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Abstract

Nonlinear systems respond to an excitation in a non-proportional way and

do not satisfy the superposition principle. Most of the linear models of

physical systems (harmonic oscillator is probably the clearest example) are

valid approximations only in a perturbative regime; beyond it their intrin-

sic nonlinear nature must be considered. The nonlinear world is a source

of intriguing phenomena (both from theoretical and applicative points of

view) and optics is one of the most accessible area where such effects can

be studied. When light and matter interact, the former is able to change

the medium properties, in particular the refractive index, so affecting its

own propagation. Among the nonlinear processes we will consider self-

confinement: the ability of a light beam to compensate its natural tendency

to spread. When linear spreading is exactly compensated by non-linear

self-focusing, a spatial soliton is formed. Spatial solitons preserve their

profile during propagation, which makes them suitable candidates to carry

and process other signals, just like waveguides. We will deal with spatial

solitons in nematic liquid crystals, namely nematicons, in which nonlinear-

ity is enabled by dipolar interactions between molecules and electric fields:

the material is chosen on the basis of its high nonlinearity and versatility.

This dissertation reports on the all-optical control of nematicons and some

representative applications of signal processing. The work is mostly exper-

imental, with some theoretical considerations wherever it is necessary for

the comprehension of the observed phenomena.



Chapter 1. Fundamentals of nonlinear optics and spatial solitons are firstly

summarized. Then we examine Nematic Liquid Crystals and their physical

properties, focusing the attention on their nonlinear optical response and

introducing nematicons.

Chapter 2. We report some experiments in standard samples. First, we

examine the propagation of a nematicon in the presence of a tunable non-

linearity. Then we treat the nonlinear control of the interaction between

two nematicons.

Chapter 3. Here we present experiments in dye-doped liquid crystals. We

describe the optical response of dye-doped nematics and two experiments.

In the first, we discuss nonlinear self-steering of light, comparing undoped

and doped liquid crystals; in the second we deal with the formation of op-

tical interfaces in order to control the nematicon trajectory.

Chapter 4. We introduce liquid crystal light valve as a novel environment

for the propagation of nematicons. After a preliminary section where we

explain the working principles of the valve, we illustrate the propagation of

a nematicon in a fully controllable refractive index landscape. We review

briefly the theorical approach, proposing and demonstrating the implemen-

tation of a reconfigurable set of all-optical signal processors.

This activity was mostly carried out at NooEL - Nonlinear Optics and

OptoElectronics Lab at the University ROMA TRE. The work on liquid

crystal light valve was developed at the INLN (Institut NonLinéaire de

Nice), University of Nice - Sophia Antipolis.
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1

Introduction

1.1 Nonlinear optics

The study of light-matter interactions has acquired great importance in modern sci-

ence, as it allows both the comprehension of fundamental physical processes and their

exploitation in optical communication and signal processing. In particular, nonlinear

optics is undoubtly one of the most fascinating field in optics, as it discloses a large

number of intriguing mechanisms for light manipulation. The term ”nonlinear” refers

to the relationship between an electric field E propagating in a medium and the po-

larizability vector P : this link is usually assumed to be linear, through P = ε0χ
(1)E

(where ε0 is the vacuum dielectric constant and χ(1) is the electric susceptibility), as it

comes from first order approximation. Considering higher order terms:

P = ε0

(
χ(1) + χ

(2)E + χ
(3)

E2 + . . .

)
E (1.1)

where χ(1), χ(2) and χ
(3)

are first-, second- and third-rank tensors, respectively.

In most common materials, higher order coefficients are usually negligible, so that

nonlinearity becomes appreciable only at very high intensities; moreover, considering

them is an involved theoretical problem and requires hard computation. It is for these

reasons that nonlinear optics was born in the ’50s, when the pioneering work of Fermi,

Pasta and Ulam discussed through numerical simulations the energy distribution be-

tween the modes of a vibrating string. (1) The intensities needed for experimentally

explore nonlinear materials became available in the ’60s with the invention of laser,

and in the 1961 the first example of frequency conversion was reported. (2) Among

1



1.2 Solitons

the various classes of nonlinear optical phenomena discovered in the late sixties, light

confinement has been widely investigated for its general character. In 1964, Chiao et

al showed firstly the possibilities to compensate linear diffraction, (3) while in 1970,

Grischkowsy experimentally demonstrated nonlinear self-focusing in Potassium vapor.

(4) Three years later Bjorkholm and Ashkin observed the first optical spatial soliton.

(5)

1.2 Solitons

The pioneering observation of a soliton is attributed to John Scott Russell in 1834,

when he reported about a ”wave of translation” looking at a water wave propagating

in a channel.

“...I was observing the motion of a boat which was rapidly drawn along a narrow chan-

nel by a pair of horses, when the boat suddenly stopped - not so the mass of water in

the channel which it had put in motion; it accumulated round the prow of the vessel in

a state of violent agitation, then suddenly leaving it behind, rolled forward with great

velocity, assuming the form of a large solitary elevation, a rounded, smooth and welled

-defined heap of water, which continued its course along the channel apparently with-

out change of form or diminution of speed. I followed it on horseback, and overtook

it still rolling on at a rate of some eight or nine miles an hour, preserving its original

figure some thirty feet long and a foot to a foot and a half in height. Its height gradu-

ally diminished, and after a chase of one or two miles I lost it in the windings of the

channel. Such, in the month of August 1834, was my first chance interview with that

singular and beautiful phenomenon which I have called the Wave of Translation...” (6).

Analyzing Russel’s careful description, we find that first he noticed the phenomenon

was generated by a strong excitation; then he recognized the peculiar shape of the wave

and, finally, its tendency to preserve it. In other words, he observed that, under ap-

propriate conditions, a medium can support the propagation of shape-invariant waves.

More specifically, this behavior is due to a self-action of the wave, mediated by its

interaction with the medium. This kind of shape-preserving waves are called solitons.

(7)
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1.2 Solitons

Different classes of solitons can be found in nature in all branches of physics, in-

cluding optics (7)(8)(9), chemistry (10)(11), hydrodynamics (12) and plasma physics.

(13)(14)(15) Though nonlinear mechanisms are physically different, they always arise

when a natural wave spreading is counterbalanced by nonlinear effects. From a mathe-

matical point of view, solitons are solutions of a class of dispersive nonlinear equations

(16): one of the most studied, and the one that will be treated in the following sections,

is the Non Linear Schrödinger Equation (NLSE) (17), which in (1+1)D reads:

i
∂u

∂q
+

1
2
∂2u

∂p2
± f

(
|u|2
)
u = 0 (1.2)

where u is the vectorial field under investigation, q the propagation coordinate, p

the transverse coordinate and f a general nonlinear function modeling the medium

response.

1.2.1 Optical Solitons

Let us consider an electric field u associated to a light beam, i.e. optical soliton prop-

agation. (18)(9)(19) With reference to eq. 1.2, a first classification is based on the

coordinate in the first term: if q is time, we deal with optical pulses experiencing

dispersion. In this case we talk of temporal solitons; if q is a spatial coordinate, we

consider light diffraction, i.e. spatial solitons. Depending on the sign of the last term,

we distinguish between bright and dark solitons. The former (sign +) is related with

a focusing nonlinearity, with the soliton given by a bell shaped function; the latter

(sign -) represents a defocusing medium and the soliton profile is given by a dip in

a constant background, encompassing a transversal π phase. (20) A further classifi-

cation can be made on the basis of the function f. In optics it defines the refractive

index and in the nonlinear case it describes the light-matter interaction and represents

an intensity dependent refractive index: the medium response can be punctual and is

said to be local, while if the perturbation extends well beyond the beam the medium

is nonlocal. The latter case is of a crucial importance because nonlocality, stabilizes

soliton solutions in 2D problems and mediates soliton interactions. (8)(21)(22)(23) If

a linear relationship between nonlinear variations of the refractive index and intensity
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1.3 Liquid Crystals

and transversal invariance are assumed, f can be expressed as:

f =
∫
G(r− r’) |u(r’)|2 dr’ (1.3)

where G(r− r’) is the Green function modeling the medium response.

Integrable solutions of eq. 1.2 can be found if f is linear and local, i.e. in a pure

Kerr media (3); in such case eq. (1.2) becomes a standard NLSE, which can be solved

by inverse scattering transform. (16) In fact, if f = |u|2 and taking u as u = a(p)eiφ(p,q),

inverse scattering leads to the expression for the fundamental soliton solution in the

form u = a
cosh(aq)e

ia2q/2 for a bright soliton or u = a tanh(ap)eia
2q/2 for a dark one. (20)

In general, finding closed form solutions is impossible; for highly nonlocal media it is

possible to approximate the index perturbation with a parabolic potential and use the

well known solution for the harmonic oscillator; hence, the soliton profile is gaussian

and can be describes by a particle-like behavior. (24)(25)(26)

Suitable conditions for self-focusing are thus strongly dependent on the nonlinear

response, i.e. on the function f : Kerr (5), χ(2) (27), thermal (28)(29) photorefractive

(30) and reorientational (31) materials have been well studied in the past years. In the

following we will focus on highly nonlocal bright optical spatial solitons propagating in

nematic liquid crystals. (32)

1.3 Liquid Crystals

The liquid crystalline phases are intermediate between solid and liquid, with intermolec-

ular forces unable to sustain a long range order. (33) Thermotropic liquid crystals are

the most widely used and can be classified depending on the type of molecular order:

nematic, smectic and cholesteric.

The Nematic phase is characterized by no positional order but a certain degree of

orientational order along the optic axis (”director”).

The Smectic phase possesses both positional and orientational order, the latter only

along one direction; the intermolecular structure resembles a stratified medium.

The Cholesteric phase is similar to the nematic one but with a twisted molecular

orientation.

We will deal with Nematic Liquid Crystals.
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1.3 Liquid Crystals

1.3.1 Nematic Liquid Crystals

Nematic Liquid Crystals (NLC) (34)(35) are organic compounds consisting of elon-

gated molecules (the Greek word nematos indicates a thread) with a roughly rod-like

symmetry. Orientational order allows to identify a mean direction for the long axis,

associated to the vector molecular director, indicated by n. Due to relatively small

intermolecular forces (of the same order of magnitude of thermal agitation) a critical

temperature TNI separates the nematic phase, possessing an (orientationally) ordered

structure at microscopic level, from the isotropic phase, where molecules are randomly

arranged (see fig. 1.1).

Figure 1.1: NLC molecular arrangement (molecules are sketched as blue ellipses). (a)
Isotropic phase: molecules are randomly arranged in space. (b) Nematic phase: orienta-
tional order determines a specific direction of molecular director.

