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perchè ognuna sapeva comunicare la propria passione nel raggiungere un tra-
guardo.

vii



i

i

“main” — 2010/2/24 — 14:59 — page viii — #8
i

i

i

i

i

i

Contents

Contents viii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Airport inventory management . . . . . . . . . . . . . . . . . . 1
1.2 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Research contribution . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 9

2 An overview on spare parts provisioning 11

2.1 Spare parts inventory control . . . . . . . . . . . . . . . . . . . 11
2.2 Transshipment problems in Supply Chain Systems . . . . . . . 25
2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Spares allocation problem: an exact evaluation 37

3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Multi-dimensional Markovian approach . . . . . . . . . . . . . 41
3.3 General methods for the computation of the state probabilities

of a Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Computational experience . . . . . . . . . . . . . . . . . . . . . 51
3.5 Markov chain structure: a remark . . . . . . . . . . . . . . . . 54
3.6 The optimization model . . . . . . . . . . . . . . . . . . . . . . 57

4 Lateral transshipment: approximate performance models 61

viii



i

i

“main” — 2010/2/24 — 14:59 — page ix — #9
i

i

i

i

i

i

CONTENTS ix

4.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Multi-dimensional Markovian approach . . . . . . . . . . . . . 64
4.3 Approximate performance computation . . . . . . . . . . . . . 66
4.4 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Spares allocation problem: optimization algorithms 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Problem structure . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Case study from the corrective airport maintenance context . . 93
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusions 99

6.1 Summary of main achievements . . . . . . . . . . . . . . . . . . 99
6.2 Direction for future research . . . . . . . . . . . . . . . . . . . . 103

Appendices 105

Markov chain theory 107

Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Discrete time Markov chains . . . . . . . . . . . . . . . . . . . . . . 110
Continuous time Markov chains . . . . . . . . . . . . . . . . . . . . . 118

Phase type distribution and its evolutions 123

Steep distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Flat distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Cox distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
MMPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
IPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Optimization algorithms 131

Optimization and convexity in brief . . . . . . . . . . . . . . . . . . 131
The Lagrangian relaxation method for integer programming . . . . . 138
Trust-region and interior affine scaling methods . . . . . . . . . . . . 143

Bibliography 157



i

i

“main” — 2010/2/24 — 14:59 — page x — #10
i

i

i

i

i

i

List of Tables

3.1 Two non solvable instances. . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Parameter values for the computational experiment . . . . . . . . . 56
3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Five non solvable instances. . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Parameter values for the computational experiment . . . . . . . . . 95
5.2 Performance of ISA and BB algorithms for the 12 items . . . . . . 96
5.3 Performance of ISA and BB for different holding costs . . . . . . . 97
5.4 Performance of ISA and BB for different emergency costs . . . . . 98

x



i

i

“main” — 2010/2/24 — 14:59 — page xi — #11
i

i

i

i

i

i

List of Figures

1.1 Logistics chain system: two echelon (left) and single echelon (right) 3

3.1 A Markov chain (left) and the aggregated birth death model (right) 43
3.2 A Markov chain with infinite (left) and finite (right) number of states. 45
3.3 Computation time for the Markov chain model and distributed in-

stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Memory effort for the Markov chain model and distributed instances. 53

4.1 A Markov chain (left) and the aggregated birth death model (right) 65
4.2 The three fractions α1, β1 and PB(S) of demand at warehouse 1. . 67
4.3 Equivalent system . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Iterative procedure for estimating steady state IPP parameters . . 73
4.5 Computation time for the Markov chain model and distributed in-

stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 Memory effort for the Markov chain model and distributed instances. 77
4.7 Computation time for the approximate models and practical instances. 78
4.8 Memory effort for the approximate models and practical instances. 78
4.9 Computation time (left) and memory effort (right) for the approx-

imate models and random instances. . . . . . . . . . . . . . . . . . 79
4.10 Percentage error for practical instances . . . . . . . . . . . . . . . . 80
4.11 Percentage error for random instances . . . . . . . . . . . . . . . . 81
4.12 4 sample instances: OA varying for different scale factor values . . 81

5.1 Pseudocode of the heuristic for Initial Spares Allocation . . . . . . 92
5.2 Pseudocode of the BB algorithm . . . . . . . . . . . . . . . . . . . 94

A.1 Sketch of IPP process . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2 Sketch of IPP overflow process . . . . . . . . . . . . . . . . . . . . 128

xi



i

i

“main” — 2010/2/24 — 14:59 — page xii — #12
i

i

i

i

i

i

xii List of Figures

A.3 Pseudocode of the algorithm for the trust region approach . . . . . 148
A.4 Pseudocode of the algorithm for the cauchy point approximation . 152
A.5 Pseudocode of the algorithm for the trust region approach . . . . . 156



i

i

“main” — 2010/2/24 — 14:59 — page 1 — #13
i

i

i

i

i

i

Chapter 1

Introduction

1.1. Airport inventory management

The ever increasing air traffic demand of passengers and cargos all over the
world is currently limited by the capacity of the airports, which are expected
to become a serious bottleneck for air traffic in a near future [1]. Facing
such growth requires significant investments for developing existing airports
and/or constructing new ones. Specifically, there is an increasing need for
safety equipments in order to grant airport safety, as well as for supporting
the correct execution of airport operations. In this scenario airports face every
day the challenging task of maintaining high standards of safety at a sustain-
able cost. In such a context maintenance plays an important role. Preventive
maintenance is scheduled in advance and anticipates the realization of equip-
ment failures. Corrective maintenance is carried out upon a failure happens
in a system. Typically, when a failure of some equipment takes place, failed
components must be promptly replenished with new spare parts, since safety
standards are not compatible with long repairing times. As observed by sev-
eral authors, see e.g. by [43], the logistics of spare parts differs from those of
other materials in several ways. Equipments may have remarkable costs, long
repairing times and sporadic failures. The latter are difficult to forecast and
cause relevant financial effects, due to the economical and legal implications
of a lack of safety of airport operations. These characteristics are particu-
larly stringent in the airport context, where therefore maintenance deserves
substantial attention. Maintenance concerns aftermarket service, which im-
portance today is in general high. Deloitte [26] discusses of service revolution,

1
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2 CHAPTER 1. INTRODUCTION

because the high combined revenues due to aftermarket service in Aerospace,
Defence, Automotive and High Tech. Specifically, it reports that in Aerospace
and Defence on average service revenues account for 47% of the total business
and that profitability is much higher that in the primary product business. It
follows clearly that improving aftermarket processes and resource allocation is
crucial in aerospace business. The sporadic nature of the failure process for
a single equipment translates in most cases into very low demand for spare
parts. For an item there are typically less than ten working equipments with
MTBF equal to six years or more. Therefore, for economical reasons, airports
are usually grouped on a regional base and served by a single warehouse. For
example, the Italian territory is divided in 17 service regions serving a total
of 38 civil airports [30]. Each spare part warehouse manages the aggregated
demand of all the airports encompassed in its region. It follows that the ag-
gregated demand rate for some items may be low or high, depending on the
number of working equipments in the area. The spare parts supply chain may
typically involve at least three actors: airport authorities, logistics companies
and equipment suppliers. The latter are responsible for supplying new compo-
nents and/or repaired items, which usually require long replenishment times.
Intermediate logistic companies are in charge of replenishing spare parts in
the short term, by granting minimum levels of operational availability (i.e.,
the fraction of time during which all working equipments are operative) regu-
lated by contracts with airport authorities. Clearly the best design of resupply
networks and the optimal allocation of inventories within these networks is of
unquestionable importance to the economical maintenance of equipment. The
types of decisions that must be made relating to service parts can roughly be
divided into three planning categories: strategic planning, tactical planning
and operational planning. Strategic planning is an on-going activity that has
two primary functions. First, the definition of customer requirements, e.g. the
range of service parts needed and timeliness of these needs, today and for the
next several years. Second, the definition of the resources to meet customer
requirements, e.g. the operating environment, the information systems, the
supply chain partners. From the perspective of service parts, tactical planning
establishes what inventories will be required to meet operational objectives at
some future time, given the design and the operational characteristics of an ex-
istent resupply system infrastructure. Finally, the third category of planning
concern operational decisions, which are based on real-time execution prob-
lems, are formulated over short planning horizons and contain more details on
current operating limitations.
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1.2. RESEARCH MOTIVATION 3

1.2. Research motivation

This thesis is devoted to constructing mathematical models that can be ef-
fectively used to carry out the tactical planning goal of determining systems
stock levels. Our case study is motivated by the practical needs of an Italian
logistics company supporting the activity of 38 civil airports spread over the
Italian territory. The company handles 17 warehouses and manages the overall
processes of purchasing, holding, ensuring that the overall reliability of safety
equipments is always within contractual limits. The aim of the company is
therefore to grant the prescribed quality of service at minimum cost. To this
aim, a two echelon inventory policy without lateral transshipments is currently
adopted and the level of stock and geographical allocation of spare parts is
obtained with the VARIMETRIC algorithm of [74]. This policy is depicted in
figure 1(left).

Figure 1.1: Logistics chain system: two echelon (left) and single echelon (right)

Effective supply chain management is currently recognized as a key deter-
minant of competitiveness and success in manufacturing and services, because
the implementation of supply chain management has significant impact on cost
service and quality. Numerous strategies for achieving these targets have been
proposed. One such strategy allows movements of stock between locations at
the same echelon level or across different levels. These stock movements are
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4 CHAPTER 1. INTRODUCTION

termed lateral transshipments, or simply transshipments. As a demand oc-
curs under the implementation of transshipment strategy, there will be three
possible activities: the demand is met from the stock on hand or it is met
via transshipment from another location or it is backordered. In other words,
firstly, if a location’s on hand inventory level is greater than the demand size,
than the demand is met. Secondly, if the on-hand inventory is positive but less
than the demand size, than it is used to partially satisfy the demand and the
remaining demand is met either via transshipment or is backordered. Thirdly,
if the on-hand inventory level is zero, the demand is met via transshipment
or is backordered under the assumption of no lost sales. Therefore, trans-
shipment policy can improve stock availability, customer service level. without
increasing stock level which may induce higher inventory relevant cost. In other
words, transshipments enable the sharing of stock among locations, they facil-
itate each location as a secondary, random supply source for the remainder. If
transshipment is not limited to one direction, the locations which meet their
demand via transshipment form a pool. Thus, the locations’ replenishment
can be coordinated and even combined in order to avoid excessive inventory
costs. The improvements in information technology coupled with the substan-
tial reduction in the cost of processing, storing and analyzing data have made
sharing of inventories more attractive. Furthermore, logistics companies, such
as UPS, have made the rapid movement of parts from one place to another
possible and more affordable. The underlying question that must be addressed
is: which is the impact of lateral resupply on inventory levels and operations.
A number of authors have addressed this issue. Several simulation studies have
demonstrated the effects of lateral resupply in multi-echelon systems [32], [33],
[73]. While the environments that were analyzed by these authors did differ,
their results showed that in a wide variety of circumstances, lateral resupply
among locations is a very effective way to improve customer service and lower
inventory investments. Other authors have presented and tested many analytic
models that explicitly consider the possibility of supplying location through lat-
eral transshipments. For example, see Archibald [3], Lee [59], Alfredsson and
Verrijdt [2], Axsater [4], Taragas [79], [81], Taragas and Cohen [80], Sherbrooke
[73]. These models differ in many ways. Some are stationary, continuous time
models, while other are periodic review. Essentially, though, all these analytic
models are tactical planning models. They are either economic models that
suggest what quantities of material to buy or they are models used to deter-
mine the probabilities for various events occurring. We say that these models
are tactical models because they do not consider the possibility of using all
state-of-the-world information when representing the operational environment.
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1.3. RESEARCH OBJECTIVES 5

For example FIFO inventory allocation rules are often assumed as the basis for
shipping parts from a central location (depot) to field stocking location. Real
time execution systems would take more information into account. Moreover,
as observed, e.g., by [54], single echelon models with complete pooling might be
more effective for reducing both reaction time to stockouts and inventory levels.
In Figure 1(right) a single echelon policy is depicted. At the time of writing,
lateral communication is only used by the company in emergency situations,
when couriers or overnight carriers rapidly transfer parts to demand locations.
However, lateral transshipment is not explicitly included in the model when
deciding the spares allocation among the 17 warehouses. Therefore, the com-
pany managers are interested in evaluating the potential benefits deriving from
the adoption of a single echelon with a complete pooling policy. To this aim,
however, there is a need of effective models for assessing the performance of a
single echelon replenishment policy. This is not an easy task for large instances
even for steady state analysis, as the size of the instance increases, as in case
of high rate demand. And finally there is the need of efficient and effective
models for allocating optimally the stock in such a context. In fact, in models
where lateral transshipment is taken into account, the resulting optimization
problems have non-linear constraints (on service levels) and objective and in-
teger decision variables (like base stock levels). Especially for problem with
large numbers of locations optimization is rough. In such models only explicit
enumeration [50] has been proposed for solving the Spares Allocation Problem
exactly or many heuristics algorithm have been evaluated in [93], [59], [54], [4]
[70].

1.3. Research objectives

Based on the needs summarized above, the following research objectives are the
subject of this dissertation. We focus on a single echelon one-for-one ordering
policy with complete pooling, with a deterministic rule for lateral transship-
ments.

• The main objective is to formalize mathematically the Spares Allocation
Problem (SAP) and understand its mathematical structure for building
an exact algorithm for optimally allocating the spares. In fact, in litera-
ture to the best of our knowledge no exact algorithm has been proposed
for allocating optimally the spares in a continuous review setting rather
than a total enumerative algorithm. By exploiting the above algorithm
it is interesting
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6 CHAPTER 1. INTRODUCTION

– Making insight in the SAP and underline which factors influence
inventories in such a context.

– Evaluating fast and accurate heuristics for SAP.

• Efficient and accurate models for assessing the performance of a single
echelon replenishment policy are needed especially for large numbers of
locations. A drawback of the policy of interest is the state dependent
nature of re-forwardings in the systems, it’s therefore interesting.

– understanding the properties of the Markov chain associated to the
chosen policy.

– exploring, despite its state dependent nature, the possibility of ex-
pressing the state probabilities of the associated Markov chain model
exactly in product form

– developing fast and accurate approximate models for evaluating the
performance and costs in the system, since computing the state
probabilities is not practical as the number of states in the Markov
chain increases.

The achievement of the first objective clearly requires a strong connection
with the resolution of the second objective. In fact, the development of an
exact algorithm for allocating the spares may require in contexts with a large
number of warehouses and high rates approximate models for assessing the
performance and evaluating the costs.

1.4. Research contribution

This thesis presents an innovative contribution to the combined resolution of
the research objectives of Section 1.3. Next, we briefly introduce the main
achievements. We focus on a single echelon one-for-one ordering policy with
complete pooling, with a deterministic rule for lateral transshipments. This
policy may be modeled through a Markov chain. In fact, a Markov process
allows us to model the uncertainty in many real-world systems that evolve
dynamically in time. The basic concepts of a Markov process are those of a state
and of a state transition. In specific applications the modeling art is to find an
adequate state description such that the associated stochastic process indeed
has the Markovian property that the knowledge of the present state is sufficient
to predict the future stochastic behavior of the process. A Markov chain is a
random sequence in which the dependency of the successive events goes back
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1.4. RESEARCH CONTRIBUTION 7

only one unit in time. In other words, the future probabilistic behavior of the
process depends only on the present state of the process and is not influenced
by its past history. The main interest is the long-run behavior of the Markov
chain, i.e. long-run averages are usually required in the analysis of practical
applications, to this aim it’ s necessary defining the equilibrium distribution,
if any, and computing this distribution, e.g. {πj , j ∈ I}. I is the state space
of the stochastic process. Hence, the equilibrium state probabilities πj may be
determined up to a multiplicative constant by the equilibrium equations

πj =
∑

k∈I

πkkj

where j ∈ I and pij are the one step state probabilities, when the Markov chain
is assumed time-homogeneous. The multiplicative constant is determined by
the normalizing equation

∑

j∈I

πh = 1

It’s known that in case of finite state Markov chain in general there are two
methods to solve the Markov chain equations: direct and iterative methods,
such as the Gauss-Jordan method and the Gauss-Seidel method respectively.
What one usually does to solve numerically the infinite set of equilibrium equa-
tions is to approximate the infinite-state Markov model by a truncated model
with finitely many states so that the probability mass of the deleted states is
very small. Indeed, for a finite-state truncation with a sufficiently large num-
ber of states, the difference between the two models will be negligible from a
computational point of view. However, such a truncation often leads to a finite
but very large system of linear equations whose numerical solution will be quite
time-consuming, although an arsenal of good methods is available to solve the
equilibrium equations of a finite Markov chain. Moreover, it is somewhat dis-
concerting that we need a brute-force approximation to solve the infinite-state
model numerically. Fortunately, many applications allow for a much simpler
and more satisfactory approach to solving the infinite set of state equations.
Under rather general conditions the state probabilities exhibit a geometric tail
behavior that can be exploited to reduce the infinite system of state equations
to a finite set of linear equations. The geometric tail approach results in a finite
system of linear equations whose size is usually much smaller than the size of
the finite system obtained from a brute-force truncation. Hence, it’s clear that
computing the state probabilities is not practical as the number of states in
the Markov chain increases In fact, the above methods suffer from computer
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8 CHAPTER 1. INTRODUCTION

memory problems and for long computation time.
Hence, we have explored the possibility to express the state probabilities of
the associated Markov chain model in product form, thus reducing the com-
putational effort. We have tested it numerically, but as expected the state
dependent nature of re-forwarding in the systems does not allow to express
these state probabilities in product form.
Therefore, we adapt four approximation techniques to our model and evalu-
ate their performance in terms of computational effort, memory requirement
and error with respect to the exact value (objective 2). Three techniques ap-
proximate state probabilities with others that can be expressed in product
form, so that the Markov chain can be decomposed. Specifically, we adapt
a method by Alfredsson and Verrijdt, the Equivalent Random Traffic method
and the Interrupted Poisson Process method. The fourth technique is based
on the multi-dimensional scaling down approach, which studies an equivalent
reduced Markov chain rather than decomposing the original one. The first
three methods are based on decomposition approach. State probabilities are
approximated with others that can be expressed in product form, so that the
Markov chain can be decomposed and operational availability can be easily
computed. Specifically, our first method, referred to in the following as the
AV method, is a slight modification of a method by Alfredsson and Verrijdt
[2]. The second and third method is based on ideas successfully used in the
field of telecommunications, and specifically in the Equivalent Random Traffic
method (ERT method) [45] and the Interrupted Poisson Process method (IPP
method) [56],[61]. With the IPP and ERT methods part of the traffic may be
lost when no server is available. In our adaptation of these methods we include
the presence of an external supplier to avoid lost requests. The fourth method
is based on the multi-dimensional scaling down approach, which studies an
equivalent reduced Markov chain rather than decomposing the original one. A
scaling down approach is used by Axsater [6] to study a two-echelon policy. We
adapt this method to study the single echelon policy with complete pooling in a
Markovian framework without decomposing the original chain. Computational
experiments, carried on practical data from an airport equipment maintenance
context show the accuracy degree and the computational effort required by
each approximate method.
A major contribution of this thesis to solving efficiently and timely the Spares
Allocation Problem consists in a branch and bound algorithm (objective 1).
In literature an exact efficient method to solve SAP in a continuous review
setting seems to lack. As noted in [50] it is very likely that no polynomial time
optimization algorithm exists for our type of problem. The problem under con-
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1.5. OUTLINE OF THE THESIS 9

sideration in this dissertation could also be considered as a nonlinear knapsack
problem. For a general description of knapsack problems, see e.g.[46]. Kellerer
et al. [46] prove that even the simplest type of knapsack problem belongs to
the class of NP-hard problems. This is generally considered as strong theoret-
ical evidence that no polynomial time algorithm exists for computing optimal
solutions and thus a good reason for looking for efficient exact enumerative
techniques or to apply approximation algorithms. Therefore, after modeling
the stock allocation problem as a non convex integer program, we exploit the
special structure of the problem to design an efficient branch and bound pro-
cedure. Our bounds are obtained by solving a reduced problem with convex
objective function, solvable at optimality very efficiently. Computational ex-
periments, carried on practical data from an airport equipment maintenance
context show that this method efficiently solves at optimality many practical
instances.
Different cost scenario are evaluated for understanding which factors influence
inventories and when the proposed procedure is more efficient.
Moreover a simple and fast heuristic is computed by distributing spare parts
among warehouses with positive demand and by giving preference to ware-
houses with larger demand (objective 1). In fact, simulation experiments car-
ried out in [15] show that avoiding concentration of spares in few warehouses
is an effective allocation policy. The accuracy of such an heuristic is evaluated
by comparing it with the branch and bound allocations.

1.5. Outline of the thesis

This section gives a short introduction to each chapter.

Chapter 2 provides an overview of the state-of-knowledge in spare parts pro-
visioning. In a first part, some relevant contributions to spare parts inventory
control are described. In a second part, we focus on transshipment problems in
Supply Chain Systems. Finally we give an overview of some relevant analytical
and computational methods, used in the analysis of stock allocation problems
where base stock policy is assumed. In fact, because of this assumption we can
separate evaluation of a given policy and optimization, the latter giving a value
to the decision variables of interest. Therefore, specific methods must be used
for evaluation and optimization respectively. Note that the stochastic nature
of the problem of interest is taken into account in the analysis of a given policy.
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10 CHAPTER 1. INTRODUCTION

Chapter 3 introduces the main notation used in this dissertation and the two
main mathematical models involved in the SAP analysis and solution. The
first is a Markov chain model useful for evaluating the costs and waiting times
in the system, while the second is an optimization model for stock allocation.
This chapter also contains a short description of an optimization model used to
prove that a product form of the state probabilities of the associated Markov
chain model does not exist.

Chapters 4 describes four models for fast approximation of cost and perfor-
mance.

In Chapter 5 heuristic and exact allocation algorithms are described.

The main results obtained in this thesis are summarized in Chapter 6. Further
research is also addressed.

In Appendix 6.2 we give a resume of the Markov chain theory.

In Appendix 6.2 we describe shortly phase-type distribution and its evolu-
tions.

In Appendix 6.2 we describe some optimization techniques applied in this dis-
sertation.
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Chapter 2

An overview on spare parts

provisioning

2.1. Spare parts inventory control

Taxonomy of service parts inventory systems

Different elements affects the amounts of inventory found in various portions
of a service parts inventory system. In general there are numerous reasons for
choosing to stock inventory of an item type within a system, often at multiple
locations. The underlying echelon or network resupply structure will have a
substantial impact on the amount of inventory needed. There are clearly many
possible structures. However, for each one, there is usually a well defined resup-
ply plan. Some systems have many echelon, some have fewer. While the basic
structure may be similar for several systems, the actual operating environment
can vary dramatically. Different item characteristics may create operational
differences between systems, whether the systems are of the same type or not.
In fact, each service parts resupply system is designed to accommodate the
items found in it. The systems, and the items within them, can have varying
characteristics.

• Systems differ in the number of items that are managed. In some envi-
ronments there are just a few hundred or a few thousand items, up to
hundreds of thousands of items.

• The demand rate among items can vary substantially. Demand rates of
items also differ dramatically by location within a resupply system, as

11
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12 CHAPTER 2. AN OVERVIEW ON SPARE PARTS PROVISIONING

well as between different resupply systems.

• The unit shortage, holding and transportation costs differ dramatically
among the items as well. We also note that also transportation costs can
be a substantial component of operating a service parts resupply system.
In some instances the total cost of moving material can amount to hun-
dreds of million of dollars per year. The size and weight of each item
along with their demand rates obviously determine the volume, weight
and quantity of material that must be transported. But the mode of
transport selected to move this material is an important factor in deter-
mining the annual transportation costs.

• The procurement, transportation and other components of lead times as-
sociated with each item determine the amount of inventory carried in the
system in two ways. There is pipeline stock that exists because of the
time it takes to receive orders after they are placed, that is, the resupply
time. Based on Little’s Law, this time results in an average number of
units in the resupply system. Thus the choices of suppliers, transporta-
tion modes and inventory policies, all affect the average resupply lead
time and hence the average pipeline stock. Furthermore lead times are
not always constant. Another factor which influences the resupply time
is the inventory policy followed by the supplying location. When orders
are shipped immediately because stock is on hand at the supplier, then
resupply lead times are one value. If the supplier does not have stock
available to ship, then the resupply action is delayed for some amount of
time. This uncertainty in lead times is an important factor when setting
the stock levels. We note that the average and uncertain length of resup-
ply lead time also affects the second type of stock that is required: the
safety stock. There will be inherent variability in the demand processes
for each item. It’s common to assume in such a context that demand over
replenishment lead times is governed by a random process. The degree
of difference in this variation of demand can be substantial. Uncertain
demand over uncertain replenishment lead times yields a requirement for
safety stock. In many real world situations, safety stock is the predomi-
nant component of total stock for most items.

• Some service parts are consumable and some are repairable after they
fail.

There are many other characteristics associated with items that are of impor-
tance when setting the inventory levels. These include the physical character-
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2.1. SPARE PARTS INVENTORY CONTROL 13

istics of the items (volume, weight and shape), the special temperature and
humidity storage requirements, the possibility of items becoming obsolete and
the substitutability of one item type for another. In this dissertation we do
not consider these other factors. Many types of inventory policies are found in
practice. These range from policies that are location specific to echelon-stock-
based inventory policies in which total system stock and system performance
across all items at all location are considered. The inventory position at a
location for an item is equal to its on-hand plus on-order minus backordered
inventory. Reorder points are usually expressed in terms of inventory position.
When following an (s,S) policy a location places an order when its inventory
position falls to s or below and an order is placed to raise the inventory position
to S. Echelon stock in a resupply network refers to the inventory position at
that location plus all the inventory found in the resupply system for successor
(downstream) locations in the resupply network. In some environments, inven-
tory levels are monitored continuously while in others they are monitored only
periodically. Policy implementation obviously depends on wether reviews are
continuous or periodic. One important class of policies are called base stock,
order-up-to or (s-1,s) policies. When employing these policies in a continuous
review environment, an order is placed every time a demand arises. The quan-
tity ordered equals the quantity demanded. In periodic review situations, an
order is placed in a period to raise the inventory position to some specified
level. In both cases, some target inventory level, based on either echelon or
installation inventory position, is used to trigger an order. Thus, whenever
the inventory position is below s when a review occurs, an order is placed
immediately to raise the inventory position for the location to s.

An overview of the literature

Multi-echelon models

In 1968, Sherbrooke [72] published a landmark paper in which he described a
mathematical model for the management of repairable items called METRIC
(Multi Echelon Technique for Recoverable Item Control). Since that time many
extensions and modifications to that model were proposed. The exact distri-
bution of the number of units in the resupply system at each location in a two
echelon depot base system is too computationally burdensome to be of practi-
cal use, refer to [63] for its computation. Hence the METRIC model is based
on an approximation to this distribution that is easy to compute, and therefore
has been widely used in many applications. The METRIC approach substan-
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14 CHAPTER 2. AN OVERVIEW ON SPARE PARTS PROVISIONING

tially means that we evaluate the average delay for stocking point orders due
to shortages at the depot. This average delay is added to the stocking location
transportation times to get exact average lead times for each location. When
evaluating the costs at the locations, these averages are, as an approximation,
used instead of real stochastic lead times. Hence a METRIC type approxi-
mation is quite simple. It means essentially that a multi-echelon system is
decomposed into a number of single echelon systems. Substantially under the
METRIC approximation the number of backorders of each local warehouse is
assumed to be Poisson distributed [72] and the improved two-moment approx-
imations for that [75, 39]. Although the errors may be substantial in some
cases, the approach is also often reasonable in practical applications.

Nahamias [65] and Axsater [5], [8] review the literatue. See Graves [39], Axsater
[4] and Sherbrooke [73] for enhancements and applications.
In particular, METRIC was extended to represent more complicated environ-
ments in which there are both repairable assemblies and subassemblies. This
model was originally developed by Muckstadt [62], who included a hierarchical
or indented-parts structure (MOD-METRIC).

In METRIC-type models, ample repair capacity is assumed. A complete stream
of research is devoted to the situation with limited repair capacity. When lim-
ited repair resources are available, it pays off to set certain repair priorities.
For an overview of work that studies limited repair capacity, see Sleptchenko
[78].

Cohen et al. [22] have considered the problem of determining stocking policies
for low usage items in multi-echelon inventory systems. The problem of deter-
mining the stocking quantities for the various parts so as to yield an optimal
trade off between holding costs and transportation cost is made worse due to
innovations and competitive pressures resulting in complex echelon structures,
high priority for service, low demand probabilities, etc. Their paper develops
a formula to find the target stocking levels which minimizes the total cost of
the system subject to the satisfaction of the service level constraint. When
the number of stocking points or stocking levels becomes high, the possible
number of stocking policies will also be high, and they use a branch and bound
algorithm to obtain the solution, merging all stocking points at all levels to ob-
tain the cost of the full structure. This is followed by branching the structure
starting from the toplevel and finding an optimal stocking policy at each level.
In a separate but related paper, Cohen et al. [23] discuss the situation where
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2.1. SPARE PARTS INVENTORY CONTROL 15

the requirement for rapid response is concurrent with a need for low levels of
inventory. In this situation, both the common competitiveness requirements
facing organizations today and the allocation decision for service support be-
comes crucial. This paper fixes attention on a given product or product family
and defines a multi-echelon inventory system based on level by level decom-
position using the single location problem as their basic building block. Such
rapid response implies regional and local suppliers for final products and spare
parts for repair. They establish two types of demand: customers (emergency)
demand and normal. Part stocking is assumed to follow a (s, S) policy for
which a cost function is formulated.

Most of the previous study is focused on dealing with problems in a two echelon
supply chain network, where it includes a single source supplier-warehouse at
the higher level and multiple (two or more than two) stocking locations at the
lower level. The assumption for simple problem structure are necessary for the
reason of computational tractability in the process of finding the optimal solu-
tion. Especially, the earlier study addressed relatively simple model with two
stock points and/or one single period, thus limiting their practical application.
To alleviate the loss of realism, the recent researchers have attempted heuristic
approximation and/or simulation approaches in their analysis for the supply
chain system with increased members, e.g. [71], [66], [19].
For relevant research specifically devoted to lateral transshipments (inventory
pooling) refer to Section 2.2.

Number of items

Most of inventory related research deals with single item problems in which
only one item at a time is considered. Such problems are typical when we
use an item approach, where inventory levels for each individual item are set
independently. An alternative approach, denoted as the system approach by
Sherbrooke [74], considered all items in the system when making inventory lev-
els decisions and may lead to large reductions in inventory costs in comparison
to an item approach.

Archibald et al. [3] considered a two location, multi item, multi period, peri-
odic review inventory system subject to a storage space limitation for all items.
The demand is assumed to follow Poisson distribution and transshipments are
possible during a period in response to stockouts.



i

i

“main” — 2010/2/24 — 14:59 — page 16 — #28
i

i

i

i

i

i

16 CHAPTER 2. AN OVERVIEW ON SPARE PARTS PROVISIONING

Wong et al. [94] investigated a two location, multi item continuous review
system for repairable items wit one for one replenishment. The optimization
problem is to determine stocking policies for all items minimizing the total
system cost subject to a target level for the average waiting time for an ar-
bitrary request for a ready-for-use part at each of the two locations. In their
model, the decisions with respect to different items are coupled because of the
multi-item service measure that is used. The solution procedure requires a long
computation time to solve rather large problems.

To overcome that limitation Wong et al [93] developed a simple and efficient
solution procedure to obtain close-to-optimal solutions for the multi-item prob-
lem with lateral transshipments. The model is further extended to the case
with multiple (and not limited to two) locations. Further, they also analyze
the magnitude of the savings obtained by using the multi-item approach and
lateral transshipments. An efficient heuristic algorithm may be found also in
[70].

Performance criteria

The commonly used performance measures are the cost and the service levels.
The relevant costs are for short stockout costs, holding cost, transportation
cost and ordering cost. There are two relevant criteria for the performance of
the system: we do not want to order too frequently, because of scale economies,
nor do we want to carry to much inventory. Typically these are translated into
more precise criteria focusing on long-run averages over time.

In fact, in a system in general for example after developing the steady state
probabilities for the number of units that are in the resupply system (both via
transshipments or via emergency shipments) at a random point in time when
the demand process has an assumed behavior, it is possible calculate different
measures of system performance.

The first performance measure we want to underline, the fill rate, is the most
commonly used measure in practice and is defined as follows. Given a stock
level s, the fill rate, F(s), is the expected fraction of demands that can be sat-
isfied immediately from on-hand stock. As is intuitively clear, as s increases
the fill rate will increase.

In spare part literature refer to Thonemann et al. [85] and to Vliegen and
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2.1. SPARE PARTS INVENTORY CONTROL 17

Van Houtum [89] for fill rate usage as service level measure.

A second performance measure is called the ready rate corresponding to stock
level s. The ready rate measures the probability that an item observed at a
random point in time has no backorders, that is its net inventory is non nega-
tive. We denote the ready rate by R(s). Either there are backorders or there
are no backorders at a random point in time.

Silver [76] make use of this performance measure in spare part context.

Observe that when computing either a fill rate or ready rate we are not con-
cerned with the duration of backorders when they occur. Thus for example a
fill rate of 95% implies that on average 95 of every 100 units that are ordered
have that request satisfied immediately. But we are not measuring how long
it takes satisfy the other 5% of the units requested. Thus is not always clear
that a firm which maintains a high fill rate is truly satisfying its customer needs.

A third performance criterion measures the expected number of backorders
outstanding at a random point in time and is denoted by B(s). It is a response-
time focused measure.
Observe that B(s) is equal to the demand rate times the average ”waiting time”
of a demand. As noted in Muckstadt [63] this is a consequence of Little’s law,
L = λW , where B(s) is L, λ the demand rate and W the average waiting time.
We could also compute the conditional value of W, given that backorders exist.

