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1

Introduction

The field of integrable systems is born together with classical mechanics, with a quest for exact
solutions of Newton’s equations of motion. It turned out that apart from Kepler problem,
which was solved by Newton himself, after two centuries of hard investigations, only a handful
of other cases were found (harmonic oscillator, Euler top (1758), Lagrange top (1788), geodesic
motion on the ellipsoid). In 1855 Liouville finally provided a general framework characterizing
the cases where the equations of motion are “solvable by quadratures”. All examples previously
found indeed pertained to this setting and some other integrable cases were found (particle on
the sphere under a quadratic potential (1859), Kirchoff top (1870), Kowalesvki top (1889)).
The subject stayed dormant until the second half of the twentieth century, when Gardner,
Greene, Kruskal and Miura invented the classical inverse scattering method for the famous
Korteveg-de Vries equation. Soon afterwards, the Lax formulation was discovered and the
connection with integrability was unveiled by Faddeev, Zakharov and Gardner. This was the
signal for a revival of the domain leading to an enormous amount of results, and truly general
structures emerged which organized the subject. More recently, the extension of these results
to quantum mechanics led to remarkable results and is still a very active field of research.

1.1 A synopsis of finite-dimensional classical integrable systems

Almost all known integrable systems possess a Lax representation. In the situation of systems
described by ordinary differential equations, a Lax representation for a given system means
that there exist two maps L : P → g and M : P → g, from the system’s phase space P into
some Lie algebra g, such that the equations of motion are equivalent to

L̇ = [L,M ]. (1.1)

The map L is called Lax matrix, while the map M is called auxiliary matrix of the Lax
representation. The pair (L,M) is called Lax pair. Finding a Lax representation for a given
system usually implies its integrability, due to the fact the Ad-invariant functions on g are
integrals of motion of the system (1.1), and therefore the values of such functions composed
with the map L deliver functions on P serving as integrals of motion of the original system.

In the Hamiltonian context, there remains something to be done in order to establish the
complete integrability, namely to show that the number of functionally independent integrals
thus found is large enough, and that they are in involution. There exists an approach which
incorporates the involutivity property in the construction of Lax equations, namely the r-matrix
approach.

It is based on the following observation: usually the auxiliary matrix M in Eq. (1.1) may
be presented as

M = R (f(L)), (1.2)

where R : g → g is a linear operator, and f : g → g is an Ad-covariant function. This obser-
vation is related to the fact that integrable systems appear not separately, but are organized
in hierarchies: to every covariant function f there corresponds a Lax equation of the form
(1.1) with M given in Eq. (1.2). The linear operator R is called the R-operator governing

7



1.1 A synopsis of finite-dimensional classical integrable systems 8

the hierarchy. If R depends on the points of P it is called dynamical, otherwise it is called
constant. In the following we shall deal with constant R-operators.

A remarkable feature of Eq. (1.1), is that they often can be included into an abstract
framework of Hamiltonian equations on g. Precisely, there can be defined suitable Poisson
structures on g, called r-matrix algebras, such that the corresponding Hamiltonian equations
have the form (1.1) and the map L is Poisson. There exist several variants of r-matrix struc-
tures. The most important ones are the so called linear r-matrix brackets and quadratic r-matrix
brackets. The linear r-matrix brackets are certain Lie-Poisson brackets on g∗, where the dual
space g∗ is identified with g by means of an invariant scalar product. The definition of the
quadratic r-matrix brackets requires the introduction of suitable associative algebras, so that
somewhat more than just a Lie commutator is needed. In the following we shall deal just with
linear r-matrix structures.

The aim of this Section is to briefly introduce some of the standard techniques used in
the modern theory of classical finite-dimensional integrable systems. We shall present just
some useful notions and concepts in order to insert the contents of our Thesis in a well-defined
context.

There exist several excellent textbooks covering all the material reviewed in this Section.
Our presentation is based mainly on [4, 91]. A complete treatment of the subject can be found
also in [9, 29, 59, 79].

1.1.1 Poisson brackets and Hamiltonian flows

Let F(P) be the set of smooth real-valued functions on a smooth manifold P .

Definition 1.1 A Poisson bracket on P is a bilinear operation on the set F(P), denoted with
{·, ·} and possessing the following properties:

1. skew-symmetry:
{f, g} = −{g, f}, ∀ f, g ∈ F(P);

2. Leibniz rule:
{f, g h} = h {f, g}+ g {f, h}, ∀ f, g, h ∈ F(P);

3. Jacobi identity:

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0, ∀ f, g, h ∈ F(P).

The pair (P , {·, ·}) is called a Poisson manifold.

Definition 1.2 Let (P , {·, ·}) be a Poisson manifold. A Hamiltonian vector field XH corre-
sponding to the function H ∈ F(P), is the unique vector field on P satisfying

XH · f
.
= {H, f}, ∀ f ∈ F(P).

The function H is called a Hamilton function of XH . The flow φt : P → P, t ∈ R, of the
Hamiltonian vector field XH is called a Hamiltonian flow of the Hamilton function H.

Proposition 1.1 Let φt : P → P be the Hamiltonian flow with the Hamilton function H.
Then

H ◦ φt = H,

and
d

dt
(F ◦ φt) = {H,F ◦ φt}.
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In particular, a function f ∈ F(P) is an integral of motion of the flow φt if and only if
{H, f} = 0, that is, if H and f are in involution.

A remarkable feature of the Hamiltonian flows is that each of the map constituting such
flows preserves the Poisson brackets.

Definition 1.3 Let (P , {·, ·}P) and (Q, {·, ·}Q) be two Poisson manifolds, and let φ : P → Q
be a smooth map. Is is called a Poisson map if

{f, g}Q ◦ φ = {f ◦ φ, g ◦ φ}P , ∀ f, g ∈ F(Q).

Proposition 1.2 If φt : P → P is a Hamiltonian flow on P, then for each t ∈ R, the map φt

is Poisson.

1.1.2 Symplectic manifolds and symplectic leaves

A more traditional approach to Hamiltonian mechanics is based on another choice of the
fundamental structure, namely the symplectic manifold.

Definition 1.4 A symplectic structure on a manifold P is a non-degenerate closed two-form
Ω on P. The pair (P ,Ω) is called a symplectic manifold.

This structure is a particular case of the Poisson bracket structure. One can define Hamil-
tonian vector fields with respect to a symplectic structure.

Definition 1.5 Let (P ,Ω) be a symplectic manifold. A Hamiltonian vector field XH corre-
sponding to the function H ∈ F(P), is the unique vector field on P satisfying 1

Ω (ξ,XH(Q)) = 〈∇H(Q), ξ 〉, ∀ ξ ∈ TQP .

The function H is called a Hamilton function of XH . The flow φt : P → P, t ∈ R, of the
Hamiltonian vector field XH is called a Hamiltonian flow of the Hamilton function H.

A symplectic structure yields a vector bundle isomorphism between T ∗P and TP . Indeed,
to any vector η ∈ TQP there corresponds a one-form ωη ∈ T

∗
QP defined as

ωη(ξ)
.
= Ω(ξ, η), ∀ ξ ∈ TQP .

Actually the correspondence η 7→ ωη is an isomorphism between T ∗
QP and TQP . Denote by

J : T ∗
QP → TQP the inverse isomorphism. Then Definition 1.5 implies that

XH = J (∇H).

At any point Q ∈ P , the tangent space TQP is spanned by Hamiltonian vector fields at Q.

Definition 1.6 Let (P1,Ω1) and (P2,Ω2) be two symplectic manifolds. A smooth map φ :
P1 → P2 is called symplectic if

Ω1(ξ, η) = Ω2 (TQφ(ξ), TQφ(η)), ∀ ξ, η ∈ TQP ,

the form Ω1 being taken in an arbitrary point Q ∈ P1, and the form Ω2 being taken in the
corresponding φ(Q) ∈ P2.

1For a function f ∈ F(P) we define its gradient ∇f : P → T ∗P in the usual way: let Q ∈ P, then ∇f(Q) is
an element of T ∗

Q
P such that

〈∇f(Q), Q̇ 〉
.
=

d

dε
f(Q(ε))

˛

˛

˛

˛

ε=0

, ∀ Q̇ ∈ TQP,

where Q(ε) stands for an arbitrary curve in P through Q(0) = Q, with the tangent vector Q̇(0) = Q̇.
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Let X(P) the set of vector fields on P .

Proposition 1.3 The flow φt of a vector field X ∈ X(P) on a symplectic manifold (P ,Ω)
consists of symplectic maps if and only if this field is locally Hamiltonian, i.e. if there exists
locally a function H ∈ F(P) such that X = XH = J (∇H).

Let us show how to include the symplectic Hamiltonian mechanics into the Poisson bracket
formalism. The following proposition holds.

Proposition 1.4 The flow φt of a vector field X ∈ X(P) on a symplectic manifold (P ,Ω)
consists of symplectic maps if and only if this field is locally Hamiltonian, i.e. if there exists
locally a function H ∈ F(P) such that X = XH = J (∇H).

Proposition 1.5 Let (P ,Ω) be a symplectic manifold. Then it can be made into a Poisson
manifold by defining a Poisson bracket via the formula

{f, g}
.
= Ω (Xf , Xg) = Ω (J (∇f), J (∇g)).

We can now characterize symplectic manifolds as a subclass of Poisson manifolds. Let
(P , {·, ·}) be a N -dimensional Poisson manifold. Let Q ∈ P and consider the local coordinates
{xi}

N
i=1 in the neighborhood of Q. We have

{f, g}
.
=

N∑

i,j=1

Pi,j
∂f

∂xi

∂g

∂xj
, ∀ f, g ∈ F(P),

where the skew-symmetric N ×N matrix Pi,j
.
= {xi, xj}, is a coordinate representation of an

intrinsic object called Poisson tensor.

Definition 1.7 The rank of the matrix Pi,j , 1 ≤ i, j ≤ N , is called the rank of the Poisson
structure.

Of course, the rank of Pi,j does not depend on the system of local coordinates {xi}
N
i=1. In

a more invariant way, we can say that there is an antisymmetric tensor π ∈ Λ2(T ∗P) such that

{f, g}
.
= π (∇f,∇g).

Proposition 1.6 A Poisson manifold (P , {·, ·}) is symplectic if the rank of the Poisson struc-
ture is everywhere equal to the dimension of the manifold P.

Since the matrix Pi,j , 1 ≤ i, j ≤ N , is skew-symmetric, it can have full rank only if N is
even. Hence the dimension of a symplectic manifold is always an even number.

Definition 1.8 Let (P , {·, ·}P) be a Poisson manifold. A submanifold M ⊂ P is called a
Poisson submanifold of P, if there exists a Poisson bracket {·, ·}M onM such that the inclusion
map i : P →M is Poisson. Such a bracket is unique if it exists and then it is called the induced
Poisson bracket on M.

Proposition 1.7 A submanifold M ⊂ P is Poisson if and only if an arbitrary Hamiltonian
vector field {H, ·} on P in the points of M is tangent to M.

So, Poisson submanifolds are integral manifolds for arbitrary Hamiltonian vector fields.
Minimal Poisson submanifolds are the so-called symplectic leaves. A degeneration of a Poisson
structure is related to the existence of functions which are in involution with an arbitrary
function on P .
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Definition 1.9 A function C ∈ F(P) is called a Casimir function of a Poisson manifold
(P , {·, ·}) if

{C, f} = 0, ∀ f ∈ F(P).

In other words, the Casimir functions generate trivial Hamiltonian equations of motion and
they are constant on symplectic leaves.

1.1.3 Complete integrability

We now present the key notion of integrability of a given Hamiltonian system. The following
theorem, called Arnold-Liouville theorem, tells how many integrals of motion assure integra-
bility of a given system, and describes the motion on the common level set of these integrals.

Theorem 1.1 Let (P , {·, ·}) be a 2N -dimensional symplectic manifold. Suppose that there
exist N functions f1, ..., fN ∈ F(P), such that

1. f1, ..., fN are functionally independent, i.e. the gradients ∇fi’s are linearly independent
everywhere on P;

2. f1, ..., fN are in involution, i.e. {fi, fj} = 0, 1 ≤ i, j ≤ N .

Let W be a connected component of a common level set:

W
.
= {Q ∈ P : fi(Q) = ci, 1 ≤ i ≤ N}.

Then W is diffeomorphic to Td × RN−d, with 0 ≤ d ≤ N , being Td a d-dimensional torus.
If W is compact, then it is diffeomorphic to TN . In some neighborhood W × V , where

V ⊂ RN is an open ball, there exist coordinates {Ii, θi}
N
i=1, {Ii}

N
i=1 ∈ V , {θi}

N
i=1 ∈ TN , called

action-angle coordinates, with the following properties:

1. Ii = Ii(f1, ..., fN), 1 ≤ i ≤ N ;

2. {Ii, Ij} = {θi, θj} = 0, {Ii, θj} = δi,j, 1 ≤ i, j ≤ N ;

3. For an arbitrary Hamilton function H = H(f1, ..., fN ), the Hamiltonian equations of
motion on P read

İi = 0, θ̇i = ωi(I1, ..., IN ), 1 ≤ i ≤ N ;

4. For an arbitrary symplectic map Φ : P → P admitting f1, ..., fN as integrals of motion,
the equations of motions in the coordinates {Ii, θi}

N
i=1 take the form:

Ĩi = Ii, θ̃i = θi + Ωi(I1, ..., IN ), 1 ≤ i ≤ N.

Definition 1.10 Hamiltonian flows and Poisson maps on 2N -dimensional symplectic mani-
folds possessing N functionally independent and involutive integrals of motion, are called com-
pletely integrable (in the Arnold-Liouville sense).

1.1.4 Lie-Poisson brackets

Let g be a finite-dimensional (complex) Lie algebra with Lie bracket [ ·, · ], and let g∗ its dual
space. Thus, to X ∈ g we associate a linear function X∗ on the dual vector space g∗, which is
defined by

X∗ : g∗ → C : L 7→ 〈L,X 〉,
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with L ∈ g∗. The vector space of linear functions on g∗ forms a Lie algebra, isomorphic to g,
by setting [X∗, Y ∗ ]g∗

.
= ([X,Y ])∗. It follows that g∗ admits a Poisson structure {·, ·} whose

structure functions are linear functions with the structure constants of g as coefficients. We
give the following definition.

Definition 1.11 The Lie-Poisson bracket on g∗ is defined by the formula

{f, g}(L)
.
= 〈L, [∇f(L),∇g(L) ] 〉, ∀ f, g ∈ F(g∗). (1.3)

It is easy to verify that the bracket defined in Eq. (1.3) satisfies the Jacobi identity. The
above definition implies that the dual of g carries a natural Poisson structure, called Lie-Poisson
structure on g∗.

The Hamiltonian equations of motion on g∗ with respect to the Lie-Poisson bracket read

L̇ = {H,L} = ad∗
∇H(L) L, (1.4)

whereH ∈ F(g∗) is a Hamilton function. The Casimir functions are exactly those that generate
a trivial dynamics. They are characterized by the equation

ad∗
∇C(L) L = 0,

and they are called coadjoint invariants.
An important case, in which the above formulae simplify significantly, is the following one.

Let g be equipped with a non-degenerate scalar product 〈 ·, · 〉 : g × g → C, invariant in the
sense that 〈 ξ, [ η, ζ ] 〉 = 〈 [ ξ, η ], ζ 〉, ∀ ξ, η, ζ ∈ g. This is the case, for example, for semi-simple
Lie algebras (in particular for the matrix Lie algebras), where 〈 ·, · 〉 is the Cartan-Killing form.
In such a case, g∗ can be identified with g by means of this scalar product, and its invariance
means that ad∗ = −ad, so that the notion of coadjoint invariant functions on g∗ coincides with
the notion of adjoint invariant functions on g. Hence, Eq. (1.4) admits the following Lax form:

L̇ = {H,L} = [L,∇H(L) ].

The Casimir functions are defined by the equation

[L,∇C(L) ] = 0.

Let us now choose an arbitrary basis {Xα}dim g

α=1 of g. The commutation relations between
the elements of the basis read

[
Xα, Xβ

]
= Cαβγ Xγ , 1 ≤ α, β ≤ dim g,

being {Cαβγ }
dim g

α,β,γ=1 the set of structure constants of the Lie algebra g. Hereafter we shall use
the convention of summing over repeated greek indices: they shall always run from 1 to dim g.

Let {Xα}
dimg

α=1 be a basis of g∗, with pairing 〈Xα, Xβ 〉 = δαβ . Under the assumption that
g has a non-degenerate symmetric bilinear form 〈 ·, · 〉 invariant under the adjoint action, we
can take the Cartan-Killing form as 〈 ·, · 〉, thus identifying g with g∗. If g is simple and
represented as a matrix Lie algebra we may assume that the Cartan-Killing form is given by
gαβ

.
= tr[XαXβ].

If L ∈ g∗ then L = yβXβ = gαβX
α yβ, where the yβ ’s are the coordinate functions on g∗

and gαβ is the inverse of the Cartan-Killing metric.
The gradient of a coordinate function yα is given by ∇yα = Xα. Using Eq. (1.3) we get

{
yα, yβ

}
(L) = 〈L,

[
Xα, Xβ

]
〉 = Cαβγ 〈L,X

γ 〉 = Cαβγ yγ , (1.5)
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with 1 ≤ α, β ≤ dim g.
It is possible to give a compact representation for the Lie-Poisson bracket (1.5). Let us

introduce the so-called tensor Casimir Π
.
= gαβ X

α ⊗Xβ ∈ g⊗ g. Defining

{L⊗ 1,1⊗ L}
.
= gαβ gγδ

{
yβ , yδ

}
Xα ⊗Xδ,

we immediately get
{L⊗ 1,1⊗ L}+ [ Π, L⊗ 1 + 1⊗ L ] = 0.

1.1.5 Linear r-matrix structure

The linear r-matrix structure on g∗ is, in principle, nothing but a special case of the Lie-
Poisson structure, corresponding to an alternative Lie bracket on g. To define it, the following
ingredients are necessary: a Lie algebra g with Lie bracket [ ·, · ] and a linear operator R : g→ g.

Definition 1.12 A linear operator R : g→ g is called an R-operator, if the following bracket
defines on g a new structure of Lie algebra:

[ ξ, η ]R
.
=

1

2
([R(ξ), η ] + [ ξ, R(η) ]) , ∀ ξ, η ∈ g. (1.6)

A sufficient condition for the bracket in Eq. (1.6) to be indeed a Lie bracket is given by the
following statement.

Proposition 1.8 If R : g→ g satisfies the modified Yang-Baxter equation, that is given by

[R(ξ), R(η) ]−R ([R(ξ), η ] + [ ξ, R(η) ]) = −α [ ξ, η ], ∀ ξ, η ∈ g, α ∈ C, (1.7)

then [ ξ, η ]R is a Lie bracket. If α = 0, Eq. (1.7) is called the classical Yang-Baxter equation

If the R-operator satisfies Eq. (1.7), then a new Lie-Poisson bracket on g∗ is defined:

{f, g}(L)
.
=

1

2
〈 [R(∇f(L)),∇g(L) ] + [∇f(L), R(∇g(L)) ], L 〉, ∀ f, g ∈ F(g∗). (1.8)

This bracket is called the linear r-matrix bracket corresponding to the operator R.
The most important general feature of this construction is given in the following statement.

Theorem 1.2 1) Let H ∈ F(g∗) be a coadjoint invariant of g. Then the Hamiltonian equa-
tions on g∗ with respect to the Lie-Poisson bracket (1.8) read

L̇ = ad∗
M L, M

.
=

1

2
R (∇H(L));

2) Coadjoints invariants of g are in involution with respect to the Lie-Poisson bracket (1.8).

Let r ∈ g⊗ g be the matrix (called r-matrix), canonically corresponding to the operator R.
Notice that the tensor Casimir Π is nothing but the r-matrix canonically corresponding to the
identity operator on g.

Let us give the following definition.

Definition 1.13 Let (P , {·, ·}) be a Poisson manifold and let g be a Lie algebra, equipped with
a Lie-Poisson bracket (1.8). An element L : P → g is called a Lax operator with r-matrix r if
L is a Poisson map.



1.1 A synopsis of finite-dimensional classical integrable systems 14

Proposition 1.9 Let L : P → g be a Lax operator with r-matrix r. Then

{L⊗ 1,1⊗ L}+ [ r, L⊗ 1 + 1⊗ L ] = 0.

We now specialize the above construction to the case in which g ≡ gl(V ), where V is a
finite-dimensional vector space. The relevance of r-matrices and their Lie-Poisson brackets for
the theory of integrable systems is given by the following theorem.

Theorem 1.3 Let L : P → g be a Lax operator with r-matrix r and g ≡ gl(V ). Then the
functions Hi

.
= trLi ∈ F(g∗), i ∈ N\{0}, are in involution with respect to Lie-Poisson brackets

induced by r. Moreover, the Hamiltonian vector field associated to Hi has the Lax form

XHi
· L = [ i tr2(1⊗ L

i−1 r), L ].

The fact that the traces of powers of L are in involution can also be restated by saying
that the coefficients of the characteristic polynomial of L, which are elements of F(g∗), are in
involution, or by saying that the eigenvalues of L are in involution.

Suppose that L ∈ g is a Lax operator. If there exist functions a, b ∈ g⊗ g such that

{L⊗ 1,1⊗ L} = [1⊗ L, a ]− [L⊗ 1, b ], (1.9)

one can proves that the traces of the powers of L are also in involution. The following theorem,
called Babelon-Viallet theorem, assures that, if the traces of L are in involution, then - under
some genericity assumption on L - there exist functions a, b ∈ g⊗ g such that Eq. (1.9) holds.

Theorem 1.4 Let L : P → g be a Lax operator with r-matrix r and g ≡ gl(V ). Suppose that:

1. There exists an open subset U of P such that L is diagonalizable for all Q ∈ P;

2. The coefficients of the characteristic polynomial of L are in involution.

Then there exist an open subset V ⊆ U of P, and smooth functions a, b : V → g⊗ g, such that

{L⊗ 1,1⊗ L} = [1⊗ L, a ]− [L⊗ 1, b ].

A very important role in the theory of integrable systems is played by the so-called loop
algebras (or affine Lie algebras ), i.e. Lie algebras of Laurent polynomials over some finite-
dimensional Lie algebra g:

g [λ, λ−1 ]
.
=
{
X(λ) =

∑
p∈Z

Xp λ
p, Xp ∈ g

}
,

with Lie bracket given by [X,Y ](λ)
.
= [X(λ), Y (λ) ] = λi+j [X,Y ]. There exist an infinite

family of non-degenerate scalar products in g [λ, λ−1 ], enumerated by σ ∈ Z:

〈X(λ), Y (λ) 〉σ
.
= (〈X(λ), Y (λ) 〉)σ ,

i.e. the coefficient by λσ of the Laurent polynomial on the right hand side; this Laurent
coefficient is nothing but the pointwise scalar product in g.

All the above constructions can be generalized to the case of loop algebras. For further
details see [9, 29, 59, 79, 91]. We now give two explicit examples of R-operators and r-matrices.

Example 1.1 Let g ≡ gl(N), with the non-degenerate invariant scalar product 〈X,Y 〉
.
=

tr(X Y ). A generic element of g is written

L =
N∑

j,k=1

ℓjk Ejk,
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where the matrices Ejk form a basis of gl(N): the only non-vanishing entry of Ejk is the unit
on the intersection of the j-th row anf the k-th column. The dual basis is given by E∗

jk = Ekj .
The functions L 7→ ℓjk form a functional basis of F(g) and their gradients are given by ∇ℓjk =
E∗
jk = Ekj .

The pairwise Lie-Poisson brackets of the coordinate functions read, see Eq. (1.8),

{ℓij, ℓkl} =
1

2
〈 [R(Eji), Elk ] + [Eji, R(Elk) ], L 〉. (1.10)

Introduce N4 coefficients rij,mn according to the formula

R(Eji) =

N∑

m,n=1

rij,mn Emn ⇔ rij,mn = 〈R(Eji), Enm 〉.

Hence Eq. (1.10) may be rewritten as

{ℓij, ℓkl} =
1

2

(
N∑

m=1

rij,ml ℓkn −

N∑

n=1

rij,kn ℓnl +

N∑

n=1

rkl,in ℓnj −

N∑

m=1

rkl,mj ℓim

)
.

The N2 ×N2 r-matrix, canonically corresponding to the linear operator R is given by

r
.
=

N∑

i,j,k,l=1

rij,kl Eij ⊗ Ekl.

This is the matrix a appearing in Eq. (1.9), i.e. r = a, while the matrix b is given by

b
.
=

N∑

i,j,k,l=1

rkl,ij Eij ⊗ Ekl.

Notice that b = Π aΠ, where Π
.
=
∑N

j,k=1 Ejk ⊗ Ekj is the permutation operator.

Example 1.2 Let us consider the loop algebra g [λ, λ−1 ] with g ≡ gl(N), with the non-
degenerate invariant scalar product 〈X(λ), Y (λ) 〉−1

.
= (〈X(λ), Y (λ) 〉)−1. In this case we may

write a generic element of g [λ, λ−1 ] as

L(λ) =
∑

p∈Z

N∑

j,k=1

ℓ
(p)
jk λ

pEjk,

and the gradients of the functions L 7→ ℓ
(p)
jk are given by ∇ℓ

(p)
jk = λ−p−1Ekj . Consider now the

following two subalgebras of g [λ, λ−1 ]:

g≥0
.
=
⊕

p≥0

λp g, g<0
.
=
⊕

p<0

λp g.

Obviuosly, as a vector space, g [λ, λ−1 ] = g≥0⊕g<0. Let P≥0 and P<0 stand for the projection
operators from g [λ, λ−1 ] onto the corresponding subspace g≥0, g<0 along the complementary
one. It is easily shown that the skew-symmetric operator R

.
= P≥0 − P<0 satisfies the modified

Yang-Baxter equation (1.7). Let us compute the corresponding r-matrix. We get:

r
(p,q)
ij,kl = 〈R(λ−p−1 Eji), λ

−q−1 Elk 〉−1 =

{
+ p < 0
− p ≥ 0

}
δp,−q−1 δj,k δi,l,
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so that

r(λ, µ) =
∑

(p,q)∈Z2

N∑

i,j,k,l=1

r
(p,q)
kl,ij Eij ⊗ Ekl =



∑

p<0

−
∑

p≥0


λp µ−p−1

N∑

i,j

Eij ⊗ Eji.

Performing the formal summation we get

r(λ, µ) = a(λ, µ) =
2

λ− µ
Π = −b(λ, µ).

Therefore, Eq. (1.9) reads

{L(λ)⊗ 1,1⊗ L(µ)} =
1

λ− µ
[1⊗ L+ L⊗ 1,Π ].

1.1.6 The problem of integrable discretization

The importance of the problem of integrable discretization is evident for anyone who agrees
with the following wisdom [91]:

• Differential equations form an extremely useful instrument in the sciences;

• In order to extract quantitative informations from the models governed by differential
equations, it is often necessary to solve them numerically, with the help of various dis-
cretization methods;

• By investigation of long-term dynamics, i.e. the features of dynamical systems on very
long time intervals, their qualitative features become of first rank importance;

• It is therefore crucial to assure that the discretized models exhibit the same qualitative
features of the dynamics as their continuous counterparts.

To assure the coincidence of the qualitative properties of discretized models with that of the
continuous ones becomes one of the central ideas of modern numerical analysis, which therefore
gets into a close interplay with different aspects of dynamical systems theory.

We mention here some of the most important approaches to integrable discretization [91]:

1. Any integrable system possesses a zero curvature representation, i.e. a representation
as a compatibility condition of two auxiliary linear problems. Realization of this led
naturally to a discretization of these linear problems [1, 29]

2. One of the most intriguing and universal approaches to integrable systems is the Hirota’s
bilinear method (1973). It seems to be able to produce discrete versions of the majority of
solitons equations, but it still remains somewhat mysterious, and the mechanism behind
is yet to be fully understood.

3. A fruitful method is based on the direct linearization [69]. Its basic idea is to derive inte-
grable non-linear differential and difference equations which are satisfied by the solutions
of certain linear integral equations. A large variety of continuous and discrete soliton
equations has been obtained in this way.

4. Differential equations describing various geometric problems (surfaces of constant Gaus-
sian or mean curvature, motion of a curve in the space, etc.) turn out to be integrable.
Correspondently, a discretization of geometric notions naturally leads to discrete inte-
grable equations. The area of discrete differential geometry has fluorished in recent years,
see for instance [17, 18, 20, 26, 27, 49].
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5. Considering stationary and restricted flows of soliton hierarchies, closely related to the
“non-linearization” of spectral problems, often leads to interesting discrete equations
[76, 77, 78].

6. An approach based on the discrete variational principle combined with matrix factoriza-
tion, was pushed forward by Veselov and Moser [63, 99, 100, 101]. A set of examples
with similar properties, which also belong to the most beautiful ones, but were derived
without a systematical approach, was given by Suris, see references in the book [91].
Although this approach is heavily based on a guesswork, historically it was the work of
Veselov that consolidated the subject of integrable discretizations into a separate branch
of the theory of integrable systems.

7. Finally, we mention the method of integrable discretization based on the notion of
Bäcklund transformations for finite-dimensional integrale systems. This approach has
been developed by Kuznetsov and Sklyanin [55, 56, 87] and led to several discrete inte-
grable systems [31, 41, 53].

In the present Thesis we shall apply the techniques 6. and 7. in order to construct the
discrete-time counterparts of certain finite-dimensional integrable systems related to classical
Gaudin models. Henceforth we shall give later some further details about these approaches to
integrable discretization. Let us now present a more precise definition of integrable discretiza-
tion of a give integrable system.

Let (P , {·, ·}) be a Poisson manifold. Let H be a Hamilton function of a completely inte-
grable flow on P :

ẋ = f(x) = {H,x}. (1.11)

It is supposed that this flow possesses sufficiently many functionally independent integrals
Ik(x) in involution.

The problem of integrable discretization consists in finding a family of diffeomorphisms
φε : P → P ,

x̂ = φε(x), (1.12)

depending smoothly on a small parameter ε > 0, and satisfying the following properties:

• The maps (1.12) approximate the flow (1.11) in the following sense:

φε(x) = x+ ε f(x) +O(ε2).

• The maps (1.12) are Poisson with respect to {·, ·} on P or with respect to some defor-
mation, {·, ·}ε = {·, ·}+O(ε).

• The maps (1.12) are integrable, i.e. they possess the necessary number of indepen-
dent integrals in involution Ik(x, ε), approximating the integrals of the original system:
Ik(x, ε) = Ik(x) +O(ε).

1.2 Some remarks on the Yang-Baxter equation (YBE)

At an early stage, the Yang-Baxter equation (YBE) appeared in several different works in
literature and sometimes its solutions even preceded the equation. One can trace three streams
of ideas from which the YBE has emerged: the Bethe Ansatz, commuting transfer matrices in
statistical mechanics and factorizable S matrices in field theory. For general references about
the first two topics see [13, 36].
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One of the first occurence of YBE can be found in the study of a one-dimensional quantum
mechanical many-body problem with δ function interaction. By building the Bethe-type wave-
functions, McGuire and others [16, 60] discovered that the N -particle S-matrix factorized into
the product of two-particle ones. C.N. Yang treated the case of arbitrary statistics of particles
by introducing the nested Bethe Ansatz [104, 105]. The YBE appears here in the present form
as the consistency condition for the factorization.

The significance of the YBE in statistical mechanics lies in that it imples the existence of
a commuting family of transfer matrices. Baxter’s solution of the eight vertex model [12] uses
this property to derive equations that determine the eigenvalues of the transfer matrix.

The topics concerning the YBE began to be studied thoroughly in the 80’s also by math-
ematicians like A.A. Belavin, V.G. Drinfeld, P.P. Kulish, E.K. Sklyanin, L.D. Faddeev, M.A.
Semenov-Tian-Shansky and others. This study was motivated by the multitude of applications
that the YBE has in different areas of mathematics and physics: classical and quantum inte-
grable systems, inverse scattering problems, group theory, algebraic geometry and statistical
mechanics.

The classical Yang-Baxter equation (CYBE) was firstly introduced by E.K. Sklyanin [85].
Compared to the YBE, the CYBE represents an important case, since it can be formulated in
the language of Lie algebras. The form of the CYBE is the following one [9, 15]:

[ r12(λ, µ), r13(λ, ζ) ] + [ r12(λ, µ), r23(µ, ζ) ] + [ r13(λ, ζ), r23(µ, ζ) ] = 0, (1.13)

where r is a g ⊗ g valued function of two complex parameters and r12
.
= r ⊗ 1, r23

.
= 1 ⊗ r,

etc., are the natural imbeddings of r(λ) from g ⊗ g into U(g) ⊗ U(g) ⊗ U(g), being U(g) the
universal enveloping algebra of g (an associative algebra with unit). In the theory of classical
integrable systems Eq. (1.13) assures the Jacobi identity for the Lie-Poisson bracket induced
by the r-matrix r.

One of the directions of study in this domain is the classification of solutions in the case
of a simple complex finite-dimensional Lie algebra. Usually one consider solutions with the
following additional conditions:

1. r12(λ, µ) = r21(µ, λ) (unitarity condition);

2. r12(λ, µ) = r12(λ− µ). In this case Eq. (1.13) can be written as

[ r13(λ), r23(µ) ] + [ r12(λ − µ), r13(λ) + r23(µ) ] = 0, (1.14)

and the unitarity condition implies r12(λ) = −r21(−λ).

In [15] the authors investigate the non-degenerate solutions of the CYBE, proving that the
poles of such solutions form a discrete group of the additive group of complex numbers. More-
over, they give a classification of non-degenerate solutions: elliptic, trigonometric and rational.
Concerning the first class of solutions, the authors reduce the problem of finding non-degenerate
elliptic solutions to the one of describing triples (g, A,B), where A and B are commuting au-
tomorphisms of finite order of g not having common fixed nonzero vectors. Moreover they
prove that if such triples exist then there is an isomorphism g ∼= sl(n). Concerning the second
class of solutions, they give a complete classification using the data from the Dynkin diagrams.
Regarding the rational solutions, in [15] there are given several examples associated with Frobe-
nius subalgebras of g. In [92] the author reduces the problem of listing rational solutions to the
classification of quasi-Frobenius subalgebras of g, which are related to the so-called maximal
orders in the loop algebra corresponding to the extended Dynkin diagrams.
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1.3 A brief history of Gaudin models

The Gaudin models were introduced in 1976 by M. Gaudin [35] and attracted considerable
interest among theoretical and mathematical physicists, playing a distinguished role in the
realm of integrable systems. Their peculiar properties, holding both at the classical and at the
quantum level, are deeply connected with the long-range nature of the interaction described
by its commuting Hamiltonians, which in fact yields a typical “mean field” dynamic.