1.3.1.1 Optical properties

Let us consider a plane wave with a propagating wavevector k in a homogeneous NLC

sample (this can be obtained by imposing a long range order with suitable interface

treatment). As NLC exhibits two different refractive indices associated to the directions

parallel and perpendicular to n, respectively n‖ = √ε‖ and n⊥ =
√
ε⊥ [see fig. 1.3(a)]

with typically n‖ > n⊥, we can consider the macroscopic behavior of NLC as equivalent

to a positive uniaxial of anisotropy εa = ε‖ − ε⊥ and optic axis n . Thus, the dielectric

tensor components are expressed by εij = ε⊥δij + εaninj , where δij is the Kronecker’s

delta and ni,j the director components. For a generic direction of the optic axis, the
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1.3 Liquid Crystals

ordinary refractive index no = n⊥, whereas the extraordinary one ne depend on the

angle θ between n and k :

ne =
n‖n⊥√

n2
‖ cos2 θ + n2

⊥ sin2 θ
. (1.4)

The large birefringence (∆n = n‖ − n⊥ ≈ 0.2) causes the Poynting vector s to

propagate at a not negligible walk-off angle δ with respect to k , being tan δ = εyz/εzz,

so that:

δ = arctan
[

εa sin 2θ
2ε⊥ + εa(1 + cos 2θ)

]
. (1.5)

Figure 1.2: (a) Extraordinary refractive index and (b) walk-off angle versus angle θ.
Typical values are considered for n‖ (1.7) and n⊥ (1.5).

The above properties are valid in the linear regime. If we consider the microscopic

molecular response to electric fields, at both low and optical frequencies, we discover

that the interaction induces a molecular dipole along n and a mechanical torque which

tends to align the molecules parallel to the field [fig. 1.3(b),(c)].

The equilibrium condition is reached when the electrically induced torque is bal-

anced by the elastic intermolecular forces. The formal description of the NLC response

to external excitations was introduced by De Gennes (33) and is known as continuum

theory.

1.3.1.2 Continuum theory and reorientation equation

When an external electromagnetic excitation interacts with NLC, the torque modifies

the director distribution until a new equilibrium condition is reached. This can be found

by calculating the energy due to the field-induced director distortion and minimizing
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1.4 Spatial Solitons in Nematic Liquid Crystals

Figure 1.3: NLC optical properties. (a) The NLC anisotropy is given by the difference
in the refractive indices associated to direction parallel and perpendicular to the long axis
(molecular director), n‖ and n⊥, respectively. (b) When interacting with an electric field
E , molecules reorient towards the field direction, the angle θ being dependent on the field
intensity.

it. Under strong anchoring conditions at the sample boundaries, the induced torque

can be expressed by FE = εa
2

(
n ·E2

)
, while the elastic energy is:

Fr =
1
2

{
K1 (∇ · n)2 +K2 (n · ∇ × n)2 +K3 [n × (∇× n)]2

}
(1.6)

where K1, K2 and K3 are the Frank elastic constants for splay, twist and bend

distortions, respectively. For planar deformations (K2 = 0) and a single constant

approximation (K1 ≈ K3 = K), Euler-Lagrange equations lead to the reorientation

equation (34)

K∇2θ +
ε0εa

2
sin 2θ |E|2 = 0 (1.7)

1.4 Spatial Solitons in Nematic Liquid Crystals

In this section we analyze the main features of the propagation of spatial solitons in

NLC. First we describe the sample geometry and the experimental set-up used in the

following chapters; then we illustrate the propagation of this kind of solitons. Finally,

we present the ruling model.

1.4.1 Geometry of the NLC cell

With reference to fig. 1.4, a liquid crystal cell is composed by two glass slides containing

an NLC layer. A third orthogonal glass, employed as input interface, seals the cell,
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1.4 Spatial Solitons in Nematic Liquid Crystals

Figure 1.4: Sketches of a NLC cell and of the experimental set-up

avoiding meniscus formation and depolarization effects. Surfaces treatment aligns the

molecular director in a specified direction inside the cell at an angle θ0, as in fig.

1.4: this forces the NLC to have a long-range order even in the bulk. Two kinds of

anchoring are feasible: planar and homeotropic; the former (the one we will deal with in

the rest of the work) forces the director to lay parallel to the surface, its direction being

determined during the technological process, the latter forces it to be perpendicular.

The orientation at the input facet is chosen to optimize the coupling of extraordinarily

polarized beams. (36)

To perform the experiments a laser beam is focused to a waist of a few microns at

the input facet in the middle of the cell thickness, to avoid undesired interactions with

the cell boundaries. (37)(38)(39) The beam evolution can be monitored by collecting

the out-of-plane scattered light with a microscope and a high resolution CCD camera,

yz being the observation plane.

1.4.2 Nematicons

Let us consider a fundamental gaussian beam propagating in an NLC sample with

wavevector k directed along z. With reference to fig. 1.4, the long molecular axis

is in the yz plane at an angle θ0 with z. All-optical reorientation will occur in the yz

plane. As for plane waves, the ordinary beam component propagates straight, while the

Poynting vector of the extraordinary wave will be directed along s, in general different
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1.4 Spatial Solitons in Nematic Liquid Crystals

Figure 1.5: Beam propagation in NLC. The ordinary component propagates straight and
diffracts both at (a) P = 0.7mW and at (b) P = 2mW due to Freedericksz’s threshold.
Energy propagation of the extraordinary component is rotated by the walk-off angle and the
beam diffracts for (b) P = 0.7mW while reorientational nonlinearity enables the formation
of a nematicon for (d) P = 2mW . In the pictures a beam at λ = 1.064µm from a Nd:YAG
laser is focused to a waist of ≈ 5µm into E7 NLC (n‖ ≈1.7 and n⊥ ≈1.5). θ0 = 45◦ and
correspondingly Lr ≈ 120µm and δ ≈ 7◦.

from z by δ. In the linear regime [fig. 1.5(a),(c)] both beam components diffract with

their characteristic Rayleigh length Lr = no/eπw
2
0/λ, with w0 the input beam waist.

The ordinary component (electric field along x ) does not have an intensity depen-

dent behavior [fig. 1.5(a),(b)], as the Freedericksz’s threshold (33) prevents reorienta-

tion (torque is null). For the extraordinary polarization (E ∈ yz) the Freedericksz’s

threshold is zero and light of sufficient intensity (namely ≈ 1mW ) (40) can reorient

the director towards the field vector; the director rotation causes the effective refrac-

tive index ne(θ) to increase. (41)(42) As a consequence, the NLC part perturbed by

the beam will act as a focusing lens. When this nonlinear self-focusing balances linear

diffraction, the solitonic regime is reached [fig. 1.5(d)]. We will also refer to a spatial

soliton in NLC as a nematicon. (32) Due to the elastic forces, the index perturbation

is much wider than the beam width (see eq. (1.9)) (25)(26)(43): this prevents catas-

trophic collapse and stabilizes nematicons. As the power dependent behavior relies

on molecular rotation until n is parallel to the applied field, NLC is said to exhibit a

saturable reorientational nonlinearity. (25)(31)
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1.5 Aim of the work

1.4.3 Ruling equations

The model describing this mechanism can be obtained from Maxwell’s equations under

the paraxial approximation and accounting for the medium anisotropy; a Schrödinger-

like equation describes the field evolution inside NLC. The nonlinearity is accounted

for by considering the relationship between the refractive index and the field intensity

through molecular reorientation. The ruling equations we employ in this work are:

2ik0ne

(
∂A

∂z
+ tan δ

∂A

∂y

)
+Dx

∂2A

∂x2
+Dy

∂2A

∂y2
+ k2

0∆n2
eA = 0 (1.8)

∇2θ + κ sin [2 (θ − δ)] |A|2 = 0 (1.9)

where z is the propagation direction, x and y the two transverse coordinates, A

the fields envelope, δ the walk-off, Dx and Dy the diffraction coefficients, ∆n2
e =

sin2 (θ − δ)− sin2 (θ0 − δ), θ the optically perturbed angle, θ0 the initial angle between

n and k0, κ = ε0εa/4K, ε0 the vacuum dielectric constant, εa the optical anisotropy

and K the Frank constant in the single constant approximation. (35)

The first term in eq. (1.8) (NLSE) rules the propagation features: owing to

anisotropy the walk-off is considered. Second and third terms account for diffrac-

tion in 2D. The last term is the equivalent potential: the light induced refractive index

change is linked to the angular variation of the molecular director. This relationship is

explicitated through eq. (1.9) (reorientation equation), expressing the balance between

the induced torque and the elastic response. (25)

1.5 Aim of the work

The nature of self-induced waveguides makes nematicons capable of guiding other copo-

larized signals; thanks to their robustness when interacting with director distortions,

they can be employed as basic elements of readdressable interconnects for signal pro-

cessing. Soliton control in NLC has been demonstrated with the use of external voltages

(44)(31), interactions with other self-confined beams (23)(45) or induced defects in di-

rector alignment (46)(47) and electrically driven interfaces. (48)(49)(50)

In this thesis I propose some strategies for all-optical signal processing based on

nematicons: all the illustrated phenomena will focus on applications to processing,

routing and demultiplexing.
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2

Nematicons and their

interactions

In the previous chapter we illustrated how to excite solitons in NLC, enlightening

their basic properties as well as the theoretical and experimental tools to study their

behavior. In this chapter we will discuss the role of nonlinearity and nonlocality in

nematicon propagation: we will show how nonlinearity can affect soliton propagation

in a custom designed cell and how nonlocality mediates soliton-soliton interactions.

2.1 Tunable nonlinearity in NLC

With reference to eq. 1.8, it is clear that the nonlinear term depends on the angle

θ0 through eq. 1.9: in a NLC cell it sets the initial background angle, defining both

the extraordinary refractive index as well as the magnitude of the all-optical response;

hence, a careful choice of this value customizes the cell for a specific experiment.

