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Chapter 1

Introduction

In this work we will report our progress in developing variational approaches to the problem

of electron-phonon (e-ph) interaction in strongly correlated systems, i.e. in those systems

where screening is not effective enough and electrons experience a relevant residual short-

range Coulomb repulsion. In this introductory chapter we discuss briefly the experimental

findings that motivated our research and the reason why we believe that a variational scheme

can prove useful to the understanding of the problem.

Generally speaking the interplay between lattice and electronic dynamics is always present

in solids. Nevertheless in many materials, especially in conventional metals, electron screen-

ing is sufficiently effective, and electronic correlation effects are strongly suppressed; thus

phonons substantially interact with almost independent quasiparticles and the e-ph coupling

can be treated perturbativly in many relevant cases. This approach proved to be accurate for

instance in the description of the temperature dependence of resistivity[1] or, most notably, in

the identification of the pairing mechanism of conventional low-temperature superconductors.

The latter is a combination of two effects: an overscreening effect due to the phonons, which

mediate an effective attractive interaction between low-energy electrons, and the presence of

a Fermi surface, which is ultimately responsible (through Pauli’s exclusion principle) for the

formation of stable Cooper pairs [2]. The observation that the attraction takes place only at

small frequencies suggests that superconductivity should occur at very low temperatures, as

also the experience suggested until 1986, when superconductivity with a high critical tem-

perature Tc (HTSC) was observed in doped lanthanium-copper oxides[3]. These compounds

turned out to belong to a whole class of materials (usually called cuprates) that display a

rich and complex phenomenology, including also antiferromagnetic order and unconventional

metallic properties, which could not be explained in the theoretical framework at disposal at

that time. As it will be detailed below, cuprates are strongly correlated systems, i.e. systems

in which the strenght of electron-electron (e-e) interactions is comparable to or larger than

the kinetic energy and where physical properties can not be accounted for in a quasiparticle

(Fermi-liquid) picture. On the other hand, even though their polar character (testified by

different values of low- and high-frequency dielectric constants[4]) suggested a strong coupling
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2 CHAPTER 1. INTRODUCTION

to lattice dynamics,1 the e-ph interaction was initially ruled out as a possible mechanism for

the high-temperature superconducting pairing. In fact a number of experiments seemed to

contrast with the common wisdom concerning convential e-ph-induced superconductivity and

led many people to consider different physical mechanisms; nonetheless it is worth reminding

that the interpretation of those experimental findings was based on standard e-ph theory,

not including the possibility of new effects due to the presence of strong e-e correlation. In

recent years improvements in sample manipulations and experimental techniques, especially

in Angle-Resolved Photoemission Spectroscopy (ARPES)[7], have revived the interest in the

e-ph role in cuprates, since phonon signatures have been observed in many physical quanti-

ties, as we will detail in the following. Due to the strongly-correlated character of cuprates,

interpretation of these findings require the development of a theory which is able to treat

the simultaneous contributions of strong e-e interaction and non-negligible coupling with the

lattice. A complete theory of this sort has not been formulated yet, and whether the e-ph

coupling is relevant or not for the high-temperature superconductivity is therefore still an

open question.

The issue of competing e-e and e-ph interactions is of much broader interest. Other tran-

sition metal oxides, such as the colossal magnetoresistive manganites[8] or the nickelates[9],

display a rich phenomenology which is thought to be related to their complex lattice dynam-

ics combined with other interaction mechanisms involving spin, charge and orbital degrees

of freedom. Furthermore, in 1991 it was realized that fullerens (the large C60 molecules

discovered in 1985 by Kroto[10]) could be arranged in alkali-doped compounds (fullerides)

which display superconductivity at critical temperatures which are second only to the high

Tc typical of cuprates[11]. In these systems many energy scales are similar (characteristic

phonon energy ωph . bandwidth W < electronic correlation U) and estimates of e-ph in-

teraction suggest that they are in an intermediate coupling regime; this means on one hand

that Migdal’s theorem[12], which is usually considered in standard treatment of e-ph cou-

pling, is not valid, and on the other hand that correlation effects should be duly taken into

account. Indeed Capone et al.[13] showed in their analysis of a model for the fullerides that

short-range Coulomb repulsion in combination with Jahn-Teller phonons can even enhance,

for some value of the coupling constants, the superconducting pairing; this was rather un-

expected and suggests that a whole new field in which competing different interactions are

simultaneously active have to be investigated in order to understand properly fundamental

effects.

Let us briefly mention at last the possible connections with the recently developed field

of mesoscopics. During the last years, in fact, consistent improvements in microfabrication

techniques have allowed to realize almost nanoscopic devices as quantum dots or ultrasmall

metallic grains; such systems, besides their technological relevance, are proving to be an

1Actually Bednorz himself admitted in his Nobel lecture[5] that the search for high-Tc superconductivity in

cuprates had followed the idea proposed by Chakraverty that polaron formation, due to strong e-ph coupling,

could enhance superconducting pairing.[6]
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excellent test field to directly probe and study the nature of electron correlations due to

the unprecedented ability to resolve discrete energy levels[14]. Furthermore, when these

microscopic devices are built up with single molecules or with organic compounds, molecular

vibrations and their coupling to conducting electrons need to be included and are thought to

compete in non-trivial ways with correlation-induced effects as the Coulomb-blockade or the

Kondo effect[15]. Again, we believe that any contribution to the development of a general

theoretical framework for the interplay of comparable e-e and e-ph interactions is nowadays

extremely promising if not necessary.

It is beyond the scope of this thesis to review all the experimental details concerning

materials that are often very different from each other. For this reason in the next section

we will just give some recent result concerning the high-Tc superconductive cuprates and

the possible relevance of the interplay between electronic correlations and lattice degrees of

freedom in these systems; the last section of this introductory chapter will be devoted to

some theoretical remarks.

1.1 Role of strong correlation and electron-phonon coupling

in superconducting cuprates

Since their discovery in 1986 cuprates revealed a very rich phenomenology strongly dependent

on temperature and chemical doping, as it can be seen in the schematic phase diagram for

hole-doped compounds in Fig. 1.1. The undoped parent compounds are insulators with anti-
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Figure 1.1: Schematic phase diagram of hole-doped cuprates; the antiferromagnetic phase is

spread over a wider range for the electron-doped case, whereas the superconducting dome is

smaller.

ferromagnetic order at low temperature; by introducing a finite (∼ 5% ) density of vacancies
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a metallic character is observed in the normal state above Tc which however is found to be

at odd with conventional Fermi-liquid metals up to relatively high (∼ 15%) values of dop-

ing. At low temperatures antiferromagnetism is replaced by a superconductivity dome (the

highest Tc defines the so-called optimally doped compounds). Despite the early experimental

evidence for Cooper pairs in the superconducting phase of cuprates [5, 16], several differences

have been observed with respect to convential superconductors, e.g. the d−wave rather than

s−wave symmetry[17] of the pairing. Most notable is the pseudogap, i.e. a depression in the

single-particle excitation spectrum with the same d−wave symmetry of the superconducting

gap, observed in underdoped compounds above Tc[18].

The strongly correlated character of cuprates is a well-established fact. It is widely be-

lieved that the relevant physics occurs along the conducting planes made of copper and oxygen

present in all the HTSC cuprates, while the ‘out-of-plane’ atoms serves essentially as a charge

reservoir. In the undoped compounds copper has a valence +2, corresponding to a 3d9 elec-

tronic configuration which is splitted by the crystal field in five non-degenerate orbitals: the

highest-energy one, which undergoes a hybridization with the 2p orbitals of neighbouring

oxygens, is half-filled, hence, according to band theory, one should expect these compounds

to have metallic character. The observed antiferromagnetic insulating phase can be under-

stood only considering a residual short-range Coulomb repulsion experienced by electrons on

Cu sites, which splits the 3d band in a completely filled lower band and in an empty upper

band with an energy gap of the order of some eV[20]. This kind of physics is well captured in

the most famous Hubbard model[21], where tight-binding electrons with hopping parameter

t interact locally through a repulsive term U which makes the simultaneous presence of two

electrons on a site energetically unfavourable. As reviewed in Ref. [19], the Hubbard interac-

tion allows for the understanding of many experimental results, e.g. the transfer of spectral

weight from high to low energy upon doping[20].

On the other hand a number of experiments testifies for a non negligible coupling with

phonon modes. In the very beginning of the HTSC affaire, phonons were ruled out because

it was thought that, in order to give the observed high Tc, the coupling strenght should have

been such that structural instabilities could not be avoided[23]; furthermore in optimally-

doped samples only a small isotope effect on the critical temperature was observed upon

oxygen substitution[24], while above Tc the resistivity showed a linear behaviour with increas-

ing temperature[25], in contrast with the common understanding of phonon contribution to

the temperature dependence of resistivity[1]; both effects suggested a weak, if any, coupling

with crystal degrees of freedom. Actually the situation is more complex and again depends

crucially on doping; isotope coefficients on Tc are indeed small at optimal doping, but tend

to increase as doping is reduced[26], in a region of the phase diagram where correlation ef-

fects are expected to play an important role. More interesting is the quite large isotope effect

observed also in optimally-doped samples on the zero-temperature in-plane magnetic penetra-

tion depth, which can be connected to an isotope effect on the supercarrier effective mass[27],

an effect absent in the Bardeen-Cooper-Schrieffer theory[28] for conventional superconduc-
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tors. Direct observation of substantial phonon softening upon entering in the superconduct-

ing phase has been also made possible by neutron scattering measurements[29] suggesting,

togheter with the appearence of Fano resonances in many phonon Raman spectra[30], a strong

e-ph coupling.

The most striking and unusual signatures of possible e-ph interaction come however by

ARPES measurements (for a recent review, see [7]). The energy-momentum dispersion curves

along the nodal direction, i.e. where the superconducting gap is zero, show in fact an abrubt

slope change in all HTSC cuprates. This kink has been observed in various hole-doped samples

in a very similar energy-scale range (50-70 meV) even for systems with different gap energy,

it is present above and below Tc and it covers the entire doping range, even if it is stronger

in underdoped samples[31]. The origin of such a kink can be ascribed to a coupling between

electrons and some bosonic mode, which is likely of phonon origin (magnetic resonance should

be ruled out, being observed only in certain materials and below Tc). Actually a O18 −O16

exchange experiment has been carried out in order to test the idea of e-ph coupling , and

a strong isotope effect has been reported in nodal dispersion (see Fig. 1.2). From the

conventional e-ph coupling one should have expected a small shift of phonon energy due to

isotope exchange, while keeping most of the dispersion intact. Surprisingly, the low-energy

dispersion is almost left unchanged by isotope substitution, while major effects appear for

energies higher than the energy scale of the kink.

Figure 1.2: Isotope-induced in optimally doped Bi2Sr2CaCu2O8+δ in the superconducting

phase[32]. In panel a raw Energy Dispersion Curves along the nodal direction, as sketched

in the inset. Panel b shows the isotope effect in the nodal dispersion; low energy dispersion

is nearly isotope-independent, as opposite to the high energy one. The effect is reversible by

isotope re-substitution.
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Figure 1.3: Doping dependence of the nodal electron dynamics in La2−xSrxCuO4[33]. The

arrow indicates the position of kink that separates the high-energy and low-energy parts with

different slopes.

Actually, this dichotomy between low and high energy features has been observed over

the entire doping range, as depicted in Fig. 1.3, with an ’universal nodal Fermi velocity’

behaviour for binding energies smaller than the energy scale of the kink, and strongly doping-

dependent high-energy velocities, that can be extracted with a fitting procedure from the

dispersion and are found to increase with decreasing hole concentration[33]. These findings

cannot be explained by conventional theories for e-ph and e-e interaction. From the point of

view of phonons, in a picture where e-ph coupling changes with doping but the ’bare band’

does not, one should have expected an opposite dependence on doping, namely high energy

features almost untouched and low energy ones strongly doping dependent. On the other

hand, by considering e-e interaction, which gets stronger approaching the Mott insulator

with decreasing doping, the expected effect should have been a depressed effective mass and

enhanced velocity upon increasing doping, effect which is not seen in the low energy sector and

that is exactly the opposite of the high energy findings in cuprates. These anomalies indicate

potential deviations from standard theories and suggest a possible complex interplay between

electron-phonon and electron-electron interaction which should be carefully addressed.

Another set of experimental measurements for undoped and slightly doped samples sug-

gests that this interplay, including also the presence of correlation-induced antiferromag-

netism, could play an important role. As it is well-known, the relevant model for the dy-

namics of charge carriers in an antiferromagnetic background is the t− J model, which can
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be viewed as an expansion for large U of the already mentioned Hubbard model, where mo-

bility scale t is renormalized to scale J ∼ t2/U [34]. Although measured dispersions along

the nodal direction in many parent compounds show agreement with the calculated ones[35],

a few puzzles remain in the interpretation of ARPES data[36] when e-ph coupling is not

considered, that can be resumed in Fig. 1.4. First, the width of the sharpest peak (A in fig

1.4) near (π/2, π/2) has a width (∼ 300meV ) that is comparable with the entire occupied

bandwidth, much broader than that obtained from t − J calculations and too much broad

to be considered as a quasiparticle peak. Second, the experimentally exctracted chemical

potential µ is located at ∼ 0.45 eV above the peak A, which then cannot be considered a

quasiparticle peak. Actually Mishchenko and Nagaosa[37] showed that this problem can

Figure 1.4: Photoemission spectrum of Ca2CuO2Cl2 at k = (π/2, π/2). A and B denote the

peak maximum and the onset of spectral weight, respectively. Comparison with Sr2RuO4

is shown in thin black, while the inset shows photoemission spectra from H2. In panel c

dispersion of A and B along (0, 0) − (π, π) is shown, togheter wit experimental values for

µ.[36]

be resolved by considering the polaron effect, induced by strong e-ph coupling, in the t− J

model, as confirmed also by Rösch and Gunnarson[38]. In their analysis they showed that the

quasiparticle peak has a vanishingly small residue Z and is then hidden in the tail of spectral

intensity (B in Fig.1.4), while feature A is simply incoherent weight associated to ’shake-off’

excitations whose center of mass corresponds to the motion of a hole in the background of

frozen lattice configuration; this means, as shown in Fig. 1.5, that the dispersion of the hole

remains that of the non-interacting limit, i.e. of the t− J model without phonons, while the

line-width broadens.
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Figure 1.5: Dispersion of resonance energies in the t−J model with e-ph coupling at J/t = 0.3

from Ref. [37] . Open and filled squared represent the lowest polaron resonance, which shows

no momentum dependence, at two different values of the coupling, while the open and filled

circles indicate the broad resonance; the solid curves are dispersions of a hole in the pure

t− J model.

1.2 Theoretical remarks on e-e and e-ph interactions

The problems of electron correlation and electron-phonon interaction in solid state physics

represent a theoretical challenge even when considered separately, as the huge amount of

works devoted to them since the half of the past century testifies. The main difficulty lies

in their many-body character which can lead to collective behaviour not ascribible to the

constituents of the solid (electrons or phonons) but to their mutual interactions. Analytical

solutions are thus allowed only in some limiting cases where interactions are treated pertur-

batively. For example, when considering a solid in which the effective Coulomb repulsion

between electrons is sizeably reduced by screening effects, the system of weakly-interacting

particles can be safely mapped onto a gas of non-interacting quasiparticles with character-

istic long life-time, and the e-e interaction is included as a small renormalization of the free

parameters. Alternatively, one can start from the insulating atomic limit where each electron

is tightly bound to an ion and introduce electronic motion as a perturbation. When no small

parameter can be identified for such a perturbative approach, one has to resort to more com-

plicated many-body techniques. On the other hand, even the problem of a single electron

on a lattice in the presence of a sizeable e-ph coupling is already a many-body problem: the

difficulty consists in describing the dressing of the electron by a coherent multiphonon cloud

which moves coherently with it so as to form a quasiparticle, the polaron. Finally, when

considering e-e and e-ph interactions as comparable, their interplay can lead to absolutely

non-trivial outcomes; in this case one has to face an additional difficulty, which arises from the

competition between the repulsive and instantaneous nature of the electronic correlation and

the retarded and attractive effective interaction experienced by electrons due to the coupling
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with lattice dynamics.

Many numerical methods have been developed in the context of strong correlation[39]

and of polaronic physics[40], such as, among others, finite-clusters Exact Diagonalization

(ED), Quantum Montecarlo (QMC), Numerical Renormalization Group (NRG), Density Ma-

trix Renormalization Group (DMRG) and the semianalytic Dynamical Mean-Field Theory

(DMFT), which have enormously contribute to the understanding of the phenomena involved.

Nonetheless it is not unfair to say that the wealth of available analytical results has helped,

with their more transparent physical insight, in the interpretation of numerical results. We

believe, then, that the development of an approximate non-perturbative approach beside

more accurate numerical techniques can be highly desirable in order to get an overall physi-

cal understanding of the problem. From this point of view variational approaches show some

advantage, even though they can be safely applied only to get ground-state properties. The

strength and the weakness of a variational approach lies generally in the choice of an ap-

propriate trial wavefunction. This is a weakness because the chosen wavefunction can not

contain all the relevant physics, leading to approximate or even wrong results. But it is also

a strenght because it allows for a rather direct check of physical intuition.

In this thesis we discuss mainly two variational approaches for the electron-phonon cou-

pling in the presence of strong correlation which were developed combining different methods,

which are variational in nature, coming from the field of strongly correlated systems and of

polaronic physics.

In Chapter 2 we introduce the Hubbard-Holstein model, where e-e and e-ph interactions

are introduced in the most transparent way, and discuss the main physical properties of the

Hubbard and Holstein models taken separately; this discussion will allow us to identify the

physical ingredients that must be included in a suitable theoretical description of the electron-

phonon problem in strongly correlated systems, and will give us the chance to introduce the

technical machinery we exploited in the development of our variational approaches.

Chapter 3 is devoted to the description of a variational approach based on an unitary

transformation thanks to which phonons are ruled out from the outset and an effective model

for correlated electrons is derived, where proper renormalizations of electronic parameters

account for e-ph coupling effects. Our findings in the paramagnetic sector of the model are

discussed and compared with available results.

Chapter 4 explores some limitations of the variational approach described in the previous

chapter and paves the way to Chapter 5, where we present a proper generalization of the

Gutzwiller technique able to describe simultaneously electronic and phononic ground-state

properties. Results provided by both approaches are compared and eventually commented

in the Conclusions.



10 CHAPTER 1. INTRODUCTION



Chapter 2

The Hubbard-Holstein model

2.1 General remarks on the choice of the model

The reference model for a strongly correlated system is the single-band Hubbard model[21]

already mentioned in the introduction. The Hamiltonian is made by a tight-binding term,

that favours electronic delocalization, and by a local term which accounts for the on-site

Coulomb repulsion experienced by electrons with opposite spins, thus imposing a constraint

on the electron motion. As it will be clarified in the next sections, the presence of these two

competing terms in the Hubbard model accounts for the basic mechanism of the correlation-

driven metal-insulator transition as initially proposed by Peierls[41] and Mott[42].

On the other hand, lattice dynamics and its interaction with electrons can be included in

many different ways (cfr. Ref. [43]) according to the kind of physics one wants to describe.

Throughout this work we will be concerned with perhaps the simplest electron-phonon model,

where only Einsten dispersionless modes are considered to interact locally with the on-site

electronic density. This model is generally referred to as the Holstein molecular crystal

model[44] and it was originally proposed in order to study the so-called “self-trapping” lo-

calization of an electron in the short-range polarization field induced by the electron itself,

as Landau initially suggested in 1933[45]. In fact, it captures the competition between the

energy gain coming from the itineracy of electrons and that coming from the potential energy

due to the electron-induced local deformations of the lattice.

The combination of these models is thought to be suitable for the understanding of the in-

terplay between electronic correlation and electron-phonon interaction. The resulting model,

usually called the Hubbard-Holstein model, represents clearly an oversimplified description of

both e-e and e-ph interactions, but retains what are thought to be the relevant ingredients of

a system in which electrons experience simultaneously an instantaneous short-range repulsion

and a phonon-mediated retarded attraction. Actually, in spite of its formal simplicity, it is

not exactly solvable even in one dimension and it displays a very rich phase diagram even

when considering the paramagnetic phase without symmetry breaking. This is due to the

interplay of different energy scales (electron mobility, electronic correlation, phonon charac-

11
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teristic frequency, e-ph coupling) and to the associated large parameter space (that includes

also the electron density and the temperature).

The experimental findings discussed in the introductory chapter has motivated in recent

years a detailed study of the Hubbard-Holstein model. Many works have been devoted to the

analysis of the renormalization of e-ph vertex function in the presence of strong correlation;

this problem was addressed both by analytical tools (slave-boson approaches[46, 48, 49], Hub-

bard X−operators[47] and flow-equation approach[50]) and numerical QMC technique[51],

revealing a strong momentum-dependent renormalization of the vertex function when large

momenta are transferred, which could explain the lack of phonon features in transport prop-

erties observed in cuprates, and an enhancement of the phonon-mediated e-e attraction at

low transferred momenta which could lead to d−wave superconductivity or charge instabil-

ities. The possibility for a phase separation induced by the coexistence of strong e-e and

e-ph couplings has indeed been investigated[52, 53, 54], and ground-state properties have

been extensively studied in the paramagnetic sector, mainly exploiting numerical techniques.

Among these, DMFT studies have provided detailed phase diagrams[55, 56] and informations

about phonon-induced renormalization of the electron properties close to the Mott transi-

tion both in the half-filled regime[57, 58] and for small values of electron doping[59, 60].

Approximate approaches also have been proposed in order to analyze spectral properties of

the Hubbard-Holstein model, based on a variational scheme[61] or on the Coherent Potential

Approximation (CPA) relevant for large values of the e-e repulsion in the Mott insulating

phase[62]. Very recently Sangiovanni et al.[63] have carried out a DMFT analysis in the

antiferromagnetic sector, relevant for real correlated systems such the cuprates, which shows

that antiferromagnetic correlations strongly enhance phonon-induced effects on the electron

Green’s function with respect to the paramagnetic phase, even though the e-ph interaction

is moderately suppressed by the Coulomb interaction.

In summary, the Hubbard-Holstein model represents the simplest possible way to the

study of non-trivial effects arising from the interplay between electron-electron interaction and

electron-phonon coupling and it is expected to retain the relevant physics of real materials.

Furthermore, thanks to the simple and intuitive way in which the competing interaction

mechanisms are introduced and to the huge amount of accurate numerical results to compare

with, it proves to be an excellent playground for the development of the variational approaches

to be discussed. In the remainder of the chapter we will discuss in detail some properties of

the e-e and e-ph interaction taken separately, introducing the reader to some early approach

from which our following work will develop.

2.2 The e-e interaction in the Hubbard model

As mentioned in the previous section, the Hamiltonian of the Hubbard model consists of two

terms, a tight-binding term Ht and a local repulsive term HU , which in second quantization
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read:

Ht = −t
∑

〈i,j〉,σ
c†iσcjσ, (2.1)

HU = U
∑

i

ni↑ni↓, (2.2)

where ciσ (c†iσ) is the annihilation(creation) operator at site i for spin-σ electrons, and ni,σ =

c†iσciσ is the corresponding density operator. t represents the nearest-neighbour hopping,

while the positive U is the on-site Hubbard repulsion. The hopping term accounts for the

mobility of the tight-binding electrons, but it is useful to introduce the half-bandwidth D,

whose expression in terms of t depends on dimensionality and on the lattice considered, as

the scale for the electronic kinetic energy. On the other hand, the Hubbard U accounts for

the energy an electron has to pay when it hops to an already occupied neighbouring site.

Along the original proposals of Peierls[41] and Mott[42], one expects that when the repulsion

is large with respect to the hopping amplitude (or, alternatively, to the kinetic energy scale of

electrons) the system can turn insulating. Actually this locking effect is possible only when

there are as many electrons as available lattice sites; when this condition is realized the system

is said to be half filled, and the insulating phase is made of a collection of singly-occupied

sites, no matter the spin state (paramagnetic Mott insulator). The relevant parameters are

then:

◮ n =
〈 1

L

∑

iσ

niσ

〉

- mean electron density per site;

◮ u =
U

D
- degree of correlation.

It is worth noticing that, when considering the Hubbard model with nearest-neighbour hop-

ping only in any bipartite lattice, the half-filling ground state is found to be insulating with

antiferromagnetic order as soon as the repulsion U is different from zero[64]. The mechanism

behind this transition is different from the Mott proposal and it was originally introduced by

Slater[65] who proposed that a metal-insulator transition can be associated to an effective

doubling of the unit cell due to antiferromagnetic ordering. Therefore the metal-insulator

Mott transition can be hidden by antiferromagnetic correlations, unless a frustrating mech-

anism for antiferromagnetic ordering is included.

In any case, the Hubbard model represents a many-body problem which needs non-

perturbative approaches to be solved. Actually the exact solution has been found only in

one dimension[66], and a full description of the Mott transition has been attained only re-

cently by means of the Dynamical Mean-Field Theory[39]. Early approaches were based on

perturbative expansion around the limiting weak- and strong-coupling cases, and they nec-

essarily lacked a complete understanding of the phenomenon, even though they described in

a quite satisfactory way how the transition is reached from the two sides, thus giving access

to important physical insight.



14 CHAPTER 2. THE HUBBARD-HOLSTEIN MODEL

The first strong-coupling approach was proposed by Hubbard himself[21]. Starting from

the insulating side, he introduced an effective band picture by which the density of states

(DOS) of the insulator consists in two bands of width W centered at ±U/2; the lower band

is associated to holes, whereas the upper is associated to doubly-occupied sites, with a gap

between them of the order of U−W . Decreasing the strength of the repulsion, the gap shrinks

and it eventually closes when U ≈ W . This closure of the gap signals the metal-insulator

transition, as the two bands merge to give rise to a metal.

On the other hand, a scheme which approaches the metal-insulator transition from the

metallic side was introduced by Brinkman and Rice[67] in 1970. They exploited the fact that

Figure 2.1: Density of states of the Hubbard model as computed in DMFT[39]. From top

to bottom: evolution of the DOS for metallic solutions with increasing U , with the develop-

ment of quasiparticle peak and high-energy incoherent bands, and characteristic DOS of the

insulating phase (last panel).

the Hubbard term only acts when two electrons occupy the same site. By using the so-called

Gutzwiller approximation[68] they showed that it is possible to project out these doubly-

occupied states and to describe the metallic phase in terms of a Fermi liquid renormalized by

U through the mean value of double occupancy d = (1/L)〈ni↑ni↓〉. In the paramagnetic phase,

due to the higher energy cost associated to the double occupancy, d decreases as U is increased
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up to a critical value UBR where d vanishes. The metal-insulator transition is associated in

this approach by the divergence of the electronic effective mass m∗/m ∝ (UBR − U)−1.

Thanks to Dynamical Mean-Field Theory, these two apparently different pictures were

finally unified[39]. The essential idea of DMFT is to replace a lattice model by a single-site

quantum impurity model embedded in an effective medium to be determined self-consistently.

In this sense it can be viewed as a generalization to quantum many-body problems of classical

mean-field theory, where the main difference lies in the fact that, even if spatial fluctuations

are frozen as in the classic case, local quantum fluctuations (i.e. temporal fluctuations between

the possible quantum states at a given lattice site) are fully taken into account. Therefore

DMFT provides a unique nonperturbative framework which allows to treat metallic and in-

sulating properties of the model on the same footing, unlike the earlier approaches previously

sketched which move from the insulating or metallic side of the transition. Moving from the

insulating side of the paramagnetic half-filled phase, the DMFT-computed DOS of the Hub-

bard model displays two high-energy features of width ≈ W = 2D centered at ±U/2, which

correspond to the lower and upper bands proposed by Hubbard; decreasing the strength of

the repulsion, the gap between them shrinks and eventually closes when U = Uc1. On the

Figure 2.2: Phase diagram in the U−T space for the single-band Hubbard model[39]. Dotted

lines enclose a region in which metallic and insulating solutions coexist, solid line represents

the first-order metal-insulator transition, which ends in two second-order critical points.

other hand, starting from the non-interacting limit and increasing U , a quasiparticle peak

develops at low energies whose weight Z is related, in the DMFT framework, to the inverse

of the effective mass; Z decreases as the Hubbard term strength increases, and the spectral

weight lost by the coherent quasiparticle peak is transferred in two incoherent bands which

develop at high energy. This metallic solution disappears at a critical value Uc2, when Z

vanishes, i.e. when the effective mass diverges, and all the spectral weight has been conveyed

in the incoherent Hubbard bands. Since Uc1 is found to be smaller than Uc2, the metallic

and insulating solutions coexist for Uc1 < U < Uc2 and the stable phase must be determined



16 CHAPTER 2. THE HUBBARD-HOLSTEIN MODEL

by comparing the corresponding energies. At T = 0 the metallic phase displays the lowest

energy, hence the transition occurs for U = Uc2 and it is found to be second-order. At finite

temperature a coexistence region is observed which ends up in a second-order critical point

at a temperature which is approximatively 1/50 of the bandwidth W ; the Mott transition

occurs in this region and it is of first order, while above the critical temperature the metallic

solution evolves smoothly in an insulating one.

In the next two sections we will describe in some detail the Gutzwiller variational ap-

proach and the more sophisticated slave-boson method which, as it will be detailed below, is

equivalent to the first when considered at the mean-field level. Our following inclusion of the

electron-phonon coupling in correlated systems will move from these approaches that were

originally proposed and developed in the context of strongly-correlated physics.

2.2.1 The Gutzwiller approach

In his seminal work[68], Gutzwiller proposed a variational trial wavefunction where atomic

configurations with large deviations from the average occupancy could be reduced with re-

spect to a Hartree-Fock reference state, depending on the value of a variational parameter.

