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Introduction

The XXth century has begun changing our understanding of the physical laws of the Uni-
verse. The advancement of human’s technology has brought experimental data inexplicable
in terms of the conceptual framework of Newtonian laws that has dominated for centuries.
The change has been drastic: a twofold revolution of the physical and philosophical concep-
tion of the world. The microscopic observations of nuclear and subnuclear physics have been
explained with Quantum Mechanics (QM) evolved in Quantum Fields Theory (QFT) and,
on the other side, the large scale phenomena of the Universe have been explained with Gen-
eral Relativity (GR). QM and GR are the two conceptual pillars on which modern physics is
built. The empirical success of the two theories has been enormous during the last century
and so far there are not observed data in contradiction with them. However, QM and GR
have destroyed the coherent picture of the world provided by Newtonian mechanics: each
has been formulated in terms of assumptions contradicted by the other theory. On the one
hand QM requires a static spatial background and an absolute time flow, when GR describes
spacetime as a single dynamical entity; moreover GR is a classical deterministic theory when
Quantum Mechanics is probabilistic and teach us that any dynamical field is quantized. Both
theories work extremely well at opposite scales but the revolution they have started is clearly
incomplete [1] unless we want to accept that Nature has opposite foundations in the quantum
and in the cosmological realm.

The search for a theory which merges GR and QM in a whole coherent picture is the search
for a theory of Quantum Gravity (QG). At the present stage we have not such a theory. The
essential difficulty is that the theoretical framework is not at all helped by experimental
measurement. The reason is simply that the effects of quantum gravity are supposed to
become predominant at the Planck scale that is far out of reach of any technological apparatus
of humanity. Hence, there is currently no way to test the validity of any theoretical framework
by direct experiments, like for example trough the accelerators. To build this theory we have
only the two pillars; what are the core lessons of QFT and GR?

• We have learned from GR two indications on reality: First, the world is relational; only
events independent from the coordinate are meaningful; physics must be described by
generally covariant theories. Second, the gravitational field is the geometry of spacetime.
The spacetime geometry is fully dynamical: The gravitational field defines the geometry
on top of which its own degrees of freedom and those of matter fields propagate. GR is
not a theory of fields moving on a curved background geometry; GR is a theory of fields
moving on top of each other[2]. The gravitational field is the spacetime field.

• We have learned from QFT that all dynamical fields are quantized. A quantum field
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is made of quanta propagating the interactions, and has a probabilistic dynamics, that
allows quantum superposition of different states.

If we merge the two lessons we might expect at small scales a “quantum spacetime” formed by
“quanta of space” evolving probabilistically, and allowing “quantum superposition of spaces”
in a theory fully background independent. The problem of QG is then to give a precise
mathematical and physical meaning to the notion of “quantum spacetime”.

The quest for QG is then mainly theoretical but it is needed if we want answer to fun-
damental physical questions. In particular classical GR predicts the existence of singularities
such as those dealing with black hole physics and cosmology. Near spacetime singularities the
classical description of the gravitational degrees of freedom simply breaks down. Questions
related to the fate of singularities in black holes or in cosmological situations or those related
with information paradoxes can only be answered with a theory of QG.

There are essentially two research programs that can be considered a candidate theory of
QG: String Theory (ST) (at the present stage existing as a perturbative theory) and Loop
Quantum Gravity (LQG) (in its canonical and covariant versions) . The first postulate that
the particles are not pointlike but extended objects and builds up the theory on the ground
of usual QFT trying to unify all the interactions; doing so it is not able, at the present stage,
to implement background independence. The second, without the aim of unifying all the
interactions, try to merge QM and GR taking seriously the lessons of GR and in particular
its essential feature: generally covariance or diffeomorphisms invariance, simply translatable
in background independence.

This thesis is in the framework of LQG.
LQG (there are a lot of reviews but the basic ones are Carlo Rovelli’s book [2], Thomas

Thiemann book [3], Ashtekar [4] and Perez [5] ones) is based on the canonical quantization
program formulated by Dirac and its covariant version is based on the path integral approach
developed by Feynman; the theory has a big predictive power at the Planck scale, in fact its
main achievements are the construction of a kinematical Hilbert space [6, 7], the derivation of
a discrete spectrum for the geometrical area and volume operators [8, 9, 10], the explanation
of the black-hole entropy (see [4] and references therein) and a theory of Loop Quantum
Cosmology ([11] see also [12]) but it is not yet able to make contact with the low energy
world. The directions in which lacks are greater are in fact the limit of low energy of the
theory, a way of recover classical solutions of GR and the possibility to calculate scattering
amplitudes [13].

This thesis is a step in the attempt to try to fill this gap.
In particular we face the problem of building the graviton propagator in a background in-

dependent formalism. This can be considered as the basic building block in the construction of
scattering amplitudes that are observable, comparable quantities. Moreover the semi–classical
limit (where pure quantum effects are negligible) of these quantity can be compared with the
one calculated in the conventional QFT; the positive or negative result of this comparison
would be a strong theoretical confirmation of the theory.
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The problem of defining a graviton propagator

The first possible way explored for the construction of QG is the usual QFT approach
applied to perturbative GR that leads to a non–renormalizable theory; we can build the
propagator of this theory but the quantum corrections bring infinities; neverthless its leading
order is well known and it can be taken as a reference point for a candidate theory of QG.

Let us focus for a while on non–renormalizable perturbative GR.
To define the QFT we need a notion of non dynamical background on the top of which

physics happens; one proceed splitting the degrees of freedom of the gravitational field in
terms of a fixed background geometry ηµν for µ, ν = 1 · · · 4 and dynamical metric fluctuations
hµν . Explicitly, one writes the spacetime metric as

gµν = ηµν + hµν . (1)

apart from the infinities that arise in such treatments, this kind of theory requires the intro-
duction of a classical background. The first point about this splitting is that it has no intrinsic
meaning in GR. The first of the core teachings of GR is that the Nature is generally covariant;
any physical phenomenon has to be invariant under diffeomorphism transformations. If we
apply this lesson here, what do we get?

As noted in [5] for a generic space time metric gµν we can write

gµν = ηµν + hµν = η̃µν + h̃µν , (2)

where ηµν and η̃µν can be characterized by different background light-cone structures of the
underlying spacetime (M,gµν); this is a priori dangerous because η and η̃ may carry different
notions of causality and the QFT needs a fixed notion of causality. The second point is that
(1) make sense in classical GR when one considers perturbations of a fixed background ηµν
but in QG one has to deal with arbitrary superpositions of spacetimes; in a QG theory the
above splitting can be meaningful only if we interpret η as a semi-classical states “peaked”,
around the classical geometry ηµν with small fluctuations on it. How can a similar splitting
have meaning in the full quantum regime?

If we want to take GR seriously we have to bring diff-invariance in the quantum realm
and this can’t be done splitting and quantizing; the best that we can do is quantize non–
perturbatively, implementing the diff invariance of GR at quantum level, and then reproduce
(1) in an appropriate semiclassical regime, at that point we can compare the resulting theory
with the perturbative QG disregarding the quantum corrections.

In this thesis we try to realize this project starting from LQG: In fact, it is still not known
if the various LQG and spinfoam models proposed contain semi–classical states that would
reproduce Einstein’s gravity in some limit. Neither it is known how to do a perturbative
expansion that would allow calculations of scattering amplitudes between excitations of these
semi–classical states. We would like to find an expression which reproduces the usual graviton
propagator, once only small excitations around a flat background metric are considered.

The thesis is organized as follows

• In the first chapter we introduce the main ideas of LQG (following [5]) that will define the
kinematical level of the theory; LQG defines the kinematical Hilbert space of the theory:
the spinnetwork base. Spinnetworks define quantized 3–d metrics and their diff–invariant
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versions define quantized 3d-geometries. The chapter will also provide the basic grasping
operators needed to reproduce the graviton excitations of a flat background.

• In the second chapter we describe the covariant approach that starts where LQG find
the biggest difficulties i.e in the definition of the dynamics; covariant methods deal more
easily with interactions and dynamics: it thus seems natural to choose the formalism of
Spinfoams Models (SM) to study the semi–classical limit. With the help of this chapter
we will able to deal with the quantum dynamics of the quantized space.

• In the third chapter we will introduce Rovelli’s formulation of background–independent
n–point function (introduced in [14, 15, 16]) and we will construct some of the graviton
propagator components as they emerge from these works

• In the forth and the fifth chapter based on original work [17, 18] we complete the LQG
calculation of all its components; in doing so we discover difficulties that open the way
to modification of the principal SFM for QG needed to make contact with the known
perturbative graviton propagator.

At the end of this construction will end up with a propagator calculated in the LQG
formalism that coincides with the well known propagator of a spin2 massless particle; we will
get the graviton propagator from LQG.



Chapter 1

Introduction to Loop Quantum
Gravity

In this chapter we briefly summarize the construction of LQG. We introduce the formula-
tion of classical GR in terms of ADM variables and then we switch to the triad formulation
as a step to the introduction of the Ashtekar variables. These variables allow for a description
of GR in terms of Yang-Mills fields. The construction of the theory proceeds with the appli-
cation of the canonical Dirac quantization program of constrained systems. We end up with
a set of three quantum constraints: the solution of the first brings to a kinematical Hilbert
space of states gauge invariant called spinnetworks, the implementation of the second to their
Diff invariant version called s-knots. This complete the kinematics of the theory. The third
constraint, corresponding to the implementation of the dynamics in the quantum theory is
less under control but leads to the introduction of the spinfoam models. All over the chapter,
focusing on the geometrical meaning of the theory’s variables, we discover one of the most
relevant feature of LQG: the emerging of a discretized quantum space. This chapter is based
on the reference [5] to which we refer the reader for more details.

1.1 Canonical formulation of GR in ADM variables

The action of general relativity in metric variables is given by the Einstein-Hilbert action

S[gµν ] =
1

2κ

∫
dx4 √−gR, (1.1)

where κ = 8πG/c3 = 8πℓ2p/~, g is the determinant of the metric gµν and R is the Ricci scalar.
The starting point for the Hamiltonian formulation in term of ADM variables [19] is the

introduction of a spacetime foliation in terms of space-like three dimensional surfaces Σ. For
simplicity we assume Σ without boundaries. The ten components of gµν are replaced by
the six components of the induced Riemannian metric qab(a, b = 1, 2, 3) of Σ plus the three
components of the shift vector Na and the lapse function N .

gµν −−−−→
ADM

{qab, Na, N} (1.2)
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In terms of these variables, after performing the standard Legendre transformation, the action
of general relativity becomes

S =
1

κ

∫
dt

∫

Σ
d3x{q̇abπab + ṄP + ṄaPa − [λP + λaPa +NaVa +NC]} (1.3)

where

πab = κ
δS

δqab
=
√

det(q)[qacqbd − qabqcd]Kcd (1.4)

is the momenta conjugate to qab related to the extrinsic curvature Kab of Σ and P,Pa are the
momenta conjugate to N and Na.

The functions C(qab, π
ab), Va(qab, π

ab) explicitly given by

C(qab, π
ab) = −(q1/2[R(3) − q−1πcdπ

cd + 1/2q−1π2]) (1.5)

and
V b(qab, π

ab) = −2∇(3)
a(q

−1/2πab) (1.6)

are called the Hamiltonian (or Scalar) and Spatial Diffeomorphism (or Vector) constraint. In
the previous expressions π = πabqab, ∇(3)

a is the covariant derivative compatible with the
metric qab, q is the determinant of the space metric and R(3) is the Ricci tensor of qab. Finally
λ, λa are Lagrange multipliers: their presence is due to the singularity of the the Lagrangean
(1.1), i.e we cannot solve all the velocities in terms of momenta and therefore we must use
Dirac’s procedure [20] for the Legendre transform of singular Lagrangeans. In this case the
singularity structure is such that the variations of the Lagrange multipliers give

P = Pa = 0 (1.7)

The equations of motion with respect to the Hamiltonian (i.e. Ḟ := {H,F} for any functional
F of the canonical coordinates)

H =

∫
d3x[λP + λaPa +NaVa +NC] (1.8)

for N,Na reveal that N,Na are themselves Lagrange multipliers, i.e. completely unspecified
functions (proportional to λ, λa) while the equations of motion for P,Pa give Ṗ = −C, Ṗa =
−Va. Since P,Pa are supposed to vanish, this requires

Va = 0

C = 0
(1.9)

This implies that the Hamiltonian is constrained to vanish in GR.
Now the equations of motion for qab, π

ab imply the Dirac algebra

{V ( ~N ), V ( ~N ′)} = κV (L ~N
~N ′)

{V ( ~N ), C(N)} = κC(L ~NN)

{C(N), C(N ′)} = κV (q−1(NdN ′ −N ′dN)) (1.10)
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Figure 1.1: Constraint hypersurface M and gauge orbit [o] of o ∈ M in M
.

where C(N) =
∫
d3xNC and V ( ~N) =

∫
d3xNaVa are the smeared constraints on test func-

tions . These equations tell us that the condition C = Va = 0 is preserved under evolution i.e
the Hamiltonian and vector constraint form a first class constraint algebra.

We have seen that the variables P and Pa drops out completely from the analysis and
N,Na are Lagrange multipliers so we can rewrite the action (1.3) as

S =
1

κ

∫
dt

∫

Σ
d3x {q̇abπab − [NaVa +NH]} (1.11)

with the understanding that N,Na are now completely arbitrary functions which parameterize
the freedom in choosing the foliation. The symplectic structure can be read off from the
previous equations, namely

{
πab(x), qcd(y)

}
= 2κ δa(cδ

b
d)δ(x, y),

{
πab(x), πcd(y)

}
= {qab(x), qcd(y)} = 0 (1.12)

Since the Hamiltonian of GR depends on the completely unspecified functions N,Na, the
motions that it generates in the phase space M coordinatized by (πab, qab) subject to the
Poisson brackets (1.12) are to be considered as pure gauge transformations.

We can summarize the gauge formulation of GR in figure 1.1: The constraints C = Va = 0
define a constraint hypersurface M within the full phase space M. The gauge motions are
defined on all of M but they have the feature that they leave the constraint hypersurface
invariant, and thus the orbit of a point o in the hypersurface under gauge transformations
will be a curve or gauge orbit [o] entirely within it. The set of these curves defines the so-called
reduced phase space and Dirac observables restricted to M depend only on these orbits.
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The counting of degrees of freedom proceeds as follows: we start with twelve phase space
coordinates qab, π

ab. The four constraints C, Va can be solved to eliminate four of those and
there are still identifications under four independent sets of motions among the remaining
eight variables leaving us with only four Dirac observables. The corresponding so-called
reduced phase space has therefore precisely the two configuration degrees of freedom of general
relativity.

1.1.1 The triad formulation

Now we shift to the triad formulation that will lead to the connection variables introduced
first by Ashtekar [21] and generalized by Immirzi [22] and Barbero [23],[24]. We introduce:

A triad (a set of three 1-forms defining a frame at each point in Σ) in terms of which the
metric qab becomes

qab = eiae
j
bδij , (1.13)

with i, j = 1, 2, 3.
The densitized triad

Eai :=
1

2
ǫabcǫijke

j
be
k
c . (1.14)

related to the inverse metric qab by

qqab = Eai E
b
jδ
ij (1.15)

and the following quantity

Ki
a :=

1√
det(E)

KabE
b
jδ
ij (1.16)

. We can rewrite (1.11) in terms of these new variables. In fact the canonical term in (1.11)
can be rewritten as

πabq̇ab = −πabq̇ab = 2Eai K̇
i
a (1.17)

and also the constraints (1.5),(1.6) can be rewritten in terms of the new quantities

V a(qab, π
ab) , C(qab, π

ab) −−−→
triad

V a(Eai ,K
i
a) , C(Eai ,K

i
a) (1.18)

The triad formulation is then a shift from the variables qab, π
ab to Eai ,K

i
a

qab, π
ab −−−→

triad
Eai ,K

i
a (1.19)

It is immediate to see that the new variables are certainly redundant, in fact we are using
the nine Eai to describe the six components of qab. The redundancy has a clear geometrical
interpretation: the extra three degrees of freedom in the triad correspond to the possibility
of choosing different local frames eia by local SO(3) rotations acting in the internal indices
i = 1, 2, 3. There is in fact an additional constraint in terms of the new variables that makes
this redundancy manifest. The missing constraint comes from (1.16): we overlooked the fact
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that Kab = Kba. By inverting the definitions (1.14) and (1.16) in order to write Kab in terms
of Eai and Ki

a the condition K[ab] = 0 reduces to

Gi(E
a
j ,K

j
a) := ǫijkE

ajKk
a = 0. (1.20)

Therefore to completely reformulate the theory in triad variables we must include this addi-
tional constraint to (1.11) that becomes

S[Eaj ,K
j
a, Na, N,N

j ] =

1

κ

∫
dt

∫

Σ
dx3

[
Eai K̇

i
a −NbV

b(Eaj ,K
j
a) −NS(Eaj ,K

j
a) −N iGi(E

a
j ,K

j
a)
]
, (1.21)

where the explicit expressions for the constraints are given in [25]. The symplectic structure
now becomes

{
Eaj (x),K

i
b(y)

}
= κ δab δ

i
jδ(x, y),

{
Eaj (x), E

b
i (y)

}
=
{
Kj
a(x),K

i
b(y)

}
= 0 (1.22)

1.1.2 New variables: the Ashtekar-Barbero connection variables

Now we make a new change of variables introducing the Ashtekar-Barbero[23, 26, 27]
connection variables defined by Aia given by

Aia = Γia + γKi
a, (1.23)

where γ is a real number different from 0 called the Immirzi parameter[28] and Γia is the spin
connection solution of Cartan’s structure equations

∂[ae
i
b] + ǫijkΓ

j
[ae

k
b] = 0 (1.24)

that defines the notion of covariant derivative compatible with the triad.
The spin connection is an so(3) connection that transforms in the standard inhomogeneous

way under local SO(3) transformations. The new variable Aia is also an so(3) connection
because adding a quantity that transforms as a vector (the densitized triad (1.14) transforms
in the vector representation of SO(3) under redefinition of the triad (1.13) and consequently,
so does its conjugate momentum Ki

a) to a connection gives a new connection .
This new variable is conjugate to Eia. The new Poisson brackets are

{
Eaj (x), A

i
b(y)

}
= κγδab δ

i
jδ(x, y),

{
Eaj (x), E

b
i (y)

}
=
{
Aja(x), A

i
b(y)

}
= 0. (1.25)

Using the connection variables the action becomes

S[Eaj , A
j
a, Na, N,N

j ] =

1

κ

∫
dt

∫

Σ
dx3

[
Eai Ȧ

a
i −N bVb(E

a
j , A

j
a) −NC(Eaj , A

j
a) −N iGi(E

a
j , A

j
a)
]
, (1.26)

where the constraints are explicitly given by:

Vb(E
a
j , A

j
a) = Eaj Fab − (1 + γ2)Ki

aGi (1.27)
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C(Eaj , A
j
a) =

Eai E
b
j√

det(E)

(
ǫijkF

k
ab − 2(1 + γ2)Ki

[aK
j
b]

)
(1.28)

Gi(E
a
j , A

j
a) = DaE

a
i , (1.29)

where Fab = ∂aA
i
b − ∂bA

i
a + ǫijkA

j
aAkb is the curvature of the connection Aia and DaE

a
i =

∂aE
a
i + ǫ k

ij A
j
aEak is the covariant divergence of the densitized triad.

What is the advantage of this change of variables? At classical level we haven’t gained so
much: Instead of twelve variables qab, π

ab we now have eighteen variables Aia, E
a
i .

However, considering the phase space coordinatized by (Aja, Ebj ), with Poisson brackets
(1.25) and constraints Gj , C, Va, it can be shown [21, 29] that solving only the constraint
Gj = 0 and determining the Dirac observables with respect to it leads us back to the ADM
phase space with constraints C, Va.

The virtue of this extended phase space is that canonical GR can be formulated in the
language of a canonical gauge theory where the gauge field is given by the connection Aia and
its conjugate momentum is the electric field Ebj . The constraint (1.29) coincides with the

standard Gauss law of Yang-Mills theory (e.g. ~∇ · ~E = 0 in electromagnetism).
In fact if we ignore (1.27) and (1.28) the phase space variables (Aia, E

b
j ) together with the

Gauss law (1.29) characterize the physical phase space of an SU(2) Yang-Mills (YM) theory.
We can switch from SO(3) to SU(2) because the constraint structure does not distinguish
between them (both groups have the same Lie algebra) and SU(2) is the gauge group if we
want to include fermionic matter[30, 31, 32]. Now the advantage becomes clear: the close
similarity between canonical GR and YM theory opens the road to the use of the techniques
that are very natural in the context of YM theory.

Gauge transformations

Now let us analyze the structure of the gauge transformations generated by the constraints
(1.27),(1.28), and (1.29). The Gauss law (1.29) generates local SU(2) transformations as in
the case of YM theory. Explicitly, if we define the smeared version of (1.29) as

G(α) =

∫

Σ
dx3 αiGi(A

i
a, E

a
i ) =

∫

Σ
dx3αiDaE

a
i , (1.30)

a direct calculation implies

δGA
i
a =

{
Aia, G(α)

}
= −Daα

i and δGE
a
i = {Eai , G(α)} = [E,α]i . (1.31)

If we write Aa = Aiaτi ∈ su(2) and Ea = Eai τ
i ∈ su(2), where τi are generators of SU(2), we

can write the finite version of the previous transformation

A′
a = gAag

−1 + g∂ag
−1 and Ea′ = gEag−1, (1.32)

which is the standard gauge transformation of the connection and the electric field in YM
theory.

The vector constraint (1.27) generates three dimensional diffeomorphisms of Σ. This is
clear from the action of the smeared constraint

V (Na) =

∫

Σ
dx3 NaVa(A

i
a, E

a
i ) (1.33)
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on the canonical variables

δVA
i
a =

{
Aia, V (Na)

}
= LNAia and δVE

a
i = {Eai , V (Na)} = LNEai , (1.34)

where LN denotes the Lie derivative in the Na direction. The exponentiation of these in-
finitesimal transformations leads to the action of finite diffeomorphisms on Σ.

Finally, the scalar constraint (1.28) generates coordinate time evolution (up to space
diffeomorphisms and local SU(2) transformations). The total Hamiltonian H[α,Na, N ] of
general relativity can be written as

H(α,Na, N) = G(α) + V (Na) + C(N), (1.35)

where

C(N) =

∫

Σ
dx3 NC(Aia, E

a
i ). (1.36)

Hamilton’s equations of motion are therefore

Ȧia =
{
Aia,H(α,Na, N)

}
=
{
Aia, C(N)

}
+
{
Aia, G(α)

}
+
{
Aia, V (Na)

}
, (1.37)

and

Ėai = {Eai ,H(α,Na, N)} = {Eai , C(N)} + {Eai , G(α)} + {Eai , V (Na)} . (1.38)

The previous equations define the action of C(N) up to infinitesimal SU(2) and diffeomor-
phism transformations given by the last two terms and the values of α and Na respectively.
In general relativity coordinate time evolution does not have any physical meaning. It is
analogous to a U(1) gauge transformation in QED.

Ashtekar variables

The Ashtekar variables are defined for the choice γ = i in (1.23)

Aia = Γia + iKi
a (1.39)

in this case the connection is complex[25] (i.e. Aa ∈ sl(2,C)) and to be sure not to double
the degrees of freedom involved and recover real GR we must add the reality condition

Aia + Āia = Γia(E). (1.40)

These variables allow a self-dual formulation of GR: The connection obtained for this choice
of the Immirzi parameter is simply related to a spacetime connection (and this is not the case
for the real connection (1.23) that cannot be obtained as the pullback to Σ of a spacetime
connection[33]). In fact it can be shown that Aa is the pullback of ω+IJ

µ (I, J = 1, · · · 4) where

ω+IJ
µ =

1

2
(ωIJµ − i

2
ǫIJKLω

KL
µ ) (1.41)

is the self dual part of a Lorentz (SO(3, 1)) connection ωIJµ . With the choice (1.39) the
constraints (1.27) and (1.28) become
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V SD

b = Eaj Fab (1.42)

SSD =
Eai E

b
j√

det(E)
ǫijkF

k
ab (1.43)

GSD

i = DaE
a
i , (1.44)

where SD stands for self dual. The gauge group—generated by the (complexified) Gauss
constraint—is in this case SL(2,C).

Loop quantum gravity was initially formulated in terms of these variables. However, there
are technical difficulties in defining the quantum theory when the connection is valued in the
Lie algebra of a non compact group.

In spacetimes with Euclidean signature, the self-dual formulation does not suffer any
drawbacks; in fact the Euclidean spin connection ωIJ is an SO(4) connection instead of an
SO(3, 1) connection and the selfdual connection A is real.

From now on we restrict our attention to the real Ashtekar-Barbero variables.

1.1.3 Geometrical properties of the new variables

Holonomy

The geometric interpretation of the connection Aia, defined in (1.23), is standard. The
connection provides a definition of parallel transport of SU(2) spinors on the space manifold
Σ. The natural object is the SU(2) element defining parallel transport along a path γ ⊂ Σ is
called holonomy hγ [A],

Given a one dimensional oriented path

γ : [0, 1] ⊂ R → Σ (1.45)

s→ xµ(s) (1.46)

the holonomy of the connection A along the path γ is given by the solution hγ [A, s] of the
ordinary differential equation

hγ [A, 0] = 1 (1.47)

hγ [A] = hγ [A, 1] (1.48)

d

ds
hγ [A, s] + ẋµ(s)Aµhγ [A, s] = 0 (1.49)

The formal solution of the previous equation is

hγ [A] = P exp−
∫

γ
A, (1.50)

where P stands for path ordered and is defined by the series expansion

hγ [A] =

∞∑

n=0

1∫

0

ds1

s1∫

0

ds2 · · ·
sn−1∫

0

dsn ẋ
µ1(s1) · · · ẋµn(sn) Aµ1(s1) · · ·Aµn(sn), (1.51)

. Let us list some important properties of the holonomy:
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1. The definition of hγ [A] is independent of the parametrization of the path γ.

2. The holonomy of a path given by a single point is the identity, given two oriented paths
γ1 and γ2 such that the end point of γ1 coincides with the starting point of γ2 so that
we can define γ = γ1 · γ2 in the standard way then we have

hγ [A] = hγ1 [A]hγ2 [A], (1.52)

where the multiplication on the right is the SU(2) multiplication. We also have that

hγ−1 [A] = h−1
γ [A]. (1.53)

3. The holonomy has a very simple behavior under gauge transformations. It is easy to
check from (1.32) that under a gauge transformation generated by the Gauss constraint,
the holonomy transforms as

h′e[A] = g(x(1)) hγ [A] g−1(x(0)). (1.54)

4. The holonomy transforms in a very simple way under the action of diffeomorphisms
(transformations generated by the vector constraint (1.27)). Given φ ∈ Diff(Σ) we have

hγ [φ
∗A] = hφ−1(e)[A], (1.55)

where φ∗A denotes the action of φ on the connection. In other words, transforming the
connection with a diffeomorphism is equivalent to simply ‘moving’ the path with φ−1.

Geometrically the holonomy hγ [A] is a functional of the connection that provides a rule
for the parallel transport of SU(2). If we think of it as a functional of the path e it is clear
that it captures all the information of the field Aia.

The electric field flux

The densitized triad—or electric field—Eai also has a simple geometrical meaning. Eai
encodes the full background independent Riemannian geometry of Σ as is clear from (1.15).
Therefore, any geometrical quantity in space can be written as a functional of Eai .

The area in particular AS [Eai ] of a 2d surface S ⊂ Σ will play a major role in the following.
Given a two dimensional surface S : σ = (σ1, σ2) → xa(σ) embedded in the 3d surface Σ—
with normal

na =
∂xb

∂σ1

∂xc

∂σ2
ǫabc (1.56)

where σ1 and σ2 are local coordinates on S—its area is given by

AS [qab] =

∫

S

√
h dσ1dσ2, (1.57)

where h = det(hab) is the determinant of the metric hab = qab−n−2nanb induced on S by qab.
From equation (1.15) it follows that det(qab) = det(Eai ). Let us contract (1.15) with nanb,
namely

qqabnanb = Eai E
b
jδ
ijnanb. (1.58)
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Now observe that qnn = qabnanb is the nn-matrix element of the inverse of qab. Through the
well known formula for components of the inverse matrix we have that

qnn =
det(qab − n−2nanb)

det(qab)
=
h

q
. (1.59)

But qab − n−2nanb is precisely the induced metric hab. Replacing qnn back into (1.58) we
conclude that

h = Eai E
b
jδ
ijnanb. (1.60)

Finally we can write the area of S as an explicit functional of Eai :

AS [Eai ] =

∫

S

√
Eai E

b
jδ
ijnanb dσ

1dσ2. (1.61)

If we define the projection of the electric field in the direction normal to the surface S as

Ei(σ) = Eai (~x(σ))na (1.62)

The definition of the Area (1.61) becomes

AS =

∫

S
d2σ|E(σ)| (1.63)

Thus the area of a surface is the norm of the electric field flux trough the surface.
This property can be nicely summarized in the following sentence:
In gravity "‘the lenght of the electric field is the area"’

1.2 The Dirac program applied to the non perturbative quan-

tization of GR

Now we proceed with the quantization following the Dirac program[20, 34] to quantize
generally covariant systems, applying it to the Asktekar gravity formulation; the realization
of this program bring us to LQG.

Let us focus on the program steps:

• Find a representation of the phase space variables of the theory as operators in an aux-
iliary or kinematical Hilbert space Hkin satisfying the standard commutation relations,
i.e., { , } → −i/~[ , ].

The kinematical Hilbert space of LQG consists of a set of functionals of the connection
ψ[A] which are square integrable with respect to a suitable (gauge invariant and dif-
feomorphism invariant) measure dµAL[A] (called Ashtekar-Lewandowski measure[35]).
The kinematical inner product is given by

< ψ,φ >= µAL[ψφ] =

∫
dµAL[A] ψ[A]φ[A]. (1.64)
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• Promote the constraints to (self-adjoint) operators in Hkin. In the case of gravity we
must quantize the seven constraints (1.27),(1.28), and (1.29)

Gi(A,E), Va(A,E), C(A,E) −−−−−−−−→
quantization

Ĝi(A,E), V̂a(A,E), Ĉ(A,E) (1.65)

• Characterize the space of solutions of the constraints and define the corresponding inner
product that defines a notion of physical probability. This defines the so-called physical
Hilbert space Hphys. In the case of gravity the solution of the Gauss and space diffeo-
morphism constraints has been successfully completed, instead the space of solutions
of quantum scalar constraint Ĉ remains an open issue in LQG. The definition of the
physical inner product too is still an open issue but it leads to the definition of the
spinfoam models.

• Find a (complete) set of gauge invariant observables, i.e., operators commuting with
the constraints. This step is rather difficult in fact already in classical gravity the
construction of gauge independent quantities is a subtle issue and we refer the reader
to Rovelli’s book[2] for an appropriate treatment

1.3 Loop Quantum Gravity

1.3.1 Definition of the kinematical Hilbert space

Now we face the first point of the program formally described in the previous section,
defining the vector space of functionals of the connection and a notion of scalar product to
equip it with a Hilbert space structure and define in this way Hkin.

The Cyl algebra

Now we define the algebra of kinematical observables as the algebra of the cylindrical
functions of generalized connections denoted Cyl. A generalized connection is an assignment
of holonomies hγ ∈ SU(2) to any path γ ⊂ Σ.

Consider an ordered oriented graph Γ, given by an ordered collection of L links γl, i.e
piecewise smooth oriented curves embedded in M and meeting only at their endpoints, called
nodes, if at all. Now we can assign group elements to each link γl taking the holonomy hγl

and consequently assigning an element of SU(2)L to the graph.
Given a complex-valued function f : SU(2)L → C a couple (Γ, f) defines the functional

of A
ΨΓ,f [A] := f(hγ1 [A], hγ2 [A], · · · hγL

[A]), (1.66)

This functional (called cylindrical function) is an element of the set CylΓ of the cylindrical
function defined on a fixed graph: if we consider the union of the set of functions of generalized
connections defined on all the graphs Γ ⊂ Σ

Cyl = ∪ΓCylΓ, (1.67)

we get a subset of the space of smooth functions on the space of connections, on which it is
possible to define consistently an inner product [35, 36], and then complete the space of linear
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combinations of cylindrical functions in the norm induced by this inner product. This is the
basic algebra on which the definition of the kinematical Hilbert space Hkin is constructed.

A little remark about the ordered oriented graph, when we deal with cylindrical functions
is needed: changing the ordering or the orientation of a graph is just the same as changing
the order of the arguments of the function f , or replacing arguments with their inverse.

The Ashtekar-Lewandowski representation of Cyl

The cylindrical functions introduced are suitable states in Hkin. To define Hkin and
provide a representation of the algebra Cyl we need a measure in the space of generalized
connections to give a meaning to the formal expression (1.64) and thus obtain a definition of
the kinematical inner product. In order to do that we introduce a positive normalized state
(state in the algebraic QFT sense) µAL on the (C⋆-algebra) Cyl as follows. Given a cylindrical
function ΨΓ,f [A] ∈ Cyl we define the µAL(ΨΓ,f ) as

µAL(ΨΓ,f ) =

∫ ∏

γl⊂Γ

dhγl
f(hγ1 , hγ2 , · · · hγL

), (1.68)

where hγl
∈ SU(2) and dhγl

is the normalized Haar measure of SU(2) defined by the following
properties:

∫

SU(2)
dg = 1, and dg = d(αg) = d(gα) = dg−1 ∀α ∈ SU(2).

. The state µAL is called the Ashtekar-Lewandowski measure[35]. The measure µAL is clearly
normalized as µAL(1) = 1 and positive

µAL(ΨΓ,fΨΓ,f ) =

∫ ∏

γl⊂Γ

dhγl
f(hγ1 , hγ2 , · · · , hγL

)f(hγ1 , hγ2 , · · · , hγL
) ≥ 0. (1.69)

Using the properties of µAL we introduce the inner product between functionals defined with
the same ordered oriented graph Γ

< ΨΓ,f |ΨΓ,g >: = µAL(ΨΓ,fΨΓ,g) =

=

∫ ∏

γl⊂Γ

dhγl
f(hγ1 , · · · , hγL

)g(hγ1 , · · · , hγL
), (1.70)

where the cylindrical functions become wave functionals of the connection corresponding to
kinematical states

ΨΓ,f [A] =< A|ΨΓ,f >= f(hγ1 , · · · hγL
) (1.71)

The extension of the inner product (1.70) to different orderings or orientation is obvious; the
extension to functional defined on different graphs is straightforward, observing that the same
functional can be defined by different couples (Γ, f), (Γ′, f ′), it is then enough to consider a
new graph Γ∪ = Γ′∪Γ′′ to transform a scalar product between functionals defined on different
graph Γ′ and Γ′′ in an expression of the kind (1.70)

〈ΨΓ′,f ′ |ΨΓ′′,g′′〉 = 〈ΨΓ∪,f |ΨΓ∪,g〉 (1.72)
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The previous equation is the rigorous definition of (1.64). The measure µAL—through the
GNS construction[37]—gives a faithful representation of the algebra of cylindrical functions
(i.e., (1.69) is zero if and only if Ψγ,f [A] = 0). The kinematical Hilbert space Hkin is the
Cauchy completion of the space of cylindrical functions Cyl in the Ashtekar-Lewandowski
measure. In other words, in addition to cylindrical functions we add to Hkin the limits of
all the Cauchy convergent sequences in the µAL norm. The operators depending only on the
connection act simply by multiplication in the Ashtekar-Lewandowski representation. This
completes the definition of the kinematical Hilbert space Hkin.

An orthonormal basis of Hkin.

The key ingredient to find a basis of Hkin is the Peter-Weyl theorem[38]. It states that a
basis on the Hilbert space of functions f ∈ L2[SU(2)] is given by the matrix elements of the
unitary irreducible representations of the group and thus every function can be expanded in
the following way

f(g) =
∑

j

√
2j + 1 fmm

′

j Dj
mm′(g), (1.73)

where

fmm
′

j =
√

2j + 1

∫

SU(2)

dg Dj
m′m(g−1)f(g), (1.74)

and dg is the Haar measure of SU(2). This defines the harmonic analysis on SU(2). The
completeness relation

δ(gh−1) =
∑

j

(2j + 1)Dj
mm′(g)D

j
m′m(h−1) =

∑

j

(2j + 1)Tr[Dj(gh−1)], (1.75)

follows. The previous equations imply the orthogonality relation for unitary representations
of SU(2) ∫

SU(2)

dg N j
m′m(g)N j′

q′q(g) = δjj′δmqδm′q′ , (1.76)

where we have introduce the normalized representation matrices N j
mn :=

√
2j + 1Dj

mn;
In our case the group elements are the holonomies hγl

[A] of the connection; the basis
representation matrix is, in ket notation,

N j
mn(hγl

[A]) := 〈A|j,m, n〉 (1.77)

Given an arbitrary cylindrical function ψΓ,f [A] ∈ Cyl we can use the Peter-Weyl theorem and
write

ΨΓ,f [A] = f(hγ1 [A], hγ2 [A], · · ·hγL
[A]) =

=
∑

j1···jL
fm1···mL,n1···nL

j1···jL N j1
m1n1

(hγ1 [A]) · · ·N jL
mLnL

(hγL
[A]) (1.78)



1.3 Loop Quantum Gravity 25

where the coefficients fm1···mL,n1···nL

j1···jL are given by the kinematical scalar product (1.70) of the
cylindrical function with the tensor product of irreducible representations

fm1···mL,n1···nL

j1···jL =< N j1
m1n1

· · ·N jL
mLnL

|ΨΓ,f >, (1.79)

. Fixed an ordered oriented graph Γ we have then a basis

|Γ, jl, nl,ml〉 = |Γ, j1, · · · , jL, n1, · · · , nL,m1, · · · ,mL〉 (1.80)

obtained by tensoring the base (1.77) on each of the L links l of the graph Γ

〈A|Γ, jNl
, nl,ml〉 = N j1

m1n1
(hγ1 [A]) · · ·N jL

mLnL
(hγL

[A]) (1.81)

From equation (1.78) we have that (1.81) is a complete orthonormal basis of the Hilbert space
HΓ
kin: this is the space of cylindrical functional restricted to the fixed graph Γ and thus is

not yet a basis for Hkin because the same vector appears in HΓ
kin and HΓ′

kin if Γ ⊂ Γ′. To
eliminate this redundancy is enough to think that all the paths that are in Γ′ but not in Γ
are represented in HΓ

kin by the trivial representation: it is then enough to restrict the states
(1.81) to the values jl > 0 to get the proper graph subspace HΓ

kin. All the proper subspace
HΓ
kin are orthogonal each other and they span Hkin

1.3.2 Quantum constraints

We have constructed the kinematical space Hkin of arbitrary wave functionals Ψ[A]. Now
we have to implement the classical constraints promoted to operators in the quantum theory.

Ĝi(A,E)|Ψ〉 = 0 (1.82)

V̂ai(A,E)|Ψ〉 = 0 (1.83)

Ĉ(A,E)|Ψ〉 = 0 (1.84)

The constraint are the generators of the gauge transformations of the theory; at quantum
level they correspond to the request of the gauge invariances of the states. The first equation
requires the invariance of the states under local SU(2); the second invariance under 3d Diff.
The third one is equivalent to invariance under "time" reparametrization or simply it codes
the dynamic and is called Wheeler-De Witt equation. The solution of the theory, calling HG

kin

the space of states invariant under local SU(2), HDiff
kin the space of states invariant under local

SU(2) and Diff and finally Hphys the solution of the three (1.82),(1.83) and (1.84), consists
of the following three sequences of Hilbert spaces

Hkin
SU(2)−−−−→ HG

kin
Diff−−→ HDiff

kin
C−−→ Hphys (1.85)

where the three steps correspond to the implementation of the three constraints that the wave
functional must satisfy.
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1.3.3 Solutions of the Gauss constraint: HG
kin and spin network states

We are now interested in the solutions of the quantum Gauss constraint; the first three of
quantum Einstein’s equations. These solutions are characterized by the states in Hkin that
are SU(2) gauge invariant. These solutions define a new Hilbert space that we call HG

kin.
Now we will show how these are in fact a complete set of orthogonal solutions of the Gauss
constraint, i.e., a basis of HG

kin.
The action of the Gauss constraint produces the local SU(2) gauge transformation on the

connection (1.32) that induces on the holonomies the transformation (1.54).
Denoting Ug the operator generating a local gauge transformation g(x) ∈ SU(2) its action

can be defined directly on the elements of the basis of Hkin starting from its action on (1.77)

UgN
j
mn[hγ ] = N j

mn[gfhγg
−1
i ] (1.86)

where gi = g(xi) is the value of g(x) at the initial point xi of the path γ and gf = g(xf ) its
value in the final point xf . The generalization to an arbitrary base element of Hkin is then

Ug

L∏

l=1

N jl
mlnl

[hγl
] =

L∏

l=1

N jl
mlnl

[gfl
hγl
g−1
il

]. (1.87)

where il and fl are the points where the link γl begins and ends. Using the obvious fact that

N j
mn(gh[A]) = Rjmq(g) N

j
qn(h[A]) (1.88)

we can rewrite the Ug action (1.87) in the ket notation (1.80) as

Ug|Γ, jl, nl,ml〉 = Rj1
n1n′

1
(gf1)R

j1
m′

1m1
(g−1
i1

) · · ·Rj1
nNn

′
N

(gfN
)RjN

m′
NmN

(g−1
iN

)|Γ, jl, n′
l
,m′

l
〉 (1.89)

The complete base of Hkin transforms under gauge transformation according to (1.89).
Now we construct an orthonormal basis of states that are SU(2) gauge invariant function-

als of the connection called spin network states [39, 40, 41, 42].

Spinnetwork states

We call nodes the end points of the oriented curves γl in Γ. We assume without loss
of generality that Γ is formed by a set of curves that overlap only at nodes. Γ is a graph
immersed in the manifold i.e a collection of nodes n, which are points in Σ, joined by "‘links"’
that are curves in Σ. Given an ordered oriented graph Γ let jl be an assigment of irreducible
representations different from the trivial one to each link l. And in an assigment of an invariant
tensor called intertwiner (see Appendix A) to each node n;

The intertwiner at the node n is an invariant vector in the tensor product of representations
labelling the links converging at this node (see Figure 1.2).

The triplet S = (Γ, jl, in) is called a spin-network embedded in Σ; a choice of jl and in is
called a coloring of the links and of the nodes.

Now take a spinnetwork S = (Γ, jl, in) with L links and N nodes ; if we consider the state
|Γ, jl, nl,ml〉 defined on Γ it has exactly L indices nl and L indices ml. The N intertwiners
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Figure 1.2: Schematic representation of the construction of a spin network. To each link we
associate an irreducible representation. To each node we associate an invariant vector in the
tensor product of irreducible representations converging at the node. In the picture we have
in evidence an example of a 3-valent, a 4-valent and a 5-valent node. In the first case we
associate to the node an intertwiner iabc (unique), in the second idopq and in the last ifglmo

in the tensor product of the representation a⊗ b⊗ c and so on.

in have exaclty a set of indices dual to these; the contraction of the basis elements with the
intertwiners defines the spinnetwork state

|S〉 =
∑

nl,ml

i
n1···na1m1···mb1
1 i

na1+1···na2mb1+1···mb2
2 · · ·

i
naN−1+1···nLmbN−1+1···mL

N |Γ, jl, nl,ml〉
(1.90)

The pattern of contraction is dictated by the topology of the graph; in particular we can
distinguish between in-going and out-going paths; in the notation in fact we have a1 links
outgoing from the node 1 and b1 links ingoing in that node and so on.

As functional of the connection the spinnetwork state (1.90) is

ΨS [A] = 〈A|S〉 ≡
⊗

l

N jl(hγl
[A]) ·

⊗

n

in (1.91)

where the dot indicates contraction between dual spaces. It is immediate to see the gauge
invariance of the state (1.91); it follows directly from the transformation properties (1.89) and
the intertwiners invariance. The set of spinnetworks states

|S〉 = |Γ, jl, in〉 (1.92)

form an orthonormal base of HG
kin as immediate consequence of the fact that |Γ, jl, nl,ml〉 form

a base in Hkin and the intertwiners definition. A final remark is the fact that the choice of
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the base is not unique; in fact it depends in the choice of the base in each intertwiners space
(Appendix A) on each node. Note also that in (1.92) the label Γ runs over unoriented and
unordered graphs, but a choice of colorings imply an orientation and an ordering.

1.3.4 Solutions of the diffeomorphism constraint: HDiff
kin and abstract spin

networks

It is time to look at the second of the three quantum constraints, the vector constraint
(1.27). The diffeomorphism constraint is more difficult to treat than the Gauss constraint
because, while Hkin contains a subset of G-invariant states (spinnetwork states), the diffeo-
morphisms move the graph on the manifold and change the state. In fact it is immediate to
write the action of the operator Uφ representing a diffeomorphism φ ∈ Diff(Σ), acting in
the dense subset of cylindrical functions Cyl ⊂ Hkin looking at the equation (1.55). Given
ψΓ,f ∈ Cyl as in (1.66) we have

UφψΓ,f [A] = ψφ−1Γ,f [A], (1.93)

Diffeomorphisms act on elements of Cyl (such as spin networks) by modifying the underlying
graph. Notice that Uφ is unitary according to the definition (1.70). The spinnetwork states
|S〉 in fact are not gauge invariant because

Uφ|Γ, jl, in〉 = |φ−1Γ, jl, in〉 (1.94)

and even more because we have to pay attention to orderings and orientations, in fact they
can be changed by a diffeomorphism even without changing the graph: we call GΓ the finite
discrete subgroup of maps gk acting on the space HΓ

kin that changes ordering and orientation.
However, because the orbits of the diffeomorphisms are not compact, diffeomorphism invariant
states are not contained in the original Hkin. In relation to Hkin, they have to be regarded
as distributional states [35]. General solutions to the vector constraint must be identified in
some larger space, namely the algebraic dual Cyl⋆ of Cyl (the space of linear forms on Cyl).
As vector spaces we have the relation Φ ⊂ Hkin ⊂ Φ⋆, usually called the Gelfand triple. In
the case of LQG diffeomorphism the Gelfand triple of interest is Cyl ⊂ Hkin ⊂ Cyl⋆.

An element Φ ∈ Cyl⋆ is defined by [Φ](Ψ) := 〈Φ,Ψ〉 for all Ψ ∈ Cyl. The requirement
of diff invariance makes sense in Cyl⋆ because the action of the Diff group is well defined by
duality

[UφΦ](Ψ) = [Φ](Uφ−1Ψ) (1.95)

and therefore a diff invariant state is such that

[UφΦ](Ψ) = [Φ](Ψ) (1.96)

The space HDiff
kin is the space of such states.

The technique used to construct the diff invarinat states is the group averaging proce-
dure [43] which consists in averaging the elements of Cyl with respect to the action of the
diffeomorphism group of Σ. The averaging is obtained via a rigging map [43]

ηDiff : Cyl → Cyl⋆ (1.97)
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defined by

[ηDiff(ΨΓ)](Ψ′
Γ′) =

∑

φ∈Diff
〈UφΨΓ|Ψ′

Γ′〉 (1.98)

where the scalar product is in the Ashtekar-Lewandowski measure. This sum is finite. Both
Ψ and Ψ′ in fact can be expanded in linear combinations of spinnetwork states and if a
diffeomorphism changes the graph of a ΨS then it take it to an orthogonal state; if it leaves
the graph unchanged, there are only two possibilities; or it leaves the state invariant, or
changes the orientation or the ordering but these are only discrete operations that contribute
at most with a discrete number of terms in the sum (1.98).

Because of the diffeomorphism invariance of the scalar product, the state [ηDiff(ΨΓ)] is
invariant under the action of Diff(Σ) :

[ηDiff(ΨΓ)](UφΨ
′
Γ′) = [ηDiff(ΨΓ)](Ψ′

Γ′) (1.99)

We have thus obtained a general solution to the vector constraint. The image of the
rigging map ηdiff in Cyl provides a complete solution space ηdiff(Cyl) = Cyl⋆Diff which can be
equipped with a scalar product

〈ηdiff(Ψ)|ηdiff (Φ)〉Diff = [ηdiff(Φ)](Ψ) (1.100)

Finally, we can define the general solution to both the Gauss and the diffeomorphism con-
straints by simply restricting the pre-image of the map η to gauge invariant spin network
states |S〉. Equivalently HDiff

kin is defined by The full kinematics of four dimensional quantum

gravity are therefore solved by defining the kinematical Hilbert space HDiff
kin of solutions as

the completion of the normed vector space

ηdiff (Cyl ∩HG
kin) (1.101)

in the norm induced by the scalar product (1.100).

