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Introduzione

L’attività di ricerca svolta nel triennio di dottorato si è articolata principalmente

intorno a due temi: diffrazione elettromagnetica da oggetti cilindrici, di sezione

arbitraria, sepolti in uno strato dielettrico; diffrazione elettromagnetica da strutture

periodiche, con particolare riguardo al progetto di un’antenna con elevata direttività.

Il primo filone di ricerca è stato incentrato sulla risoluzione del problema diretto

di scattering di un’onda piana monocromatica da parte di un numero arbitrario di

oggetti dielettrici o perfettamente conduttori, a sezione arbitraria e di lunghezza

infinita, con assi paralleli, sepolti in un mezzo dielettrico stratificato, lineare, omo-

geneo ed isotropo. Si è pertanto sviluppato un metodo analitico-numerico, nel do-

minio spettrale, che consente di trattare qualsiasi stato di polarizzazione coerente

dei campi elettromagnetici coinvolti, e che permette di ottenere risultati in zona di

campo vicino e di campo lontano.

Il metodo analitico è stato implementato in un codice di calcolo sviluppato in

linguaggio Fortran, che è risultato versatile ed efficiente riguardo ai tempi di calcolo

e all’accuratezza dei risultati.

Inizialmente è stato risolto il problema dello scattering bidimensionale da cilindri

perfettamente conduttori, a sezione circolare, sepolti in uno strato dielettrico, ed in

una seconda fase si è affrontata l’estensione a diffusori dielettrici.

Il metodo sviluppato è definito con l’acronimo di CWA (Cylindrical Wave Ap-

proach), poiché il campo diffuso dai cilindri è espresso mediante un’espansione

modale in onde cilindriche, ossia nel prodotto tra una funzione di Hankel ed un

fattore angolare esponenziale. La trattazione del problema tiene conto di tutti

i contributi di campo che si originano dall’interazione tra l’onda piana monocro-

matica ed il sistema costituito dalle interfacce piane ed i diffusori cilindrici. Per

quanto riguarda l’interazione dell’eccitazione con le interfacce, sono state calcolate

le onde piane riflesse e trasmesse, mediante coefficienti di riflessione e trasmissione

relativi ad uno strato dielettrico. I campi diffusi dai cilindri, riflessi e trasmessi

attraverso le interfacce, sono stati espressi sfruttando lo spettro di onde piane di
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un’onda cilindrica. Tale approccio consente di valutare la riflessione e trasmissione

delle onde cilindriche che costituiscono le basi di espansione per i campi diffusi dai

cilindri, essendo i coefficienti di trasmissione e riflessione noti solamente per le onde

piane. Rispetto a quanto già affrontato in precedenza per il problema di scatter-

ing da cilindri immersi in un mezzo semi-infinito, è stato necessario ricorrere alla

definizione di opportune funzioni cilindriche riflesse e riflesse-trasmesse da associare

alle riflessioni multiple che si verificano all’interno dello strato dielettrico. Una trat-

tazione rigorosa del problema deve, infatti, tener conto, almeno da un punto di vista

teorico, di infinite riflessioni subite dal campo diffuso da parte delle interfacce piane.

L’implementazione numerica ha introdotto un troncamento su tali riflessioni multi-

ple, sotto criteri che consentano di mantenere un’elevata accuratezza dei risultati.

Il metodo analitico e la relativa implementazione numerica, in linguaggio For-

tran, sono stati testati mediante prove di auto-consistenza e confronti con la let-

teratura, ottenendo un ottimo accordo. Tali test hanno inoltre evidenziato come il

metodo possa essere esteso al caso di cilindri sepolti in uno strato che termina su

un piano di massa, o contenuti in un mezzo semi-infinito, eventualmente coincidente

con il mezzo di provenienza del campo di eccitazione. L’esecuzione del codice ha

inoltre dimostrato la possibilità di simulare geometrie di interesse nell’ambito del

GPR (Ground Penetrating Radar), ad esempio in riferimento all’individuazione di

cavità o di sottoservizi.

Il metodo sviluppato per cilindri sepolti perfettamente conduttori e i risultati nu-

merici sono stati pubblicati in [r2] e presentati a congresso [c8, c10, c11]. L’estensione

del CWA al caso di cilindri sepolti dielettrici, con i relativi risultati, saranno pub-

blicati in [r5].

In seguito, per ottenere una caratterizzazione sempre più accurata degli scenari

indagati dai sistemi GPR, il metodo è stato esteso considerando una linea di corrente

come eccitazione del problema. Associando un’onda cilindrica al campo irradiato

dalla linea di corrente, i campi che derivano dalla sua riflessione e trasmissione da

parte delle interfacce possono essere valutati utilizzando il concetto di spettro di

onde piane di un’onda cilindrica, coerentemente con quanto già formulato per le

funzioni cilindriche relative ai campi diffusi. Questa estensione è stata affrontata

per cilindri perfettamente conduttori sepolti all’interno di un semispazio dielettrico.

Il secondo filone di ricerca ha avuto come argomento lo studio della diffrazione di

un’onda piana monocromatica da parte di strutture EBG (Electromagnetic Band-

Gap), e l’utilizzo di queste nell’ambito del progetto e della realizzazione di antenne

ad elevata direttività.



ix

E’ noto che tra le principali proprietà dei materiali EBG vi è la presenza di

una banda proibita, ossia un intervallo di frequenze all’interno del quale risulta in-

ibita la trasmissione delle onde elettromagnetiche attraverso la struttura. Tuttavia,

un’interruzione della periodicità consente di evidenziare la comparsa di picchi di

trasmissione all’interno di tale banda. Ciò suggerisce di pensare ad applicazioni per

il filtraggio, selettivo in frequenza e nello spazio, della radiazione elettromagnetica

proveniente da una determinata sorgente.