Sheerbrooke [73] considered multi-item, continuous review policies in a spare
part setting and showed that maximizing the equipment availability is approx-
imately equivalent to minimizing the sum of expected backorders, suggesting
the use of total expected backorders as service measure.

We next shortly describe how these performance measure can be computed.
We assume that backorders are allowed.
Let us now denote the random variable representing the number of units that
are in resupply as X. Therefore P{X = x} is the probability of having x units
in resupply. P{X = x} = p(x|λτ), where λ is the demand rate and τ is the
average resupply time.

The ready rate is the probability that there are no backorders existing at a
random point in time. This is the probability that the number of units in re-
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18 CHAPTER 2. AN OVERVIEW ON SPARE PARTS PROVISIONING

supply is s or less. R(s) =
∑s

x=0 p(x|λτ).

The computation of the fill rate is more difficult, but it is obtained from the
steady state probabilities, p(x|λτ).
Suppose a customer order is received. There will be one unit of the order sat-
isfied if there are s− 1 or fewer units in resupply. A second unit will be sent to
the customer if the order is for two or more units and there are s− 2 or fewer
units in resupply.
Hence the expected number of units filled per customer order is given by

F1(s) =
∑

x−1 p(x|λτ) + (1− u1)
∑

x≤s−2 p(x|λτ)+

+(1− u1 − u2)
∑

x≤s−3 p(x|λτ) + (1−
∑

j≤s−1 uj)p(0|λτ)
(2.1)

uj measures the probability that a customer order is exactly for j units.
For example when the demand process is Poisson F1(s) = F (s) = R(s)−p(s|λτ)
and F (s) < R(s).
In case of compound Poisson demand λF1(s) measures the expected number of
units that can be shipped on time per day, when λ is the expected daily rate
at which customers place orders.
λu measures the expected number of units demanded per day, where u is the

expected number of units demanded per order. Thus F1(s)
u

measures the frac-
tion of the units ordered that are sent to customers on time. Here is the fill
rate F (s). Next we see that the expected number of units in backorder status
in steady state is

B(s) =
∑

x>s

(x− s)p(x|λτ)

Properties of the performance measures

Some properties of the performance measures that will be important in the
analysis of stock allocation problems are described in what follows. Such prop-
erties are shown for the general representations of the service measure given
above and may be commonly found also in specific service measures used in
practice.

We begin by analyzing the fill rate measure. Let us assume for simplicity
that the demand process is a simple Poisson process with rate λ. Furthermore,
assume that resupply times for each order are independent and identically dis-
tributed with mean τ . From the Palm’s Theorem, the probability that x units
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2.1. SPARE PARTS INVENTORY CONTROL 19

are in the resupply system in steady state is given by

p(x|λτ) = e−λτ (λτ)x

x!

In fact, Palm Theorem states that if demand follows a Poisson process with
mean λ and the replenishment lead time is independently and identically dis-
tributed according to an arbitrary distribution with mean τ , then the steady-
state probability distribution for the number of items in the replenishment
pipeline follows a Poisson distribution with mean λτ . Since the demand pro-
cess is a simple Poisson process, the fill rate, given a stock level s is given
by

F (s) = 1−
∑

x≥s

p(x|λτ) =
∑

x<s

p(x|λτ)

Perhaps the optimization goal might be to choose stock levels so that the aver-
age fill rate is maximized given some target investment level in inventory. This
type of optimization problem would be easy to solve if F(s) were a discretely
concave function. Unfortunately it is not. We have

∆F (s) = F (s+ 1)− F (s)

and
∆2F (s) = (s+ 1)− (s)

Hence with a demand process being a Poisson process ∆2F (s) > 0 when
λτ > s+1 and F(s) is not concave in that region. Hence F(s) is discretely con-
cave only when s ≥ λτ − 1 when λτ is an integer. Hence typically in practical
cases s may be constrained to assume values that are greater or equal to ⌈λτ⌉
to assure that the fill rate is concave over the feasible region.

The backorder function B(s) has very desirable mathematical properties, how-
ever.

B(s) =
∑

x>s

(x− s)p(x|λτ)

For B(s) to be discretely convex and strictly decreasing requires

∆B(s) = B(s+ 1)−B(s) < 0

and
∆2B(s) = (s+ 1)− (s) > 0
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20 CHAPTER 2. AN OVERVIEW ON SPARE PARTS PROVISIONING

We have

∆B(s) =
∑

x≥s+1(x− (s+ 1))p(x|λτ)−
∑

x≥s+1(x− s)p(x|λτ)

= −
∑

x≥s+1 p(x|λτ) < 0
(2.2)

and

∆2B(s) = −
∑

x≥s+2 p(x|λτ) +
∑

x≥s+1 p(x|λτ)

= p(s+ 1|λτ) > 0
(2.3)

and hence B(s) is a strictly (discretely) convex function of s for all s ≥ 0.

Space, capacity and time

Space, capacity and time constraints are three factors that can affect signifi-
cantly the system performance, either costs or service level. Not many works
has been done in the areas of transshipment problem accounting for these fac-
tors.

Wong [93, 94] investigated multi item spare parts system, minimizing total
costs for inventory, holding, lateral transshipments and emergency shipments
subject to a target level for the average waiting time per demanded part at
each location. Recent similar studies may be found in [70].

Van Houtum and Zijm [87] classified inventory systems as two categories: ser-
vice model and cost model. In a service model the objective is to minimize the
total system costs subject to a set of service level constraints, such as space,
time and capacity constraints. In a cost model, however, the service constraints
are replaced with shortage penalty costs. Although in general the cost mod-
els are analytically more tractable, they have a serious limitation in that the
penalty costs are generally hard to estimate. Archibald et al. [3] analyzed a
multi-period, periodic review model of a two locations inventory system with
limited storage space.

These kind of optimization problem with space, capacity and waiting time
constraints is appropriate to be analyzed by Lagrange relaxation [94].



i

i

“main” — 2010/2/24 — 14:59 — page 21 — #33
i

i

i

i

i

i
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Background: analysis of one-for-one and order up policies

In what follows we focus on a one-for-one (s-1,s) policy in the continuous re-
view case. This policy is appealing intuitively in our context, where item costs
are usually high. It is nonetheless important that they are optimal in many
circumstances.

It is possible to show the optimality of the (s-1,s) policy for managing a single
item by considering a single location and a serial system both when inventory
levels are monitored periodically or continuously.

Classical proofs are based on dynamic programming. In their seminal paper,
Clark and Scarf [21] proved the optimality of base stock policies for incapac-
itated, periodic review, finite horizon, serial systems using dynamic program-
ming approach.

A different approach to prove the same result was introduced by Federgruen
and Zipkin [34] to prove the optimality of echelon base stock policies in the
infinite horizon case. The arguments are based on a lower bound on cost.

A third approach for establishing the forms of optimal policies in inventory sys-
tems is the single item single customer approach introduced by Muharremoglu
and Tsitsiklis [64]. They proved that state dependent echelon base-stock poli-
cies are optimal for incapacitated multi-echelon serial systems for both the fi-
nite and the infinite horizon models when lead times and demands are Markov
modulated.

In Muckstadt [63] their approach is presented and discussed. Under the hy-
pothesis of compound Poisson demand, continuous review, constant lead times
and a serial system of locations, the key idea in this innovative proof is to
decompose the system in a collection of countably infinite subsystems, each
having a single stock unit and a single customer demanding one single part.

Let us now consider the continuous time divided into periods of different length:
the length of a period is the time between the arrival of two consecutive cus-
tomer orders.

Let us now consider each unit of demand as an individual customer. Sup-
pose at the beginning of period 1 there are v0 customers waiting to have their
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demands satisfied. Let us now index these customers as 1, 2, 3, . . . , v0 in any
order. All subsequent customers are indexed v0 + 1, v0 + 2, . . . in the order
of the period of their arrivals, arbitrarily breaking ties among customers that
arrive in the same period.

Next, define the concept of the distance of a customer at the beginning of
any period. Every customer who has been served is a at distance 0. Every
customer who has arrived, placed in the actual order, but who has not yet
received inventory, is at distance 1. All customers arriving in future periods
are said to be at distance 2, 3, . . ., corresponding to the sequence in which they
will arrive. Distances are assigned to customers that arrive in the same period
in the same order as their indices. This ensures that customers with higher
indices are always at higher distances.

Next, define the concept of a location of a unit. At location 0 there are the
units already used to satisfy a customer order. At location 1 there is the stock
on hand in the last warehouse in the serial system. Then there are as many
artificial locations as the maximum possible lead time between the last stage
in the serial system and the stage which precedes it. Then there is another
physical location representing the stage which precedes the last one and so on
up to have a location representing the supplier. For short there are as many
physical location as many stages the serial system has, up to the supplier, and
as many artificial location as the sum of the maximum possible lead time be-
tween two consecutive stages for every consecutive stages couple in the serial
system. If the unit has not been ordered from the supplier it is in the location
with the greatest index, which represents the supplier.
At the beginning of period 1, an index is assigned to all units in a serial man-
ner, starting with units at location 1, then at location2, and so on. Arbitrarily
assign an order to units present at the same location. Assume a countably
infinite number of units available at the supplier.

The state of the system at the beginning of period n is a vector with an element
which stores the realization of the demand in the period n and a countable infi-
nite number of couples. In the j-th couple the first element stores the distance
of customer j at the beginning of period n and the second stores the location
of unit j at the beginning of period n.

Define a release action as an order placement for a unit, which enter in the
distribution system of the supplier/intermediate warehouses in the serial sys-
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2.1. SPARE PARTS INVENTORY CONTROL 23

tem, otherwise an hold action is realized.
Let a policy be a vector of release/hold actions for each unit in the location
representing the supplier and those representing the intermediate warehouses
in the serial system.
Let a committed policy be such that it ensures that the only customer that
the j-th unit can satisfy is customer j’s demand and that the only unit that
customer j can receive is the j-th unit. Let a monotone policy be such that it
always releases the units with the smallest indices from the supplier and the
intermediate locations in the serial system.

In each period the demand is observed. At the beginning of period n each
stage places an order to the former one, which release the number of units
requested to the successive location, i.e. these units enter in its distribution
process. By observing the number of units in the artificial locations, we know
how many units were ordered a known number of periods before.

The demand Dn is realized, these new customer arrive and are at distance
1. All customer at distance 2, 3, . . . , 2 + Dn − 1 all arrive at distance 1. All
customers at distance 2 +Dn, 3 +Dn, . . . at the beginning of the period move
Dn steps toward distance 1.

Units on hand at the first warehouse and waiting customers are matched to
the extent possible.

Then, h monetary units are charged per unit of inventory remaining on hand
and b monetary units are charged per waiting customer at distance 1. We
assume b > h, thus ensuring that if the inventory position is negative in some
period, then the optimal policy will be to increase the inventory position to
some non negative level.

The outline of the proof is as follows.
Each pair ”j-th unit - j-th customer” represents the j-th subsystem.
The cost for the overall system is the sum of the expected costs for the sub-
systems because of the linear cost structure. In fact, every monotone and
committed policy for the entire system corresponds to a set of a monotone and
committed policies for the subsystems and any set of monotone and committed
policies for the subsystems yields a feasible policy for the system.
When the individual subsystems are managed independently and optimally,
the resulting policy for the entire system is optimal.
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The optimal policy for a subsystem should be such that if it is optimal to re-
lease a unit from a stage or physical location when the corresponding customer
is at distance y, then it would also be optimal to release the unit from that
stage if the customer were any closer. Consequently, an appropriately defined
so called ”critical distance” policy is optimal for every subsystem. There is
a critical distance corresponding to each stage. When this policy is used for
every subsystem, the resulting policy is a state dependent echelon base stock
policy for the entire system.

Observe that the subsystems are operationally independent in the sense that
each subsystem can be managed independently without being affected by the
policies used to manage the other subsystems. Those parts of the state vector
that pertain to unit j and customer j are a sufficient state descriptor for the
j-th subsystem. A subtle point to be noted is that the subsystems, though
operationally independent, are stochastically dependent through the demand
process.

Theorem 1 For any starting state x1 in period 1, the optimal expected cost
in periods 1, 2, . . . for an entire system S equals the optimal expected costs in
periods 1, 2, . . . for the group of subsystems. Furthermore, when each subsystem
w is managed independently and optimally the resulting policy is optimal for
the entire system.

The proof is given in [63]. Next we show the existence of an optimal policy with
a very special structure for every subsystem, a so-called a ”critical distance”
policy.

Theorem 2 If it is uniquely optimal for subsystem w to release unit w (if it
is at the supplier or at any physical location) in period n when the system is
in the Markovian state sn and customer w is at a distance y + 1, then it is
optimal to release it if the customer were any closer.

The proof is given in [63] and is by contradiction: it is suboptimal for a subsys-
tem to hold unit w if customer w is at distance y+ 1 while it is suboptimal for
a subsystem to release unit w if customer w were at a distance y. Therefore,
a ”critical distance” policy y for a certain stage in period n and Markovian
state sn for every subsystem is the maximum distance in which it is optimal to
release: it is optimal to release unit w if and only if customer w is at distance
of y or closer. When the critical distance policy is used in period n for every
subsystem, the resulting policy for the original entire system is an order-up-to
policy.
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Theorem 3 The optimal policy for the system is to release as many units as
necessary to raise the inventory position in each physical location to its critical
distance minus 1 in period n when in Markovian state sn.

The proof is given in [63].

2.2. Transshipment problems in Supply Chain Systems

Effective supply chain management has become an important management
paradigm. Basically, it is an effective an systematic approach of managing
the entire flow of information, material and services in fulfilling a customer
demand. In this dissertation we are mainly focused on material flow manage-
ment in the supply chain system. At present many quantitative models have
been proposed to provide decision support for the management of materials in
supply chain [83]. Moreover, since the network of entities that constitute the
entire supply chain is typically too complex to analyze and optimize globally,
it is often desirable to focus on smaller parts of the system. One such part that
is attracting growing attention is the local distribution network, consisting of
multiple stocking locations, which are supplied by one or more sources.
The overall performance of the distribution network, whether evaluated in eco-
nomic terms or in terms of customer service, can be substantially improved if
the stocking locations collaborate in the occurrence of unexpectedly high de-
mand, which may result in shortages in one or more locations. Collaboration
usually takes the form of lateral inventory transshipment from a stock point
with a surplus of on-hand inventory to another location that faces a stockout.
Since the cost of transshipment in practice is generally lower than both the
shortage cost and the cost of an emergency delivery from the designated ware-
house and the transshipment time is shorter than the regular replenishment
lead time, lateral transshipment simultaneously reduces the total system cost
and increases the fill rates at the locations. A group of stocking locations that
share their inventory in this manner is to form a pooling group, since they
effectively share their stock to reduce the risk of shortages and provide better
service at lower cost.

Common assumptions

As pointed by Chiou [20] there are several basic assumptions that are com-
monly seen in the literature of transshipment such as the behaviors of demand
occurrence, transshipment time, repair time and transshipping priority rule.
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The behaviors of demand occurrence are usually characterized by the time
between demands and the distribution of demand size. The time between de-
mands is commonly assumed to follow an Exponential or Gamma distribution.
However, the distributions of demand size per each demand occurrence depend
on the characteristics of the investigated industry. For example, it was taken
as Weibull distribution for spare parts which have slow moving, expensive and
lumpy demand pattern [55]. Needham and Evers [66] assume the normal distri-
bution for military spare parts. A drawback of using the normal distribution
is that it is less appropriate for low volume items [77], however, it does not
place any restriction on the values of the mean and variance. Besides, Wong
et al. [94] assumed the demand occurs according to the Poisson process with
constant rate for repairable parts in equipment-intensive industries such as air-
lines, nuclear power plants and manufacturing plants using complex machines.
Furthermore in a large amount of transshipment literature the behaviors of
demand are alternatively characterized by assuming what distribution the av-
erage demand per time period follows [66, 81, 94].

In the majority of the literature transshipment time is assumed to be neg-
ligible. Kukreja and Schmidt [55] assumed that a part can be transshipped
between any two locations within a working day. This transshipment time is
assumed to be negligible. At present only some papers account for the non-
negligible transshipment time. In any case transshipment times are assumed
to be shorter than emergency supply. Lateral transshipment are faster and
cheaper than emergency supplies. Otherwise it makes no sense to pool the
item inventories. Wong et al [93, 94] addressed the analysis of a multi item,
continuous review model of a multi location inventory system of repairable
spare parts with lateral transshipment and waiting time constraints, in which
lateral and emergency shipments occur in response to stockouts. He considered
non negligible transshipment times. For the case of transshipment for spare
parts, the repair time is usually assumed exponentially distributed. This as-
sumption is probably not very realistic. However Axsater [4] and Alfredsson
and Verrijdt [2] showed that the service performance of the system is insensi-
tive to the choice of the lead time distribution.
Wong et al.[91] showed that delayed lateral transshipments can improve the
system performance, i.e. if a location having no backorders receives a repaired
part and at the same time at least one location in the pooling group has back-
orders, than it is reasonable to send the repaired part to the location with
backorders.
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One common transshipping priority rule for fulfilling the demands is that a
location receiving an order first satisfied its own backorder, if one exists and
then uses the remaining units to satisfy backorders at other locations in a way
that minimizing transshipping costs. The requested backorders are to be ful-
filled according to FIFO policy. A significant amount of literature in transship-
ment assumed that complete pooling policy is to be applied. A unit demand
is backordered if it cannot be satisfied via transshipment, in other words when
there are no units in the system. In case last parts cannot be shared, one may
introduce threshold parameters, having a situation of partial pooling,and agree
that a stocking point does not supplies a part by lateral transshipment if the
physical stock of the requested item is at or below the threshold level. A rule
has to be added for how the values of the threshold parameters are chosen, e.g.
[7].

Preventive and Emergency transshipments

There are two classes of transshipment. Lee [60] proposed that lateral trans-
shipment can be divided into two categories: emergency lateral transshipment
(ELT) and preventive lateral transshipment (PLT).
ELT is an emergency redistribution from a stocking point with ample stock to a
location that has reached stock out. However, PLT reduces risk by redistribut-
ing stock between retailers thus anticipating stockout before the realization of
costumer demands. In short, ELT responds to stockouts, while PLT reduces
the risk of future stockout.

Lee [59] presented a model that allows ELT between local warehouses that
are part of a group. If a local warehouse cannot satisfy costumer demands
with its on-hand stock, ELT is used to fill the demands from a warehouse in
the same group that has enough stock on-hand. If ELT is impossible due to
group-wide stockout, the unmet demand will be backordered. Lee [59] derived
expressions that approximate the fractions of demand that can be satisfied by
stock on-hand, ELT and backordering, and in doing so proved that applying
lateral transshipment reduces total costs.

Axsater [4] analyzed a system similar to that of Lee but with the modifica-
tion of assuming that warehouses within each group are not identical. Axsater
derived steady state probability by assuming exponentially distributed replen-
ishment time. Analytical results were compared with simulation results to
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show that in case of non identical warehouses the proposed model gives better
results. Rather than describing all the approaches for incorporating lateral
resupply into models, e.g. Archibald [3], Lee [59], Alfredsson and Verrijdt [2],
Axsater [4], Taragas [81], Taragas and Cohen [80], Sherbrooke [73], we want
to focus just on two relevant models: Lee’s model [59] and Axsater one [4],
respectively. Both are approximations.
In the first model Lee constructs probability distributions for key random vari-
ables, but also constructs an economic model that can be used to set stock
levels in a two-echelon system. This model is a METRIC like (Multi Echelon
Technique for Recoverable Item Control) model, refer to the landmark paper of
Sherbrooke [72]. A METRIC model is based on an approximation to the distri-
bution of the number of units in the resupply system at each location in a two-
echelon depot base system. The second model is a queueing like model based
on the assumption that the underlying system is governed by a continuos-time
Markov process. In such a model Axsater focuses on computing probabilities
of system performance resulting from given stock levels. The models pertain to
repairable items. Lee conducted experiments showing that the approximations
are accurate when service levels are high. Axsater developed the alternative
model, which substantially differs from the previous in a couple of ways. The
most important difference is as follows. In Lee’s model the location demand
rate is implicitly independent of wether or not there is stock on hand at the
location.The other difference between the models arises because Axsater rep-
resents the entire operating environment as a continuous-time Markov process.
Axsater model is more accurate.

Policies

Transshipment policies are incorporated with traditional inventory control poli-
cies, which are classified based on two fundamental questions: when to replen-
ish and how much to order. We focus here just on (s-1,s) policies, because we
assume this policy in this dissertation. In fact, continuous one-for-one stock
replenishment is a commonly used inventory control policy for a system in co-
operation with transshipment. It means whenever any stock is withdrawn, a
replenishment order is released. This control policy is especially suitable for
slow-moving and expensive items. The first to deal with continuous (s-1,s) pol-
icy in multi echelon systems with transshipment were Dada [24] and Lee [59].
One can refer to the following research for more in depth description [59], [4],
[73], [2], [38], [54], [92, 95], [57].
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Lee [59] developed a method for determining the minimum cost inventory po-
sition for a system that allows transshipments between identical locations and
finds approximations to measures of system performance including the expected
number of backorders and transshipments. Derived expressions approximate
the fractions of demands that can be satisfied by stock on-hand, ELT and back-
ordering, and in doing so proved that applying lateral transshipment reduces
total cost.

Both Axsater [4] and Sherbrooke [73] proposed similar approximations for sys-
tems that allow transshipments between non identical locations. Axsater an-
alyzed a system similar to that of Lee, but with the modification of assuming
that warehouses within each group are not identical. Steady state probability
is derived by assuming exponentially distributed replenishment time. Analyti-
cal results were compared with simulation results to show that, in case of non
identical warehouses, gives accurate results.

Recently, Grahovac and Chakravarty [38] formulated and solved the proposed
model based on (s-1,s) policy. They reached some counter-intuitive conclusion
that is saving is not always accompanied by a reduction in the overall inventory
in the supply chain. These opposing trends suggest that new extra incentives
are needed to enforce the transshipment arrangement.

In addition Kukreja et al.[54] developed a heuristic to determine replenishment
and transshipment policies for a system with non identical locations under the
objective of minimizing cost.

Wong et al. [94] extended the single item model of [92] to a model of mul-
tiple items. They analyze a two location, multi item, continuous review system
for repairable items with one-for-one stock replenishment and determine stock
levels for all items minimizing the total cost subject to a target level for aver-
age waiting time. These models are appropriate specifically for slow moving,
expensive and repairable items.

In [93] Wong et al. extended their study to more than two locations.
Finally Kranenburg [50] studied the multi-item spare parts inventory models
in which the different features of commonality, service differentiation, lateral
transshipment, two-echelon structure, and two transportation modes are incor-
porated. These results has been collected in [51], [52], [53].
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Performance criteria

The implementation of supply chain management has significant impact on
cost, service level and quality. Lateral transshipments represent one way in
which logistics managers can reduce inventories while simultaneously main-
taining customer service levels. Therefore, the commonly used performance
measures to evaluate the effectiveness of transshipment are the cost and the
service levels. The relevant costs considered in the transshipment model are
similar to those of inventory research. Stockout costs, holding cost, transporta-
tion cost and ordering cost. Hence in short there are two relevant criteria for
the performance of the system: we do not want to order too frequently, because
of scale economies, nor do we want to carry to much inventory. Typically these
are translated into more precise criteria focusing on long-run averages over
time.

2.3. Methodology

In this section we describe some techniques that can be used in the analysis
of the Spares Allocation Problem. Recall that we assume that a single echelon
one-for-one (base stock) ordering policy with complete pooling, with a deter-
ministic rule for lateral transshipments is used. Because of this assumption we
can separate evaluation and optimization. Evaluation constitutes the analysis
of a given policy. Evaluation techniques can be exact or approximate. We dis-
cuss examples of both. Optimization concerns the process of finding optimal
values for the decision variables. The type of problems we are looking at have
integer-valued decision variables and non-linear constraints.

Evaluation

We focus on continuous review setting. In all problems assumptions must be
made on the behaviors of demand occurrence, which are usually characterized
by the time between demands and the distribution of demand size. As in [94] we
assume the demand occur according to Poisson process with constant rate. The
repair time is assumed exponentially distributed. The assumption is probably
not very realistic, however Axsater [4] and Alfredsson and Verrijdt [2] showed
that the service performance of the system is insensitive to the choice of the lead
time distribution. With these assumptions the equilibrium probabilities for the
number of items in stock and in replenishment may be found easily by modeling



i

i

“main” — 2010/2/24 — 14:59 — page 31 — #43
i

i

i

i

i

i

2.3. METHODOLOGY 31

the operational environment as a Markov chain, which is a random sequence in
which the dependency of the successive events goes back only one unit in time.
Since Poisson arrivals see time averages, the equilibrium probabilities may be
used for determining service levels. The equilibrium distribution of a Markov
chain may be computed exactly, by solving the linear system describing the
long-run behavior of the Markov chain, or approximately. Examples of the
latter that we will use in Chapter 4 are:

• First-order approximation, where the effective demand to each warehouse
is described by the first moment of its distribution [4].

• Second-order approximation, which characterizes the effective demand
just by its mean and variance [45].

• Third-order approximation, which takes into account the first three or-
dinary moments in computations [56], [61].

Depending on the model, extensions are possible to situations where the de-
mand does not follow a Poisson process.
The power of Markovian modeling is high in inventory and many other appli-
cations. A general description of Markov chain theory is given in appendix 6.2.
In [55], a lumpy demand per parts is considered. Kukreja and Schmidt derived
analytical results for the mean and variance of the lead time demand at various
locations in an inventory system with transshipments, and then used simula-
tion methodology for determining inventory control policies for such a system.

Axsater [7] took into account a compound Poisson demand.

Queueing models are closely related to Markov processes. The results ob-
tained in the analysis of queueing models may be useful as well. Typically,
if the demands are considered as arrivals, and the items in replenishment are
considered to be in service in the queueing model, the analogy is straightfor-
ward. For example Axsater [4] and therefore Alfredsson and Verrijdt [2] and
Kutanoglu [57] uses the Erlang loss model. In this model, arrivals (demands)
occur according to a Poisson process. The service time (replenishment time)
can follow any distribution. Queueing models for spares inventory and repair
capacity have been proposed in [40], [97], and [92]. Recently, also closed queue-
ing network models have been proposed by Kranenburg and Van Houtum [50]
In such networks,they let one of the stations represent the demand process,
and another station represent the replenishment process. The closed queueing
network representation has the following advantages.
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• In the replenishment process other service disciplines can be modeled and
analyzed as well.

• For the determination of the steady-state probabilities of inventory in
system it’s not necessary to assume Poisson demand.

However, at this moment, in case of transshipments only the case with equal
demand rates can be analyzed. Its counterpart is a Markov process (the one
described above) proposed in [91], where there are no restrictions on the base
stock levels, and also, asymmetric demand can be dealt with. However, exact
evaluation of this Markov process is only possible for a limited number of local
warehouses, since the state space grows exponentially in the number of local
warehouses.

In two echelon context the METRIC approximation is applied. The exact
distribution of the number of units in the resupply system at each location in
a two echelon depot base system is too computationally burdensome to be of
practical use, refer to [63] for its computation. Hence the METRIC model is
based on an approximation to this distribution that is easy to compute, and
therefore has been widely used in many applications. Substantially under the
METRIC approximation the number of backorders of each local warehouse is
assumed to be Poisson distributed [72] and the improved two-moment approx-
imations for that [75, 39].

Due to the complexities involved in the analytical modeling and solution of
this kind of supply chain problems, some researchers have attempted heuristic
approximations and / or simulation approaches, in effort to maintain some de-
gree of realism in their analysis.

Needham and Evers [66] investigated the interaction of relevant costs and
transshipment policies via simulation study and presented a method for de-
termining a threshold value at which the benefits of transhipments outweigh
their costs. They found that the cost of a stockout is the primary determi-
nant in the transshipment decision, with lower stockout cost levels generally
decreasing the likelihood of transshipment usage.

Ozdemir et al. [69] analyzed a capacitated transshipment problem. They mod-
eled it as a network flow problem embedded in a stochastic optimization prob-
lem.They solved it by applying an Infinitesimal Perturbation Analysis (IPA),
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which is a simulation based optimization technique.

Recently, Van Utterbeeck et al. [86] studied the effects of resupply flexibil-
ity on the design of service parts supply systems by applying simulation op-
timization. They investigated both the effect of the number of echelons and
the degree of resupply flexibility, considering single echelon and two echelon
systems with either no resupply flexibility, lateral transshipments only or both
lateral transshipments and emergency deliveries. They showed that increased
resupply flexibility enables increasingly important cost savings.

An interesting new stream of research is on systems under truly decentral-
ized management. There, not only is the policy implemented locally, but also
the policy variables are chosen by local managers, according to their own lo-
cal incentives. See Cachon [13] for an interesting review.The cost allocation
problem in spare parts inventory pooling is analyzed through the use of game
theoretic models in [96].

Optimization

Setting stock levels for items managed using an (s-1,s) policy will depend on the
objectives and constraints that are stipulated. For example, we could choose
to minimize the average number of outstanding backorders across n item types
subject to a constraint on investment in inventory. We could also select stock
levels that minimize investment cost subject to an average fill rate constraint.
Other optimization models could be formulated as well for complex resupply
networks.
Specifically in this dissertation we focus on a stock allocation problem with
transshipments. Typically, the latter problems for spare parts allocation with
lateral transshipments, emergency shipments and base stock policy may be
structured as integer programming problems with a non linear objective func-
tion and non linear constraints.
Therefore enumerative methods, such as branch and bound may solve them.

Branch and bound, proposed by Land and Doig [58] for linear programming
problems, consists of a systematic enumeration of all candidate solutions, where
large subsets of fruitless candidates are discarded en masse, by using upper and
lower estimated bounds of the quantity being optimized. However such meth-
ods may be time consuming for real life problem instances.

A branch and bound procedure has been applied in spare part context by
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Cohen [22].

Therefore, to find a feasible solution for the optimization problem heuristic
algorithms may be used. Fast and easy to implement methods are the greedy
methods, also known as marginal analysis methods. Greedy methods itera-
tively select at each step the single spare part allocation which is the most
promising in objective function minimization until the feasibility check is sat-
isfied.

For example several heuristic procedures can be found in the literature for
allocating spares to warehouses in a single echelon context with complete pool-
ing [4], [55]. In particular, for the problem of spares allocation Wong et al.
[93] has shown that the greedy-type heuristic has the best performance. Also
the landmark METRIC approach proposed by Sherbrooke [74] in a two echelon
context solves the optimization problem through a marginal analysis algorithm.

However we want here examine solution methods that may be employed in
general problems.

One solution approach that may be used is to construct a Lagrangian relax-
ation of a particular optimization problem, which finds a lower bound to the
optimization problem. We begin by solving the resulting relaxed problem for a
given set of Lagrange multiplier values. We then adjust these multiplier values
and re-solve the relaxed problem. We continue in this manner until a stopping
criterion of some sort is satisfied. An important observation on Lagrange re-
laxation is due to Everett [31]. In fact, Everett’s theorem gives a relationship
between the solution of a Lagrange relaxation and an optimization problem
where only one constraint g(x) is relaxed, when x is a vector, and both the
objective and the constraint are convex functions. For short we have.

min f(x)
s.t. :

g(x) ≤ b
x ∈ S

(2.4)

where S is a set of vectors that constraints the choice of an optimal solution.
Its Lagrangian relaxation is

minx∈S [f(x) + θ(g(x)− b)] (2.5)
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for a given scalar θ ≥ 0.
is the Lagrangian multiplier associated with the constraint g(x) ≤ b.

Theorem 4 Suppose to have an optimization problem of the form of Problem
2.4 where only one constraint g(x) is relaxed, when x is a vector, and both the
objective and the constraint are convex functions.
Suppose Problem 2.5 is its Lagrangian relaxation.
Suppose finally that x0(θ) is an optimal solution to Problem 2.5 with the La-
grangian multiplier set to θ. Let b

′

= g(x0(θ)).
Then x0(θ) also solves

min f(x)
s.t. :

g(x) ≤ b
′

(2.6)

The proof is given in Muckstadt [63]. Thus by varying the value of θ, we can
find optimal solutions to problems of the form of Problem 2.6. If b

′

= b for
some choice of the Lagrange multiplier θ, then we have also solved Problem 2.4.
For short for every choice of θ there exists a corresponding value of b

′

In general
by investigating an appropriate range of values for the Lagrangian multipliers
we can provide good lower bounds, if not necessarily optimal solutions to the
optimization problem we want to solve. Besides a lower bound, a feasible
solution is desidered as well. Having obtained the lower bound, often a feasible
solution can be obtained by making judicious observations on it. For this kind
of approximate methods Fisher [35] proposes the name of Lagrangian heuristic.
A strength of Lagrangian relaxation is that it provides us with a lowerbound on
the optimal cost, which can be used to evaluate the accuracy of some heuristics.
It generally requires more computational effort than the greedy algorithm and
the quality of the solution obtained by a Lagrangian heuristic is not necessarily
better than a solution obtained by the greedy method. Optimization problems
with space, capacity and time constraints are appropriate to be analyzed by
Lagrangian relaxation [91].
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Chapter 3

Spares allocation problem: an

exact evaluation

With the multi-dimensional Markovian approach [91], the behavior of the
inventory system is modeled with a Markov chain. Studying the Markov chain
allows to compute structural properties as well as the state probabilities of
the chain, which allows to evaluate the performance of the inventory system.
This model becomes impractical for large instances, due to the extremely large
number of states of the Markov chain.