Precisely, the Gaudin models describe completely integrable classical and quantum long-
range spin chains. Originally [35] the Gaudin model was formulated as a spin model related to
the Lie algebra sl(2). Later it was realized [36, 44], that one can associate such a model with any
semi-simple complex Lie algebra g and a solution of the corresponding classical Yang-Baxter
equation [15, 85]. An important feature of Gaudin models is that they can be formulated in
the framework of the r-matrix approach. In particular they admit a linear r-matrix structure,
that characterizes both the classical and the quantum models, and holds whatever be the
dependence (rational (XXX), trigonometric (XXZ), elliptic (XYZ)) on the spectral parameter.
In this context, it is possible to see Gaudin models as limiting cases of the integrable Heisenberg
magnets [87, 92], which admit a quadratic r-matrix structure.

In the 80’s, the rational Gaudin model was studied by Sklyanin [86] and Jurco [44] from the
point of view of the quantum inverse scattering method. Precisely, Sklyanin studied the su(2)
rational Gaudin models, diagonalizing the commuting Hamiltonians by means of separation
of variables and underlining the connection between his procedure and the functional Bethe
Ansatz. In [34] the separation of variables in the rational Gaudin model was interpreted as a
geometric Langlands correspondence. On the other hand, the algebraic structure encoded in
the linear r-matrix algebra allowed Jurco to use the algebraic Bethe Ansatz to simultaneously
diagonalize the set of commuting Hamiltonians in all cases when g is a generic classical Lie
algebra. We have here to mention also the the work of Reyman and Semenov-Tian-Shansky
[79]. Classical Hamiltonian systems associated with Lax matrices of the Gaudin-type were
widely studied by them in the context of a general group-theoretic approach.

Some others relevants paper on the separability property of Gaudin models are [3, 28, 30,
38, 46, 51, 92]. In particular, the results in [28], see also [34], are based on the interpretation of
the corresponding Gaudin models as conformal field theoretical models (Wess-Zumino-Witten
(WZW) models). As a matter of fact, elliptic Gaudin models played an important role in estab-
lishing the integrability of the Seiberg-Witten theory [93] and in the study of isomonodromic
problems and Knizhnik-Zamolodchikov systems [32, 39, 68, 81, 95].

Let us mention some important recent works on (classical and quantum) Gaudin models:

• In [30] it is discussed the bi-Hamiltonian formulation of sl(n) rational Gaudin models.
The authors obtained a pencil of Poisson brackets that recursively define a complete set
of integrals of motion, alternative to the one associated with the standard Lax represen-
tation. The constructed integrals coincide, in the sl(2) case, with the Hamiltonians of
the bending flows in the moduli space of polygons in the euclidean space introduced in
[47].

• In [41] it is proposed an integrable time-discretization of su(2) rational Gaudin mod-
els. The approach to discrete-time mechanics used here is the one through Bäcklund
transformations proposed by Sklyanin and Kuznetsov [49].

• The algebraic richness and robustness of Gaudin models allowed the construction of
several integrable extensions of them. We mention the papers of Ragnisco, Ballesteros
and Musso [11] where integrable q-deformations of Gaudin models are considered in the
framework of the coalgebric approach. Also the superalgebra extensions of the Gaudin
systems have been worked out, see for instance [22, 50, 67].
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• Recently, in [94], the quantum eigenvalue problem for the gl(n) rational Gaudin model has
been widely studied and a construction for the higher Hamiltonians has been proposed.

Finally, we would like to mention the fact that recently a certain interest in Gaudin models
arose in the theory of condensed matter physics. In fact, it has been noticed [5, 84, 82] that
the BCS model, describing the superconductivity in metals, and the sl(2) Gaudin models are
closely related. In particular, in [5], this relation allowed to translate the results of Sklyanin on
correlation functions of the sl(2) Gaudin models [89] to the BCS model, obtaining the exact
correlation functions in the canonical ensemble.

1.4 Outline of the Thesis

The present Thesis consists of a short Introduction and two Chapthers. In the following we
briefly summarize their contents.

• Chapter 2. Integrable extensions of Gaudin models. In the first two Sections of
this Chapter we give an essential review of the Drinfeld-Belavin solutions to the CYBE
[15], explaining how one can associate - under some genericity conditions - with a non-
degenerate solution r(λ) a proper Lax matrix, thus defining the (N -site) classical Gaudin
models associated with a finite-dimensional simple Lie algebra g [35, 36, 44, 79, 86]. This
general construction allow us to present the Lax matrices of the elliptic, trigonometric and
rational Gaudin models and to give an r-matrix formulation in terms of linear r-matrix
brackets. The explicit form of the integrals of motion is given in the case of g ≡ su(2).

In the remaining three Sections we present a general algebraic construction, based on
Inönü-Wigner contractions (or equivalently Leibniz extensions) performed on the Lie
algebra ⊕Ng underlying the model. We shall prove that the linear r-matrix structure
is not affected by such contractions. Suitable algebraic and pole-coalescence procedures
performed on the N -pole Gaudin Lax matrices, enable us to construct one-body and
many-body hierarchies of integrable models sharing the same (linear) r-matrix structure
of the ancestor models. We remark that this technique can be applied for any simple
Lie algebra g and whatever be the dependence (rational, trigonometric, elliptic) on the
spectral parameter.

Fixing g ≡ su(2), we construct the so called su(2) hierarchies. For instance, assuming
N = 2 and a rational dependence on the spectral parameter, we obtain the standard
Lagrange top associated with e∗(3), in the one-body case, and a homogeneous long-range
integrable chain of interacting Lagrange tops, in the many-body one. This latter system
has been called Lagrange chain. For an arbitrary orderN of the Leibniz extension - where
N is also the number of sites of the ancestor model - the one-body hierarchy consists of
a family of generalized Lagrange tops. They provide an interesting example of integrable
rigid body dynamics described by a Lagrange top with N−2 interacting heavy satellites.

In this context, our main goal is the derivation of integrable systems: we say practically
nothing about solving them. We do not discuss such methods of obtaining solutions,
as the inverse scattering method with its numerous variants or algebro-geometric tech-
niques. However, we always have in mind one of the motivations of integrable discretiza-
tion, namely the possibility of applying integrable Poisson maps for actual numerical
computations. Chapter 3 is devoted to this topic.

The results presented in Chapter 2, Sections 2.3, 2.4, 2.5, are already published. They can
be found in [64, 65]. Some mistakes contained in [64, 65] are now corrected.
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We have here to compare our results with the ones known in literature. Actually, the
integrable systems considered in Chapter 2, are not new. In fact, they have been considered
before in several works, but without using a systematic reduction of Gaudin models. For
instance, to the best of our knowledge, the Lax matrix and the r-matrix formulation of the
Lagrange chain has been introduced in [80] and then investigated in [79], even if the explicit
form of the Hamiltonians and of the equations of motion is not given.

The basic tool of our construction is the notion of generalized Inönü-Wigner contraction of a
Lie algebra. In our case, these contractions are equivalent to certain extensions of Lie algebras,
called Leibniz extensions in [71]. In [71], the authors introduce these new algebraic structures
in the context of current algebras and they do not use them to construct integrable systems.
The first application of Leibniz extensions of Lie algebras (also called jet-extensions) to (finite-
dimensional) integrable systems appears in [40], where just few examples are considered and
without using a general construction.

The first systematic approach to these integrable extensions of Gaudin models appears
indipendently in our paper [64] and in the work of Yu.B. Chernyakov [24]. Nevertheless we
remark here that in [24] the author consider just sl(n) Gaudin models and he does not give
an r-matrix interpretation of these systems. For instance, the integrability property is not
explicitly proven.

Let us now recall some papers where some elements of the one-body and many-body su(2)
hierarchies are considered.

The first (rational) extension of the Lagrange top has been introduced, in a different frame-
work, in [96] and it is here called the twisted Lagrange top. The authors study this model in
the spirit of the dynamical systems theory, so that they do not use a Lax pair and an r-matrix
approach. They obtain this new kind of integrable top adding a cocycle to the Lie-Poisson
structure for the two-field top, thus breaking its semidirect product structure. We remark that
in [96] the so-called twisted top remains a mathematical construction without a physical inter-
pretation. Later on, in [102], the author constructs a Lax matrix for such system, called here
generalized Lagrange top. The integrability is proven by direct inspection since an r-matrix
approach is not used, and the author provides a complete study of the spectral curve through
the algebro-geometric techniques. The main goal in [102] is the proof that the generalized
Lagrange top has monodromy, as well as the standard Lagrange top, so that it does not admit
global action-angle variables.

We finally recall the papers [46, 51] where the problem of separation of variables is inves-
tigated. As a matter of fact, the contracted models inherit the separability property of the
ancestor model. In [46, 51] the authors consider so(2, 1) and so(3) rational Gaudin models:
suitable contraction procedures on the separation coordinates lead to new separable integrable
models.

Therefore, the novelty of the results contained in Chapter 2 consists in: i) a general and
systematic reduction of Gaudin models, preserving the r-matrix formulation; ii) a complete
construction of the Hamiltonians and a physical interpretation of the su(2) hierarchies.

• Chapter 3. Integrable discretizations of su(2) extended rational Gaudin mod-
els. This Chapter is devoted to the construction of Poisson integrable discretizations of
the rational su(2) Gaudin model and its Leibniz extensions. We study the problem of
integrable discretization for such models using two different approaches:

1. The technique of Bäcklund transformations (BTs) for finite-dimensional integrable
systems [55, 56, 87]. Using the method of BTs developed by V.B. Kuznetsov, E.K.
Sklyanin and P. Vanhaecke we construct integrable Poisson maps for the first Leibniz
extension of the Lagrange top and for the rational Lagrange chain. An explicit
construction of BTs for the standard Lagrange top can be found in our paper [53]:
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actually this result is the specialization of BTs for the rational Lagrange chain. As
explained in Section 3.1 these special maps discretize a family of Hamiltonian flows
of the integrable system (and not a particular one).

2. The machinery of discrete-time mechanics [63, 91, 99, 100, 101]. Starting from a
well-known time-discretization of the Lagrange top obtained by Yu.B. Suris and A.
Bobenko in [19], we are able to construct an explicit Poisson integrable map for
the rational su(2) Gaudin model. The obtained discretization is different from the
one considered in [41] through BTs. In particular we focus our attention just on a
special Hamiltonian flow of the system, finding its discrete-time version and proving
its integrability and Poisson property.

Then, using the machinery presented in Chapter 2, we are able to perform the con-
traction procedure on the discrete-time rational su(2) Gaudin model, thus obtaining
integrable discretizations for the contracted systems. In particular, we shall present
the discrete-time extended Lagrange tops and an alternative discretization of the
rational Lagrange chain.

The results presented in Chapter 3, Section 3.1, are already published in [53, 65, 66], while
the results in Section 3.2 are not.
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Integrable extensions of Gaudin models

2.1 Drinfeld-Belavin solutions to CYBE

Let V be a complex finite-dimensional vector space and let g
.
= (V, [ ·, · ])

.
= span{Xα}dim g

α=1 be
a simple Lie algebra. The commutation relations between the elements of the basis read

[
Xα, Xβ

]
= Cαβγ Xγ , 1 ≤ α, β ≤ dim g, (2.1)

where {Cαβγ }
dim g

α,β,γ=1 denote the set of structure constants of the Lie algebra g. Recall that we
are using the convention of summing over repeated greek indices: they shall always run from
1 to dim g.

The classical Yang-Baxter equation (CYBE) is given by the following functional equation,
see Eq. (1.14):

[ r13(λ), r23(µ) ] + [ r12(λ− µ), r13(λ) + r23(µ) ] = 0, (2.2)

where r(λ) is a g ⊗ g valued function of a complex parameter λ (called spectral parameter)
and r12

.
= r ⊗ 1, r23

.
= 1 ⊗ r, etc., are the natural imbeddings of r(λ) from g ⊗ g into

U(g)⊗U(g)⊗U(g), being U(g) the universal enveloping algebra of g (an associative algebra with
unit). If r(λ) is a solution of Eq. (2.2) and (ρi, Vi), i = 1, 2, 3, is a fundamental representation
of g then (ρi ⊗ ρj) r(λ) gives a matrix solution of Eq. (2.2). Hereafter we shall consider
always matrix solutions of the CYBE. In other words we shall identify g with ρ(g), being ρ a
fundamental representation of g.

The structure of the CYBE is well understood and a classification of non-degenerate so-
lutions related to simple Lie algebras was given in [15]. It is close to the classification of the
Dynkin diagrams and their automorphisms. Such a solutions is a meromorphic function that
has a pole of first order at λ = 0 with residue

resλ=0 r(λ) = gαβX
α ⊗Xβ , (2.3)

where gαβ is the inverse of the Cartan-Killing metric related to the basis {Xα}dim g

α=1 . Recall
that, under the assumption that g has a non-degenerate symmetric bilinear form 〈·, ·〉 invariant
under the adjoint action, we can take the Cartan-Killing form as 〈·, ·〉. If g is simple and
represented as a matrix Lie algebra we may assume gαβ

.
= tr[XαXβ].

Remark 2.1 Two remarkable properties of non-degenerate solutions r(λ) of Eq. (2.2) are
[15]:

1. r(λ) fulfils the so-called unitarity condition

r12(−λ) = −r21(λ); (2.4)

2. if γ ∈ Γ, Γ being the set of discrete poles of r(λ), then

r(λ + γ) = (Aγ ⊗ 1) r(λ) = (1⊗A−1
γ ) r(λ), (2.5a)

(Aγ ⊗Aγ) r(λ) = r(λ), (2.5b)

where Aγ is an automorphism of g (its form is given in [15]).

23
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The remarkable feature of the CYBE (2.2) is that it allows averaging over a lattice in the
complex λ-plane. In fact, according to their dependence on the complex parameter λ the
solutions of the CBYE are called rational, trigonometric or elliptic. We give here the following
fundamental result [15, 29, 80].

Theorem 2.1 If r(λ) is a rational, trigonometric or elliptic solution of Eq. (2.2), then its
principal part is respectively given by

r(λ) =
1

λ
gαβ X

α ⊗Xβ

r(λ) =
∑

ω∈Λt

(An ⊗ 1) gαβX
α ⊗Xβ

λ− ω
,

r(λ) =
∑

ω∈Λe

(AnBm ⊗ 1) gαβX
α ⊗Xβ

λ− ω
,

where
Λt

.
= {ω = nω1, (n, ω1) ∈ Z× C} ,

and
Λe

.
= {ω = nω1 +mω2, (n,m) ∈ Z2, Im (ω1/ω2) > 0}.

Here A and B are two finite order commuting automorphisms of g not having a common fixed
vector.

Remark 2.2 Since sl(n) is the only simple Lie algebra possessing such two automorphisms it
follows that the elliptic solution can be defined only for g ≡ sl(n).

For our purposes we are interested in those solutions of Eq. (2.2) that can be written in
the form

r(λ) = gαβX
α ⊗Xβ fαβ(λ), (2.7)

where the fαβ(λ)’s, 1 ≤ α, β ≤ dim g are meromorphic functions such that Eq. (2.3) holds. In
[14, 15, 74, 75] it is shown that rational, trigonometric and elliptic solutions of the form (2.7)
always exist for any choice of the simple Lie algebra g.

We now show that the CYBE (2.2) can be rewritten as a system of functional equations
for the functions fαβ(λ) if r(λ) is of the form (2.7) .

Proposition 2.1 If r(λ) is a solution of the form (2.7) of the CYBE (2.2) then the functions
fαβ(λ), 1 ≤ α, β ≤ dim g, satisfy the following system of functional equations

∑

β,δ

[
gαβ gγδ C

βδ
η fαβ(λ) fγδ(µ) + gδγ gβη C

δβ
α f δγ(λ− µ)fβη(λ)+

+ gαβ gδη C
βδ
γ fαβ(λ− µ)f δη(µ)

]
= 0, (2.8)

for all 1 ≤ α, γ, η ≤ dim g.

Remark 2.3 Note that in Eq. (2.8) the summation is not on all the repeated indices, so that
the sum is explicitly indicated.

Proof: By means of a direct computation we get:

[ r13(λ), r23(µ) ] = gαβ gγδ f
αβ(λ) fγδ(µ)

[
Xα ⊗ 1⊗Xβ,1⊗Xγ ⊗Xδ

]
=

= gαβ gγδ C
βδ
η fαβ(λ) fγδ(µ)(Xα ⊗Xγ ⊗Xη). (2.9)
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On the other hand we have:

[ r12(λ− µ), r13(λ) + r23(µ) ] = gαβ gγη f
αβ(λ− µ) ×

×
[
Xα ⊗Xβ ⊗ 1, (Xγ ⊗ 1⊗Xη) fγη(λ) + (1⊗Xγ ⊗Xη) fγη(µ)

]
=

= gαβ gγη f
αβ(λ − µ) ×

×
[
Cαγδ (Xδ ⊗Xβ ⊗Xη) fγη(λ) + Cβγδ (Xα ⊗Xδ ⊗Xη) fγη(µ)

]
=

=
[
gδγ gβη C

δβ
α f δγ(λ− µ)fβη(λ) + gαβ gδη C

βδ
γ fαβ(λ− µ)f δη(µ)

]
(Xα ⊗Xγ ⊗Xη), (2.10)

where the last expression is obtained from the previous one swapping the indices γ ↔ β, α↔ δ
in the first term and γ ↔ δ in the second one.

Equating Eqs. (2.9) and (2.10) we obtain the system (2.8).

�

2.2 Definition of classical Gaudin models

To each matrix r(λ) of the form (2.7) satisfying the CYBE (2.2) we can associate a Lax matrix
whose entries are functions on the Lie-Poisson manifold associated with g in the following way
[4, 35, 36, 44, 64, 79, 86, 91].

We introduce the vector space dual to g, namely g∗
.
= span{Xα}

dim g

α=1 with pairing given
by 〈Xα, Xβ 〉 = δαβ . If L ∈ g∗ then L = yβ Xβ = gαβX

α yβ, where the yβ ’s are the coordinate
functions on g∗. Since the Cartan-Killing form is a non-degenerate invariant scalar product we
can identify g with g∗. The commutation relations on g given in Eq. (2.1) are associated with
the following Lie-Poisson brackets on g∗:

{
yα, yβ

}
= Cαβγ yγ , 1 ≤ α, β ≤ dim g.

We now introduce the following Lax matrix

ℓ(λ)
.
= gαβ X

α yβ fαβ(λ) ∈ g [λ, λ−1], (2.11)

where the meromorphic functions fαβ(λ), 1 ≤ α, β ≤ dim g, satisfy Eq. (2.8). Hence the
Lax matrix (2.11) can admit a rational, trigonometric or elliptic dependence on the spectral
parameter. Notice that we have denoted with g [λ, λ−1] the Lie algebra of Laurent polynomials
on λ, λ−1 with coefficients in g.

The following statement holds.

Proposition 2.2 The Lax matrix (2.11) satisfies the linear r-matrix algebra

{ℓ(λ)⊗ 1,1⊗ ℓ(µ)}+ [ r(λ − µ), ℓ(λ)⊗ 1 + 1⊗ ℓ(µ) ] = 0, ∀ (λ, µ) ∈ C2, (2.12)

with r(λ) given in Eq. (2.7).

Proof: The proposition can be proven by means of a direct computation:

{ℓ(λ)⊗ 1,1⊗ ℓ(µ)} = gαβ gγδ (Xα ⊗Xγ) fαβ(λ) fγδ(µ)
{
yβ , yδ

}
=

= gαβ gγδ (Xα ⊗Xγ) fαβ(λ) fγδ(µ)Cβδη yη. (2.13)
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On the other hand we have:

[ r(λ − µ), ℓ(λ)⊗ 1 + 1⊗ ℓ(µ) ] = gαβ gγη f
αβ(λ− µ)×

×
[
Xα ⊗Xβ, (Xγ ⊗ 1) yη fγη(λ) + (1⊗Xγ) yη fγη(µ)

]
=

= gαβ gγη f
αβ(λ− µ)×

×
[
Cαγδ (Xδ ⊗Xβ) yη fγη(λ) + Cβγδ (Xα ⊗Xδ) yη fγη(µ)

]
=

=
[
gδγ gβη C

δβ
α f δγ(λ − µ)fβη(λ) + gαβ gδη C

βδ
γ fαβ(λ− µ)f δη(µ)

]
yη(Xα ⊗Xγ), (2.14)

where the last expression is obtained from the previous one swapping the indices γ ↔ β, α↔ δ
in the first term and γ ↔ δ in the second one.

Summing Eqs. (2.13) and (2.14) we immediately see that the resulting equation vanishes
thanks to the system (2.8).

�

The Lax matrix (2.11) can be seen as the local Lax matrix of the integrable classical Gaudin
model. In fact the definition of the classical Gaudin model requires the introduction of the
Lie-Poisson manifold associated with the direct sum of N copies of the Lie algebra g.

Let us define GN
.
= ⊕Ng. A basis of GN is given by {Xα

i }
dim g

α=1 , 1 ≤ i ≤ N with {Xα
i }

dimg

α=1

denoting the basis {Xα}dim g

α=1 on the i-th copy of g. The commutation relations for the elements
of the basis of GN read

[
Xα
i , X

β
j

]
= δi,j C

αβ
γ Xγ

i , 1 ≤ i, j ≤ N. (2.15)

The classical N -site Gaudin model is defined on the Lie-Poisson manifold associated with
G∗
N . We will denote by {yαi }

dim g

α=1 , 1 ≤ i ≤ N , the set of the (time-dependent) coordinate
functions relative on the i-th copy of g∗. Consequently, the Lie-Poisson brackets on G∗

N read
{
yαi , y

β
j

}

Pg

N

= δi,j C
αβ
γ yγi , 1 ≤ i, j ≤ N. (2.16)

Here we have denoted with P g

N the tensor associated with the Lie-Poisson structure defined in
Eq. (2.16). Such Lie-Poisson tensor can be written in the following block matrix form:

(P g

N )i,j
.
= δi,j Yi, (Yi)α,β

.
= Cαβγ yγi , 1 ≤ i, j ≤ N. (2.17)

The involutive Hamiltonians of theN -site Gaudin model are given by the spectral invariants
of the Lax matrix

LG(λ)
.
=

N∑

i=1

ℓi(λ− λi), (2.18)

where the λi’s, with λi 6= λk, 1 ≤ i, k ≤ N , are complex parameters of the model, and

ℓi(λ)
.
= gαβX

α yβi f
αβ(λ) ∈ g [λ, λ−1]. (2.19)

The Lax matrix given in Eq. (2.18) admits a linear r-matrix formulation, which ensures
that all the spectral invariants of the Lax matrix form a family of involutive functions.

Proposition 2.3 The Lax matrix (2.18) satisfies the linear r-matrix algebra

{LG(λ)⊗ 1,1⊗ LG(µ)}Pg

N
+ [ r(λ − µ),LG(λ)⊗ 1 + 1⊗ LG(µ) ] = 0, ∀ (λ, µ) ∈ C2,

(2.20)
with r(λ) given in Eq. (2.7).
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Proof: Taking into account the locality of the Lax matrices ℓi(λ) (2.19), 1 ≤ i ≤ N ,
namely the direct sum structure encoded in the Lie-Poisson brackets (2.16), and the fact that
r-matrix depends just on the difference λ−µ we can perform a computation similar to the one
given in Proposition 2.2, thus proving Eq. (2.20).

�

The involutive Hamiltonians can be computed studying the eigenvector equation (LG(λ)−
µ1)Ψ(λ, µ) = 0, where Ψ(λ, µ) is the eigenvector with eigenvalue µ [4, 9, 79]. The characteristic
equation for this eigenvalue problem is the following algebraic curve in C2:

Γ : det(LG(λ)− µ1) = 0.

Notice that, if n is the dimension of the Lax matrix, the equation of this curve is of the form

(−µ)n +

n−1∑

j=0

hj(λ)µ
j = 0,

where the hj(λ)’s are (time-independent) polynomials in the matrix elements of LG(λ) and
therefore have poles at λi. The involutive Hamiltonians are given by resλ=λi

hj(λ) ∈ F(G∗
N ),

where F(G∗
N ) denotes the space of differentiable functions on G∗

N . Obviously they are not all
indipendent, and their involutivity is ensured thanks to the r-matrix formulation (2.20).

Few remarks on rational Gaudin models

In the case of the rational Gaudin model we have fαβ(λ) = λ−1, 1 ≤ α, β ≤ dim g. It is
convenient to write down the Lax matrix (2.18) in the form

LrG(λ)
.
=

N∑

i=1

Yi
λ− λi

, Yi
.
= gαβX

α yβi ∈ g. (2.21)

In the above formula we have used the index r to explicitly denote the rational dependence on
the spectral parameter. The quadratic integrals, obtained from tr (LrG(λ))2, have the following
form:

Hr
i
.
=

N∑

j=1
j 6=i

tr (Yi Yj)

λi − λj
,

N∑

i=1

Hr
i = 0, (2.22)

so that they are not all indipendent. It is possible to obtain a remarkable linear combination
of the integrals (2.22), that is called rational Gaudin Hamiltonian, namely

HrG
.
=

N∑

i=1

ηiH
r
i =

1

2

N∑

i,j=1
i6=j

ηi − ηj
λi − λj

tr (Yi Yj) , (2.23)

where the ηi’s, with ηi 6= ηk, 1 ≤ i, k ≤ N , are arbitrary complex parameters. A relevant
member of the family of rational Gaudin Hamiltonians (2.23) is obtained fixing ηi ≡ λi,
1 ≤ i ≤ N . The resulting Hamiltonian (2.23) is indipendent from the parameters λi, ηi and
it defines the so called homogeneous rational Gaudin model. The remarkable feature of such a
system is that it is superintegrable [30].

Hamiltonian systems defined on direct products of Lie-Poisson manifolds with Lax matrices
of the form (2.21) have been widely studied by Reyman and Semenov-Tian-Shansky [79]. From
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their results it follows that the spectral invariants of the Lax matrix (2.21) are not enough to
provide the complete integrability of the model. To recover the missing integrals one has to
notice that the spectral invariants of (2.21) are invariant under the global action of the Lie

group associated to g. In particular, if τ ∈ g, then φτ
.
= tr (

∑N
i=1 Yi τ) defines a function

Poisson commuting with all the spectral invariants of (2.21). Varying τ ∈ g the functions φτ
span a not abelian Poisson algebra isomorphic to g: hence one has to extract from the functions
φτ a maximal abelian subalgebra.

A different way to recover the missing integrals is to add “a posteriori” a constant term
P ∈ g with simple spectrum to LrG(λ), namely considering the Lax matrix

LrG(λ,P)
.
= P +

N∑

i=1

Yi
λ− λi

. (2.24)

In the case g ≡ su(n), the constant term P has a natural physical interpretation. It is equivalent
to adding to the Hamiltonian (2.23) a term describing the interaction of the su(n) spins,
described by the Yi’s, with an external constant in time and homogeneous field. In fact the
rational Gaudin Hamiltonian is now defined by

HrG(P)
.
=

N∑

i=1

ηiH
r
i (P) =

1

2

N∑

i,j=1
i6=j

ηi − ηj
λi − λj

tr (Yi Yj) +

N∑

i=1

ηi tr (P Yi) . (2.25)

We know from [79] that the spectral invariants of the Lax matrix (2.24) define a completely
integrable system on G∗

N
.
= ⊕Ng∗, being g one of the classical Lie algebras.

2.2.1 The continuous-time su(2) Gaudin models

We now describe the main features of the (continuous-time) su(2) Gaudin models, see for
instance [30, 35, 36, 41, 44, 45, 64, 79, 86, 88, 92].

Let us fix g ≡ su(2). We choose the following basis of the linear space su(2):

σ1
.
=

1

2

(
0 −i
−i 0

)
, σ2

.
=

1

2

(
0 −1
1 0

)
, σ3

.
=

1

2

(
−i 0
0 i

)
.

It is well-known that the correspondence

R3 ∋ a
.
= (a1, a2, a3)T ←→ a

.
=

1

2

(
−i a3 −i a1 − a2

−i a1 + a2 i a3

)
∈ su(2),

is an isomorphism between (su(2), [ ·, · ]) and the Lie algebra (R3,×), where × stands for the
vector product. This allows not to distinguish between vectors from R3 and matrices from
su(2). We supply su(2) with the scalar product 〈 ·, · 〉 induced from R3, namely

〈a,b 〉 = −2 tr (ab) = 2 tr (ba†), ∀a,b ∈ su(2).

This scalar product allows us to identify the dual space su∗(2) with su(2), so that the coadjoint
action of the algebra becomes the usual Lie bracket with minus, i.e. ad∗

η ξ = [ ξ, η ] = −adη ξ,
ξ, η ∈ su(2).

The Lie-Poisson algebra of the model is precisely (minus) ⊕Nsu∗(2), see Eq. (2.16):

{
yαi , y

β
j

}

P
su(2)
N

= −δi,j εαβγ y
γ
i , (2.26)
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with 1 ≤ i, j ≤ N . Here εαβγ is the skew-symmetric tensor with ε123 ≡ 1. The brackets (2.26)
are degenerate: they possess the N Casimir functions

Ci
.
=

1

2
〈yi,yi 〉, 1 ≤ i ≤ N, (2.27)

that provide a trivial dynamics.
The continuous-time su(2) rational, trigonometric and elliptic Gaudin models are governed

respectively by the following Lax matrices, see Eqs. (2.18) and (2.24):

LrG(λ,p)
.
= σα p

α +

N∑

i=1

σα y
α
i

λ− λi
= p +

N∑

i=1

yi
λ− λi

∈ su(2)[λ, λ−1], (2.28a)

LtG(λ)
.
=

N∑

i=1

[
σ1 y

1
i + σ2 y

2
i

sin(λ− λi)
+ cot(λ− λi)σ3 y

3
i

]
∈ su(2)[λ, λ−1], (2.28b)

LeG(λ)
.
=

N∑

i=1

[
σ1 y

1
i

dn(λ− λi)

sn(λ− λi)
+

σ2 y
2
i

sn(λ− λi)
+ σ3 y

3
i

cn(λ− λi)

sn(λ− λi)

]
∈ su(2)[λ, λ−1], (2.28c)

where cn(λ), dn(λ), sn(λ) are the elliptic Jacobi functions of modulus k. In Eq. (2.28a) p is a
constant vector in R3.

The Lax matrices (2.28a), (2.28b) and (2.28c) describe complete integrable systems on the
Lie-Poisson manifold associated with ⊕Nsu∗(2). According to Eq. (2.20) they satisfy a linear
r-matrix algebra with r-matrix given by

r(λ)
.
= −fα(λ)σα ⊗ σα, (2.29)

where the functions fα(λ), α = 1, 2, 3, are defined by

f1(λ)
.
=





1

λ
rational case,

1

sin(λ)
trigonometric case,

dn(λ)

sn(λ)
elliptic case,

(2.30)

f2(λ)
.
=






1

λ
rational case,

1

sin(λ)
trigonometric case,

1

sn(λ)
elliptic case,

(2.31)

f3(λ)
.
=





1

λ
rational case,

cot(λ) trigonometric case,

cn(λ)

sn(λ)
elliptic case.

(2.32)
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Remark 2.4 As a consequence of the condition (2.5a), the trigonometric Lax matrix (2.28b)
must satisfy the quasi-periodicity condition LtG(λ+ ω1) = ALtG(λ), where A is the inner auto-
morphism of su(2) defined by Aξ

.
= σ3 ξ σ3, ∀ ξ ∈ su(2). The elliptic Lax matrix (2.28c) must

satisfy the quasi-periodicity conditions LeG(λ + ω1) = ALeG(λ), LeG(λ + ω2) = B LeG(λ), where
A,B are the inner automorphisms of su(2) defined by Aξ

.
= σ3 ξ σ3, B ξ

.
= σ1 ξ σ1, ∀ ξ ∈ su(2).

The complete set of integrals of the su(2) rational, trigonometric and elliptic Gaudin models
can be constructed computing the residues in λ = λi of det(Lr,t,eG (λ)−µ1) = 0 (or equivalently

µ2 .
= −(1/2) tr[ (Lr,t,eG (λ))2]). Let us give the following results [30, 35, 36, 41, 45, 64, 86, 88,

92, 95].

Proposition 2.4 The hyperelliptic, genus N − 1, curve det(LrG(λ,p)− µ1) = 0, (λ, µ) ∈ C2,
with LrG(λ,p) given in Eq. (2.28a), provides a set of 2N independent involutive integrals of
motion given by

Hr
i (p)

.
= 〈p,yi 〉+

N∑

j=1
j 6=i

〈yi,yj 〉

λi − λj
,

N∑

i=1

Hr
i (p) =

N∑

i=1

〈p,yi 〉, (2.33)

Ci
.
=

1

2
〈yi,yi 〉,

{
Hr
i (p), Hr

j (p)
}
P

su(2)
N

= {Hr
i (p), Cj}Psu(2)

N

= {Ci, Cj}Psu(2)
N

= 0.

The integrals {Hr
i (p)}Ni=1 are first integrals of motion and the integrals {Ci}

N
i=1 are the Casimir

functions given in Eq. (2.27).

Proposition 2.5 The curve det(LtG(λ) − µ1) = 0, (λ, µ) ∈ C2, with LtG(λ) given in Eq.
(2.28b), provides a set of 2N independent involutive integrals of motion given by

Ht
i
.
=

N∑

j=1
j 6=i

[
y1
i y

1
j + y2

i y
2
j

sin(λi − λj)
+ cot(λi − λj) y

3
i y

3
j

]
,

N∑

i=1

Ht
i = 0,

Ht
0
.
=

(
N∑

i=1

y3
i

)2

,

Ci
.
=

1

2
〈yi,yi 〉,

{
Ht
i , H

t
j

}
P

su(2)
N

=
{
Ht
i , Cj

}
P

su(2)
N

= {Ci, Cj}Psu(2)
N

= 0.