In una prima fase, è stato studiato il woodpile, un particolare EBG tridimen-

sionale, la cui cella elementare è costituita dalla sovrapposizione di quattro strati di

barre allineate in modo che le barre appartenenti a due strati consecutivi risultano

ortogonali, mentre barre parallele sono traslate di mezzo periodo. Del woodpile è

stata considerata una particolare configurazione in cui la periodicità della struttura

risulta interrotta, ottenendo, in definitiva, che implementa il Metodo agli Elementi

Finiti, è stato simulato il comportamento di cavità woodpile in allumina da impie-

gare nel range delle microonde. Dopo un’estesa caratterizzazione di tali cavità, è

stato possibile pensare ad un’applicazione nell’ambito del progetto di antenne di tipo

planare, che utilizzando uno strato della cavità woodpile come superstrato, presen-

tano caratteristiche di maggiore direttività rispetto al radiatore di partenza. Come

primo radiatore di base è stata progettata un’antenna a doppia slot, costituita da

due identiche fessure rettangolari su piano di massa. In seguito si è considerato come

radiatore di base un’antenna a microstriscia. Entrambi i progetti hanno evidenzi-

ato un incremento di direttività superiore ai 10 dB, rispetto ad una configurazione

in cui non si utilizzi il superstrato woodpile, ed un notevole effetto di riduzione

dell’ampiezza del fascio principale.

I risultati relativi all’analisi di cavità woodpile ed al progetto di un’antenna

a doppia slot con superstrato woodpile sono pubblicati in [r1] e [r4] e sono stati

presentati a congresso [c1, c2, c3, c6, c7]. Il progetto di antenne a patch che utilizzano

cavità EBG sarà pubblicato in [r3] ed è stato presentato a congresso [c9]. In [r3,

c9], i vantaggi dell’impiego di una cavit woodpile per l’incremento di direttivit di

un’antenna a patch sono confrontati con quelli derivanti dall’utilizzo di strutture

EBG di più semplice realizzazione, con periodicità unidimensionale.

In una seconda fase, è stata affrontata la realizzazione di un woodpile in allumina

e di un’antenna a patch da utilizzare come radiatore di base per un’antenna a cavità

con superstrato woodpile. Sono stati costruiti due strati di woodpile identici, ed un

opportuno supporto che consente di effettuare misure in trasmissione sugli strati, in

configurazione di cavità, e di distanziare uno dei due strati da un’antenna a patch

realizzata con un laminato Rogers RT/Duroid 5870. I risultati finora prodotti sulla
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cavità hanno confermato quanto evidenziato dalle simulazioni in merito al com-

portamento selettivo in frequenza, mentre da alcune misure recentemente eseguite

sull’antenna, con e senza woodpile, è stato confermato l’effetto di incremento di

direttività introdotto dall’EBG.

I risultati preliminari delle misure sono stati recentemente presentati a congresso

[c12].

Articoli su riviste internazionali:

[r1] F. Frezza, L. Pajewski, S. Paulotto, C. Ponti e G. Schettini,“Application
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tional Journal for Computation and Mathematics in Electrical and Electronic Engi-

neering, COMPEL, vol. 27, n. 6, pp. 1219-1226, 2008.

[r2] F. Frezza, L. Pajewski, C. Ponti e G. Schettini, “Scattering by Perfectly-
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aprile 2009, pp. 1208-1217.
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Part I

Scattering by buried cylindrical

objects

1





Introduction to part I

The two-dimensional (2-D) electromagnetic scattering problem from buried cylin-

drical objects is a subject with important applications to the remote sensing of the

earth internal structure, to the detection of explosive mines, of pipes, conduits and

tunnels, to the communication through the earth, or to biomedical imaging. For

this reason, it has been widely discussed by many authors in the past, both from a

theoretical and a numerical point of view, as it will be reviewed in the following.

Plane-wave scattering by a perfectly-conducting or dielectric circular cylinder,

in a homogeneous and isotropic medium, is a classical problem [1]-[3]. Such prob-

lem takes a more complex form in the presence of a planar discontinuity for the

electromagnetic constants, and several resolving techniques have been developed for

the scattering by objects above a dielectric half-space or buried in it. In particular,

scattering from a subterranean cylindrical inhomogeneity is solved by Howard [4]

with an eigenfunction expansion of a two-dimensional Fredholm integral equation

for the scattered field. Ogunade [5], extending a previous work by D’Yakonov [6],

obtained numerical data for a current line source above a uniform half-space. Mah-

moud et al. [7] faced the problem using a multipole expansion for the scattered field.

Green’s function approach is developed in [8] and an effective scattering model for

a real buried object is proposed. In [9], Butler et al. solved an integral equation for

current induced on a conducting cylinder near a planar interface, and various forms

of the kernel suitable for an efficient numerical evaluation are discussed. A study of

scattering by partially-buried and coupled cylinders is presented in [10]. The plane-

wave scattering by a 2-D cylindrical obstacle in a dielectric half-space is treated

by Hongo and Hamamura [11]. In this work, Kobayashi’s [42] potential concept

is exploited: the asymptotic solutions presented, using the saddle-point method,

are valid for obstacle size and distance between the obstacle and the interface much

larger than the wavelength. A correct version of paper [11] has been reported in [13].

For a deeply-buried cylinder, results are shown in [14]. More recent contributions

have been given by Ahmed and Naqvi [15] and by Altuncu et al. [16].

A more general characterization of scattering by buried objects can be dealt

3
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with by considering a multilayered medium. Such a problem turns out to be a re-

ally hard task, since multiple reflections occuring between the scatterers and the

interfaces must be taken into account. Different methods are reported in the lit-

erature, for a general multilayered medium and for the particular case of objects

embedded in a slab between two half-spaces. In [17] a theoretical method was devel-

oped for the electromagnetic scattering by perfect conducting objects of arbitrary

shape embedded in layered media. In particular, three different Mixed-Potential

Integral Equations (MPIEs) were formulated; one of them was solved in [18] with

the Method of Moments, and numerical results were presented for scatterers placed

between two contiguous half-spaces. A solution to scattering by a cylinder buried

in layered media with rough interfaces was given in [19], developing the extended

boundary-condition method and the generalized scattering-matrix technique. The

analytical properties of the scattering by a conducting circular cylinder buried in

a stratified ferrite medium were described by Tsalamengas [20], using a combined

Green’s function and integral-equation approach.

The case of the two interfaces, i.e. of obstacles buried in a dielectric slab,

was discussed by some authors. Naqvi et al. [21] gave an asymptotic solution

for the scattered field by a perfectly-conducting cylindrical obstacle in a grounded

dielectric layer: numerical results for a circular cylinder were reported in [22], for

both normal and oblique incidence of a plane wave. A method to study the scattering

by gratings embedded in a dielectric slab was proposed by Jia and Yasumoto [23],

which combines a generalized scattering matrix with a lattice-sum matrix and a

T-matrix of an isolated cylinder. The effect of a lossy medium was discussed by

Paknys [25], describing reflection and transmission properties of reinforced concrete:

a two-dimensional model was adopted to represent a wire grid embedded in a lossy

dielectric slab, and a Method of Moments/Green’s function approach was developed.