To be more explicit, one starts from the non-interacting Slater determinant and variationally

projects out doubly occupied sites, whose average number is expected to decrease by increas-

ing the on-site repulsion U . Due to its many-body character, the evaluation of expectation

values over the Gutzwiller wavefunction is still a complicated problem. Gutwiller himself

introduced an approximate scheme to compute expectation values for the single-band Hub-

bard model, the so-called Gutzwiller approximation (GA)[68] that will be sketched below in

the more physically transparent formulation given by Ogawa[69] (see also [70]); only in the

late eighties anaylitical techniques were introduced that allow for exact computation in the

one-dimensional case[71, 72] and in the limit of infinite dimensions[73]. For the latter case the

Gutzwiller approximation coincides with the exact average over the Gutzwiller wavefunction.

Let’s start from the uncorrelated ground-state of the Hamiltonian Ht in the paramagnetic

sector, the Fermi sea given by:

|Ψ0〉 =
∏

|k|<kF

c†k↑c
†
k↓|0〉. (2.3)

The trial wavefunction introduced by Gutzwiller is:

|ΨGW 〉 =
∏

i

(

1 − (1 − g)ni↑ni↓
)

|Ψ0〉 = gD̂|Ψ0〉, (2.4)

where the D̂ operator counts the number of doubly-occupied lattice sites and g is a variational

parameter to be determined by minimization of the ground-state energy:

EG =
〈ΨGW |Ht|ΨGW 〉 + 〈ΨGW | HU |ΨGW 〉

〈ΨGW |ΨGW 〉 . (2.5)

Let L,N↑, N↓,D be the number of lattice points, up spins, down spins and doubly occupied

sites respectively, and nσ = Nσ/L, d = D/L. Being the number of doubly-occupied sites
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the relevant quantity in this approach, one can express in a general way the Fermi sea as a

combination of electronic configurations labelled by D:

|Ψ0〉 =
∑

D

∑

{jd}
AjD

|ψjD
〉, (2.6)

where |ψjD
〉 is a generic Fock state with a given number D of doubly-occupied sites, AjD

is the related coefficient and the sums run over all the allowed values for D and over all

the Fock states with given D. The Gutzwiller approximation consists now in neglecting the

dependence of the matrix elements on spin configurations and spatial correlations, such that

the motion of up-spin is essentially independent from the down-spin behaviour and viceversa:

this allows to recast the problem of computing expectation values in a combinatorial way.

The norm of the trial wavefunction reads

〈ΨGW |ΨGW 〉 =
∑

D

g2D |AjD
|2, (2.7)

where |AjD
|2 = ND(L,N↑, N↓)P (L,N↑)P (L,N↓). is given simply by the product of ND, the

number of different spin configurations for D doubly-occupied sites with given L,N↑, N↓,

ND(L,N↑, N↓) =
L!

(N↑ −D)! (N↓ −D)!D! (L −N↑ −N↓ +D)!
, (2.8)

and P (L,Nσ), the probability for a configuration of σ spins to occur (which are all equal and

independent because spatial correlations are neglected):

P (L,Nσ) =
1
( L
Nσ

) ≃ nNσ
σ (1 − nσ)L−Nσ . (2.9)

The expectation values of Ht,HU are computed in the same spirit. Let’s focus on the first

one when only a spin-up particle is involved. Then one singles out two lattice sites between

which the hopping process is supposed to occur and neglects what happens in the remaining

lattice (no spatial correlations). There are four possible processes, sketched in Fig.2.3. Two

of these correspond to the motion of an empty or a doubly-occupied site (Fig.2.3(a)) where

the hopping process does not change the number D, whereas in fig 2.3(b) the empty and

doubly-occupied site annihilate each other or are created, respectively. In the latter case D is

changed by one, and the total interaction energy UD is modified. The environment of these

processes is constituted by the remainder of the lattice (with L−2 sites) and the number ND

of spin configurations depends on the number of spins which are hopping between the selected

sites. For example, in the first process in which only a spin-up particle is involved, one has

ND(L−2, N↑−1, N↓) and a matrix element equal to g2D since the number of doubly-occupied

sites of the total configuration is D in both initial and final state. Finally, the probability

for finding any up-spin configuration in the environment is P (L− 2, N↑ − 1), while one gets

P (L,N↓) because the down-spin configuration is left untouched. Extending this procedure

to the four hopping processes one obtains:

〈Ht〉 = −q↑|ε↑| − q↓|ε↓|, (2.10)
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(a)

(b)

Figure 2.3: The four possible hopping processes for a spin-up particle in the Hubbard model.

Processes (a) leave the number of doubly-occupied sites unchanged; processes (b) represent

the ‘polarization’ of a medium of singly-occupied sites in terms of empty and doubly-occupied

sites, changing D by one.

where |εσ| is the average energy of σ-electrons in the uncorrelated case,

εσ =
1

L

〈

Ψ0

∣

∣

∣
− t

∑

〈i,j〉,σ
c†iσcjσ

∣

∣

∣
Ψ0

〉

=
∑

|k|<kF

ε(k) < 0, (2.11)

and qσ’s are renormalization parameters given by:

qσ =
∑

D

g2D
[

ND(L− 2, Nσ − 1, N−σ) + g2ND(L− 2, Nσ − 1, N−σ − 2)

+ 2g ND(L− 2, Nσ − 1, N−σ − 1) ] P (L− 2, Nσ − 1)P (L,N−σ).

(2.12)

Analogously the expectation value for the Hubbard term turns out to be:

〈HU 〉 = L
∑

D

g2D+2ND(L− 1, N↑ − 1, N↓ − 1)P (L,N↑)P (L,N↓). (2.13)

In the thermodynamic limit only the largest terms in the sums are retained[69], and

a somewhat tedious calculation allows to express the variational parameter g by the more

physical d = D/L. The ground-state energy is at last:

EG

L
= −q↑(d, n↑, n↓)|ε↑| − q↓(d, n↑, n↓)|ε↓| + Ud, (2.14)

with

qσ =

[
√

(nσ − d) (1 − nσ − n−σ + d) +
√

d (n−σ − d)
]2

nσ (1 − nσ)
. (2.15)
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One can easily see that qσ = 1 in the noninteracting paramagnetic system, where n↑ = n↓ =

n/2 and d = n2/4, and that that it decreases as soon the interaction is switched on; therefore

the Gutzwiller approach, while treating the correlation term exactly, provides an effective

description of the kinetic energy term, calculating its reduction due to the decrease of the

doubly-occupied sites that follows from the presence of the on-site repulsive interaction, which

makes hopping energetically unfavorable. To be more quantitative, we can choose the half-

filling (n = 1) paramagnetic (q↑ = q↓ ≡ q, ε↑ = ε↓ ≡ ε0/2) case, as proposed by Brinkman

and Rice[67], and recast Eq.(2.15) in terms of d only:

q = 8 d (1 − 2 d). (2.16)

By replacing it in the variational energy Eq.(2.14) and minimizing with respect to d, we find:

d =
1

4

[

1 − U

Uc

]

, (2.17)

q = 1 −
[

U

Uc

]2

, (2.18)

EG

L
= −|ε0|

[

1 − U

Uc

]2

, (2.19)

where Uc = UBR = 8|ε0|. The first of these formulas highlights the decrease of the number of

doubly-occupied sites as U is increased, with a corresponding reduction of the kinetic energy.

Furthermore they show that a critical Uc exists at which all the sites of the lattice are singly

occupied (d = 0 and the number of electrons and lattice points coincide) by particles which

are stuck to their sites (q = 0, hence the kinetic energy vanishes): this is the Gutzwiller

picture of the paramagnetic Mott insulator. At the same time the energy vanishes smoothly,

that means that the transition is second order; an undesired consequence of this finding is

that the insulating phase cannot be described in the Gutzwiller approach, being all relevant

quantities equal to zero. At last, as it will be clearer in the next section, the renormalization

factor q can be identified with the inverse effective mass[67]; therefore in the present approach

the Mott metal-insulator transition is driven by the divergence of m∗/m.

As the given formulation due to Ogawa[69] shows, the strongest approximation made by

Gutzwiller is the neglect of spatial correlations and consequently of spin configurations in

the evaluation of energy expectation values. In fact, while spin configurations with the same

number of doubly-occupied sites all have the same expectation value for the interaction term,

their expectation value for the kinetic energy will generally be different; therefore, while the

first term is treated exactly, the kinetic term is approximated in a way which includes all

possible hopping processes but neglects the environment where these hoppings take place.

Recently Bünemann and coworkers[74] have introduced an alternative formulation of the

Gutzwiller variational technique which allow to extend the class of trial wavefunctions to

multiband models and general on-site interactions (see also [75]). In this framework ex-

pectation values can be computed within a general graph formalism that allows for exact

evaluations in infinite dimensions and for a controlled expansion in 1/d[76]. Because spatial
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correlations become irrelevant when d= ∞, it is not surprising that the Gutzwiller approx-

imation described above does not introduce any further approximation on the Gutzwiller

wavefunction. As this formulation will prove useful in order to include e-ph coupling, here

we will briefly sketch it.

For the trial wavefunction we use a general expression similar to Eq.(2.4),

|ΨGW 〉 =
∏

i

Pi|Ψ0〉, (2.20)

where |Ψ0〉 is the Fermi sea and the Gutzwiller projector gD̂ is substituted with a general

projection operator,

Pi =
∑

l

λl m̂i;l =
∑

l

λl |li〉〈li|, (2.21)

where m̂i;l = |li〉〈li| projects the uncorrelated state on local configurations with given l

electrons; λl, the relative weights for such states, have to be determined variationally. To

be specific, in the single-band Hubbard model one has only l = 0, 1, 2, that means zero,

one spin-up or spin-down and two electrons on a site i. As shown in Refs.[74, 76], there is a

certain arbitrariness in the choice of the variational parameters λ’s, related to the fact that any

transformation acting on |Ψ0〉 and involving operators of which |Ψ0〉 is an eigenstate amounts

simply to a multiplicative factor. This allows one to impose, without losing generality, the

normalization condition

〈Ψ0|P2
i |Ψ0〉 = 1, (2.22)

as well as an additional constraint on the single-particle density matrix,

〈Ψ0|Pic
†
iσciσ′Pi|Ψ0〉 = 〈Ψ0|c†iσciσ′ |Ψ0〉 = δσ,σ′

n

2
, (2.23)

where the last equality stems from our choice of a paramagnetic uncorrelated |Ψ0〉. The

physical meaning of the variational parameters emerges by exploiting the fact that P (l) =

〈m̂l〉 = λ2
l P0(l), from which [74]:

λ2
l =

P (l)

P0(l)
, (2.24)

where P0(l) and P (l) represent the occupation probabilities of the l−electron configuration

in the uncorrelated |Ψ0〉 and correlated |ΨGW 〉 wavefunctions. This allows one to recast the

constraints Eqs.(2.22),(2.23) as:

P (0) + P (1) + P (2) = 1, (2.25)

P (1) + 2P (2) = n. (2.26)

Therefore, in this representation the correlated probability distribution is the variational

quantity which has to be optimized.

When considering the infinite-dimensions limit, the on-site interaction is still well defined

but the hopping parameter must be rescaled as t = t′/
√

d in order to obtain a finite ki-

netic energy and therefore a nontrivial model[73]. This scaling simplifies the computation
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of expectation values as it turns out that the lowest order within a perturbation expansion

in the parameters (1 − λl) is exact when d= ∞. In fact one can adopt a graph formalism

to evaluate such expectation values, with lines representing the noninteracting one-particle

density matrix

P0
σ(i, j) = 〈Ψ0|c†iσ cjσ|Ψ0〉, (2.27)

and vertices representing the expansion parameters[73, 76]. In analogy with the diagrammatic

representation of Green’s functions, one may therefore define a “self-energy” as the sum of

all one-particle irreducible diagrams where at least four lines meet at every internal vertex.

This property comes from the absence of trivial loops at any vertex, due to the subtraction

of Hartree contributions in the perturbative expansion of Pi, that has been shown to lead

to Eqs. (2.22),(2.23) (cfr. Refs. [76, 74]). We notice now that on a d-dimensional lattice,

the scaling of the hopping parameter implies that for d ≫ 1 P0
σ(i, j) ≃ o ((

√

1/d) ν), where

ν = |i− j| =

d
∑

l=1

|il − jl| is the so-called “Manhattan” metric which counts the number of

nearest-neighbour steps from site i to site j on a d-dimensional lattice. Since there are

always at least three separate paths from one vertex to another in the self-energy, this vanishes

completely in infinite dimensions, and the Gutzwiller approximation, based on the neglect

of spatial correlations, is found to give the exact result. In particular one finds that the

expectation value of the hopping term reduces to:

〈Ht〉 =
∑

〈i,j〉,σ
〈Ψ0|Pi c

†
iσPiPjcjσPj , |Ψ0〉 (2.28)

as no contributions come from sites different than those involved in the hopping processes.

Therefore creation of a spin-up particle on an empty site, for example, will generate in the

present formalism a renormalization factor proportional to
√

P (1)P (0).

One obtains then for the average variational energy per site in the paramagnetic sector

(for technical details see [74]):

EG

L
= −q|ε| + U P (2), (2.29)

q =
2

n(2 − n)

[

√

P (1)P (0) +
√

P (2)P (1)
]2
, (2.30)

that has to be minimized taking into account the constraints Eqs. (2.25), (2.26). By identi-

fying P (2) with d, one is able to express the variational energy as a function of d and n only,

and the result obtained in the GA framework is exactly recovered. To be more explicit, by

putting n = 1, one immediatly gets P (0) = P (2) = d, P (1) = 1 − 2d and q = 8 d (1 − 2d),

which corresponds to the Brinkmann-Rice findings previously discussed.

2.2.2 The slave-boson technique

The slave-boson method is a very powerful tool developed in the context of strongly-correlated

systems. In its original formulation it was meant to tackle the problem of a magnetic impurity
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in a metallic environment, and consisted in replacing the on-site infinite correlation of the

impurity (Anderson model) with a local constraint which was handled by standard field-

theoretical methods[77, 78, 79]. Several slave-boson representations were thereafter proposed

and applied to lattice systems such as the Hubbard or the related t-J models[80, 81, 82].

The basic idea of a slave-boson approach is to introduce some auxiliary fields which allow

to decouple the correlation term and to keep track of the “backflow” of spin and density

excitations of the medium that is expected when an electron hops in a strongly-correlated

system. In the Kotliar-Ruckenstein proposal[80], this task is accomplished by introducing

four projection operators that measure the occupation numbers in each of the four possible

states available for hopping, in the same spirit of the Gutzwiller variational wavefunction.

Actually, as we will see in the following, the results of the Gutzwiller approach can be obtained

as a mean-field approximation in the framework of slave bosons.

Kotliar and Ruckenstein introduced four auxiliary fields, ei, piσ, di, whose occupation

numbers e†iei , p
†
iσpiσ, d

†
idi represent the projectors on the four possible electronic states on

site i, namely empty, singly- and doubly-occupied configuration. They proposed the following

correspondence between the initial representation of fermions {ciσ} and the new enlarged

representation {c̃iσ} ⊗ {ei, piσ, di}:

|0〉 = |0̃〉 7→ |1〉 = e†i |0̃〉
| ↑〉 = c†i↑ |0̃〉 7→ |2〉 = p†i↑ c̃

†
i↑ |0̃〉

| ↓〉 = c†i↓ |0̃〉 7→ |3〉 = p†i↓ c̃
†
i↓ |0̃〉

| ↑↓〉 = c†i↑ c
†
i↓ |0̃〉 7→ |4〉 = d†i c̃

†
i↑ c̃

†
i↓ |0̃〉

with |0̃〉 the vacuum state in the enlarged Hilbert space.

In order to get rid of the unphysical states that the new representation introduces, one

imposes the following constraints in the enlarged Fock space:

1 =
∑

σ

p†iσpiσ + d†idi + e†iei ∀i, (2.31)

0 = c̃†iσ c̃iσ − p†iσpiσ − d†idi ∀i, σ. (2.32)

The first constraint, Eq.(2.31), guarantees that the operators we introduced satisfy the algebra

of projectors or equivalently, in terms of the bosonic slave particles, that no more and no less

than one boson can sit on a given site; the second constraint Eq.(2.32), on the other hand,

equates the two ways of counting the fermion occupancy of a given spin.

Let’s see now how the processes of annihilation and creation of an electron can be de-

scribed in the new representation. Consider for example a spin-up particle; because of Pauli’s

exclusion principle it can be created only on an empty or a spin-down singly-occupied site.

In the first case one has to annihilate the ‘empty’ boson and to create a spin-up boson, while

the fermionic character should be built in by the pseudofermion operator, c†i↑ 7→ c̃†i↑ p
†
i↑ei .

Analogously, in the second case one gets c†i↑ 7→ c̃†i↑ d
†
ipi↓, as the boson which labels the



2.2. THE E-E INTERACTION IN THE HUBBARD MODEL 23

single spin-down state must be replaced by the boson that labels the doubly-occupied one.

Therefore the following relations are found

c†iσ 7→ c̃†iσ ( p†iσ ei + d†i pi,−σ ) = c̃†iσ z
†
iσ , (2.33)

ciσ 7→ c̃iσ ( e†i piσ + p†i,−σ di ) = c̃iσ ziσ, (2.34)

which allow to recast the Hubbard Hamiltonian as:

H = −t
∑

〈i,j〉,σ
c̃†iσ c̃jσ z

†
iσ zjσ + U

∑

i

d†idi . (2.35)

It is easily checked that as long as the constraints Eqs.(2.31),(2.32) are satisfied, the orginal

Hamiltonian has the same matrix elements of Eq. (2.35) when computed in the physical

subspace. Electrons are now decoupled and their interaction is expressed in terms of slave-

boson operators. Furthermore the hopping operators z†iσzjσ just introduced keep track exactly

of the four possible processes shown in Fig.2.3. Before going further, let us remark that the

choice of z†iσ is not unique, and one can replace it by any combination Uiσz
†
iσViσ which leads

to the same spectrum of the original Hamiltonian as long as the constraints are satisfied1.

No approximations have been made until this point.

In order to calculate physical observables one can consider the partition function Z ex-

pressed as a functional integral over coherent states of Fermi and Bose fields. Since the

constraints are preserved under time evolution[80], they can be enforced at each site by

time-independent Lagrange multipliers. One gets:

Z =

∫

Dc̃DeDpσ Dd
∏

iσ

dλ
(1)
i dλ

(2)
iσ exp

[

−
∫ β

0
L(τ) dτ

]

, (2.36)

where the Lagrangian L(τ) is

L(τ) =
∑

〈i,j〉σ
c̃†iσ

[

(

∂τ − µ+ λ
(2)
iσ δi,j

)

− z†iσ zjσt
]

c̃jσ +
∑

i

e†i
(

∂τ + λ
(1)
i

)

ei +

∑

iσ

p†iσ
(

∂τ + λ
(1)
i − λ

(2)
iσ

)

piσ +
∑

i

d†i
(

∂τ + λ
(1)
i −

∑

σ

λ
(2)
iσ + U

)

di ,

(2.37)

and λ
(1)
i , λ

(2)
iσ are the Lagrange multipliers enforcing the constraints Eqs. (2.31),(2.32) respec-

tively.

The Fermi fields enter quadratically in the above expression for L, hence they can be

exactly integrated. This is not true for the Bose fields, which couple in a very complicated

manner in the kinetic term. The usual approach to this problem is the saddle-point approxi-

mation in which all Bose fields and Lagrange multipliers are taken to be independent of space

and time. The original strongly-correlated system is then mapped onto an effective model

1As discussed in Ref. [82], this implies that Uiσ and Viσ should be diagonal operators such as Uiσ = 1 in

the (0) and (−σ) configurations, and Viσ = 1 in (σ) and (↑↓).
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of free quasiparticle with mass renormalized by 1/q = 1/z2
0 . Of course, the saddle-point

values of the slave bosons and of the Lagrange multipliers must be evaluated variationally by

minimization of the free-energy functional, which in the paramagnetic sector reads:

f = − 2

β

∑

k,iωn

ln(−iωn + qεk) + Ud2
0 − µn+

λ
(1)
0 (e20 + 2p2

0 + d2 − 1) + λ
(2)
0 (n− 2p2

0 − 2d2
0). (2.38)

Let us notice that, due to the fact that in the saddle-point approximation the constraints are

only satisfied on average, the choice of a proper expression for the ziσ is crucial. Kotliar and

Ruckenstein proposed to replace ziσ with

z
(KR)
iσ =

1
√

1 − d†idi − p†iσpiσ

ziσ
1

√

1 − e†iei − p†i,−σpi,−σ

, (2.39)

that leads to the correct result at mean-field level when U = 0[80]. Actually this choice allows

to obtain the Gutzwiller variational results discussed in the previous chapter; by looking at

the ground-state energy of the model, which corresponds to the zero-temperature limit of

the free energy Eq.(2.38) with the saddle-point value of z
(KR)
iσ , one finds that it corresponds

exactly to Eqs. (2.14),(2.15) when considering the paramagnetic phase (n↑ = n↓ = n/2) and

to Eqs. (2.29),(2.30) upon substituting P (0) = e20, P (1) = 2p2
0, P (2) = d2

0.

The slave-boson framework, nevertheless, allows for some step ahead with respect to the

Gutzwiller approach, even at the mean-field level. Thanks to the integral functional formu-

lation, one is able to compute dynamical quantities over the saddle-point action obtained

from Eq.(2.37) by replacing in it all the Bose fields and the Lagrange multipliers with their

mean-field values. For example the (local) Green function for the physical electron reads:

Gii(τ) = 〈Tτci (τ)c
†
i (0)〉 = z2

0

〈

Tτ c̃i (τ)c̃
†
i (0)

〉

L0
, (2.40)

where Tτ is the finite-temperature time-ordering operator in the Matsubara formalism; the

last expectation value must be computed over the saddle-point lagrangian L0. Due to the

quadratic dependence of L0 on the Fermi fields, one immediately gets:

Gii(iωn) =
∑

k

z2
0

iωn − z2
0 ξk

, (2.41)

where ξk = εk − µ(0) is the free-electron dispersion renormalized to the chemical potential

of the uncorrelated system2. Therefore it appears clearly from Eq.(2.41) that in the present

approach the quasiparticle residue and the inverse of the effective mass are the same and

that they are both equal to z2
0 ≡ q. Then, whereas Brinkmann and Rice were able to char-

acterize the Mott metal-insulator transition with the divergence (vanishing) of m∗ (q) and

2This is due to the relation between the true chemical potential of the system and the uncorrelated one;

when working at fixed density one finds that µ − λ
(2)
0 = z2

0µ(0) at the mean-field level.
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suggested that the low-energy peak in the density of states should shrink with increasing U

and eventually vanish at the MIT, the slave-boson framework suggests also that the spectral

weight of the coherent low-energy peak is not normalized to one, and that it is progres-

sively lost when approaching the transition for being transferred to high-energy incoherent

features. As mentioned before, this is actually what was observed in the DMFT analysis of

the Hubbard model. In the present context these incoherent features are likely to appear

with the inclusion of quantum fluctuations around the saddle point at all orders. However,

inclusion of fluctuations appears to be a difficult task even at the lowest order. Nevertheless,

in the insulating phase at half filling some simplification holds which allowed Raimondi and

Castellani[83] to include gaussian fluctuations of the slave bosons. In a few words, they found

that the relevant physics of the Mott insulator is captured by the fluctuations of empty and

doubly-occupied sites only; these fluctuations give rise to two bosonic levels ω1,q, ω2,q from

which one can build the incoherent Hubbard bands divided by a gap that appears to be

proportional to U(1−Uc/U)1/2. This last result allows to reconcile the insulating description

due to Hubbard with the weak-coupling scenario proposed by Brinkmann and Rice; in fact

it shows that the gap closes exactly when U = Uc, i.e. at the same critical value at which

the effective mass of the correlated metal diverges. We notice however that this is slightly

different from the picture obtained in the DMFT framework, where the more accurate de-

scription of the electron dynamics shows that the gap characteristic of the insulating phase

has already developed when the system undergoes the metal-insulator transition (cfr. Fig.

2.1 and the discussion in Sec. 2.2).

2.3 The e-ph interaction in the Holstein model

As already mentioned, the Holstein model provides a simple picture in which the effects of

the coupling between electrons and lattice deformations can be analyzed. Its Hamiltonian

reads:

H = Ht +H0
ph +He−ph, (2.42)

where

H0
ph =

∑

i

(

P 2
i

2M
+
K

2
X2

i

)

, (2.43)

He−ph = g′
∑

i

niXi, (2.44)

whereXi, Pi are the local ionic displacements and conjugate momenta and ni = ni↑+ni↓ is the

total electron density on given site i; M,K are respectively the mass and the spring constant

of the harmonic oscillators which mimic the small oscillations of ions and are connected by the

relation K = M ω2
0 . Ht is the already introduced hopping term for tight-binding electrons,

while g′ is a dimensionless coupling constant. It is useful to write the above Hamiltonian in

its second-quantization form, by introducing the annihilation and creation phonon operators
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ai , a
†
i which are related to the lattice displacement and momentum byXi = (a†i +ai )/

√
2Mω0

and iPi = (ai − a†i )
√

Mω0/2. Then one gets

H0
ph =

∑

i

ω0 a
†
iai , (2.45)

He−ph = g
∑

i

ni (a
†
i + ai ), (2.46)

where a dimensionful coupling constant has been introduced that includes the physical char-

acteristics of the ions, namely g = g′/
√

2Mω0. In order to get a flavour of the physical content

of this model one can look at the phonon-mediated electronic properties by eliminating the

phononic degree of freedom, which enter quadratically in the Hamiltonian and can be exactly

integrated out. One finds that they mediate an effective retarded density-density interaction:

Veff (ω) = −g2 ω0

ω2
0 − ω2

, (2.47)

which acts between electrons with opposite as well as parallel spins. Hence the e-ph coupling

affects the electronic properties renormalizing the energy levels of electrons and inducing an

attractive interaction between them. Both effects depend crucially on the value of ω0, the

characteristic energy of ion oscillations, which appears as a relevant parameter of the model.

We can introduce then:

◮ γ =
ω0

D
- adiabaticity parameter (ratio of of phonons and electrons characteristic ener-

gies );

◮ λ =
2 g2

ω0D
- dimensionless e-ph coupling constant.

We notice that in standard Migdal-Eliashberg theory the e-ph coupling is defined in a slightly

different way, namely as λ̂ = 2N0g
2/ω0, where N0 is the electron density of state at the Fermi

level. Nonetheless, in analogy with the definition of u, it is useful to measure the strenght of

e-ph coupling as the ratio between polaronic binding energy and band energy. Actually, by

recasting the effective phonon-mediated density-density interaction as:

Veff (ω) = −λD
2

ω2
0

ω2
0 − ω2

. (2.48)

one immediatly sees that, in the antiadiabatic limit γ → ∞, i.e. when electron motion is slow

with respect to the lattice dynamics, λ accounts both for the electronic energy gain (due to

polaron formation) and for the attractive interaction between electrons with opposite spins. In

this limit the system display the same physical properties of the attractive Hubbard model[84]

with u = −λ. In particular it is known that increasing the electron-electron interaction the

attractive Hubbard model displays a metal-insulator transition similar to the one we have

described in the previous section, except for the fact that in this case the localized state

is characterized by the presence of local pairs of electrons with opposite spins and by the

absence of singly-occupied states[85].
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The opposite limit γ → 0, usually referred to as the adiabatic limit, implies that lattice

dynamics is slow with respect to the typical kinetic energy of electrons. This means that

the kinetic-energy term of the phonons is negligible, hence phonons become static fields; the

electronic problem can then be solved by considering fixed phonon coordinates, as in the

Born-Oppenheimer approximation, and then averaging over the Xi. In the limit of strong

coupling a possible approach is to neglect the hopping term and to look for the minima of

the adiabatic potential experienced by the electrons:

Vsc(Xi) =
1

2
KX2

i + g′niXi, (2.49)

that can be conveniently recast in terms of a dimensionless xi =
√
Mω0Xi:

Vsc(xi) =
ω0

2

(

xi +
√

2
g

ω0
ni

)2

− λD

2
ni. (2.50)

Eq.(2.50) provides many insights in the properties of the model. First of all, it allows to

connect the electron occupation of the lattice site with its distortion, showing also that the

energy lowering of the corresponding electron level is given by −λD/2. The displacement of

the local oscillator is measured by another parameter which will prove to be relevant in the

description of the polaron physics and that will emerge naturally in the atomic limit discussed

in Section 2.3.2:

◮ α =
g

ω0
- measure of the lattice displacement3.

This parameter can be conveniently expressed in terms of the previously introduced param-

eters as α2 = λ/2γ. If one requires, then, that this adiabatic potential is deep enough to

bind the electron in the first place, the self-consistency of this strong-coupling approach is

guaranteed and leads to a phase in which electron delocalization is suppressed. In the adi-

abatic limit, therefore, one recovers a transition, or at least a crossover, to a localized state

as in the opposite antiadiabatic limit; in this case, however, the system displays a possible

polarization due to the finite distortion of the lattice sites and the localization stems from

the e-ph coupling itself rather than from a phonon-induced attraction.

We have briefly anticipated that the expected effects of the e-ph coupling in the Holstein

model are (i) to induce local deformations of the lattice correlated to the presence of a charge

and (ii) a crossover or transition to a localized phase. Nonetheless it is a very hard task to put

this scenario in rigorous terms, even when considering the simplified limit of a single electron

in the lattice (zero-density limit)[44, 86], in which the residual e-e interaction mediated by

the phonons is absent. The crucial point is that the hopping of the electron is followed

by a coherent propagation of the lattice deformation induced by the electron himself. In

3To be rigorous, we notice that in the exact adiabatic limit ω0 = 0 the parameter α is ill-defined; this is

related to the fact that in this limit one should consider the classical lattice displacement Xi rather than the

dimensionless operator xi. Keeping fixed K and letting M → ∞ one gets g′/K ≡
p

λD/K as the proper

measure of lattice displacement in the considered limit.



