Please use this identifier to cite or link to this item: http://hdl.handle.net/2307/4378
DC FieldValueLanguage
dc.contributor.advisorPanzieri, Stefano-
dc.contributor.authorFoglietta, Chiara-
dc.date.accessioned2015-04-30T12:55:05Z-
dc.date.available2015-04-30T12:55:05Z-
dc.date.issued2013-06-04-
dc.identifier.urihttp://hdl.handle.net/2307/4378-
dc.description.abstractThe Mixed Holistic Reductionist Approach is a methodology that merges the holistic and the reductionist techniques trying to conserve the pros. The aim is the modelling of critical infrastructure interdependencies and the assessment of impact due to physical failures and to cyber threats. This approach can be applied both in distributed and in centralised contexts. The distributed framework is mandatory if the communication among control centres is peer-to-peer. In order to manage also cyber threats, Situation Awareness models and techniques help in order to classify faults and failures. In fact, Data Fusion methodologies, as Evidence Theory, can detect the most probable cause of faults happened in facilities and, therefore, we uses the other information, coming from Evidence Theory results, as another input for the MHR approach. The state estimation is one of the key functions of SCADA systems for grids. In order to identify the state of the system, state estimation helps in accurate and efficient monitoring of operational constraints. The ability to provide a reliable state can also help in contingency analyses and in the required corrective actions. The smart grid context is quite different respect to traditional distribution grid, starting from different topology features, so a new approach to state estimation is mandatory.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli studi Roma Treit_IT
dc.subjectsituation awarenessit_IT
dc.subjectcritical infrastructure protectionit_IT
dc.titleSystem methodologies for situation awareness and risk management for critical infrastructure protectionit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurSettori Disciplinari MIUR::Ingegneria industriale e dell'informazione::AUTOMATICAit_IT
dc.subject.miurIngegneria industriale e dell'informazione-
dc.subject.isicruiCategorie ISI-CRUI::Ingegneria industriale e dell'informazione::AI, Robotics & Automatic Controlit_IT
dc.subject.isicruiIngegneria industriale e dell'informazione-
dc.subject.anagraferoma3Ingegneria industriale e dell'informazioneit_IT
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Ingegneria*
item.grantfulltextrestricted-
item.languageiso639-1other-
item.fulltextWith Fulltext-
Appears in Collections:X_Dipartimento di Ingegneria
T - Tesi di dottorato
Files in This Item:
File Description SizeFormat
SystemMethodologiesForSituationAwarenessAndRiskManagementForCIP.pdf4.82 MBAdobe PDFView/Open
Show simple item record Recommend this item

Page view(s)

174
Last Week
0
Last month
0
checked on Nov 22, 2024

Download(s)

87
checked on Nov 22, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.