The case of buried nonmetallic scatterers is also of great interest. For the par-

ticular case of dielectric circular cylinders, several solving techniques have been

proposed for the scattering by objects both above a dielectric half-space [26]-[27]

and buried in it [28]. Two-dimensional scattering from an inhomogeneous dielec-

tric cylinder embedded in a stratified medium is considered in [29], for modeling

microwave and optical devices, for nondestructive testing of composite materials, or

for remote sensing of soil. Electric Field Integral Equation over the cylinder cross

section and Moment Method are employed, and the problem is solved for the case

of TM polarization. The scattering problem by a set of dielectric radially-stratified

circular cylinders embedded in a finite slab is solved by Lee [30] with the Hertz

potential formalism, in the general case of an off-plane incident wave. Numerical re-
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sults are given for three equally spaced, homogeneous and parallel silicon cylinders.

In [31] a perturbation technique is applied to the scattering by a dielectric cylinder

buried in a grounded dielectric layer. The permittivity of the cylinder has a low

dielectric contrast from the host medium and the cylinder is considered as a pertur-

bation in the dielectric layer. Extended boundary condition method and scattering

matrix technique are developed by Kuo and Moghaddam [32] to study the scattering

by a dielectric cylinder in layered media with rough interfaces. Results are reported

in terms of bistatic scattering coefficients, also for the cases of two rough interfaces

without any buried object, and for a cylinder buried beneath a single rough surface.

Most of the works referenced above solve scattering by buried objects making

a combined use of integral equations and numerical discretization techniques, as

the Method of Moments. In other works, integrals are solved through asymptotic

techniques. Thus, several hypotheses are made in order to simplify the problem,

as deeply buried cylinders or dielectric cylinders with low contrast with respect to

the host medium. Otherwise, the scattered field is evaluated only in the far-field

region. The case of scattering by an isolated cylinder is mainly dealt with, due to

the difficulty in developing multiple-interactions in an analytical model.

An exact analysis for two-dimensional scattering by a conducting circular cylin-

der below a plane surface and by a set of conducting cylinders buried in a dielectric

half-space is developed in [33] and [34], respectively, through the Cylindrical Wave

Approach (CWA). The concept of plane-wave spectrum of a cylindrical wave [35] is

employed: reflection and transmission of cylindrical waves by the plane interface are

treated by introducing suitable reflected and transmitted cylindrical functions. The

relevant spectral integrals are numerically solved employing adaptive integration

procedures of Gaussian type, together with acceleration techniques, as reported in

[36], [37]. The analysis reported in [34] is extended to scattering by dielectric circular

scatterers in [38].

In this work, a rigorous solution to the two-dimensional scattering problem of

a plane wave by a set of circular cylinders, with infinite length and parallel axes,

buried in a dielectric slab, is developed. The CWA employed in [34] and [38], to solve

scattering by objects buried in a semi-infinite medium, is here applied to a layered

geometry. Multiple-reflections phenomena are experienced by the scattered field

inside the slab, and they are taken into account by means of generalized reflected

and reflected-transmitted cylindrical functions. Thus, the theoretical approach gives

an exact solution and the complicate interaction between the cylinders and the

interfaces is properly dealt with. The method has been implemented in a numerical

Fortran code, that gives results both in near- and far-field regions.
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Numerical results can be employed to get a deeper understanding of scenarios

investigated by Groung Penetrating Radar (GPR) [39], for detection of buried ob-

jects. For a more realistic characterization, further assumptions may be taken into

account in the formulation of the scattering problem. To this purpose, the theoret-

ical analysis is extended to the excitation of buried perfectly-conducting cylinders

in a semi-infinite medium by a line source. Due to the geometry of the source,

the radiated field can be described by a cylindrical wave. Therefore, reflection and

transmission of such a wave through the plane interface can be dealt with by means

of the spectrum of a cylindrical wave [35], as already implemented for the basis

functions of the scattered fields in the mochromatic plane-wave case.

In chapter 1, the theoretical model for the scattering of a plane wave by perfectly-

conducting circular cylinders buried in a dielectric slab is dealt with. In chapter

2, the analysis is extended to the case of dielectric cylinders. Numerical results

are given in chapter 3 (perfectly-conducting cylinders) and 4 (dielectric cylinders).

Several geometrical layouts are analyzed, and results are validated both through

convergency tests and comparisons with the literature. In chapter 5, the theoretical

analysis reported in chapter 1 is extended to case of excitation by a line source.



Chapter 1

Perfectly-conducting cylinders

buried in a dielectric layer

In this chapter, a theoretical method to solve the scattering of a plane wave by

perfectly-conducting circular cylinders buried in a dielectric layer is developed.

The involved media are assumed linear, isotropic, homogeneous, dielectric, loss-

less, and separated by planar interfaces. The scatterers have parallel such states axes

and they are parallel to the planar interfaces of separation between the media. The

whole structure infinitely extends along the direction of the cylinders axes, and the

propagation vector of the incident wave lies in the plane orthogonal to the interfaces

and the cylinders axes. Thus, the problem can be considered two dimensional.

Two states of linear polarization for the incident field are dealt with, since any

other state of polarization can be expressed by the superimposition of

• E or TM polarization - The electric field is parallel to the cylinders axes. The

magnetic field and the propagation vector lie in the plane orthogonal to the

cylinders axes. For this reason, the E polarization is also called transverse-

magnetic (TM), being the magnetic field transverse to the axes of the cylin-

drical scatterers.

• H or TE polarization - The magnetic field is parallel to the cylinders axes.

With the electric field lying in the orthogonal plane, the H polarization is also

called transverse-electric (TE).

Each component of the electromagnetic field can be obtained by Maxwell equa-

tions, once known the field component parallel to the cylinders axes, which coincides

with the electric and magnetic field for E and H polarization, respectively. In the

whole analysis, this field component is represented by a scalar function V , which

in each medium of the structure takes into account all the interactions. A time

7



8 CHAPTER 1. PERFECTLY-CONDUCTING CYLINDERS BURIED ...

dependence e−iωt, being ω the angular frequency, is assumed for the fields, and will

be omitted.