We can evaluate an equivalent nonlinear parameter n2eq: as in eq.(1.8) ∆n2
e =

n2
e(θ)−n2

e(θ0), we can write ∆n2
e = 2Θ(|A|2)ne(θ0)∂ne/∂θ. From eq. (1.9), in the limit

of low optical perturbation, Θ(|A|2) can be found solving a Poisson’s-like equation; the

expression of ∂ne/∂θ comes from the direct derivation of eq. 1.4. The final expression

for the equivalent nonlinearity is:

n2eq(θ0) ' 2κ sin [2(θ0 − δ0)]ne(θ0)
∂ne
∂θ

∣∣∣∣
θ=θ0

(2.1)
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2.1 Tunable nonlinearity in NLC

As also shown in fig. 2.3(e), the maximum of the curve is positioned around

θ0 = π/4. This means that to maximize the nonlinearity we need an initial direc-

tor at that θ0. Even if this seems the optimum condition (and in almost all cases it is),

there are cases in which the highest nonlinearity is not the priority; hence, we need to

study how nematicon propagation is affected by initial angular conditions. Despite of

the knowledge of eq. (1.8), it is not trivial to find a solution taking into account the

term θ0 and the nematicon properties depending on it. The theoretical model leads

to closed forms solutions for the waist behavior in the highly nonlocal limit (24)(26).

Furthermore, in previous geometries variations of the nonlinearity were coupled with

changes in nonlocality. (51) Unfortunately, the standard cell technology allows fabri-

cating samples with fixed initial director: comparisons between different samples are

inappropriate due to the difficulty in reproducing identical experimental conditions, ei-

ther for the unavoidable fabrication defects (non uniform anchoring at surfaces, losses

on input interface) or for experimental inaccuracy in coupling light in the NLC samples.

2.1.1 Biased samples

A varying nonlinearity can be obtained by applying a low frequency electric field be-

tween the cell surfaces: the application of a bias is widely used in NLC cells, both to

overcome the Freedericksz’s threshold (40) or to create electrically induced interfaces or

potentials. (49) To favor sample biasing, a layer of Indium Tin Oxide (ITO) transparent

electrode is deposited on each inner surface of the cell. In a planar cell the application

of a voltage produces molecular orientation in the plane defined by the electric field

polarization and n , as shown in fig. 2.1: due to the anchored molecules which are

not allowed to rotate, an electrically induced equivalent potential well is established in

the sample, with its center at x = h/2. In this way we can tailor the initial director

distribution, changing at the same time both nonlinearity (directly through n) and

nonlocality (through the potential shape). (51)

On one hand this gives versatility to the samples, on the other hand it has some

detrimental effects: for high enough voltages, the nonlinearity can saturate due to large

reorientation and the nonlocality can vary due to the anchoring conditions. Moreover,

the director rotation shifts the walk-off out of the propagation plane yz, towards the

cell boundaries, causing beam bouncing at the surface(s) (52) and preventing a ”clean”

evaluation of the nematicon propagation.
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2.1 Tunable nonlinearity in NLC

Figure 2.1: (a) Sketch of a NLC biased cell and the corresponding electrically induced
potential. (b) Reorientation angle versus applied voltage.

2.1.2 Sample configuration

To overcome these problems, a customized sample was designed. A planar cell of

thickness h = 100µm was prepared with interfaces ensuring molecular anchoring at

θ0 = 80◦ with respect to the z -axis (and to the wavevector k of the injected beams),

as sketched in fig. 2.2(a). ITO electrodes were deposited on each interface (top and

bottom) with a double comb layout, the two structures connected to distinct biases and

interdigitated [fig. 2.2(b)]. Each tooth was orthogonal to z and Λ/4 = 15µm thick,

periodically spaced by Λ/2 = 30µm, so that the distance between teeth of the same

comb was Λ = 60µm [fig. 2.2(c)]. The sample was filled with commercial E7.

Since the distance Λ/2 is much smaller than the cell thickness, the x -component of

the applied electric field assumes significant values only in the proximity of the surfaces

where the NLC is anchored and near the electrodes edges, being averaged out by the

nonlocal response elsewhere. Hence, the dominant component of the electric field is

parallel to z along the cell, nearby the surfaces. The overall Coulombian torque reorients

the director n in x = ±h/2 enabling, through intermolecular forces, electrically induced

molecular reorientation in the plane yz.

2.1.3 Experimental results

As pointed out in the previous chapter, since the nonlocal character of eq. (1.8) prevents

the occurrence of a critical power for soliton formation, guided wave modes exist over

a large range of intensities: in this environment light experiences a distributed lens-like

behavior of the medium, with a continuous competing action between spreading and

confinement. As a consequence, breathing solitary waves, i.e. confined beams with
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Figure 2.2: Top view of (a) the sample and (b) sketch of the patterned electrodes. (c)
Side view of the electrodes with the field lines

a waist variable in propagation, are solutions for such a nonlocal nonlinear system,

with period and amplitude of oscillations depending on material parameters and beam

power (26). Thus, while in local media the soliton waist is invariant in propagation and

completely describes the power dependent behavior, in a nonlocal system breathing is

the characteristic feature of self-localized waves.

In the cell described above, by varying the applied voltage we are able to change

the background angle θ0 in the bulk nematic: in other words we deal with a system

with a tunable nonlinearity. We coupled a beam from an infrared Nd:YAG laser source

(λ = 1.064µm), focusing it in x = 0 with a waist of about 2.5µm. For every applied

voltage (hence for a given nonlinearity) we varied the beam power between 1 and

10mW , evaluating the beam waist versus propagation: in this way we could control

the relationship between the optical torque and the nonlinearity.

Fig. 2.3 shows some of the results. For high background angles, around 80◦ (i.e.

with no voltage or low voltage applied to the cell electrodes), the beam diffracted (ex-

cept for the highest power), as the optical torque on the NLC molecules is negligible in

such a perturbative regime [fig. 2.3(a)]. Lowering θ0 toward 70◦, the nonlinearity be-

came appreciable; self-focusing occurred, with a breathing period progressively reducing

from 2mm to 600µm with increasing power, around a mean value comparable with the
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2.1 Tunable nonlinearity in NLC

Figure 2.3: Normalized beam waist evolution for θ0=10(a),20(b),50(c),70(d)◦, with power
varying in the range P = 1(blue), 2(green), 4(red), 6(purple), 8(cyan), 10(yellow) mW .
(e) The calculated nonlinearity coefficient (red line), from eq. (2.1), and experimental
measured breathing period (black squares), for P = 4mW , as functions of θ0

input waist [fig. 2.3(b)]; then, for θ0 ' 40◦, self-confinement was enabled (for every

power) and the breathing period reached its minimum, ' 120µm (for P = 10mW ),

demonstrating that the nonlinearity reached the highest possible value [fig. 2.3(c)].

Finally, going towards larger θ0, the waist oscillations became longer as the nonlinear-

ity was decreasing and at low power diffraction became dominant again [fig. 2.3(d)].

We stress that breathing oscillations were evaluated at the early stage of propagation

(typically the first half of the actual period), as scattering losses gradually reduced

the beam power, thus preventing the appearance of a purely sinusoidal breathing, as

predicted in absence of losses. In the perturbative regime we could compare the ob-

served breathing period with the equivalent nonlinear coefficient of eq. (2.1), both

functions of the background angle. Fig. 2.3(e) represents the two curves, the former at

P = 4mW : as expected, the breathing period decreased from 1.8mm to 0.9mm for in-

creasing nonlinearity, the minimum period corresponding to the maximum nonlinearity,

in θ0 ' 45◦.

We can extract extra information from the previous measurements, analyzing the

beam trajectory rather than the confinement: as the director n formed smaller and

smaller angles with respect to k , the birefringent walk-off of the extraordinarily polar-

ized wave propagating in the sample changed according to eq. (1.5), i.e., the Poynting

vector s varied its direction with respect to k, thereby deviating the corresponding light

beam. Fig. 2.4 shows a set of acquired photographs of the beam at P = 2mW .
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Figure 2.4: Snapshots of beam propagating in the sample for various applied voltages,
0(a), 1.5(b), 2(c), 2.5(d), 3(e), 3.5(f) V, respectively.

For V= 0V , i.e. for θ0 = 80◦, the diffracting light beam propagated at a corre-

sponding δ = δ(θ0) ' 2◦. Above V= 1.5V , the self-focusing became appreciable until

a nematicon was generated at V= 1.75V , with an angle of propagation increased until

δ(50◦) ' 6.2◦. A further increase in bias saturated the reorientation and we could

observe diffractive propagation together with a smaller walk-off.

Figure 2.5: (a) Measured walk-off and (b) calculated reorientation angles as functions of
the applied voltage. The blue dots are experimental data while the red dashed lines are
fits from the model. (c) Beam waist at z = 1mm as a function of the applied voltage. In
this case the dashed line is a guide to the eye.

To model this behavior, we can observe that the link between θ0 and the bias V in

the structure described above is equivalent to the action of a single component electric

field Ez across a uniform NLC. We can write:

K
∂2θ

∂x2
− ∆εRF

2
sin 2θ |Ez|2 = 0 (2.2)
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where K is the single elastic constant corresponding to the planar deformation and

∆εRF is the dielectric anisotropy. The transverse field inducing reorientation can be

cast as Ez = α(Λ)V , with α a parameter accounting for periodicity and duty cycle of

the patterned electrodes, but independent from h. Once found the values for θ0 from

eq. (2.2), the walk-off could be easily calculated by using eq. (1.5). From the observed

walk-off versus V and eq. (1.5) we could calculate the electro-optic reorientation angle

θ. As plotted in fig. 2.5, the actual response is in perfect agreement with the equivalent

structure as modeled by eq. (2.2), with θ0 = θ0(αV ) and α ≈ 0.62.
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2.2 Nonlinearly controlled soliton spiraling

2.2 Nonlinearly controlled soliton spiraling

In the previous chapter we discussed how the NLC high nonlocality is due to the in-

fluence of the Coulombian intermolecular forces on the director perturbation induced

by an optical field. In the highly nonlocal limit, the particular form of the NLSE re-

sembles a quantum harmonic oscillator. (24) With suitable equivalent quantities, such

a nonlinear optical system can be studied with the equations used in mechanics.

Figure 2.6: Soliton-soliton interactions. (a) Beam profiles (blue) and corresponding index
perturbation (red). (b) Sketch of two spiraling solitons.

For two solitons coplanarly propagating in NLC, the resulting index distribution

is the sum of the single perturbations: if the separation between the two beams is

smaller than the nonlocality range, there will be a zone where the overlap of the two

index profiles generates an attractive equivalent force, as in fig. 2.6(a): the two solitons

move towards each other depending on their reciprocal distance and the induced index

perturbation. Based on the parameters, soliton crossing or merging can be observed.

In this framework nonlocality drives soliton interactions. If the solitons are skew, the

interaction will occur in a 3D space: the tendency of the beams to follow their initial

directions is contrasted by the nonlinear potential. As sketched in fig. 2.6(b), the soli-

tons start to spiral around each other in a double helix configuration.

