let Γ be a finitely generated subgroup of Q∗

of rank r and let (a1, ..., ar) be a Z−basis of Γ. We write Supp(Γ) = {p1, ..., ps}. Then we can

construct the s× r−matrix with coefficients in Z :

M(a1, ..., ar) = A =


α1,1 ... α1,r

...
...

αs,1 ... αs,r


defined by the property that |ai| = (p1)α1,i ...(ps)

αs,i . It is clear that the rank of M(a1, ..., ar) equals

r. For all i = 1, ..., r we define the i−th exponent of Γ by

∆i = ∆i(Γ) = gcd( det A : A is an i× i minor of M(a1, ..., ar)).

For m ∈ N, we have (see [3, Proposition 2] )

|Γ(m)| =
εm,Γ ×mr

gcd(mr,mr−1∆1, ...,m∆r−1,∆r)

where

εm,Γ =


1 if m is odd or if − 1 /∈ Γ(Q∗)m

2 if m is even and if − 1 ∈ Γ(Q∗)m.
(2.2)

Then, for every prime power pα, we have (see [8])

|Γ(pα)| = pmax{0,α−vp(∆1),...,(r−1)α−vp(∆r−1),rα−vp(∆r)}. (2.3)

Proposition 2.1. Let g ∈ Q+ \ {1} and we write g = (g0)h where h is a positive integer and g0 is

10



not a perfect power and let g0 = g1g
2
2 where g1 is square free, then we have tg1 = v2(h) and tη =∞

if η 6= g1.

Proof. Let m = v2(h) then,

|Γ(2t+1)| = 2t+1−min(t+1,m).

The condition η2tQ∗2
t+1 ∈ Γ(2t+1) is satisfied if the group Γ(2t+1) has an element of order 2. It

could happen if t ≥ m, and in this case, the only element in Γ(2t+1) of order 2 is (g1)2tQ∗2
t+1

. So,

tg1 = m = v2(h) and tη =∞ for all other values of η. Note that tη is defined if η is square-free.

The following statement is obtained using the effective version of the Chebotarev Density The-

orem due to Serre (see [22, Theorem 4]).

Lemma 2.2 (Chebotarev Density Theorem). Let Γ ⊂ Q∗ be a finitely generated subgroup of rank

r and k ∈ N+. The GRH for the Dedekind zeta function of Q(ζk,Γ
1/k) implies that

# {p ≤ x : p 6∈ Supp Γ, k | ind(Γp)} =
li(x)[

Q(ζk,Γ1/k) : Q
] +O

(√
x log(xkr+1σΓ)

)
. (2.4)

The following Lemma describes explicitly the degree of [Q(ζk,Γ
1/k) : Q] (see [19, Lemma 1 and

Corollary 1]).

Lemma 2.3. Let k ≥ 1 be an integer. With the notation above, we have

[
Q(ζk,Γ

1/k) : Q(ζk)
]

= |Γ(k)|/|Γ̃(k)|,

where

Γ̃(k) = (Γ ∩Q(ζk)
2v2(k)

) ·Q∗2
v2(k)

/Q∗2
v2(k)

.

11



Furthermore, in the special case when Γ ⊂ Q+,

Γ̃(k) = {η | σΓ, η
2v2(k)−1

Q∗2
v2(k)

∈ Γ(2v2(k)), δ(η) | k}.

The next results follows from Lemma 2.2, see also [19, Equation 7].

Corollary 2.4. Let Γ ⊂ Q∗ be a subgroup with r = rankZ(Γ) and let k ∈ N. Then

2kr ≥ [Q(ζk,Γ
1/k) : Q(ζk)] ≥

(k/2)r

∆r(Γ)
. (2.5)

Next Lemma is implicit in the work of C. R. Matthews (see [13]).

Lemma 2.5. Assume that Γ ⊆ Q∗ is a multiplicative subgroup of rank r ≥ 2 and assume that

(a1, . . . , ar) is a Z–basis of Γ. Let t ∈ R, t > 1. We have the following estimate

# {p 6∈ Supp Γ : |Γp| ≤ t} �Γ
t1+1/r

log t
. (2.6)

Theorem 2.6. Assume the GRH. Let Γ be a multiplicative subgroup of Q∗ of rank r ≥ 2. Then,

for 1 ≤ L ≤ log x, we have

#

{
p ≤ x : p 6∈ Supp Γ, |Γp| ≤

p− 1

L

}
�Γ

π(x)

Lr
. (2.7)

The proof of the above is routine and easier than the main theorem in [9] and the one in [1,

Theorem 6]. Hence, we will skip some of the details.

Proof. Let t, L ≤ t ≤ x, be a parameter that will be chosen later.

12



• first step: First consider primes p 6∈ Supp Γ such that |Γp| ≤ p−1
t . By Lemma 2.5, we have

#
{
p 6∈ Supp Γ : |Γp| ≤

x

t

}
�Γ

(x/t)1+1/r

log(x/t)
. (2.8)

• second step: Next consider the primes p 6∈ Supp Γ such that there exists a prime q, L ≤ q ≤ t

such that q | ind(Γp) = p−1
|Γp| . If we apply Lemma 2.2, we obtain

#{p ≤ x : p 6∈ Supp Γ, q | ind(Γp)} =
li(x)[

Q(ζq,Γ1/q) : Q
] +OΓ

(√
x log(xq)

)
�Γ

π(x)

qrϕ(q)
+
√
x log(xq) (2.9)

where in the latter estimate we have applied Corollary 2.4. If we sum the above over primes

q: L ≤ q ≤ t, we obtain

#{p ≤ x : p 6∈ Supp Γ,∃q | ind(Γp), L ≤ q ≤ t} ≤
∑

q prime
L≤q≤t

(
π(x)

qrϕ(q)
+
√
x log(xq)

)

�Γ
π(x)

Lr
+ x1/2t log x. (2.10)

• third step: The primes p that were not counted in previous steps, have the property that all

the prime divisors of ind(Γp) belong to the interval [1, L]. Hence, for such primes p, ind(Γp)

is divisible for some integer d in [L,L2].

Applying again Lemma 2.2 and Corollary 2.4, and taking the sum over d we deduce that the

total number of such primes is

�Γ

∑
d∈N

L<d≤L2

(
π(x)

drϕ(d)
+ x

1
2 log(xd)

)
�Γ

π(x)

Lr
+ x1/2L2 log x. (2.11)

13



A choice of t = x1/2

Lr log2 x
allows us to conclude the proof.

The Theorem of Wirsing [28] is formulated as follows.

Lemma 2.7. Assume that a real valued multiplicative function h(n) satisfies the following condi-

tions.

• h(n) ≥ 0, n = 1, 2, ..;

• h(pn) ≤ c1c2
v, v = 2, 3..., for some constants c1, c2 with c2 < 2;

• there exists a constant τ > 0 such that

∑
p≤x

h(p) = (τ + o(1))
x

log x
. (2.12)

Then for any x ≥ 0,

∑
n≤x

h(n) =

(
1

eγτΓ(τ)
+ o(1)

)
x

log x

∏
p≤x

∑
ν≥0

h(pν)

pν
(2.13)

where γ is the Euler constant, and

Γ(s) =

∫ ∞
0

e−tts−1dt (2.14)

is the gamma function.

2.2 Proof of Theorem 1.4

The proof use the methods of Kurlberg and Pomerance [1, Theorem 2].

14



Proof of Theorem 1.4. Let z = log x. We have

∑
p≤x
|Γp|t =

∑
p≤x

ind(Γp)≤z

|Γp|t +
∑
p≤x

ind(Γp)>z

|Γp|t = A+ E.

We write |Γp|t = (p−1)t

indt(Γp)
and use the identity 1

indt(Γp)
=
∑

uv| ind(Γp)
µ(v)
ut , after splitting the sum we

have

A =
∑
p≤x

ind(Γp)≤z

(p− 1)t
∑

uv| ind(Γp)

µ(v)

ut

=
∑
p≤x

(p− 1)t
∑

uv| ind(Γp)
uv≤z

µ(v)

ut
−

∑
p≤x

ind(Γp)>z

(p− 1)t
∑

uv| ind(Γp)
uv≤z

µ(v)

ut

= A1 − E1.

The main term A1 is

A1 =
∑
uv≤z

µ(v)

ut

∑
uv|ind(Γp)

p≤x

(p− 1)t.

Applying partial summation and using Lemma 2.2 on GRH, we can write the inner some as

li(xt+1)

[Q(ζuv,Γ1/uv) : Q]
+O

(
xt+

1
2 log x

)
.

Then it follows,

A1 = li(xt+1)
∑
uv≤z

µ(v)

ut[Q(ζuv,Γ1/uv) : Q]
+O

xt+ 1
2 log x

∑
n≤z

∣∣∣∣∣∑
uv=n

µ(v)

ut

∣∣∣∣∣
 .