In each medium, the function V is decomposed in the following terms, which

arise from the interaction of the incident wave with the interfaces and the cylinders

(see Fig. 1.1):

• Vi: plane-wave incident field;

• Vr: plane-wave reflected field, due to the reflection in medium 0 of the incident

plane-wave Vi on the slab;

• Vt1: plane-wave transmitted field, representing a downward-propagating wave

in medium 1, as the result of the various waves reflected by the slab;

• Vr1: plane-wave reflected field, representing an upward-propagating wave in

medium 1, as the result of the various waves reflected by the slab;

• Vt2: plane-wave transmitted field, due to the transmission in medium 2 of the

plane-wave Vt1 through the slab;

• Vs: field scattered by the cylinders in medium 1;

• V 1,0
sr(j): scattered-reflected fields, due to a first (j = 1) reflection of Vs in medium

1 by the upper interface followed by multiple (j = 2, ...,∞) reflections inside

the slab;

• V 1,2
sr(j): scattered-reflected fields, due to a first (j = 1) reflection of Vs in medium

1 by the lower interface followed by multiple (j = 2, ...,∞) reflections inside

the slab;

• V 1,0
st : scattered-transmitted field, due to the transmission in medium 0 of Vs

through the upper interface;

• V 1,0
srt(j): multiple scattered-reflected-transmitted fields, due to multiple (j =

1, ...,∞) reflections inside the slab, and ultimately transmitted in medium 0

through the upper interface;

• V 1,2
st : scattered-transmitted field, due to the transmission in medium 2 of Vs

through the lower interface;

• V 1,2
srt(j): multiple scattered-reflected-transmitted fields, due to multiple (j =

1, ...,∞) reflections inside the slab, and ultimately transmitted in medium 2

through the lower interface.
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Figure 1.1: Decomposition of the total field.

For field contributions propagating in medium 1, an expansion into cylindrical

functions has been employed, which takes into account the circular geometry of the

scatterers cross-section. In particular, for the fields Vt1 and Vr1 the expansion of

a plane-wave in terms of Bessel functions Jm is used, while the addition theorem

of Hankel functions is employed for the scattered field Vs. Handling the scattered-

reflected fields V 1,0
sr(j), V 1,2

sr(j), the scattered-transmitted and scattered-reflected trans-

mitted fields, like V 1,0
st and V 1,0

srt(j), is a more difficult task: an expansion with unknown

coefficients into cylindrical wave is the most appropriate for scatterers of circular

cross-section, but properties of reflection and transmission from planar interfaces

are known only for plane waves. Thus, the proposed technique is to take simulta-

neously into account the two geometries by the concept of plane-wave spectrum of

a cylindrical wave.

Finally, a linear system for the unknown coefficients is derived, by imposition of

boundary conditions on the cylinders surfaces.

1.1 Geometry of the problem

The geometry of the problem is shown in Fig. 1.2: N perfectly-conducting cylinders

with circular cross-section are buried in a dielectric slab (medium 1) comprised

between two half-spaces (medium 0, above, and medium 2, below). The three media

are linear, isotropic, homogeneous, dielectric and lossless. In particular, an upper air-

filled dielectric half-space (medium 0) is followed by a layer of permittivity ε1 = ε0n
2
1

(medium 1) and by a lower half-space with ε2 = ε0n
2
2 (medium 2); µ2 = µ1 = µ0 are

the vacuum magnetic permeabilities.

A monochromatic plane wave obliquely impinges on the first interface between
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Figure 1.2: Geometry of the scattering problem.

medium 0 and the dielectric slab, forming an angle ϕi with respect to the positive

direction of the x-axis, and with wavevector ki lying in the (x, z) plane. The cylinders

axes are parallel to the y-axis, and the whole structure infinitely extends along the

y-direction, so that the problem is two-dimensional.

In the following, a Main Reference Frame (MRF) (O, ξ, ζ) is introduced, with

normalized coordinates ξ = k0x and ζ = k0z, where k0 = ω/c is the vacuum wavenum-

ber. A second Reference Frame RFp centred on the p-th (p = 1,...,N) cylinder is

considered, both in rectangular (Op, ξp, ζp) and polar coordinates (Op, ρp, θp), where

ξp = k0xp, ζp = k0zp, ρp = k0rp and





ξ = ξp + χp

ζ = ζp + ηp

(1.1)

The p-th cylinder has circular cross-section with normalized radius αp = k0ap; its

axis is centred in (χp, ηp) in MRF, and it is buried in a dielectric slab of normalized

thickness Λ. The electromagnetic properties of reflection and transmission of the

plane-wave fields Vr, Vt1, Vr1, and Vt2, by the planar interfaces, are taken into account

through reflection and transmission coefficients of a plane wave Γij and Tij = 1 + Γij

in a layered medium, being i = 0, 1 and j = 1, 2. The two symbols i, j refer to a

wave propagating in medium i, which impinges on the planar interface with medium

j. These coefficients are developed in Appendix A, for the two polarizations.
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1.2 Decomposition of the total field

In a generic point P (ξ, ζ), the scalar function V (ξ, ζ) represents, for the fields com-

ponents parallel to the cylinders axes, the sum of the all the contributions following

the interaction of the incident field with the planar interfaces and the circular scat-

terers, i.e.

• V (0)(ξ, ζ) = Vi(ξ, ζ) + Vr(ξ, ζ) + V 1,0
st (ξ, ζ) +

+∞∑

j=1

V 1,0
srt(j)

in medium 0, as

• V (1)(ξ, ζ) = Vt1(ξ, ζ) + Vr1(ξ, ζ) +
+∞∑

j=1

V 1,0
sr(j) +

+∞∑

j=1

V 1,2
sr(j)

in medium 1, and

• V (2)(ξ, ζ) = Vt2(ξ, ζ) + V 1,2
st (ξ, ζ) +

+∞∑

j=1

V 1,2
srt(j)

in medium 2. In this Section, every field contribution will be analyzed separately.

