Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/2307/40411| Campo DC | Valore | Lingua |
|---|---|---|
| dc.contributor.advisor | LOPEZ, ANGELO | - |
| dc.contributor.author | MURATORE, GIOSUE' EMANUELE | - |
| dc.date.accessioned | 2021-11-15T15:40:22Z | - |
| dc.date.available | 2021-11-15T15:40:22Z | - |
| dc.date.issued | 2018-04-23 | - |
| dc.identifier.uri | http://hdl.handle.net/2307/40411 | - |
| dc.description.abstract | This thesis is divided in two parts. In the first part we study the 2-Fano varieties. The 2-Fano varieties, defined by De Jong and Starr, satisfy some higher dimensional analogous properties of Fano varieties. We propose a definition of (weak) k-Fano variety and conjecture the polyhedrality of the cone of pseudoeffective k-cycles for those varieties in analogy with the case k=1. Then, we calculate some Betti numbers of a large class of k Fano varieties to prove some special case of the conjecture. In particular, the conjecture is true for all 2-Fano varieties of index > n-3, and also we complete the classification of weak 2-Fano varieties answering Questions 39 and 41 in Araujo and Castravet’s article. In the second part, we study a particular rational map. Beauville and Donagi proved that the variety of lines F(Y) of a smooth cubic fourfold Y is a hyperKähler variety. Recently, C. Lehn, M.Lehn, Sorger and van Straten proved that one can naturally associate a hyperKähler variety Z(Y) to the variety of twisted cubics on Y. Then, Voisin defined a degree 6 rational map between the direct product F(Y)xF(Y) and Z(Y). We will show that the indeterminacy locus of this map is the locus of intersecting lines. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Università degli studi Roma Tre | en_US |
| dc.subject | HYPERKAHLER | en_US |
| dc.subject | PSEUDOEFFETIVE CONES | en_US |
| dc.subject | K-FANO | en_US |
| dc.title | Pseudoeffective cones in 2-Fano varieties and remarks on the Voisin map | en_US |
| dc.type | Doctoral Thesis | en_US |
| dc.subject.miur | Settori Disciplinari MIUR::Scienze matematiche e informatiche::ALGEBRA | en_US |
| dc.subject.isicrui | Categorie ISI-CRUI::Scienze matematiche e informatiche::Mathematics | en_US |
| dc.subject.anagraferoma3 | Scienze matematiche e informatiche | en_US |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | - |
| dc.description.romatrecurrent | Dipartimento di Matematica e Fisica | * |
| item.languageiso639-1 | other | - |
| item.fulltext | With Fulltext | - |
| item.grantfulltext | restricted | - |
| È visualizzato nelle collezioni: | Dipartimento di Matematica e Fisica T - Tesi di dottorato | |
File in questo documento:
| File | Descrizione | Dimensioni | Formato | |
|---|---|---|---|---|
| MURATORE_Pseudoeffective_cones_in_2-Fano_varieties_and_remarks_on_the_Voisin_map.pdf | 886.33 kB | Adobe PDF | Visualizza/apri |
Page view(s)
187
checked on 20-dic-2025
Download(s)
46
checked on 20-dic-2025
Google ScholarTM
Check
Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.