3.1. The model

The model addressed in this chapter is a single item, single echelon, N-locations,
continuous review, one-for-one replenishment policy inventory system, which
allows for lateral transshipments with complete pooling, emergency transship-
ments from an external supplier and no negligible transfer times. A determin-
istic closest neighbor rule is used for lateral transshipment.

Main notation

In order to formally define the problem, let us introduce the following notation.

Let A = {1, 2, . . . , a} be a set of operational sites (e.g., airports) where working
equipments are located.
We assume that operational sites are grouped on a regional basis, with a ware-

37
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CHAPTER 3. SPARES ALLOCATION PROBLEM: AN EXACT

EVALUATION

house of spare parts for each regions. Let W = {1, 2, . . . , w} be the set of
regional warehouses.

Let si be the number of spare parts to allocate to each warehouse i ∈ W ,
S =

∑

i∈W si be the total stock level and s = (s1, ..., sw) be an allocation of
spares to warehouses, i.e., the vector of decision variables.

We also denote with MTTR the mean time to return, i.e. the average replen-
ishment time of the external supplier, with MTBF the mean time between
failures, with OS the order and ship time, with MCMT the mean corrective
maintenance time and with OA the operational availability of all the a sites.

Let µ be the service rate of a server at any warehouse h. We assume that
1
µ

is given by the sum of the repair time (MTTR) and the time needed for
ordering the ready for use part, sending the failed item and shipping the ready
for use one (OS). Let Thi be the transfer time for a spare from warehouse h
to warehouse i and Ts(j, h) be the substitution time, i.e., the time needed to
transfer a spare part to the site j ∈ A from the warehouse h ∈W and to phys-
ically replace the failed item, and T0i be the mean emergency replenishment
time from the external supplier to warehouse i, taking into account also the
time needed to issue an order and the transfer time.

Let λjh be the rate of failure processes from site j to warehouse h and λh =
∑

j∈A λjh be the arrival rate at warehouse h.

Given an allocation s, the network blocking probability is the probability that
a failure occurs at some site and no warehouse can satisfy the spare demand.
We show in equation (5) that the network blocking probability only depends
on the total stock level S rather than on the particular allocation s, and denote
it as PB(S).

Given an allocation s, let πhi(s) be the probability of the event: there are
no spares in warehouse h ∈ W and i ∈ W is the closest warehouse with avail-
able spares (i.e., every warehouse l such that Thl < Thi, including the case
l = h, is in stockout condition).

Let n = (n1, . . . , nw, nw+1) be a vector representing the state of the network, in
which ni is the number of outstanding requests at warehouse i ∈W , and nw+1

is the number of outstanding emergency requests to the external supplier.
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Let p(n) be the probability of being in state n for the whole warehouses network.

Let phi be the probability of re-forwarding a spare requests from warehouse
h, in stockout condition, towards warehouse i. It is a static probability reflect-
ing the closeness between two warehouses.
Let j be a state for the whole warehouses network. Let ph(j) be the steady state
probability that there are exactly jh spares available at warehouse h. Specifi-
cally denote pi(s) as the marginal probability of having si outstanding orders
at warehouse i, i.e., the probability of having no stock available at warehouse
i:

pi(s) =
∑

n:ni=si

p(n)

Let ch be the inventory holding cost for warehouse h, ctij be the cost for a
lateral transshipment from warehouse j to warehouse i, in stockout condition,
and ce be the emergency transshipment cost.

System processes and assumptions

When a failure occurs for some component at some airport j, a demand for a
new spare part is issued to the associated regional warehouse h. If spare parts
are locally available, the component is immediately replaced in the airport us-
ing the stock on hand at the local warehouse. Then, the failed component
is sent to an external supplier, which can either repair or replace the compo-
nent with a new item, so that warehouse h can restore the local stock level for
that specific component, after a replenishment time. If no spare part is locally
available, warehouse h forwards the request to the nearest warehouse i with
available spares to satisfy the demand through a lateral transshipment. Then,
warehouse i will issue a replenishment order to the external supplier to restore
its stock level. If no spare is available in any warehouse the demand must be
satisfied directly by the external supplier through an emergency transshipment,
i.e., by using the first repaired/new component available at the supplier. In
such a case we say that the warehouses network is blocked, since the failed
equipment will not be working at airport j until after the substitution. Since
the replenishment time from the supplier to a warehouse can range up to several
months for expensive components, in order to guarantee the high operational
availability required by contract with airport authorities, the blocking proba-
bility must be kept at a very low level.
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In our model we use the Poisson distribution for the demand process, which is
a typical assumption for modeling low demand processes [82]. It is worthwhile
to mention that the MTBF of an equipment depends on exogenous agents, such
as the damp, the temperature and other operational conditions. Therefore, in
our model we use specific values for each airport.
The replenishment time of the external supplier is a random variable, expo-
nentially distributed, with known mean value T0i = 1

µ
for i ∈ W . By contract

its mean value is the same for all warehouses and it is equal to the sum of the
mean time to return (MTTR) and the order and ship time (OS).
The capacity of the supplier repair shop is assumed to be infinite. It follows
that also the number of replenishments from the external supplier follows the
Poissonian distribution.

These common assumptions make possible to use the Markovian analysis for
modeling the multi-dimensional inventory system.
However, as shown by [54], the results obtained with these assumptions holds
under less restrictive hypothesis on the replenishment distribution.
We may describe the system dynamics with a suitable queueing network.
Each warehouse acts as a single queueing system without buffer, in which the
number of servers equals the number of spares in the warehouse. The arrival
process (i.e. demands for spare parts) is stochastic. The service time of each
request equals the time needed to repair/replenish a spare part. Therefore,
the number of busy servers corresponds to the number of outstanding orders
of spare parts.
In this way each warehouse is a G/M/si/0/∞ system.

The operational availability OA is defined as in [74]:

OA =
MTBF

MTBF +MCMT
(3.1)

This is the performance measure established by contract between the logis-
tic company and the airport authorities.
MCMT is the average time occurring from the failure of an item to its phys-
ical substitution. This is the substitution time if the spare is available at the
regional warehouse. If no spares are locally available, the request is forwarded
to the closest warehouse with available spares and MCMT increases by the de-
terministic transfer time between the two warehouses. When no warehouse has
spares available, MCMT equals the substitution time plus the replenishment
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time from the external supplier.

The MCMT can be therefore computed as follows:

MCMT =
∑

h∈W

∑

j∈A λjhTs(j, h)+
∑

h∈W (λh

∑

i∈W πhi(s)Tih)+
(
∑

h∈W λh)PB(S)T0h

(3.2)

We observe that the first term
∑

h∈W

∑A
j=1 λjhTs(j, h) of Equation (3.2)

only depends on the failure process and on the distance between the sites and
their respective regional warehouses. In other words, it does not depend on the
specific spare parts management policy being used. Moreover, this quantity is
typically small with respect to the other terms of Equation (3.2), therefore, for
sake of simplicity we assume it negligible in our model and omit its computa-
tion in the rest of this chapter.

As for the quantity πhi(s), we assume that a strict deterministic nearest cho-
sen neighbor rule is adopted for sourcing a lateral transshipment, as in Kukreja
[54]. Differently form [54], we use equation (4.2) to compute this value, which
by assuming independence directly follows from the definition of πhi(s) and
therefore may be used as an approximation for it.

πhi(s) = (1− pi(s))
∏

l:Thl<Thi

(pl(s)). (3.3)

3.2. Multi-dimensional Markovian approach

We model the system under study with a queueing network with blocking, and
study it by using a Markov chain model, with a very similar approach to that of
Wong et al. [91]. The main difference is that we explicitly include the external
supplier in the Markov chain while in [91] a failure of a part occurring when
all warehouses are in stockout condition is lost.

Theoretical considerations on Markov chains will be given in Appendix 6.2,
where some background material is given. In the Markov chain, a state n =
(n1, . . . , nw, nw+1) is a vector, in which ni is the number of outstanding re-
quests at warehouse i ∈W , and nw+1 is the number of outstanding emergency
transshipments issued from all warehouses to the external supplier. Note that
the overall number of outstanding requests is

∑

i=1,...,w+1 ni. In case of blocked
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network, if nw+1 ≥ 1 the first repaired item returned by the external supplier
is used for replacing a failed item at some operative site.

There are direct transitions among states just in case of a single arrival event
(i.e., a request for a spare at some warehouse) or a single departure event (i.e.,
the replenishment of a repaired item by the external supplier). Let ei be a
vector with w + 1 elements, all equal to 0 but the element in position i that
is equal to 1, and let ψ(h, i) be equal to 1 if i is the warehouse closest to h
with spares available, and be equal to 0 otherwise. More precisely, ψ(h, i) = 1
if ni < si and nl = sl for each l ∈ W such that Tlh < Tih, included l = h.
With this notation, n + ei is the state of the Markov chain representing an
arrival at the i-th warehouse (with ni < si), due either to a failure in the i-th
service region or to a re-forwarded request from some other warehouse h in
stockout conditions for which ψ(h, i) = 1. Similarly, n − ei is the state with
a departure from the i-th warehouse (if ni > 0). For the external supplier,
n + ew+1 represents a new emergency request (if ni = si for each i ∈ W ) and
n−ew+1 represents the fulfillment of an emergency request (if nw+1 > 0). The
transition rate q(n,m) from state n towards state m = n± ei and n± ew+1 is
as follows.

• q(n, n+ei) = λi+
∑

h∈W−{i} ψ(h, i)·λh, for i ∈W and ni = 0, 1, . . . , si−1;

• q(n, n+ ew+1) =
∑

i∈W λi, if ni = si ∀i ∈W ;

• q(n, n− ei)i · µ, for i ∈W and ni > 0 and nw+1 = 0;

• q(n, n− ew+1) =
∑w+1

i=1 ni · µ, for ni = si ∀i ∈W and nw+1 ≥ 1.

Figure 4.1(left) shows an example of a Markov chain for two warehouses, the
first having two spares and the second having three available spares. Theorem
5 shows that the blocking probability PB of the Markov chain can be easily
computed. Let S =

∑

i∈W si be the total stock level in the network, and let

ρ =
∑

i∈W λi

µ
.

Theorem 5 Given a set W of warehouses, with total stock level S, in which
the service process is exponentially distributed with average rate µ for each
server and the demand flow to warehouse i ∈ W is Poissonian with average

rate λi, the blocking probability of all warehouses is PB(S) = 1−
∑S−1

k=0
ρk

k! e
−ρ.

Proof. Let us consider a cut in the Markov chain grouping all the states n
such that

∑w+1
h=1 nh = k (in Figure 4.1(left) is highlighted the case for k = 2).
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Figure 3.1: A Markov chain (left) and the aggregated birth death model (right)

For each value k = 0, 1, . . . ,∞ the state aggregation property described in
[67, 47] applies, and the states contained in each cut can be replaced with an
aggregated state k. The demand rate for each aggregated state k = 1, . . . ,∞
is

∑

i∈W λi and the service rate is kµ, as in figure 4.1(b). The network is
therefore equivalent to a virtual single warehouse with combined stock level
S =

∑

i∈W si, demand rate
∑

i∈W λi and service rate for each server µ. The
overall stockout probability PB(S) is the probability that the total number
of requests is greater or equal to the total number of spares available, i.e.,
PB(S) =

∑∞
k=S pk = 1 −

∑S−1
k=0 pk, where pk is the probability of state k in a

queue M/M/S, i.e. pk = ρk

k! · e
−ρ. The blocking probability of all warehouses

is therefore

PB(S) = 1−
S−1
∑

k=0

ρk

k!
e−ρ. (3.4)

Unfortunately, this result does not allow to compute the OA of the system,
since to this aim the marginal blocking probability of each warehouse is nec-
essary. However, steady state probabilities can be computed for each state in
the Markov chain by solving a linear system. To this aim, Theorem 5 can be
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used to reduce the infinite state space Markov chain to an equivalent one with
a finite number of states. Specifically, all the states in which all warehouses
are in stockout condition can be replaced with a single state, with probability
PB and with suitable modified departure transition rates.

Let nB be the state such that nB
i = si for each i ∈ W and nB

w+1 = 0. Let

pnB = ρnB

nB !
·e−ρ be the probability of state nB and let q(nB , nB−ei) = siµ the

departure transition rates from state nB to state nB − ei. Let us now replace
all states such that nB

i = si for each i ∈ W and nB
w+1 ≥ 0 with a single state

n̂B . To achieve the equivalence with the original Markov chain it is sufficient
to set the departure transition rates from state n̂B to state n̂B − ei equal to
q(n̂B , n̂B − ei) = siµF for each i ∈W , where the factor F is equal to

F =
p(nB)

PB(S)
=

ρnB

nB !
· e−ρ

1−
∑S−1

k=0
ρk

k! e
−ρ

For instance, Figure 3.2(left) shows a Markov chain with infinite number
of states and Figure 3.2(right) shows its equivalent Markov chain with a finite
number of states. In general, the number of states in the finite state space
Markov chain is equal to

∏

i∈W

(si + 1). (3.5)

This number can be exceedingly large as the number of warehouses and spares
increases. Therefore, there is a need for approximate methods to compute the
OA of large networks.

Remark

The above Markovian model is very similar to that of Wong et al. [94]. The
main difference is that we assume that the emergency shipments enter a queue
at the external supplier, together with the replenishment orders and therefore
we explicitly include the external supplier in the Markov chain, while in [94]
a failure of a part occurring when all warehouses are in stockout condition is
lost. In our case the resulting overall blocking probability is strictly greater
and therefore more conservative. The last fact is important in our applicative
context, where the operational availability requirements are strict. The follow-
ing holds. Let 0 be a w + 1 dimensional vector representing the state of the
network, in which 0 is the number of outstanding requests at any warehouse
i ∈W , and 0 is the number of outstanding emergency requests to the external
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Figure 3.2: A Markov chain with infinite (left) and finite (right) number of
states.

supplier. Let p(0) and p̂(0) be the probability of being in state 0 for the whole
warehouses network respectively in our model and in the model of Wong et al.
[94]. Finally, given an allocation s with total stock level S, denote as PB(S)
and P̂B(S) the network blocking probability, which is the probability that a
failure occurs at some site and no warehouse can satisfy the spare demand,
respectively in our model and in the model of Wong et al. [94].

p(0) = 1
∑
∞

k=0
ρk

k!

= e−ρ < p̂(0) = 1

1+ ρ
1!+

ρ2

2! + ρ3

3! +...+ ρS

S!

ρk

k! e
−ρ < ρk

k!
1

1+ ρ
1!+

ρ2

2! + ρ3

3! +...+ ρS

S!

PB(S) = 1−
∑S−1

k=0
ρk

k! e
−ρ > P̂B(S) = 1−

∑S−1
k=0

ρk

k!
1

1+ ρ
1!+

ρ2

2! + ρ3

3! +...+ ρS

S!

(3.6)

3.3. General methods for the computation of the state

probabilities of a Markov chain

In what follows we will give a sketch of how computationally or analytically
burdensome can be computing the state probabilities of a Markov chain. We
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will describe in brief some general, common techniques useful to state proba-
bilities computation, pointing our attention on methods for finite state Markov
chains and infinite state Markov chains.

Methods for a finite state Markov chain

In general there are two methods to solve the Markov chain equations.

• Direct methods.

• Iterative methods.

To discuss these methods, let us assume that the states of the Markov chain
are numbered as 1, . . . , N .

Direct methods

A convenient direct method is a Gaussian elimination method such as the
Gauss-Jordan method. This method in general eliminates the first variable
present in the first equation from all equations below the first equation, and
then eliminate a second variable present in the second linear equation from
all equations below and so on up to the last variable and last equation. This
will put the system into triangular form. Then, using back-substitution, each
unknown can be solved for. This reliable method is recommended as long as
the dimension N of the system of linear equations does not exceed the order of
thousands. The computational effort of Gaussian elimination method is pro-
portional to N3. Reliable and ready to use methods for Gaussian elimination
are widely available. A Gaussian elimination method requires that the whole
coefficient matrix is stored, since this matrix must be updated at each step of
the algorithm. This explains why a Gaussian elimination method suffers from
computer memory problems when N gets large.

Iterative method of successive overrelaxation

Iterative methods have to be used when the size of the system of linear equa-
tions gets large. In specific applications an iterative method can usually avoid
computer memory problems by exploiting the sparse structure of the applica-
tion. An iterative method does not update the matrix of coefficient each time.
In applications these coefficients are usually composed from a few constants.
Then only these constants have to be stored in memory when using an iterative
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method. In addition to the advantage that the coefficient matrix need not be
stored, an iterative method is easy to program for specific applications.
The iterative method of successive overrelaxation is a suitable method for solv-
ing the linear equations of large Markov chains. The well known Gauss Siedel
method is a case of the method of successive overrelaxation The iterative meth-
ods generate a sequence of vectors converging towards a solution of the equi-
librium equations. The normalization is done at the end of the calculations.
The methods starts with an initial approximation vector and the procedure
is generally continued until the changes made by an iteration are below some
tolerance. The Gauss siedel method is convergent in all practical cases but the
convergence speed may be very high. The ordering of the states may also have
a considerable effect on the convergence speed of the successive overrelaxation
algorithm. In general Tijms [84] suggests to order the states such that the
upper diagonal part of the matrix of coefficients is as sparse as possible. In
specific applications the transition structure of the Markov chain often suggests
an appropriate ordering of the states. There are then others methods, such as
the Krylov iteration method and the recursive method, which are strongly de-
pendent of the structure of the system of linear equations to be solved and are
typically a matter of experimentation.

Methods for an infinite state Markov chain

It is shown that brute-force truncation is not necessary to get a finite system
of linear equations when the state space I and the state probabilities exhibit
a geometric tail behavior in the infinite-state model. For this situation, which
naturally arises in many applications, an elegant computational method for the
state probabilities can be given. Markov chains with a multidimensional state
space are prevalent in stochastic networks and in such applications it often
happens that the equilibrium probabilities are known up to a multiplicative
constant. If the number of states is too large for a direct computation of
the multiplicative constant, the Metropolis-Hastings algorithm may be used to
obtain the equilibrium probabilities.

Geometric tail approach for an infinite state space

Many applications of Markov chains involve an infinite state space. What one
usually does to solve numerically the infinite set of equilibrium equations is
to approximate the infinite-state Markov model by a truncated model with
finitely many states so that the probability mass of the deleted states is very
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small. Indeed, for a finite-state truncation with a sufficiently large number of
states, the difference between the two models will be negligible from a compu-
tational point of view. However, such a truncation often leads to a finite but
very large system of linear equations whose numerical solution will be quite
time-consuming, although an arsenal of good methods is available to solve the
equilibrium equations of a finite Markov chain. Moreover, it is somewhat dis-
concerting that we need a brute-force approximation to solve the infinite-state
model numerically. Fortunately, many applications allow for a much simpler
and more satisfactory approach to solving the infinite set of state equations.
Under rather general conditions the state probabilities exhibit a geometric tail
behavior that can be exploited to reduce the infinite system of state equations
to a finite set of linear equations. The geometric tail approach results in a fi-
nite system of linear equations whose size is usually much smaller than the size
of the finite system obtained from a brute-force truncation. As an example,
consider a Markov chain whose state space is one dimensional and is given by

I = {0, 1, . . .}

Let us assume that the equilibrium probabilities p(n), n ∈ I, exhibit the ge-
ometric tail behavior p(n) ∼ γηn as n → ∞ for some constant γ > 0 and
0 < η < 1. Below conditions under which 3.3 holds will be discussed. First we
demonstrate how the geometric tail behavior can be exploited to reduce the
infinite system of state equations to a finite system of linear equations. It will
be seen below that the decay factor η in 3.3 can usually be computed before-
hand by solving a non-linear equation in a single variable. Solving a non-linear
equation in a single variable is standard fare in numerical analysis. In most
applications it is not possible to compute the constant γ beforehand. Fortu-
nately, we do not need the constant γ in our approach. In fact, for sufficiently
large integer M,

p(n) ∼ p(M)ηn−M

, with n ≥ M . Replacing p(n) by p(M)ηn−M for n ≥ M in equilibrium
equations for the steady state behavior of the Markov chain leads to a finite
set of M linear equations for the remaining M state probabilities and 1 linear
equation for the normalization condition. How large an M should be chosen
has to be determined experimentally and depends, of course, on the required
accuracy in the calculated values of the equilibrium probabilities. However,
Tijms [84] assert that empirical investigations show that in specific applications
remarkably small values of M are already good enough for practical purposes.
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Conditions for the geometric tail behavior

A useful but technical condition fro the existence of a geometric tail approx-
imation can be given in terms of the generating function

∑∞
n=0 p(n)zn of the

equilibrium probabilities p(n), details may be found in Tijms [84]. Such a
condition seems not to have a probabilistic interpretation. Next we give a
probabilistic condition from the existence of a geometric tail behavior in the
Markov chain. This condition is in terms of the one step transition probabilities
of the Markov chain. It is as follows:

• There is an integer r ≥ 0 such that the one step transition probabilities
between state i and state j depends on i and j only through j − i when
i ≥ r and j ≥ 1.

• There is a n integer s ≥ 1, such that the one step transition probabilities
between states i and j are equal to 0 for j > i+ s and i ≥ 0.

• Letting αj−i denote the one step transition probability between states i
and j for i ≥ r and 1 ≤ j ≤ i + s, the constant αk satisfy αs > 0 and
∑s

k=−∞ kαk < 0.

Under this condition the equilibrium equations for p(j) for j ≥ r + s are
homogeneous linear difference equations with constant coefficients. A method
to solve such a linear difference equation is the method of particular solutions.
Substituting a solution of the form p(n) = wn in the equilibrium equations for
p(n) with n ≥ r + s, we find the so-called characteristic equation, which has s
roots.

Metropolis - Hastings algorithm

The Metropolis-Hasting algorithm is a method for constructing a Markov chain
with a given limiting probability distribution. In the context of stochastic net-
works, the Markov chains have generally multidimensional state space. How-
ever the number of possible states is soon very large so direct calculation of
the normalization constant is not piratically feasible. This raises the follow-
ing question. Suppose that N positive numbers each of the form p(ni) for
i = 1, . . . , N , where ni are specific states, have finite sum S =

∑

i=1N p(ni).
How do we construct a Markov chain whose equilibrium probabilities are given

by p(ni)
S

for i = 1, . . . , N? To answer the question we need the concept of
a reversible Markov chain. Let {Xn} be a Markov chain with a finite state
space and one step transition probabilities tij . It is assumed that {Xn} has
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no two disjoint closed sets. Then the Markov chain has a unique equilibrium
distribution {p(j)}. Assume now that a non null vector (gj), j ∈ I exists such
that

gjtjk = gktkj (3.7)

and j, k ∈ I. Then, for some constant c 6= 0,

gj = cp(j). (3.8)

The proof is simple. Fix j ∈ I and sum both sides of 3.7 over k. This gives

gj =
∑

k∈I

gkpkj

, with j ∈ I. This gives

gj =
∑

k∈I

gktkj (3.9)

with j ∈ I. These equations are exactly the equilibrium equations of the
Markov chain {Xn}. Therefore

p(j)tjk = p(k)tkj

with j, k ∈ I.
A Markov chain having this property is called a reversible Markov chain.
An excellent description of such Markov chains may be found in [47] and [67].
The property states that the long run average number of transitions from state
j to state k per time unit is equal to the long run average number of transitions
from state k to state j far all j, k ∈ I.

Let us return to the problem of constructing a Markov chain with equilib-

rium probabilities {p(j) = p(j)
S
, j = 1, . . . , N} when N positive numbers p(ni)

are given and have finite sum S.
To do so, choose any Markov matrix M = (mij), with i, j = 1, . . . , N with
positive elements mij . Next construct a Markov chain {Xn} with state space
I = {1, . . . , N} and one step transition probabilities

mijαij , j 6= i
tij =

miiαii +
∑N

k=1mik(1− αik), j = i

(3.10)

where ij are appropriately chosen numbers between 0 and 1 with αii = 1 for
i = 1, . . . , N .
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The state transition of the Markov chain are governed by the following rule:
if the current state of the Markov chain {Xn} is i, then a candidate state k is
generated according to the probability distribution {mij , j = 1, . . . , N}. The
next state of the Markov chain {Xn} is chosen equal to the candidate state k
with probability αik and is chosen equal to the current state i with probability
1− αik. By an appropriate choice of the ij , we have

p(j)tjk = p(k)tkj (3.11)

with j, k = 1, . . . , N , implying that the Markov chain has the equilibrium
distribution

p(j) =
p(j)

∑N
k=1 p(k)

(3.12)

for j = 1, . . . , N . The expression 3.11 holds for the choice

αij = min(
p(j)mji

p(i)mij

, 1) (3.13)

for i, j = 1, . . . , N Summarizing, the Metropolis-Hastings algorithm generate
a sequence of successive states of a Markov chain {Xn}, whose equilibrium
distribution is given by 3.12.

3.4. Computational experience

In this section we describe our computational experience on 60 practical in-
stances from the Italian airport maintenance context plus other 990 randomly
generated instances. The experiments are carried out by varying the mean de-
mand to each warehouse, the number of warehouses and the stock levels. The
departure transition rate µ of each server is fixed equal to µ = 1

3 months for all
instances. This is the value used by the managers in the practical application.

All the experiments are executed on a PC equipped with a processor Intel
Core2 Duo CPU (3 GHz), 3.25 GB Ram and Windows operating system.

Random instances are classified according to the average arrival rates from
all airports λ̄ =

∑

i∈W λi and to the stock levels si, i ∈ W . Instances with
λ̄ = 0.001 are in the low demand class, instances with λ̄ = 0.01 are in the
medium demand class, and instances with λ̄ = 0.1 are in the high demand
class. As for the stocking policy, for each demand class we generate 17 dis-
tributed instances, in which si = 1 ∀i ∈ W and w = 1, 2, . . . , 17. Other 169
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centralized instances are obtained by storing all spares in a single warehouse
j ∈W that acts as a central depot, i.e., si = 0 for i ∈W − {j} and sj = S for
S = 1, 2, . . . , 10 and for w = 1, 2, . . . , 17 (excluding the case S = w = 1, which
is included in the previous group). Finally, 144 hybrid instances are obtained
by setting si = 1 for i ∈ W − {j} and sj ∈ {2, 3, . . . , 10}, for w = 2, . . . , 17.
For each instance, the subset of warehouses, as well as the central depot j
in the latter two groups of instances, is chosen at random among the 17 re-
gional warehouses of the practical application. Overall, there are 17+169+144
random instances for each demand class, for a total of 990 random instances,
besides the 60 practical instances.

In practical data experiments, the exact computation with the Markov chain
model fails in finding a solution in 18 out of 60 practical instances, due to
memory limits. As for the random instances, the exact computation fails in
about 30% of the cases. Table 4.1 shows some practical instances for which the
Markov chain approach fails in finding the exact OA value. For each item we
show the cost in euro, the replenishment time (months) and the MTBF (hours)
of each item. The last three columns report the number of warehouses where
at least one item is installed, the total number of installed items and the total
number of allocated spares.

As far as the multi-dimensional scaling down approach is concerned, the com-
puter used in our experiments can easily manage Markov chains with 214 states.

The smallest instances that cannot be solved with the Markov chain model,
in terms of the quantity

∏

i∈W (si + 1), have 12 warehouses and 19 allocated
spares for the practical instances, and 12 warehouses and 13 allocated spares
for the random instances. However, we observe that also the arrival rate Λ
affects the computation time.

The time and memory effort needed to solve the Markov chain increase
rapidly with the number of warehouses and installed items. In figure 4.5 we
show the computation time required to solve the Markov chain model for the 17
distributed instances and for the three levels of demand λ̄. Instances with low
demand require significantly lower computation time. Moreover, the Markov
chain model fails in computing the exact solution in one case for λ̄ = 0.001,
in three cases for λ̄ = 0.01 and in four cases for λ̄ = 0.1. Figure 4.6 shows
the memory effort required to solve the same instances with the Markov chain
model.
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Figure 3.3: Computation time for the Markov chain model and distributed
instances.

Figure 3.4: Memory effort for the Markov chain model and distributed in-
stances.
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Item Cost Repair time MTBF num. installed
∑

i∈W si

(euro) (months) (hours) warehouses items
1 ≃ 7000 3 76000 12 25 25
2 ≃ 6000 3 12000 12 19 29
3 ≃ 1800 3 45000 14 20 20
4 ≃ 3000 3 109000 14 25 17
5 ≃ 3000 3 26000 12 20 24

Table 3.1: Two non solvable instances.

3.5. Markov chain structure: a remark

In this section, we present shortly an optimization model used to prove that a
product form of the state probabilities of the Markov chain model describing
the behavior of the system does not exist. To this aim we show two numerical
examples. By using a suitable optimization model we have shown that the
Markov chain cannot be decomposed exactly in product form. In fact, the best
product form approximation returns a positive accuracy error, which implies
that an exact product form does not exist.

After a theoretical insight in such a task, by using classical Markov chain
theory [84] and advanced one [67], [16], it is clear that a known product form
for such a network had not been found.

A question arises about the decomposability of the equilibrium probabilities
in product form.

To this aim note that we refer to the Markov chain model with finite state
space, introduced in Section 4.2, e.g. for a pictorial example refer to Figure
3.2(right).

Let N be the number of warehouses in the maintenance network. Let us use
for spare parts management a single echelon policy with complete pooling and
with the presence of the external supplier managing the unfilled requests. Let
n be a w dimensional vector representing a possible state, so that each element
ni of n, with i = 1, . . . , w, records the number of outstanding requests at each
warehouse i.
Let us fix one state n, by solving the linear system describing the equilibrium
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behavior of the system, we may find the steady state probability of state n,
denote it as p(n). Denote as p̂i(ni) a value, which should represent the proba-
bility that warehouse i is in state ni, without care about the state of the other
warehouses. Finally, denote as p̂(n) the product of the w p̂i(ni) values, when
n is fixed.

We ask the following: is it possible to find for each warehouse i and any pos-
sible state ni some numbers, let us call them p̂i(ni), so that for any possible
state the following holds: p̂(n) = p(n)?

Otherwise we look for those p̂i(ni) values either minimizing the sum of the
square errors between p̂(n) and p(n) or minimizing the maximum square error
among the corresponding p̂(n) and p(n) .
To this aim we have implemented a MatLab routine for computing both the
marginal state probabilities, which minimize the maximum square error with
respect to the joint ones (min-max program), refer to the model 3.14, and the
marginal state probabilities, which minimize the sum of the square errors with
respect to the joint ones (non linear program), refer to the model 3.15.

Denote M as the number of states in the state space and order the states
so that each state is matched with a single integer number between 1 and
M . Denote as s = (si), i = 1, . . . , N a given stock allocation. Recall p̂(n) =
p̂1(n1)p̂2(n2) . . . p̂w(nw).
Minimization of the maximum square error between p̂(n) and p(n):

minpi(ni) max (p(n)− p̂(n))2

s.t. :
∑si

ni=0 p̂i(ni) = 1

0 < p̂i(ni) < 1

(3.14)

Minimization of the sum of the square errors between p̂(n) and p(n):

minpi(ni)

∑M
n=1(p(n)− p̂(n))2

s.t. :
∑si

ni=0 p̂i(ni) = 1

0 < p̂i(ni) < 1

(3.15)

In both cases constraints exists for computing the values p̂i(ni) representing
probabilities: they must be non negative and less than 1 and such that the
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joint state probabilities computed through their product sum to 1.

For what concerns the constrained non linear programming the MatLab engine
implements methods for large scale optimization and medium scale optimiza-
tion. The large scale algorithm is a subspace trust region method and is based
on the interior-reflective Newton method. While, the medium scale optimiza-
tion is solved through a sequential quadratic programming (SQP) method. In
this method, the function solves a quadratic programming (QP) subproblem
at each iteration. An estimate of the Hessian of the Lagrangian is updated at
each iteration.

For what concerns the min-max program the MatLab engine implements a
sequential quadratic programming (SQP) method, too.

In both cases tests have been carried on simple instances have shown that
the best product form approximation returns a positive accuracy error, which
implies that an exact product form does not exist.

The characteristic data for two tests are shown in Table 3.5. Let as refer

Parameter name Unit Values
Warehouses with positive demand 4,5
Average MTBF hours 11000, 60000
Average MTTR+OS hours 2160, 2160
Allocation vector [1,1,1,1],[1,1,1,1,1]

Table 3.2: Parameter values for the computational experiment

to the two tests respectively as test A and test B. By solving the models 3.14
and 3.15 we have computed the following accuracy errors.

test Minimum error on the sum of square errors Minimum maximum square error
test A 0.0017 3.2 10−5

test B 6.1 10−7 1.8 10−7

Table 3.3: Numerical results



i

i

“main” — 2010/2/24 — 14:59 — page 57 — #69
i

i

i

i

i

i

3.6. THE OPTIMIZATION MODEL 57

3.6. The optimization model

In this section we define formally the optimization problem we aim to solve.
In our model, a logistic company aims to compute the stock level si of each
warehouse i ∈W such that a minimum level of service is granted at the oper-
ational sites and the overall cost is minimum. Costs are related to inventory
holding, transshipments and emergency shipments.

Given an allocation s of spares to warehouses, the model used to com-
pute the level of service is a single item, single echelon, w-locations, contin-
uous review, one-for-one replenishment policy inventory system, whit lateral
and emergency shipments, complete pooling and non-negligible transshipment
times.

The Spares Allocation Problem is the problem of finding an allocation s
which minimizes the overall cost for inventory holding, lateral and emergency
shipments, subject to a constraint on the minimum operational availability of
the system.
The contractual service level to grant is the operational availability OA of all
operational sites for each item, computed as in [74], and expressed in equation
3.1.