1.2.1 Incident field

The incident field is a monochromatic plane-wave, of wavelength λ0 and complex

amplitude V0, with propagation vector ki = ki
⊥ξ̂ + ki

‖ζ̂, therefore

Vi(x, z) = V0e
i(ki

⊥x+ki
‖z)

(1.2)

Being ϕi the angle formed by the propagation vector with the ξ axis, the orthogonal

and parallel components of the wave vector to the planar interfaces are expressed as

ki
⊥ = k0 cos ϕi and ki

‖ = k0 sinϕi, respectively, with k0 = 2π/λ0. In the following, the

symbols ⊥ and ‖ will always be associated to the orthogonal and parallel components

of a generic vector with respect to the planar interfaces. Introducing the normalized

unit vector ni, such that ki = k0n
i, with ni = ni

⊥ξ̂ + ni
‖ζ̂

{
ni
⊥ = cos ϕi

ni
‖ = sin ϕi

(1.3)

the Vi field can be written as a function of adimentional coordinates, as follows

Vi(ξ, ζ) = V0e
i(ni

⊥ξ+ni
‖ζ)

(1.4)

As the plane wave impinges on a layered geometry, two waves are excited [1]

(see Fig. 1.3), as the result of multiple and infinite reflections through the two
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planar interfaces: an upward-propagating wave, formed by the reflected fields Vr

and Vr1, and a downward-propagating wave of the transmitted fields Vt1 and Vt2.

The plane-wave fields propagating in medium 0, 1, and 2, respectively, turn out to

be the followings

• V (0)(ξ, ζ) = Vi(ξ, ζ) + Vr(ξ, ζ)

• V (1)(ξ, ζ) = Vt1(ξ, ζ) + Vr1(ξ, ζ)

• V (2)(ξ, ζ) = Vt2(ξ, ζ)

and they are evaluated in Sections 1.2.2 and 1.2.3.

Figure 1.3: Sketch of the waves excited by a plane wave impinging on a dielectric

layer.

1.2.2 Reflected fields

The plane-wave reflected by the first interface has propagation vector kr = kr
⊥ξ̂+kr

‖ζ̂;

being ϕr the angle formed with the positive direction of the ξ axis, it is kr
⊥ = k0 cos ϕr

and kr
‖ = k0 sinϕr. Otherwise, the propagation vector can be expressed as kr = k0n

r,

where nr is the propagation unit vector, with components nr
⊥ = cos ϕr, and nr

‖ =

sinϕr. Thus, the field reflected by the first interface has the following expression

Vr(ξ, ζ) = Vre
i(nr

⊥ξ+nr
‖ζ)

(1.5)

The angle ϕr is evaluated by means of the Snell law, leading to ϕr = π − ϕi.

Therefore, the components of the reflected unit vector are
{

nr
⊥ = −ni

⊥

nr
‖ = ni

‖
(1.6)
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and the final expression of the reflected plane-wave in medium 0 is

Vr(ξ, ζ) = Γ01(n
i
‖)V0e

i(−ni
⊥ξ+ni

‖ζ)
(1.7)

where Vr = Γ01(n
i
‖)V0.

In a similar way, the field Vr1 reflected by the second interface can be obtained

Vr1(ξ, ζ) = Vr1e
in1[n

r1
⊥ (ξ−Λ)+nr1

‖ ζ]
(1.8)

where the propagation vector kr1, with components kr1
⊥ = k1 cosϕr1 and kr1

‖ =

k1 sinϕr1, has been expressed as a function of the unit vector nr1, as kr = k1n
r1.

The normal and parallel components of nr1 are nr1
⊥ = cosϕr1 and nr1

‖ = sinϕr1,

respectively. According to the Snell law, the reflected angle ϕr1 satisfies the following

relation: ϕr1 = π−ϕt1. Thus, the components of the unit vector nr1 can be expressed

as follows {
nr1
⊥ = −nt1

⊥

nr1
‖ = nt1

‖
(1.9)

once known nt1
⊥ and nt1

‖ . Being also Vr1 = V0T01(n
i
‖)Γ12(n

i
‖)

Vr1(ξ, ζ) = V0T01(n
i
‖)Γ12(n

i
‖)e

in1[−nt1
⊥ (ξ−Λ)+nt1

‖ ζ]
(1.10)

The boundary conditions can be solved in an easier way, if the reflected field

in medium 1 is expressed through a modal expansion which takes into account the

cylindrical geometry of the scatterers. Introducing in equation (1.10) the (1.1), we

get

Vr1(ξ, ζ) = V0T01(n
i
‖)Γ12(n

i
‖)e

in1[−nt1
⊥ (ξp+χp−Λ)+nt1

‖ (ζp+ηp)]

= V0T01(n
i
‖)Γ12(n

i
‖)e

in1 [−nt1
⊥ (χp−Λ)+nt1

‖ ηp]
e

in1(nr1
⊥ ξp+nr1

‖ ζp)
(1.11)

which represents the reflected field associated to a point of coordinates (ξ, ζ) of

(MRF), as a function of the coordinates (ξp, ζp) in RFp. Employing the expansion

of a plane wave into Bessel functions [45]

e
in1(n

r1
⊥ ξp+nr1

‖ ζp)
=

+∞∑

`=−∞
i`J`(n1ρp)e

i`θpe−i`ϕr1

(1.12)

the reflected field in medium 1 can be written in the searched form

Vr1(ξ, ζ) = V0T01(n
i
‖)Γ12(n

i
‖)e

in1[−nt1
⊥ (χp−Λ)+nt1

‖ ηp]

×
+∞∑

`=−∞
i`J`(n1ρp)e

i`θpe−i`ϕr1
(1.13)
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1.2.3 Transmitted fields

The plane wave transmitted through the first interface has propagation vector kt1 =

kt1
⊥ ξ̂ + kt1

‖ ζ̂ . Being ϕt1 the angle formed by kt1 with the positive direction of the ξ

axis, it follows: kt1
⊥ = k1 cos ϕt1 and kt1

‖ = k1 sinϕt1, with k1 = n1k0 wave number

in medium 1. The vector kt1 can be expressed by means of the unit vector nt1 as

kt1 = k1n
t1, where nt1 = nt1

⊥ ξ̂ + nt1
‖ ζ̂, with nt1

⊥ = cosϕt1 and nt1
‖ = sinϕt1. The

amplitude of the transmitted field is V0Vt1 = T01(n
i
‖), and the field transmitted

through the first interface is

Vt1(ξ, ζ) = T01(n
i
‖)V0e

in1(n
t1
⊥ ξ+nt1

‖ ζ)
(1.14)

From the Snell law, ϕt1 = arcsin(k0 sinϕi/k1) = arcsin(ni
‖/n1), which yields

{
nt1
⊥ =

√
1 − (ni

‖/n1)2

nt1
‖ = ni

‖/n1

(1.15)

As already done in Section 1.2.2 on equation (1.10), the field in (1.14) can be

expressed in a point of coordinates (ξ, ζ) of (MRF), as a function of the coordinates