The inner sum in the O-term is bounded by ϕ(n)
n so that the O-term above is O

(
xt+

1
2 log2(x)

)
.
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Next we use the elementary fact Jt(rad(k)) = Jt(k)
(

rad(k)
k

)t
and

∑
v|k µ(v)vt =

∏
p|k (1− pt) =

(−1)ω(k)Jt(rad(k)) = (−1)ω(k) Jt(k)(rad(k))t

kt . So

∑
uv=k

µ(v)

ut[Q(ζuv,Γ1/uv) : Q]
=
∑
v|k

µ(v)vt

kt[Q(ζk,Γ1/k) : Q]
=

(−1)ω(k)Jt(k)(rad(k))t

k2t[Q(ζk,Γ1/k) : Q])
.

Let CΓ,t :=
∑

k≥1
Jt(k)(rad(k))t(−1)ω(k)

k2t[Q(ζk,Γ1/k):Q]
, then we have

∑
uv≤z

µ(v)

ut[Q(ζuv,Γ1/uv) : Q]
= CΓ,t −

∑
k>z

Jt(k)(rad(k))t(−1)ω(k)

k2t[Q(ζk,Γ1/k) : Q]
.

Since [Q(ζk,Γ
1/k) : Q] = [Q(ζk,Γ

1/k) : Q(ζk)]ϕ(k), if we use Corollary 2.4, we have

Jt(k)(rad(k))t(−1)ω(k)

k2t[Q(ζk,Γ1/k) : Q]
� (rad(k))t

kt+1kr
.

Finally, we have

A1 = li(xt+1)

(
CΓ,t +O

(
1

zr

))
.

It remains to estimate the error terms E and E1. Applying Theorem 2.6:

E � xt

zt
π(x)

zr
.

In order to estimate E1, we calculate

∣∣∣∣∣∣∣∣
∑
uv|n
uv≤z

µ(v)

ut

∣∣∣∣∣∣∣∣ ≤
∑
u|n

1

ut

∑
v|n
v≤z

1 ≤ τ(n)σt(n)

nt

16



so

E1 ≤
∑
z<n

τ(n)σt(n)

nt

∑
p≤x

n|ind(Γp)

(p− 1)t.

Then applying Lemma 2.2 and Corollary 2.4 we obtain that

E1 � xtπ(x)
∑
z<n

τ(n)σt(n)

ntϕ(n)nr
.

Let g(n) := τ(n)σt(n)
nt−1ϕ(n)

,
∑

p≤x g(p) = (2 + o(1)) x
log x . Using Lemma 2.7(in our case τ is 2), we have

∑
n≤x

g(n) =

(
1

eγ2
+ o(1)

)
x

log x

∏
p≤x

1 +
p

(p− 1)(pt − 1)

∑
ν≥1

(ν + 1)(pνt+t − 1)

pνt+ν

 .

To make the product convergent we add a correction factor, and invoke Merten’s third formula, we

have

∑
n≤x

g(n) ∼ x log x.

Let G(n) :=
∑

n≤x g(n) using partial summation, we have

∑
z<n

g(n)

nr+1
= lim

T→∞

(
G(T )

T r+1
− G(z)

zr+1

)
−
∫ ∞
z

G(u)
d

du

(
1

ur+1

)
� log z

zr
.

Therefore, we obtain

E1 � xtπ(x)
log z

zr
.
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We have chosen z = log x, finally we have

∑
p≤x
|Γp|t = li(xt+1)CΓ,t +O

(
xt+1 log log x

(log x)r+1

)
.

2.3 Density Calculations

Further on, for the case t = 1 we use CΓ instead of CΓ,1. Kulberg and Pomerance in [1] consider

the case when Γ = 〈g〉 has rank 1. In the special case when Γ ⊂ Q+, we express the value of CΓ as

an Euler product.

Theorem 2.8. Assume that Γ is a finitely generated subgroup of Q+. Then,

CΓ,t =
∏
p

1−
∑
α≥1

pt − 1

pα(t+1)−1|Γ(pα)|(p− 1)



×

1 +
∑
η|σΓ
η 6=1

Sη
∏
p|2η

1−

∑
α≥1

pt − 1

pα(t+1)−1|Γ(pα)|(p− 1)

−1−1
 (2.15)

where

Sη =

∑
α≥γη

2t − 1

2α(t+1)−1|Γ(2α)|∑
α≥1

2t − 1

2α(t+1)−1|Γ(2α)|

(2.16)

and γη = max{1 + tη, v2(δ(η))}.

Proof of Theorem 2.8. We start by splitting the sum CΓ,t as

CΓ,t :=
∑
k≥1

Jt(k)(rad(k))t(−1)ω(k)

k2t[Q(ζk,Γ1/k) : Q]
= A1 +A2. (2.17)
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where A1 is the sum of the terms corresponding to odd values of k and A2 is the sum of the terms

corresponding to even values of k. Note that if Γ ⊆ Q+ by Lemma 2.3, we have

[Q(ζk,Γ
1/k) : Q] =

ϕ(k)|Γ(k)|
|Γ̃(k)|

(2.18)

and if k is even,

Γ̃(k) = {η | σΓ, η
2v2(k)−1

Q∗2
v2(k)

∈ Γ(2v2(k)), δ(η) | k} (2.19)

while if k is odd Γ̃(k) = {1}. We define

ft(k) =
Jt(k)(rad(k))t(−1)ω(k)

k2tϕ(k)|Γ(k)|
.

Note that if D ∈ N+ is even, since ft(k) is multiplicative in k, then

∑
k≥1

gcd(k,D)=1

ft(k) =
∏
p-D

1 +
∑
α≥1

ft(p
α)

 =
∏
p-D

1−
∑
α≥1

pt − 1

pα(t+1)−1|Γ(pα)|(p− 1)

 . (2.20)

Therefore, we have the identity

A1 :=
∏
p>2

1 +
∑
α≥1

ft(p
α)

 =
∏
p>2

1−
∑
α≥1

pt − 1

pα(t+1)−1|Γ(pα)|(p− 1)

 . (2.21)
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We can write A2 as,

A2 =
∑
η|σΓ

∑
k≥1,2|k
Γ̃(k)3η

Jt(k)(rad(k))t(−1)ω(k)

k2tϕ(k)|Γ(k)|

=
∑
η|σΓ

∑
α≥1

η2α−1Q∗2
α
∈Γ(2α)

∑
k≥1

v2(k)=α
δ(η)|k

ft(k)

=
∑
η|σΓ

∑
α≥1

η2α−1Q∗2
α
∈Γ(2α)

α≥v2(δ(η))

−(2t − 1)

2α(t+1)−1|Γ(2α)|
∑
k≥1
2-k

δ(η)|8k

ft(k). (2.22)

Now write δ(η) = 2v2(δ(η))M . Then

∑
k≥1
2-k

δ(η)|8k

ft(k) =
∏
p>2
p-M

1 +
∑
α≥1

ft(p
α)

∏
p>2
p|M

∑
α≥1

ft(p
α)



= A1

∏
p>2
p|M

1 +
∑
α≥1

ft(p
α)

−1∑
α≥1

ft(p
α)

 . (2.23)

Hence, if tη is the quantity defined in (2.1), then

CΓ,t := A1 ×

1 +
∑
η|σΓ

∑
α≥1

α≥tη+1
α≥v2(δ(η))

−(2t − 1)

2α(t+1)−1|Γ(2α)|
∏
p>2
p|M

1 +

∑
α≥1

ft(p
α)

−1−1

 .

Now let

δΓ :=
∏

p prime

1 +
∑
α≥1

ft(p
α)

 =
∏

p prime

1−
∑
α≥1

pt − 1

pα(t+1)−1|Γ(pα)|(p− 1)
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and deduce that

CΓ,t = δΓ

1 +
∑
η|σΓ
η 6=1

∑
α≥γη

2t − 1

2α(t+1)−1|Γ(2α)|∑
α≥1

2t − 1

2α(t+1)−1|Γ(2α)|

∏
p|2η

1 +

∑
α≥1

ft(p
α)

−1−1



where γη = max{1 + tη, v2(δ(η))} and this completes the proof.