28 CHAPTER 2. THE HUBBARD-HOLSTEIN MODEL

terms of phonons, it means that the electron is dressed by a multi-phonon cloud which moves

coherently with it so as to form a quasiparticle, the polaron. While in the weak-coupling

limit this effect can be incorporated in an enhanced effective mass for the quasiparticle[12],

at intermediate and strong couplings multiple-phonon contributions begin to be important

even neglecting vertex corrections[87] and the many-body character of the problem manifests,

requiring more accurate non-perturbative approaches. Furthermore, the retarded character

of the e-ph coupling, depending on the value of the adiabaticity parameter, leads to non-

trivial space-time-dependent interaction between the polaronic charge carrier and the lattice

deformation associated to it[43, 88].

When considering the finite-density case, a further complication comes from the residual

attractive interaction experienced by polarons. Superconducting (SC) and charge-density-

wave (CDW) instabilities are expected in this case[89, 90, 91], but we will focus only on the

paramagnetic phase, whose understanding is required in order to include Hubbard repulsion,

since the presence of sizeable U is expected to frustrate the establishing of SC and to some

extent of CDW phases. As for the Hubbard model, Dynamical Mean-Field Theory has proved

a fundamental tool in the analysis of the Holstein model in the exact adiabatic limit[92] and

for finite γ[93, 94, 95]. In these works the two aspects of polaron formation, connected to

the polarization of the system, and of the transition to a localized phase have been analyzed

in the half-filling regime of the model. The first phenomenon can be addressed by looking

at the mean square displacement 〈X2〉 of the oscillator or equivalently at the probability

distribution function of the phonon field P (X); the second one, on the other hand, can be

connected to the vanishing of the density of states at Fermi level, which corresponds, as

discussed for the Mott transition in the Hubbard model, to the vanishing of the quasiparticle

weight. When γ → 0, Millis and coworkers[92] found that three regimes may be distinguished

at zero temperature:

i) at weak coupling the mean square displacement of the oscillator coordinate from its non-

interacting reference position vanishes, and electron spectral function assumes the non-

interacting form with small corrections that are correctly captured by perturbation

theory;

ii) at intermediate coupling the mean square displacement of the oscillator is nonvanishing

and the probability distribution function of the phonon field develops a bimodal shape;

the quasiparticle weight is strongly reduced but still finite (polaron formation);

iii) at strong coupling the quasiparticle weight vanishes, the associated low-energy peak

disappears and a gap develops in the spectral function; polarons are bound to form

incoherent local pairs, called bipolarons.

When relaxing the adiabatic limit introducing zero-temperature quantum fluctuations one

observes that the same picture, with a polaronic crossover followed by a bipolaronic transition,

holds at small values of γ, but for larger values of the adiabaticity parameter the transition to
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Figure 2.4: Phase diagram in the λ−γ plane for the half-filled Holstein model as computed in

DMFT[95]. The bold line is the locus where the quasiparticle weight vanishes, thus signalling

the transition to a localized pair-phase; the thin line is the polaron crossover.

a localized state is found to occur before polarons could develop. This effect can be explained

by considering that in the antiadiabatic limit one needs an infinite value for λ in order to get a

finite α, which measures the lattice distortion induced by the e-ph coupling; on the other hand

the metal to (pair-)insulating transition is expected to be controlled by the energetic balance

between kinetic energy and the Hubbard-like attractive interaction mediated by phonons,

which in this limit is weakly dependent on the phonon frequency as highlighted by Eq.2.48.

Actually, as seen in Fig.2.4, while λpol which signals the polaron formation is almost linear

with increasing γ, λpair tends to saturate to its antiadiabatic value. The same scenario

appears when considering finite temperatures[96], where it is shown that the two phenomena

of phonon-field polarization and of electron pairing occur for fairly similar couplings in the

adiabatic limit and tend to coincide only when T is of the order of ω0, i.e. when phonons

begin to behave classically.

Another difference between adiabatic and antiadiabatic regimes can be extrapolated by

looking at the electronic spectral function. In the antiadiabatic limit, where the Holstein

model maps onto the attractive Hubbard model, the density of states evolves while ap-
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proaching the pair-insulating phase as in the repulsive Hubbard model (see Fig.2.1), and

low-energy features are clearly separated by the high-energy ones before the transition oc-

curs. This energy separation at intermediate couplings vanishes approaching the adiabatic

limit, and the effect of e-ph coupling can be seen only in a small window centered at the

Fermi level[93]. The evolution of the electronic spectral function with the strength of e-ph

coupling is shown in Fig. 2.5 well deep in the adiabatic regime (left panel, with ω0 = 0.1D)

and for two larger values of the adiabaticity parameter (right panel). The physical origin

of these unusual phonon signatures can be understood in a weak-coupling perturbative ap-

proach, which will therefore be discussed in the next section. In the following we will briefly

discuss the strong-coupling regime moving from the atomic limit, that will allow us to put in

rigorous terms some concept we have anticipated about polaron formation.
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Figure 2.5: Electronic spectral density for the half-filled Holstein model from Ref. [93]; on

the left the ω0 = 0.05W results are shown for different values of the bare coupling constant g

(W = 2D is the electronic bandwidth), while on the right the evolution with g of the spectral

function is reported for larger values of ω0.

2.3.1 Weak-coupling perturbation theory

In this section we will sketch some results obtained in weak-coupling perturbation theory,

which is the basis of the standard Migdal-Eliashberg (ME) theory for e-ph coupling in

metals[97]. According to Migdal’s theorem, in the adiabatic limit of small ω0/εF , where

εF is the Fermi energy of the metal, the effects of e-ph interaction on the electronic proper-

ties can be properly described in a field-theory framework without taking account of vertex

corrections. The question of the reliability of ME theory in the Holstein model has been

addressed by several authors[98, 99, 100], and it will not be discussed here, but it has been

shown that Migdal’s theorem holds only for weak and moderate couplings in the adiabatic

limit, while it breaks down for vanishingly small g in the opposite limit. Nevertheless some

qualitative features emerge from second-order perturbation theory that clarify the influence
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of the adiabaticity parameter in determining the physical regimes of the system.

Figure 2.6: Second-order contribution to the electron self-energy in the presence of Holstein

e-ph coupling. Solid line is the noninteracting Green function for electron, dotted line is the

free phonon propagator.

Let’s consider the electron self-energy in the presence of a Holstein-like coupling. The

lowest-order term in the perturbation expansion neglecting vertex corrections is the second-

order one, depicted in Fig. 2.6, which at finite temperatures gives:

Σ2(p, ωn) = −g2T
∑

Ωm

∑

q

D(q,Ωm)G(p − q, ωn − Ωm), (2.51)

where G and D are the noninteracting Green functions for the electrons and for the phonons

respectively. Eq. (2.51) can be handled by standard field-theory methods leading to the

following p−independent expression for the T = 0 retarded self-energy:

ΣR
2 (ω) = g2N0

{
∫ D

0
dξ

1

ω − ω0 − ξ + i0+
+

∫ 0

−D
dξ

1

ω + ω0 − ξ + i0+

}

,

(2.52)

where for the sake of simplicity we have considered a half-filled system with a flat band of

half width D, related to the density of state by 1 = 2DN0. Spectral properties of the system

can be inferred by considering the spectral function A(ω), which is related to the retarded

sel-energy according to:

A(ω) =
N0

π

∫ D

−D
dξ

|Im[ΣR
2 ]|

(ω − ξ −Re[ΣR
2 ])2 + (Im[ΣR

2 ])2
. (2.53)

After performing the integral, the real part of ΣR
2 reads:

Re[ΣR
2 (ω)] = −g2N0

{

ln
∣

∣

∣

ω − ω0 −D

ω − ω0

∣

∣

∣
− ln

∣

∣

∣

ω + ω0 +D

ω + ω0

∣

∣

∣

}

, (2.54)

while for the imaginary part one gets:

Im[ΣR
2 (ω)] = −g2N0 π

{
∫ D

0
dξ δ(ω − ω0 − ξ) +

∫ 0

−D
dξ δ(ω + ω0 − ξ)

}

. (2.55)

As expected, the behaviour of the self-energy depends on the balance between two relevant

energy scales, a phononic one (ω0) and an electronic one (D). The ME result is recovered in

the adiabatic limit when ω0 ≪ D; then one can take the infinite−D limit in 2.54, obtaining:

Re[ΣR
2 (ω)] = −g2N0 ln

∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣
, (2.56)
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Figure 2.7: Frequency dependence of the real part of the retarded electronic self-energy of

the Holstein model for a finite flat band at γ = 0.1 (left panel) and at different values of the

bare coupling constant g; ME result correctly reproduce the almost linear dependence on ω

in a window ∼ 2ω0/D wide but it lacks finite-band effects for higher energies. In the right

panel the corresponding spectral function evolving from the flat uncorrelated band is shown.
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Figure 2.8: Evolution with g of the real part of the retarded electronic self-energy at γ = 2

(left) and corresponding spectral function (right). Inside the band the behaviour of Re[ΣR
2 (ω)]

is almost linear with ω. for all couplings.

which can be expanded for ω < ω0 as

Re[ΣR
2 (ω)] ≈ −N0

2g2

ω0
ω = −λ̂ω. (2.57)

where we have defined the standard e-ph coupling as λ̂ = 2N0g
2/ω0. Due to the fact that the

phonon energy falls in the electronic energy range (which in this limit is infinite!), ω0 clearly
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divides the frequency range in two regions in which the real part of the self-energy behaves

differently; actually it is easy to see that for ω > ω0 Eq.(2.56) can be expanded as

Re[ΣR
2 (ω)] ≈ −N0

2g2

ω0

ω2
0

ω
= −λ̂ω

2
0

ω
. (2.58)

Furthermore one can observe that the imaginary part of ΣR
2 is equal to zero for |ω| < ω0,

which implies that a quasiparticle picture holds in this energy range, while incoherent con-

tributions become relevant for |ω| > ω0 where Im[ΣR
2 ] turns out to be a constant, namely

−πg2N0sgnω[87]. The physical meaning of this different behaviour may be understood näıvely

by considering that when |ω| < ω0 no phonons can be created and electrons interact via vir-

tual processes in a Hubbard-like fashion. This phenomenon is reflected in the electronic

spectral density which, when considering small values of the coupling, shows quasiparticle-

like signatures of e-ph interaction (namely a shrinking of the peak with depletion of spectral

width) only in a window that is approximatively 2ω0 wide around the Fermi surface, as seen

in the right panel of Fig.2.7 (see also Ref. [100]), while incoherent contributions emerge when

|ω| > ω0.

On the other hand, in the opposite antiadiabatic limit the only relevant energy scale is

ω0. By expanding Eq.(2.54) one obtains, for all energies in the band:

Re[ΣR
2 (ω)] ≈ − g2

ω2
0

ω = −α2ω. (2.59)

In this regime, then, the control parameter for the e-ph coupling should be α rather than

λ as in the adiabatic limit, as already pointed out in [86, 101]. We notice that in this case

one expects that the whole electronic band is renormalized in a quasiparticle fashion, since

Im[ΣR
2 ] = 0 for all energies in the band.

Thanks to its local nature, the real part of ΣR
2 can be connected straightforwardly to a

physical quantity, the effective mass, according to:

m∗

m
= 1 − ∂Re[ΣR

2 (ω)]

∂ω

∣

∣

∣

ω=0
. (2.60)

In the simplified case that we are considering here, where the electronic band is flat, the

effective mass can be computed exactly for any value of ω0,D, and one gets:

m∗

m
= 1 +N0

2g2

ω0

1

1 + ω0
D

= 1 +N0
λD

1 + γ
. (2.61)

From this expression one recovers the ME result m∗/m = 1+λDN0, that is correct only when

condition ω0 ≪ D is strictly fulfilled, and the antiadiabatic weak-coupling result m∗/m =

1 + α2 in the opposite limit; it also suggests that finite bands effects must be included when

the case of nonadiabatic regimes is analyzed, and that the value of the phonon frequency can

prove to be relevant. Actually this will be the case when including the Hubbard term in the

Holstein model[60].
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2.3.2 Atomic limit and Lang-Firsov transformation

The atomic limit allows to put in rigorous terms the concept of polaron formation. Neglect-

ing hopping processes, one can look for the unitary transformation Û that diagonalizes the

Hamiltonian Hat = H0
ph+He−ph. Lang and Firsov[102] found that this unitary transformation

reads:

Û = eS = eα
P

σ nσ (a − a†), (2.62)

which allows to exactly decouple the interaction term obtaining:

Û †HatÛ = H̃at = ω0a
†a − g2

ω0

∑

σ

nσ − 2
g2

ω0
n↑n↓, (2.63)

where the electron level (here fixed to zero) is shifted by an amount g2/ω0 = λD/2 and an

attractive term 2g2/ω0 = λD is induced by the e-ph coupling, consistently with Eq.(2.48).

Electron operators cσ are transformed by the Lang-Firsov transformation into operators which

describe a new charged object rigidly tied to the site displacements:

c̃†σ = c†σX+, (2.64)

c̃σ = cσX−, (2.65)

X± = e±α (a −a†), (2.66)

that is the polaron. When considering only one electron in the atomic site, then, λD/2

represents the ground-state polaronic energy, and excited states are given by creation of

extra phonons.

From the point of view of phonons, the effect of e-ph coupling is to induce a finite distortion

of the site. Keeping in mind that (a − a†) is proportional to the momentum operator of

the phononic field, the Lang-Firsov transformation can be viewed as a translation of the

free harmonic oscillator centered in the atomic site; the corresponding ground state for the

phonons is:

|φ(X −X0)〉 ≡ X+|0〉 =
∑

m

e−
α2

2
αm

√
m!

|m〉, (2.67)

where states |m〉 denotes the m−th excited states of the noninteracting harmonic oscillator

and X0 =
√

2α is the new equilibrium position of the atom.

From the point of view of the electron, it is useful to compute the spectral function or,

equivalently, the retarded Green function of the single-electron problem:

GR
e (t) = −θ(t)

〈

e iH̃t cX− e−iH̃t c† X+
〉

. (2.68)

Here the difficulty arise from the presence of the X operators, but for the zero-temperature

case we are discussing the computation can be done by disentangling of operators[103] and
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one gets:

GR
e (ω) = e−α2

∞
∑

m=0

α2m

m!

1

ω + g2

ω0
−mω0 + i0+

, (2.69)

A(ω) = e−α2
∞
∑

m=0

α2m

m!
δ(ω +

g2

ω0
−mω0). (2.70)

Therefore the spectral function appears as a Poisson distribution of δ−peaks separated by the

phonon frequency ω0, which however must not be confused with excited states: they describe

the probability of the electron having a given energy ω in the ground state of the polaron. It

is readily seen that the most probable state, where the spectral weight is maximum, occurs

when m̄ ∼ α2, hence the parameter α is not only a measure of the atomic distortion but also

of the number of phonons involved in the polaron formation. On the other hand, from Eq.

(2.70) one finds that the noninteracting level of the electron is shifted by an amount −g2/ω0,

but its spectral weight is reduced to exp[−α2], while the maximum of the spectral weight

corresponds approximatively to the noninteracting energy −g2/ω0 + m̄ω0 = 0. Roughly

speaking, the energy gain for the electron is converted in a cloud of excited phononic states.

When relaxing the atomic limit, hence including hopping processes in Hat, in the Lang-

Firsov framework, one has to deal with the composite nature of the polaron we have just

discussed. The hopping term, in fact, is transformed in

−t c†iσcjσ → −tX+
i X−

j c
†
iσcjσ, (2.71)

which represents the hopping of the polaron. Therefore we pay the disappearence of the

e-ph coupling with a more complicated kinetic term, and some approximation is required in

order to handle the transformed Hamiltonian. Holstein proposed to average the lattice model

over the free phonon variables, thus obtaining an effective model with the hopping constant

renormalized to t〈0|X+
i X−

j |0〉 = t exp[−α2][44]. This approximation implies that the number

of phonons in the phonon cloud surrounding each charge carrier remains largely unchanged

during the transfer of a polaron from a site to the next; putting it in other words, emission

and absorption of phonons during the hopping processes is neglected. The only reasonable

regime in which this approximation is expected to hold is the antiadiabatic limit, where

local lattice deformations can be considered to adapt themeselves almost instantaneously to

the slowly-in-time varying positions of the electrons. Actually Ranninger and Thibblin[88]

carefully analyzed a two-site toy model with Holstein coupling and found that the shape of

the ground-state phonon wavefunction strongly deviates from the displaced oscillator when

relaxing the condition of large γ; this is due to retardation effects between the motion of the

electron and that of the displaced environment created by the electron itself, effects that the

Holstein approximation neglects.

Within the Holstein approximation polarons are well defined quasiparticles with renor-

malized hopping, while electrons lose almost all of their coherence. Anyway one can evaluate

the retarded Green function and the spectral function for the electrons in the same spirit of
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the atomic limit with one particle; for a many-polarons system where a repulsive interaction

was suitably introduced in order to compensate the phonon-induced e-e attraction (U = λD)

Alexandrov and Ranninger found[104]:

GR
e (k, ω) =

e−α2

ω + g2

ω0
− ε∗k + i0+

+

e−α2
∞
∑

m=1

α2m

m!

1

L

∑

q

[

f(ε∗q)

ω + g2

ω0
− ε∗q +mω0 + i0+

+
1 − f(ε∗q)

ω + g2

ω0
− ε∗q −mω0 + i0+

]

,

(2.72)

where ε∗k = e−α2
εk. This solution shows a coherent low-energy quasiparticle band describing

a polaron of effective mass

m∗

m
= eα

2
, (2.73)

located around the polaron energy λD/2, togheter with an incoherent structure at higher

energies which comes from the possibility of changing the number of phonons in the phonon

cloud during the excitation of the electron. This picture is valid only in the large-phonon-

frequency limit, and it is consistent with the weak-coupling perturbative analysis discussed

in the previous section, which provided a first-order expansion in power of α2 of the effective

mass Eq.(2.73).



Chapter 3

Variational slave-boson approach

3.1 Introducing the method

As discussed in the previous chapter, the Hubbard-Holstein model provides an excellent

playground which allows to study the interplay of electron correlation and electron-phonon

coupling. A close look at the main effects of the two interaction mechanisms taken sepa-

rately suggests an absolutely non-trivial competition when they are considered togheter. For

instance, it is well known that both e-e and e-ph interactions induce an increase of the ef-

fective mass of the free carriers; nevertheless it has been shown in the previous chapter that

the coupling with the lattice dynamics mediates an attractive retarded interaction between

electrons, which opposes the Coulomb repulsion responsible for the enhanced effective mass

of the correlated quasiparticles. This screening effect depends crucially on the adiabaticity

regime, making it hard to predict on intuitive grounds the ultimate behaviour of the charge

carriers. A rich and complicated phase diagram is then expected even in the absence of

broken-symmetry phases and neglecting temperature effects. Let us recall the full Hamilto-

nian we will consider throughout this chapter:

H = −t
∑

〈i,j〉,σ
c†iσ cjσ + U

∑

i

ni↑ni↓ + ω0

∑

i

a†i ai + g
∑

i

(a†i + ai)ni.

(3.1)

Its physics will be controlled by three of the following four parameters:

◮ u =
U

D
- degree of electron correlation;

◮ γ =
ω0

D
- adiabaticity parameter;

◮ α =
g

ω0
- measure of the lattice displacement;

◮ λ =
2 g2

ω0D
- e-ph coupling constant;

37
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to which the averaged electron density per site n must be added.

Generally speaking, one could wonder how the electron properties are modified by the

presence of the e-ph interaction, or equivalently analyze the modifications induced by the

correlated electrons on the lattice dynamics, i.e. on the phonons. In this chapter we will

focus mainly on the first aspect of the problem. Our procedure will consist then in deriving

an effective correlated model for electrons in which phonon-induced effects are described

by renormalization of electronic energy scales, namely hopping and Hubbard terms: this

effective Hubbard model can be then analyzed by standard methods developed in the context

of strongly-correlated systems, such as the slave-boson technique.

As detailed in the previous chapter, the simplest approach at our disposal which allows to

capture polaronic physics in the Holstein model is the Lang-Firsov transformation (LFT)[102].

By means of the unitary transformation eS = exp[α
∑

i ni (ai − a†i )] the Hubbard-Holstein

model maps onto a polaronic model where the e-ph coupling vanishes and the Hubbard term

is reduced by the attractive phonon-mediated interaction equal to −λD; the transformed

hopping term describes the mobility of the polarons, whose composite nature is captured by

the operators c†iσX+
i , where X±

i = exp[±α (ai − a†i )] account for the phonon creation and

annihilation following hopping processes. In order to get rid of the lattice degrees of freedom

thus obtaining an effective model for the electrons one can follow Holstein’s suggestion[44] and

average the transformed Hamiltonian over the noninteracting phononic vacuum; as already

pointed out, this approximation is expected to give reliable results only in the antiadiabatic

limit, where phonons adapt themselves almost instantaneously to the electronic configuration,

hence preserving the number of phonons during hopping processes, and emission or absorption

of phonons can be safely neglected. For the same reason, being retardation effects almost

absent, the phonon-mediated e-e attraction is actually instantaneous and fully subtracts from

the Hubbard repulsion.

Relaxing the antiadiabatic limit, one should expect a less severe renormalization both

of the kinetic [105] and of the interaction term, due to the retardation effects between the

motion of electrons and that of the displaced environment created by electrons themselves.

These effects can be addressed in a variational LFT fashion [61, 106, 107]; even if many other

variational approaches have been developed in the context of e-ph interaction (for a review

about the variational approach to the Holstein model see [108] or [109]), the method we are

going to discuss is more suitable for the analysis of phonon effects on the correlated physics

of the Hubbard model.

3.1.1 Effective polaron-correlated model

We introduce a generalized Lang-Firsov transformation U = eS , where

S = α
∑

i

[n+ fi (ni − n)] (ai − a†i ). (3.2)

The presence of n = 〈ni〉 in the transformation allows us to get rid from the outset of

the trivial uniform displacement of the lattice due to phonons coupling with the average
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electron density; therefore fi are variational parameters whose minimization is expected to

measure the coupling between phonon displacements and density fluctuations for any value

of the adiabaticity parameter. Transformation (3.2) in general implies that electrons are

not exactly decoupled from phonons and a residual e-ph interaction should be considered

togheter with the complicated polaronic hopping term. We can get rid of this complication

in the standard Holstein way and average the transformed Hamiltonian over |0〉, the vacuum

state of the transformed phonons, obtaining an effective Hubbard-like model for electronic

degrees of freedom only:

Heff = −t
∑

〈i,j〉,σ
e−

α2

2
(f2

i +f2
j ) c†iσ cjσ +

∑

i

ni↑ni↓
[

U − 2α2ω0 (2fi − f2
i )
]

+2α2ω0

∑

i

[

n (1 − fi)
2
(n

2
− ni

)

+ fi ni

(

fi

2
− fi

)]

, (3.3)

with hopping, interaction and chemical potential renormalizations controlled by the varia-

tional parameters fi.

We expect fi to approach one in the antiadiabatic regime, where the standard LFT and

Holstein approximation applies, and to decrease with decreasing γ when the adiabatic regime

is approached and sizeable lattice distortions are expected only for large values of the e-ph

coupling. To make this point clearer let us consider the X±
i operators, which following the

transformation (3.2) read:

X±
i = e± fi α (a − a†). (3.4)

The ground state for the phonon is then given by |φ(Xi −X0i)〉 ≡ X+
i |0〉 which correspond to

a displaced harmonic oscillator centered in X0i =
√

2 fi α. From this point of view, then, the

variational parameters control the distortion of the lattice sites (hence the polaron formation)

but retain the antiadiabatic oscillator-like shape of the phononic wavefunctions. Furthermore,

emission and absorption of phonons as electrons move in the lattice are still neglected as in

the Holstein approximation. Nonetheless, the retardation effects expected for finite values

of the adiabaticity parameter are partially captured by our effective model Eq.(3.3). In fact

when fi < 1 the phonon-induced attractive term is reduced from its antiadiabatic value,

as one should have predicted on the basis of Eq. (2.48). On the other hand the polaronic

effective mass is made lighter by the factor f2
i multiplying α2 in the exponential; keeping in

mind that α2 ∼ m̄, the mean number of phonons involved in polaron formation, this means

that in the present representation the charge carriers when hopping from one site to another

are followed by a multiphonon cloud which is made up of a minor number of phonons with

respect to the antiadiabatic limit, reflecting the fact that lattice deformations can not follow

instantaneously electronic motion.

Rude as it is, this approximation will prove useful to describe the influence of e-ph coupling

on the physics of correlated electrons, as it will be detailed in the following section where the

paramagnetic phase of the effective model given by Eq. 3.3 is analysed.
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3.1.2 Slave-boson mean field

Apart from the phonon-induced renormalizations of electron parameters, the Hamiltonian

(3.3) represents a Hubbard-like model that can be solved by means of standard strong-

correlation methods. We adopt here the Kotliar-Ruckenstein slave-boson approach[80] al-

ready described in the previous chapter; for each site we introduce four bosons ei, di, piσ,

representing the four possible states on site i (zero, two and one σ electron state), and a

fermionic operator c̃iσ which is connected to the original electron operator by the relation

ciσ = ziσ c̃iσ , where

ziσ =

(

e†ipiσ + p†iσ̄di

)

√

1 − d†idi − p†iσpiσ

√

1 − e†iei − p†iσ̄piσ̄

. (3.5)

The equivalence with the original Hilbert space is guaranteed by the constraints

1 =
∑

σ

p†iσpiσ + d†idi + e†iei (∀i),

0 = c†iσciσ − p†iσpiσ − d†idi (∀i, σ),

which can be enforced introducing three Lagrange multipliers λ
(1)
i , λ

(2)
iσ for each site i.

The mean-field solution at a given value of density n in the paramagnetic homogeneous

phase is obtained by taking the saddle-point value for the Bose fields (〈ei〉 = e0, 〈di〉 =

d0, 〈piσ〉 = p0) and assuming translation invariance, so that fi = f and λ
(1)
i = λ

(1)
0 , λ

(2)
iσ = λ

(2)
0 .

Following closely Ref. [82], we minimize the resulting variational energy with respect to the

Lagrange multipliers and use the constraints to get

E0 = −|ε| q e−α2 f2
+ d2

0

[

U + 2α2ω0(f
2 − 2f)

]

− α2ω0(1 − δ)
[

1 − δ(1 − f)2
]

,

(3.6)

where we have put n = 1−δ and ε is the kinetic energy per site in the uncorrelated case. This is

the only quantity that depends on the dimensionality and the topology of the lattice. In what

follows we will consider an infinite-coordination Bethe lattice, which displays a semi-circular

density of state with half width D; this particular choice allows for a direct comparison with

other methods such the DMFT, that is known to give exact results in the limit of infinite

dimensions, or the Gutzwiller approach, that will be described in the next section and where

exact computation of expectation values is greatly simplified in the forementioned limit. By

introducing the standard notation x = e0 + d0[110], one can express the saddle-point bosons

as

d2
0 =

(x2 − δ)2

4x2
, (3.7)

e20 =
(x2 + δ)2

4x2
, (3.8)

p2
0 =

2x2 − x4 − δ2

4x2
, (3.9)
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and q = z2
0 , i.e. the reduction of the kinetic energy due to the electronic correlation, as

q =
2x2 − x4 − δ2

1 − δ2
. (3.10)

In the absence of e-ph coupling, when α = 0, Eq. (3.6) reduces to the well-known Gutzwiller

energy for the pure Hubbard model (cfr. Eq. (2.14) or (2.29) in the previous chapter). On

the other hand, taking the limit f = 1, one recovers the standard Lang-Firsov result, being

the kinetic energy exponentially renormalized with the electron energy level and the Hubbard

term shifted respectively by −α2ω0 and −2α2ω0.

In order to determine the mean-field solutions we minimize (3.6) with respect to the

remaining variational parameters x2 and f . One gets:

8
1 − x2

1 − δ2
|ε| e−α2 f2

=
[

U + 2α2ω0(f
2 − 2f)

]x4 − δ2

x4
, (3.11)

q|ε| f e−α2 f2
= ω0(1 − f)

[

(x2 − δ)2

2x2
+ δ(1 − δ)

]

. (3.12)

For small doping δ the kinetic energy can be expanded around the half-filling value |ε0|
as |ε| = |ε0|(1 − aδ2) (with a depending on the specific shape of the uncorrelated band: for

a semicircular DOS one gets |ε0| = 4/3π ≈ 0.4244D and a = 3π2/32 ≈ 0.9253) and the

mean-field equation (3.11) can be conveniently rewritten as:

(1 − x2)
x4

x4 − δ2
= ū

1 − δ2

1 − aδ2
, (3.13)

where

ū = eα
2 f2

[

U

Uc
+
λD

Uc
(f2 − 2f)

]

, (3.14)

in which Uc = 8|ε0| ≈ 3.3953D is the Brinkmann-Rice critical value for the Mott transition on

the infinite-coordination Bethe lattice in the absence of phonons. Eq. (3.13) coincides with

the result for the Hubbard model once U/Uc is replaced by ū (cfr. Eq.(8) of Ref. [82]). This

finding is easily interpreted in terms of renormalized interaction Ueff = U + 2(f2 − 2f)α2ω0

and renormalized kinetic energy εeff = εe−α2f2
, showing that in the present approach the

value of the parameter f determines to what extent the electronic properties are affected by

phonons. From a technical point of view, being Eq. (3.12) a transcendental equation, it can

be useful to separate the exponential from the algebraic dependence on f , obtaining:

f =

[

1 +
2 |ε0|
γ D

1 − aδ2

1 − δ2
x2 (2x2 − x4 − δ2)

x4 + δ2(1 − 2x2)
e−α2 f2

]−1

. (3.15)

This form, as we shall see in the next section, is more suitable for a graphical analysis.