Knots and s-knot states

We can now understand the structure of HDiff
kin looking at the scalar product (1.100)

resctricted to the spinnetwork states basis. A diffeomorphism can act on |S〉 only in two
ways: sending it to an orthogonal state if φ changes the graph, or sending it to a state
with differnt orientation or ordering. This second kind of diffeomorphisms gk form the finite
discrete subgroup GΓ. The situation can then be resumed by

〈ηdiff(ΨS)|ηdiff(Ψ′
S)〉Diff =

{
0 if Γ 6= φΓ′
∑

k〈Ugk
ΨS |Ψ′

S〉 if; Γ = φΓ′ (1.102)

So we see that two spin networks define orthogonal states in HDiff
kin if the corresponding

graphs belong to different equivalence classes under diffeomorphism. An equivalence class K
of unoriented graphs is called knot. The basis states in HDiff

kin are therefore firstly labeled
knots K. They then differ by their colouring of links and nodes. We can therefore define the
s-knots states |s >= |K, c〉 where c stands for coloring. The key property of s-knots is that

they form a discrete set. Therefore HDiff
kin admits a discrete orthonormal basis |s >= |K, c〉.
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1.3.5 Geometric operators: quantization of the triad

We have constructed the kinematical quantum state space of LQG. Now we look for the
operators that will lead us to th physical interpretation of the quantum gravity states. The
two basic fields of the canonical theory are the connection Aia and its momentum Eai . In the
quantum theory these basic variables acts as multiplicative and derivative operators

Aia Ψ[A] = Aia Ψ[A] (1.103)

1

κγ
Eai Ψ[A] = −i~ δ

δAia
Ψ[A] (1.104)

Where γ is the Immirzi parameter. Both these operators are not well defined in Hkin. To
overcome this problem is enough to shift the attention to the observable variables of our
theory: the holonomies and the fluxes.

The holonomy hγ [A] is in fact well defined in Hkin, its action is

(hγ [A]Ψ)[A] = hγ [A]Ψ[A] (1.105)

i.e the action of cylindrical function is well defined as a multiplicative operator in Hkin.
The second phase space functions that we are interested in are the flux-like variables

associated to closed two dimensional surfaces S. These variables are naturally introduced
analyzing the effect of the functional derivative of the holonomy

δ

δAic
hγ [A] =

δ

δAic(x)

(
P exp

∫
ds ẋd(s)Akd τk

)
=

=

∫
ds ẋc(s)δ(3)(x(s) − x)hγ1 [A]τihγ2 [A], (1.106)

where hγ1 [A] and hγ2 [A] are the holonomy along the two segments separated by the point x
and τi is an SU(2) generator. An important aspect of this formula is that the distribution on
the right hand side is only two dimensional; it is then natural search for an operator smearing
of Ea in two dimensions. Given a two dimensional surface S : σ = (σ1, σ2) → xa(σ) with
normal 1-form

na =
∂xb

∂σ1

∂xc

∂σ2
ǫabc (1.107)

we can define the following operator

Êi(S) =

∫

S
dσ1dσ2naÊai = −i~κγ

∫

S
dσ1dσ2 ∂x

a

∂σ1

∂xb

∂σ2

δ

δAic
ǫabc, (1.108)

that is an operator valued distribution to be smeared on functions fi with values on the Lie
algebra of SU(2). The previous expression corresponds to the natural generalization of the
notion of electric flux operator in electromagnetism.



1.3 Loop Quantum Gravity 31

The grasping operator

We are the ready to see the action of (1.108) on the holonomies. Assuming that the surface
is such that the end points of γ do not lie on the surface and γ intersects at most once the
surface we have

Êi(S)hγ [A] =

= −i8πℓ2pγ
∫

S

∫

γ
dσ1dσ2ds

∂xa

∂σ1

∂xb

∂σ2

∂xc

∂s
ǫabc δ

(3)(x(σ), x(s)) hγ1 [A]τihγ2 [A]. (1.109)

The integral vanishes unless the surface and the curve intersect in one point and using the
definition of the delta function and computing the integral we obtain, depending on the
relative orientations of the curve and the surface:

Êi(S)hγ [A] = −i8πℓ2pγ hγ1 [A]τihγ2 [A] , (1.110)

and

Êi(S)hγ [A] = i8πℓ2pγ hγ1 [A]τihγ2 [A] , (1.111)

and Êi(S)hγ [A] = 0 when γ is tangential to S or γ∩S = 0. The action of Êi(S) on holonomies

is just to insert the matrix i8πℓ2pγτi at the intersection point. We say that the operator Êi(S)
grasps [6, 7, 8, 9] the curve γ.

From its action on the holonomy, and using SU(2) representation theory, one can easily
obtain the action of Êi(S) to holonomies in arbitrary j representations

Êi(S)Dj(hγ [A]) = ±i8πℓ2pγ Dj(hγ1 [A]) (j)τi D
j(hγ2 [A]) (1.112)

where (j)τi is the SU(2) generator in the spin j representation. From the previous formula is
immediate the action on the spin network states and thus to any state in Hkin. Using (1.70)
one can also verify that Êi(S) is self-adjoint. The operators Êi(S) for all surfaces S contain
all the information of the quantum Riemannian geometry of Σ. In terms of the operators
Êi(S) we can construct any geometric operator.

Quantization of the area

We focus on the area operator of a two-dimensional surface[8, 9] (see also [44] for the
complete spectrum in degenerate cases) S ⊂ Σ which classically depends on the triad Eai
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as in (1.61). We introduce a decomposition of S in N two-cells SN such that S =
⋃
N SN ,

that becomes smaller as N → ∞ and write the integral defining the area as the limit of the
Riemann sum,

AS = lim
N→∞

ANS (1.113)

where

ANS =
N∑

I=1

√
Ei(SI)Ei(SI) (1.114)

where N is the number of cells, and Ei(SI) corresponds to the flux of Eai through the I-th cell.
We see that the fundamental object in the area formula is Ei(SI)Ei(SI). To calculate the
action of the quantum area operator we shift from the classical quantities to their quantum
analogs acting in Hkin, simply replacing the classical Ei(SI) with Êi(SI) according to (1.108)
and thus we look for the action of Êi(S)Êi(S) on a spinnetwork state |S〉. Its action is
immediatly given by two grasping operators (1.112) in the same point if the spinnetwork
intersect the surface only in a point. If the intersecting link is in the j representation we have

Êi(S)Êi(S)N j
mn(hγ [A]) =i2(8πℓ2pγ)

2N j(hγ1 [A])(j)τi
(j)τ iN j(hγ2 [A]) =

=(8πℓ2pγ)
2(j(j + 1))N j

mn(hγ [A])
(1.115)

where in the last equality we have used the fact that −(j)τi
(j)τ i = j(j + 1) × I is the SU(2)

Casimir. The previous equation simply imply that

Êi(S)Êi(S)|S〉 = (8πℓ2pγ)
2(j(j + 1))|S〉 (1.116)

the double grasping operator is diagonal on such spinnetwork base. If now we consider the
quantum analog of the expression (1.113), the quantum area operator becomes

ÂS = lim
N→∞

ÂNS , (1.117)

. Now to calculate the previous expression it is enough to sum the contribution of the square
of the electric flux trough the elementary cell SI summing terms of the kind (1.116). This is
possible because increasing N and shrinking SI the cellular decomposition becomes such that
in the limit N → ∞ each SI is punctured at most at a single point p by a link. The sum over
I reduces to a sum over the intersections between Γ and S for large N. The area operator is
then

ÂS |S >= 8πℓ2pγ
∑

p∈(S∪Γ)

√
jp(jp + 1)|S > . (1.118)

where jp is the representation of the link that intersects S at p. See Figure 1.3.
Spin network states are the eigenstates of the quantum area operator and the spectrum is

discrete The operator is SU(2) gauge invariant by construction and also self adjoint. The
remaining important case is when a spin network node is on SI . A careful analysis shows
that the action is still diagonal in this case[9]. The spectrum of the area operator depends
on the value of the Immirzi parameter γ (introduced in (1.23)). This is a general property of
geometric operators.
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Figure 1.3: On the left: The regularization of (1.117) is defined so that the 2-cells are punc-
tured by only one edge: in this case there is only one intersection that produces a value j
of the area operator of S; On the right: a generic spin–network puncturing the surface S in
different points; the area operator get a contribution from each of the puncturing links .

Quantization of the volume

Another crucial geometrical operator that plays a key role in the physical interpretation
of the quantum states of the gravitational field is the operator V̂R[E] corresponding to the
volume of a spacial region R ⊂ Σ. The volume of a three dimensional region R ⊂ Σ is
classically given by

VR =

∫

R

√
q d3x, (1.119)

Using (1.15) we conclude that

q = |det(E)| =

∣∣∣∣
1

3!
ǫabcE

a
i E

b
jE

c
j ǫ
ijk

∣∣∣∣ . (1.120)

and therefore the volume can be expressed in terms of the densitized triad operator as

VR =

∫

R

√∣∣∣∣
1

3!
ǫabcE

a
i E

b
jE

c
j ǫ
ijk

∣∣∣∣ d3x (1.121)

The corresponding operator can be constructed by promoting the momenta to derivation
operator valued distributions. After regularization we rewrite the previous integral as the
limit of Riemann sums defined in terms of a decomposition of R in terms of three-cells. Then
we quantize the regularized version[8, 10, 45] using the grasping (or flux) operators. The final
result gives a volume operator well defined and diffeomorphism covariant on Hkin.

We underline some general properties of the volume operator. The volume operators acts
on the spinnetwork nodes and the node must be at least 4-valent to have a non-vanishing
volume. It depends on the associated intertwiner. The volume is a self-adjoint non negative
operator and the volume of a region R is given by a sum of terms one for each node of the
spinnetwork |S〉 = |Γ, jl, i1, · · · iN 〉 inside R; we get an expression of the kind

V̂R|Γ, jl, i1, · · · iN 〉 = (16π
~G

c3
)

3
2

∑

n∈S∩R
V i′n
in

|Γ, jl, i1, · · · i′n, · · · iN 〉 (1.122)
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where the numerical matrix V i′n
in

can be numerically calculated from recoupling theory. It
gives a discrete spectrum. The eigenvalue problem is not solved in terms of explicit closed
formulas (there are however special cases [45, 46, 47, 48]), we refer to [49] for an analytical
and numerical analysis of its spectrum.

1.3.6 The LQG physical picture

Geometric interpretation of spin network states

Assembling the results of the previous sections we see how the physical picture described
by the spinnetwork states emerges. The volume operator takes contributions for each node
of S inside a 3d region R. Therefore each node represents a quantum of volume. We can
interpret a spinntework |S〉 with N nodes as an ensemble of N quanta of volume or grains
of space located "‘around"’ the node with a quantized volume. The chunks of space are
separated by surfaces, but the area of surfaces is given by the quantum operator ÂS that has
non vanishing discrete contribution from the spinnetwork links that puncture it.

The natural interpretation is the following: two chunks of space are contiguous if the
corresponding nodes are connected by a link; in fact contiguous means separated by a surface
whose quantum information is carried by the link representation. Links of spin networks
carry quanta of area while nodes carry quanta of volume. A spinntework |S〉 = |Γ, jl, in〉 can
be seen as a discrete quantized 3d metric: the graph Γ determines the adjacency relations
(what is connected to what) of chunks of space whose volume is encoded in in, separated
by surfaces whose area in contained in jl. In other words the graph Γ can be viewed as the
dual of a cellular decomposition of real space with a volume on each cell. This spin networks
interpretation is still background dependent: the spinnetworks in fact still carry information
about their embedding in the spatial manifold Σ. In fact spinnetworks states are solutions
only of the Gauss constraint; their extension to solutions of Diff constraint reveals the full
background independent character of the LQG states.

Physical interpretation of s-knot states

The s-knot states |s〉 = |K, c〉, represents the diffeomorphism equivalence class to which
the spin network graph Γ belongs. In going from the spin network state |S〉 to the s-knot state
|s〉, we preserve the information in |S〉 except for his location in Σ. This is the quantum analog
the fact that physically distinguishable solutions of the classical Einstein equations are not
fields, but equivalence classes of fields under diffeomorphisms. It reflects the core relational
framework of general relativity. In GR we distinguish between a metric gµν and a geometry
[g] that is an equivalence class of metric under diffeomorphisms. The physical interpretation
is then that the states |s〉 represent quantized geometry, formed by atoms of space that don’t
live in the manifold: they are localized with respect to one other and their spatial relation
is coded only in the combinatorial adjacency structure of the links. Accordingly, the s-knot
states are not quantum excitations in space, they are quantum excitation of space. An s-
knot does not reside in the space: the s-knot itself defines the space. Moreover they carry the
geometrical information necessary to construct the geometry of the space in which we decide
to embed them. We can say that an s-knot is a purely algebraic kinematical quantum state of
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Figure 1.4: The dual 2-skeleton of a tetrahedron

the gravitational field in which the vertices give volume and the edges give areas to the space
in which we embed it.

1.3.7 Quantum tetrahedron in 3d

So far we have considered only smooth embedding for the spin networks, but the pic-
ture above works also in other contexts, such as the case of spin networks embedded in a
triangulated manifold. We summarize here how we can describe the quantum geometry of a
tetrahedron in 3 dimensions as given by a spin network (for more details see [50, 51]) indepen-
dently from the LQG approach that however perfectly match with it. This description will
enter in the context of spinfoam models and in our calculation of the graviton propagator.
Consider a compact, oriented, triangulated 3-manifold ∆, and the complex ∆∗ dual to it, so
having one node for each tetrahedron in ∆ and one link for each face (triangle) (see Fig 1.4).

Considering a single tetrahedron in a 3d reference system R
3; its geometry is uniquely

determined by the assignment of its 4 vertexes. The same geometry can be determined by
a set of 4 bivectors Ei (i.e. elements of ∧2

R
3 obtained taking the wedge product of the

displacement vectors of the vertexes) normal to each of the 4 triangles satisfying the closure
constraint

E0 + E1 + E2 + E3 = 0 (1.123)

where the last constraint simply says that the triangles close to form a tetrahedron.
The quantum picture proceed as follows. Each bivector corresponds uniquely to an angular

momentum operator (in 3 dimensions), so an element of SU(2) (using the isomorphism be-
tween ∧2

R
3 and so(3)), and we can consider the Hilbert space of states of a quantum bivector

as given by H = ⊕j, where j indicates the spin-j representation space of SU(2). Considering
the tensor product of 4 copies of this Hilbert space, we have the following operators acting
on it:
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ÊI0 = JI ⊗ 1 ⊗ 1 ⊗ 1

ÊI1 = 1 ⊗ JI ⊗ 1 ⊗ 1 (1.124)

ÊI2 = 1 ⊗ 1 ⊗ JI ⊗ 1 (1.125)

ÊI3 = 1 ⊗ 1 ⊗ 1 ⊗ JI (1.126)

with I = 1, 2, 3, and the closure constraint is given by
∑

i Ê
I
i ψ = 0 ∀ψ ∈ H⊗4. But now the

closure constraint indicates nothing but the invariance under SU(2) of the state ψ so that the
Hilbert space of a quantum tetrahedron is given by:

T = ⊕ji Inv(j0 ⊗ j1 ⊗ j2 ⊗ j3) (1.127)

or in other words the sum, for all the possible irreducible representations assigned to the
triangles in the tetrahedron, of all the possible invariant tensors of them, i.e. all the possible
intertwiners.

Moreover we can define 4 area operators Âi =
√
ÊiÊi and a volume operator V̂ =√

| ǫIJKÊI1 ÊJ2 ÊK3 |, and find that all are diagonal on Inv(j0 ⊗ j1 ⊗ j2 ⊗ j3) (the area having

eigenvalue
√
ji(ji + 1)).

But now we can think of a spin network living in the dual complex ∆∗ of the triangu-
lation, and so with one 4-valent node, labelled with an intertwiner, inside each tetrahedron,
and one link, labelled with an irreducible representation of SU(2), intersecting exactly one
triangle of the tetrahedron. We then immediately recognize that this spin network completely
characterizes a state of the quantum tetrahedron, so a state in T , and gives volume to it and
areas to its faces (also matching the results from LQG).

1.3.8 The scalar constraint and the dynamics

The constraints solved so far generate kinematical gauge transformations in the sense that
they operate at “fixed time”.

The full quantum mechanical structure of spacetime is contained in the kernel of the
Hamiltonian constraint (1.28). The implementation of the Hamiltonian constraint in LQG is
still rather far from being as clean and complete as the two other constraints. Nevertheless,
a series of results and properties of the hamiltonian operator have been established thanks to
Thiemann’s works [52, 53, 54, 29]. Here we present briefly a summary of its general properties.

The hamiltonian constraint (1.28) is the sum of two terms: the first one that we call CE

(because it defines Euclidean GR) and a second term involving extrinsic curvature terms.
There is no quantisation possible because the hamiltonian can not be expressed simply in
terms of the basic variables of the theory, due to the presence of terms containing extrinsic
curvatures and inverses of the volume. However thank to Thiemann strategy [52],[53], these
difficulties can be avoided by the use of the Poisson structure on the phase space to prove
identities relating the undesired terms to Poisson brackets involving only the connection and
the volume V of the spatial slice.

Here we sketch the quantization of the term CE for Euclidean GR following[2]
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Its smeared version CE(N) is

CE(N) =

∫

Σ

dx3 N
Eai E

b
j√

det(E)
ǫijkF

k
ab, (1.128)

but, using the identity [55]

EbiE
c
j√

det(E)
ǫijkǫabc =

4

κγ

{
Aka, V

}
. (1.129)

where V is the volume (1.121), the Euclidean constraint can be rewritten as

SE(N) =

∫

Σ

dx3 N ǫabcδijF
i
ab

{
Ajc, V

}
, (1.130)

We can now quantize this constraint promoting the argument of the Poisson brackets to
operators and the Poisson brackets to commutators. One needs the volume operator V̂ (section
1.3.5) and the quantization of the connection A and curvature F that can be performed
defining these quantities as limits of holonomy operators of small paths [53, 29].

Given a point x and a tangent vector u at x denoting with γx,u the path of ǫ length
starting in x and tangent to u we have

hγx,u [A] = 1 + ǫuaAa + O(ǫ2) (1.131)

and in the same way given two tangent vector u, v an infinitesimal triangular loop αx,uv of

area ǫ2

2 with a vertex in x and two sides tangent to u and v, the curvature tensor can be
regularized observing that

hαx,uv [A] = 1 + ǫ2uavbF iabτi + O(ǫ3). (1.132)

Now we can replace the expression (1.130) with its Riemann sum over cells RI of coordinate
volume ǫ3 and express it in terms of holonomies

CE(N) = lim
ǫ→0

∑

I

NIǫ
3 ǫabcTr [Fab(A) {Ac, VRI

}] =

= lim
ǫ→0

∑

I

NI ǫ
abcTr

[
h−1
γ

xI ,uc
[A]hα

xI ,uaub
[A]
{
VRI

, hγ
xI ,uc

[A]
}]

(1.133)

where u1, u2, u3 are any three tangent vectors with triple product equal to 1 and xI is an
arbitrary point in the region RI . Remarkably the dependence on the cell size ǫ in this way
disappears.

Inside the cell RI of volume VRI
we have

1. An infinitesimal closed loop of coordinate area ǫ2 αxI ,uaub
in the uaub-plane

2. An edge γI
xI ,uc

of coordinate length ǫ dual to the uc-plane
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The expression (1.133) is now ready to became an operator quantizing the holonomies and
the volume obtaining operators well defined in Hkin. Formally we have

ĈE(N) = lim
ǫ→0

Cǫ(N) = lim
ǫ→0

∑

I

NI ǫ
abcTr

(
ĥ−1
γ

xI ,uc
[A]ĥα

xI ,uaub
[A]
[
V̂RI

, ĥγ
xI ,uc

[A]
])
. (1.134)

Now in order to have a rigorous definition of ĈE(N) we need to complete the definition of its
regularized version Cǫ(N) choosing the paths and the decomposition in cells in such a way
that the previous limit exists and gives a quantum operator covariant under diffeomorphisms
and invariant under internal gauge.

The first key observation is that ĈEǫ (N) acts only on spin network nodes due to the
presence of the volume operator (1.122). In fact the volume operator vanishes on three-valent
nodes and the holonomy can at most increase the valence of the node by one. This means
that only the regions Rn with a node inside give a contribution

Ĉǫ(N)|S〉 =
∑

n∈Γ

NnĈ
n
ǫ |S〉, (1.135)

where Ĉnǫ acts only on the node n ⊂ Γ and Nn is the value of the lapse N(x) at the node.
Observing the commutator in (1.134) is immediate to see that the only possibility of having
a non trivial commutator is that the link γxI ,uc

touch the node. The position of the point xI ,
irrelevant in the classical theory, now is fixed in the node n. Then action is then non trivial
only on nodes n at least three-valent, with xI fixed in the node n; the natural choice for the
vectors ua is then to be tangent to the three links l,l′ and l′′ emerging from the node (see
Figure 1.5 ) and the ǫabc gives a sum of permutations on the three links; we end up with an
expression

Ĉnǫ |S〉 =
∑

l,l′,l′′

ǫl l
′ l′′Tr

(
ĥ−1
γxn,u

l′′
[A]ĥαxn,ulul′

[A]
[
V̂Rn , ĥγxn,u

l′′
[A]
])

|S〉 (1.136)

In general the previous limit, as usually happens in QFT, when operators products are
involved, does not exist for spinntework states but remarkably it exists for diff-invariant states
revealing how the diff invariance can cure the short scale behavior problems of QFT.

The action of Ĉǫ(N) on diff invariant states has to be defined by duality

[Ĉ†Φ](|S〉) ≡ [Φ](Ĉ|S〉) (1.137)

this means that we can consider the regualarized operator in HDiff
kin and take the limit there.

[Ĉ†Φ](|S〉) = lim
ǫ→0

[Φ](Ĉǫ|S〉) (1.138)

i.e a limit of sequence of numbers and not a sequence of Hilbert space vectors.
If Φ ∈ HDiff

kin the limit exist! in fact in general the operator Ĉǫ acts on the state |S〉 in
two possible ways:

1. Modifying the graph with the operators hγxn,l
and hαxn,l,l′

:

• hγxn,l
superimpose a path of length ǫ to the link l of Γ;
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Figure 1.5: The three paths γxn,l γxn,l′ γxn,l′′ and the loop αxn,l′,l′′ given by γxn,l′ , γxn,l′′ and
a third link external to Γ

• hαxn,l,l′ superimpose a triangle with sides of ǫ length on Γ; two of them along the
links l and l′ and the third one not in Γ

See the Figure 1.5

Now acting on a spinnetwork |S〉 with Ĉǫ for two different values of ǫ gives two different
states, but they are in the same diffeomorphisms equivalence class! In fact in the two cases
we are only adding two different triangle to the graph that under a diffeomorphism are the
same object. The only limitation for ǫ to leave the state in the same diff-class is to be smaller
than the value ǭ such that the new link cross one other link or node of Γ.

Therefore for ǫ < ǭ the term in the round parantesis in (1.138) is always in the same

equivalence class shrinking ǫ; this means that if Φ ∈ HDiff
kin it is invariant under diffeomorphism

and the argument of the limit becomes constant. The equation (1.138) is then simply

[Ĉ†Φ](|S〉) = lim
ǫ→0

[Φ](Ĉǫ|S〉) = [Φ](Ĉreg|S〉) (1.139)

where

Ĉreg|S〉 =
∑

n∈Γ

Nn

∑

l,l′,l′′

ǫl l
′ l′′Tr

(
ĥ−1
γxn,ul

[A]ĥαxn,u
l′

u
l′′

[A]
[
V̂Rn , ĥγxn,ul

[A]
])

(1.140)

is the regularized operator with the size ǫ of the regulator small enough to not cross other
links or nodes in Γ. The operator is then finite! We are at the core of diff-invariance formalism
of LQG: The coordinate ~x have not physical relevance; the physical location of things is only
relational. The excitations of the theory are quantized. The union of these two features
leaves no more "‘space"’ for infinite short distance limit. Making the regulator smaller than
the minimal Planck scale does not change nothing simply because there is nothing under this
scale.
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Dn,l′,l′′,+− =

Figure 1.6: Example of the action of Dn,l′,l′′,±±. It acts on three valents nodes creating two
new nodes and adding a link in q representation that connects these two nodes. It also changes
the colorings of the grasped links and the intertwiner at n

General properties and difficulties

We don’t enter in the details of the calculation of the matrix elements of (1.140) that
depends on the action of the volume operator and from local features at the node. We can
however summarize the fundamental properties of the operator (1.140).

Ĉreg acts by creating new links around nodes, thanks to the action of the infinitesimal loop
operators representing the regularized curvature, with coefficient depending on the particular
quantization procedure. In general acting on an s-knot state Ĉreg gives a sum of terms

• one for each node n in the state

• for each node Ĉreg gives a sum of terms one for each triple of links emerging from the
node n

• for each triple one term for each permutation of the three links

• each of these terms acts (see Figure 1.6)

1. creating two new nodes n′ and n′′ at a finite distance from n on l′ and l′′

2. create a new link (called arc) of spin q (depending on the quantization procedure
considered) connecting n′ and n′′

3. changes the colorings of the links connecting n and n′ and n and n′′ respectively (the
color are the original one increased or decreased by q) changes the intertwiner at
the node n; the new intertwiner is between the new representations of the adjacent
links

If we call Dn,l′,l′′,±± an operator acting like in the last three points then

Ĉ|S〉 =
∑

n∈S
Nn

∑

l,l′,l′′

∑

α′,α′′=±
Cn,l′,l′′,α′,α′′Dn,l′,l′′,α′α′′ |S〉 (1.141)

where Cn,l′,l′′,α′,α′′ is a finite matrix in the space of intertwiners at the node n(see [56] for an
explicit example of its computation). The version of quantum scalar constraint whose action



1.3 Loop Quantum Gravity 41

is (1.141) is not self adjoint. One can introduce self adjoint definitions which contain a term
that creates arc and another one that destroys them (this is one of the ambiguities of the
theory).

This complete the picture depicted from the hamiltonian constraint; it opens the way to
inclusion of matter. A well defined quantization of the scalar constraint including Yang-Mills
fields, scalar fields and fermions has been put forward by Thiemann[57].

The successful definition of the quantum scalar constraint operator including the cases
with realistic matter couplings is a remarkable achievement of loop quantum gravity.

There is however a large degree of ambiguity on the definition of the quantum scalar
constraint. The nature of solutions or the dynamics seems to depend critically on these
ambiguities. For instance it is possible to arrive at a completely consistent quantization by
essentially replacing the holonomies in (1.134), defined in the fundamental representation of
SU(2), by the corresponding quantities evaluated on an arbitrary representation [58]. In the
applications of the theory to simple systems such as in loop quantum cosmology this is known
to have an important physical effect[59]. Ambiguities are also present in the way in which the
paths defining the holonomies that regularize the connection Aia and the curvature F iab(A) in
(1.134) are chosen. See for instance [60] for an alternative to Thiemann’s prescription and
a discussion of the degree of ambiguity involved. There are also factor ordering ambiguities,
which is evident from (1.134).

We end up with a wide class of consistent Hamiltonian operator but a yet unresolved issue
is whether any of these theories is rich enough to reproduce general relativity in the classical
continuum limit [61].

The dynamics of the theory depends crucially on these quantization ambiguities and there
is, up to know, no criterion available to distinguish between all these operators. See [60],[62]
for discussions on the subject. Some exact solutions to the scalar constraint are known for
some specific quantizations [29], [60] but no physical vector space and no physical scalar
product have been built so far even if some hope has recently been raised by the Master
constraint program [63].

These concerns have opened different research programs in the hope of finding alternatives
and some guiding principles that would lead to a clearer understanding of the physics behind
the scalar constraint. One of them is the Spinfoam approach or the spinfoam representation
of LQG [64], motivated to a large extent by the hope of solving the issue of ambiguities from a
covariant perspective as well as by the search of a systematic definition of the physical scalar
product.



Chapter 2

Spinfoam models

Classical Mechanics can be formulated in Hamiltonian (canonical) or Lagrangian (covari-
ant) formulation. The same is true for Quantum mechanics where we have a canonical (Hilbert
spaces, commutation relations, operators) and a covariant (sum over paths) framework. The
same is possible with LQG.

In the previous chapter we have presented the canonical or Hamiltonian formulation of
LQG. Now we concentrate on the covariant or path integral quantization of the same theory.
Such path integrals formulation are called spinfoam models [2, 51, 65, 66, 67, 68]. The aim
of the spinfoam approach is to provide an explicit tool to compute transition amplitudes in
quantum gravity. These are expressed as a sum over paths. A path is a spinfoam representing
a spacetime history which can be though of as a worldsurface swept by a spin network.
Spinfoams are background independent combinatorial objects, and do not need a spacetime
to live in. A spinfoam itself represents a quantum spacetime, in the same sense in which a
spin network represents an atom of quantised space. They can be regarded as implementing
the physical scalar product in canonical background independent theories.

The chapter is organized as follows;
After having introduced the general ideas underling this approach, we study the pure BF

theory (topological theory) as a tool to discretize gravity. The idea is to use the lack of local
degrees of freedom of such theories to calculate the path integral with lattice regularization
techniques without needing a continuum limit. Then we study how gravity can be recasted
in term of a constrained BF theory using its Plebanski formulation [69]. This formulation
lead to the Barret-Crane (BC) model [70] , the path integral formulation for four dimensional
quantum gravity most widely studied in the literature. Then we concentrate on the Group
Field Theory (GFT) approach [71, 72] as a tool to restore the presence of local degrees of
freedom giving full background independent models. In particular we derive two kind of BC
model from GFT the GFT/A and the GFT/B (see [2]).

2.1 The idea

The application of Feynman’s path integral to quantum gravity has been considered long
ago by Misner and extensively studied by Hawking, Hartle and others [73, 74]. The idea is
simple; given a 4d-manifold M with boundaries Σ1 and Σ2, and denoting by G the space of
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metrics on M the transition amplitude between g on Σ1 and g′ on Σ2 is formally

W [g, g′] =

∫
D[gµν(x)]e

iSGR [g] (2.1)

where the integration on the right is performed over all space-time metrics up to 4- diffeomor-
phisms gµν(x) ∈ G/Diff (M) with fixed boundary values up to 3-diffeomorphisms g, and g′,
respectively. There are many difficulties associated with (2.1). The main issue is the definition
of the measure D[gµν(x)]; the non-perturbative one are unknow and the perturbative one lead
to non-renormalizable divergencies. In addition, there is the problem of having to deal with
the space G/Diff (M), i.e., how to characterize the diffeomorphism invariant information in
the metric. This gauge problem is also present in the definition of the boundary data and
also there is no well defined notion of kinematical state |gab〉 in standard metric variables.

The situations changes in the framework of LQG. In fact the key ingredient of this theory,
the spinnetwork basis (1.3.3) is able to deal with all the previous problems. First the notion
of quantum state of 3-geometry is rigorously defined in terms of spin-network (s–knots) states
and they carry the diff-invariant information of the Riemannian structure of Σ. These states
as we have seen are intrinsically discrete (colored graphs on Σ).

Analizing a simple analogy we can see how the discreteness can give a possible solution to
the functional measure problem. If we think to a one dimensional harmonic oscillator when
we deal with the probability of measuring x′ given x

W (x, t, x′, t′) = 〈x|e−iHo(t−t′)|x′〉 (2.2)

the x appearing in this expression are not the classical variables but rather the label of the
corresponding eigenvalues. The difference is irrelevant if we use continuum variables like the
position; but it becomes important if the variable x has a discrete spectrum. If we consider
for example the transition amplitude between the energies of the system W (E, t,E′, t′): in
the case of an harmonic oscillator with a small perturbation, the expression W (E, t,E′, t′)
will only make sense for the discrete energy states admitted by the quantum theory

W (E, t,E′, t′) = 〈E|e−iH0 |E′〉 −→W (En, t, En′ , t′) = 〈En|e−iH0 |En′〉 (2.3)

In this case in fact the expression W (x, t, x′, t′) has meaning only for discrete values of the
labels admitted by the quantum theory, not for the classical one (continuous).

The same consideration can then be applied to (2.1) once that we have identified the
eigenstates of the 3-geometry with the spinnetwork states |s〉; |s〉 are discrete states and
the transition amplitude will make sense only between the possible spinnetworks that code
the geometrical information contained in the the initial and final three geometry; we are
then naturally lead to substitute the expression (2.1) with the transition amplitude W (s, s′)
between initial and final spinnetworks states

W [g, g′] =

∫
D[gµν(x)]e

iSGR [g] −→W (s, s′) (2.4)

The expression W (s, s′) leads to a sum over path formulation. This has been shown in
[75, 76, 77] but we can proceed with formal expressions to indicate heuristically how this may
happen. If we write W (s, s′) making use of the "‘projection"’ operator on physical states

W (s, s′) = 〈s|P |s′〉K (2.5)
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where P is the “Projector’ on the Kernel of the Hamiltonian operator and can formally be
written, assuming that it has non negative spectrum, as

P = lim
t→∞

e−Ht (2.6)

since H(x) is a function of the spatial coordinates ~x, P is

P = lim
t→∞

∏

x

e−H(x)t = lim
t→∞

e−t
∫
H(x)d3x (2.7)

and if it is possible to define the propagation generated by H in a 4d invariant manner we
can get rid of the limit and write

W (s, s′) = 〈s|e−
∫ 1
0 dt

∫
H(x)d3x|s′〉K (2.8)

at this point we can proceed exactly like in usual quantum mechanics inserting identity reso-
lutions |s〉〈s| = 1

W (s, s′) = lim
N→∞

∑

s1...sN

〈s|e−
∫ 1
0 dt

∫
H(x)d3x|sN 〉K 〈sN |e−

∫ 1
0 dt

∫
H(x)d3x|sN−1〉K · · · 〈s1|e−

∫ 1
0 dt

∫
H(x)d3x|s′〉K

(2.9)

and expanding the exponentials for small dt (first order) we produce, at fixed N, terms equiva-
lent to histories with index N . The expression (2.5) is then a sum over spinnetworks sequences
σ = (s, s1, · · · , sN , s′) of amplitudes A(σ)

W (s, s′) =
∑

σ

A(σ) (2.10)

where A(σ) codes the dynamic of the theory.

A(σ) =
∏

v

Av(σ) (2.11)

In this formula v denotes the steps of the history and Av is determined by the terms

〈sn|e−
∫ 1
0
dt
∫
H(x)d3x|sn−1〉K (2.12)

the previous expression can be expanded for small dt and, using the action of the Hamiltonian
operator (1.3.8) on the spinnetwork nodes, and gives a sum of terms non vanishing only if
sn and sn+1 differ at each node by the action of H. In this way the integral over fields is
transformed in a sum over histories; the admitted paths depend on the action of H that also
determines the amplitude of each step; the amplitude of the history is then the product of
the step’s amplitudes. An history of spinnetworks σ = (s, s1, · · · , sN , s′) is called a spinfoam.
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Table 2.1: Terminology

0d 1d 2d 3d 4d

Spin networks: node, link;

Spinfoams: vertex, edge, face;

Triangulation: point, segment, triangle, tetrahedron, four-simplex.

2.2 The picture

There is a natural picture that can illustrate the spinfoam as a path integral version of
LQG, given by a series of transitions through different spin-network states representing states
of 3-geometries. As we have seen spinnetworks represent a 3d space with the geometrical
information coded in the links and nodes representations. We can imagine a 4d space (space-
time) with a “time” coordinate: if we let evolve the spinnetwork along this direction, the links
become surfaces “faces” (f) and the nodes become lines “edges” (e). The spinfoam is then
given by an history of spinnetworks in which at each step the H operator generate new links;
in the evolving picture the image is then an edge that brunch out in other edges in a point
that we call “vertex” v see Figure 2.1 . In this way the worldsheet of the original spinnetwork

Figure 2.1: A vertex of a spifoam: the evolution along a “time” line of the Hamiltonian
operator action on a spinnetwork node.

is a collection of faces meeting at edges with vertexes as boundary: a two complex J . We
resume the terminology in the Table 2.1.

Like the spinnet s = (Γ, jl, in) is defined not only by its graph Γ but also by the colorings,
with irreducible representation jl associated to links and intertwiners in associated to nodes,
its evolution, the spinfoam σ = (J , jf , je) is a two complex J colored with the irreducible
representation jf associated to faces and intertwiners je associated to edges. An important re-
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mark is that the boundaries of the spin-foam are spinnetworks. The background-independent
character of spin foams is then manifest. The 2-complex can be thought of as representing
chunk of ‘space-time’ while the boundary graphs as representing chunk of ‘space’. The geo-
metrical information in contrast with the standard concept of a lattice is totally encoded in
colorings which represent the degrees of freedom of the gravitational field. In the Figure 2.2
we can see an example of spinfoam with two vertex corresponding to a two steps history.

Figure 2.2: An example of a two step history of a spinetwork state: the initial spinnet s evolve
in a spinnet s1 and then to the final spinnet s′ under the two steps action of an Hamiltonian
operator. Nodes and links in the spin network evolve into 1-dimensional edges and faces..
The geometric degrees of freedom are encoded in the labeling with irreducible representations
and intertwiners.

2.3 General definition

In general a spinfoam model is defined by the partition function

Z =
∑

J
w(J (σ))

∑

jf ,ie

∏

f

Af (jf )
∏

e

Ae(jf , ie)
∏

v

Av(jf , ie) (2.13)

where Af , Ae, Av are the amplitudes associated to respectively the faces, the edges and the
vertices and w(Γ) is the weight associated to the combinatorial structure of the two-complex
J . A model is completely determined by a choice of

1. a set of 2-complexes J and the corresponding weight w(J )
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2. a set of representations and intertwiners jf , ie

3. a face amplitude Af (jf ), an edge amplitude Ae(jf , ie) and a vertex amplitude Av(jf , ie)

Generally speaking the first two choices depends on the kinematics, the last one on the
dynamic. An expression of the kind (2.13) can be taken as a general definition of a background
independent QFT formalism. The partition function (2.13) is defined for closed spinfoams.
We can rewrite it the compact notation indicating with σ = (J , jf , ie)

Z =
∑

σ

w(J (σ))
∑

jf ,je

∏

f

Af (jf )
∏

e

Ae(jf , ie)
∏

v

Av(jf , ie) (2.14)

We are now ready to make contact with (2.10). The boundary of a spinfoam is by definition
a spinnetwork. We indicate the spinfoam σ with boundary s as ∂σ = s. If the boundary
spinnetwork is composed by two connected components s and s′ we have ∂σ = s ∪ s′. The
equation (2.14) can then naturally be extended to the sum over spinfoam with fiexd boundary
s and s′;

W (s, s′) =
∑

∂σ=s∪s′
w(J (σ))

∑

jf ,ie

∏

f

Af (jf )
∏

e

Ae(jf , je)
∏

v

Av(jf , je) (2.15)

and we can interpret this expression as a sum over path definition of the transition amplitude
between states of the quantum states of the gravitational field. The previous definition extends
naturally to the case of a boundary with a single spinnetwork s

W (s) =
∑

∂σ=s

w(J (σ))
∑

jf ,ie

∏

f

Af (jf )
∏

e

Ae(jf , je)
∏

v

Av(jf , je) (2.16)

The expressions (2.16) and (2.15) bridge between LQG and the spinfoam formalism. Notice
however that in the spinfoam formalism, even if there is uncertainty in the definition of the
right model, transition amplitudes can be computed, in a certain perturbative expansion.
In the canonical formalism, on the other hand, even disregarding the uncertainties in the
definition of the hamiltonian operator, we are not yet able to compute transition amplitudes.
Indeed, it is important to stress that even if the general structures underlying covariant
spinfoam models match nicely with the Hamiltonian theory, the precise relation between the
two formalisms is not yet entirely clear. What is remarkable about the expressions (2.1)
and (2.3) is that many very different approaches to non–perturbative quantum gravity have
converged precisely to this formula, and perhaps an expression of this sort can be taken
as a general definition of a background–independent covariant formalism for quantum field
theories. Also, these formulas emerge in the context of topological quantum field theories
(TQFTs)[78, 79]. 2d and 3d GR are topological theories. For the role of TQFTs for QG, see
[80].

Among the many approaches leading to (2.1), there is one that links it with the quantum
version of a classical theory.

The starting point is always pure BF theory. The idea is to use the lack of local degrees
of freedom of such theories to calculate the path integral with lattice regularization tech-
niques without needing a continuum limit. The calculations are then performed using the
representation theory of the associated symmetry group.
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To do so, we fix an oriented triangulation ∆ of the spacetime manifold. In 3d this is
made out of points p, segments s, triangles t, tetrahedra τ . In 4d we have the same elements
but also 4-simplices χ. We need also an operation that allows the identification of the n − 1
dimensional boundary of an n dimensional object in ∆. It is convenient to work with the dual
of the triangulation ∆∗ constructed with a one-to-one correspondence between ndimensional
objects of ∆ and 3-n dimensional objects of ∆∗. In 3d to obtain ∆∗, we place a vertex inside
each tetrahedron τ ; if two tetrahedra bound the same triangle t we connect the two vertices
vith an edge e. For each segment of ∆ we have a face f of the dual ∆∗: for each point we have
a 3d region in the dual bounded by the faces dual to the segments bounded by the point. In
4d we place a vertex in each 4-simplex and so on. The 2-skeleton of ∆∗ (collection of vertices,
edges and faces) is a 2-complex J . We summarize the construction in the Table 2.2

Table 2.2: Relation between a triangulation ∆ and its dual ∆∗, in 3d and in 4d. In parenthesis:
adjacent elements. In italic, the two-complex.

∆3 ∆∗

3

tetrahedron vertex (4 edges,6 faces)

triangle edge (3 faces)

segment face

point 3d region

∆4 ∆∗

4

4-simplex vertex (5 edg, 10 fac)

tetrahedron edge (4 faces)

triangle face

segment 3d region
point 4d region

In the following, we restrict to spinfoams defined on a single 2-complex which is the 2--
skeleton of a fixed triangulation ∆ of the spacetime manifold. This restriction immediately
opens a problem in theories with local degrees of freedom. GR and its couplings with matter,
is invariant under diffeomorphisms of M. The introduction of a fixed triangulation on M
breaks the invariance under diffeomorphisms, and it is necessary to find a procedure to restore
it. The first option that comes to mind, namely refining the triangulation (or the 2complex),
as one does for instance in Lattice Gauge Theory (LGT), is not available. In LGT there is
a parameter, the lattice spacing, that plays the role of an ultraviolet cut-off, which can be
sent to zero to remove the regularization. The theory does not have ultraviolet divergences
simply because there are no degrees of freedom beyond the Planck scale lp , a physical cut- off
which emerges dynamically. Therefore, there is no possibility to rescale the triangulation to
refine it. Indeed, there are procedures to refine the triangulation simply using its topological
properties (see for instance [81]); they work fine in the context of TQFTs, but are hard to
reconcile with local degrees of freedom. Leaving alone for the moment the option of refining
the triangulation, the immediate alternative seems to be the sum over triangulations. This
would restore the infinite degrees of freedom of GR, and its original diffeomorphism invariance.
Notice that in (2.14) is already present a sum over 2complexes; if on the one hand this leads
to a sum over triangulations of a fixed topology, on the other hand it also includes a sum
over topology. The meaning of this sum remains unclear, especially in the 4d case, where the
classification of manifold is less understood. We work on a fixed triangulation. However in
the next sections we will see that exists a candidate framework for this study, called the group
field theory (GFT) formalism.
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In the next section, we show how the discretization procedure described above allows us
to link a classical theory with a quantum expression like (2.1). We consider BF theory, a
topological field theory with no local degrees of freedom, for two reasons: on the one hand, its
spinfoam quantization is straightforward, which allows us to introduce our tools in a simple
way; on the other hand, the action for GR, in all spacetime dimensions, can be written starting
from the BF action [82]. Consequently, the quantization of BF theory provides a good starting
point for the quantization of GR.

2.4 BF theory

Consider a n–dimensional smooth manifold M representing spacetime, and a Lie group G
(called “the structure group”) whose Lie algebra g is equipped with the Killing form Tr. The
fundamental fields of BF theory are a connection A on a principal bundle P (M,G), and a
g-valued (n-2)-form B. The theory is defined by the action

S(A,B) =

∫

M
TrB ∧ F (A) (2.17)

where F = dA + A ∧A is the curvature of A. The B field has the physical dimensions of an
action, while the connection and the curvature are dimensionless. The equations of motions
are

F (A) = 0 dAB = 0 (2.18)

They imply that the connection A is flat, and the field B is covariantly constant in any
dimension. The action is invariant under diffeomorphisms acting on spacetime indexes, and
SU(2) transformations acting on the algebra indices. Under these transformations, all so-
lutions of the equations of motion are equivalent. See for instance [68] for more details.
Therefore, once the topology of the bundle is fixed, there is a single (up to symmetries) clas-
sical solution. Consequently, the degrees of freedom of the theory cannot be local, but only
global. BF is an example of topological theory.

To quantize the theory we have to give a meaning to the formal expression

Z =

∫
DBDA e

i
~

∫
TrB∧F (2.19)

that has to be regularized and gauge fixed. For the continuum analysis see [83]. We discretize
the manifold with a finite triangulation ∆ on M.

On J (the 2–complex dual to ∆) , we introduce the algebra variables BI
f ∈ g, associated

to the faces, and the group variables Ue ∈ G, associated to the edges. We define then the
quantity:

Uf := P
∏

e∈∂f
Ue (2.20)

In the last expression P means that the product over all the edges bounding the face f is
oriented. The orientation is induced from the orientation of f . In terms of these variables,
we define the action

S[BI
f , Ue] = ~

∑

f

Tr[BfUf ] (2.21)
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The action (2.21) defines a theory on ∆, with variables BI
f , Ue . To show that it is an

approximation to the continuum theory with action (2.17), consider an embedding i : ∆ → M
, which allows us to think of ∆ as a cellular decomposition of M . We call lµs the vector tangent
to the segment s; using i, we have lµs ≈

∫
s dx

µ.
The embedding i pushes forward to an embedding for the dual triangulation J , and we

analogously define the edge vector lµe ≈
∫
e dx

µ. We now make the following identifications
between the new (discrete) variables and the previous (smooth) ones:

• The auxiliary field B is an (n-2)form; as such, it is naturally discretized on an (n-2)-
complex, which is dual to a face:

BI(x) → BI
f :=

1

~
BI(ls1 ∧ . . . ∧ lsn−2) ≈

1

~

∫
BI (2.22)

With the rescaling by ~ the variable BI
f is purely algebraic.

• The connection is on the continuum geometrically interpreted as an infinitesimal parallel
transport. On a discretised setting, this property is properly taken over by a group
element representing the minimal parallel transport:

AIµ(x) → Ue := eiA
I
µl

µ
e ∼ ei

∫
e
AI

(2.23)

If we took a regular hypercubical lattice with lattice spacing a, this definition coincides
with the one adopted in LGT , i.e. Ue := eiaAe .