Soliton-soliton interactions have been studied in several nonlocal media both theo-

retically (53)(54) and experimentally (55)(56)(28), their control being given by initial

conditions, i.e. distance (57), launch angle (58) or phase difference (59). Here we

demonstrate a novel approach based on nonlinear control of soliton spiraling, i.e. on

power-dependent angular momentum of the soliton cluster.

18



2.2 Nonlinearly controlled soliton spiraling

2.2.1 Model and simulations

Taking the usual form for the soliton solution Aα = A0(rα)eiφz, where the subscript α =

[1, 2] indicates one of the two beams and r = [x, y] is the generic transverse coordinate,

then the equivalent soliton ”mass” can be expressed as its power m =
∫ ∫

dr2 |Aα|2.

Considering the two solitons cluster coordinate q = [r1 − r2] and generalizing the

Ehrenfest theorem (17), we obtain the motion equation:

m
∂2q
∂z2

+∇qU(q) = 0 (2.3)

where∇qU(q) represents the interaction potential, given by the total index distribution.

One conserved quantity in such a system is the total angular momentum L, defined as:

L = mq× q̇ (2.4)

Eq. (2.4) states that, once defined the initial conditions, the angular momentum is

linearly dependent on the mass. In this case it is possible to control the angular mo-

mentum by varying the cluster excitation, i.e. the total power Pin =
∫ ∫

dr2 |A1 +A2|2.

Figure 2.7: Simulations of soliton spiraling: (a)-(c) Output profiles and (d) angular rota-
tion versus initial power, in agreement with theory. The power is expressed in normalized
units.

It is worth noting that no hypothesis is made on the medium, so the model holds for

every kind of waves propagating in a generic nonlinear nonlocal medium. Simulations

for a nonlocal Kerr-like medium are shown in fig. 2.7: the spiraling of two solitons

launched with opposite momenta was observed versus power. The angular momentum

was represented by the the rotation of the cluster, i.e. the angle φ(P ) described by the

solitons evolution with respect to the center of mass of the cluster: as expected, when

the power P increased, the equivalent particles rotated [fig.2.7(a)-(d)] with a revolution

angle linearly depending on the excitation [fig.2.7(e)], in perfect agreement with theory.
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2.2 Nonlinearly controlled soliton spiraling

2.2.2 Experiments

We carried out experiments in a planar cell with a 100µm thick layer of liquid crystals

E7 planarly anchored at θ0 = π/6, using a near-infrared (λ = 1.064µm) cw source.

Two high-resolution CCDs were used for imaging both the solitons propagation in the

yz plane and their output position or transverse profile in the xy plane. We excited two

nematicons by launching two extraordinary-wave gaussian beams slightly tilted to give

them opposite momenta, taking care that no interactions with boundaries occurred at

any power. Our experimental results are summarized in fig. 2.8: images of nemati-

con propagation [figs. 2.8(a)-(d)] and the corresponding output intensity profiles [figs.

2.8(e)-(h)] for increasing power are illustrated. In agreement with both analytical and

numerical predictions, as the power changed from 2.1 [figs. 2.8(a),(e)] to 3.9mW [figs.

2.8(d),(h)], the angular momentum of the soliton cluster changed as well, as demon-

strated by the 180◦ rotation in the output plane. It must be stressed that each soliton

profile evolved nearly unmodified. Finally, fig. 2.8(i) shows the rotation of the soliton

cluster: the angle is linear with total power, in perfect agreement with theory.
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2.2 Nonlinearly controlled soliton spiraling

Figure 2.8: Experimental results on soliton spiraling: (a)-(d) propagation and (e)-(f)
output profiles for various initial powers. At Pin=2.1mW (a),(e) the two beams propagate
slightly tilted. Increasing Pin, the two beams rotate around their center of mass until, for
Pin=3.9mW (d),(h), a rotation of π is obtained. (i) Rotation angle versus initial power.
Owing to the huge nonlinear response of NLC, the rotation rate is ∆φ/∆P = 0.5rad/mW .
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2.3 Conclusions

2.3 Conclusions

In this chapter we disclosed a few nematicon properties related to the nonlocal nonlin-

ear nature of NLC and discussed some experimental results supported by theoretical

models. In the first part we proposed a novel cell geometry in which it is possible to

tune the NLC nonlinearity as well as the nematicon trajectory with an electric control.

In the reported experiments, by affecting the initial conditions we observed diffractive,

confined and breathing regimes, as well as in-plane beam steering. The second part was

dedicated to nonlocality mediated soliton-soliton skew interactions. Both simulation

and experiments confirmed the results of the model: the angular momentum associated

to a cluster of two (or more) solitons can be nonlinearly controlled simply acting on

the system excitation.

Besides their interest for the understanding of soliton properties, these two exam-

ples can easily turned into simple devices for applications in optical signal readdressing

and processing. In the sample with the patterned electrodes, as the induced waveguides

change their guidance when the background angles varies, a mode selector can be real-

ized; a voltage-controlled signal demultiplexer can be easily implemented by assigning

a position to every value of the applied field. Finally, by exploiting soliton spiraling, a

3D nonlinearly controlled signal router can be implemented in which the output ports

depend on the total power.

22



3

Dye-doped nematic liquid

crystals

In the early nineties a paper by Janossy and co-workers (60) reported some experiments

on Dye-Doped Nematic Liquid Crystals (DDNLC): they found that the Freedericksz’s

threshold in an NLC, in which small quantities (less than 1%) of an anthraquinone

derivative (61) had been dissolved, was remarkably lower than in undoped NLC, even

if the other optical and mechanical properties remained unaltered. (62) Later studies

were conducted by varying concentration, guest-host system and excitation wavelength,

leading to models of the effect of a dye as an equivalent additional torque τdye acting

on the molecular system (63)(64):

τtot = τNLC + τdye (3.1)

This effect is known as the Janossy effect. Depending on the parameters, the

amplitude of τdye can vary considerably, so that it can become comparable to τNLC or

higher. The sign of τdye can change too, reducing the total torque or even changing its

sign, with an equivalent optical self-defocusing response of the mixture. (65)(66)(67) A

phenomenological model was developed, based on the interaction energy of the guest-

host (NLC-dye) system. The dye molecules in the ground state are bound to the NLC

matrix; the radiation absorbed by host molecules drives their transition to one (or more)

excited state(s), thus changing the interaction potential with the guest and eventually

affecting the director distribution. (67)(68) Hence, the equivalent optically-induced

effect is due to a dye-mediated interaction between the optical field and the NLC.
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3.1 Self-Steering of nematicons

Despite the studies of DDNLC (69)(70)(71) a unified theoretical model is still lacking,

as it depends on the peculiar guest-host interaction during and after the transition

of the dye to an excited state. (67)(68) Reported experiments on DDNLC cover a

large range of phenomena, from the simple optically-induced heating (72), to molecular

conformational changes (73) and to interactions with surfaces. (65)(74) Spatial solitons

in DDNLC were investigated in samples where a combined action of orientational and

thermal nonlinearities took place. (75) The interactions with ”defects” in the molecular

order, generated by external beam via azo-dyes Trans-Cis transitions, were employed

to implement logic functions. (47)

In this chapter we describe two experiments conducted in DDNLC. In the first we

show the self-action of light and the fundamental differences between undoped and

doped NLC. In the second we employ another dye-induced effect to generate optical

interfaces affecting the nematicon trajectory.

3.1 Self-Steering of nematicons

Eq. 1.8 predicts power dependent walk-off, as the torque exerted on the NLC molecules

changes the angle θ and, eventually, δ(θ). Soliton steering due to self-action is ruled by

the Ehrenfest theorem, deriving the equivalent transverse force acting on the beam:

F(z) =
[(
ne
∂ne
∂x

)
x̂+

(
ne
∂ne
∂y

)
ŷ +

(
1 + tan2 δ

) ∂δ
∂z
ŷ

]∣∣∣∣
x=xb,y=yb

(3.2)

evaluated in rb =
∫ ∫

r |A|2 dxdy/
∫ ∫
|A|2 dxdy with r = [x, y], i.e. at the soliton

center of mass. If the beam is launched in x = h/2, the first two terms are null and

the only force is due to the presence of walk-off.

Nonlinear walk-off in NLC was previously reported analyzing patterns in modula-

tion instability at large power; for power ensuring soliton stability at typical values of θ0

(π/6 < θ0 < π/3), optical reorientation is of the order of few degrees, thus the nonlinear

walk-off variations are negligible. Higher powers generate transverse instabilities and

the soliton position is not measurable due to lateral fluctuations. To design a suitable

cell in which to observe nonlinear self-steering, we analyzed eq. 1.5 and its derivative:

∂δ

∂θ0
=

1 + 2Φε cos 2θ0 + cos2 θ0

1 + 2Φε cos 2θ0 + Φ2
ε

(3.3)
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3.1 Self-Steering of nematicons

Figure 3.1: Walk-off δ derivative with respect to θ0: it is null when nonlinearity is
maximized (θ0 ≈ 45◦), while it reaches the highest values towards θ = 0 or 90◦.

with Φε = 1 + 2ε⊥/εa. Maximizing the nonlinearity (i.e. for θ0 ≈ π/4), large

variations of θ, corresponding to high intensity, are needed to obtain appreciable walk-

off variations [figs. 1.2(b) and 3.1]; in this regime instabilities prevent any measurements

of nonlinear self-steering. For angles approaching θ0 ≈ 0 or θ0 ≈ π/2, ∂δ/∂θ0 is much

larger (fig. 3.1) and nonlinear walk-off changes require lower intensities. A suitable

trade-off between the change in walk-off and the nonlinear reorientation is θ0 = 4π/9.

In a cell prepared with this angle, we found that a near-infrared laser (λ = 1064nm)

focused to a waist w0 = 3µm could excite solitons up to 60mW without instabilities.

Figure 3.2: Nematicon self-steering. (a) Ordinary component. (b) Diffracting extraor-
dinary component, for P = 10mW . Self-confinement occurs at (c) P = 20mW and the
high reorientation steers the solitons reducing the walk-off until (d) P = 60mW , when
instabilities begin to be observed.

As shown in fig. 3.3, the threshold for soliton formation in this cell is much higher

than for θ = 45◦ owing to the lower nonlinearity; the extraordinary-wave beams started
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3.1 Self-Steering of nematicons

Figure 3.3: (a) Calculated soliton trajectories for various input powers: the z -dependence
of the trajectory depends on a decreasing optical reorientation due to scattering losses. (b)
Normalized beam waist versus input power at z = 1mm: the nonlinearity at θ0 = 80◦ is
lower than for θ0 = 45◦ and self-focusing is observed for higher powers. The different error
bars depend on the beam size comparable with the cell thickness at low powers and on
lateral fluctuations at high powers. (c) Soliton deflection in z = 1.5mm: for P ≤ 10mW
the beam center cannot be evaluated correctly, as the beam is as large as the cell.

to experience self-focusing around P = 10mW , eventually reaching a self-trapped

regime at 18mW , as can be appreciated from the waist measurement in fig. 3.3(b).