(ξp, ζp) in RFp. Introducing in (1.14) the (1.1), we get

Vt1(ξ, ζ) = V0T01(n
i
‖)e

in1[nt1
⊥ (χp−Λ)+nt1

‖ ηp]
e

in1(nt1
⊥ ξp+nt1

‖ ζp)
(1.16)

The expansion of a transmitted plane-wave into Bessel functions is

e
in1(n

t1
⊥ ξp+nt1

‖ ζp)
=

+∞∑

`=−∞
i`J`(n1ρp)e

i`θpe−i`ϕt1

(1.17)

which leads to the final expression for the field transmitted in medium 1

Vt1(ξ, ζ) = V0T01(n
i
‖)e

in1[nt1
⊥ (χp−Λ)+nt1

‖ ηp]

×
+∞∑

`=−∞
i`J`(n1ρp)e

i`θpe−i`ϕt1
(1.18)

The plane wave transmitted in medium 2, through the second interface, has

propagation vector kt2 = kt2
⊥ ξ̂ + kt2

‖ ζ̂. Being ϕt2 the angle formed by kt2 with the

positive direction of the ξ axis, it follows: kt2
⊥ = k2 cosϕt2 and kt2

‖ = k2 sin ϕt2, with

k2 = n2k0 wavenumber in medium 2. Expressing the vector kt2 by means of the

unit vector nt2, we get kt2 = k2n
t2, where nt2 = nt2

⊥ ξ̂ + nt2
‖ ζ̂, with nt2

⊥ = cosϕt2 and

nt2
‖ = sinϕt2. The field transmitted through the second interface is

Vt2(ξ, ζ) = V0T01(n
i
‖)T12(n

i
‖)e

in2[n
t2
⊥ (ξ−Λ)+nt2

‖ ζ]
(1.19)



1.2. DECOMPOSITION OF THE TOTAL FIELD 15

with Vt2 = V0T01(n
i
‖)T12(n

i
‖), amplitude of the field.

From the Snell law, ϕt2 = arcsin(k1 sin ϕt1/k2) = arcsin(nt1
‖ n1/n2), thus

{
nt2
⊥ =

√
1 − (nt1

‖ n1/n2)2

nt2
‖ = nt1

‖ n1/n2

(1.20)

1.2.4 Scattered field

The scattered field Vs is written as the sum of the fields Vs(q), with q = 1, ..., N,

scattered by each cylinder

Vs(ξ, ζ) =
N∑

q=1

Vs(q)(ξ, ζ) (1.21)

The field Vs(q) is, in turn, the sum of infinite cylindrical functions CWm(n1ξq, n1ζq) =

H(1)
m (n1ρq)e

imθq , with unknown coefficients cqm

Vs(q)(ξ, ζ) = V0

+∞∑

m=−∞
cqmCWm(n1ξq, n1ζq) (1.22)

where H(1)
m (n1ρq) is the first-kind Hankel function of integer order m [45], and q

stands for the q-th cylinder. The scattered field (1.21) can be expressed in the

coordinates of MRF, introducing in (1.22) the (1.1), where p is replaced with q

Vs(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqmCWm[n1(ξ − χq), n1(ζ − ηq)] (1.23)

Imposition of the boundary condition on the p-th cylinder surface is made easier

if the scattered field is expressed as a function of the coordinates of RFp. Introducing

equation (1.22) in (1.21) and isolating the term for q = p

Vs(ξ, ζ) = V0

+∞∑

m=−∞
cpmCWm(n1ξp, n1ζp)+

+
N∑

q=1
q 6=p

V0

+∞∑

m=−∞
cqmCWm(n1ξq, n1ζq)

(1.24)

By means of the addition theorem of Hankel functions [42], the wave emitted by the

q-th cylinder, with q 6= p, can be centred on the RFp system

H(1)
m (n1ρq)e

imθq = eimθqp

+∞∑

`=−∞
(−1)`Hm+`

(1)(n1ρqp)e
i`θqpJ`(n1ρp)e

−i`θp (1.25)
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It follows

Vs(ξ, ζ) = V0

+∞∑

m=−∞
cpmCWm(n1ξp, n1ζp)+

+
N∑

q=1
q 6=p

V0

+∞∑

m=−∞
cqm

+∞∑

`=−∞
CWm+`(n1ξqp, n1ζqp)(−1)`J`(n1ρp)e

−i`θp

(1.26)

where (ξqp, ζqp) are the coordinates relevant to (ρqp, θqp) (see Fig. 1.2). Employing

the property (−1)`J`(·) = J−`(·), and replacing in the latter sum ` with −`, equation

(1.26) becomes

Vs(ξ, ζ) = V0

+∞∑

m=−∞
cpmCWm(n1ξp, n1ζp)+

+
N∑

q=1
q 6=p

V0

+∞∑

m=−∞
cqm

+∞∑

`=−∞
CWm−`(n1ξqp, n1ζqp)J`(n1ρp)e

i`θp

(1.27)

Finally, equation (1.27) can be written in the following more compact form,

representing the scattered field associated to a point of coordinates (ξ, ζ) in MRF,

as a function of the coordinates in RFp

Vs(ξ, ζ) = V0

+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqm×

×
[
CWm−`(n1ξqp, n1ζqp)(1 − δqp) +

H
(1)
` (n1ρp)
J`(n1ρp)

δqpδ`m

]
(1.28)

and obtained introducing the Kronecker symbols δqp and δ`m, putting in evidence

the term J`(n1ρp)e
−i`θp , and taking into account the definition of the cylindrical

functions CWm.

1.2.5 Scattered-reflected fields

The scattered-reflected, scattered-transmitted and scattered-reflected-transmitted

fields are the results of the interaction of the field Vs scattered by the cylinders and

the two planar interfaces which limit the dielectric slab. The description of such an

interaction is a difficult task, since two reference frames with different symmetry are

employed: cylindrical coordinate systems relevant to the cylinders and the Cartesian

reference frame relevant to the planar discontinuities. The field scattered by each

cylinder has been expressed in terms of cylindrical waves emitted by the cylinder

itself, but properties of reflection and transmission through a planar surface are

known only for plane waves, by means of reflection and transmission coefficients.
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Such a problem can be solved employing the plane-wave spectrum of a cylin-

drical wave [35]. It means that each cylindrical wave radiated by the p-th cylin-

der can be expressed as a superimposition of spectral plane-waves: reflection and

transmission phenomena can be studied for each plane wave of the spectrum. Fi-

nally, the reflected, transmitted and reflected-transmitted plane-waves are super-

imposed to express the scattered-reflected, scattered-transmitted and scattered-

reflected-transmitted fields, respectively. As far as fields propagating in medium

1 are concerned, each plane wave can be expanded into Bessel functions, in a similar

way to what developed for the fields Vr1 and Vt1. The scattered-reflected, scattered-

transmitted and scattered-reflected-transmitted fields are obtained once the relevant

scattered-reflected, scattered-transmitted and scattered-reflected-transmitted fields

by each one of the N cylinders have been summed up.