In the special case when Γ consists of prime numbers and t = 1, the above formula can be

considerably simplified:

Corollary 2.9. Let Γ = 〈p1, . . . , pr〉 where all the pi’s are prime numbers and r ≥ 1, with the

notation above, we have

C〈p1,....,pr〉 =
∏
p

(
1− p

pr+2 − 1

)

×

1 +
∑

η|p1···pr
η 6=1

1

2max{0,v2(δ(η)/2)}(r+2)

∏
`|2η

`

`+ 1− `r+2

 . (2.24)

The quantity

Cr =
∏
p

(
1− p

pr+2 − 1

)
(2.25)

can be computed with arbitrary precision:
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r Cr
1 0.57595996889294543964316337549249669251 · · ·
2 0.82357659279814332395380438513901050177 · · ·
3 0.92190332088740008067545348360869076931 · · ·
4 0.96388805107176946676374437726734997946 · · ·
5 0.98282912014687261524345691713313004185 · · ·
6 0.99168916383630008819101294319807859837 · · ·
7 0.99593155027181927318700546733612700362 · · ·
8 0.99799372275691129752727433560285572887 · · ·
9 0.99900593591154969071253065973483263501 · · ·
10 0.99950593624928276115384423618416539651 · · ·

Table 2.1: Approximated values of some of the Cr’s.

Proof of Corollary 2.9. Let Γ be generated by prime numbers p1, ...., pr, since ∆i’s are 1 we have

|Γ(k)| = kr and tη = 0 for all η | σΓ = p1 · · · pr and

γη =



1 if η ≡ 1 mod 4

2 if η ≡ 3 mod 4

3 if η ≡ 2 mod 4.

Furthermore, ∑
α≥γη

1

22α−1|Γ(2α)|
=

1

2(γη−1)(r+2)

∑
α≥1

1

22α−1|Γ(2α)|

and since |Γ(k)| = kr for all k ∈ N+, we have that

∑
α≥1

1

p2α−1|Γ(pα)|
=

p

pr+2 − 1
.

Hence, if we let

Cr =
∏
p

(
1− p

pr+2 − 1

)
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then

C〈p1,....,pr〉 = Cr

1 +
∑

η|p1···pr
η 6=1

1

2(γη−1)(r+2)

∏
`|2η

`

`+ 1− `r+2


and this completes the proof.

Furthermore, we have the following Corollary.

Corollary 2.10. Let Γ be a finitely generated subgroup of Q+ with rank r. Then CΓ is a non zero

rational multiple of Cr.

Proof of Corollary 2.10. If we set kp = max{vp(∆r/∆r−1), · · · , vp(∆1/∆0)} then for α ≥ kp,

|Γ(pα)| = prα−vp(∆r). Hence

∑
α≥1

1

p2α−1|Γ(pα)|
=

kp∑
α=1

1

p2α−1|Γ(pα)|
+
pvp(∆r)+1−(r+2)kp

pr+2 − 1
∈ Q.

In particular, if p - ∆r, then kp = 0 and |Γ(pα)| = pαr for all α ≥ 0 and

∑
α≥1

1

p2α−1|Γ(pα)|
=

p

pr+2 − 1
.

Therefore

CΓ = rΓ

∏
p-∆r

(
1− p

pr+2 − 1

)

where

rΓ =
∏
p|∆r

1−
∑
α≥1

1

p2α−1|Γ(pα)|



×

1 +
∑
η|σΓ
η 6=1

Sη
∏
p|2η

1−

∑
α≥1

1

p2α−1|Γ(pα)|

−1−1
 ∈ Q. (2.26)
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Finally CΓ is a rational multiple of

Cr =
∏
p

(
1− p

pr+2 − 1

)

and this concludes the proof.

A calculation shows that, in the case when Γ = 〈g〉, the above expression for C〈g〉 coincides with

the density cg of Pomerance and Kulberg (see equation 1.3). We will give the proof for g > 0, in

the following Corollary.

Corollary 2.11. Let Γ = 〈g〉 where g ∈ Q+ \ {1} and we write g = (g0)h where h is a positive

integer and g0 is not a perfect power and let g0 = g1g
2
2 where g1 is square free, we have CΓ = cg.

Proof. By Proposition 2.1, we have tη = ∞ unless η = g1, so Sη is different than 0 only when

η = g1, then we have

C〈g〉 =
∏
p

1−
∑
α≥1

1

p2α−1|Γ(pα)|


1 + Sg1

∏
p|2g1

1−

∑
α≥1

1

p2α−1|Γ(pα)|

−1−1
 .

When the rank is 1, for prime powers we have |Γ(pα)| = pmax(0,α−vp(∆1)). Since ∆1 = h, then

C〈g〉 =
∏
p

1−
∑
α≥1

1

p2α−1pmax{0,α−vp(h)}


×

1 + Sg1

∏
p|2g1

1−

∑
α≥1

1

p2α−1|Γ(pα)|

−1−1


=
∏
p

1−
∑
α≥1

1

p3α−1

∏
p|h

(
1−

∑
α≥1

1
p2α−1+max(0,α−vp(h))

)
(

1−
∑

α≥1
1

p3α−1

)
×

1 + Sg1

∏
p|2g1

1−

∑
α≥1

1

p2α−1|Γ(pα)|

−1−1
 .
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If we use the notation of Pomerance and Kulberg, which we defined previously in introduction

and noting that j −min(j, vp(h)) = max(0, j − vp(h)), we have

C〈g〉 = c
∏
p|h

F (p)

1− p
p3−1

1 +
F (2)− F (2, γg1)

F (2)− 1

∏
p|2g1

(1 + (F (p)− 1)−1)−1


= c

∏
p|h

F (p)

1− p
p3−1

1 +
F (2)− F (2, γg1)

F (2)− 1

∏
p|2g1

F (p)− 1

F (p)


= c

∏
p|h

F (p)

1− p
p3−1

1 +
F (2)− S(2, γg1)

F (2)

∏
p|g1,p>2

F (p)− 1

F (p)


= c

∏
p|h

F (p)

1− p
p3−1

1 +
∏
p|n

F (p)− F (p, vp(n))

S(p)

 (2.27)

where n = lcm[2e+1; δ(a1)], to get last equality we used the equation γg1 = max(1+tg1 , v2(δ(g1))) =

v2(n) and the property vp(n) = 1 except for p = 2.

2.4 Numerical Examples

In this section we compare some numerical data. The following table compares the value of CΓ as

predicted by Corollary 2.9 with

AΓ =

∑
p≤1010

|Γp|∑
p≤1010

p
.

We consider the following cases:

• Γr = 〈2, ..., pr〉, the group generated by the first r primes

• Γ′r = 〈3, ..., pr+1〉, the group generated by the first r odd primes

• Γ′′r = 〈5, ..., p′′r〉, the group generated by the first r primes congruent to 1 modulo 4.
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r 1 2 3 4 5 6 7
AΓr 0.5723625220 0.8234145762 0.9219692467 0.9638944667 0.9828346715 0.9916961670 0.9959388895
CΓr 0.5723602190 0.8234094709 0.9219688310 0.9638925514 0.9828293379 0.9916891587 0.9959315465

AΓ′
r

0.5797271743 0.8249081874 0.9220326599 0.9639044730 0.9828352799 0.9916947130 0.9959372205

CΓ′
r

0.5797162295 0.8249060912 0.9220306381 0.9639002343 0.9828302996 0.9916892783 0.9959315614

AΓ′′
r

0.5856374600 0.8246697078 0.9220170449 0.9639045923 0.9828329969 0.9916930151 0.9959357111

CΓ′′
r

0.5856399683 0.8246572843 0.9220082264 0.9638982767 0.9828301305 0.9916892643 0.9959315465

Table 2.2: Comparison of the results

Example 2.12. We will use the same example in [19]. Let

Γ = 〈33.1115, 33.113, 37.137, 22.52.11.13〉.

Then Supp(Γ) = (2, 3, 5, 11, 13) and the matrix associated to Γ is



0 0 0 2

3 3 7 0

0 0 0 2

15 3 0 1

0 0 7 1



∆4(Γ) = 23.32.7, ∆3(Γ) = 2.3, ∆2(Γ) = ∆1(Γ) = 1 where for i = 1, ..., r, ∆i is the i’th exponent of

Γ. Using this identity (2.3)

|Γ(`j)| = lmax{0,j−vl(1),2j−vl(1),3j−vl(2.3),4j−vl(23.32.7)}.
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After some calculations (see [19])

tη =



0 if η ∈ {1, 33, 29, 143}

1 if η ∈ {30, 110, 130, 4290}

2 if η ∈ {3, 11, 10, 13, 330, 390, 1430}

∞ otherwise.

Then, we have

sη =



1 if η ∈ {1, 33, 29}

2 if η ∈ {143}

3 if η ∈ {3, 11, 10, 13, 30, 110, 130, 330, 390, 1430, 4290}

∞ otherwise.