Eqs. (3.13),(3.15) are the mean-field equations one needs to consider in order to analyse

the influence of e-ph coupling on the correlated physics of the model. In the next section we

will discuss their solution in the simple limit of large Hubbard repulsion, that allow us to put

on solid ground our analysis of the physical properties of the model at half-filling and in the

doped correlated metal.
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3.2 Limit of large U : polaronic transition

It is well known that the ground state of the half-filled paramagnetic phase of the Hubbard

model in the limit of large U and in the presence of a frustrating mechanism for the AF

phase is a Mott insulator, characterized in the present framework by having one electron

on each site of the lattice, being double occupation not allowed (d = 0). In order to get

nontrivial information about the strongly-correlated properties of the system, one needs to

restore a metallic behaviour by introducing some vacancies δ 6= 0. In the limit of infinite

repulsion the solution of the mean-field equation (3.13) at finite values of the doping reads

simply x2 = e20 = δ; therefore it is reasonable to assume that x2 = δ/ζ in the presence of

large but finite U ≫ Uc[82, 110]. Expanding the mean-field equations to second order in δ,

one finds

ζ =

√

1 − 1

ū
, (3.16)

that again coincides with the expression for the pure Hubbard model with renormalized

parameters depending on f , and a self-consistent equation for the variational parameter:

f =
1

1 + C 2 |ǫ0|
γD e−α2 f2

, (3.17)

being C = C(f ;u, γ, λ) = 2ū/(2ū−1) a coefficient which does not depend on x2. In the limit

ū≫ 1 (which is equivalent to U/Uc ≫ 1 if λ is not too large) the prefactor C goes to 1, thus

simplifying the analysis of Eq.(3.17).

It is useful to compare the behavior of Eq. (3.17) with the mean-field theory of the

ferromagnetic transition. We will see that f , γ and λ play similar role to the magnetization,

temperature and magnetic field, respectively. The mean-field equation has the form f = h(f)

and can be solved graphically just like the Curie-Weiss equation, as shown in Fig. 3.1. h(f)

varies from 0 to 1, so that f takes physically meaningful values. h(0) is different from zero

for any finite value of γ and h(1) < 1. Therefore h(f) intersects the straight line in at least

one point. The function h(f) has an inflection point controlled by the value of the parameter

γ. For small γ the inflection point is at small f , so that h(f) crosses f in three points, while

for larger γ only one intersection survives as the inflection point moves toward large f . γ

clearly plays a role similar to the temperature, with a critical value γc which separates the

two regimes. The critical point (fc, γc, λc) may be evaluated analytically by imposing

fc = h(fc;λc, γc), (3.18)

1 =
d

df
h(fc;λc, γc), (3.19)

0 =
d2

df2
h(fc;λc, γc), (3.20)

which in the limit C = 1 give the critical values fc = 2
3 , γc = e−

3
2 Uc/2 ≃ 0.3788, and

λc = 27
4 γc ≃ 2.557. When three solutions exist, we find two locally stable solutions f− and
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Figure 3.1: Graphical analysis for the self-consistent equation Eq. (3.17). Keeping fixed

λ = λc, the different behaviour of h(f) is displayed for three characteristic values of the

adiabaticity parameter, namely γ ⋚ γc; intersections with the bisector mark the graphical

solution. In the inset the same plot is shown keeping γ fixed and varying the value of λ.

f+, shown in Fig. 3.2, that are associated to weaker and stronger polaronic formation. As

we pointed out before, in fact, a small value for f implies a little distortion of the lattice

with respect to the atomic limit, whereas f ≈ 1 signals full polaron formation with strong

renormalizations of electronic parameters. The two solutions correspond to negative and

positive magnetization in the ferromagnetic terminology. Notice that the variational nature

of our treatment of phonon degrees of freedom implies that only the lowest energy state is a

valid result of our approach, even if the equations allow for more solutions. The parameter λ

(or more precisely the deviation from λc) acts as a magnetic field in determining the existence

of the two potential solutions and which one is the ground state. For small (large) λ only

f−(f+) exists, and the energies of the two solutions cross in a first order line λc(γ), ending

in a critical point.

To summarize, when λ is large, lowering the “temperature” going from the anti-adiabatic

to the adiabatic regime does not imply a dramatic change in the value of f ; quantum lattice

fluctuations are not able to damp the finite distortion due to the strong coupling with elec-

trons, consistently with our discussion of the pure Holstein model. For small λ, on the other

hand, f changes from f ≈ 1− 1/γ to f ≈ γ moving from large to small γ. By looking at the

evolution with the e-ph coupling, in the antiadiabatic (large “temperature”) regime, we have

a single solution smoothly evolving with the “magnetic field” λ that, from the point of view

of phonons, describes a polaron crossover which becomes steeper as the critical γc is reached

from above. This crossover becomes a first-order transition in the adiabatic regime and, ac-

cording to what we have just said, should be interpreted as a polaronic transition. This is

a little unexpected result, since it has been shown (at least for the single-polaron problem)
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Figure 3.2: Evolution with λ of the numerical solution of the mean-field equations in the

limit of infinite U for various values of γ. The vertical arrows signal the first-order transition

which occur when the energies of the two solutions cross.

that all quantities are always analytical with increasing coupling strenght, hence a crossover

rather than a transition should be expected for any finite value of γ[111] when polaron for-

mation is considered, as confirmed also by DMFT studies[60, 86]. In fact we will show in the

next chapter that the first-order transition found within the present approach comes from

the poor description of phonon degrees of freedom; however quantitative estimates of the

boundaries between regions with different physical behaviour are probably sound or at least

give the correct order of magnitude, as we will see in detail in the next sections.

The above “Curie-Weiss” scenario is recovered also for finite, yet large, u, where the

simplified limit C = 1 is relaxed and one needs to solve numerically the mean-field equations.

In Fig. 3.3 we plot a paradigmatic phase diagram in the λ− γ plane for a fixed value of the

Hubbard repulsion, namely u = 10; here λc1 (λc2) labels the line where the f+ (f−) solution

disappears, while λc(γ) is the critical value for the polaronic transition we have just discussed.

The phase diagram in Fig. 3.3 is not changed much as function of doping. This result

may be understood in the following way. The phase transition line is obtained by comparing

the values of the energies for the solution for f− and f+. As it can be inferred from Eq.(3.6),

both the kinetic energy and the polaron energy differ by a quantity of order δ in the two

solutions, so that the critical values of λ depend on doping through subleading corrections

in δ which are quite small at u = 10. The physics underlying the phase diagram of Fig. 3.3

is that by increasing λ a small number δ of localized holes strongly coupled to phonons have

a lower energy (∼ −δ λD/2, i.e., the energy of δ polaronic holes) than a bad metal that has
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Figure 3.3: Phase diagram in the λ− γ plane for the Hubbard-Holstein model as obtained in

our variational LFT slave-boson approach for a fixed value u = 10 near half-filling.

a reduced kinetic energy, again of order δ (εeff ∼ −δ |ε0|) due to the large effective mass

(m∗ ∼ 1/δ).

Let us conclude this section noticing that a qualitative similar behaviour of the self-

consistent condition (3.15) is observed also for weaker e-e coupling (U < Uc) and δ = 0 for

interesting ranges of the parameters.

3.3 Metal-insulator transitions at half-filling

In this section we discuss the effects of e-ph coupling on the correlated metal at zero doping.

As in the large−U limit, some simplification occurs also when n = 1, and the mean-field

equations (3.13),(3.15) turn out to be decoupled in a trivial equation for x2

x2 = 1 − ū, (3.21)

and in a self-consistent condition for f :

f =
1

1 + 2 |ǫ0|
γD (1 + ū) e−α2 f2

. (3.22)

Three different regimes are found:

i) ū ≥ 1 → x2 = 0 - Mott insulating phase (MI);

ii) ū ≤ −1 → x2 = 2 - bipolaronic insulating phase (BI);
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iii) −1 < ū < 1 → x2 ∈ (0, 2) - correlated metallic phase (M).

In fact, by looking at the saddle-point values of the slave bosons, it is readily seen that when

x2 = 0 one has d2
0 = e20 = 0, p2

0 = 1/2, i.e. only singly-occupied sites are allowed; on the

other hand, for x2 = 2 one gets p2
0 = 0 and d2

0 = e20 = 1/2, that means that all the particles

are bound to form local pairs (bipolarons) and sit on half of the lattice sites. In both cases

quasiparticle motion is completely suppressed because q = 0 , suggesting that transitions to

insulating phases are due to electron interactions only, whether repulsive (MI) or phonon-

mediated attractive (BI), in agreement with Ref. [94]. This is different from the polaronic

transition discussed before, where the quasiparticle residue Z = q e−α2f2
jumps to a non-zero,

though exponentially small, value.

The present mean-field approach does not allow but for a poor description of the insulating

phases, exactly as for the Mott phase of the pure Hubbard model, and one should include

at least gaussian fluctuations around the saddle point in order to get a satisfactory picture.

However, some information can be extracted by analysing the boundaries of the regions

where those insulating phases establish. We stress the fact that critical values of U and λ at

which transitions take place are determined by the ratio of renormalized e-e interaction and

phonon-renormalized kinetic energy, hence we expect to capture the competing effects due

to e-ph coupling of reduction of electron mobility and induction of attractive e-e interaction

which subtracts to Hubbard repulsion. If we plug condition ū = −1 in Eq. (3.22) we get

f ≡ 1 for any value of the adiabaticity parameter. This suggests that the present approach is

equivalent to the Holstein approximation when the metal-bipolaronic transition is addressed.

Then the condition for the bipolaronic transition can be recast as (cfr. Eq. 3.14):

λBI =
Uc

D

[

e−α2
+
U

Uc

]

(3.23)

or, as a function of the adiabaticity parameter, as:

γBI = − λ

2 ln(λD/Uc − U/Uc)
(3.24)

which corresponds, in the vanishing U limit, to the findings of Ref.[95]. On the other hand,

the presence of U shifts to higher values of λ the bipolaronic transition, a somehow expected

effect arising from the competition of the repulsive Hubbard term and the attractive phonon-

mediated interaction. However Eqs. (3.23),(3.24) should not be considered valid as γ ≪ 1,

due to the unsatisfactory description of retarded effects (f = 1).

An analogue analysis can be carried out when considering the Mott transition line. In

this case f must satisfy the self-consistent condition (3.17) with C = 2; by considering the

limiting cases of small and large value of γ one finds f ≃ 2ω0/Uc[61] and f ≃ 1 respectively.

Then the condition for the metal-insulator transition reads (cfr. Eq. 3.14):

UMI = Uc + λD
2ω0

Uc
, γ ≪ 1, (3.25)

UMI = Uc + λD

(

1 − UMI

2ω0

)

, γ ≫ 1. (3.26)
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As expected, the coupling with phonons causes a shift of the transition towards higher values

of the repulsion, due to the presence of an attractive interaction, proportional to λD, which

has to be compensated. Retardation effects are captured by the coefficients multiplying λD in

Eqs. (3.25), (3.26), that in both limits are controlled by the ratio 2ω0/U , as already observed

in Ref. [57]. Furthermore, by looking at phase diagram in the λ − U plane, one finds that

the line marking the Mott transition is given by:

λMI D =
Uc

2ω0

(

U − Uc

)

, γ ≪ 1, (3.27)

λMI D =
Uc

1 − U
2ω0

(

U

Uc
− 1

)

, γ ≫ 1. (3.28)

and reproduces accurately previous diagrams obtained by DMFT[55, 56, 58].

Let us turn to properties of the metallic phase, which will allow us to characterize the way

in which the two insulating phases are approached. By looking at the evolution with U and

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

f

U/D

γ = 0.2

γ =  2 

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

f

λ

γ = 0.2

γ =  2 

Figure 3.4: Evolution of the variational parameter f with U (left panel) and λ (right panel) by

numerical solution of the mean-field equations. In both cases two values of γ are shown, rep-

resentative of adiabatic (γ = 0.2) and antiadiabatic (γ = 2) regimes, with selected increasing

(decreasing) λ (U) from bottom to top in the left (right) panel.

λ of the variational parameter f , which measures the effectiveness of the e-ph interaction in

the system, the expected effects are recovered. From one side the increase of repulsion, which

strongly suppresses charge fluctuations, makes phononic effects less relevant, as highlighted

by the monotonic decrease of f with increasing U shown in Fig. 3.4. On the other hand, f

is always an increasing function of the e-ph coupling constant. In both cases one can observe

a smooth evolution of the mean-field solution when γ > 1, while in the adiabatic regime,
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where the decrease (increase) of f is less pronounced in a wide range of U (λ), a discontinous

jump to the bipolaronic solution f = 1 is observed, suggesting a first-order transition to the

bipolaron insulator.

The interaction-driven renormalization of electronic properties is addressed in the context

of slave-boson approach by looking at the behaviour of the effective mass, which is given by:

m∗

m
=
eα2 f2

1 − ū2
(3.29)

and that has been shown to be related to the inverse of the quasiparticle residue Z. This

equation clearly shows that renormalization effects on quasiparticle properties come from an

effective interaction, that stems from the ratio of Ueff and εeff , in combination with the

incremented weight due to polaron formation, namely the exponential factor exp[α2f2]. It is

worth noticing that not even in the absence of the Coulomb repulsion and in the antiadiabatic

limit, where our approach should be equivalent to the LFT-based Holstein approximation,

Eq. (3.29) does reduce to the known result Eq. (2.73), which is only recovered in the weak-

coupling limit where the phonon-induced e-e attraction can be safely neglected. On the other

hand, it fails completely when small values of γ are considered at U = 0, as we will detail in

the following.
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Figure 3.5: Evolution of the quasiparticle redisue Z = (m∗/m)−1 with increasing Coulomb

repulsion in the adiabatic (left) and antiadiabatic (right) regimes.

First we consider the effect of increasing U in the system with fixed λ; in Fig. 3.5 we plot

the evolution of Z for two values of γ representative of adiabatic and antiadiabatic regimes,
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namely γ = 0.2 (left panel) and γ = 2 (right panel). In both cases Z starts from a value

smaller than one, due to the presence of a finite λ which makes quasiparticles heavier than

free electrons, it increases more or less rapidly according to the strenght of the e-ph coupling,

and eventually it decreases and vanishes as the Mott insulating phase is approached. As for

the pure Hubbard model, the metal-insulator transition is found to be always second-order,

and occurs for slightly higher values of U in the adiabatic limit, while in the opposite limit

is shifted by an amount which is proportional to λD, consistently with Eqs. (3.27),(3.28).

On the other hand, when moving from a pair insulator, two different behaviours are found in

the considered regimes; while in the antiadiabatic regime the onset of the metallic solution

is smooth with increasing Coulomb repulsion, in the adiabatic limit one finds a jump of the

quasiparticle residue from zero to a sizeable value, suggesting again that in this regime the

bipolaron-metal transition is first-order.

This point can be addressed directly analysing the behaviour in λ at given values of U ,

as we do in Fig. 3.6. We find that for large values of γ the pair insulator is approached

with a smooth vanishing of the quasiparticle residue in a Hubbard-like fashion and that

the critical line is shifted to larger values of the e-ph coupling, as predicted by Eq. (3.23).

When considering small values of the adiabaticity parameter, however, a more complicated

behaviour is observed. When the Hubbard constant U is quite small, Z decreases smoothly

but it jumps discontinously to zero when the insulating phase is reached; for a slightly larger

U , namely for u = 1.5 in Fig. 3.6, the quasiparticle residue is almost constant for quite

large values of λ, before vanishing abruptly. At last, close to Uc the effect of λ is mainly

to decrease the effective mass until the pair insulator is approached and the quasiparticle

weight suddendly vanishes. Metallic energy crosses the insulating energy characteristic of

the bipolaronic solution, hence the bipolaron transition is always first-order in the adiabatic

limit; however, retardation effects are partially captured and the transition to BI is pushed

to slightly larger values of λ with respect to Eq. 3.23.

A few words about the possibility of a polaronic crossover near the bipolaronic transition.

We pointed out that the behaviour of the self-consistency equation for f at half-filling is

analogue to the one we have discussed in the large−U limit; one may expect then the opening

of a coexistence region and the appearing of a polaronic transition for small values of the

adiabaticity parameter. This is actually the case; however the f+ solutions are found to be

always unstable in the metallic phase, and the transition to a phase with heavy polarons is

hidden by the onset of the pair insulator. On the other hand we can consider the fate of the

two solutions f−, f+ as we approach the Mott transition from above, i.e. from U > Uc. As

already pointed out, the present approach does not allow for a proper characterization of the

Mott insulating phase, where f does not enter in the energy expression (3.6); however we

can evaluate the critical λpol = λc for the polaronic transition in the case of a vanishingly

small δ. In the adiabatic regime the mean-field equations can be solved analytically and the
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Figure 3.6: Evolution of the quasiparticle redisue Z = (m∗/m)−1 with increasing e-ph cou-

pling in the adiabatic (left) and antiadiabatic (right) regimes.

polaronic solution f+ only establishes for δ → 0 at:

λpol = u

(

1 −
√

1 − Uc

U

)

. (3.30)

At U ≃ Uc this gives λpolD = Uc, which is reduced to Uc/2 in the large U limit. We

therefore find that in the adiabatic limit, for U close to Uc, the weak-coupling solution f−
is always the stable one even for quite large e-ph coupling up to λ ≃ U , thus showing that

the Mott metal-insulator transition is robust with respect to polaron formation (of course

the system is expected to switch to a bipolaronic regime when λ > U and the attraction

exceeds the repulsion). Through the stabilization of the f− solution the strong correlations

close to the Mott metal-insulator transition also protect the quasiparticles from a strong

mass renormalization due to phonon effects[57]. We can also get an estimate of the Mott gap

as the jump of the chemical potential ∆ = µ(n = 1+) − µ(n = 1−), which, exploiting the

slave-boson machinery, turns out to be:

∆ = Ueff ζ =
(

U − α2ω0 (2f − f2)
)

√

1 − 1

ū
. (3.31)

From this formula one finds that the Mott transition is always associated to the opening of

a gap as in the pure Hubbard model and that the width of the gap is proportional to the

effective interaction alone, even if the critical value for the transition is determined taking

into account also polaronic renormalization of the hopping (that are however small). Finally,

the inclusion of gaussian fluctuations should allow for the reconstruction of the high-energy
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Hubbard bands[83]; this has been done in Ref.[61], where it has been shown that for adiabatic

values of γ phonon sidebands appears only in the incoherent part of the spectral density, while

the gap is slightly reduced by e-ph coupling, in good agreement with the findings of Refs.

[57, 62].

To summarize, we find that the Mott metal-insulator transition is always second-order

and the main effect of the e-ph coupling is to shift the transition line of an amount which de-

pends on the value of λ and on the adiabaticity regime; to be more precise, in the λ−U plane

the slope of this line appears to be controlled by the ratio 2ω0/U . However quasiparticles

properties are weakly affected by phonons in the adiabatic regime, where the stable solution

is characterized by small values of the variational parameter f ∝ γ, as found approaching the
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Figure 3.7: Phase diagram in the λ− U plane of the Hubbard-Holstein model at half-filling

for an adiabatic value of γ (namely ω0 = 0.2|ε0|). Thick dotted line represents the projection

of the polaronic transition line on the δ → 0 plane, while the exact adiabatic (γ = 0) results

obtained in the present context for λpol and λBI are shown with thin dotted lines. For

comparison also Eq. (3.23) for the Mott transition (in the inset Eq. (3.27) for the M-BI

transition) is shown.
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transition both from below (see Fig. 3.4) and from above (see the projection of the polaronic

transition line λpol(U) on the half-filling phase diagram Fig.3.7), and the Mott transition is

therefore robust with respect to e-ph coupling and polaron formation. On the other hand

the bipolaronic transition is always first-order when small values of γ are considered, while

it is found to be second-order when γ > 1, as expected in the antiadiabatic regime where the

Holstein model is known to map onto an attractive Hubbard model. Our analytic estimate

of λBI correctly captures the qualitative behaviour of the bipolaronic transition in the pres-

ence of a repulsive Hubbard term, but it neglects retardation effects of the e-ph interaction,

being equivalent to the Lang-Firsov-Holstein approximation; as a consequence screening is

overestimated in the adiabatic limit and a smaller λBI is predicted with respect to the one

we found by numerical solution of the mean-field equations. However, as it can be seen in the

inset of Fig. 3.7, in the presence of strong repulsion Eq. (3.23) is more accurate; in fact, in

order to compensate the Hubbard term and to induce an attractive interaction the strenght

of e-ph interaction must be so large that strong-coupling approaches can apply.

3.4 Phonon effects on electronic properties of the correlated

metal.

In this section we focus our attention on the modification induced by the e-ph coupling onto

the physical properties of the correlated metal in two relevant regimes: at half filling and for

small values of the doping in the large−U regime.

3.4.1 Regime I : the half-filled metal

To better understand the effect of the e-ph coupling on m∗/m in the half-filling regime, when

n = 1 and −1 ≤ ū ≤ 1, we can disentangle it from the renormalization due to the electronic

correlation and expand the ratio m∗(λ)/m∗(λ = 0) to lowest order in λ in the adiabatic and

antiadiabatic limit, in such a way that comparison with the perturbative findings of section

2.3.1 is allowed. From Eq. (3.29) we get at half-filling:

m∗(λ)

m∗(0)
= 1 +

λD

Uc

ω0

|ε0|
m∗(0)
m

Uc(Uc − U) − U(U + Uc)

(U + Uc)2
, γ ≪ 1, (3.32)

m∗(λ)

m∗(0)
= 1 + α2 1 + (U/Uc)

2

1 − (U/Uc)2
− λD

Uc

2(U/Uc)

1 − (U/Uc)2
, γ ≫ 1. (3.33)

Both formulas show that electronic correlation can change the sign of phonon-induced renor-

malization, consistently with the non monotonic behaviour of Z observed before. The first

equation, nonetheless, does not reduce to the well-known Migdal-Eliashberg result m∗/m =

1 + λDN0 which is expected to hold in the adiabatic regime when taking U = 0, introducing
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a γ−dependence that can not be interpreted as a finite band effect1 and that would cause no

renormalization in the exact adiabatic limit γ = 0; however, on the basis of the good agree-

ment of our findings with previously reported results when approaching the Mott transition

and keeping in mind that the suppression of charge fluctuations should make e-ph coupling

less effective, we expect that the presence of finite Coulomb repulsion might mend this draw-

back. We defer further discussion on this point to the next chapter. From formula (3.32) we

can compute the value of U at which the renormalization of the effective mass due to phonons

is uneffective. One easily finds that at U0 = Uc(
√

2− 1) ≈ 1.47D corrections of m∗(λ)/m∗(0)

exactly disappear to lowest order in λ; this compensation effect is consistent with the ob-

served almost constant dependence on λ reported in Fig. 3.6 for u = 1.5, suggesting also

a weak dependence of the effect itself on the strength of the e-ph coupling with respect to

the role played by the interplay of U and ω0. When U < U0 the effect of e-ph coupling

is to increase the effective mass, as expected, while for larger values of the repulsive term

the coupling with phonons causes a reduction of m∗(λ)/m∗(0), in excellent agreement with

numerical renormalization group[55, 58] and exact diagonalization[57] solutions of DMFT.

On the other hand, Eq. (3.33) does reduce to the known perturbative result m∗/m =

1 + α2 in the Holstein model. However we observe that in the exact antiadiabatic limit the

switching on of the repulsive Hubbard interaction make the negative correction to the effective

mass much more relevant than the polaron-like correction α2, hence inducing a decrease of

m∗(λ)/m∗(0) due to phonon effects. This näıvely surprising result can be understood in terms

of a reduction of the effective repulsion which prevails over the polaronic renormalization of

the hopping, as one should have expected in the considered limit on the basis of the discussion

of section 2.3. When considering finite but large values of the adiabaticity parameter we find

that polaronic renormalizations are still relevant (enhancement of effective mass) as long as

U < U2
c /4ω0, while for larger values of the repulsion the main effect of the coupling with the

phonons is to reduce the overall e-e interaction. This condition suggests that when dealing

with the problem of e-ph coupling in the presence of a sizeable non-retarded interaction as

the Hubbard one, the interplay between the energy scales introduced by ω0 and U must be

carefully considered, beside the more standard u,γ and λ.

In Fig. 3.8 we plot in the U −γ plane the locus of points where the effect of e-ph coupling

on m∗(λ)/m∗(0) changes its nature. In the left region, labeled by POL, one recovers the

qualitative effect observed in noncorrelated systems, namely a linear enhancement of the

effective mass; in the present approach this corresponds to a major relevance of polaron-like

renormalization, i.e. exp[α2f2]. For larger values of U , on the other hand, the major effect of

the coupling with phonons is to screen the Coulomb repulsion, while polaronic corrections to

the kinetic energy are not able to induce sizeable enhancement of m∗ at the lowest order in λ:

in this region, therefore, the e-ph coupling results in a slight reduction of the effective mass,

otherwise enhanced by the presence of strong correlation. As expected, screening mediated by

1According to the perturbative result in the presence of a finite flat band, one expects in fact a decrease of

the effective mass at fixed λ with increasing γ in the adiabatic regime, namely m∗/m ≈ 1 + N0 λD (1 − γ).
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phonons is less and less effective as the adiabatic regime is approached, enlarging the range of

parameters where phonon effects on the kinetic energy are relevant; on the other hand, when

ω0 . D and the static phonon-mediated attraction is strongly reduced due to retardation

effects, the presence of a sizeable U seems to protect quasiparticle properties from strong

polaronic renormalizations, and we expect that for U > 1.47D quasiparticle properties of the

model are controlled by the physics of strongly correlated systems. We will try to explain

the physical origin of this picture in the next chapter.
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Figure 3.8: Diagram in the U−γ plane showing the regions where phonon renormalizations are

more effective than screening of the Coulomb repulsion in affecting quasiparticle properties.

Dotted lines are analytical perturbative results in the adiabatic and antiadiabatic limit; circles

are numerically evaluated as the points where phonon effects in m∗(λ)/m∗(0) vanish and

change sign, namely when (1 −m∗(λ)/m∗(0))/λD = 0 for vanishingly small values of λ.

3.4.2 Regime II: the doped correlated metal

In the so-called vacancy regime, δ ≪ 1 and ū > 1, the effect of doping is to introduce holes and

to partially restore charge fluctuations, even if they are still reduced with respect to the non-

correlated system. As a consequence one can expect a stronger e-ph signature with respect

to the half-filled correlated metal close to the Mott transition, namely polaronic corrections

to the effective mass become more relevant if compared to renormalization effects caused

by the partial screening of the Coulomb repulsion. This means that m∗(λ)/m∗(0) should

increase rather than decrease with λ in a wide range of phonon energy, and eventually become

exponentially large when the polaronic transition is reached. In the present framework we
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find that the effective mass to lowest order in δ reads:

m∗

m
≈ eα2 f2

2δ

√

1 − 1

ū
. (3.34)

In the left panel of Fig. 3.9 we plot the typical behaviour of Z, the inverse of the effective mass,

for u = 10 and in the adiabatic regime, γ = 0.2. As correlation effects are still relevant, being

very close to the half-filling insulating phase, the e-ph coupling is not able to substantially

modify the small value determined by the presence of a large U even if the expected behaviour

is qualitatively observed, i.e. one finds a small reduction of Z until the polaronic transition

is reached and the quasiparticle residue jumps to almost vanishing values. Another effect of

the Hubbard term is to push the polaron formation to stronger couplings with respect to the

weakly-correlated half-filling regime, where the bipolaronic transition occurs for values of λ

that are approximatively half the value of λpol (see Fig. 3.7).

An analytical analysis similar to the one performed in the half-filling regime is less easily

carried on in this case, and it proves less relevant due to the many approximations needed

in order to get perturbative expansions. However, we can solve numerically the mean-field

equations and analyze the weak-coupling effects of phonons on the correlated effective mass.

As highlighted in the right panel of Fig. 3.9, quasiparticles properties display an unusual

dependence on the phonon frequency. We consider here a finite Coulomb repulsion, U = 5D,

not too far from the half-filling Mott point, at δ = 0.1, and plot the evolution of the normalized

Z(λ)/Z(λ = 0) in the region λ . 1, well before the polaronic transition. It is not surprising

that for ω0 & U the main effect of e-ph coupling is to increase Z; analogously to the half-

filling regime discussed before, in this case λmainly decreases the localizing power of Coulomb

repulsion, and polaronic renormalizations are negligible. For a wide range of γ . u, on the

other hand, one observes the expected reduction of the quasiparticle residue, whose slope,

however, displays a nonmonotonic dependence on the phonon frequency that suggests a more

complex interplay between the involved energy scales. Namely, the negative slope increases up

to γ ∼ 0.6, while for smaller value of the adiabaticity parameter the reduction of Z(λ)/Z(0)

becomes slower and slower. We can address this unusual frequency dependence by plotting

the effective mass as a function of γ, as we do in Fig. 3.10 for three values of the e-ph

coupling. One observes that up to values of γ ≈ 4 increasing the e-ph coupling strenght

induces an enhancement of the effective mass, while for larger values of the adiabaticity

parameter screening of the Coulomb repulsion become more relevant and the effective mass

is reduced; in the low-frequency region, however, a nonmonotonic behaviour is found with

a maximum located at γ ≈ 0.7 irrespectivly of the strenght of λ, signalling more relevant

effects of e-ph coupling. This result is qualitatively consistent with Ref. [60], where the same

dependence on the phonon frequency is found, even if the maximum is observed at γ ≃ 0.3.

We can try to disentangle polaron-like effects from phonon-induced renormalizations of the

correlation by plotting separately the exponential polaronic contribution to the effective mass

and the inverse of the ratio q(λ)/q(λ = 0), which in our approach captures the reduction of the

kinetic energy due to the e-e interaction. As shown in the right panel of Fig. 3.10, well deep
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Figure 3.9: Evolution with λ of the effective mass in the doped correlated metal. Left

panel: characteristic behaviour of m∗/m in the adiabatic regime (γ = 0.2), where the sudden

jump signals the polaronic transition. Right panel: evolution of the inverse of effective

mass normalized with the λ = 0 quasiparticle residue for different values of the adiabaticity

parameter at U = 5D.

in the adiabatic regime screening effects are almost completely absent, and q(λ)/q(0) ≃ 1;

the enhancement of m∗(λ)/m∗(0) is due mainly to polaronic exponential renormalization.

