Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2307/40833
Campo DCValoreLingua
dc.contributor.advisorGENTILE, GUIDO-
dc.contributor.authorVAIA, FAENIA-
dc.date.accessioned2022-07-13T11:02:42Z-
dc.date.available2022-07-13T11:02:42Z-
dc.date.issued2020-04-07-
dc.identifier.urihttp://hdl.handle.net/2307/40833-
dc.description.abstractWe consider quasi-periodically systems in the presence of dissipation and study the ex istence of response solutions, i.e. quasi-periodic solutions with the same frequency vector as the forcing term. When the dissipation is large enough and a suitable function involving the forcing has a simple zero, response solutions are known to exist without assuming any non-resonance condition on the frequency vector. We analyse the case of non-simple zeroes and, in order to deal with the small divisors problem, we confine ourselves to two-dimensional frequency vectors, so as to use the prop erties of continued fractions. We show that, if the order of the zero is odd (if it is even, in general no response solution exists), a response solution still exists provided the inverse of the parameter measuring the dissipation belongs to a set given by the union of infinite intervals depending on the convergents of the ratio of the two components of the frequency vector. The intervals may be disjoint and as a consequence we obtain the existence of response solutions in a set with “holes”. If we want the set to be connected we have to require some non-resonance condition on the frequency: in fact, we need a condition weaker than the Bryuno condition usually considered in small divisors problems.en_US
dc.language.isoenen_US
dc.publisherUniversità degli studi Roma Treen_US
dc.subjectRESPONSE SOLUTIONSen_US
dc.subjectSTRONG DISSIPATIONen_US
dc.titleRESPONSE SOLUTIONS FOR QUASI-PERIODICALLY FORCED SYSTEMS WITH ARBITRARY NONLINEARITIES AND FREQUENCIES IN THE PRESENCE OF STRONG DISSIPATIONen_US
dc.typeDoctoral Thesisen_US
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informatiche::FISICA MATEMATICAen_US
dc.subject.isicruiCategorie ISI-CRUI::Scienze matematiche e informatiche::Mathematicsen_US
dc.subject.anagraferoma3Scienze matematiche e informaticheen_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Matematica e Fisica*
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
È visualizzato nelle collezioni:Dipartimento di Matematica e Fisica
T - Tesi di dottorato
File in questo documento:
File Descrizione DimensioniFormato
FaeniaVaiaPhdThesis.pdf878.27 kBAdobe PDFVisualizza/apri
Visualizza la scheda semplice del documento Suggerisci questo documento

Page view(s)

207
checked on 20-dic-2025

Download(s)

90
checked on 20-dic-2025

Google ScholarTM

Check


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.