We claim that for each configuration of the continuous fields we can find an embedding i such
that the difference between (2.17) and (2.21) is arbitrarily small, if the variables in (2.21) are
interpreted via (2.22) and (2.23). To see it, we apply the Stokes’ theorem to the connection
around a closed face f (for non-abelian groups, the theorem holds up to corrections in the
area of the face): ∑

e∈∂f
Aµl

µ
e ∼

∫

∂f
A ≈

∫

f
F (A) (2.24)

As a consequence of the equality above, the definition (2.23) gives to the group variables
defined in (2.20) the interpretation of holonomies,

Uf ∼ ei
∫
f
F (A) (2.25)

When the embedding is sufficiently refined, and the coordinate areas consequently small, we
can expand the group elements around the algebra, Uf ≃ 1 + i

∫
f F (A). Recalling that for

T ∈ su(N) we have TrT = 0, we see that (2.21) reduces to (2.17). Notice that we are indeed
only using the 2-skeleton J of ∆∗ . This is the setup for the discretized theory, which we use
to regularize (2.19). On J , (2.19) is realized as

ZBF [G] =
∏

f

∫

g

dBf
∏

e

∫

G
dUe e

i
∑

f TrBfUf =
∏

e

∫

G
dUe

∏

f

δ(Uf ) (2.26)

Here we assumed that the integration over each algebra variable Bf gives a δ function on the
group. This can be explicitly shown for U(1) and SU(2). A general argument can be given
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using Kirillov’s integral formula [84] for the character of a Lie group, see [83]. Since we have
a δ(Uf ) for each face in J , the condition Uf = 1 is implemented all over J . Comparing with
(2.25), we see that this is the condition that imposes the equations of motion F = 0 in the
discretised setting. To put (2.26) into the form (2.14), we proceed as follows: we character
expand the δ-functions, by means of the Plancherel formula

δ(Uf ) =
∑

j

dim j χj(Uf ) (2.27)

Here χj(U) is the character of U in the irrep j, namely the projection of U on the conjugacy
class of G. The holonomies Uf around the dual faces depend on the fundamental variables Ue
as in (2.20). It follows that χj(Uf ) = Tr

∏
e∈∂f D

j(Ue) and we obtain

Z(∆) =
∑

{jf}

∫ ∏

e∈J∆

dUe
∏

f∈J∆

dim jf Tr
[
Djf (U

ef
1
. . . U

ef
n
)
]
, (2.28)

Where U
ef
i

are n holonomies of edges that bound the face f . Now, the advantage of J is

that the valency of its vertices is fixed: there are always n + 1 edges touching one vertex.
Consequently, the number of faces sharing one edge is also fixed, to be n. This simple
dependence allows us to perform the integrals over the group variables Ue , using the formula
for the orthogonality of the characters:

∫

G
dUDj1(Ue)

l1
m1

· · ·Djn(Ue)
ln
mn

=
∑

i

P (i)
m1...mn

P (i)l1...ln . (2.29)

Here the sum is over an orthonormal basis P (1), · · · , P (k) of projectors,

P (i) : j1 ⊗ · · · ⊗ jn → C (2.30)

onto the trivial representation. Each projector P (i) corresponds to a compatible intertwiner
ie for the edge e in the sum over colours of (2.13). Compatible here means compatible with
the representations assigned to the faces incident to e. Using (2.29) in (2.26), we obtain an
expression of the type

ZBF [G] =
∑

jf ,ie

∏

f

dim jf
∏

v

Av(jf , ie) (2.31)

The explicit form depends on the structure group G and the spacetime dimension n, which
determine the structure of (2.29). The partition function (2.31) is of the type (2.13) on a
single 2-complex, with Af = dim jf and Ae = 1. An important remark follows. In the
continuum, the partition function of BF can be interpreted as the volume of the space of flat
connections modulo gauge transformations. However, the quantisation is much more involved,
especially concerning gauge–fixing and the presence of anomalies. Using it as a starting point
for quantising GR would be at least controversial. However, we see that in the discretised
setting used in spinfoams (and which is ultimately justified by the discrete picture of spacetime
emerging from LQG), the quantisation is quite simpler, and in particular gauge-fixing much
more under control (see [85, 86]).

Now we restrict our attention to Spin(4) BF theory that will be an useful tool for the
quantization of gravity.
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Figure 2.3: In a 4d triangulation an edge bounds 4 faces

2.4.1 Quantum SO(4) BF theory

Classical SO(4) BF theory is defined by the action (2.17) where BIJ
µν is a Spin(4) Lie-

algebra valued 2-form and AIJµ is a connection on a Spin(4) principal bundle over M.
We concentrate on the triangulation ∆ of M.
The field B is associated with Lie algebra elements Bt assigned to triangles t ∈ ∆. In four

dimensions triangles t ∈ ∆ are dual to faces f ∈ J∆. This one-to-one correspondence allows us
to work with discrete B associated to faces (Bf ) or to triangles (Bt). Bt can be interpreted as
the ‘smearing’ of the continuous 2-form B on triangles in ∆ appling the definition (2.22). The
connection A is discretized by the assignment of group elements Ue ∈ Spin(4) to edges e ∈ J∆.
The expression (2.28) in this case can be easilly performed noting that in the triangulation ∆
of a 4-dimensional manifold, the edges e ∈ J∆ bound precisely four different faces (see Figure
2.3); ; therefore, the Ue’s in (2.28) appear in four different traces. The formula (2.29) in this
case reads

P 4
inv :=

∫
dUe D

j1(Ue) ⊗Dj2(Ue) ⊗ · · · ⊗Dj4(Ue) =
∑

ι

C ι

j1j2···j4
C∗ι

j1j2···j4
, (2.32)

where P 4
inv is the projector onto Inv[j1 ⊗ j2 ⊗ · · · ⊗ jn] and on the r.h.s we have expressed

the projector in terms of normalized SO(4) intertwiners (Appendix D ); the index ι label the
orthonormal basis in the space of intertwiners, so we have a sum over the intertwiners for each
edge in addition to the sum over the representation of the faces.

Finally, the last step is simply the contraction of the intertwiners indexes: from the inte-
gration over one edge we get the two invariant tensors of (2.32), and its indexes are contracted
with the ones coming from the other edge at this vertex. Now the point is that we have 5
edges (dual to the 5 tetrahedra) for each vertex; so we have to contract for each ι five 4-valent
intertwiner. The resulting partition function is

ZBFSO(4)(∆) =
∑

{jf}

∑

{ιe}

∏

f∈J∆

dim jf
∏

v∈J∆
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where the pentagonal diagram representing the vertex amplitude denotes the pattern of con-
traction of the SO(4) 4-intertwiners C ι

j1j2j3j4
reproduces the structure of the two-skeleton of

a four simplex. The vertex amplitude corresponds to the flat evaluation of the spin network
state defined by the pentagonal diagram in (2.33), a 15j-symbol. Vertices v ∈ J∆ are in one-
to-one correspondence to 4-simplexes in the triangulation ∆. The sum is over the assignment
{jf} of irrep to faces and {ιe} of intertwiners to edges coming from (2.32).

An important remark about gluing: Degrees of freedom communicate through the lattice
connection on the boundary. One can compute amplitudes of pieces of J∆ (at fixed boundary
data) and then obtain the full J∆ amplitude by gluing the pieces together and integrating out
the mutual boundary connections along common boundaries. The boundary of a portion of J∆

is a graph. The boundary value is an assignment of group elements to its links. The amplitude
is a function of the boundary connection, i.e., an element of Cyl. In the case of a cellular
2–complex there is a maximal splitting corresponding to cutting out a neighborhood around
each vertex. If the discretization is based on the dual of a triangulation these elementary
building blocks are all alike and denoted atoms (or vertexes in the Feynmann language of
GFT see below). Such an atom in four dimensions is represented in Figure 2.4.

Figure 2.4: A fundamental atom is defined by the intersection of a dual vertex in J∆ (corre-
sponding to a 4-simplex in ∆) with a 3-sphere. The thick lines represent the internal edges
while the thin lines the intersections of the internal faces with the boundary. They define the
boundary graph denoted Γ5 below. One of the faces has been emphasized.

The atom amplitude depends on the boundary data given by the value of the holonomies
on the ten links of the pentagonal boundary graph Γ5 shown in the figure. This amplitude
can be represented by a function

V(αij) for αij ∈ G and i 6= j = 1, . . . , 5 (2.34)

where αij represents the boundary lattice connection along the link ij in Figure 2.4. Gauge
invariance (V (αij) = V (giαijg

−1
j )) implies that the function can be spanned in terms of spin

networks functions ΨΓ5,jij ,ιi(αij) based on the pentagonal graph Γ5, namely

V(αij) =
∑

jij

∑

ιi

Ṽ(jij , ιi) ΨΓ5,jij ,ιi(αij) (2.35)

where Ṽ(jij , ιi) is the atom amplitude in ‘momentum’ space depending on ten spins jij labeling
the faces and five intertwiners ιi labeling the edges. Gluing the atoms together the integral
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over common boundaries is replaced by the sum over common values of spin labels and
intertwiners and we end up with (2.33).

The state sum (2.33) is generically divergent. A regularized version defined in terms of
SUq(2) × SUq(2) was introduced by Crane and Yetter [87, 88]. The partition function (2.33)
is topologically invariant and the spin foam path integral is discretization independent.

What is the utility of having quantized the 4-d BF theory? The answer will become clear
in th next section: Classical GR in its tetrad (or 4-beins) formulation can be recasted as a
constrained BF theory.

2.5 4-d gravity as a constrained BF theory

The action for General Relativity in the first order formalism is the so-called Palatini
action:

S[e, ω] =

∫

M
∗ e ∧ e ∧ F (ω) =

∫

M
ǫIJKL e

I ∧ eJ ∧ FKL(ω), (2.36)

where the field variables in the action are: a 1-form tetrad field eI = eIµdx
µ with internal R

3,1

index I (in R
4 in the Riemannian case), giving the spacetime metric as gµν = ηIJe

I
µ ⊗ eJν ,

and a 1-form Lorentz connection ωIJ = ωIJµ dxµ with values in the Lie algebra of the Lorentz

group so(3, 1) (so(4) in the Riemannian case) in the adjoint representation. F IJ(ω) is the
two-form curvature of ω. The corresponding equations of motion are:

DeI = deI + ωIJ ∧ eJ = 0. (2.37)

expressing the compatibility of the tetrad field and the connection, i.e. the fact that the
connection we have is a torsion free, and

e ∧ F (ω) = 0 (2.38)

the Einstein equations describing the dynamics of the spacetime geometry. The action is
diffeomorphism invariant and invariant under the internal gauge group (Lorentz or SO(4)).

This action is classically a subsector of a more general classical action for the gravitational
field: the Plebanski action [69, 89], which describes gravity as a constrained topological theory.

The Plebanski action is a a BF-type action, in the sense that it gives gravity as a con-
strained BF theory, with quadratic constraints on the B field. More precisely the action is
given by:

S = S(ω,B, φ) =

∫

M

[
BIJ ∧ FIJ(ω) − 1

2
φIJKLB

KL ∧ BIJ

]
(2.39)

where ω is a connection 1-form valued in so(3, 1) (so(4)), ω = ωIJµ JIJdx
µ, JIJ are the gener-

ators of so(3, 1) (so(4)), F = Dω is the corresponding two-form curvature and B is a 2-form
also valued in so(4) (so(3, 1)), B = BIJ

µνJIJdx
µ ∧ dxν , and φIJKL is a Lagrange multiplier,

with symmetries φIJKL = φ[IJ ][KL] = φ[KL][IJ ], satisfying φIJKLǫ
IJKL = 0.

The equations of motion are:
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dB + [ω,B] = 0 (2.40)

F IJ(ω) = φIJKLBKL (2.41)

BIJ ∧ BKL = e ǫIJKL (2.42)

where e = 1
4!ǫIJKLB

IJ ∧BKL.
When e 6= 0, i.e. for non-degenerate metric configurations, the constraint (2.42) called

Plebanski constraint is equivalent to [90, 91]

ǫIJKLB
IJ
µνB

KL
ρσ = ∗Bµν · Bρσ = eǫµνρσ (2.43)

This system of constraint can be decomposed in three parts:

a) ∗Bµν ·Bµν = 0 , (2.44)

b) ∗Bµν · Bµρ = 0 , (2.45)

c) ∗Bµν · Bρσ = ±e . (2.46)

where the indices µνρσ are all different, and the sign in the last equation is determined by
the sign of their permutation. They are called the simplicity constraints. GR can be written
as an SO(3, 1) (SO(4)) BF theory whose B field satisfies the simplicity constraints (2.44),
(2.45) and (2.46).

This is the form of the constraint that we are going to use and that leads to the Barrett-
Crane spin foam model. In other words, (2.42) is satisfied if and only if there exists a real
tetrad field eI = eIµdx

µ so that one of the following equations holds:

I) BIJ = ± eI ∧ eJ (2.47)

II) BIJ = ± 1

2
ǫIJ KLe

K ∧ eL = ± ∗ (e ∧ e). (2.48)

Restricting the field B to be always in the sector II+ (which is always possible classically),
the action becomes:

S =

∫

M
ǫIJKL e

I ∧ eJ ∧ FKL (2.49)

which is the action for General Relativity in the first order Palatini formalism.
Also, the other sector, differing by a global change of sign only, is classically equivalent to

this, while the other two, related by Hodge duality to the “geometric" ones, corresponds to
“pathological geometries".

The imposition of a constraint reduces a topological theory to a theory with local degrees
of freedom. This can be easily understood thinking that in BF theory the B field is a Lagrange
multiplier that impose F = 0; nevertheless the constraint (2.42) on the constraint B relax its
role giving to the resulting theory more degrees of freedom of the original one.

The possibility of this restriction at the classical level was shown in [91], where it is
proven that initial data in the gravity sector do not evolve into any of the others provided
that the tetrad field remains non-degenerate. Therefore we see that this action defines a



2.5 4-d gravity as a constrained BF theory 56

diffeomorphism and Lorentz invariant theory, a subsector of which describes classical General
Relativity in the 1st order formalism, as we had anticipated. This is basically all, as long as
the classical level is concerned.

The two theories, however, are different at the quantum level, since in the quantum theory
one cannot avoid interference between different sectors. In fact in a partition function for
the Plebanski action we have to integrate over all the possible values of the B field, so
considering all the 4 sectors. Another way to see it is the existence in the Plebanski action of
a Z2 ×Z2 symmetry B → −B, B → ∗B responsible for this interference. This is discussed in
[90, 92]. This adds to the usual subtlety in dealing with a 1st order action, where degenerate
configurations of the metric field cannot be easily excluded, instead of a 2nd order action
(metric or ADM formalism) where one integrates over non-degenerate configurations only.

2.5.1 Discretization

Before turning to the quantum theory based on the Plebanski action, we have to discuss
in detail the description of simplicial geometry based on it, since it is the real starting point of
the spin foam quantization. In fact, a quantization of gravity along such lines should start by
identifying suitable variables corresponding to the B and ω variables of the Plebanski action,
and then the correct translation at the quantum level of the above constraints on the B field,
leading to a realization of the path integral (2.33).

The connection field is naturally discretized along the edges of the dual complex, by
integrating the 1-form connection along them ωIJ =

∫
e ω

IJ(x), so that we obtain a holonomy
Ue (with values in SO(3, 1) or SO(4)) associated to each edge; in this way, again, the curvature
is obtained by choosing a closed path of edges, in particular for each dual face we have a
product of group elements Uf =

∏
e⊂∂f Ue of the group elements ge associated with the links

of the boundary of the dual face f , and it is thus associated with the dual face itself. This
is in turn dual to the triangles of the triangulation ∆, so we have the simplicial curvature
associated to them, as it is common in 4-dimensional simplicial gravity. The logarithm of Uf
gives a Lie algebra element Ωt, the proper discretization of the curvature field of the Plebanski
action.

The crucial point is however the discretization of the B field, since this is what marks the
difference between gravity and BF theory. Being a 2-form, the B field is naturally discretized
along the triangles in the triangulation obtaining a Lie algebra element associated to each
triangle, thus to each face of the dual complex, via

BIJ
t =

∫

t
BIJ
µν (x)dx

µ ∧ dxν (2.50)

. It is crucial to note that in this discretization, the sign of the bivector reflects the orientation
of the triangle to which it is associated.

With this discretization, the constraints on the B field become constraints on the bivectors
BIJ ∈ SO(3, 1)(SO(4)) associated to the various triangles.

The constraint term in the action is discretized analogously, by integrating over pairs of
triangles, to get: φIJKLB

IJ
t BKL

t′ .
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Therefore, the discrete action we get is:

S(B,ω) =
∑

t

Bt Ωt +
∑

t,t′

φIJKLB
IJ
t BKL

t′ . (2.51)

Let us now analyze the constraints on the bi–vectors more closely.
Consider first a tetrahedron τ , whose boundary is made of four triangles t, we have:

0 =

∫

τ
dBIJ(x) =

∫

∂τ
BIJ(x) =

∑

t

∫

t
BIJ(x) =

∑

t

BIJ
t = 0 (2.52)

In other words, the four bivectors associated to the same tetrahedron sum to zero, as a
result of the tetrahedron being enclosed by the corresponding four triangles.

Let focus on the constraint (2.43): e = 1
4!ǫIJKLǫ

µνρσBIJ
µνB

KL
ρσ 6= 0 is the spacetime volume

element after the imposition of the constraints, so its being non zero implies that the bivector
field is non degenerate.

Integrating this expression of the constraints over pairs of (triangles) we obtain [90]:

Vt,t′ =

∫

x∈t,y∈t′
e ǫabcd dx

a ∧ dxb ∧ xc ∧ dxd = ǫIJKLB
IJ
t BKL

t′ , (2.53)

where Vt,t′ is obviously the 4-volume spanned by the two triangles t and t′.
This formula clearly implies two constraints on the bivectors associated to the triangles

of the simplicial manifold, corresponding to the two cases in which the 4-volume spanned is
zero: each bivector associated to a triangle t satisfies the discrete (2.44)

ǫIJKLB
IJ
t BKL

t = 0 (2.54)

which corresponds geometrically to the requirement of the bivector being formed as a vector
product of two (edge) vectors, i.e. of being a “simple" bivector; if we decompose the bivector
into its selfdual and anti-selfdual part, this constraint also imposes the equality of these two
parts.

For two triangles t and t′ sharing an edge, thus belonging to the same tetrahedron τ , the
corresponding bivectors must satisfy (2.45)

ǫIJKLB
IJ
t BKL

t′ = 0 (2.55)

this equation together with the previous constraint, implies that

ǫIJKLB
IJ
t+t′ B

KL
t+t′ = 0 (2.56)

, i.e. that the bivector BKL
t+t′ = BKL

t + BKL
t′ sum of the two bivectors corresponding to the

two triangles t and t′ sharing an edge is also a simple bivector.
The geometric meaning of this constraint is to impose that the triangles intersect pairwise

in lines in R
3,1(R4), i.e. that they pairwise span 3-dimensional subspaces of R

3,1(R4) [70, 93,
94] (this is a strong condition in 4 dimensions, where two surfaces intersect in a point only).

At the continuum level, the Plebanski constraints on the bivector field B make it a geo-
metric field, i.e. put it in correspondence with a tetrad field and thus with a spacetime metric,
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so allow for a description of spacetime geometry in terms of this bivector field; at the discrete
level, when the bivectors are assigned to the triangles, the constraints allow for a description
of simplicial geometry in terms of them.

However, the same ambiguity that we have seen at the continuum level for the solutions
of the Plebanski constraints exists at this discretized level, since there are again four sec-
tors of solutions to these constraints corresponding to the bivectors 1) BIJ , 2) −BIJ , 3)
∗BIJ = ǫIJKLB

KL, 4) −∗BIJ . Again, the cases 1) and 2) correspond to well-defined simplicial
geometries, differing only by a change in orientation, while the cases 3) and 4) are pathological
cases with no geometric interpretation.

Resuming, the geometry of a 4-simplex, and thus the geometry of a full simplicial complex
(where one glues 4-simplices along common tetrahedra imposing that the bivector data on
the common tetrahedra match), is determined by a set of bivectors associated to the triangles
in the complex and satisfying the following requirements:

• the bivectors change sign when the orientation of the triangles is changed (orientation
constraint);

• the bivectors are “simple", i.e. they satisfy Bt · ∗Bt = 0 (simplicity constraint);

• the bivectors associated to neighbouring triangles sum to simple bivectors, i.e. Bt·∗Bt′ =
0 if t and t′ share an edge (decomposition constraint);

• the four bivectors associated to the faces of a tetrahedron sum to zero (closure con-
straint).

These constraints, together with their quantum counterparts, were given in [51, 70, 93, 94],
while their relation with the Plebanski formulation of gravity was shown in [90, 91]. We stress
again that this description of simplicial geometry in terms of bivectors, with the associated
constraints, holds in both the Lorentzian and Riemannian case, although in the Lorentzian
case the definition and use of self–dual and anti–selfdual components for the bivectors is less
straightforward since it implies a complexification procedure.

From now on we restrict to the Riemannian theory

2.6 The Barrett-Crane model

The Barrett-Crane model is one of the most extensively studied spin foam models for quan-
tum gravity. In this thesis we concentrate on the definition of the model in the Riemannian
sector.

The Barrett-Crane model can be viewed as a spin foam quantization of SO(4) Plebanski’s
formulation of GR.

2.6.1 Quantum constraints

As we have seen in the previous section at classical level the BF theory constrained by the
Plebanski constraints gives GR. Imposing the Plebanski constraint to a quantum BF theory
would then give quantum GR. There are many ways to impose the constraints at quantum
level.
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We can proceed in two ways:

1. discretize the constraints and impose them directly on the BF spinfoam sum

2. use the geometrical interpretation of the B field looking at the Plebanski constraint as
the requirement that the B field is an infinitesimal area element of a discretized quantum
geometry.

The Barret Crane model in the original definition is made using the second approach and
makes use of the concept of the ‘quantum tetrahedron’ [51, 93]. In this context, the analog
of the B’s is given by the bivectors associated with the triangles of a classical tetrahedron.
A Hilbert space is defined using geometric quantization and the classical triangle bivectors
are promoted to operators. This Hilbert space is reduced by implementation of the quantum
version of the geometric constraints satisfied by a classical tetrahedron, to the Hilbert space
of the so-called ‘quantum tetrahedron’. These constraints are precisely of the form (2.43).
The last step of this construction is the definition of an appropriate quantum amplitudes to
be associated to the 4-simplices to be used as building blocks for the partition function.

We present the two approaches because they are complementary; in the first one we
can derive everything directly from the path integral, in the second one the geometrical
interpretation of the variables is more transparent and the idea of a quantum tetrahedron
emerges as an independent physical system. We can then reproduce the same situation of
QFT: we can construct the theory from the classical field theory and derive the existence of
the particles or the other way around we can start from the existence of the particles, define
the quantum theory of a particle and then build the many particle states and then their
interaction: we end up with the same theory.

2.6.2 Spin(4)

Both approach make use of the Spin(4) group; the double covering of SO(4). Here we
review briefly some properties of this group.

The group SO(4) is locally isomorphic to the product of two subgroups, each locally iso-
morphic to SU(2): SO(4) ∼ (SU(2)+ × SU(2)−) /Z2. That is, we can write each g ∈ SO(4)
in the form g = (g+, g−) where g+ ∈ SU(2)+ and g− ∈ SU(2)− and gg′ = (g+g

′
+, g−g

′
−). The

algebra so(4) is then the linear sum of two commuting su(2) algebras. Explicitly if JIJ are
the generators of so(4) we can define the selfdual and anti-selfdual generators

J± := ∗J ± J, (2.57)

that satisfy J± = ± ∗ J±. Then it is immediate to see that [J+, J−] = 0. The J± are the
generators of two commmuting subalgebras su(2)+ and su(2)− of so(4), both isomorphic to
su(2).

SO(4) has two scalar Casimirs: the scalar Casimir

C =
1

4
J · J (2.58)

and the pseudo-scalar Casimir

C̃ =
1

4
∗J · J (2.59)
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.
We can always choose a basis in su(2)+ and in su(2)− to calculate the previous Casimirs.

For this, we can choose a unit norm vector n in R4, and three other vectors vi, i = 1, 2, 3
forming, together with n, an orthonormal basis, for instance vIi = δIi , and define

J i± =
1

2
(∗J ± J)IJ v

I
i n

J (2.60)

The su(2) structure is then easy to see, since [J i±, J
j
±] = ǫijkJ

k
±. In particular, if we choose

n = (0, 0, 0, 1), and vIi = δIi , we have

J i± = −1

4
ǫijkJ

jk ± 1

2
J i0. (2.61)

with the previous choice we can evaluate the two Casimirs

C = J i+J
i
+ + J i−J

i
− = j+(j+ + 1) + j−(j− + 1) (2.62)

C̃ = J i+J
i
+ − J i−J

i
− = j+(j+ + 1) − j−(j− + 1) (2.63)

This result is independent from the choice of n. They are,respectively, the sum and the
difference of the quadratic Casimirs of su(2)+ and su(2)−.

The representations are then labelled by two half integers (j+, j−). The representations
of SO(4) form the subset for which j+ + j− is integer. The representations satisfying j+ = j−
are called simple.

2.6.3 Imposing the Plebansky constraint in the BF path integral

In this approach the strategy is to impose the constraint directly on the BF spin foam
sum, (2.28), after the B-integration has been performed. We follow [66] in this derivation.
Formally we associate the discrete Bf to the differential operator −i ∂

∂Uf
in (2.26):

Bf → −i ∂

∂Uf
(2.64)

More precisely, the observation is that the Spin(4) left invariant vector field −iX IJ(U) :=
UµνJIJ ν

σ
∂

∂Uµ
σ

acts as a quantum BIJ on (2.26) since

−iX IJ(U)
(
eiTr[BU ]

)
|U∼1 = UµνJ

IJ ν
σ

∂

∂Uµσ
eiTr[BU ]|U∼1 =

= Tr[UJIJB]eiTr[BU ]|U∼1 ∼ BIJeiTr[BU ], (2.65)

where JIJ are elements of an orthonormal basis in the so(4) Lie-algebra. The evaluation at
U = 1 is motivated by the fact that configurations in the BF partition function (2.26) have
support on flat connections. This approximation is made in order to motivate our definition
but it plays no role in the implementation of the constraints.
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The constraints (2.43) are quadratic in the B’s and so we have to worry about cross terms;
the nontrivial case corresponds to:

ǫIJKLX IJ(U)XKL(U)
(
eiTr[BU ]

)
|U∼1

= −ǫIJKL
(
Tr[JIJUB]Tr[JKLUB]eiTr[BU ] + iTr[JIJJKLUB]eiTr[BU ]

)
|U∼1

∼ ǫIJKLB
IJBKLeiTr[BU ], (2.66)

where the second term on the second line can be dropped using that ǫIJKLX
IJXKL ∝ 1 (one

of the two SO(4) Casimir operators) and U ∼ 1. Therefore, we define the Bf field associated
to a face at the level of equation (2.26) as the appropriate left invariant vector field −iX IJ(Uf )
acting on the corresponding discrete holonomy Uf , namely

BIJ
f → −iX IJ(Uf ). (2.67)

Gauge invariance of the BF partition function implies that for every tetrahedron

∑

t∈τ
BIJ
t = 0 (2.68)

where t ∈ τ denotes the triangles in the corresponding tetrahedron.
In order to implement (2.54 and 2.55) we concentrate on a single 4-simplex amplitude,

i.e., the fundamental atom of the simplicial decomposition. Once the constrained 4-simplex
amplitude is constructed any spin foam amplitude can be obtained by gluing atoms together
along faces by integration over common boundary data.

The amplitude of the fundamental atom (the amplitude of the vertex v) is a (cylindrical)
function depending on the boundary values of the connection on the boundary graph Γ5. We
denote as hij ∈ Spin(4) (i 6= j, i, j = 1 · · · 5 and hij = h−1

ji ) the corresponding 10 boundary
variables (associated to thin boundary edges in Figure 2.4) and gi ∈ Spin(4) (i = 1, · · · , 5)
the internal connection (corresponding to the thick edges in Figure 2.4). According to (2.26)

the 4-simplex BF amplitude A
4dBF
v (hij) is given by

A
4dBF
v (hij)v =

∫ ∏

i

dgi
∏

i<j

δ(gihijgj), (2.69)

where Uij = gihijgj is the holonomy around the triangular face 0ij. With the definition of

the B fields given in (2.67) the constrained amplitude, A
4dBFcon(hij), formally becomes

A
4dBFcon
v (hij) =

∫ ∏

i

dgiδ [Constraints(−iX (Uij))]
∏

i<j

δ(gihijgj). (2.70)

It is easy to verify, using an equation analogous to (2.65) and the invariance of ǫIJKL, that
one can define the B’s by simply acting with the left invariant vector fields on the boundary
connection hij . Therefore, the previous equation is equivalent to

A
4dBFcon
v (hij) = δ [Constraints(−iX (hij))]

∫ ∏

i

dgi
∏

i<j

δ(gihijgj), (2.71)



2.6 The Barrett-Crane model 62

where we have taken the delta function out of the integral. The quantity on which the formal
delta distribution acts is simply A

4dBF
v (hij). The amplitude A

4dBF
v (hij) can be expressed in a

more convenient way if we expand the delta functions in modes as in (2.28) and then integrate
over the internal connection gi. The integration is analogous to the one in (2.32), for example
integration over g1 yields

P 4
inv D

12(h12)⊗D13(h13)⊗D14(h14)⊗D15(h15) =
∑

ι

dim ι

ρ

ρ

ρ

ρ ρ

ρ

ρ

ρ
12

1313

14 14

1515

ι

12

h12

h13

h14

h15

, (2.72)

where on the RHS we have chosen a particular basis (pairing) of 4-intertwiners to span the
projector P 4

inv into Inv [ρ12 · · · ρ15] (ρij are SO(4) representations). The 4-intertwiners are
explicitly given as contractions of normalized intertwiners (see Appendix D). The circles rep-
resent the correspondingDj-representation matrices evaluated on the corresponding boundary
connection h. The 4-simplex amplitude becomes

A
4dBF
v (hij) =

∑

ρij ,ιi

∏

i<j

dim ρij

ρ
12

ρ
52

ρ
13

ρ
35

ρ
14

ρ
51

ρ
34

23
ρ

ρ
45

ι

ι

ι

ι

ι 2
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hh

h

h

h

h

hh
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34

.

(2.73)
In the previous equation 4-valent nodes denote normalized 4-intertwiners and the tree decom-
position is left implicit (the factors dim ι in (2.72) have been absorbed into the notation).
The term on the left is a 15j-symbol (of SO(4)) as in (2.33) while the term on the right is
the trace of five 4-intertwiners with the respective boundary connection insertions.

The 4-simplex amplitude for the constrained spin foam model is then defined as the re-
striction of A

4dBF
v (hij) imposed by the quantum version of the constraints (2.54) and (2.55),

defined by the following set of differential equations

Ĉij, ik A
4dBFcon
v (hij) = ǫIJKLX IJ(hij)XKL(hik) A

4dBFcon
v (hij) = 0 ∀ j, k, (2.74)

and where the index i = 1, · · · , 5 is held fixed and Ĉij, ik denotes the corresponding constraint
operator.

There are six independent constraints (2.74) for each value of i = 1, · · · , 5. If we consider
all the equations for the 4-simplex amplitude then some of them are redundant due to (2.68).
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We have 20 independent relations. For a given i in (2.74) (i.e., a given tetrahedron) and for
j = k the equation becomes

ǫIJKLX IJ(hij)XKL(hij) A
4dBFcon
v (hij) =

= δik

[
J i(h+

ij)J
k(h+

ij) − J i(h−ij)J
k(h−ij)

]
A

4dBFcon
v (h+

ij , h
−
ij) =

=
[
j+ij (j

+
ij + 1) − j−ij (j

−
ij + 1)

]
A

4dBFcon
v (hij) = 0, (2.75)

where we have used that: Spin(4) = SU(2)+ × SU(2)− so that for h ∈ Spin(4), h+, h− ∈
SU(2) denote its right and left components and irreducible representations can be expressed
as ρ = j+ ⊗ j− for j+, j− ∈ Irrep[SU(2)], and the left invariant vector field

X IJ(h) = P+IJ
i J i(h−) + P−IJ

i J i(h+), (2.76)

for ǫ KL
IJ P±IJ = ±P±KL and J i’s being left invariant vector fields on the corresponding

left and right SU(2) copies of Spin(4). The previous constraints are solved by requiring the
corresponding representations ρSO(4) to be simple, i.e.,

ρSO(4)

ij = jij ⊗ j∗ij or ρSO(4) = jij ⊗ jij . (2.77)

This ambiguity is analogous to the classical one in (2.47),(2.48). We take ρij = jij ⊗ j∗ij in
correspondence to the choice ∗(e ∧ e) that produces the gravity sector [93] . This solves 10 of
the 20 equations. The next non-trivial conditions imposed by (2.74) is when j 6= k. In this
case we have

2ǫIJKLX IJ(hij)XKL(hik) A
4dBFcon
v (hij)

= ǫIJKL
(
X IJ(hij) + X IJ(hik)

) (
XKL(hij) + XKL(hik)

)
A

4dBFcon
v (hij)

=
[
ι+(ι+ + 1) − ι−(ι− + 1)

]
A

4dBFcon
v (hij)

= 0, (2.78)

where in the second line we used the fact that we have already solved (2.75). In the third line
we have used the gauge invariance (or the analog of (2.68) for the 3-valent node in the tree
decomposition that pairs the representation jSO(4)

ij with the jSO(4)

ik ) in order to express the sum
of invariant vector fields as the invariant vector field acting on the virtual link labeled by ι.
This choice of tree decomposition in the case ij = 12 and ik = 13 is the one used in equation
(2.72). The solution is clearly ιSO(4) = ι⊗ ι∗.

What happens now to any of the two remaining conditions (only one is independent), for
example, Ĉij′, ik′ for k 6= k′, j 6= j′ and j′ 6= k′? At first sight it looks like this equations cannot
be (generically) satisfied because an intertwiner that has simple ι in one tree decomposition
does not have only simple ι′ components in a different tree decomposition as a consequence of
the recoupling identity (Appendix D). There is however a linear combination of intertwiners
found by Barrett and Crane in [70] which is simple in any tree decomposition, namely

|iBC〉 =
∑

simple ι

Cιρ1,··· ,ρ4 . (2.79)
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Cιρ1,··· ,ρ4 is a normalized 4-intertwiner and the summation is over simple ιSO(4) (i.e. ιSO(4) =

ι⊗ ι∗) and the ρSO(4)

i are also simple (ρSO(4)

i = ji ⊗ j∗i for i = 1..4). This is clearly a solution
to all the constraints and has been shown to be the unique one (up to an overall factor) by
Reisenberger in [95]. |iBC〉 defines the so-called Barrett-Crane intertwiner. Now the projector
P 4
inv in (2.72)—the building block of the BF amplitude—can be written as

P 4
inv = |iBC〉 〈iBC | + orthogonal terms, (2.80)

using the standard Gram-Schmidt construction of a basis in Inv [ρ1 · · · ρ4]. In other words
P 4
inv is the sum of 1-dimensional projector to the solutions of the constraints (2.74) plus the

orthogonal complement. The solution to (2.74) is then unique (up to scaling) and can be
written as

A
4dBFcon
v (hij) =

∑

ρij ,ιi

∏

i<j

dim ρij
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(2.81)

where the ρSO(4)

ij = jij ⊗ j∗ij and we graphically represent |iBC〉 by
BC

.
The amplitude of an arbitrary simplicial complex is computed by putting together 4-

simplexes with consistent boundary connections and gluing them by integration over boundary
data. If we do that we obtain the Barrett-Crane state sum on a fixed triangulation

ZBC(J∆) =
∑

{jf}

∏

f∈J∆

(2jf + 1)2
∏

e∈J∆

Ae
∏

v∈J∆

ρ
51

ρ
52

ρ
13

ρ
24

ρ
35

ρ
34

ρ
23

ρ
12

ρ
14

ρ
45

BC

B
C

B
C

BCBC

, (2.82)

where we have made the replacement dim ρSO(4) = (2j + 1)2 for ρSO(4) = j ⊗ j∗. The vertex
amplitude depends on the ten representations labeling the ten faces in a 4-simplex and it is

referred to as 10j-symbol. Using the definition (2.79) of the Barrett-Crane intertwiner,
BC

,
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the 10j-symbol can be written explicitly in terms of 15j-symbols as

ρ
51

ρ
52

ρ
13

ρ
24

ρ
35

ρ
34

ρ
23

ρ
12

ρ
14

ρ
45

BC

B
C

B
C

BCBC

. =
∑

ι1···ι5

2

ι 1

ι 5 j45
ι 4

j

3ι

j

ι

j
24

j j35

2

13ι 1

ι 5 j45
ι 4

34j

3ι

j

ι

j

j

24

j14 j35
j

*

*

*

*

*

*

*

**

*

*

*

*

j12 23

j
25

j13

1415j 34

j*
25

15

j
12
*

23

, (2.83)

where we represent the normalized SO(4)-intertwiners Cιρ1···ρ4 in (2.79) in terms of the corre-
sponding pair of left-right SU(2)-intertwiners.

Ae denotes a possible edge amplitude which is not determined by this argument but is
determined by the GFT approach.

Constraints that involve different tetrahedra in a given 4-simplex—corresponding to (2.53)—
are automatically satisfied as operator equations on the Barrett-Crane solutions. This can be
checked using (2.74) and (2.68).

2.6.4 Geometrical interpretation and quantum tetrahedron

Now we look for the second approach leading to the BC model; based on the geometrical
interpretation of the discretized B fields on a fixed triangulation.

The first step is to turn the bivectors associated to the triangles into operators. To this end,
we make use of the isomorphism between the space of bivectors ∧2

R
4 and so(4) identifying

the bivectors associated with the triangles with the generators of the algebra:

BIJ
t → JIJ(ρt) (2.84)

Then we proceed turning these variables into operators by associating to the different triangles
t an irreducible representation ρt of the group and the corresponding representation space, so
that the the generators of the algebra act on it (as derivative operators). We choose unitary
representations.

In the Riemannian case we use the group Spin(4).

• We can then define the Hilbert space of a quantum SO(4) bivector to be

HB = ⊕j+,j−H(j+,j−) (2.85)

in the Riemannian case. However, this is not yet the Hilbert space of a quantum geo-
metric triangle, simply because a set of bivectors does not describe a simplicial geometry
unless it satisfies constraints equal to the Plebanski one for the discretized B fields. The
task is then to translate these constraints in the language of group representation theory
into the quantum domain.

Of the constraints given for the bivectors, only the first two (2.52),(2.54) refer to a
triangle alone, and these are then enough to characterize a quantum triangle.
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The most important constraint is however the simplicity constraint, that forces the bivectors
to be simple, i..e formed as wedge product of two edge vectors. Classically this was expressed
by: Bt · ∗Bt = 0. Using the quantization map given above and substituting the bivectors with
the Lie algebra elements in the representation ρt for the triangle t, we obtain the condition:

J(ρt) · ∗J(ρt) = ǫIJKL J
IJ(ρt)J

KL(ρt) = C̃(ρt) = 0, (2.86)

The condition is then of having vanishing psuedoscalar Casimir i.e the condition is to have
simple representations.

• The simplicity constraint forces the selfdual and anti-selfdual parts to be equal, and we
are restricted to considering only representations of the type (j, j).

The Hilbert space of a quantum triangle is given by:

Ht = ⊕jH(j,j) (2.87)

In this way the geometrical meaning of the parameters labelling the representations
becomes clear: Classicaly the area of a triangle is given in terms of the associated
bivector by:

A2 = Bt · Bt (2.88)

that in the quantum case translates into

A2 = JIJ(ρt)JIJ(ρt) = C(ρt) (2.89)

, i.e. the area operator is the scalar Casimir and it is diagonal on each representation
space associated to the triangle. Its eigenvalues are then in the Riemannian case, for
simple representations

A2 = C((j, j)) = 2j(j + 1) (2.90)

The representation label characterizes the quantum area of the triangle to which that
representation is associated.

States of the quantum theory are assigned to 3-dimensional hypersurfaces embedded in the
4-dimensional spacetime, and are thus formed by tetrahedra glued along common triangles.
We then have to define a state associated to each tetrahedron in the triangulation, and then
define a tensor product of these states to obtain any given state of the theory. In turn, the
Hilbert space of quantum states for the tetrahedron has to be obtained from the Hilbert space
of its triangles, since these are the basic building blocks at our disposal corresponding to the
basic variables of the theory.

Each tetrahedron is formed by gluing 4 triangles along common edges, and this gluing
is naturally represented by the tensor product of the corresponding representation spaces;
Spin(4) decomposes into irreducible representations which do not necessarily satisfy the sim-
plicity constraint.

• The third of the constraints (composition) on bivectors translates at the quantum level
as the requirement that only simple representations appear in this decomposition.

Therefore we are considering for each tetrahedron with given representations assigned to
its triangles a tensor in the tensor product: H1⊗H2⊗H3⊗H4 of the four representation
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spaces for its faces, with the condition that the tensored spaces decompose pairwise
into vector spaces for simple representations only. We have still to impose the closure
constraint; this is an expression of the invariance under the gauge group of the tensor
we assign to the tetrahedron, thus in order to fulfill the closure cosntraint we have to
associate to the tetrahedron an invariant tensor, i.e. an intertwiner between the four
simple representations associated to its faces ιρ1ρ2ρ3ρ4 : H1 ⊗H2 ⊗H3 ⊗H4 → C.

Therefore the Hilbert space of a quantum tetrahedron is given by:

Htet = Inv (H1 ⊗H2 ⊗H3 ⊗H4) , (2.91)

with Hi being the Hilbert space for the i-th triangle defined above. Each state in this
Hilbert space turns out to be the BC intertwiner defined in the previous section [70, 94].

This construction was rigorously perfomed in [93] in the Riemannian case, using geometric
quantization methods. In any case, this invariant tensor represents as we said the state of
a tetrahedron whose faces are labelled by the given representations; it can be represented
graphically as in Figure 2.5.

Figure 2.5: A vertex corresponding to a quantum tetrahedron in 4d, with links labelled by
the representations (and state labels) associated to its four boundary triangles.

The result is that a quantum tetrahedron is characterized uniquely by 4 parameters, i.e.
the 4 irreducible simple representations of so(4) assigned to the 4 triangles in it, which in
turn are interpretable as the (oriented) areas of the triangles.

Even if rigorous, this result is geometrically rather puzzling, since the geometry of a
tetrahedron is classically determined by its 6 edge lengths, so imposing only the values of
the 4 triangle areas should leave 2 degrees of freedom, i.e. a 2-dimensional moduli space of
tetrahedra with given triangle areas. For example, this is what would happen in 3 dimensions,
where we have to specify 6 parameters also at the quantum level. So why does a tetrahedron
have fewer degrees of freedom in 4 dimensions than in 3 dimensions, at the quantum level, so
that its quantum geometry is characterized by only 4 parameters? The answer was given in
[93]. The essential difference between the 3-dimensional and 4-dimensional cases is represented
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by the simplicity constraints that have to be imposed on the bivectors in 4 dimensions. At
the quantum level these additional constraints reduce significantly the number of degrees of
freedom for the tetrahedron, as can be shown using geometric quantization [93], leaving us
at the end with a 1-dimensional state space for each assignment of simple irreps to the faces
of the tetrahedron, i.e. with a unique quantum state up to normalization, as we have just
seen above. Then the question is: what is the classical geometry corresponding to this state?
In addition to the four triangle areas operators, there are two other operators that can be
characterized just in terms of the representations assigned to the triangles: one can consider
the parallelograms with vertices at the midpoints of the edges of a tetrahedron and their areas,
and these are given by the representations entering in the decomposition of the tensor product
of representations labelling the neighbouring triangles. Analyzing the commutation relations
of the quantum operators corresponding to the triangle and parallelogram area operators, it
turns out (see [51, 93]) that while the 4 triangle area operators commute with each other
and with the parallelogram areas operators (among which only two are independent), the
last ones have non-vanishing commutators among themselves. This implies that we are free
to specify 4 labels for the 4 faces of the tetrahedron, giving 4 triangle areas, and then only
one additional parameter, corresponding to one of the parallelogram areas, so that only 5
parameters determine the state of the tetrahedron itself, the other one being completely
randomized, because of the uncertainty principle.

Consequently, we can say that a quantum tetrahedron does not have a unique metric
geometry, since there are geometrical quantities whose value cannot be determined even if
the system is in a well-defined quantum state. In the context of the Barrett-Crane spin
foam model, this means that a complete characterization of two glued 4-simplices at the
quantum level does not imply that we can have all the informations about the geometry of
the tetrahedron they share. This is an example of the kind of quantum uncertainty relations
that we can expect to find in a quantum gravity theory.

A generic quantum gravity state is to be associated to a 3-dimensional hypersurface in
spacetime, and this will be triangulated by several tetrahedra glued along common triangles;
therefore a generic state will live in the tensor product of the Hilbert spaces of the tetrahedra of
the hypersurface, and in terms of the Barrett-Crane intertwiners it will be given by a product
of one intertwiner ι ρ1ρ2ρ3ρ4BC m1m2m3m4

for each tetrahedron with a sum over the parameters (“angular
momentum projections") labelling the particular triangle state for the common triangles (the
triangles along which the tetrahedra are glued). The resulting object will be a function of the
simple representations labelling the triangles, intertwined by the Barrett-Crane intertwiner to
ensure gauge invariance, and it will be given by a graph which has representations of Spin(4)
labelling its links and the Barrett-crane intertwiner at its nodes; in other words, it will be
given by a (simple) spin network (see Figure 2.6 ).

We are left with a last ingredient of a quantum geometry still to be determined: the
quantum amplitude for a 4-simplex χ, interpreted as an elementary change in the quantum
geometry and thus encoding the dynamics of the theory, and representing the fundamental
building block for the partition function and the transition amplitudes of the theory.

This amplitude is to be constructed out of the tensors associated to the tetrahedra in the
4-simplex, so that it immediately fulfills the conditions necessary to describe the geometry
of the simplicial manifold, at both the classical and quantum level, and has to be of course
invariant under the gauge group of "‘spacetime"’ Spin(4). The natural choice is to obtain a C-
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Figure 2.6: An example of a (simple) spin network in 4d, with three vertices (to which the
Barrett-Crane intertwiners are associated), and both open and closed links.We have only
4-valent nodes with BC intertwiners

number for each 4-simplex, a function of the 10 representations labelling its triangles, by fully
contracting the tensors associated to its five tetrahedra pairwise summing over the parameters
associated to the common triangles and respecting the symmetries of the 4-simplex, so:

Aχ : ⊗i Inv
(
H1i ⊗H2i ⊗H3i ⊗H4i

)
→ C. (2.92)

The amplitude for a quantum 4-simplex is thus, in the Riemannian case:

Aχ = BBC = ι ρ1ρ2ρ3ρ4BC m1m2m3m4
ι ρ4ρ5ρ6ρ7BC m4m5m6m7

ι ρ7ρ3ρ8ρ9BC m7m3m8m9
ι ρ9ρ6ρ2ρ10BC m9m6m2m10

ι ρ10ρ8ρ5ρ1BC m10m8m5m1
, (2.93)

We thus obtain as amplitude the 10j-symbol (2.83).
This amplitude is for fixed representations associated to the triangles, i.e. for fixed triangle

areas; the full amplitude involves a sum over these representations with the above amplitude
as a weight for each configuration. In general, the partition function of the quantum theory
describing the quantum geometry of a simplicial complex made of a certain number of 4-
simplices, will be given by a product of these 4-simplex amplitudes, one for each 4-simplex
in the triangulation, and possibly additional weights for the other elements of it, triangles
and tetrahedra, with a sum over all the representations assigned to triangles. We can then
envisage a model of the form:

Z(M,∆)BC =
∑

ρ

∏

triangles

Atr
∏

tetrahedra

Atet
∏

4−simpl
BBC , (2.94)

or, if one sees all the data as assigned to the 2–complex ∆∗ dual to the triangulation ∆ (with
faces f dual to triangles, edges e dual to tetrahedra, and vertices v dual to 4-simplices):

Z(M,∆∗)BC =
∑

ρ

∏

f

Af
∏

e

Ae
∏

v

BvBC , (2.95)
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clearly with the general structure of a spin foam model.
The last aspect that needs to be implemented is sum over triangulations; the restriction

to a fixed triangulation ∆ of spacetime has to be lifted, since in this non-topological case it
represents a restriction of the dynamical degrees of freedom of the quantum spacetime, and a
suitably defined sum over triangulations has to be implemented. In the next sections we will
see how this can be performed with GFT.

2.6.5 An integral expression for the 10j-symbol

The vertex (2.83) admits an integral representation [96] that will be useful in the following.
The basic observation is that equation (2.79) has precisely the form (2.32) if we write the

Spin(4) intertwiners as tensor products of SU(2) ones. Therefore,

|iBC〉 =

∫

SU(2)

du Dj1(u) ⊗Dj2(u) ⊗Dj3(u) ⊗Dj4(u), (2.96)

where Dj(u) are SU(2) representation matrices in the representation j. Each one of the five
pairs of intertwiners in (2.83) can be obtained as an integral (2.96) over SU(2). Each of the
ten representation matrices Djik (i 6= k = 1 · · · 5) appears in two integrals corresponding to
the intertwiners at the node i and j respectively. Contracting the matrix indexes according to
(2.83) these two representation matrices combine into a trace Tr

[
Djik(uiu

−1
k )
]

(ui ∈ SU(2)).
Parameterizing SU(2) with spherical coordinates on S3

Tr
[
Djik(uiu

−1
k )
]

=
sin(2jik + 1)ψik

sin(ψik)
:= (2jik + 1)Kjik(yi, yk), (2.97)

where ψik is the azimuthal angle between the points yi, yk on the sphere corresponding to ui
and uk respectively. We have also introduced the definition of the kernel Kjik(yi, yk) in terms
of which the Barret-Crane vertex amplitude (2.83) becomes

Av(jik) =

∫

(S3)5

5∏

i=1

dyi
∏

i<k

(2jik + 1)Kjik
(yi, yk). (2.98)

Each of the five integration variables in S3 can be regarded as a unit vector in R
4. They are

interpreted as unit normal vectors to the 3-dimensional hyperplanes spanned by the corre-
sponding five tetrahedra. The angles ψik is defined by cos ψik = yi ·yk and corresponds to the
exterior angle between two hyperplanes (analogous to the dihedral angles of Regge calculus).
These normals determine a 4-simplex in R

4 up to translations and scaling [96].

