Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2307/40330
Campo DCValoreLingua
dc.contributor.advisorAbrusci, Vito Michele-
dc.contributor.advisorMogbil, Virgile-
dc.contributor.authorDel Vecchio, Stefano-
dc.date.accessioned2021-09-29T10:29:21Z-
dc.date.available2021-09-29T10:29:21Z-
dc.date.issued2018-09-19-
dc.identifier.urihttp://hdl.handle.net/2307/40330-
dc.description.abstractStarting from works aimed at extending the Curry-Howard correspondence to process calculi through linear logic, we give another Curry-Howard counterpart for Milner’s Calculus of Communicating Systems (CCS), by taking Girard’s ludics as the target system. Our aim consists in building an interpretation able to form a complete correspondence between the dynamics of the two systems. Indeed interaction, ludics’ dynamic, allows to fully represent both the non-determinism and non-confluence of the calculus. We thus give an interpretation of CCS processes into carefully defined beha viours of ludics using a new construction, called directed behaviour, that allows a controlled interaction through modified designs by the pruning technique. We characterize the execution of CCS processes as interaction on behaviours, by implicitly representing the causal order and conflict relation of Event Structures ; as a direct consequence, we are also able to interpret deadlocked processes, and identify deadlockfree ones. The final part of the thesis is dedicated to exploring the non-linear extensions of ludics, and hint at possible future developments and research directions, in order to represent processes defined by recursionen_US
dc.language.isoenen_US
dc.publisherUniversità degli studi Roma Treen_US
dc.subjectNON-CONFLUENCEen_US
dc.subjectNON DETERMINISMen_US
dc.subjectPROCESS ALGEBRASen_US
dc.subjectLUDICSen_US
dc.titlePROCESS ALGEBRAS INSIDE LUDICS: AN INTERPRETATION OF THE CALCULUS OF COMMUNICATING SYSTEMSen_US
dc.typeDoctoral Thesisen_US
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informaticheen_US
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informatiche::ALGEBRAen_US
dc.subject.isicruiCategorie ISI-CRUI::Scienze matematiche e informaticheen_US
dc.subject.isicruiCategorie ISI-CRUI::Scienze matematiche e informatiche::Mathematicsen_US
dc.subject.anagraferoma3Scienze matematiche e informaticheen_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Matematica e Fisica*
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
È visualizzato nelle collezioni:Dipartimento di Matematica e Fisica
T - Tesi di dottorato
File in questo documento:
File Descrizione DimensioniFormato
PhD_Thesis_delvecchio.pdf1.4 MBAdobe PDFVisualizza/apri
Visualizza la scheda semplice del documento Suggerisci questo documento

Page view(s)

180
checked on 20-dic-2025

Download(s)

44
checked on 20-dic-2025

Google ScholarTM

Check


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.