The integrals {Ht
i }
N
i=0 are first integrals of motion and the integrals {Ci}

N
i=1 are the Casimir

functions given in Eq. (2.27).

Proposition 2.6 The curve det(LeG(λ) − µ1) = 0, (λ, µ) ∈ C2, with LeG(λ) given in Eq.
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(2.28c), provides a set of 2N independent involutive integrals of motion given by

He
i
.
=

N∑

j=1
j 6=i

[
y1
i y

1
j

dn(λi − λj)

sn(λi − λj)
+

y2
i y

2
j

sn(λi − λj)
+ y3

i y
3
j

cn(λi − λj)

sn(λi − λj)

]
,

N∑

i=1

He
i = 0,

He
0
.
=

1

2

N∑

i,j=1

[
y1
i y

1
j

θ′11 θ
′
10(λi − λj)

θ10 θ11(λi − λj)
+ y2

i y
2
j

θ′11 θ
′
00(λi − λj)

θ00 θ11(λi − λj)
+ y3

i y
3
j

θ′11 θ
′
01(λi − λj)

θ01 θ11(λi − λj)

]
,

Ci
.
=

1

2
〈yi,yi 〉,

{
He
i , H

e
j

}
P

su(2)
N

= {He
i , Cj}Psu(2)

N

= {Ci, Cj}Psu(2)
N

= 0,

where θαβ(λ), α, β = 0, 1, is the theta function1, and θαβ
.
= θαβ(0), θ′αβ

.
= (d/dλ)λ=0θαβ(λ).

The integrals {He
i }
N
i=0 are first integrals of motion and the integrals {Ci}

N
i=1 are the Casimir

functions given in Eq. (2.27).

In the next Chapter we shall focus our attention on the time-discretization of certain Hamil-
tonian flows of the su(2) rational Gaudin model and its integrable extensions, obtained in the
remaining part of this Chapter. Therefore we give some further details in such a case.

The Hamiltonian (2.25) takes the form

HrG(p)
.
=

N∑

i=1

ηiH
r
i (p) =

1

2

N∑

i,j=1
i6=j

ηi − ηj
λi − λj

〈yi,yj 〉+
N∑

i=1

ηi 〈p,yi 〉. (2.36)

Moreover we note that there is one linear integral given by
∑N
i=1H

r
i (p) =

∑N
i=1〈p,yi 〉.

We shall consider the discrete-time version of the Hamiltonian flow generated by the integral
(2.36) with the particular choice ηi ≡ λi, 1 ≤ i ≤ N , namely

HrG(p, ηi ≡ λi) =
1

2

N∑

i,j=1
i6=j

〈yi,yj 〉+

N∑

i=1

λi 〈p,yi 〉. (2.37)

A direct computation leads to the following proposition.

Proposition 2.7 The equations of motion w.r.t. the Hamiltonian (2.37) are given by

ẏi =
[
λi p +

∑N
j=1yj , yi

]
, 1 ≤ i ≤ N, (2.38)

where ẏi
.
= dyi/dt. Eqs. (2.38) admit the following Lax representation:

L̇rG(λ,p) =
[
LrG(λ,p),Mr

G(λ)
]
,

with the matrix LrG(λ,p) given in Eq. (2.28a) and

Mr
G(λ)

.
=

N∑

i=1

λi yi
λ− λi

. (2.39)

1We use the following notation: θαβ(λ)
.
= θαβ(λ, τ) =

P

n∈Z
exp

h

π i
`

n + α
2

´

2
τ + 2 π i

`

n + α
2

´

“

n + β
2

” i

,

α, β = 0, 1, where τ is a complex number in the upper half plane.
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2.3 Leibniz extensions of Gaudin models

The concept of limiting process between Lie algebras was proposed by I. Segal in 1951 [83]. The
most known example concerning this concept is given by the connection between relativistic
and classical mechanics with their underlying Poincaré and Galilei symmetry algebras. The
other well-known example is the limit process from quantum mechanics to the classical one,
which corresponds to the contraction of the Heisenberg algebra to an abelian algebra.

These ideas were developed in the works of E. Inönü and E. Wigner [43]. They introduced
the so called Inönü-Wigner contractions, which, in spite of their simplicity, were applied to a
wide range of physical and mathematical problems.

Later on, a large number of contractions have been introduced and the relation between
contractions and deformations (or expansions) have been widely investigated [58].

2.3.1 Generalized Inönü-Wigner contractions and Leibniz extensions

Let us recall the notion of generalized Inönü-Wigner contractions of a finite dimensional Lie
algebra g [43, 103]. The following definition holds also for infinite-dimensional Lie algebras.

Let V be a complex finite-dimensional vector space. Let g
.
= (V, µ) be a Lie algebra with

Lie multiplication µ : V × V → V . The analytic notion of continuous contraction can be
described by a continuous family of maps

U(ϑ) : V → V, 0 ≤ ϑ ≤ 1, U(1) = 1,

which are nonsingular for 0 < ϑ ≤ 1 and singular for ϑ = 0. The new Lie bracket on V ,

µϑ(X
α, Xβ) = U−1(ϑ)µ (U(ϑ)Xα, (ϑ)Xβ), (Xα, Xβ) ∈ V × V, 0 < ϑ ≤ 1,

corresponds to a change of basis given by U(ϑ), and leads to the Lie algebra gϑ
.
= (V, µϑ)

isomorphic to g. If µ̃(Xα, Xβ) = limϑ→0 µϑ(X
α, Xβ) exists for all (Xα, Xβ) ∈ V × V , we call

g̃
.
= (V, µ̃) the contraction of g by U(ϑ). Obviuosly the contracted algebra g̃ is not isomorphic

to g.
Let us assume a direct sum structure for the vector space V , namely

V =
N⊕

i=0

V (i).

Definition 2.1 A generalized Inönü-Wigner contraction of g is defined through the family of
maps

U(ϑ)|V (i) = ϑni1|V (i) , 0 ≤ n0 < n1 < ... < nN , ni ∈ R, 0 ≤ i ≤ N,

such that
µ (V (j), V (k)) ⊂

⊕

i

V (i), ni ≤ nj + nk.

The contracted Lie algebra g̃
.
= (V, µ̃) has the following Lie multiplication:

µ̃(V (j), V (k)) ⊂ V (i), ni = nj + nk.

For our purposes we can consider the Lie product µ as the standard commutator [ ·, · ].
In fact, our aim is to perform a suitable Inönü-Wigner contraction on the Lie algebra GN

.
=

⊕Ng
.
= span{Xα

i }
dim g

α=1 , 1 ≤ i ≤ N , introduced in Section 2.2. We recall that the commutation
relations for the elements of the basis of GN are, see Eq. (2.15),

[
Xα
i , X

β
j

]
= δi,j C

αβ
γ Xγ

i , 1 ≤ i, j ≤ N. (2.40)
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Proposition 2.8 The isomorphism ηϑ : GN → GN defined by

ηϑ : Xα
k 7→ X̃α

i
.
= ϑi

N∑

j=1

νij X
α
j , 1 ≤ k ≤ N, 0 ≤ i ≤ N − 1, (2.41)

with νj ∈ C, νj 6= νk, 1 ≤ j, k ≤ N and 0 < ϑ ≤ 1 (contraction parameter), defines, in the
limit ϑ→ 0, a generalized Inönü-Wigner contraction of GN . The Lie brackets of the contracted
Lie algebra G̃N

.
= span{X̃α

i }
dim g

α=1 , 0 ≤ i ≤ N − 1 are given by:

[
X̃α
i , X̃

β
j

]
=

{
Cαβγ X̃γ

i+j i+ j < N,

0 i+ j ≥ N,
(2.42)

with 0 ≤ i, j ≤ N − 1, being {Cαβγ }
dim g

α,β,γ=1 the set of structure constants of the Lie algebra g.

Proof: Using the isomorphism (2.41) and the commutations relations (2.40) we get:

[
X̃α
i , X̃

β
j

]

ϑ
= ϑi+j

N∑

n,m=1

νin ν
j
m

[
Xα
n , X

β
m

]
=

= Cαβγ ϑi+j
N∑

n=1

νi+jn Xγ
n =

{
Cαβγ X̃γ

i+j i+ j < N,

O(ϑN ) i+ j ≥ N.

Performing the limit ϑ→ 0, i.e. the contraction procedure, we obtain the Lie brackets (2.42).
It is easy to check directly that the multiplication in Eq. (2.42) is antysymmetric and satisfies
the Jacobi identity.

�

Remark 2.5 Looking at the Lie brackets (2.42) we immediately see that the contraction pro-
cedure breaks the direct sum structure and the contracted Lie algebra does not have, in general,
a semidirect structure.

Example 2.1 Let us give an illustrative (and well-known) example. Consider the direct sum
of two copies of su(2), namely a Lie algebra isomorphic to o(4), spanned by {Xα

i }
3
α=1, i = 1, 2:

[
Xα

1 , X
β
1

]
= εαβγX

γ
1 ,

[
Xα

2 , X
β
2

]
= εαβγX

γ
2 ,

[
Xα

1 , X
β
2

]
= 0.

Then we define X̃α
0
.
= Xα

1 +Xα
2 and X̃α

1
.
= ϑ(ν1X

α
1 + ν2X

α
2 ), ν1 6= ν2. After contraction, the

resulting Lie algebra spanned by X̃α
0 , X̃

α
1 is e(3), namely the six-dimensional real euclidean Lie

algebra: [
X̃α

0 , X̃
β
0

]
= εαβγX̃

γ
0 ,

[
X̃α

0 , X̃
β
1

]
= εαβγX̃

γ
1 ,

[
X̃α

1 , X̃
β
1

]
= 0.

Considering the direct sum of three copies of su(2) the contraction procedure provides the fol-
lowing nine-dimensional Lie algebra:

[
X̃α

0 , X̃
β
0

]
= εαβγX̃

γ
0 ,

[
X̃α

0 , X̃
β
1

]
= εαβγX̃

γ
1 ,

[
X̃α

0 , X̃
β
2

]
= εαβγX̃

γ
2 ,

[
X̃α

1 , X̃
β
1

]
= εαβγX̃

γ
2 ,

[
X̃α

1 , X̃
β
2

]
= 0,

[
X̃α

2 , X̃
β
2

]
= 0.

The new Lie algebra spanned by X̃α
0 , X̃

α
1 , X̃

α
2 can be written as su(2) ⊕s h where the six-

dimensional algebra h, although including the abelian proper subalgebra R3 spanned by X̃α
2 ,

does not have a semidirect structure. In fact it is possible to show that su(2) ⊕s h can be ob-
tained adding a cocycle to e(3, 2) = su(2)⊕s (R3⊕R3). Hence this is an algebraic extension in
the usual sense [42, 96, 97].
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Remark 2.6 The Lie algebras G̃N defined by the commutation relations given in Eq. (2.42)
have been introduced in [71] (1976) in the framework of current algebras and they have been
called Leibniz extensions of g of order N .

The Inönü-Wigner contraction performed in Proposition 2.8 allows one to establish a deep
relationship between algebraic contractions and algebraic extensions. As a matter of fact we
have constructed an extension of g in the usual sense of extensions of Lie algebras [42]. In

fact defining the new vector spaces W (i) .
=
⊕N−1

j=i V (j), 0 ≤ i ≤ N − 1, W (0) ≃ G̃N , we obtain

a flag of ideals [W (i),W (j)] ⊆ W (j), j ≥ i. In particular [ G̃N ,W
(1)] ⊆ W (1). So we have the

exact sequence: 0→W (1) i
→ G̃N

π
→ g→ 0, where i is the inclusion and π is the projection on

the quotient G̃N/W
(1); moreover G̃N/W

(1) ≃ V (0) ≃ g.

2.3.2 Leibniz extensions of Gaudin Lax matrices

The isomorphism ηϑ : GN → GN defined in Eq. (2.41) naturally induces a dual map η∗ϑ :
G∗
N → G∗

N .

Proposition 2.9 The isomorphism ηϑ : GN → GN induces the following map on the coordi-
nates {yαi }

dim g

α=1 , 1 ≤ i ≤ N , on G̃∗
N :

ỹαi
.
= ϑi

N∑

j=1

νij y
α
j , 0 ≤ i ≤ N − 1, (2.43)

with νj ∈ C, νj 6= νk, 1 ≤ j, k ≤ N and 0 < ϑ ≤ 1. In the limit ϑ → 0, the Lie-Poisson

brackets (2.16) on G∗
N are mapped by (2.43) into the following Lie-Poisson brackets on G̃∗

N :

{
ỹαi , ỹ

β
j

}
ePg

N

=

{
Cαβγ ỹγi+j i+ j < N,

0 i+ j ≥ N,
(2.44)

with 0 ≤ i, j ≤ N − 1. Here

(P̃ g

N )i,j
.
= Ỹi+j−2, (Ỹk)α,β

.
= Cαβγ ỹγk , (2.45)

with 0 ≤ k ≤ N − 1, 1 ≤ i, j ≤ N and Ỹi ≡ 0, i ≥ N .

Proof: Eq. (2.43) is a plane consequence of Eq. (2.41) in Proposition 2.8.

�

Example 2.2 According to the Example 2.1 we have that P̃
su(2)
2 is the Lie-Poisson tensor

associated with the (minus) Lie-Poisson algebra e∗(3) = su∗(2)⊕s R3. In fact the contraction

maps the Lie-Poisson tensor P
su(2)
2 in the following way, see Eqs. (2.17) and (2.45),

P
su(2)
2

.
=

(
Y1 0
0 Y2

)
7−→ P̃

su(2)
2

.
=

(
Ỹ0 Ỹ1

Ỹ1 0

)
,

namely we get the Lie-Poisson brackets on (minus) e∗(3):
{
ỹα0 , ỹ

β
0

}
eP

su(2)
2

= −εαβγ ỹ
γ
0 ,

{
ỹα0 , ỹ

β
1

}
eP

su(2)
2

= −εαβγ ỹ
γ
1 ,

{
ỹα1 , ỹ

β
1

}
eP

su(2)
2

= 0.

If N = 3 we have

P
su(2)
3

.
=




Y1 0 0
0 Y2 0
0 0 Y3



 7−→ P̃
su(2)
3

.
=




Ỹ0 Ỹ1 Ỹ2

Ỹ1 Ỹ2 0

Ỹ2 0 0


 ,
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namely we get the Lie-Poisson brackets:
{
ỹα0 , ỹ

β
0

}
eP

su(2)
3

= −εαβγ ỹ
γ
0 ,

{
ỹα0 , ỹ

β
1

}
eP

su(2)
3

= −εαβγ ỹ
γ
1 ,

{
ỹα0 , ỹ

β
2

}
eP

su(2)
3

= −εαβγ ỹ
γ
2 ,

{
ỹα1 , ỹ

β
1

}
eP

su(2)
3

= −εαβγ ỹ
γ
2 ,

{
ỹα1 , ỹ

β
2

}
eP

su(2)
3

= 0,
{
ỹα2 , ỹ

β
2

}
eP

su(2)
3

= 0.

Note that the Lie-Poisson bracket between two smooth functions f(ỹ0, ỹ1, ỹ2), g(ỹ0, ỹ1, ỹ2) is
given by

{f, g} eP
su(2)
3

= 〈 ỹ0, [∇ey0
f,∇ey0

g] 〉+ 〈 ỹ1, [∇ey0
f,∇ey1

g] + [∇ey1
f,∇ey0

g] 〉+

+ 〈 ỹ2, [∇ey0
f,∇ey2

g] + [∇ey2
f,∇ey0

g] 〉+ 〈 ỹ2, [∇ey1
f,∇ey1

g] 〉,

where ∇ is a gradient with respect to its subscript. The non-semidirect structure lies just in
the last term of the above equation: this term does not exist in the e∗(3, 2) Lie-Poisson algebra.

Proposition 2.10 Let H,G ∈ F(G∗
N ) be two involutive functions w.r.t. the Lie-Poisson

brackets (2.16). If H̃, G̃ ∈ F(G̃∗
N ) are the correspondent functions obtained from H,G by

applying the map (2.43) in the contraction limit ϑ → 0, then they are in involution w.r.t. the
contracted Lie-Poisson brackets (2.44).

Proof: In the local coordinates {yαi }
dim g

α=1 , 1 ≤ i ≤ N , we have:

0 = {H,G}Pg

N
=

N∑

i,j=1

∂H

∂yαi

∂G

∂yβj

{
yαi , y

β
j

}

Pg

N

= Cαβγ

N∑

i=1

∂H

∂yαi

∂G

∂yβi
yγi =

= Cαβγ

N∑

i=1

N−1∑

n,m=0

∂H̃

∂ỹαn

∂G̃

∂ỹβm
ϑn+m νn+m

i yγi =

= Cαβγ

N−1∑

n,m=0
n+m<N

∂H̃

∂ỹαn

∂G̃

∂ỹβm
ỹγn+m +O(ϑN ),

where the first term does not depend explicitly on the contraction parameter ϑ. Performing
the limit ϑ→ 0 we get {H̃, G̃} ePg

N

= 0.

�

Our aim is now to apply the map (2.43), in the contraction limit ϑ→ 0, to the Lax matrix
of the Gaudin models, given in Eq. (2.18), in order to get a new Lax matrix. This purely
algebraic procedure shall be performed together with a pole coalescence. Our main goal is to
prove that the resulting Lax matrix preserves the same linear r-matrix structure of the ancestor
one, with the same r-matrix.

Proposition 2.11 The isomorphism (2.43), maps, in the limit ϑ→ 0, the Lax matrix LG(λ),
defined in Eq. (2.18), with λi ≡ ϑ νi, 1 ≤ i ≤ N (pole coalescence), into the new Lax matrix

LN (λ)
.
=

N−1∑

i=0

gαβX
α ỹβi f

αβ
i (λ), (2.47)

where the functions fαβi (λ) are defined by

fαβi (λ)
.
=

(−1)i

i!
∂iλ f

αβ
0 (λ), (2.48)
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with ∂λ
.
= d/dλ, being fαβ0 (λ) ≡ fαβ(λ) the meromorphic functions appearing in the r-matrix

(2.7).

Proof: Let us consider the pole coalescence λi ≡ ϑ νi, 1 ≤ i ≤ N , in the Lax matrix (2.18)

and a formal expansion of the functions fαβ(λ) ≡ fαβ0 (λ):

LG(λ) =

N∑

j=1

gαβX
α yβj f

αβ
0 (λ− ϑ νj) =

N∑

j=1

gαβX
α yβj

∑

i≥0

(−ϑ νj)
i

i!
∂iλ f

αβ
0 (λ) =

=

N∑

j=1

N−1∑

i=0

gαβX
α (ϑ νj)

i yβj
(−1)i

i!
∂iλ f

αβ
0 (λ) +O(ϑN ). (2.49)

Using the map (2.43), the definition (2.48) and the limit ϑ → 0 in Eq. (2.49) we readily get
the Lax matrix given in Eq. (2.47).

�

Remark 2.7 We notice that the Lax matrix (2.47) describes a one-body dynamical system.
Moreover, N is the order of the Leibniz extension of the Lie algebra g and it coincides with the
number of degrees of freedom of the model.

We shall show that it is possible to extend such a matrix to the many-body case. For these
reason we shall distinguish between the so called extended one-body hierarchy and the extended
many-body hierarchy.

We finally give the announced result.

Theorem 2.2 The Lax matrix (2.47) satisfies the linear r-matrix algebra

{LN (λ) ⊗ 1,1⊗ LN (µ)} ePg

N

+ [ r(λ − µ),LN (λ) ⊗ 1 + 1⊗ LN (µ) ] = 0, ∀ (λ, µ) ∈ C2,

(2.50)
with r(λ) given in Eq. (2.7).

Proof: Let us compute the first term in Eq. (2.50). According to Eq. (2.44) we set
ỹαi+j = 0 if i+ j > N . We get:

{LN (λ) ⊗ 1,1⊗ LN (µ)} ePg

N

= gαβ gγδ (Xα ⊗Xγ)

N−1∑

i,j=0

fαβi (λ) fγδj (µ)
{
ỹβi , ỹ

δ
j

}
ePg

N

=

= gαβ gγδ (Xα ⊗Xγ)Cβδη

N−1∑

i,j=0

fαβi (λ) fγδj (µ) ỹηi+j =

= gαβ gγδ (Xα ⊗Xγ)Cβδη

N−1∑

i=0

ỹηi

i∑

j=0

fαβj (λ) fγδi−j(µ). (2.51)
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On the other hand we have:

[ r(λ − µ),LN (λ) ⊗ 1 + 1⊗ LN (µ) ] =

= gαβ gγη f
αβ
0 (λ− µ)

[
Xα ⊗Xβ , (Xγ ⊗ 1)

N−1∑

i=0

ỹηi f
γη
i (λ) + (1⊗Xγ)

N−1∑

i=0

ỹηi f
γη
i (µ)

]
=

= gαβ gγη f
αβ
0 (λ− µ)

[
Cαγδ (Xδ ⊗Xβ)

N−1∑

i=0

ỹηi f
γη
i (λ) + Cβγδ (Xα ⊗Xδ)

N−1∑

i=0

ỹηi f
γη
i (µ)

]
=

=

[
gδγ gβη f

δγ
0 (λ− µ)Cδβα

N−1∑

i=0

ỹηi f
βη
i (λ)+

+gαβ gδη f
αβ
0 (λ− µ)Cβδγ

N−1∑

i=0

ỹηi f
δη
i (λ)

]
(Xα ⊗Xγ), (2.52)

where the last expression is obtained from the previous one swapping the indices γ ↔ β, α↔ δ
in the first term and γ ↔ δ in the second one.

Considering Eqs. (2.51) and (2.52) we obtain

{LN (λ)⊗ 1,1⊗ LN (µ)} ePg

N

+ [ r(λ − µ),LN (λ)⊗ 1 + 1⊗ LN (µ) ] =

=
N−1∑

i=0

ỹηi




i∑

j=0

gαβ gγδ C
βδ
η fαβj (λ) fγδi−j(µ) + gδγ gβη C

δβ
α f δγ0 (λ− µ)fβηi (λ)+

+gαβ gδη C
βδ
γ fαβ0 (λ− µ)f δηi (µ)

]
(Xα ⊗Xγ). (2.53)

Let us look in more detail at the functional part enclosed in the square brackets in Eq. (2.53).
Using Eq. (2.48) we get:

i∑

j=0

fαβj (λ) fγδi−j(µ) =

i∑

j=0

(−1)j

j!
∂jλ f

αβ
0 (λ)

(−1)i−j

(i− j)!
∂i−jµ fγδ0 (µ) =

=
(−1)i

i!

i∑

j=0

(
i

j

)
∂jλ ∂

i−j
µ fαβ0 (λ) fγδ0 (µ) =

=
(−1)i

i!
(∂λ + ∂µ)

i
fαβ0 (λ) fγδ0 (µ), (2.54)

and

gδγ gβη C
δβ
α f δγ0 (λ− µ)fβηi (λ) + gαβ gδη C

βδ
γ fαβ0 (λ− µ)f δηi (µ) =

=
(−1)i

i!

[
gδγ gβη C

δβ
α f δγ0 (λ− µ) ∂iλ f

βη
0 (λ) + gαβ gδη C

βδ
γ fαβ0 (λ− µ) ∂iµ f

δη
0 (µ)

]
=

=
(−1)i

i!
(∂λ + ∂µ)

i
[
gδγ gβη C

δβ
α f δγ0 (λ− µ) fβη0 (λ) + gαβ gδη C

βδ
γ fαβ0 (λ − µ) f δη0 (µ)

]
. (2.55)

Inserting Eqs. (2.54) and (2.55) in Eq. (2.53) we obtain Eq. (2.50) thanks to the functional
equations given in Eq. (2.8).

�

Remark 2.8 The fact that P̃ g

N is indeed a Lie-Poisson tensor can be seen as a plain conse-
quence of Eq. (2.50).
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The involutive Hamiltonians of the one-body hierarchy governed by the Lax matrix LN (λ)
given in Eq. (2.47) can be obtained in two equivalent ways. One can directly compute the
spectral invariants of LN (λ), and their involutivity is ensured thanks to the r-matrix formula-
tion (2.50). Otherwise we can apply the contraction procedure to the involutive uncontracted
Hamiltonians. In particular, if the parameters λi’s appear explicitly in these integrals we have
also to perform the pole coalescence λi ≡ ϑ νi, 1 ≤ i ≤ N , in order to construct the proper
contracted Hamiltonians. Their involutivity is ensured by Proposition 2.10.

A more general extended rational Lax matrix

In Theorem 2.2 we have shown that the system of functional equations in Eq. (2.53) is satisfied

if the functions fαβi (λ), 0 ≤ i ≤ N − 1, are given by

fαβi (λ)
.
=

(−1)i

i!
∂iλ f

αβ
0 (λ), (2.56)

where the fαβ0 (λ)’s are the meromorphic functions appearing in the r-matrix (2.7). Nevertheless
we can construct a more general analytic solution to the system in Eq. (2.53) if

r(λ) =
1

λ
gαβ X

α ⊗Xβ.

In such a case the functions fαβi (λ), 0 ≤ i ≤ N − 1, do not depend on α, β and the system of
functional equations appearing in Eq. (2.53) takes the following simple form:

k∑

i=0

fi(λ)fk−i(µ) =
fk(λ) − fk(µ)

µ− λ
, 0 ≤ k ≤ N − 1. (2.57)

Our solution is based on the following conjecture.

Conjecture 2.1 Let k ∈ N and let {ci}
k
i=1 be a set arbitrary complex constants. Let us denote

with {qi} the set of vectors satisfying the Diophantine equation:

{qi}
.
= {q ∈ Ni : q1 + 2 q2 + · · ·+ i qi = i}, 1 ≤ i ≤ N − 1.

Then the following polynomial identity holds:

k∑

i=0



∑

{qi}

cq11
q1!
· · ·

cqi

i

qi!
λ|qi|

∑

{qk−i}

cq11
q1!
· · ·

c
qk−i

k−i

qk−i!
µ|qk−i|


 =

∑

{qk}

cq11
q1!
· · ·

cqk

k

qk!
(λ+ µ)|qk|,

where |qi|
.
=
∑i

k=1 qk and (λ, µ) ∈ C2.

Using a MAPLE program we have tested this conjecture for N ≤ 25.

Proposition 2.12 If the Conjecture 2.1 holds for any N ∈ N, then the functions

fi(λ) =
∑

{qi}

cq11
q1!
· · ·

cqi

i

qi!
∂
|qi|
λ

1

λ
, 1 ≤ i ≤ N − 1, (2.58)

satisfy the system of functional equations given in Eq. (2.57) for any N ∈ N.
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Proof: Let us fix f0(λ)
.
= λ−1. Inserting the functions (2.58) into Eq. (2.57) and using

the Conjecture 2.1 we get:

k∑

i=0

fi(λ) fk−i(µ) =

=

k∑

i=0



∑

{qi}

cq11
q1!
· · ·

cqi

i

qi!
∂
|qi|
λ f0(λ)

∑

{qk−i}

cq11
q1!
· · ·

c
qk−i

k−i

qk−i!
∂|qk−i|
µ f0(µ)


 =

=
∑

{qk}

cq11
q1!
· · ·

cqk

k

qk!
(∂λ + ∂µ)

|qk| f0(λ) f0(µ) =

=
∑

{qk}

cq11
q1!
· · ·

cqk

k

qk!
(∂λ + ∂µ)

|qk|

[
f0(λ) − f0(µ)

µ− λ

]
=

=
fk(λ) − fk(µ)

µ− λ
.

�

Example 2.3 Let us fix N = 4 in Eq. (2.58). We get the following three functions:

f1(λ) = −
c1
λ2
,

f2(λ) =
c21
λ3
−
c2
λ2
,

f3(λ) = −
c31
λ4

+
2 c1 c2
λ3

−
c3
λ2
.

In general, the solutions (2.56) can be recovered fixing in Eq. (2.58) the values of the constants
ci’s as c1 ≡ −1 and ci ≡ 0, 2 ≤ i ≤ N − 1.

Remark 2.9 The fact that solutions (2.58) provide the general analytic solution to (2.57) can
be argued taking the limit λ → µ in the functional equations (2.57), yielding the system of
ordinary differential equations:

k∑

i=0

fi(λ)fk−i(λ) = −∂λ fk(λ), 0 ≤ k ≤ N − 1. (2.59)

As the system (2.59) is triangular, for any given i the functions fi(λ) can be found solving a
system of i+1 ordinary differential equations and therefore depend at most upon i+1 arbitrary
parameters. This is exactly the number of arbitrary parameters entering our solutions (2.58).

Henceforth, in the rational case, a more general form of the extended Lax matrix (2.47) is
given by

LrN (λ)
.
=

N−1∑

i=0

gαβ X
α ỹβi fi(λ), (2.60)

where the functions fi(λ) are given in Eq. (2.58).
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A multi-Hamiltonian formulation of the rational extended models

It is possible to prove the integrability of the dynamical systems described by the Lax matrices
(2.47), with a rational dependence on the spectral parameter, also using the multi-Hamiltonian
approach [79]. We prefer to omit a complete analysis of this technique and we shall just present
the family of compatible Lie-Poisson tensors associated with such systems.

Let us consider the Lax matrix (2.47), with fαβ0 (λ) = λ−1, in the following form:

LrN (λ,P)
.
= P +

N−1∑

i=0

gαβ X
α ỹβi fi(λ), fi(λ)

.
=

(−1)i

i!
∂iλ

1

λ
=

1

λi+1
, (2.61)

where we have added a constant matrix P ∈ g (with simple spectrum). The rational Lax
matrix (2.61) can be easily mapped into a polynomial one, namely

LpN (λ,P)
.
= λN P +

N−1∑

i=0

gαβ X
α ỹβi λ

N−1−i. (2.62)

For the space of polynomials pencils of matrices a family of mutually compatible Lie-Poisson
tensors are defined [79], and the spectral invariants are involutive functions with respect to these
Poisson tensors, called Reyman-Semenov-Tian-Shansky tensors. As a plain consequence of the
multi-Hamiltonian formulation for these Lax matrices we get a multi-Hamiltonian formulation
for the matrices in (2.62). The following proposition holds.

Proposition 2.13 Consider the system governed by the Lax matrix LpN (λ,P) given in Eq.
(2.62). Then there exist N + 1 compatible Reyman-Semenov-Tian-Shansky tensors given by

Πk
.
=

(
Ak 0
0 Bk

)
, 0 ≤ k ≤ N,

with

(Ak)i,j
.
= −Ỹi+j−k−2 1 ≤ i, j ≤ k,

(Bk)i,j
.
= Ỹi+j+k−2 1 ≤ i, j ≤ N − k,

and Ỹ−1 ≡ P , Ỹi ≡ 0 for i < −1 and i ≥ N . Here (Ỹi)
αβ .

= Cαβγ ỹγi and (P )αβ
.
= Cαβγ pγ is a

constant matrix.

Example 2.4 Let us show the three compatible Reyman-Semenov-Tian-Shansky tensors in the
case N = 2 for g ≡ su(2), i.e. e(3). According to Proposition 2.13 they are:

Π0
.
=

(
Ỹ0 Ỹ1

Ỹ1 0

)
, Π1

.
=

(
−P 0

0 Ỹ1

)
, Π2

.
=

(
0 −P

−P Ỹ0

)
. (2.63)

Notice that Π0 = P̃
su(2)
2 .

2.3.3 Many-body systems associated with Leibniz extensions of Gaudin models

In Section 2.2 we have shown how to extend the local Lax matrix (2.11) to the N -body case,
namely considering the Lax matrix (2.18) of the Gaudin models associated to the Lie-Poisson
algebra G∗

N .
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A similar procedure, based on the r-matrix approach, works for the extended models.
Precisely we can consider the Lax matrix, see Eq. (2.47),

LN (λ)
.
=

N−1∑

i=0

gαβX
α ỹβi f

αβ
i (λ), fαβi (λ)

.
=

(−1)i

i!
∂iλ f

αβ
0 (λ),

as the local Lax matrix of a long-range chain constructed as the direct sum of M copies of G̃∗
N .

Let us define H̃∗
M,N

.
= ⊕MG̃∗

N . To do this it is convenient to label the coordinates functions

ỹαi ’s on G̃∗
N with an additional index in order to define the local coordinates on H̃∗

M,N . Let us

introduce the set {(ỹαi )n}
dimg

α=1 , 0 ≤ i ≤ N−1, 1 ≤ n ≤M as the set of the coordinate functions

relative on the k-th copy of G̃∗
N .

Referring to Eq. (2.44), we obtain that the Lie-Poisson brackets on H̃∗
M,N read

{
(ỹαi )n, (ỹ

β
j )m

}
ePg

M,N

=

{
δn,mC

αβ
γ (ỹγi+j)n i+ j < N,

0 i+ j ≥ N,
(2.64)

with 0 ≤ i, j ≤ N − 1 and 1 ≤ n,m ≤ M . Here P̃ g

M,N is the diagonal Lie-Poisson tensor
associated with the direct sum of M copies of the Leibniz extension of order N of the ancestor
Lie algebra g.

The M -body Lax matrix of the extended Gaudin models read

LM,N (λ)
.
=

M∑

k=1

N−1∑

i=0

gαβX
α (ỹβi )k f

αβ
i (λ− µk), (2.65)

where the complex numbers µk’s, with µk 6= µj , 1 ≤ k, j ≤ M are local parameters of the
model.

Taking into account the direct sum structure encoded in the Lie-Poisson brackets (2.64),
and the fact that r-matrix depends just on the difference λ−µ we can perform a computation
similar to the one given in Theorem 2.2, thus proving the following proposition.

Proposition 2.14 The Lax matrix (2.65) satisfies the linear r-matrix algebra

{LM,N (λ)⊗ 1,1⊗ LM,N (µ)} ePg

M,N

+ [ r(λ − µ),LM,N (λ) ⊗ 1 + 1⊗ LM,N (µ) ] = 0,

for all (λ, µ) ∈ C2, with r(λ) given in Eq. (2.7).

An alternative construction of the many-body hierarchy

We now present an alternative, but equivalent, way to construct the integrable chain described
by the Lax matrix (2.65) without using the r-matrix approach as in the previuos Subsection.

It is possible to obtain the Lie-Poisson brackets (2.64) on H̃∗
M,N directly from the Lie-Poisson

bracktes (2.16) on G∗
MN , being these latter ones the brackets associated with the Gaudin model

with MN sites.