When γ is increased, screening effects begin to be effective and q(0)/q(λ) is reduced, meaning

a less repulsive e-e interaction and slightly compensating the polaronic enhancement of the

effective mass. Eventually, at ω0 ≃ D, the exponential renormalization starts to decrease and

the overall effect is a reduction of m∗(λ)/m∗(0), as expected in the antiadiabatic limit.

3.4.3 Unusual isotope effects

The influence of the adiabaticity parameter on the properties of the metallic phase is reflected

in unusual isotope effects on the effective mass, that can be addressed quite directly in the

present approach by considering the isotope coefficient defined as αm∗ = −d ln(m∗)/d ln(M),

where M is the ionic mass. Since g ∝ 1/
√
Mω0 and ω0 ∝ 1/

√
M , the e-ph coupling constant

λ is independent of M and αm∗ can be rewritten as:

αm∗ =
1

2

d ln(m∗/m)

d ln(γ)
. (3.35)

As discussed in Ref. [112], in the pure Holstein model at half-filling this isotope coefficient is

a negative increasing function of γ in the adiabatic limit, starting from zero as predicted in

Migdal-Eliashberg theory, while it displays a nontrivial behaviour for intermediate values of

the adiabaticity parameter until it decreases as 1/γ approaching the antiadiabatic limit. As

a function of the e-ph coupling, Paci and coworkers showed also that polaron formation is
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Figure 3.10: Evolution with γ of the effective mass in the doped correlated metal for three

selected values of the e-ph coupling at U = 5D and δ = 0.1. In the right panel the two main

contributions to m∗(λ)/m∗(0), namely the correlation-induced q(0)/q(λ) and the polaronic

exp(α2f2) renormalization, are shown for λ = 1.

reflected in huge negative values of αm∗ [112]. Such a huge effect is expected also in the system

we are considering, due to the γ−dependence of kinetic and interaction renormalizations.

In the Hubbard-Holstein model we find that the isotope coefficient acquires the following

expressions:

αm∗ = 4γ
λD

Uc

(1 − f)

1 + ū

m∗

m

[

(1 − ū− ū2)
df

dγ
− f

2γ
(1 + ū2)

]

, (3.36)

αm∗ =
λ

4

f

1 − 1
ū

[

4
ū− 1

2ū− 1

df

dγ
− f

2γ

2ū− 1

ū

]

, (3.37)

in regime I (n = 1, ū < 1) and regime II (δ ≪ 1, ū > 1) respectively. We can exploit the

self-consistency equation Eq. (3.22) to compute the derivative df/dγ:

df

dγ
=

f(1 − f)

γ

1 − α2f2 1
1+ū

1 − α2f2(1 − f)3+ū
1+ū

Regime I,

df

dγ
=

f(1 − f)

γ

1 − α2f2 2ū
2ū−1

1 − α2f2(1 − f)8ū2−4ū−2
4ū2−4ū+1

Regime II.

At half-filling the main effect of the Coulomb repulsion is to induce in the isotope coefficient a

direct proportionality to the electronic effective mass, suggesting an unexpected enhancement

of phonon signatures in the metallic properties. To be more precise this means that one can

observe huge isotope effects even for relatively small values of the e-ph coupling when a

sizeable repulsion interaction is considered altogheter. We consider here values of U larger

than 1.5D, since we have seen in the previous sections that our approach is probably not

reliable in reproducing e-ph effects in the adiabatic limit below this value of the Hubbard
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interaction, introducing a wrong dependence on γ. As we will detail in the following, however,

we expect to capture the right physics in the presence of sizeable e-e correlation. As shown in
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Figure 3.11: Dependence of the isotope coefficient αm∗ on the adiabaticity parameter for a

fixed e-ph coupling (λ = 0.8) and different values of the Hubbard interaction in the half-filling

metallic regime (right panel) and in the correlated vacancy regime (left panel)

the left panel of Fig. 3.11, the expected enhancement of the isotope effect on m∗/m depends

crucially on the value of the Hubbard U and on the adiabaticity parameter. Consistently

with our analysis of phonon effects on quasiparticle effective mass, αm∗ is always negative for

all considered values of U , and displays a minimum at intermediate γ that gets deeper as the

critical value for the Mott transition is approached, eventually leading to a divergence when

the phonon-induced screening is no longer able to prevent the localization due to the strong

electronic correlation.

The isotope effect has a different behaviour in the doped correlated regime. As suggested

by the dependence on γ of the effective mass shown in Fig. 3.10, the isotope coefficient can be

positive for rather small values of the adiabaticity parameter and change sign with increasing

γ, approaching monotonically the asymptotic antiadiabatic value −α2/2. This behaviour

is clearly shown in the right panel of Fig. 3.11, where a fixed value of the e-ph coupling

(λ = 0.8) is considered for different values of U . Notice that the sign and the magnitude of

αm∗ is very sensitive to the values of the phonon frequency and of Coulomb repulsion, and

very small values of the isotope coefficient can be observed in the crossover regime between

the adiabatic (with positive αm∗) and antiadiabatic (with negative isotope coefficient) limit;

this means that the presence of sizeable e-e correlation can result in an almost vanishing

isotope coefficient without implying that a Migdal-Eliashberg picture holds. When very large

values of U are considered the γ−dependence of αm∗ does not change much; on the other

hand, when approaching the critical value for the half-filling Mott transition, the position of

the zero of αm∗(γ) moves toward zero. For U = 4.2D, that correspond to the zero-doping

critical UMI for the considered λ in the antiadiabatic limit, the isotope coefficient becomes
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almost immediatly negative and rapidly decreases with increasing γ.
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Chapter 4

Drawbacks of the variational LFT

When dealing with approximate variational methods, the identification of the range of va-

lidity of the approximations made and possibly the understanding of the reason why such

approximations lead to poorly accurate results for given values of the physical parameters

allow to recognize the ingredients that are missing and, if possible, to develop more accurate

methods able to include them. On the other hand, control of such approximations is needed

to test the quality of the guess made in the variational description of a given system, that

implies that physical intuition can be checked almost directly. For this reason we devote this

section to the analysis of the drawbacks of the slave-boson approach supplemented with a

variational Lang-Firsov transformation.

In the previous chapter it has been often pointed out the limited accuracy of our method

in the description of the adiabatic regime. This is not surprising, since the starting point

of our approach, the Holstein-Lang-Firsov approximation, is known to be reliable only if

large values of the adiabaticity parameter are considered, when multiphonon processes are

negligible and lattice deformations rapidly adapt themselves to the electronic motion. For

instance, the dependence on γ of the effective mass when no e-e correlation is included (cfr.

Eq. (3.32)) would predict in the present approach no signatures at all of the e-ph coupling

in the exact adiabatic limit; this result is clearly wrong and contrasts with the well-known

Migdal-Eliashberg prediction of linear enhancement of m∗ with increasing λ. However, by

comparing our findings with the many numerically exact results existing in the literature, we

can observe that the main effects of phonons on the top of the strongly-correlated system

are at least qualitatively captured by our method, even in the adiabatic regime. This can be

understood näıvely in terms of decreased mobility of the electrons due to correlation effects,

that means that local lattice deformations should have the time to follow the slow varying

position of electrons, hence behaving in a more “antiadiabatic” fashion. This is not always

the case, as we discuss in the next section. In the following section 4.2 we will try instead to

understand the approximation introduced by the variational LFT in terms of trial phonon

wavefunctions.
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4.1 Adiabatic failure in the weakly correlated regime

In order to evaluate to what extent our procedure fails in the adiabatic limit when weak

correlations are considered, we can compare our results for U = 0 with ME perturbation

theory. Starting from the observed linear dependence of the effective mass with increasing

e-ph coupling, m∗/m = 1 + rλD, we can analyze the evolution of the slope r as a function

of the adiabaticity parameter for vanishingly small values of λ. It is known that in the exact

adiabatic limit (namely for an infinite flat band in the ME framwork) r = N0, i.e. the density

of states at the Fermi level, that is given by 2/πD ≃ 0.6366 for a semicircular density of

states. In the opposite limit the lowest order perturbation theory gives m∗/m = 1 + α2,

hence r = 1/2γD in our formulation. When a finite band is considered, the increase of γ is

expected to induce a reduction of the coefficient r. The effective mass reads:

m∗

m
= 1 − ∂

∂ǫ
ReΣ(ω)

∣

∣

∣

ω=0
=

= 1 + g2

(
∫ 0

−D
dξ

N(ξ)

(ω0 − ξ)2
+

∫ D

0
dξ

N(ξ)

(ω0 + ξ)2

)

.

In the simple case of a finite flat band of width 2D the integration is readily carried out,

and one finds for the coefficient r:

r =
N0

1 + γ
. (4.1)

When considering a semicircular density of states an analogue behaviour is actually found. In

the left panel of Fig. 4.1 we show the results obtained by means of perturbation theory, both

with a flat (PT-I) and semicircular DOS (PT-II), togheter with those derived in the present

framework (VLF) and by means of the Dynamical Mean-Field Theory[113], comparing also

with the antiadiabatic result (LF). All methods coincide in the regime of large γ, as expected.

The qualitative behaviour of perturbative results (PT-I and PT-II) is the same and DMFT

accurately reproduces the evolution of r for the semicircular density of states, reducing to

Migdal-Eliashberg result when γ → 0. On the other hand our approach is qualitatively correct

in describing the phonon frequency dependence of r coming from the large−γ region, even

if it appears less and less accurate as the adiabatic limit is approached, but it is completely

wrong as soon as ω0 . D.

However, as electronic correlation is introduced, we expect phonon effects to be strongly

reduced due to the reduction of charge fluctuations to which phonons are coupled. We test

this idea by comparing our findings for r = (m∗(λ)/m∗(0) − 1)/λD with those obtained in

the DMFT framework[113], where the ratio of m∗(λ) over the effective mass m∗(0) due to

Hubbard U only is taken in order to disentangle phonon effects from correlation ones. In this

case the agreement is almost quantitative even for very small values of γ.

We can try to understand the origin of this behaviour by looking at the energy dependence

of the self-energy discussed in sec.2.3.1. There we found that in the antiadiabatic limit, when

D ≪ ω0, the real part of the self-energy depends linearly on ω for all the energies in the band.

On the other hand, when D ≫ ω0, the phonon frequency falls inside the electronic band and
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Figure 4.1: Coefficient r defined as the slope of the effective mass for small e-ph coupling

constant (r = (m∗(λ)/m∗(0)−1)/λD) as a function of γ in the case of no e-e correlation (left)

and for U = 2.5D (right). In the pure Holstein model we compare our findings (VLF) with

DMFT and perturbative analytic results; PT-I (PT-II) labels the result obtained in pertur-

bation theory for a finite flat (semicircular) DOS, while LF is the antiadiabatic prediction.

GPW results are obtained by means of a Gutzwiller phonon wavefunction to be discussed in

chapter 5. In the right panel comparison between VLF and DMFT is shown.

discriminates between two energy regions, namely |ω| ≷ ω0; only when |ω| < ω0 the self-

energy displays a linear dependence on energy, while in the opposite limit it is proportional

to 1/ω with a nonzero imaginary part, signalling the emergence of incoherent contributions

to the spectral function.

Let us consider then the electron Green function within our variational LFT slave-boson

formulation, that reads:

G(k, ω) =
q e−α2 f2

ω − q e−α2 f2 ξk

=
q

ω − q ξk − Σph(ω)
, (4.2)

where the phonon effect is included in the self-energy

Σph(ω) = −ω
(

eα2 f2 − 1
)

. (4.3)

Therefore in the context of a mean-field approximation, phonon effects on the electron Green

function are described by a self-energy that depends linearly on the energy ω. This explains

why our approximation is expected to give reliable results even in the weakly-correlated

regime as long as ω0 & D; on the other hand it clearly fails to describe the adiabatic limit

of the Holstein model (when q = 1) since it can not capture the incoherent phononic con-

tributions arising for electronic energies inside the band. However, the Green function given
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by Eq. (4.2) describes quasiparticle properties inside a renormalized band of half bandwidth

qD. In the presence of strong e-e interaction q ≪ 1, and even in the adiabatic regime it may

happens that relation ω0 ≫ qD holds, which is nothing but an antiadiabatic condition for

the renormalized band. This finding seems to suggest the e-e correlation pushes the system

toward a more antiadiabatic regime, slowing down the electron dynamics so that the phonons

can catch up.

We notice that the renormalized adiabaticity parameter ω0/qD we have just introduced

should be considered as a control parameter for the validity of our approach, and it does

not necessarily mean that the system displays antiadiabatic physics when large values of U

are considered. As we have discussed previously, the effective Hubbard interaction close to

the Mott transition is weakly reduced by the e-ph coupling, while it is known that screening

effect is highly effective when phonons are fast enough to follow electronic motion. Actually

the renormalization of U is controlled by the ratio 2ω0/U rather than ω0/qD, suggesting a

more adiabatic behaviour of screening processes. This point has been addressed in Ref. [57],

where the adiabatic limit of the Hubbard-Holstein model close to the Mott transition has

been inspected by means of DMFT. Sangiovanni and coworkers found that the low-energy

properties of the system can be reproduced by an effective Hubbard model with a reduced

interaction Ueff = U − ηλD, where η = 2ω0/U/(1 + 2ω0/U). On the basis of analogy

with Kondo processes they explained this finding as follows: quasiparticle motion arise from

virtual processes in which doubly-occupied (empty) sites are created, processes that are rare

but very fast (with a time scale ∝ 1/U). When the phonon frequency is small with respect

to U , one has 1/ω0 ≫ 1/U and phonon degrees of freedom are frozen during the virtual

excitation processes. Therefore, despite the overall electron motion is quite slow due to the

small number of virtual processes, phonons can not follow hopping processes and the e-ph

interaction has no major effect than a slight reduction of the total static repulsion.

On the light of this picture, therefore, the physical meaning of the validity condition

derived before is the following. When considering the weakly-correlated system, incoherent

contributions to electronic spectral function due to e-ph coupling are relevant as long as

ω0 . D, and our approach is not able to capture them: this is reflected in the simplified

form of the phonon self-energy Eq. (4.3). The presence of a sizeable U , however, induces

a separation between a low- (coeherent) and a high- (incoherent) energy sector; this is a

well-known property of the pure Hubbard model, where this separation is clearly evident in

the density of states already for U = 2D (second panel from the top in Fig. (2.1). In this

case the phonon incoherent contributions to the electron spectral function are pushed outside

the renormalized band of half width qD and mainly affect the Hubbard bands, while major

renormalization on the effective mass comes from the presence of a repulsion term which, in

the adiabatic limit, is little reduced by the e-ph coupling. This should explain from one hand

the somehow unexpected good description of the correlated regime in the adiabatic limit

provided by our variational mean-field approach, and on the other the physical origin of the

robustness of Mott transition, and in general of the correlated physics (when n = 1), with
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respect to polaron fomation. We notice that these considerations should not apply in the

doped correlated regime, as no clear separation of energy scales occurs. However when very

large values of the Coulomb repulsion are taken into account electrons still move very slowly,

even if real hopping processes are gradually restored with increasing doping; this means that

phonons can actually catch up and more rapidly adapt to the slow-in-time varying position

of electrons, giving rise to polaronic renormalizations of the effective mass, clearly displayed

in Fig. 3.10.

4.2 Polaron formation in the adiabatic regime

As already pointed out in the derivation of the effective electronic Hamiltonian for the

Hubbard-Holstein model, the present approach takes poorly into account phonons, that are

substantially described as displaced harmonic oscillators. Their displacement is controlled

by the variational parameter f and is determined by minimizing the balance between the

potential energy gain due to local deformations of the lattice and the depletion of electronic

kinetic energy resulting from the increased weight of the charge carriers followed by the mul-

tiphonon cloud that arises from the lattice deformation. In this way one hopes to partially

capture retardation effects, particularly strong in the adiabatic regime, that would cause a

less pronounced distortion of the lattice. This is reflected in the decreasing behaviour of f

with lowering γ.

However it is known that such retardation effects strongly affect the shape of the phonon

wavefunctions when in the adiabatic regime[88] and this may explain the scarse accuracy of

our method in this limit; if one can expect to capture the modification of electron properties

induced by the coupling with the phonons for some range of the parameters, as discussed

previously, there is little hope to describe accurately phonon quantities, not even their true

displacement. This means that the polaron formation can be actually addressed only by

looking at the strong renormalizations of the charge-carriers effective mass, while the phonon

displacement probability distribution function (PDF), that has been often introduced as a key

quantity in the characterization of local polarization[92, 95], is not reliable when evaluated in

the present approach. To better understand the origin of this drawback, let us reformulate

our approach in a slightly different way.

Instead of deriving an effective Hubbard-like Hamiltonian with renormalized parameters

and apply the slave-boson machinery on the top of this model, we can try to exploit the

capability of the slave bosons to describe the local charge states. This should be sensible, as

phonons couple with local charge density in the Holstein model and lattice displacements are

connected to local electron occupations (cfr Eq. 2.50). We can therefore operate a variational

transformation on the Hubbard-Holstein model with its electronic part expressed in terms of

the slave operators as in Eq. (2.35), since it has been proved that the two formulations are

completely equivalent as long as the constraints given by Eqs. (2.31)-(2.32) are satisfied[80,

82]. Within the same spirit of the transformation (3.2) we perform a generalized LFT US
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with:

S = α
∑

i

[

f
(0)
i e†iei +

∑

σ

f
(1)
iσ p

†
iσpiσ + f

(2)
i d†idi

]

(ai − a†i ),

(4.4)

where we have introduced four variational parameters for each site i, namely f
(0)
i , f

(1)
iσ , f

(2)
i ,

and average over the phonon vacuum state in order to get rid of phonon degrees of freedom

(Holstein approximation). The variational parameters represent then the degree of phonon

displacement for a given charge state at site i. The way in which the e-ph coupling affects

hopping processes is made clearer in this formulation, as the bosonic operators ziσ which

describe charge mobility read now:

z̃†iσ =
p†iσeie

−α2

2
(f

(0)
i −f

(1)
iσ )2 + d†ipiσ̄e

−α2

2
(f

(1)
iσ̄ −f

(2)
i )2

√

1 − d†idi − p†iσpiσ

√

1 − e†iei − p†iσ̄piσ̄

.

(4.5)

It is then clear that polaronic renormalization arises in the present framework from the overlap

between the displaced harmonic oscillators associated to the two charge states involved in the

hopping process1. When phonons are coupled to charge density fluctuations, one finds at the

mean-field level and in the half-filling paramagnetic phase that f
(1)
σ = 0 and f (0) = −f (2) ≡ f

and, as detailed in the appendix, one recovers the results discussed in the previous chapter.

We are now in the position to discuss the unaccuracy of the variational Lang-Firsov-

Holstein approximation in describing phonon displacements and polaron formation when

adiabatic regimes are considered. As shown in Fig. 4.2 for the single-polaron problem,

when small values of γ are considered the phonon wavefunction can acquire a non-Gaussian

shape for intermediate values of the e-ph coupling; in particular, even if the peak position

shifts toward the strong-coupling value X0 =
√

2α, it can develop a shoulder for smaller X

that illustrates the retardation effect of the motion of the electron and that of the molecular

deformation. In our case, where phonons are coupled to charge density fluctuations, we expect

that the singly-occupied state will not be followed by any deformation, while the empty and

doubly-occupied states will cause lattice displacement in opposite directions, consistently

with our finding of vanishing f
(1)
σ and that f (0) = −f (2). By looking at Fig. 4.2 it is clear

that the overlap between the displaced wavefunction and the oscillator centered in zero can

be enhanced by the presence of the shoulder, even if the actual distortion, signalled by the

position of the peak, is rather strong. Our approximate variational wavefunction can exploit

only the amount of the displacement, since its shape remains that of a gaussian function

while it rigidly adjusts to minimize the energy that emerges from the balance of potential

energy gain and kinetic energy loss. We can therefore expect an underestimation of the

1This is readily understood by considering the overlap between a harmonic oscillator |0〉 centered in zero

and an oscillator displaced of an amount
√

2δ, that can be expressed as |δ〉 = eiP̂
√

2δ|0〉 = eδ (a−a†)|0〉; one

then finds that 〈δ|0〉 = e−δ2/2.



4.2. POLARON FORMATION IN THE ADIABATIC REGIME 67

Figure 4.2: Ground-state oscillator wavefunction of the two-site single-polaron problem as a

function of the phonon displacement ξ = X/
√

2 for various values of the deformation coupling

α in the adiabatic regime (from Ref. [88]).

phonon displacement, that can be crucial in the intermediate coupling regime where polaron

formation is expected to occur.

The rigidity of the trial wavefunction with respect to phonons can be responsible for the

first-order BI transition observed in the half-filling regime for small values of the adiabaticity

parameter and especially for the lack of polaron formation signatures just before the bipola-

ronic insulating phase is reached. Nonetheless, such a polaron formation is reflected in the

development of a bimodal PDF observed by many authors in the Holstein model [92]-[96]

and the order of the bipolaronic transition has been found to be second-order at least in the

weakly-correlated limit of the Hubbard-Holstein model[55]. Of course one has to remember

that a strong-coupling approach to the e-ph problem alone is probably not suitable even when

sizeable e-e interaction is mediated by the phonons, and probably mending of this drawback is

not able to provide an accurate description of the system. On the other hand the first-order

polaronic transition found in the doped correlated regime is a clear outcome of the poor

description of phonon wavefunction, since in this case the correlated physics described by

the slave-boson approach proves to be the correct starting point in order to include phonon

effects. The next chapter is therefore devoted to a suitable generalization of the trial phonon

wavefunction in the presence of strong correlation.
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Chapter 5

Extended Gutzwiller approach

5.1 Introducing the method

We have seen in chapter 2 that the Gutzwiller approach and the slave-boson technique at the

mean-field level are exactly equivalent when dealing with electronic correlation alone. The

advantage of the second approach with respect to the first one is that dynamical quantities

such as the Green functions become accessible, and generalization to the finite temperature

case is straightforward in the functional integral representation; furthermore, slave bosons

provide the proper framework in which corrections to mean-field results can be included by

considering fluctuations of the slave operators around their saddle-point values. However,

the Gutzwiller approach allows for a direct analysis of the trial wavefunction in a variational

spirit, and the equivalence with the more sophisticated slave-boson technique suggests in

fact that such a trial wavefunction, where the quantity to be optimezed is substantially

the occupation probability distribution in the presence of a local non-retarded interaction,

correctly describes the low-energy physics of a strongly-correlated system.

On the basis of this equivalence and of the discussion made in the previous chapter, our

search for the best variational wavefunction able to describe phonons in the presence of strong

correlation will build on the Gutzwiller wavefunction, already defined in section 2.2.1:

|ΨGPW 〉 =
∏

i

Pi|Ψ0〉, (5.1)

where Pi is a many-particle correlator acting on a general noninteracting (single-particle

product) state |Ψ0〉. Within this representation the Gutzwiller approach can be actually

generalized to different many-body problems, since one has a certain arbitrariness in choosing

the form of the uncorrelated wavefunction and that of the correlator Pi. In the spirit of the

original proposal of Gutzwiller, this last quantity generally projects the uncorrelated state

over the exact eigenstates of the atomic limit of the model. This means that local correlations

are usually treated quite accurately, whereas the main approximations arise in the description

of hopping processes. Of course, when introducing a retarded interaction, this approach can

turn less accurate, since the atomic limit is not necessarily a good starting point due to the

69
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dynamical effects that are indeed relevant to determine the local properties of the system.

5.1.1 The electron-phonon Gutzwiller wavefunction

In the following we will be concerned with the paramagnetic phase of the Hubbard-Holstein

model. The most suitable uncorrelated wavefunction to start from is then the Slater deter-

minant describing a Fermi sea as:

|Ψ0〉 =
∏

|k|<kF

c†k↑c
†
k↓|0〉. (5.2)

In order to make the comparison with the atomic limit easier, we consider a slightly different

Hamiltonian for the model, namely:

H = −t
∑

<i,j>,σ

c†iσcjσ +
U

2

∑

i

(ni − 1)2 + ω0

∑

i

a†iai − αω0

∑

i

(ni − 1)(a†i + ai), (5.3)

where the electron-phonon and the correlation terms have been rescaled in order to include

the chemical potential shift µ = U/2−2α2ω0 of the highly symmetric half-filling case. By con-

sidering the atomic limit of this Hamiltonian, one immediately finds the following eigenstates

and eigenvalues for the ground state:

ϕ0(X) |0〉 with energy Eat(0) =
1

2

(

ω0 + U − 2α2ω0

)

ϕ1(X) |1〉 with energy Eat(1) =
ω0

2

ϕ2(X) |2〉 with energy Eat(2) =
1

2

(

ω0 + U − 2α2ω0

)

(5.4)

where ϕl(X), i.e. the eigenfunctions of the local phonons, are displaced harmonic oscillators

φ(X−X0(l)) with the displacement depending on the number of electrons sitting on the atom

according to X0(l) =
√

2α(l − 1). The atomic solution suggests the introduction of different

phonon wavefunctions for different charge states, and we can generalize the projection oper-

ator defined within the formulation developed by Bünemann et al.[74] (cfr. section 2.2.1) as

follows:

Pi(Xi) =
∑

l=0,1,2

√

Pl

P
(0)
l

ϕl(Xi) |li〉〈li|. (5.5)

As for the pure Hubbard model discussed previously, here |li〉〈li| represent the projection op-

erator at site i onto states with l electrons, while P
(0)
l ’s (Pl’s) are the occupation probabilities

of the l−electron configuration in the uncorrelated |Ψ0〉 (correlated |ΨGPW 〉) wavefunctions.

In the paramagnetic sector with an average electron density n, the coefficients P0(l) are given

by:

P
(0)
0 = (1 − n/2)2, P

(0)
1 = (n/2)(1 − n/2), P

(0)
2 = (n/2)2,

whereas the occupation probabilities of the correlated state are variational parameters to be

determined by minimization of the energy. Phonons are described here by the normalized
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wavefunctions ϕl(Xi) that have to be determined variationally. This means that we have at

disposal a virtually infinite number of variational degrees of freedom, a great improvement

with respect to the variational LFT where only one parameter f was introduced to mimic

phonon effects.

Along the lines of section 2.2.1, we can impose the following normalization conditions

without loss of variational freedom[74, 75]:
∫

dXi〈Ψ0| |Pi|2 |Ψ0〉 = 1, (5.6)
∫

dXi〈Ψ0|ni |Pi|2 |Ψ0〉 = n. (5.7)

The first condition can be interpreted as a normalization condition on the variational wave-

function, whereas the second one implies that the on-site single-particle density matrix is

untouched by the Gutzwiller projection. Being the phonon wavefunctions normalized, these

two equations lead to the constraints:

P0 + P1 + P2 = 1, (5.8)

P1 + 2P2 = n, (5.9)

completely analogous to those found for the pure Hubbard model (cfr. section 2.2.1).

Evaluation of the expectation value of the Hamiltonian (5.3) over the variational state

|ΨGPW 〉 is then carried on following Refs. ([74, 75]). We choose a Bethe lattice with infinite

coordination number and semicircular density of states 2D wide; in infinite dimensions, in

fact, the computation of the ground-state energy can be carried out exactly, and it coincides

with the Gutzwiller approximation for finite-dimension lattices. The variational energy per-

site reads:

E

L
=
∑

l=0,1,2

Pl 〈h0(X)〉l +
√

2αω0

[

P0〈X〉0 − P2〈X〉2
]

− 2 |S|2
1 − δ2

|ε| + U

2

(

P2 + P0

)

+ Ec,

(5.10)

where

h0(X) =
ω0

2

(

− ∂2

∂X2
+X2

)

, (5.11)

is the hamiltonian describing the undisplaced harmonic oscillator, and we have introduced

〈...〉l ≡
∫ ∞

−∞
dX ϕ∗

l (X)...ϕl (X) (5.12)

to indicate the average over the phonon wavefunction ϕl(X). As usual, |ε| is the kinetic

energy for uncorrelated electrons, while S measures the overlap of phonon wavefunctions on

neighbouring sites, and it controls the renormalization effects of both electron correlation and

e-ph interaction:

S =
∑

l=0,1

√

PlPl+1

∫

dX ϕ∗
l+1(X)ϕl (X). (5.13)
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In Eq. (5.10) we have included also a term which enforces the constraints (5.8),(5.9) and the

normalization of the phonon wavefunctions, that reads:

Ec = λ(1) (P0 + P1 + P2 − 1) + λ(2) (n − P1 − 2P2) +
∑

l=0,1,2

ǫl (1 − 〈ϕl|ϕl〉). (5.14)

Here the parameters λ(1), λ(2) are analogue to the Lagrange multipliers introduced in section

2.2.2; in fact, we will see in the following that the present approach is equivalent to a proper

slave-boson description of the Hubbard-Holstein model, where a variational ansatz is assumed

for the phonon problem while P0, P1, P2 actually correspond to e20, 2p2
0, d

2
0 respectively.