In medium 1, the angular spectrum of the cylindrical wave CWm emitted by the

p-th cylinder is given by

CWm(n1ξp, n1ζp) =
1

2π

+∞∫

−∞

Fm(n1ξp, n
s
‖)e

in1ns
‖ζpdns

‖ (1.29)

The evaluation of the function Fm(ξ, ns
‖) has been carried out in [35], and it has

been further developed in [40] in the following form taking into account of a different

behaviour for |ns
‖| ≥ 1 and |ns

‖| ≤ 1

Fm(ξ, n‖) =
2e

iξ
√

1−(ns
‖)2

√
1 − (ns

‖)
2
×





(√
(ns

‖)
2 − 1 + ns

‖

)m
with |ns

‖| ≥ 1

e
−im arccosns

‖ with |ns
‖| ≤ 1

(1.30)

which applies to ξ > 0.

An expression for Fm(ξ, ns
‖) applying to ξ < 0 can be also obtained from [35]

Fm(ξ, ns
‖) =

2e
−iξ

√
1−(ns

‖)2

√
1 − (ns

‖)
2

×





(√
(ns

‖)
2 − 1 + ns

‖

)−m
with |ns

‖| ≥ 1

e
im arccosns

‖ with |ns
‖| ≤ 1

(1.31)

Thus, we have the following property

Fm(−ξ, ns
‖) = F−m(ξ, ns

‖) (1.32)

Equations (1.30) and (1.31) can be written in a more compact way, making use

of the properties of function arcosine in a complex domain [41], and considering

ns
‖ ∈ (−∞,+∞)

Fm(ξ, ns
‖) =

2√
1 − (ns

‖)
2
e

i|ξ|
√

1−(ns
‖)2

{
e
−im arccosns

‖ , ξ ≥ 0

e
im arccosns

‖, ξ ≤ 0
(1.33)
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Equation (1.29) gives the values of cylindrical function CWm in a plane of ab-

scissa ξp. The evaluation of scattered-reflected fields has been performed following

the approach developed in [34] and [40] for cylinders embedded in a homogeneous

medium, i.e. a dielectric half-space, and placed below and above a planar interface,

respectively. In these works, scattered-reflected fields are expansions of reflected

cylindrical functions, where, in turn, each plane wave of the spectrum is obtained

evaluating the reflection of the generic plane-wave defined in (1.33). The approach

led to define Reflected Cylindrical Functions, where a single reflection was evaluated,

as due to the single interface geometry of the medium hosting the cylinders.

In the present work, to describe multiple reflections established by a geometry

with double interface, generalized Reflected Cylindrical Functions are introduced

RW (1,·) (j)
m (ξ, ζ) =

1

2π

+∞∫

−∞

[Γ10(n
s
‖)]

f[Γ12(n
s
‖)]

gFm(ξ, ns
‖)e

ins
‖ζ

dns
‖ (1.34)

In (1.34), Γ10(n
s
‖) and Γ12(n

s
‖) are the plane-wave reflection coefficients, with respect

to the medium 0/medium 1 and medium 1/medium 2 interfaces, respectively, and

the exponents f and g are the number of reflections occurred at such interfaces,

being j = f+ g the total number of reflections. The symbol (1, ·) may correspond to

(1, 0) or (1, 2), according to the first reflection occurring at the upper or at the lower

interface (Fig. 1.4), respectively, thus giving a different value in the ξ argument of

the plane wave Fm.

Figure 1.4: Sketch of the reflected cylindrical waves excited inside the slab, with first

reflection either at the upper (solid arrows) and lower (dashed arrows) interface.

The cylindrical functions RW 1,0(j)
m (ξ, ζ) and RW 1,2(j)

m (ξ, ζ) represent the basis

functions of the fields V 1,0
sr(j) and V 1,2

sr(j), which are the scattered reflected fields, with
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first reflection occurred at the medium 0/medium 1 and medium 1/medium 2 inter-

face, respectively.

Scattered-reflected field from upper interface

The scattered-reflected fields V 1,0
sr(j), relevant to a first reflection on the upper inter-

face, placed in ξ = 0, are now evaluated.

We start from the scattered-reflected field with 1 order of reflection, V 1,0
sr(1).

We want to derive the reflected cylindrical wave which is excited when the wave

CWm(1.29) impinges on the plane of abscissa ξq = −χq. Thus, we evaluate the

generic plane-wave Fm(n1ξq, n
s
‖)e

in1ns
‖ζq of the expansion (1.29), with propagation

vector ns
⊥ξ̂q + ns

‖ζ̂q, on the upper interface, and we get Fm(−n1χq, n
s
‖)e

in1ns
‖ζq. In

the plane ξq, a reflected plane-wave Γ10(n
s
‖)Fm(−n1χq, n

s
‖)e

in1ns
‖ζqe−in1ns

⊥(ξq+χq) is

obtained, with propagation vector −ns
⊥ξ̂q + ns

‖ζ̂q. We can include the second ex-

ponential of this expression in Fm, making use of definition (1.33), and we get

Γ10(n
s
‖)Fm

[
−n1(2χq + ξq), n

s
‖

]
e

in1ns
‖ζq. This leads to define reflected cylindrical waves

CW r
m [34], relevant to a single reflection j = 1

CW r
m(ξq, ζq) =

1

2π

+∞∫

−∞

Γ10(n
s
‖)Fm[−n1(2χq + ξq), n

s
‖]e

in1ns
‖ζqdns

‖. (1.35)

According to definition (1.34) of generalized Reflected Cylindrical Functions, the

field generated by one reflection of the cylindrical wave (1.29) is

CW r(1)
m (ξq, ζq) =RW 1,0(1)

m [−n1(2χq + ξq), n1ζq] (1.36)