Between 1 and 60mW molecular reorientation led to relevant changes in walk-off (see

fig. 3.2). Due to scattering losses (measured α ' 6cm−1), we observed a z -dependent

behavior [fig. 3.3(a)] as intensity decreased in propagation and optical reorientation,

too: as a result, the soliton trajectories were curved, but nearly parallel for z >> α−1.

The final deflection calculated at z = 1.5mm and for P = 60mW is ∆y ≈ 30µm [fig.

3.3(c)], corresponding to a maximum local deflection angle of ≈ 2◦.

Though the experiments demonstrated self-steering in undoped NLC, the angular

deviation was limited by instabilities at high powers. As the problem rests on the value

of nonlinearity, DDNLC can be a route towards enhancing the maximum obtainable

steering.

3.1.1 Self-Steering in DDNLC

As pointed out above, the presence of a dye changes the reorientational response of

the NLC: for a more efficient self-steering we need a dye which increases the optical
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3.1 Self-Steering of nematicons

torque. We employed a planar cell with a thickness L = 75µm and θ0 = 45◦ filled with

a mixture of E7 and 1-Amino-Anthraquinone (1-AAQ) in a weight ratio of 100:1, with

an absorption peak around 0.5µm; treatment at the input interface anchored the NLC

molecules at an angle θin = 90◦, corresponding to the director along y. In this case the

angular distribution at the center of the cell can be obtained from the reorientation

equation in the absence of excitation, i.e. θ̃ ≈ θ0 + (θin − θ0) e−z/L. To excite the dye

mediated response, we used a He-Cd Laser at λ = 442nm, for a compromise between

magnitude of the Janossy effect and tolerable beam attenuation. Nonlinear propagation

in such media is still described by eq. (1.8), while eq. (1.9) becomes:

∇2θ + γ(1 + η){(|Et|2 − |Es|2) sin[2(θ − δ)] + 2<(EtE∗s ) cos[2(θ − δ)]} = 0 (3.4)

where η is a coefficient accounting for the Janossy effect (it gives an equivalent gain

in molecular torque); Et and Es are the transverse and longitudinal electric field com-

ponents, respectively, in a z-dependent reference system xts obtained from xyz after

rotation by δ around x, such that s is collinear to the point-wise Poynting vector.

We expect self-confinement to occur at low power: as illustrated in fig. 3.4, due to dye

dichroism, the Freederickz’s threshold prevented reorientation for ordinary waves, while

self-focusing occurred for extraordinary polarization just above 100µW and a solitary

wave was observed for P = 160µW . The latter propagated at a walk-off angle δ ≈ 9◦,

as the refractive indices are n|| = 1.8129 and n⊥ = 1.5426 for λ = 442nm. Measured

absorption gave α ≈ 50cm−1; hence, after a few hundreds microns the reduced intensity

brought back the beam to propagate in the linear regime. A first remarkable result was

the experimental demonstration of dissipative solitons at sub-mW powers.

From eqs. (1.8)-(3.4) one would expect beam self-steering similar to that observed

in undoped NLC, although for lower intensities: as the soliton profile and the non-

linearly induced index well are evenly symmetric in the transverse coordinate t, the

soliton wavevector remains constant versus propagation and steering is only caused by

changes in walk-off (76): naming φ the angle between s and z, it is φ = δ, i.e. the

soliton trajectory corresponds to what predicted for plane-waves.

Fig. 3.5(a)-(c) summarizes the expected beam evolution in DDNLC: after the

non-homogeneous transition region by the input interface (z = 0), a low-power beam

diffracts as it propagates along its (linear) Poynting vector s with walk-off δ̃ = δ
(
θ̃
)
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3.1 Self-Steering of nematicons

Figure 3.4: (a) Ordinary and (b) extraordinary wave propagation for an excitation P0 =
160µW . The extraordinary component propagates with φ(z) = δ̃(z).

with respect to k [fig. 3.5(a)]; at higher power [fig. 3.5(b)] self-focusing and self-

confinement take place via reorientation, balancing out diffraction and yielding a soli-

tary wave; when [fig. 3.5(c)] reorientation becomes comparable with θ̃, it affects the

beam trajectory by reducing the walk-off. In all cases (in analogy to undoped NLC),

owing to scattering and absorption which exponentially reduce the power and therefore

the nonlinear perturbation in θ, the soliton eventually travels with its initial wavevector

and walk-off δ0 = δ (θ0), irrespective of the excitation.

Fig. 3.6(a)-(h) displays photos of beam evolution in yz for increasing excitation P0.

At low power and beyond the initial transition region, the e-polarized beam propagated

at an angle δ0 ≈ 9◦ with z, as expected for plane waves (rays) at λ = 442nm (fig.

3.6(a)). As P0 increased from 80 to 160 [fig. 3.6(b)], 180 [fig. 3.6(c)] and 220µW [fig.

3.6(d)], respectively, light induced reorientation gave rise to filament self-steering as the

walk-off progressively reduced to nearly zero and s tent to align with z.

From a careful observation of the beam trajectories, it can be noted that they

remained straight for large z : nonlinear walk-off cannot explain this behavior in such

a dissipative medium. This counterintuitive behavior corresponds to a rotation of

the wavevector k. Above P0 = 260µW [fig. 3.6(e)-(h)], a diffracting ordinary-wave

appeared, while the extraordinary confined wave steered to negative angles, reaching

φ ≈ −30◦ for P0 = 400µW [fig. 3.6(h), as in fig. 3.5(d)]. Therefore, in the range

160−400µW , self-steering over ≈ 39◦ was observed for the self-guided e-beam, with an

additional ordinary component revealing a tilt of the optic axis n out of the plane yz.

Eq. (3.4) needs to be modified to correctly describe the observed behavior. From
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3.1 Self-Steering of nematicons

Figure 3.5: Sketch of the cell and nonlinear beam propagation in NLC doped with 1-AAQ.
(a)-(c) Light beam evolution based on a plane-wave model. The 2D graphs show walk-off
versus propagation in three cases. (a) Beam propagation in the linear (diffractive) regime.
(b) Self-confinement: the excitation generates a soliton with unaltered walk-off δ = δ̃. (c)
Nonlinear change in walk-off. (d) Pictorial rendering of the obtained experimental results
at higher excitations: the soliton gets steered towards negative y (4th quadrant in the
plane yz), with the appearance of an ordinary component propagating along z.

the experimental trajectories, it can be appreciated that steering towards negative y

already occurred near the input interface. Since the steering depends on power, the

phenomenon must have a nonlinear origin. Moreover, having verified that absorption-

induced thermal effects were small and produced negligible beam deviations, the change

of wavevector k can be explained only by an odd asymmetry in the index profile;

despite the large birefringence, power-dependent walk-off cannot introduce such an

asymmetry to explain the observed large soliton steering. As nematicons are expected

to narrow-down to wavelength size, the transverse asymmetry can be associated to

the longitudinal field component Es, exhibiting an odd profile if the transverse field

Et is even. To account for the odd symmetry of Es we took a Janossy coefficient
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3.1 Self-Steering of nematicons

Figure 3.6: Evolution of an extraordinarily polarized beam in yz for various excitations
P0. (a)-(d) Input powers are 80− 160− 180− 220µW , respectively, with Poynting vector
spanning angles from 9◦ to 0◦ at large z. (e)-(h) Input powers are 260−300−340−400µW ,
respectively, with negative angles and the appearance of an ordinary component diffracting
along z. The beams appear wider than they are as the images result from collection of
scattered light.

η = ηI/(1 + I/Isat) + ∆η, with ∆η = c=(Ese−iβz), β the soliton propagation constant,

c an intensity-dependent phenomenological coefficient and I the light intensity. We

considered a saturating response to account for the high intensities involved due to the

strong confinement. Considering the reorientation angle θ as the sum of a term φ due

to the purely optical reorientation and of a term ∆φ due to the index asymmetry, eq.

(3.4) becomes:

∇2
xy∆φ+ α2∆φ = −∆η sin [2(θmax − δ(θmax))] |Et|2 eαz (3.5)

where the subscript ”max” refers to the maximum value for a fixed z and where we

considered ∆φ << φ and Es << Et. Applying the Ehrenfest theorem we obtain the

soliton trajectory under the action of an equivalent transverse force Ftr:

Ftr = χe−αzP 3/2w−2 (3.6)
d2ym

dz2
= d tan δ

dz + Ftr(w,P ) (3.7)

where ym is the soliton position (taken on the beam axis), χ depends on optical

reorientation and P = P0e
−αz.

A comparison between measured and calculated trajectories, in fig. 3.7(a)-(b), to-

gether with the curve describing the solitary wave deflection as a function of input

30



3.1 Self-Steering of nematicons

Figure 3.7: (a) Experimental and (b) simulated trajectories for P0 varying from 80 to
400µW . (c) Angular deflection versus initial power. The blue dots are experimental values
while the red line is derived from eq. (3.7) (Isat = 0.5mW/µm2 and ηI = 50).

power [fig. 3.7(c)], show the good agreement between the model and the data. The

trend in φ [fig. 3.7(c)] resembles the optical Freedericksz transition; hence, ∆η can

be associated to reorientation of the optic axis out of the plane yz, mediated by the

anisotropy inherent to the guest-host interaction in dye-doped NLC and in perfect

agreement with the appearance of the ordinary-wave component at high powers (fig.

3.6). At low powers the system is below the Freedericksz threshold and within the Mau-

guin limit (33); above threshold, changes in n near the input interface are no longer

adiabatic and coupling occurs between ordinary and extraordinary field components.

In the transition region at the input, in fact, the optic axis distribution varies on a scale

smaller than the minimum cell dimension (thickness L), ensuring a nonlocal range < L.