2.6.6 The asymptotics for the vertex amplitude

The large spin behavior of the spin foam amplitudes provides information about the low
‘energy’ or semi-classical limit of the model [97] in the naive sense ~ → ∞ while geometric
quantities such as the area are held fixed. Evidence showing a connection between the asymp-
totics of the Barrett-Crane vertex and the action of general relativity was found by Crane
and Yetter in [98].
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A computation of the asymptotic (large j) expression of the Barrett-Crane vertex ampli-
tude for non-degenerate configurations was obtained by Barrett and Williams in [99]. They
computed Av(jik) for large jik by looking at the stationary phase approximation of the oscil-
latory integral (2.98). The large spin behavior of the vertex amplitude is given by

Av(jik) ∼
∑

σ

P (σ) cos
[
SRegge(σ) + κ

π

4

]
+D (2.99)

where the sum is over geometric 4-simplexes σ whose face areas are fixed by the spins. The
action in the argument of the cosine corresponds to Regge action which in four dimensions
is defined by SRegge(σ) =

∑
i<kAik ψik(σ) where Aik is the area of the ik-triangle. P (σ)

is a normalization factor which does not oscillate with the spins. D is the contribution of
degenerate configurations, i.e. those for which some of the hyperplane normals defined above
coincide. However [100] Baez, Christensen and Egan show that the term D is in fact dominant
in the previous equation, i.e. the leading order terms are contained in the set of degenerate
configurations! This has been later confirmed by the results of Freidel and Louapre [101] and
Barrett and Steele [102].

2.7 Group field theory (GFT) formulation

In the GFT formalism, the 2-complex emerges as the Feynman diagram of dual field
theory formulation defined over a group manifold, generalizing matrix models [103, 104, 105].
In 3d [106] gives the Ponzano-Regge-Turaev-Viro (spin foam) formulation of 3d quantum
gravity (still a topological theory), and in 4 dimensions [107], gives the Crane-Yetter spin
foam formulation of 4d BF theory [108, 109](All topological theories). The idea is to write
a field theory over a group manifold (GFT) whose Feynman amplitudes yield the spinfoam
partition functions defined on the cellular decompositions dual to the Feynman diagrams of
the field theory. In particular, in [110] it was shown that for each spinfoam amplitude on a
2-complex J , one can always find a GFT having that amplitude as its Feynman amplitude
associated with the diagram J . The GFT formalism generalizes a single spinfoam amplitude
to a sum over 2-complexes, thus restoring the infinite degrees of freedom. This approach has
recently been rethought as a third quantised version of gravity, including a sum over topologies
[71, 111]. The first derivation of the Barrett-Crane model from a field theory over a group
manifold was given in [112], and an alternative one was proposed in [113]. We concentrate on
GFT formulations of the BC model.

2.8 General formalism

The fundamental idea of this approach is that one can represent a tetrahedron in 4-
dimensions, to which a state of the quantum theory can be associated, by a function of 4
group variables (where the group G is the Lorentz group sl in the Lorentzian case and Spin(4)
in the Riemannian) to be thought of as associated to its four triangular faces. The action is
then chosen in such a way to mimic the combinatorial structure of a simplicial manifold with:

• an interaction term given by a product of five fields since a 4-simplex has five tetrahedra
and a 4-simplex can be interpreted as an elementary interaction of tetrahedra.
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• a kinetic term quadratic in the fields, as in usual field theories.

With this framework we obtain group field theory actions giving rise to the topological models
corresponding to BF theory in different dimensions.

In the case of gravity the situation is more complicated since we have to impose the
constraints that reduce BF theory to gravity, as conditions on the fields in the action and
this can be done in different ways; this ambiguity is what originates the different models, all
understandable as different versions of the Barrett-Crane model.

In the case we are interested in, the group is SO(4) and the (scalar) field is a real function
over SO(4)4, i.e. a function of 4 group elements φ(g1, g2, g3, g4) with gi ∈ SO(4). The field is a
(scalar) function of four group elements: φ(g1, g2, g3, g4), that can be simply written as φ(gi).
We may require different symmetry properties on this field with respect to permutations of
its four arguments, i.e. we may require:

φ(g1, g2, g3, g4) = φ(gπ(1), gπ(2), gπ(3), gπ(4)) (2.100)

, where π is a generic permutation of (1234) or an even permutation only, etc. Different
choices give rise to different models. We then define the following projector operators:

PG φ(g1, g2, g3, g4) =

∫

SO(4)
dγ φ(g1γ, g2γ, g3γ, g4γ) (2.101)

and

PH φ(g1, g2, g3, g4) =

∫

SO(3)
dh1...dh4 φ(g1h1, g2h2, g3h3, g4h4) (2.102)

(all the integrals here and in the following are in the normalized Haar measure).

• PG imposes on the field the invariance under the action of SO(4) on its 4 arguments
that can be seen as gauge invariance or the implementation of the closure constraint of
Sections (2.5-2.6);

• PH projects the field over the subspace of fields that are constant on the orbits of
SO(3) in SO(4); if we expand the field in modes, i.e. in terms of a sum over the
irreducible representations of SO(4), the projection restricts the representations to the
ones in which there is a vector invariant under SO(3), i.e. the simple representations
(simplicity constraint of Section 2.6).

We consider an action of the general form

S[φ] =
1

2

∫
dg1...dg4 [φ(g1, g2, g3, g4)]

2 +

+
λ

5!

∫
dg1...dg10 φ(g1, g2, g3, g4)φ(g4, g5, g6, g7)φ(g7, g3, g8, g9)φ(g9, g6, g2, g10)φ(g10, g8, g5, g1)

(2.103)

given by a quadratic kinetic term without derivatives and a potential term of fifth order, again
with no derivative, with a coupling constant λ.
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Figure 2.7: The 4-simplex structure of the interaction vertex.

The potential has the structure of a 4-simplex: we can represent each of the five fields as
a node with 4 legs (one for each gi) and connect the legs with the same argument: the result
is the two–skeleton of a four simplex see Figure 2.7

The integral over the group elements can be thought of as representing the triangles of a
simplicial complex; more precisely:

S[φ] =
1

2

∫
dgidg̃iφ(gi)K(gi, g̃i)φ(g̃i) +

λ

5

∫
dgijV(gij)φ(g1j)φ(g2j)φ(g3j)φ(g4j)φ(g5j)(2.104)

with φ(g1j) = φ(g12, g13, g14, g15) and so on. K and V are the kinetic operator (whose inverse,
in the space of gauge invariant fields, is the propagator of the theory) and the vertex (or
potential) operator respectively. Alternatively, one can expand the field in modes (expansion
in the "‘momentum"’ space), i.e. apply the rules of the harmonic analysis of functions on
groups, and re write the action in terms of these modes, so that a conjugate expression of the
kinetic and potential operators has to be used. The modes of the field will be functions of
four group representations, instead of the four group elements.

The partition function of the theory is given, as in the usual quantum field theory lit-
erature, by an integral over the field values of the exponential of the action, and can be
re-expressed in terms of its Feynman graphs (as an expansions in powers of λ) as:

Z =

∫
Dφ e−S[φ] =

∑

Γ

λv[Γ]

5!v v! sym[Γ]
Z[Γ], (2.105)

where v[Γ] and sym[Γ] are the number of vertices and the order of symmetries (number of
automorphisms) of the Feynman graph Γ. So we are interested in finding the form of the
amplitude for a generic Feynman graph, i.e. the Feynman rules of the theory.

We will see that this amplitude for each Feynman graph is exactly the partition function
for fixed triangulation that we have derived from a lattice gauge theoretic approach above,
for a triangulation to be put in correspondence with a given interaction graph of the group
field theory. In order to understand how this correspondence is to be found, let us analyze
more closely the construction of the Feynman graphs. The propagator (see Figure 2.8) can
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Figure 2.8: The propagator of the theory; each of the four strands carries a (simple) represen-
tation of the group and the box stands for a symmetrization of the four arguments, i.e. for a
sum over given permutations of the ordering of the arguments

be represented by four straight parallel lines, representing the four arguments of the field or
of its modes, and has a group variable or a group representation) at the two ends of each line,
while the vertex operator (2.136) (see Figure 2.9) has the combinatorial structure (given by
the way it pairs the arguments of the fields) of a 4-simplex, with 5 vertices and 4 lines coming
out of each of them (five tetrahedra-propagators with four triangles-lines each), again with a
group variable or group representation at the two ends of each line. Everywhere at the open
ends of propagators and vertices are the four group variables that are the arguments of the
field. All the possible Feynman graphs are obtained (see Figure 2.10) connecting a number of
vertices with the propagators, constructing in this way what is called a “fat graph" for each
possible permutation of the lines in the propagator.

Each of the strands of a propagator is connected to a strand in one of the five “open
sites" of the vertex, in such a way that the orientations in vertices and propagators match.
Moreover, because of the symmetry of the field, each propagator really corresponds to many
different terms given by the different ways in which its four carried indices can be permutated.
Which are these possible ways depends of course by the symmetries under permutations we
have imposed on the field, so that all possible permutations appear in the propagator, or only
all the even ones, etc.

Now, each strand of the fat graph can go through several propagators and several ver-
tices, and at the end closes on itself, and consequently forms a cycle. This cycle is labelled
(in “momentum space") by the representation assigned to the strand that contains it. The
abstract object formed by these cycles, the edges and the vertices is a 2–complex, moreover,
since each face (cycle) is labelled by a representation of G, this is a labelled 2–complex, i.e. a
spin foam. So we see that there is a 1-1 correspondence between the Feynman graphs of our
field theory and spin foams. This means that the sum in (2.105) can be interpreted as a sum
over spin foams (labelled 2–complexes), the amplitude Z(Γ) as an amplitude for each spin
foam, and the partition function itself defines a spin foam model. In turn, each 2–complex
can be thought of as dual to a triangulation, i.e. a simplicial complex. In general it is not
true that a simplicial complex is determined by the dual 2-skeleton, but it is true in this case
since the complex is obtained by gluing of codimension-1 faces of simplices. Knowing this, we
can interpret the vertices as referring to 4-simplices, and the propagators to the tetrahedra
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Figure 2.9: The vertex of the theory; it has the combinatorial structure of a 4-simplex and
has a (simple) representation of the group at each open end

Figure 2.10: The construction of a Feynman graph of the theory, connecting a propagator
with a vertex.
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they share.
Therefore, the group field theory generates a sum over topologies as well as a sum over

different triangulations of the same topology, so gives rise to a fully background independent
theory of spacetime.

2.9 Riemannian group field theories

We present now different versions of the Riemannian Barrett-Crane model, existing in the
literature, and as obtained by group field theory, and then give the most general structure of
this kind of model. These different versions arise because of the non-trivial interplay between
the two projectors PG and PG.

The starting point is the field φ(g1, g2, g3, g4). One can then impose on it the projector
PH making it a field over four copies of the homogeneous space G/H and then impose gauge
invariance by means of the projector PG, so that the basic object of the theory is the field:
PGPHφ(g1, g2, g3, g4). We recall that the projector PH imposes invariance under a given
subgroup H of G, and restricts the representations involved in these models to be the simple
representations with respect to this subgroup, while the projector PG imposes gauge invariance
(invariance under the full group G). Alternatively, one can decide to work with gauge invariant
fields from the beginning, having as basic object the field PGφ(g1, g2, g3, g4). On this field one
can then impose further projectors. Another choice then is involved: we can decide to impose
more projectors and in different combinations in the kinetic and in the potential terms in the
action. We will see that the models existing in the literature all work with gauge invariant
fields as basic objects, but differ in the way they impose further projectors in the kinetic and
potential terms. These difference are more manifest in the conjugate representation of the
fields in terms of representations of the group, i.e. using their mode expansion.

Introducing the shorthand notation for the action

S[φ] =

∫
φ2 +

λ

5!

∫
φ5 (2.106)

We have three possible choices for the action leading to the three models TOCY [107],
BCB[112], BCC[113, 114], in the terminology of [2]:

GFT/TOCY

S[φ] =
1

2

∫
(PGφ)2 +

λ

5!

∫
(PGφ)5 (2.107)

GFT/B

S[φ] =
1

2

∫
(PGPHφ)2 +

λ

5!

∫
(PGPHφ)5 (2.108)

GFT/C

S[φ] =
1

2

∫
(PGφ)2 +

λ

5!

∫
(PGPHφ)5 (2.109)

or

S[φ] =
1

2

∫
(PGφ)2 +

λ

5!

∫
(PGPHPGφ)5 (2.110)
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in this case the two forms of the action define the same theory, since the extra PG in the
second expression can be always absorbed into the PG of some propagator when computing
an amplitude. The second form of the action simplifies the analysis of the theory in momentum
space.

2.9.1 GFT/B

We impose the combination of projectors PG and PH in the kinetic and interaction term,
using the combination PHPG, the action is:

S[φ] =
1

2

∫
dg1...dg4 [PHPGφ(g1, g2, g3, g4)]

2 +

+
λ

5!

∫
dg1...dg10 [PHPGφ(g1, g2, g3, g4)] [PHPGφ(g4, g5, g6, g7)]

× [PHPGφ(g7, g3, g8, g9)] [PHPGφ(g9, g6, g2, g10)] [PHPGφ(g10, g8, g5, g1)] , .(2.111)

The removal of the combination of projectors PGPH would lead to a model directly analogous
to the Boulatov model, called Ooguri model, and corresponding to 4-dimensional BF theory.
In this case one can see that the kinetic operator of the theory is given, in coordinate space,
by:

K(gi, g̃i) =
∑

σ

∫
dhidγdγ̃

∏

i

δ
(
gi γ hi γ̃ g̃

−1
σ(i)

)
, (2.112)

while the vertex is:

V(gij) =
1

5!

∫
dβidβ̃idhij

∏

i<j

δ
(
g−1
ji β̃ihijβ

−1
i βjhjiβ̃

−1
j gij

)
. (2.113)

2.9.2 Mode expansion

Consider a square integrable function φ(g) over SO(4), invariant under the right action of
SO(3). Using Peter-Weyl theorem, one can expand it in the matrix elements Dj

αβ(g) of the
irreducible representations j

φ(g) =
∑

j

φjαβ D
j
αβ(g) (2.114)

The indices α, β label basis vectors in the corresponding representation space, and the sum
over repeated indices is understood. In other words, we choose a basis in the representation
space such that the metric in this basis is just the Kronecker delta, which is the standard
choice in representation theory literature. The requirement of invariance under the right
SO(3) action can be written using the projector PH as

PHφ(g) =

∫

SO(3)

dh φ(gh). (2.115)
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Expanding this into the modes, we have

PHφ(g) =

∫

SO(3)

dh φ(gh) =
∑

j

∫

SO(3)

dh φjαβ D
j
αγ(g) D

j
γβ(h). (2.116)

The integral in the last term projects the β index over a (normalized) SO(3) invariant vector,
which we denote by wβ using (D.9). As this exists only in simple representations (and is
unique, see the Appendix C), the sum over representations Λ reduces to a sum over the
simple representations N only, and thus

φ(g) =
∑

N

φNα D
(N)
αβ (g) wβ . (2.117)

The quantities HN
α (g) = D

(N)
αβ (g)wβ are invariant under the (right) action of SO(3), and,

thus, can be thought of as functions on the three-sphere: HN
α (g) = HN

α (x). In fact, they form
an orthogonal basis for S3 spherical harmonics.

Since φ is real, we have

∑

N

φNα D
(N)
αβ (g) wβ =

∑

N

φNα D
(N)
αβ (g) wβ . (2.118)

The invariant vectors wβ are real (Appendix D), and the matrix elements can also be chosen
to be real. Thus, the reality condition simply requires φNα to be real.

It is immediate to generalize the previous expansions to the field φ(g1, g2, g3, g4):

PHφ(g1, . . . , g4) =
∑

N1...N4

φN1...N4
α1...α4

D
(N1)
α1β1

(g1) . . . D
(N4)
α4β4

(g4) wβ1 . . . wβ4 . (2.119)

Note that the symmetry of φ(g1, . . . , g4) under permutation of its four arguments implies that

φN1...N4
α1...α4

= φ
Nσ(1)...Nσ(4)
ασ(1)...ασ(4) , (2.120)

where σ is any permutation of {1, 2, 3, 4}.
To find the effect of the SO(4) invariance property on the modes, it is enough to apply

the PG projector
Substituting the mode expantion (2.119) into the definition of φ

PGPHφ(g1 . . . g4) =

∫

SO(4)

dg PHφ(g1g . . . g4g). (2.121)

one obtains:

PGPHφ(g1, . . . , g4) =
∑

N1...N4

∑

Λ

(
φN1...N4
α1...α4

D
(N1)
α1β1

(g1) . . . D
(N4)
α4β4

(g4) C
N1...N4 Λ
β1...β4

) (
CN1...N4 Λ
γ1...γ4 wγ1 . . . wγ4

)
.

(2.122)
The quantity in the second parenthesis is the scalar product of two SO(3) invariant vectors
in the representation Λ. Since invariant vectors exist only in simple representations, this
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quantity is non-vanishing only when Λ is a simple representations N . In this case its value is
given by (D.10)

CN1...N4N
γ1...γ4 wγ1 . . . wγ4 =

1√
dimN1 . . . dimN4

(2.123)

This suggests to redefine the mode expansion in term of the new fields

φBN1...N4
α1...α4

= φN1...N4
α1...α4

√
dimN1 . . . dimN4 (2.124)

Substituting this into the mode expansion, we get

φ(g1, . . . , g4) =
∑

N1...N4

φB
N1...N4
α1...α4

D
(N1)
α1β1

(g1) . . . D
(N4)
α4β4

(g4) S
N1...N4
β1...β4

. (2.125)

Here SN1...N4
β1...β4

is the normalized Barrett-Crane intertwiner

SN1...N4
β1...β4

:=

∑
N CN1...N4N

β1...β4√∑
N CN1...N4 N

β1...β4
CN1...N4 N
β1...β4

. (2.126)

The normalization, given by the denominator in the above expression, is in the scalar product
of K ~Ne

. Since the quantities CN1...N4 N
β1...β4

are normalized, the denominator is the square root
of the dimension of the subspace of K ~Ne

spanned by the intertwiners having an intermediate
simple representation (See Appendix D).

Now is easy to find the mode expansion of the action. Using the result for the integral of
the product of two matrix elements, the kinetic term becomes

K =
1

2

∫ 4∏

i=1

dgi (PGPHφ(g1, . . . , g4))
2 =

1

2

∑

N1...N4

φB
N1...N4
α1...α4

φB
N1...N4
α1...α4

. (2.127)

and the potential term gives

V =
λ

5!

∫ 10∏

i=1

dgi φ(g1, g2, g3, g4) φ(g4, g5, g6, g7) φ(g7, g3, g8, g9) φ(g9, g6, g2, g10) φ(g10, g8, g5, g1)

=
λ

5!

∑

N1...N10

∑

Λ1...Λ5

φBN1N2N3N4
α1α2α3α4

φBN4N5N6N7
α4α5α6α7

φBN7N3N8N9
α7α3α8α9

φBN9N6N2N10
α9α6α2α10

φBN10N8N5N1
α10α8α5α1

BN1,...,N10 .

(2.128)

Here BN1,...,N10 is the Barrett-Crane vertex-amplitude, which is a (15−j)-symbol with Barrett-
Crane intertwiners or a 10j symbol

BN1,...,N10 := SN1N2N3N4
α1α2α3α4

SN4N5N6N7
α4α5α6α7

SN7N3N8N9
α7α3α8α9

SN9N6N2N10
α9α6α2α10

SN10N8N5N1
α10α8α5α1

. (2.129)

We are ready to look at the Feynman rules: it is immediate to extract the form of the
propagator from the kinetic term but in any case it can be computed from the partition
function simply computing gaussian integrals:
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The partition function in this case is given by

Z =

∫ [
DφB

N1...N4
α1...α4

]
e−S[φB]. (2.130)

The propagator is

PB
N1...N4, N ′

1...N
′
4

α1...α4, α′
1...α

′
4

=:< φB
N1...N4
α1...α4

, φB
N ′

1...N
′
4

α′
1...α

′
4
> =

1

4!

∑

σ

δ
N1N ′

σ(1) . . . δ
N4N ′

σ(4) δ
α1α′

σ(1) . . . δ
α4α′

σ(4)

(2.131)
The vertex is given by:

< φB
N1N2N3N4
α1α2α3α4

. . . φB
N10N8N5N1

α′
10α

′
8α

′
5α

′
1
> = λ δα1α′

1 . . . δα10α′
10 BN1...N10 , (2.132)

The Feynman graphs we gets are all possible “4-strand” 5-valent graphs, where a “4-strand
graph” is a graph whose edges are collections of four strands, and whose vertices are the ones
shown in Fig. 2.7.

Each strand of the propagator can be connected to a single strand in each of the five
“openings” of the vertex. Orientations in the vertex and in the propagators should match
(this can always be achieved by changing a representation to its conjugate). Each strand of
the 4-strand graph, goes through several vertices and several propagators, and then closes
to itself, forming a cycle. Note that a particular strand can go through a particular edge of
the 4-strand graph more than once. Cycles get labeled by the simple representations of the
indices. For each graph, the abstract set formed by the vertices, the edges, and the cycles
forms a 2–complex, in which the faces are the cycles. The labeling of the cycles by simple
representations of SO(4) determines a coloring of the faces by spins. Thus, we obtain a colored
2-simplex, namely a spin foam.

In the case of the above constructed GFT/B, there are no labeling of edges, and we gets
an additional contribution from the summing of the α′s indices of the Kroneker deltas δαα

′

around each cycle. This gives a factor dimNf
for every face f . Thus, faces f are labeled by

simple representations Nf and contribute a factor dimNf
. Vertices contribute a factor λ times

B, where B is the Barrett-Crane symbol, which depends on the ten simple representations of
the faces adjacent to the vertex.

ZBCB [Γ] =
∑

{Nf}

∏

f

dimNf

∏

v

A( ~Nv , iBC). (2.133)

This is precisely the Barrett-Crane amplitude for a triangulation ∆ whose dual 2-skeleton is
Γ.

2.9.3 GFT/C[113]

This second model consists in working with gauge invariant fields PGφ, and impose the
combination of projectors PGPH in the interaction term of the action only.
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The action is then:

S[φ] =
1

2

∫
dg1...dg4 [PGφ(g1, g2, g3, g4)]

2 +

+
λ

5!

∫
dg1...dg10 [PGPHPGφ(g1, g2, g3, g4)] [PGPHPGφ(g4, g5, g6, g7)]

[PGPHPGφ(g7, g3, g8, g9)] [PGPHPGφ(g9, g6, g2, g10)] [PGPHPGφ(g10, g8, g5, g1)] .

(2.134)

The kinetic term in “coordinate space" is given by:

K(gi, g̃i) =
∑

σ

∫
dγ
∏

i

δ
(
gi γ g̃

−1
σ(i)

)
, (2.135)

which corresponds to a projector in to the space of gauge invariant fields, and is such that it
is equal to its inverse, so that the propagator is K itself. In the formula above the product
is over the four arguments of the field and the sum is over the possible even permutations of
them.

The vertex operator is:

V(gij) =
1

5!

∫
dβidβ̃idhij

∏

i<j

δ
(
g−1
ji β̃ihijβ

−1
i βjhjiβ̃

−1
j gij

)
(2.136)

where β and β̃ are SO(4) integration variables, and hij ∈ SO(3). Again the product is over
the arguments of the fields entering in the interaction term.

The amplitude for a Feynman graph is then given by a product of interaction terms V(gij),
one for each vertex of the graph, connected by propagators P(gi, g̃i) = K, one for each edge
of the graph, with an integral over the original group elements common to both kinetic and
potential terms. Doing this for a generic Feynman graph, using the 2–complex corresponding
to it, and recalling the correspondence between this and a simplicial complex, it is easy to
check that this model gives a slightly different amplitude for the Barrett-Crane model BCB.

Let us look at the the momentum formulation of the model
We expand as before φ(g) in modes in terms of matrices DJ

αβ(g) of the irreducible repre-
sentations J of SO(4); now however the basic fields are PGφ(g1, g2, g3, g4) that become

PGφ(g1, g2, g3, g4) =

∫

SO(4)
dg φ(g1g, g2g, g3g, g4g) =

=
∑

J1,J2,J3,J4

φJ1···J4
α1β1···α4β4

∫

SO(4)
dg DJ1

α1β1
(g1g)...D

J4
α4β4

(g4g) =

=
∑

J1,J2,J3,J4

φJ1···J4
α1β1···α4β4

DJ1
α1γ1(g1)...D

J4
α4γ4(g4)

∫

SO(4)
dg DJ1

γ1β1
(g)...DJ4

γ4β4
(g) =

=
∑

J1,J2,J3,J4

φJ1···J4
α1β1···α4β4

DJ1
α1γ1(g1)...D

J4
α4γ4(g4) C

J1J2J3J4Λ
γ1γ2γ3γ4 CJ1J2J3J4Λ

β1β2β3β4
.

(2.137)

we proceed redefining the field components as:

ΦJ1···J4Λ
β1···β4

≡
φJ1···J4
α1β1···α4β4

CJ1···J4Λ
α1···α4

(∆J1 · · ·∆J4)
3
2

, (2.138)
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where the C’s are SO(4) intertwiners (Appendix D) and ∆J denotes the dimension of the

irreducible representation of order J , and the factor (∆J1 . . .∆J4)
3
2 has been chosen to simplify

the expression of the interaction vertex computed below. This choice of field yields the mode
expansion:

PGφ(g1, . . . , g4) =
∑

J1...J4,Λ

(∆J1 . . .∆J4)
3
2 ΦJ1...J4,Λ

α1...α4
DJ1
α1γ1(g1) . . . D

J4
α4γ4(g4) C

J1···J4Λ
γ1···γ4 . (2.139)

Using (D.1) and the orthonormality of the intertwiners, the kinetic term in (2.134) becomes

K =
∑

J1...J4,Λ

ΦJ1...J4,Λ
α1...α4

ΦJ1...J4,Λ
µ1...µ4

(∆J1 . . .∆J4)
2 δα1µ1 . . . δα4µ4 . (2.140)

We can directly read the propagator of the theory from this expression

Pα1µ1...α4µ4 =
δα1µ1 . . . δα4µ4

(∆J1 . . .∆J4)
2
. (2.141)

In order to write the potential term we need to express PGPHPGφ in terms of irreducible
representations. Starting with (2.139) and using equations (D.8) and (D.9) we obtain

PGPHPGφ =
∑

J1...J4,Λ

(∆J1 . . .∆J4)
3
2 Φα1...α4

J1...J4,Λ
D(J1)γ1
α1

(g1) . . . D
(J4)γ4
α4

(g4) (2.142)

∑

N

CJ1···J4N
γ1···γ4 CJ1···J4N

β1···β4
wβ1 . . . wβ4wµ1 . . . wµ4CJ1···J4Λ

µ1···µ4
.

Applying equation (D.10) and (D.11) we obtain

PGPHPGφ =
∑

N1...N4,Λ

√
∆N1 . . .∆N4 Φα1...α4

N1...N4,Λ
D(N1)γ1
α1

(g1) . . . D
(N4)γ4
α4

(g4) Bγ1...γ4 ,(2.143)

where the sum is now over simple representations only, and Bγ1...γ4 denotes the Barrett-Crane
intertwiner. Using the previous equation the potential term in (2.134) becomes

1

5!

∑

N1...N10

∑

Λ1...Λ5

Φα1α2α3α4
N1N2N3N4,Λ1

Φα4α5α6α7
N4N5N6N7,Λ2

Φα7α3α8α9
N7N3N8N9,Λ3

Φα9α6α2α10
N9N6N2N10,Λ4

Φα10α8α5α1
N10N8N5N1,Λ5

BN1,...,N10 ,

(2.144)
where BN1,...,N10 corresponds to a 15j-symbol constructed with Barrett-Crane intertwiners
which corresponds to the Barrett-Crane vertex amplitude [70]. Explicitly,

BN1,...,N10 := BN1N2N3N4
α1α2α3α4

BN4N5N6N7
α4α5α6α7

BN7N3N8N9
α7α3α8α9

BN9N6N2N10
α9α6α2α10

BN10N8N5N1
α10α8α5α1

. (2.145)

Thus, the potential part of the action in the new model is given by (2.144) as in the Barrett-
Crane model. Notice, however, that there is an extra sum over Λ in (2.144), absent in Barrett-
Crane. The propagator (2.141) of the theory in momentum space is rescaled with respect to

the Barrett-Crane propagator (Pα1µ1...α4µ4 = (∆1 . . .∆4)
−2P(BC)

α1µ1...α4µ4). As a consequence
of this rescaling, and of the extra sum over Λ, there is a non-trivial amplitude associated to
edges in the spin foam. Each edge contributes to the amplitude as

Ae =
∆N1,...,N4

(∆N1 . . .∆N4)
2 , (2.146)
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where N1 to N4 are the colors of the four faces meeting at the given edge, and ∆N1,...,N4

is the dimension of the space of the interwiners between the representations N1, . . . , N4. In
conclusion, the amplitude of a Feynman diagram Γ is given by

ZBCC(Γ) =
∑

N

∏

f

∆Nf

∏

e

Ae
∏

v

BN1...N10 . (2.147)

where the sum is over simple representations N of SO(4), and B denotes the Barrett-Crane
vertex amplitude.

Equivalently, as every edge connects two vertices, we can absorb the edge amplitude in
the vertex amplitude and write Z with a vertex amplitude

Av =

∏
i∆

1/2
Ni1,...,Ni4

(∆N1 . . .∆N10)
2 BN1...N10 , (2.148)

where N1 . . . N10 are the ten colors of the ten faces adjacent to the vertex v, and Ni1 . . . Ni4, i =
1 . . . 5 are the four colors of the four faces adjacent to i’th edge adjacent to the vertex v.

We close this section with a comment. Unlikely the Barrett-Crane model, in the mode
expansion of the model presented here, the field depends on five representations (four ex-
ternal and one intertwiner), which can be seen precisely as the quantum numbers of a “first
quantized" geometry of a tetrahedron.



Chapter 3

Graviton propagator in LQG

In this chapter we put together the lessons learned from the previous chapters and focus on
the main subject of this thesis; the construction of the graviton propagator from LQG. It is an
open problem in quantum gravity. The difficulty is that general covariance makes conventional
n-point functions ill–defined in the absence of a background. A strategy for addressing this
problem has been suggested in [14]; the idea is to study the boundary amplitude, namely the
functional integral over a finite spacetime region, seen as a function of the boundary value
of the field [115]. In conventional quantum field theory, this boundary amplitude is well–
defined (see [116, 117] ) and codes the physical information of the theory; so does in quantum
gravity, but in a fully background–independent manner [118]. A generally covariant definition
of n-point functions can then be based on the idea that the distance between physical points
–arguments of the n-point function– is determined by the state of the gravitational field on the
boundary of the spacetime region considered. This strategy was first implemented in the letter
[15], where some components of the graviton propagator were computed to the first order in
the expansion parameter λ of the GFT associated to the dynamics. For an implementation
of these ideas in 3d, see [119, 120].

Here we present the extension of the calculation presented in [15], appeared in [16]. In
this paper the authors have calculated the diagonal components of the (connected) two-point
function, starting from full non-perturbative quantum general relativity, in an appropriate
large distance limit. They found that only a few components of the boundary states con-
tribute to low order on λ. This reduces the model to a 4d generalization of the “nutshell"
3d model studied in [121]. The associated boundary amplitude can be read as the creation,
interaction and annihilation of few “atoms of space", in the sense in which Feynman diagrams
in conventional quantum field theory expansion can be viewed as creation, interaction and
annihilation of particles. Using a natural gaussian form of the vacuum state, peaked on the
intrinsic as well as the extrinsic geometry of the boundary, they derived the expression for
the diagonal components of the graviton propagator.

At large distance, this agrees with the conventional graviton propagator !!
In the works [14, 15, 16] the authors have showed that a technique for computing particle

scattering amplitudes in background–independent theories can be developed. (The viability
of the notion of particle in a finite region is discussed in [122]. For the general relativistic for-
mulation of quantum mechanics underlying this calculation, see [2]. On the relation between
graviton propagator and 3-geometries transition amplitudes in the conventional perturbative
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expansion, see [123].)
We consider riemaniann general relativity without matter and we use basic LQG results

presented in Chapter 1 defining the dynamics by means of the spinfoam technique presented in
Chapter 2. The specific model we use is the theory GFT/B, in the terminology of [2], defined
using group field theory methods. On the definition of spin network states in group field theory
formulation of spin foam models, see [124] and [2]. The result extends immediately also to
the theory GFT/C. The first [112] (see Section (2.9.1)) is favored by a number of arguments
recently put forward [125, 126]. The second [113],[114] (Section 2.9.3) is characterized by
particularly good finiteness properties [127].

The physical correctness of these theories has been questioned because in the large distance
limit their interaction vertex (10j symbol, or Barrett-Crane vertex amplitude [70]) has been
shown to include –beside the “good" term approximating the exponential of the Einstein-
Hilbert action [99]– also two “bad" terms: an exponential with opposite sign, giving the cosine
of Regge action [99] (analogous to the cosine in the Ponzano–Regge model) and a dominant
term that depends on the existence of degenerate four-simplices [100, 101, 102]. We show
here that only the “good" term contributes to the propagator. The others are suppressed by
the rapidly oscillating phase in the vacuum state that peaks the state on its correct extrinsic
geometry. Thus, the physical state selects the “forward" propagating [128] component of the
transition amplitude. This phenomenon was anticipated in [129].

3.1 The generally covariant description of 2-points functions

In this section we describe a generally covariant definition of n–point functions; it can
be based on the idea that the distance between physical points —arguments of the n–point
function— is determined by the state of the gravitational field on the boundary of the space-
time region considered.

We begin by illustrating the quantities and some techniques that will be used in Quantum
Gravity within a simple context.

3.1.1 A single degree of freedom

Consider the two-point function of a single harmonic oscillator with mass m and angular
frequency ω. This is given by

G0(t1, t2) = 〈0|x(t1)x(t2)|0〉 = 〈0|x e− i
~
H(t1−t2) x|0〉 (3.1)

where |0〉 is the vacuum state, x(t) is the Heisenberg position operator at time t and H the
hamiltonian. We write a subscript 0 in G0(t1, t2) to remind us that this is an expectation
value computed on the vacuum state. Later we will also consider similar expectation values
computed on other classes of states, as for instance in

Gψ(t1, t2) = 〈ψ|x(t1)x(t2)|ψ〉. (3.2)

Elementary creation and annihilation operator techniques give

G0(t1, t2) =
~

2mω
e−

3
2
iω(t1−t2). (3.3)
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In the Schrödinger picture (Appendix K.2), the r.h.s. of (3.1) reads

G0(t1, t2) =

∫
dx1dx2 ψ0(x1) x1 W [x1, x2; t1, t2] x2 ψ0(x2) (3.4)

where ψ0(x) = 〈x|0〉 is the vacuum state and W [x1, x2; t1, t2] is the propagator, namely the
matrix element of the evolution operator

W [x1, x2; t1, t2] = 〈x1|e−iH(t1−t2)|x2〉. (3.5)

Recalling that

ψ0(x) = 4

√
mω

π~
e−

mω
2~
x2

(3.6)

and (see for instance [2], page 168 and errata)

W (x1, x2;T ) =

√
mω

2πi~ sinωT
ei

mω
2~

(x2
1+x2

2) cos ωT−2x1x2

sin ωT (3.7)

are two gaussian expressions, we obtain the two-point function (3.1) as the second momentum
of a gaussian

G0(t1, t2) =
mω

π~

√
1

2i sinωT

∫
dx1dx2 x1x2 e

imω
2~

(x2
1+x2

2) cos ωT−2x1x2

sin ωT e−
mω

~
x2
, (3.8)

where the gaussian is the product of a “bulk" gaussian term and a “boundary" gaussian term.
The evaluation of the integral in (3.8) is a simple matter of gaussian integrations and gives

G0(t1, t2) =
mω

π~

√
1

2i sinω(t1 − t2)

2π√
detA

A−1
12 (3.9)

in terms of the inverse of the covariance matrix of the gaussian

A =
mω

~

(
1 − i cos ω(t1−t2)

sinω(t1−t2)
i

sinω(t1−t2)
i

sinω(t1−t2) 1 − i cos(t1−t2)
sinω(t1−t2)

)
=

−imω
~ sinω(t1 − t2)

(
eiω(t1−t2) −1

−1 eiω(t1−t2)

)
.

(3.10)
The matrix A is easy to invert and (3.9) gives precisely (3.3).

This is kind of general feature of these functions:
In the two point function both dynamics and vacuum state are gaussian expressions, that

mix in a new one, giving the propagator as the second momentum of this new gaussian.

3.1.2 Harmonic oscillator with the path integral

The two-point function (3.1) can also be written as the (analytic continuation of the
euclidean version of) the functional integral

G0(t1, t2) =

∫
Dx(t) x(t1)x(t2) e

i
∫∞
−∞ L(x,dx/dt). (3.11)
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Figure 3.1: The infinite integration variables are divided in those inside and outside the region
(x(t1), x(t2)). The functional integral restricted to the interior region (dark) is the bulk term
and gives the propagation kernel. The functional integral restricted to the outside region
(clear) is the boundary term and gives the vacuum state.

where L is the harmonic oscillator lagrangian, and the measure is appropriately normalized.
Let us break the (infinite number of) integration variables x(t) in various groups: those where
t is less, equal or larger than, respectively, t1 and t2 (like in Figure 3.1) . Using this, and
writing the integration variable x(t1) as x1 and the integration variable x(t2) as x2, we can
rewrite (3.11) as

G0(t1, t2) =

∫
dx1dx2 ψ0(x1) x1 W [x1, x2; t1, t2] x2 ψ0(x2) (3.12)

where

W [x1, x2; t1, t2] =

∫ x(t1)=x1

x(t2)=x2

Dx(t) ei
∫ t1
t2
L(x,dx/dt) (3.13)

is the functional integral restricted to the open interval (t1, t2) integrated over the paths that
start at x2 and end at x1; while

ψ0(x) =

∫ x(t1)=x

x(−∞)=0
Dx(t) ei

∫ t1
−∞ L(x,dx/dt) (3.14)

is the functional integral restricted to the interval (−∞, t1). As well known, in the euclidean
theory this gives the vacuum state. Thus, we recover again the form (3.4) of the two-point
function, with the additional information that the “bulk" propagator term can be viewed as
the result of the functional integral in the interior of the (t1, t2) interval, while the “boundary"
term can be viewed as the result of the functional integral in the exterior. In this language
the specification of the particular state |0〉 on which the expectation value of x(t1)x(t2) is
computed, is coded in the boundary behavior of the functional integration variable at infinity:
x(t) → 0 for t→ ±∞.

The normalization of the functional measure in (3.11) is determined by

1 =

∫
Dx(t) ei

∫∞
−∞

L(x,dx/dt). (3.15)
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Breaking this functional integral in the same manner as the above one gives

1 =

∫
dx1dx2 ψ0(x1) W [x1, x2; t1, t2] ψ0(x2) (3.16)

or equivalently

1 = 〈0|e− i
~
H(t1−t2)|0〉. (3.17)

Let us comment on the interpretation of (3.11) and (3.16), since analogues of these equation
will play a major role below. Observe that (3.11) can be written in the form

G0(t1, t2) = 〈Wt1,t2 | x̂1 x̂2 Ψ0〉, (3.18)

in terms of states and operators living in the Hilbert space Kt1,t2 = H∗
t1 × Ht2 (the tensor

product of the space of states at time t1 and the space of states at time t2) formed by functions
ψ(x1, x2). (See Section 5.1.4 of [2] for details on Kt1,t2 .) Using the relativistic formulation of
quantum mechanics developed in [2], this expression can be directly re-interpreted as follows.

• (i) The “boundary state" Ψ0(x1, x2) = ψ0(x1)ψ0(x2) represents the joint boundary con-
figuration of the system at the two times t1 and t2, if no excitation of the oscillator is
present; it describes the joint outcome of a measurement at t1 and a measurement at
t2, both of them detecting no excitations.

• (ii) The two operators x̂1 and x̂2 create a (“incoming") excitation at t = t2 and a
(“outgoing") excitation at t = t1; thus the state x̂1x̂2Ψ0 can be interpreted as a boundary
state representing the joint outcome of a measurement at t1 and a measurement at t2,
both of them detecting a single excitation.

• (iii) The bra Wt1,t2(x1, x2) = W [x1, x2; t1, t2] is the linear functional coding the dynam-
ics, whose action on the two-excitation state associates it an amplitude, which can be
compared with other similar amplitudes.

For instance, observe that
〈Wt1,t2 | x̂2 Ψt1,t2〉 = 0; (3.19)

that is, the probability amplitude of measuring a single excitation at t2 and no excitation at
t1 is zero. Finally, the normalization condition (3.16) reads

1 = 〈Wt1,t2 |Ψ0〉; (3.20)

which requires that the boundary state Ψ0 is a solution of the dynamics, in the sense that its
projection on t1 is precisely the time evolution of its projection to t2. As we shall see below,
this condition generalizes to the case of interest for general relativity. We call (3.20) the
“Wheeler-deWitt" (WdW) condition. This condition satisfied by the boundary state should
not be confused with the normalization condition,

1 = 〈Ψ0|Ψ0〉, (3.21)

which is also true, and which follows immediately from the fact that |0〉 is normalized in Ht.
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In general, given a state Ψ ∈ Kt1,t2 , the equations

〈Wt1,t2 |Ψ〉 = 1; (3.22)

and
〈Ψ|Ψ〉 = 1, (3.23)

are equivalent to the full quantum dynamics, in the following sense. If the state is of the form
Ψ = ψ̄f ⊗ ψi, then (3.22) and (3.23) imply that

ψf = e−iHt ψi. (3.24)

The boundary state as a coherent state

In ordinary QM a coherent (semiclassical) state

ψq(x) ∼ e−
α
2
(x−q)2+ i

~
px (3.25)

where q = (q, p) is peaked on mean values q and p of position and momentum of the classical
trajectory. In particular, the vacuum state of the harmonic oscillator is the coherent state
peaked on the values q = 0 and p = 0, with α = mω/~. Thus we can write ψ0 = ψ(q=0,p=0).

In the same manner, the boundary state Ψ0 = ψ0(x1)ψ0(x2) can be viewed as a coherent
boundary state, associated with the values q1 = 0 and p1 = 0 at t1 and q2 = 0 and p2 = 0 at
t2.

We can write a generic coherent boundary state as

Ψq1,p1,q2,p2(x1, x2) = ψ(q1,p1)(x1) ψ(q2,p2)(x2). (3.26)

A special case of these coherent boundary states is obtained when (q1, p1) are the classical
evolution at time t1 − t2 of the initial conditions (q2, p2). That is, when in the t1 − t2 interval
there exists a solution q(t), p(t) of the classical equations of motion precisely bounded by
q1, p1, q2, p2, namely such that q1 = q(t1), p1 = p(t1) and q2 = q(t2), p2 = p(t2). If such a
classical solution exists, we say that the quadruplet (q1, p1, q2, p2) is physical. As well known
the harmonic oscillator dynamics gives in this case e−iH(t1−t2)Ψq2,p2 = Ψq1,p1 , or

〈Wt1,t2 |Ψq1,p1,q2,p2〉 = 1. (3.27)

That is, it satisfies the WdW condition (3.22). In this case, we denote the semiclassical
boundary state a physical semiclassical boundary states.

The vacuum boundary state Ψ0 is a particular case of this: it is the physical semiclassical
boundary state determined by the classical solution q(t) = 0 of the equations of motion,
which is the one with minimal energy. Given a physical boundary state, we can consider a
two-point function describing the propagation of a quantum excitation “over" the semiclassical
trajectory q(t), p(t) as

Gq1,p1,q2,p2(t1, t2) = 〈ψ(q1,p1)|x(t1)x(t2)|ψ(q2,p2)〉 = 〈Wt1,t2 | x̂1x̂2 Ψq1,p1,q2,p2〉. (3.28)

This quantity will pay a considerable role below. Indeed, the main idea here is to com-
pute quantum–gravity n-point functions using states that describe the boundary value of the
gravitatonal field on given boundary surfaces.
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There is an interesting phenomenon regarding the phases of the boundary state Ψq1,p1,q2,p2(x1, x2)
and of the propagator Wt1,t2(x1, x2) that should be noticed. If p1 and p2 are different from

zero, they give rise to a phase factor e−
i
~
(p1x1−p2x2), in the boundary state. In turn, it is easy

to see that Wt1,t2(x1, x2) contains precisely the inverse of this same phase factor, when ex-
panded around (q1, q2). In fact, the phase of the propagator is the classical Hamilton function
St1,t2(x1, x2) (the value of the action, as a function of the boundary values [2]). Expanding
the Hamilton function around q1 and q2 gives to first order

St1,t2(x1, x2) = St1,t2(q1, q2) +
∂S

∂x1
(x1 − q1) +

∂S

∂x2
(x2 − q2), (3.29)

but
∂S

∂x1
= p1 and

∂S

∂x2
= −p2. (3.30)

Giving a phase factor e
i
~
(p1x1−ip2x2), which is precisely the inverse of the one in the boundary

state. In the Schrödinger representation of (3.28), the gaussian factor in the boundary state
peaks the integration around (q1, q2); in this region, we have that the phase of the boundary
state is determined by the classical value of the momentum, and is cancelled by a corresponding
phase factor in the propagator W . In particular, the rapidly oscillating phase in the boundary
state fails to suppress the integral precisely because it is compensated by a corresponding
rapidly oscillating phase inW . This, of course, is nothing that the realization, in this language,
of the well–known emergence of classical trajectories from the constructive coherence of the
quantum amplitudes. This phenomenon, noted in [15] in the context of quantum gravity,
plays a major role below.

3.1.3 Field theory

Let us now go over to field theory. The two-point function (or particle propagator) is
defined by the (analytic continuation of the euclidean version of the) path integral (~ = 1
from now on)

G0(x, y) = 〈0|φ(x)φ(y)|0〉 = 〈0|φ(~x) e−iH(x0−y0) φ(~y)|0〉 =

∫
Dφ(x) φ(x)φ(y) eiS[φ], (3.31)

where the normalization of the measure is determined by

1 =

∫
Dφ(x) eiS[φ] (3.32)

and the 0 subscript reminds that these are expectation values of products of field operators
in the particular state |0〉. These equations generalize (3.11) and (3.15) to field theory.1 As

1A well-known source of confusion is of course given by the fact that in the case of a free particle the
propagator (3.5) coincides with the 2-point function of the free field theory.
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before, we can break the integration variables of the path integral in various groups. For
instance, in the values of the field in the five spacetime–regions identified by t being less,
equal or larger than, respectively, x0 and y0. This gives a Schrödinger representation of the
two-point function of the form (see Appendix K.2)

G0(x, y) =

∫
Dϕ1Dϕ2 ψ0(ϕ1) ϕ1(~x) W [ϕ1, ϕ2; (x0 − y0)] ϕ2(~y) ψ0(ϕ2). (3.33)

where ϕ1 is the three-dimensional field at time t1, and ϕ2 is the three-dimensional field at
time t2. For a free field, the field propagator (or propagation kernel)

W (ϕ1, ϕ2;T ) = 〈ϕ1|e−iHT |ϕ2〉. (3.34)

and the boundary vacuum state are gaussian expression in the boundary field ϕ = (ϕ1, ϕ2).
These expressions, and the functional integral (3.33), are explicitly computed in [117]. In a
free theory, the boundary vacuum state can be written as a physical semiclassical state peaked
on vanishing field and momentum π, as in (3.26):

Ψ0(ϕ1, ϕ2) ≡ Ψϕ1=0,π1=0,ϕ2=0,π2=0(ϕ1, ϕ2) = ψ0(ϕ1) ψ0(ϕ2). (3.35)

Notice that the momentum π = dϕ1

dt is the derivative of the classical field normal to Σ.
More interesting for what follows, we can choose a compact finite region R in spacetime,

bounded by a closed 3d surface Σ, such that the two points x and y lie on Σ. Then we can
separate the integration variables in (3.31) into those inside R, those on Σ and those outside
R, and thus write the two-point function (3.31) in the form

G0(x, y) =

∫
Dϕ ϕ(x) ϕ(y) W [ϕ; Σ] Ψ0(ϕ), (3.36)

where ϕ is the field on Σ,

W [ϕ; Σ] =

∫

∂φ=ϕ
DφR e−iSR[φR] (3.37)

is the functional integral restricted to the region R, and integrated over the interior fields φR
bounded by the given boundary field ϕ. The boundary state Ψ0(ϕ) is given by the integral
restricted to the outside region, R (see Figure 3.2). The boundary conditions on the functional
integration variable

φR(x) → 0, for |x| → ∞ (3.38)

determine the vacuum state. In a free theory, this is still a gaussian expression in ϕ, but
the covariance matrix is non–trivial and is determined by the shape of Σ. The state Ψ0

can nevertheless be still viewed as a semiclassical boundary state associated to the compact
boundary, peaked on the value ϕ = 0 of the field and the value π = 0 of a (generalized)
momentum (the derivative of the field normal to the surface) [2]. Equation (3.36) will be our
main tool in the following.