Proposition 2.15 The map on the coordinates {yαk }
dimg

α=1 , 1 ≤ k ≤MN on G∗
MN defined by

(ỹαi )n
.
= ϑi

N∑

j=1

νiNn−j+1 y
α
Nn−j+1, 1 ≤ n ≤M, 0 ≤ i ≤ N − 1, (2.66)
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with νj ∈ C, νj 6= νk, 1 ≤ j, k ≤ N and 0 < ϑ ≤ 1, maps, in the limit ϑ→ 0, the Lie-Poisson

brackets (2.16) on G∗
MN into the Lie-Poisson brackets on H̃∗

M,N given by Eq. (2.64):

{
(ỹαi )n, (ỹ

β
j )m

}
ePg

M,N

=

{
δn,mC

αβ
γ (ỹγi+j)n i+ j < N,

0 i+ j ≥ N,
(2.67)

with 0 ≤ i, j ≤ N − 1 and 1 ≤ n,m ≤M .

Proof: Let us construct the Lie-Poisson brackets given in Eq. (2.67) using the map (2.66)
and Eq. (2.16):

{
(ỹαi )n, (ỹ

β
j )m

}

ϑ
=

N∑

l,k=1

ϑi+j νiNn−l+1 ν
j
Nm−k+1

{
yαNn−l+1, y

β
Nm−k+1

}

Pg

MN

=

=

N∑

l,k=1

ϑi+j νiNn−l+1 ν
j
Nm−k+1 δNn−l+1,Nm−k+1 y

α
Nn−l+1.

Notice that δNn−l+1,Nm−k+1 = 1 iff N (n−m) = l− k, but 1 ≤ l− k ≤ N − 1, so that we have
to require n = m. Hence we have:

{
(ỹαi )n, (ỹ

β
j )m

}

ϑ
= δn,m C

αβ
γ

N∑

l=1

ϑi+j νi+jNn−l+1 y
α
Nn−l+1 =

=

{
δn,m C

αβ
γ (ỹγi+j)n i+ j < N,

O(ϑN ) i+ j ≥ N.

Performing the contraction limit ϑ→ 0 we get the Lie-Poisson brackets (2.67).
A computation similar to the one done in Proposition 2.10 leads to the following statement.

Proposition 2.16 Let H,G ∈ F(G∗
MN ) be two involutive functions w.r.t. the Lie-Poisson

brackets (2.16). If H̃, G̃ ∈ F(H̃∗
M,N ) are the correspondent functions obtained from H,G by

applying the map (2.66) in the contraction limit ϑ → 0, then they are in involution w.r.t. the
contracted Lie-Poisson brackets (2.67).

Example 2.5 Let us fix M = 1 in Eq. (2.66). We get (omitting the index n = 1)

ỹαi
.
= ϑi

N∑

j=1

νiN−j+1 y
α
N−j+1 = ϑi

N∑

k=1

νik y
α
k , 0 ≤ i ≤ N − 1,

namely we recover the map (2.43).

According to the procedure performed in the case of the one-body hierarchy, we have also
to apply a suitable pole coalescence. Later we shall give an explicit example in the case of the
rational Lagrange chain.

2.4 Leibniz extensions of su(2) rational Gaudin models: the one-body hierarchy

Let us fix g ≡ su(2). We shall use the notation introduced in Subsection 2.2.1 for the coordinate
functions of the su(2) rational Gaudin model. But, for practical computations, it is convenient
to introduce a different notation to denote te contracted variables {ỹαi }

3
α=1, 0 ≤ i ≤ N − 1,

namely
ỹi

.
= zi, 0 ≤ i ≤ N − 1.
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We shall always use the above notation in the case of su(2) Leibniz extensions.
The su(2) rational one-body hierarchy is governed by the following Lax matrix, see Eq.

(2.61):

LrN (λ)
.
= p +

N−1∑

i=0

zi
λi+1

. (2.68)

The 3N coordinate functions zαi ’s obey to the following Lie-Poisson brackets, see Eq. (2.44):

{
zαi , z

β
j

}
=

{
−εαβγ z

γ
i+j i+ j < N,

0 i+ j ≥ N.
(2.69)

Proposition 2.17 The Lie-Poisson brackets (2.69) are degenerate. They possess the following
N Casimir functions:

C
(N)
k

.
=

1

2

N−1∑

i=k

〈 zi, zN+k−i−1 〉, 0 ≤ k ≤ N − 1. (2.70)

Proof: Let us compute the Lie bracket {C
(N)
k , zβj } for an arbitrary coordinate function zβj :

{
C

(N)
k , zβj

}
=

N−1∑

i=k

{
zαi z

α
N+k−i−1, z

β
j

}
=

=
N−1∑

i=k

[
zαi

{
zαN+k−i−1, z

β
j

}
+
{
zαi , z

β
j

}
zαN+k−i−1

]
=

= 2
N−1∑

i=k

εαβγ z
γ
i+j z

α
N+k−i−1+j .

Now, if i+ j ≥ N then {C
(N)
k , zβj }=0 thanks to (2.69). Let us consider i+ j < N :

{
C

(N)
k , zβj

}
= εαβγ

[
N−1∑

i=k

zγi+j z
α
N+k−i−1+j +

N−1∑

i′=k

zαi′+j z
γ
N+k−i′−1+j

]
= 0,

where i′ = N + k − i− 1.

�

Example 2.6 If N = 2 we obtain from (2.70) the Casimir functions of e∗(3), namely

C
(2)
0

.
= 〈 z0, z1 〉, C

(2)
1

.
=

1

2
〈 z1, z1 〉. (2.71)

According to Theorem 2.2 the Lax matrix (2.68) satisfies the linear r-matrix algebra (2.50)
with r-matrix given by

r(λ)
.
= −

1

λ
σα ⊗ σα,

namely r(λ) = −Π/(2λ), where Π is the permutation operator in C2 ⊗ C2.
Now our aim is to compute the spectral curve associated to the Lax matrix (2.68) in order

to explicitly get the involutive Hamiltonians of the su(2) rational one-body hierarchy.
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Proposition 2.18 The hyperelliptic curve ΓrN : det(LrN (λ) − µ1) = 0, (λ, µ) ∈ C2, with
LrN (λ) given in Eq. (2.68) reads

ΓrN : −µ2 =
1

4
〈p,p 〉+

1

2

N−1∑

k=0

H
(N)
k

λk+1
+

1

2

N−1∑

k=0

C
(N)
k

λk+N+1
, (2.72)

where

H
(N)
k

.
= 〈p, zk 〉+

1

2

k−1∑

i=0

〈 zi, zk−i−1 〉, (2.73a)

C
(N)
k

.
=

1

2

N−1∑

i=k

〈 zi, zN+k−i−1 〉. (2.73b)

The N independent integrals {H
(N)
k }N−1

k=0 are involutive first integrals of motion and the N

integrals {C
(N)
k }N−1

k=0 are the Casimir functions given in Eq. (2.70).

Proof: A straightforward computation.

�

Remark 2.10 Assigning a proper degree to the generators zi’s and to the constant field p we
can immediately see that the integrals of motions are homogeneous polynomials in such degree.

For instance, if deg (zi)
.
= i and deg (p)

.
= −1 then degH

(N)
k = k−1 and degC

(N)
k = N+k−1.

Remark 2.11 It is possible to obtain the integrals given in Eq. (2.73a) using the map (2.43),
in the contraction limit ϑ→ 0, and the pole coalescence λi ≡ ϑ νi, 1 ≤ i ≤ N , on the integrals
{Hr

k}
N
k=1 given in Eq. (2.33) of the su(2) rational Gaudin model:

Hr
k
.
= 〈p,yk 〉+

N∑

j=1
j 6=k

〈yk,yj 〉

λk − λj
,

N∑

k=1

Hr
k =

N∑

k=1

〈p,yk 〉.

Let us fix i such that 0 ≤ i ≤ N − 1. We get

N∑

k=1

ϑi νikH
r
k =

N∑

k=1

ϑi νik〈p,yk 〉+
1

2

N∑

j,k=1
j 6=k

ϑi−1
νik − ν

i
j

νk − νj
〈yk,yj 〉 =

=

N∑

k=1

ϑi νik〈p,yk 〉+
1

2

i−1∑

m=0

N∑

j,k=1
j 6=k

(ϑ νk)
m(ϑ νj)

i−m−1〈yk,yj 〉 =

= 〈p, zi 〉+
1

2

i−1∑

m=0

〈 zm, zi−m−1 〉 = H
(N)
i .

In the above computation we have taken into account the polynomial identity

νik − ν
i
j = (νk − νj)

i−1∑

m=0

νmk νi−m−1
j .

Notice that the contracted version of the Gaudin Hamiltonian (2.37) is given by H
(N)
1 , while

the contracted version of the linear integral
∑N

k=1H
r
k =

∑N
k=1〈p,yk 〉 is given by H

(N)
0 .
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In the following we shall refer to the Hamiltonian flow generated by the integral H
(N)
1 :

H
(N)
1

.
= 〈p, z1 〉+

1

2
〈 z0, z0 〉. (2.74)

A direct verification leads to the following proposition.

Proposition 2.19 The equations of motion w.r.t. the Hamiltonian (2.74) are given by

żi = [ z0, zi ] + [p, zi+1 ] , 0 ≤ i ≤ N − 1, zN ≡ 0. (2.75)

Eqs. (2.75) admit the following Lax representation:

L̇rN (λ) =
[
LrN (λ),Mr,−

N (λ)
]

= −
[
LrN (λ),Mr,+

N (λ)
]
,

with the matrix LN (λ) given in Eq. (2.68) and

Mr,−
N (λ)

.
=

N−1∑

i=1

zi
λi
, Mr,+

N (λ)
.
= p + λ z0. (2.76)

Remark 2.12 Proposition 2.19 can be proved or by direct verification, namely considering
the contracted model, either performing the contraction procedure and the pole coalescence
λi ≡ ϑ νi, 1 ≤ i ≤ N , on Eqs. (2.38) and (2.39). We get, see Eq. (2.38):

żi =
N∑

j=1

ϑi νij ẏj =
N∑

j=1

[
p, ϑi+1 νi+1

j yj
]
+

N∑

j=1

[
N∑

k=1

yk, ϑ
i νij yj

]
= [ z0, zi ] + [p, zi+1 ] ,

and, see Eq. (2.39):

MG(λ) =
N∑

j=1

ϑ νj yj
λ− ϑ νj

=
N∑

j=1

N−2∑

i=0

(
ϑ νj
λ

)i+1

yj +O(ϑN )
ϑ→0
−−−→

N−2∑

i=0

zi+1

λi+1
=Mr,−

N (λ).

2.4.1 N = 2, the Lagrange top

Fixing N = 2 in the formulae of the previous Subsection we recover the well-kwown dynamics
of the three-dimensional Lagrange top described in the rest frame [4, 8, 19, 37, 53, 59, 79, 91].
In other words we can say that the Lagrange top is the Leibniz extension of order two of the
su(2) rational Gaudin model. This result is contained in our paper [53], but in a less general
framework.

The Lagrange case of the rigid body motion around a fixed point in a homogeneous field
is characterized by the following data: the inertia tensor is given by J

.
= diag(1, 1, α), α ∈ R,

which means that the body is rotationally symmetric with respect to the third coordinate axis,
and the fixed point lies on the symmetry axis.

The equations of motion (in the rest frame) are given by:





ż0 = [p, z1],

ż1 = [ z0, z1],
(2.77)

where z0 ∈ R3 is the vector of kinetic momentum of the body, z1 ∈ R3 is the vector pointing
from the fixed point to the center of mass of the body and p

.
= (0, 0, p) is the constant vector

along the external field. Note that Eqs. (2.77) are just the special case N = 2 of Eqs. (2.75).
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An external observer is mainly interested in the motion of the symmetry axis of the top on the
surface 〈 z1, z1 〉=constant. For an actual integration of this flow in terms of theta functions
see [37].

A remarkable feature of the equations of motion (2.77) is that they do not depend explic-
itly on the anistropy parameter α of the inertia tensor [19]. Moreover they are Hamiltonian
equations with respect to the Lie-Poisson brackets of (minus) e∗(3):

{
zα0 , z

β
0

}
= −εαβγ z

γ
0 ,

{
zα0 , z

β
1

}
= −εαβγ z

γ
1 ,

{
zα1 , z

β
1

}
= 0. (2.78)

As we noticed in Examples 2.2 the Lie-Poisson algebra e∗(3) is the Leibniz extension of order
two of su∗(2). The Hamiltonian function that generates the equations of motion (2.77) is given
by

H
(2)
1

.
= 〈p, z1 〉+

1

2
〈 z0, z0 〉, (2.79)

and the complete integrability of the model is ensured by the second integral of motion H
(2)
0

.
=

〈p, z0 〉. These involutive Hamiltonians can be obtained using Eq. (2.73a) with N = 2, namely
considering the spectral invariants of the Lax matrix, see Eq. (2.68),

Lr2(λ)
.
= p +

z0

λ
+

z1

λ2
. (2.80)

The remaining two spectral invariants are given by the Casimir functions of the Lie-Poisson
brackets of e∗(3), see Eq. (2.71).

We finally recall that the Lagrange top admits a tri-Hamiltonian formulation in terms of
the compatible Reyman-Semenov-Tian-Shansky tensors given in Eq. (2.63), see [79].

Remark 2.13 In Proposition 2.19 we have focussed our attention on the Hamiltonian flow

generated by the integral H
(N)
1 . The reason for this choice can be understood looking at the

Lagrange case. As a matter of fact H
(N)
1 , that is the contracted version of the N -site su(2)

Gaudin Hamiltonian (2.37), is the generalization of the integral (2.79) to the N -th Leibniz
extension of su(2).

Remark 2.14 If we refer to the generalized Lax matrix (with N = 2) given in Eq. (2.60) we
get, see Example 2.3:

Lr2(λ)
.
= p +

z0

λ
− c1

z1

λ2
.

The above Lax matrix provides the same spectral invariants of the Lax matrix (2.80), up to a

rescale of the intensity of the field p in the Hamiltonian H
(2)
1 .

2.4.2 N = 3, the first extension of the Lagrange top

Let us now consider the dynamical system governed by the Lax matrix (2.68) with N = 3 and
p
.
= (0, 0, p). We shall call such a model the first extension of the Lagrange top or equivalently

the Leibniz extension of order three of the su(2) rational Gaudin model. The Lie-Poisson
brackets are explicitly given in Example 2.2. They read

{
zα0 , z

β
0

}
= −εαβγ z

γ
0 ,

{
zα0 , z

β
1

}
= −εαβγ z

γ
1 ,

{
zα0 , z

β
2

}
= −εαβγ z

γ
2 , (2.81a)

{
zα1 , z

β
1

}
= −εαβγ z

γ
2 ,

{
zα1 , z

β
2

}
= 0,

{
zα2 , z

β
2

}
= 0. (2.81b)
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According to Proposition 2.18 the integrals of motion of the model are given by, see Eqs.
(2.73a) and (2.33),

H
(3)
0

.
= 〈p, z0 〉, H

(3)
1

.
= 〈p, z1 〉+

1

2
〈 z0, z0 〉, H

(3)
2

.
= 〈p, z2 〉+ 〈 z0, z1 〉, (2.82a)

C
(3)
0

.
= 〈 z0, z2 〉+

1

2
〈 z1, z1 〉, C

(3)
1

.
= 〈 z1, z2 〉, C

(3)
2

.
=

1

2
〈 z2, z2 〉. (2.82b)

Looking at the brackets given in Eqs. (2.81a) and (2.81b) and taking into account that z0

and z2 span respectively su∗(2) and R3, we may interpret them as the total angular momentum
of the system and the vector pointing from a fixed point (which we shall take as (0, 0, 0) ∈ R3)
to the centre of mass of a Lagrange top. Let us remark that z0 does not coincide with the
angular momentum of the top due to the presence of the vector z1. We think of z1, whose
norm is not constant, as the position of the moving centre of mass of the system composed by
the Lagrange top and a satellite , whose position is described by z1−z2. Here we are assuming
that both bodies have unitary masses. The link between these two systems is given by the
Casimir functions given in Eq. (2.82b). If we think of a canonical realization of the brackets
(2.81a) and (2.81b) in terms of three canonical coordinates and their conjugated momenta we
can immediately argue that the vector z1 must depend on momenta.

If we look at the integralH
(3)
1 , see Eq. (2.82a), we immediately see that it formally coincides

with the physical Hamiltonian of the Lagrange top (2.79) where now the vector z0 is the angular
momentum of system and the vector z1 describes the motion of the total centre of mass.

The Hamiltonian equations of motion with respect to H
(3)
1 are given by, see Eq. (2.75):





ż0 = [p, z1 ],

ż1 = [ z0, z1 ] + [p, z2 ],

ż2 = [ z0, z2 ].

We immediately see that the vector z1 does not rotate rigidly, though z2 does. Obviously,

since the euclidean norm of z1 is not preserved, the integral C
(3)
1 does not imply that the angle

between z1 and z2 is constant.
We now provide a canonical realization of the Lie-Poisson algebra given in Eqs. (2.81a)

and (2.81b). We will use three Euler angles θ ∈ [ 0, 2π), φ ∈ [ 0, 2π) and ψ ∈ [ 0, π) with their
canonical conjugate momenta pθ, pφ and pψ.

Our canonical description is restricted to the following symplectic leaf:

O
.
=
{
(z0, z1, z2) ∈ R9| C

(3)
0 ≡ 0, C

(3)
1 ≡ 0, C

(3)
2 ≡ 1/2

}
. (2.83)

Proposition 2.20 A canonical realization restricted to the symplectic leaf (2.83) of the Lie-
Poisson algebra given in Eqs. (2.81a) and (2.81b) is given by:

z0 =

(
sinφpθ + cot θ cosφpφ −

cosφ

sin θ
pψ,− cosφpθ + cot θ sinφpφ −

sinφ

sin θ
pψ, pφ

)
,

z1 =
√

2 pψ (sinψ sinφ− cos θ cosψ cosφ,− sinψ cosφ− cos θ cosψ sinφ,− sin θ cosψ) ,

z2 = (sin θ cosφ, sin θ sinφ, cos θ) .
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Proof: It is well-known that the canonical realization of e∗(3) spanned by the vectors z0

and z2 such that 〈 z2, z2 〉 = 1 is given by [59]:

z0 =

(
sinφpθ + cot θ cosφpφ −

cosφ

sin θ
pψ,− cosφpθ + cot θ sinφpφ −

sinφ

sin θ
pψ, pφ

)
,

z2 = (sin θ cosφ, sin θ sinφ, cos θ),

where q
.
= (θ, φ, ψ) are the standard Euler angles and p

.
= (pθ, pφ, pψ) are their canonical

conjugated momenta. Recall that if f(q, p) and g(q, p) are two arbitrary smooth functions
then

{f, g}
.
=

3∑

i=1

[
∂f

∂qi

∂g

∂pi
−
∂f

∂pi

∂g

∂qi

]
.

We now require that the Lie-Poisson brackets (2.81a) and (2.81b) restricted to the symplectic
leaf (2.83) hold. A straightforward computation leads to

z1 =
√

2 pψ (sinψ sinφ− cos θ cosψ cosφ,− sinψ cosφ− cos θ cosψ sinφ,− sin θ cosψ).

�

As we have previously mentioned we have obtained that the vector z1 is described in terms
of the canonical coordinates θ, φ, ψ and the conjugated momentum pψ. In particular, we have
〈 z1, z1 〉 = 2 pψ > 0.

For the sake of completeness we write the three Hamiltonians, see Eq. (2.82a), using the
above canonical description:

H
(3)
0 = p pφ,

H
(3)
1 =

p2
θ

2
+
p2
ψ + p2

φ − 2 pψ pφ cos θ

2 sin2 θ
− p

√
2 pψ sin θ cosψ,

H
(3)
2 =

√
2 pψ [ pθ sinψ + (pψ − pφ cos θ) cot θ cosψ − pφ sin θ cosψ ] + p cos θ.

Notice that the variable φ is cyclic as in the Lagrange case, while ψ explicitly enters in the
potential term.

Remark 2.15 If we refer to the generalized Lax matrix (with N = 3) given in Eq. (2.60) we
get, see Example 2.3:

Lr3(λ)
.
= p +

z0

λ
−
c1 z1 + c2 z2

λ2
+ c21

z2

λ3
.

The above Lax matrix provides the following Hamiltonians:

H
(3)
0

.
= 〈p, z0 〉,

H
(3)
1 (c1, c2)

.
= −c1 〈p, z1 + c2 z2 〉+

1

2
〈 z0, z0 〉,

H
(3)
2 (c1, c2)

.
= c1 (c1 〈p, z2 〉 − 〈 z0, z1 + c2 z2 〉) .

Remark 2.16 For an arbitrary order N of the Leibniz extension - where N is also the number
of sites of the Gaudin model - the su(2) rational one-body hierarchy consists of a family of
generalized Lagrange tops. They provide an example of integrable rigid body dynamics described
by a Lagrange top with N − 2 interacting heavy satellites.
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Few remarks on the trigonometric and elliptic Lagrange top

The aim of this short paragraph is just to show the Hamiltonians of the systems governed by
the Lax matrix (2.47) with g ≡ su(2) and N = 2 in the case of a trigonometric and elliptic
dependence on the spectral parameter: they are the Leibniz extensions of order two of the su(2)
trigonometric and elliptic Gaudin models.

According to Eqs. (2.30), (2.31) and (2.32) and Eq. (2.48) we consider the following Lax
matrices:

Lt2(λ)
.
=
σ1 z

1
0 + σ2 z

2
0

sin(λ)
+ cot(λ)σ3 z

3
0 +

cot(λ)

sin(λ)
(σ1 z

1
1 + σ2 z

2
1) + (cot2(λ) + 1)σ3 z

3
1 , (2.85a)

Le2(λ)
.
=

dn(λ)

sn(λ)
σ1 z

1
0 +

1

sn(λ)
σ2 z

2
0 +

cn(λ)

sn(λ)
σ3 z

3
0+

+
cn(λ)

sn2(λ)
σ1 z

1
1 +

cn(λ) dn(λ)

sn2(λ)
σ2 z

1
2 +

dn2(λ)

sn2(λ)
σ3 z

1
3 , (2.85b)

where the six variables zα0 , z
α
1 obey to the Lie-Poisson brackets of (minus) e∗(3), see Eq. (2.78).

The Lax matrices (2.85a) and (2.85b) satisfy the linear r-matrix structure (2.50) with r-matrix
given respectively by, see Eq. (2.29),

r(λ)
.
= −

1

2




cot(λ) 0 0 0
0 0 1

sin(λ) 0

0 1
sin(λ) 0 0

0 0 0 cot(λ)


 ,

r(λ)
.
= −

1

4




cn(λ)
sn(λ) 0 0 dn(λ)

sn(λ) −
1

sn(λ)

0 − cn(λ)
sn(λ)

dn(λ)
sn(λ) + 1

sn(λ) 0

0 dn(λ)
sn(λ) + 1

sn(λ) − cn(λ)
sn(λ) 0

dn(λ)
sn(λ) −

1
sn(λ) 0 0 cn(λ)

sn(λ)



.

The system described by the Lax matrix (2.85a) has the following two involutive integrals
of motion:

It0
.
= (z3

0)2, (2.86a)

It1
.
=

1

2

[
(z1

0)
2 + (z2

0)2 + (z3
0)2
]
+

1

2
(z3

1)2. (2.86b)

The system described by the Lax matrix (2.85b) has the following two involutive integrals
of motion:

Ie0
.
=

1

2

[
(z1

0)2 + (z2
0)2
]
−
k2

2

[
(z1

0)
2 + (z3

1)2
]
+

1

2
(z3

1)2, (2.87a)

Ie1
.
=

1

2

[
(z1

0)2 + (z2
0)2 + (z3

0)2
]
−
k2

2

[
(z2

1)2 + (z3
1)2
]
+

1

2
(z3

1)2, (2.87b)

where k is the modulus of the elliptic Jacobi functions. Notice that fixing k = 0 in Eqs.
(2.87a-2.87b) we obviously recover the integrals (2.86a-2.86b).
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2.5 Leibniz extensions of su(2) rational Gaudin models: the many-body hierarchy

The rational su(2) many-body hierarchy is governed by the Lax matrix (2.65) with g ≡ su(2)
and assuming a rational dependence on the spectral parameter, namely:

LrM,N (λ)
.
= p +

M∑

k=1

N−1∑

i=0

(zi)k
(λ− µk)i+1

,

where the complex numbers µk’s, with µk 6= µj , 1 ≤ k, j ≤ M are local parameters of the
model. The Lie-Poisson brackets are, see Eq. (2.67),

{
(zαi )n, (z

β
j )m

}
=

{
−δn,m εαβγ (zγi+j)n i+ j < N,

0 i+ j ≥ N,

with 0 ≤ i, j ≤ N − 1 and 1 ≤ n,m ≤M .
Our aim is now to study the case N = 2, namely we shall consider an integrable long-range

homogeneuous chain of interacting Lagrange tops, that we call rational Lagrange chain.

2.5.1 The rational Lagrange chain

The rational Lagrange chain is an integrable systems (with 2M degrees of freedom) associated
with the Lie-Poisson algebra ⊕Me∗(3). Since we have just two generators, i.e. z0 and z1,
for each copy of the Lie algebra, it is convenient to simplify the notation using the following
definitions:

(z0)k
.
= mk, (z1)k

.
= ak, 1 ≤ k ≤M. (2.88)

Hence mk
.
= (m1

k,m
2
k,m

3
k) ∈ R3 and ak

.
= (a1

k, a
2
k, a

3
k) ∈ R3 describe respectively the

angular momentum and the the vector pointing from the fixed point to the center of mass of
the k-th top. The Lie-Poisson brackets on ⊕M e∗(3) are:

{
mα
k ,m

β
j

}
= −δk,j εαβγm

γ
k,

{
mα
k , a

β
j

}
= −δk,j εαβγ a

γ
k ,

{
aαk , a

β
j

}
= 0, (2.89)

with 1 ≤ k, j ≤M . The above brackets are degenerate: they possess the following 2M Casimir
functions:

C
(1)
k

.
= 〈mk,ak 〉, C

(2)
k

.
=

1

2
〈ak,ak 〉, 1 ≤ k ≤M. (2.90)

Using the notation introduced in Eq. (2.88), the Lax matrix of the rational Lagrange chain
reads

LrM,2(λ)
.
= p +

M∑

i=1

[
mi

λ− µi
+

ai
(λ− µi)2

]
, (2.91)

where p
.
= (0, 0, p) as in the Lagrange case.

According to Proposition 2.14 the Lax matrix (2.91) satisfies a linear r-matrix algebra with
r-matrix given by r(λ) = −Π/(2λ), where Π is the permutation operator in C2 ⊗ C2.

The complete set of integrals of the model can be obtained in the usual way. In fact, a
straightforward computation leads to the following statement.

Proposition 2.21 The hyperelliptic curve ΓrM,2 : det(LrM,2(λ) − µ1) = 0, (λ, µ) ∈ C2, with
LrM,2(λ) given in Eq. (2.91) reads

ΓrM,2 : −µ2 =
1

4
〈p,p 〉+

1

2

M∑

k=1

[
Rrk

λ− µk
+

Srk
(λ− µk)2

+
C

(1)
k

(λ− µk)3
+

C
(2)
k

(λ− µk)4

]
, (2.92)
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where

Rrk
.
= 〈p,mk 〉+

M∑

j=1
j 6=k

[
〈mk,mj 〉

µk − µj
+
〈mk,aj 〉 − 〈mj ,ak 〉

(µk − µj)2
− 2

〈ak,aj 〉

(µk − µj)3

]
, (2.93a)

Srk
.
= 〈p,ak 〉+

1

2
〈mk,mk 〉+

M∑

j=1
j 6=k

[
〈ak,mj 〉

µk − µj
+
〈ak,aj 〉

(µk − µj)2

]
. (2.93b)

The 2M independent integrals {Rrk}
M
k=1 and {Srk}

M
k=1 are involutive first integrals of motion

and the integrals {C
(1)
k }

M
k=1 and {C

(2)
k }

M
k=1 are the Casimir functions given in Eq. (2.90).

Remark 2.17 Obviously, the curve (2.92) with M = 1 coincides with the curve (2.72) with
N = 2.

Notice that, as in the su(2) rational Gaudin model, there is a linear integral given by∑M
k=1R

r
k =

∑M
k=1〈p,mk 〉. A possible choice for a physical Hamiltonian describing the dy-

namics of the model can be constructed considering a linear combination of the Hamiltonians
{Rk}

M
k=1 and {Sk}

M
k=1 similar to the one considered for the rational Gaudin model, see Eq.

(2.37):

HrM,2
.
=

M∑

k=1

(µk R
r
k + Srk) =

M∑

k=1

〈p, µk mk + ak 〉+
1

2

M∑

i,k=1

〈mi,mk 〉. (2.94)

If M = 1 the Hamiltonian (2.94) gives the sum of the two integrals of motion of the Lagrange
top. Our aim is now to find the Hamiltonian flow generated by HrM,2.

Proposition 2.22 The equations of motion w.r.t. the Hamiltonian (2.94) are given by






ṁi = [p,ai ] +
[
µi p +

∑M
k=1 mk,mi

]
,

ȧi =
[
µi p +

∑M
k=1 mk,ai

]
,

(2.95)

with 1 ≤ i ≤M . Eqs. (2.95) admit the following Lax representation:

L̇rM,2(λ) =
[
LrM,2(λ),M

r
M,2(λ)

]
,

with the matrix LrM,2(λ) given in Eq. (2.91) and

Mr
M,2(λ)

.
=

M∑

i=1

1

λ− µi

[
µimi +

λai
λ− µi

]
. (2.96)

Proof: A direct calculation.

�

2.5.2 An alternative construction of the rational Lagrange chain

We now use the procedure described in Proposition 2.15 in order to recover the results obtained
in the previuos Subsection.
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Let us consider a su(2) rational Gaudin model with 2M sites (i.e. N = 2, where N is the
order of the Leibniz extension, see the notation used in Subsection 2.3.3). We have to apply

the map defined in Eq. (2.66) to the coordinates {yαk }
dim g

α=1 , 1 ≤ k ≤ 2M . According to the
notation introduced in Eq. (2.88) we get:

(z0)i
.
= mi

.
=

2∑

j=1

y2i−j+1 = y2i + y2i−1, (2.97a)

(z1)i
.
= ai

.
= ϑ

2∑

j=1

ν2i−j+1 y2i−j+1 = ϑ (ν2i y2i + ν2i−1 y2i−1), (2.97b)

with 1 ≤ i ≤M . Moreover we define the following pole coalescence:

λ2i ≡ ϑ ν2i + µi, λ2i−1 ≡ ϑ ν2i−1 + µi, 1 ≤ i ≤M, (2.98)

where the λi’s are the 2M parameters of the Gaudin model and the µi’s are M distinct new
parameters. We recall here some features of the 2M -site su(2) rational Gaudin model. The
Lax matrix is, see Eq. (2.28a):

LrG(λ)
.
= p +

2M∑

i=1

yi
λ− λi

. (2.99)

The 2M involutive Hamiltonians are, see Eq. (2.33):

Hr
i
.
= 〈p,yi 〉+

2M∑

j=1
j 6=i

〈yi,yj 〉

λi − λj
,

2M∑

i=1

Hr
i =

2M∑

i=1

〈p,yi 〉. (2.100)

The equations of motion with respect to the Gaudin Hamiltonian
∑2M

i=1 λiH
r
i are given by, see

Eq. (2.38):

ẏi =
[
λi p +

∑2M
j=1yj , yi

]
, 1 ≤ i ≤ 2M, (2.101)

and the auxiliary matrix appearing in the Lax representation is, see Eq. (2.39):

Mr
G(λ)

.
=

2M∑

i=1

λi yi
λ− λi

. (2.102)

Proposition 2.23 The isomorphism defined in Eqs. (2.97a) and (2.97b) and the pole coales-
cence (2.98) maps, in the contraction limit ϑ→ 0:

1. the Lax matrix (2.99) into the Lax matrix (2.91);

2. the Hamiltonians (2.100) into the Hamiltonians (2.93a-2.93b);

3. the equations of motion (2.101) into the equations of motion (2.95);

4. the auxiliary matrix (2.102) into the auxiliary matrix (2.96).

Proof: All results are obtained by a direct computation.
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1. Considering Eq. (2.99) we obtain:

LrG(λ)
.
= p +

M∑

i=1

y2i−1

λ− λ2i−1
+

M∑

i=1

y2i

λ− λ2i
=

= p +

M∑

i=1

y2i−1

λ− µi − ϑ ν2i−1
+

M∑

i=1

y2i

λ− µi − ϑ ν2i
=

= p +

M∑

i=1

y2i−1

λ− µi

(
1 +

ϑ ν2i−1

λ− µi
+O(ϑ2)

)
+

M∑

i=1

y2i

λ− µi

(
1 +

ϑ ν2i
λ− µi

+O(ϑ2)

)
=

= p +

M∑

i=1

y2i−1 + y2i

λ− µi
+

M∑

i=1

ϑ (ν2i y2i + ν2i−1 y2i−1)

(λ− µi)2
+O(ϑ2).

Hence:

LrG(λ)
ϑ→0
−−−→ p +

M∑

i=1

[
mi

λ− µi
+

ai
(λ− µi)2

]
.