We assume the Poisson distribution for the demand process, which is a typ-
ical assumption for modeling low demand processes [82]. We also use loca-
tion dependent MTBF values. The replenishment time of the external sup-
plier is a random variable, exponentially distributed, with known mean value
T0j = MTTR+OS, which is the same for any warehouse j. The capacity of the
supplier repair shop is assumed to be infinite. It follows that also the number
of replenishment from the external supplier follows the Poissonian distribution.
These common assumptions make possible to use the Markovian analysis for
modeling the multi-dimensional inventory system. However, as shown by [54],
the results obtained with these assumptions holds under less restrictive hy-
pothesis on the replenishment distribution.

Finally, the following assumptions are made for optimization purposes.

1. Lateral transshipment is always more convenient than emergency ship-
ment, i.e., the time and cost needed for a transshipment from warehouse
i to warehouse j is always smaller than the time and cost required for an
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emergency shipment from warehouse j:

max
i,j∈W

{Tij} < T0j (3.16)

max
i,j∈W

{ctij} < ce (3.17)

2. The cost for a lateral transshipment from warehouse i to warehouse j
increases linearly with the transfer time Tij , i.e.,

ctij = αTij (3.18)

Lateral transshipments are made only when a location experiences a demand
with no on-hand stock.

Therefore, our optimization model is as follows.
Let L be the minimum operational availability level to be achieved by a feasible
allocation. It is easy to check that this quantity corresponds to allowing a

maximum waiting time (1−L)MTBF

L
to substitute failed items. Then, the Spares

Allocation Problem P0 can be formulated as the following integer program with
non-convex objective function:

Problem P0:

min
∑w

i=1 c
hsi + λi

∑

j∈W πij(s)c
t
ji + λiPB(S)ce

s.t. :
∑w

i=1[λi

∑

j∈W πij(s)Tji + λiPB(S)T0i] ≤
(1−L)MTBF

L

(3.19)

Let f1(S) =
∑w

i=1 c
hsi be the total inventory holding cost, the cost for lat-

eral transshipments be defined by f2(s) =
{

∑w
i=1 λi

∑

j∈W πij(s)c
t
ji

}

and let

f3(S) =
∑w

i=1 λiPB(S)ce be the cost for the emergency shipments. Similarly,

for the waiting times we let t2(s) =
{

∑w
i=1 λi

∑

j∈W πij(s)Tji

}

be the wait-

ing times due to lateral transshipments and t3(S) =
∑w

i=1 λiPB(S)T0i be the
emergency waiting times.

The above model is with integer-valued decision variables and non-linear ob-
jective and constraints.
No polynomial time optimization algorithm exists for our type of problems.
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The problems under consideration in this dissertation could also be consid-
ered as a complex type of knapsack problems: nonlinear knapsack problems
with multiple constraints, where more than one copy of each item can be se-
lected. For a general description of knapsack problems, see e.g. Kellerer et al.
[46]. Kellerer et al. [46] prove that even the simplest type of knapsack problem
belongs to the class of NP-hard problems.

Therefore, no other optimization procedures than enumerative methods ex-
ists for solving it optimally.
Branch and bound is such a technique, which should be more efficient with
respect a total enumeration algorithm.
Otherwise, approximation algorithms may be applied for looking for feasible
and hopefully good solutions.
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Chapter 4

Lateral transshipment:

approximate performance models

The model addressed in this chapter is a single item, single echelon, N-locations,
continuous review, one-for-one replenishment policy inventory system, which
allows for lateral transshipments with complete pooling, emergency transship-
ments from an external supplier and no negligible transfer times. A determin-
istic closest neighbor rule is used for lateral transshipment.

Specifically, in this chapter we compare approximation techniques for comput-
ing the operational availability of a practical corrective maintenance system in
charge of the maintenance of 38 Italian Airports for varying the stock level and
the demand.

A drawback of this policy is the state dependent nature of re-forwarding in
the systems, which does not allow to express the state probabilities of the as-
sociated Markov chain model in product form. Therefore, computing the state
probabilities is not practical as the number of states in the Markov chain in-
creases.

We adapt four approximation techniques to our model and evaluate their per-
formance in terms of computational effort, memory requirement and error with
respect to the exact value. Three techniques approximate state probabilities
with others that can be expressed in product form, so that the Markov chain can
be decomposed. Specifically, we adapt a method by Alfredsson and Verrijdt, the

61
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Equivalent Random Traffic (ERT) method and the Interrupted Pisson Process
(IPP) method. The fourth technique is based on the multi-dimensional scaling
down approach, which studies an equivalent reduced Markov chain rather than
decomposing the original one.

4.1. Literature review

The literature on spare part logistics with lateral transshipments is strictly re-
lated to the more general context of inventory management. Most contributions
focus on the analysis of different inventory management models. Several au-
thors [2, 38] demonstrated the benefits of inventory sharing flexibility provided
by complete pooling policies. An extensive overview of the research concerning
transshipment modeling in supply chain systems is given by [20]. Kennedy et
al. review the different modeling issues in spare part management [48]. Here
we limit ourselves to present the foremost works on techniques for assessing the
performance of single-echelon systems, applicable in continuous review policies
with complete pooling.

As observed, e.g. in [92, 48], at least two main streams of research can be
distinguished for approaching the modeling tasks, namely the multi-dimensional
Markovian approach and the decomposition approach. A third stream of re-
search that can be cited is based on simulation.

With the multi-dimensional Markovian approach [91], the behavior of the
inventory system is modeled with a Markov chain. Studying the Markov chain
allows to compute structural properties as well as the state probabilities of
the chain, which allows to evaluate the performance of the inventory system.
This model becomes impractical for large instances, due to the extremely large
number of states of the Markov chain. In order to overcome this drawback,
one possibility is to study an equivalent Markov chain with a smaller number
of states, even if this approach did not receive much attention in the literature.
Axsater [6] suggests and evaluates a similar technique in a two echelon context
with continuous review policy and lumpy demand at each warehouse. With
the scaling down approach of Axsater, a high-demand system is approximated
by a low-demand system. The real customer demand is scaled down such that
the ratio between standard deviation and mean value is preserved. According
to the author, the scaling down technique is quite effective to speed up the
analysis of single queueing systems. However, to the best of our knowledge,
little work has been done to assess the effectiveness of this technique in the
context of multi-dimensional Markov chains.
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A second stream of research is based on an approximate decomposition
approach [2]. This approach consists of estimating the state probabilities of
the Markov chain, rather than computing their exact values, by studying each
queueing system independently from each other, so that the system perfor-
mance can be easily computed. The basic idea is to adjust the demand flow,
so that the lateral transshipments are taken into account. Within this stream
of research, Alfredsson and Verrijdt [2] use an iterative method proposed by
Axsater [4] in a two echelon context to compute fraction of demand satisfied
by different sources by assuming exponentially distributed replenishment times
and Poissonian demand. The AV method allows each warehouse to share inven-
tory with every other warehouse, so that all warehouses act as a single big pool.
Specifically, lateral transshipment is used when no spare is locally available and
the request is directed toward a randomly chosen closest neighbor warehouse
with spares available. An external supplier manages the requests that cannot
be filled by other local warehouses or by the central warehouse. The demand
and the stock level may differ from one facility to another. The numerical ex-
periments show that the approximate results are very close to the simulation
results for low demand rate, while the error may increase remarkably with the
demand rate.

The Interrupted Poisson Process (IPP) [56, 61] and the Equivalent Random
Traffic (ERT) [45] methods are decomposition approaches used in particular
in the design of telecommunication networks to assess the blocking probability
of a network [44]. With these methods there are no external entities, such as
the external supplier, and requests arriving, when all service centers are busy,
are lost. Multiple re-forwardings are possible, by letting requests jumping
among the service centers more than one time. With both methods a lateral
transshipment from a warehouse (i.e., a re-forwarded request) is viewed as
an overflow from the demand arriving at the warehouse, and therefore with
variance larger than the mean value. The peakedness of a distribution is the
ratio between variance and mean value, which is equal to one for the Poisson
process and it is greater than one when dealing with the overflow process at a
queue with Poissonian demand and exponential service time.

There are significant differences among the AV, ERT and IPP methods.
Besides the presence/absence of the external supplier, a further difference is
that AV method models the effective demand at each warehouse as a Poissonian
flow, which is therefore described by the first moment of its distribution. The
ERT method characterizes the effective demand just by its mean and variance
assuming a peakedness greater than one, while the IPP method models the
effective demand at each warehouse as hyperexponential, and takes into account
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its first three ordinary moments in computations.

As observed, e.g. by [18, 17], reliable models of service systems with over-
flow should take the peakedness into account. In order to explore the poten-
tial benefits of including peakedness in the model, we compare two methods,
the first assuming Poissonian demand and the second assuming demand with
peakedness greater than one.

A third, quite different, stream of research is based on simulation (see,
e.g. [82, 55]). In this case the inventory system is modeled as a discrete
event system, whose evolution allows to evaluate the original system behavior.
Simulation models allows to easily incorporate all relevant practical details
of the system, but particular care is necessary to guarantee the statistical
relevance of the results achieved. On the other hand, they may require very
long computational times in low demand contexts in order to achieve reliable
results. Rare event techniques, such as the importance sampling policy [41],
can be used in such cases to reduce the simulation times, but the technique can
still remain very time consuming [14]. Therefore, such models are not further
explored in this chapter.

4.2. Multi-dimensional Markovian approach

We model the system under study with a queueing network with blocking, and
study it by using a Markov chain model, with a very similar approach to that of
Wong et al. [91]. The main difference is that we explicitly include the external
supplier in the Markov chain while in [91] a failure of a part occurring when
all warehouses are in stockout condition is lost.

In the Markov chain, a state n = (n1, . . . , nw, nw+1) is a vector, in which
ni is the number of outstanding requests at warehouse i ∈W , and nw+1 is the
number of outstanding emergency transshipments issued from all warehouses
to the external supplier. Note that the overall number of outstanding requests
is

∑

i=1,...,w+1 ni. In case of blocked network, if nw+1 ≥ 1 the first repaired
item returned by the external supplier is used for replacing a failed item at
some operative site.

There are direct transitions among states just in case of a single arrival
event (i.e., a request for a spare at some warehouse) or a single departure event
(i.e., the replenishment of a repaired item by the external supplier). Let ei be
a vector with w + 1 elements, all equal to 0 but the element in position i that
is equal to 1, and let ψ(h, i) be equal to 1 if i is the warehouse closest to h
with spares available, and be equal to 0 otherwise. More precisely, ψ(h, i) = 1
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Figure 4.1: A Markov chain (left) and the aggregated birth death model (right)

if ni < si and nl = sl for each l ∈ W such that Tlh < Tih, included l = h.
With this notation, n + ei is the state of the Markov chain representing an
arrival at the i-th warehouse (with ni < si), due either to a failure in the i-th
service region or to a re-forwarded request from some other warehouse h in
stockout conditions for which ψ(h, i) = 1. Similarly, n − ei is the state with
a departure from the i-th warehouse (if ni > 0). For the external supplier,
n + ew+1 represents a new emergency request (if ni = si for each i ∈ W ) and
n−ew+1 represents the fulfillment of an emergency request (if nw+1 > 0). The
transition rate q(n,m) from state n towards state m = n± ei and n± ew+1 is
as follows.

• q(n, n+ei) = λi+
∑

h∈W−{i} ψ(h, i)·λh, for i ∈W and ni = 0, 1, . . . , si−1;

• q(n, n+ ew+1) =
∑

i∈W λi, if ni = si ∀i ∈W ;

• q(n, n− ei) = ni · µ, for i ∈W and ni > 0 and nw+1 = 0;

• q(n, n− ew+1) =
∑w+1

i=1 ni · µ, for ni = si ∀i ∈W and nw+1 ≥ 1.

Figure 4.1(left) shows an example of a Markov chain for two warehouses, the
first having two spares and the second having three available spares. Theorem
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5 shows that the blocking probability PB of the Markov chain can be easily
computed. Let S =

∑

i∈W si be the total stock level in the network, and let

ρ =
∑

i∈W λi

µ
.

4.3. Approximate performance computation

In this section we describe four methods for estimating the OA for the single
echelon model with complete pooling. The first three methods are based on
decomposition. w independent single-dimensional queueing systems approxi-
mate the multi-dimensional original one. The decomposition approach is an
exact solution method when the steady state probabilities can be expressed in
product form. Unfortunately, the Markov chain model studied in this chapter
cannot be expressed in product form. However, as described in [9], product
form networks provide the basis for many approximate algorithms to solve more
general non product form ones. In this section we describe three decomposition
methods. The first adapts the AV method of Alfredsson and Verrijdt [2] to the
case of deterministic re-forwarding [54]. The AV method models the demand
at each queueing system with a Poissonian independent distribution with ad-
justed demand rate. The second method assumes non-Poissonian independent
demand distributions with adjusted demand rate at each queueing system. It
is based on IPP [56, 61] and ERT [45] methods. The third method is IPP itself,
which assumes as effective demand process a simple renewal process, the Inter-
rupted Poisson Process, with adjusted demand rate at each queueing system.
According to Iversen [44], IPP and ERT methods are particularly suitable to
model the peakedness of overflow processes.

The fourth method is based on the scaling down concept [6]. We apply this
concept to the multi-dimensional single echelon with complete pooling context.

Decomposition approach

The basic ideas of the decomposition methods studied in this chapter consists
of computing the fraction of the demand λi at warehouse i that is satisfied
by one of three different sources. The first fraction βi (the local fill rate) is
directly satisfied by the stock available at warehouse i, the second fraction αi

(the transshipment fraction) is satisfied through lateral transshipments from the
other warehouses, the third fraction is satisfied by the external supplier through
emergency shipments and it is equal to the joint blocking probability PB(S)
of all warehouses, computed as in Theorem 5. Figure 4.2 shows a pictorial
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representation of the three flows of spare parts which satisfy the three demand
fractions at the first service region of Figure 1.1(right).

Figure 4.2: The three fractions α1, β1 and PB(S) of demand at warehouse 1.

With a decomposition method, each warehouse is studied separately. To
this aim, let pi(s) denote the probability of having si outstanding orders at
warehouse i, i.e., the probability of having no stock available at warehouse i.
The local fill rate βi and the transshipment fraction αi are therefore:

βi = (1− pi(s))

αi = 1− βi − PB(S)
(4.1)

The value pi(s) for each warehouse can be computed only if the effective arrival
rates λ

′

i at each warehouse i ∈W are known. To compute the latter values, we
let oi be the overflow from all other warehouses that is re-forwarded to ware-
house i. The closest neighbor sourcing rule for lateral transshipment is taken
into account by the probability πhi(s), defined in Section 3.1 as probability of
having stock available at warehouse i and having no stock available at every
warehouse l such that Thl < Thi (including the case l = h):

πhi(s) = βi ·
∏

l:Thl<Thi

(1− βl). (4.2)
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Equation 4.2 approximates πhi(s), as explained in section 3.1. If values πhi(s)
are known, then the values oi and λ

′

i can be computed as follows:

oi =
∑w

h=1,h 6=i πhi(s) · λh

λ
′

i = λi + oi.

(4.3)

This expressions are similar to those used in AV method by Alfredsson
and Verrijdt [2], with the difference that we use the closest neighbor sourcing
rule for lateral transshipments instead of the random sourcing rule used in [2].
Similar modification is applied by Kukreja [54].

In order to compute the above quantities, we still need the values pi(s),
∀i ∈ W . The two decomposition methods analyzed in this chapter differs in
the approach used to estimate these values.

AV method

With the AV method [2], the demand flow at each warehouse is considered
Poissonian. Therefore, the steady state probabilities of having j outstanding
requests at warehouse i are the same that in a Markovian queueing system with
si servers and zero buffer. In such a case pi(s) may be computed as follows.

pi(0) = 1
∑ si

j=0

(λ
′

i
)j

µj ·j!

pi(s) =
(λ
′

i)
si

µsi

si!
· pi(0)

(4.4)

In order to compute αi and βi in steady state an iterative procedure is followed.
The iterative procedure starts with βi = 1− PB(S) and αi = 0, which implies
that oi is initially zero for all i ∈W . Then, at each iteration, quantities πhi(s)
are computed with equation 4.2 while quantities oi and λ

′

i are computed with
equations 4.3 and then used to update steady-state probabilities pi(s). In the
next iteration the values of βi, αi are recalculated and used to update the
other quantities. This procedure is repeated until the βi, αi and oi values do
not change anymore. These values converge after a few iterations (usually less
then 30 in our computational experiments), as experienced also by Axsater [4],
Alfredsson and Verrijdt [2] and Kutanoglu [57].
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Modified ERT method

With the ERT method [2], demand at each warehouse is only characterized by
its mean value and its variance. The basic idea is that the peaked demand at
warehouse i can be viewed as the overflow of another queue M/M/ki/0/∞ with
ki servers, Poissonian demand and exponential service process. Therefore, this
method models warehouse i with a Markovian queueing system with a number
of servers ki + si, Poissonian demand flow with average Ai and zero buffer.
The first ki servers act as a primary queue, whose peaked overflow is sent to
a secondary queue with si servers. Figure 4.3 is a pictorial representation of
the ERT basic idea. The quantities ki and Aimust be determined in order
to model the desired peaked effective demand at the secondary queue, with
average λ

′

i and variance v
′

i. In such a case, the values pi(s) of Equation (4.4)

Figure 4.3: Equivalent system

are computed as the ratio between the overflow of the queue with ki+si servers
and Poissonian demand Ai and the effective demand λ′i:

Ai · Eki+si
(Ai)

λ
′

i

(4.5)

In order to compute the values pi(s) we therefore need to compute Ai and
ki values. To this aim, we compute the mean of the effective demand as in
equations 4.3 and the variance of the effective demand, v

′

i, as follows. Let vi

be the variance of the regular flows for warehouse i and Z be the peakedness
factor.

v
′

i = vi +

N
∑

j=1,j 6=i

πji(s) · vj (4.6)

Therefore we may solve the following equations 4.7 w.r.t. ki and Ai:

λ
′

i = Ai · Eki
(Ai)

v
′

i

λ
′

i

= Z = 1− λ
′

i + Ai

ki+1−Ai+λ
′

i

(4.7)
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This non-linear system has a unique solution [44], and we compute it by using
the non linear equations methods of [11].

Differently from [2], we compute the values αi and βi in steady state with
an iterative procedure, similar to the one used in the IPP method [56, 61]. The
iterative procedure starts with βi = 1−PB(S) and αi = 0, which implies that oi

are initially zero. Then in each iteration λ
′

i and v
′

i are computed, as in equations
4.3 and 4.6, and used to compute steady-state blocking probabilities pi(s). The
values of βi, αi are then recalculated, used as input to next iteration, and the
whole procedure is repeated until the βi, αi and oi do not change anymore.
These values converge after a few iterations.

IPP method

With the IPP model, the demand at each warehouse, including transshipments,
can be adequately characterized by a simple renewal process. The inter arrival
time distribution of an IPP is hyperexponential, commonly used in the litera-
ture to model high-variability arrival processes [90]. Such a distribution has 4
parameters, in what follows we will denote them as a1, a2, γ1, γ2. Its mean is
denoted as δi. In appendix 6.2 theoretical details of such a process are given,
in this section we present just the relevant formulas for the computation of
marginal service measures. Under the IPP hypothesis, the steady state prob-
abilities of having si outstanding requests at warehouse i are the same that in
a queueing system with si servers and zero buffer, where the blocking proba-
bility is computed through a generalized Erlang loss function. In such a case,
assuming to have already estimated ai

1, a
i
2, γ

i
1, γ

i
2, p

i(s) may be computed as
follows.

φ(z) =
ai
1γi

1

z+γi
1

+
ai
2γi

2

z+γi
2

Cj(ξ) =
∏j

k=1
φ(kµ+ξ)

1−φ(kµ+ξ)

C0 = 1

C−1 = 1

pi(s) = 1
∑ si

j=0
si!

si−j!j!
1

Cj(0)

(4.8)

In order to compute values pi
si

, we therefore need to compute ai
1, a

i
2, γ

i
1, γ

i
2.

By characterizing ai
1, a

i
2, γ

i
1, γ

i
2 for each queueing system i, substantially the
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effective demand process to each warehouse is estimated.
To this aim, we compute the first three moments of the effective demand as
follows.
Let mi

1,m
i
2,m

i
3 be the first three moments of the random variable for the

transshipments of the effective flows for warehouse iand let ri
1, r

i
2, r

i
3 be the

first three moments of the regular demand flow. We have:

mi
1 =

ri
1

µ
pi(s)

mi
2 = mi

1 +

∑ si
j=0

si!

si−j!j!
1

Cj−1(µ)
∑ si

j=0
si!

si−j!j!
1

Cj(µ)

mi
1

mi
3 = 3mi

2 − 2mi
1 + 2(mi

2 −m
i
1)

∑ si
j=0

si!

si−j!j!
1

Cj−1(2µ)
∑ si

j=0
si!

si−j!j!
1

Cj(2µ)

(4.9)

In the above expressions the Cj(ξ) are computed as in A.36, but this time the
φ(z) are always referred to the Laplace transform of the inter arrival times of
the regular demand and not of the effective one. We use this modification for
taking into account the presence of the external supplier.
Therefore, under independence assumption the first three moments of the ef-
fective demand to each warehouse are computed by applying the multinomial
theorem, thus aggregating transshipped and regular flows to each warehouse i.
Let us denote the mij

k the k-th moment of the flow from i to j, we compute it
as

mi
kπij(s)

Such an expression depends on the presence of the external supplier, i.e. trans-
shipments cannot be again re-forwarded. Substantially after using the multi-
nomial theorem the mean effective demand is computed as in equation 4.3.

Finally the above first three moments of the effective flows are used for es-
timating ai

1, a
i
2, γ

i
1, γ

i
2 for each warehouse i. In fact the characteristics of the

effective demand flow, which is assumed to be an Interrupted Poisson Process,
are completely specified by the Laplace transform of the inter arrival distribu-
tion [56], therefore the parametric moments may be matched with the numerics
ones, just evaluated through the multinomial theorem.

We directly solve the non linear matching equations, which leads us to achieve
more reliable results with respect to the approximate computation proposed in
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[56]. To this aim we use a trust region Newton method for unconstrained non-
linear equations and an interior affine scaling down approach for constrained
optimization problems [11]. In appendix 6.2 details on such a technique will
be given.

In order to compute αi and βi in steady state an iterative procedure is
followed. The iterative procedure starts with βi = 1 − PB(S) and αi = 0,
which implies that oi is initially zero for all i ∈ W . Then, at each iteration,
quantities πhi(s) are computed with equation 4.2 while quantities ai

1, a
i
2, γ

i
1, γ

i
2

for each warehouse i are computed through moment matching and then used
to update steady-state probabilities pi(s). In the next iteration the values of
βi, αi are recalculated and used to update the other quantities. This procedure
is repeated until the βi, αi and oi values do not change anymore.

A sketch of the iterative algorithm is described in Figure 4.4.

Scaling down approach

With the scaling down approach, a system is approximated by scaling the
demand, the replenishment time and the stock level of each warehouse using a
scale factorK. The main purpose is to reduce the stock level at each warehouse
i ∈W to a new value ŝi, in order to achieve a Markov chain with an affordable
number of states, whose probabilities can be efficiently computed.

The intuition behind this method is that the performance levels of the
original inventory system depend more on the ratios between demand, replen-
ishment time and stock level than on their absolute values. Their relative sizes
may not linearly influence the OA approximation goodness. There are two
critical issues in the method. The first issue is the choice of the K, the second
one is the rounding of the scaled stock levels, which clearly must be integer
values. Axsater [6] chooses the scale factor K by keeping the same standard
deviation-to-mean ratio in the scaled system as in the original one, while the
rounding problem is not addressed since all parameters are assumed to be mul-
tiples of K. In our procedure we relax the latter assumption and choose a scale
factor such that the scaled Markov chain can be solved efficiently.

Our procedure is as follows. Let MAX be the maximum number of states of
the Markov chain that can be efficiently managed. In view of equation 3.5, the
number of states that must be taken into account in the scaled Markov chain
is equal to

∏

i∈W (ŝi + 1), therefore we set the scale factor K as the minimum
integer value such that:
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Figure 4.4: Iterative procedure for estimating steady state IPP parameters

∏

i∈W

(ŝi + 1) ≤MAX. (4.10)

Specifically, K is obtained iteratively as follows. Starting from K = 2, we
set the overall stock level in the reduced system equal to

Ŝ = ⌊

∑

i∈W si

K
⌋+ 1 (4.11)

and then allocate a provisional number of spares ⌊ si

S
· Ŝ⌋ to each warehouse

i ∈ W , where S is the overall number of spares in the system. The remaining
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number of spares Ŝ−
∑

i∈W ⌊
si

S
·Ŝ⌋ (smaller than w) is allocated by ordering the

warehouses for decreasing value of si·Ŝ
S
− ⌊ si

S
· Ŝ⌋ and allocating an additional

spare to the first warehouses until all spares are allocated, thus obtaining the
values ŝi associated to the given value of K. In case of tie, the spare is allocated
with priority to the warehouse with higher demand. Then, inequality (4.10)
is checked. If

∏

i∈W (ŝi + 1) ≤ MAX holds, we set K and ŝi. Otherwise, we
increase K and repeat the procedure until inequality (4.10) holds. Finally, the

scaled λ̂i and µ̂ are fixed as λ̂i = λi

K
and µ̂ = µ

K
, respectively.

4.4. Numerical study

In this section we describe our computational experience. We compare the
exact results in terms of OA values, computed by directly solving the Markov
chain model, with the results obtained with the approximate techniques de-
scribed in section 4.3. Besides the percentage error in terms of OA values
between the approximate OA value and the Markov chain one, we report on
the computation time and on the memory required by the different models. All
the experiments are executed on a PC equipped with a processor Intel Core2
Duo CPU (3 GHz), 3.25 GB Ram and Windows operating system.

The set of instances used for our computational study is composed by 60
practical instances from the Italian airport maintenance context plus other 990
randomly generated instances. The experiments are carried out by varying
the mean demand to each warehouse, the number of warehouses and the stock
levels. The departure transition rate µ of each server is fixed equal to µ =

1
3 months for all instances. This is the value used by the managers in the practical
application.

Random instances are classified according to the average arrival rates from
all airports λ̄ =

∑

i∈W λi and to the stock levels si, i ∈W . Instances with λ̄ =
0.001 are in the low demand class, instances with λ̄ = 0.01 are in the medium
demand class, and instances with λ̄ = 0.1 are in the high demand class. As for
the stocking policy, for each demand class we generate 17 distributed instances,
in which si = 1 ∀i ∈ W and w = 1, 2, . . . , 17. Other 169 centralized instances
are obtained by storing all spares in a single warehouse j ∈ W that acts as
a central depot, i.e., si = 0 for i ∈ W − {j} and sj = S for S = 1, 2, . . . , 10
and for w = 1, 2, . . . , 17 (excluding the case S = w = 1, which is included
in the previous group). Finally, 144 hybrid instances are obtained by setting
si = 1 for i ∈ W − {j} and sj ∈ {2, 3, . . . , 10}, for w = 2, . . . , 17. For each
instance, the subset of warehouses, as well as the central depot j in the latter
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two groups of instances, is chosen at random among the 17 regional warehouses
of the practical application. Overall, there are 17+169+144 random instances
for each demand class, for a total of 990 random instances, besides the 60
practical instances.

As far as the multi-dimensional scaling down approach is concerned, the
computer used in our experiments can easily manage Markov chains with 214

states. Using a value MAX = 214 in equation (4.10) results in a scale factor
K = 2 for all the 1050 instances. Hence, we denote with K2 this case. In sub-
section 4.4 we evaluate the effect of the scale factor on the overall performance
of the multi-dimensional scaling down approach.

Moreover, in what follows we do not show explicitly the results concerning
the IPP method, because we found approximately the same results as the
modified ERT method. IPP method is substantially more difficult than ERT
method and more time consuming, for these reason only the modified ERT
method will be taken into account for analyzing the influence on performance
estimation of the investigated peaky nature of the flows in our system.

Time and memory effort

In practical data experiments, the exact computation with the Markov chain
model fails in finding a solution in 18 out of 60 practical instances, due to
memory limits. As for the random instances, the exact computation fails in
about 30% of the cases. Table 4.1 shows some practical instances for which the
Markov chain approach fails in finding the exact OA value. For each item we
show the cost in euro, the replenishment time (months) and the MTBF (hours)
of each item. The last three columns report the number of warehouses with
at least one spare, the total number of installed items and the total number of
allocated spares.

The smallest instances that cannot be solved with the Markov chain model,
in terms of the quantity

∏

i∈W (si + 1), have 12 warehouses and 19 allocated
spares for the practical instances, and 12 warehouses and 13 allocated spares
for the random instances. However, we observe that also the arrival rate λ̄
affects the computation time.

The time and memory effort needed to solve the Markov chain increase
rapidly with the number of warehouses and installed items. In figure 4.5 we
show the computation time required to solve the Markov chain model for the 17
distributed instances and for the three levels of demand λ̄. Instances with low
demand require significantly lower computation time. Moreover, the Markov
chain model fails in computing the exact solution in one case for λ̄ = 0.001,
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Item Cost Repair time MTBF num. installed
∑

i∈W si

(euro) (months) (hours) warehouses items
1 ≃ 7000 3 76000 12 25 25
2 ≃ 6000 3 12000 12 19 29
3 ≃ 1800 3 45000 14 20 20
4 ≃ 3000 3 109000 14 25 17
5 ≃ 3000 3 26000 12 20 24

Table 4.1: Five non solvable instances.

in three cases for λ̄ = 0.01 and in four cases for λ̄ = 0.1. Figure 4.6 shows
the memory effort required to solve the same instances with the Markov chain
model.

Figure 4.5: Computation time for the Markov chain model and distributed
instances.

In figures 4.7 and 4.8 we compare the computation time and memory effort
required by the three approximate models to solve the 60 practical instances.
The instances are ordered for increasing number of warehouses and, if equality
holds, for increasing number of spares. It can be observed that, even if all the
three methods are quite efficient in computing a solution, the multi-dimensional
scaling down approach is very fast with all instances. The maximum time
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Figure 4.6: Memory effort for the Markov chain model and distributed in-
stances.

required to solve a practical instance is 0.11 seconds. As expected, the ERT
method is slightly more time consuming than the AV method, due to the need
to solve a non-linear system instead of using a closed form expression as in the
AV method. Similar behavior can be observed for the memory effort, shown in
Figure 4.8.

In figure 4.9 we compare the computation time and memory effort required
by the three approximate models to solve the 990 random instances.

In the figure we report the average computation time (respectively, the
memory effort) required to solve all the instances with the same demand λ̄, the
same number of warehouses w and the same stock level S. The computation
times of the three approximate methods increase with λ̄ and w. With the two
decomposition methods AV and ERT, the computation time decreases with
S, differently from the Markov chain approach. This is due to the overflow
reduction caused by an higher S, which results in a reduced number of itera-
tions required by the two methods to achieve convergence. As for the memory
effort, we observe that with all the three methods the memory occupation is
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Figure 4.7: Computation time for the approximate models and practical in-
stances.

Figure 4.8: Memory effort for the approximate models and practical instances.
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Figure 4.9: Computation time (left) and memory effort (right) for the approx-
imate models and random instances.

not an issue. For the AV and ERT methods, the memory required to solve
every instance only slightly increases with λ̄ and w, while is almost constant
with S. The multi-dimensional scaling down approach is more sensitive to the
increase of λ̄, w and S, but the memory required is always very limited in our
experiments, and can be controlled by increasing the scale factor K.

Accuracy analysis

We now analyze the percentage error in OA evaluation for the three approx-
imate methods with respect to the Markov chain solution. Figure 4.10 shows
the percentage error achieved for the 42 practical instances for which the exact
OA value can be computed with the Markov chain model. The 42 instances are
ordered for increasing value of their exact Operational Availability. The two
decomposition techniques ERT and AV provides the same values in practice,
since their percentage difference is always smaller than 10−6. This is mainly
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due to the fact the estimated peakedness factor is almost 1 for all instances,
and therefore modeling the arrival process as a peaked process, as in the ERT
method, does not provide benefits with respect to approximating it with a Pois-
son process, as in the AV method. Therefore, in Figure 4.10 only one curve is
shown for the two decomposition methods. The scaling down method clearly
outperforms the decomposition techniques for small OA values (OA < 0.997),
while the percentage error is similar for larger OA values. Besides the bet-
ter performance shown in figure, in our experiments the scaling down method
provides OA values smaller than the exact ones in more than 80% of the ex-
periments while the decomposition methods find OA values always larger than
the exact ones. The scaling down method is therefore more conservative than
the decomposition methods, and this is an important feature when the method
has to be used within an optimization procedure for spares allocation.

Figure 4.10: Percentage error for practical instances

Figure 4.11 shows the percentage error achieved for the 695 random in-
stances for which the exact OA value can be computed with the Markov chain
model. Instances with similar exact OA values are grouped together and the
average error is shown in figure for the three models. Also for the random in-
stances, the scaling down method clearly outperforms the decomposition tech-
niques for small OA values while it behaves similarly for larger OA values.
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Figure 4.11: Percentage error for random instances

Influence of the scale factor in the multi-dimensional scaling

down approach

In this section we show the influence of the scale factor K in the multidi-
mensional scaling down method on the evaluation accuracy. In Figure 4.12 we
report the OA value computed with the multidimensional scaling down method
for four random instances and for K varying from 1 to 10, the value for K = 1
corresponding to the exact Markov chain computation. The four instances
mainly differ each other for the number of spares S. It is interesting to notice
that the approximate values are very similar to the exact one when K is suf-
ficiently smaller than S, while the estimation deteriorates for K ≥ S. In fact,
the critical points of this method are the computation of the scaled number of
spares Ŝ in Equation (4.11) and the allocation of these spares, which make the
scaled model quite different from the original model as K approaches S.