In analogy with (3.18), equation (3.36) can be written in the form

G0(x, y) = 〈WΣ | ϕ̂(x) ϕ̂(y) Ψ0〉. (3.39)

in terms of states and operators living in a boundary Hilbert space KΣ associated with the
3d surface Σ. In terms of the relativistic formulation of quantum mechanics developed in [2],
this expression can be interpreted as follows.
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Figure 3.2: We take a closed 3d surface Σ such that x and y, the arguments of the 2 point
function lie on this surface. In the picture the functional integral restricted to the interior
fields φR (dark region), gives the propagation kernel. The integral restricted to the outside
fields φR gives the vacuum state.The field ϕ on Σ creates in the points x and y the ingoing
and outgoing exctitations.

• (i) The “boundary state" Ψ0 represents the boundary configuration of a quantum field
on a surface Σ, when no particles are present; it represents the joint outcome of mea-
surements on the entire surface Σ, showing no presence of particles.

• (ii) The two operators ϕ̂(x) ϕ̂(y) create a (“incoming") particle at y and a (“outgoing")
particle at x; so that the boundary state ϕ(x)ϕ(y)Ψ0 represents the joint outcome of
measurements on Σ, detecting a (“incoming") particle at y and a (“outgoing") particle
at x.

• (iii) Finally, the bra WΣ is the linear functional coding the dynamics, whose action
on the two-particle boundary state associates it an amplitude, which can be compared
with other analogous amplitudes. The normalization condition for the measure, equation
(3.32), becomes the WdW condition

1 = 〈WΣ |Ψ0〉, (3.40)

which singles out the physical boundary states.

Finally, as before, let q = (q, p) be a given couple of boundary values of the field ϕ and its
generalized momentum on Σ. If there exists a classical solution φ of the equations of motion
whose restriction to Σ is q and whose normal derivative to Σ is p, then we say that q = (q, p)
are physical boundary data. Let Ψq be a boundary state in KΣ peaked on these values:
schematically

Ψq(ϕ) ∼ e−
∫
(ϕ−q)2+i

∫
pφ. (3.41)
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If q = (q, p) are physical boundary data, we say that Ψq is a physical semiclassical state. In
this case, we can consider the two-point function

Gq(x, y) = 〈WΣ | ϕ̂(x) ϕ̂(y) Ψq〉 (3.42)

describing the propagation of a quantum, from y to x, over the classical field configuration
φ giving the boundary data q = (q, p). In the Schrödinger representation of this expression,
there is a cancellation of the phase of the boundary state Ψq with the phase of the propagation
kernel WΣ, analogous to the one we have seen in the case of a single degree of freedom.

3.1.4 Quantum gravity

Let us formally write (3.36) for pure general relativity, ignoring for the moment problems
such as the definition of the integration measure, or ultraviolet divergences. Given a surface
Σ, we can choose a generalized temporal gauge in which the degrees of freedom of gravity are
expressed by the 3-metric γ induced on Σ, with components γab(x) a, b = 1, 2, 3. That is, if
the surface is locally given by x4 = 0, we gauge fix the 4d gravitational metric field gµν(x)
by g44 = 1, g40 = 0, and γab = gab. Then the graviton two-point function (3.36) reads in this
gauge

Gabcd0 (x, y) =

∫
[Dγ] hab(x) hcd(y) W [γ; Σ] Ψ0(γ), (3.43)

where hab(x) = γab(x) − δab. As observed for instance in [118], if we assume that W [γ; Σ]
is given by a functional integration on the bulk, as in (3.37), where measure and action are
generally covariant, then we have immediately that W [γ; Σ] is independent from (smooth
deformations of) Σ. Hence, at fixed topology of Σ (say, the surface of a 3-sphere), we have
W [γ; Σ] = W [γ], that is

Gabcd0 (x, y) =

∫
[Dγ] hab(x) hcd(y) W [γ] Ψ0(γ). (3.44)

What is the interpretation of the boundary state Ψ0(γ) in a general covariant theory? In the
case of the harmonic oscillator, the vacuum state |0〉 is the state that minimizes the energy.
In the case of a free theory on a background, in addition, it is the sole Poincaré invariant
state. In both cases the vacuum state can also be obtained from a functional integral by
fixing the behavior of the fields at infinity. But in background–independent quantum gravity,
there is no energy to minimize and no global Poincaré invariance. Furthermore, there is no
background metric with respect to which to demand the gravitational field to vanish at infinity.
In fact, it is well known that the unicity and the very definition of the vacuum state is highly
problematic in nonperturbative quantum gravity (see for instance [2]), a phenomenon that
begins to manifest itself already in QFT on a curved background. Thus, in quantum gravity
there is a multiplicity of possible states that we can consider as boundary states, instead of a
single preferred one.

Linearized quantum gravity gives us a crucial hint, and provides us with a straightforward
way to interpret semiclassical boundary states. Indeed, consider linearized quantum gravity,
namely the well–defined theory of a noninteracting spin–2 graviton field hµν(x) on a flat
spacetime with background metric g0

µν . This theory has a preferred vacuum state |0〉. Now,
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choose a boundary surface Σ and denote q = (q, p) its three-geometry, formed by the 3-metric
qab and extrinsic curvature field pab, induced on Σ by the flat background metric of spacetime.
The vacuum state defines a gaussian boundary state on Σ, peaked around h = 0. We can
schematically write this state as ΨΣ(h) ∼ e−

∫
h2

. (In the conventional case in which Σ is
formed by two parallel hyper-planes, the explicit form of this state is given in [123].)

Now, on Σ there are two metrics: the metric q induced by the background spacetime
metric, and the metric γ = q + h, induced by the true physical metric gµν = g0

µν + hµν ,
which is the sum of the background metric and the dynamical linearized gravitational field.
Therefore the vacuum functional Ψ0(h) defines a functional Ψq(γ) of the physical metric γ of
Σ as follows

Ψq(γ) = Ψq(q + h) ≡ Ψ0(h). (3.45)

Schematically
Ψq(γ) = Ψ0(h) = Ψ0(γ − q) ∼ e−

∫
(γ−q)2 . (3.46)

A bit more precisely, as was pointed out in [15], we must also take into account a phase term,
generated by the fact that the normal derivative of the induced metric does not vanish (q
changes if we deform Σ). This gives, again very schematically

Ψq(γ) ∼ e−
∫
(γ−q)2+i

∫
pγ (3.47)

as in (3.41). Recall indeed that in general relativity the intrinsic and extrinsic geometry play
the role of canonical variable and conjugate variable. As pointed out in [15], a semiclassical
boundary state must be peaked on both quantities, as coherent states of the harmonic oscil-
lator are equally peaked on q and p. The functional Ψq of the metric can immediately be
interpreted as a boundary state of quantum gravity, as determined by the linearized theory.

Observe that it depends on the background geometry of Σ, because q and p do: the form of
this state is determined by the location of Σ with respect to the background metric of space.
Therefore (when seen as a function of the true metric γ) there are different possible boundary
states in the linearized theory, depending on where is the boundary surface. Equivalently,
there are different boundary states depending on what is the mean boundary geometry q on
Σ.

Now, in full quantum gravity we must expect, accordingly, to have many possible distinct
semiclassical boundary states Ψq(γ) that are peaked on distinct 3-geometries q = (q, p). In
the background-independent theory they cannot be anymore interpreted as determined by
the location of Σ with respect to the background (because there is no background!). But they
can still be interpreted as determined by the mean boundary geometry q on Σ.

Their interpretation is therefore immediate: they represent coherent semiclassical states
of the boundary geometry. The multiplicity of the possible locations of Σ with respect to the
background geometry in the background-dependent theory, translates into a multiplicity of
possible coherent boundary states in the background-independent formalism.

In fact, this conclusion follows immediately from the core physical assumption of general
relativity: the identification of the gravitational field with the spacetime metric. A coherent
boundary state of the gravitational field is peaked, in particular, on a given classical value of
the metric. In the background-dependent picture, this can be interpreted as information about
the location of Σ in spacetime. In a background-independent picture, there is no location in
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spacetime: the geometrical properties of anything is solely determined by the local value of
the gravitational field. In a background-independent theory, the dependence on a boundary
geometry is not in the location of Σ with respect to a background geometry, but rather in the
boundary state of the gravitation field on the surface Σ itself.

Having understood this, it is clear that the two-point function of a background-independent
theory can be defined as a function of the mean boundary geometry, instead of a function
of the background metric. If q = (q, p) is a given geometry of a closed surface Σ with the
topology of a 3-sphere, and Ψq is a coherent state peaked on this geometry, consider the
expression

Gabcdq (x, y) =

∫
[Dγ] hab(x) hcd(y) W [γ] Ψq(γ). (3.48)

At first sight, this expression appears to be meaningless. The r.h.s. is completely independent
from the location of Σ on the spacetime manifold. What is then the meaning of the 4d
coordinates x and y in the l.h.s.? In fact, this is nothing than the usual well–known problem
of the conventional definition of n-point functions in generally covariant theories: if action
and measure are generally covariant, equation (3.31) is independent from x and y (as long
as x 6= y); because a diffeomorphism on the integration variable can change x and y, leaving
all the rest invariant. We seem to have hit the usual stumbling block that makes n-point
functions useless in generally covariant theories.

3.1.5 New definition of generally covariant 2-point functions

In fact, we have not, because the very dependence of Gabcdq (x, y) on q provides the obvious

solution to this problem: let us define a “generally covariant 2-point function" Gabcd
q (x, y) as

follows. Given a three-manifold S3 with the topology of a 3-sphere, equipped with given fields
q = (qab(x), pab(y)), and given two points x and y on this metric manifold, we define

Gabcd
q (x,y) =

∫
[Dγ] hab(x) hcd(y) W [γ] Ψq(γ). (3.49)

The difference between (3.48) and (3.49) is that in the first expression x and y are coordinates
in the background 4d differential manifold, while in the second x and y are points in the 3d
metric manifold (S3, q). It is clear that with this definition the dependence of the 2-point
function on x and y is non trivial: metric relations between x and y are determined by q.
In particular, a 3d active diffeomorphism on the integration variable g changes x and y, but
also q, leaving the metric relations between x and y invariant.

The physically interesting case is when q = (q, p) are a set of physical boundary conditions.
Since we are considering here pure general relativity without matter, this means that there
exists a Ricci flat spacetime with 4d metric g and an imbedding Σ : S3 → M , such that g
induces the three metric q and the extrinsic curvature p on S3. In this case, the semiclassical
boundary state Ψq is a physical state. Measure and boundary states must be normalized in
such a way that ∫

[Dγ] W [γ] Ψq(γ) = 1. (3.50)

Then the two point function (3.49) is a non-trivial and invariant function of the physical 4d
distance

L = dg(Σ(x),Σ(y)). (3.51)
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It is clear that if g is the flat metric this function must reduce immediately to the conventional
2-point function of the linearized theory, in the appropriate large distance limit.

This is the definition of a generally covariant two-point function proposed in [14], which
we use here.

Finally, the physical interpretation of (3.49) is transparent: it defines an amplitude asso-
ciated to a joint set of measurements performed on a surface Σ bounding a finite spacetime
region, where the measurements include:

• (i) the average geometry of Σ itself, namely the physical distance between detectors,
the time lapse between measurements, and so on;

• (ii) the detection of a (“outgoing") particle (a graviton) at x and the detection of a
(“incoming") particle (a graviton) at y.

The two kinds of measurements, that are considered of different nature in non-generally-
relativistic physics, are on equal footing in general relativistic physics (see [2], pg. 152-153).
In generally covariant quantum field theory, the single boundary state ĥab(x)ĥcd(y)Ψq codes
the two.

Notice that the quantum geometry in the interior of the region R is free to fluctuate.
In fact, W can be interpreted as the sum over all interior 4-geometries. What is determined
is a boundary geometry as measured by the physical apparatus that surrounds a potential
interaction region.

Equation (3.49) can be realized concretely in LQG by identifying

• (i) the boundary Hilbert space associated to Σ with the (separable [130]) Hilbert space
spanned by the (abstract) spin network states s, namely the s-knot states;this transform
the sum over geometries in a sum over s-knots

∫
[Dγ] →

∑

s

(3.52)

• (ii) the linearized gravitational field operators ĥab(x) and ĥcd(y) with the corresponding
LQG operators;

• (iii) the boundary state Ψq with a suitable spin network functional Ψq[s] peaked on the
geometry q;

• (iv) the boundary functional W [s], representing the functional integral on the interior
geometries bounded by the boundary geometry s, with the W [s] defined by a spin foam
model. This, indeed, is given by a sum over interior spinfoams, interpreted as quantized
geometries.

This gives the expression

Gabcd
q (x,y) =

∑

s

W [s] ĥab(x) ĥcd(y) Ψq[s]. (3.53)

which we analyze in rest of the chapter.
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The WdW condition reads
1 =

∑

s

W [s] Ψq[s]. (3.54)

Using these two equations together, we can write

Gabcd
q (x,y) =

∑
s W [s] ĥab(x) ĥcd(y) Ψq[s]∑

s W [s] Ψq[s]
, (3.55)

a form that allows us to disregard the overall normalization of W and Ψq. We analyze these
ingredients in detail in the next section.

3.2 Graviton propagator: definition and ingredients

Equation (3.53) is well-defined if we choose a dynamical model giving W [s], a boundary
state Ψq[s] and a form for the operator ĥab(x). In the exploratory spirit of [14], we make here
some tentative choices for these ingredient. In particular, we choose the boundary functional
W [s] defined by the group field theory GFT/B (Section 2.9.1). We consider here only some
lowest order terms in the expansion of W [s] in the GFT coupling constant λ. Furthermore, we
consider only the first order in a large distance expansion. Our aim is to recover the 2-point
function of the linearized theory, namely the graviton propagator, in this limit.

3.2.1 The boundary functional W [s]

We use the definition of W [s] in the context of the spinfoam theory GFT/B, referring to
Section 2.9.1. We expand the action in modes

S[φ] = Skin[φ] +
λ

5!
Sint[φ]. (3.56)

expanding the field φ in modes introducing the shorthand notation φj1...j4α1...α4 i
= φjnαni

. where
the indices jn, n = 1, ..., 4 label simple SO(4) irreducible representations, αn labels the
components of vectors in the representation jn and i labels an orthonormal basis of intertwiners
on the tensor product of the four representations jn. We choose a basis in which one of the
basis elements is the Barrett-Crane intertwiner iBC . Expanded in terms of these modes, the
kinetic term of the action is

Skin =
1

2

∑

αn,jn,i

φjnαni
φjnαni

(3.57)

The interaction term is (eq. (9.74) of [2])

Sint =
∑

αnm,jnm,in

(∏
m φjnm

αnm,in

)
A(jnm, in). (3.58)

Here the notation is as follows. The indices n and m run from 1 to 5, with n 6= m. Nnm ≡ Nmn

and φj1m

α1m,i1
= φj12j13j14j15α12α13α14α15,i1

and so on. A(jnm, in) is the Barrett-Crane vertex amplitude
(2.83). This is

A(jnm, in) =

(∏

n

δiniBC

)
B(jnm), (3.59)
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where B(jnm) ≡ A(jnm, iBC) is the 10j symbol. In the following we use also the formal
notation

∫
φ2 ≡ Skin[φ] and

∫
φ5 ≡ Sint[φ].

SO(4)-invariant observables of the theory are computed as the expectation values

W [s] =
1

Z

∫
Dφ fs(φ) e−

∫
φ2− λ

5!

∫
φ5

(3.60)

where the normalization Z is the functional integral without fs(φ), and fs(φ) is the function
of the field determined by the spin network s = (Γ, jl, in). Recall that a spin network is a
graph Γ formed by nodes n connected by links l, colored with representations jl associated
to the links and intertwiners in associated to the nodes. We note lnm a link connecting the
nodes n and m, and jnm ≡ jmn the corresponding color. The spin network function is defined
in terms of the modes introduced above by

fs(φ) =
∑

αnm

∏

n

φjnm

αnmin
. (3.61)

Here n runs over the nodes and, for each n, the index m runs over the four nodes that bound
the four links lnm joining at n. Notice that each index αnm ≡ αmn appears exactly twice in
the sum, and are thus contracted.

Fixed a spin network s, (3.60) can be treated by a perturbative expansion in λ, which
leads to a sum over Feynman diagrams. Expanding both numerator and denominator, we
have

W [s] =
1

Z0

∫
Dφ fs(φ) e−

∫
φ2 − (3.62)

+
1

Z0

λ

5!

[∫
Dφ fs(φ)

(∫
φ5

)
e−
∫
φ2 −

∫
Dφ

(∫
φ5
)
e−
∫
φ2

Z0

∫
Dφ fs(φ) e−

∫
φ2

]
+

+
1

Z0

λ2

2(5!)2

[∫
Dφ fs(φ)

(∫
φ5

)2

e−
∫
φ2

+ . . .

]
,

where Z0 =
∫

Dφ e−
∫
φ2

. As usual in QFT, the normalization Z gives rise to all vacuum–
vacuum transition amplitudes, and it role is to eliminate disconnected diagrams.

Recall that this Feynman sum can be expressed as a sum over all connected spinfoams
σ = (Σ, jf , ie) bounded by the spin network s. A spinfoam is a two-complex Σ, namely
an ensemble of faces f bounded by edges e, in turn bounded by vertices v, colored with
representations jf associated to the faces and intertwiners ie associated to the edges.

The boundary of a spinfoam σ = (Σ, jf , ie) is a spin network s = (Γ, jl, in), where the
graph Γ is the boundary of the two-complex Σ, jl = ff anytime the link l of the spin network
bounds a face f of the spinfoam and in = ie anytime the node n of the spin network bounds
an edge e of the spinfoam. See the Table 2.1 for a summary of the terminology.

The amplitudes can be reconstructed from the following Feynman rules; the propagator

Pjn
αni

j′n
α′

ni
′ = δi,i′

∑

π(n)

∏

n

δjn,j′π(n)
δαnα′

π(n)
(3.63)
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where π(n) are the permutations of the four numbers n = 1, 2, 3, 4; and the vertex amplitude

Vαnmin
jnm

=
(∏

n

δiniBC

)( ∏

n 6=m
δαnmαmn

)
B(jnm), (3.64)

where the index n = 1, ..., 5 labels the five legs of the five-valent vertex; while the index m 6= n
labels the four indices on each leg.

A Feynman graph has vertices v and propagators that we call “edges" and denote e. A
spinfoams σ is obtained from a Feynman graph by: (i) selecting one term in each sum over
representations and one term in each sum over permutations (eq. (3.63)), in the sum that gives
the amplitude of the graph; (ii) contracting the closed sequences of δαnαm in the propagators,
vertices and boundary spin-network function; and (iii) associating a face f , colored by the
corresponding representation jf , to each such sequence of propagators and boundary links.
See [2] for more details. We obtain in this manner the amplitude

W [s] =
1

Z

∑

σ,∂σ=s

∏

f∈σ
dim(jf )

∏

v∈σ
λB(jvnm)

(∏

n∈s
〈in|iBC〉

)
. (3.65)

Here σ are spinfoams with vertices v dual to a four–simplex, bounded the spin network s. f
are the faces of σ; the spins jvnm label the representations associated to the ten faces adjacent
to the vertex v, where n 6= m = 1, ..., 5; dim(j) is the dimension of the representation j. The
colors of a faces f of σ bounded by a link l of s is restricted to match the color of the link:
jf = jl. The expression is written for arbitrary boundary spin-network intertwiners in: the
scalar product is in the intertwiner space and derives from the fact that the vertex amplitude
projects on the sole Barrett-Crane intertwiner.

The sum (3.65) can be written as a power series in λ

W [s] =
∞∑

k=0

λk Wk[s] (3.66)

with

Wk[s] =
1

Z

∑

σk ,∂σk=s

∏

f∈σ
dim(jf )

∏

v∈σ
B(jvnm)

(∏

n∈s
〈in|iBC〉

)
, (3.67)

where σk is a spinfoam with k vertices.
Finally, recall that the last expression can be interpreted as the quantum gravity boundary

amplitude associated to the boundary state defined by the spin network s [2]. The individual
spin foams σ appearing in the sum can be interpreted as (discretized) spacetimes bounded by
a 3-geometry determined by s. That is, (3.65) can be interpreted as a concrete definition of
the formal functional integral

Ψ[q] =

∫

∂g=q
Dg eiSGR[g] (3.68)

where q is a 3-geometry and the integral of the exponent of the general relativity action is over
the 4-geometries g bounded by q. Indeed, (3.65) can also be derived from a discretization of
a suitable formulation of this functional integral. We now turn to the physical interpretation
of this boundary 3-geometry.
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Table 3.1: Relation between a triangulation and its dual, in the and 4d bulk and in its
3d boundary. In parenthesis: adjacent elements. In italic, the two-complex and the spin-
network’s graph. The spinfoam is σ = (∆∗

4, jf , ie). The spin network is s = (∆∗
3, jl, in).

∆4 ∆∗

4
coloring

4-simplex vertex (5 edg, 10 fac)

tetrahedron edge (4 faces) ie
triangle face jf
segment
point

∆3 ∆∗

3
coloring

tetrahedron node (4 links) in = ie
triangle link jl = jf
segment
point

3.2.2 Relation with geometry

In order to select a physically relevant boundary state Ψq[s], we need a geometrical in-
terpretation of the boundary spin networks s. To this aim, recall that the spinfoam model
can be obtained from a discretization of general relativity on a triangulated spacetime. The
discretization can be obtained as follows.

We associate an R4 vector eIs to each segment s of the triangulation. The relation with
the gravitational field can be thought as follows. Introduce 4d coordinates xµ and represent
the gravitational field by means of the one-form tetrad field eI(x) = eIµ(x)dx

µ (related to

Einstein’s metric by gµν(x) = eIµ(x)eIµ(x)). Assuming that the triangulation is fine enough

for this field to be approximately constant on a tetrahedron, with constant value eIµ, associate

the 4d vector eIs = eIµ∆x
µ
s to the segment s, where ∆xµs is the coordinate difference between

the initial and final extremes of s. Next, to each triangle t of the triangulation, associate the
bivector (that is, the object with two antisymmetric indices)

BIJ
t = eIse

J
s′ − eJs e

I
s′ , (3.69)

where s and s′ are two sides of the triangle. (As far as orientation is kept consistent, the choice
of the sides does not affect the definition of BIJ

t ). BIJ
t is a discretization of the Plebanski

two-form BIJ = eI ∧ eJ . The quantum theory is then formally obtained by choosing the
quantities BIJ

t as basic variables, and identifying them with SO(4) generators JIJt associated
to each triangle of the triangulation, or, equivalently, to each face of the corresponding dual
spinfoam. (For a compairaison with Regge calculus, see [131].)

The geometry is then easily reconstructed using the SO(4) Casimirs. In particular, the
peculiar form (3.69) implies immediately that

ǫIJKLB
IJ
t BKL

t′ = 0 (3.70)

any time t = t′ or t and t′ share an edge. Accordingly, the pseudo–scalar Casimir C̃ =
ǫIJKLJ

IJ
t JKLt = 0 is required to vanish. This determines the restriction to the simple repre-

sentations, which are precisely the ones for which C̃ vanishes.
The scalar Casimir C = 1

2J
IJ
t JtIJ = 1

2B
IJ
t BtIJ , on the other hand, is easily recognized,

using again (3.69), as the square of the area At of the triangle t. Indeed, calling αss′ the angle
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between s and s′, we have:

C =
1

2
BIJ
t BtIJ =

1

2
(eIse

J
s′ − eJs e

I
s′)(esIes′J − esJes′I)

= es · es es′ · es′ − (es · es′)2 = |es|2| es′ |2 (1 − cos2 αss′)

= (|es| |es′ | sinαss′)
2 = A2

t . (3.71)

For simple representations, the value of C is j(j + 1). The quantization of the geometrical
area, with j(j+1) eigenvalues is of course a key result of LQG, reappearing here in the context
of the spinfoam models. It is the LQG result that assures us that we can interpret it as a
physical discretization and not an artifact of the triangulation of spacetime.

An explanation about units is needed. BIJ
t has units of a length square, hence C has units

[L]4. In the quantum theory, BIJ
t is identified with JIJt and C has discrete eigenvalues. The

identification requires evidently a scale to be fixed. This scale determines the Planck constant.
A posteriori, we can simply reconstruct the correct scale by using again LQG, where the area
eigenvalues are

Aj =
8πγ~G

c3

√
j(j + 1) (3.72)

where γ is the Immirzi parameter, which we fix to unit below, together with the speed of light
c. This fixes the scale of the discretization (that is, it fixes the “size" of the compact SO(4)
group in physical units).

Next, consider two triangles sharing a side. Say the triangle t has two sides: the segments
s1 and s2 while the triangle t′ has two sides s1 and s3. Consider the action of the SO(4)
generators on the tensor product of the representation spaces associated to the two (faces
dual to the two) triangles. This is given by the operators JIJtt′ = JIJt + JIJt′ (we omit the
tensor with the identity operator in the notation)). Equation (3.70), for t 6= t′ implies, with
simple algebra, that the pseudo–scalar Casimir C̃tt′ = ǫIJKLJ

IJ
tt′ J

KL
tt′ vanishes as well. This

implies that the tensor product of the two representations associated with the triangles t and
t′ is –again– only allowed to contain simple representations. Let t and t′ be two of the four
triangles of a given tetrahedron. In the dual picture, they correspond to two faces joining
along an edge e of the spinfoam. Then C̃tt′ is the pseudo–scalar Casimir of the virtual link
that defines the intertwiner associated to this edge, under the pairing that pairs t and t′. The
vanishing of C̃tt′ implies that this virtual link, as well, is labeled by a simple representation. In
the model we are considering all internal edges are labeled by the Barrett-Crane intertwiner,
whose key property is precisely that it is a linear combination of virtual links with simple
representations for any possible pairing of the four adjacent faces, thus consistently with
C̃tt′ = 0. This is in fact la raison d’être of the Barrett–Crane intertwiner.

Let us now consider the boundary s of the spinfoam σ. A face f that cuts the boundary,
labelled by a simple representation jf , defines a link l of the boundary spin network s, equally
colored with a representation jl = jf . As we have seen, the quantity jf (jf + 1) is to be
interpreted as the area of the triangle dual to the face f . This triangle lies on the boundary
and is cut by the link l.

Notice that we have precisely the LQG result that the area of a triangle is determined by
the spin associated to the link of the spin network that cuts it. We can therefore identify in
a natural way the boundary spin networks with the spin network states of canonical LQG.
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Recall that in LQG a basis of states of the quantum geometry of a 3d surface is labelled by
abstract spin networks s. Since our aim here is not to fix the details of the physically correct
quantum theory of gravity, but only to develop a general relativistic quantum formalism, we
will do so in the following, disregarding some open issues raised by this identification (see
below).

The interpretation of the intertwiners at the boundaries is more delicate. Consider an
edge e of σ that cuts the boundary at a node n of s. The node n, or the edge e are dual to a
tetrahedron sitting on a boundary. Let t and t′ be two faces of this tetrahedron, and say, as
above, that the triangle t has two sides s1 and s2 while the triangle t′ has two sides s1 and s3.
Consider now the scalar Casimir Ctt′ = JIJtt′ Jtt′ IJ on the tensor product of the representation
spaces of the two triangles. Straightforward algebra shows that

Ctt′ = |Ct| + |Ct′ | + 2 ~nt · ~nt′ . (3.73)

where nIt = ǫIJKLB
JK
t tL is and tL is the normalized vector normal to t and t′ (that is, to

s1, s2 and s3). Finally, ~nt ·~nt′ = AtAt′ cosαtt′ , where αtt′ is the dihedral angle between t and t′.
This provides the interpretation of the color of a virtual link in the intertwiner associated to
the node, in the corresponding decomposition: if the virtual link of this intertwiner is simple,
with spin jtt′ , we have

jtt′(jtt′ + 1) = A2
t +A2

t′ +AtAt′ cosαtt′ . (3.74)

That is, the color of the virtual link is a quantum number determining the dihedral angle
cosαtt′ between the triangles t and t′; or, in the dual picture, the angle between the two
corresponding links that join at n.

Once more, this result is exactly the same in 3d LQG. In this case, to each link is associated
an SU(2) generator J i, i = 1, 2, 3, that can be identified with the SU(2) valued two-form Ei

integrated on the dual triangle. The color of the link is the quantum number of the SU(2)
Casimir C = (J it + J it′)(Jt i + Jt′ i). Expanding, we have c = |Jt|2 + |Jt′ |2 + 2J itJt′ i or

jtt′(jtt′ + 1) = A2
t +A2

t′ +AtAt′ cosαtt′ . (3.75)

where jtt′ is the quantum number labelling the eigenspaces of C. We are therefore lead to
identify the intertwiner ijtt′ in the boundary spin network, with the intertwiner ijtt′ in the
LQG spinnetwork states, since they represent the same physical quantity.

In fact, there is a key difference between (3.74) and (3.75). In (3.74), jtt′ is the quantum
number labelling a simple SO(4) representation (recall SO(4) irreducibles are labelled by
pairs of spins, which are equal for simple representations); while in (3.75), jtt′ is the single
spin labelling an SU(2) representation. Some potential difficulties raised by this difference are
discussed in Appendix E. As argued in the Appendix, if we disregard these difficulties and we
identify the intertwiner ijtt′ with the LQG intertwiner ijtt′ , we obtain simply and consistently

〈ijtt′ |iBC〉 = (2jtt′ + 1) = dim(jtt′). (3.76)

The details of this interpretation as we will see in the next chapter will lead to some concrete
problems in the calculation of the not diagonal terms of the propagator with the BC vertex.

This completes the geometrical interpretation of all quantities appearing in the spinfoam
model.
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3.2.3 Graviton operator

The next ingredient we need is the graviton field operator. This is the fluctuation of the
metric operator over the flat metric. At every point of the surface Σ we chose a local frame
in which the surface is locally stationary: three coordinates xa with a = 1, 2, 3 coordinatize
Σ locally, and the metric is in the “temporal" gauge: g44 = 1, g4a = 0. To the first relevant
order, we define hab(~x) = gab(~x)− δab. It is convenient to consider here the fluctuation of the
densitized metric operator

h̃ab(~x) = (det g)gab(~x) − δab = Eai(~x)Ebi(~x) − δab. (3.77)

In the linear theory, the propagators of the two agree because of the trace-free condition. To
determine its action, we can equally use the geometrical interpretation discussed above, or,
directly, LQG. We study the action of this operator on a boundary spin network state:

Eai(~x)Ebi(~x)|s〉. (3.78)

Let us identify the point ~x with one of the nodes n of the boundary spin network s. Equiva-
lently, with (the center of) one of the tetrahedra of the triangulation. Four links emerge from
this vertex. Say these are eI , I = 1, 2, 3, 4. They are dual to the faces of the corresponding
tetrahedron. Let nIa be the oriented normal to this face, defined as the vector product of two
sides. Then E(n)Ii = Eai(~x)nIa can be identified with the action of the an SU(2) generator J i

on the edge eI . We have then immediately that the diagonal terms define diagonal operators

EIi(n)EIi (n)|s〉 = (8π~G)2 ja(ja + 1)|s〉 (3.79)

where ja is the spin of the link in the direction a. The non–diagonal terms, will be considered
in the next chapters.

3.2.4 The boundary vacuum state

As discussed in Section 3.1.4, the propagator will depend on a geometry q of the boundary
surface Σ. Let us begin by choosing this 3d geometry. Let q be isomorphic to the intrinsic
and extrinsic geometry of the boundary Σq of a 4d (metric) ball in Euclidean R4 with given
radius, much larger than the Planck length. We want to construct the state Ψq[s]. (On
the vacuum states in LQG, see [7, 132, 133, 134, 135, 136].) Below we shall only need the
value of Ψq[s] for the spinnetworks s = (Γ, jl, in) defined on graphs Γ which are dual to 3d
triangulations ∆. We identify each such ∆ with a fixed triangulation of Σq.

We assume here for simplicity that, for each graph, Ψq[s] is given by a function of the
spins of s which is non-vanishing only on a single intertwiner on each node, which prjects on
the iBC intertwiner under (3.76). Note that this condition has to be relaxed if we want to
deal with the non diagonal components of the propagator.

The area Al of the triangle tl of ∆, dual to the link l, determines background values jl
(0)

of the spins jl, via

Al = 8π~G
√
jl

(0)(jl
(0) + 1). (3.80)

We take these background values large with respect to the Planck length, and we will later
consider only the dominant terms in 1/jl

(0).
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We want a state Ψq[s] = Ψq(Γ, j), where j = {jl}, to be peaked on these background
values. The simplest possibility is to choose a Gaussian peaked on these values, for every
graph Γ

Ψq[s] = CΓ exp

{
−1

2

∑

ll′

αll′
jl − jl

(0)

(jl
(0))

k
2

jl′ − jl′
(0)

(jl′
(0))

k
2

+ i
∑

l

Φ
(0)
l jl

}
(3.81)

where l runs on links of s, αll′ is a given numerical matrix, k ∈ (0, 2) (see below), and CΓ is
a graph–dependent normalization factor for the gaussian.

The phase factors in (3.81) play an important role [15]. As we know from elementary
quantum mechanics, the phase of a semiclassical state determines where the state is peaked
in the conjugate variables, here the variables conjugate to the spins jl. Recall the form of the
Regge action for one simplex, SRegge =

∑
l Φl(jl)jl, where Φl(jl) are the dihedral angles at the

triangles2, which are function of the areas themselves and recall that ∂SRegge/∂jl = Φl. It is
then easy to see that these dihedral angles are precisely the variables conjugate to the spins.
Notice that they code the extrinsic geometry of the boundary surface, and in GR the extrinsic

curvature is indeed the variable conjugate to the 3-metric. Thus, Φ
(0)
l are determined by the

dihedral angles of the triangulation ∆.
Concerning the quadratic term in (3.81) we have put the (1/jl

(0))k/2 factors in evidence
because we want a semiclassical state for which the relative uncertainties of area and angle
become small when all the areas are large, namely in the large distance limit in which all the
spins jl

(0) are of the order of a large jL. That is, we demand that

∆A

A
→ 0 and

∆Φ

Φ
→ 0, when jl

(0) ∼ jL → ∞. (3.82)

Assuming that the matrix elements α(l)(l′) ∼ α do not scale with jL, the fluctuations deter-
mined by the gaussian state (3.81) are of the order

∆j ∼ j
k/2
L√
α
, ∆Φ ∼

√
α

j
k/2
L

. (3.83)

Therefore, since angles do not scale,

∆A

A
∼ ∆j

j
∼ j

k/2−1
L√
α

, ∆Φ ∼
√
α

j
k/2
L

. (3.84)

(3.82) and (3.84) restricts to k ∈ (0, 2). From now on, we choose k = 1. That is

Ψq[s] = CΓ exp

{
−1

2

∑

ll′

αll′
jl − jl

(0)

√
jl

(0)

jl′ − jl′
(0)

√
jl′

(0)
+ i
∑

l

Φ
(0)
l jl

}
. (3.85)

2These are angles between the normals to the tetrahedra, and should not be confused with the angles
between the normals to the faces, which are related to the intertwiners, as we discussed in Section 3.2.2



3.2 Graviton propagator: definition and ingredients 105

The need for this dependence on the scale of the background of the covariance matrix of
the vacuum state was been pointed out in the 3d context [119] and by John Baez in the 4d
case, following numerical investigation by Dan Christensen and Greg Egan.

A strong constraint on the graph–dependent constants CΓ and matrix αll′ is given by
the WdW condition (3.54), which requires the state to satisfy the dynamics. The physical
interpretation of the matrix αll′ is rather obvious: it reflects the vacuum correlations, and is the
analog of the covariance matrix in the exponent of the vacuum functional in the conventional
Schrödinger representation of quantum field theory.

3.2.5 The 10j symbol and its derivatives

Baez, Christensen and Egan have performed in [100] a detailed numerical analysis, which
has lead them to conjecture that if we rescale all spins by a factor λ, then for large λ the 10j
symbol can be expressed as a sum of two terms,

B(jij) =
∑

σ

P (σ) cos
[
SRegge(σ) + k

π

4

]
+D(jik). (3.86)

P (σ) is a slowly varying factor, that grows as λ−9/2 when scaling the spins by λ. To understand
this formula, consider a 4-simplex in R4, with triangles tij having areas Aij =

√
jij(jij + 1).

In general, there may be several distinct 4-simplices with triangles having these areas: let’s
label the distinct 4-simplices with a discrete label σ. Each triangle tij separates two bound-
ary tetrahedra τi and τj of the 4-simplex. Each tetrahedron τi defines a normal vector ni,
normalized and normal to all sides of the tetrahedron. The angle Φij between the normals
ni and nj is the dihedral angle between the tetrahedra τi and τj. (The triangles tij are in
one-to-one correspondence with the links l of the boundary spin network, hence the notation
Φij is consistent with the notation Φl used above.) For a fixed σ, we can compute the dihedral
angles Φij as a function Φij(jij), of the areas Aij , hence of the 10 spins jij . The Regge action
associated to the 10 spins is

SRegge(σ) =
∑

ij

jij Φij(jij). (3.87)

It is characterized by the fact that

∂SRegge(σ)

∂jij
= Φij(jij); (3.88)

that is, the derivative with respect to the jij in the angles does not contribute to the total
derivative (this is the discrete analog to the fact that when we vary the Einstein-Hilbert
action with respect to the metric, the metric variation of the Christoffel symbols does not
contribute.)

The form (3.86) for the 10j symbol has later been confirmed by detailed analytical cal-
culations by Barrett and Steele [102] and by Freidel and Louapre [101]. As first noted in
[99], the first term in (3.86) is very good news for quantum gravity: it indicates that the 10j
symbols are indeed related to 4d general relativity.
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On the other hand, to understand the origin of the second term D(jik) in (3.86), recall
that the 10j symbols can be expressed (Section 2.6.5) in the form

B(jij) =

∫

(S3)5
dyi

∏

i<j

sin((2jij + 1)Φij)

sin(Φij)
. (3.89)

Here Φij is the angle between the two unit vectors yi and yj. The large j behavior of this
expression has been evaluated in [102] and [101] using a stationary phase approximation. It
turns out that the integration variables yi admit a very interesting geometrical interpretation
as the normals to the tetrahedra yi = ni. The stationary points of the integral can be
interpreted as different geometrical configurations. Some stationary points are given by non
degenerate tetrahedra. These yield the Regge term in (3.86). But there are also contributions
to the integral coming when two of the yi are parallel, or more in general when the linear
span of the five yi is of dimension smaller than four. These degenerate contributions yield the
D(jik) term.

The bad news is that this degenerate term strongly dominates for large j. This fact casts a
thick shadow of doubt over hope that a Barrett-Crane spinfoam model could yield the correct
general relativistic dynamics. In fact, the discovery of the degenerate contributions is one of
the sources of a recent decrease in interest in these models. However, light comes back into
the shadow, in consideration of the results of the previous section. In fact, observe that what
enters in the expression we have found in the previous section is not the 10j symbol itself, but
rather a second derivative of the 10j symbol, because of the field insertions in (3.55). The
fact that the degenerate term D(jij) dominates over the Regge term at large j does not imply
that its second derivative dominates as well.

A hint that this hope may be correct comes from the following naive argument. Degenerate
contributions arise when the denominator in the integrand of (3.89) vanishes. The formal
second derivative with respect to jij , considered as a continuous variable, is

∂2B(jij)

∂j2kl
= −4

∫

(S3)5
dyi Φkl

∏

i<j

sin((2jij + 1)Φij)

sin(Φij)
, (3.90)

which decreases the order of the divergence in Φij = 0. A better version of this argument is
the following. The diagonal term of the discrete second derivative is B(j+1, ...)− 2B(j, ...)+
B(j − 1, ...). Using the trigonometric identity:

sin((a+ 2)t) − 2 sin(at) + sin((a− 2)t) = −4 sin(t)2 sin(at) (3.91)

we see that the effect of taking the diagonal discrete second derivative is to multiply the
relevant kernel by −4 sin(Φ)2. This should then eliminate all the fully degenerate points from
the integral. (The elimination of the fully degenerate points does not necessarily mean that
the only remaining contribution is the Regge one, since, as shown in [102], there is a complex
zoology of other degenerate contributions to the integral)
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3.3 Order zero

Let us begin by evaluating the general covariant 2-point function to order zero in λ. To
this order

W0[s] = Z−1
0

∫
Dφ fs(φ) e−

∫
φ2
. (3.92)

The Wick expansion of this integral gives non–vanishing contributions for all s with an even
number of nodes. Since there are no vertices, each of these contributions is simply given by
products of face contributions, namely products of dimensions of representations. The 2-point
function (3.53) reads

Gabcd
q (x,y) =

∑

s

W0[s] ĥ
ab(x)ĥcd(y)Ψq[s]. (3.93)

Inserting (3.85), we have

Gabcd
q (x,y) =

∑

s

W0[s] ĥ
ab(x)ĥcd(y) CΓ exp

{
−1

2

∑

ll′

αll′
jl − jl

(0)

√
jl

(0)

jl′ − jl′
(0)

√
jl′

(0)
+ i
∑

l

Φ
(0)
l jl

}
.

(3.94)
We are interested in this expression for large j(0)l . In this regime, the gaussian effectively
restricts the sum over (a large region of) spins of order j(0)l . Over this region, the phase factor
fluctuates widely, and suppresses the sum, unless it is compensated by a similar phase factor.
But W0[s] contains only powers of jl’s, and cannot provide this compensation. Hence we do
not expect a contribution of zero order to the sum. The only exception can be the null spin
network s = ∅, which gives W [∅] = 1 because of the normalization. Hence, to order zero

Gabcd
q (x,y) = W0[∅] ĥab(x)ĥcd(y) C∅. (3.95)

But is reasonable to assume that the semiclassical boundary state on a macroscopic geometry
q has vanishing component on s = ∅, whose interpretation is that of a quantum state without
any volume. Hence we take C∅ = 0, and we conclude that the 2-point function has no zero
order component in λ.

This result has a compelling geometrical interpretation. The sum over spinfoams can
be interpreted as a sum over 4-geometries. The boundary state Ψq[s] describes a boundary
geometry which has a nontrivial extrinsic curvature, described by the phase of the state. In
the large distance limit, we expect semiclassical histories to dominate the path integral. These
must be close to a classical solution of the equations of motion, fitting the boundary data.
Because of the extrinsic curvature of the boundary data, it is necessary that the internal
geometry has non vanishing 4-volume. A round soccer ball must have volume inside. But
the four-volume of a spinfoam is given by its vertices, which are dual to the four-simplices
of the triangulation. Absence of vertices means absence of four-volume. It is therefore to be
expected that the zero order contribution, which has no vertices, and therefore zero volume,
is suppressed by the phases of the boundary state, representing the extrinsic curvature.

Let us therefore go over to to the first order in λ.
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3.4 First order: the 4d nutshell

Consider a spinfoam σ, dual to a single 4-simplex. Its the boundary spinnetwork has five
nodes, connected by 10 links, forming the five-valent graph Γ5. That is
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(3.96)

The boundary function fs(φ) determined by this spin network is

fs(φ) =
∑

αnm

φα12α13α14i1
j12j13j14j15

φα21α23α24i2
j21j23j24j25

φα31α32α34i3
j31j32j34j35

φα12α13α14i4
j41j42j43j45

φα51α52α53i5
j51j52j53j54

(3.97)

where αnm ≡ αmn. This can be compactly written as

fs(φ) =
∑

αnm

∏

n=1,5

φαnmin
jnm

(3.98)

This is a monomial of order five in the field, and is an observable in the group field theory.
Its expectation value is given by (3.60). We consider the perturbative expansion (3.63). At
order λ, the only term remaining is

W [s] =
λ

5!

∫
Dφ fs(φ)

(∫
φ5

)
e−

∫
φ2
. (3.99)

The Wick expansion of this integral gives one vertex v and five propagators

W ′[s] =
λ

5!

( ∏

n=1,5

Pjnm

αnmin
j′nm

α′
nmi

′
n

)
Vj

′
nm

α′
nmi

′
n
, (3.100)

where repeated representation indices are summed over. This expression still contains many
terms due to the summation over the permutations in the propagators. Recall that we can
give the geometrical meaning of a face to each closed sequence of deltas in this expression.
Each face contributes with a factor equal to the dimension of the representation.

The dominant term for large representations is therefore the one with the largest number
of surfaces. A short reflection will convince the reader that this is the term in which the
surfaces correspond precisely at the faces of the dual of a four-simplex. That is, the dominant
term of W [s] to order λ is

W [s] =
λ

5!

(∏

n

〈in|iBC〉
)(∏

n<m

dim(jnm)

)
B(junm). (3.101)
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Since we have chosen boundary states peaked on an intertwiner that projects on iBC, this
reduces to

W [s] =
λ

5!

(∏

n<m

dim(jnm)

)
B(junm). (3.102)

This is the dominant term of the connected component of the amplitude for the boundary
spin network considered, in the limit of large representations. This is the expression we will
use within equation (3.53).

The value of Ψq[s] on the spin-networks s = (Γ5, jnm) (here n,m = 1, ..., 5) can be
determined by triangulating Σq with the 3d triangulation formed by the boundary of a regular
four–simplex of side L. The area of the triangles is AL =

√
3L2/4. Then (3.80) implies that

j
(0)
nm = jL where 8π~G

√
jL(jL + 1) = AL. In the large L limit we take jL = 8π~GAL. The

dihedral angles Φ
(0)
nm = Φ of a regular tetrahedron are given by cos(Φ) = −1/4. Therefore

(3.85) becomes

Ψq[s] = C5 exp



− 1

2jL

∑

(nm)(pq)

α(nm)(pq) (jnm − jL)(jpq − jL) + iΦ
∑

(n,m)

jnm



 . (3.103)

To respect the symmetry of the sphere, the covariance matrix α(nm)(pq) of the gaussian can
depend only on three numbers

α(nm)(pq) = α1 a(nm)(pq) + α2 δ(nm)(pq) + α3 b(nm)(pq) (3.104)

where δ(nm)(pq) = 1 if (nm) = (pq), a(nm)(pq) = 1 if just two indices are the same, and
b(nm)(pq) = 1 if all four indices are different, and in all other cases these quantities vanish. We
will use this notation, namely α(12)(13) = α1, α(12)(12) = α2, α(12)(34) = α3 repeatedly.

The component of the state (3.85) that matters at first order in λ is thus completely
determined up to the three numbers α1, α2, α3, and the constant C5. This amounts to select
a vacuum state which is a coherent state peaked both on the background values of the spins
(the intrinsic geometry of the boundary surface), and on the background values of the angles
(the intrinsic geometry of the boundary surface). See [121] for a similar construction in 3d.

For clarity, let us stress that we are not assuming that the boundary state has components
only on the five-valent graph considered. What we are saying is that only this component of
the boundary state enters the expansion to first order in λ that we are considering.

3.4.1 First order graviton propagator

We have now all the elements needed to compute the expression (3.53). Inserting (3.102),
(3.103) and (3.79) in (3.53) we obtain a completely well–defined expression for the propagator.
As a first step towards the analysis of the resulting expression, we choose the points x and
y to be two distinct nodes of the boundary spinnetwork. Equivalently, these can be thought
as points located, say, in the centers of the corresponding dual tetrahedra: in the theory, of
course, position is not determined with better precision that the individual “atoms of spaces”
described by the individual tetrahedra. We consider the ten by ten matrix G̃(L) formed by
the “diagonal” components of the propagator

G̃(L)(ij)(kl) ≡ Gabcd
q (x, y) n(ij)

a n(ij)

b n(kl)
c n(kl)

d , (3.105)



3.4 First order: the 4d nutshell 110

where n(ij)
a is the normal to the triangle tij. Since all ten triangles have the same background

area, |n(ij)| = |n| = 8π~GjL for large jL, we can write G(L) ≡ G̃(L)/|n|4 = G̃(L)/(8π~GjL)4.
By symmetry

G(L)(ij)(kl) = G1(L) a(ij)(kl) + G2(L) δ(ij)(kl) + G3(L) b(ij)(kl). (3.106)

This expression depends of course on L, which determines the distance between the points
considered and the angles between the directions considered.

