Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2307/4036
Campo DCValoreLingua
dc.contributor.advisorCaporaso, Lucia-
dc.contributor.authorBrannetti, Silvia-
dc.date.accessioned2015-03-16T09:33:50Z-
dc.date.available2015-03-16T09:33:50Z-
dc.date.issued2011-03-22-
dc.identifier.urihttp://hdl.handle.net/2307/4036-
dc.description.abstractThe aim of this thesis is to develop some possible generalizations of the Brill-Noether theory of smooth curves, to singular curves and to tropical curves. We briefly summarize the contents hereafter: 1) let Alpha*d/X be the Abel map of multidegree d of a singular curve X of genus g. We describe the closure of ImAlpha*d/X inside Caporaso’s compactified Jacobian PdX for irreducible curves, curves of compact type and binary curves; 2) we construct the moduli spaces of tropical curves and tropical principally polarized abelian varieties, working in the category of (what we call) stacky fans. We define the tropical Torelli map between these two moduli spaces and we study the fibers (tropical Torelli theorem) and the image of this map (tropical Schottky problem). Finally we determine the image of the planar tropical curves via the tropical Torelli map and we use it to give a positive answer to a question raised by Namikawa on the compactified classical Torelli map; 3) we give some results on quadratic normality of reducible curves canonically embedded and partially extend this study to their projective normality; 4) we study nodal curves with two components investigating about sufficient and necessary conditions in order for them to be k-gonal.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli studi Roma Treit_IT
dc.titleAspects of Brill-Noether geometry in moduli theory of algebraic and tropical curvesit_IT
dc.typeDoctoral Thesisit_IT
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informatiche::GEOMETRIAit_IT
dc.subject.isicruiCategorie ISI-CRUI::Scienze matematiche e informatiche::Mathematicsit_IT
dc.subject.anagraferoma3Scienze matematiche e informaticheit_IT
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Matematica*
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
È visualizzato nelle collezioni:Dipartimento di Matematica e Fisica
T - Tesi di dottorato
File in questo documento:
File Descrizione DimensioniFormato
ThesisBrannetti.pdf990.58 kBAdobe PDFVisualizza/apri
Visualizza la scheda semplice del documento Suggerisci questo documento

Page view(s)

183
Last Week
0
Last month
0
checked on 20-dic-2025

Download(s)

42
checked on 20-dic-2025

Google ScholarTM

Check


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.