For specific Γ in the example, we have the following results AΓ = 0.838115336148, CΓ = 0.838100746276.
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Chapter 3

Average r-rank Artin Conjecture

3.1 Introduction

In the present work, we will discuss the average version of the r–rank Artin quasi primitive root

conjecture. Let Γ ⊂ Q∗ be a multiplicative subgroup of finite rank r. We denote by NΓ,m(x) the

number of such primes with #Γp = p−1
m . It was proven by Cangelmi, Pappalardi and Susa in [18],

[3] and [20], assuming the GRH for Q(ζk,Γ
1/k), k ∈ N, that for any ε > 0, if m ≤ x

r−1
(r+1)(4r+2)

−ε
,

NΓ,m(x) =

(
δmΓ +O

(
1

ϕ(mr+1 logr x

))
Li(x) as x→∞,

where δmΓ is a rational multiple of

Cr =
∑
n≥1

µ(n)

nrϕ(n)
=
∏
p

(
1− 1

pr(p− 1)

)
.

Here we restrict ourselves to study subgroups Γ = 〈a1, · · · , ar〉 with ai ∈ Z for all i = 1, . . . , r.

Notice that, since ϕ(mn) = ϕ(m)ϕ(n) gcd(m,n)/ϕ(gcd(m,n))

Cr,m =
1

mrϕ(m)

∑
n≥1

µ(n)

nrϕ(n)

∏
p|gcd(m,n)

(
1− 1

p

)
=

1

mr+1

∏
p|m

(
1− p

pr+1 − 1

)−1

Cr .
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The proof of Theorem 1.8 (see equation (3.5) and Lemma 3.6) will lead to a side product to

the asymptotic identity, for Ti > exp(4(log x log log x)
1
2 ) for all i = 1, . . . , r, m ≤ (log x)D and any

constant M > 2:

1

T1 · · ·Tr

∑
ai∈Z

0<a1≤T1

...
0<ar≤Tr

N〈a1,··· ,ar〉,m(x) =
∑
p≤x

p≡1 (mod m)

Jr((p− 1)/m)

(p− 1)r
+O

(
x

(log x)M

)

where Jr(n) = nr
∏
`|n(1− 1/`r) is the so called Jordan’s totient function. This provides a natural

generalization of Moree’s result in [17].

3.2 Preliminary Definitions and Lemmas

In order to simplify the formulas, we introduce the following notations. Underlined letters stand for

general r-tuples defined within some set, e.g. a = (a1, . . . , ar) ∈ (F∗p)r or T = (T1, . . . , Tr) ∈ (R>0)r;

moreover, given two r-tuples, a and n, their scalar product is a · n = a1n1 + · · · + arnr. The null

vector is 0 = {0, . . . , 0}. Similarly, χ = (χ1, . . . , χr) is a r-tuple of Dirichlet characters and given

a ∈ Zr, we denote the product χ(a) = χ1(a1) · · ·χr(ar) ∈ C.

Additionally, (q, a) := (q, a1, . . . , ar) = gcd(q, a1, . . . , ar); to avoid possible misinterpretations,

we will write explicitly gcd(n1, . . . , nr) instead of (n).

Given any r-tuple a ∈ Zr, we indicate with 〈a〉p := Γp, where Γ = 〈a1, . . . , ar〉, the reduction

modulo p of the subgroup 〈a〉 = 〈a1, . . . , ar〉 ⊂ Q. Given a finite field Fp, F̂∗p will denote its relative

dual group (or character group).

Let C be the set of complex numbers and C∗ be the set of non-zeno complex numbers. A

homomorphism from Abelian group G to C∗ is called a character of group G. A character χ is

called Dirichlet character if χ is a function from Z to C∗ which satisfies the following properties for

a fixed integer q:

• χ(n+ q) = χ(n) for any integer n

• χ(n) 6= 0 if gcd(n, q) = 1 and χ(n) = 0 otherwise

• χ(nm) = χ(n)χ(m) for all integers n and m.
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Let χ be a character modulo q. We called χ is primitive if there is no positive integer n < q such

that n | q and χ(m) = χ(m (mod n)) for all m. The proof of the following result can be found in

any standard text book on analytic number theory.

Lemma 3.1. Let χ be a character modulo q, and C(χ) = 1
ϕ(q)

∑′

b χ(b) where the sum is over

primitive roots modulo q. Then we have

∑
χ mod q

C(χ) · χ(a) =


1 if a is primitive root mod q

0 otherwise.

(3.1)

Definition 3.2. Let χ be a character modulo q. Then Gauss sum defined as

τ(χ) =

q∑
m=1

χ(m)e(
q

m
)

where e(t) = e2πit.

Theorem 3.3. For each character χ modulo q, let

S(χ) =
M+N∑
n=M+1

anχ(n)

where an ∈ C and M,N ∈ Z. Then, we have

∑
q≤K

∑
χ mod q

|S(χ)|2 � (K2 +N)

M+N∑
n=M+1

|an|2.

We refer to Gallagher [4] for the proof.
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Let q > 1 be an integer and let n ∈ Zr. We define the multiple Ramanujan sum as

cq(n) :=
∑

a∈(Z/qZ)r

(q,a)=1

e2πia·n/q .

It is well known (see [7, Theorem 272]) that, given any integer n,

cq(n) = µ

(
q

(q, n)

)
ϕ(q)

ϕ
(

q
(q,n)

) . (3.2)

In the following Lemma, we prove a similar equation for multiple Ramanujan sum.

Lemma 3.4. Let

Jr(m) := mr
∏
`|m

(
1− 1

`r

)

be the Jordan’s totient function, then

cq(n) = µ

(
q

(q, n)

)
Jr(q)

Jr

(
q

(q,n)

) .
Proof of Lemma 3.4. Let us start by considering the case when q = ` is prime. Then

c`(n) =
∑

a∈(Z/`Z)r\{0}

e2πia·n/` = −1 +
r∏
j=1

∑̀
aj=1

e2πiajnj/` =


−1 if ` - gcd(n1, · · · , nr) ,

`r − 1 otherwise.
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Next we consider the case when q = `k with k ≥ 2 and ` prime. We need to show that

c`k(n) =



0 if `k−1 - gcd(n1, · · · , nr) ,

−`r(k−1) if `k−1‖ gcd(n1, · · · , nr) ,

`rk
(
1− 1

`r

)
if `k | gcd(n1, · · · , nr) .

Then,

c`k(n) =
∑

a∈(Z/`kZ)r

(`,a)=1

e2πia·n/`k

= c`k(n1)

r∏
j=2

`k∑
aj=1

e2πiajnj/`
k

+ c`k(n2, . . . , nr)

k∑
j=1

∑
a1∈Z/`kZ
(a1,`k)=`j

e2πia1n1/`k

= c`k(n1)

r∏
j=2

`k∑
aj=1

e2πiajnj/`
k

+ c`k(n2, . . . , nr)

k∑
j=1

c`k−j (n1).

If we apply equation (3.2), we obtain

c`k(n1, . . . , nr) = µ

(
`k

(`k, n1)

)
ϕ(`k)

ϕ
(

`k

(`k,n1)

) r∏
j=2

`k∑
aj=1

e2πiajnj/`
k

+c`k(n2, . . . , nr)
k∑
j=1

µ

(
`k−j

(`k−j , n1)

)
ϕ(`k−j)

ϕ
(

`k−j

(`k−j ,n1)

) .
Now, for k ≥ 2, let us distinguish the two cases:

1. `k−1 - gcd(n1, . . . , nr),

2. `k−1 | gcd(n1, . . . , nr).

In the fist case we can assume, without loss of generality that `k−1 - n1. Hence µ
(

`k

(`k,n1)

)
= 0 and
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if k1 = v`(n1) < k − 1, then

µ

(
`k−j

(`k−j , n1)

)
= µ(`max{0,k−k1−j}) =



0 if 1 ≤ j ≤ k − k1 − 2,

−1 if j = k − k1 − 1,

1 if j ≥ k − k1.

Hence,
k∑
j=1

µ

(
`k−j

(`k−j , n1)

)
ϕ(`k−j)

ϕ
(

`k−j

(`k−j ,n1)

) = −`k1 +

k∑
j=k−k1

ϕ(`k−j) = 0.

In the second case, we go back to the definition of cq(n) and we have

c`k(n) = `r(k−1) c`

( n1

`k−1
, . . . ,

nr
`k−1

)
=


`rk
(
1− 1

`r

)
if `k | gcd(n1, . . . , nr),

−`r(k−1) if `k−1‖ gcd(n1, . . . , nr) .

So, the formula holds for the case q = `k.

We also claim that if q′, q′′ ∈ N are such that gcd(q′, q′′) = 1, then

cq′q′′(n) = cq′(n) cq′′(n).

