Please use this identifier to cite or link to this item: http://hdl.handle.net/2307/5999
DC FieldValueLanguage
dc.contributor.advisorFiorenza, Domenico-
dc.contributor.authorCapotosti, Alessandra-
dc.date.accessioned2018-07-12T08:10:02Z-
dc.date.available2018-07-12T08:10:02Z-
dc.date.issued2016-04-27-
dc.identifier.urihttp://hdl.handle.net/2307/5999-
dc.description.abstractLet X be a n-dimensional smooth manifold, with n 3. In a series of papers culminating in Spin structures on loop spaces that characterize string manifolds, arXiv:1209.1731, Konrad Waldorf recently gave the first rigorous proof that a String structure on X induces a Spin structure on its loop space. Here we give a closely related but independent proof of this result by working in the more general setting of smooth stacks. In particular, the crucial point in our proof is the existence of a natural morphism of smooth stacks BSpin ! B2(BU(1)conn) refining the first fractional Pontryagin class. Once this morphism is exhibited, we show how Waldorf’s result follows from general constructions in the setting of smooth stacks.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli studi Roma Treit_IT
dc.subjectStringit_IT
dc.subjectLoopit_IT
dc.subjectSpinit_IT
dc.subjectStructuresit_IT
dc.subjectStacksit_IT
dc.titleFrom String structures to Spin structures on loop spacesit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informatiche::GEOMETRIAit_IT
dc.subject.isicruiCategorie ISI-CRUI::Scienze matematiche e informatiche::Mathematicsit_IT
dc.subject.anagraferoma3Scienze matematiche e informaticheit_IT
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Matematica e Fisica*
item.grantfulltextrestricted-
item.languageiso639-1other-
item.fulltextWith Fulltext-
Appears in Collections:Dipartimento di Matematica e Fisica
T - Tesi di dottorato
Files in This Item:
File Description SizeFormat
Thesis_A.Capotosti.pdf787.49 kBAdobe PDFView/Open
Show simple item record Recommend this item

Page view(s)

151
checked on Nov 21, 2024

Download(s)

241
checked on Nov 21, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.