Please use this identifier to cite or link to this item: http://hdl.handle.net/2307/40330
DC FieldValueLanguage
dc.contributor.advisorAbrusci, Vito Michele-
dc.contributor.advisorMogbil, Virgile-
dc.contributor.authorDel Vecchio, Stefano-
dc.date.accessioned2021-09-29T10:29:21Z-
dc.date.available2021-09-29T10:29:21Z-
dc.date.issued2018-09-19-
dc.identifier.urihttp://hdl.handle.net/2307/40330-
dc.description.abstractStarting from works aimed at extending the Curry-Howard correspondence to process calculi through linear logic, we give another Curry-Howard counterpart for Milner’s Calculus of Communicating Systems (CCS), by taking Girard’s ludics as the target system. Our aim consists in building an interpretation able to form a complete correspondence between the dynamics of the two systems. Indeed interaction, ludics’ dynamic, allows to fully represent both the non-determinism and non-confluence of the calculus. We thus give an interpretation of CCS processes into carefully defined beha viours of ludics using a new construction, called directed behaviour, that allows a controlled interaction through modified designs by the pruning technique. We characterize the execution of CCS processes as interaction on behaviours, by implicitly representing the causal order and conflict relation of Event Structures ; as a direct consequence, we are also able to interpret deadlocked processes, and identify deadlockfree ones. The final part of the thesis is dedicated to exploring the non-linear extensions of ludics, and hint at possible future developments and research directions, in order to represent processes defined by recursionen_US
dc.language.isoenen_US
dc.publisherUniversità degli studi Roma Treen_US
dc.subjectNON-CONFLUENCEen_US
dc.subjectNON DETERMINISMen_US
dc.subjectPROCESS ALGEBRASen_US
dc.subjectLUDICSen_US
dc.titlePROCESS ALGEBRAS INSIDE LUDICS: AN INTERPRETATION OF THE CALCULUS OF COMMUNICATING SYSTEMSen_US
dc.typeDoctoral Thesisen_US
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informaticheen_US
dc.subject.miurSettori Disciplinari MIUR::Scienze matematiche e informatiche::ALGEBRAen_US
dc.subject.isicruiCategorie ISI-CRUI::Scienze matematiche e informaticheen_US
dc.subject.isicruiCategorie ISI-CRUI::Scienze matematiche e informatiche::Mathematicsen_US
dc.subject.anagraferoma3Scienze matematiche e informaticheen_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.description.romatrecurrentDipartimento di Matematica e Fisica*
item.languageiso639-1other-
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:Dipartimento di Matematica e Fisica
T - Tesi di dottorato
Files in This Item:
File Description SizeFormat
PhD_Thesis_delvecchio.pdf1.4 MBAdobe PDFView/Open
Show simple item record Recommend this item

Page view(s)

104
checked on Nov 24, 2024

Download(s)

28
checked on Nov 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.