Figure 4.12: 4 sample instances: OA varying for different scale factor values

4.5. Conclusions

In this chapter, we have presented three approximate evaluation techniques
for estimating the operational availability of a maintenance supply chain with
single echelon inventory and complete pooling. An external supplier manages
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un-satisfied spare part requests when no spare is available in the warehouses
of the network. From our computational experiments, carried out on practical
and randomly generated instances, it turns out that the two decomposition
approaches AV and ERT generate quite the same OA values. Therefore, taking
into account the peaky nature of overflows, as in ERT, does not improve the
accuracy of the solutions and is more time consuming with respect to modeling
overflows with Poissonian flows, as in the AV method. However, the scaling
down approach clearly outperforms the two decomposition approaches in terms
of both accuracy and computation time.

Future developments of this research include the incorporation of these
fast approximation methods in an optimization framework, to optimize the
amount of spares and their allocation in order to grant the minimum levels of
operational availability required by airport authorities at the minimum cost. To
this aim the scaling down approach is preferable to the decomposition methods
since the approximate OA values are usually smaller than the exact values
computed by solving the Markov chain, and therefore more conservative.



i

i

“main” — 2010/2/24 — 14:59 — page 83 — #95
i

i

i

i

i

i

Chapter 5

Spares allocation problem:

optimization algorithms

This chapter deals with spare optimization in multi-location inventory systems
with single item and repairable spare parts. Lateral and emergency shipments
occur in response to stockouts. A continuous review base stock policy is as-
sumed for the inventory control of the spare parts. The objective is to minimize
the total costs for inventory holding, lateral transshipments and emergency
shipments subject to a target level of operational availability of the whole sys-
tem. For a given allocation, the computation of costs and the feasibility check
requires solving a queueing network with blocking, which can be studied using
a Markov chain modeling approach.
We model the stock allocation problem as a non convex integer program. We
exploit the special structure of the problem to design an efficient branch and
bound procedure. Our bounds are obtained by solving a reduced problem
with convex objective function, solvable at optimality very efficiently. Com-
putational experiments, carried on practical data from an airport equipment
maintenance context show that this method ”efficiently solves at optimality
many practical instances.”

5.1. Introduction

Single echelon inventory systems are experiencing an increasing interest in prac-
tice, in particular for the management of expensive spare parts. In such a con-
text, the supply chain involves at least three actors: equipment users, logistics

83
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companies and equipment suppliers. The users need spare parts to carry on
their business without interruptions. Intermediate logistic companies are in
charge of replenishing spare parts in the short term, by granting the contrac-
tual service level to the users at minimum cost. The suppliers are responsible
for supplying new components and/or repaired items to the logistic companies.

As observed by several authors, see e.g. by [43], the logistics of spare
parts differs from those of other materials in several ways. Equipments may
have remarkable costs, long repairing times and sporadic failures. The latter
are difficult to forecast and may cause relevant financial effects, due to the
economical implications of a lack of equipment at the operational sites. In such
cases, continuous review policies are typically adopted to reduce both reaction
time to stockouts and inventory levels [2, 38]. Several heuristic procedures can
be found in the literature for allocating spares to warehouses in a single echelon
context with complete pooling [4, 54, 93].

This chapter addresses the problem of spare parts allocation in a single ech-
elon inventory system with complete pooling characterized by expensive spares,
long repairing time and strict requirements of operational availability (i.e., the
fraction of time during which all operational sites are working). Our work is
motivated by a practical problem faced by a large Italian logistics company.
The company handles 17 warehouses supporting the daily activity of 38 airports
spread over the Italian territory. Stock levels are currently determined with
the VARIMETRIC algorithm of Sherbrooke (Sherbrooke 2004), based on a stiff
hierarchic structure. However, in operation lateral transshipments take place
between stocking points whenever there is an emergency requirement for parts,
using couriers and overnight carriers to rapidly move parts. The company is
therefore interested in determining the potential savings deriving from explicit
inclusion of lateral transshipments in the model. To this aim, we propose and
evaluate a new branch and bound procedure for stock level definition and spare
parts allocation. The procedure exploits the particular cost structure of the
maintenance supply chain under study and is very effective in this context.
However, the method is general and we discuss the algorithm performance in
a more general context.

This chapter is organized as follows. Section 5.2 describes the single ech-
elon one-for-one ordering model with complete pooling and the spare parts
allocation problem is formulated as a non-convex integer program. Section 5.3
studies the mathematical structure of the optimization problem. In Section 4.2
the Markov chain model used for computing transshipment costs and times.
Heuristic and exact allocation algorithms are described in Section 5.4. Com-
putational experiments are presented in Section 5.5, based on practical data
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from the airport maintenance context. Some conclusions follow in Section 5.6.

5.2. The problem

In our model, a logistic company aims to compute the stock level si of each
warehouse i ∈W such that a minimum level of service is granted at the oper-
ational sites and the overall cost is minimum. Costs are related to inventory
holding, transshipments and emergency shipments.

Given an allocation s of spares to warehouses, the model used to com-
pute the level of service is a single item, single echelon, w-locations, contin-
uous review, one-for-one replenishment policy inventory system, whit lateral
and emergency shipments, complete pooling and non-negligible transshipment
times.

The Spares Allocation Problem is the problem of finding an allocation s
which minimizes the overall cost for inventory holding, lateral and emergency
shipments, subject to a constraint on the minimum operational availability of
the system.

The contractual service level to grant is the operational availability OA of
all operational sites for each item, computed as in chapter 3

We assume the Poisson distribution for the demand process, which is a
typical assumption for modeling low demand processes [82]. We also use lo-
cation dependent MTBF values. The replenishment time of the external sup-
plier is a random variable, exponentially distributed, with known mean value
T0j = MTTR+OS, which is the same for any warehouse j. The capacity of the
supplier repair shop is assumed to be infinite. It follows that also the number
of replenishment from the external supplier follows the Poissonian distribu-
tion. These common assumptions make possible to use the Markovian analysis
for modeling the multi-dimensional inventory system. Finally, we make the
following assumptions.

1. Lateral transshipment is always more convenient than emergency ship-
ment, i.e., the time and cost needed for a transshipment from warehouse
i to warehouse j is always smaller than the time and cost required for an
emergency shipment from warehouse j:

max
i,j∈W

{Tij} < T0j (5.1)

max
i,j∈W

{ctij} < ce (5.2)
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2. The cost for a lateral transshipment from warehouse i to warehouse j
increases linearly with the transfer time Tij , i.e.,

ctij = αTij (5.3)

Let L be the minimum operational availability level to be achieved by a
feasible allocation. It is easy to check that this quantity corresponds to al-

lowing a maximum waiting time (1−L)MTBF

L
to substitute failed items. Then,

the Spares Allocation Problem P0 can be formulated as the following integer
program with non-convex objective function:

Problem P0:

min
∑w

i=1 c
hsi + λi

∑

j∈W πij(s)c
t
ji + λiPB(S)ce

s.t. :
∑w

i=1[λi

∑

j∈W πij(s)Tji + λiPB(S)T0i] ≤
(1−L)MTBF

L

(5.4)

Let f1(S) =
∑w

i=1 c
hsi be the total inventory holding cost, the cost for lat-

eral transshipments is defined by f2(s) =
{

∑w
i=1 λi

∑

j∈W πij(s)c
t
ji

}

and let

f3(S) =
∑w

i=1 λiPB(S)ce be the cost for the emergency shipments. Similarly,

for the waiting times we let t2(s) =
{

∑w
i=1 λi

∑

j∈W πij(s)Tji

}

be the wait-

ing times due to lateral transshipments and t3(S) =
∑w

i=1 λiPB(S)T0i be the
emergency waiting times.

5.3. Problem structure

In this section, we exploit the special structure of problem P0. Let us first
analyze the three functions f1(S), f2(s), f3(S). f1(S) is clearly linear and
increasing with the total stock level S. Kranenburg and Van Houtum [49]
proved that f3(S) is convex and decreasing with S. Finally, f2(s) is non-
convex. The latter property can be easily shown by observing that f2(s) equals
zero when s = 0 or when si → ∞ for all i = 1, . . . w, since there are no
transshipments in these two cases. On the other hand, f2(s) > 0 otherwise,
thus implying that f2(s) is non-convex. Similarly, it can be easily proved that
t3(S) is convex [49] and t2(s) is non-convex. We next show that the quantities
t2(s) + t3(S) and f2(s) + f3(S) are decreasing. To this aim, let us consider an
allocation s and a warehouse i ∈ W . Denote with ŝ the allocation such that
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ŝi = si + 1 and ŝh = sh for all h ∈W , h 6= i. Let also denote S =
∑w

i=1 si and

Ŝ =
∑w

i=1 ŝi = S + 1.
Let us first observe that when passing from s to ŝ the number of spares

at each warehouse does not decrease and therefore the probability of an out-
standing request at each warehouse cannot increase. Specifically, the following
properties must hold.

• PB(s) > PB(ŝ).

• As for warehouse i, the probability that the aggregated arrival rate λi

(without transshipments) is satisfied by the local stock increases when
passing from si to si + 1. Thus, the probability of reforwarding the
demand decreases, i.e. πij(ŝ) < πij(s). It follows that

∑

j∈W πij(s)Tji +
PB(s)T0i >

∑

j∈W πij(ŝ)Tji + PB(ŝ)T0i.

• For what concerns warehouse h 6= i, in view of rule (4.2) and assumption
(5.1), the transshipment probability remains the same since λh and sh

are the same with s and ŝ. However, the probability of reforwarding the
request to warehouse i increases and the probability of reforwarding the
request to a most far warehouse (or to the external supplier) decreases,
i.e.,

∑

j∈W πhj(s)Tjh + PB(s)T0h >
∑

j∈W πhj(ŝ)Tjh + PB(ŝ)T0h.

In conclusion,

t2(s) + t3(S)− t2(ŝ)− t3(Ŝ) =

=
∑w

i=1 λi

[

∑

j∈W (πij(s)− πij(ŝ))Tji +

+ (PB(S)− PB(ŝ))T0i > 0.

Using assumption (5.2), a similar discussion for the costs leads to f2(s) +
f3(S) > f2(ŝ) + f3(Ŝ).

Given an upper bound UB on the optimum of problem P0, an upper bound
MAX on the total stock level S of an optimal solution can be efficiently com-
puted by considering only the terms f1(S) and f3(S) of the objective function.

MAX = min {S : f1(S) + f3(S) ≥ UB} (5.5)

This value is quite close to the optimal stock level S∗ when the transshipment
cost f2(s

∗) is small with respect to f1(S
∗) + f3(S

∗), as in our practical appli-
cation. Similarly, a lower bound MIN on S∗ can be efficiently computed by
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considering only the term t3(S), decreasing with S, in the constraint of the
problem.

MIN = min

{

S : t3(s) ≤
(1− L)MTBF

L

}

(5.6)

These bounds can be used to refine the formulation of Problem P0, thus leading
to the new formulation P1.

Problem P1:
min f1(S) + f2(s) + f3(S)
s.t. :

t2(s) + t3(S) ≤ (1−L)MTBF

L

MIN ≤ S ≤MAX

(5.7)

We next introduce a Lagrangian relaxation P2(γ) of problem P1 by relaxing
the waiting time constraint. We use the notation γ to denote the Lagrangian
multiplier.

Problem P2(γ):

min f1(S) + f2(s) + f3(S) + γ
(

t2(s) + t3(S)− (1−L)MTBF

L

)

s.t. :
MIN ≤ S ≤MAX

(5.8)

It is well known that, for varying γ, P2(γ) is a concave, piecewise linear
function. Calling breakpoint the values of P2(γ) in which the slope of P2(γ)
changes, there is an optimal solution γ∗ for the Lagrangian dual max{P2(γ) :
γ ≥ 0} which is a breakpoint. If we let s be an optimal allocation for P2(γ),
and γ is not a breakpoint, then the slope of P2(γ) in γ is [35]:

t2(s) + t3(S)− (1−L)MTBF

L
(5.9)

Theorem 6 If γ is not a breakpoint there is a single optimal stock level for
P2(γ).

Proof. By contradiction, let us suppose that in γ there are two optimal allo-
cations s and s with different stock levels S and S, respectively. Therefore:

f1(S) + f2(s) + f3(S) + γ

(

t2(s) + t3(S)−
(1− L)MTBF

L

)

=

= f(S) + f2(s) + f3(S) + γ

(

t2(s) + t3(S)−
(1− L)MTBF

L

)

.
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¿From equation (5.9) it follows that the constraint violation is the same for
s and s, i.e., t2(s) + t3(S) = t2(s) + t3(S). It follows from the proportionality
assumption (5.3) that also f2(s)+ f3(S) = f2(s)+ f3(S) must hold. Hence, we
obtain f1(S) = f1(S), i.e., chS = chS. This implies the thesis S = S.

Theorem 7 If γ is a breakpoint and the slope of P2(γ) decreases from t2(s
1)+

t3(S
1)− (1−L)MTBF

L
to t2(s

2) + t3(S
2)− (1−L)MTBF

L
, then S2 > S1.

Proof. At the breakpoint γ there are at least the two optimal solutions s1 and
s2 for problem P2(γ), i.e.,

f1(S
1) + f2(s

1) + f3(S
1) + γ

(

t2(s
1) + t3(S

1)−
(1− L)MTBF

L

)

=

= f1(S
2) + f2(s

2) + f3(S
2) + γ

(

t2(s
2) + t3(S

2)−
(1− L)MTBF

L

)

.

Since the slope of P2(γ) decreases, then t2(s
1) + t3(S

1) > t2(s
2) + t3(S

2)
and, from the proportionality assumption (5.3), also f2(s

1)+f3(S
1) > f2(s

2)+
f3(S

2) must hold. Hence, it follows that f1(S
1) < f1(S

2), which implies the
thesis S1 < S2.

Theorem 8 If the breakpoint γ∗ is an optimal solution of the Lagrangian dual
max{P2(γ) : γ ≥ 0} and the slope of P2(γ

∗) decreases from t2(s
1) + t3(S

1) −
(1−L)MTBF

L
≥ 0 to t2(s

2) + t3(S
2)− (1−L)MTBF

L
≤ 0, then:

1. s2 is feasible for problem P1;

2. either s2 is optimal for P1 or S2 is greater than the optimal stock level
for P1.

Proof. The feasibility of s2 directly follows from t2(s
2)+t3(S

2)− (1−L)MTBF

L
≤

0. If s2 is not optimal, let s∗ be an optimal allocation and S∗ be the corre-
sponding stock level. From the optimality of S∗ it follows that:

f1(S
∗) + f2(s

∗) + f3(S
∗) < f1(S

2) + f2(s
2) + f3(S

2) (5.10)

On the other hand at γ∗ the objective function of the Lagrangian relaxation
computed in s∗ must be greater or equal than in s2, i.e.,

f1(S
∗) + f2(s

∗) + f3(S
∗) + γ∗

(

t2(s
∗) + t3(S

∗)−
(1− L)MTBF

L

)

≥

= f1(S
2) + f2(s

2) + f3(S
2) + γ∗

(

t2(s
2) + t3(S

2)−
(1− L)MTBF

L

)

.
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Therefore, t2(s
∗) + t3(S

∗) > t2(s
2) + t3(S

2) must hold. From assumption (5.3)
it must hold also f2(s

∗)+f3(S
∗) > f2(s

2)+f3(S
2). Therefore, from inequality

(5.10), f1(S
∗) < f1(S

2), i.e., S∗ < S2.

Despite the nice properties of P2(γ
∗) shown in Theorem 8, the computation

of P2(γ
∗) requires the computation of quantity f2(s

∗) + γ∗t2(s
∗), which is

computationally expensive. Moreover, we observe that in practical applications
it often occurs f2(s

∗) << f1(S
∗) + f3(S

∗), as in our case study. In order to
efficiently compute a lower bound to P2(γ

∗), let us introduce problem P3(γ):
Problem P3(γ):

min f1(S) + x+ f3(S) + γ
(

y + t3(S)− (1−L)MTBF

L

)

s.t. :
MIN ≤ S ≤MAX
x ≤ f2(s)
y ≤ t2(s)

(5.11)

Suitable values for x and y can be computed by exploiting the properties
that f3(S) and f2(s) + f3(S) are decreasing with S. Given any feasible alloca-
tion s and the corresponding S =

∑w
i=1 si, the following must hold:

f3(S) ≤ f3(MIN)
t3(S) ≤ t3(MIN)
f2(s) + f3(S) ≥ mins:

∑
w
i=1 si=MAX {f2(s)}+ f3(MAX)

t2(s) + t3(S) ≥ mins:
∑

w
i=1 si=MAX {t2(s)}+ t3(MAX)

(5.12)

Therefore, the values x = mins:
∑

w
i=1 si=MAX {f2(s)}+f3(MAX)−f3(MIN)

and y = mins:
∑

w
i=1 si=MAX {t2(s)}+ t3(MAX)− t3(MIN) guarantee that con-

straints x ≤ f2(s) and y ≤ t2(s) are satisfied by any allocation s such that
MIN ≤

∑w
i=1 si ≤MAX. In what follows, we fix x and y to these values and

omit the two latter constraints from the formulation of Problem P3(γ), which
can be written as follows:

Problem P3(γ,MIN,MAX):

min f1(S) + mins:
∑

w
i=1 si=MAX {f2(s)}+ f3(MAX)− f3(MIN) + f3(S)+

γ
(

mins:
∑

w
i=1 si=MAX {t2(s)}+ t3(MAX)− t3(MIN) + t3(S)− (1−L)MTBF

L

)

s.t. :
MIN ≤ S ≤MAX

(5.13)
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Since f1(S) is linearly increasing while f3(S) and t3(S) are convex and
decreasing with S, the objective function of Problem P3(γ,MIN,MAX) is
convex for any given γ ≥ 0. Therefore, given the values x and y, the optimal S
can be efficiently computed by using a binary search approach in the interval
[MIN,MAX]. We compute x as in [91]. The next theorem shows that comput-
ing y is not necessary in order to compute the maximum of P3(γ,MIN,MAX).

Theorem 9 The value γ = 0 maximizes P3(γ,MIN,MAX).

Proof. To prove the theorem it is sufficient to prove that quantity

min
s:

∑
w
i=1 si=MAX

{t2(s)}+ t3(MAX)− t3(MIN) + t3(S)−
(1− L)MTBF

L

is always non positive for MIN ≤ S ≤ MAX. This property follows by
observing that t3(S) ≤ t3(MIN) and that a feasible solution exists for S =
MAX, i.e.,

min
s:

∑
w
i=1 si=MAX

{t2(s)}+ t3(MAX) ≤
(1− L)MTBF

L

5.4. Solution procedure

In this section, a branch-and-bound algorithm for finding an optimal allocation
of spares to warehouses is described. At each node of the enumeration tree
the lower bound is computed by solving P3(0,MIN,MAX), where MIN and
MAX are computed according to equations (5.6) and (5.5) at the root node
and then updated by the branching rule. The heuristic algorithm described in
subsection 5.4 provides an initial upper bound UB, then updated whenever a
new feasible solution is found, and a sketch of the branch and bound procedure
is presented in subsection 5.4.

Upper-bound computation

A simple upper bound to Problem P0 is computed by distributing spare parts
among warehouses with positive demand and by giving preference to ware-
houses with larger demand. In fact, simulation experiments carried out in [14]
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Procedure ISA
set S = 0 and si = 0, i = 1, . . . , w.

set rhs = (1−L)MTBF

L
and k = 1.

repeat
repeat

set S = S + 1, sk = sk + 1 and k = k + 1;
if (k = |W | then set k = 1;

until
∑w

i=1[λi

∑

j∈W π̂ij(s)Tji + λiPB(S)T0i] ≤ rhs

if
∑w

i=1[λi

∑

j∈W πij(s)Tji + λiPB(S)T0i] >
(1−L)MTBF

L

then rhs = rhs−
∑w

i=1

[

λi

∑

j∈W (πij(s)− π̂ij(s))Tji

]

until
∑w

i=1[λi

∑

j∈W πij(s)Tji + λiPB(S)T0i] ≤
(1−L)MTBF

L

return s.

Figure 5.1: Pseudocode of the heuristic for Initial Spares Allocation

show that avoiding concentration of spares in few warehouses is an effective
allocation policy. The heuristic procedure ISA (Initial Spares Allocation),
sketched in Figure 5.4, finds an allocation s, feasible for P0, by greedily allo-
cating one spare at a time to warehouses in the set W = {i ∈ W : λi > 0}.
Without loss of generality we assume that the warehouses are numbered for de-
creasing value of λi, i.e., λ1 ≥ λ2 ≥ . . . ≥ λ|W |. ISA terminates when the quan-

tity
∑w

i=1[λi

∑

j∈W πij(s)Tji +λiPB(S)T0i] becomes smaller than (1−L)MTBF

L
.

In order to speed up the computation of state probabilities πij(s) at each step
of the procedure, the heuristic computes approximated values π̂ij(s) with the
fast multi-dimensional scaling down method described in [15]. When

w
∑

i=1

[λi

∑

j∈W

π̂ij(s)Tji + λiPB(S)T0i] ≤
(1− L)MTBF

L
(5.14)

the feasibility of allocation s is checked by solving the associated Markov chain
exactly. In case of feasible solution, Procedure ISA stops and returns the fea-
sible allocation s, otherwise the constraint (5.14) is strengthened by replacing
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the right-hand side (1−L)MTBF

L
with the smaller value

(1− L)MTBF

L
−

w
∑

i=1



λi

∑

j∈W

(πij(s)− π̂ij(s))Tji





Procedure ISA then continues allocating one spare at a time and check-
ing feasibility with the multi-dimensional scaling down method until a new
apparently feasible solution is found.

Branch and bound algorithm

Our BB (Branch and Bound) procedure maintains a queue Q of intervals
[MIN,MAX] for the stock level S, each corresponding to an instance of P1.

Procedure ISA provides an initial solution Bestsol, from which the first
upper bound UB on the optimum is derived. At the root node, Q is initialized
with one open problem in which MIN and MAX are computed according to
(5.6) and (5.5).

At each iteration of the BB procedure an open problem is removed from Q
according to First In First Out rule and an optimal solution S∗ to P3(0,MIN,MAX)
is computed. If the lower bound P3(0,MIN,MAX) ≥ UB the problem is
closed. Otherwise, an allocation s∗ = argmin{t2(s) :

∑w
i=1 si = S∗} is com-

puted as in [91].

If t2(s
∗) + t3(S

∗) ≤ (1−L)MTBF

L
, then s∗ is feasible for P0 and, in view of

assumption (5.3), it is also an optimal allocation for the restricted version of
P1 in which S = S∗. In this case, two new open problems are added to Q with
MIN ≤ S ≤ S∗ − 1 and S∗ + 1 ≤ S ≤ MAX, respectively, and the upper
bound UB is updated if f1(S

∗) + f2(s
∗) + f3(S

∗) < UB.

If t2(s
∗) + t3(S

∗) > (1−L)MTBF

L
, then s∗ is infeasible for P1. Thus, for all

values MIN ≤ S ≤ S∗ there is no feasible solution to P0 and only the open
problem with S∗ + 1 ≤ S ≤ MAX is added to Q. The procedure terminates
when Q is empty and the current allocation Bestsol is an optimal solution to
P0.

5.5. Case study from the corrective airport maintenance

context

In this section, we report on our computational experiments with the algo-
rithms for spares allocation presented in section 5.4 applied to solve the practi-
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Algorithm BranchAndBound
Find an allocation BestSol = ISA
set UB = f1(BestSol) + f2(BestSol) + f3(BestSol)

MIN = min
{

S : t3(s) ≤
(1−L)MTBF

L

}

MAX = min {S : f1(S) + f3(S) ≥ UB}
push [MIN,MAX] in queue Q
while Q 6= ∅ do

pop [x, y] from Q
if P3(0, x, y) < UB then

let S∗ be the optimal solution to P3(0, x, y)
set s∗ = argmin{t2(s) :

∑w
i=1 si = S∗}

if t2(s
∗) + t3(S

∗) ≤ (1−L)MTBF

L
then

if f1(S
∗) + f2(s

∗) + f3(S
∗) < UB then

set BestSol = s∗ and UB = f1(S
∗) + f2(s

∗) + f3(S
∗)

set y = min {y; min{S : f1(S) + f3(S) ≥ UB}}
end if
push [x, S∗ − 1] in Q
push [S∗ + 1, y] in Q

else
push [S∗ + 1, y] in Q

end if
end if

end while
Return UB and Bestsol

Figure 5.2: Pseudocode of the BB algorithm
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cal problem from the airport maintenance context described in the introduction
of the chapter. The case study originates from the practical needs of an Italian
logistics company supporting the activity of 38 civil airports spread over the
Italian territory. The company manages the overall processes of purchasing,
holding and replacing failed items, ensuring that the overall reliability of safety
equipments is always within contractual limits. The aim of the company is
therefore to grant the prescribed quality of service at minimum cost. While the
company currently follows a two echelon policy for spare part management, the
company managers are interested in evaluating the potential benefits deriving
from the adoption of a single echelon policy, which is generally acknowledged
to achieve better performance in similar contexts. To this aim, the algorithms
have been tested on a set of twelve instances from our case study, each based
on the warehouse locations and demand rates of a particular item. However,
in order to test the algorithms on a wider context than the real situation, we
generated several scenarios by varying holding, transshipment and emergency
costs of each item. For the replenishment time of an item we use the exponen-
tial distribution with average equal to three months for all items and scenarios
while for the transshipment time and cost we use a deterministic value pro-
portional to the distance between warehouses. Each pair holding-emergency
cost defines a scenario for each of the twelve items. We consider 21 scenarios
by choosing the cost of an item from the interval [200, 1200] and fixing the
emergency cost equal to 7000. Three additional scenarios are defined in order
to analyze the influence of the emergency cost on the algorithms performance.
In this second set of scenarios the item cost is fixed equal to 300 for each item
while the emergency cost varies from 7000 to 200000. In total we obtain 288
instances. In Table 5.1 we summarize the values of the main parameters used
in the computational experiment.

Parameter name Unit Values
Warehouses with positive de-
mand

2,3,4,5,6,7,8,9

Number of installed items 3,5,8,9,10,11,16,18
Average MTBF hours 16000, 17000, 26000, 38000, 61000, 79000, 81000,

94000, 101000, 132000, 191000, 200000
Holding cost euros 200, 250, 300, . . . , 1000, 1150, 1200
Emergency cost euros 7000, 50000, 100000, 200000
Min-Max average transship-
ment lead time

hours [5, 37.5]

Emergency lead time hours 2160

Table 5.1: Parameter values for the computational experiment
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In tables 5.2, 5.3 and 5.4 we show the results obtained for the 12 instances
and the 24 scenarios. Table 5.2 shows the solutions and the computation time
(in seconds) of ISA and BB and the relative error of ISA, computed as ISA−BB

BB
.

Each row in table shows the average results obtained for an item by varying
the costs over the 24 scenarios. We observe that the BB algorithm is able to
find the optimal solution within less than 100 seconds of computation for eight
of the twelve instances, while the optimum is found within approximately 30
minutes for other three instances. ISA always finds a feasible solution within
less than one second. The ISA value turns out to be the optimal solution for
50 out of 288 instances and the average error over the 24 scenarios varies in the
range [0.04, 0.31]. These experiments show that ISA provides good solutions
within short computation time, even if it is worth using the exact algorithm to
find better solutions.

Item # wareh. BB cost values ISA ISA−BB
BB

Computation time
holding trans. emer. value ISA BB

1 2 1635.00 107.98 16.54 2210.32 0.22 0.13 0.82
2 3 1245.00 369.07 26.07 2257.27 0.31 0.15 0.94
3 4 1740.00 452.22 8.38 2300.32 0.10 0.14 1.40
4 4 2260.00 528.79 43.12 3501.11 0.18 0.16 2.02
5 4 1485.00 580.49 23.25 2789.49 0.27 0.17 1.39
6 5 1350.00 670.44 38.49 2213.43 0.07 0.14 1.79
7 6 1920.00 886.66 72.86 3378.51 0.14 0.16 31.69
8 6 1448.33 924.44 62.50 2757.65 0.19 0.14 70.03
9 7 1513.33 1114.43 22.83 3102.12 0.26 0.13 1808.64
10 7 1530.00 1105.76 28.53 3111.92 0.26 0.13 1936.89
11 8 2112.00 1349.72 12.96 3596,77 0.05 0.15 1080.56
12 9 2014.00 1304.32 34.13 3436,47 0.04 0.13 4652.70

Table 5.2: Performance of ISA and BB algorithms for the 12 items

In Table 5.3 we analize the performance of ISA and BB for varying the
holding cost of the items. Each row in table reports the average results over
the 12 items for one of the first 21 scenarios. We also show the three components
of the optimum cost, i.e., holding, transshipment and emergency cost. It can
be observed that the transshipment cost is often comparable with the holding
cost, and therefore it cannot be neglected in the solution of the problem. For
a holding cost lower than 350 the number of spares allocated by ISA is smaller
than the optimal value, while for holding costs higher than 350 ISA always
allocates a number of spares optimal or strictly larger than the optimal solution.
In fact, we observe that the number of spares allocated by ISA does not depend
on the spare holding cost and therefore the number of spares allocated by ISA
is always the same for all scenarios. A consequence of this behavior is that the



i

i

“main” — 2010/2/24 — 14:59 — page 97 — #109
i

i

i

i

i

i

5.5. CASE STUDY FROM THE CORRECTIVE AIRPORT

MAINTENANCE CONTEXT 97

gap between ISA and the optimum is influenced by the holding cost. When
the holding cost of an item increases from 200 to 350 the error decreases from
15% down to 8%. For larger holding costs the error increases regularly until
the maximum of 32%, achieved for a holding cost equal to 1200. Smaller errors
are attained when the number of spares allocated by ISA is approximately the
optimal one and the error only depends on the warehouses to which they are
allocated.

Hold. Emerg. BB cost values ISA ISA−BB
BB

# spares
cost cost holding trans. emerg. value BB ISA
200 7000 1050.00 225.57 2.40 1538.80 0.20 5.2 3.75
250 7000 1229.17 302.33 2.71 1726.30 0.13 4.9 3.75
300 7000 1250 511.14 3.38 1913.80 0.10 4.1 3.75
350 7000 1341.67 608.98 12.51 2101.30 0.09 3.8 3.75
400 7000 1433.33 702.55 13.23 2288.80 0.08 3.5 3.75
450 7000 1537.50 770.17 15.87 2476.30 0.08 3.4 3.75
500 7000 1541.67 914.79 29.99 2663.80 0.09 3.0 3.75
550 7000 1604.17 985.84 45.09 2851.30 0.09 2.9 3.75
600 7000 1700.00 1030.90 49.58 3038.80 0.10 2.8 3.75
650 7000 1733.33 1125.55 56.92 3226.30 0.12 2.6 3.75
700 7000 1866.67 1125.55 56.92 3413.80 0.13 2.6 3.75
750 7000 1937.50 1182.59 62.38 3601.30 0.14 2.5 3.75
800 7000 2066.67 1182.59 62.38 3788.80 0.15 2.5 3.75
850 7000 2195.83 1182.59 62.38 3976.30 0.17 2.5 3.75
900 7000 2325.00 1182.59 62.38 4163.80 0.18 2.5 3.75
1000 7000 2454.17 1182.59 62.38 4351.30 0.19 2.5 3.75
1050 7000 2583.33 1182.59 62.38 4538.80 0.20 2.5 3.75
1100 7000 2712.50 1182.59 62.38 4726.30 0.21 2.5 3.75
1150 7000 2841.67 1182.59 62.38 4913.80 0.21 2.5 3.75
1200 7000 2875 1182.59 62.38 5101.30 0.22 2.5 3.75

Table 5.3: Performance of ISA and BB for different holding costs

In Table 5.3 we analize the performance of ISA and BB for varying the
item emergency costs. Each row in table shows the average results over the
12 instances for one of the 4 scenarios. Similarly to the previous scenario, the
number of spares allocated by ISA is the same for all scenarios since this value
does not depend on the spare emergency cost. The gap between ISA and the
optimum depends therefore on the emergency cost, even if the emergency cost
has a smaller influence on the error of ISA with respect to the holding cost.

As a concluding observation, computational experiments show that the
overall behavior of ISA is acceptable as an initial solution for subsequent opti-
mization. In general, the performance of ISA depends on the specific holding
and emergency costs being considered and, therefore, it may be quite erratic.
BB algorithm seems to be more promising, since it finds the proven optimum
within acceptable computation time for all tested instances.
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Hold. Emerg. BB cost values ISA ISA−BB
BB

# spares
cost cost holding trans. emerg. value BB ISA
300 7000 1250 511.14 3.38 1913.80 0.10 4.17 3.75
300 50000 1250 511.14 24.12 1964.42 0.11 4.17 3.75
300 100000 1325 442.93 38.76 2023.27 0.12 4.42 3.75
300 200000 1400 406.72 15.40 2140.99 0.17 4.67 3.75

Table 5.4: Performance of ISA and BB for different emergency costs

5.6. Conclusions

In this chapter we propose and evaluate a solution methodology for optimiz-
ing inventory stock allocation of repairable spare parts in a single echelon,
w-locations system, where lateral and emergency shipments occur in response
to stockouts. We model our problem as a non-convex integer program and
develop a new heuristic and a new branch and bound algorithm for allocating
the spare parts optimally. Both algorithms are evaluated by using practical
data from the Italian airport corrective maintenance context. Computational
experiments demonstrate that the branch and bound technique is able to op-
timally solve almost all tested instances within reasonable computation time.
The heuristic algorithm finds sub-optimal solutions within very limited com-
putation time, thus being a promising approach for finding feasible solutions
for difficult instances.