This amount in saying that the multiple Ramanujan sum is multiplicative in q. Indeed

∑
a∈(Z/q′Z)r

(q′,a)=1

e2πia·n/q′
∑

b∈(Z/q′′Z)r

(q′′,b)=1

e2πib·n/q′′ =
∑

a∈(Z/q′Z)r

b∈(Z/q′′Z)r

gcd(q′,a)=1
gcd(q′′,b)=1

e2πi[n1(q′′a1+q′b1)+···+nr(q′′ar+q′br)]/(q′q′′)

since gcd(q′, q′′) = 1, the result follows from the following remarks:
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• for all j = 1, . . . r, as aj runs through a complete set of residues modulo q′ and as bj runs

through a complete set of residues modulo q′′, q′′aj + q′bj runs through a complete set of

residues modulo q′q′′

• for all a ∈ (Z/q′Z)r and for all b ∈ (Z/q′′Z)r,

gcd(q′, a) = 1 and gcd(q′′, b) = 1 ⇐⇒ gcd(q′q′′, q′b1 + q′′a′1, . . . , q
′br + q′′ar) = 1.

The proof of the Lemma now follows from the multiplicativity of µ and of Jr.

From the above statement we deduce the following:

Corollary 3.5. Let p be an odd prime, let m ∈ N be a divisor of p − 1. If χ = (χ1, . . . , χr) is a

r-tuple of Dirichlet characters modulo p and we set

cm(χ) :=
1

(p− 1)r

∑
α∈(F∗p)r

[F∗p:〈α〉p]=m

χ(α) .

Then,

cm(χ) =
1

(p− 1)r
µ

 p− 1

m gcd
(
p−1
m , p−1

ord(χ1) , . . . ,
p−1

ord(χr)

)
 Jr

(
p−1
m

)
Jr

(
p−1

m gcd
(
p−1
m

, p−1
ord(χ1)

,..., p−1
ord(χr)

)
) . (3.3)

Proof of Corollary 3.5. Let us fix a primitive root g ∈ F∗p. For each j = 1, . . . , r, let nj ∈ Z/(p−1)Z

be such that

χj = χj(g) = e
2πinj
p−1 ,
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if we write αj = gaj for j = 1, . . . , r, then

[F∗p : 〈α〉p] = m ⇐⇒ (p− 1, a) = m .

Therefore, naming t = p−1
m , we have

cm(χ) =
1

(p− 1)r

∑
a∈(F∗p)r

(p−1,a)=m

χ1(g)a1 · · ·χr(g)ar

=
1

(p− 1)r

∑
a′∈(Z/tZ)r

(t,a′)=1

e2πia′·n/t

=
1

(p− 1)r
c p−1
m

(n). (3.4)

By definition we have that ord(χj) = (p− 1)/ gcd(nj , p− 1), so

p− 1

m gcd
(
p−1
m , n

) =
p− 1

m gcd
(
p−1
m , p−1

ord(χ1) , . . . ,
p−1

ord(χr)

)
and this concludes the proof.

For a fixed rank r, define Rp(m) := #{a ∈ (Z/(p − 1)Z)r : (a, p − 1) = m}. Then using

well-known properties of the Möbius function, we can write

Rp(m) =
∑

a∈(Z/(p−1)Z)r

∑
n|a1
m

...
n|ar
m

n| p−1
m

µ(n) =
∑
n| p−1

m

µ(n)[hm(n)]r

where

hm(n) = #{a ∈ Z/(p− 1)Z : n | (a/m)} =
p− 1

nm
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so that

Rp(m) =
(p− 1)r

mr

∑
n| p−1

m

µ(n)

nr
= Jr

(
p− 1

m

)
.

Defining

Sm(x) :=
1

mr

∑
p≤x

p≡1 (mod m)

∑
n| p−1

m

µ(n)

nr
=

∑
p≤x

p≡1 (mod m)

1

(p− 1)r
Jr

(
p− 1

m

)
(3.5)

we have the following Lemma.

Lemma 3.6. If m ≤ (log x)D with D arbitrary positive constant, then

Sm(x) = Cr,m Li(x) +O

(
x

mr(log x)M

)

where M is an arbitrary constant greater than 1 and Cr,m =
∑

n≥1
µ(n)

(nm)rϕ(nm) .

Proof. We choose an arbitrary positive constant B and for every co-prime integers a and b, we

denote π(x; a, b) = #{p ≤ x : p ≡ a(mod b)}, then

Sm(x) =
∑
n≤x

µ(n)

(nm)r
π(x; 1, nm)

=
∑

n≤(log x)B

µ(n)

(nm)r
π(x; 1, nm) +O

 ∑
(log x)B<n≤x

1

(nm)r
π(x; 1, nm)

 .

The sum in the error term is

∑
(log x)B<n≤x

1

(nm)r
π(x; 1, nm) ≤ 1

mr

∑
n>(log x)B

1

nr

∑
2≤a≤x

a≡1(mod nm)

1

≤ 1

mr+1

∑
n>(log x)B

x

nr+1
� x

mr+1(log x)rB
.

For the main term we apply the Siegel–Walfisz Theorem [27], which states that for every arbitrary
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positive constants B and C, if a ≤ (log x)B, then

π(x; 1, a) =
Li(x)

ϕ(a)
+O

(
x

(log x)C

)
.

So, if we restrict m ≤ (log x)D for any positive constant D;

Sm(x) =
∑

n≤(log x)B

µ(n)

(nm)rϕ(mn)
Li(x) +O

 x

(log x)C

∑
n≤(log x)B

1

(nm)r

+O

(
x

mr+1(log x)rB

)

=Cr,m Li(x) +O

 ∑
n>(log x)B

1

(nm)rϕ(nm)
Li(x)

+O

(
x log log x

mr(log x)C

)

+O

(
x

mr+1(log x)rB

)

=Cr,m Li(x) +O

 1

mrϕ(m)

∑
n>(log x)

1

nrϕ(n)
Li(x)

+O

(
x log log x

mr(log x)C

)

+O

(
x

mr+1(log x)rB

)

where we have used the elementary inequality ϕ(mn) ≥ ϕ(m)ϕ(n). By Mertens’ formula

n

ϕ(n)
=
∏
p|n

(
1− 1

p

)−1

≤
∏
p≤n

(
1− 1

p

)−1

� log n ,

then ∑
n>(log x)B

1

nrϕ(n)
�

∑
n>(log x)B

log n

nr+1
� log log x

(log x)rB
.

Thus

1

mrϕ(m)

∑
n>(log x)B

1

nrϕ(n)
Li(x)� 1

mrϕ(m)

x

(log x)rB
,

proves the lemma for a suitable choice of D, B and C.
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Lemma 3.7. Let τ be the divisor function and m ∈ N. For x sufficiently large, x > m, we have

the following inequality: ∑
p≤x

p≡1 (mod m)

τ

(
p− 1

m

)
≤ 2x

m
.

Proof. Let us write p− 1 = mkj so that kj ≤ (x− 1)/m and let us set Q =
√

x−1
m and distinguish

the three cases

• j ≤ Q, k > Q,

• j > Q, k ≤ Q,

• j ≤ Q, k ≤ Q.

So we have the identity:

∑
p≤x

p≡1 (mod m)

τ

(
p− 1

m

)
=

∑
j≤Q

∑
Q<k≤Q

2

j

mjk+1 prime

1 +
∑
k≤Q

∑
Q<j≤Q

2

k
mjk+1 prime

1 +
∑
j≤Q

∑
k≤Q

mjk+1 prime

1

= 2
∑
k≤Q

∑
mkQ+1<p≤x
p≡1 (mod k)m

1 +
∑
k≤Q

∑
p≤mkQ+1

p≡1 (mod k)m

1

= 2
∑
k≤Q

(π(x; 1, km)− π(mkQ+ 1; 1, km)) +
∑
k≤Q

π(mkQ+ 1; 1, km)

= 2
∑
k≤Q

π(x; 1, km)−
∑
k≤Q

π(mkQ+ 1; 1, km) .

Using the Montgomery–Vaughan [15] version of the Brun–Titchmarsh Theorem:

π(x; a, q) ≤ 2x

ϕ(q) log(x/q)
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for m ≤ (log x)D with D arbitrary positive constant, then we obtain

∑
p≤x

p≡1 (mod m)

τ

(
p− 1

m

)
≤ 2

∑
k≤Q

2x

ϕ(km) log(x/km)
≤ 2x

log(x/m)

∑
k≤Q

1

ϕ(km)
.

Now substitute the elementary inequality ϕ(km) ≥ mϕ(k) and use the result of Montgomery [15]

∑
k≤Q

1

ϕ(k)
= A logQ+B +O

(
logQ

Q

)
,

where

A =
ζ(2)ζ(3)

ζ(6)
= 1.94360 · · · and B = Aγ −

∞∑
n=1

µ2(n) log n

nϕ(n)
= −0.06056 . . . ,

which in particular implies that for Q large enough

A logQ− 1 ≤
∑
k≤Q

1

ϕ(k)
≤ A logQ ≤ log(x/m) .