5.1.2 The variational equations.

The variational parameters are determined through minimization of the ground-state energy

Eq. (5.10). We can neglect for the time being the equations determining the value of the

Lagrange multipliers λ(1), λ(2) and use the constraints (5.8),(5.9) to get:

P0 = d+
δ

2
, (5.15)

P1 = 1 − 2 d, (5.16)

P2 = d− δ

2
, (5.17)

where we have introduced d = (P0 +P2)/2 as a measure of the doubly-occupation probability

(0 ≤ d ≤ 1/2) and the standard doping parameter defined as δ = 1 − n. Minimization with

respect to d then leads to the following mean-field equation:

U + (〈h0(X)〉0 + 〈h0(X)〉2 − 2〈h0(X)〉1) +
√

2αω0(〈X〉0 − 〈X〉2) −
2|ε|

1 − δ2
∂|S|2
∂d

= 0, (5.18)

whereas that with respect to the phonon wavefunctions yields the following non- linear second-

order differential equations:

ǫ0
P0
ϕ0 = h0(X)ϕ0 +

√
2αω0X ϕ0 −

2|ε|
1 − δ2

S

√

P1

P0
ϕ1, (5.19)

ǫ1
P1
ϕ1 = h0(X)ϕ1 −

2|ε|
1 − δ2

(

S∗
√

P0

P1
ϕ0 + S

√

P2

P1
ϕ2

)

, (5.20)

ǫ2
P2
ϕ2 = h0(X)ϕ2 −

√
2αω0X ϕ2 −

2|ε|
1 − δ2

S∗
√

P1

P2
ϕ1, (5.21)

which represent the core of the present approach. In the most general case, therefore, one

has to consider four coupled mean-field equations. The phonon wavefunctions are determined

through a set of Schrödinger-like coupled equations, where the complicated non-linear cou-

pling term is expected to capture the modifications induced by the retarded e-ph coupling on

phonon properties. In fact, in the absence of electron motion the three equations (5.19)-(5.21)

are decoupled and describe exactly the harmonic oscillators found in the atomic limit, i.e.

ϕl(X) = φ(X −
√

2α (l − 1)). When introducing a finite hopping, we can still distinguish
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between two regimes. When ω0 ≫ |ε|, the coupling term can be considered as a perturbative

small correction, hence the gaussian shape of the phonon wavefunctions is almost untouched

and a charge-depending shift of the phonon displacement is sufficient to capture the ground-

state properties of the system. This is consistent with the fact that phonons are fast enough

in this limit to follow electron motion. On the other hand, the opposite regime ω ≪ |ε| is

where the non-linear coupling term is more effective, and strong deviations from the har-

monic oscillator shape are expected, in excellent agreement with Ref. [88]. The strenght

of this coupling is also controlled by the Gutzwiller weights Pl, which suggest a non-trivial

dependence of ϕl on both e-e and e-ph interactions.

An analytical solution in the general case is still difficult to obtain. We will consider

in the following two important limits. First we will analyze the infinite−U limit, where the

double occupancy is strictly forbidden because energetically unaccesible: by introducing holes

(vacancy doping), one can study the effect of e-ph coupling on the doped strongly-correlated

regime of the model by considering only two equations, namely Eqs. (5.19),(5.20), since

the electronic problem is trivially solved and the determination of ϕ2 is irrelevant due to the

absence of double occupation. In the subsequent section we will turn to the half-filling regime;

our symmetrized Hamiltonian will allow us to get rid of one of the three coupled equations

for the phonons, but the electron occupation probability will have to be self-consistently

determined. Before doing so, we just sketch the connection with the variational slave-boson

approach based on the LFT.

5.1.3 Connection with the variational LFT and slave-boson approach

As we already pointed out, in the variational slave-boson framework that we have analyzed

previously the phonons are described by displaced harmonic oscillators whose displacements

are controlled by the variational parameter f . Starting from this consideration we have in-

troduced in the previous chapter a generalized LFT to be performed over the slave-boson

representation of the Hubbard-Holstein model, in such a way that different phonon displace-

ments are connected to the local charge states described by the slave operators. This is quite

similar in spirit to the approach we are presenting in this chapter, and the possible connection

between the two methods deserves some words.

The generalization of the Gutzwiller wavefunction provided by the projection operator Eq.

(5.5) relies mainly on the assumption that the phonon wavefunctions are determined by the

local charge state. The true phonon wavefunction is then expressed as a proper combination

of such projected phonon wavefunctions, that are determined by the coupled equations Eqs.

(5.19)-(5.21) without imposing any constraint on them but that to be associated to the

number of electrons occupying a given site i. Solving these coupled equations remains a

difficult task in the general case. However we can assume a variational ansatz and look for

the best phonon wavefunctions in a given class of trial wavefunctions. According to the
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qualitative analysis of the Schrödinger-like equations for the phonons we can assume:

ϕl(X) = ei
√

2α fl P̂ |0〉 = eα fl (a−a†)|0〉, (5.22)

where |0〉 = φ(X) is the undisplaced harmonic oscillator and P̂ = −i(a − a†)/
√

2 is the

momentum operator of the phonon field. By means of the standard formulae:

〈0|eiηP̂ h0 e
iβP̂ |0〉 =

ω0

2
e−(η+β)2/4 (1 − ηβ),

〈0|eiηP̂Xe−iηP̂ |0〉 = η,

〈0|eiηP̂ |0〉 = e−η2/4,

one finds that the variational energy to be minimized is given by:

E

L
=
ω0

2
− 2|ε|

1 − δ2
|S|2 +

U

2

(

P2 + P0

)

+ +α2ω0

[

(f2
0 + 2f0)P0 + f2

1 P1 + (f2
2 − 2f2)P2

]

+ Ẽc,

(5.23)

where the reduction of the kinetic energy reads:

|S| =
√

P0P1 e
−α2

2
(f0−f1)2 +

√

P2P1 e
−α2

2
(f1−f2)2 . (5.24)

At last, being the chosen trial wavefunctions (5.22) already normalized, the contribution of the

constraints to the variational energy is simply Ẽc = λ(1) (P0+P1+P2−1)+λ(2) (n−P1−2P2).

It is readily seen that energy (5.23) is exactly the same as that evaluated at the saddle

point of the slave-boson representation of the effective model discussed in the appendix A,

once P0, P1, P2 are replaced by e20, 2p2
0, d

2
0 (cfr. Eq. A.6). The two approaches are then

equivalent when one imposes that phonon wavefunction shape is not affected by the e-ph

coupling, whose effect consists only in a renormalization of the displacement induced by the

electrons. This finding confirms that the present approach, which enlarges the variational

freedom in choosing the best phonon wavefunctions, is the most suitable in order to include

ground-state phonon properties in a strongly-correlated description of the Hubbard-Holstein

model.

5.2 Limit of infinite Hubbard repulsion

When an infinitely strong repulsion between electrons is considered, one has to consider only

the hole-doped regime of the system and condition d = 0 can be plugged in the mean-field

equations. As a major simplification one gets the trivial solution of the electronic problem:

P0 = δ, (5.25)

P1 = 1 − δ. (5.26)

As a consequence, since Eq. (5.21) becomes irrelevant, the coupled equations are greatly

simplified. In the limit of small doping we can expand the uncorrelated kinetic energy as
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|ε| ≃ |ε0|(1 − aδ2) and recast Eqs. (5.19),(5.20) as:

ǫ0
δ
ϕ0 = h0(X)ϕ0 +

√
2αω0X ϕ0 − 2|ε0|

1 − aδ2

1 + δ

∫

dX ′K0(X,X
′)ϕ0(X

′), (5.27)

ǫ1
1 − δ

ϕ1 = h0(X)ϕ1 − 2|ε0|
1 − aδ2

1 − δ2
δ

∫

dX ′K1(X,X
′)ϕ1(X

′), (5.28)

where we exploited the mean-field solutions for the occupation probability weights and intro-

duced the “kernel” operator K0(1)(X,X
′) = ϕ∗

1(0)(X
′)ϕ1(0)(X). The last equation appears

to be decoupled at leading order in the limit of vanishing doping, hence ϕ1(X) is simply the

harmonic oscillator centered in the origin; therefore we can expand ϕ0(X) onto the eigen-

functions φn(X) with eigenstates En = ω0(1/2 + n) as:

ϕ0(X) =

Nph
∑

n=0

cn φn(X). (5.29)

Since we are looking for the ground-state solution, we can impose ϕ1(X) = φ0(X) and exploit

Eq. (5.27) to determine the coefficients {cn}. This implies the diagonalization of a tridiagonal

matrix, as the coupling term reduces to a shift of the lower level for the eigenvalue problem

represented by Eq. (5.27) and the displacement operator couples oscillator states whose

quantum number n differs only for a factor 1.

We can generalize this approach to the finite doping case and expand both the variational

wavefunctions over the eigenfunctions of h0 as ϕ0(X) =
∑Nph

n=0 cn φn(X), and ϕ1(X) =
∑Nph

m=0 dm φm(X), obtaining the following coupled equations:

[(

ǫ0
P0

− En

)

δnn′ −
√

2αω0Xn′n +
2|ǫ|

1 − δ2
P1dnd

∗
n′

]

cn′ = 0, (5.30)

[(

ǫ1
P1

− Em

)

δmm′ +
2|ǫ|

1 − δ2
P0cmc

∗
m′

]

dm′ = 0, (5.31)

for the sets of coefficients {cn}, {dm} which can be solved by iteration keeping an arbitrary

number Nph of harmonic oscillator levels. In practice a hundred of levels are enough to

get very accurate results for the ground state. We plot in the right panel of Fig. 5.1 the

computed value of ǫ0 by keeping different numbers of harmonic oscillator levels at a rather

strong e-ph coupling, where we expect that a larger value of Nph is needed to account for the

shift induced by the electrons; it is clear that with 30 levels we already obtain the converged

solution. These converged solutions are typically obtained after few iterations; the most

time-consuming cases are the intermediate e-ph coupling regime and the quarter-filling case,

where both ϕ0 and ϕ1 have equal weight (cfr. left panel in Fig. 5.1), thus implying a sizeable

coupling between Eqs. (5.30),(5.31).

We show in Fig. 5.2 the typical evolution of the phonon wavefunctions with increasing

e-ph coupling in the adiabatic regime. For small values of λ, ϕ0 is slightly modified by the

presence of the e-ph coupling, and the major effect amounts to a shift of the position of its

peak and a small broadening of its width. However, at intermediate couplings, its shape
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Figure 5.1: Left: measure of the algorithm velocity. L is the number of iterations, while

χ2(L) = (1/Nph)
∑Nph

n=0

[

cn(L) − cn(L − 1)
]2

measures the difference between the set of co-

efficients {cn} determined at step L and that obtained in the previous step L − 1 of the

algorithm. A solution is satisfactory converged when χ < 10−8, that means that no sizeable

deviations in computed quantities are found by imposing more severe accuracy. Here λ = 2,

hence we are in the intermediate e-ph coupling regime, and the effect of doping is shown.

Right: ground-state energy for ϕ0 at λ = 4, γ = 0.2 and δ = 0.05 as obtained with different

values of Nph.
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Figure 5.2: Evolution of the phonon wavefunctions with increasing λ at γ = 0.2 and δ = 0.1.

As expected, ϕ0 strongly deviates from the gaussian shape characteristic of the free harmonic

oscillator at intermediate couplings, while it corresponds to a displaced oscillator when large

values of λ are considered, whereas ϕ1 is almost untouched for any e-ph coupling.

strongly deviates from the gaussian function that describes the displaced harmonic oscillator,

which is eventually recovered only for large λ. Furthermore one observes that, even if the
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position of the peak signals a strong displacement of the phonon, a shoulder develops in

order to maximize the overlap with ϕ1, which on the other hand remains almost centered

in X = 0, being slightly shifted only at intermediate couplings. Therefore one finds that

a sizeable distortion can be accompanied by a less severe reduction of the overlap between

phonon wavefunctions. This is exactly the effect that, along the discussion of the previous

chapter, we hoped to capture. We will devote the next sections to analyze its implications.

5.2.1 Polaron crossover

In this section we discuss the polaron formation in the generalized Gutzwiller framework we

have just introduced. In order to characterize the polaron crossover and to make connections

with previous studies, we start our analysis from the behavior of the effective mass, which,

according to Eq.(5.13), is given by

m∗(λ) = m∗(0)|〈φ1|φ0〉|−2, (5.32)

where the overlap 〈φ1|φ0〉 between the two wavefunctions associated to empty and singly

occupied sites contains the effect of phonons, while m∗(0) = (1 + δ)/2δ includes all the

correlation effects.
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Figure 5.3: Effective mass as function of λ and for different values of δ at γ = 0.2. The solid

line is the pure Lang-Firsov result exp(α2).
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Thanks to the almost analytical nature of the method, all parameters regimes are easily

accessible, as shown by the example of Fig. 5.3, where the effective mass (5.32) is plotted as

function of λ for γ = 0.2, a value for which standard Lang-Firsov methods are not accurate.

The inset of Fig. 5.3 emphasizes the formation of polarons, testified by the rapid growth

of the effective mass. It is also evident that the formation of polarons is a crossover for all

densities. By approaching half-filling the crossover moves to larger λ due to the increased

correlation effects, and it becomes sharper. Notice that, even in the most metallic situation,

the results are still far away from the standard Lang-Firsov predictions. For instance, at

δ = 0.9 and λ = 0.8, the Lang-Firsov result overestimates the effective mass by more than a

factor two (cfr. the log scale on the vertical axis). Furthermore, due to the presence of an

infinite local repulsion between electrons, bipolaronic instabilities are ruled out at large λ and

the ground state is always a strongly-correlated polaronic metal even if with exponentially

large effective mass.

As we pointed out before, the Gutzwiller phonon wavefunction (GPW) allows for a di-

rect evaluation of the lattice probability distribution function (PDF), defined as P (X) =

〈GS|X〉〈X|GS〉 with |GS〉 representing the ground state (approximated by |ΨGPW 〉 in our

approach) and |X〉〈X| the projection operator on the subspace where the displacement op-

erator has the given value X. In the present framework it reads:

P (X) =
∑

l

Pl |ϕl(X)|2. (5.33)

This definition is analogue to the one given for the antiadiabatic limit in Eq. (40) of Ref.

[95], with the difference that here the phonon wavefunctions are not harmonic oscillators and

must be determined by means of Eqs. (5.19)-(5.21). When an infinite Hubbard repulsion

is considered, the PDF is obtained as the sum of two contributions only, coming from the

empty and singly-occupied sites, and one has:

P (X) = δ|ϕ0(X)|2 + (1 − δ)|ϕ1(X)|2. (5.34)

This is consistent with the findings of Ref. [60], where it was pointed out that the presence of

strong correlation unfavours double occupancies and the system can acquire polaronic ground

state only exploiting the empty sites.

In Fig. 5.4 we show the evolution of the PDF with increasing e-ph coupling strenght in

the adiabatic regime (γ = 0.2) for two different values of the doping, namely δ = 0.1 and

δ = 0.5, where empty and singly-occupied sites display the same occupation probability. At

weak coupling P (X) has only one peak, and the main effect of the coupling with electrons

is to broaden its width. Increasing λ, one observes a shoulder developing for negative X

at δ = 0.1, that is related to the displacement of ϕ0, which becomes a well defined peak

that marks the formation of the polaron at λ = 2.8, where the polaronic correction to the

effective mass is already huge. At larger λ the PDF displays simply two peaks corresponding

to two displaced oscillators whose centers are distant
√

2α with weight given by δ and 1 − δ
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Figure 5.4: Lattice probability distribution functions for different values of the e-ph coupling

in the adiabatic regime γ = 0.2 and for two different values of the doping, δ = 0.1 (left)

and δ = 0.5 (right). Both PDF are shifted with respect to the uniform displacement δ
√

2α

induced by the particular choice of the e-ph coupling, with phonon displacement X̂ coupled

to n− 1.

respectively. A similar behaviour is observed at quarter filling, where however the two peaks

are equally weighted and the bimodal shape develops for smaller values of λ. At larger values

of the doping polaron formation occurs for even smaller couplings, and the same qualitative

behaviour of δ = 0.1 is found, upon a reversal of the peaks weight,with the major contribution

to PDF coming from ϕ0 and ϕ1 determining the development of the shoulder at positive X.

At last we notice that, even in the strong-coupling regime, the minimum between the two

peaks is never exactly zero except for infinite α, since the PDF stems from the combination

of two gaussian functions which vanish asimptotically when their arguments tend to infinite.

This explains the finite, even if exponentially large, value of the effective mass, since in the

present framework this last quantity is completely determined by the overlap between the

two phonon wavefunctions associated to empty and singly-occupied sites (cfr. Eq. 5.32).

5.2.2 Comparison with DMFT results

To assess the quantitative reliability of the Gutzwiller phonon wavefunction method, in Fig.

5.5 the evolution of m∗(λ)/m∗(0) as a function of γ for λ = 1.5 and δ = 0.3 is compared with

variational Lang-Firsov and slave-boson (VLF)[114] and with DMFT[115], which provides

the exact reference in the infinite-dimensions limit. The qualitative behavior is similar in

all methods. m∗(λ)/m∗(0) is an increasing function of γ in the adiabatic regime. Then a

maximum is reached, followed by a decrease for large γ (cfr. Fig. 3.10 and Ref. [60]). As

expected, all methods quantitatively agree in the large-γ region. The Gutzwiller approach

always represents a sizeable improvement on the VLF for all values of γ. As the phonon



80 CHAPTER 5. EXTENDED GUTZWILLER APPROACH

frequency is decreased, the GPW stays extremely close to the DMFT results for a wide

range, and they bifurcate only for small γ, where GPW is still significantly closer to DMFT

than VLF.

Remarkably, the method provides a qualitatively correct description of the nature of

the polaron formation even in the adiabatic regime, where the quantitative estimate of the

effective mass is less accurate. To appreciate this in Fig. 5.6 we show the overlap 〈φ1|φ0〉,
which in the present framework determines the renormalization of the effective mass due to

phonons through Eq. (5.32) for two values of γ in the adiabatic region where the quantitative

agreement with DMFT is poorer (namely we choose γ = 0.6 and γ = 0.2). We compare

again with both DMFT and VLF. For γ = 0.6 all methods give a rather smooth crossover,

similar to what happens for large values of γ, although the Gutzwiller phonon wavefunctions

significantly improve on the variational slave-boson result for intermediate values of λ, making

the crossover smoother.

On the contrary, at smaller γ = 0.2, namely inside the adiabatic regime, the GPW

closely follows the continuous behavior of DMFT, while VLF yields the already discussed

first-order transition where the overlap discontinuously jumps as a function of λ. Our GPW

wavefunction therefore correctly reproduces the physics of the polaron crossover for all values

of the phonon frequency, whereas variational methods based on LFT are less reliable in the

adiabatic regime.

We notice that the discrepancy between GPW and DMFT seems to be more pronounced
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Figure 5.5: Effective mass as function of γ at λ = 1.5 and δ = 0.3 as obtained with GPW

(open circles) and VLF (solid line).
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Figure 5.6: 〈ϕ0|ϕ1〉 as function of λ at δ = 0.1 for γ = 0.2 and γ = 0.6 in GPW, DMFT and

VLF, where it is given by e−α2f2/2.

in the effective mass rather than in the overlap 〈ϕ0|ϕ1〉. Actually, even if these two quantities

are closely related in the present approach, we observe that the overlap is indeed a ground-

state property, and it may be that it is not enough to determine the effective mass of the

quasiparticles. This would be the case if there were a residual interaction between such

quasiparticles. On the other hand, Fig. 5.6 suggests that ground-state properties are correctly

described by the Gutwiller phonon wavefunction.

5.2.3 Properties of the ground-state phonon wavefunctions

A deeper understanding of the improvement brought by GPW can be achieved by studying

the phonon wavefunctions and their difference with respect to a pure harmonic oscillator,

adopted, e.g., in the VLF scheme. We have seen that the coupling between electrons and

phonons induce strong modifications on the ground-state phonon wavefunctions (cfr. Fig.

5.2). Here we would like to quantify the modifications induced by the e-ph coupling in the

phonon properties with respect to the atomic limit in different physical regimes, and to make

explicit the connection with the variational scheme introduced in chapter 3. As usual, λ and

γ define the influence of the e-ph coupling and of the adiabaticity regime in determining the

properties of the ground state, whereas in the present limit the doping is a measure of the

effectiveness of electronic correlation.

In figs. 5.7 and 5.8 we show the evolution of the phonon wavefunctions projected onto

empty and singly-occupied states with increasing adiabaticity ratio and doping, respectively,

for selected values of the e-ph coupling. In the first case we choose λ = 1.5 at δ = 0.3,
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i.e., a value of the e-ph coupling large enough to see strong modifications of the phonon

wavefunctions but still well before the polaron crossover. We see that the strong-coupling

result, where ϕl(X) = φ(X−X0(l)), is recovered only in the antiadiabatic regime, as expected;

decreasing γ one observes a less pronounced shift of ϕ0 with respect to the atomic limit

(marked by vertical arrows) on one hand, and an e-ph induced shift of ϕ1 on the other, while

both wavefunctions broaden in order to maximize their overlap.

A more complex behaviour emerges as a function of doping in the adiabatic regime.

For small λ, both ϕ0 and ϕ1 are shifted with respect to the atomic limit, indicated by the

vertical arrows; in particular, ϕ0 approaches the atomic shape with increasing doping, while

ϕ1 displays a nonmonotonic dependence on δ, where the deviations from the atomic limit

are larger around δ = 0.7. On the other hand, in the opposite limit of large λ = 5.6 both

phonon wavefunctions are actually undistinguishable from displaced harmonic oscillators, as

expected. For an intermediate value of the e-ph coupling, the most outstanding deviations

from the atomic limit appears in ϕ0 at small values of the doping, where a shoulder develops

in a position that roughly corresponds to the position of ϕ1; the disappearence of this feature

at the given λ with increasing doping is related to the decrease of correlation effects, which

implies that away from half-filling λ = 2.4 is enough to induce polaron formation. We stress

the fact that this feature is not exactly the same observed, for instance, in Fig. 4.2; in
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Figure 5.7: Evolution of phonon wavefunctions as function of γ for λ = 1.5 and δ = 0.3. The

arrows indicate the displacement in the atomic limit.
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Figure 5.8: Evolution of phonon wavefunctions as function of doping for different values of

e-ph coupling at γ = 0.2 (right). The arrows indicate the displacement in the atomic limit.

that case, in fact, the whole phonon wavefunction was shown, whereas the shoulder that we

observe is developing in the phonon wavefunction projected onto the n = 0 state. From this

point of view, a direct comparison should be carried on between the Gutzwiller PDF (cfr.

Fig. 5.4) and the unprojected phonon wavefunction of Fig. 4.2.

We can try to quantify the two major effects of e-ph coupling on the phonon wavefunc-

tions, i.e., the shift and the broadening of ϕl(X), by introducing 〈X〉l and 〈(X − 〈X〉)2〉l,
that measure the displacement and the fluctuations (hence the width) of the local wave-

functions when a given number l of electrons is sitting on a lattice site. This allows for a

direct comparison with the atomic limit and the LFT-based approaches, where the phonon

wavefunctions are gaussian functions centered in 〈X〉l =
√

2α(l − 1) (to which a factor fl

should be added when a variational LFT is applied onto the slave-boson representation of

the model) and with 〈(X − 〈X〉)2〉l equal to 1/2. In Fig. 5.9 we plot our results in the adia-

batic regime (γ = 0.2) for increasing λ at δ = 0.1. In the strong-coupling limit we find that

the variational LFT is quite accurate in describing the ground-state properties of the phonon,

as expected. For small values of λ, on the other hand, the displacement of the phonons is

strongly reduced with respect to the atomic limit, but the variational scheme described in

chapter 3 is still quite accurate; as we have discussed previously, the variational parameter

f actually measures the relative displacement between phonon wavefunctions associated to
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Figure 5.9: Evolution of the displacement and fluctuations of the phonon wavefunctions ϕ0

and ϕ1 as function of λ at δ = 0.1 and γ = 0.2.

empty and singly-occupied states (cfr. appendix A), and the comparison between
√

2αf

and 〈X〉0 − 〈X〉1 shows that the two methods agree quite well up to λ ∼ 1.5. The origin

of the biforcation at intermediate couplings becomes clear by looking at the right panel of

Fig. 5.9, where the averaged fluctuations from the expected value of the shift are plotted;

here we see that the width of the phonon wavefunctions rapidly increases with respect to

that of a harmonic oscillator, and displays a maximum for intermediate couplings, exactly

where the difference between the variational methods are more pronounced. In fact, VLF

allows to get an estimate of the effective displacement induced by the e-ph coupling, but it

keeps the width of the phonon wavefunctions fixed to the noninteracting value 1/2. Due to

the increased width found in GPW, the overlap between ϕ0 and ϕ1 can be larger than that

between two harmonic oscillators rigidly displaced of the same amount; since the reduction of

the kinetic energy due to e-ph coupling is given by this overlap in the present approach, while

the gain in potential energy is roughly determined by 〈X〉, this suggest that the Gutzwiller

trial wavefunction is more effective in capturing their balance.

We can perform the same analysis varying γ and keeping the other relevant parameters

fixed. To get meaningful physical informations, it proves useful to shift the averaged displace-

ment 〈X〉l of an amount (1 − n)
√

2α, that corresponds to the trivial uniform displacement

induced by the phonons coupling with n− 1, choice that we made in order to compare with

the atomic limit. In such a way we can evaluate the effect of charge fluctuations around the

averaged charge density n. As a consequence of this rescaling, ϕ1(X) will be shifted towards

positive values of X, in the opposite direction with respect to ϕ0(X). Two major effects are

observed (Fig. 5.10). When moving from the antiadiabatic limit, the shift induced by the

e-ph coupling increases, as one could have expected by considering that such a shift is roughly

proportional, at least in the strong-coupling limit, to 1/γ. If λ is large enough, this behaviour
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Figure 5.10: Evolution of the rescaled displacement of ϕ0 and ϕ1 as function of γ at δ = 0.3

for different values of λ. In the right panel the broadening of the phonon wavefunctions is

shown for λ = 1.5

leads to a divergence when γ → 0, that should signal the polaron formation1. However, for

weak and intermediate couplings, the dependence on the adiabaticity parameter changes dras-

tically while approaching the adiabatic limit, and the phonon wavefunctions tend to coincide

for γ → 0. At the same time, their width is monotonically increased with decreasing γ. This

means that when the adiabatic limit is considered ϕ0 and ϕ1 are coincident, reflecting the

fact that phonons are not able to follow instantaneously the varying positions of electrons

and they do not adapt, at the ground-state level, to the local charge density; on the other

hand, the broadening of the phonon wavefunctions suggest that a larger number of phonons

is involved in the ground state due to the e-ph coupling. In conclusion, for large values of the

adiabaticity parameter e-ph coupling induces a sizeable distortion of the lattice, which can

be described in terms of displaced harmonic oscillators that are essentially localized in space;

on the other hand, for vanishingly small γ, lattice sites undergo very small distortions, but

the corresponding phonon wavefunctions extend over a wider region of space.

1This observation comes clear by considering the dimensionful displacement operator Xclass, which is

related to the present X by the multiplicative factor 1/
√

Mω0 =
p

ω0/K, where M, K are the mass and the

spring constant of the ions. By rescaling 〈X〉 in the left panel of Fig. 5.10 with
√

γ and letting γ go to zero,

one finds that 〈Xclass〉 →
√

λ, that implies a sizeable distortion of the lattice associated to the formation of

polarons.
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5.3 The half-filling regime

In this section we focus our attention on the ground-state properties of the system at half

filling, i.e., when n = 1. Exploiting the constraints (5.8),(5.9) one finds that the occupation

probabilities of the correlated Gutzwiller phonon wavefunction are expressed in terms of d,

which measure the doubly-occupation probability, as:

P0 = P2 = d, (5.35)

P1 = 1 − 2d. (5.36)

The parameter d must be determined by solving Eq. (5.18), that requires the solution of

the three coupled equations for the projected phonon wavefunctions. A closer look at Eqs.

(5.19)-(5.21), however, allows us to exploit the simmetry of the half-filling regime which

implies:

ϕ1(−X) = ϕ1(X), (5.37)

ϕ2(−X) = ϕ0(X). (5.38)

Plugging the first condition in Eqs. (5.19),(5.21), in fact, implies that the only odd contribu-

tion to ϕ0 and ϕ2 comes from the displacement term, that is equal but opposite in sign for

the two phonon wavefunctions. On the other hand, the second condition guarantees that ϕ1

is actually an even function and our assumption proves to be self-consistent2. As a conse-

quence, we can deal with just two phonon equations in the search for the variational ground

state, namely Eqs. (5.19),(5.20), since we can exploit condition (5.38) to obtain ϕ2. In order

to implement a suitable numerical algorithm, we expand the phonon wavefunctions on the

eigenstates |n〉 of h0, as we did in the infinite−U limit, namely:

ϕ0(X) =

Nph
∑

n=0

cn φn(X), ϕ1(X) =

Nph
∑

m=0

dm φm(X).

Due to the parity of ϕ1, only even harmonic oscillator eigenstates enter in its expansion,

hence d2m+1 = 0. Then one gets the coupled equations for the coefficients {cn}, {dm}:
[(ǫ0

d
− En

)

δnn′ −
√

2αω0Xn′n + 4|ε0|(1 − 2d)dnd
∗
n′

]

cn′ = 0, (5.39)
[(

ǫ1
1 − 2d

− Em

)

δmm′ + 8|ε0|dcmc∗m′

]

dm′ = 0, (5.40)

which must be solved togheter with

1 − 4d =
1

8|ε0||
∑

n cndn|2
(

U + 2
√

2αω0〈x〉0 + 2 (〈h0〉0 − 〈h0〉1)
)

, (5.41)

where |ε0| ≃ 0.4244D is the kinetic energy of uncorrelated electrons on the half-filled Bethe

lattice.
2Of course, these considerations hold as long as ground-state solutions are analyzed.
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Eventually one has to evaluate 2Nph + 1 variational parameters. The numerical solution

can be obtained following the algorithm introduced in the limit of infinite U , i.e., one evaluates

by iteration the convergent phonon wavefunctions at given d and then enforces condition

(5.41) until convergence is reached for all the parameters. Alternatively, one can start from

a given d and keep fixed, for example, ϕ0 in order to determine ϕ1; this generate a new value

for the parameter d, that can be used to evaluate ϕ0 and the final value for d to be used in the

following iteration. In this second procedure the convergence of the 2Nph + 1 parameters is

checked at once, and the algorithm proved to be faster, whereas the first procedure provides

more rapidly convergent solutions for the phonon wavefunctions if the initial choice for d is

close to its correct value. Tipically for 50−70 harmonic oscillator levels we get very accurate

results for the ground state, as in the simpler limit discussed previously. However, due to

the more involved electron problem, convergence is reached slower expecially when adiabatic

values of γ are considered (as noted before, this implies a larger coupling term between the

phonon equations).