2. The formulae giving the integrals {Rri }
M
i=1 and {Sri }

M
i=1, see Eqs. (2.93a-2.93b), are:

Rri = lim
ϑ→0

(Hr
2i +Hr

2i−1),

Sri = lim
ϑ→0

[ϑ (ν2iH
r
2i + ν2i−1H

r
2i−1)].
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We get:

Hr
2i + Hr

2i−1 = 〈p,y2i + y2i−1 〉+

+

M∑

j=1
j 6=i

〈y2i,y2j−1 〉

µi − µj

[
1−

ϑ (ν2i − ν2j−1)

µi − µj
+
ϑ2 (ν2i − ν2j−1)

2

(µi − µj)2

]
+

+
M∑

j=1
j 6=i

〈y2i,y2j 〉

µi − µj

[
1−

ϑ (ν2i − ν2j)

µi − µj
+
ϑ2 (ν2i − ν2j−1)

2

(µi − µj)2

]
+

+
M∑

j=1
j 6=i

〈y2i−1,y2j−1 〉

µi − µj

[
1−

ϑ (ν2i−1 − ν2j−1)

µi − µj
+
ϑ2 (ν2i − ν2j−1)

2

(µi − µj)2

]
+

+
M∑

j=1
j 6=i

〈y2i−1,y2j 〉

µi − µj

[
1−

ϑ (ν2i−1 − ν2j)

µi − µj
+
ϑ2 (ν2i − ν2j−1)

2

(µi − µj)2

]
+O(ϑ3) =

= 〈p,y2i + y2i−1 〉+

+

M∑

j=1
j 6=i

〈y2i + y2i−1,y2j + y2j−1 〉

µi − µj
+

+

M∑

j=1
j 6=i

〈y2i + y2i−1, ϑ (ν2j y2j + ν2j−1 y2j−1) 〉

(µi − µj)2
−

−

M∑

j=1
j 6=i

〈ϑ (ν2i y2i + ν2i−1 y2i−1),y2j + y2j−1 〉

(µi − µj)2
+

+ 2

M∑

j=1
j 6=i

〈ϑ (ν2i y2i + ν2i−1 y2i−1), ϑ (ν2j y2j + ν2j−1 y2j−1) 〉

(µi − µj)3
+O(ϑ3),

with 1 ≤ i ≤M . Using the map (2.97a-2.97b) and performing the limit ϑ→ 0 we obtain
the integrals given in Eq. (2.93a).
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For the integrals {Sri }
M
i=1 we obtain:

ϑ (ν2iH
r
2i + ν2i−1H

r
2i−1) = 〈p, ϑ (ν2i y2i + ν2i−1 y2i−1) 〉+ 〈y2i,y2i−1 〉+

+

M∑

j=1
j 6=i

ϑ ν2i 〈y2i,y2j−1 〉

µi − µj

[
1−

ϑ (ν2i − ν2j−1)

µi − µj

]
+

+

M∑

j=1
j 6=i

ϑ ν2i 〈y2i,y2j 〉

µi − µj

[
1−

ϑ (ν2i − ν2j)

µi − µj

]
+

+

M∑

j=1
j 6=i

ϑ ν2i−1 〈y2i−1,y2j−1 〉

µi − µj

[
1−

ϑ (ν2i−1 − ν2j−1)

µi − µj

]
+

+

M∑

j=1
j 6=i

ϑ ν2i−1 〈y2i−1,y2j 〉

µi − µj

[
1−

ϑ (ν2i−1 − ν2j)

µi − µj

]
+O(ϑ3) =

= 〈p, ϑ (ν2i y2i + ν2i−1 y2i−1) 〉+ 〈y2i,y2i−1 〉+

+

M∑

j=1
j 6=i

〈ϑ (ν2i y2i + ν2i−1 y2i−1),y2j + y2j−1 〉

µi − µj
+

+

M∑

j=1
j 6=i

〈ϑ (ν2i y2i + ν2i−1 y2i−1), ϑ (ν2j y2j + ν2j−1 y2j−1) 〉

(µi − µj)2
+O(ϑ3),

with 1 ≤ i ≤M . Notice that

〈y2i,y2i−1 〉 =
1

2
〈y2i + y2i−1,y2i + y2i−1 〉 − C2i − C2i−1,

where the functions Ci
.
= 〈yi,yi 〉, 1 ≤ i ≤ 2M , are Casimirs for ⊕2Msu∗(2). Using

the map (2.97a-2.97b) and performing the limit ϑ → 0 we obtain the integrals given in
Eq. (2.93b). Notice that the Hamiltonians (2.93a-2.93b) are in involution w.r.t. the
Lie-Poisson brackets (2.89) thanks to Proposition 2.16.

3. Considering Eqs. (2.101) we obtain:

ṁi
.
= ẏ2i + ẏ2i−1 =

=
[
(ϑ ν2i + µi)p +

∑2M
j=1yj , y2i

]
+
[
(ϑ ν2i−1 + µi)p +

∑2M
j=1yj , y2i−1

]
=

= [p, ϑ (ν2i y2i + ν2i−1 y2i−1) ] +
[
µi p +

∑2M
j=1yj , y2i−1 + y2i

]
=

= [p,ai ] +
[
µi p +

∑M
k=1mk,mi

]
,

and

ȧi
.
= ϑ (ν2i ẏ2i + ν2i−1 ẏ2i−1) =

[
(ϑ ν2i + µi)p +

∑2M
j=1yj , ϑ ν2i y2i

]
+

+
[
(ϑ ν2i−1 + µi)p +

∑2M
j=1yj , ϑ ν2i−1 y2i−1

]
=

=
[
µi p +

∑2M
j=1yj , ϑ (ν2i y2i + ν2i−1 y2i−1)

]
+O(ϑ2)

ϑ→0
−−−→

[
µi p +

∑M
k=1mk,ai

]
.
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4. Considering Eq. (2.102) we obtain:

Mr
G(λ)

.
=

M∑

i=1

λ2i−1 y2i−1

λ− λ2i−1
+

M∑

i=1

λ2i y2i

λ− λ2i
=

=
M∑

i=1

(ϑ ν2i−1 + µi)y2i−1

λ− µi − ϑ ν2i−1
+

M∑

i=1

(ϑ ν2i + µi)y2i

λ− µi − ϑ ν2i
=

=

M∑

i=1

(ϑ ν2i−1 + µi)y2i−1

λ− µi

(
1 +

ϑ ν2i−1

λ− µi
+O(ϑ2)

)
+

+

M∑

i=1

(ϑ ν2i + µi)y2i

λ− µi

(
1 +

ϑ ν2i
λ− µi

+O(ϑ2)

)
=

=

M∑

i=1

1

λ− µi

[
µi (y2i−1 + y2i) +

λϑ (ν2i y2i + ν2i−1 y2i−1)

λ− µi

]
+O(ϑ2).

Hence:

Mr
G(λ)

ϑ→0
−−−→

M∑

i=1

1

λ− µi

[
µimi +

λai
λ− µi

]
.

�

Few remarks on the trigonometric Lagrange chain

We now construct a trigonometric Lagrange chain, namely a long-range partially inhomoge-
neous integrable chain of interacting Lagrange tops. We shall use the notation introduced in
Eq. (2.88) to denote the coordinates of the Lie-Poisson algebra ⊕Me∗(3).

According to Eqs. (2.65) and (2.85a), the Lax matrix governing the trigonometric Lagrange
chain reads

LtM,2(λ)
.
=

M∑

i=1

[
σ1m

1
i + σ2m

2
i

sin(λ− µi)
+ cot(λ − µi)σ3m

3
i+

+
cot(λ− µi)

sin(λ− µi)
(σ1 a

1
i + σ2 a

2
i ) + (cot2(λ− µi) + 1)σ3 a

3
i

]
. (2.103)

We know, from Proposition 2.14, that the above Lax matrix satisfies a linear r-matrix algebra
with r-matrix given by, see Eq. (2.29),

r(λ)
.
= −

1

2




cot(λ) 0 0 0
0 0 1

sin(λ) 0

0 1
sin(λ) 0 0

0 0 0 cot(λ)


 ,

Let us give the following statement. The proof is straightforward.

Proposition 2.24 The curve ΓtM,2 : det(LtM,2(λ)−µ1) = 0, (λ, µ) ∈ C2, with LtM,2(λ) given
in Eq. (2.103) reads

ΓtM,2 : −µ2 = Ht
0 +

1

2

M∑

k=1

[
Rtk cot(λ− µk) + Stk cot2(λ− µk)+

+C
(1)
k cot3(λ − µk) + C

(2)
k cot4(λ− µk)

]
,
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where

Ht
0
.
=

1

2

M∑

i=1

[
(m1

i )
2 + (m2

i )
2
]
−

1

2

M∑

i,j=1
i6=j

m3
i m

3
j +

1

2

(
M∑

i=1

a3
i

)2

+

+

M∑

i,j=1
i6=j

1

sin(µi − µj)

[
a1
i m

1
j + a2

i m
2
j + a3

i m
3
j cos(µi − µj)

]
+

+
1

2

M∑

i,j=1
i6=j

cot(µi − µj)

sin(µi − µj)

[
a1
i a

1
j + a2

i a
2
j + a3

i a
3
j cos(µi − µj)

]
, (2.104a)

Rtk
.
= C

(1)
k +

1

2

M∑

j=1
j 6=k

(
m3
k a

3
j −m

3
j a

3
k

)
+

+

M∑

j=1
j 6=k

1

sin(µk − µj)

[
m1
km

1
j +m2

km
2
j +m3

km
3
j cos(µk − µj)

]
+

+

M∑

j=1
j 6=k

cot(µk − µj)

sin(µk − µj)

[
m1
k a

1
j +m2

k a
2
j +m3

k a
3
j cos(µk − µj)−

−m1
j a

1
k −m

2
j a

2
k −m

3
j a

3
k cos(µk − µj)

]
−

− 2

M∑

j=1
j 6=k

1

sin3(µk − µj)

[
a1
k a

1
j + a2

k a
2
j + a3

k a
3
j cos(µk − µj)

]
, (2.104b)

Stk
.
= C

(2)
k +

1

2

[
(m1

k)
2 + (m2

k)
2 + (m3

k)
2
]
+

1

2
(a3
k)

2 +
1

2

M∑

i,j=1
j 6=k

a3
i a

3
j+

+

M∑

j=1
j 6=k

1

sin(µk − µj)

[
a1
km

1
j + a2

km
2
j + a3

km
3
j cos(µk − µj)

]
+

+

M∑

j=1
j 6=k

cot(µk − µj)

sin(µk − µj)

[
a1
k a

1
j + a2

k a
2
j + a3

k a
3
j cos(µk − µj)

]
. (2.104c)

The integrals Ht
0, {R

t
k}
M
k=1, {S

t
k}
M
k=1 are involutive first integrals of motion (only 2M of them

are independent). The integrals {C
(1)
k }

M
k=1 and {C

(2)
k }

M
k=1 are the Casimir functions given in

Eq. (2.90).

Remark 2.18 Let us fix M = 1 in Eqs. (2.104a) and (2.104c). We get (omitting the lower
index in the coordinates m1,a1):

Ht
0
.
=

1

2

[
(m1)2 + (m2)2

]
+

1

2

(
a3
)2
,

St
.
=

1

2
〈a,a 〉+

1

2
〈m,m 〉+

1

2

(
a3
)2
,
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where 〈a,a 〉 is a Casimir function of the Lie-Poisson algebra e∗(3). Recalling the Hamiltonians
(2.86a-2.86b) of the trigonometric Lagrange top, we immediately see that It1 = St (up to a
Casimir function) and It0 = St −Ht

0 (up to a Casimir function).



3

Integrable discretizations of su(2) extended

rational Gaudin models

3.1 Integrable discretizations through Bäcklund transformations

The theory of integrable maps got a boost when Veselov developed a theory of Lagrange
correspondences [99, 100, 101]. Roughly speaking, these maps are symplectic multi-valued
transformations which have enough integrals of motion, this definition being a proper analog
of the classical Liouville integrability. In the main examples, studied by him and later by other
authors, the integrable maps are constructed as time-discretizations of classical integrable
models (such as the Neumann system, the geodesic flow on an ellipsoid, the Euler-Manakov
top, the Lagrange top, the Toda lattice, the Calogero-Moser systems and other families of
integrable systems), see, for instance, [21, 23, 31, 41, 53, 54, 55, 56, 70, 77, 87, 99, 100, 101],
the excellent book of Yu.B. Suris [91] and the references inside.

Moreover these correspondences associate with a given solution of an integrable system a
new solution, a property reminescent of Bäcklund transformations (BTs) for soliton equations.

In the first part of this Chapter we shall apply the theory of BTs for finite-dimensional
integrable systems, developed by V.B. Kuznetsov, E.K. Sklyanin and P. Vanhaecke in the
papers [55, 56, 87]. Following this approach we look at BTs as special Poisson maps. It is
possible to find an exhaustive list of the features of these BTs in [55, 56, 87]:

1. A BT is an integrable Poisson map that discretizes a family of flows of the integrable
system (and not a particular one);

2. The discrete flow corresponds to an interpolating Hamiltonian H which is a multi-valued
function of the involutive integrals of motion. A BT B acts on a point x of the phase
space as [56]

B : x 7−→ x̂ = x+ {H, x}+
1

2
{H, {H, x}}+ ...

Nevertheless, although a BT is multi-valued, it leads to a single-valued map on any level
manifold of the integrals of motion;

3. a BT can be constructed using a quite universal receipt. One has to consider the following
similarity transform on the Lax matrix L(λ):

Bη : L(λ) 7−→ L̂η(λ)
.
=Mη(λ)L(λ)M−1

η (λ), ∀ λ ∈ C, η ∈ C, (3.1)

with some generically non-degenerate matrix Mη(λ), simply because a BT should pre-
serve the spectrum of L(λ). The parameter η is called Bäcklund parameter. It is possible
to consider BTs with several parameters: in particular, the number of zeros of detMη(λ)
is the number of essential Bäcklund parameters;

4. Two BTs Bη1 and Bη2 , η1 6= η2, for a given integrable sistem commute, namely Bη1◦Bη2 =
Bη2 ◦ Bη1 . This commutation follows from the canonicity and the invariance of the
integrals of motion. Indeed, any integrable canonical mapping acts on the Liouville torus
as a collection of shifts of the angle variables [99, 100, 101];

59
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5. When one searches for the simplest BT of an integrable system, then one finds a one-
dimensional family {Bη | η ∈ C} of them. The Bäcklund parameter η is canonically
conjugate to µ, i.e. µ = −∂Fη/∂η with Fη generating function of {Bη | η ∈ C}. Here µ is
bound to η by the equation of an algebraic curve (dependent on the integrals), which is
exactly the characteristic curve that appears in the linearization of the integrable system.
This property is called spectrality of the BT;

6. A direct consequence of the spectrality property is the explicitness of the constructed
maps; see [56] for further details about the geometrical meaning of the spectrality prop-
erty;

7. The explicit nature of a BT makes it purely iterative, so that it is very well suited as
symplectic integrator for the underlying model. The Bäcklund parameter η plays the role
of an adjustable discrete-time step.

Remark 3.1 An important practical question arising in the theory of BTs is how to find,
given a Lax matrix L(λ), the matrix Mη(λ) which would generate a BT. To check that a
matrix Mη(λ) is admissible one needs, first, to verify that the system of equations resulting
from Eq. (3.1) is self-consistent, and, second, to prove that the resulting transformation is
canonical, i.e. it preserves the Lie-Poisson brackets.

For instance, if L(λ) satisfies a linear r-matrix algebra, namely

{L(λ)⊗ 1,1⊗ L(µ)} + [ r(λ − µ),L(λ) ⊗ 1 + 1⊗ L(µ) ] = 0, ∀ (λ, µ) ∈ C2,

one has to prove that the same holds for the Lax matrix L̂η(λ).
This problem is completely solved in the case of su(2) Lax matrices associated with linear

and quadratic r-matrix algebras with rational dependence on λ [31, 87] and a general ansatz
for the matrix Mη(λ) exists. In particular, the matrix Mη(λ) should be a simple Lax operator
of the quadratic algebra

{Mη(λ)⊗ 1,1⊗Mη(µ)} + [ r(λ − µ),Mη(λ) ⊗Mη(µ) ] = 0, ∀ (λ, µ) ∈ C2, (3.2)

with the same rational r-matrix associated with the Lax matrix L(λ). The fact that the right
ansatz for the matrix Mη(λ) obeys to the algebra (3.2) guarantees that the resulting map will
be Poisson; see [56, 87] for further details.

In [53, 73] we have constructed (complex and real) BTs for the standard Lagrange top. An
interesting feature of these BTs, see our paper [53], is that they can be obtained performing a
contraction and a pole coalescence on the BTs for the su(2) two-body rational Gaudin model.
We recall that the BTs for the su(2) N -body rational Gaudin model have been constructed in
[41].

We prefer to omit the complete analysis of the BTs for the Lagrange top, since they can
be obtained from the BTs of the rational Lagrange chain fixing M = 1, being M the number
of interacting Lagrange tops.

We now study the problem of constructing BTs for the first rational extension of the
Lagrange top and for the rational Lagrange chain.

3.1.1 BTs for the first rational extension of the Lagrange top

The continuous-time first rational extension of the Lagrange top is described in the previuos
Chapter, see Subsection 2.4.2. Since we have just three generators, i.e. z0, z1, z2, we prefer to
use the following notation:

z0
.
= m, z1

.
= a, z2

.
= b.
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According to this notation, the Lax matrix is obtained fixing N = 3 in Eq. (2.68):

L3(λ)
.
= p +

m

λ
+

a

λ2
+

b

λ3
, (3.3)

where p
.
= (0, 0, p) as in the Lagrange case. The Lie-Poisson brackets read, see Eqs. (2.81a-

2.81b):

{
mα,mβ

}
= −εαβγm

γ ,
{
mα, aβ

}
= −εαβγ a

γ ,
{
mα, bβ

}
= −εαβγ b

γ , (3.4a)
{
aα, aβ

}
= −εαβγ b

γ ,
{
aα, bβ

}
= 0,

{
bα, bβ

}
= 0. (3.4b)

Let us recall that the Lax matrix (3.3) satisfies the linear r-matrix algebra (2.50) with r-matrix
given by r(λ) = −Π/(2λ), being Π the permutation operator in C2 ⊗ C2.

It is convenient to write the Lax matrix (3.3) in the following way:

L3(λ)
.
= −

i

2

(
u(λ) v(λ)
w(λ) −u(λ)

)
, (3.5)

with

u(λ)
.
= p+

m3

λ
+
a3

λ2
+
b3

λ3
, v(λ)

.
=
m−

λ
+
a−

λ2
+
b−

λ3
, w(λ)

.
=
m+

λ
+
a+

λ2
+
b+

λ3
,

where we have introduced the complex variables m± .
= m1± im2, a±

.
= a1± i a2, b±

.
= b1± i b2.

In terms of such variables the non-trivial Lie-Poisson brackets (3.4a-3.4b) read

{m3,m±} = ± im±, {m+,m−} = 2 im3,

{m3, a±} = {a3,m±} = ± i a±, {m+, a−} = {a+,m−} = 2 i a3,

{m3, b±} = {b3,m±} = ± i b±, {m+, b−} = {b+,m−} = 2 i b3,

{a3, a±} = ± i b±, {a+, a−} = 2 i b3.

Finally we give the complete set of integrals of motion of the first extension of the Lagrange
top, see Eqs. (2.82a-2.82b):

H
(3)
0

.
= 〈p,m 〉, H

(3)
1

.
= 〈p,a 〉+

1

2
〈m,m 〉, H

(3)
2

.
= 〈p,b 〉+ 〈m,a 〉,

C
(3)
0

.
= 〈m,b 〉+

1

2
〈a,a 〉, C

(3)
1

.
= 〈a,b 〉, C

(3)
2

.
=

1

2
〈b,b 〉.

According to Proposition 2.18 they are the coefficients of the inverse powers of λ of the hyper-
elliptic spectral curve Γ3 : det(L3(λ)− µ1) = 0, namely

Γ3 : −µ2 =
1

4
〈p,p 〉+

1

2

(
H

(3)
0

λ
+
H

(3)
1

λ2
+
H

(3)
2

λ3
+
C

(3)
0

λ4
+
C

(3)
1

λ5
+
C

(3)
2

λ6

)
. (3.7)

One-point BTs

A one-point BT can be constructed performing the similarity transform given in Eq. (3.1) on
our Lax matrix L3(λ) (3.5):

Bη : L3(λ) 7−→ L̂3(λ; η)
.
=Mη(λ)L3(λ)M

−1
η (λ) = −

i

2

(
û(λ) v̂(λ)
ŵ(λ) −û(λ)

)
, (3.8)
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for all λ ∈ C, being η ∈ C the Bäcklund parameter, and

û(λ)
.
= p+

m̂3

λ
+
â3

λ2
+
b̂3

λ3
, v̂(λ)

.
=
m̂−

λ
+
â−

λ2
+
b̂−

λ3
, ŵ(λ)

.
=
m̂+

λ
+
â+

λ2
+
b̂+

λ3
.

Here we use the ̂-notation for the updated variables. The intertwining matrixMη(λ) is given
by 1[31, 41, 53, 87]:

Mη(λ)
.
=

(
λ− η + r q r

q 1

)
, detMη(λ) = λ− η. (3.9)

The variables r and q are “a priori” indeterminate dynamical variables, but comparing the
asymptotics in λ→∞ in both sides of Eq. (3.8) we readily get

r =
m−

2 p
, q =

m̂+

2 p
, m̂3 = m3. (3.10)

Notice that the last equation in (3.10) immediately gives the conservation of the Hamiltonian

H
(3)
0 . If we want an explicit map from L3(λ) to L̂3(λ; η) we must express q in terms of the old

variables. To overcome this problem one can use the spectrality of the BTs [55, 56]. Eq. (3.8)
defines a map BP parametrized by the point P

.
= (η, µ) ∈ Γ3, see Eq. (3.7) . Notice that there

are two points on Γ3, P
.
= (η, µ) and Q

.
= (η,−µ), corresponding to the same η and sitting

one above the other because of the hyperelliptic involution:

(η, µ) ∈ Γ3 : det(L3(η)− µ1) = 0 ⇔ µ2 + det(L3(η)) = 0.

This spectrality property provides an explicit formula allowing us to express q in terms of the
old variables [41, 53]. Because detMη(η) = 0, the matrixMη(η) has a one-dimensional kernel:

Mη(η)Ω =

(
r q r
q 1

)
Ω = 0 ⇒ Ω =

(
1
−q

)
.

The equality Mη(η)L3(η)Ω = L̂3(η; η)Mη(η)Ω implies that L3(η)Ω ∼ Ω, so that Ω is an
eigenvector of L3(η). Fixing the corresponding point of the spectrum as P

.
= (η, µ) ∈ Γ3, we

get (
u(η)− µ v(η)
w(η) −u(η)− µ

) (
1
−q

)
= 0.

This gives us the formula for the variable q:

q =
u(η)− µ

v(η)
= −

w(η)

u(η) + µ
, (3.11)

where η and µ are bounded by the algebraic curve (3.7).

1Fixing the simplest case of a linear function Mη(λ)
.
= M1 λ + M0 and taking the limit λ → ∞ in Eq.

(3.8) it is possible to show that M1 must be diagonal. Moreover, the most elementary one-point BT should
correspond to the case when detMη(λ) has only one zero λ = η, which will lead to having only one Bäcklund
parameter. So we can choose

M1

.
=

„

1 0
0 0

«

or M1

.
=

„

0 0
0 1

«

.

These two matrices produce similar BTs: they are different just in the direction of the discrete-time.
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Proposition 3.1 The similarity transform (3.8) defines a complex BT Bη : R9 → C9 that

maps the variables (m,a,b) ∈ R9 into (m̂, â, b̂) ∈ C9 according to the following relations:

m̂3 = m3,

m̂− = a− + (r q − η)m− − 2 rm3,

m̂+ = 2 q p,

â3 = a3 + rm+ − q a− − q (r q − η)m− + 2 r q m3,

â− = (2 r q − η) a− − 2 r a 3 − r2m+ + r q (r q − η)m− − 2 r2 qm3,

â+ = m+ −
q

r
(r q − η)m− + 2 qm3,

b̂3 = b3 − q b− + 2 r q a3 − r q2 a− + r a+ + η q (r q − η)m− + r ηm+ + 2 η r q m3,

b̂− = (2 r q − η) b− − 2 r b3 − 2 r2 q a3 + r2 q2 a− − r2 a+ − η r q(r q − η)m− −

−r2 ηm+ − 2 η r2 q m3,

b̂+ = 2 q a3 − q2 a− + a+ + η
q

r
(r q − η)m− + ηm+ + 2 η q m3. (3.12)

Proof: A straightforward computation based on Eq. (3.8) leads to the following equations:

û(λ) =
(λ− η + 2 r q)[u(λ)− q v(λ)] + r w(λ)

λ− η
,

v̂(λ) =
(λ− η + 2 r q)2v(λ) − 2 r (λ− η + 2 r q)u(λ)− r2 w(λ)

λ− η
,

ŵ(λ) =
w(λ) + 2 q u(λ)− q2 v(λ)

λ− η
.

Collecting the negative powers of λ, the above formulae give Eqs. (3.12). It is not possible to
fix a condition on the parameter η in order to get a real map. Hence the one-point BT (3.12)
is a map from R9 to C9.

�

The following statement shows how the one-point BT can be written in a symplectic form
through a generating function. We restrict our BT Bη to a symplectic leaf of the Lie-Poisson

structure by fixing the values of the Casimir functions C
(3)
0 , C

(3)
1 , C

(3)
2 :

O
.
=
{
(m,a,b) ∈ R9| C

(3)
0 ≡ γ1, C

(3)
1 ≡ γ2, C

(3)
2 ≡ 1/2, (γ1, γ2) ∈ R2

}
. (3.13)

Let us fix the following notation:

χ3 .
= (m3, a3, b3)T , χ± .

= (m±, a±, b±)T .

We denote with χαi , i = 1, 2, 3, α = ±, 3 the i-th component of the vector χα and with ∇i,
i = 1, 2, 3, the i-th component of the gradient w.r.t. its subscript.

Proposition 3.2 The map Bη|O, namely the BT (3.12) restricted to the symplectic leaf in Eq.
(3.13), admits the following formulation:

χ3
i = i

3∑

j=1

{χ3
i , χ

−
j }∇

j
χ−
Fη(χ

−|χ̂+), (3.14a)

χ̂3
i = i

3∑

j=1

{χ̂+
j , χ̂

3
i }∇

j
bχ+Fη(χ

−|χ̂+), (3.14b)
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with i = 1, 2, 3, where Fη(χ
−|χ̂+) is the following generating function:

Fη(χ
−|χ̂+)

.
=

m− m̂+

2 p
+ k

(
m−

b−
+
m̂+

b̂+

)
−

(1 + η γ2)
2

4 k η2
+

1

2

(
γ2
2

4
− γ1

)
ln

(
k + 1

k − 1

)
−

−
1

2 k

[
b̂+ a− + b− â+ − η â+ a− +

a−

b−

(
a−

b−
+
η

2
a− b̂+ − γ2

)
+

+
â+

b̂+

(
â+

b̂+
+
η

2
â+ b− − γ2

)]
, (3.15)

with k2 .
= 1 + η b− b̂+.

Proof: The Casimir functions C
(3)
0 , C

(3)
1 , C

(3)
2 do not change under the map:

Bη : (C
(3)
0 , C

(3)
1 , C

(3)
2 ) 7−→ (Ĉ

(3)
0 , Ĉ

(3)
1 , Ĉ

(3)
2 ) = (C

(3)
0 , C

(3)
1 , C

(3)
2 ).

Fixing the values of such functions as C
(3)
0 ≡ γ1, C

(3)
1 ≡ γ2, C

(3)
2 ≡ 1, (γ1, γ2) ∈ R2, the above

invariance allows one to exclude six variables, expressing m+, a+, b+ and m̂−, â−, b̂− in term
of the components of the vectors χ3, χ− and χ̂3, χ̂+:

m+ =
1

b−

[
2 γ1 − 1− 2m3 b3 −

m−

b−
(1− (b3)2)

]
,

a+ =
1

b−

[
2 γ2 − 2 a3 b3 −

a−

b−
(1− (b3)2)

]
,

b+ =
1− (b3)2

b−
,

m̂− =
1

b̂+

[
2 γ1 − 1− 2 m̂3 b̂3 −

m̂+

b̂+
(1− (̂b3)2)

]
,

â− =
1

b̂+

[
2 γ2 − 2 â3 b̂3 −

â+

b̂+
(1− (̂b3)2)

]
,

b̂− =
1− (̂b3)2

b̂+
.
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Using Eqs. (3.10) we can rewrite Eqs. (3.12) in the following form:

χ3
1 =

m−m+

2 p
−

1

2 k3

{
1

2

[
η
(
b− â+ + a− b̂+

)
− b− b̂+

]2
+

+η2
[
(b−)2b̂+ m̂+ + (̂b+)2b−m−

]
+

(
1 +

1

2
η γ2

)(
b− â+ + a− b̂+

)
−

− (γ2 + 2 η γ1) b
− b̂+ − η

(
a− â+ + b− m̂+ + b̂+m−

)
+

+
1

4

(
γ2
2 − 4 γ1

)}
,

χ3
2 =

1

2 k

[
m̂+ a− + η

(
a− b̂+ + â+ b−

)
− b̂+ b− + γ2

]
,

χ3
3 =

m̂+ b−

2 p
+ k,

χ̂3
1 = m3,

χ̂3
2 =

1

2 k

[
â+m− + η

(
a− b̂+ + â+ b−

)
− b̂+ b− + γ2

]
,

χ̂3
3 =

b̂+m−

2 p
+ k,

where k2 .
= 1+η b− b̂+. It is now easy to check that the above equations are equivalent to Eqs.

(3.14a) and (3.14b) with the generating function (3.15).

�

Remark 3.2 The spectrality property of a BT means that the two coordinates η and µ parametriz-
ing the map are conjugated variables, namely µ = −∂Fη/∂η, where Fη is the generating function
of the BT [55, 56, 87].

In our case, using Eqs. (3.10), (3.11) and (3.15), we obtain

µ = u(η)−
m̂+

2 p
v(η) = −

∂Fη(χ
−|χ̂+)

∂η
,

so that the spectrality property holds.

In the next paragraph we shall construct a real BT for our integrable system.

Two-point BTs

According to [41, 53, 87], we now construct a composite map which is a product of the map
BP1

.
= B(η1,µ1) and BQ2

.
= B(η2,−µ2):

BP1,Q2

.
= BQ2 ◦ BP1 : L3(λ)

BP17−→ L̂3(λ; η1)
BQ27−→

̂̂
L3(λ; η1, η2).

The two maps are inverse to each other when η1 = η2 and µ1 = µ2. This two-point BT is
defined by the following discrete-time Lax equation:

Mη1,η2(λ)L3(λ) =
̂̂
L3(λ; η1, η2)Mη1,η2(λ), ∀λ ∈ C, (η1, η2) ∈ C2, (3.16)

where the matrixMη1,η2(λ) is [41, 53, 87]

Mη1,η2(λ)
.
=

(
λ− η1 + s t t

−s2 t+ (η1 − η2) s λ− η2 − s t

)
, (3.17)
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with
detMη1,η2(λ) = (λ− η1)(λ− η2).

The spectrality property with respect to two fixed points (η1, µ1) ∈ Γ3 and (η2, µ2) ∈ Γ3 give

s =
u(η1)− µ1

v(η1)
=
̂̂u(η2)− µ2

̂̂v(η2)
=
m̂+

2 p
, (3.18)

t =
(η2 − η1) v(η1) v(η2)

[u(η2) + µ2 ] v(η1)− [u(η1)− µ1 ] v(η2)
=

=
(η2 − η1) ̂̂v(η1) ̂̂v(η2)[

̂̂u(η1) + µ1

]
̂̂v(η2)−

[
̂̂u(η2)− µ2

]
̂̂v(η1)

=

=
(η1 − η2) [u(η1) + µ1 ] [u(η2)− µ2 ]

[u(η1) + µ1 ] w(η2)− [u(η2)− µ2 ] w(η1)
=

=
(η1 − η2)

[
̂̂u(η1)− µ1

] [
̂̂u(η2) + µ2

]

[
̂̂u(η2) + µ2

]
̂̂w(η1)−

[
̂̂u(η1)− µ1

]
̂̂w(η2)

=

=
m− − ̂̂m−

2 p
. (3.19)

Now we have two complex Bäcklund parameters η1, η2. It is possible to obtain several equivalent
formulae [41, 53] for the variables s and t since the points (η1, µ1) and (η2, µ2) belong to the
spectral curve Γ3, i.e. are bound by the following relations

−(2µj)
2 = u2(ηj) + v(ηj)w(ηj) = ̂̂u2(ηj) + ̂̂v(ηj) ̂̂w(ηj), j = 1, 2. (3.20)

Together with Eqs. (3.18) and (3.19), the formula (3.16) gives an explicit two-point Poisson

integrable map from L3(λ) to
̂̂
L3(λ; η1, η2). The map is parametrized by the two points P1 and

Q2. Obviously, when η1 = η2 (i.e. µ1 = µ2) the map turns into an identity map. As we have
explicitly shown in [53, 73] the two-point BT can be reduced to a real Poisson integrable map
if the following condition holds:

η1 = η̄2
.
= η = Re(η) + i Im(η) ∈ C.

Therefore, the two-point map leads to a physical BT Bη with two real parameters. Notice that
the physical time step can be taken as i (η2 − η1)/2 = Im(η).

A direct computation based on the similarity transform (3.16) shows that the following
statement holds.