Before computing this quantity in the background independent theory, let us compute it in
conventional linearized quantum general relativity, for later comparison. There are two ways
of making the comparison. One is to compare the propagator obtained in the background
independent calculation with the linearized–theory propagator Gabcdlinearized(x, y), where x and
y are in the center of the corresponding tetrahedron. The other is to compare it with the
quantity obtained by integrating Gabcdlinearized(x, y) in x and y, over the entire tetrahedron that
they represent. The difference is a numerical factor that is not relevant for us, and we
choose here the first option. In a flat background metric, two points in the center of adjacent
tetrahedra, in a surface with the boundary geometry chosen, are at a distance |x− y|q = L/4.
If the four indices i, j, k, l are all distinct, it is easy to see that n(ij) and n(kl) are orthogonal;
then the propagator is easily computed to be

Glinearized
(ij)(kl) (L) = i

8π~G

4π2

1

|x− y|2q
= i

32~G

πL2
(3.107)

On the other hand, the components Glinearized
(ij)(ij) and Glinearized

(ij)(ik) are vacuum expectation values
at fixed “time": the first is the fluctuation of the area square of a triangle, and the second is
the vacuum correlation between the fluctuations of the area squares of two adjacent triangles
in the same tetrahedron. These are also proportional to L−2. We can therefore write

Glinearized(L) =
32~G

πL2
W (3.108)

where W is a numerical matrix, with the same symmetry structure as in (3.106). For instance,
W(12)(34) = i as in (3.107), while the others projections are easily obtained from the linear
theory.

We now compute the matrix G(L) in the full theory. Since this is a diagonal term in the
propagator, we can use (3.79) and (3.53) reads

G(L)(ij)(kl) =
1

8π~Gj4L

∑

s

W [s] ((8π~G)2jij(jij + 1)− |n|2)((8π~G)2jkl(jkl + 1)− |ñ|2)Ψq[s].

(3.109)
The terms |n|2 come from the background δab and are equal to the square of the area of the
face, namely to (8π~GjL)2, for large j. Inserting (3.102) and (3.103) we have, to first order
in λ

G(L)(ij)(kl) =
λ

5!

1

j4L

∑

jnm

(∏

n<m

dim(jnm)

)
(jij(jij + 1) − j2L) (jkl(jkl + 1) − j2L)

B(jnm) C5 exp

{
− 1

2jL
α(nm)(pq)(jnm − jL)(jpq − jL) + iΦ

∑

n<m

jnm

}
,(3.110)
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where we have used the Einstein convention in the exponent. Since we have assumed that jL
is large and the vacuum exponential peaks the sum around jL, we can discard the +1 in the
parenthesis. We expand the summand in the fluctuations δjij = (jij − jL), and keep only the
lowest term, assuming that the gaussian suppress the higher terms. This gives

G(L)(ij)(kl) =
λ

5!

4

j2L

∑

jnm

(∏

n<m

dim(jnm)

)
δjnm δpq

B(jnm) C5 exp

{
− 1

2jL
α(nm)(pq) δjnm δpq + iΦ

∑

n<m

jnm

}
. (3.111)

We assume that the dimj terms vary slowly over the range where the gaussian is peaked, and
can be considered constant. Let us absorb C5 and these constants in a factor N5 .

G(L)(ij)(kl) = N5
4

j2L

∑

jnm

δjnm δpq B(jnm) exp

{
− 1

2jL
α(nm)(pq) δjnm δpq + iΦ

∑

n<m

jnm

}
.

(3.112)
We change summation variable from the spins to the fluctuation of the spins

G(L)(ij)(kl) = N5
4

j2L

∑

δjnm

δjij δjkl B(jL + δjnm) e
− 1

2jL
α(nm)(pq)δjnmδjpq+iΦ

∑
nm jnm . (3.113)

The sum can be approximated with a gaussian integral. The rapidly oscillating term exp iΦ
∑

nm jnm
tends to suppress the sum. To evaluate it, we need the explicit form of B(jL + δjnm) in the
large j regime, discussed above. Since the sum (3.113) is peaked around jnm = jL, let us
expand the 10j symbol around this point. To second order around jnm = jL, the Regge action
reads

SRegge(jnm) = Φ
∑

nm

jnm +
1

2
G(mn)(pq)δjmnδjpq, (3.114)

where, introducing the “discrete derivative" ∂f(j)
∂j ≡ f(j + 1/2) − f(j), we have defined

G(mn)(pq) =
∂Φmn(jrs)

∂jpq

∣∣∣∣
jrs=jL

. (3.115)

Thus, around jnm = jL, (3.86) gives

B(jnm) = PτR

[
ei(Φ

∑
nm jnm+ 1

2
G(nm)(pq)δjnmδjpq+ π

4
)+ e−i(Φ

∑
nm jnm+ 1

2
G(nm)(pq)δjnmδjpq+ π

4
)
]
+D(jnm)

(3.116)
where τR is the regular four simplex (for which kτR = 1), which is the only non-degenerate
four-simplex with these areas [100].

The key observation is now the fact that the rapidly oscillating exp{iΦ∑nm jnm} term
in the second term of this expression cancels with the rapidly oscillating term in (3.113).
Therefore the second term of the last expression contributes in a non-negligible way to the
sum (3.113). The first term is suppressed (by the rapidly oscillating factor exp 2iΦ

∑
nm jnm)

and it is reasonable to expect that so is the degenerate term D(jnm) because this corresponds
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to 4-simplices with different angles, and should be dominated by different frequencies. This is
the cancellation of the phases that we mentioned in Section 3.1. Therefore (3.113) becomes,
keeping only the first term

G(L)(ij)(kl) = N ′
5

4

j2L

∑

δjnm

δjij δjkl e
− i

2
G(nm)(pq)δjnmδjpqe

− 1
2jL

α(nm)(pq)δjnmδjpq , (3.117)

where we have absorbed some constant factors in N ′
5. This factor, which contain the constant

C5 of the state, is determined by the WdW condition (3.54). This is simply given by the same
expression without the field operator insertions, namely

1 = N ′
5

∑

δjnm

e−
i
2
G(nm)(pq)δjnmδjpqe

− 1
2jL

α(nm)(pq)δjnmδjpq . (3.118)

Thus using the form (3.55) for the two-point function, we have

G(L)(ij)(kl) =
4

j2L

∑
δjnm

δjij δjkl e

(
− i

2
G(nm)(pq)− 1

2jL
α(nm)(pq)

)
δjnmδjpq

∑
δjnm

e

(
− i

2
G(nm)(pq)− 1

2jL
α(nm)(pq)

)
δjnmδjpq

. (3.119)

This expression for the 2-point function has the same structure as equation (3.10). Approxi-
mating the sum by a gaussian integral gives

G(L) =
4

j2L

(
j−1
L α+ iG

)−1
. (3.120)

We only need to evaluate the derivatives (3.115) of the angles with respect to the spins.
4d geometry gives (see the Appendix A of [16])

G(nm)(pq) = 8π~G
∂Φnm

∂Apq
=

8π~G√
5L2

(
7

2
a(nm)(pq) − 9δ(nm)(pq) − 4b(nm)(pq)

)
≡ 8π~G

L2
K(nm)(pq).

(3.121)
The ten by ten matrix K has purely numerical entries. From the relation between areas and
spins, we have jL =

√
3L2/(32π~G). The jL factor that combines with the one in front of

α in (3.120) to give the crucial overall 1/L2 dependence of the propagator. Finally (3.120)
reads

G(L) =
32π~G√
3/4 L2

(
α+ i

√
3/4 K

)−1
. (3.122)

This is the value (3.107-3.108) of the propagator computed from the linearized theory, with
the correct 1/|x − y|2 spacetime dependence. The three numerical coefficients of the matrix
α are completely determined by α = 4π2/

√
3 W−1 − i

√
3/4 K.

We see that the first order term (but the same is true for the second order, see [16])
in the expansion in λ of the diagonal components of the graviton propagator, in a large
distance regime, calculated starting from a background–independent formulation of quantum
gravity has the 1/|x− y|2 dependence on the distance expected from the linearized quantum
theory. Moreover it has the expected dependence on the physical constants, and the numerical
proportionality constants can be fixed as a condition on the semiclassical boundary state. The
main tool we have used is the definition of general covariant n-point function, given in (3.49).
Now we are ready to look at the not diagonal terms to obtain the complete propagator from
LQG



Chapter 4

The complete LQG propagator:
Difficulties with the Barrett-Crane
vertex

In this chapter we present the result of the paper [17]. We want to extend the result of
the previous chapter based on [15] (at first order) and [16] (to higher order) starting from the
background-independent theory and using a suitable expansion. In fact even if the result of
the previous chapter has been extended to the three-dimensional theory in [119] and other
improvements of the ingredients to use in the calculation have been studied (an improved form
of the boundary states has been considered in [137]; and the exploration of some Planck-length
corrections to the propagator of the linear theory has begun in [120] see also [139, 138]. Nobody
has yet verified if Rovelli’ strategy to compute background independent n-point function is
able to reproduce the entire tensorial structure of the graviton propagator. In this chapter we
complete the calculation computing the nondiagonal terms of Gabcd(x, y), those where a 6= b
or c 6= d, and therefore derive the full tensorial structure of the propagator. The nondiagonal
terms are important because they involve the intertwiners of the spin networks. Avoiding the
complications given by the intertwiners’ algebra was indeed the rational behind the relative
simplicity of the diagonal terms.

The dependence of the vertex from the intertwiners is a crucial aspect of the definition of
the quantum dynamics. The particular version of the dynamics used in [15] and [16], indeed,
is defined by the Barrett-Crane (BC) vertex [70], where the dependence on the intertwiners
is trivial. This is an aspect of the BC dynamics that has long been seen as suspicious (see for
instance [140]); and it is directly tested here.

We find that under our assumptions the BC vertex fails to give the correct tensorial
structure of the propagator in the large-distance limit. We argue that this result is general,
and cannot be easily corrected, say by a different boundary state. This result is of interest
for a number of reasons. First, it indicates that the propagator calculations are nontrivial; in
particular they are not governed just by dimensional analysis, as one might have worried, and
they do test the dynamics of the theory. Second, it reinforces the expectation that the BC
model fails to yield classical GR in the long-distance limit. Finally, and more importantly,
it opens the possibility of studying the conditions that an alternative vertex must satisfy, in
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order to yield the correct long-distance [18] behavior. This analysis will be presented in the
next chapter .

The BC model exists in a number of variants presented in the thesis[112, 113, 114] (see
also [141]); the results presented here are valid for all of them. Alternative models have
been considered, see for instance [142]. The paper [17] has motivated the search for a vertex
amplitude that modifies the BC amplitude; recently new vertexes, which addresses precisely
the problems that we find here, have been proposed [143, 144, 145, 146, 147], see also [148].

This chapter is organized as follows. In the first section we formulate the problem and
we compute the action of the field operators on the intertwiner spaces. This calculation is a
technical result with an interest in itself. Here we will use only part of this result, the rest
will be relevant in the next chapter. We proceed discussing the form of the boundary state
needed to describe a semiclassical geometry to the desired approximation. Then we face the
main calculation and we discuss the interpretation of our result.

The calculation of this chapter are made using the Appendix B were all basic equations
of the recoupling theory can be found. This Appendix corrects some imprecisions in previous
formularies. We work entirely in the euclidean theory.

4.1 The propagator in LQG

We want to compute

Gabcd
q (x, y) = 〈W |hab(x) hcd(y)|Ψq〉 (4.1)

to first order in λ. Here Ψq is a state peaked on q, which is the (intrinsic and extrinsic) 3d
geometry of the boundary of a spherical 4-ball of radius L in R4, x and y are two points in
this geometry, ab are tangent indices at x and cd tangent indices at y in this geometry. That
is, Gabcd

q (x, y) is a quantity that transforms covariantly under 3d diffeomorphisms acting

conjointly on x, y, on the indices abcd, and on q. hab(x) is the fluctuation of the gravitational
field over the euclidean metric. W is the boundary functional, that defines the dynamics; it is
assumed to be given here by a Barrett-Crane GFT with coupling constant λ. We work here to
first order in λ. Following [144], if we identify the terms generated by the GFT perturbative
expansion with the ones obtained form a Regge-like lattice triangulation of GR, then we
can interpret the expansion in λ as a cut-off in the degrees of freedom. More precisely, it
corresponds to neglecting wavelengths much smaller than L. Degrees of freedom of wavelength
larger than L do not matter, since we take a large L limit. We normalize here Ψq by 〈W |Ψq〉 =
1.

Consider the s-knot (abstract spin network) basis |s〉 = |Γ, j, i〉, where Γ is an abstract
graph, n,m... label the nodes of Γ, j = {jmn} are the spins and i = {in} the intertwiners of a
spin network with graph Γ. Insert a resolution of the identity in (4.1)

Gabcd
q (x, y) =

∑

s

〈W |s〉〈s|hab(x) hcd(y)|Ψq〉. (4.2)

In the previous chapter we have seen (3.102) that at first order in λ, 〈W |s〉 = W [s] = W [Γ, j, i]
where the dominant term in the large-spin limit contains only the contribution coming from
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Γ being the pentagonal graph, that is, for the s-knot
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In this case, and from now on, we have five intertwiners i = {in}, labeled by n,m, ... = 1, ..., 5
and ten spins j = {jmn}. We use equally the indices i, j, k, ... = 1, ..., 5 to indicate the nodes.
Since the operators hab(x) do not change the graph (they are operators acting on the spin
and intertwiners variables j, i)

Gabcd
q (x, y) =

∑

j,i

W (j, i) hab(x)hcd(y)Ψ(j, i) (4.4)

where W (j, i) = W [Γ5, j, i] and Ψ(j, i) = Ψq[Γ5, j, i] = 〈Γ5, j, i|Ψq〉, and the sum is over
the fifteen variables (j, i) = (jnm, in). (We use the physicists notation hcd(y)Ψ(j, i) for
[hcd(y)Ψ](j, i).)

Following [16], we choose the form of Ψ(j, i) by identifying Γ5 with the dual skeleton of a
regular triangulation of the three-sphere. Each node n = 1, ..., 5 corresponds to a tetrahedron
t1....t5 and we choose the points x and y to be the centers xn and xm of the two tetrahedra
tn and tm. We consider

Gij,kl

qn,m := Gabcd
q (xn, xm) n(ni)

a n(nj)

b n(mk)
c n(ml)

d , (4.5)

where n
(ij)
a is the one–form normal to the triangle that bounds the tetrahedra ti and tj . From

now on, we assume n 6= m. Since hab = gab − δab = EaiEbi − δab, this is given by

Gij,kl

qn,m = 〈W |
(
E(ni)
n ·E(nj)

n − n(ni) · n(nj)
)(
E(mk)
m · E(ml)

m − n(mk) · n(ml)
)
|Ψq〉

=
∑

j,i

W (j, i)
(
E(ni)
n ·E(nj)

n − n(ni)· n(nj)
)(
E(mk)
m ·E(ml)

m − n(mk)· n(ml)
)
Ψ(j, i).(4.6)

where, E(ml)
n = Ea(~x)n(ml)

a is valued in the su(2) algebra and, with abuse of notation, the
scalar product between the triad fields indicates the product in the su(2) algebra (in the
internal space); while the scalar product among the one forms n(ij) is the one defined by the
background metric δab. In the rest of the chapter, we compute the right hand side of (4.6).

4.1.1 Linearity conditions

Before proceedings to the actual computation of (4.6), let us pause to consider the following
question. The four normal one-forms of a tetrahedron sum up to zero. Thus

∑

i6=n
n(ni)
a = 0. (4.7)
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This determines a set of linear conditions that must be satisfied by Gij,kl
qn,m. In fact, from the

last equation it follows immediately that
∑

i6=n
Gij,kl

qn,m = 0. (4.8)

(The existence of conditions of this kind, of course, is necessary, since the four one forms
n(ni)
a (for fixed n) span a three-dimensional space, namely the space tangent to the boundary

surface at xn, and therefore the quantities Gij,kl
qn,m are determined by the restriction of the

bi-tensor Gabcd
q to these tangent spaces.) How is it possible that the linear conditions (4.8)

are satisfied by the expression (4.6)?
The answer is interesting. The operator E(ni)

n ·E(nj)
n acts on the space of the intertwiners of

the node n. This is the SU(2) invariant part of the tensor product of the four SU(2) irreducible
representations determined by the four spins jni. In particular, E(ni)

n is the generator of SU(2)
rotations in the representation jni. Therefore

J =
∑

i6=n
E(ni)
n (4.9)

is the generator of SU(2) rotations in the tensor product of these representations. But the
intertwiners space is precisely the SU(2) invariant part of the tensor product. Therefore J = 0
on the intertwiner space. Inserting this in (4.6), equation (4.8) follows immediately. Therefore
the linearity conditions between the projections of the propagator in the space tangent to the
boundary surface are implemented by the SU(2) invariance at the nodes.

4.1.2 Operators

We begin by computing the action of the field operator E(ni)
n · E(nj)

n on the state. This
operator acts on the intertwiner space at the node n. It acts as a “double grasping" [6, 7, 8,
9, 136] operator (Section 1.3.5) that inserts a virtual link (in the spin-one representation) at
the node, connecting the links labelled ni and nj. The state of each node n (n = 1, .., 5) is
determined by five quantum numbers: the four spins jnj (n 6= j, j = 1, .., 5) that label the
links adjacent to the node and a quantum number in of the virtual link that specifies the
value of the intertwiner. In this section we study the action of this operator on a single node
n; hence we drop for clarity the index n and write the intertwiner quantum number as i, the
adjacent spins as ji, jj , jp, jq, and the operator as E(i) · E(j). We use the graphic notation of
SU(2) recoupling theory to compute the action of the operators on the spin network states
(see [2]). The basics of this notation are given in Appendix B and the details of the derivation
of the action of the operator are given in Appendix G. Choose a given pairing at the node,
say (i, j)(p, q) (and fix the orientation, say clockwise, of each of the two trivalent vertices).
We represent the node in the form

i =

jj

ji

jp

jq

�
@ �

@

i
r r

,

(4.10)

where we use the same notation i for the intertwiner and the spin of the virtual link that
determines it. This basis diagonalizes the operator E(i) ·E(j), but not the operators E(i) ·E(q)
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and E(i) ·E(p). We consider the action of these three “doublegrasping" operator on this basis.
The simplest is the action of E(i) · E(i). Using the formulas in Appendix G we have easily

E(i) ·E(i)
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jp

jq
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r r

〉
= −(N i)2
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i
1

r r

〉
= C ii

∣∣∣∣∣∣∣jj
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jp

jq
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@

i
r r

〉
, (4.11)

where
C ii = C2(ji). (4.12)

with C2(a) = a(a+ 1) is the Casimir of the representation a. Just slightly more complicated
is the action of E(i) ·E(j)

E(i) ·E(j)
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= Dij
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i
r r

〉
, (4.13)

where

Dij =
C2(i) − C2(ji) − C2(jj)

2
. (4.14)

In these two cases the action of the operator is diagonal. If, instead, the grasped links are
not paired together, the action of the operator is not diagonal in this basis. In this case, the
recoupling theory in the Appendix gives

E(i) ·E(q)
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= X iq

∣∣∣∣∣∣∣jj

ji

jp

jq

�
@ �

@

i
r r

〉
− Y iq
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− Z iq
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r r

〉
,

(4.15)

where

X iq = −
(
C2(i) + C2(ji) − C2(jj)

) (
C2(i) + C2(jq) − C2(jp)

)

4C2(i)
, (4.16)

Y iq = − 1

4idim(i)

√
(ji + jj + i+ 1)(ji − jj + i)(−ji + jj + i)(ji + jj − i+ 1) ·

·
√

(jp + jq + i+ 1)(jp − jq + i)(−jp + jq + i)(jp + jq − i+ 1),

(4.17)

Z iq = − 1

4(i+ 1) dim(i)

√
(ji + jj + i+ 2)(ji − jj + i+ 1)(−ji + jj + i+ 1)(ji + jj − i) ·

·
√

(jp + jq + i+ 2)(jp − jq + i+ 1)(−jp + jq + i+ 1)(jp + jq − i).

(4.18)
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The last possibility is

E(i) · E(p)
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(4.19)

Note that X ip is exactly X iq with p and q switched and Y ip = Y iq, Z ip = Z iq.
Finally, we have to take care of the orientation. As shown in the Appendix, the sign of

the non diagonal terms is influenced by the orientations: in the planar representation that we
are using, there is a + sign if the added link intersect the virtual one and a −1 otherwise.

Summarizing, in a different notation and reinserting explicitly the index n of the node, we
have the following action of the EE operators. If the grasped links are paired together we
have the diagonal action

E(ni) · E(nj)|Γ5, j, i1, .., in, .., i5〉 = Sij

n |Γ5, j, i1, .., in, .., i5〉, (4.20)

where

Sij

n =

{
C ii = C2(jni) if i = j,

Dij =
C2(in)−C2(jni)−C2(jnj)

2 if i 6= j.
(4.21)

If the grasped links are not paired together, we have the non-diagonal action

E(ni) ·E(nq)|Γ5, j, i1, .., in, .., i5〉 =

=





X iq
n |Γ5, j, i1, .., in, .., i5〉 + Y iq

n |Γ5, j, i1, .., in−1, .., i5〉
+Z iq

n |Γ5, j, i1, .., in+1, .., i5〉 if i opposite to q,

X iq
n |Γ5, j, i1, .., i, .., i5〉 − Y iq

n |Γ5, j, i1, .., in−1, .., i5〉
−Z iq

n |Γ5, j, i1, .., in+1, .., i5〉 otherwise.

(4.22)

This completes the calculation of the action of the gravitational field operators.

4.2 The boundary state

The boundary state utilized in the previous chapter [16] was assumed to have a gaussian
dependence on the spins, and to be peaked on a particular intertwiner. This intertwiner was
assumed to project trivially onto the BC intertwiner of the BC vertex. This was a simplifying
assumption permitting to avoid dealing with the intertwiners, motivated by the fact that
intertwiners play no role for the diagonal terms. However, it was also pointed out in [16]
that this procedure is not well defined, because of the mismatch between SO(4) linearity and
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SU(2) linearity (see the discussion in the Appendix E). Here we face the problem squarely,
and consider the intertwiner dependence of the boundary state explicitly.

A natural generalization of the gaussian state used in [16], whith a well-defined and non-
trivial intertwiner dependence, is the state

Φ(j, i) = C exp

{
− 1

2j0

∑

(ij)(mr)

α(ij)(mr) (jij − j0)(jmr − j0) + iΦ
∑

(ij)

jij

}
·

· exp



−

∑

n


(in − i0)

2

4σ
+
∑

p 6=n
φ(jnp − j0)(in − i0) + iχ(in − i0)







(4.23)

The first line of this equation is precisely the spin dependence of the state used in the previous
chapter. The second line contains a gaussian dependence on the intertwiner variables. More
precisely, it includes a diagonal gaussian term, a nondiagonal gaussian spin-intertwiner term,
and a phase factor. We do not include non-diagonal intertwiner-intertwiner terms here. These
will be considered in the companion paper.

Let us fix some of the constants appearing in (4.23), by requiring the state to be peaked
on the expected geometry. The constant j0 determines the background area A0 of the faces,
via C(jnm) = Anm. As in [16], we leave j0 free to determine the overall scale. The constant
Φ determines the background values of the angles between the normals to the tetrahedra. As
in [16], we fix them to those of a regular four-simplex, namely cos Φ = −1/4.

The constant i0 is the background value of the intertwiner variable. As shown in [16],
the spin of the virtual link in is the quantum number of the angle between the normals of
two triangles. More precisely, the Casimir C(in) of the representation in is the operator
corresponding to the classical quantity

C2(in) = Ani +Anj + 2 ~n(ni) · ~n(nj), (4.24)

where i and j are the paired links at the node n and Ani is the area of the triangle dual to
the link (ni). The scalar product of the normals to the triangles can therefore be related to
the Casimirs of spins and intertwiners:

n(ni) · n(nj) =
C(in) − C(jni) − C(jnj)

2
. (4.25)

For each node, the state must therefore be peaked on a value i0 such that

i0(i0 + 1) = A0 +A0 + 2A0A0 cos θij, (4.26)

where cos θij is the 3d dihedral angle between the faces of the tetrahedron. For the regular
4-symplex, in the large distance limit we have Aij = j0, cos θij = −1

3 , which gives

i0 =
2√
3
j0. (4.27)

This fixes i0. Notice that in [16] equation (4.24) refers to the Casimir of an SO(4) simple
representation and follows from the quantization of the Plebanski 2 form BIJ = eI ∧ eJ
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associated with the discretized geometry. Exactly the same result follows from equation
(4.13) directly from LQG.

Fixing i0 in this manner determines only the mean value of the angle θij between the two
triangles that are paired together in the chosen pairing. What about the mean value of the
angles between faces that are not paired together, such as θiq? It is shown in [149] that a

state of the form e(i−i0)2/σ is peaked on θiq = 0, which is not what we want; but the mean
value of θiq, can be modified by adding a phase to the state. This is the analog of the fact
that a phase changes the mean value of the momentum of the wave packet of a non relativistic
particle, without affecting the mean value of the position. In particular, it was shown in [149]
that by choosing the phase and the width of the Gaussian to be

χ =
π

2
, σ =

j0
3
, (4.28)

we obtain a state whose mean value and variance for all angles is the same.
Let us therefore adopt here these values. Still, the present situation is more complicated

than the case considered in [149], because the tetrahedron considered there had fixed and
equal values of the external spins; while here the spins can take arbitrary values around the
peak symmetric configuration jnm = j0. As a consequence, when repeating the calculation in
[149], one finds additional spin-intertwiner gaussian terms. These, however can be corrected
by fixing the spin-intertwiner gaussian terms in (4.23). A detailed calculation (see below),
shows indeed that in the large j0 limit, the state (4.23) transforms under change of pairing
into a state with the same intertwiner mean value and the same variance σ, provided we also
choose

φ = −i 3

4j0
, (4.29)

which we assume from now on. With these values and introducing the difference variables
δin = in − i0 and δjmr = jmr − j0 the wave functional, given in (4.23), reads

Φ(j, i) = C e
− 1

2j0

∑
α(ij)(mr)δjijδjmr+iΦ

∑
ij δjije

−∑n

(
3(δin)2

4j0
−i
(∑

a
3

4j0
δjan−π

2

)
δin

)

. (4.30)

This state, however, presents a problem, which we discuss in the next section.

4.2.1 Pairing independence

It is natural to require that the state respects the symmetries of the problem. A moment
of reflection shows that the state (4.30) does not. The reason is that the variables in are
the spin of the virtual links in one specific pairing, and this breaks the symmetry of the
four-simplex. The phases and variances chosen assure that the mean values are the desired
ones, hence symmetric; but an explicit calculation confirms that the relative fluctuations of
the angle variables determined by the state (4.30) depend on the pair chosen.

To correct the problem, recall that there are three natural bases in each intertwiner space,
determined by the three possible pairings of these links. Denote them as follows.

ix =

jj

ji

jp

jq

�
@ �

@

ix
r r iy =

jj

ji

jp

jq

�

@�

@

iy
r

r

iz =

jj

ji

jp

jq

�
�

�@
@

@

iz
r r , (4.31)
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where we conventionally denote ix ≡ i the basis in the pairing chosen as reference. These bases
diagonalize the three non commuting operators E(i) ·E(j), E(i) ·E(q) and E(i) ·E(p), respectively.
Furthermore a spin-network state is specified by the orientation of the three-valent nodes [41];
we fix this orientation by giving an ordering to the links. We write for instance

ix(+,−) =

jj

ji

jp

jq

�
@ �

@

ix
r r

+ −
(4.32)

where the plus sign + (-) means anticlockwise (clockwise) ordering of the links in the two
nodes. A complete basis in the space of the spin networks on Γ5 is specified giving the pairing
and the orientation at each node. In order to label the different bases, introduce at each node
n a variable mn that takes the values mn = x, y, z, namely that ranges over the three possible
pairings at the node. Similarly, introduce a variables on = {(++),(+−),(−+),(−−)} that labels
the possible orientations. To correct the pairing dependence of the state (4.23), let us first
rewrite it in the notation

|Φq〉x++ =
∑

j,ix++

Φ[j, ix++] |j, ix++〉. (4.33)

where the suffix x++ to the ket emphasizes the fact that the state has been defined with the
chosen pairing and orientation at each node. We can now consider a new state obtained by
summing (4.33) over all choices of pairings and orientations. That is, we change the definition
of the boundary state to

|Ψq〉 =
∑

mn,on

|Φq〉mnon . (4.34)

where
∑

mn,on
=
∑

m1...m5

∑
o1...o5

and

|Φq〉mnon =
∑

j,imnon

Φ[j, imnon ] |j, imnon〉. (4.35)

namely |Φq〉mnon is the same as the state |Φq〉x++, but defined with a different choice of
pairing at each node.

Since (by assumption) (4.23) does not depend on the orientation, the sum over the orien-
tation of the node (say) 1, in (4.34) reduces to a term proportional to

∑

o

|j, io1, i2, i3, i4, i5〉 ∼
∣∣∣∣∣∣∣j12

j13

j15

j14
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− −

r r

〉
.

(4.36)

As shown in the Appendix B, the change in orientation of a vertex produces the sign (−1)a+b+c,
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where a, b, c are the three addiacent spins. Hence

∑

o

|j, io1, i2, i3, i4, i5〉 ∼

=
(
1 + (−1)j14+j15+i1 + (−1)j12+j13+i1 + (−1)j12+j13+j14+j15+2 i1

) ∣∣j, i++
1 , i2, i3, i4, i5

〉

=

{
4
∣∣j, i++

1 , i2, i3, i4, i5,
〉

if
(
j12 + j13 + im1

1 = 2n1 and j14 + j15 + im1
1 = 2n2

)
,

0 otherwise.

(4.37)

We can therefore trade the sum over orientations in (4.34) with a condition on the spins
summed over: at all trivalent vertices, the sum of the two external spins and the virtual spin,
must be an even integer. (The factor 4 is absorbed in the normalization factor C.) With this
understanding, we drop the sum over orientations in (4.34), which now reads

|Ψq〉 =
∑

mn

|Φq〉mn , (4.38)

where all orientations are fixed. This state can of course also be expressed in terms of a single
basis

|Ψq〉 =
∑

j,i

Ψq(j, i) |j, i〉, (4.39)

where we have returned to the notation in = ix,++
n . Its components are

Ψ(j, i) = 〈j, i|Ψq〉 =
∑

mn

Φ(j, imn) 〈j, i|j, imn 〉. (4.40)

The matrices of the change of basis 〈j, i|j, imn〉 are (products of five) 6-j Wigner-symbols, as
given by standard recoupling theory.

The state (4.38) is the boundary state we shall use. The complication of the sum over
pairings is less serious than what could seem at first sight, due to a key technicality that we
prove in the next section: the components of (4.38) become effectively orthogonal in the large
distance limit.

Orthogonality of the terms in different bases in the large j0 limit

Suppose we want to compute the norm of the boundary state, in the limit of large j0.
From (4.38), this is given by

|Ψ|2 =
∑

mn

∑

m′
n

mn〈Φq|Φq〉m′
n (4.41)

We now show that in the large j0 limit the non-diagonal terms of this sum (those with
mn 6= m′

n) vanish. Consider one of these terms, say

I = mn〈Φq|Φq〉m′
n

=
∑

jimn

∑

j′im
′
n

Φ(j, imn) Φ[j′, im
′
n ] 〈jimn |j′im′

n〉 (4.42)
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where, say, mn = (x, x, x, x, x) and m′
n = (y, x, x, x, x). The scalar product is diagonal in the

spins j and is given by 6-j symbol in the intertwiners quantum numbers. Hence

I =
∑

j

∑

imn

∑

im
′
n

Φ(j, imn) Φ[j, im
′
n ] 〈ix1 |iy1〉, (4.43)

where (see Appendix H),

〈ix1 |iy1〉 = (−1)j13+j14+ix1+iy1
√
dix1diy1

{
j12 j13 ix1
j15 j14 iy1

}
. (4.44)

In the large j0 limit, this sum can be approximated by an integral, as in [16]. Both the spin and
the interwiner sums become gaussian integrals, peaked respectively on j0 and i0. The range
of the sum over intertwiners is finite for finite j0, because of the Clebsh Gordan conditions
at the two trivalent node; but this range is much larger than the width of the Gaussian in
the limit, and therefore the integral over the intertwiner variables too can be taken over the
entire real line. In the limit, the 6-j symbol has the asymptotic value [101]

{
j12 j13 ix1
j15 j14 iy1

}
≈ ei(SR+ π

4
) + e−i(SR+ π

4
)

√
12πV

, (4.45)

where SR is the Regge action of a tetrahedron with side length determined by the spins of
the 6j symbol, and V is its volume. Changing the sum into an integration and using this, we
have

I =

∫
dj

∫
di

∫
diy1 Φ(j, i) Φ(j, im

′
n) (−1)j13+j14+ix1+iy1

ei(SR+ π
4
) + e−i(SR+ π

4
)

√
12πV

. (4.46)

Inserting the explicit form of the state (4.30) gives

I =

∫
dj

∫
di e

− 1
j0

∑
α(ij)(mr)δjijδjmr−

∑
n6=1

3(δin)2

2j0
− 3(δi1)2

4j0
−i
(∑

a
3

4j0
δjan−π

2

)
δix1

·
∫
diy1 e

− 3(δi
y
1
)2

4j0 e
i
(∑

a
3

4j0
δjan−π

2

)
δiy1 ei(SR+πδiy1+ π

4
) + e−i(SR−πδiy1+ π

4
)

√
12πV

.

(4.47)

In the limit, only the first terms in the expansion of the Regge action around the maximum
of the peak of the Gaussian matter. We thus Taylor expand the Regge action in its six entries
j1n, i

x

1, i
y

1 around the background values j0 and i0.

Sj[jna] =
∂SR
∂j1n

∣∣∣∣
j0,i0

δj1n +
∂SR
∂ix1

∣∣∣∣
j0,i0

δix1 +
∂SR
∂iy1

∣∣∣∣
j0,i0

δiy1 + higher order terms. (4.48)

The key point now is that the first of these terms is a rapidly oscillating phase factor in the
j1n variable. The Gaussian j1n integration in (4.47) is suppressed by this phase factor. More
precisely, the integral is like a Fourier transform in the j1n variable, of a gaussian centered
around a large value of j0 with variance proportional

√
j0; this Fourier transform is then a

gaussian with variance 1/
√
j0, which goes to zero in the j0 → ∞ limit. QED.
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Change of basis

For later convenience, let us also give here the expression of the state (4.30) under the
transformation induced by the change of basis associated to a change of pairing. Say we
change from the basis iy to the basis ix in the node n = 1. Then directly from (4.40) we have

Φ′
q[j, ix1, i2...i5] = e

− 1
2j0

∑
α(ij)(mr)δjijδjmr+i

∑
Φδjije

−∑n6=1

(
3(δin)2

4j0
−i
(∑

a
3

4j0
δjan−π

2

)
δin

)

·
∑

iy1

e
−
(

3(δi
y
1)2

4j0
−i
(∑

a
3

4j0
δja1−π

2

)
δiy1

)

(−1)j13+j14+ix1+iy1
√
dix1diy1

{
j12 j13 ix1
j15 j14 iy1

}

(4.49)

where, we recall, the sum over intertwiners is under the condition (4.37) that that gives
(−1)j13+j14+ix1 = 1 We can evaluate the sum in the large j0 limit by approximating it again
with an integral. Inserting the asymptotic expansion of the 6j symbol, we have

Φ′
q(j, ix1, i2...i5) = e

− 1
2j0

∑
α(ij)(mr)δjijδjmr+i

∑
Φδjije

−∑n6=1

(
3(δin)2

4j0
−i
(∑
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4j0
δjan−π
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)
δin

)

eiπi0

·
∫
dδiy1e

−
(

3(δi
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1
)2

4j0
−i
(∑
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3

4j0
δja1−π

2

)
δiy1

)√
dix1diy1

ei(SR+πδiy1+ π
4
) + e−i(SR−πδiy1+ π

4
)

√
12πV

.

(4.50)

This can be computed expanding the Regge action to second order around j0 and i0. As
shown in the Appendix J, the result is

Φ′
q(j, ix1, i2, ..., i5) = Φ(j, ix1, i2, ..., i5)N1 e

−iS[j1a]e
−2i

(∑
a

3
4j0

δja1
)
δix1 , (4.51)

where N1 is a normalization constant with |N1|2 = 1, and S[j1a] is the expansion of the Regge
Action linked to the tetrahedron associated with the {6j} symbol (4.45) up to the second
order only in the link variables, that is

S[jna] =
∂SR
∂j1n

∣∣∣∣
j0,i0

δj1n +
∂2SR

∂j1n∂j1n′

∣∣∣∣
j0,i0

δj1nδj1n′ +
1

2

∂2SR
∂2j1n

∣∣∣∣
j0,i0

(δj1n)2. (4.52)

This result follows from the choice (4.28) and (4.29) of the parameters in (4.23). In partic-
ular, the value χn = π

2 makes the intertwiner phase equal, with opposite sign, to the term

exp−i
(
∂SR

∂iy1

∣∣∣
j0,i0

δiy1 − πδiy1

)
, namely the term in the expansion of the Regge action SR lin-

ear in the variable δiy1. This selects one of the two exponentials in the asymptotic expansion
(4.45), while the rapidly oscillating phase factor in the variables δiy1 cancels the other.

The same calculation gives the iz → ix change of variable

Φ′′
q(j, ix1, i2, ..., i5) = Φ(j, ix1, i2, ..., i5)N1 e

−iS′[j1a]e
−2i

(∑
a

3
4j0

δja1
)
δix1 , (4.53)

with the same constant N1 as above. The only differences between (4.51) and (4.53) is that
the arguments of the 6-j symbol enter with a different order, so that S′(j12, j13, j14, j15, ) =
S(j12, j13, j15, j14).
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Using these results, we can explicitly rewrite the state (4.38) in our preferred basis. We
obtain easily

|Ψq〉 = 45
∑

j,i

Φ(j, i)

5∏

n=1

G[δjna, δin] |j, i〉 , (4.54)

where

G[δjna, δin] =

(
1 +N1e

−2i
(∑

a
3

4j0
δjan

)
δixn
(
e−iS[jna] + e−iS

′[jna]
))

. (4.55)

4.2.2 Mean values and variances

With these preliminary completed, we can now check that mean values and relative fluctu-
ations of areas and angles have the right behavior in the large scale limit. With the notation

〈O〉 :=
〈Ψq|O |Ψq〉
〈Ψq|Ψq〉

and ∆O =
√
〈O2〉 − 〈O〉2 (4.56)

we demand

〈jni〉 = j0 and
∆jni
〈jni〉

→ 0 when j0 → ∞, (4.57)

as in [16], as well as

〈imn
n 〉 = i0 and

∆imn
n

〈imn
n 〉 → 0 when j0 → ∞. (4.58)

Notice that we demand this for all mn, namely for each node in each pairing.
It is easy to show that the state (4.38) satysfies (4.57). Because of the vanishing of the

interference terms proven above, in large j0 limit the mean values reduce to the average of
the mean values on each diagonal term.

〈jni〉 ≈
∑

mn

∑
j

∑
i
mn
n

jni |Φ[j imn
n ]|2

∑
mn

∑
j

∑
i
mn
n

|Φ[j imn
n ]|2

≈
∑

mn

∫
dδj dδimn

n jni e
− 1

j0

∑
α(ij)(mr)δjijδjmre

−∑n
3(δi

mn
n )2

2j0

∑
mn

∫
dδj dδimn

n e
− 1

j0

∑
α(ij)(mr)δjijδjmre

−∑n
3(δi

mn
n )2

2j0

= j0. (4.59)

The calculation of the variance and mean value in the intertwiner variable is a bit more
complicated. It is convenient to express the state in the pairing of the relevant variable using
(4.51) and (4.53). With this, we have

〈ix1〉 ≈
∑

mn 6=m1

∑
j

∑
i
mn
n6=1

∑
ix1
ix1

(
|Φq|2 +

∣∣Φ′
q

∣∣2 +
∣∣Φ′′

q

∣∣2
)

∑
mn

∑
j

∑
i
mn
n

|Φq|2

≈ 3

∑
mn 6=m1

∑
j

∑
i
mn
n6=1

∑
ix1
ix1 |Φq|2

∑
mn

∑
j

∑
i
mn
n

|Φq|2
=

∑
mn 6=m1

∑
j

∑
i
mn
n6=1

∑
ix1
ix1 |Φq|2

∑
mn 6=m1

∑
j

∑
i
mn
n6=1

∑
ix1
|Φq|2

= i0,(4.60)

where we have used the (4.51) and (4.53) and the fact that the constant N1 in these expression
satisfies |N1|2 = 1. The same procedure can be used to compute the variance and check that
(4.58) is satisfied.



4.3 Calculation of the propagator 126

4.3 Calculation of the propagator

We are now ready to compute all components of the propagator (4.6). Consider this
quantity for a fixed value of m,n, i, j, k, l. Because of the sum in (4.55), the propagator can
be written in the form:

Gij,kl

qn,m = 45
∑

j

∑

in

Φ(j, i)
5∏

n=1

G[δjna, δin]

· 〈W |
(
E(ni)
n · E(nj)

n − n(ni) · n(nj)
)(
E(mk)
m ·E(ml)

m − n(mk) · n(ml)
)
|j, in〉 ,

(4.61)

For a given value of m,n, i, j, k, l, we now can fix the reference choice of pairing so that (ij)
(if different) are paired at the node n and (kl) (if different) are paired at the node m. With
this choice of basis the action of the operators is diagonal, and we have

Gij,kl

qn,m = 45
∑

j

∑

in

Φ(j, i)

5∏

n=1

G[δjna, δin]
(
Dij
n − n(ni) · n(nj)

)(
Dkl
m − n(mk) · n(ml)

)
〈W |j, i〉,(4.62)

We use the same form of the the Barret-Crane vertex as in [14, 15]. This is given by

〈W |j, i〉 := W (j, i) = W (j)
∏

n

〈iBC |in〉 = W (j)
∏

n

(2in + 1), (4.63)

where W (j) is the Barrett-Crane vertex, which a functions of the ten spins alone. In the large
distance limit,

∏
n(2in + 1) = 2i50, hence

W (j, i) = 2i50 W (j). (4.64)

Using this, (4.62) becomes

Gij,kl

qn,m =
∑

j

W (j)
∑

ixn

Φ(j, i)

5∏

n=1

G[δjna, δin]
(
Dij
n − n(ni) · n(nj)

)(
Dkl
m − n(mk) · n(ml)

)
,(4.65)

where we have absorbed numerical factors and i50 in the normalization of the state. Each
factor G[δjna, δin] in this expression has the form (1 + NeiS + NeiS

′
). The terms with the

exponents contain rapidly oscillating phases in the spin variables, which again suppress the
integral in the large j0 limit. Therefore we can drop these factors.

The value of the eigenvalues Dij
n is given in (4.21). The value of the product of normals

is given in (4.25). Using these, we have

Dij

n − n(ni) · n(nj) =
(C(in) − C(i0)) − (C(j(ni)) −C(j0)) − (C(j(nj)) − C(j0))

2
. (4.66)

Expanding up to second order around the background values j0 and i0

C(jj) − C(j0) = (δjj)
2 + 2δjjj0 + δjj , (4.67)
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we obtain, in the large j0 limit

Dij

n − n(ni) · n(nj) = δin i0 − δjjj0 − δjnkj0. (4.68)

Inserting this in (4.65) we have

Gij,kl

qn,m = j20
∑

j

W (j)
∑

ixn

(
2√
3
δin − δjni − δjnk

)(
2√
3
δim − δjmk − δjml

)
Φ(j, i).(4.69)

In the case in which two of the indices of the propagator are parallel, say i = j, this
reduces easily to

Gii,kl

qn,m = 2j20
∑

j

W (j)
∑

ixn

δjni

(
2√
3
δim − δjmk − δjml

)
Φ(j, i). (4.70)

While if i = j and k = l we recover the diagonal terms,

Gii,kk

qn,m = 4j20
∑

j

W (j)
∑

ixn

δjniδjmk Φ(j, i). (4.71)

We can now evaluate (4.69). Inserting the explicit form of the state gives

Gij,kl

qn,m = Cj20
∑

δj,δi

W (j)

(
2√
3
δin − δjni − δjnk

)(
2√
3
δim − δjmk − δjml

)

· e−
1

2j0

∑
α(ij)(mr)δjijδjmr+i

∑
Φδjije

−∑n

(
3(δin)2

4j0
−i
(∑

a
3

4j0
δjan+ π

2

)
δin

)

.

(4.72)

Using the asymptotic expression for the BC vertex, we can proceed like in [14] and [15]. The
rapidly oscillating phase term in the spins selects one of the the factors of this expansion,
giving

Gij,kl

qn,m = N j20
∑

δj(ab), δiα

∏

a<b

dim(j(ab))

(
2√
3
δin − δjni − δjnk

)(
2√
3
δim − δjmk − δjml

)

· e−
1

2j0
(α+iGj0)(ij)(mn) δjijδjmne

−∑n

(
3(δin)2

4j0
−i
(∑

a
3

4j0
δjan+ π

2

)
δin

)

,

(4.73)

where the phase factor iΦ
∑

pq jpq in (4.72) has been absorbed by the corresponding phase
factor in the asymptotic expansion of the 10j symbol W (j) (see Section 3.2.5), as in [15, 16].
Here G is the matrix of the second derivatives of the Regge action (see [15, 16]) and should
not be confused with the G used in the Appendix. Finally,

Gij,kl

qn,m = N ′j20
∑

δj(ab), δiα

(
2√
3
δin − δjni − δjnk

)(
2√
3
δim − δjmk − δjml

)
·

· e−
1

2j0
(α+iGj0)(ij)(mn) δjijδjmne

−∑n

(
3(δin)2

4j0
−i
(∑

a
3

4j0
δjan+ π

2

)
δin

)

.

(4.74)
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We can rearrange this expression introducing the 15 components vector δIα = (δjab, δin) and
Θα = (0, χin) and the 15 × 15 correlation matrix

M =

(
A10×10 C10×5

C
T
5×10 S5×5

)
, (4.75)

where Aab cd = 1
2(α+ iGj0)ab cd

is a 10×10 matrix and Snm = Inm
3
4 is a diagonal 5×5 matrix

and C is a 10×5 matrix and CT is its transpose, and evaluate it approximating the sum with
an integral

Gij,kl

qn,m = N ′j20

∫
dδIα

(
2√
3
δin − δjni − δjj

)(
2√
3
δim − δjmk − δjml

)
e
−Mαβ

j0
δIαδIβ

eiΘαδIα

.

(4.76)

The matrix M is invertible and independent from j0. Direct calculation using (M.5) gives a
sum of terms of the kind

e−j0ΘM
−1Θ

√
detM

(
j30M

−1
αβ − j40M

−1
αγ ΘγM−1

βδ Θδ
)
. (4.77)

These terms go to zero fast in the j0 → ∞ limit, and therefore do not match the expected
large distance behavior of the propagator.

One could hope to circumvent the problem behaviour thanks to the normalization factor.
Including this explicitly we have

G̃ij,kl

qn,m =
〈W |

(
E(ni)
n ·E(nj)

n − n(ni) · n(nj)
)(
E(mk)
m · E(ml)

m − n(mk) · n(ml)
)
|Ψq〉

〈W |Ψq〉
. (4.78)

The denominator gives

〈W |Ψq〉 =
e−j0ΘM−1Θ

√
detM

. (4.79)

Terms of the kind (4.77) are still pathological, since they give

(
M−1
αβ

j0
−M−1

αγ ΘγM−1
βδ Θδ

)
(4.80)

in the limit. In conclusion, the calculation presented does not appear to give the correct low
energy propagator.

4.4 Conclusions

The calculation presented above is based on a number of assumptions on the form of
the boundary state. Could the negative result that we have obtained be simply the result
of these assumptions being too strict, or otherwise wrong? Could, in particular, a different
boundary state give the correct low energy behavior? Although we do not have a real proof,
we do not think that this is the case. The original aim of the research program motivating
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the paper [17] was to find such a state; the negative result we report here has initially come
as a disappointment, and we have fought against it at long. We have eventually got to the
conclusion that the problem is more substantial, and is related to the BC vertex itself, at least
as it is used in the present approach. There are several indications pointing to this conclusion.

First, the trivial intertwiner dependence of the Barrett-Crane structure clashes with the
intertwiner dependence of the boundary state that is needed to have a good semiclassical
behavior. Since the variables associated to the angles between faces do not commute with
one another, the boundary state cannot be sharp on a classical configuration. In order for
a state peaked on a given angle to be also peaked on the other non-commuting angles, the
state must have a phase dependence from intertwiners and spin variables. Following the
general structure of quantum mechanics, one then expect the transition amplitude matching
between coherent states to include a phase factor exactly balancing those phases. This is the
case for instance for the free propagator of a non-relativistic quantum particles, as well as
for the phases associated to the angles between tetrahedra in the calculation illustrated in
[14, 15]. However, no such phase factor appears in the BC vertex. In particular, the phase
factor iπ2

∑
p ip present in the boundary state (necessary to have the complete symmetry of

the state) is not matched by a corresponding factor in the vertex amplitude. This factor gives
the rapidly oscillating term that suppresses the sum.

Second, as already mentioned, there is in fact a structural difficulty, already pointed out
in [14, 15], with the definition (4.63) of the amplitude, and we think that this difficulty is at
the roots of the problem. Let us illustrate this difficulty in detail.