It can be useful to define at the end of this section the physical quantities that will allow

us to characterize the paramagnetic ground-state properties of the system. Since it is known

that at half filling two insulating phases are stable for some values of the parameters, we define

here their energies. As it is clear from Eq. (5.10), when the kinetic energy of electrons is zero,

the local problem coincides with the atomic one, hence one gets for the Pair (bipolaronic)

and Mott insulator energy EBI = P0Eat(0) +P2Eat(0) and EMI = P1Eat(1) respectively, i.e.

EBI = d
(

ω0 + U − 2α2ω0

)

=
1

2

(

ω0 + U − 2α2ω0

)

, (5.42)

EMI = (1 − 2d)
ω0

2
=
ω0

2
, (5.43)

where we have exploited Eqs. (5.35),(5.36) and the fact that d = 1/2 and d = 0 in the BI and

MI respectively. Besides the ground-state energies, the present approach allows for a direct

evaluation of the quasiparticle renormalization factor, that from Eq. (5.13) reads:

Z = 8d(1 − 2d)|〈φ1|φ0〉|2, (5.44)

and of the lattice probability distribution function Eq. (5.33):

P (X) = d
[

|ϕ0(X)|2 + |ϕ2(X)|2
]

+ (1 − 2d)|ϕ1(X)|2 (5.45)

through which electronic and phononic properties of the model can be investigated.

5.3.1 Holstein model: comparison with DMFT

We devote this section to the discussion of the results of our approach when applied to the

Holstein model, i.e. taking U = 0. We know that this is the worst situation for the GPW

method to be applied, due to the the strong entanglement between electronic and phononic

degrees of freedom which makes retardation effects the most relevant. However, since the

Holstein model maps in the antiadiabatic limit onto an attractive Hubbard model whose
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physics is correctly described by slave-boson and Gutzwiller approaches, it may be useful to

test GPW in this system.

One of the problems we experienced with VLF was the missing of the effective mass

enhancement at weak-coupling predicted by the Migdal-Eliashberg theory. We found that

the present approach and the VLF are completely equivalent when small values of λ are

considered, as shown in Fig. 4.1, therefore the Gutzwiller phonon wavefunction is not able

to mend this drawback. The equivalence of GPW and VLF at weak e-ph couplings can be

easily understood, since small values of λ are not able to change drastically the shape of

the projected phonon wavefunctions, and the harmonic ansatz for ϕl proves therefore quite

accurate in the extended Gutzwiller approach. As a consequence, all considerations we made

in the analysis of the drawbacks of VLF at weak coupling apply also to GPW.
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Figure 5.11: Paramagnetic metal energies for different values of γ in the Holstein model.

We then turn to the problem of bipolaron instability, relying on the fact that the enlarged

variational freedom of the Gutzwiller phonon wavefunction has already proved to be reliable or

at least to clearly improve on VLF at intermediate and strong couplings. As expected we find

that at a critical value of the e-ph coupling a Pair (bipolaronic) insulator establishes; in the

antiadiabatic limit one has λc = Uc/D ≃ 3.39, the critical value for the Mott metal-insulator

transition of the Hubbard model, whereas λc gets smaller and smaller as adiabatic values of γ

are approached. The energies of the paramagnetic metal at different γ are shown in Fig. 5.11

and compared to the bipolaronic insulator energy. In order to make the comparison clearer,

the constant contribution ω0/2, corresponding to the energy of noninteracting phonons, has

been removed, and all lines start from ε0, the kinetic energy of free electrons. We found

that the transition is second order for large values of γ, since the metallic energies smoothly
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evolve until they coincide with the bipolaronic energy. On the other hand, as soon as γ < 0.6,

the two energies cross, hence signalling a first-order transition that is reflected also in the

discontinuity observed in the evolution with λ of d, the averaged number of doubly-occupied

sites, and of Z, the inverse of the effective mass. These findings were obtained also by means of

slave-boson mean field implemented with variational LFT[61, 114], but we stress the fact that

GPW, providing a more accurate description of the intermediate-coupling regime, pushes to

smaller values the range of γ in which the second-order character of the transition is correctly

reproduced.

To make this point more explicit, in Fig. 5.12 we compare d and Z as obtained in the GPW

and VLF (bold lines) frameworks. Moving from the antiadiabatic results d = (1 + λD/Uc)/4

and Z = 1− (λD/Uc)
2, one can see that the two methods provide the same results as long as

γ > 1; at γ = 1 a quantitative improvement can be seen in both quantities for intermediate

λ, while for 0.6 < γ < 1 VLF fails in capturing the smooth evolution of d and Z towards

the insulator values 0.5 and 0, respectively. However, when the exact adiabatic limit is
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Figure 5.12: Averaged number of doubly-occupied sites d and quasiparticle renormalization

factor Z as obtained in GPW at U = 0 and for different γ, compared with the antiadiabatic

result (LF) and with VLF (bold lines).

approached, a discontinuity at the transition is recovered for both d and Z also in GPW;

according to previous studies of the half-filled Holstein model, the first order of the transition

is probably a spurious outcome of the Gutzwiller phonon wavefunction[92, 93, 95].

To understand the extent of the reliability of GPW, we compare in Fig. 5.13 our results

for Z with those obtained by means of DMFT[116], which provides the exact reference in the

infinite-dimension limit, for two values of the adiabaticity parameter, γ = 1 and γ = 0.1. In

both cases, the quasiparticle residue evaluated in the GPW method deviates from the DMFT

result as λ is increased. However a qualitative difference emerges between the adiabatic

case shown in the right panel and the γ = 1 case (left panel)3. In fact at γ = 0.1 GPW

3We notice that ω0 = D is where GPW fails to capture even qualitatively the weak-coupling corrections to

the effective mass (cfr section 4.1).



90 CHAPTER 5. EXTENDED GUTZWILLER APPROACH

predicts extremely weak corrections to Z with increasing λ, and the establishing of bipolaronic

insulator is not signalled by a divergence of the effective mass in the present framework. This

is clearly in contrast with DMFT, where Z vanishes much faster than the exponential and the

transition takes place at λ ≃ 0.76 with a diverging m∗/m. On the other hand, for γ = 1 the

qualitative behaviour of the quasiparticle residue is correctly captured by our approach, even

if GPW overestimate of Z pushes the metal-bipolaron transition to a slightly larger value

of λ ≃ 1.45; we notice also that the error found in GPW is smaller than that observed in

other approximate schemes such as the standard Migdal-Eliashberg approximation and the

self-consistent noncrossing approximation[94, 100].
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Figure 5.13: Quasiparticle renormalization factor Z as obtained by GPW and DMFT for two

values of the adiabaticity parameter, namely γ = 1 (left) and γ = 0.1 (right). The vertical

arrow in the right panel marks the first-order metal-bipolaron transition (from the energy

crossing). To make the comparison meaningful, the energy scales in the GPW calculations

are scaled such that the critical values of bipolaron transition coincide with DMFT in the

antiadiabatic limit.

In order to check whether the Gutzwiller phonon wavefuncion is able to describe ground-

state properties of the system, we compare also the lattice probability distribution function

as evaluated in GPW and in DMFT[116]. With respect to the infinite−U limit, the situation

under examination presents a richer and more involved physics, and we expect it to be

captured in the PDF. In the former case, in fact, electron and phonon degrees of freedom are

actually decoupled, due to the infinite repulsion between electrons. This was reflected in the

fact that electron parameters P0 and P1 entered as independent variables in the variational

equations for the phonon wavefunctions. At half filling this is clearly not the case, as electron

and phonon problems have to be solved togheter in a self-consistent way.
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Figure 5.14: PDF evaluated in DMFT and in GPW for λ = 0.8 (left) and λ = 1.4 (right) at

γ = 1.

We start by considering the γ = 1 results. In Fig. 5.14 we plot the PDF evaluated in

the present framework compared with that computed in DMFT for an intermediate λ = 0.8

and a strong λ = 1.4 close to the bipolaron transition. In the first case, shown in the left

panel, the agreement is indeed remarkable, even if at the same value of e-ph coupling GPW

estimate of Z is already sizeably wrong. On the other hand, at λ = 1.4 the two curves are

not coincident, but the Gutzwiller phonon wavefunction reproduces qualitatively the bimodal

shape of the PDF and the positions of the two peaks. This findings are consistent with those

discussed in the infinite−U limit; in that case the deviation at small γ from DMFT results

were larger in the effective mass rather than in the overlap between phonon wavefunctions,

i.e. in the evaluation of a ground-state property.

A different situation is found at γ = 0.1, as shown in Fig. 5.15. In this case the two

approaches lead to qualitatively different results. In particular, the Gutzwiller phonon wave-

function is not able to reproduce the bimodal shape which signals the polaron formation.

However one can wonder if this result stems from a worse treatment of the phonon rather

than electron degrees of freedom. In fact, the shape of the lattice probability distribution

function stems from two contributions in the GPW method, namely the projected phonon

wavefunctions, that roughly determine the position of the peaks, and the electron weights

Pl. It might happen that such weights are uncorrectly evaluated by GPW while projected

phonon wavefunctions qualitatively capture the shift induced at the ground-state level by

the e-ph coupling. This would imply that the Gutzwiller approach is not able to account

properly for the e-e interaction mediated by the phonons, that is ultimately responsible for

the evaluation of d and consequently of Pl, whereas the modification induced by the e-ph

interaction on ground-state phonon properties are at least qualitatively captured. Of course

this interpretation is a bit tricky, since the Pl’s enter in the coupled equations that determine

the phonon wavefunctions ϕl, and no rigorous conclusions can be drawn. However a quick

glance at Eqs. (5.39),(5.40) suggests to test this idea with γ & |ε0|, in order to consider the
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coupling term mediated by the electrons as an almost perturbative correction. Then we can
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Figure 5.15: PDF evaluated in DMFT and in GPW at γ = 0.1 for increasing λ from bottom

to top.

assume that Eq. (5.44) still holds and extrapolate d from the quasiparticle factor Z obtained

in DMFT as d = (1+
√

1 − Z/|〈φ1|φ0〉|2)/4, where the overlap is that evaluated in GPW. This

last assumption is reasonable if our hypotesis of accurate phonon wavefunctions come true;

on the other hand, this procedure comes from the observation that in DMFT the relevant

quantity that measures the effectiveness of e-ph coupling in determining physical properties

of the model is the quasiparticle residue Z rather than d. Plugging the extrapolated d in

Eq. (5.45) without changing ϕ0 and ϕ1 we obtain a rescaled PDF, shown in Fig. 5.16 for

λ = 1 at γ = 0.4 For these values of the parameters a bimodal shape is already found in

the GPW framework, however the peak positions are closer and the depletion at X = 0 is

less pronounced with respect to the DMFT phonon probability distribution function. With

the rude procedure just described a remarkable improvement is observed, and the PDF thus

obtained almost coincide with that derived in the DMFT framework.

To summarize, a sizeable improvement is observed with respect to the variational LFT

scheme. Quasiparticle effective masses are qualitatively captured down to values of ω0 that

are comparable with the uncorrelated kinetic energy |ε0|, and a second-order transition to

a Pair (bipolaron) insulating phase is found in this range of γ. Most notably, ground-state

properties of the phonon can be addressed in a very intuitive way, at the same time providing

very accurate results as long as ω0 & D. In particular, a bimodal shape, that signals the

formation of polarons, develops in the phonon probability distribution function just before

the bipolaronic insulator is reached, in agreement with previous studies[94, 95]. We conclude

that the adiabatic failure of the Gutzwiller phonon wavefunction applied to the Holstein

model is associated to an unaccurate treatment of the retarded e-e interaction mediated by

the e-ph coupling, that might lead to a residual interaction between the quasiparticles defined
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Figure 5.16: PDF evaluated in DMFT and in GPW for λ = 1 at γ = 0.4, shown togheter with

the PDF obtained as a combination of GPW phonon wavefunctions and electron weights Pl

extrapolated from DMFT quasiparticle residue (GPW-r).

by the GPW which becomes large as γ → 0. Even if this point deserves deeper analysis, it

is reasonable that the presence of sizeable e-e correlation deplects the effects of the retarded

contribution to e-e interaction, along the discussion made in section 4.1. According to Fig.

3.8, we can also assume that for U & 1.5 the ground-state physics of the model is that of a

correlated system with reduced repulsion due to the screening induced by phonons.

5.3.2 Metal-insulator transitions at half filling

As in the infinite−U limit previously discussed, the improvement of the Gutzwiller phonon

wavefunction with respect to the analogue slave-boson approach to the effective Lang-Firsov-

transformed model is more pronounced at intermediate e-ph coupling, where retardation

effects are responsible for sizeable deformations of the phonon wavefunctions. In fact, the

LFT is expected to provide the correct physical picture when λ is large, whereas at weak

coupling we have shown that GPW and VLF are completely equivalent (cfr. Fig. 4.1), since

the harmonic ansatz for the projected phonon wavefunctions proves to be essentially correct.

On the other hand GPW provides a reliable tool, through the analysis of PDF, to address

the problem of polaron formation, that has been shown to be not necessarily associated to

the metal-insulator transition induced by the increasing of λ, which is instead due to pair
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formation[94]. Therefore in this section we try to complete the picture that has been traced

out in section 3.3, with particular attention to the metal-bipolaron insulator transition in

different adiabaticity regimes.

To this purpose, in Fig. 5.17 we show the evolution with λ of the averaged number of

doubly-occupied sites d and of the renormalization of the electronic kinetic energy Z for a

value of Hubbard repulsion close to the metal-Mott insulator transition in the absence of e-ph

interaction, namely we choose U = 0.8Uc. In the antiadiabatic limit the transition to the Pair

insulator is shifted to larger e-ph coupling, according to λBID = U +Uc, that simply reflects

the competition between the Hubbard U with the attractive non-retarded e-e interaction

mediated by phonons. As a consequence, d linearly increases from the value determined by

correlation in the absence of phonons d(λ = 0) = 0.25(1 − U/Uc) until it saturates at the

metal-insulator transition, where d = 0.5 and all electrons are bound to form local pairs.

On the other hand, Z increases as long as the effect of λ is to reduce the local repulsion, it

has a maximum when the attractive and repulsive interactions exactly compensate (Z = 1

and d = 1/4 as for the noninteracting system) and it eventually decreases and vanishes as

in the attractive Hubbard model. Moving from the antiadiabatic limit two major effects
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Figure 5.17: Averaged number of doubly-occupied sites d and quasiparticle renormalization

factor Z as obtained in GPW at U = 0.8Uc and for different γ, compared with the antiadi-

abatic result (LF) and with VLF (bold lines). Vertical arrow in the right panel marks the

antiadiabatic prediction for the establishment of BI.

are observed. First, the critical value λBI at which the bipolaronic insulator establishes is

shifted to smaller values, as qualitatively predicted by Eq. (3.23). Second, even if the value

of λ at which the repulsive and phonon-induced attractive e-e interactions compensate is not

changed much, phonon screening of U is less and less effective with decreasing γ as long as

the repulsion is dominant, as highlighted by the almost constant behaviour of both d and Z

when, for example, γ = 0.2. On the other hand, the transition to bipolaron is sharper, and

it is found to be first order already at γ = 0.6 at the given value of U . We notice that GPW

and VLF results agree very well at γ > 1 in the whole range of λ, whereas they bifurcate at
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intermediate couplings for smaller values of the adiabaticity parameter; in particular, λBI as

evaluated in GPW is slightly larger than that computed in the variational LFT framework.

We address now the problem of polaron formation in the presence of sizeable U/Uc = 0.8

by looking at the lattice probability distribution function, shown in Fig. 5.18 for different

values of λ at γ = 0.6 and γ = 4. In the last case one sees the same evolution discussed in

the absence of Coulomb repulsion, namely a broadening of the curve that keeps a unimodal

shape until the distortion of the lattice site induced by the e-ph coupling is such that a

bimodal distribution develops. Notice that for larger values of γ, the displacement of the

phonons, being proportional to
√

λ/2γ, is not able to separate the two peaks characteristic

of the bimodal PDF before the bipolaronic insulator phase, signalled by the vanishing of

P1 = 1− 2d (i.e. the singly-occupation probability, which enters in the PDF as the weight of

the central peak), is reached. Of course one can consider the case of larger values of U , which

would require a stronger e-ph coupling to exceed the repulsion and to induce the formation

of local bipolarons, thus allowing for a polaron crossover before the M-BI transition.
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Figure 5.18: Evolution with λ of PDF at U/Uc = 0.8 and for two values of γ representative

of adiabatic (left, γ = 0.6) and nonadiabatic (right, γ = 4) regimes.

A qualitative different situation is observed at smaller γ. As long as the repulsion is not

compensated by the attractive term due to λ, i.e. λ . 2.94 when U/Uc = 0.8 and γ = 0.6,

the singly-occupied state has a larger probability than empty and doubly-occupied ones, and

the PDF as given by Eq. (5.45) displays a peak centered in the origin that is only broadened

by the e-ph coupling. For larger λ two shoulders appear in addition to the central peak,

which rapidly evolve in two symmetric peaks coexisting with that centered in X = 0 in a

very narrow range of λ, until the bipolaronic insulator is reached.

To characterize the polaron crossover we can analyze the behaviour of the second deriva-

tive of P (X), following Ref. [95]. At half-filling, due to the symmetry properties of the

phonon wavefunctions, it is straightforward to demonstrate that dP (X)/dX|X=0 = 0 for any

value of the parameter, meaning that X = 0 is always an extremal of the PDF. Of course,

the change from negative to positive values of the second derivative evaluated in the origin
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indicates that X = 0 changes from being a maximum (absence of finite distortions of the

lattice) to a minimum (polaron formation). Therefore the condition for polaron formation

d2P (X)/dX2|X=0 ≥ 0 reads in our approach:

4d

[

ϕ0(0)
d2ϕ0

dX2

∣

∣

∣

X=0
+

(

dϕ0

dX

)2

X=0

]

+ 2(1 − 2d)ϕ1(X = 0)
d2ϕ1

dX2

∣

∣

∣

0
≥ 0.

(5.46)

In the antiadiabatic limit, where phonon wavefunctions are displaced harmonic oscillators,

this condition can be recast as[95]:

e−2α2
(4α2 − 1) ≥ 2d

1 − 2d
. (5.47)

If we plug in this formula the bipolaronic condition d = 1/2, we conclude that polaron

formation occurs at the M-BI transition only if condition α2 > 1/4 is fullfilled togheter with

Eq. (3.23). This is not the case in the Holstein model, where the pair insulator establishes

in the antiadiabatic limit for much smaller λ than those required to obtain a bimodal PDF

(cfr. Fig. 2.4). However Eq. (3.23) indicates that a sizeable Coulomb repulsion shifts λBI

towards larger values, while condition α2 > 1/4 is not changed by the presence of U . As a

consequence the e-e correlation can stabilize polaron formation before the attraction mediated

by phonons is able to localize the quasiparticles, as we showed in the right panel of Fig. 5.18.

This is not surprising, since polarons represent a single-particle problem from the point of

view of electrons, and e-e interactions do not affect directly polaron formation, whereas they

are responsible for the bipolaronic transition.

Relaxing the antiadiabatic condition, the left-hand side of Eq. (5.46) has to be evaluated

numerically. This can be done straightforwardly in the present framework exploiting the

expansion of ϕl on harmonic oscillator eigenstates, allowing us to enrich the phase diagram

for the half-filled Hubbard-Holstein model (Fig. 5.19) by adding lines representing polaron

formation. We notice that condition (5.46) may not be significative when PDF assumes

different shapes rather than unimodal or bimodal ones, e.g. the three-peak structure plotted

in Fig. 5.18, however we expect to capture the correct order of magnitude of the critical

parameters for the polaron crossover.

To summarize, we compare in Fig. 5.19 the phase diagram obtained in the present frame-

work for different adiabaticity regimes. In the antiadiabatic limit the metal-Mott insulator

and the metal-Pair insulator transition are symmetric around the line d = 0.25, which sig-

nals the exact balance between instantaneous Hubbard bare repulsion and phonon-mediated

attraction (dotted lines in Fig. 5.19), and are both second order. With decreasing γ the

M-MI transition line increases its slope and slightly changes its curvature, bending at in-

termediate e-ph couplings towards larger values of U . We compare our findings with the

relation extracted from a fitting procedure to the quasiparticle residue in DMFT analysis of

the model[57, 60]:

λMID =
1 + 2ω0/U

2ω0/U

(

U − Uc

)

, (5.48)
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Figure 5.19: Phase diagram for the half-filled Hubbard-Holstein model as obtained in the

GPW framework for different values of γ. Bold lines represent the M-BI and the M-MI

transitions. Thin dotted lines are the antiadiabatic prediction for transitions and vanishing

of the e-e interaction (d = 0.25). Thick dotted lines are the polaron crossover from bimodality

of PDF. The M-MIT transition line is compared with analytical predictions.

which reduces to Eqs. (3.27),(3.28) in the adiabatic and antiadiabatic limit respectively. On

the other hand, the bipolaronic insulator establishes at smaller λ as γ is reduced. At γ = 4 the

transition is found to be always second-order, that means that no crossing between energies

is observed as the metal energy smoothly merges with the bipolaron one (analogously to the

U = 0 regime discussed in the previous section). In agreement with condition α2 > 1/4, we

find that a polaron crossover occurs before the BI phase is reached already at U = 0; the

effect of U is to slightly enlarge the region in which mobile polarons are more stable than

localized pairs. This is not the case at γ = 0.6, where the presence of U tends to shrink the

region where polarons are formed; as already noticed, we stress the fact that our estimate of
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polaron crossover from the change in sign of d2P (X)/dX2|X=0 may not be significative in the

presence of exotic PDF as the one shown in Fig. 5.18. On the other hand we found that metal

and bipolaron energies cross in a range of U between ∼ 0.5Uc and ∼ 1.1Uc, signalling a first-

order transition. This suggests again a highly nontrivial competition between electronic and

phononic energy scales; the problem of the order of M-BI transition in the Hubbard-Holstein

model has been already addressed in Ref. [55], where a change from second to first order

has been observed as U & 0.5Uc at a lower phonon frequency, γ = 0.1. Unfortunately our

approach is not suitable to analyze accurately the very small γ regime, as already pointed out

in our analysis of the Holstein model; as a consequence the bipolaron transition for γ = 0.2

is found to be first-order for any value of the repulsion, and almost no polaron formation is

observed, except in a very narrow region at small U .

5.3.3 Properties of the ground-state phonon wavefunctions

We conclude this section by performing an analysis of the ground-state phonon wavefunctions

analogously to that in the infinite−U limit. As in that case we will consider 〈X〉l and
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Figure 5.20: Evolution of phonon wavefunctions as function of γ for λ = 2.8 and U/Uc = 0.8.

The arrows indicate the displacement in the atomic limit.

〈(X − 〈X〉)2〉l as a measure of the effective displacement of the lattice site and of the extent

of the phonon fluctuations induced by e-ph coupling. Just to give the flavour of what we

expect to find we show in Fig. 5.20 the evolution of ϕ0 and ϕ1 as γ is decreased for an
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intermediate e-ph coupling λ = 2.8 and in the presence of a sizeable electronic correlation

U = 0.8Uc. Due to the symmetry properties of the half-filling regime, the only effect of the

e-ph coupling on ϕ1 is to broaden its width, being 〈X〉1 = 0, corresponding to the atomic

limit value. On the other hand, the displacement of ϕ0 is strongly reduced with respect to

the atomic limit (indicated by the vertical arrows) as the adiabatic regime is approached,

while at the same time fluctuations of the phonon increase (the same occurs for ϕ2, whose

peak is shifted, according to Eq. (5.38), in the opposite direction with respect to the origin).

In particular we observe a non monotonic dependence of the peak position on γ, as the

maximum of ϕ0 is closer to the origin at γ = 0.2 rather than at γ = 0.4, whereas its width

seems to increase monotonically as the adiabatic limit is approached.

To begin with, we consider the effect of increasing λ when U = 0 and close to the metal-

MI transition, namely U = 0.8Uc, comparing with the atomic limit, where 〈X〉l =
√

2α(l−1),

and with VLF. Since the most outstanding deviations from LFT results occur in the adiabatic

limit, in Fig. 5.21 we consider γ = 0.6, a value of the adiabaticity parameter at which our

method is quite reliable even in the absence of Coulomb repulsion. As already pointed out,
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Figure 5.21: Evolution of the displacement of the phonon wavefunction ϕ0 as function of λ

at γ = 0.6 and U = 0 (left), U/Uc = 0.8 (right), compared with the atomic limit and VLF.

both GPW and VLF capture the smaller displacement of the lattice sites in the adiabatic

regime with respect to the atomic limit. However, even if they coincide as long as small values

of e-ph coupling constant are considered, VLF clearly underestimates the lattice distortion in

the intermediate-coupling regime, hence it fails in describing the way in which the bipolaronic

insulator is approached. We notice that, when U = 0, the metal-BI transition is accompanied

by a local distortion equal to that predicted in the atomic limit; at U/Uc = 0.8, on the other

hand, 〈X〉0 at the transition is still slightly different from the atomic value, confirming the

first order character of the metal-BI transition in the presence of sizeable Coulomb repulsion

and for small values of γ. We compare also the broadening of ϕ0 and ϕ1 in Fig. 5.22. Again
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we find that the major deviations from the atomic limit value 1/2 occur in the intermediate

e-ph coupling regime for what concerns ϕ0, and that the broadening is enhanced but shifted

to larger λ by the presence of U . On the other hand, the width of ϕ1 is monotonically

increased as the bipolaronic phase is approached and the associated weight P1 goes to zero.

To better understand the effect of U on the ground-state phonon wavefunctions, we show

in Fig. 5.23 the evolution of the mean displacement and the width of ϕl, togheter with their

overlap 〈ϕ0|ϕ1〉, as the Hubbard repulsion is increased at γ = 0.6 and λ = 1. As expected,

the presence of U counteracts the effect of e-ph coupling, reducing the induced distortion

of the lattice of a factor greater than 1/2 for the given values of the parameters when the

Mott insulator establishes. At the same time, retardation effects due to phonon dynamics are

less relevant as the metal-MI transition is approached; this is highlighted by the behaviour

of 〈(X − 〈X〉)2〉l in the central panel of Fig. 5.23, where it is shown that the width of the

phonon wavefunctions tends to 1/2, the value characteristic of the harmonic oscillator, as

U → Uc(λ = 1) ≈ 1.07Uc. In particular, this is exactly true as ϕ1 is concerned. In fact it

reduces to a harmonic oscillator centered in the origin, consistently with the description of the

Mott insulating phase predicted by the Gutzwiller phonon wavefunction, where the insulator

is depicted as a collection of atomic sites with only one electron on each of them. On the

other hand, ϕ0 still deviates from the gaussian shape at the transition but its contribution to

the physical properties of the system becomes negligible as the number of empty and doubly-

occupied sites vanishes due to the presence of U . At last we notice that the agreement with

VLF is very good when considering the overlap between phonon wavefunctions associated to

different charge states; in both GPW and VLF, this quantity is essential to determine the

phonon-induced renormalization of electronic kinetic energy. As already pointed out, such an

agreement implies, due to the harmonic assumption made in LFT-based approaches, that the
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Figure 5.22: Fluctuations of the phonon wavefunctions with increasing λ at γ = 0.6 and

U = 0 (left), U/Uc = 0.8 (right).
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Figure 5.23: Evolution of mean displacement, fluctuations and overlap between ϕ0, ϕ1 as

function of U at λ = 1 and γ = 0.6. 〈X〉0 and 〈ϕ0|ϕ1〉 are compared with VLF results.

actual distortion of the lattice sites is underestimated (cfr. left panel of Fig. 5.23) since the

broadening of ϕl induced by phonon dynamics is not taken into account; this means that a

sistematic error is introduced in VLF when evaluating the potential energy gain due to e-ph

coupling. Anyway, on the basis of the present analysis, a sizeable U is able to reduce the size

of this error, thus explaining the quantitative accuracy of Eqs. (3.27),(3.28).

At last we focus our attention on the γ−dependence of the ground-state properties of

phonon wavefunctions. As already observed in the infinite−U limit, the mean displacement
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Figure 5.24: Evolution of the mean displacement of phonon wavefunction ϕ0 as function of

γ at U = 0 (left) and U/Uc = 0.8 (right) and for different values of e-ph coupling constant.

of ϕ0 (and in this case that of ϕ2, symmetric to ϕ0 with respect to the origin) increases

and diverges roughly as
√

1/γ when moving from the antiadiabatic regime at strong e-ph



102 CHAPTER 5. EXTENDED GUTZWILLER APPROACH

coupling4, whereas in the intermediate- and weak-coupling regimes it displays a maximum

and then decreases, suggesting the tendency of ϕl to coincide as γ → 0. This behaviour

is observed both with and without electronic correlation, as shown in Fig. 5.24, even if

the vanishing of 〈X〉 is observed at U/Uc = 0.8 rather than in the Holstein model where the

mean displacement seems to tend to some finite value as γ approaches 0. A more outstanding

difference emerges when fluctuations of phonon around the mean displacement are considered.