Future research should focus on the development of faster exact methods
and effective metaheuristics for the solution of large and difficult instances, as
well as on the application of the ideas proposed in this chapter to manage the
maintenance of different critical infrastructures, such as medical equipments in
hospitals or communication or energy distribution networks and so on.



i

i

“main” — 2010/2/24 — 14:59 — page 99 — #111
i

i

i

i

i

i

Chapter 6

Conclusions

6.1. Summary of main achievements

Effective supply chain management is currently recognized as a key determi-
nant of competitiveness and success in manufacturing and services, because the
implementation of supply chain management has significant impact on cost,
service and quality. Numerous strategies for achieving these targets have been
proposed.

The improvements in information technology coupled with the substantial re-
duction in the cost of processing, storing and analyzing data have made new
strategies more attractive. On such strategy allows movements of stock be-
tween locations at the same echelon level via lateral transshipment.

Despite the above technology improvements, the implementation of such trans-
shipment strategy requires still great efficiency especially in real life problems,
because it suffers from computer memory limits and long computation times
when the number of warehouses gets large, or when the number of parallel items
to ba analyzed following an item approach gets large, too.In fact, a drawback
of the policy of interest is the state dependent nature of the re-forwardings in
the systems.

Therefore an effective tactical planning requires joint contribution from var-
ious disciplines in order to be implemented efficiently, such as engineering,
mathematics, economics and computer science. New solution methods have to

99
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be explored in order to effectively implementing new management strategies.

This thesis uses operations research techniques in order to study a single ech-
elon, one-for-one ordering policy with complete pooling, with a deterministic
rule for lateral transshipments.
Specifically we propose new evaluation and optimization methods thus han-
dling real life problems within a reasonable amount of computation time. In
fact, we test all the proposed methods on the practical case study motivated
by the practical needs of an Italian logistics, supporting the activity of 38 civil
airports spread over the Italian territory. The company handles 17 warehouses
and manages the overall process of purchasing, holding, ensuring that the over-
all reliability of safety equipments is always within contractual limits. The aim
of the company is therefore to grant the prescribed quality of service at mini-
mum cost.

The items to be managed in such a context are typically expensive ones and
with low demand, but we clearly recognize that there are many different types
of service parts and that they perform many different functions. Therefore, in
such a context also parts with a lower ratio between holding and transshipment
costs may be encountered and managed. Thus with all the uncertainties that
exist, a tactical plan should be created that will provide the flexibility needed
to meet a wide range of scenarios, pointing the attention on the characteristics
of the majority of items. Common techniques models the management policy
with a Markov chain approach, thus evaluating such a policy given a spare
parts allocation. The optimal stock allocation problem is formulated as an
integer program with non linear objective function and non linear constraints.
Therefore total enumeration methods or approximation algorithms can be em-
ployed for optimally solve it.

In this thesis efficient evaluation and optimization techniques are proposed.
Accurate models have been developed for assessing the performance of a single
echelon replenishment policy, and then evaluated on the basis of practical data
with an increasing numbers of locations. The properties of the Markov chain
associated to the chosen policy have been analyzed, with particular reference
to the possibility of expressing the state probabilities in product form.

Using a suitable optimization model we have shown that the Markov chain
cannot be decomposed exactly in product form. In fact, the best product form
approximation returns a positive accuracy error, which implies that an exact
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product form does not exist.

Hence, we have adapted four approximation techniques to our model and eval-
uate their performance in terms of computational effort, memory requirement
and error with respect to the exact value. Three techniques approximate state
probabilities with others that can be expressed in product form, so that the
Markov chain can be decomposed. Specifically, we adapt a method by Al-
fredsson and Verrijdt, the Equivalent Random Traffic (ERT) method and the
Interrupted Pisson Process (IPP) method. The last two techniques have been
proposed for exploring the influence of peakedness in approximation models
with respect to the accuracy of performance estimation due to the state de-
pendent nature of the re-forwardings in the system.
The fourth technique is based on the multi-dimensional scaling down approach,
which studies an equivalent reduced Markov chain rather than decomposing the
original one. Concerning the IPP method, we found approximately the same
results as the modified ERT method. IPP method is substantially more dif-
ficult than ERT method and more time consuming, for these reason only the
modified ERT method has been taken into account for analyzing the influence
on performance estimation of the investigated peaky nature of the flows in our
system. Even if all the three methods are quite efficient in computing a so-
lution, the multi-dimensional scaling down approach is the most efficient with
all instances. The maximum time required to solve a practical instance is 0.11
seconds. As expected, the ERT method is slightly more time consuming than
the AV method, due to the need to solve a non-linear system instead of using a
closed form expression as in the AV method. Similar behavior can be observed
for the memory effort.
With the two decomposition methods AV and ERT, the computation time de-
creases with S, differently from the Markov chain approach. This is due to the
overflow reduction caused by an higher S, which results in a reduced number
of iterations required by the two methods to achieve convergence. As for the
memory effort, we observe that with all the three methods the memory occu-
pation is not an issue. For the AV and ERT methods, the memory required to
solve every instance only slightly increases with λ̄ and w, while is almost con-
stant with S. The multi-dimensional scaling down approach is more sensitive
to the increase of λ̄, w and S, but the memory required is always very limited
in our experiments, and can be controlled by increasing the scale factor K.
By analyzing the percentage error in OA evaluation, it turns out that the two
decomposition techniques ERT and AV provides very similar values, since their
percentage difference is always smaller than 10−6. This is mainly due to the
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fact the estimated peakedness factor is almost 1 for all instances, and therefore
modeling the arrival process as a peaked process, as in the ERT method, does
not provide benefits with respect to approximating it with a Poisson process,
as in the AV method.
The scaling down method clearly outperforms the decomposition techniques for
small OA values (OA < 0.997), while the percentage error is similar for larger
OA values. Besides the better performance shown in figure, in our experiments
the scaling down method provides OA values smaller than the exact ones in
more than 80% of the experiments while the decomposition methods find OA
values always larger than the exact ones. The scaling down method is therefore
more conservative than the decomposition methods, and this is an important
feature when the method has to be used within an optimization procedure for
spares allocation.
We have therefore analyzed the influence of the scale factor K in the multidi-
mensional scaling down method on the evaluation accuracy. The approximate
values are very similar to the exact one when K is sufficiently smaller than
S, while the estimation deteriorates for K ≥ S. In fact, the critical points of
this method are the computation of the scaled number of spares Ŝ in Equation
(4.11) and the allocation of these spares, which make the scaled model quite
different from the original model as K approaches S.

The formulation and solution of the Spares Allocation Problem (SAP) is one of
the main achievements of this thesis. The mathematical structure of the prob-
lem has been investigated to build an efficient exact algorithm for optimally
allocating the spares. Two assumption on the cost structure of the problem
leads to prove properties of the cost function that in turns allow to design a new
efficient branch and bound procedure. The lower bound is obtained by solving
a reduced problem with convex objective function, solvable at optimally very
efficiently. A new fast heuristic algorithm is also developed to find a feasible
allocation within small computation time.

Both algorithms are evaluated by using practical and realistic data from the
Italian airport corrective maintenance context. Computational experiments
demonstrate that the branch and bound technique is able to optimally solve
almost all tested instances within reasonable computation time. The heuris-
tic algorithm finds quite good solutions within very limited computation time,
thus being a promising approach for finding feasible solutions to difficult in-
stances.
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Moreover we have analyzed several cost structure scenarios and we have ob-
served that the transshipment cost is often comparable with the holding cost
and therefore it cannot be neglected in the solution of the problem.

For small holding cost values the number of spares allocated by the heuris-
tic algorithm is often smaller than the optimal value, while for high holding
costs it always allocate a number of spares optimal or strictly larger than the
optimal solution. As a consequence of this behavior the performance of the
proposed heuristic algorithm depends on the holding cost. and therefore the
number of spares allocated by ISA is always the same for all scenarios. A
consequence of this behavior is that the gap between ISA and the optimum
is influenced by the holding cost. When the holding cost of an item increases
from 200 to 350 the error decreases from 15% down to 8%. For larger holding
costs the error increases regularly until the maximum of 32%, achieved for a
holding cost equal to 1200. Smaller errors are attained when the number of
spares allocated by ISA is approximately the optimal one and the error only
depends on the warehouses to which they are allocated.

Similarly when varying only the emergency costs, the number of spares al-
located by ISA is the same for all scenarios since this value does not depend
on the spare emergency cost. The gap between ISA and the optimum depends
therefore on the emergency cost, even if the emergency cost has a smaller in-
fluence on the error of ISA with respect to the holding cost.

As a concluding observation, computational experiments show that the overall
behavior of ISA is acceptable as an initial solution for subsequent optimiza-
tion. In general, the performance of ISA depends on the specific holding and
emergency costs being considered and, therefore, it may be quite erratic. BB
algorithm seems to be more promising, since it finds the proven optimum within
acceptable computation time for all tested instances.

6.2. Direction for future research

The methods proposed in this thesis could be implemented in the Italian correc-
tive maintenance context in order to effectively support the logistics company
in its tactical planning. Furthermore, this tactical planning instruments should
be able to manage inventory decisions in a large network consisting of different
regional groups. Moreover the ideas proposed in this chapter could be applied
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to manage the maintenance of different critical infrastructures, such as medical
equipments in hospitals or communication or energy distribution networks and
so on.

To achieve this goals, a number of issues remain that need further develop-
ment.

Future research should be focused on the development of faster exact meth-
ods and effective metaheuristics for the solution of large and difficult instances.

Anyhow, extensive tests should be made on the branch and bound actually
proposed for solving SAP. In fact, is is essential in developing and understand-
ing of how optimal policy responds to the key cost and service factors in the
system. This insight is essential in determining subsequent directions for model
and algorithm development. Subsequent research in fact should investigate the
ideas suggested by the above exploration of the optimal stock allocation, in
order to use them to develop an efficient algorithm for solving the stocking
problem discussed in this thesis. The latter algorithm should be compared
in terms of computational effort and accuracy with the heuristic algorithms
suggested in literature as the best ones.

Further research should address also not only methodological studies, but
also modeling tasks. In fact in this thesis we attempt to increase the un-
derstanding of the properties, characteristics and methodologies of the trans-
shipment problem in single echelon context, but there still exist rich research
opportunities either for considering more complex systems with more echelons,
items and locations or for integrating different planning needs, e.g. strategic
and tactical planning or tactical and operational planning. Some extensions
are pointed out as follows.

The discussed model could be for example enriched with other operational
details, e.g. different transportation modes, maintaining substantially the same
basic mathematical structure, but making the problem larger and more diffi-
cult, therefore the knowledge of SAP and the development of evaluation tech-
niques for difficult instances, may be helpful in applying the same techniques
in quite different contexts.

Especially the approximate evaluation techniques could be adapted to more
flexible management policies, e.g. transshipments thresholds, different trans-
shipment policies, multiple echelon contexts, thus evaluating several alternative
tactical policies. In fact when dealing with more than two locations for example
some alternative transshipment policies and priority rules may be taken into
account.

Finally tactical planning could be realized together operational planning,
e.g. integrating the inventory and transportation problem.
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Markov chain theory

In this appendix we want just recall the basic notions about Markov chain, especially
pointing our attention on theoretical consideration around equilibrium probabilities
and equilibrium distribution.

Stochastic processes

A stochastic process is a model of a quantity that evolves over time, just like a dy-
namical system, but influenced by random factors. In the study of inventory systems
stochastic processes are used to model demands and supplies that are affected by
unpredictable events, as well as key variables such as the inventory position.

Formally a stochastic process is a collection of random variables X = {X(t) : t ≥ 0},
where X(t) denotes the quantity of interest at time t. Time may be discrete, where
t ranges over the non negative integers, or continuous. Each X(t) itself may be
discrete or continuous or a vector of such variables. To define a stochastic process
X means to specify the joint range and probability distributions of all these random
variables. Information is revealed gradually over time, this notion is called a filtration.

A sample path of X describes a realization of all random variables X(t). Thus a
sample path is a definite function of time.

In principle, the ranges of the X(t) may be different, but in most practical cases
the X(t) share a common range, denoted S, called the state space of X. An element
of S is a state. X(t) itself is referred to as state variable.

Classification

The time parameter t can be continuous (real) or discrete (integer). Depending on
this choice, we say X is a continuous-time process or discrete-time process. The

107
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specification of time is a basic modeling choice. In some cases there is a natural, pre-
determined time scale; observations and decisions may take place at regular scheduled
points in time or they may occur continuously. Often the choice is more of conve-
nience: one type may be easier to analyze than the other.

Regardless of how we model time, the random variables X(t) themselves may be
discrete or continuous. In such cases, respectively, X is called a discrete state or a
continuous state process.
There are four possible combinations for time and space characteristics.

A continuous state process X can model the quantity (demand or inventory) of an
infinitely divisible product. A discrete state process in contrast models a discrete item.

In continuous time a jump process is one which sample paths are all step functions,
i.e. constant except for certain distinct time points. Both the time points and the
jump sizes may be random. A jump process then has discontinuous sample paths. A
common assumption is for simple discontinuities: all sample paths are right contin-
uous. That is, there is a jump at time u, this jump is included in X(u), but not in
X(t) with t < u. Also each sample path is assumed to have left limits, that is the
limit lim{X(t) : t → u, t < u} exists for all u.
A process with non decreasing sample paths is called an accumulation process. Usu-
ally demand is modeled as such a process (D(t) is the cumulative demand up to time
t).
A jump-accumulation process with X(0) = 0, where every jump size is precisely 1
is a counting process, which, then, is a continuous time, discrete state process: each
sample path is a non decreasing step function, starting at 0, with unit steps. A count-
ing process models events occurring randomly over time; X(t) counts the number of
events during time interval (0, t].

An important distinction, both in continuous and in discrete time, is whether or
not a process changes predictably over time. If so, the process is nonstationary, oth-
erwise it is called stationary.
More precisely a process X is stationary if a shift in the time axis leaves its probability
law unchanged. That is, the X(t) all have the same marginal distribution, and for
any fixed u > 0, the pair [X(t), X(t+u)] has the same distribution for all t. Likewise,
the distribution of any group of three or more variables remains constant over time.
In particular a stationary process has E[X(t)] = E[X(0)], with t ≥ 0. Of course or
any give sample path the quantity X(t) typically changes with t. Stationarity is a
property of distributions not sample paths.

Here is a related definition: for any fixed u > 0, let Xu(t) = X(t + u) − X(t)
and Xu defined as {Xu(t) : t ≥ 0}. Xu(t) is called increment of X over the interval
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(t, t + u].
The process X has stationary increments if Xu is stationary for all u > 0.
This is the natural concept of time invariance for an accumulation process. It implies
that E[X(t)] = E[X(1)]t, t ≥ 0.
If the cumulative demand process has stationary increments, then demand during
any week has the same distribution.

Among stationary processes X, some have an important property, ergodicity. Its
major consequence is worth mentioning: let us consider any sample path and calcu-
late the long run frequency distribution of X(t) on that path. For example, if X(t)
is integer valued, we are interesting in the computation of of the long run fraction
of time X(t) spends on each of the integers. If X is ergodic, then this frequency
distribution is identical to the probability distribution of X(0).

To appreciate this property, let us now consider a stationary X that is not ergodic:
time is discrete and the state space is S = {0, 1}. For X(0), each value has probability
1
2
. Then for all t > 0, X(t) = X(0). Thus, each sample path is either {0, 0, 0, . . .}

or {1, 1, 1, . . .}. Therefore, the proportion of 0’s is never 1
2
, which is Pr{X(0) = 0}.

Here of course the X(t) are not independent.

Turning now on a different property, a process X has independent increments if
its increments over disjoint time intervals are independent. This implies that X(t)
and Xu(t) are independent, for all t and u. That is the current value provides no
information about future increments. This property is especially relevant for an ac-
cumulation process, e.g. the demand. In such a case the demands during different
weeks are independent random variables.

Markov Processes

The notion of what is nowadays called a Markov process was devised by the Russian
mathematician A.A. Markov when, at the beginning of the twentieth century, he in-
vestigated the alternation of vowels and consonants in Pushkin’s pome Onegin. He
developed a probability model in which the outcomes of successive trials are allowed
to be dependent on each other such that each trial depends only on its immediate
predecessor. This model, being the simplest generalization of the probability model
of independent trials, appeared to give an excellent description of the alternation of
vowels and consonants and enabled Markov to calculate very accurate estimate of the
frequency at which consonants occur in Pushkin’s poem. A Markov process allows
us to model the uncertainty in many real world systems that evolve dynamically in
time. The basic concept of a Markov process are those of state and state transition.
The state constitutes a full description of the system at any point in time. In a
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deterministic system, the state summarizes all the available information relevant to
predicting the future evolution of the system. Markov introduced a similar concept
in stochastic systems.

Let us now consider time t. We observe the current value X(t) and also we have
recorded the realizations of past values, i.e. X(s) for 0 ≤ s < t. We are interested in
some future value, X(t + u) for u > 0. Now we canot predict X(t + u) perfectly, but
the information we have may tell us something on it. The question is, ”how much
of that information is really salient?”. If X is a Markov process, then X(t) itself
embodies all the relevant information, the other X(s) add no further information. It
is enough to condition on the present, the future is independent of the past. For this
reason X(t) is called the state variable. Therefore the following holds.

[X(t + u)|{X(s) : 0 ≤ s ≤ t}]

[X(t + u)|X(t)]
(A.1)

The first one conditions on all the past realizations X(s), while the second conditions
only on the current state. For a Markov process these variables have the same distri-
bution, for all t and u.

The dynamics of a Markov process can be expressed in relatively simple terms. For
instance in the discrete time case, it sufficies to specify the conditional distributions
of [X(t + u)|X(t)] for all t. The initial conditions give the distribution of X(0).

A Markov process X is time homogeneous if the conditional distribution of [X(t +
u)|X(t)] remains constant over t, for all fixed u. That is, the rules governing changes
from present to future, i.e. the dynamics of the process, remain constant over time.

The simplest kinds of Markov processes are called Markov chains.

Discrete time Markov chains

A Markov chain is a discrete-time, discrete-state,time-homogeneous Markov process.
Thus the state space S is countable.Therefore, a discrete time Markov chain is a
stochastic process which is a random sequence, in which the dependency of the suc-
cessive events goes back only one unit at a time. In other words, the future proba-
bilistic behavior of the process only depends on the present state of the process and
is not influenced by its past history. This is the above described Markovian property.
As time passes, X jumps from state to state within S, such jumps are called transi-
tions. The one step transition probabilities are the numbers

tij = Pr{X(t + 1) = j|X(t) = i}
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with i, j ∈ S.

Because X is time homogeneous, these do not depend on t. By the Markov property
the tij , together with the knowledge of the probability distribution of the initial state
X(0), fully specify the dynamics of X. By definition, the tij satisfy

tij > 0

∑

j∈S tij = 1
(A.2)

In applications of Markov chains the art is.

• To choose the state variables such that the Markovian property holds.

• To determine the one step transition probabilities tij .

Once this modeling step is done, the rest is simply a matter of applying the theory.

Let us collect these probabilities in a matrix P = (tij). Each row i represents the
current state and the columns j correspond to the possible subsequent states. If the
state space S is infinite, then P is an infinite matrix. P is called the transition prob-
ability matrix of X. Let e denote a column vector of ones, the conditions above can
be written.

P ≥ 0

Pe = e

(A.3)

We now show that the one step transition probabilities determine the probability of
going from state i to state j in the next n steps.
The n-step transition probabilities are defined by

t
(n)
ij = Pr{X(n) = j|X(0) = i}

for i, j ∈ S for any n. Obviously t
(1)
ij = tij .

Theorem 10 For all n, m = 0, 1, 2, . . .

t
(n+m)
ij =

∑

k∈S

t
(n)
ik t

(m)
kj (A.4)

for i, j ∈ S.

Proof. A formal proof is as follows. By conditioning on the state of the Markov
chain at time t = n, we find.

Pr{X(n + m) = j|X(0) = i} =
∑

k∈S Pr{X(n + m) = j|X(0) = i, X(n) = k}Pr{X(n) = k|X(0) = i}

=
∑

k∈S Pr{X(n + m) = j|X(n) = k}Pr{X(n) = k|X(0) = i}

=
∑

k∈S Pr{X(m) = j|X(0) = k}Pr{X(n) = k|X(0) = i}

(A.5)
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The second equality uses the Markovian property and the last equality uses the
assumption of time homogeneity.

The theorem states that the probability of going from i to j in n + m steps is
obtained by summing the probabilities of the mutually exclusive events of going first
from state i to some state k in n steps and then going from state k to state j in m
steps.
Hence the n step transition probabilities can be recursively computed from the one
step transition probabilities tij . In fact, the t

(n)
ij are the elements of the n-fold matrix

product P n.
To aid modeling and intuition, it is useful to represent S and P by a directed graph
called state transition diagram. There is a node for each state in i in S. There is an
arc from node i to node j when tij > 0. Thus the arcs indicates which transitions
can occur.
When S is infinite we cannot draw the whole graph. Still there may be a pattern or
structure in P that can be indicated graphically.

A useful Markov chain model is the model with one or more absorbing states. A
state is absorbing if the process cannot leave this state once it entered this state,
hence

tii = 1.

Let us now consider a Markov chain {X(n)} for which the state space S is finite and
there is some state r such that for each state i ∈ S there is an integer n such that
t
(n)
ir > 0.

What is the mean return time from state r to itself? Let τ = min{n ≥ 1|X(n) = r}.
To calculate µrr = E[τ |X(0) = r] we need the mean visit times µir for each state
i 6= r.
By conditioning on the next state after state r, the following holds

µrr = 1 +
∑

j∈S,j 6=r

trjµjr.

The µir are found by solving a system of linear equations. Let us number the states
as 1, 2, . . . , N and let state r be numbered as N .

Theorem 11 The mean visit times µiN for i 6= N are the unique solution to the

linear equations

µiN = 1 +

N−1
∑

j=1

tijµjN (A.6)

for i = 1, . . . , N − 1.
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Proof. Tijms [84] to prove that the linear equations have a unique solution uses the
trick of making state N absorbing for a modified Markov chain. Let P be the Markov
matrix obtained by replacing the Nth row in the matrix P by the vector (0, 0, . . . , 1).
The mean first passage times µjN for j = 1, . . . , N − 1 are not changed by making
state N absorbing. Let us now denote by Q the (N − 1)x(N − 1) submatrix that
results by omitting the Nth row and the Nth column in the matrix P . Let the vectors
µ = (µ1N , . . . , µN−1,N ) and e = (1, . . . , 1). Then we can write A.6 in matrix notation
as

µ = e + Qµ.

Since state N is absorbing for the Markov matrix P , the following holds q
(n)
ij = t

(n)
ij

with i, j = 1, . . . , N − 1, where the q
(n)
ij and t

(n)
ij are the elements of the n-fold matrix

products Qn and P
n
.

State N can be reached from each starting state i 6= N under the Markov matrix P .
Further state N is absorbing under P . this implies that

lim
n→∞

t
(
n)ij = 0

for all i, j = 1, . . . , N − 1. Hence for the above reasoning

lim
n→∞

Qn = 0.

Therefore by a standard result from linear algebra, it now follows that the unique
solution

µ = (I −Q)−1
e

exists.

Types of transitions

Many applications of Markov chains involve chains in which some of the states are
absorbing and other states are transient.

The first passage time probability f
(n)
ij be defined by

f
(n)
ij = Pr{X(n) = j, X(k) 6= jfor1 ≤ k ≤ n− 1|X(0) = i}

for i, j ∈ S. Next, let us denote as fij =
∑∞

n=1 f
(n)
ij , which denotes the probability

that the process ever makes a transition into state j when the process starts in state i.

A state i is said to be transient if fii < 1 and is said to be recurrent if fii = 1.
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114 MARKOV CHAIN THEORY

Theorem 12 Suppose that state j is transient. Then, for any state i ∈ I

lim
n→∞

p
(n)
ij = 0.

A proof for this theorem is given in [84]. We can consider these kind of transitions
also in terms of subsets of the state space S. We have.

• State j is reachable from state i if, in the state transition diagram there is a
path from i to j. States i and j communicate if each is reachable from the
other. In terms of P , j is reachable from i if (tu

ij) > 0 for some u > 0, where
tij are the one step transition probability recorded in the Markov matrix P .
Clearly we can partition S into subsets Sk, such that all the states within each
subset communicate, but states in different subsets do not.
Also we say that each subset is reachable from another if any state in the second
subset is reachable from any state in the first.

• Therefore we say that a subset Sk is transient if some other subset is reachable
from it. Otherwise Sk is recurrent. Hence, if X starts in a transient subset,
sooner or later X must leave it, never to return. Conversely, if X starts in a
recurrent subset, it stays there forever.

• A Markov chain is reducible if there is more than one recurrent subset. Other-
wise it is irreducible.

• The long term behavior of a reducible chain thus depends crucially on its initial
conditions: starting in one recurrent subset, X can never reach another one.

• As we will see an irreducible Markov chain has a unique stationary probability
vector.

A question that is important to be addressed is whether the n-step probabilities t
(n)
ij

always have a limit as n →∞. The answer is negative. If we consider a Markov chain
with state space S = {1, 2} and one step transition probabilities tij with t12 = t21 = 1

and t11 = t22 = 0. Therefore the n step transition probabilities t
(n)
ij alternate between

0 and 1 and hence have no limit as n tend to infinity. The reason is the periodicity
in this Markov chain example. In what follows we show that the Cesaro limit of the
n step transition probabilities always exists. Then by following Tijms treatment we
analyze the effect of the initial state on the Cesaro limit of the n step transition prob-
abilities and we describe when this limit does not depend on the initial state. Such
elements are necessary for granting the existence of a unique equilibrium distribution
for the Markov chain.

Theorem 13 For all i, j ∈ S, limn→∞
1
n

∑n

k=1 p
(k)
ij always exists and

lim
n→∞

1

n

n
∑

k=1

t
(k)
jj =







1
µjj

if state j is recurrent

0 if state j is transient

(A.7)
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Here µjj denote the mean recurrence time from state j to itself.

Also

lim
n→∞

1

n

n
∑

k=1

t
(k)
ij = fij lim

n→∞

1

n

n
∑

k=1

t
(k)
jj (A.8)

for any i, j ∈ S, where fij is the probability that the process ever makes a transition

into state j when the process starts in state i.

Proof. For a transient state j it is possible to prove that limn→∞ t
(n)
ij = 0 for all

i ∈ S. By using the result that the Cesaro limit is equal to the ordinary limit when-
ever the latter limit exists the theorem follows for transient states j.
Let us now consider a recurrent state j, therefore fjj = 1 holds. The times between
successive visits to state j are independent and identically distributed random vari-
ables with mean µjj . In other words, visits of the Markov chain to state j can be seen
as renewals. If N(t) is their number during the first t transition epochs, by renewal
theory (see Tijms [84] lemma 2.2.2) we have that the long run average number of
transitions to state j per time unit is given by

lim
t→∞

N(t)

t
=

1

µjj

with probability 1 when the process starts in state j.
If Ik is such that

Ik =







1 if the process visits state j at time k

0 otherwise
(A.9)

The following holds

lim
n→∞

1

n

n
∑

k=1

Ik =
1

µjj

with probability 1. The latter limit is bounded by 1. Therefore we have

E[Ik|X(0) = j] = Pr{X(k) = j|X(0) = j} = t
(k)
jj

and
1

µjj
= E[limn→∞

1
n

∑n

k=1 Ik|X(0) = j]

= limn→∞ E[ 1
n

∑n

k=1 Ik|X(0) = j]

= limn→∞
1
n

∑n

k=1 E[Ik|X(0) = j] = limn→∞
1
n

∑n

k=1 t
(k)
jj .

(A.10)

By exploiting the useful relation

t
(n)
ij =

n
∑

k=1

t
(n−k)
jj f

(k)
ij
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, averaging this relation over n = 1, . . . , m, interchanging the order of summation and
letting m →∞, the theorem follows.

Next, we ask under which condition the influence of the initial state does not
affect any more the process as time increases. That is, limn→∞

1
n

∑n

k=1 t
(k)
ij does not

depend on the initial state X(0) = i for each j ∈ S.

For a finite state Markov chain having no two disjoint recurrent sets in [84] is proved
that fij = 1 for all i ∈ S, when j is a recurrent state. Therefore for the above rea-

soning for such a Markov chain limn→∞
1
n

∑n

k=1 t
(k)
ij does not depend on the initial

state i when j is recurrent. This statement is also true for a transient state j, since
then the Cesaro limit is always equal to 0.

For an infinite state Markov chain we have to assume the existence of some state
r such that fir = 1 for all i ∈ S and µrr < ∞.
Substantially, the Markov chain has a regeneration state r that is ultimately reached
from each initial state with probability 1 and the number of steps needed to return
from state r to itself has a finite expectation.

Therefore, with the assumptions made we have that both for a finite state and an
infinite state Markov chain

limn→∞
1

n

n
∑

k=1

t
(k)
ij

does not depend on the initial state i for all j ∈ S.

Thanks to these elements it will be possible to give the equilibrium distribution of
the Markov chain.

The equilibrium distribution

An explanation of the term equilibrium is as follows: starting the process according to
the equilibrium distribution leads to a process that operates in an equilibrium mode.
Therefore we have.

Pr{X(0) = j}, j ∈ S

Pr{X(n) = j}, j ∈ S
(A.11)

The proof is based on induction. Let the m-th state probability be Pr{X(m) = j} =
πj for some m ≥ 0.

Pr{X(m + 1) = j} =
∑

k∈S Pr{X(m + 1) = j|X(m) = k}Pr{X(m) = k}

∑

k∈S tkjπk = πj

(A.12)
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with j ∈ S.

Theorem 14 Assuming the existence of some state r such that fir = 1 for all i ∈ S
and µrr < ∞, then the Markov chain has a unique equilibrium distribution {πj , j ∈
S}, which is equal to

lim
n→∞

1

n

n
∑

k=1

t
(k)
ij = πj

independently of the initial state i.

Moreover if {xj , j ∈ S} is any solution to the equilibrium equations

xj =
∑

k∈S

xktkj

for j ∈ S.

Then for some constant c, xj = cπj for all j ∈ S.

Therefore the equilibrium probabilities πj are the unique solution to the equilibrium
equations together with the normalizing equation

∑

j∈S

πj = 1.

The dynamics of state probabilities

The above analysis is made in stationary condition. Here we give in brief some detail
about the dynamics of state probabilities.
For each t ≥ 0 it is possible to define the row vector π(t), which components are

πi(t) = Pr{X(t) = i}.

We call the π(t) probability vectors. Evidently, π(t) expresses the distribution of
X(t) in the form of a vector. The initial vector π(0) is part of the specification of X.
For t > 0, π(t) describes X(t) as viewed from just before time t.
The definitions of the πi(t) and tij imply

πi(t + 1) =
∑

j∈S

tijπj(t)
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for i ∈ S. In matrix vector notation, this becomes

π(t + 1) = π(t)P

∆π(t) = π(t)[−(I − P )]
(A.13)

Here, I is the identity matrix. Thus, the π(t) satisfy a discrete time linear system.
Thus, while X(t) itself jumps unpredictably from state to state, the probabilities
describing this behavior evolve in an orderly, predictable fashion.

Continuous time Markov chains

A continuous time Markov chain X is a discrete state, continuous time, time ho-
mogeneous Markov process. This is identical to the earlier definition of a Markov
chain except for the continuous time parameter. Just as in the discrete time case, the
Markov property expresses that the conditional distribution of a future state given
the present state and past states depends only on the present state and is independent
of the past.

Continuous case in summary

Here is one way to specify such a process. Suppose we are given.

• A discrete time Markov chain XD with state space S and transition matrix P,
where each tii = 0.

• A vector Θ = (θi)S , where θi > 0.

The convention tii = 0 is convenient and natural. This convention ensures that
the sojourn time in a state is unambiguously defined. If there are no absorbing
states, it is no restriction to make this convention. Let us now construct the process
X = {X(t) : t ≥ 0} as follows: the state space of X too is S. The sequence of values
is precisely that of the discrete time chain XD. The time X spends in state i on each
visit there, however, is a random variable, distributed exponentially with parameter
θi. These times are independent of XD and of each other.
Therefore on entering state i X stays there for an exponential amount of time with
mean 1

θ
. Then a transition occurs to another state, according to the probabilities in

the matrix P . The discrete time chain XD is said to be embedded in X, which is a
continuous time Markov chain. The above process is a Markov jump process.
Most of the key properties of X are inherited from the embedded discrete time chain
XD. Furthermore the definitions of recurrent and transient are the same as in the
discrete time case.Even if in general the theory of continuous time Markov chains is
much more intricate than the theory of discrete time Markov chains. There are very
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difficult technical problems. Therefore in the subsequent analysis we follow Tijms ap-
proach, which imposes a regularity condition that is not too strong from a practical
point of view, but avoids all technical problems.

Another equivalent way to specify the data and to construct X is the following.
Define the matrix Q = (qij), where

qij =







θitij , j 6= i

−θi, j = i
(A.14)

Clearly the fact that Pe = e implies Qe = 0. Q is called the infinitesimal generator
of X. Then, X operates as follows: consider X is in state i. Over a small increment
of time ∆t, the probability of jumping to j 6= i is approximately qij∆t and that of
staying at i is approximately 1− δi∆t. Moreover, these probabilities are independent
of how X arrived at i and how long it has been there.

Thus, as long as X remains in state i, qij measures the potential of a jump to j,
j 6= i. It is called the transition rate from i to j.
The transition rates are not probabilities, however for ∆t very small qij∆t can be in-
terpreted as the probability of moving from state i to state j within the next ∆t time
units when the current state is state i. Let us assume that the rates θi =

∑

j 6=i qij

are positive and bounded in i ∈ S. In what follows we will understand the reasoning
of such an hypothesis. The generator Q thus fully describes the behavior of X. To
formulate X, we can specify Q directly, bypassing P and

The flow rate equation method is useful for obtaining the equilibrium distribution of
a continuous time Markov chain.