Proposition 3.3 The similarity transform (3.16) defines a real BT Bη : R9 → R9 that maps

the vector M
.
= (m,a,b)T ∈ R9 into

̂̂
M

.
= ( ̂̂m, ̂̂a, ̂̂b)T ∈ R9 according to the following compact

formula:
̂̂
M = Φη(s, t)M +M0(s, t; η), (3.21)

with

Φη(s, t)
.
=




13×3 O3×3 O3×3

Aη(s, t) 13×3 O3×3

Bη(s, t) Aη(s, t) 13×3


 ,

where Aη(s, t) and Bη(s, t) are two 3 × 3 matrices depending on the Bäcklund parameter η
and the parameters s, t and M0(s, t; η) is a vector depending on the dynamical variables. The



3.1 Integrable discretizations through Bäcklund transformations 67

matrices 13×3 and O3×3 are respectively the 3 × 3 identity matrix and the 3 × 3 zero matrix.
The entries of Aη(s, t) and Bη(s, t) are respectively

[Aη(s, t) ]ii = 0, i = 1, 2, 3,

[Aη(s, t) ]12 = iα2 = −[Aη(s, t) ]21,

[Aη(s, t) ]13 = s α1 − t = −[Aη(s, t) ]31,

[Aη(s, t) ]23 = −i (s α1 + t) = −[Aη(s, t) ]32,

[Bη(s, t) ]11 =
1

2
(1− s2)(α2

1 − t
2),

[Bη(s, t) ]12 = −
i

2
[ (t2 − s2 α2

1)− 2α2 Re(η) ],

[Bη(s, t) ]13 =
1

2
s α1 (α2 + Re(η)),

[Bη(s, t) ]21 = −
i

2
[ (t2 − s2 α2

1) + 2α2 Re(η) ],

[Bη(s, t) ]22 =
1

2
(1 + s2)(α2

1 − t
2)

[Bη(s, t) ]23 = −
i

2
s α1 (α2 + Re(η)),

[Bη(s, t) ]31 =
1

2
[ t (α2 + 2 Re(η)) + s α1 (α2 − 2 Re(η)) ] ,

[Bη(s, t)]32 =
1

2
[ t (α2 + 2 Re(η)) − s α1 (α2 − 2 Re(η)) ] ,

[Bη(s, t)]33 = 4 s t α1,

where α1
.
= 2 Im(η)− s t, α2

.
= α1 − s t. The components of the vector M0(s, t; η) are

[M0(s, t; η) ]1 = p (s α1 − t),

[M0(s, t; η) ]2 = −p (s α1 + t),

[M0(s, t; η) ]3 = 0,

[M0(s, t; η) ]4 = p
[ s α1

2
(α2 + Re(η)) + t (α2 − 2 Re(η))

]
,

[M0(s, t; η) ]5 = i p
[ s α1

2
(α2 + Re(η))− t (α2 − 2 Re(η))

]
,

[M0(s, t; η) ]6 = 2 p t s α1,

[M0(s, t; η) ]7 = −
i p

4

[
(Im(η) + Re(η))2(t+ α1) + 8 s tRe(η)(t − α1)

]
,

[M0(s, t; η) ]8 = −
p

4

[
(Im(η) + Re(η))2(t− α1) + 8 s tRe(η)(t + α1)

]
,

[M0(s, t; η) ]9 = 2 [M0(s, t; η) ]6 Re(η).

Two-point BTs as discrete-time maps

The two point BT constructed above is a one-parameter (η) time discretization of a family of
flows parametrized by the points P1

.
= (η1, µ1) and Q2

.
= (λ2,−µ2). Recall that the physical

time step can be taken as i (η2 − η1)/2 = Im(η).
Let us consider the following limit: Im(η)

.
= ǫ→ 0. Considering Eqs. (3.18) and (3.19) we
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immediately get

s = s0 +O(ǫ), s0
.
=
u(η2)− µ2

v(η2)
,

t = ǫ t0 +O(ǫ2), t0
.
= −

i v(η2)

µ2
.

The matrixMη2(λ) given in Eq. (3.17) has the following asymptotics:

Mη2(λ) = (λ− η2)

[
12×2 +

i ǫ

µ2 (λ− η2)

(
u(λ2) + µ2 v(λ2)
w(λ2) −u(λ2) + µ2

)]
+O(ǫ2).

If we define the time derivative L̇3(λ) as L̇3(λ)
.
= limǫ→0[

̂̂
L3(λ) − L3(λ)]/ǫ, then in this limit

we obtain from Eq. (3.16) the Lax equation for the corresponding continuous flow that our
BT discretizes, namely:

L̇3(λ) =
i

µ2

[
L3(η2)

(λ− η2)
,L3(λ)

]
.

that is a Hamiltonian flow with µ2 given in Eq. (3.20).

Numerics

We now present some 3D plots corresponding to the real reduction of the two-point BT (3.21).
They are obtained using a MAPLE 8 program that is a slightly different version of the MATLAB
program developed by V.B. Kuznetsov in [53].

The input parameters are:

• the intensity of the external field, p;

• the Bäcklund parameter η
.
= Re(η) + i Im(η). Here Im(η) is the time-step of the dis-

cretization;

• the number of iteration of the map, N ;

• the initial values of the coordinate functions, M
.
= (m,a,b).

The output is a 3D plot of N +N consequent points (a1 − b1, a2 − b2, a3 − b3) and (b1, b2, b3).
We remark that the vector (a1 − b1, a2 − b2, a3 − b3) describes the position of the satellite (of
unitary mass), as explained in Subsection 2.4.2, and the vector (b1, b2, b3) is the position of the
centre of mass of the Lagrange top (of unitary mass). As expected, the points (b1, b2, b3) lie

on the sphere C
(3)
2

.
= 〈b,b 〉 =constant, of some radius defined by the initial data.
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3.1.2 BTs for the rational Lagrange chain

The continuous-time rational Lagrange chain is described in the previuos Chapter, see Subsec-
tion 2.5.2. Let us recall the main features of this integrable many-body model.

The Lax matrix is given by, see Eq. (2.91):

LM,2(λ)
.
= p +

M∑

i=1

[
mi

λ− λi
+

ai
(λ− λi)2

]
, (3.22)

where p
.
= (0, 0, p) as in the Lagrange case, and the 6M local coordinates obey to the Lie-

Poisson algebra ⊕M e∗(3):
{
mα
k ,m

β
j

}
= −δk,j εαβγm

γ
k,

{
mα
k , a

β
j

}
= −δk,j εαβγ a

γ
k ,

{
aαk , a

β
j

}
= 0, (3.23)

with 1 ≤ k, j ≤ M . According to Proposition 2.14 the Lax matrix (3.22) satisfies a linear r-
matrix algebra with r-matrix given by r(λ) = −Π/(2λ), where Π is the permutation operator
in C2 ⊗ C2.

Moreover, we know from Proposition 2.21 that the spectral curve ΓM,2 : det(LM,2(λ) −
µ1) = 0 reads

ΓM,2 : −µ2 =
1

4
〈p,p 〉+

1

2

M∑

k=1

[
Rk

λ− λk
+

Sk
(λ − λk)2

+
C

(1)
k

(λ− λk)3
+

C
(2)
k

(λ− λk)4

]
, (3.24)
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where

Rk
.
= 〈p,mk 〉+

M∑

j=1
j 6=k

[
〈mk,mj 〉

λk − λj
+
〈mk,aj 〉 − 〈mj,ak 〉

(λk − λj)2
− 2

〈ak,aj 〉

(λk − λj)3

]
,

Sk
.
= 〈p,ak 〉+

1

2
〈mk,mk 〉+

M∑

j=1
j 6=k

[
〈ak,mj 〉

λk − λj
+
〈ak,aj 〉

(λk − λj)2

]
,

are 2M independent involutive Hamiltonians and

C
(1)
k

.
= 〈mk,ak 〉, C

(2)
k

.
=

1

2
〈ak,ak 〉, 1 ≤ k ≤M, (3.26)

are the 2M Casimir functions of the Lie-Poisson brackets (3.23). Fixing their values one gets
a 2M -dimensional symplectic leaf

O
.
=
{
(mk,ak) ∈ R6, 1 ≤ k ≤M | C

(1)
k ≡ ℓi, C

(2)
k ≡ 1/2

}
. (3.27)

In the construction of BTs we shall use the complex variables m±
i

.
= m1

i ± im2
i , a

±
i

.
=

a1
i ± i a2

i , 1 ≤ i ≤ M . In terms of such variables the non-trivial Lie-Poisson brackets (3.23)
read {

m3
i ,m

±
j

}
= ± δi,j m

±
j ,

{
m+
i ,m

−
j

}
= 2 i δi,j m

3
j ,

{
m3
i , a

±
j

}
=
{
a3
i ,m

±
j

}
= ± i δi,j a

±
j ,

{
m+
i , a

−
j

}
=
{
a+
i ,m

−
j

}
= 2 i δi,j a

3
j .

Using the above complex variables we can write the Lax matrix (3.22) in the following form:

LM,2(λ)
.
= −

i

2

(
u(λ) v(λ)
w(λ) −u(λ)

)
, (3.28)

with

u(λ)
.
= p+

M∑

i=1

[
m3
i

λ− λi
+

a3
i

(λ− λi)2

]
,

v(λ)
.
=

M∑

i=1

[
m−
i

λ− λi
+

a−i
(λ− λi)2

]
,

w(λ)
.
=

M∑

i=1

[
m+
i

λ− λi
+

a+
i

(λ− λi)2

]
.

The construction of one-, and two-point BTs is essentially the same that we have performed
in the case of the first extension of the Lagrange top in the previous Subsection. As a matter
of fact we can use the “universal” ansatzes given in Eqs. (3.9) and (3.17) for the intertwining
matrix. Moreover, setting M = 1 in the following discretization we recover the discrete-time
Lagrange top considered in our paper [53].

One-point BTs

A one-point BT can be constructed performing the following similarity transform:

Bη : LM,2(λ) 7−→ L̂M,2(λ; η)
.
=Mη(λ)LM,2(λ)M

−1
η (λ) = −

i

2

(
û(λ) v̂(λ)
ŵ(λ) −û(λ)

)
, (3.30)
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where we use again the ̂ -notation for the updated variables. Here the intertwining matrix
Mη(λ) is the one given in Eq. (3.9), where the variables r and q are “a priori” indeterminate
dynamical variables.

Comparing the asymptotics in λ→∞ in both sides of Eq. (3.30) we readily get

r =
1

2 p

M∑

i=1

m−
i , q =

1

2 p

M∑

i=1

m̂+
i . (3.31)

We are looking for an explicit single-valued map from LM,2(λ) to L̂M,2(λ; η). Hence we can
proceed as in the previuos Subsection using the spectrality property of the BTs. Eq. (3.30)
defines a map BP parametrized by the point P

.
= (η, µ) ∈ ΓM,2, see Eq. (3.24): there are

two points on ΓM,2, P
.
= (η, µ) and Q

.
= (η,−µ), corresponding to the same η and sitting one

above the other because of the hyperelliptic involution:

(η, µ) ∈ ΓM,2 : det(LM,2(η)− µ1) = 0 ⇔ µ2 + det(LM,2(η)) = 0.

This spectrality property give us the formula

q =
u(η)− µ

v(η)
= −

w(η)

u(η) + µ
. (3.32)

Now Eq. (3.30) gives an integrable Poisson map from L(λ) to L̂(λ; η).
Let us introduce the following notation:

Mα .
= {mα

i }
M
i=1, Aα

.
= {mα

i }
M
i=1, α = ±, 3.

The following statement shows how the one-point BT obtained in Eq. (3.30) can be written
in a symplectic form through a generating function.

Proposition 3.4 The map Bη|O, namely the BT (3.30) restricted to the symplectic leaf in Eq.
(3.27), admits the following formulation:

a3
i = a−i

∂Fη(A
−,M− | Â+, M̂+)

∂m−
i

, (3.33a)

m3
i = a−i

∂Fη(A
−,M− | Â+, M̂+)

∂a−i
+m−

i

∂Fη(A
−,M− | Â+, M̂+)

∂m−
i

, (3.33b)

â3
i = â+

i

∂Fη(A
−,M− | Â+, M̂+)

∂m̂+
i

, (3.33c)

m̂3
i = â+

i

∂Fη(A
−,M− | Â+, M̂+)

∂â+
i

+ m̂+
i

∂Fη(A
−,M− | Â+, M̂+)

∂m̂+
i

, (3.33d)

where Fη(A
−,M− | Â+, M̂+) is the following generating function:

Fη(A
−,M− | Â+, M̂+)

.
=

1

2 p

M∑

i,j=1

m−
i m̂

+
j +

M∑

i=1

ki

(
m−
i

a−i
+
m̂+
i

â+
i

−
1

η − λi

)
−

− log

M∏

i=1

(
1 + ki
1− ki

)ℓi
, (3.34)

with k2
i
.
= 1 + (η − λi) a

−
i â

+
i .
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Proof: First, because the Casimir functions given in Eq. (3.26) do not change under the
map, namely

m3
i a

3
i +

1

2

(
m−
i a

+
i +m+

i a
−
i

)
= m̂3

i â
3
i +

1

2

(
m̂−
i â

+
i + m̂+

i â
−
i

)
≡ ℓi,

(a3
i )

2 + a−i a
+
i = (â3

i )
2 + â−i â

+
i ≡ 1,

we can exclude the 4M variables a+
i ,m

+
i and â−i , m̂

−
i , 1 ≤ i ≤ M , using the following substi-

tutions:

a+
i =

1− (a3
i )

2

a−i
, m+

i =
2 ℓi

a−i
−

2m3
i a

3
i

a−i
−

m−
i

(a−i )2
[ 1− (a3

i )
2] ,

â−i =
1− (â3

i )
2

â+
i

, m̂+
i =

2 ℓi

â+
i

−
2m̂3

i â
3
i

â+
i

−
m̂+
i

(â+
i )2

[ 1− (â3
i )

2].

Now we have 4M + 4M (old and new) independent variables: a−i , a
3
i , m

−
i ,m

3
i and â+

i , â
3
i ,

m̂+
i , m̂

3
i , 1 ≤ i ≤M .

The map (3.30) explicitly reads

û(λ) =
(λ− η + 2 r q)[u(λ)− q v(λ)] + r w(λ)

λ− η
,

v̂(λ) =
(λ− η + 2 r q)2v(λ) − 2 r (λ− η + 2 r q)u(λ)− r2 w(λ)

λ− η
,

ŵ(λ) =
w(λ) + 2 q u(λ)− q2 v(λ)

λ− η
.

Equating the residues at λ = λi in both sides of the above equations we obtain, after a
straightforward computation,

a3
i =

a−i
2 p

M∑

j=1

m̂+
j + ki, (3.35a)

m3
i =

ℓi
ki

+
η − λi
2 ki

(
â+
i m

−
i + a−i m̂

+
i

)
−
a−i â

+
i

2 ki
+
m−
i

2 p

M∑

j=1

m̂+
j , (3.35b)

â3
i =

â+
i

2 p

M∑

j=1

m−
j + ki, (3.35c)

m̂3
i =

ℓi
ki

+
η − λi
2 ki

(
â+
i m

−
i + a−i m̂

+
i

)
−
a−i â

+
i

2 ki
+
m̂+
i

2 p

M∑

j=1

m−
j , (3.35d)

where k2
i
.
= 1 + (η − λi) a

−
i â

+
i . It is now easy to check that Eqs (3.35a-3.35b-3.35c-3.35d) are

equivalent to Eqs. (3.33a-3.33b-3.33c-3.33d) with the generating function (3.34).

�

Remark 3.3 Let us have a look at the spectrality property of the constructed BT. Using Eqs.
(3.31), (3.32) and (3.34) we obtain

µ = u(η)−

(
1

2 p

M∑

i=1

m̂+
i

)
v(η) = −

∂Fη(A
−,M− | Â+, M̂+)

∂η
.

The above one-point BT is a complex map. In order to obtain a physical map we shall
construct a two-point BT in the next Subsection.
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Two-point BTs

According to [41, 53, 87], we construct a composite map which is a product of the map BP1

.
=

B(η1,µ1) and BQ2

.
= B(η2,−µ2):

BP1,Q2

.
= BQ2 ◦ BP1 : LM,2(λ)

BP17−→ L̂M,2(λ; η1)
BQ27−→

̂̂
LM,2(λ; η1, η2).

The two maps are inverse to each other when η1 = η2 and µ1 = µ2. This two-point BT is
defined by the following discrete-time Lax equation:

Mη1,η2(λ)LM,2(λ) =
̂̂
LM,2(λ; η1, η2)Mη1,η2(λ), ∀λ ∈ C, (η1, η2) ∈ C2, (3.36)

where the matrixMη1,η2(λ) is, see Eq. (3.17),

Mη1,η2(λ)
.
=

(
λ− η1 + s t t

−s2 t+ (η1 − η2) s λ− η2 − s t

)
,

with
detMη1,η2(λ) = (λ− η1)(λ− η2).

The spectrality property with respect to two fixed points (η1, µ1) ∈ ΓM,2 and (η2, µ2) ∈ ΓM,2

give

s =
u(η1)− µ1

v(η1)
=
̂̂u(η2)− µ2

̂̂v(η2)
=

1

2 p

M∑

i=1

m̂+
i , (3.37)

t =
(η2 − η1) v(η1) v(η2)

[u(η2) + µ2 ] v(η1)− [u(η1)− µ1 ] v(η2)
=

=
(η2 − η1) ̂̂v(η1) ̂̂v(η2)[

̂̂u(η1) + µ1

]
̂̂v(η2)−

[
̂̂u(η2)− µ2

]
̂̂v(η1)

=

=
(η1 − η2) [u(η1) + µ1 ] [u(η2)− µ2 ]

[u(η1) + µ1 ] w(η2)− [u(η2)− µ2 ] w(η1)
=

=
(η1 − η2)

[
̂̂u(η1)− µ1

] [
̂̂u(η2) + µ2

]

[
̂̂u(η2) + µ2

]
̂̂w(η1)−

[
̂̂u(η1)− µ1

]
̂̂w(η2)

=

=
1

2 p

M∑

i=1

(
m−
i −

̂̂m+
i

)
. (3.38)

We have two complex Bäcklund parameters η1, η2. Recall that the points (η1, µ1) and (η2, µ2)
belong to the spectral curve ΓM,2, namely

−(2µj)
2 = u2(ηj) + v(ηj)w(ηj) = ̂̂u2(ηj) + ̂̂v(ηj) ̂̂w(ηj), j = 1, 2.

Together with Eqs. (3.37) and (3.38), the formula (3.36) gives an explicit two-point Poisson

integrable map from LM,2(λ) to
̂̂
LM,2(λ; η1, η2). The map is parametrized by the two points

P1 and Q2. If η1 = η2 (i.e. µ1 = µ2) the map turns into an identity map. The constructed two-
point BT can be reduced to a real Poisson integrable map if η1 = η̄2

.
= η = Re(η)+i Im(η) ∈ C.

Therefore, the two-point map leads to a physical BT Bη with two real parameters. Notice that
the physical time step can be taken as i (η2 − η1)/2 = Im(η).
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Two-point BTs for the Lagrange top

Now we just present the explicit form of the (real) two-point BTs for the Lagrange top. Ob-
viuosly they can be obtained setting M = 1 in Eq. (3.36). However, the explicit construction
of such integrable Poisson maps is contained in our work [53].

Let us drop the lower index in the coordinates (m1,a1). The following proposition holds.

Proposition 3.5 The similarity transform (3.36), with M = 1, defines a real BT Bη : R6 →

R6 that maps the vector M
.
= (m,a)T ∈ R6 into

̂̂
M

.
= ( ̂̂m, ̂̂a)T ∈ R6 according to the following

compact formula:
̂̂
M = Φη(s, t)M +M0(s, t; η), (3.39)

with

Φη(s, t)
.
=

(
13×3 O3×3

Aη(s, t) 13×3

)
,

where Aη(s, t) is a 3×3 matrix depending on the Bäcklund parameter η and the parameters s, t
and M0(s, t; η) is a vector depending on the dynamical variables. The matrices 13×3 and O3×3

are respectively the 3×3 identity matrix and the 3×3 zero matrix. The entries of Aη(s, t) are:

[Aη(s, t) ]ii = 0, i = 1, 2, 3,

[Aη(s, t) ]12 = iα2 = −[Aη(s, t) ]21,

[Aη(s, t) ]13 = s α1 − t = −[Aη(s, t) ]31,

[Aη(s, t) ]23 = −i (s α1 + t) = −[Aη(s, t) ]32,

where α1
.
= 2 Im(η)− s t, α2

.
= α1 − s t. The components of the vector M0(s, t; η) are

[M0(s, t; η) ]1 = p (s α1 − t),

[M0(s, t; η) ]2 = −p (s α1 + t),

[M0(s, t; η) ]3 = 0,

[M0(s, t; η) ]4 = p
[ s α1

2
(α2 + Re(η)) + t (α2 − 2 Re(η))

]
,

[M0(s, t; η) ]5 = i p
[ s α1

2
(α2 + Re(η)) − t (α2 − 2 Re(η))

]
,

[M0(s, t; η) ]6 = 2 p t s α1.

Remark 3.4 Notice that the map defined in Eq. (3.39) can be recovered from the two-point BT
(3.21) for the first extension of the Lagrange top. The differences between these two maps are:
i) the dynamical information contained in the parameters s and t; ii) the Lie-Poisson brackets
satisfied by the coordinates. In particular in the map (3.39) we do not have the generator bα,
α = 1, 2, 3.

Finally we can show two 3D plots (correspondent to different initial data and obtained
with a MAPLE 8 program) describing the discrete dynamics given in Eq. (3.39) of the axis of
symmetry of the top on the sphere 〈a,a 〉 =constant.
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3.2 Alternative approach to integrable discretizations

In this Section we shall construct an integrable Poisson map for the su(2) rational Gaudin
model. Precisely, we shall present an integrable discrete-time version of the flow generated by
the equations of motion, see Eq. (2.38),

ẏi =
[
λi p +

∑N
j=1yj , yi

]
, 1 ≤ i ≤ N.

Then, the contraction procedure described in Chapter 2 enables us to obtain, from the
constructed map, integrable discretizations both for the one-body and many-body extended
rational su(2) hierarchies. In fact, we shall construct an integrable discrete-time version of the
equations of motion of the extended Lagrange tops, see Eq. (2.75),

żi = [ z0, zi ] + [p, zi+1 ] , zN ≡ 0, 0 ≤ i ≤ N − 1,

and of the rational Lagrange chain, see Eq. (2.95),





ṁi = [p,ai ] +
[
µi p +

∑M
k=1 mk,mi

]
,

ȧi =
[
µi p +

∑M
k=1 mk,ai

]
.

Our starting-point consists in the discrete-time Lagrange top obtained in [19]. As a matter
of fact our integrable discretization of the extended Lagrange tops can be seen as a generaliza-
tion of it (from N = 2 to an arbitrary N). Let us recall some of the main results concerning
such a discretization.

3.2.1 The discrete-time Lagrange top of Suris-Bobenko

In [19] the authors construct an integrable Poisson map for the Lagrange top, that is differ-
ent from the one we have obtained through Bäcklund transformations, see Subsection 3.1.2.
Precisely, they are interested in finding an integrable discrete-time version of the equations of
motion (in the rest frame) of the Lagrange top generated by the Hamiltonian, see Eq. (2.79),

H
(2)
1

.
= 〈p, z1 〉+

1

2
〈 z0, z0 〉. (3.40)
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They read 



ż0 = [p, z1 ] ,

ż1 = [ z0, z1 ] ,
(3.41)

where z0 ∈ R3 is the vector of kinetic momentum of the body, z1 ∈ R3 is the vector pointing
from the fixed point to the center of mass of the body and p

.
= (0, 0, p) is the constant vector

along the external field. Recall that the Lie-Poisson algebra of the model is e∗(3):

{
zα0 , z

β
0

}
= −εαβγ z

γ
0 ,

{
zα0 , z

β
1

}
= −εαβγ z

γ
1 ,

{
zα1 , z

β
1

}
= 0.

As we have seen in Subsection 2.4.1 the Lax matrix of the Lagrange top can be written as

L2(λ)
.
= p +

z0

λ
+

z1

λ2
.

It satisfies the linear r-matrix structure

{L2(λ) ⊗ 1,1⊗ L2(µ)} + [ r(λ − µ),L2(λ) ⊗ 1 + 1⊗ L2(µ) ] = 0, ∀ (λ, µ) ∈ C2, (3.42)

with r(λ) = −Π/(2λ). Moreover the equations of motion (3.41) admit the following Lax
representation:

L̇2(λ) = [L2(λ),M2(λ) ] , M2(λ)
.
=

z1

λ
.

In [19] the authors give a complete derivation of Eqs. (3.41) and an explanation of their
Hamiltonian nature and integrability. Then they present a discrete map that corresponds to
the discrete version of Eqs. (3.41). Such a map takes the following form:






ẑ0 − z0 = ε [p, ẑ1 ] ,

ẑ1 − z1 =
ε

2
[ z0, ẑ1 + z1 ] ,

(3.43)

where the ̂-notation is used for the updated variables and ε ∈ R \ {0} is a discrete-time step.
It is easy to see 2 that the second equation in (3.43) can be uniquely solved for ẑ1:

ẑ1 = (1 + ε z0) z1 (1 + ε z0)
−1,

so that Eqs. (3.43) define a map (z0, z1) 7→ (ẑ0, ẑ1) approximating, for small ε, the time ε
shift along the trajectories of Eqs. (3.41). This distinguish the situation from the map in [63],
where Lagrangian equations led to correspondences rather than to maps.

Remark 3.5 Notice that using our notation, that is different w.r.t. the one used in [19], the
explicit map (3.43) can be written in the following compact form:

ẑi = (1 + ε z0) zi (1 + ε z0)
−1 + ε [p, ẑi+1 ] , i = 0, 1,

with z2 ≡ 0. The above equations are reminescent of the continuous-time equations of motion
żi = [ z0, zi ] + [p, zi+1 ] , 0 ≤ i ≤ N − 1, zN ≡ 0 for the extended Lagrange tops of order N .

In [19] it is proven that the map (3.43) is Poisson with respect to the Lie-Poisson brackets

on e∗(3), so that the Casimir functions C
(2)
0

.
= 〈 z0, z1 〉, C

(2)
1

.
= 〈 z1, z1 〉/2, are integrals of

2Recall that for any ξ, η ∈ su(2) we have ξ η = − 1

4
〈 ξ, η 〉 + 1

2
[ ξ, η ].
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motion. It is also obvious that H
(2)
0

.
= 〈p, z0 〉 is an integral of motion. Most remarkably, this

map has another integral of motion - a deformed version of the Hamiltonian (3.40) - given by

H
(2)
1 (ε)

.
=

1

2
〈 z0, z0 〉+ 〈p, z1 〉+

ε

2
〈p, [ z0, z1 ] 〉. (3.44)

The function (3.44) is in involution with H
(2)
0 , which renders the map (3.43) completely inte-

grable.

Remark 3.6 Note that the map (3.43) corresponds to the Hamiltonian flow direcly generated
by a “deformed” version of the physical Hamiltonian (3.40). This situation does not occur in
the case of integrable discretizations through Bäcklund transformations, where the constructed
integrable Poisson maps discretize a family of flows of the integrable system (and not a partic-
ular one).

A remarkable feature of the map (3.43) is that it admits a Lax representation and an r-
matrix formulation. Obviuosly, since the discrete integrals are deformed with respect to the
continuous ones, also the discrete Lax matrix will be deformed. The following statements
holds; see [19, 91] for further details.

Proposition 3.6 The map (3.43) has the following Lax representation:

L̂2(λ; ε) = U−1
2 (λ; ε)L2(λ; ε)U2(λ; ε),

with the matrices

L2(λ; ε)
.
= p +

z0

λ
+

z1 +
ε

2
[ z0, z1 ] +

ε2

2
C

(2)
1 p

λ2
, (3.45a)

U2(λ; ε)
.
= 1 + ε

ẑ1

λ
. (3.45b)

Notice that the Lax matrix given in Eq. (3.45a) has a rational dependence on the spectral
parameter λ. The r-matrix formulation of the map (3.43) can be given in terms of an alternative
Lax matrix, that is obtained from (3.45a) by a straightforward computation. It reads

Lp2(λ; ε)
.
= λ−1 p +

∑

k≥0

λ2k x2k +
∑

k≥0

λ2k+1 x2k+1, (3.46)

where

x2k
.
=

(
−
ε2

2
C

(2)
1

)k
z0,

x2k+1
.
=

(
−
ε2

2
C

(2)
1

)k (
z1 +

ε

2
[ z0, z1 ]

)
.

Obviuosly the integralsH
(2)
0 , H

(2)
1 (ε), C

(2)
0 , C

(2)
1 can be obtained as spectral invariants of the

Lax matrices (3.45a) or (3.46). Their involutivity is ensured thanks to the following statement.

Proposition 3.7 The Lax matrix (3.46) satisfies the linear r-matrix structure (3.42) with the
same r-matrix (up to a redefinition of the spectral parameter). In particular:

{
xαi , x

β
j

}
= −εαβγ x

γ
i+j , i, j ≥ 0.
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Numerics

The integrable Poisson map given in Eq. (3.43) can be easily iterated. We present here some
3D plots, obtained using a MAPLE 8 program, corresponding to such a map.

The input parameters are:

• the intensity of the external field, p;

• the discretization parameter, ε;

• the number of iteration of the map, N ;

• the initial values of the coordinate functions, (z0, z1).

The output is a 3D plot of N consequent points (z1
1 , z

2
1 , z

3
1), describing the evolution of the

axis of symmetry of the top on the surface 〈 z1, z1 〉=constant. These plots show the typi-
cal (discrete-time) precession of the axis. Compare these with the classical continuous-time
pictures in [6, 48].

3.2.2 Integrable discretizations of extended Lagrange tops: the strategy

In this paragraph we would like to present the strategy used to construct integrable discretiza-
tions for the extended Lagrange tops. First of all, recall that this integrable hierarchy is
governed by the Lax matrix, see Eq. (2.68),

LN (λ)
.
= p +

N−1∑

i=0

zi
λi+1

, (3.48)

where the 3N coordinate functions zαi ’s obey to the Lie-Poisson brackets

{
zαi , z

β
j

}
=

{
−εαβγ z

γ
i+j i+ j < N,

0 i+ j ≥ N.
(3.49)

The Lax matrix given in Eq. (3.48) satisfies a linear r-matrix algebra with r(λ) = −Π/(2λ)
and the N involutive Hamiltonians are given by, see Eq. (2.73a),

H
(N)
k

.
= 〈p, zk 〉+

1

2

k−1∑

i=0

〈 zi, zk−i−1 〉, 0 ≤ k ≤ N − 1. (3.50)
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Our aim, as in the Lagrange case, is to find the discrete flow generated by the discrete

version of the Hamiltonian H
(N)
1 . We recall that, in the continuous-time setting, the equations

of motion generated by H
(N)
1 are given by

żi = [ z0, zi ] + [p, zi+1 ] , 0 ≤ i ≤ N − 1, zN ≡ 0. (3.51)

Problem: To construct an integrable discrete-time version of Eqs. (3.51). In other words,
to find an integrable Poisson map and its involutive integrals for the hierarchy of the extended
Lagrange tops.

This problem has been solved by means of the contraction procedure described in the
previous Chapter.

Let us schematically recall our results, in the continuous-time setting, with the following
diagram:

rGM2
�

N = 2

N = 2

rGMN

?

contr. + coal.

?

contr. + coal.

LT2
� LTN

We have proven that by means of a generalized Inönü-Wigner contraction on the Lie-
Poisson algebra associated with the N -site su(2) rational Gaudin model (rGMN ), and a proper
pole coalescence performed on the parameters λi’s of the Lax matrix, we are able to obtain a
one-body hierarchy of integrable systems, the extended Lagrange tops of order N (LTN ). This
situation can be seen in the following table:

rGMN LTN

LP brackets {yαi , y
β
j } = −δi,j εαβγ y

γ
i {zαi , z

β
j } = −θ(N − i− j) εαβγ z

γ
i+j

Lax matrix LG(λ)
.
= p +

∑N
i=1

yi

λ−λi
LN (λ)

.
= p +

∑N−1
i=0

zi

λi+1

N Integrals Hi
.
= 〈p,yi 〉+

∑N
j 6=i

〈 yi,yj 〉
λi−λj

H
(N)
i

.
= 〈p, zi 〉+

1
2

∑i−1
j=0〈 zj , zi−j−1 〉

Selected Ham. HG
.
=
∑N

i=1 λiHi H
(N)
1

E.o.m. ẏi = [λi p +
∑N

j=1 yj , yi] żi = [ z0, zi ] + [p, zi+1 ] , zN ≡ 0

This algebraic procedure preserves the linear r-matrix formulation of the ancestor model.
Obviously, fixing N = 2, we can obtain the standard Lagrange top (LT2) from the two-body
su(2) rational Gaudin model (rGM2).
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Our aim is now to repeat the above procedure at the discrete-time level. In this case
we do not have a proper discrete N -site su(2) rational Gaudin model (drGMN ) to start the
procedure. Hence our starting point is now the discrete Lagrange top (dLT2), namely the
integrable discretization described in Subsection 3.2.1.

Roughly speaking we have to overcome the following problems (see the second diagram):

drGM2
�

-

ansatz

ansatz: 2 7→ N

N = 2

N = 2

drGMN

?

6

contr. + coal.

?

contr. + coal.

dLT2
� dLTN

1. To make an ansatz for a discrete version of the two-body su(2) rational Gaudin model
(drGM2) in order to recover from it, by means of the contraction procedure, the dLT2.

2. If the ansatz works for N = 2 we have to generalize it to an arbitrary N , in order to get
a discrete version of the N -body su(2) rational Gaudin model (drGMN ).

3. To perform a contraction procedure and a pole coalescence on the drGMN . The resulting
system should be the discrete hierarchy of the extended Lagrange tops (dLTN ).

Remark 3.7 We notice that the most delicate step in the above list is the point 1. Obvi-
ously this “inverse” procedure is not unique. As a matter of fact we are able to construct a
discrete-time N -body su(2) rational Gaudin model, namely an integrable discrete version of the

equations of motion ẏi = [λi p+
∑N
j=1yj , yi], 1 ≤ i ≤ N, and their complete family of discrete

involutive integrals. Moreover we shall also construct the contracted versions of them, obtain-
ing an integrable discrete version of the equations of motion (3.51). Nevertheless we are not
able, up to now, to construct the Lax representation for these maps. For instance we still have
not found the generalization, to an arbitrary N , of the discrete Lax matrix (3.46). Therefore
the integrability and the Poisson property of the constructed maps will be proven without using
the Lax technique.

The discrete-time two-body su(2) rational Gaudin model

We now present a discrete version of the equations of motions for the two-body su(2) rational
Gaudin model. We shall prove that a contraction procedure and a pole coalescence on them
provide the equations of motion (3.43) of the discrete-time Lagrange top of Suris-Bobenko.
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Fixing N = 2 in Eqs. (2.38) we get:





ẏ1 = λ1 [p,y1 ] + [y2,y1 ] ,

ẏ2 = λ2 [p,y2 ] + [y1,y2 ] .
(3.52)

We know that Eqs. (3.52) are Hamiltonian equations generated by the Hamiltonian

HG
.
= λ1H1 + λ2H2 = 〈p, λ1 y1 + λ2 y2 〉+ 〈y1,y2 〉, (3.53)

where the two independent integrals H1, H2 are given by

H1
.
= 〈p,y1 〉+

〈y1,y2 〉

λ1 − λ2
, H2

.
= 〈p,y2 〉+

〈y1,y2 〉

λ2 − λ1
. (3.54)

A quite natural ansatz for the discrete version of Eqs. (3.52) is given by:




ŷ1 = (1 + ε λ1 p) (1 + εy1 + εy2)y1 (1 + εy1 + εy2)
−1 (1 + ε λ1 p)−1,

ŷ2 = (1 + ε λ2 p) (1 + εy1 + εy2)y2 (1 + εy1 + εy2)
−1 (1 + ε λ2 p)−1,

(3.55)

where ε ∈ R \ {0} is a discrete-time step. Note that Eqs. (3.55) give at order ε the continuous-
time equations of motion (3.52). Moreover the explicit map (3.55) is the composition of two
non-commuting conjugations: hence its Poisson property is straightforward. But we prefer to
prove the integrability and the Poissonicity of such a map in the next Subsection, in the case
of an arbitrary N .