There are two possible interpretations of equation (4.63). The first is that this is true is
one particular basis, namely for in = ixn. Let us discard this possibility, which would imply
that the BC the vertex itself would depend on a specific choice of pairing. The second is that
it is (simultaneously) true in all possible bases, that is

〈W |j, imn〉 = W (j)
∏

n

(2imn + 1) (4.81)

for any choice of pairing, namely for any choice of mn. This is indeed the definition of the
vertex that we have implicitly used. However, defined in this way, the vertex 〈W | is not a
linear functional on the state space. This is immediately evident by expressing, say 〈iy1| on
the 〈ix1 | basis.

We can say this in other words. The Barrett-Crane intertwiner is defined as a sum of
simple SO(4) intertwiners, that we can write as

iBC =
∑

ix

(2ix + 1)|ix, ix〉 =
∑

iy

(2iy + 1)|iy , iy〉

=
∑

ix

(2ix + 1) �
@ �

@

ix
r r

�
@ �

@

ix
r r =

∑

iy

(2iy + 1) �

@�

@
iy
r

r

�

@�

@
iy
r

r

.(4.82)

Hence
〈iBC |im, im〉 = (2im + 1) (4.83)

whatever is m. Since the simple SO(4) intertwiner |ix, ix〉 diagonalizes the same geometrical
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quantity as the SO(3) intertwiner |ix〉, it is tempting to physically identify the two and write

〈iBC |im〉 = (2im + 1). (4.84)

But there is no state 〈iBC | in the the SO(3) intertwiner space that has this property. In other
words, there is a mismatch between the linear structures of SO(4) and SO(3) in building up
the theory that we have used.

In the next chapter, we show that, perhaps surprisingly, a vertex with a suitable asymptotic
behavior can overcame all these difficulties.



Chapter 5

The complete LQG propagator:
II. Asymptotic behavior of the vertex

In the previous chapter we have shown that there are difficulties in obtaining the correct
LQG graviton propagator from the dynamics defined by the Barrett-Crane vertex amplitude
and that this vertex fails to give the correct tensorial structure of the graviton propagator in
the large-distance limit. The natural question is whether this is an intrinsic difficulty of the
background-independent loop and spinfoam formalism, or whether it is a specific difficulty of
the BC vertex.

The natural question is whether this is an intrinsic difficulty of the background-independent
loop and spinfoam formalism, or whether it is a specific difficulty of the BC vertex. In this
chapter based on the paper [18] we show that the answer is the second. We do so by explicitly
exhibiting a vertex amplitude W that yields the correct propagator in the large distance limit.
We have no claim that this vertex amplitude is physically correct. In fact, it is a rather artifi-
cial object, chosen by simply taking the asymptotic form of the BC vertex, and correcting the
detail for which the BC vertex fails to work. Thus, W has at best an interest in the asymp-
totic region. But its existence shows that the background-independent loop and spinfoam
formalism, can yield the full tensorial structure of the perturbative n-point functions.

Furthermore, the properties of W give some indications on the asymptotic that the dy-
namics can have, if it has to yield the correct low energy limit. The detail of the BC vertex
that needs to be corrected turns out to be a phase in the intertwiner variables. A posteriori,
the need for this phase appears pretty obvious on physical grounds, as we shall discuss in
detail. This might provide a useful indication for selecting a definition of the dynamics alter-
native to the one provided by the BC vertex. While the BC vertex is defined by the SO(4)
Wigner 10j symbol, an alternative vertex given by the square of an SU(2) Wigner 15j symbol
has been introduced recently [143, 144]. This vertex can be derived also using coherent states
techniques, and can be extended to the Lorentzian case and to arbitrary values of the Immirzi
parameter [145, 146, 147, 148, 150, 151]. It would be very interesting to see whether the
asymptotics of this vertex exhibit the phase dependence that we find here to be required for
the low energy limit.

In the first section we introduce the vertex W and we give a simple explanation of the
reason why the additional phase is needed. In the rest of the chapter we prove that W
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yields the correct full tensorial structure of the propagator. In developing this calculation
we have stumbled upon an unexpected result that indicates that the state used in [17] is too
symmetric. This does not affect the results of [17], but forces us to reconsider the definition
of the state. We discuss this issue in detail and give the appropriate boundary state. Then
we compute the propagator, and we compare it with the one computed in linearized quantum
general relativity.

5.1 The vertex and its phase

Following [14, 15, 16], the graviton propagator can be computed in a background inde-
pendent context as the scalar product

Gij,kl

qn,m = 〈W |
(
E(i)
n · E(j)

n − n(i)
n · n(j)

n

)(
E(k)
m · E(l)

m − n(k)
m · n(l)

m

)
|Ψq〉. (5.1)

Here 〈W | is the boundary functional, which can be intuitively understood as the path integral
of the Einstein-Hilbert action on a finite spacetime region R, with given boundary configu-
ration. The indices i, j, k, l,m, n, ... run over the values 1, ..., 5 and label the tetrahedra of
a 4-simplex. The operator E(i)

n (denoted E(ni)
n in [17]) is the triad operator at the points n,

contracted with (test) one-forms n(i)
n (denoted nni in [17]) at the same point. |Ψq〉 is a state

on the boundary of R, picked on a given classical boundary (extinsic and extrinsic) geometry
q.

Fixing such a boundary geometry is equivalent to fixing a background metric g in the
interior, where g is the solution of the Einstein equations with boundary data q. The existence
of such a background metric is part of the definition of the propagator, which is a measure
of fluctuations around a given background. Criticisms to the approach of [14, 15, 16] have
been raised on the ground that a propagator makes no sense in a background independent
context, because it is a quantity that depends on a background geometry. These criticisms
follow from a misunderstanding of this point. The information about the background over
which the propagator is defined is in the boundary state, via q.

We are interested in the value of (5.1) to first order in the GFT expansion parameter λ,
and in the limit in which the boundary surface (whose size is determined by q) is large. On
the physical interpretation of this limit, see [143]. To first order, the leading contribution to
W has support only on spin networks with a 4-simplex graph. If j = (jnm) and i = (in)
are, respectively, the ten spins and the five intertwiners that color this graph, then in this
approximation (5.1) reads

Gij,kl

qn,m =
∑

j,i

W (j, i)
(
E(i)
n ·E(j)

n − n(i)
n · n(j)

n

)(
E(k)
m ·E(l)

m − n(k)
m · n(l)

m

)
Ψ(j, i). (5.2)

To this order, W is just determined by the amplitude of a single vertex. In [14, 16, 17], (a
suitable adjustment of) the BC vertex was chosen for W . The propagator depends only on
the asymptotic behavior of the vertex. This has the structure [99, 100, 101, 102]

WBC(j) ∼ e
i
2
(δjGδj)eiΦ·δj + e−

i
2
(δjGδj)e−iΦ·δj, (5.3)

where G is the 10× 10 matrix given by the second derivatives of the 4d Regge action around
the symmetric state, δj is the difference between the ten spins j and their background value



5.1 The vertex and its phase 133

j0, and Φ is a 10d vector with all equal components, which were shown in [14, 16] to precisely
match those determined by the background extrinsic curvature. The diagonal components of
the propagator determined by (5.1) turn out to be correct at first [14] and second [16] order,
but the nondiagonal components fail to do so [17].

Here we make a different choice for W . We choose a vertex W with an asymptotic
form that includes a gaussian intertwiner-intertwiner and spin-intertwiner dependence, and
–most crucially– a phase dependence on the intertwiner variables. To write this, introduce a
15d vector δI = (δj, δi), where δi is the difference between the five intertwiners i and their
background value i0. Explicitly, δIα = (δjnm, δin) = (jnm − j0, in − i0), where α = (nm,n).
And consider the state

W (j, i) = e
i
2
(δIGδI)eiφ·δI + e−

i
2
(δIGδI)e−iφ·δI. (5.4)

Here G is now a 15 × 15 matrix and φ = (φnm, φn) is a 15d vector. Its 10 spin components
φnm just reproduce the spin phase dependence of (5.3); while its five intertwiner components
are equal and we fix them to have value

φn =
π

2
. (5.5)

This phase dependence is the crucial detail that makes the calculation work.
Let us illustrate upfront the reason why this additional phase cures the problems that

appeared with the BC vertex. The boundary state must have an intertwiner dependence, in
order to have the correct semiclassical value of the mean values of the angles between the
faces of the boundary tetrahedra. The mean value of an intertwiner variable in –namely of
the virtual link of the intertwiner in a given pairing– must have a certain value i0. For this,
it is sufficient, say, that the state be a gaussian around i0. However, in quantum geometry
the different angles of a tertrahedron do not commute [50, 93, 153]. Therefore a state with
a behavior like exp{−(in − i0)

2} will be peaked on the virtual spin in in one pairing, but it
will not be peaked in the virtual spin in a different pairing. Therefore, the other angles of the
tetrahedron will not be peaked on the correct semiclassical value. We can of course write a
gaussian which is peaked on a variable as well as on another, non-commuting, variable. For

instance, a standard Schrödinger wave packet ψ(x) = exp{− (x−x0)2

2 σ + ip0x} is peaked on
position as well as momentum. But in order to do so, we must have a phase dependence on
the x. Similarly, the boundary state needs a phase dependence on the intertwiner variable
in, in order to be peaked on all angles. As shown in [149], the correct value for this is
exp{iπ2 in}. Now, the general mechanism through which the dynamical kernel reproduces the
semiclassical dynamics in quantum mechanics is the cancellation of the phases between the
propagation kernel and the boundary state. If this does not happens, the rapidly oscillating
phases suppresses the amplitude. For instance, in the non-relativistic quantum mechanics of
a free particle, the propagation kernel K(x, y) in a time t has a phase dependence from small
fluctuations δx = x− x0 and δy = y − y0 of the form

K(x0 + δx, y0 + δy) = 〈x0 + δx|e− i
~

p2

2m
t|y0 + δy〉 ∼ C e−ip0δx eip0δy. (5.6)

where p0 = m(y0 − x0)/t. This phase precisely cancels the phase of an initial and final wave
packets ψi and ψf centered on x0 and y0, if these have the correct momentum. That is

〈ψf |e−
i
~
Ht|ψi〉 =

∫
dx

∫
dy e−

(x−x0)2

2σ
− i

~
pfx K(x, y) e−

(y−y0)2

2σ
+ i

~
piy (5.7)
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is suppressed by the oscillating phases unless pi = pf = p0. This is the standard mechanism
through which quantum theory reproduces the (semi-)classical behavior. In quantum gravity,
it is reasonable to expect the same to happen if we have to recover the Einstein equations in
the semiclassical limit. That is, the propagation kernel W , must have a phase dependence
that matches the one in a semiclassical boundary state. This is precisely the role of the phase
exp{iπ2 in} that we have included in (5.4).

In the rest of the paper we show that a vertex amplitude that has the phase dependence
as above can reproduce the tensorial structure of the graviton propagator. First, however,
we must improve the definition of the vertex given above, and correct a problem with the
definition of the state in [17].

5.2 Boundary state and symmetry

Following [14, 16], we consider a boundary state defined as a gaussian wave packet, centered
on the values determined by the background geometry q. Here

Φq(j, i) = C e
− 1

2j0
(δIAδI)+iφ·δI

. (5.8)

Where A is a 15×15 matrix and the normalization factor C is determined by 〈W |Φq〉 = 1. The
spin phase coefficients are fixed by the background extrinsic geometry [14]. The intertwiner
phase coefficients are fixed by requirement that the state remain peaked after a change of
pairing to the value φn = π/2. [17, 149]

At each node n we have three possible pairings, that we denote as xn, yn and zn. For
instance, at the node 5, let x5 = {(12)(34)}, y5 = {(13)(24)}, z5 = {(14)(23)}, and denote
ix5 = i{(12)(34)} the intertwiner in the pairing x5, and so on. The vertex (5.4) and the state
(5.8) are written in terms of the intertwiner variable in, which is the virtual link of the node
n in one chosen pairing. Because of this, the definition of these states depend on the pairing
chosen. It follows that the vertex and the state do not have the full symmetry of the 4-simplex.
The corresponding propagator turn out not to be invariant under SO(4), as it should in the
euclidean theory. In [17], a simple strategy was adopted in order to overcome this difficulty:
sum over the three pairings at each of the five nodes. The state was defined as

|Ψq〉 =
∑

mn

∑

j,imn

Φq(j, imn) |j, imn〉, (5.9)

where mn = x, y, z for each node n. This sum implements the full symmetry of the 4-simplex.
Summing over the three bases removes the basis dependence.

In developing the calculations presented in the present paper, at first we adopted this
same strategy. To our surprise, nothing worked, and something quite funny happened: the
dependence on the intertwiner variables in misteriously cancelled out in all components of the
propagator!

The solution of the puzzle was to realize that to sum over the three basis with a correlation
matrix A does implement the symmetry of the 4-simplex, but not just this symmetry. It
implements a larger symmetry, that has the effect of cancelling the intertwiner dependence.
Geometrically, this additional symmetry can be viewed as an independent rotation of each of
the five tetrahedra forming the boundary of the 4-simplex.
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To understand what happens, consider for instance the correlation 〈j12ix5〉 between the
spin j12 which is the quantum number of the area of a triangle, and the intertwiner ix5 , which
is the quantum number of the angle θ12 between the faces 2 and 3 of the tetrahedron 5. More
precisely, ix5 is the eigenvalue of the quantity A2

2 +A2
3 +A2A3 cos(θ12), where Ai is the area

of the face i of the tetrahedron 5. Now, if the state is summed over pairings, then it does not
distinguish pairings, hence

〈j12ix5〉 =
1

3
(〈j12ix5〉 + 〈j12iy5〉 + 〈j12iz5〉) . (5.10)

That is

〈j12ix5〉 =
1

3
〈j12

(
3A2

1 +A2
2 +A2

3 +A2
4 +A1A2 cos(θ12) +A1A3 cos(θ13) +A1A4 cos(θ14)

)
〉.

(5.11)
But let ni, i = 1, ..., 4 be the normal to the face i of the tetrahedron 5, with length |ni| = Ai.
The closure relation reads ∑

i=1,4

ni = 0. (5.12)

Taking the scalar product with n1 gives

A2
1 +A1A2 cos(θ12) +A1A3 cos(θ13) +A1A4 cos(θ14) = 0. (5.13)

It follows from this equation and (5.11) that

〈j12ix5〉 =
1

3
〈j12(2A2

1 +A2
2 +A2

3 +A2
4)〉 =

1

3
(2〈j12j15〉+ 〈j12j25〉+ 〈j12j35〉+ 〈j12j45〉). (5.14)

That is, the spin-intertwiner correlations are just functions of the spin-spin correlations for
a state with this symmetry! The intertwiner dependence drops out! This means that the
propagator is completely unaffected from the correlations involving the intertwiners. It then
turns out that the sole spin-spin correlations in the state are not sufficient to give the full
tensorial structure of the propagator.

The solution of the difficulty is just to choose a boundary state and a kernel W that do not
have the extra symmetry. The simplest possibility is to choose an abitrary pairing, and then
to symmetrize only under the symmetries of the four-simplex. These are generated by the 5!
permutations σ of the five vertices of the four-simplex. A permutation σ : {1, 2, 3, 4, 5} →
{σ(1), σ(2), σ(3), σ(4), σ(5)} acts naturally on the boundary states

σ|jnm, ixn〉 = |jσ(n)σ(m), iσ(xn)〉 (5.15)

where the action σ(xn) of the permutation on a node is defined by

σ({(ab)(cd)n}) = {(σ(a)σ(b))(σ(c)σ(d))σ(n)} (5.16)

and can therefore change the original pairing at the node.
We therefore define the boundary state by replacing (5.9) with

|Ψq〉 =
∑

σ

σ|Φq〉 =
∑

σ

∑

j,i

Φq(j, i) σ|j, i〉. (5.17)
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This modification of the boundary state does not affect the conclusions of the paper [17].
Similarly, we pose

|W 〉 =
∑

σ

∑

j,i

W (j, i) σ|j, i〉. (5.18)

Before beginning the actual calculation of the propagator, consider what happens by
contracting the vertex amplitude with the boundary state. We have the double sum over
permutations

〈W |Ψ〉 =
∑

σσ′

(∑

jij′i′

W (j, i)Φ(j′, i′) 〈σ(j, i)|σ′(j′, i′)〉
)
. (5.19)

The scalar product is

〈j, i|j′, i′〉 = δj,j′
∏

n

〈in|i′n〉, (5.20)

where 〈in|i′n〉 is δin,i′n if the two intertwiners are written in the same basis, and is the matrix
of the change of basis, namely a 6j-symbol, otherwise. Now, it was observed in [17] that if
one of these 6j-symbols enters in a sum like (5.19) then the sum is suppressed in the large j0
limit, because the 6j-symbol contains a rapidly oscillating factor which is not compensated.
Hence, in this limit we can effectively rewrite (5.19) in the form

〈W |Ψ〉 =
∑

σσ′

(∑

jij′i′

W (j, i)Φ(j′, i′) δσj,σ′j′ δσi,σ′i′
)
, (5.21)

where the second delta vanishes unless the two intertwiners have the same value and are
written in the same basis. Up to accidental symmetry factors that we absorb in the state, we
can then rewrite the scalar product in the form

〈W |Ψ〉 =
∑

σ

(∑

ji

W (j, i)Φ(j, i)
)

= 5!
∑

ji

W (j, i)Φ(j, i). (5.22)

We shall see that a similar simplification happens in the calculation of the matrix elements
of the propagator.

5.3 The propagator

Let us begin by recalling the action of the grasping operators. This was computed in [17],
to which we refer for the notation. Consider the operators acting on a node n. The diagonal
action is simply

E(i)
n · E(i)

n |Φq〉 = Cni |Φq〉 (5.23)

where Cni is the Casimir of the representation associated to the link ni. The non-diagonal
action depends on the pairing at the node n. We have three cases, depending on the three
possible pairings. These are as follows. Say the node n is in the pairing (ij), (ef), with
positive orientation at the two trivalent vertices (in, i, j) and (in, e, f). Then we have the
diagonal double grasping

E(i)
n · E(j)

n |Φq〉 =
∑

j,i

Dij
n Φ(j, i) |j, i〉 . (5.24)
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while the two possible non-diagonal graspings give

E(i)
n ·E(e)

n |Φq〉 =
∑

j,i

Φ(j, i)
(
Xie
n |j, i〉 − Y ie

n

∣∣j, (in − 1), i′
〉
− Zien

∣∣j, (in + 1), i′
〉)

(5.25)

and

E(i)
n · E(f)

n |Φq〉 =
∑

j,i

Φ(j, i)
(
Xif
n |j, i〉 + Y if

n

∣∣j, (in − 1)i′
〉

+ Zifn
∣∣j, (in + 1)i′

〉)
. (5.26)

and so on cyclically. The quantities Dij
n , Xij

n , Y ij
n and Zijn are defined in [17]. Here i′ indicates

the four intertwiners different from in.
Inserting the expressions (5.17) and (5.18) in the expression (5.1) for the propagator, gives

the double sum over permutations

Gij,kl

qn,m =
∑

σ′σ

[∑

j,i

W (σ′(j), σ′(i))
(
E(i)
n ·E(j)

n − n(i)
n · n(j)

n

)(
E(k)
m ·E(l)

m − n(k)
m · n(l)

m

)
Φ(σ(j), σ(i))

]
.

(5.27)
The E operators do not change the spin, and the argument at the end of the last section can
be repeated. This time, however, the residual sum over permutations remains, because the
operators are not invariant under it

Gij,kl

qn,m =
∑

σ


∑

j,i

W (σ(j), σ(i))
(
E(i)
n ·E(j)

n − n(i)
n · n(j)

n

)(
E(k)
m · E(l)

m − n(k)
m · n(l)

m

)
Φ(σ(j), σ(i))


 .

(5.28)
By changing variables, we can move the symmetrization to the operators, hence writing

Gij,kl

qn,m =
∑

σ

G̃
σ(i)σ(j),σ(k)σ(l)

qσ(n),σ(m) (5.29)

where

G̃ij,kl

qn,m =
∑

j,i

W (j, i)
(
E(i)
n ·E(j)

n − n(i)
n · n(j)

n

)(
E(k)
m ·E(l)

m − n(k)
m · n(l)

m

)
Φ(j, i). (5.30)

In other words, we can first compute the propagator with unsymmetrized states and vertex,
and then symmetrize the propagator.

We can now begin the actual calculation of the various terms of the propagator. It is
usuefull to distinguish three cases: the diagonal–diagonal components G̃ii,kk

qn,m; the diagonal–

non-diagonal components G̃ii,kl
qn,m; and the non-diagonal–non-diagonal components G̃ij,kl

qn,m,
where again different indices are distinct. Let us considered the three cases separately.

In the diagonal–diagonal case, from the expression of the last section, we have

G̃ii,kk

qn,m =
∑

ji

W (j, i) (Cni − |n(i)
n |2)(Cnk − |n(k)

m |2) Φ(j, i) (5.31)

As we have seen in [17] the background geometry determines the background link j0

|n(i)
n |2 = C2(j0) = j0(j0 + 1) (5.32)
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and
Cni = C2(jni). (5.33)

In the large j0 limit we have at leading order

Cni − |n(i)
n |2 ≈ 2j0δjni (5.34)

the propagator components are then

G̃ii,kk

qn,m = 4j20
∑

j,i

W (j, i) δjni δjmk Φ(j, i) (5.35)

The sum over permutations is now trivial. It only gives a 5! factor that cancels with the same
factor in the normalization. We can therefore drop the tilde from (5.35).

In the diagonal–non-diagonal case, from (5.30) we have

G̃ij,kk

qn,m =
∑

j,i

W (j, i)
(
E(i)
n · E(j)

n − n(i)
n · n(j)

n

)(
E(k)
m ·E(k)

m − |n(k)
m |
)
Φ(j, i) (5.36)

now the second operator is diagonal and gives (5.34) at leading order; the action of the first
operator instead gives only one of the three terms (5.24), (5.25), (5.26) depending on how the
two links ni and nj are paired at the node n. The possible results (at leading order) are

G̃ij,kk

qn,m =
∑

j,i

W (j, i)2j0δj
(mk)

(
D(ij)
n +

j20
3

)
Φ(j, i) (5.37)

if the two links are paired. The second term in the parenthesis comes from the fact that the
background normals are fixed by the background geometry. In the large j0 limit

n(i)
n · n(nj)

n ≈ −1

3
(j0)

2. (5.38)

And

G̃ij,kk

qn,m =
∑

j,i

(
W (j, i)

(
X ij

n +
j20
3

)
−W (j, i′, in − 1) Y ij

n −W (j, i′, in + 1) Zijn

)
2j0δj

mkΦ(j, i),

(5.39)
or

G̃ij,kk

qn,m =
∑

j,i

(
W (j, i)

(
X ij

n +
j20
3

)
+W (j, i′, in − 1) Y ij

n +W (j, i′, in + 1) Zijn

)
2j0δj

mkΦ(j, i),

(5.40)
according to orientation, if they are not paired.

In (5.39) and (5.40) the term in Y and Z cancel at the leading order for the following
reason. First, recall from [17] that Y and Z are equal at leading order. The difference between
the Y -term and the Z-term is then only given by the ±1 in the argument of W . But the
dependence of W on in is of the form ei

π
2
in . Hence (up to subleading terms in the large j0

limit)
W (j, i′, in + 1) = −W (j, i′, in − 1) (5.41)
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The different between the two terms is just a sign and they cancel. Thus we have

G̃ij,kk

qn,m =
∑

j,i

W (j, i)

(
X ij

n +
j20
3

)
2j0δj

mkΦ(j, i), (5.42)

anytime ni and nj are not paired.
In the large distance limit we have (5.38) and

Dij

n − n(i)
n · n(j)

n =
C2(in) − C2(j(ni)) − C2(j(nj))

2
+

1

3
(j0)

2. (5.43)

Introduce the fluctuations variables δjnj = jnj − j0, and δin = in − i0 and expand around
the background values j0 and i0. In the large j0 limit (which is also large i0). The dominant
term of the (5.43) is

Dij

n − n(ni) · n(nj) = δin i0 − δjnij0 − δjnjj0. (5.44)

Similarly, using the results of [17], the X terms are approximated substituting C2(j) ≈ j2

and keeping the dominant terms

X ij

n = −1

4

(
(i0)

2 + 2j0 δj
ni + 2j0 δj

nj − 2j0 δj
nf − 2j0 δj

ne + 2i0 δin
)

(5.45)

where nf and ne indicate the other two links of the node n. Recalling that i0 = 2√
3
j0, we

have that the first term of the sum cancels the norm of the n, leaving

X ij

n +
j20
3

= −1

4
(2j0 δj

ni + 2j0 δj
nj − 2j0 δj

nf − 2j0 δj
ne + 2i0 δin) (5.46)

In conclusion, we have for the paired case

G̃ij,kk

qn,m = 2j20
∑

j,i

W (j, i)

(
2√
3
δin − δjni − δjnj

)
δjmk Φ(j, i), (5.47)

and for the unpaired one

G̃ij,kk

qn,m = j20
∑

j,i

W (j, i)

(
−δjni − δjnj + δjnf + δjne − 2√

3
δin

)
δjmk Φ(j, i). (5.48)

Finally, the non-diagonal–non-diagonal case is

G̃ij,kl

qn,m = 〈W |
(
E(i)
n · E(j)

n − n(i)
n · n(j)

n

)(
E(k)
m ·E(l)

m − n(k)
m · n(l)

m

)
|Φ〉 . (5.49)

The calculations are clearly the same as above.
The final result is

G̃ij,kl

qn,m = j20
∑

j,i

W (j, i)Kij
n K

kl
m Φ(j, i), (5.50)

where

Kij
n =

2√
3
δin − δjni − δjnj (5.51)
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if ni and nj are paired at n and

Kij
n =

1

2

(
−δjni − δjnj + δjnf + δjne − 2√

3
δin

)
(5.52)

if they are not; while
Kii
n = 2δjni. (5.53)

Both the state coefficients Φ(j, i) and the vertex coefficients W (j, i) are given by a gaussian
in δIα. The phases in the boundary state cancels with the phase of one of the two terms of
W , while the other term is suppressed for large j0. Thus, (5.50) reads

G̃ij,kl

qn,m = j20
∑

j,i

e
− 1

2j0
MαβδIαδIβKij

n K
kl
m , (5.54)

where M = A + ij0G. As in [17], we approximate the sum by a Gaussian integral with
quadratic insertions. The result of the integral is easily expressed in terms of the matrix M−1

obtained inverting the 15 × 15 covariance matrix M , in the 10 spin variables δjnm and the
five intertwiner variables δin.

The symmetries of the matrix M−1 are the same as the symmetries of M , and are dictated
by the symmetries of the problem. Which ones are these symmetries? At first sight, one is
tempted to say that M−1 must respect the symmetries of the 4-simplex, and therefore it must
be invariant under any permutation of the five vertices n. Therefore therefore it can have
only seven independent components:

M−1
(ij)(ij)

= c2, M−1
(ij)(ik)

= c1, M−1
(ij)(kl)

= c3,

M−1
ii = c4, M−1

ij = c5, M−1
(ij)i = c6 M−1

(ij)k = c7. (5.55)

where different indices are distinct. The ratio for this being for instance that M11 must be
equal to M22 because of the symmetry under the exchange of the vertex 1 and the vertex 2.
However, this argument is incorrect.

The reason is that the vertex function and the state function are written as a function of
intertwiner variables in which are tied to a given choice of pairing at each node. Specifically,

we have chosen the pairing i
(23)(45)
1 , i

(34)(51)
2 , i

(45)(12)
3 , i

(51)(23)
4 , i

(12)(34)
5 . This choice breaks the

symmetry under the permutations of the vertices, although this is not immediately evident.
To see this, consider for instance the two matrix elements M−1

(12)3 and M−1
(12)4. According to

(5.55), they should be equal (both be equal to c7 by symmetry. But notice that 1 and 2
are paired at the node 3, while they are not paired at the node 4. Therefore the two are
not equal under the symmetries of the paired 4-simplex. To see this more formally, let us

indicate explicitly the pairing in which the intertwiner is written by writing i
(ij)(ef)
n instead of

in. Then we see that M−1
(12)3 is of the form M−1

(ij)i
(ij)(kl)
n

while M−1
(12)4 is of the form M−1

(ij)i
(ik)(jl)
n

,

which makes it obvious that a permutation ijklm→ i′j′k′l′m′ cannot transform one into the
other, since it cannot undo the fact that the ij indices of the link are paired at the node. As
a consequence, we must for instance replace the last entry of (5.55) by

M−1

(ij)i
(ij)(kl)
n

= c7 M−1

(ij)i
(ik)(jl)
n

= c8. (5.56)
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and so on. Thus, the matrix M−1 may in general have a more complicated structure than
(5.55).

Now, the details of this structure depend on the pairing chosen. In fact, there are five
possible inequivalent ways of choosing the pairings at the nodes, which do not transform into
one another under permutations. These are illustrated in Figure 5.1.

i(23)(45)1

i(34)(51)2

i(45)(12)3i(51)(23)4

i(12)(34)5

i(25)(34)1

i(31)(45)2

i(42)(51)3i(53)(12)4

i(14)(23)5

i(34)(51)2

i(45)(12)3i(51)(23)4

i(12)(34)5

i(25)(34)1

i(31)(45)2

i(45)(12)3i(51)(23)4

i(14)(23)5

i(25)(34)1

i(45)(12)3i(51)(23)4

i(14)(23)5 i(31)(45)2

i(23)(45)1

Figure 5.1: The five classes of pairings: from the upper left: (10), (5,5), (7,3), (6,4) and
(4,3,3).

The fact that they cannot be transformed into one another by a permutation can be deduced
from the following consideration. In each diagram of Figure 5.1, consider the sequences of
links that can be followed without ever crossing an intertwiner. Observe that in the first case
all links are clustered in a single cluster of length 10. In the second, they are clustered in two
diagrams of lenght (5,5), and so on as indicated. Clearly a permutation cannot change the
structure of these clusterings, and therefore these pairing choices cannot be transformed into
one another under permutations. The five cases illustrated correspond to the five different 15j
Wigner symbols illustrated in [154]. These five classes define therefore distinct possibilities for
the definitionns of vertex and the state. As here we are not interested in generality, we have
just picked one of these: the first case. Also, since we are not interested in the full generality of
an arbitrary gaussian vertex and state, we just assume a particular form, compatible with the
symmetries, for the matrix M−1. Specifically, we assume that M−1 has the form (5.55) with
the last entry replaced by (5.56). That is, we assume the state depends on (at least) eight
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independent parameters that determine c = (c1, ..., c8). The symmetries of the 4-symplex
equivalence class admit a greater number of free parameters, but we do not need the most
general possible gaussian state for what follows. Assuming thus this form for M−1, we can
then proceed with the calculation of (5.54).

Each term of the normalized propagator is a sum of individual elements of the matrix M−1.
The overall dependence on j0 is as in the diagonal case, and gives the expected inverse-square
dependence. The normalization factor is

N−1 = j20

∫
d(δIα) e

− 1
2j0

MαβδIαδIβ (5.57)

The diagonal-diagonal term gives

G̃ii,kk

qn,m = N j20

∫
d(δIα) e

− 1
2j0

MαβδIαδIβ2δjni 2δjmk =
4

j0
M−1

(ni) (mk) =

{
4
j0
c1 if i=k or i=m,

4
j0 c3 otherwise.

(5.58)
In this case G̃ gives immediately G since the permutation does not mix c1 and c3 terms.

Proceeding in the same way for the other cases, we get for the diagonal–non-diagonal term
the two cases

G̃ij,kk

qn,m =
1

j0
(
−2M−1

(mk) (ni)−2M−1
(mk) (nj)+

4√
3
M−1

(mk) n

)
=





− 4
j0

(
c1 − 1√

3
c7
)

if i=k and j=m,

− 4
j0

(
c3 − 1√

3
c7
)

if i6= k and j 6= k,m,

− 2
j0

(
c1 + c3 − 2√

3
c8
)

otherwise.

(5.59)
and

G̃ij,kk

qn,m =
1

j0
(
−M−1

(mk) (ni) −M−1
(mk) (nj) +M−1

(mk) (np) +M−1
(mk) (nq) −

2√
3
M−1

(mk) (n)

)
(5.60)

=





2
j0 (−c1 + c3 − 1√

3
c8) if i=k and j=m

2
j0 (−c3 + c1 − 1√

3
c8) if i6= k and j 6= k,m

− 2√
3j0
c8 or − 2√

3j0
c7 otherwise

(5.61)

depending on the pairing of the node n. For the non-diagonal–non-diagonal terms, we have
the three possibilities: diagonal double grasping on the two nodes

G̃ij,kl

qn,m =
1

j0

(4
3
M−1

m n − 2√
3

(
M−1

n mk +M−1
n ml +M−1

m ni +M−1
m nj

)

+M−1
ni mk +M−1

ni ml +M−1
nj mk +M−1

nj ml

)
;

(5.62)

diagonal double grasping on one node and non-diagonal on the other one

G̃ij,kl

qn,m =
1

2j0

(
− 4

3
M−1
n m+

− 2√
3
M−1
nmk −

2√
3
M−1
nml +

2√
3
M−1
nmp +

2√
3
M−1
nmq+

+
2√
3
M−1

nim +M−1
ni mk +M−1

ni ml −M−1
ni mp −M−1

ni mq+

+
2√
3
M−1

njm +M−1
nj mk +M−1

nj ml −M−1
nj mp −M−1

nj mq;
)
,

(5.63)
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and non-diagonal on both nodes

G̃ij,kl

qn,m =
1

4j0

(4
3
M−1
n m+

+
2√
3
M−1
nmk +

2√
3
M−1
nml −

2√
3
M−1
nmp −

2√
3
M−1
nmq+

+
2√
3
M−1

nim +M−1
ni mk +M−1

ni ml −M−1
ni mp −M−1

ni mq+

+
2√
3
M−1

njm +M−1
nj mk +M−1

nj ml −M−1
nj mp −M−1

nj mq+

− 2√
3
M−1

ne,m −M−1
ne mk −M−1

ne ml +M−1
ne mp +M−1

ne mq+

− 2√
3
M−1

nf ,m −M−1
nf mk −M−1

nf ml +M−1
nf mp +M−1

nf mq

)

(5.64)

whose expression in terms of the c coefficients in turn depends on pairings. And so on.
Notice that the only the six parameters c1, c2, c3 and c5, c7, c8 enter the components of the
propagator. The other two, namely c4 and c6 do not, because we are only looking at the
propagator between points on different tetrahedra.

The last step is to symmetrize the propagator under permutations. The only terms that
change under permutations, at this point, are those due to the pairing. Hence, the only result
of a sum over permutation is to combine the two coefficients c7 and c8, which are the only
pairing dependent ones. For instance, a straightforward calculation gives the diagonal–non-
diagonal term (which has the peculiarity of not depending on the pairing class)

Gij,kk

qn,m =
∑

σ

G̃σiσj,σkσk

qσn,σm (5.65)

=





1
3j0

[
4(−c1 + c3) − 4c1 + 4√

3
(c7 − c8)

]
if i=k and j=m,

1
3j0

[
4(−c3 + c1) − 4c3 + 4√

3
(c7 − c8)

]
if i6= k and j 6= k,m,

1
3j0

[
− 2(c1 + c3) − 2√

3
(c7 − c8)

]
otherwise.

It is easy to see that the sum over permutation replaces all terms c7 and c8 with a term
proportional to the linear combination (c7 − c8). In conclusion, the propagator depends on
the five parameters c1, c2, c3, c5, (c7 − c8). Varying the parameters in the state we can span a
five-dimensional space of tensors G̃ij,kl

qn,m. In conclusion, Gii,kk
qn,m turns out to be a matrix with

the symmetries of the 4-simplex, freely dependending on five arbitrary parameters. Can this
give the same propagator as the linearized theory?

5.4 Comparison with the linearized theory

The number of components of Gij,kl
qn,m is large, and it may seem hard to believe that the

five-parameters freedom in the state could be sufficient to recover the tensorial structure of
the linearized propagator. However, there are two properties of the propagator that strongly
constrain it. First, the symmetrization of the 4-simplex symmetries largely reduce the number
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of indepedent components. Second, as proven in [17], the propagator satisfies the closure
relation ∑

i

Gij,kl

qn,m = 0. (5.66)

Let us count the number of free parameters of an arbitrary tensor Gij,kl
qn,m satisfying these

requirements. Using (5.66), we can always express a term in which any of the four indices
i, j, k, l is equal to either n or m as sum of terms not of this kind. This reduces the independent
terms to, say G

ij,kl

q 1,2 where i, j, k, l = 3, 4, 5. A few pictures and a moment of reflection will
convince the reader that the only independent ones of these are

Gii,ii

qn,m, Gii,kk

qn,m, Gij,kk

qn,m, Gij,ij

qn,m, Gij,ik

qn,m. (5.67)

All the other terms can be obtained from these by a permutation of the indices. Therefore a
tensor with these symmetries depends only on five parameters. This implies that adjusting the
five parameters in the state, we can match any such tensor, and in particular the propagator.

This can be checked by an explicit calculation of the propagator of the linearized theory
in the harmonic gauge (on the compatibility of the radial and harmonic gauge, see [152]).
The quantity Gij,kl

qn,m is the propagator projected in the directions normal to the faces of the
tetrahedra. The 4d linearized graviton propagator is

Gµνρσ =
1

2L2
(δµρδβγ + δµσδβγ − δµνδρσ) (5.68)

and its projection on the four linear dependent normals to the faces of each tetrahedron reads

Gij,kl

nm ≡ Gµνρσ (n(i)
n )µ(n

(j)
n )ν(n

(k)
m )ρ(n

(l)
m)σ (5.69)

We need the explicit expressions of the normals; to this aim, fix the coordinate of a four
simplex giving the 5 vertices of a 4-simplex fixing the 4d-vectors eµI where µ is the 4d space
index and I(I = 1, .., 5) is the label of the vertex. The easiest way to deal with this 4d
geometry is to introduce the bivectors Bµν

IJ

Bµν
IJ = eµK ∧ eνL + eµL ∧ eνM + eµM ∧ eνK (5.70)

where the indices IJKLM form an even permutation of 1, 2, 3, 4, 5. If t1 is the tetrahedron
with vertexes e2, e3, e4, e5 and so on cyclically, the bivector Bµν

nm will be the bivector normal
to the triangle tnm shared by the tetrahedra tn and tm. The normal nmn to this triangle, in
the 3 surface determined by the tetrahedron tn is (nmn )ν = Bµν

nm(tn)µ, where (tn)µ, is the
normal to the tetrahedron. Using this, it is a tedious but straightforward exercise to compute
the components of the projected linearized propagator. Writing the bimatrix Gij,kl

linearized 1,2 =

(Gkl)ij, where ijkl = 3, 4, 5 we have

(Gkl)ij ∼ 1
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which displays the equality of the various terms. The five different components have here
values (−16, 6,−28,−7, 4)/512. A judicious choice of the parameters c1, c2, c3, c5, (c7 − c8)
can match these values.

5.5 Conclusion and perspectives

We have shown that a vertex with an appropriate asymptotic expansion, combined with
a suitable boundary state, can yield the full tensorial structure of the propagator.

In doing so, we have also learned several lessons. The main lesson is that the non-
commutativity of the angles requires a semiclassical state to have an oscillatory behavior
in the intertwiners. In order to match this behavior, and approximate the semiclassical dy-
namics, the vertex must have a similar oscillatory dependence on the intertwiners. (This
should not affect with possible finitness properties of the model [127].) The second lesson is
that the symmetries of the boundary state must be considered with care, if we do not want to
loose relevant dynamical information. Symmetrizing over the permutation of the vertices is a
simple way of achieving a symmetric state without inserting additional unwanted symmetries.
In doing so, however, one must take into account that a choice of pairing breaks the 4-simplex
symmetry.

The most interesting open question, in our opinion, is whether other vertex amplitudes
considered (such as [110][142]) and in particular the vertex amplitude recently studied in
[143, 144] satisfies the requirements for yielding the correct full tensorial structure of the
graviton propagator. In particular, whether there is an oscillation in the intertwiners. This
issue can be addressed analytically, via a saddle point analysis of the asymptotic of the new
vertex, or numerically, using the technology developed in [155]. Some preliminary numerical
indications appear to be optimistic [156]. Also, we think that the role of the five inequivalent
structures illustrated in Figure 5.1 deserve to be better understood.



Chapter 6

Conclusions and perspectives

This PhD thesis is addressed to try to make possible comparisons of LQG,SM with the
usual theories with which we describe the world. The object studied is the graviton propaga-
tor.

The principal tools to calculate the scattering amplitudes are in fact the N point func-
tions of usual QFT. However the standard N-point functions loose of meaning because of
diff invariance proper of a background independent theory. An alternative strategy is then
needed.

In this thesis we have presented and developed Rovelli strategy to overcome this problem.
We have organized the work in a self-consistent way presenting in the first two chapters, all
the basic technical an theoretical tools of LQG and SM, needed to calculate the propagator
using Rovelli’s technique.

We have then summarized, in the third chapter, the recent works of Rovelli, Modesto
and others [14, 15, 16] that have opened a way for the definition of scattering amplitudes
background independent consistent with the generally covariant description proper of LQG
and SM. From the cited papers emerges the possibility of calculate N point functions looking
at the boundary amplitudes, namely the functional integral over a finite region of space-time
seen as a function of the boundary values of the field; this formulation, well defined in QFT
can be extended to Quantum Gravity in a way completely background-independent including
among the boundary fields the gravitational potential and observing that is this last one that
determines the distance between the points arguments of n-point functions.

This strategy united to the use of SM to describe the dynamic, has made possible the
calculation of some components of the 2 point function, that in appropriate limits, show the
behavior of the usual graviton propagator, namely the one emerging from the quantization of
a spin 2 massless field.

Starting from these encouraging results my work, has been turned to the reconstruction
of the whole tensorial structure of the LQG propagator to get an object fully comparable
with the usual perturbative one. The calculations have started using the same three key
ingredients used for the diagonal terms: the graviton operators, the boundary state, coding
the kinematics, and the vertex, coding the dynamics.

The construction of the non diagonal terms at first sight was only a calculation with fixed
ingredients.

Step by step we have realized (forced by difficulties in using those ingredients) that new
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ingredients were needed. We have stumbled on the necessity of think over the whole used
theory.

The non diagonal terms in fact have called into play the dependence of the spinnetworks
from the intertwiners. The non diagonal graviton operators in fact depend on intertwiners and
geometrically they cause angles fluctuation of the triangulated manifold, while the diagonal
operators cause only areas fluctuations. The presence of intertwiners, as kinematical variables,
in turn, has called into play the dependence of the vertex from these variables. This is a crucial
aspect of the definition of the quantum dynamics. In particular, the dynamics used to compute
the diagonal terms was defined by the Barrett-Crane (BC) vertex, where the dependence on
the intertwiners was trivial. This kind of dynamics in this contest is “frozen”, in the sense that
the tetrahedra of the triangulation can fluctuate only with respect to areas, but the angles
are fixed.

The BC model has then a number of degrees of freedom lesser of what the kinematics
requires.

In the paper [17] we have found that forcing the calculations with the BC vertex we don’t
get the correct tensorial structure of the propagator and also we loose its good behavior in the
large-distance limit found for the diagonal terms. This result is of interest for many reasons;
first, it indicates that the propagator calculations are nontrivial. In particular, they are not
governed just by dimensional analysis and they do test the dynamics of the theory. Second, it
reinforces the expectation that the BC model fails to yield classical GR in the long-distance
limit. Moreover it has motivated the search for a vertex amplitude that modifies the BC
amplitude: recently new vertexes, which address precisely the problems that we found, have
been proposed [143, 144, 145, 146, 147, 148, 150, 151]. Finally, and more importantly, it opens
the possibility of studying the conditions that an alternative vertex must satisfy in order to
yield the correct long-distance behavior. We have found that these difficulties are not an
intrinsic problem of the background-independent loop and spinfoam formalism, but instead,
they are a specific difficulty of the BC vertex.

In the paper [18] we have given general indications on the asymptotic properties that
the dynamics should have, if it has to yield the correct low energy limit. Recomputing the
propagator using these assumption on the vertex, we end up with a propagator, calculated
in the LQG formalism, that coincides with the well known propagator of a spin2 massless
particle! This result allows to establish a close relation between LQG and the low energy
world. What’s more the underlyng theory is not plagued by non–renormalizability and it
opens the way to calculate quantum corrections without infinities.

Future Directions

There is a lot of work to do starting from this thesis:
The first step is to understand whether other vertex amplitudes, in particular the vertex

amplitude recently proposed in references [143, 144, 145, 146, 147, 148, 150, 151] satisfies
the requirements for yielding the correct full tensorial structure of the graviton propagator.
The paper [18] provides a clear test for new spin foam models: it is enough to check the
asymptotics of any spin foam vertex to see if it is able to reproduce perturbative GR.

Next step will be the extension of these results to calculate the N point functions; with
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similar objects in hands, it will finally be possible to see how from LQG can emerge the low
energy physics. The calculations done show the Newton Law: exploring higher order correc-
tion, we could obtain modification of the gravitation potential and in general corrections to
the usual perturbative predictions. There are many other limits to explore; all the calculations
have been done in the large distance limit to reproduce the model of a graviton propagating
on flat background; exploring the opposite limit means enter in the domain of pure quantum
gravity effects. There are also the higher order terms of the expansion in Feynman graphs of
the group field theory considered to study.

An important step to strengthen these results would be to clarify the relation between 4d
SM and LQG, trying to extend the results of Noui and Perez [157] to the 4d case, starting
from the new models. Moreover the natural evolution of this project will be the introduction
of matter fields. We can think to extend the formalism tested without matter to include in
this framework the results of Freidel and Livine [158]. They have shown as in three dimensions
is possibile to derive rigorously the effective quantum field theory of a scalar self-gravitating
field, starting from a SF model. The quantum properties of the gravitational field manifest
itself in the effective QFT by a spacetime non-commutativity. This is a remarkable concrete
realization of the idea that non-commutativity of spacetime emerges as an effect of quantum
gravitational effects at the Planck scale.

If we could extend these results to the four dimensional case two directions of research
would arise:

First, theoretically, we could search for the connection between the existing theories of
Non–Commutative Geometry (NCG) and LQG.

Second, at phenomenological level, we could investigate the explicit consequences of this
noncommutativity on the n-point functions of the scalar field and on eigenvalues of certain
observables. These calculations could bring to a violation of the usual dispersion relations
(this is in fact one of the most interesting results of NCG) and we could search for the
phenomenological implications of this violation from this new perspective. In this case, as-
trophysical phenomena at cosmological distances, as Gamma Ray bursts, could represent the
ideal framework to test QG [159].

Speculating a little bit these kind of calculations could bridge between QFT and LQG and
bring the effects of the quantized spacetime directly inside Standard Model.
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Appendix A

Intertwiners

Consider the direct decomposition of the tensor product of n SU(2) irreps,
⊗n

i=1 Hji =⊕
J HJ . Under the assumption jn ≤ j1 + . . .+ jn−1, the decomposition contains the invariant

space H0, which we call Ij1...jn . This is the space of the spherically symmetric vectors, and
its elements are called intertwiners. Under normalisation, they are given by the generalised
Wigner 3m-coefficients.

The first non–trivial example is for n = 4.1 The dimension d of Ij1...j4 is, assuming
j1 ≤ . . . ≤ j4,

d = j1 + j2 −
1

2
|j1 + j4 − (j2 + j3)| + 1,

and the maximum reached for the symmetrical case ji ≡ j, ∀i, where d = 2j + 1. A basis
of Ij1...j4 is usually written grouping the systems in couples. Choosing for instance the tree
(12)(34), the independent intertwiners correspond to the 2j12+1 possible values of the coupled
spin ~J12 = ~J1 + ~J2. Introducing a “virtual” link, we might represent this choice as follows:

r r@
@

�
�

�
�

@
@

j1

j2

j12

j3

j4

As a shorthand notation, we use |j12〉 as the basis vectors of Ij1...j4 . The change of basis to a
different tree decomposition, say (13)(24), is given by the recoupling relation, which uses the
Wigner 6j symbol (see below),

|j13〉 = (−1)
∑

i ji
√

dimj12 dimj13

{
j1 j2 j12
j3 j4 j13

}
|j12〉, (A.1)

and it corresponds to the grouping

1For n = 3 all invariant spaces are 1-dimensional.
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The case n > 4 can be treated as above, with the introduction of n− 3 virtual links, each
one labeled with irreps of the sums J1 + J2, (J1 + J2) + J3, and so on:
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Appendix B

Recoupling theory

We give here the definitions at the basis of recoupling theory and the graphical notation
that is used in the text. Our main reference source is [161].