3.1.1.1 Dye luminescence in NLC

Since 1-AAQ is optically active, the absorption of blue photons (442nm) is associated

to the population of an excited state with subsequent radiative emission of red light

via photoluminescence. (77) We separated blue and red components by the use of a

band-pass filter (centered around 633nm) and acquired images of the spontaneously

emitted photons excited by blue beam(s), as visible in fig. 3.8. It is clear that the

emitted red photons diffracted (ordinary wave, fig. 3.8) or got confined (extraordinary

wave, fig. 3.8) depending on the polarization of the blue waves, i.e. they retained the

input polarization and Poynting vector. Although the two different wavelengths are

associated to different walk-offs (namely δ442nm ≈ 9◦ and δ633nm ≈ 6◦) due to the NLC

dispersion [see eq. (1.5)], in the confined case the red light was efficiently trapped by
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3.1 Self-Steering of nematicons

Figure 3.8: Comparison of beam evolution of blue and corresponding red emitted light.
(a) and (c) correspond to ordinary polarization, while (b) and (d) are extraordinary self-
confined waves. White lines are directed along the wavevector k , while yellow and red
lines correspond to the direction of the Poynting vector for plane waves at 442 and 633nm,
respectively. Noteworthy, the trapping overcomes the natural walk-off of the red light.

the nematicon waveguide owing to reorientation. Such confinement took place despite

the longer wavelength, thanks to the large numerical aperture of the nematicon as

stemming from the highly nonlocal response of the NLC. The emitted probe travelled

along the nematicon trajectory, undergoing attenuation and walk-off consistently with

the evolution of the blue soliton (fig. 3.8).

Figure 3.9: Evolution of the red light generated by dye photoluminescence and trapped
in the soliton-induced waveguide. In (a) through (h) the corresponding input powers
at λblue = 442nm are those indicated in fig. 3.6. Since (λred)2 >> (λblue)2, Rayleigh
scattering (∝ λ−2) in NLC) is much lower than at λblue (see fig. 3.6).

Finally, fig. 3.9 shows the images acquired with the use of the red filter, correspond-

ing to those of fig. 3.6. Noteworthy, owing to Rayleigh scattering, which in NLC is

proportional to the squared inverse of the wavelength (33), the acquired images of the

(guided) red component appear sharper than those of the blue nematicon.
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3.2 All-optical interfaces

3.2 All-optical interfaces

As nematicons demonstrate robustness against non uniform director distributions, it is

interesting to analyze their behavior when interacting with finite-size inhomogeneities

in the molecular alignment. In terms of all-optical signal processing, the use of external

light beams locally altering the director distribution seems a suitable choice towards

reconfigurable systems. Previous works reported studies of soliton deflections both in

doped (47) and undoped (46) NLC. Hereafter, with the use of a DDNLC, we demon-

strate refraction and reflection of nematicons at optical interfaces.

3.2.1 Set-up description

We used the 5CB liquid crystal, with a small quantity (0.1% in weight) of Methyl-Red

(MR) in a 75µm thick cell. The input interface maximized the input coupling of light

into the extraordinary polarization along y ; only one of the interfaces defining the cell

was treated, ensuring planar anchoring at θ0 = π/4.

Figure 3.10: (a) Experimental set-up: the control beam impinges transversely to the
signal beam (nematicon) and modifies the director distribution. (b) Photo of the nematicon
in the reference system of the Poynting vector (direction s) with no control beam. White
dashed line is the position of the elongated control beam. (c) Sketch of the arrangement
of signal and control beams.

An external beam at λ = 532nm impinged on the untreated interface of the cell

and interacted with the MR molecules, as sketched in fig. 3.10. (78) The green light

is known to modifies the interaction energy between MR and the surface, causing

33



3.2 All-optical interfaces

their absorption/desorption. (74) Due to the dye dichroism, the polarization-dependent

balance between adsorption and desorption determines a preferred orientation of the

dye molecules, which can be controlled by intensity, exposure time, and wavelength.

(74)(79) This orientation provides anchoring-like conditions for the DDNLC, inducing

a preferred director orientation at the surface and, through elastic forces, in the whole

thickness of the cell, thereby allowing a complete external control of the optical proper-

ties of the bulk medium below the illuminated region. In particular, for the moderate

intensities we used in the experiments, the DDNLC director tends to reorient perpen-

dicularly to the field polarization. The beam at 532nm, hereafter named control beam

(subscript ”c”) was tailored to a strongly elongated elliptic shape. Another beam at

λ = 1064nm, or signal beam (subscript ”s”), generated a nematicon of waist of ≈ 5µm

with a wavevector k‖z. The angle between the Poynting vector of the signal beam and

the long axis of the control beam was ≈ 9◦.

Figure 3.11: Evolution of the signal beam interacting with a defect induced by light
polarized along z : the increase in refractive index causes double refraction, with a power
dependent soliton deviation. (a) to (f) correspond to Pc =[1 6]mW

In this geometry, the surface mediated all-optical reorientation was able to lower/increase

the refractive index perceived by the soliton depending on the polarization of the control

beam (linear along y/z ). Thereby a potential barrier/dip was defined for the nemati-

con traveling across such graded index region. The effective width and shape of the

perturbed region was due to the combined effects of the gaussian profile of the control

beam, the nonlocal response of the NLC, the saturating response of DDNLC (due to
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3.2 All-optical interfaces

Figure 3.12: Evolution of the signal beam when the control beam decreases the refractive
index. When the difference of index is low the soliton passes through the interface, as in (a)
and (b) for Pc = 1 and 2mW , respectively. At (c) Pc = 3mW the nematicon remains by the
surface, while for (d),(e),(f), corresponding to Pc = 4, 5, 6mW respectively, it undergoes
total internal reflection.

the finite dye concentration) and the varying walk-off along the soliton path. When

the soliton approached the boundary of this graded index perturbation, it could either

travel through it undergoing refraction (twice) or got repelled owing to total internal

reflection. At low intensities, the optical reorientation induced by the control beam

was negligible, both in magnitude and sign, with respect to the dye surface-mediated

effect. We fixed the power of the signal Ps = 1.5mW and varied the control beam

intensity from 1 to 6mW , for polarizations parallel and perpendicular to k . For Ec
parallel to z, the surface-mediated reorientation produced an increase in the refractive

index, creating two graded interfaces where the incoming solitons underwent double

refraction, as visible in fig. 3.11.

For Ec parallel to y, the dye-induced reorientation produced a decrease in the ex-

traordinary refractive index, i.e., an optically rarer region. As apparent in fig. 3.12,

for control powers Pc ≈ 3mW the nematicon became nearly tangential to the interface.

We could calculate a critical angle close to 81◦ and an index decrease of ≈ 0.05, with

an estimated surface-mediated reorientation of about 13◦. At higher control powers

the soliton bounced off the first interface, undergoing total internal reflection. Fig.

3.13 shows the soliton displacement following the interaction with the dye-induced per-

turbation in the two polarization. The non-monotonic trend in refraction, as pointed
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3.2 All-optical interfaces

Figure 3.13: Nematicon deviation at z = 2.5mm for control beam generating a potential
dip (blue) and barrier (red).

out above, was due to the complex interplay of anisotropy, walk-off, nonlocality, shape

of the perturbation and soliton profile. The growing displacement under reflection is

associated with an increasing lateral shift of the soliton as the refractive index decreases.

36



3.3 Conclusions

3.3 Conclusions

We illustrated a few experiments with DDNLC, exploiting dyes interactions with NLC

molecules. We first reported on the self-action of light on its own trajectory, comparing

undoped and doped NLC. In the former case, large nonlinear reorientation induced

power dependent walk-off; in the latter case, 1-AAQ enhanced the nonlinear response,

with the appearance of a non-negligible longitudinal field of odd parity and thus a

transverse force acting on the solitary waves. Then we investigated the interaction of

nematicons in a linear index distribution modified by surface-mediated reorientation

due to MR adsorption/desorptions.

Again, the two examples disclosed the possibility of implementing routing strategies:

self-steering can be employed for nonlinearly controlled signal routing, while the use

of external beams in MR-doped cells can control nematicon-based signal re-addressing

systems.

37



4

Nematicons in Liquid Crystal

Light Valves

In this chapter we present a novel environment for nematicon all-optical control, based

on light induced modulation of director distribution in the Liquid Crystal Light Valve

(LCLV). The first section is a brief introduction on the LCLV as a suitable device to

control the NLC nonlinearity; the next section is an overview of the valve characteriza-

tion in terms of nematicon electrical/optical response; the theoretical approach is then

described, together with experimental results. Finally, some examples of both digital

and analogic all-optical signal processing schemes are presented.

4.1 The Liquid Crystal Light Valve

In 1970 Van Raalte proposed a devise for image projection: he employed an electron

beam to modulate the mechanical response of a metal thin film, thus regulating the

light brightness on a screen. He called this device Light Valve. (80) The same idea was

developed by Margerum in an NLC sample: in a biased NLC cell, photo-induced charges

on a photoconductive layer modified the transmission of the NLC layer placed between

polarizers. It was the first example of an LCLV. (81) During the last five decades LCLV

have become an established paradigm in nonlinear optics, as they grant access to a large

number of phenomena. Using the valve in transmission or with optical feedback (82)

many fundamental effects have been observed, including chaos (83), localized light

structures (84), two-wave mixing (85), slow light (86).
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4.1 The Liquid Crystal Light Valve

Figure 4.1: (a) Sketch of the LCLV: the 532nmbeam is tailored by the spatial light
modulator (SLM) to a spot of controlled size and shape on the BSO layer. The altered
director distribution affects the soliton trajectory. (b) LCLV equivalent electric circuit

With reference to fig.4.1, we used an LCLV similar to a standard planar NLC

cell, with one of the interfaces in a photoconductive material, namely Bismuth Silicate

(BSO). (87)(88) The cell thickness was 50µm and we filled it with the nematic E48

(∆n = ne − no ≈ 0.23). Applying a low frequency voltage Vbias between the ITO

deposited on the glass slide and the BSO, the latter acts like a variable resistor (87):

the voltage drop on the NLC layer (VNLC) is given by the voltage divider corresponding

to the impedance-ratio of NLC and photoconductor [fig. 4.1(b)]. When radiation of

suitable wavelength impinges on the BSO layer, the photogenerated charges modify the

photoconductor resistance as well as the voltage drop on the NLC: a point-dependent

voltage VNLC(x, y, z) is established, with magnitude and shape defined by the beam

(hereafter called control beam) intensity and profile, respectively.