Finally ∑
p≤x

p≡1 (mod m)

τ

(
p− 1

m

)
≤ 2x

m
.

Lemma 3.8. Let p be an odd prime number and let

dm(χ) =
∑

χ∈(F̂∗p)
r

χ1=χ 6=χ0

|cm(χ)| ;
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then

dm(χ) ≤ 1

m

∏
`| p−1

m

(
1 +

1

`

)
.

Proof. From equation (3.4), we have

dm(χ) =
1

(p− 1)r

∑
n∈
(

Z
(p−1)Z

)r
n1 6=0

µ2

(p− 1)/m(
p−1
m , n

)
 Jr

(
p−1
m

)
Jr

(
(p−1)/m

( p−1
m

,n)

) ,

thus naming t = p−1
m and u = gcd (t, n1) we get

dm(χ) =
1

(p− 1)r

∑
d|t

µ2

(
t

d

)
Jr(t)

Jr
(
t
d

) H(d) ,

where

H(d) := #

{
x ∈

(
Z

(p− 1)Z

)r−1

: (u, x) = d

}
=

(
p− 1

d

)r−1∑
k|u
d

µ(k)

kr−1
.

Denoting α = v`(t), then

dm(χ) =
1

(p− 1)

∑
d|t

µ2

(
t

d

)
Jr(t)

dr−1Jr
(
t
d

)∑
k|u
d

µ(k)

kr−1

≤ 1

p− 1

∑
d|t

µ2

(
t

d

)
d =

t

p− 1

∑
k|t

µ2 (k)

k

=
1

m

∏
`|t

(
1 +

1

l

)
.
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3.3 Proof of Theorem 1.8

Proof. We will follow the method of Stephens [24]. By exchanging the order of summation we

obtain that ∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

N〈a〉,m(x) =
∑
p≤x

p≡1 (mod m)

Mm
p (T )

where Mm
p (T ) is the number of r-tuples a ∈ Zr, with 0 < ai ≤ Ti and vp(ai) = 0 for each

i = 1, . . . , r, whose reductions modulo p satisfies [F∗p : 〈a〉p] = m. We can write

Mm
p (T ) =

∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

tp,m(a)

where

tp,m(a) =


1 if [F∗p : 〈a〉p] = m ,

0 otherwise .

It is easy to show that, given a r-tuple χ of characters mod p, then

tp,m(a) =
∑

χ∈(F̂∗p)r

cm(χ)χ(a) ; (3.6)

so we have ∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

N〈a〉,m(x) =
∑
p≤x

p≡1 (mod m)

∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

∑
χ∈(F̂∗p)r

cm(χ)χ(a) .
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Let χ
0

= (χ0, . . . , χ0) be the r–tuple consisting of all principal characters, then

cm(χ
0
) =

1

(p− 1)r

∑
a∈(F∗p)r

[F∗p:〈a〉p]=m

χ
0
(a) =

1

(p− 1)r
#{a ∈ (Z/(p− 1)Z)r : (a, p− 1) = m}

=
1

(p− 1)r
Rp(m) .

Denoting |T | :=
∏r
i=1 Ti and using (3.5), we can write the main term as

1

|T |
∑
p≤x

p≡1 (mod m)

∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

cm(χ
0
)χ

0
(a) =

1

|T |
∑
p≤x

p≡1 (mod m)

cm(χ
0
)
r∏
i=1

{bTic − bTi/pc}

=
∑
p≤x

p≡1 (mod m)

cm(χ
0
)

(
1− r

p
+ · · ·+ 1

pr
+

r∑
i=1

O

(
1

Ti

))

=
∑
p≤x

p≡1 (mod m)

cm(χ
0
) +O

 ∑
p≤x

p≡1 (mod m)

1

p

+O

(
x

T ∗ log x

)

= Sm(x) +O(log log x) +O

(
x

T ∗ log x

)
.

Since m ≤ (log x)D, D > 0, and T ∗ > exp(4(log x log log x)1/2), we can apply Lemma 3.6:

1

|T |
∑
p≤x

p≡1 (mod m)

∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

cm(χ
0
)χ

0
(a) = Cr,m Li(x) +O

(
x

mr(log x)M

)

where M > 1.
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For the error term we need to estimate the sum;

Er,m(x) :=
1

|T |
∑
p≤x

p≡1 (mod m)

∑
χ∈(F̂∗p)

r
\{χ

0
}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
cm(χ)

∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

χ(a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�

r∑
i=1

1

Ti

∑
p≤x

p≡1 (mod m)

∑
χi∈F̂∗p\{χ0}

dm(χi)

∣∣∣∣∣∣∣∣
∑
a∈Z

0<a≤Ti

χi(a)

∣∣∣∣∣∣∣∣
where

dm(χ) =
∑

χ∈(F̂∗p)
r

χ1=χ 6=χ0

|cm(χ)| .

Define

Ejr,m(x) :=
∑
p≤x

p≡1 (mod m)

∑
χi∈F̂∗p\{χ0}

dm(χi)

∣∣∣∣∣∣∣∣
∑
a∈Z

0<a≤Ti

χi(a)

∣∣∣∣∣∣∣∣ (3.7)

then using Holder’s inequality

{
Ejr,m(x)

}2si ≤


∑
p≤x

p≡1 (mod m)

∑
χi∈F̂∗p\{χ0}

{dm(χi)}
2si

2si−1


2si−1

×
∑
p≤x

p≡1 (mod m)

∑
χi∈F̂∗p\{χ0}

∣∣∣∣∣∣∣∣
∑
a∈Z

0<a≤Ti

χi(a)

∣∣∣∣∣∣∣∣
2si

. (3.8)

If g is a primitive root modulo p, then for every j = 1, . . . , r we write again χj(g) = e2πinj/(p−1) for
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a certain nj ∈ Z/(p− 1)Z, by equation (3.4) so that

∑
χ∈(F̂∗p)

r
\{χ

0
}

cm(χ) =
1

(p− 1)r

∑
n∈
(

Z
(p−1)Z

)r
\{0}

c p−1
m

(n) .

Thus, using Lemma 3.4 and indicating again t = (p− 1)/m we have

∑
χi∈F̂∗p\{χ0}

dm(χi) ≤
∑

χ∈(F̂∗p)
r
\{χ

0
}

|cm(χ)|

≤
∑
d|t

µ2

(
t

d

)[
Jr(t)

(p− 1)rJr(t/d)

]
# {n ∈ (Z/(p− 1)Z)r : (t, n) = d}

=
∑
d|t

µ2

(
t

d

)[
Jr(t)

(p− 1)rJr(t/d)

](
p− 1

d

)r∑
k| t
d

µ(k)

kr

=
Jr(t)

tr

∑
d|t

µ2

(
t

d

)
=
∏
`|t

(
1− 1

`r

)
2ω(t) ≤ 2ω(t) .

Calling Dm(p) = max
χ∈F̂∗p\{χ0}{dm(χ)} and using Lemmas 3.8 and 3.7 in equation (3.8) we have

∑
p≤x

p≡1 (mod m)

∑
χ∈F̂∗p\{χ0}

{dm(χ)}
2si

2si−1 ≤
∑
p≤x

p≡1 (mod m)

∑
χ∈F̂∗p\{χ0}

dm(χ){dm(χ)}
1

2si−1

≤
∑
p≤x

p≡1 (mod m)

{Dm(p)}
1

2si−1
∑

χ∈F̂∗p\{χ0}

dm(χ)

≤
∑
p≤x

p≡1 (mod m)

{Dm(p)}
1

2si−1 2ω( p−1
m

)

≤ 1

m

∑
p≤x

p≡1 (mod m)

∏
l| p−1
m

(
1 +

1

l

)
2ω( p−1

m
)

� 1

m
log log x

∑
p≤x

p≡1 (mod m)

τ

(
p− 1

m

)
� 1

m2
x log log x .
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To estimate the other term in (3.8) we use Lemma 5 in [24]:

∑
p≤x

p≡1 (mod m)

∑
χi∈F̂∗p\{χ0}

∣∣∣∣∣∣∣∣
∑
a∈Zr

0<ai≤Ti

χi(ai)

∣∣∣∣∣∣∣∣
2si

� (x2 + Ti
si)Ti

si(log(eTi
si−1))si

2−1 .

So, for every positive constant M > 1, we find

1

|T |
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

N〈a〉,m(x) = Cr,m Li(x) +O

(
x

mr(log x)M

)
+O

(
r∑
i=1

x

Ti log x

)
+ Er,m(x)

where

Er,m(x)�
r∑
i=1

1

Ti

[(
x log log x

m2

)2si−1

(x2 + Ti
si)Ti

si(log(eTi
si−1))si

2−1

] 1
2si

.