• Wigner 3j-symbols. These are represented by a 3-valent node, the three lines stand for
the angular momenta wich are coupled by the 3j-symbol. We denote the anti-clockwise
orientation with a + sign and the clockwise orientation with a sign -. in index notation
vαβγ :

(
a b c
α β γ

)
=

aα

b β

c γ

+
=

aα

c γ

b β

-
(B.1)

The symmetry relation vαβγ = (−1)a+b+c vαγβ

(
a b c
α β γ

)
= (−1)a+b+c

(
a c b
α γ β

)
(B.2)

implies

+
a

b

c

= (−1)a+b+c -
a

b

c

(B.3)

• The Kroneker delta.

δab δ
α
β = aα bβ. (B.4)

• Anti-symmetric or “metric" tensor. (1-j symbol). In vector notation: aǫαβ

(
a
αβ

)
= (−1)a+α δα−β (B.5)



in graphical notation:

δab

(
a
αβ

)
= aα bβ (B.6)

the relations ǫα
′βǫαβ = δα

′

α and ǫα
′βǫβα = −δα′

α , for the fundamental representation,
read, for generic representations

∑

β

(
a
α′β

)(
a
αβ

)
= δα

′

α (B.7)

aα aα′
=
aα aα′

(B.8)

and ∑

β

(
a
α′β

)(
a
βα

)
= (−1)2a δα

′

α (B.9)

aα aα′
= (−1)2a

aα aα′
(B.10)

From the properties of the 3j symbols it follows: in vector notation: vαβγ = vαβγ ; in
graphical notation:

+
a

b

c

= +
a

b

c

= +
a

b

c

. (B.11)

Trace of the identity

aδαα =

a

= 2a+ 1 (B.12)

• First orthogonality relation for 3j-symbols.

∑

α,β

(
a b c
α β γ

)(
a b c′

α β γ′

)
=

1

2c+ 1
δcc′ δ

γ
γ′ (B.13)

a

b

-+
c c′ =

1

2c+ 1
cγ c′γ′ (B.14)

This implies

- +
a

c

b

= 1 (B.15)



• Second orthogonality relation.

∑

cγ

(2c + 1)

(
a b c
α β γ

)(
a b c
α′ β′ γ

)
= δαα′ δ

β
β′ (B.16)

Graphically

∑

c

(2c+ 1) + -
c

aα

bβ

aα′

bβ′
=

aα

bβ

aα′

bβ′
(B.17)

• 6j symbol.
{
a b e
d c f

}
=
∑

αǫγ

(−1)a+e+c−α−ǫ−γ
(
a f c
α φ −γ

)(
c d e
γ δ −ǫ

)(
e b a
ǫ β −α

)(
b d f
β δ φ

)

++

++

+

ac

e

bd

f (B.18)

• The 4j coefficient, or 4-valent node.
(
a c b d
α γ β δ

)
=
∑

ǫ(−1)e−ǫ
(
e a c
ǫ α γ

)(
e b d
−ǫ β δ

)
(B.19)

+

a

c

d

b

+
e

• Recoupling theorem.

(
a c b d
α γ β δ

)
=
∑

f dim f (−1)b+c+e+f
{
a b f
d c e

}(
a b c d
α β γ δ

)
(B.20)

+

a

c

d

b

+
e

=
∑

f dim f

+

+ -

-

e f

a

d

b

c
f

+

+

a b

d c



• Inverse transformation.

f

+

+

a b

d c

=
∑

m

dimm (−1)b+c+f+m

{
a c m
d b f

}
+

a

c

d

b

+
m

(B.21)

• Orthogonality relation for the 6j symbols.

∑

f

dimm dim f

{
a b f
d c e

}{
a c m
d b f

}
= δem (B.22)

• Biedenharn-Elliot identity.

∑

x

dimx (−1)a+b+c+d+e+f+g+h+i+x

{
e f x
b a i

}{
a b x
c d h

}{
d c x
f e g

}

=

{
g h i
a e d

}{
g h i
b f c

} (B.23)

• The “basic rule".

∑

δǫφ

(−1)d+e+f−δ−ǫ−φ
(

d e c
−δ ǫ γ

)(
e f a
−ǫ φ α

)(
f d b
−φ δ β

)

=

{
a b c
d e f

}(
a b c
α β γ

)
(B.24)
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-

-
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c

b
e

f

d

= + +

d

f

e
bc

a
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+

+

a

c
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Appendix C

Some facts on SO(N) representation
theory

We collect here some facts on the representation theory of SO(D). We label finite di-
mensional irreducible representation of SO(D) by their highest weight Λ. Λ is a vector of
length n = [D/2] ([·] is the integral part): Λ = (N1, · · · , Nn), where Ni are integer and
N1 ≥ · · · ≥ Nn. If we are interested in representations of Spin(D) we let the Ni be half
integers. The representation labeled by the highest weight Λ = (N, 0, · · · , 0) are called simple
or spherical. Let Xij , 1 ≤ i, j ≤ D be a basis of the Lie algebra of SO(D). The simple
representation are the ones for which the “simplicity” relations

X[ijXij] · VN = 0 (C.1)

are satisfied. Here, [·] denotes the antisymmetrisation. The representation space VN of a
simple representation can be realized as a space of spherical harmonics, that is, harmonic
homogeneous polynomial on RD. Any L2 function on the sphere can be uniquely decomposed
in terms of these spherical harmonics

L2(SD−1) = ⊕∞
N=0VN . (C.2)

In the case of SO(4), since Spin(4) = SU(2)×SU(2), there is an alternate description of
the representation as products of two representations j′ and j′′ of SU(2). The relation with
the highest weight presentation is given by

N1 = j′ + j′′, N2 = j′ + j′′. (C.3)

the simple representation are therefore the representation in which j′ = j′′ := j. Thus, we can
label simple representations with a half integer spin j. Notice that the integer “color” N = 2j
is also the (nonvanishing component of the) highest weight of the representation.

In the text we have used the following properties of the simple representations

• Let VΛ be a representation of SO(D), we say that ω ∈ VΛ is a spherical vector if it
is invariant under the action of SO(D − 1). Such a vector exists if and only if the
representation is simple. In that case this vector is unique up to normalization.



• The space of intertwiner of three representations of SO(4) is at most one dimensional.

• The representation of SO(N) are real. This means that it is always possible to choose
a basis of VΛ such that the representation matrices are real. If we are interested by
representation of half integer spin of Spin(N) it is still true that Λ is equivalent to its
complex conjugate or dual. However the isomorphism is non trivial.



Appendix D

SO(4) Intertwiners and their spaces

In this appendix we review some properties and definitions in the theory of irreducible
representations of SO(4) (on this see [164]). We follow the conventions of [112].

Given g ∈ SO(4) we denote by D
(Λ)
αβ (g) the representation matrix corresponding to the

irreducible representation of order Λ. Integration over SO(4) or the SO(3) subgroup H is
performed with the normalized Haar measure of the group and the subgroup respectively.
The integration of two representation matrices is given by

∫

SO(4)
dg D

(Λ)
αβ (g)D

(Λ′)
α′β′(g) =

1

∆Λ
δΛΛ′

δαα′ δββ′ , (D.1)

where ∆(N) denotes the dimension of the representation. In the case of SO(4) we can choose
a basis in which matrices are orthogonal, and the bar can be dropped from the previous
equation. The integral of the product of three group elements is

∫

SO(4)

dg D
(N1)
α1β1

(g)D
(N2)
α2β2

(g)D
(Λ)
αβ (g) = CN1N2 Λ

α1α2α CN1N2 Λ
β1β2β

. (D.2)

Here CN1N2Λ
γ1γ2γ are normalized intertwiners (Wigner 3-j symbols) between three representations

of SO(4); that is CN1N2 Λ
α1α2α CN1N2 Λ

α1α2α = 1 (the θ–graph of SO(4) is normalized to 1 ). The
intertwiner from the tensor product of two representations N1, N2 to a representation Λ, if it
exists is unique.

Next, consider four representations N1 . . . N4. They are defined on the Hilbert spaces
H1 . . . H4. Consider the tensor product HN1...N4 = H1⊗ . . .⊗H4. This space decomposes into
irreducibles. In particular, it contains the trivial representation, with a certain multiplicity
m. We denote the m dimensional subspace of HN1...N4 formed by the trivial representations,
that is, the SO(4) invariant subspace of HN1...N4 as KN1...N4 .

When the representations N1 . . . N4 are associated to the four edges adjacent to the edge
e, we write KN1...N4 also as K ~Ne

. The vectors in KN1...N4 are the “intertwiners” between the
representations N1 . . . N4. They are SO(4) invariant tensors with four indices, one in each
representation Hi. We write them as V N1...N4

γ1...γ4 . An orthonormal basis in KN1...N4 can be
obtained as follows. We pair the representations as (N1, N2), (N3, N4). Then we define

CN1...N4 Λ
γ1...γ4 =

√
dimΛ CN1N2Λ

γ1γ2γ CN3N4Λ
γ3γ4γ . (D.3)



As Λ runs over the finite number of representations for which the (3 − j)-symbols do not
vanish, the CN1...N4 Λ

γ1...γ4 form an orthonormal basis of KN1...N4 . The factor
√

dimΛ normalizes
these vectors in KN1...N4 . Clearly, there are other bases of this kind, obtained by pairing the
indices in a different manner. For example, we can we pair the indices as (N1, N2), (N3, N4)
and define the basis

C̃N1N2N3N4 Λ
γ1γ2γ3γ4 = CN1N3N2N4 Λ

γ1γ3γ2γ4 . (D.4)

Since both the C’s and the C̃’s are orthonormal bases, the transformation matrix M is im-
mediately given by linear algebra

C̃N1N2N3N4 Λ
γ1γ2γ3γ4 =

∑

Λ′

MN1N2N3N4 Λ
Λ′ CN1N2N3N4 Λ′

γ1γ2γ3γ4 (D.5)

MN1N2N3N4 Λ
Λ′ = CN1N2N3N4 Λ

γ1γ2γ3γ4 C̃N1N2N3N4 Λ′

γ1γ2γ3γ4

= CN1N2N3N4 Λ
γ1γ2γ3γ4 CN1N3N2N4 Λ′

γ1γ3γ2γ4 . (D.6)

In fact, MN1N2N3N4Λ
Λ′ is a 6 − j symbol for SO(4). For a generic permutation σ of four

elements, we have a basis

σCN1N2N3N4 Λ
γ1γ2γ3γ4 = C

Nσ(1)Nσ(2)Nσ(3)Nσ(4) Λ
γσ(1)γσ(2)γσ(3)γσ(4)

(D.7)

and a corresponding matrix of change of basis MN1N2N3N4
σ

Λ
Λ′ .

Using this technology, the integral of the product of four group elements is simply a
resolution of the identity in KN1...N4 and can be written (for any choice of basis) as

∫

SO(4)

dg D
(N1)
α1β1

(g) . . . D
(N4)
α4β4

(g) =
∑

Λ

CN1...N4 Λ
α1...α4

CN1...N4 Λ
β1...β4

. (D.8)

Another important equation corresponds to the integration of one representation matrix
over a sub-group SO(3) ⊂ SO(4), namely

∫

H=SO(3)

dh D
(N)
αβ (h) = w(N)

α w
(N)
β , (D.9)

where w
(N)
α represents the unit vector in the irreducible representation of order N left invariant

by the action of the subgroup H (w
(N)
α is non vanishing only if N is simple). Equation (D.9)

defines the projector into that one-dimensional vector space.
As mentioned, invariant vectors exist only in simple representations (see the Appendix

of [112]). As a consequence the projection of the intertwiner CN1...N4N
γ1...γ4 wγ1 . . . wγ4 vanishes

unless all the Ni and N are simple. In this case its value (see the Appendix of [112]) is given
by

CN1...N4N
γ1...γ4 wγ1 . . . wγ4 =

1√
∆(N1) . . .∆(N4)

, (D.10)

Finally we give the definition of the Barrett-Crane intertwiner:

BN1,N2,N3,N4
γ1...γ4 ≡

∑

N

CN1...N4N
γ1...γ4 . (D.11)

The previous is the un-normalized Barrett-Crane intertwiner as originally defined in [70].



Appendix E

Boundary intertwiners

At the end of Section 3.2.2 , we have mentioned the difference between the space of the
simple SO(4) intertwiners and the space of the SU(2) intertwiners. The difference shows up in
the linear structure of the states. Suppose we decide to pair the four faces of the tetrahedron
differently, and to represent the intertwiner in terms of the virtual link k = jtt′′ for a different
pairing. In both cases, the linear properties of the space of the intertwiner allows to express
a virtual link as a linear combination of virtual links of a different pairing, but the linear
structure is different. In fact, in the SU(2) case, the recouping theorem gives (see for instance
(A.65) of [2], also for the notation.)

ij =

j1

j2

j4

j3

�
@ �

@

j
r r =

∑

k

{
j1 j2 k

j3 j4 j

}

j1

j2

j4

j3

�

@�

@
k
r

r

=
∑

k

ck ik (E.1)

On the other hand, in (3.74) the simple intertwiner labelled by j is in fact formed by a couple
of intertwiners, one for the left and one for the right component of SO(4), having the same
spin. Namely

ij =

j1

j2

j4

j3

�
@ �

@

j
r r

j1

j2

j4

j3

�
@ �

@

j
r r =

=
∑

k,l

{
j1 j2 k
j3 j4 j

}{
j1 j2 l
j3 j4 j

}
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j2

j4

j3

�

@�

@
k
r

r

j1

j2

j4

j3

�

@�

@
l
r

r

(E.2)

where the first diagram represents the self-dual and the second diagram the anti–selfdual
components of the representation. Therefore in the 4d case a simple link in one pairing is
equal to a sum including non simple links (when k 6= l) links in another pairing. That is

ij = i(j,j) =
∑

k,l

ckl i(k,l) 6=
∑

k

ck ik (E.3)

The reason of the discrepancy between the linear structures in (E.2) and (E.3) is not
entirely clear too us. This discrepancy, on the other hand, does not affect the computations



in the theory or the interpretation of the boundary states in the model we are considering.
The reason is that the only intertwiner appearing in the spinfoam sum is the Barrett-Crane
intertwiner, which decomposes into simple virtual links for any pairing:

iBC =
∑

j

(2j + 1)
�
@ �

@

j
r r

�
@ �

@

j
r r =

∑

k

(2k + 1)
�

@�

@
k
r

r

�

@�

@
k
r

r

(E.4)

Therefore if we identify the intertwiner ijtt′ with the LQG intertwiner ijtt′ , we obtain simply
and consistently equation (3.76).



Appendix F

Analytic expressions for 6j symbols

From [161].

{
a b e
d c f

}
= (−1)a+b+c+d∆(a, b, e)∆(a, c, f)∆(b, d, f)∆(c, d, e)

∑

z

(−1)z
f(z)

z!
(F.1)

where

∆(a, b, c) =

√
(a+ b− c)!(a+ c− b)!(b+ c− a)!

(a+ b+ c+ 1)!
(F.2)

and

f(z) =
(a+ b+ c+ d+ 1 − z)!

(e+f−a−d+z)!(e+f−b−c+z)!(a+b−e−z)!(c+d−e−z)!(a+c−f−z)!(b+d−e−f)!
(F.3)

The sum is extended to all the positive integer z, such that no factorial has negative argument.
The definition (F.1) implies some restrictions on the arguments of the 6j:
In particular the ∆(a, b, c) restricts the arguments to satisfy the triangle inequalities

(a+ b− c) ≥ 0 (a− b+ c) ≥ 0 (−a+ b+ c) ≥ 0 (F.4)

and a+ b+ c has to be an integer number.
The expression (F.1) reduces to the following simple expressions used in the calculation

{
a a 1
b b e

}
=

(−1)a+b+e+1

2

C2(a) + C2(b) − C2(e)√
C2(a) dim(a)C2(b) dim(b)

(F.5)

{
e e− 1 1
a a b

}
=

(−1)a+b+e

2

√
(a+ b+ e+ 1)(a− b+ e)(−a+ b+ e)(a + b− e+ 1)

C2(a) dim(a) e dim(e) dim(e− 1)

(F.6)
{
e e+ 1 1
a a b

}
=

(−1)a+b+e+1

2

√
(a+ b+ e+ 2)(a− b+ e+ 1)(−a+ b+ e+ 1)(a + b− e)

C2(a) dim(a) (e+ 1) dim(e) dim(e+ 1)

(F.7)



The 6j symbol is invariant for interchange of any two columns, and also for interchange of
the upper and lower arguments in each of any two columns:

{
a b e
d c f

}
=

{
a e b
d f c

}
=

{
e a b
f d c

}
=

{
a c f
d b e

}
=

{
d c e
a b f

}
, etc (F.8)

We have also used the trivial facts

(−1)a = (−1)−a ∀a ∈ Z, (−1)2a = 1 ∀a ∈ Z, (−1)3s = (−1)−s ∀s ∈ Z

2

in the calculations involving the 6j symbols



Appendix G

Grasping operators

The operator Ea(~x)n(ni)
a is the “grasping operator" that acts on the spinnetwork’s link dual

to the triangle with normal n(ni)
a . Let say that this link is in the j representation ; Ea(~x)nni

a will
acts inserting an SU(2) generator in the same representation [2] or equivalently, by inserting
an intertwiner between the (j) rep and the rep 1, namely a 3j symbol not normalized:

E(ni)(~x)iαβ = i (j)J iαβ = iN jviαβ (G.1)

where (j)J iαβ is the SU(2) generator in the j representation (i = −1, 0, 1), (α, β = −j, .., j),
N j is a normalization factor and viαβ is the normalized 3j symbol. The action of the operator
E(ni) is then determined by the representation of the links on which it acts; in the following
we will call E(j) an operator acting on the link with rep j.

Graphically, with our conventions

E(j)
n = iN (j)

-
j j

1

(G.2)

(Note the arrow that reflect the lowered magnetic index).
To fix the normalization factor N j is enough to square the expression (G.1), use (B.14)

jJ2 α
β = C2(j) jIαβ =

(N j)2

dim j
jIαβ (G.3)

and take the trace of the previous equation (where jIαβ is the identity in the rep j ), obtaining

N j =
√
j(j + 1) dim j (G.4)

Our triangulated manifold consist of a 4-simplex made of 5 tetrahedron tn, bounded by
triangles tnm. In the dual picture the 4 symplex is represented by the pentagonal net where
the tetrahedra are the 4-valent nodes n, labeled by the intertwiners in in a given pairing, and
the triangles are the links nm labeled by the spin numbers jnm.

In our calculation we act with the operator Ea(~x)n(nl)
a on the tetrahedron tn in the direction

n(nl)
a orthogonal to the triangle tnl; in the dual picture we are then acting on the 4-valent nodes
n and precisely on the link jni. To enlighten the notation, fixed a node n, we will call the four



possible colorings corresponding to the 4 directions ni with a, b, c, d where the letter indicate
the representation of the links. Graphically the action of a single grasping operator operating
on the link a for example is

E(a)
n

+

b

a

c

d

+
e

= iNa +

b

a

c

d

+
e

1 a
-

(G.5)

The action of our operators E(ni)
n · E(nj)

n on a node in a fixed pairing can then produce four
different result depending on the two directions nni,nnj

E(a)
n ·E(a)

n
+

b

a

c

d

+
e

= −(Na)2
+

b c

d

+
e

-

-1

a

a

a = −(Na)2
+

b c

d

+
e

-

-1

a

a

a =

= (−1)2a+1(Na)2
+

b c

d

+
e

-

-1

a

a

a = C2(a) +

b

a

c

d

+
e

(G.6)

where in the last equalities we have used the relation (B.11),(B.8),(B.10) to eliminate the
arrows and the (B.3) to solve the loop using (B.14). The other possible case is

E(a)
n ·E(b)

n
+

b

a

c

d

+
e

= −N (a)N (b) +

b

a

c

d

+ e
1

+

-

= (−1)a+b+eN (a)N (b) +

b

a

c

d

e
1

-

-

-
=

= (−1)a+b+eN (a)N (b)

{
b e a
a 1 b

}
+

b

a

c

d

+
e

=
C2(e) − C2(a) − C2(b)

2
+

b

a

c

d

+
e

(G.7)

where we have changed the orientations of the 3-valent nodes to simplify the loop, using
the basic identity (B.25),and used the symmetry properties of 6j symbols and its explicit
expression (F.5)



The other possible action is

E(a)
n · E(c)

n
+

b

a

c

d

+
e

= −N (a)N (c) ++
e

a

b
c

d+

+

1

=

= N (a)N (c)
∑

x

(−1)a+d+e+x dimx

{
b d x
c a e

}
x
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+

b d

c a

- -
1

=

= N (a)N (c)
∑

x

(−1)a+c+x(−1)a+d+e+x dimx

{
b d x
c a e

}{
c a x
a c 1

}
x

+

+

b d

c a

=

= N (a)N (c)
∑

x

(−1)a+c+x(−1)a+d+e+x dimx
∑

m

dimm(−1)a+d+m+x·

·
{
b d x
c a e

}{
c a x
a c 1

}{
b a m
c d x

}
+

b

a

c

d

+
m

=

= −N (a)N (c)(−1)3d+a+b−c
∑

m

dimm

{
e m 1
a a b

}{
e m 1
c c d

}
+

b

a

c

d

+
m

(G.8)

In the derivation of the result we have used, in order, the recoupling theorem (B.21) to change
the pairing of the node, the basic rule (B.25) to solve the loop, the inverse transformation
(B.21) to put the graph on the starting pairing and the Biedenharn-Elliot identity (B.23),
having adjusted the sign factors, using the triangles inequalities of the 3j symbols defining the
6j. To analyze the result we have to look at the existence conditions of the {6j}(Appendix F)



concluding that m can only take the values e− 1, e, e+ 1, the final resul is then

E(a)
n ·E(c)

n
+

b

a

c

d

+
e

=

= Xac

e
+

b

a

c

d

+
e

+ Y ac

e
+

b

a

c

d

+
e− 1

+ Zac

e
+

b

a

c

d

+
e+ 1

(G.9)

The form of the coefficient form is easily calculated inserting the explicit expression of the
{6j} symbols given in Appendix F

Xac

e = −N (a)N (c)(−1)3d+a+b−c dim(e)

{
e e 1
a a b

}{
e e 1
c c d

}
=

= −(−1)2(a+b+e)

4

(
C2(b) −C2(a) − C2(e)

) (
C2(d) − C2(c) − C2(e)

)

C2(e)

(G.10)

Y ac

e = −N (a)N (c)(−1)3d+a+b−c dim(e− 1)

{
e e− 1 1
a a b

}{
e e− 1 1
c c d

}
=

= −(−1)2(a+b+e)

4edim(e)

√
(a+ b+ e+ 1)(a − b+ e)(−a+ b+ e)(a+ b− e+ 1) ·

·
√

(c+ d+ e+ 1)(−c + d+ e)(c − d+ e)(c + d− e+ 1)

(G.11)

Zac

e = −N (a)N (c)(−1)3d+a+b−c dim(e+ 1)

{
e e+ 1 1
a a b

}{
e e+ 1 1
c c d

}
=

= − (−1)2(a+b+e+1)

4(e+ 1) dim(e)

√
(a+ b+ e+ 2)(a − b+ e+ 1)(−a+ b+ e+ 1)(a+ b− e)

·
√

(c+ d+ e+ 2)(−c+ d+ e+ 1)(c − d+ e+ 1)(c + d− e)

(G.12)

Note that by definition (a+ b+ e) is an integer, so there aren’t sign factors appearing in
these expressions.



The last term is

E(a)
n ·E(d)

n
+

b

a

c

d

+
e

= −N (a)N (d)
++

e

a

b c

d
+ -1

=

= −N (a)N (d)(−1)c+d+e ++
e

a

b
d

c+

+

1

=

= −N (a)N (d)(−1)3c+a+b−d(−1)c+d+e
∑

m

dimm

{
e m 1
a a b

}{
e m 1
d d c

}
+

b

a

d

c

+
m

=

= −N (a)N (d)(−1)a+b+e
∑

m

(−1)c+d+m dimm

{
e m 1
a a b

}{
e m 1
d d c

}
+

b

a

c

d

+
m

,

(G.13)

The result is obtained flipping the two link’s c and d to recast the graph in the form (G.8),
using the previous result and flipping back the graph in the summation. Keeping in mind
that the product of {6j}appearing in the non diagonal terms is left unchanged by the change
c→ d, the final result is then the same as (G.9) apart from the sign of the non-diagonal terms
and the change c→ d in the diagonal one

E(a)
n ·E(d)

n
+

b

a

c

d

+
e

=

= Xad

e
+

b

a

c

d

+
e

− Y ad

e
+

b

a

c

d

+
e− 1

− Zad

e
+

b

a

c

d

+
e+ 1

(G.14)

where

Xad

e = −N (a)N (d)(−1)a+b+c+d+2e dim(e)

{
e e 1
a a b

}{
e e 1
d d c

}
=

= −1

4

(
C2(b) − C2(a) −C2(e)

) (
C2(c) − C2(d) − C2(e)

)

C2(e)

(G.15)



Note that by definition
Y ac

e = Y ad

e Zac

e = Zad

e (G.16)

The operators that we have calculated have to satisfy

E(a)
n · E(a)

n + E(a)
n · E(b)

n + E(a)
n ·E(c)

n + E(a)
n · E(d)

n = 0 (G.17)

as a direct consequence of (4.7) which, at quantum level, implies that a four-valent node (by
definition an intertwiner) is invariant under under the action of the group. A direct calculation
on our four-valent node shows that this is indeed the case

(
E(a)
n · E(a)

n + E(a)
n · E(b)

n +E(a)
n ·E(c)

n + E(a)
n ·E(d)

n

) +

b

a

c

d

+
e

=

=

(
C2(a) +

C2(e) − C2(a) − C2(b)

2
+Xac

e +Xad

e

)
+

b

a

c

d

+
e

+

+ (Y ac

e − Y ad

e ) +

b

a

c

d

+
e− 1

+ (Zac

e − Zad

e ) +

b

a

c

d

+
e+ 1

= 0

(G.18)

being 0 the coefficient of all the states.



Appendix H

Normalization of the spinnetwork
states

Following [2], we define a spinnetwork S = (Γ, jl, in) as given by a graph Γ with a given
orientation (or ordering of the links) with L links and N nodes, and by a representation jl
associated to each to each link and an intertwiner in to each node. As a functional of the
connection, a spin network state is given by

ΨS[A] = 〈A|S〉 ≡
(
⊗lR

jl(H[A, γl])
)
· (⊗nin) (H.1)

where the notation · indicates the contraction between dual spaces and Rjl(H[A, γl]) is the jl
representation of the holonomy group element H[A, γl] along the curve γl of the gravitation
field connection A. In the paper we have used states normalized in such a way that

〈
S|S′〉 = δS,S′ . (H.2)

Following [162, 163] we can see that the scalar product reduces to the evaluation of the
spinnetwork and that the definition of the spinnet state has to be properly normalized in
order for (H.2) to be satisfied. Here we have used three-valent intertwiners (3j-Wigner symbols
(B.1)) normalized to 1, so that the evaluation of the theta-graph gives 1: see (B.15). This
means that the formula (8.7) of [162] defining a normalized spinnetwork state in our case
reads

|S〉N =

√∏

e∈E
dim je|S〉, (H.3)

where E is the set of real and virtual edges (intertwiner links of the decomposition of multiva-
lent nodes). We can then see that the recoupling theorem (B.21) when applied to spinnetwork
normalized state becomes

∣∣∣∣∣∣∣∣∣

+

a

c

d

b

+
e

〉

N

=
∑

f

√
dim e

√
dim f(−1)b+c+e+f

{
a b f
d c e

}

∣∣∣∣∣∣∣∣∣∣∣∣

f

+

+

a b

d c

〉

N
(H.4)



Appendix I

Regge Action and its derivatives

Following [160], we can write the asymptotic formula of a 6j symbol as

{
a b c
d e f

}
≈ 1√

12πV
cos
(
SR +

π

4

)
(I.1)

where

SR =

4∑

i,j=1

lijφij (I.2)

where SR is the Regge action of the tetrahedron

1 2

3

4

l34

l14

l12

l23
l24

l13
(I.3)

associated to the 6j symbol, and φij = φji (i 6= j) are the dihedral angle at the edge lij. The
edge lengths in terms of the 6j entries are: l12 = a+ 1

2 , l13 = b+ 1
2 , l14 = c + 1

2 , l34 = d + 1
2 ,

l23 = b+ 1
2 and lhh = 0, lhk = lkh.

The dihedral angles can be expressed in terms of the volume and the areas of the tetra-
hedron

AiAj sinφij =
3

2
lijV (I.4)

where Ai is the area of the triangle opposite to the vertex i (Ai, Aj are the areas of the
triangles that share the edge lij). We are interested in the expansion of the Regge action in
the variables lij ; we can express everything in term of the edge length expressing the volume
and the areas using the formula

V 2
d =

(−1)d+1

2d(d!)2
detCd (I.5)

where Vd is the volume of a simplex of dimension d and Cd is the Cayley matrix of dimension
d; in particular given 6 edges for the tetrahedron or 3 for the triangle, with the following



Cayley matrix we can calculate all the quantities appearing in (I.4)

C3 =




0 1 1 1 1
1 0 l21 l22 l23
1 l21 0 l24 l25
1 l22 l24 0 l26
1 l23 l25 l26 0




C2 =




0 1 1 1
1 0 l21 l22
1 l21 0 l23
1 l22 l23 0


 (I.6)

We are interested in the asymptotic expansion of the 6j symbol that realizes the change
of pairing at a given node; in the node 1 for example

{
j12 j13 ix1
j15 j14 iy1

}
(I.7)

with link variables j1n centered around j0 and intertwiners variables imn
1 centered around

i0 = 2√
3
j0. Using the previous formula we can calculate the coefficients of the Regge action

expansion linked to this symbol. The relevant derivatives for our calculation are (see also the
Appendix of [120])

∂SAR
∂ix1

∣∣∣∣
j0,i0

=
∂SAR
∂iy1

∣∣∣∣
j0,i0

=
π

2
, (I.8)

∂2SAR
∂j1n∂ix1

∣∣∣∣
j0,i0

=
∂2SAR
∂j1n∂i

y

1

∣∣∣∣
j0,i0

=
3

4j0
, (I.9)

∂2SAR
∂ix1∂i

y

1

∣∣∣∣
j0,i0

= −
√

3

j0
, (I.10)

∂2SAR
∂2ix1

∣∣∣∣
j0,i0

=
∂2SAR
∂2iy1

∣∣∣∣
j0,i0

= −
√

3

2j0
. (I.11)



Appendix J

Change of pairing on the boundary
state

Here we show how one of the coefficients defined by (4.35) transforms under the change
of basis determined by a different pairing. In particular, we show that with the choice of
parameters in (4.23), equation (4.49) becomes (4.51). Under the change of basis,

Φ′
q[j, ix1, i2...i5] =

∑

iy1

Φq[j, iy1, i2...i5](−1)j13+j14+ix1+iy1
√
dix1diy1

{
j12 j13 ix1
j15 j14 iy1.

}
(J.1)

With the choice of the boundary state defined by (4.23), this reads

Φ′
q[j, ix1, i2...i5] = e

− 1
2j0

∑
α(ij)(mr)δjijδjmr+i

∑
Φδjije

−∑n6=1

(
(δi

mn
n )2

4σimn
+
∑

a φjna i
mn
n

δjanδimn
n +iχ

i
mn
n

δimn
n

)

·
∑

iy1

e
−
(

(δi
y
1
)2

4σ
i
y
1

+
∑

a φja1 i
y
1
δja1δiy1+iχ

i
y
1
δiy1

)

(−1)j13+j14+ix1+iy1
√
dix1diy1

{
j12 j13 ix1
j15 j14 iy1

}
.

(J.2)

Expanding the 6j symbol in the large-j limit, and applying the relation (4.37) we get

Φ′
q(j, ix1, i2, ..., i5) = e

− 1
2j0

∑
α(ij)(mr)δj

ijδjmr+i
∑

Φδjij

e
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(
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mn
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4σimn
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a φjna i
mn
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n +iχ

i
mn
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δimn
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· e
iπi0
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dδiy1e

−
(

(δi
y
1)2

4σ
i
y
1

+
∑

a φja1 i
y
1
δja1δiy1+iχ

i
y
1
δiy1

)
√
dix1diy1

ei(SR+πδiy1+ π
4
) + e−i(SR−πδiy1+ π

4
)

√
12πV

.

(J.3)



We expand the Regge action up to second order in all its 6 entries; the external link around
j0 and the intertwiners around i0

SR[j1n, i
y

1, i
x

1] =SR[j0, i0] +
∂SR
∂j1n

∣∣∣∣
j0,i0

δj1n +
∂SR
∂ix1

∣∣∣∣
j0,i0

δix1 +
∂SR
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δiy1 +
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∂j1n∂j1n′

∣∣∣∣
j0,i0
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(J.4)

In the background in which we are interested, i0 = 2√
3
j0 and ∂SR

∂iy1

∣∣∣
j0,i0

= ∂SR

∂ix1

∣∣∣
j0,i0

= π
2 .

The value χ = ∂SR

∂iy1

∣∣∣
j0,i0

= π
2 , yields a phase in the intertwiner variable e−i

π
2
δiy1 that cancels

one of the two rapidly-oscillating phase factor due to the linear term of the expansion of the
Regge action. In particular the linear part in the intertwiner variable of the first exponential

e
i(

∂SR
∂i

y
1

∣∣∣∣
j0,i0

+π)δiy1
= ei

3π
2
δiy1 combines with the boundary phase factor but the linear part of the

second one e
−i( ∂SR

∂i
y
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−π)δiy1
= ei

π
2
δiy1 is canceled: for the same mechanism described in [16]

only the second term in the summation (J.3) survives. Denoting S̃R = SR − iπ2 δi
y

1, we have
that (J.3) reduces to
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(J.5)

From [120], we have that denoting µ =

√
dix

1
d

i
y
1

12πV , the dominant term is µ[j0]. We take µ[j0] out

of the integration and evaluate the integral following [149]. To simplify the notation, rename

the second derivative of the Regge actionGjna,imn
n

= ∂2SR

∂jna∂i
mn
n

∣∣∣
j0,i0

, G
i
m

n′
n ,imn

n
= ∂2SR

∂i
m

n′
n ∂imn

n

∣∣∣
j0,i0

and indicate with S[jna] (4.52) the part of the Regge action that depends only on the boundary
links involved in the 6j symbol considered and with no dependence from the intertwiners.



Substituting we get
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(J.6)

The choice φ = −iGj1a i
y
1

= −i 3
4j0

eliminates the argument of last exponential. So that we

fall into the same as calculation [149], and we can transform the gaussian in another gaussian
with the same variance. Evaluating the integral we get
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The Gaussian in the last equation has variance

σix1 =
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(J.8)

as in [149]. Proceeding in the same way, we fix σ so that both σiy1 and σix1 are real quantities.
Remarkably the auxiliary tetrahedron described by SR is isosceles and in this case σix1 = σiy1 =

j0/3
The final form of the coefficient is then
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where
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)
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and we have the result (4.51).
Summarizing, the parameters (4.28) and (4.29) are determined by the requirement that

the gaussian has the same shape in all bases.



Appendix K

Schrödinger representation and
propagation Kernel

Here we briefly review the Schrödinger’s representation of the Quantum Field Theory
and use the extension of the Feynman’s path integral formulation in this representation.
This formalism is needed to make contact between conventional Quantum Field Theory and
Spinfoam models. In fact one of the fundamental tools of these models is the propagation
amplitude between spin networks, which is formally similar to the field–to–field propagator
in Schrödinger’s representation. We briefly review Feynman’s path integral formulation of
Quantum Mechanics and Schrödinger representation [165, 166, 167].

K.1 Feynman’s Path Integral

The core of Feynman’s path integral formulation of Quantum Mechanics consists in in-
troducing a probability amplitude associated with every possible event. This amplitude is
proportional to the classical action associated to the specific event considered. It is possi-
ble to associate an amplitude, called “kernel”, with the overall event by adding together the
amplitudes of each alternative way in which an event can be realized.

For example, in the case of the propagation of a particle from point a to point b the kernel
W is given by the sum of the amplitude associated to every possible path in space and time,

W (x2, t2, x1, t1) ∝
∑

all pathfrom x1 to x2

exp
i

~
S[x(t)], (K.1)

where S[x(t)] is the classical action, calculated over the path x(t) such that

x(t1) = x1, x(t2) = x2.

The absolute square of the overall amplitude is interpreted as the probability that the event
will happen.

It is useful to make a brief comparison with the situation in Classical Mechanics. In the
latter, the propagator of a particle from a to b is described by a unique path x̄(t), determined
by the principle of least action. The action calculated on the classical path is also called



Hamilton function. In Quantum Mechanics, not just the particular path of extreme action
contributes; all paths do. In the classical approximation, even a small change in the path,
small on the classical scale, will correspond to huge changes in the action, when compared to
~. Contributions to the action for generic paths will average out, except for the classical path,
according to the principle of the stationary phase. Actually trajectories differing from the
classical path can still contribute as long as their action is within ~ from its extremal value.
The classical trajectory is indefinite to this slight extent, and this rule serves as a measure of
the limitations of the precision of the classically defined trajectory.

(K.1) can be formally rewritten as a path integral, that is, a functional integral over all
paths joining x1 and x2:

W (x1, t1;x2, t2) =

∫ x2

x1

D[x(t)] exp
i

~
S[x(t)]. (K.2)

In Quantum Mechanics, the kernel W is solution of the Schrödinger equation, in either the
variables a and b

i~
∂

∂t1/2
W (x1, t1;x2, t2) = Hx1/x2

W (x1, t1;x2, t2).

Thus the knowledge of W relative to a system at a given time t̃ implies its knowledge at all
subsequent times, which translates into a complete knowledge of the evolution of the system.
The knowledge of W allows a complete description of the system and its evolution in time.
Given the wave function of the system at the time 0, the kernel W allows to calculate the
wave function at any subsequent time t

ψ(x, t) =

∫
dyW (x, t; y, 0)ψ(y, 0).

This can be made clear by considering a representation of the kernel W in the base of eigen-
states |x〉 of the position operator. We have in fact

W (x1, t1, x2, t2) = 〈x2| e−iH(t2−t1) |x1〉 , (K.3)

where H is the hamiltonian of the system. The representation (K.3) also allows to derive
easily a representation of the kernel W in terms of eigenstates of the energy φn

W (x1, t1, x2, t2) = 〈x2| e−iH(t2−t1) |x1〉 =
∑

n

〈x2|n〉 〈n| e−iH(t2−t1) |x1〉 = (K.4)

=
∑

n

e−iEn(t2−t1) 〈x2|n〉 〈n|x1〉 =
∑

n

e−iEn(t2−t1)φn(x2)φn(x1),

where |n〉 are the eigenkets and En the eigenvalues of H.

K.2 Schrödinger’s Representation

In nonrelativistic Quantum Mechanics, the starting point is a hamiltonian operator which
is canonically quantized by postulating commutation relations between position operators and



their conjugate momenta. Using Schrödinger’s representation amounts to choosing the basis
where the position operator X is diagonal:

X |x〉 = x |x〉 ,

where |x〉 is the eigenstate with eigenvalue x. The coordinate representation of a state |ψ〉,
that is, its projection on the eigenstates |x〉 is the corresponding wavefunction ψ(x):

ψ(x) = 〈x|ψ〉 ,

ψ(x) is the probability density of finding the particle in the position x. The Schrödinger equa-
tion becomes a differential equation whose solutions, the eigenfunctions of the hamiltonian
differential operator, represent possible states of the system [168].

Now we transport this formalism in Quantum Field Theory, obtaining a description of
Quantum Field Theory in terms of fields rather than particles.

In the Schrödinger’s representation a basis for the Fock space is used where the time
independent operator φ(~x) is diagonal. Then in the space of states the following relation
holds:

φ̂(~x) |φ〉 = φ(~x) |φ〉 , (K.5)

with the important difference that φ̂(~x) is an operator while φ(~x) is a function. |φ〉 are the
eigenstates of the field operator with eigenvalues φ(~x). Coordinate representations of state
vectors or elements of Fock space are given by the projection of a state |Ψ〉 on the basis of
eigenstates |φ〉 of the field operator:

Ψ[φ] = 〈φ|Ψ〉 ;

where Ψ[φ] is a wave functional which determines the possible field configurations. Ψ[φ] is
a functional in ψ and represents the probability amplitude for a field measure on the state
|Ψ〉 to give the classical field φ(~x). The situation is completely analogous to nonrelativistic
Quantum Mechanics, where the scalar product 〈x|ψ〉 gives the probability amplitude for the
particle in the generic state |ψ〉 to be found at position x.

Just like in Quantum Mechanics the states |x〉 are normalized to a δ(x − x′), here the
eigenstates |φ〉 are normalized to a functional delta:

〈
φ′|φ

〉
=
∏

x

δ
(
φ(x) − φ′(x)

)
; (K.6)

i.e. the scalar product is nonzero only if the two configurations coincide everywhere. This
formula contains an infinite product, which will often appear when dealing with the functional
formalism, potentially rendering equations ill–defined. However, infinities pose no real obsta-
cle, since it has been proved that the Schrödinger’s representation is renormalizable, both in
the case of static and time–dependent problems.

The scalar product between wave functionals is also an obvious extension:

〈φ2|φ1〉 =

∫ ∏

x

δφ(x) 〈φ2|φ〉 〈φ|φ1〉 =

∫ ∏

x

δφ(x)Ψ2(φ)Ψ1(φ).



In the Schrödinger’s representation of nonrelativistic Quantum Mechanics, one uses a differen-
tial representation of the commutators by replacing the conjugate momenta with derivatives:

p→ −i~ ∂

∂x
,

In Quantum Field Theory, the equal–time commutators are given a functional differential
representation through similar steps:

φ̇(~x) = −i~ ∂

∂φ(~x)

where φ(~x) is the function defined in (K.5).

K.3 Propagation Kernel

Now we look at the propagation kernel between field configurations. In conventional
Quantum Field Theory, W [ϕ1, t1;ϕ2, t2] propagates the field φ from the field configuration
φ|t=t1 = ϕ1 defined on the spatial hyperplane at time t1 to the field configuration φ|t=t2 = ϕ2

defined on the spatial hyperplane at time t2. It is an extension of the propagation kernel
W (x1, t1;x2, t2) propagating a particle from position x1 at time t1 to position x2 at time
t2. I will now proceed to define it both in Minkowskian and Euclidean space; I will denote
the propagation kernel in the Minkowskian and Euclidean case as WM and WE respectively,
leaving the notation W for situations where both cases are concerned. In the Minkowskian
case the propagation kernel can be defined by generalizing either (K.2)

WM [ϕ1, t1;ϕ2, t2] =

∫ φ|t=t2=ϕ2

φ|t=t1=ϕ1

D[φ] exp iS[φ],

or (K.3)
WM [ϕ1, t1;ϕ2, t2] = 〈ϕ2| e−iH(t2−t1) |ϕ1〉 . (K.7)

From this last definition an extension of (K.4) easily follows, inserting sums on eigenstates of
the energy,

WM [ϕ1, t1;ϕ2, t2] =
∑

n

e−iEn(t2−t1) Ψn[ϕ2] Ψn[ϕ1]. (K.8)

The kernel W is a field–to–field propagator,

Ψ[ϕ2, t2] =

∫
Dϕ1 W [ϕ1, t1;ϕ2, t2] Ψ[ϕ1, t1]. (K.9)

The state space at time t1, Ht1 , is a Fock space, on which the hamiltonian H acts. The
corresponding definitions of the propagation kernel in the Euclidean case are straightforward
extensions of the above expressions to imaginary time.

The propagation kernel must obey the following properties:

i. Limit T → 0:
lim
T→0

W [ϕ1, 0;ϕ2, T ] =
∏

x

δ
(
ϕ1(~x) − ϕ2(~x)

)
,

where the functional delta must be interpreted as specified in (K.6).



ii. Convolution property:

W [ϕ1, t1;ϕ3, t3] =

∫
Dϕ2 W [ϕ1, t1;ϕ2, t2] W [ϕ2, t2;ϕ3, t3]. (K.10)

K.4 Relation with the Vacuum State

The propagation kernel propagates the vacuum state functional Ψ0 into itself

Ψ0(ψ) =

∫
Dφ W [φ, 0;ψ, T ] Ψ0(ψ).

More importantly, the vacuum state functional can be calculated using the propagation kernel
alone. Indeed, from the definition (K.8) of the propagation kernel

lim
T→∞

W [ϕ1, 0;ϕ2, T ] = lim
T→∞

∑

n

e−iEnT Ψn(ϕ2) Ψn(ϕ1) = Ψ0(ϕ2) Ψ0(ϕ1);

this limit being valid in theory with a mass gap, that is, if E0 and E1 are separated by a finite
amount. To obtain precisely the vacuum state it is necessary to set ϕ1 = 0:

lim
T→∞

W [0, 0;ϕ, T ] = Ψ0(ϕ). (K.11)

In the Euclidean case the limit T → ∞ is straightforward, it can be also made rigorous with
stationary phase arguments in the Minkowskian case [118, 169].

K.5 Relations with the N–point Functions

I now wish to clarify the relation between the propagation kernel and the ordinary particle
propagator, also called Feynman propagator. The latter is defined as the two-point function

i∆F (x1 − x2) = 〈0|T
(
φ(x1)φ(x2)

)
|0〉 ,

where the fields φ must be fundamental fields, i.e. fields which create the particle whose
propagation the propagator describes and not composite operators of any kind [170].

In the Minkowskian case, the two–point function 〈0|T
(
φ(x1)φ(x2)

)
|0〉 can be expressed

via the propagation kernel in the following way

〈0| T
(
φ(x1)φ(x2)

)
|0〉 = (K.12)

= 〈0| φ(~x2) e
−iH (t2−t1) φ(~x1) |0〉

= lim
T→∞

W−1[0,−T ; 0, T ]

∫
Dφ1 Dφ2 W [0,−T ;φ1, t1] φ1(~x1) ·

·W [φ1, t1;φ2, t2] φ2(~x2) W [φ2, t2; 0, T ]

=

∫
Dφ1 Dφ2 Ψ0(φ1) φ1(~x1)W [φ1, t1;φ2, t2] φ2(~x2) Ψ0(φ2),

where t1 < t2. Since using the Minkowskian propagation kernel the equation involves a limit
T → ∞ it will be easier to perform the calculation in the Euclidean case.



With the only use of the propagation kernel it is possible to write down the two–point
function, i.e. the particle propagator for the given theory. However, this result allows to do
much more than that. Indeed, the quantities which allow to make contact with experiment,
i.e. the scattering amplitudes like

〈
qout
1 , . . . , qout

n |pin
1 , . . . , p

in
m

〉
, can be rewritten in terms of

n–point functions via the Lehmann–Symanzik–Zimmerman reduction formulas [171].
In turn, n–point functions can be rewritten in terms of two–point functions, i.e. prop-

agators, thanks to Wick’s theorem. This leads to the crucial result that the single tool of
the propagation kernel allows to reconstruct scattering amplitudes via the propagators, i.e.
it allows to reconstruct any quantity of physical interest that can be derived from Quantum
Field Theory. Therefore the propagation kernel formulation allows to completely reformulate
Quantum Field Theory.



Appendix L

Regular simplices

We collect here some simple geometrical formulas used in the text. An equilateral triangle

of side L has area A =
√

3
4 L

2. An equilateral tetrahedron of side L has volume V3 = 1
6
√

2
L3

and height h =
√

2
3L. The barycenter of the tetrahedron is at a distance d = h

4 = 1
2
√

6
L from

a face.
A regular 4-simplex of side L has 4-volume V4 =

√
5

96 L
4. The dihedral angles Θ of the 4-

simplex, defined as the angles between the outward normals to the tetrahedra, satisfy cos Θ =
−1/4. The center of two tetrahedra are at a distance D = L

4 from one another and at a
distance R = 1

2
√

10
from the center of the 4-simplex.



Appendix M

Simple gaussian integrals used in the
calculation

∫ +∞

−∞
dxD exp−1

2
xaAabx

b =
(2π)

D
2√

detA
, (M.1)

∫ +∞

−∞
dxDxixj exp−1

2
xaAabx

b =
(2π)

D
2√

detA
A−1
ij , (M.2)

∫ +∞

−∞
dxD exp−1

2
xaAabx

b + iθax
a =

(2π)
D
2√

detA
exp−1

2
θaA−1

ab θ
b, (M.3)

∫ +∞

−∞
dxDxi exp−1

2
xaAabx

b + iθax
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(2π)
D
2√

detA
i A−1

ia θ
a exp−1

2
θaA−1

ab θ
b, (M.4)

∫ +∞

−∞
dxDxixj exp−1

2
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b + iθax
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(2π)
D
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detA
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2
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ab θ
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−∞
dx xm exp−1

2
ax2 + iθx =

√
2π

a
(−i)m ∂m
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