Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2307/40411
Campo DCValoreLingua
dc.contributor.advisorLOPEZ, ANGELO-
dc.contributor.authorMURATORE, GIOSUE' EMANUELE-
dc.date.accessioned2021-11-15T15:40:22Z-
dc.date.available2021-11-15T15:40:22Z-
dc.date.issued2018-04-23-
dc.identifier.urihttp://hdl.handle.net/2307/40411-
dc.description.abstractThis thesis is divided in two parts. In the first part we study the 2-Fano varieties. The 2-Fano varieties, defined by De Jong and Starr, satisfy some higher dimensional analogous properties of Fano varieties. We propose a definition of (weak) k-Fano variety and conjecture the polyhedrality of the cone of pseudoeffective k-cycles for those varieties in analogy with the case k=1. Then, we calculate some Betti numbers of a large class of k Fano varieties to prove some special case of the conjecture. In particular, the conjecture is true for all 2-Fano varieties of index > n-3, and also we complete the classification of weak 2-Fano varieties answering Questions 39 and 41 in Araujo and Castravet’s article. In the second part, we study a particular rational map. Beauville and Donagi proved that the variety of lines F(Y) of a smooth cubic fourfold Y is a hyperKähler variety. Recently, C. Lehn, M.Lehn, Sorger and van Straten proved that one can naturally associate a hyperKähler variety Z(Y) to the variety of twisted cubics on Y. Then, Voisin defined a degree 6 rational map between the direct product F(Y)xF(Y) and Z(Y). We will show that the indeterminacy locus of this map is the locus of intersecting lines.en_US
dc.language.isoenen_US
dc.publisherUniversità degli studi Roma Treen_US
dc.subjectHYPERKAHLERen_US
dc.subjectPSEUDOEFFETIVE CONESen_US
dc.subjectK-FANOen_US
dc.titlePseudoeffective cones in 2-Fano varieties and remarks on the Voisin mapen_US
dc.typeDoctoral Thesisen_US
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informatiche::ALGEBRAen_US
dc.subject.isicruiCategorie ISI-CRUI::Scienze matematiche e informatiche::Mathematicsen_US
dc.subject.anagraferoma3Scienze matematiche e informaticheen_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Matematica e Fisica*
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
È visualizzato nelle collezioni:Dipartimento di Matematica e Fisica
T - Tesi di dottorato
File in questo documento:
File Descrizione DimensioniFormato
MURATORE_Pseudoeffective_cones_in_2-Fano_varieties_and_remarks_on_the_Voisin_map.pdf886.33 kBAdobe PDFVisualizza/apri
Visualizza la scheda semplice del documento Suggerisci questo documento

Page view(s)

187
checked on 20-dic-2025

Download(s)

46
checked on 20-dic-2025

Google ScholarTM

Check


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.