Let us perform the contration described in the previous Chapter, see Eq. (2.43), and the
pole coalescence λ1 ≡ ϑ ν1, λ2 ≡ ϑ ν2, on the map (3.55). An easy computation leads to the
following equations:

ŷ1 = (1 + εy1 + εy2)y1 (1 + εy1 + εy2)
−1 +

+ ε [p, ϑ ν1 (1 + εy1 + εy2)y1 (1 + εy1 + εy2)
−1] +O(ϑ2), (3.56)

ŷ2 = (1 + εy1 + εy2)y2 (1 + εy1 + εy2)
−1 +

+ ε [p, ϑ ν1 (1 + εy1 + εy2)y2 (1 + εy1 + εy2)
−1] +O(ϑ2). (3.57)

Taking into account Eq. (2.43), i.e. z0
.
= y1 + y2, z1

.
= ϑ (ν1 y1 + ν2 y2) and performing the

contraction limit ϑ→ 0, we get from Eqs. (3.56-3.57) the following equations:




ẑ0 = z0 + ε [p, ẑ1 ] ,

ẑ1 = (1 + ε z0) z1 (1 + ε z0)
−1.

(3.58)

The above map coincides with the one given in Eq. (3.43), describing the dynamics of the
discrete-time Lagrange top.

In the remaining part of this paragraph we present the two involutive integrals of the map
(3.55) - found by pure inspection - proving that their contracted versions coincide with the

involutive integrals H
(2)
0 , H

(2)
1 (ε) of the discrete-time Lagrange top.

We claim that the discrete version of the integrals in Eq. (3.54) is given by

H1(ε)
.
= 〈p,y1 〉+

〈y1,y2 〉

λ1 − λ2

(
1 +

ε2

4
λ1 λ2 〈p,p 〉

)
−
ε

2
〈p, [y1,y2] 〉, (3.59a)

H2(ε)
.
= 〈p,y2 〉+

〈y1,y2 〉

λ2 − λ1

(
1 +

ε2

4
λ1 λ2 〈p,p 〉

)
−
ε

2
〈p, [y2,y1] 〉, (3.59b)
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so that the discrete version of the Gaudin Hamiltonian (3.53) reads

HG(ε)
.
= λ1H1(ε) + λ2H2(ε) =

= 〈p, λ1 y1 + λ2 y2 〉+ 〈y1,y2 〉

(
1 +

ε2

4
λ1 λ2 〈p,p 〉

)
−

−
ε

2
(λ1 − λ2)〈p, [y1,y2 ] 〉. (3.60)

It is possible to prove by direct verification that the integrals H1(ε), H2(ε) and the Casimir
functions C1

.
= 〈y1,y1 〉/2, C2

.
= 〈y2,y2 〉/2 are preserved by the map (3.55). Moreover

H1(ε), H2(ε) are in involutions with respect to the Lie-Poisson brackets on su∗(2)⊕ su∗(2).
Let us perform the contraction procedure, and the pole coalescence λ1 ≡ ϑ ν1, λ2 ≡ ϑ ν2,

on the integral (3.60):

HG(ε, ϑ) = 〈p, ϑ ν1 y1 + ϑ ν1 y2 〉+
1

2
〈y1 + y2,y1 + y2 〉

(
1 +

ε2

4
ϑ2 ν1 ν2 〈p,p 〉

)
−

−(C1 + C2)

(
1 +

ε2

4
ϑ2 ν1 ν2 〈p,p 〉

)
+
ε

2
〈p, [y1 + y2, ϑ ν1 y1 + ϑ ν2 y2] 〉.(3.61)

Hence:

HG(ε, ϑ)
ϑ→0
−−−→

1

2
〈 z0, z0 〉+ 〈p, z0 〉+

ε

2
〈p, [ z0, z1 ] 〉,

that is the integrals H
(2)
1 (ε) given in Eq. (3.44) of the discrete-time Lagrange top. Moreover

we have
H1(ε) +H2(ε) = 〈p,y1 + y2 〉 = 〈p, z0 〉 = H

(2)
0 .

Remark 3.8 Notice that the matrix

LG(λ, ε)
.
= p +

j1(ε)

λ− λ1
+

j2(ε)

λ− λ2
, (3.62)

with

j1(ε)
.
= y1 −

ε

2
[y1,y2 ] +

ε2

4
〈y1 − y2, λ1 y1 + λ2y2 〉,

j2(ε)
.
= y2 −

ε

2
[y2,y1 ] +

ε2

4
〈y2 − y1, λ1 y1 + λ2y2 〉,

has the following properties: i) for ε = 0 it coincides with the Lax matrix for the continuous-
time two-body su(2) rational Gaudin model; ii) its contracted version coincides with the Lax
matrix (3.45a) for the discrete-time Lagrange top. Obviously the matrix (3.62) is not the only
one which satisfies such requirements. As a matter of fact it is not the Lax matrix for the map
(3.55) and we still have not found its correct version.

3.2.3 The discrete-time su(2) rational Gaudin model

Proposition 3.8 The map

DNε : yi 7→ ŷi
.
= (1 + ε λi p)

(
1 + ε

∑N
j=1yj

)
yi

(
1 + ε

∑N
j=1yj

)−1

(1 + ε λi p)
−1
, (3.63)

with 1 ≤ i ≤ N and ε ∈ R \ {0}, is Poisson with respect to the brackets (2.26) on ⊕Nsu∗(2)
and has N independent and involutive integrals of motion assuring its complete integrability:

Hk(ε)
.
= 〈p,yk 〉+

N∑

j=1
j 6=k

〈yk,yj 〉

λk − λj

(
1 +

ε2

4
λk λj 〈p,p 〉

)
−
ε

2

N∑

j=1
j 6=k

〈p, [yk,yj ] 〉, (3.64)
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with 1 ≤ k ≤ N .

Proof: First of all we immediately notice that the map (3.63) reproduces at order ε the

continuous-time equations of motion ẏi =
[
λi p +

∑N
j=1yj , yi

]
, 1 ≤ i ≤ N . Moreover it can

be written as the composition of two non-commuting conjugations, namely

DNε = (DNε )2 ◦ (DNε )1,

where

(DNε )1 : yi 7→ y∗
i
.
=
(
1 + ε

∑N
j=1yj

)
yi

(
1 + ε

∑N
j=1yj

)−1

, (3.65a)

(DNε )2 : y∗
i 7→ ŷi

.
= (1 + ε λi p)y∗

i (1 + ε λi p)
−1
, (3.65b)

with 1 ≤ i ≤ N . Notice that (DNε )1 ◦ (DNε )2 6= (DNε )2 ◦ (DNε )1.
As we told in Remark 3.7 we do not have a Lax representation and an r-matrix formulation

for the map (3.63). Hence we have to prove by a direct computation that:

1. the map (3.63) is Poisson with respect to the Lie-Poisson brackets (2.26) on ⊕Nsu∗(2);

2. the map (3.63) preserves the functions {Hk(ε)}
N
k=1 given in Eq. (3.64);

3. the functions {Hk(ε)}
N
k=1 are in involution with respect to the Lie-Poisson brackets (2.26)

(their independence is obvious).

We may start our proof:

1. The Poisson property of the map DNε is a consequence of the Poisson property of the
maps (DNε )1 and (DNε )2. In fact (DNε )1 is a Hamiltonian flow on ⊕Nsu∗(2) with respect
to the Hamiltonian

I1
.
=

1

2

N∑

j,k=1
j 6=k

〈yj ,yk 〉.

On the other hand (DNε )2 is a Hamiltonian flow on ⊕Nsu∗(2) with respect to the Hamil-
tonian

I2
.
=

N∑

k=1

〈p, λk y∗
k 〉.

2. Notice that the maps (3.65a-3.65b) imply respectively the following relations:

〈y∗
i ,y

∗
j 〉 = 〈yi,yj 〉, y∗

i +
ε

2

N∑

j=1

[y∗
i ,yj ] = yi +

ε

2

N∑

j=1

[yj ,yi ] , (3.66a)

〈p, ŷj 〉 = 〈pi,y
∗
j 〉, ŷi +

ε

2
λi [ ŷi,p ] = y∗

i +
ε

2
λi [p,y∗

i ] , (3.66b)
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with 1 ≤ i, j ≤ N . We have:

Ĥk(ε) = 〈p, ŷk 〉+

N∑

j=1
j 6=k

〈 ŷk, ŷj 〉

λk − λj

(
1 +

ε2

4
λk λj 〈p,p 〉

)
−
ε

2

N∑

j=1
j 6=k

〈p, [ ŷk, ŷj ] 〉 =

= 〈p,y∗
k 〉+

N∑

j=1
j 6=k

〈y∗
k,y

∗
j 〉

λk − λj

(
1 +

ε2

4
λk λj 〈p,p 〉

)
+
ε

2

N∑

j=1
j 6=k

〈p, [y∗
k,y

∗
j ] 〉 =

= 〈p,yk 〉+

N∑

j=1
j 6=k

〈yk,yj 〉

λk − λj

(
1 +

ε2

4
λk λj 〈p,p 〉

)
−
ε

2

N∑

j=1
j 6=k

〈p, [yk,yj ] 〉 = Hk(ε),

with 1 ≤ k ≤ N . Here we have used Eqs. (3.66b) in the first step and Eqs. (3.66a) in
the second one.

3. Let us write the functions {Hk(ε)}
N
k=1 in the following way:

Hk(ε)
.
= h0

k −
ε

2
h1
k +

ε2

4
〈p,p 〉h2

k, 1 ≤ k ≤ N,

where

h0
k
.
= 〈p,yk 〉+

N∑

j=1
j 6=k

〈yk,yj 〉

λk − λj
, (3.67a)

h1
k
.
=

N∑

j=1
j 6=k

〈p, [yk,yj ] 〉, (3.67b)

h2
k
.
=

N∑

j=1
j 6=k

λk λj
λk − λj

〈yk,yj 〉. (3.67c)

Therefore we have:

{Hk(ε), Hi(ε)} =
{
h0
k, h

0
i

}
−
ε

2

({
h0
k, h

1
i

}
+
{
h1
k, h

0
i

})
+

+
ε2

4

[
〈p,p 〉

({
h0
k, h

2
i

}
+
{
h2
k, h

0
i

})
+
{
h1
k, h

1
i

} ]
−

−
ε3

8

({
h1
k, h

2
i

}
+
{
h2
k, h

1
i

})
+
ε4

16
〈p,p 〉2

{
h2
k, h

2
i

}
. (3.68)

We know that
{
h0
k, h

0
i

}
= 0, 1 ≤ k, i ≤ N , since the integrals

{
h0
k

}N
k=1

are the ones
of the continuous-time su(2) rational Gaudin model. Let us explicitly compute the
other brackets in Eq. (3.68) using Eqs. (3.67a-3.67b-3.67c) and the Lie-Poisson brackets

{yαi , y
β
k} = −δi,k εαβγ y

γ
i , 1 ≤ i, k ≤ N . We shall obviously assume k 6= i and the sum-

mation over the repeated greek indices (running from 1 to 3) is used. Moreover, in the
brackets

{
h0
k, h

1
i

}
+
{
h1
k, h

0
i

}
and

{
h0
k, h

2
i

}
+
{
h2
k, h

0
i

}
we shall explicitly write the order

of |p| appearing in the computation.
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At order ε we have:
[ {
h0
k, h

1
i

}
+
{
h1
k, h

0
i

} ]
O(|p|)

=

= pβ εβρσ

N∑

j=1
j 6=k

N∑

l=1
l 6=i

[
1

λk − λj

{
yαk y

α
j , y

ρ
i y

σ
l

}
+

1

λi − λl

{
yρk y

σ
j , y

α
i y

α
l

}]
=

= −pβ εβρσ

N∑

j=1
j 6=k

εασγ
λk − λj

(yγk y
α
j y

ρ
i + yγj y

ρ
i y

α
k )−

−pβ εβρσ

N∑

j=1
j 6=k

εραγ
λi − λk

(yγk y
σ
j y

α
i + yγi y

σ
j y

α
k )−

−pβ εβρσ

N∑

j=1
j 6=k

εσαγ
λi − λj

(yρk y
γ
j y

α
i + yγi y

α
j y

ρ
k).

The above expression vanishes if we swap the indices α and γ in each second term in the
three brackets. Then we have:

[ {
h0
k, h

1
i

}
+
{
h1
k, h

0
i

} ]
O(|p|2)

=

= pα pβ εβρσ

N∑

l=1

[ {yαk , y
ρ
i y

σ
l }+ {yρk y

σ
l , y

α
i } ] =

= pα pβ (εβρσ εασγ + εβγσ εσαρ) y
γ
k y

ρ
i ,

that vanishes using the properties of the tensor εαβγ .

At order ε2 we get:
[ {
h0
k, h

2
i

}
+
{
h2
k, h

0
i

} ]
O(|p|)

=

= pα
N∑

l=1
l 6=i

λi λl
λi − λl

{
yαk , y

β
i y

β
l

}
− pα

N∑

j=1
j 6=k

λk λj
λk − λj

{
yαi , y

β
k y

β
j

}
=

= −pαεαβγ

(
λi λk
λi − λk

yβi y
γ
k +

λi λk
λi − λk

yγi y
β
k

)
,

that vanishes swapping the indices γ and β in the second term. Moreover,
[ {
h0
k, h

2
i

}
+
{
h2
k, h

0
i

} ]
O(|p|0)

=

=

N∑

j=1
j 6=k

N∑

l=1
l 6=i

λi λl + λk λj
(λk − λj)(λi − λl)

{
yαk y

α
j , y

β
i y

β
l

}
=

= −εαβγ

N∑

j=1
j 6=k

λk(λ
2
i − λ

2
j )− λi(λ

2
k − λ

2
j)− λj(λ

2
i − λ

2
k)

(λk − λj)(λi − λk)(λi − λj)
yγk y

α
j y

β
i =

= −εαβγ

N∑

j=1
j 6=k

yγk y
α
j y

β
i .
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On the other hand:

{
h1
k, h

1
i

}
= pα pσ εαβγεσρµ

N∑

j=1
j 6=k

N∑

l=1
l 6=i

{
yαk y

γ
j , y

ρ
i y

µ
l

}
=

= pσ pσ εαβγ

N∑

j=1
j 6=k

yγk y
α
j y

β
i ,

where we have used the properties of the tensor εαβγ . Hence we get:

〈p,p 〉
({
h0
k, h

2
i

}
+
{
h2
k, h

0
i

})
+
{
h1
k, h

1
i

}
= 0.

At order ε3 we have:

{
h1
k, h

2
i

}
+
{
h2
k, h

1
i

}
=

= −pβ εβρσ

N∑

j=1
j 6=k

N∑

l=1
l 6=i

[
λk λj
λk − λj

{
yαk y

α
j , y

ρ
i y

σ
l

}
+

λi λl
λi − λl

{
yρk y

σ
j , y

α
i y

α
l

}]
=

= pβ εβρσ

N∑

j=1
j 6=k

εασγ λk λj
λk − λj

(yγk y
α
j y

ρ
i + yγj y

ρ
i y

α
k )−

− pβ εβρσ

N∑

j=1
j 6=k

εραγ λk λi
λi − λk

(yγk y
σ
j y

α
i + yγi y

σ
j y

α
k )−

− pβ εβρσ

N∑

j=1
j 6=k

εσαγ λi λj
λi − λj

(yρk y
γ
j y

α
i + yγi y

α
j y

ρ
k).

The above expession vanishes if we swap the indices α and γ in each second term in the
three brackets.

Finally, at order ε4, we get:

{
h2
k, h

2
i

}
=

N∑

j=1
j 6=k

N∑

l=1
l 6=i

λk λj λi λl
(λk − λj)(λi − λl)

{
yαk y

α
j , y

β
i y

β
l

}
=

= −εαβγ

N∑

j=1
j 6=k

yαj y
β
i y

γ
k

[
λ2
k λj λi

(λi − λk)(λk − λj)
+

λk λj λ
2
i

(λi − λj)(λk − λi)
−

λk λ
2
j λi

(λi − λj)(λk − λj)

]
.

A direct verification allows one to check that the expression in the square brackets van-
ishes.

�

Using the integrals of motion given in Eq. (3.64) we can compute the discrete-time version



3.2 Alternative approach to integrable discretizations 87

of the Gaudin Hamiltonian (2.37). It reads:

HG(ε)
.
=

N∑

k=1

λkHk(ε) =
N∑

k=1

〈p, λk yk 〉+
1

2

N∑

j,k=1
j 6=k

〈yk,yj 〉

(
1 +

ε2

4
λk λj 〈p,p 〉

)
−

−
ε

4

N∑

j,k=1
j 6=k

(λk − λj) 〈p, [yk,yj ] 〉. (3.69)

Moreover we still have a linear integral given by
∑N

k=1Hk(ε) =
∑N
k=1〈p,yk 〉, as in the

continuous-time case.

3.2.4 Discrete-time extended Lagrange tops

We know from Subsection 3.2.2 that fixing N = 2 in Proposition 3.8 we can recover, by the
contraction procedure and the pole coalescence, the discrete-time Lagrange top considered in
[19].

Our aim is now to perform the contraction procedure on the discrete-time N -site su(2)
rational Gaudin model, in order to construct an integrable discretization for the whole hierarchy
of extended Lagrange tops. In particular we want to find the integrable discrete-time version
of the equations of motion żi = [ z0, zi ] + [p, zi+1 ] , zN ≡ 0, with 0 ≤ i ≤ N − 1.

Proposition 3.9 The map

D̃Nε : zi 7→ ẑi
.
= (1 + ε z0) zi (1 + ε z0)

−1 − 2

N−i−1∑

j=1

(
−
ε

2

)j
adj

p
ẑj+i, (3.70)

with 0 ≤ i ≤ N − 1 and ε ∈ R \ {0}, is Poisson with respect to the brackets (3.49) and has N
independent and involutive integrals of motion assuring its complete integrability:

H
(N)
k (ε)

.
= 〈p, zk 〉+

1

2

k−1∑

i=0

〈 zi, zk−i−1 〉+
ε

2
〈p, [ z0, zk] 〉+

ε2

8
〈p,p 〉

k−1∑

i=0

〈 zi+1, zk−i 〉, (3.71)

with 0 ≤ k ≤ N − 1.

Remark 3.9 We immediately notice that fixing N = 2 in Eqs. (3.70) and (3.71) we obtain

respectively the map (3.43) and the integrals H
(2)
0 , H

(2)
1 (ε) of the discrete-time Lagrange top,

see Subsection 3.2.1.
Moreover Eq. (3.70) defines an explicit map. For instance, let us fix N = 3 in Eq. (3.70).

We get: 



ẑ0 = z0 + ε [p, ẑ1 ]−
ε2

2
[p, [p, ẑ2 ] ],

ẑ1 = (1 + ε z0) z1 (1 + ε z0)
−1 + ε [p, ẑ2 ],

ẑ2 = (1 + ε z0) z2 (1 + ε z0)
−1.

(3.72)

The map (z0, z1, z2) 7→ (ẑ0, ẑ1, ẑ2) approximates, for small ε, the time ε shift along the trajec-
tories of the continuous-time equations of motion of the first Leibniz extension of the Lagrange
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top: 




ż0 = [p, z1 ],

ż1 = [ z0, z1] + [p, z2 ],

ż2 = [ z0, z2 ].

Proof: Let us construct the map (3.70) through the usual contraction procedure and the
pole coalescence λi ≡ ϑ νi, 1 ≤ i ≤ N , performed on the map (3.63).

Consider the map (DNε )1 in Eq. (3.65a). Using Eq. (2.43) we immediately get:

z∗i
.
=

N∑

k=1

ϑi νik y∗
k =

N∑

k=1

ϑi νik

(
1 + ε

∑N
j=1yj

)
yk

(
1 + ε

∑N
j=1yj

)−1

=

= (1 + ε z0) zi (1 + ε z0)
−1,

with 0 ≤ i ≤ N − 1. Hence the contracted version of (DNε )1 is given by

(D̃Nε )1 : zi 7→ z∗i = (1 + ε z0) zi (1 + ε z0)
−1, 0 ≤ i ≤ N − 1. (3.73)

On the other hand, considering the map (DNε )2 in Eq. (3.65b) and the map in Eq. (2.43),
a straightforward computation leads to:

N∑

k=1

ϑi νik ŷk =

N∑

k=1

ϑi νik (1 + ε ϑ νk p)y∗
k (1 + ε ϑ νk p)

−1
=

=

N∑

k=1

∑

j≥0

ϑi+j νi+jk (−ε)j (1 + ε ϑ νk p) y∗
k pj =

= z∗i + 2

N−i−1∑

j=1

(ε
2

)j
adj

p
z∗j+i +O(ϑN ),

with 0 ≤ i ≤ N − 1. Performing the limit ϑ→ 0 we obtain the contracted version of the map
(DNε )2. It reads:

(D̃Nε )2 : z∗i 7→ ẑi = z∗i + 2
N−i−1∑

j=1

(ε
2

)j
adj

p
z∗j+i, 0 ≤ i ≤ N − 1. (3.74)

Therefore, the contraction of the map DNε given in Eq. (3.63) is given by

D̃Nε = (D̃Nε )2 ◦ (D̃Nε )1 : zi 7→ ẑi = (1 + ε z0) zi (1 + ε z0)
−1 − 2

N−i−1∑

j=1

(
−
ε

2

)j
adj

p
ẑj+i,

with 0 ≤ i ≤ N − 1. The above map is the one given in Eq. (3.70).

The Poisson property of the map D̃Nε is a consequence of the Poisson property of the map

DNε in Eq. (3.63). In fact D̃Nε is the composition of two non-commuting Poisson maps: (D̃Nε )1
is a Hamiltonian flow on the contraction of ⊕Nsu∗(2) with respect to the Hamiltonian 〈 z0, z0 〉;

(D̃Nε )2 is a Hamiltonian flow on the contraction of ⊕Nsu∗(2) with respect to the Hamiltonian
〈p, z∗1 〉.

We now construct, by contraction of the functions (3.64), the integrals (3.71) of the Poisson
map (3.70). We know that fixing ε = 0 in Eq. (3.64) we recover the integrals of motion of the
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continuous-time su(2) rational Gaudin model. Their contraction gives the integrals of motion
of the continuous-time extended Lagrange tops, see Remark 2.11. Therefore it is enough to
perform the contraction procedure just on the two ε-dependent terms of the integrals (3.64).
We get:

N∑

k=1

ϑi νikHk(ε) = 〈p, zi 〉+
1

2

i−1∑

m=0

〈 zm, zi−m−1 〉 −

−
ε

4

N∑

j,k=1
j 6=k

(ϑi νik − ϑ
i νij)〈p, [yk,yj ] 〉+

+
ε2

8
〈p,p 〉

N∑

j,k=1
j 6=k

ϑi+1
νi+1
k νj − ν

i+1
j νk

νk − νj
〈yk,yj 〉 =

= 〈p, zi 〉+
1

2

i−1∑

m=0

〈 zm, zi−m−1 〉+
ε

2
〈p, [ z0, zi ] 〉+

+
ε2

8
〈p,p 〉

i−1∑

m=0

N∑

j,k=1
j 6=k

(ϑ νk)
m+1(ϑ νj)

i−m〈yk,yj 〉 = H
(N)
i (ε),

with 0 ≤ i ≤ N − 1. In the above computation we have taken into account the polynomial
identity

νi+1
k νj − ν

i+1
j νk = (νk − νj)

i−1∑

m=0

νm+1
k νi−mj .

The involutivity of the integrals {H
(N)
k (ε)}N−1

k=0 is ensured thanks to Proposition 2.10.

�

Remark 3.10 There is an alternative way to write the map (D̃Nε )2 in Eq. (3.74). Explicitly
it reads: 




ẑ0 = z∗0 + ε adp z∗1 +
ε2

2
ad2

p
z∗2 + ...+

εN−1

2N−2
adN−1

p
z∗N−1,

ẑ1 = z∗1 + ε adp z∗2 +
ε2

2
ad2

p
z∗3 + ...+

εN−2

2N−3
adN−2

p
z∗N−1,

...

ẑN−1 = z∗N−1.

(3.75)

Let us define the vectors Ẑ
.
= (ẑ0, ..., ẑN−1)

T and Z∗ .
= (z∗0, ..., z

∗
N−1)

T . It is easy to see
that always exists a N ×N upper triangular matrix, say A

.
= (A)i,j , 1 ≤ i, j ≤ N , such that

Ẑ = eA Z∗.
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The explicit form of A is the following one:

(A)i,j = 0, i ≥ j,

(A)i,i+2k+1 =
ε2k+1 ad2k+1

p

22k (2k + 1)
, 0 ≤ k ≤

N − 1− i

2
,

(A)i,i+2k+2 = 0, 0 ≤ k ≤
N − 2− i

2
.

For instance, fixing N = 6, we get:

A =




0 ε adp 0
ε3 ad3

p

12
0

ε5 ad5
p

80

0 0 ε adp 0
ε3 ad3

p

12
0

0 0 0 ε adp 0
ε3 ad3

p

12
0 0 0 0 ε adp 0
0 0 0 0 0 ε adp

0 0 0 0 0 0




,

so that

eA =




1 ε adp

ε2 ad2
p

2

ε3 ad3
p

4

ε4 ad4
p

8

ε5 ad5
p

16

0 1 ε adp

ε2 ad2
p

2

ε3 ad3
p

4

ε4 ad4
p

8

0 0 1 ε adp

ε2 ad2
p

2

ε3 ad3
p

4

0 0 0 1 ε adp

ε2 ad2
p

2
0 0 0 0 1 ε adp

0 0 0 0 0 1




.

Numerics

Obviously, also the integrable Poisson map given in Eq. (3.70) can be easily iterated, allowing
us to obtain some 3D visualizations of the discrete-time dynamics of the extended Lagrange
tops. We present here some pictures, obtained using a MAPLE 8 program, corresponding to
the discrete-time first extension of the Lagrange top, see Eqs. (3.72).

The input parameters are:

• the intensity of the external field, p;

• the discretization parameter, ε;

• the number of iteration of the map, N ;

• the initial values of the coordinate functions, (z0, z1, z2).

The output is a 3D plot of N consequent points (z1
2 , z

2
2 , z

3
2), describing the evolution of

the axis of symmetry of the top on the surface 〈 z2, z2 〉=constant and N consequent points
(z1

1 − z
1
2 , z

2
1 − z

2
2 , z

3
1 − z

3
2) describing the evolution of the satellite.
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3.2.5 The discrete-time rational Lagrange chain

Using the contraction technique presented in Subsection 2.5.2 we can now construct an inte-
grable discrete-time version of the equations of motion (2.95) of the M -site rational Lagrange
chain. They are: 




ṁi = [p,ai ] +
[
µi p +

∑M
k=1 mk,mi

]
,

ȧi =
[
µi p +

∑M
k=1 mk,ai

]
,

(3.77)

with 1 ≤ i ≤ M . We recall that they are Hamiltonian equations with respect the Lie-Poisson
brackets on ⊕Me∗(3),

{
mα
i ,m

β
j

}
= −δi,j εαβγm

γ
i ,

{
mα
i , a

β
j

}
= −δi,j εαβγ a

γ
i ,

{
aαi , a

β
j

}
= 0, (3.78)

with 1 ≤ i, j ≤M , with the Hamiltonian function given by

HrM,2
.
=

M∑

k=1

〈p, µk mk + ak 〉+
1

2

M∑

i,k=1

〈mi,mk 〉. (3.79)

If M = 1 the Hamiltonian (3.79) gives the sum of the two integrals of motion of the Lagrange
top. Recall that the functions

C
(1)
k

.
= 〈mk,ak 〉, C

(2)
k

.
=

1

2
〈ak,ak 〉, 1 ≤ k ≤M, (3.80)

are Casimirs for the brackets (3.78).
The following propositions holds.

Proposition 3.10 The map DM,2
ε defined by





m̂i
.
= (1 + ε µi p)

(
1 + ε

∑M
j=1mj

)
mi

(
1 + ε

∑M
j=1mj

)−1

(1 + ε µi p)
−1

+ ε [p, âi ] ,

âi
.
= (1 + ε µi p)

(
1 + ε

∑M
j=1mj

)
ai

(
1 + ε

∑M
j=1mj

)−1

(1 + ε µi p)
−1
,

(3.81)
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with 1 ≤ i ≤ M and ε ∈ R \ {0}, is Poisson with respect to the brackets (3.78) and has 2M
independent and involutive integrals of motion assuring its complete integrability:

Rk(ε)
.
= 〈p,mk 〉 −

ε

2
〈p,

[
mk,

∑M
j=1mj

]
〉+

+
M∑

j=1
j 6=k

[(
〈mk,mj 〉

µk − µj
− 2

〈ak,aj 〉

(µk − µj)3

) (
1 +

ε2

4
µk µj 〈p,p 〉

)
+

+
〈mk,aj 〉

(µk − µj)2

(
1 +

ε2

4
µ2
k 〈p,p 〉

)
−
〈mj ,ak 〉

(µk − µj)2

(
1 +

ε2

4
µ2
j 〈p,p 〉

)]
, (3.82a)

Sk(ε)
.
= 〈p,ak 〉+

1

2
〈mk,mk 〉

(
1 +

ε2

4
µ2
k 〈p,p 〉

)
−
ε

2
〈p,

[
ak,
∑M

j=1mj

]
〉+

+

M∑

j=1
j 6=k

[
〈ak,mj 〉

µk − µj

(
1 +

ε2

4
µk µj 〈p,p 〉

)
+
〈ak,aj 〉

(µk − µj)2

(
1 +

ε2

4
µ2
k 〈p,p 〉

)]
, (3.82b)

with 1 ≤ k ≤M .

Proof: We can use the contraction technique performed in Subsection 2.5.2. Namely
we have to consider a discrete-time su(2) rational Gaudin model, described by equations of
motion (3.63), with 2M sites, and to apply, in the contraction limit ϑ → 0, the map in Eqs.
(2.97a-2.97b):

mi
.
= y2i + y2i−1, ai

.
= ϑ (ν2i y2i + ν2i−1 y2i−1), 1 ≤ i ≤M, (3.83)

where the νi’s are 2M distinct parameters. Moreover the pole coalescence is given by, see Eq.
(2.98):

λ2i ≡ ϑ ν2i + µi, λ2i−1 ≡ ϑ ν2i−1 + µi, 1 ≤ i ≤M, (3.84)

where the λi’s are the 2M parameters of the Gaudin model and the µi’s are the M parameters
of the rational Lagrange chain.

Using Eq. (3.83) and the map (3.65a) with N = 2M we immediately obtain the contracted
version of (D2M

ε )1. It reads

m∗
i = y∗

2i + y∗
2i−1 =

(
1 + ε

∑M
j=1mj

)
mi

(
1 + ε

∑M
j=1mj

)−1

, (3.85a)

a∗
i = ϑ (ν2i y

∗
2i + ν2i−1 y∗

2i−1) =
(
1 + ε

∑M
j=1mj

)
ai

(
1 + ε

∑M
j=1mj

)−1

, (3.85b)

with 1 ≤ i ≤ M . Using Eqs. (3.83-3.84) and the map (3.65b) with N = 2M we get the
contracted version of (D2M

ε )2. It reads

m̂i = ŷ2i + ŷ2i−1 =

= (1 + ε µi p) m∗
i (1 + ε µi p)−1 + ε

[
p, (1 + ε µi p) a∗

i (1 + ε µi p)−1
]

+O(ϑ2), (3.86a)

âi = ϑ (ν2i ŷ2i + ν2i−1 ŷ2i−1) = (1 + ε µi p) a∗
i (1 + ε µi p)

−1
+O(ϑ2). (3.86b)

Performing the limit ϑ→ 0 in Eqs. (3.86a-3.86b) and combining the resulting equations with
the maps in Eqs. (3.85a-3.85b) we obtain the map in Eq. (3.81). Its Poisson property is
ensured thanks to the Poisson property of the map (3.63).
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Let us construct the integrals (3.82a-3.82b). We can make a computation similar to the
one done in the proof of Proposition 2.23. We have:

Ri(ε) = lim
ϑ→0

[H2i(ε) +H2i−1(ε) ],

Si(ε) = lim
ϑ→0

[ϑ (ν2iH2i(ε) + ν2i−1H2i−1(ε)) ],

being {Hi(ε)}
2M
i=1 the set of integrals in Eq. (3.64). We can perform the computation just

for the ε-dependent terms, thanks to Proposition 2.23. We get (denoting with {Ri}
M
i=1 and

{Si}
M
i=1 the sets of continuous-time integrals given in Eqs. (2.93a-2.93b)):

H2i(ε) + H2i−1(ε) = Ri −
ε

2

M∑

j=1
j 6=i

〈p, [y2i + y2i−1,y2j + y2j−1 ] 〉+
ε2

4
〈p,p 〉 ×

×
M∑

j=1
j 6=i

{
(ϑ ν2i + µi) (ϑ ν2j−1 + µj) 〈y2i,y2j−1 〉

µi − µj

[
1−

ϑ (ν2i − ν2j−1)

µi − µj
+
ϑ2 (ν2i − ν2j−1)

2

(µi − µj)2

]
+

+
(ϑ ν2i + µi) (ϑ ν2j + µj) 〈y2i,y2j 〉

µi − µj

[
1−

ϑ (ν2i − ν2j)

µi − µj
+
ϑ2 (ν2i − ν2j−1)

2

(µi − µj)2

]
+

+
(ϑ ν2i−1 + µi) (ϑ ν2j−1 + µj) 〈y2i−1,y2j−1 〉

µi − µj

[
1−

ϑ (ν2i−1 − ν2j−1)

µi − µj
+
ϑ2 (ν2i − ν2j−1)

2

(µi − µj)2

]
+

+
(ϑ ν2i−1 + µi) (ϑ ν2j + µj) 〈y2i−1,y2j 〉

µi − µj

[
1−

ϑ (ν2i−1 − ν2j)

µi − µj
+
ϑ2 (ν2i − ν2j−1)

2

(µi − µj)2

]
+O(ϑ5)

}
=

= Ri −
ε

2

M∑

j=1
j 6=i

〈p, [y2i + y2i−1,y2j + y2j−1 ] 〉+

+
ε2

4
〈p,p 〉

M∑

j=1
j 6=i

µi µj
〈y2i + y2i−1,y2j + y2j−1 〉

µi − µj
+

+
ε2

4
〈p,p 〉

M∑

j=1
j 6=i

µ2
i

〈y2i + y2i−1, ϑ (ν2j y2j + ν2j−1 y2j−1) 〉

(µi − µj)2
+

+
ε2

4
〈p,p 〉

M∑

j=1
j 6=i

µ2
j

〈ϑ (ν2i y2i + ν2i−1 y2i−1),y2j + y2j−1 〉

(µi − µj)2
+

+
ε2

2
〈p,p 〉

M∑

j=1
j 6=i

µi µj
〈ϑ (ν2i y2i + ν2i−1 y2i−1), ϑ (ν2j y2j + ν2j−1 y2j−1) 〉

(µi − µj)3
+O(ϑ3).