Let νi =
∑

j 6=i qij be the parameter of the exponentially distributed sojourn time
in state i. It is assumed that the rates θi =

∑

j 6=i qij are positive and bounded in
i ∈ S. Finally let us define the probability pij(t) = Pr{X(t) = j|X(0) = i} with
i, j ∈ S, which are the transient transition probabilities.

To ensure that the limits of the pij(t) are independent of the initial state i and
constitute a probability distribution, we need the following assumption. The process
{X(t), t ≥ 0} has a regeneration state r such that

Pr{τr < ∞|X(0) = i} = 1, ∀i ∈ S

E[τr|X(0) = r] < ∞
(A.15)

where τr is the first epoch beyond epoch 0 at which the process {X(t)} makes a
transition into state r.
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In other words, state r will ultimately be reached with probability 1 from any other
state and the mean recurrence time from state r to itself is finite. Under this assump-
tion it can be proved that there is a probability distribution

{tj , j ∈ S}

such that
lim

t→∞
pij(t) = tj

for j ∈ S independently of the initial state i.

The limiting probability tj can be interpreted as the probability that an outside
observer finds the system in state j when the process has reached the statistical equi-
librium and the observer has no knowledge about the past evolution of the process.
The notion of statistical equilibrium relates not only to the length of the time the
process has been in operation but also to our knowledge of the past evolution of the
system. Substantially tj with probability 1 represents the long run fraction of time
the process will be in state j independently of the initial state X(0) = i.

Theorem 15 Suppose the rates θi =
∑

j 6=i qij of the continuous time Markov chain

{X(t)} are positive and bounded in i ∈ S and that a regenerative state r exists, such

that it will ultimately be reached with probability 1 from any other state and the mean

recurrence time from state r to itself is finite. Then the probabilities tj, j ∈ S are

obtained as follows. xj-s are the unique solution to the linear equations

νjxj =
∑

k 6=j qkjxk, j ∈ S

∑

j∈S xj = 1
(A.16)

with j ∈ S. Then for some constant c xj = ctj for all j ∈ S.

The above linear equations are called the equilibrium equations or balance equations
of the Markov process. Note that there is also a normalizing equation. tj are called
the equilibrium probabilities.

A physical explanation of the equilibrium equations can be given by using the obvious
principle that over the long run the average number of transition out of state j per
time unit is equal to the average number of transitions into state j per time unit. Re-
call that the tj is the long run fraction of time the process is in state j and the leaving
rate out of state j is νj . Therefore in the equilibrium equation the flow out of state j
is balanced with the rate into state j. This principle is the flow rate equation method.

More generally for any set A of states with A 6= I the rate out of the set A is
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equal to the rate into the set A in equilibrium.

Moreover we have

Theorem 16 Suppose the rates θi =
∑

j 6=i qij of the continuous time Markov chain

{X(t)} are positive and bounded in i ∈ S and that a regenerative state r exists, such

that it will ultimately be reached with probability 1 from any other state and the mean

recurrence time from state r to itself is finite. Then

• The continuous time Markov chain {X(t)} has a unique equilibrium distribution

tj , j ∈ S. Moreover

tt =
πj/νj

∑

k∈S πk νk

for j ∈ S, where {πj} is the equilibrium distribution of the embedded Markov

chain {X(n)}.

• Let {xj} be any solution to

νjxj =
∑

k 6=j

xkqkj

with j ∈ S, where the summation of xj over j is finite. Then for some constant

c xj = ctj for all j ∈ S.

Transient state probabilities

The computation of transient solutions for Markov systems is a very important issue
that arises in numerous problems in queueing, inventory and reliability. As already
defined the transient probabilities of a continuous time Markov chain {X(t), t ≥ 0}
are

pij(t) = Pr{X(t) = j|X(0) = i}

, with i, j ∈ S and t > 0. A first method is the method of linear differential equations.
The following theorem is about the Kolmogoroff’s forward differential equations.

Theorem 17 Suppose the rates θi =
∑

j 6=i qij of the continuous time Markov chain

{X(t)} are positive and bounded in i ∈ S. Then for any i ∈ S

p
′

ij(t) =
∑

k 6=j

qkjpik(t)− νjpij(t)

for j ∈ S and t > 0.
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Proof. A sketch of the proof for the finite state space S. Let us fix i ∈ S and t > 0
and consider an interval (t, t + ∆t] with ∆t very small. The following holds

pij(i + ∆t) = Pr{X(t + ∆t) = j|X(0) = i}

=
∑

k∈S Pr{X(t + ∆t) = j|X(0) = i, X(t) = k}Pr{X(t) = k|X(0) = i}

=
∑

k∈S Pr{X(t + ∆t) = j|X(t) = k}pik(t)

∑

k 6=j qkj∆tpik(t) + (1− νj∆t)pij(t) + o(∆t)

(A.17)

A second method for the computation of the state probabilities is the uniformiza-
tion method. In this treatment the process leaves state i after an exponentially
distributed time with mean 1

νi
and then jumps to another state j with probability

tij . Letting X(n) denote the state of the process just after the n− th state transition,
the discrete time stochastic process X(n) is an embedded Markov chain with one
step transition probabilities tij . The uniformization method transforms the original
Markov chain with non identical leaving rates into an equivalent stochastic process in
which the transition epochs are generated by a Poisson process at a uniform rate. To
this aim, choose a number ν such that ν ≥ νi for i ∈ S. Lat us now define a discrete
time Markov chain {X(n)} which one step transition probabilities are given by

tij =







νi

ν
tij , j 6= i

1− νi

ν
, j = i

(A.18)

for i ∈ S. Define a Poisson process N(t), t ≥ 0 with rate ν such that the process
is independent of the discrete time Markov chain {X(n)} and a continuous time
stochastic process {X(t), t ≥ 0}, which makes transitions at epochs generated by
the above Poisson process with rate ν and the state transitions are governed by the
discrete time Markov chain {X(n)}. A heuristic way to see that the two processes
are identical is as follows. For any i, j ∈ S with j 6= i

Pr{X(t + ∆t) = j|X(t) = i} = ν∆ttij + o(∆t)
= νi∆ttij + o(∆t) = qij∆t + o(∆t)

= Pr{X(t + ∆t) = j|X(t) = i}
(A.19)

for ∆t → 0. A formal proof is given in [84].
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Phase type distribution and its

evolutions

In this appendix we give only some details on markov modulated Poisson processes
and Interrupted Poisson processes.

Steep distributions

Steep distributions are also called hypo exponential distributions or generalized Er-
lang distributions. This generalized distribution function is obtained by convolving
k exponential distributions with parameter λ. Here we only consider the case where
all k exponential distributions are identical. Then we obtain the following density
function which is called the Erlang-k distribution.

f(t) = (λt)k−1

(k−1)!
λe−λt, λ > 0, t ≥ 0, k = 1, 2, . . .

F (t) =
∑∞

j=k

(λt)j

j!
e−λt

= 1−
∑k−1

j=0
(λt)j

j!
e−λt

(A.20)

Flat distribution

The general distribution function is in this case a weighted sum of exponential dis-
tributions (compound distribution)

F (t) =

∫ ∞

0

(1− e−λt)dW (λ) (A.21)

with λ > 0 and t ≥ 0, where the weight function may be discrete or continuous.
This distribution class correspond to a parallel combination of the exponential dis-
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124 PHASE TYPE DISTRIBUTION AND ITS EVOLUTIONS

tributions. The density function is called complete monotone due to the alternating
signs.

Hyper-exponential distribution

In this case W (λ) is discrete. Suppose we have the following given values λ1, λ2, . . . , λk

and that W (λ) has the positive increases a1, a2, . . . , ak where
∑k

i=1 ai = 1. For all
the other values W (λ) is constant. In this case A.21 becomes:

F (t) = 1−

k
∑

i=1

aie
−λit, t ≥ 0 (A.22)

Its moments may be found with the aid of the Laplace transform [88]. Through it its
mean value is m1 =

∑k

i=1
ai

λi
.

If k = 1 or all λi are equal, we get the exponential distribution.

This class of distributions is called hyper-exponential distributions and can be ob-
tained by combining k exponential distributions in parallel, where the probability of
choosing the i-th distribution is given by ai. The distribution is called flat because
its distribution function increases more slowly from 0 to 1 than the exponential dis-
tribution does.

In practice it is difficult to estimate more than one or two parameters. The most
important case is for n = 2 (a1 = a, a2 = 1− a)

F (t) = 1− a1e
−λ1t − a2e

−λ2t (A.23)

In such a case the probability density function is:

f(t) = a1λ1e
−λ1t + a2λ2e

−λ2·t (A.24)

The Laplace-Stieltjes transform is:

φ(s) =
a1λ1

s + λ1
+

a2λ2

s + λ2
(A.25)

Cox distributions

By combining the steep and flat distributions we obtain a general class of distributions
(phase type distributions), which can be described with exponential phase in both
series and parallel. They can be analyzed through the theory of Markov processes.
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We have already defined in appendix 6.2 the meaning of absorbing state. Let us
recall that an absorbing state i is one having pii = 1, therefore pij = 0 and j 6= i.
Thus once X arrives in an absorbing state, it never leaves it. Clearly, every absorbing
state forms its own subset and each is positive recurrent. An absorbing Markov chain
is one where every state is either transient or absorbing; therefore X will enter an
absorbing state sooner or later.

An absorbing chain is irreducible, then when it has precisely one absorbing state.
In this case the long run behavior of the chain is obvious and uninteresting: the
absorbing state i has πi = 1. Its short term (transient behavior, however, can be
interesting.

Discrete phase type distribution

Next, we describe a type of probability distribution defined in terms of an absorbing
chain. Let us consider a finite state, absorbing irreducible chain X, with a single
absorbing state and in case number the states so that the absorbing state comes last.

We use P to denote not the full transition matrix, but rather only the submatrix
corresponding to transient states, leaving out the last row and column. Pall denotes
the full matrix. The following holds

Pall =

(

P (I − P )e
0 1

)

(A.26)

Similarly, let πall(t) denote the full probability vector and π(t) the subvector corre-
sponding to transient states. Therefore we have π(0), 1− π(0)e.

P t
all =

(

P t (I − P t)e
0 1

)

(A.27)

and
πall(t) = πall(0)P t

all = (π(0)P t, 1− π(0)P t
e) (A.28)

In particular the π(t) satisfy a linear recursion of the same form as

π(t + 1) = π(t)P

. Let T be the first time the chain enters the absorbing state, that is the time until
absorbtion. Let us observe that for each t ≥ 0 the event {T > t} is equivalent to
{X(t)isinatransientstate}. Consequently

F 0(t) = π(t)e = πP t
eF (t) = 1− πP t

e (A.29)

The initial state vector is the unique vector which gives information on how to restart
the state transitions after being arrived in an absorbing state.



i

i

“main” — 2010/2/24 — 14:59 — page 126 — #138
i

i

i

i

i

i

126 PHASE TYPE DISTRIBUTION AND ITS EVOLUTIONS

Continuous phase type distribution

The continuous phase type distributions are continuous probability distributions anal-
ogous to the discrete phase type one.Just as the latter is defined in terms of a discrete
time Markov chain, this new distribution is constructed from a continuous time chain.

Let us suppose X is a continuous time Markov chain with generator Qall and a
specified initial vector µall. The last state is an absorbing state and we partition the
data as follows

Qall =

(

−M Me

0 0

)

(A.30)

and
µall(t) = (µ, 1− µe) (A.31)

The vector µ describes the initial probabilities of the transient states. As for M , its
diagonal is positive, the off-diagonal entries are non positive entries. Again, let T be
the time until absorbtion. As before we have

F 0(t) = µe−Mt
eF (t) = 1− µe−Mt

e (A.32)

That is the subvector π(t) solves the system of linear differential equations

π
′

(t) = π(t)(−M)

with t ≥ 0 and initial conditions π(0) = µ.

MMPP

The Markovian Arrival Processes (MAP) models are evolutions of the phase type
distributions. The latter may be obtained from MAP distributions.
In the phase type distributions we note the memoryless property in restarting the
state transitions after being arrived in an absorbing state. It is no important which is
the last transient state before arriving in the absorbing state, the initial state vector
is in any case the same.
A MAP has as many initial state vector as is the number of transient states in the
chain. Any time the absorbing state is reached the system knows which is the last
transient state just before being absorbed.
Therefore a MAP is formally defined by two matrices and not anymore by one sub-
matrix for transient state transitions and one initial state vector. The first matrix
has the same role as the matrix P or Q in the discrete and continuous case respec-
tively, the second one trace the last transient state before being absorbed and gives
information on how to restart the state transitions.

The MMPP is the so-called Markov Modulated Poisson Process and it is a MAP.
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The MMPP-2 is commonly used, it has only two transient states. In particular when
the absorbing state is reached an arrival happens and the next transient state will be
the same before the absorbtion.

Such a system is equivalent to two Poisson processes modulated by a Markov chain.

IPP

Due to its lack of memory the Poisson process is very easy to apply. In some cases,
however, the Poisson process is not sufficient to describe a real arrival process as
it has only one parameter. Kuczura [56] proposed a generalisation which has been
widely used. The idea of generalisation comes from the overflow problem. Customers
arriving at the system will first try to be served by a primary system with limited
capacity (n servers). If the primary system is busy, then the arriving customers will be
served by the overflow system. Arriving customers are routed to the overflow system
only when the primary system is busy. During the busy periods customers arrive at
the overflow system according to the Poisson process. During the non-busy periods
no calls arrive to the overflow system, i.e. the arrival intensity is zero. Substantially,
the Interrupted Poisson Process (IPP) is the easiest MMPP, where one of the two
Poisson processes modulated by the Markov chain has a null parameter. In fact,
the IPP model is used to model on-off sources. The blocking probability is computed
using the generalized Erlang loss function. With IPP model [44], the demand at each
warehouse (including transshipments) can be adequately characterized by a simple
renewal process. The inter arrival time distribution of an IPP is hyperexponential,
commonly used in the literature to model high-variability arrival processes [90].

Figure A.1: Sketch of IPP process

As before we have
F (t) = 1− a1e

−λ1t − a2e
−λ2t (A.33)

In such a case the probability density function is:

f(t) = a1λ1e
−λ1t + a2λ2e

−λ2·t (A.34)
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Figure A.2: Sketch of IPP overflow process

The Laplace-Stieltjes transform is:

φ(s) =
a1λ1

s + λ1
+

a2λ2

s + λ2
(A.35)

The generalized Erlang loss function is the following.

φ(z) =
ai
1γi

1

z+γi
1

+
ai
2γi

2

z+γi
2

Cj(ξ) =
∏j

k=1
φ(kµi+ξ)

1−φ(kµi+ξ)

C0 = 1

C−1 = 1

pi
si

= 1
∑si

j=0
si!

si−j!j!
1

Cj(0)

(A.36)

In order to compute values pi
si

, we therefore need to compute ai
1, a

i
2, γ

i
1, γ

i
2. By char-

acterizing ai
1, a

i
2, γ

i
1, γ

i
2 for each queueing system i, substantially the effective demand

process to each warehouse is estimated.
To this aim, we compute the first three moments of the effective demand as follows.
Let mi

1, m
i
2, m

i
3 be the first three moments of the random variable for the transship-

ments of the effective flows for warehouse iand let ri
1, r

i
2, r

i
3 be the first three moments
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of the regular demand flow. We have:

mi
1 =

ri
1

µi
pi

si

mi
2 = mi

1 +

∑si
j=0

si!
si−j!j!

1
Cj−1(µi)

∑si
j=0

si!
si−j!j!

1
Cj(µi)

mi
1

mi
3 = 3mi

2 − 2mi
1 + 2(mi

2 −mi
1)

∑si
j=0

si!
si−j!j!

1
Cj−1(2µi)

∑si
j=0

si!
si−j!j!

1
Cj(2µi)

(A.37)

In the above expressions the Cj(ξ) are computed as in A.36, but this time the φ(z)
are always referred to the Laplace transform of the inter arrival times of the regular
demand and not of the effective one.
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Optimization algorithms

Optimization and convexity in brief

The presented concepts are only the main ones useful in the analysis of inventory
systems.

Let X be a set, x a n-dimensional vector and f(x) a real valued function defined
on X. We say that x∗ ∈ X minimizes f on X or is a global minimizer of f on X,
if f(x∗) ≤ f(x) with x ∈ X.The value f(x∗) is the minimum of f on X. We write
f(x∗) = min{f(x) : x ∈ X} and x∗ = argmin{f(x) : x ∈ X}. Similar expression
hold for the maximum.

Not every function has a minimizer and a minimum. Every function, however, has
an infimum, the greatest lower bound of the range {f(x) : x ∈ X}, which could be
equal to −∞.

Let us suppose that X ⊆ IRn. x∗ is a local minimizer and f(x∗) a local minimum of
f on X, if f(x∗) ≤ f(x) for all x ∈ X in some neighborhood of x∗.

Let us suppose X ⊆ IRn is an open set and f a real valued function defined on
X. Let f be continuously differentiable. Define the gradient of f , denoted ∇f(x), as
the n-dimensional vector of partial derivatives of f evaluated at x; that is

∇f(x) = [
∂f(x)

∂xj

]nj=1

In case f is twice continuously differentiable. The Hessian of f , denoted as ∇2f(x),
is the n× n - matrix of second partial derivatives of f evaluated at x:

∇2f(x) = [
∂2f(x)

∂xi∂xj

]ni,j=1

This matrix is symmetric.

131
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In the one-dimensional case (n = 1), the gradient is just the derivative of f and
the hessian is just the second derivative of f .

In general, it is hard to find a global minimizer or even a local one. Optimality
condition help us to find them or to recognize them. The first-order optimality con-
dition is as follows: let f be continuously differentiable on the open set X. If x∗ is a
local minimizer, then

∇f(x∗) = 0

This result suggests a method to find x∗: solve the system of n equations in n un-
knowns, which nullify the gradient. There is no guarantee, however, that a solution
if one exists really solves the problem. To resolve this issue, the concept of convexity
is needed.

There are corresponding results for constrained optimization. At first, we focus on
the linear case. Let A be a m×n - matrix, where m < n and let b be a m-dimensional
vector, X0 be an open set in IRn, f be a real valued, continuously differentiable func-
tion on X0. We want to minimize f over X0, subject to the constraints Ax = b If x∗

is a local minimizer of f over X, then there exists an m-dimensional vector µ∗, such
that

∇f(x∗) + A
′

µ∗ = 0

If the rows of A are linearly independent, moreover µ∗ is unique.

The components of µ∗ are called dual variables or Lagrange multipliers.

Therefore if we have a constraint set of an optimization problem, specified in terms of
equality and inequality constraints, we a have a sophisticated collection of optimality
conditions, involving the auxiliary variables, that we have defined as Lagrange mul-
tipliers. These variables facilitate the characterization of optimal solutions, but also
provide valuable sensitivity information, quantifying up to first order the variation
of the costs (objective function) caused by variation of problem data. The theory of
Lagrange multipliers can be developed in a variety of ways.

• The penalty viewpoint, where we disregard the constraints, while adding to
the cost a high penalty for violating them. By then working with ”penalized”
unconstrained problems and by passing to the limit as the penalty increases.

• The feasible direction viewpoint, which relies on the fact that at a local mini-
mum there can be no cost improvement, when traveling a small distance along
a direction that leads to feasible points.
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The preceding informal discussion will be made now rigorous. We now consider a
problem involving both equality and inequality constraints

minx∈X f(x)

s.t. : h1(x) = 0, . . . , hm(x) = 0

g1(x) ≤ 0, . . . , gr(x) ≤ 0

(A.38)

where f , hi, gj are continuously differentiable functions from IRn to IR. For any feasi-
ble point x the set of active inequality constraints id denoted as A(x) = {j|gj(x) = 0}.
If j /∈ A(x), we say that the j-th constraint is inactive at x. We note that if x∗ is
a local minimum of the inequality constrained problem, then x∗ is also a local min-
imum for a problem identical to the inequality constrained problem except that the
inactive constraints at x∗ have been discarded. Thus in effect inactive constraints at
x∗ do not matter: they can be ignored in the statement of the optimality conditions.
On the other hand, at a local minimum, active equality constraints can be treated
to a large extent as equalities. In particular, if x∗ is a local minimum of the inequal-
ity constrained problem then x∗ is a local minimum for the following corresponding
equality constrained problem.

minx∈X f(x)

s.t. : h1(x) = 0, . . . , hm(x) = 0

gj(x) = 0, ∀j ∈ A(x∗)

(A.39)

Thus if x∗ is regular (i.e. the equality constraints gradients are linearly independent)
for the latter problem, there exist Lagrange multipliers λ∗1, . . . , λ

∗
m and µ∗j , j ∈ A(x∗)

such that

∇f(x∗) +
m

∑

i=1

λ∗i∇hi(x
∗) +

∑

j∈A(x∗)

µ∗j∇gj(x
∗) = 0

Assigning zero Lagrange multipliers to the inactive constraints we obtain

∇f(x∗) +
m

∑

i=1

λ∗i∇hi(x
∗) +

r
∑

j=1

µ∗j gj(x
∗) = 0

µ∗j = 0, ∀j /∈ A(x∗)

More formally we have the so-called Karush-Kuhn-Tucker necessary conditions. Firstly,
let us define a feasible vector as regular if the equality constraint gradients ∇hi(x)
and the active inequality constraint gradients ∇gj(x) with j ∈ A(x) are linearly
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independent. Define the Lagrangian function as

L(x, λ, µ) = f(x) +

m
∑

i=1

λihi(x) +

r
∑

j=1

µjgj(x)

Theorem 18 Let x∗ be a local minimum of the problem

minx∈X f(x)

s.t. : h1(x) = 0, . . . , hm(x) = 0

g1(x) ≤ 0, . . . , gr(x) ≤ 0

(A.40)

where f , hi, gj are continuously differentiable functions from IRn to IR, and as-

sume that x∗ is regular. Then there exist unique Lagrange multiplier vectors λ∗ =
(λ∗i , . . . , λ∗m), µ∗ = (µ∗1, . . . , µ

∗
r), such that

∇L(x∗, λ∗.µ∗) = 0

µ∗j ≥ 0, j = 1, . . . , r

µ∗j = 0, ∀j /∈ A(x∗)

where A(x∗) is the set of active constraints at x∗. If in addition f , h and g are twice

continuously differentiable there holds

y
′

∇2
xxL(x∗, λ∗, µ∗)y ≥ 0

for all y ∈ IRn such that

∇hi(x
∗)
′

y = 0, ∀i = 1 . . . , m

∇gj(x
∗)
′

y = 0, ∀j ∈ A(x∗)

Proof. This proof is present in [12]. Let v(x) = (h1(x), . . . , hm(x), gj(x)) with j ∈
A(x∗). v(x) may be treated as a set of equality constraints. Here we follow the penalty
approach and approximate the original constrained problem by an unconstrained
optimization problem that involves a penalty for violation of the constraints. In
particular we introduce the objective function

F k(x) = f(x) +
k

2
‖ v(x) ‖2 +

α

2
‖ x− x∗ ‖2

where x∗ is the local minimum of the constrained problem and α is some positive
scalar. The term k

2
‖ v(x) ‖2 imposes a penalty for violating the constraints v(x) = 0,

while the term α
2
‖ x−x∗ ‖2 is introduced for technical proof-related reasons, to ensure

that x∗ is a strict local minimum of the function f(x) + α
2
‖ x − x∗ ‖2 subject to
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v(x) = 0. Since x∗ is a local minimum, we can select ǫ > 0 such that f(x∗) ≤ f(x)
for all feasible x in the closed sphere S = {x| ‖ x − x∗ ‖≤ ǫ}. Let xk be an optimal
solution of the problem

min F k(x)

s.t. : x ∈ S
(A.41)

S is compact and therefore an optimal solution for Weierstrass’ theorem exists. It is
possible to show that the sequence {xk} converges to x∗. We have for all k

F k(xk) = f(xk) +
k

2
‖ v(xk) ‖2 +

α

2
‖ xk − x∗ ‖2≤ F k(x∗) = f(x∗)

and since f(xk) is bounded over S, we obtain limk→∞ ‖ v(xk) ‖= 0. Therefore, every
limit point x̄ of {xk} satisfies v(x̄) = 0 Furthermore, by taking the limit as k → ∞,
we obtain

f(x̄) +
α

2
‖ x̄− x∗ ‖2≤ f(x∗)

Since x̄ ∈ S and x̄ is feasible, we have f(x∗) ≤ f(x̄), which yields x̄ = x∗. Thus the
sequence {xk} converges to x∗ and it follows that xk is an interior point of the closed
sphere S for sufficiently large k. Therefore xk is an unconstrained local minimum
of F k(x) for sufficiently large k. We can work now directly with the corresponding
unconstrained necessary optimality conditions, refer to pag. 13 in [12]. From the first
order necessary condition, we have for sufficiently large k

0 = ∇F k(xk) = ∇f(xk) + k∇v(xk)h(xk) + α(xk − x∗)

Since ∇v(x∗) has full rank for regularity, the same is true for ∇v(xk) if k is suffi-

ciently large. For such k, ∇v(xk)
′

∇v(xk) is invertible and by pre multiplying with

(∇v(xk)
′

∇v(xk))−1∇v(xk)
′

the previous equation we obtain

kv(xk) = −(∇v(xk)
′

∇v(xk))−1∇v(xk)
′

(∇f(xk) + α(xk − x∗))

By taking the limit as k → ∞ and xk → x∗, we see that {kv(xk)} converges to the
vector

δ∗ = −(∇v(x∗)
′

∇v(x∗))−1∇v(x∗)
′

∇f(x∗)

By taking the limit as k →∞ we finally obtain

∇f(x∗) +∇v(x∗)δ∗ = 0

proving the first order Lagrange multiplier condition. By using the second order
unconstrained optimality condition for the problem we see that the following matrix
is positive semi definite for all sufficiently large k and for all α > 0:

∇2F k(xk) = ∇2f(xk) + k∇v(xk)∇v(xk)
′

+ k
∑

i

vi(x
k)∇2vi(x

k) + αI
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where I is the identity matrix. Let us fix any y such that ∇v(x∗)
′

y = 0 and let yk be

the projection of y on the null space of ∇v(xk)
′

, that is

yk = y −∇v(xk)(∇v(xk)
′

∇v(xk))−1∇v(xk)y

Since ∇v(xk)
′

yk = 0 and ∇2F k(xk) is positive semi definite, we have

0 ≤ (yk)
′

∇2F k(xk)yk = (yk)
′

(∇2f(xk) + k
∑

i

vi(x
k)∇2vi(x

k))yk + α ‖ yk ‖2

Since kvi(x
k)→ δ∗i and from the definition of yk as projection of y on the null space

of ∇v(xk)
′

, together with the fact xk → x∗ and ∇v(x∗)
′

y = 0, we have yk → y and
obtain

0 ≤ y
′

(∇2f(x∗) +
∑

i

δ∗i∇
2vi(x

∗))y + α ‖ y2

Since α can be taken arbitrarily close to 0, we have our result, which is the second
order Lagrange multiplier condition. We next must show the assertion µ∗j ≥ 0 for
j ∈ A(x∗). We give a proof of this assertion by using again the penalty approach.
Let h(x) = (h1(x, . . . , hm(x))). We introduce the following functions

g+
j (x) = max{0, gj(x)}

and the penalized problem

min Fk(x) ≡ f(x) + k
2
‖ h(x) ‖2 + k

2

∑r

j=1(g
+
j (x))2 + α

2
‖ x− x∗ ‖2

s.t. : x ∈ S
(A.42)

where as before α is a fixed positive scalar, S = {x| ‖ x− x∗ ‖≤ ǫ}, and > 0 is such
that f(x∗) ≤ f(x) for all feasible x with x ∈ S. Note that the function (g+

j (x))2 is

continuously differentiable with gradient 2g+
j (x)∇gj(x). If xk minimizes F k(x) over

S, as before it is possible to show that xk → x∗ and that the Lagrange multipliers λ∗i
and µ∗j are given by

λ∗i = lim
k→∞

khi(x
k)

µ∗j = lim
k→∞

kg+
j (xk)

Since g+
j (xk) ≥ 0 we obtain µ∗j ≥ 0 for all j.

One approach for using necessary conditions to solve inequality constrained prob-
lems is to consider separately all the possible combinations of constraints being active
or inactive.



i

i

“main” — 2010/2/24 — 14:59 — page 137 — #149
i

i

i

i

i

i

OPTIMIZATION AND CONVEXITY IN BRIEF 137

Convexity

The set X ⊆ IRn is convex if, for every pair of vectors x1, x2 in X and every scalar
s ∈ [0, 1]

x = sx1 + (1− s)x2 ∈ X

Thus, X is convex if it contains the whole line segment connecting x1 and x2.

Let f be a real-valued function defined on the convex set X. The function f is
convex if, for every pair of vectors x1 and x2 in X and every scalar s ∈ [0, 1], defining
x ≡ sx1 + (1− s)x2 as above

f(x) ≤ sf(x1) + (1− s)f(x2)

The expression on the right is an approximation of f(x), obtained by linear interpo-
lation between the values at x1 and x2. Therefore, f is convex, when the true value
f(x) always lies at or below this approximation. In other words, the graph of f lies
below the line segment connecting [x1, f(x1)] and [x2, f(x2)].

Suppose X is open and convex and the function f : X → IR is continuously dif-
ferentiable. Then f is convex if and only if for all x and y in X

f(x) ≥ f(y) + (x− y)∇f(y)

The right hand side of the above expression is the first order linear approximation of
f(x) centered at the point y. Therefore f is convex when the true value f(x) lies at
or above the approximation.

Suppose f is twice continuously differentiable. Then f is convex if and only if the
Hessian ∇2f(x) is non negative definite for all x.

We care about convexity because it simplifies optimization. In fact, if X is a convex
set the following holds.

Suppose f is strictly convex on X. Then, f has at most one, unique local mini-
mizer x∗. Thus if we want to minimize f and we know that f is convex, we need only
search for a local minimum, and if f is strictly convex, we know that the optimal
point is unique, provided one exists. Convexity also provides necessary and sufficient
conditions for local optimality itself. Denote a function f as locally convex if it is
convex on some neighborhood of x. If x∗ is a local minimizer of f , then f is locally
convex at x∗. Let us suppose f continuously differentiable. If f is locally convex at
x∗ and ∇f(x∗) = 0, then x∗ is a local minimizer of f . In the last result, if f is in
fact convex everywhere, then x∗ is a true global minimizer. The first order necessary
condition thud becomes sufficient also.
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Convexity is preserved by optimization. Let us suppose that X and Y are con-
vex sets, and f = f(x, y) is convex on X × Y . If g(x) is defined as the minimal value
of f for fixed x (i.e. g(x) = min{f(x, y) : y ∈ Y }). Then g is convex on X.

The Lagrangian relaxation method for integer

programming

Lagrangian relaxation has grown from a successful but largely theoretical concept
to a tool that is the backbone of a number of large scale applications. In the past
Fisher wrote an excellent survey of Lagrangian relaxation [35], which in 2004 has
been recognized as one of the Ten Most Influential Titles of ”Management Science’s”,
and he wrote an ”how to do it” exposition, too [36]. This appendix follows closely
those studies.

Lagrangian relaxation is based upon the observation that many difficult integer pro-
gramming problems can be modeled as a relatively easy problem complicated by a
set of side constraint. To exploit this observation, we create a Lagrangian problem in
which the complicating constraints are replaced with a penalty term in the objective
function involving the amount of violation of the constraints and their dual variables.
The Lagrangian problem is easy to solve and provide a lower bound (upper bound) for
a minimization (maximization) problem on the optimal value of the original problem.
It can thus be used in place of a linear programming relaxation to provide bounds in a
branch and bound algorithm. The Lagrangian approach offers a number of important
advantages over a linear programming relaxation.

Let us formulate the Lagrangian relaxation concept in the following general terms.
We take into account a combinatorial optimization problem formulated as an integer
program.

Z = min cx

s.t. : Ax = b

Dx ≤ e

x ≥ 0, integral

(A.43)

where x is a n-dimensional vector, b an m-dimensional vector and e a r-dimensional
vector and all other matrices have conformable dimensions. Let us assume that the
following Lagrangian problem is easy to solve relative to problem A.43 and hopefully
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in polynomial or pseudo-polynomial time.

ZD(u) = min cx + u(Ax− b)

s.t. : Dx ≤ e

x ≥ 0, integral

(A.44)

It is clear that the optimal value of this problem for fixed u at a non negative value
is a lower bound on Z.

ZD(u) ≤ cx∗ + u(Ax∗ − b) = Z

There are three major questions in designing a Lagrangian relaxation based system.

• Which constraints should be relaxed.

• How to compute good multipliers u.

• How to deduce a good feasible solution to the original problem, given a solution
to the relaxed problem.

Fisher remarks that answer to the first question is that the relaxation should make
the problem significantly easier but not too easy. For the second question there is
a choice between a general purpose procedure called the sub gradient method and
smarter methods, which may be better but which are highly problem specific.

Ideally, u should solve the following dual problem.

ZD = maxu ZD(u) (A.45)

Most schemes for determining u have as their objective finding optimal or near optimal
solutions to problem A.45. Such a problem has a number of structural properties
that makes it feasible to solve. Let us assume that the set X = {x|Dx ≤ e, x ≥
0and integral} of feasible solutions for problem A.44 is finite, so we can represent X
as X = {xt, t, 1, . . . , T}. This allow to express problem A.45 as follows.