A good linear approximation for VNLC is given by (82):

VNLC = γVbias + αI(y, z) (4.1)

where I(y,z) is the beam shape, γ and α are two parameters; the former is derived

from the voltage divider, thus depending on liquid crystal and BSO dielectric constants

(89), voltage frequency and cell thickness; the latter accounts for the photoconductor

optical response.
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4.2 Cell characterization

Figure 4.2: Images of the beam propagation in the unbiased LCLV. (a) Ordinary, (b)
mixed and (c)-(d) extraordinary polarization. In (d) the high power enables beam self-
confinement

4.2 Cell characterization

A He-Ne beam (λ = 632.8nm) was launched with k‖z and focused at the cell entrance

with a waist of about 6µm. As for standard cells, the LCLV was provided with a suitably

treated input glass plate to optimize beam coupling in the yz plane. Fig. 4.2 shows

ordinary [fig. 4.2(a)], mixed [fig. 4.2(b)] and extraordinary [fig. 4.2(c),(d)] polarized

beams in the unbiased cell, self-confinement being observed for the extraordinary wave

at P = 2mW [fig. 4.2(d)]. As the planar anchoring held the director at θ0 = 45◦, we

got δ ≈ 7◦, consistent with the birefringence of E48.

As illustrated in fig.4.3, we varied Vbias and observed the beam evolution in the

yz plane: we found that the Freederickszs transition took place for Vbias = 2V (rms

value); above this value, voltage-induced beam steering occurred and we evaluated the

apparent walk-off (i.e. the observable angle between s and k in the yz plane): it

progressively reduced until, for Vbias = 10V , the beam became nearly parallel to z.

Above that voltage, due to out-of-plane propagation, beam bouncing at the surfaces

prevented a correct evaluation of the trajectory. Noteworthy, for higher voltages the

beam lost self-confinement because of the saturating nonlinearity, as apparent from the

last photograph in fig. 4.3(a).

The next step was to enable the photoconductor response: a beam from a solid

state laser at λ = 532nm (within the absorption band of the BSO) was tailored by a

controllable liquid crystal display (LCD) acting as a spatial light modulator, in order to
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4.2 Cell characterization

Figure 4.3: Beam propagation for various applied voltages. (a) Photographs of soliton
evolution. High voltages saturate the nonlinear response and self-confinement is lost. (b)
Apparent walk-off (projection of the actual walk-off on the yz plane) versus applied voltage.

obtain the desired shape and size, as sketched in fig. 4.1(a). We began with an expanded

beam to have a uniform illumination I(y, z) = Sc; this way we induced a uniform linear

and nonlinear response in the whole NLC. For a fixed voltage (Vbias = 3.5V ) and

intensity (Sc = 0.25mW/cm2), we first checked the frequency cut-off stemming from

the equivalent capacitances of NLC and BSO layers and the BSO dispersion (fig. 4.4).

Figure 4.4: Frequency response of the LCLV. V = 3.5V (rms).

The apparent walk-off variations were evaluated for different values of the bias fre-

quency. As expected, high frequencies were cut off by the cell and the nematicon
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4.3 Nematicon propagation in LCLV: Model

trajectory had negligible variations with respect to the unbiased cell. The cut-off fre-

quency was found to be f ≈ 400Hz; only below this value the photo-generated charges

managed to affect the NLC reorientation, as witnessed by walk-off variations. The

measured maximum BSO sensitivity resulted below 100Hz. Thus, we set f = 80Hz

and studied the optical response of the LCLV, varying the impinging beam intensity for

uniform illumination. The results are summarized in fig. 4.5: the soliton was angularly

steered in the propagation plane, in analogy to what observed and reported in fig. 4.3,

but by way of an optical control. As the flux Sc varied from 0 to 1mW/cm2, the walk-

off varied linearly with an ”equivalent” voltage dynamics from 3.5 to 8V . The linear

relation broke down above Sc = 0.7mW/cm2 when saturation of the nematic response

(walk-off nearly zero, as for the ordinary polarization) came into play.

From comparison between electric and optical responses of the valve we could es-

timate the parameters γ = 0.6 and α = 3 · 103V cm2/W , which are compatible with

other measurements on LCLV with BSO. (82)

Figure 4.5: Optically induced soliton steering under uniform illumination. The linear
trend of the apparent walk-off stops when the nonlinear response saturates. V = 3.5V (rms).

4.3 Nematicon propagation in LCLV: Model

The next step is the study of a nematicon propagating in a non-homogeneous NLC

surrounding, as generated by shining beams of different shapes and sizes on the BSO.

For the sake of simplicity, we refer to the effect of a round spot on a nematicon trajectory

in yz, as shown in fig. 4.6: the soliton nearby the ”defect” of the molecular director
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4.3 Nematicon propagation in LCLV: Model

[fig. 4.6(c)] is deviated towards its center.

Due to the spatial light modulator, flat-top control spots can be easily generated;

the anchoring at the surfaces, combined with the external illumination, produces 3D

perturbations in the LCLV. To model the effects of these perturbations we define two

angles θ and ϕ [fig. 4.6(b)-(c)]: the former is the twist in yz as used in the previous

chapters, the latter is the tilt in xz. The overall reorientation angles will be ϕ = ϕV c+ϕb
and θ = θV c + θb, with ϕV c = ϕV + ϕc and θV c = θV + θc, the subscripts ”V”, ”c”

and ”b” indicating the effects of voltage, control beam and soliton, respectively. We

define the director ”background” by considering the LCLV in the absence of solitons,

i.e. θb = ϕb = 0.

Figure 4.6: (a) Top view of a LCLV in the absence of control beam and with Vbias = 0.
(b) Elevation and azimuth of the director n in xyz. (c) Top and (d) side views of an
LCLV with a flat-top round control beam of intensity I and a soliton launched in x = L/2
with k ‖z. (c) and (d) show the projections of the moving reference ξψζ along the soliton
(displayed in the output section). The (blue) arrows indicate the director distribution.

As the BSO dielectric constant [εBSO ≈ 56 (89)] is much larger than in NLC (ε‖ ≈
20), the electric field components in yz plane are negligible and the reorientation due to

a control spot occurs in the plane defined by x and the unperturbed n : hence, θ = θ0

owing to the boundary conditions and ϕ = ϕ0, as stemming from the combined action

of the voltage and the control beam. In these conditions we can cast the reorientation
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4.3 Nematicon propagation in LCLV: Model

Figure 4.7: Nematicon in LCLV interacting with (a) circularly and (b) elliptically shaped
spots. The blue dashed lines are trajectories derived from the theoretical model, in perfect
agreement with the experiments.

equation [eq. (1.9)] as:

∇2ϕV c + κ sin (2ϕV c)E2
NLC = 0 (4.2)

where ENLC = VNLC/L, VNLC is defined by eq. (4.1) and L is the cell thickness.

To compute the nematicon propagation through the director distribution n(x, y, z)

defined by eq. (4.2) we assume θb << θV c and ϕb << ϕV c, as the nonlinear per-

turbations are much smaller than the electric ones. (90) Since a typical nonlocality

range ≈ 50µm ensures the validity of the Mauguin limit (33)(36), the changes in di-

rector can be taken adiabatic. Introducing a moving frame ξψζ, with ζ parallel to the

local wavevector k , ξ the ordinary axis, ψξ the principal plane of the extraordinary

polarization and ζ̂ = ξ̂ × ψ̂, the NLSE (eq. (1.8)) becomes:

2inek0

[
∂2A′

∂ζ2
+ tan δ(ζ)

∂A′

∂ψ

]
+

1
Dζ

∂2A′

∂ξ2
+
Dψ

Dζ

∂2A′

∂ψ2
+ k2

0∆n2
eA = 0 (4.3)

where A’ is the transverse electric field, ∆ne the space varying extraordinary index

accounting for both optical and electrical reorientation, and Dψ/ζ are the diffraction

coefficients in the new reference system. Applying the Ehrenfest theorem and making

use of the nonlocality, we obtain 2k2
0n

2
ed

2rb/dζ2 = F|rb=r̄b
, F being the equivalent force

depending on extraordinary refractive index changes and walk-off, as defined in previ-

ous chapters.

This model accounts for anisotropy, nonlinearity, nonlocality and nonhomogeneity

in the full 3D setting. In fig. 4.7 two examples of nematicon propagation in the

presence of ”defects” are shown: circularly and elliptically shaped spots are considered
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4.3 Nematicon propagation in LCLV: Model

with flat-top profiles; due to the intensity I = 0.16mW/cm2 and the nonlocal response

of the NLC, the corresponding angular profile saturates within the spot and is sech-

like outside it. Noteworthy, an excellent agreement between the experimental and

calculated trajectories is found.
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4.4 All-optical signal processing in Liquid Crystals Light Valves

4.4 All-optical signal processing in Liquid Crystals Light

Valves

We managed how to control soliton paths in LCLV by exploiting the BSO response to

external beams of given shapes. Thanks to the programmable spatial light modulator,

we were able to shine on the photoconductor one or more control spot(s) and deviate the

nematicon trajectory in a reconfigurable way. Thus, the LCLV is an ideal environment

to achieve all-optical signal processing and routing. In the following we present some

examples of soliton-based digital and analog functions in LCLV: we first define the

input/output variables and the corresponding states in terms of measurable quantities.

We use as input variables the control spots on the BSO (in the examples I =

100µm/cm2): the low state (logic state 0) is associated to the absence of the spot,

while the high state (logic state 1) applies when the spot is switched on by the spatial

light modulator.

We consider as output variable the soliton y-position at a given z -section. When

implementing de-multiplexing functions in space this association is straightforward,

as the routed output can be defined as a spatial coordinate too. For logic functions,

the output state is high when the nematicon position corresponds to a pre-determined

location, low when the beam is deviated elsewhere. Thus, the design of a generic

function is based on the spot position, size and shape, as they determine the soliton

deviation.

4.4.1 Logic functions

4.4.1.1 Half-Adder

The basic element of a computer Central Processing Unit (CPU) is a Half-Adder,

which yields the sum of two bits and provides the carry bit when needed. By tailoring

the locations of two external spots in yz and weighting the two control bits on a

nematicon in order to induce different deflections, a three-output binary Half-Adder

can be implemented, as illustrated in fig. 4.8. If only one bit was high (i.e. logic input

10 or 01), the soliton was deviated from its straight trajectory (00 defined by Vbias and

the birefringent walk-off) to the sum output S. Thus, the latter was at the high value

(1) while the carry output C was low (0). The presence of both inputs (11) moved the

soliton to the carry output C, bringing it to the high value and S to the low value.
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4.4 All-optical signal processing in Liquid Crystals Light Valves

Figure 4.8: Realization of a Half-Adder. (a) Soliton propagation for various de-
fect configurations, as indicated by the Boolean legends. The spots are centered in
[y, z] = [−100, 500]µm and [y, z] = [−200, 900]µm. Green circles represent the shape of the
spots. (b) Soliton evolution in yz plane: acquired (solid lines) and model derived (dashed
lines) trajectories; labels C, S, and L refer to carry, sum and low-input, respectively. (c)
Transverse profiles in z = 1.5mm corresponding to various logic outputs. y0 is the output
transverse position of the unperturbed nematicon (corresponding to input 00).
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4.4 All-optical signal processing in Liquid Crystals Light Valves

4.4.1.2 Logic gates

Configurations similar to the previously described system can implement the most

common logic gates. The versatility of the soliton-deviation based system permitted

to change function just assigning different variables to the output positions, leaving

unaltered the ”defect” arrangement.