Using the map (3.83) and performing the limit ϑ→ 0 we obtain the integrals {Ri(ε)}
M
i=1 given
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in Eq. (3.82a). For the integrals {Si(ε)}
M
i=1 we obtain:

ϑ (ν2iH2i(ε) + ν2i−1H2i−1(ε)) = Si −
ε

2

M∑

j=1
j 6=i

〈p, [ϑ (ν2i y2i + ν2i−1 y2i−1),y2j + y2j−1 ] 〉+

+
ε2

4
µ2
i 〈p,p 〉〈y2i,y2i−1 〉+

ε2

4
〈p,p 〉 ×

×

M∑

j=1
j 6=i

{
ϑ ν2i (ϑ ν2i + µi) (ϑ ν2j−1 + µj) 〈y2i,y2j−1 〉

µi − µj

[
1−

ϑ (ν2i − ν2j−1)

µi − µj

]
+

+
ϑ ν2i (ϑ ν2i + µi) (ϑ ν2j + µj) 〈y2i,y2j 〉

µi − µj

[
1−

ϑ (ν2i − ν2j)

µi − µj

]
+

+
ϑ ν2i−1 (ϑ ν2i−1 + µi) (ϑ ν2j−1 + µj) 〈y2i−1,y2j−1 〉

µi − µj

[
1−

ϑ (ν2i−1 − ν2j−1)

µi − µj

]
+

+
ϑ ν2i−1 (ϑ ν2i−1 + µi) (ϑ ν2j + µj) 〈y2i−1,y2j 〉

µi − µj

[
1−

ϑ (ν2i−1 − ν2j)

µi − µj

]
+O(ϑ5)

}
=

= Si −
ε

2

M∑

j=1
j 6=i

〈p, [ϑ (ν2i y2i + ν2i−1 y2i−1),y2j + y2j−1 ] 〉+
ε2

4
µ2
i 〈p,p 〉〈y2i,y2i−1 〉+

+
ε2

4
〈p,p 〉

M∑

j=1
j 6=i

µi µj
〈ϑ (ν2i y2i + ν2i−1 y2i−1),y2j + y2j−1 〉

µi − µj
+

+
ε2

4
〈p,p 〉

M∑

j=1
j 6=i

µ2
i

〈ϑ (ν2i y2i + ν2i−1 y2i−1), ϑ (ν2j y2j + ν2j−1 y2j−1) 〉

(µi − µj)2
+O(ϑ3).

Notice that

〈y2i,y2i−1 〉 =
1

2
〈y2i + y2i−1,y2i + y2i−1 〉 − C2i − C2i−1,

where the functions Ci
.
= 〈yi,yi 〉, 1 ≤ i ≤ 2M , are Casimirs for ⊕2Msu∗(2).

Using the map (3.83) and performing the limit ϑ → 0 we obtain the integrals {Si(ε)}
M
i=1

given in Eq. (3.82b).
The Hamiltonians (3.82a-3.82b) are in involution w.r.t. the Lie-Poisson brackets (3.78)

thanks to Proposition 2.16.

�
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The discrete-time version of the Hamiltonian (2.94) is given by

HM,2(ε)
.
=

M∑

k=1

[ µk Rk(ε) + Sk(ε) ] =

=
M∑

k=1

〈p, µk mk + ak 〉+
1

2

M∑

j,k=1

〈mj ,mk 〉

(
1 +

ε2

4
µj µk 〈p,p 〉

)
−

−
ε

4

M∑

j,k=1
j 6=k

(µk − µj) 〈p, [mk,mj ] 〉 −
ε

2
〈p,

[∑M
k=1ak,

∑M
j=1mj

]
〉+

+
ε2

4
〈p,p 〉

M∑

j,k=1
j 6=k

µk〈mk,aj 〉+
ε2

8
〈p,p 〉

M∑

j,k=1
j 6=k

〈ak,aj 〉. (3.87)

Notice that we still have the linear integral
∑M

k=1 Rk(ε) =
∑M
k=1〈p,mk 〉. Moreover, fixing

M = 1 (and µ1 = 0) in the Hamiltonian (3.87) we get the discrete-time Hamiltonian (3.44) of
the Lagrange top.

Numerics

We present here a visualization, for M = 2, of the integrable discrete-time evolution of the
axes of symmetry of the tops given by the map (3.81).
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The input parameters are:

• the intensity of the external field, p;

• the values of the parameters µ1 and µ2;

• the discretization parameter, ε;

• the number of iteration of the map, N ;

• the initial values of the coordinate functions, (m1,a1) and (m2,a2).
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The output is a 3D plot of N +N consequent points (a1
1, a

2
1, a

3
1) and (a1

2, a
2
2, a

3
2) describing the

evolution of the axes of symmetry of the tops respectively on the surfaces 〈a1,a1 〉=constant
and 〈a2,a2 〉=constant.



4

Conclusions and open perspectives

We list here the results obtained in the present Thesis together with the related open problems.

• We have presented a general and systematic reduction, based on Inönü-Wigner contrac-
tions, of classical Gaudin models. Suitable algebraic and pole coalescence procedures
performed on the N -pole Gaudin Lax matrices, enabled us to construct one-body and
many-body hierarchies of integrable models sharing the same (linear) r-matrix structure
of the ancestor models. Moreover, this technique can be applied for any simple Lie alge-
bra g and whatever be the dependence (rational, trigonometric, elliptic) on the spectral
parameter.

Fixing g ≡ su(2), we have constructed the so called su(2) hierarchies. These families
of integrable systems are the Leibniz extensions of su(2) Gaudin models. For instance,
assuming N = 2 and a rational dependence on the spectral parameter, we have obtained
the standard Lagrange top associated with e∗(3), in the one-body case, and a homoge-
neous long-range integrable chain of interacting Lagrange tops, in the many-body one.
For an arbitrary order N of the Leibniz extension, the one-body hierarchy consists of a
family of generalized Lagrange tops. They provide an interesting example of integrable
rigid body dynamics described by a Lagrange top with N−2 interacting heavy satellites.

• Using two different approaches to the integrable discretization problem, we have obtained
several integrable Poisson maps for the su(2) hierarchies. The method of Bäcklund trans-
formations enabled us to construct families of integrable maps for the first (rational)
extension of the standard Lagrange top and for the rational Lagrange chain. On the
other hand, we have performed a “guesswork procedure” on the integrable map for the
Lagrange top obtained in [19] in order to obtain an integrable discretization for the su(2)
rational Gaudin model. Therefore, a suitable contraction on such a map, enables us - at
least in principle - to construct discrete-time versions of all su(2) hierarchies. Neverthe-
less, up to now, we still have not a Lax representation and an r-matrix formulation for
such maps (actually they are known just for the discrete-time Lagrange top considered
in [19]). Hence, their integrability and Poisson property is proven by direct verification.

Indeed, a fundamental task is the construction of a Lax representation for the discrete-
time su(2) rational Gaudin model. In principle, its knowledge enables us to find the Lax
pairs for all the contracted systems. The work is in progress, with the collaboration of
Yu.B. Suris.

• A natural extension of our discretizations could be the study of a suitable approach
for those models with a trigonometric or elliptic dependence on the spectral parameter
instead of a rational one. To the best of our knowledge there are not results in this
direction in literature.

• It is well-known that the continuous-time Lagrange top admits a tri-Hamiltonian formu-
lation in terms of the so called Reyman-Semenov-Tian-Shansky tensors. More precisely,
the whole family of extended Lagrange tops admits a multi-Hamiltonian formulation in
terms of such tensors. For our purposes the multi-Hamiltonian approach should be an
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alternative tool to prove the integrability property of our discrete-time maps. Our first
aim is to construct a Poisson pencil for the discrete-time Lagrange top considered in
[19]. Secondly, we have to generalize this construction to an arbitrary (discrete-time)
extension of the Lagrange top. The work is in progress, with the collaboration of Yu.B.
Suris.

• We are studying a Lagrangian formulation for the rational Lagrange chain, both in the
continuous-time and in the discrete-time settings. Our aim is to generalize the results
contained in [19] for the Lagrange top. At the moment, we are able to overcome the main
difficulty, which is the abscence of the Lagrangian function in the strict sense, due to the
degeneracy of the Legendre transform. We have discovered a regularization procedure
for this system, which leads to a well-defined Lagrangian formulation of certain nearby
systems (with a limit singular on the level of Lagrangians, but regular on the level of
Hamiltonians and equations of motions). The work is in progress, with the collaboration
of Yu.B. Suris.

• A natural question is whether the the contraction procedure presented in Chapter 2 could
be generalized to other Inönü-Wigner contractions. To carry out this program we have
first to identify a suitable class of Inönü-Wigner contractions. For our purposes, a good
choice is to define Inönü-Wigner contractions through continuous graded contractions for
ZN graded algebras [62]. It is well-known that they split in two classes: discrete and
continuous; in [103] it is proven that all continuous graded contractions can be realized
by generalized Inönü-Wigner contractions.

We have found a linear transformation on the coordinates functions on G∗
N

.
= ⊕Ng∗

that maps the Lie-Poisson tensor P g

N into a ZN graded one thus allowing us to use the
machinery of graded contractions. Remarkably, this linear transformation can be defined
for any choice of the Lie algebra g and the contraction equations are independent on this
choice. Henceforth the solutions of the contraction equations yield a graded contraction
on GN

.
= ⊕Ng for any choice of the Lie algebra g. Accordingly, we call these graded

contractions “universal”. The problem of classifying non-isomorphic universal graded
contractions, at least for low values of N , is an interesting and challenging side-problem.

Once we have fixed the class of Inönü–Wigner contractions we will work with, we have
to define the contraction procedure on the Hamiltonians. Preliminary results show that
the pole coalescence procedure on the rational Gaudin Lax matrices works for some con-
tractions while leads to divergences for others. Such unpleasant feature can be avoided
defining the Gaudin Hamiltonians through a bi-Hamiltonian pencil instead of a Lax ma-
trix. Bi-Hamiltonian pencils for the rational Gaudin model can be easily derived through
the theory of intertwining operators [30, 79]. We plan to proceed as follows: given a con-
tinuous graded contraction on one of the Poisson tensors of the bi-Hamiltonian pencil,
we search for a contraction on the second Poisson tensor that preserves the compatibility.
Then, we derive a family of involutive Hamiltonians constructing Gel’fand–Zakharevich
chains for the Poisson pencil. We expect that this procedure will lead to new integrable
systems. This work is in progress with the collaboration of F. Musso.

• An interesting perspective is the quantization of the obtained extended Gaudin models.
The first natural candidate to this target could be the rational Lagrange chain. We recall
that a standard procedure can be applied to quantize the underlying algebraic structures
in order to get a well-known quantum linear r-matrix algebra. An interesting problem
concerns the construction of explicit solutions to the spectral problem. As a matter of
fact, the simple case of the Lagrange top requires the introduction of Heun functions as
eigenfunctions of the Hamiltonian operator (see Appendix A).



Appendix A

Some notes on the quantum Lagrange top

The aim of this Appendix is to briefly show some preliminary results on the study of the
quantum Lagrange top. Actually, the original motivation of this topic was the interest on the
quantization of Bäcklund transformations for the classical Lagrange top [53]. A collaboration
with V.B. Kuznetsov has been initiated, but he tragically died in December 2005.

Let us recall that when one searches for the simplest BT of an integrable system, then one
finds a one-dimensional family {Bη | η ∈ C} of them. The Bäcklund parameter η is canonically
conjugate to µ, i.e. µ = −∂Fη/∂η with Fη generating function of {Bη | η ∈ C}. Here µ is bound
to η by the equation of an algebraic curve (dependent on the integrals), which is exactly the
characteristic curve that appears in the linearization of the integrable system:

W (η, µ; {Hi})
.
= det(L(η)− µ1) = 0. (A.1)

This property is called spectrality of the BT [55, 56]. The meaning of equation (A.1) becomes
clear if we turn to the quantum case. In the pioneering paper by Pasquier and Gaudin [72], a
remarkable connection has been established between the classical BT Bη for the Toda lattice
and the famous Baxter’s Q-operator [13]. They have constructed certain integral operators
Qη, whose properties parallel those of the classical BTs. In particular they commute with the
conserved quantities Hi. In the quantum case the canonical transformations are replaced by
suitable similarity transformations. The correspondence between the kernel Qη of Qη and the
generating function Fη of Bη is given by the semiclassical relation Qη ∼ exp (−iFη/~) , ~ →
0 [55]. Moreover, an interesting property of Qη is that its eigenvalues φν(η) on the joint
eigenvectors Ψν of Hi and Qη labelled with the quantum numbers ν, QηΨν = φν(η)Ψν , satisfy
a certain differential or difference equation, containing the eigenvalues hi of Hi, which in the
classical limit goes into the spectrality equation (A.1).

In the last decade the Q-Baxter operators have been constructed for quantum integrable
systems associated with quadratic r-matrix structures (see for instance [25, 54]). To the best of
our knowledge, the explicit construction of Baxter operators for su(2) rational Gaudin models
(associated with a linear r-matrix structure) is still to be done, even if some preliminary (and
not published) results have been obtained by V.B. Kuznetsov [52]. Actually the kernel of Qη

can be computed performing a suitable limit procedure on the kernel of Qη for the XXX su(2)
Heisenberg model. An interesting task could be to recover the generating function of classical
BTs for the su(2) Gaudin magnet [41] as a semiclassical limit Qη ∼ exp (−iFη/~) , ~→ 0.

The first natural reduction of Q-Baxter operators for the su(2) rational Gaudin model
should allow the construction of Q-Baxter operators for the quantum Lagrange top. In the
following we shall give some preliminary results on the study of the spectral problem of the
quantum Lagrange top. They are a necessary tool to study the problem of quantization of
classical BTs. We remark here that the study of quantum tops is an active research activity,
where one can see the intimate connection between quantum integrable systems and special
functions; see for instance [57].
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The physical model

The quantum Lagrange top (QLT) is a quantum axially symmetric rigid rotator in a constant
homogeneous field p

.
= (0, 0, p) ∈ R3. Let us use a different and more convenient notation for

the generators of the Lie algebra e(3). We denote with Ji, i = 1, 2, 3, the components of the
angular momentum and with Pi, i = 1, 2, 3, those of the vector pointing from the fixed point.
They satisfy the following commutation relations:

[ Jα, Jβ ] = i ~ εαβγ Jγ , [ Jα, Pβ ] = i ~ εαβγ Pγ , (A.2a)

[Pα, Pβ ] = 0, α, β, γ = 1, 2, 3, (A.2b)

where εαβγ is the full antisymmetric tensor with ε123 ≡ 1. Hereafter we set ~ ≡ 1. The center
of the universal enveloping algebra of e(3) is generated by two Casimir elements,

C1
.
=

3∑

α=1

Pα Jα =

3∑

α=1

Jα Pα, C2
.
=

3∑

α=1

Pα Pα. (A.3)

In parallel with the notation J1, J2 and P1, P2 we will be using their equivalent complex
version J±

.
= J1 ± i J2 and P±

.
= P1 ± iP2, with the e(3) non trivial commutation relations

(A.2a-A.2b) replaced by

[ J3, J± ] = ±J±, [ J+, J− ] = 2J3, [ J3, P± ] = [P3, J± ] = ±P±, (A.4a)

[ J+, P− ] = [P+, J− ] = 2P3. (A.4b)

In the basis (J3, J±, P3, P±) the Casimir operators (A.3) read

C1
.
=

1

2
(J−P+ + J+X−) + J3P3, C2

.
= P 2

3 + P+P−. (A.5)

The Hamiltonian operator of the QLT in the rest-frame - namely the quantum version of
the Hamiltonian (2.79) - can be written as

H
.
=

1

2
(J2

1 + J2
2 + J2

3 ) + pP3 =
{J+, J−}

4
+
J2

3

2
+ pP3. (A.6)

Here {·, ·} denotes the anticommutator. We remark that the operator (A.6) can be seen as
as the Hamiltonian describing the rotational motion of a rigid symmetric-top molecule in a
constant electric field (0, 0, p) [98]. Moreover we are assuming that the top has a unit mass or
a unit permanent electric dipole moment.

The six quantum Euler-Poisson equations of motion for the components J1, J2, J3 and
P1, P2, P3 can be derived computing their commutators with the Hamiltonian operator (A.6):

Ṗ1 =
1

2
{J2, P3} −

1

2
{J3, P2}, J̇1 = −pP2,

Ṗ2 =
1

2
{J3, P1} −

1

2
{J1, P3}, J̇2 = pP1,

Ṗ3 =
1

2
{J1, P2} −

1

2
{J2, P1}, J̇3 = 0.

The above equations are the quantum version of Eqs. (2.77) and they go over into the classical
ones if we do not follow the ordering of the generators.

The integrability of the QLT requires the existence of a fourth constant of motion. We can
immediately notice that [H, J3 ] = 0. The conservation of J3 is a direct consequence of the
invariance under rotation about the direction of the external field.

For the sake of completeness we briefly present here an r-matrix formulation of the QLT.
A straightforward computation leads to the following proposition.



101

Proposition A.1 The Lax matrix of the QLT reads

L(λ)
.
=

i

λ

(
J3 J−
J+ −J3

)
+

i

λ2

(
P3 P−

P+ −P3

)
+ i

(
p 0
0 −p

)
, (A.8)

where λ ∈ C is the spectral parameter. The Lax matrix given in Eq. (A.8) satisfies the linear
r-matrix algebra

[L(λ) ⊗ 1,1⊗ L(µ) ] + [ r(λ − µ),L(λ) ⊗ 1 + 1⊗ L(µ) ] = 0,

where

r(λ)
.
=

1

λ




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

Notice that the generating function of the integrals of motion of the QLT is given by

S(λ)
.
= −

1

2
tr
[
L2(λ)

]
=
C2

λ4
+

2C1

λ3
+

2H

λ2
+

2 J3

λ
+ p2.

The spectral problem

Proposition A.2 [61] Let ρ > 0 and consider the manifold of all three-dimensional vectors
P

.
= (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ), (θ, ϕ) ∈ [ 0, π ] × [ 0, 2π ). Let us define the Hilbert

space

H
.
=

{
Ψ : [ 0, π ]× [ 0, 2π )→ C |

∫ π

0

∫ 2π

0

dθ dϕ sin θ | Ψ(θ, ϕ) |2<∞

}
.

The operators (J3, J±, P3, P±) defined on H admit the following irreducible representation

J± = e±iϕ

(
±
∂

∂θ
+

ℓ

sin θ
+ i cot θ

∂

∂ϕ

)
, J3 = −i

∂

∂ϕ
, (A.9a)

P± = ρ e±iϕ sin θ, P3 = ρ cos θ. (A.9b)

The operators (A.9a-A.9b) satisfy the commutation relations given in (A.4a-A.4b). If we
refer to the operators given in Eqs. (A.9a-A.9b) we obtain the following formulae for the
Casimir operators (A.5):

(C1 Ψ)(θ, ϕ) = ρ ℓΨ(θ, ϕ), (C2 Ψ)(θ, ϕ) = ρ2 Ψ(θ, ϕ), ∀Ψ ∈ H,

where ℓ ∈ Z. The Hamiltonian operator (A.6) becomes the following second-order linear
differential operator:

H = −
1

2

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

2 sin2 θ

(
ℓ2 −

∂2

∂ϕ2
+ 2 i ℓ cos θ

∂

∂ϕ

)
+ p ρ cos θ. (A.10)

Hereafter we set ρ ≡ 1. We shall refer also to the Hamiltonian operator describing the free
QLT, i.e. p = 0, namely

H0 = −
1

2

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

2 sin2 θ

(
ℓ2 −

∂2

∂ϕ2
+ 2 i ℓ cos θ

∂

∂ϕ

)
. (A.11)
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Proposition A.3 Let us consider the spectral problem of the free QLT, namely

(H0 − λ0)Ψλ0,m;ℓ(θ, ϕ) = 0, (A.12a)

(J3 −m)Ψλ0,m;ℓ(θ, ϕ) = 0. (A.12b)

The eigenfunctions Ψλ0,m;ℓ are given by

Ψλ0,m;ℓ(θ, ϕ) = Cn,m;ℓ e
imϕ (1− cos θ)

α
2 (1 + cos θ)

β
2 P (α,β)

n (cos θ), (A.13)

where α
.
= |ℓ−m|, β

.
= |ℓ+m|, (m, ℓ) ∈ Z × Z, P

(α,β)
n (cos θ) is a Jacobi polynomial and the

normalization constant is

|Cn,m;ℓ|
2

=
(2n+ α+ β + 1)n!

2α+β+2 π

Γ(n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)
. (A.14)

The integer number n is defined through the eigenvalue λ0 of H0 by

λ0 =
1

2
j (j + 1), (A.15)

with j ∈ N defined as

j
.
= n+

β + α

2
= n+ max (|ℓ|, |m|), j ≥ |ℓ|, j ≥ |m|.

Proof: Looking at the representation of J3, see (A.9a), we can immediately factorize the
eigenfunctions Ψλ0,m;ℓ(θ, ϕ), namely

Ψλ0,m;ℓ(θ, ϕ) = Φm(ϕ)Θλ0,m;ℓ(θ), Φm(ϕ) = eimϕ, m ∈ Z. (A.16)

Using the factorization (A.16) we obtain from Eqs. (A.11-A.12a) the differential equation
for the function Θλ0,m;ℓ(θ). It reads

−
1

2

1

sin θ

d

dθ

(
sin θ

dΘλ0,m;ℓ(θ)

dθ

)
+

(
m2 − 2 ℓm cos θ + ℓ2

2 sin2 θ
− λ0

)
Θλ0,m;ℓ(θ) = 0. (A.17)

Let us consider the following mapping on the dependent variable:

Θλ0,m;ℓ(z)
.
= z

α
2 (1− z)

β
2 Yλ0,m;ℓ(z), (A.18)

where

z
.
=

1

2
(1− cos θ), α

.
= |ℓ−m| , β

.
= |ℓ+m| , (A.19)

with 0 ≤ z ≤ 1. We remark that the introduction of the function Yλ0,m;ℓ(z) allows one to
focus the behaviours of the solutions Θλ0,m;ℓ(θ) of Eq. (A.17) in the neighbourhoods of the
singularities z = 0 (i.e. θ = 0) and z = 1 (i.e. θ = π).

Using the transformation (A.18) we obtain the following Fuchsian differential equation for
the function Yλ0,m;ℓ(z):

d2Yλ0,m;ℓ(z)

dz2
+

(
α+ 1

z
+
β + 1

z − 1

)
dYλ0,m;ℓ(z)

dz
−

q0
z (z − 1)

Yλ0,m;ℓ(z) = 0, (A.20)

where

q0
.
= 2λ0 −

(α+ β)(α + β + 2)

4
. (A.21)
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Eq. (A.20) is a Gauss hypergeometric equation. It can be rewritten in the following form:

z (z − 1)
d2Yλ0,m;ℓ(z)

dz2
+ [ (ξ + η + 1) z − (α+ 1) ]

dYλ0,m;ℓ(z)

dz
+ ξ η Yλ0,m;ℓ(z) = 0, (A.22)

where

ξ
.
=
α+ β

2
+

1

2

(
1∓

√
1 + 8λ0

)
, η

.
=
α+ β

2
+

1

2

(
1±

√
1 + 8λ0

)
.

The general solution of Eq. (A.22) is given by

Yλ0,m;ℓ(z) = A 2F1 (ξ, η; γ | z) + B z−α 2F1 (η − γ + 1, ξ − γ + 1; 2− γ | z) ,

where A and B are two normalization constants and 2F1 (ξ, η; γ | z) is the hypergeometric
function. Since −α < 0 we set B ≡ 0. Hence the physical eigenfunctions Θλ0,m;ℓ(z) read

Θλ0,m;ℓ(z) = A z
α
2 (1− z)

β
2 2F1 (ξ, η; γ | z) . (A.23)

The solutions (A.23) are well defined in z = 0. Analyizing the behaviour of this solution in
z = 1 we find that the series appearing in (A.23) must terminate. The resulting solutions are
expressed in terms of Jacobi polynomials. Without loss of generality we may choose η > ξ.
Requiring ξ = −n, n ∈ N and defining j

.
= n+ (α+ β)/2 ∈ N we find that

λ0 =
1

2

(
n+

α+ β + 1

2

)2

−
1

8
=

1

2
j (j + 1),

with j ≥ |ℓ|, j ≥ |m|.

Let us now recall that Jacobi polynomials P
(s,t)
k (x), with −1 ≤ x ≤ 1 and k ∈ N can be

defined through the hypergeometric function by the formula [2]

P
(s,t)
k (x) =

Γ(s+ 1 + k)

Γ(s+ 1) k!
2F1

(
−k, k + s+ t+ 1; s+ 1 |

1

2
(1− x)

)
, (A.24)

and their orthogonality relation read

∫ 1

−1

dx (1 − x)s (1 + x)t P
(s,t)
k (x)P

(s,t)
l (x) = δk,l

2s+t+1 Γ(k + s+ 1)Γ(k + t+ 1)

(2k + s+ t+ 1)Γ(k + s+ t+ 1) k!
, (A.25)

with s > −1, t > −1. Here δk,l denotes the usual Kronecker symbol.
From solutions (A.23) we obtain the eigenfunctions Ψλ0,m;ℓ(θ, ϕ) of H0 in the form given

in Eq. (A.13), where the normalization constant Cn,m;ℓ (A.14) is obtained requiring

∫ π

0

∫ 2π

0

dθ dϕ sin θ | Ψλ0,m;ℓ(θ, ϕ) |2= 1,

and using the orthogonality relation (A.25).

�

Remark A.1 The Hamiltonian H0 (A.11) can be rewritten as

H0 = −
1

2

1

sin θ

d

dθ

(
sin θ

d

dθ

)
+

α2

8 sin2 θ
2

+
β2

8 cos2 θ
2

, (A.26)
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where α and β are given in Eq. (A.19). The differential operator (A.26) acts on the eigen-
functions Θλ0,m;ℓ(θ). We now map H0 into an operator on the Hilbert space L2([ 0, π ], dθ)

by writing eigenfunctions of H0 as Θλ0,m;ℓ(θ) = sin−1/2(θ)Fλ0,m;ℓ(θ). Hence the eigenvalue

equation (H0 − λ0)Θλ0,m;ℓ(θ) = 0 is equivalent to (H̃0 − λ0)Fλ0,m;ℓ(θ) = 0, where

H̃0 = −
1

2

d2

d2θ
+
α2 − 1/4

8 sin2 θ
2

+
β2 − 1/4

8 cos2 θ
2

−
1

8
. (A.27)

The operator (A.27) is exactly a Pöschl-Teller Hamiltonian [33]. The corresponding eigenfunc-
tions and eigenvalues can be found in [33] and they are equivalent to respectively our solutions
(A.13) and (A.15).

Remark A.2 The differential equation (A.20) is equivalent to the following singular Sturm-
Liouville problem:

L(0)
z Yλ0,m;ℓ(z) = n (n+ α+ β + 1)Yλ0,m;ℓ(z), n ∈ N, 0 ≤ z ≤ 1, (A.28)

with

L(0)
z

.
= z (z − 1)

d2

dz2
+ [ (α+ β + 2)z − (α + 1) ]

d

dz
, (A.29)

and boundary conditions | Yλ0,m;ℓ(0) |<∞, | Yλ0,m;ℓ(1) |<∞.

Let us consider the spectral problem of the QLT.

Proposition A.4 The spectral problem of the QLT is given by the following equations:

(H− λ)Ψλ,m;ℓ(θ, ϕ) = 0, (A.30a)

(J3 −m)Ψλ,m;ℓ(θ, ϕ) = 0. (A.30b)

The eigenfunctions Ψλ,m;ℓ(θ, ϕ) are given by

Ψλ,m;ℓ(θ, ϕ) = Dλ,m;ℓ e
imϕ(1 − cos θ)

α
2 (1 + cos θ)

β
2

∞∑

n=0

cn P
(α,β)
n (cos θ), (A.31)

where α
.
= |ℓ−m|, β

.
= |ℓ+m|, (m, ℓ) ∈ Z×Z. The coefficients {cn}

∞
n=0 satisfy the three-term

recurrence relation

Kn cn−1 + (Ln − λ) cn +Mn cn+1 = 0, n ≥ 1, (A.32a)

(L0 − λ) c0 +M0 c1 = 0, (A.32b)

with

Kn =
2 p (n+ α+ β)(n + α)

(2n+ α+ β − 1)(2n+ α+ β)
,

Ln =
1

8
(2n+ α+ β + 2)(2n+ α+ β)−

p (α2 − β2)

(2n+ α+ β + 2)(2n+ α+ β)
,

Mn =
2 p (n+ 1)(n+ β + 1)

(2n+ α+ β + 3)(2n+ α+ β + 2)
.

The normalization constant Dλ,m;ℓ is given by

|Dλ,m;ℓ|
2

=
1

2α+β+2 π

[
∞∑

n=0

c2n
Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ α+ β + 1)n!

]−1

. (A.34)
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Proof: We can always consider the factorization (A.16), namely

Ψλ,m;ℓ(θ, ϕ) = Φm(ϕ)Θλ,m;ℓ(θ), Φm(ϕ) = eimϕ, m ∈ Z.

Considering the transformation (A.18) with the definitons (A.19) we get the following Fuchsian
differential equation:

d2Yλ,m;ℓ(z)

dz2
+

(
α+ 1

z
+
β + 1

z − 1

)
dYλ,m;ℓ(z)

dz
−

4 p z + q

z (z − 1)
Yλ,m;ℓ(z) = 0, (A.35)

where

q
.
= 2 (λ− p)−

(α+ β)(α + β + 2)

4
.

Eq. (A.35) is the canonical form of the reduced confluent Heun equation [7].
Let us remark that Eq. (A.35) can be rewritten as the following Sturm-Liouville problem:

(L(0)
z + L(1)

z )Yλ,m;ℓ(z) = q Yλ,m;ℓ(z), (A.36)

where L
(0)
z is defined in Eq. (A.29) and L

(1)
z

.
= −4 b z. We assume the boundary conditions

| Yλ,m;ℓ(0) |<∞, | Yλ,m;ℓ(1) |<∞.
Solutions to Eq. (A.35) which are analytic in some domain including the singularities at

z = 0 (i.e. θ = 0) and z = 1 (i.e. θ = π) are called reduced confluent Heun functions. We
explain a formal construction of such functions relative to the points z = 0 and z = 1 by means
of a series of Jacobi polynomials.

Hence we consider a solution of Eq. (A.35) in the following form [7]:

Yλ,m;ℓ =
∞∑

n=0

cn yn,m;ℓ, (A.37)

with

yn,m;ℓ
.
= 2F1(−n, n+ α+ β + 1;α+ 1 | z) =

Γ(α+ 1)n!

Γ(α+ 1 + n)
P (α,β)
n (1− 2z),

where {cn}
∞
n=0 are suitable coefficients to be determined and 2F1(−n, n+ α+ β + 1;α+ 1 | z)

is a local solution of a Gauss hypergeometric Eq. (A.22) which matches Heun’s solution at the
singularities z = 0 and z = 1.

From Eq. (A.36) we obtain

(L(0)
z + L(1)

z )Yλ,m;ℓ(z) = n (n+ α+ β + 1)Yλ,m;ℓ(z)− 4 p z Yλ,m;ℓ(z) = q Yλ,m;ℓ(z). (A.38)

Let us consider the following recurrence relation for the functions yn,m;ℓ [7]:

z yn,m;ℓ(z) = An yn+1,m;ℓ(z) +Bn yn,m;ℓ(z) + Cnyn−1,m;ℓ(z), (A.39)

with

An = −
(n+ α+ β + 1)(n+ α+ 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
,

Bn =
2n (n+ α+ β + 1) + (α+ 1)(α+ β)

(2n+ α+ β + 2)(2n+ α+ β)
,

Cn = −
n (n+ β)

(2n+ α+ β + 1)(2n+ α+ β)
.
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Inserting the expansion (A.37) in Eq. (A.38) and considering the relation (A.39) we obtain the
three-term recurrence relation given in Eq. (A.32a).

From solutions (A.37) we obtain the eigenfunctions Ψλ,m;ℓ(θ, ϕ) of H in the form given in
Eq. (A.31), where the normalization constant Dn,m;ℓ (A.34) is obtained requiring

∫ π

0

∫ 2π

0

dθ dϕ sin θ | Ψλ,m;ℓ(θ, ϕ) |2= 1,

and using the orthogonality relation (A.25).

�

To complete the study of the spectral problem we have to compute the eigenvalues λ of
H. Actually they can be obtained solving a certain infinite continued fraction, or equivalently,
diagonalizing a proper Jacobi matrix. The work is now in progress, with the collaboration of
E. Langmann.
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September 12–24, 2005
Summer school “Scuola estiva di Fisica Matematica”, organized by Istituto Nazionale di
Alta Matematica (INdAM), Gruppo Nazionale di Fisica Matematica (GNFM), Ravello
(SA), Villa Rufolo, Italy

• Teaching Experience

November 2004–July 2006
Teaching assistent, Department of Physics, Università degli Studi di Roma Tre
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