ZD = max w

s.t. : w ≤ cxt + u(Axt − b), t = 1, . . . , T
(A.46)

The dual of problem A.46 is a linear program with many columns

ZD = min
∑T

t=1 λtcx
t

s.t. :
∑T

t=1 λtAxt = b

∑T

t=1 λt = 1

λt ≥ 0, t = 1, . . . , T

(A.47)
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Problem A.47 with λt required to be integral is equivalent to problem A.43, although
problem A.47 and the linear relaxation of problem A.43 are not in general equivalent
problems. Problem A.46 makes it apparent that problem A.44 is the lower envelope
of a finite family of linear functions. The function ZD(u) in problem A.44 has nice
properties like continuity and concavity (convexity in case of maximization of the
Lagrangian function, due to a minimization original problem). However it differen-
tiable except at points where the Lagrangian problem has multiple optimal solutions.
Therefore it is differentiable almost everywhere and it generally is not differentiable at
an optimal point. At differentiable points, the derivative of the function ZD(u) with
respect to u is given by Ax− b. These observations suggest that it may be fruitful to
apply a gradient method for the minimization of ZD(u) with some adaptation at the
points where it is not differentiable. This has been nicely accomplished in a procedure
called the sub gradient method. At points where ZD(u) is not differentiable, the sub
gradient method chooses arbitrarily from the set of alternative optimal Lagrangian
solutions and uses the vector Ax− b for this solution as though it were the gradient
of ZD(u). Specifically an m-dimensional vector y is called a sub gradient of ZD(u)
at ū if it satisfies

ZD(u) ≤ ZD(ū) + y(u− ū)

for all u. It is clear that ZD(u) is sub differentiable everywhere. The vector (Axt− b)
is a sub gradient at any u for which xt solves problem A.44. The result is a procedure
that determines a sequence of values for u by beginning at an initial point u0 and
applying the formula

uk+1 = max{0, uk − tk(b−Axk)}

. Recall that u is a non negative vector, therefore the choice of the maximum between
0 and uk − tk(b − Axk) is due to a projection of uk − tk(b − Axk) in the convex set
defined as follows.

M = {u|u ≥ 0, ZD(u) > −∞

In this formula tk is a scalar step size and xk is an optimal solution to problem A.44,
the Lagrangian problem with dual variables set to uk. The non differentiability also
requires some variation in the way the step size is normally set in a gradient method.
Numerically it is possible to note that if the step size converges to 0 too quickly, then
the sub gradient method will converge to a point other than the optimal solution.
Therefore the step size in the sub gradient method should converge to 0 but not too
quickly. These observations have been confirmed in a result [42] that states that
if k → ∞, tk → 0 and

∑T

i=1 ti → ∞, then ZD(uk) converges to its optimal value
ZD. Note that these conditions are sufficient but not necessary, in fact, the second
condition could be violated but the optimal solution for u could be found same way.
A formula for tk that have proven effective in practice is

tk =
δk(ZD(uk)− Z∗)

∑m

i=1(bi −
∑n

j=1 aijxk
j )2
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In this formula Z∗ is the objective value of the best known feasible solution to prob-
lem A.43 and δk is a scalar chosen between 0 and 2. Frequently, the sequence δk

is determined by starting with δk = 2 and reducing it by a factor of two, whenever
ZD(uk) has failed to decrease in a specified number of iterations. The feasible value
Z∗ initially can be set to 0 and then updated using the solutions that are obtained
on those iterations in which the Lagrangian problem solution turns out to be feasi-
ble in the original problem A.43. Unless we obtain a uk for which ZD(uk) = Z∗,
there is no way of proving optimality in the sub gradient method. To resolve this
difficulty, the method is usually terminated upon reaching a specified iteration limit.
Other procedures that have been used for setting multipliers are called multiplier-
adjustment methods. They are heuristics for the dual problem that are developed
for a specific application and exploit some special structure of the dual problem in
that application. Specifically, in these methods a sequence uk is generated by the rule
uk+1 = uk +tkdk, where tk is a positive scalar and dk is a direction. To determine dka
finite and usually small set of primitive directions S for which it is easy to evaluate
the directional derivative of ZD(u) is defined. Usually directions in S involve changes
in only one or two multipliers. Directions in S are scanned in fixed order and dk is
taken to be either the first direction found along which ZD(u) increases or the direc-
tion of steepest ascent within S. The step size tk can be chosen either to maximize
ZD(uk + tkdk) or to take us to the first point at which the directional derivatives
changes. If S contains no improving direction the algorithm is terminated, which
of course can happen prior to finding an optimal solution to problem A.45. With
these methods one is usually able to improve on the sub gradient method. How-
ever, because its simplicity and robust behavior in a wide variety of applications. it
is usually at least the initial choice for setting the multipliers in Lagrangian relaxation.

The Lagrangian relaxation approach can be compared with more traditional linear
programming based branch and bound algorithms, by comparing the lower bound
obtained by relaxing the integrality requirement on x and solving the resulting lin-
ear program. Let ZLP denote the optimal value of problem A.43 with integrality
on x relaxed. Geoffrion [37] stated that ZD ≥ ZLP for any Lagrangian relaxation.
This fact is established by the following sequence of relations between optimization
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problems.

ZD = maxu≥0 {minx(cx + u(Ax− b))}

s.t. : Dx ≥ e

x ≥ 0, integral

≥ maxu≥0 {minx(cx + u(Ax− b))}

s.t. : Dx ≥ e

x ≥ 0

(ByLPduality) = maxu≥0 maxv≥0 ve− ub

s.t. : vD ≤ c + uA

(ByLPduality) = minx cx

s.t. : Ax = b
Dx ≥ e

x ≥ 0

= ZLP

(A.48)

Besides showing that ZD ≥ ZLP , the preceding relationships indicate when ZD =
ZLP and when ZD > ZLP . The inequality in the sequence of relations connecting
ZD and ZLP is between the Lagrangian problem and the Lagrangian problem with
the integrality constraint relaxed. hence, we can have ZD > ZLP only if this inequal-
ity holds strictly and hence if the Lagrangian problem is affected by removing the
integrality constraint on x. This result shows that we can improve the lower bound
by using a Lagrangian relaxation in which the variables are not naturally integral (the
continuous and integer solutions can differ). Therefore with careful choice of which
constraints to dualize, Lagrangian relaxation can provide results that are significantly
superior to LP-based branch and bound. The choice of which constraint to dualize
is to some extent an art. Typically several alternative relaxations may be built and
evaluated (both empirically and analytically). One way is to begin with an integer
programming formulation and select different constraint to dualize. Alternatively,
one can begin with some easy to solve model which is close to the problem one wishes
to solve and then try to add a set of side constraints to represent those aspects of the
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problem of interest which are missing in the simpler model. A Lagrangian relaxation
can be obtained by dualizing the side constraints that have been added.

Trust-region and interior affine scaling methods

In section 4.3 for realizing the moment matching between estimated numerical mo-
ments and their corresponding analytical expressions, under the hypothesis of hyper-
exponential interarrival times, a non linear system of equations have been solved. To
this aim an affine scaling trust region approach has been used to solve bound con-
strained nonlinear systems. The method is a recent iterative one. It combines ideas
from the classical trust region Newton method for unconstrained nonlinear equations
and an interior affine scaling approach for constrained optimization problems. The
method generates feasible iterates and handles the bounds implicity. In subsequent
sections the trust region basic theory will be presented and then the specific affine
scaling trust region approach will be described. Before presenting the basic theory
let us point out that our aim is to consider the problem of the numerical solution of
bound-constrained nonlinear systems. It is standard to express these problems as.

F (x) = 0, x ∈ Ω (A.49)

where F (x) = (F1(x), F2(x), . . . , Fn(x))T and Ω = {x ∈ Rn|l ≤ x ≤ u}. The
vectors l ∈ (IR

⋃

∞)n and u ∈ (IR
⋃

∞)n are specified lower and upper bounds on
the variables such that Ω has a nonempty interior. It’s worth noting that a possible
approach to solving problem A.49 consists in reformulating it as a bound constrained
non linear least squares problem.

min
x∈Ω

f(x) = min
x∈Ω

1

2
‖F (x)‖22 (A.50)

Recently, Bellavia et al. [10] generalized the trust-region strategy for unconstrained
systems of nonlinear equations to bound-constrained systems and proposed in [10] a
new reliable method for the numerical solution of problem A.49 in its original form.

Trust region methods

Trust region methods were developed at first for unconstrained optimization of smooth
functions. You may refer to the excellent books [12] and [68] for a detailed description
of this theory. For unconstrained optimization of smooth funtions a powerful collec-
tion of algorithms have been developed. We now give a broad description of their main
properties and then describe specifically the trust region approach in more detail. All
algorithm for unconstrained optimization require the user to supply a starting point,
which we usually denote as x0. The user with knowledge about the application and
the data set may be in a good position to choose x0 to be a reasonable estimate of
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the solution. Otherwise, the starting point must be chosen by the algorithm by a
systematic approach or in some arbitrary manner.

Beginning at x0, optimization algorithms generate a sequence of iterates {xk}
∞
k=0

that terminates when either no more progress can be made or when it seems that a
solution point has been approximated with sufficient accuracy. In deciding how to
move from one iterate xk to the next, the algorithms use information about the objec-
tive function f at xk and possibly information from earlier iterates x0, x1, . . . , xk−1.
They use this information to find a new iterate xk+1 with a lower function value than
xk. There exist non monotone algorithms that do not insist on a decrease in f at
every step, but even these algorithms require f to be decreased after some prescribed
number m of iterations.

There are two fundamental strategies for moving from the current point xk to a
new iterate xk+1: the line search and the trust region.

In the line search strategy, the algorithm chooses a direction pk and searches along
this direction from the current iterates xk for a new iterate with a lower function
value. The distance to move along pk can be found by approximately solving the
following one dimensional minimization problem to find a step length α:

min
α>0

f(xk + αpk) (A.51)

By solving A.51 exactly, we would derive the maximum benefit from the direction pk,
but an exact minimization may be expensive and is usually unnecessary. Instead, the
line search algorithm generates a limited number of trial step lengths until it finds
one that loosely approximates the minimum of problem A.51. At the new point, a
new search direction and step length are computed and the process is repeated. The
steepest descent direction −∇fk is the most obvious choice for search direction for
a line search method. However line search methods may use search directions other
than the steepest descent direction. In general any descent direction (i.e. one that
makes am angle of strictly less than π

2
) radians with −∇fk) is guaranteed to produce

a decrease of f , provided that the step length is sufficiently small. We can verify this
claim by using Taylor’s theorem. We have that.

f(xk + ǫpk) = f(xk) + ǫT
k∇fk + O(ǫ2). (A.52)

When pk is a downhill direction, the angle θk between pk and ∇fk has cosθk < 0,
thus

pT
k∇fk = ‖pk‖‖∇fk‖cosθk < 0

It follows that

f(xk + ǫpk) < f(xk)
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for all positive but sufficiently small values of ǫ. Another important search direction
is the Newton direction. This direction is derived from the second order Taylor series
approximation to f(xk + p), which is

f(xk + p) ≈ fk + pT∇fk +
1

2
pT∇2fkp = mk(p)

Assuming for the moment that ∇2fk is positive definite, we obtain the Newton direc-
tion by finding the vector p that minimizes mk(p). By simply setting the derivative
of mk(p) to 0 we obtain the following explicit formula

pN
k = −(∇2fk)−1∇fk

The Newton direction is reliable when the difference between the true function f(xk +
p) and its quadratic model mk(p) is not too large. When ∇2fk is not positive definite,
the Newton direction may not even be defined, since (∇2fk)−1 may not exist. Even
when it is defined, it may not satisfy the descent property ∇fT

k pN
k < 0, in which case

it is unsuitable as a search direction. In these situations, line search methods modify
the definition of pk to make it satisfy the descent condition while retaining the benefit
of the second order information.

On the other hand Quasi Newton search directions provide an attractive alterna-
tive to Newton’s method in that they do not require computation of the Hessian and
yet still attain superlinear rate of convergence. In place of the true Hessian ∇2fk

they use an approximation Bk, which is updated after each step to take into account
the additional knowledge gained during the step. The updates make use of the fact
that changes in the gradient g provide information about the second derivative of f
along the search direction.

In the second algorithmic strategy, known as trust region, the information gathered
about f is used to construct a model function mk whose behavior near the current
point xk is similar to that of the actual objective function f . Because the model
mk may not be a good approximation of f when x is far from xk, we restrict the
search for a minimizer of mk to some region around xk. In other words, we find the
candidate step p by approximately solving the following subproblem.

minp{mk(xk + p)}, xk + p inside the trust region (A.53)

If the candidate solution does not produce a sufficient decrease in f , we conclude
that the trust region is too large and we reduce it. Usually the trust region is a ball
defined by

‖p‖ ≤ ∆

where the scalar ∆ > 0 is called the trust region radius. Elliptical and box shaped
trust regions may also be used. The model mk is usually defined to be a quadratic
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function of the form

mk(xk + p) = fk + pT∇fk +
1

2
pT Bkp

where fk, ∇fk and Bk are a scalar, vector, matrix, respectively. As the notation
indicates, fk and ∇fk are chosen to be the function and gradient values at the point
xk, thus mk and f are in agreement to the first order at the current iterate xk. The
matrix Bk is either the Hessian ∇2fk ar some approximation to it.

In a sense, the line search and trust region approaches differ in the order in which
they choose the direction and distance of the move to the next iterate. Line search
starts by fixing the direction pk and then identifying an appropriate distance, namely
the step length αk. In trust region, we first choose a maximum distance, i.e. the trust
region radius ∆k and then seek a direction and step that attain the best improvement
possible subject to this distance constraint. If this step proves be unsatisfactory, we
reduce the distance measure ∆k and try again. In general, the direction of the step
changes whenever the size of the trust region is altered.

The size of the trust region is critical to the effectiveness of each step. If the re-
gion is too small, the algorithm misses an opportunity to take a substantial step that
will move it much closer to the minimizer of the objective function in the region. If
too large, the minimizer of the model may be far from the minimizer of the objective
function in the region. In practical algorithms, we choose the size of the region ac-
cording to the performance of the algorithm during previous iterations.

Let us note that the trust region approach requires us to solve a sequence of subprob-
lems as follows.

minp∈Ren mk(p) = fk +∇fT
k p + 1

2
pT Bkp

s.t. : ‖p‖ ≤ ∆k

(A.54)

in which the objective function and the constraint (which can be written as pT p ≤ ∆2
k)

are both quadratic. If Bk = ∇2fk we work with a trust region Newton method.

When Bk is positive definite and ‖B−1
k ∇fk‖ ≤ ∆k, the solution of problem A.54

is easy to identify: it is simply the unconstrained minimum pB
k = −B−1

k ∇fk of the
quadratic mk(p). It is the full step. The solution of problem A.54 is not so obvious
in other cases, but it can usually be found without too much computational effort.
In any case we need only an approximate solution to obtain convergence and good
practical behavior. We will point out this fact in the subsequent.

An important observation here is that even if Bk is not positive definite or, more
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generally, even if it is not a descent direction, the restricted step pk improves the
objective function, provided ∇fk 6= 0 and ∆k sufficiently small. The reason is that
mk(pk) is smaller than fk (which is equal to mk(0)) and f(xk + pk) is very close to
its second order expansion mk(pk) when ‖pk‖ is small. More specifically, let us show
this fact when Bk = ∇2fk, we have for all p with ‖p‖ ≤ ∆k

f(xk + p) = mk(p) + o(∆2
k)

so that

f(xk + pk) = mk(pk) + o(∆2
k)

= fk + min‖p‖≤∆k
{∇fT

k p + 1
2
pT∇2fkp}+ o(∆2

k)
(A.55)

Therefore denoting p̄k = − ∇fk

‖∇fk‖
∆k we have

f(xk + pk) ≤ fk +∇fT
k p̄k + 1

2
p̄T

k∇
2fkp̄k + o(∆2

k)

= fk −Deltak‖∇fk‖+
∆2

k

2‖∇fk‖
2∇fT

k ∇
2fk∇fk + o(∆2

k)

(A.56)

For ∆k sufficiently small, the negative term −∆k‖∇fk‖ dominates the last two terms
on the right hand side, showing

f(xk + pk) < f(xk)

We will state this result more formally in the lemma 20. It can be seen in fact from the
preceding relations that a cost improvement is possible even when ∇fk = 0, provided
∆k is sufficiently small and f has a direction of negative curvature at xk, that is,
∇2fk is not positive semi definite. Thus the preceding procedure will fail to improve
the cost only if ∇fk = 0 and ∇2fk is positive semi definite, that is xk satisfies the
first and second order necessary conditions. In particular, one can typically make
progress even if xk is a stationary point that is not a local minimum. We are thus
motivated to consider a method of the form

xk+1 = xk + pk

where pk is the restricted Newton step corresponding to a suitably chosen scalar ∆k.
Here, for a given xk, ∆k should be small enough so that there is cost improvement;
one possibility is to start from an initial trial ∆k and successively reduce ∆k by a
certain factor as many times as necessary until a cost reduction occurs. The choice
of the initial trial value for ∆k is crucial here; if it is chosen too large, a large number
of reductions may be necessary before a cost improvement occurs; if it chosen too
small, the convergence rate may be too poor. Therefore a reasonable way to adjust
the initial trial is as follows.
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The strategy for choosing the trust region radius ∆k at each iteration may be based
on the agreement between the model function mk and the objective function f at
previous iterations. Given a step pk, we define the ratio.

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(A.57)

the numerator is called the actual reduction and the denominator is the predicted
reduction (i.e. the reduction in f predicted by the model function). Let us note that

Trust region

Given ∆̄ > 0, ∆0 ∈ (0, ∆̄) and η ∈ [0, 1
4 )

set k = 0.
repeat

Obtain pk by (approximately) solving problem A.54;
Evaluate ρk from expression A.57
if (ρk <

1
4 )

then set ∆k+1 = 1
4∆k;

else if (ρk >
3
4 ) and (‖ρk‖ = ∆k)

then set ∆k+1 = min(2∆k, ∆̄)
else set ∆k+1 = ∆k

if (ρk > η)
then set xk+1 = xk + pk

else set xk+1 = xk

until xk+1 6= xk

Figure A.3: Pseudocode of the algorithm for the trust region approach

since the step pk is obtained by minimizing the model mk over a region that includes
p = 0, the predicted reduction will always be non negative. Hence, if ρk is negative,
the new objective value f(xk +pk) is greater than the current value, so the step must
be rejected. On the other hand, if ρk is close to 1, there is a good agreement between
the model mk and the function f over this step, so it is safe to expand the trust
region for the next iteration. If ρk is positive but significantly smaller than 1, we do
not alter the trust region, but if it close to 0, we reduce the trust region radius at the
next iteration. Here ∆̄ is an overall bound on the step lengths. Let us note that the
radius is increased only if ‖pk‖ actually reaches the boundary of the trust region.

To turn Algorithm A.5 into a practical algorithm, we need to focus on solving the
trust region subproblem A.54. A first step to characterizing exact solutions of it is
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given by the following theorem, which shows that the solution p∗ of problem A.54
satisfies

(Bk + λkI)p∗ = −∇fk (A.58)

for some λ ≥ 0. This fact may be seen as a correction of the Hessian matrix (or of
its approximation) by a positive semi definite matrix.

Theorem 19 The vector p∗ is a global solution of the trust region problem

minp∈IRn mk(p) = fk +∇fT
k p + 1

2
pT Bkp

s.t. : ‖p‖ ≤ ∆k

(A.59)

if and only if p∗ is feasible and there is a scalar λ ≥ 0 such that the following conditions
are satisfied

(Bk + λI)p∗ = −∇fk

λ(∆k − ‖p
∗‖) = 0

(B + λI) is positive semi definite

(A.60)

The proof relies on the following technical lemma, which deals with the unconstrained
minimizer of quadratics and is particularly interesting in the case where the Hessian
is positive semi definite.

Theorem 20 Let m be the quadratic function defined by

m(p) = gT p +
1

2
pT Bp (A.61)

where B is any symmetric matrix. Then the following statements are true.

• m attains a minimum if and only if B is positive semi definite and g is in the

range of B. If B is positive semi definite, then every p satisfying Bp = −g is a

global minimizer of m.

• m has a unique minimizer if and only if B is positive definite.

Proof.

• The if part. Since g is in the range of B, there is a p with Bp = −g. For all
w ∈ IRn, we have

m(p + w) = gT (p + w) + 1
2
(p + w)T B(p + w)

= (gT p + 1
2
pT Bp) + gT w + (Bp)T w + 1

2
wT Bw

= m(p) + 1
2
wT Bw

≥ m(p)

(A.62)
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since B is positive semi definite. Hence p is a minimizer of m. For the only if
part, let p be a minimizer of m. Since ∇m(p) = Bp + g = 0, we have that g is
in the range of B. Also we have ∇2m(p) = B positive semi definite, giving the
result.

• For the if part, the same argument as before suffices with the additional point
that wT Bw > 0 whenever w 6= 0. For the only if part, it is possible to proceed
as before to deduce that B is positive semi definite. If B is not positive definite,
there is a vector w 6= 0 such that Bw = 0. Hence from relations A.62, we have
m(p + w) = m(p), so the minimizer is not unique, giving a contradiction.

Proof theorem 19. Let us assume first that there is λ ≥ 0 such that the
conditions A.60 are satisfied. Lemma 20 implies that p∗ is a global minimum of the
quadratic function

m̄k(p) = ∇fT
k p +

1

2
pT (Bk + λI)p = mk(p) +

λ

2
pT p (A.63)

Since m̄(p) ≥ m̄(p∗), we have

mk(p) ≥ mk(p∗) +
λ

2
((p∗)T p∗ − pT p) (A.64)

Because λ(∆k − ‖p
∗‖) = 0 and therefore λ(∆2 − (p∗)T p∗) = 0, we have

mk(p) ≥ mk(p∗) +
λ

2
(∆2

k − pT p) (A.65)

Hence, from λ ≥ 0, we have mk(p) ≥ mk(p∗) for all p with ‖p‖ ≤ ∆k. Therefore p∗ is
a global minimizer of problem A.59. For the converse, we assume that p∗ is a global
solution of problem A.59 and show that there is a λ ≥ 0 that satisfies conditions
A.60. In the case ‖p∗‖ < ∆k, p∗ is an unconstrained minimizer of mk and so

∇mk(p∗) = Bkp∗ +∇fk = 0

∇2mk(p∗) = Bk positive semi definite
(A.66)

And therefore properties A.60 hold for λ = 0. Assume for the remainder of the
proof that ‖p∗‖ = ∆k. Then the second condition in conditions A.60 is immediately
satisfied and p∗ also solves the constrained problem

min

k(p)

s.t. :
‖p‖ = ∆k

m (A.67)
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By applying optimality conditions for constrained optimization to this problem, we
find that there is a λ such that the Lagrangian function defined by

L(p, λ) = mk(p) +
λ

2
(pT p−∆2) (A.68)

has a stationary point at p∗. By setting ∇pL(p∗, λ) = 0, we obtain

Bkp∗ +∇fk + λp∗ = 0 ⇒ (Bk + λI)p∗ = −∇fk (A.69)

so that conditions A.60 holds. Since mk(p) ≥ mk(p∗) for any p with pT p = (p∗)T p∗ =
∆2

k, we have for such vectors p that

mk(p) ≥ mk(p∗) +
λ

2
((p∗)T p∗ − pT p) (A.70)

By substituting the expression for ∇fk from equation A.69 into the last expression,
we obtain

1

2
(p− p∗)T (Bk + λI)(p− p∗) ≥ 0 (A.71)

The third condition in conditions A.60 follows. It remains to show that λ ≥ 0.
Because the first and the third condition are satisfied by p∗, we have from lemma 20
that p∗ minimizes m̄k, therefore expression A.64 holds. Suppose that there are only
negative values of λ that satisfy the first and the second properties in conditions A.60.
Then from expression A.64 that mk(p) ≥ mk(p∗) whenever ‖p‖ ≥ ‖p∗‖ = ∆. Since
we already know that p∗ minimizes mk for ‖p‖ ≤ ∆, it follows that Bkp = −∇fk and
Bk is positive semi definite. Therefore the first and third conditions are satisfied by
λ = 0, which contradicts our assumption that only negative values of λ can satisfy
the conditions.

The key features of this theorem are as follows. The second condition in A.60 is a
complementarity condition that states that at least one of the non negative quantities
λ and (∆k − ‖p

∗‖) must be zero. Hence, when the solution lies strictly inside the
trust region we must have λ = 0 and Bkp∗ = −∇fk with Bk positive semi definite.
In the other cases we have ‖p∗‖ = ∆ and λ is allowed to take a positive value. Note
that

λp∗ = −Bkp∗ = −∇mk(p∗)

Strategies for solving subproblem A.54 are based on finding approximate solu-
tions to it, which achieve at least as much reduction in mk as the reduction achieved
by the so-called Cauchy point. This point is simply the minimizer of mk along the
steepest descent direction −∇fk, subject to the trust region bound. Descriptions of
such approximate techniques may be found in [68].
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Although in principle we seek the optimal solution of the subproblem A.54, it is
enough for purposes of global convergence to find an approximate solution pk that
lies within the trust region and gives a sufficient reduction in the model. The suffi-
cient reduction may be quantified in terms of the Cauchy point, which we denote by
pC

k and define in terms of the following simple procedure.

Cauchy point calculation

Find the vector pS
k that solves a linear version of problem A.54

pS
k =p∈IRn (fk +∇fT

k p) s.t.: ‖p‖ ≤ ∆k

Calculate the scalar τk > 0 that minimizes mk(τpS
k ) subject to

satisfying the trust region bound that is

τk =τ>0 (mk(τpS
k )) s.t.: ‖τpS

k ‖ ≤ ∆k

set pC
k = τkp

S
k

Figure A.4: Pseudocode of the algorithm for the cauchy point approximation

It is easy to write down a closed form definition of the Cauchy point. For a start,
the solution for pS

k is simply

pS
k = −

∆k

‖∇fk‖
∇fk

To obtain τk explicitly, we consider the cases of ∇fT
k Bk∇fk ≤ 0 and ∇fT

k Bk∇fk > 0
separately. For the former case, the function mk(τpS

k ) decreases monotonically with
τ whenever ∇fk 6= 0 therefore τk is simply the largest value that satisfies the trust
region bound, namely τk = 1. For the other case mk(τpS

k ) is a convex quadratic

in τ , so τk is either the unconstrained minimizer of this quadratic ‖∇fk‖
3

∆k∇fT
k

Bk∇k
or

the boundary value 1. The Cauchy step pC
k is inexpensive to calculate, mo matrix

factorizations are required, and is of crucial importance in deciding if an approximate
solution of the trust region sub problem is acceptable. Specifically, a trust region
method will be globally convergent if its steps pk give a reduction in the model mk

that is at least some fixed positive multiple of the decrease attained by the Cauchy
step. Formal proofs may be found in [68]. Since the Cauchy point pC

k provides suf-
ficient reduction in the model function mk to yield global convergence and since the
cost of calculating it is so small, we can look for a better approximate solution of
problem A.54. Details may be found in [68].
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Now let us describe a technique that uses the characterization A.58 of the subprob-
lem solution, applying Newton’s method to find the value of λ which matches the
given trust region radius ∆k in problem A.54. The approximate methods cited above
make no serious attempt to find the exact solution of the subproblem A.54. They do,
however, make some use of the information in the model Hessian Bk and nice global
convergence properties. When the problem is relatively small (n is not too large) it
may be worthwhile to exploit the model more fully by looking for a closer approxi-
mation to the solution of the subproblem. In this section, we describe an approach
for finding a good approximation at the cost of a few factorizations of the matrix Bk.
Essentially, the algorithm tries to identify the value of λ for which problem A.58 is
satisfied by the solution of problem A.54. The characterization of theorem 19 sug-
gests an algorithm for finding the solution p. Either λ = 0 satisfies the first and the
third expression with ‖p‖ ≤ ∆k or else we define

p(λ) = −(Bk + λI)−1∇fk

for λ sufficiently large that (B + λI) is positive definite and seek a value λ > 0 such
that

‖p(λ)‖ = ∆k. This problem is one dimensional root finding problem in the variable
λ.

An affine scaling trust region approach to bound constrained

nonlinear systems

In this section we present a generalization of the trust region idea for unconstrained
systems of nonlinear equations to the bound constrained problem A.49 and describe a
method which enforces the bounds generating strictly feasible approximations to the
solution. Given xk ∈ int(Ω) and a search direction pk, we look along pk for the next
approximation xk+1 within Ω. Let b(pk) be the stepsize along pk to the boundary,
that is

b(pk) =







∞ ifΩ = IRn

miniΛi(pi) ifΩ ⊂ IRn

(A.72)

where, for each i = 1, 2, . . . , n, Λi(pi) is given by

Λi(pk) =







max{ li−(xk)i

(pk)i
, ui−(xk)i

(pk)i
} if(pk)i 6= 0

∞ if(pk)i = 0

(A.73)

It is clear that if b(pk) > 1, then xk + pk is within Ω; otherwise a step back along pk

will be necessary to stay within Ω. Let θ ∈ (0, 1) be a fixed constant, ζ(pk) be given
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by

ζ(pk) =







1 ifb(pk) > 1

max{θ, 1− ‖pk‖}b(pk) otherwise
(A.74)

and α(pk) = ζ(pk)pk. Then to ensure that the new iterate is strictly feasible with
respect to the box constraints, we set xk+1 = xk+α(pk). Now consider the problem of
choosing the search direction pk. In the context of unconstrained nonlinear systems,
if xk is a very good approximation of a solution, Newton method can be applied and
pk is set equal to the solution pN

k of the Newton equation. However to define a robust
iterative process, Newton method can be incorporated into a globally convergent trust
region scheme. In the classical trust region approach, a region around the current
iterate xk is defined. Within such a region, the following quadratic model

mk(p) =
1

2
‖F

′

kp + Fk‖ =
1

2
‖Fk‖

2 + F T
k F

′

kp +
1

2
pT F

′

kF
′

kp

is trusted to an adequate representation of the merit function

f(x) =
1

2
‖F (x)‖2

Then the search direction pk is the vector solution of the subproblem

min
p
{mk(p) : ‖p‖ ≤ ∆k} (A.75)

for some given trust region radius ∆k > 0. Since the Newton step pN
n is the global

minimum of mk(p), it is the solution of the above trust region subproblem if ‖pN
k ‖ ≤

∆k. When the nonlinear system is constrained, we must take into account that the
requirement of strict feasibility can lead to reductions on the chosen step pk. In
particular, if the step direction points to a nearby constraint, an excessively small
fraction of pk should be taken to stay within Ω and this may preclude the convergence
of the sequence xk to a solution of A.49. To prevent this occurrence, the affine scaling
mapping has been proposed by Bellavia et al. [10]. Consider the gradient F

′

(x)F (x)
of the merit function f and let v(x) be the vector function with components vi(x)
with i = 1, . . . , n given by

vi(x) = xi − ui if(F
′T (x)F (x))i < 0, ui < ∞

vi(x) = xi − li if(F
′T (x)F (x))i ≥ 0, li > −∞

vi(x) = −1 if(F
′T (x)F (x))i < 0, ui = ∞

vi(x) = 1 if(F
′T (x)F (x))i ≥ 0, li = −∞

(A.76)
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Further let D(x) be the diagonal scaling matrix such that

D(x) = diag(|v1(x)|( −
1

2
), |v2(x)|( −

1

2
), . . . , |vn(x)|( −

1

2
)) (A.77)

Then, let Dk = D(xk) and consider the elliptical trust region defined by

‖Dkp‖ ≤ ∆k

Namely, instead of the ball trust region above sub problem, consider the following
elliptical trust region sub problem

min
p
{mk(p) : ‖Dkp‖ ≤ ∆k} (A.78)

For this sub problem the Cauchy point is the point that minimizes mk along the
scaled steepest descent direction dk = −D−2

k F
′

k
T Fk subject to satisfying the trust

region bound, that is

pC
k = τkdk = −τkD−2

k F
′

k
T Fk

where
τkτ>0{mk(τdk) : ‖τDkdk‖ ≤ ∆k}

The relevance of the used scaling matrix depends on the fact that the scaled steepest
descent direction dk is angled away from the approaching bound. Consequently the
bounds will not prevent a relatively large stepsize along dk from being taken. Thus
the bounds have been handled implicitly by the diagonal matrix Dk. For global
convergence purpose, it is enough to find vector pk such that α(pk) gives a sufficient
reduction in the quadratic model mk. This sufficient reduction can be quantified in
terms of the Cauchy point pC

k . Well known convergence results show that the trial
step α(pk) is required to give a reduction in the model mk that is at least some fixed
multiple of the decrease attained by the Cauchy step at each iteration. Then, taking
into account the given constraints, we test if the following condition

ρC
k (pk) =

mk(0)−mk((pk))

mk(0)−mk(α(pC
k ))

≥ β1

is verified for some fixed constant β1 ∈ (0, 1]. The last condition does not necessar-
ily guarantee a good agreement between the model function mk and the objective
function f . Thus, we require that pk satisfies the following standard condition

ρf
k(pk) =

f(xk)− f(xk + α(pk))

mk(0)−mk(α(pk))
≥ β2

where β2 ∈ (0, 1).
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Scaled trust region Newton method

Let x0 ∈ int(Ω), ∆0 > 0 be given. Choose θ ∈ (0, 1), β1 ∈ (0, 1],
β2 and β3 such that 0 < β2 < β3 < 1, δ1 and δ2 such that 0 < δ1 < 1 < δ2
k = 0
repeat

Compute the matrix Dk;
repeat

Find pk =‖Dkp‖≤∆k
mk(p)

Compute the Cauchy point pC
k

Compute α(pk) and α(pC
k )

if (ρC
k < β1)

then set pk = pC
k

Set ∆∗k = ∆k

Set ∆k = δ1∆k

until (ρf
k(pk) ≥ β2)

Set xk+1 = xk + α(pk), ∆k = ∆∗k
if (ρf

k(pk) ≥ β3)
then ∆k+1 = δ2∆k

else ∆k+1 = ∆k

k = k + 1
until xk+1 = xk

Figure A.5: Pseudocode of the algorithm for the trust region approach
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