Output C of the Half-Adder (fig. 4.8), for instance, is the output of an AND gate:

Figure 4.9: XNOR logic gate. (a) Soliton evolution in yz without and with control spots
centered in [y, z] = [−100, 500]µm and [y, z] = [0, 700]µm for control inputs 01 and 10,
respectively. Green circles are the spot edges. (b) Truth table of an XNOR. (c) Nematicon
profiles in z = 1.5mm, with corresponding inputs. y0 corresponds to the logic input 00

the high output state is associated to the 11 input state. Output S is the output of an

XOR, the output value being high when the input bits are different (01 or 10). Finally,

output L implements a NOR gate: the output is high just when all the inputs are low.

In particular, NOR gates are universal, i.e. any logic function can be synthesized by

their combination; hence, they are fundamental blocks for all-optical programmable
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4.4 All-optical signal processing in Liquid Crystals Light Valves

logic. By positioning differently the two control spots we could also obtain an XNOR

gate (output high when the two input bits have the same value). The control spots

were arranged to exactly compensated the two deviations, as clear from fig. 4.9.

4.4.2 Routing signals

As said earlier, the soliton deviation by the photo-induced defects can be easily asso-

ciated to de-multiplexing functions. In fig. 4.10 an example of a programmable 1 x 4

demultiplexer is illustrated: every (22 = 4) combination of Boolean inputs was able to

re-route a spatial soliton (and the signal traveling within it) to a different output port.

Figure 4.10: Two bit 1 x 4 router. (a) Photographs of soliton trajectories controlled by
two control spots (circles), centered in [y, z] = [−100, 500]µm and [y, z] = [−150, 900]µm.
(b) Measured (solid lines) and simulated (dashed lines) nematicon trajectories. (c) Output
profiles (z = 1.5mm) corresponding to the various inputs (Boolean legends). In (b), the
solid and dashed lines refer to experiments and simulations, respectively. y0 corresponds
to the logic input 00.
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4.4 All-optical signal processing in Liquid Crystals Light Valves

Figure 4.11: Three-bit 1 x 8 digital router controlled by elliptic external beams. (a)
Photographs of soliton paths produced by the logic inputs in the legends. The closed lines
point out the location and form of the control beams. Green ellipses correspond to the
spots impinging on the BSO. (b) Output (z = 2mm) transverse profiles for the various
Boolean inputs. y0 corresponds to logic input 000.
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4.4 All-optical signal processing in Liquid Crystals Light Valves

A 3-bit all-optical router, i.e. a 1 x 8 demultiplexer, could be implemented by using

control beams with suitable ellipticities and orientations to steer the soliton over a wide

interval. The (23 = 8) combinations of input bit let us distinguish eight different output

positions over a transverse interval of 400µm, corresponding to a total angular range

of ≈ 20◦, as visible in fig. 4.11.

4.4.3 Junctions

An external beam can also modulate the attraction between nematicons, implementing

reconfigurable waveguide-based junctions as shown in fig. 4.12: two solitons with the

same power, launched with parallel wavevectors and mutual separation larger than the

non-locality range (≈ 100µm), were pulled towards each other in the presence of a

lens-like perturbation induced between them. Depending on position and shape of the

control spot, the two solitons merged or interleaved, implementing optically-adjustable

Y [fig. 4.12(b,d)] or X [fig. 4.12(c,e)] junctions, respectively.

Figure 4.12: A two-soliton all-optical analog processor. Photographs of solitons (a)
without and with a (b) round or (c) elliptical control beams imping on the LCLV. The
green circle and ellipse represent the spot positions. (d-e) Transverse profiles corresponding
to (b) X-junction or (c) Y-junction: the blue and red lines refer to unperturbed and deviated
solitons, respectively. y0 is the median position between the unperturbed nematicons at
the output section.
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4.5 Conclusions

4.5 Conclusions

We demonstrated the use of photoconductive LCLV as a versatile environment to con-

trol of one or more spatial solitons and the signals they transmit. An external illumina-

tion on the photoconductor side of the valve allowed shaping and controlling a number

of lens-like index perturbations on the paths of the solitons, thereby enabling their

routing in the whole space of propagation. The developed model permits to predict the

trajectory, accounting for the peculiar 3D interactions between solitons and director

landscape. The experimental set-up allowed us building a full set of all-optical signal

processors: logic gates, as well as routers and junctions were demonstrated.
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5

Discussions

In this dissertation I have discussed a few experiments on self-localized waves in nematic

liquid crystals; by employing different sample geometries and materials I investigated

the propagation of nematicons in both electrically and optically induced molecular di-

rector perturbations. All the phenomena, supported by suitable theoretical models,

are milestones in the comprehension of propagation of solitons in nonlocal nonlinear

media. I investigated a cell with a voltage-tunable nonlinearity, studying soliton trajec-

tory and waist variations. The nonlocality-mediated interaction between two solitons

was used to evaluate the angular momentum of a nonlinear system. Beam self-steering

was studied in two different arrangements: in undoped NLC (avoiding instabilities) and

in DDNLC, where the role of a non-negligible longitudinal field component was taken

into account for the first time. Then, employing external beams, I addressed the effect

of non-uniform director distributions: dye-induced defects were exploited to all-optical

interfaces generation; LCLV provided an ideal platform to dynamically control nemati-

con paths. Particular attention has been devoted to the realization all-optical devices

exploiting the above effects. Based on linearly- and nonlinearly-induced nematicon

steering and bouncing, a number of strategies for signal processing and re-addressing,

both in 2D and in 3D geometries, were proposed: soliton in-plane steering, soliton

nonlinear spiraling, self-steering and dye-mediated optical interfaces are examples of

de-multiplexing functions, while LCLV hosted a complete set of all-optical reconfig-

urable processors. Future work should address the realization of efficient input/output

coupling strategies, in order to complete a soliton based system for all-optical parallel

computing and/or signal routing.
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Appendix A

Materials

A.1 Nematic Liquid Crystals

A.1.1 5CB - 4-Cyano-4’-pentylbiphenyl

5CB (4-Cyano-4’-pentylbiphenyl), chemical formula C18H19N is the most common ne-

matic liquid crystal. As sketched in fig. A.1, the molecule is about 2nm long, with a

ratio between long and short axes of ≈10.

Figure A.1: Molecular structure and size of nematic 5CB.

The nematic-isotropic transition temperature is TNI = 36◦C. The extraordinary

and ordinary refractive indices, for λ = 1.064nm and (T − TNI = −10◦C) are:

ne = 1.6965

no = 1.5350

The elastic constants are:

K1 = 6.2 · 10−12N

K2 = 3.9 · 10−12N

K3 = 8.2 · 10−12N

for splay, bend and twist deformations, respectively.
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A.1 Nematic Liquid Crystals

A.1.2 E7

E7 is a liquid crystalline mixture. Its molecular composition, illustrated in fig. A.2,

was engineered to obtain a larger birefringence and a higher transition temperature

TNI ≈ 59◦ than 5CB:

Figure A.2: Molecular structure of the E7 nematic mixture, with the relative composition.

The low frequency electric constants:

ε‖ = 19.5

ε⊥ = 5.1

For T − TNI = −10◦C and λ=1064nm, the refractive indices are:

λ = 1064nm

ne = 1.6954

no = 1.5038

λ = 442nm

ne = 1.8129

no = 1.5426

And the Frank’s constants:

K1 = 12 · 10−12N

K2 = 9 · 10−12N

K3 = 19 · 10−12N
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A.2 Dyes

A.2 Dyes

A.2.1 1-Amino-Anthraquinone

1-Amino-Anthraquinone is an anthraquinone derivative, a natural dye compound. Dis-

solved in NLC it enables a thermal nonlinearity and enhances the reorientational one.

Figure A.3: Molecular structure and absorption spectrum of 1-AAQ.

A.2.2 Methyl Red

Methyl Red is an azo-dye, i.e. it suffers wavelength dependent molecular transitions,

thus being responsible for several nonlinear effects when dissolved in NLC (from neg-

ative reorientational response to Trans-Cis transformation, adsorption/desorption on

surfaces, etc.).

Figure A.4: Molecular structure and absorption spectrum of Methyl Red.
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Appendix B

Liquid Crystals: cell technology

For some experiments, like the dye-induced self-steering and the LCLV, we fabricated

the NLC samples. Here we report on the standard technology used to build the cells.

Properly cut glasses (coated with Indium Tin Oxide) were used as cell interfaces

and washed in an ultrasonic bath with demineralized water. This removed impurities,

preventing an inhomogeneous director distribution.

The molecular anchoring was realized on soft matter. Each inner surfaces was cov-

ered by a solution (2%) of dissolved Polyvinyl alcohol (PVA) and spinned to obtain a

uniform thin layer. To optimize PVA adhesion on the ITO a soft baking was used.

Rubbing is a crucial process, as it allows NLC uniform anchoring and determines

the initial director orientation in the overall sample, sometimes defining a pretilt. A

velvet roll was used to lightly scratch the PVA: the NLC molecules laid with their

long axes along the mechanically induced furrows. The process time was a compromise

between the efficient generation of furrows and the removal of the PVA layer.

The sample was sealed with a UV glue; a careful up/down alignment of interfaces

allowed the application of a third (rubbed) glass plate used as input facet. The sepa-

ration (defining the cell thickness) was obtained with Mylar spacers. After sealing the

cell, the NLC was infiltrated by capillarity. The uniform alignment could be checked

under illumination between crossed polarizers.
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[64] I. Jánossy and T. Kósa, “Influence of anthraquinone dyes on optical reorientation

of nematic liquid crystals,” Opt. Lett., vol. 17, no. 17, pp. 1183–1185, 1992. 23

67



REFERENCES

[65] S. Residori, G. Russo, S. McConville, and A. Petrosyan, “Surfactant controlled

light induced reorientation in dye-doped nematic liquid crystals,” Mol. Cryst. Liq.

Cryst., vol. 429, pp. 111–132, 2005. 23, 24

[66] I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large neg-

ative orientational nonlinearity in dye-doped liquid crystal,” IEEE J. Quantum

Electron., vol. 29, no. 5, p. 1444, 1993. 23
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