If we choose si =
⌊

2 log x
log Ti

⌋
+ 1 for i = 1, . . . , r, then T si−1

i ≤ x2 < T sii and

Er,m(x)� 1

m

r∑
i=1

(x log log x)
1− 1

2si (log(ex2))
si

2−1

2si .

Now, if Ti > x2 for all i = 1, . . . , r, then s1 = · · · = sr = 1 and

Er,m(x)� 1

m
(x log log x)1/2 ;

in particular, we have Er,m(x) � x/(log x)M for every M > 1. If Tj ≤ x2 for some j ∈ {1, . . . , r},

then sj ≥ 2 and the corresponding contribution to Er,m(x) will be

Ejr,m(x)� 1

m
(x log log x)

1− 1
2sj (log(ex2))

3 log x
2 log Tj .

45



By hypothesis

T ∗ > exp(4(log x log log x)1/2) , (3.9)

so

Er,m(x)� 1

m
x log log x(T ∗)−

1
16 ;

also in this case, using (3.9), we have Er,m(x)� x/(log x)M for every M > 1. This proves the first

statement of the Theorem.

In order to prove the second statement of the Theorem, we now consider

H :=
1

|T |
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

{
N〈a〉,m(x)− Cr,m Li(x)

}2

≤ 1

|T |

 ∑
p,q≤x

p,q≡1 (mod m)

Mm
p,q(T )− 2Cr,m Li(x)

∑
p≤x

p≡1 (mod m)

Mm
p (T ) + |T |(Cr,m)2 Li2(x)



where Mm
p,q(T ) denotes the number of r-tuples a ∈ Zr, with ai ≤ Ti and vp(ai) = vq(ai) = 0 for

each i = 1, . . . , r, whose reductions modulo p and q satisfy [F∗p : 〈a〉p] = m and [F∗q : 〈a〉q] = m

simultaneously. Then, by applying the first result of the statement, we obtain, for every constant

M ′ > 2,

H ≤ 1

|T |
∑
p,q≤x

p,q≡1 (mod m)

Mm
p,q(T )− (Cr,m)2 Li2(x) +O

(
x2

(log x)M ′

)
.
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If we write

∑
p,q≤x

p,q≡1 (mod m)

Mm
p,q(T ) =

∑
p≤x

p≡1 (mod m)

Mm
p (T ) +

∑
p,q≤x

p,q≡1 (mod m)
p 6=q

Mm
p,q(T ) ,

we can apply again the first result of the statement to get

∑
p≤x

p≡1 (mod m)

Mm
p (T ) = Cr,m|T |Li(x) +O

(
|T |x

(log x)M

)

where M > 1. In the same spirit as in the proof of the first part of the statement, we use (3.6).

Hence

∑
p,q≤x

p,q≡1 (mod m)
p 6=q

Mm
p,q(T ) =

∑
p,q≤x

p,q≡1 (mod m)
p 6=q

∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

tp,m(a)tq,m(a)

=
∑
p,q≤x

p,q≡1 (mod m)
p 6=q

∑
χ

1
∈(F̂p)r

∑
χ

2
∈(F̂q)r

cm(χ
1
)cm(χ

2
)
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

χ
1
(a)χ

2
(a) .

Therefore, ∑
p,q≤x

p,q≡1 (mod m)

Mm
p,q(T ) = H1 + 2H2 +H3 +O(|T |Li(x))

where H1, H2, H3 are the contributions to the double sum when χ
1

= χ
2

= χ
0
, only one between

χ
1

and χ
2

is equal to χ
0
, neither χ

1
nor χ

2
is χ

0
, respectively. First we deal with the inner sum in

H1. To avoid confusion, we set χp
0

and χq
0

as a r-tuples whose all entries are principal characters
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(mod p) and (mod q) respectively, so that

∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

χp
0
(a)χq

0
(a) =

r∏
i=1

{
bTic −

⌊
Ti
p

⌋
−
⌊
Ti
q

⌋
+

⌊
Ti
pq

⌋}
.

Then, for every constant M ′ > 2, Lemma 3.6 gives

H1 =
∑
p,q≤x

p,q≡1 (mod m)
p 6=q

cm(χp
0
)cm(χq

0
)
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

χp
0
(a)χq

0
(a)

= |T |
∑
p,q≤x

p,q≡1 (mod m)
p 6=q

cm(χp
0
)cm(χq

0
)

(
1− r

p
− r

q
+ · · ·+ 1

(pq)r
+

r∑
i=1

O

(
1

Ti

))

= |T |


 ∑

p≤x
p≡1 (mod m)

cm(χ
0
)


2

−
∑
p≤x

p≡1 (mod m)

(cm(χp
0
))2

(1 +O

(
1

T ∗

))
+ |T |O

(
x log log x

log x

)

= |T |
(
S2
m(x) +O

(
x2

T ∗(log x)2

)
+O

(
x log log x

log x

))
= |T |

(
C2
r,m Li2(x) +O

(
x2

mr(log x)M ′

))
.
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Focusing on H2 and supposing χ
1

= χ
0
6= χ

2
, then

H2 =
∑
p,q≤x

p,q≡1 (mod m)
p6=q

∑
χ

2
∈(F̂∗q)r\{χq

0
}

cm(χp
0
)cm(χ

2
)
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

χp
0
(a)χ

2
(a)

=
∑
p≤x

p≡1 (mod m)

cm(χp
0
)

∑
q≤x

q≡1 (mod m)
q 6=p

∑
χ

2
∈(F̂∗q)r\{χq

0
}

cm(χ
2
)
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr
p-
∏r
i=1 ai

χ
2
(a) .

The quantity

U2 :=
∑
q≤x

q≡1 (mod m)

∑
χ

2
∈(F̂∗q)r\{χq

0
}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
cm(χ

2
)
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

χ
2
(a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
can be estimated as before through Holder’s inequality combined with the large sieve inequality to

get U2 � x/(log x)M with M > 1, while Lemma 3.7 gives the following upper bound:

V2 :=
∑
q≤x

q≡1 (mod m)

∑
χ

2
∈(F̂∗q)r\{χq

0
}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
cm(χ

2
)
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr
p|
∏r
i=1 ai

χ
2
(a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
� |T |

pr

∑
q≤x

q≡1 (mod m)

∑
χ

2
∈(F̂∗q)r\{χq

0
}

|cm(χ
2
)|

� |T |
pr

∑
q≤x

q≡1 (mod m)

τ

(
q − 1

m

)
� |T |x

prm
.
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So, for every constant M ′ > 2,

H2 ≤
∑
p≤x

p≡1 (mod m)

(U2 + V2)� |T |x2

(log x)M ′
.

Finally, we notice that for χ1 ∈ F̂∗p \ {χ
p
0} and χ2 ∈ F̂∗q \ {χ

q
0}, with p 6= q, then χ1χ2 is a primitive

character modulo pq. Consequently, given

H3 =
∑
p,q≤x

p,q≡1 (mod m)
p6=q

∑
χ

1
∈(F̂∗p)r\{χp

0
}

∑
χ

2
∈(F̂∗q)r\{χq

0
}

cm(χ
1
)cm(χ

2
)
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

χ
1
(a)χ

2
(a)

once again we can apply Holder’s inequality and the large sieve (Lemma 5 in [24]) to obtain an

upper bound for H3. First, notice that since the r-tuple of characters, χ
1

and χ
2
, appearing in H3

are both non-principal and indicating with χ1,i the i-th component of the r-tuple χ
1

of Dirichlet

characters of modulus p (similarly for χ2,i), the estimate for H3 comes from a diagonal part Hd
3 (in

which for a certain i ∈ {1, . . . , r} both χ1,i and χ2,i are non-principal) plus a non-diagonal part Hnd
3

(in which for none of the indices i ∈ {1, . . . , r} is possible to have χ1,i and χ2,i both non-principal):

explicitly, Hd
3 =

∑r
i=1H3,i, where

H3,i :=
∑
p,q≤x

p,q≡1 (mod m)
p6=q

∑
χ

1
∈(F̂∗p)r\{χp

0
}

χ1,i∈F̂∗p\{χ
p
0}

∑
χ

2
∈(F̂∗q)r\{χq

0
}

χ2,i∈F̂∗q\{χ
q
0}

cm(χ
1
)cm(χ

2
)
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

χ
1
(a)χ

2
(a)

≤|T |
Ti

∑
p,q≤x

p,q≡1 (mod m)
p 6=q

∑
χ1,i∈F̂∗p\{χ

p
0}

∑
χ2,i∈F̂∗q\{χ

q
0}

dm(χ1,i)dm(χ2,i)

∣∣∣∣∣∣
∑

0<ai≤Ti

χ1,i(ai)χ2,i(ai)

∣∣∣∣∣∣ ,
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while for Hnd
3 =

∑r
i,j=1
i 6=j

H3,ij , with

H3,ij :=
∑
p,q≤x

p,q≡1 (mod m)
p 6=q

∑
χ

1
∈(F̂∗p)r\{χp

0
}

χ1,i∈F̂∗p\{χ
p
0}

∑
χ

2
∈(F̂∗q)r\{χq

0
}

χ2,j∈F̂∗q\{χ
q
0}

cm(χ
1
)cm(χ

2
)
∑
a∈Zr

0<a1≤T1

...
0<ar≤Tr

χ
1
(a)χ

2
(a)

≤ |T |
TiTj

∑
p,q≤x

p,q≡1 (mod m)
p 6=q

∑
χ1,i∈F̂∗p\{χ

p
0}

∑
χ2,j∈F̂∗q\{χ

q
0}

dm(χ1,i)dm(χ2,j)

∣∣∣∣∣∣∣∣
∑

0<ai≤Ti
0<aj≤Tj

χ1,i(ai)χ2,j(aj)

∣∣∣∣∣∣∣∣ .