In fact, in the pure Holstein model (left panel in Fig. 5.25) one recovers a monotonical

broadening of phonon wavefunctions as the exact adiabatic limit is approached. This finding

is equivalent to that discussed at the end of section 5.2.3; as in that case it means that

phonons are weakly dependent on the local charge density, since they are not able to follow

instantaneously electrons as they move in the lattice, and that at the same time the phonon

wavefunctions extend over a wider region of space. We notice that, even if the present

approach has proven to be scarcely accurate in the weakly-correlated adiabatic regime of the

system, this finding qualitatively agrees with the common wisdom according to which the

size of polarons, i.e. of the electron surrounded by the multiphonon cloud induced by e-ph

coupling, increases in the adiabatic limit, involving more and more phonons. On the other

hand, when a sizeable Hubbard repulsion is considered, the width of all phonon wavefunctions

displays a maximum and then tends to coincide for vanishing γ, remaining comparable with

that of a gaussian harmonic oscillator; for example, at λ = 1.6, we found that the extrapolated

value of 〈(X −〈X〉)2〉l for γ → 0 is ≃ 0.56 (marked by the orizzontal arrow in the right panel

of Fig. 5.25) when evaluated for ϕ0 and ϕ1. With an analogue extrapolating procedure, one

also finds that 〈X〉0 → 0 as the exact adiabatic limit is attained. Therefore in the presence of

strong electronic correlation e-ph coupling appears strongly renormalized and is little effective

4In order to obtain a non trivial adiabatic limit of 〈X〉, cfr. footnote at page 85.
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Figure 5.25: Fluctuations of the phonon wavefunctions as function of γ at U = 0 and λ = 0.8

(left), U/Uc = 0.8 and λ = 1.6 (right).
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in inducing lattice deformations but for large values of λ; furthermore the size of polarons

remains small even in the adiabatic limit, and a small number of phonons is involved at the

ground-state level.

We conclude this section by noticing that the average displacement of the phonon wave-

functions can be related straightforwardly to the static local electron-displacement correlation

function C0 = 〈ni(ai + a†i )〉 that is often introduced as a measure of the polaronic character

of electrons. In fact in GPW framework C0 is simply given by:

C0 =
√

8P2 〈X〉2, (5.49)

where 〈X〉2 = −〈X〉0 due to the symmetry properties of the half-filling regime. According to

our previous discussion, this formula immediatly allows us to recover the strong coupling re-

sult 2α for the bipolaronic insulator, denoting large electron-lattice local correlations, whereas

it gives C0 = 0 in the Mott insulator. By looking at figs. 5.21 and 5.22, and keeping in mind

that P2 = d is an increasing function of λ (cfr. figs. 5.12 and 5.17), one deduces that in

the adiabatic regimes small polaronic character establishes only at intermediate and strong

e-ph coupling, and that the presence of U counteracts the onset of strong electron-lattice

correlations until the BI is approached. Usually the small value of C0 at weak couplings

is interpreted as a measure of the finite extension of the polaron over several shells of lat-

tice neighbours[86]. As pointed out previously, this is consistent with the broadening of the

phonon wavefunctions when small values of electronic correlation are considered. However

the vanishing of C0 as the Mott insulator is approached probably corresponds to a minor

relevance of electron-displacement correlations, since the absence of a sizeable broadening of

ϕl does not suggest the onset of large polaronic character.
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Conclusions

In this work we presented two variational approaches to the electron-phonon interaction in

strongly correlated systems. The problem of the interplay between sizeable e-e and e-ph

interactions has proven to be relevant in many compounds including the HTSC cuprates. In

fact, the importance of strong electronic correlation in these compounds is nowadays widely

accepted, and a number of experiments suggests a non-negligible coupling between electrons

and lattice dynamics which can lead to unexpected behaviour of physical observables. As a

relevant model for the analysis of this problem we chose the Hubbard-Holstein model, which

displays a very rich phase diagram and whose physical properties depend on many parameters

and energy scales, including phonon frequency, bandwidth and electronic correlation, thus

representing a complicated many-body problem. Generally speaking, one could wonder how

the electron properties are modified by the presence of the e-ph coupling, or equivalently

analyze the modifications induced by the correlated electrons on the phonons. The first

approach that we discussed focuses mainly on the first aspect of the problem, whereas the

second one completed the picture including a faithful description of phonon properties. We

tested both in the paramagnetic sector of the Hubbard-Holstein model at T = 0, focusing on

ground-state properties of both electrons and phonons.

Variational Lang-Firsov transformation supplemented by slave-boson mean field.

The first method we discussed is based on a proper variational formulation of the well-known

Lang-Firsov-Holstein approximation and allows mainly for a description of the modifications

induced by the phonons onto the correlated system, providing an effective model for renor-

malized electrons. This model has been analysed in the slave-boson mean-field framework

that implies a neglect of spatial correlations and, consequently, an approximate description

of hopping processes. However the effect of e-ph coupling in the strongly-correlated regime

of the model is captured in a satisfactory way by the variational parameter f , which is deter-

mined through a balance of the energy gain coming from the potential energy of the deformed

lattice and the energy loss due to the reduced mobility of the electrons coupled with phonons.

At half filling the presence of sizeable U , that suppresses charge fluctuations, leads to a sub-

stantial depression of polaronic effects; close to the Mott metal-insulator transition the main

effect of e-ph coupling is a slight reduction of the Coulomb repulsion, which is controlled

by the ratio ω0/U , in excellent quantitative agreement with previuos DMFT results, that
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are supplemented by some analytical results. Such a weak effect on low-energy properties

of the electrons is due to the fact that phonons cannot react to the rare and fast virtual

hopping processes. Doping the system in the strongly-correlated regime partially restores

charge fluctuations, but electrons move so slowly that phonons can catch up and polaronic

effects turn out to be relevant expecially in the adiabatic regime, where screening of the bare

repulsion is less effective. Also in this case the evolution from weak to strong e-ph coupling

is controlled by the adiabaticity parameter γ. Such a dependence on the phonon frequency

leads to unusual isotope effects on the effective mass; at half filling we found that the presence

of U can strongly enhance the isotope coefficient when approaching the transition, even if the

effective mass does not show polaronic signatures. On the other hand in the doped regime a

strongly nonmonotonic dependence of the effective mass on γ is observed, and we found that

the isotope coefficient can be even zero in the presence of a sizeable e-ph coupling.

Unfortunately this approach provides a very poor insight in phonon physics, since lattice

degrees of freedom enter in the renormalized electronic properties only through the single

variational parameter f , which in the context of LFT can be interpreted as a measure of

the effective displacement of the ground-state phonons, that is reduced as the adiabatic

limit is approached. This unaccurate description of phonons does not allow for a proper

characterization of polaron formation and it is ultimately the origin of the polaronic transition

(rather than a crossover) found in the strongly-correlated doped regime at small values of

γ. On the other hand the absence of polaron signatures at the metal-bipolaronic insulator

phase at half filling suggests that such transition is mainly driven by electronic correlations,

namely the bipolaron phase establishes as soon as the attractive e-e interaction mediated by

phonons is able to bind electrons in order to form local pairs, the bipolarons.

Gutzwiller phonon wavefunction. Exploiting the equivalence between slave-boson mean

field and the Gutzwiller approach we then introduced a generalization of the trial wavefunc-

tion where phonons are described by first-quantization wavefunctions associated to different

local charge states. Since the Hubbard repulsion induces an unbalance of the occupation

probabilities for the electrons, which is correctly captured by the Gutzwiller approach (where

the variational quantity to be optimized is exactly the correlated probability distribution of

electrons), we believe that the implicit assumption according to which phonons are deter-

mined by the local electron density is reasonable in the presence of strong correlation; on

the other hand, when U = 0 it may lead to wrong results as weak e-ph couplings and/or

very small values of the adiabaticity parameter are considered. This assumption can be en-

forced also in the slave-boson framework by performing the variational LFT on the boson

representation of the model, thus introducing a variational parameter fi for each auxiliary

operator, describing the effective displacement of the lattice site in the presence of 0, 1 or 2

electrons. Nonetheless only two independent phononic parameters are required to determine

the mean-field solution, which represent the relative displacements between different charge

states; the polaronic-like exponential renormalization of the hopping term is then interpreted
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as the overlap between phonon wavefunctions associated to different local electronic occupa-

tions. We notice that in the symmetric half-filling regime or in the limiting case of infinite

Hubbard repulsion, only two occupation probabilities are needed to determine the ground

state, namely the empty(=double occupancy at half filling) and single occupancy probabil-

ities, hence just one independent f parameter is needed; this finding puts on solid grounds

the analysis we carried out in chap. 3, and at the same time suggests a proper generalization

of that approach to general case of n 6= 1.

We proved that the GPW method provides the same result of variational LFT applied

on the slave-boson representation of the model as long as a harmonic ansatz is assumed for

the phonon wavefunctions, which are then described as displaced harmonic oscillators. Even

though such assumption proves to be correct for large values of the adiabaticity parameter

(and to some extent in the weak-coupling limit), the larger variational freedom of the GPW

method allowed us to capture the deviations from harmonic phonon wavefunctions due to

retardation effects of the e-ph coupling, that proved particularly relevant in the adiabatic

limit. Generally the coupling with electrons has two major effects for small γ: it induces

a smaller displacement of the lattice site with respect to the atomic limit and at the same

time enhances the fluctuations around the mean displacement in such a way that the overlap

between phonon wavefunctions associated to different charge state is maximized. This implies

that, expecially at intermediate e-ph couplings, each phonon wavefunction tends to acquire

partial character of the others. As a consequence the mobility of electrons is not reduced as

much as one could have expected. The first effect can be approximatively accounted for by

the variational LFT, whereas the second is completely missed within the harmonic ansatz for

phonon wavefunctions.

This improvement in the description of phonon ground-state properties allowed us to

demonstrate that polaron formation is a crossover rather than a transition for any value

of the doping in the strongly- correlated regime and for any value of U at half filling. In

the first regime, the effect of correlation is to make the crossover sharper and to push it

to larger values of λ. On the other hand we found that in the half-filling regime polaron

formation does not occur at large γ, hidden by the onset of bipolaronic insulator, whereas at

intermediate and small values of the adiabaticity parameter a bimodal shape of the phonon

probability distribution function, which signals polarization of the lattice, can develop in the

metallic phase just before the transition. The effect of U is to slightly enlarge the region

between polaron crossover and bipolaron transition at intermediate values of γ, when the

Mott transition is pushed to very large U , whereas it is reduced at small γ, in such a way

that the correlated regime close to the Mott transition is always robust with respect to polaron

formation. This point has been directly addressed by analysing both effects of e-ph coupling

on phonon wavefunctions, namely their displacement and their broadening. In particular we

found that the electron-induced displacement of the lattice sites is always reduced when a

sizeable U is considered, and at the same time the extent of phonon fluctuations is always

comparable to that in the absence of e-ph coupling, even deep in the adiabatic regime. This
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explains why almost no phonon effects are observed in the effective mass close to the Mott

transition, albeit for a small reduction due to partial screening of the repulsion. On the other

hand we found that in the weakly-correlated regime and in the infinite−U limit at n 6= 1,

small γ implies very small distortion of the lattice but phonons fluctuating in a wide region

of space.

Concluding remarks and future developments. This last finding suggests that in the

adiabatic limit our approaches, that are expected to capture local properties of the system,

are not quite reliable. In fact, our analysis of the weak-coupling perturbative corrections

to the effective mass in the U = 0 case showed that both methods discussed in the present

work fail in describing quasiparticle properties as γ → 0. We interpreted this failure in terms

of an unaccurate description of phonon contribution to electron self-energy as long as e-e

interaction is neglected; then it is reasonable to think that a residual interaction between

electrons and phonons becomes relevant as γ is reduced and large non-local electron-lattice

correlations come into play. According to GPW formulation, such a drawback is most relevant

in the weakly-correlated half-filling regime, when phonon and electron degrees of freedom are

tightly entangled, while it is expected to affect our mean-field description of quasiparticle but

not of ground-state properties in the infinite−U limit, where our variational equations for

electron probability distribution and phonon wavefunctions are actually decoupled. Due to

the equivalence between GPW and VLF at weak-coupling, one can try to exploit the slave-

boson machinery in order to improve the mean-field picture, and hopefully to capture or at

least to understand the nature of the residual e-ph interaction.

At last it can be tempting to apply our methods to the symmetry-broken phases of

the Hubbard-Holstein model, due to their relevance in the comprehension of real physical

systems such as the superconducting cuprates. Some preliminary study has been carried

out for the antiferromagnetic phase at half filling (cfr. Appendix B), where we found that

in the limit of large U the e-ph interaction is less efficient than in the paramagnetic phase,

being f ∼ ω0/U . This finding is in contrast with available results for the interplay of e-

ph coupling and antiferromagnetic correlations, which show that the phonon-induced mass

renormalization is larger in the antiferromagnetic rather than in the paramagnetic phase[37,

63, 117]. The origin of our wrong prediction lies in the inadequacy of static mean field to

describe nonlocal correlations (in this case between spins), that are at least partially captured

in dynamical mean-field theory through quantum fluctuations[118]. On the other hand, the

possibility to include superconductivity in a Gutzwiller-correlated BCS wavefunction has

been investigated By Bünemann et al. on the attractive Hubbard model[119], leading to

some promising improvement with respect to standard BCS theory. On the light of physical

insight provided by our Gutzwiller phonon wavefunction, we believe that inclusion of electron-

phonon coupling in such Gutzwiller-correlated BCS framework is worthwhile and may deserve

future investigations.

To conclude with, we investigated in a mean-field framework the paramagnetic phase
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of the Hubbard-Holstein model in a wide region of parameter space. We found that both

variational LFT and GPW are not reliable in the adiabatic limit of the weakly-correlated

system; this failure is in our opinion associated to the poor description of nonlocal electron-

lattice correlations provided by our static mean-field framework. Nonetheless our approaches

proved to capture correctly the effect of e-ph coupling in the presence of sizeable electronic

correlation, as main physical properties of the system are local in nature. In particular a

harmonic ansatz is sufficient at very weak and at strong coupling, where the effect of e-ph

coupling in the presence of sizeable U is substantially a rigid displacement of the lattice sites,

whereas an accurate treatment of phonon degrees of freedom is required at intermediate

e-ph couplings and in the adiabatic regime. The set of coupled Schrödinger-like equations

for phonon wavefunctions provided by GPW method accomplishes this task, giving access to

many phonon properties (not provided by variational LFT) that are necessary to characterize

properly polaron formation.
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Appendix A

Variational unitary transformations

on boson representation

We start from the Kotliar-Ruckenstein slave-boson representation of the Hubbard-Holstein

model with phonons coupled to charge density fluctuations, whose Hamiltonian reads:

HSB = −t
∑

<i,j>,σ

z†iσzjσc
†
iσcjσ + U

∑

i

d†idi + ω0

∑

i

a†iai

+g
∑

i

(ni − 〈ni〉)(a†i + ai) −Hc (A.1)

whereHc =
∑

i λ
(1)
i (1−d†idi−e†iei−

∑

σ p
†
iσpiσ)+

∑

iσ λ
(2)
iσ (d†idi+p

†
iσpiσ−c†iσciσ) is introuduced

to enforce the constraints c†iσciσ = p†iσpiσ + d†idi ∀i, σ; 1 =
∑

σ p
†
iσpiσ + d†idi + e†iei ∀i that

guarantee the equivalence with the original Hamiltonian Eq. (3.1). The Hubbard term

appears to couple only with the di boson and the effect of correlation on the kinetic term is

captured by the ziσ operators which are defined, following Ref. [80, 82], as

z†iσ =

(

p†iσei + d†ipiσ̄

)

√

1 − d†idi − p†iσpiσ

√

1 − e†iei − p†iσ̄piσ̄

. (A.2)

As far as the constraints are exactly satisfied at each site and any time, the Hamiltonian

(A.1) is strictly equivalent to the original Hubbard-Holstein model: in fact it is simply the

projection representation of Eq.(3.1) on the empty, doubly and singly σ occupied states. One

can observe that Holstein e-ph coupling occurs between local displacements and local charge

density, and that different phononic configurations are in general expected for different values

of electronic occupation. This fact suggests us to perform a unitary transformation U = eS

within the same spirit of the variational Lang-Firsov approach [114, 61], but operating on

slave bosons directly instead of fermions, namely:

S = α
∑

i

[

f
(0)
i e†iei +

∑

σ

f
(1)
iσ p†iσpiσ + f

(2)
i d†idi

]

(ai − a†i )

(A.3)
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where f
(0)
i , f

(1)
iσ , f

(2)
i are variational parameters to be determined. In order to get rid of

phononic degrees of freedom, we adopt the standard Holstein approximation and average

e−SHSBe
S over the vacuum state of the transformed phonons. The following effective model

is obtained:

Heff = −t
∑

<i,j>,σ

z̃†iσ z̃jσc
†
iσcjσ + U

∑

i

d†idi −Hc +HI (A.4)

where Hc remains the same, and

HI = α2ω0

∑

i

[(

(f
(0)
i )2 + 2〈ni〉f (0)

i

)

e†iei +
(

(f
(2)
i )2 + 2〈ni〉f (2)

i − 4f
(2)
i

)

d†idi+

∑

σ

(

(f
(1)
iσ )2 + 2〈ni〉f (1)

iσ − 2f
(1)
iσ

)

p†iσpiσ

]

takes into account the effect of e-ph coupling on electronic properties. The kinetic term

changes accordingly, and Eq. (A.2) becomes

z̃†iσ =
p†iσeie

−α2

2
(f

(0)
i −f

(1)
iσ )2 + d†ipiσ̄e

−α2

2
(f

(1)
iσ̄ −f

(2)
i )2

√

1 − d†idi − p†iσpiσ

√

1 − e†iei − p†iσ̄piσ̄

.

(A.5)

The mean-field solution at a given value of the density n is obtained by assuming trans-

lation invariance (i.e. f
(0)
i = f0, f

(1)
iσ = f1σ, f

(2)
i = f2) and taking the saddle-point value

for the Bose fields; for the paramagnetic homogeneous phase this corresponds to take 〈ei〉 =

e0, 〈piσ〉 = p0 and 〈di〉 = d0, but one can choose other phases, such as the staggered antifer-

romagnetic or the charge ordered one, by means of a proper choice of the saddle-point values

of the bosonic fields and without any further approximation. The ground state energy reads:

E0

N
= −|ε| 4

n(2 − n)
|S|2 + Ud2

0 − λ(1)(1 − d2
0 − e20 − 2p2

0) − λ(2)(2d2
0 + 2p2

0 − n)

+α2ω0

[

(f2
0 + 2nf0)e

2
0 + (f2

1 − 2f1 + 2nf1)2p
2
0 + (f2

2 − 4f2 + 2nf2)d
2
0

]

(A.6)

with

|S| = p0e0e
−α2

2
(f0−f1)2 + p0d0e

−α2

2
(f1−f2)2 . (A.7)

We have now to minimize with respect to boson fields, Lagrange multipliers and varia-

tional phononic parameters. Minimization with respect to the slave-boson fields gives:

U + λ(1) − 2λ(2) + α2ω0

(

f2
2 − 4f2 + 2nf2

)

=
4|ε|

n(2 − n)
|S|
[

2

2 − n
|S| + p0

d0
e−

α2

2
(f2−f1)2

]

(A.8a)

λ(1) + α2ω0

(

f2
0 + 2nf0

)

=
4|ε|

n(2 − n)
|S|
[

2

n
|S| + p0

e0
e−

α2

2
(f0−f1)2

]

(A.8b)

2λ(1) − 2λ(2) + 2α2ω0

(

f2
1 − 2f1 + 2nf1

)

=
4|ε|

n(2 − n)
|S|2

[

4

n(2 − n)
+

1

p2
0

]

(A.8c)
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while that with respect to the Lagrange multipliers reproduces the constraints. Finally min-

imization with respect to the fi gives

f0

[

1 − |ε|
ω0

4

n(2 − n)
|S|p0

e0

(

f1

f0
− 1

)

e−
α2

2
(f0−f1)2

]

= −n (A.9a)

f1

{

1 − |ε|
ω0

4

n(2 − n)
|S|
[

e0
2p0

(

f0

f1
− 1

)

e−
α2

2
(f0−f1)2 +

d0

2p0

(

f2

f1
− 1

)

e−
α2

2
(f1−f2)2

]}

= 1 − n

(A.9b)

f2

[

1 − |ε|
ω0

4

n(2 − n)
|S|p0

d0

(

f1

f2
− 1

)

e−
α2

2
(f1−f2)2

]

= 2 − n. (A.9c)

By manipulating the above equations one easily notices that they can be reduced to a two-

equation system. Introducing F01 = f0 − f1, F21 = f2 − f1 one gets:

F01

[

1 +
|ε|
ω0

4

n(2 − n)
|S|
(

p0

e0
+

e0
2p0

)

e−
α2

2
F 2

01

]

+ F21
|ε|
ω0

4

n(2 − n)
|S| d0

2p0
e−

α2

2
F 2

21 = −1

(A.10)

F21

[

1 +
|ε|
ω0

4

n(2 − n)
|S|
(

p0

d0
+

d0

2p0

)

e−
α2

2
F 2

21

]

+ F01
|ε|
ω0

4

n(2 − n)
|S| e0

2p0
e−

α2

2
F 2

01 = 1

(A.11)

These are coupled self-consistent equations that allow to determine completely the values of

fi, through Eq. (A.9b), that can be rewritten as:

f1 = 1 − n+
|ε|
ω0

4

n(2 − n)
|S|
[

e0
2p0

F01e
−α2

2
F 2

01 +
d0

2p0
F21e

−α2

2
F 2

21

]

. (A.12)

Eventually, one can exploit the constraints and introduce the standard notations x = e0 +

d0 , n = 1 − δ, which allow to express the mean-field value of the bosonic fields as follows:

d2
0 =

(x2 − δ)2

4x2
(A.13)

e20 =
(x2 + δ)2

4x2
(A.14)

p2
0 =

2x2 − x4 − δ2

4x2
. (A.15)

where x2 has to satisfy the following equation, coming from the combination of Eqs. (A.8a),

(A.8b), (A.8c):

U + α2ω0

(

F 2
01 + F 2

21 + 2(n + f1)(F21 + F01) − 4F21

)

=
2|ε|

1 − δ2

(

e−
α2

2
F 2

01 + e−
α2

2
F 2

21

)2

{

x4

x4 − δ2
(1 − x2) − δ tanh

α2(F 2
21 − F 2

01)

4

[

1 +
δ

x2

x2 − δ2

x4 − δ2
tanh

α2(F 2
21 − F 2

01)

4

]}

.

(A.16)

Eventually the complete mean-field analysis for the paramagnetic case can be carried out by

considering the three mean-field equations (A.10), (A.11) and (A.16), implemented by Eq.
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(A.12). In general they cannot be solved analytical and need to be handled numerically. They

suggest that one needs at least two independent variational parameters in order to include

properly phonon effects in a slave-boson framework, in such a way that exploitation of the

capability of the slave operators to account for local charge states and for the relevant hopping

processes is allowed. Within this formulation F01, F12 represent a measure of the overlap

between displaced harmonic oscillators associated to the different charge states involved in

electronic hopping, meaning large overlap when they are small (electron mobility weakly

affected by e-ph coupling) and small overlap when they are approximatively equal to one,

with strong exponential suppression of the electron kinetic energy. On the other hand f0, f1, f2

measure the amount of displacement of local phonons.

However in the highly symmetric half-filling regime it can be shown that only one varia-

tional parameters survives, measuring at the same time the displacement of the phonon and

the amount of renormalization of the electronic kinetic energy. As a consequence, even if

the properties of the small doping regime are likely to be descibed by the variational LFT of

chapter 3 in an accurate enough manner, generalization to any finite value of doping should

be considered in the context here defined. We conclude this appendix by showing the con-

nection of the present mean-field equations with that derived in the half-filling and the doped

large−U limit by means of the variational LFT discussed in chapter 3.

Half-filling mean-field equations

Exploiting the particle-hole simmetry of the model for zero doping, one can put e0 = d0

inEqs.(A.10), (A.11) and find that they coincide provided F01 = −F21; furthermore, replacing

this result in Eq.(A.12) it is readily seen that f1 must be zero, hence f2 = −f0. We can identify

f = f2 = −f0 and express the ground-state energy as:

E0

N
= −|ε0|q e−α2f2

+ d2
0

[

U + 2α2ω0(f
2 − 2f)

]

(A.17)

where q = z2
0 = 8d2

0(1 − 2d2
0) is the reduction of the kinetic energy due to the electronic

correlation. The variational LF mean-field equations previously discussed in chapter 3 are

therefore easily recovered.

Infinite−U mean-field equations

In the limit of infinitly large Hubbard repulsion, it is known that one has to restore electron

mobility by doping the system and introducing some vacancies (δ > 0). It is convenient then

to recast Eqs.(A.10), (A.11) as follows:

−(1 − δ) = −d2
0F21 + F01

[

1 − e20 +
|ε|
ω0

4p2
0

1 − δ2
e−α2F 2

01

(

1 +
d0

e0
e−

α2

2
(F 2

21−F 2
01)

)]

,

−(1 + δ) = e20F01 − F21

[

1 − d2
0 +

|ε|
ω0

4p2
0

1 − δ2
e−α2F 2

21

(

1 +
e0
d0
e

α2

2
(F 2

21−F 2
01)

)]

.
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Taking the limit of vanishing δ and plugging d2
0 = 0, e20 = δ and p2 = (1 − δ)/2 in these

equations we obtain for F01:

F01 = − 1

1 + 2|ε0|
ω0

e−α2F 2
01

(A.18)

while F21 must be zero. Alternatively one can put d0 = 0 from the outset in the energy Eq.

(A.6), obtaining at leading order in δ

E0

N
≈ −δ

[

2|ε0|e−α2F 2
01 − α2ω0(F

2
01 + 2F01)

]

(A.19)

and obtain the variational LFT self-consistency condition upon substitution f = −F01.
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Appendix B

Antiferromagnetic solution at

half-filling

We discuss here the possibility to include antiferromagnetic ordering in the Hubbard-Holstein

model by means of a variational treatment of the phononic degrees of freedom. We start

from the generalization of the variational slave-boson approach described in appendix A.

The antiferromagnetic phase can be implemented in this approach introducing a staggered

magnetization m(−1)R = nR↑ − nR↓ and assuming that pRA↑ = pRB↓ = p+ and pRB↑ =

pRA↓ = p−, where A,B label the two sublattices of the bipartite lattice. Similarly one can

label the other parameters associated with these operators (i.e. λ
(2)
σ and f

(1)
σ ). After a

standard Bogolyubov transformation, the ground-state energy at zero temperature reads:

E0

N
=

2

N

∑

k,η=±
θ(−Eη

k)η
√

(qεk)2 + h2 + Ud2
0 − hm+ α2ω0

[

(f2
0 + 2nf0) e

2
0+

(f2
− − 2f− + 2nf−)p2

− + (f2
+ − 2f+ + 2nf+)p2

+ + (f2
2 − 4f2 + 2nf2)d

2
0

]

+λII(n− 2d2
0 − p2

− − p2
+) + λ(1)(e20 + d2

0 + p2
− + p2

+ − 1) (B.1)

where h = [λ
(2)
+ − λ

(2)
− ]/2, λII = [λ

(2)
+ + λ

(2)
− ]/2, m = p2

+ − p2
−, εk is the dispersion of free

electrons and

Eη
k = λII − µ+ η

√

(qεk)2 + h2

q = G

(

p+e0e
−α2

2
(f0−f+)2 + p−d0e

−α2

2
(f2−f−)2

)(

p−e0e
−α2

2
(f0−f−)2 + p+d0e

−α2

2
(f2−f+)2

)

G =
4

√

[(1 + δ)2 −m2][(1 − δ)2 −m2]

For the sake of simplicity we analyze here just the half-filling case. This allows us to consider

only the lower (full) subband E−
k , which is relevant for the kinetic term, and to obtain from
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the minimization with respect to λ(1), λII :

e20 = d2
0 =

x2

4
(B.2)

p2
± =

1

2

(

1 − x2

2
±m

)

(B.3)

From the minimization with respect to the phononic variational parameters one finds four

equations, but it is easy to demonstrate, after some tedious calculation, that in analogy with

the paramagnetic case f+ = f− = 0 and f2 = −f0 = f . We can consider then only one

equation:

f =
1

1 + 2|K|
ω0

qp2

1−m2 e−α2f2
(B.4)

where p = p− + p+, q = 4d2
0p

2e−α2f2
/(1 −m2) and |K| = 2

N

∑

k
ε2
k√

(qεk)2+h2
.

Togheter with Eq. (B.4) one obtains three mean-field equations, i.e.

m = −h 2

N

∑

k

1
√

(qεk)2 + h2
(B.5)

h = 4d2
0q

|K|
2

m

1 −m2
e−α2f2

[

1

p+p−
− 4p2

1 −m2

]

(B.6)

U = −2α2ω0(f
2 − 2f) + 4p2q|K| 1

1 −m2
e−α2f2

[

1 − d2
0

p+p−

]

(B.7)

Let’s consider now the large-U limit. By assuming that h ∝ U one can expand |K| and

find m ≈ −1 +
( q

h

)2 |ε2|, where |ε2| = 1
N

∑

k ε
2
k; provided that the dominant energy scale is

determined by U , it is easy to find U + 2α2ω0(f
2 − 2f) = 2h and q = e−α2f2

, hence:

f ≈ 1

1 + U
ω0

(B.8)

that means that the present approach predicts a less effective e-ph coupling in the antiferro-

magnetic rather than in the paramagnetic regime. On the other hand, if one considers the

opposite limit of very small U and neglects corrections of order m2, the mean-field equation

for f reduces to the paramagnetic one (Eq. (3.22) in the text).
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Phys. Rev. B 53, 2850 (1996).

[48] E. Cappelluti, B. Cerruti and L. Pietronero, Phys. Rev. B 69, 161101(R) (2004).

[49] E. Koch and R. Zehyer, Phys. Rev. B 70 094510 (2004).

[50] G. Aprea, C. Di Castro, M. Grilli and J. Lorenzana, cond-mat/0601374 (2006).

[51] Z. B. Huang, W. Hanke, E. Arrigoni and D. J. Scalapino, Phys. Rev. B 68, 220507(R)

(2003).

[52] F. Becca, M. Tarquini, M. Grilli and C. Di Castro, Phys. Rev. B 54, 12443 (1996).

[53] V. Cataudella, G. De Filippis, G. Iadonisi, A. Bianconi and N. L. Saini, Int. J. Mod.

Phys. 14, 3398 (2000).

[54] M. Capone, G. Sangiovanni, C. Castellani, C. Di Castro and M. Grilli, Phys. Rev. Lett.

92, 106401 (2004).
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