Dealing first with H3,i, we use again Holder’s inequality together with the large sieve to get

H3,i

|T |
� 1

Ti


∑
p,q≤x

p,q≡1 (mod m)
p 6=q

∑
χ1,i∈F̂∗p\{χ

p
0}

χ2,i∈F̂∗q\{χ
q
0}

[dm(χ1,i)dm(χ2,i)]
2si

2si−1



2si−1

2si

×


∑
p,q≤x

p,q≡1 (mod m)
p 6=q

∑
η (mod pq)

∣∣∣∣∣∣
∑

0<ai≤Ti

η(ai)

∣∣∣∣∣∣
2si



1
2si

� 1

Ti

{(
x log log x

m2

)4si−2

(x4 + T sii )T sii (log(eT si−1
i ))s

2
i−1

} 1
2si

.

We now choose si =
⌊

4 log x
log Ti

⌋
+ 1, so that T si−1

i ≤ x4 ≤ T sii and

H3,i

|T |
� 1

m2
x

2− 1
si (log log x)2(log(ex4))

s2i−1

2si .

Now, if Ti > x4 then si = 1 and H3,i/|T | � x(log log x)2. Otherwise, if Ti ≤ x4 then si ≥ 2

and, if Ti > exp(6(log x log log x)1/2), similar to what was done to prove the first statement of the
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Theorem, we get

H3,i

|T |
� x

2− 1
si (log log x)2(log(ex4))

3 log x
log Ti � x2

(log x)D
,

for any positive constant D > 2.

It remains to estimate H3,ij , with i 6= j: it can be factorized in two products, and after using

same methods in (3.7), we have

H3,ij

|T |
� 1

TiTj

∑
p≤x

p≡1 (mod m)

∑
χ1,i∈F̂∗p\{χ

p
0}

dm(χ1,i)

∣∣∣∣∣∣
∑

0<ai≤Ti

χ1,i(ai)

∣∣∣∣∣∣
×

∑
q≤x

q≡1 (mod m)

∑
χ2,j∈F̂∗q\{χ

q
0}

dm(χ2,j)

∣∣∣∣∣∣
∑

0<aj≤Tj

χ2,j(aj)

∣∣∣∣∣∣
� 1

Ti

{(
x log log x

m2

)2si−1

(x2 + T sii )T sii (log(eT si−1
i ))s

2
i−1

} 1
2si

× 1

Tj

{(
x log log x

m2

)2sj−1

(x2 + T
sj
j )T

sj
j (log(eT

sj−1
j ))s

2
j−1

} 1
2sj

.

Similar to what was done to estimate the error term (3.7), we choose si =
⌊

2 log x
log Ti

⌋
+ 1 and

sj =
⌊

2 log x
log Tj

⌋
+ 1, so that

H3,ij

|T |
� x2

(log x)E

for every constant E > 2.

Eventually, since H3 ≤ Hd
3 + Hnd

3 , summing the upper bounds for H1, H2 and H3 we get the

proof of second part of the Theorem 1.4.

Corollary 3.9. For any ε > 0, let

H := {a ∈ Zr : 0 < ai ≤ Ti, i ∈ {1, . . . , r}, |Na,m(x)− Cr,m Li(x)| > εLi(x)};
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then, supposing Ti > exp(6(log x log log x)1/2) for every i = 1, . . . , r, we have

#H ≤ K|T |/ε2(log x)F

for every positive constant F .

Proof. See [24] (Corollary, page 187).
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Chapter 4

Codes

In this chapter, we include some sample codes that were used to generate the tables in this thesis,

they were written in Pari.

The first code we include generates the data for AΓr , where Γr = 〈2, ..., pr〉 is the group generated

by the first r primes. The results are given in the first row of Table 2.2.

{P=2+3+5+7+11+13+17;

A=vector(7);

A[1]=znorder(Mod(2,3))+znorder(Mod(2,5))+znorder(Mod(2,7))+znorder(Mod(2,11))

+znorder(Mod(2,13))+znorder(Mod(2,17));

A[2]=lcm(znorder(Mod(2,5)),znorder(Mod(3,5)))+lcm(znorder(Mod(2,7)),

znorder(Mod(3,7)))+lcm(znorder(Mod(2,11)),znorder(Mod(3,11)))

+lcm(znorder(Mod(2,13)),znorder(Mod(3,13)))

+lcm(znorder(Mod(2,17)),znorder(Mod(3,17)));

A[3]=lcm(lcm(znorder(Mod(2,7)),znorder(Mod(3,7))),znorder(Mod(5,7)))

+lcm(lcm(znorder(Mod(2,11)),znorder(Mod(3,11))),znorder(Mod(5,11)))
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+lcm(lcm(znorder(Mod(2,13)),znorder(Mod(3,13))),znorder(Mod(5,13)))

+lcm(lcm(znorder(Mod(2,17)),znorder(Mod(3,17))),znorder(Mod(5,17)));

A[4]=lcm(lcm(lcm(znorder(Mod(2,11)),znorder(Mod(3,11))),

znorder(Mod(5,11))),znorder(Mod(7,11)))

+lcm(lcm(lcm(znorder(Mod(2,13)),znorder(Mod(3,13))),znorder(Mod(5,13))),

znorder(Mod(7,13)))

+lcm(lcm(lcm(znorder(Mod(2,17)),znorder(Mod(3,17))),znorder(Mod(5,17))),

znorder(Mod(7,17)));

A[5]=lcm(lcm(lcm(lcm(znorder(Mod(2,13)),znorder(Mod(3,13))),

znorder(Mod(5,13))),znorder(Mod(7,13))),znorder(Mod(11,13)))

+lcm(lcm(lcm(lcm(znorder(Mod(2,17)),znorder(Mod(3,17))),znorder(Mod(5,17))),

znorder(Mod(7,17))),znorder(Mod(11,17)));

A[6]=lcm(lcm(lcm(lcm(lcm(znorder(Mod(2,17)),znorder(Mod(3,17))),

znorder(Mod(5,17))),znorder(Mod(7,17))),znorder(Mod(11,17))),

znorder(Mod(13,17)));

print(A);

forprime(p=19,10000000000,

P=P+p;

a=znorder(Mod(2,p));

b=lcm(a,znorder(Mod(3,p)));

c=lcm(b,znorder(Mod(5,p)));

d=lcm(c,znorder(Mod(7,p)));

e=lcm(d,znorder(Mod(11,p)));
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f=lcm(e,znorder(Mod(13,p)));

g=lcm(f,znorder(Mod(17,p)));

A[1]=A[1]+a;

A[2]=A[2]+b;

A[3]=A[3]+c;

A[4]=A[4]+d;

A[5]=A[5]+e;

A[6]=A[6]+f;

A[7]=A[7]+g;

);print(A*1./P)}

The second code below generates the data for CΓr , where Γr = 〈2, ..., pr〉 is the group generated by

the first r primes which were given in the first row of Table 2.2.

\read(cohen)

K(j,r)=j/(j+1-j^(r+2));

kk(ee,r)=RIS=1;fordiv(ee,X,if(isprime(X),RIS=RIS*K(X,r)));RIS;

{

for(r=1,7,U=1;P=round(prodeuler(Z=2,prime(r),Z));

fordiv(P,T,if(T>1,U=U+kk(2*T,r)/2^((r+2)*max(0,valuation(quaddisc(T)/2,2)))));

print(U*prodeulerrat(1-x/(x^(r+2)-1))))

}
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