By a superimposition of scattered-reflected fields by the N cylinders, and making

use of (1.1) in (1.35), the scattered-reflected field from the upper interface V 1,0
dr(1) can

be written as

V 1,0
sr(1)(ξ, ζ) = V0

+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqmRW

1,0(1)
m+` [−n1(ξ + χq), n1(ζ − ηq)]

(1.37)

The reflected cylindrical wave CW r(j)
m , for a number of reflections j > 1, are de-

fined starting from (1.35). Considering j = 2 reflections, the generic plane-wave

Fm[−n1(2χq + ξq), n
s
‖] of the expansion (1.35) is evaluated at the lower interface,

placed in ξq = Λ − χq, giving Fm[−n1(Λ + χq), n
s
‖]. In the plane ξq, the reflected

plane-wave is Γ10(n
s
‖)Γ12(n

s
‖)Fm[−n1(Λ + χq), n

s
‖]e

in1ns
‖ζqein1ns

⊥(ξq+χq−Λ), with propa-

gation vector ns
⊥ξ̂q + ns

‖ζ̂q. Including the second exponential in Fm, according to

definition (1.33), the reflected cylindrical wave CW r(j)
m , with j = 2, is

CW r(2)
m (ξq, ζq) =

1

2π

+∞∫

−∞

Γ10(n
s
‖)Γ12(n

s
‖)Fm[−n1(2Λ − ξq), n

s
‖]e

in1ns
‖ζqdns

‖ (1.38)



20 CHAPTER 1. PERFECTLY-CONDUCTING CYLINDERS BURIED ...

and recalling definition (1.34) we get

CW r(2)
m (ξq, ζq) =RW 1,0(2)

m [−n1(2Λ − ξq), n1ζq] (1.39)

If we go on with j = 3 reflections, the generical plane-wave Fm[−n1(2Λ − ξq), n
s
‖] of

the expansion (1.38) has now to be evaluated at the upper interface, in ξq = −χq,

giving Fm[−n1(2Λ + χq), n
s
‖]. In the plane ξq, the generic reflected plane-wave is

[Γ10(n
s
‖)]

2Γ12(n
s
‖)Fm[−n1(2Λ+χq), n

s
‖]e

in1ns
‖ζqe−in1ns

⊥(ξq+χq), with propagation vector

−ns
⊥ξ̂q + ns

‖ζ̂q. The reflected cylindrical wave CW r(j)
m , with j = 3, is

CW r(3)
m (ξq, ζq) =

1

2π

+∞∫

−∞

[Γ10(n
s
‖)]

2Γ12(n
s
‖)Fm[−n1(2Λ + 2χq + ξq), n

s
‖]e

in1ns
‖ζqdns

‖

(1.40)

and

CW r(3)
m (ξq, ζq) =RW 1,0(3)

m [−n1(2Λ + 2χq + ξq), n1ζq] (1.41)

As a general rule, the argument of the plane-wave Fm corresponding to j re-

flections is {n1[−(j − 1)Λ − 2χq − ξq],n
s
‖}, when the number of reflections j is odd.

With an even number of reflections, the argument of Fm is [n1(−jΛ+ ξq),n
s
‖]. Thus,

generalized Reflected Cylindrical Functions RW 1,0(j)
m in MRF are defined as follows

RW 1,0(j)
m {n1[−hΛ− χq + (−1)jξ], n1(ζ − ηq)} =

1

2π

+∞∫

−∞

[Γ10(n
s
‖)]

f[Γ12(n
s
‖)]

gFm{n1[−hΛ− χq + (−1)jξ], ns
‖}e

in1ns
‖(ζ−ηq)

dns
‖,

{
h = j, if j = 2, 4, 6, ...

h = j − 1, if j = 1, 3, 5, ...

(1.42)

where the first reflection occurs at the upper interface; the symbol h takes into ac-

count the number of reflections j, distinguishing the cases of odd or even reflections.

Moreover, it is f = g = j/2 with even j, and f = (j + 1)/2, g = (j − 1)/2 when j is

odd.

In MRF, the scattered-reflected field V 1,0
sr(j), with the first reflection occurring

downwards at the upper interface, is defined by the following expression

V 1,0
sr(j)(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqmRW 1,0(j)

m {n1[−hΛ − χq + (−1)jξ], n1(ζ − ηq)} (1.43)

To make easier the imposition of the boundary conditions on the p-th cylinder

surface, the diffracted-reflected field has to be expressed in the coordinates of RFp.
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In (1.43), we introduce the (1.1)

V 1,0
sr(j)(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqm×

×RW 1,0(j)
m {n1[−hΛ− χq + (−1)j(ξp + χp)], n1(ζp + ηp − ηq)}

(1.44)

and employ definition (1.42)

V 1,0
sr(j)(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqm

1

2π

+∞∫

−∞

[Γ10(n
s
‖)]

f[Γ12(n
s
‖)]

g×

×Fm{n1[−hΛ − χq + (−1)j(ξp + χp)], n
s
‖}e

in1ns
‖(ζp+ηp−ηq)

dns
‖

(1.45)

Making use of (1.33), the latter equation becomes

V 1,0
sr(j)(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqm

1

2π

+∞∫

−∞

[Γ10(n
s
‖)]

f[Γ12(n
s
‖)]

g×

×Fm{n1[−hΛ− χq + (−1)jχp], n
s
‖}e

in1(n
sr
⊥ξp+nsr

‖ ζp)
e

in1ns
‖(ηp−ηq)

dns
‖

(1.46)

The exponential e
in1(nsr

⊥ξp+nsr
‖ ζp)

in (1.46) represents a reflected plane-wave in the

reference frame RFp, with nsr
‖ = ns

‖, and nsr
⊥ = ±ns

⊥, taking the sign ‘+’ for a

downward-propagating wave, and ‘-’ for an upward-propagating one. Such plane

wave can be expanded into a series of Bessel functions

e
in1(nsr

⊥ξp+nsr
‖ ζp)

=
+∞∑

`=−∞
i`e

−i` arcsin(nsr
‖ )

J`(n1ρp)e
i`θp (1.47)

where arcsin(nsr
‖ ) is the angle of propagation ϕsr.

As regards to upward-propagating waves, according to the Snell law arcsin(nsr
‖ ) =

π − arcsin(ns
‖). Being arcsin(ns

‖) ≥ π/2, it follows arcsin(ns
‖) = π/2 + arccos(ns

‖),

and the expansion (1.47) becomes

e
in1(−ns

⊥ξp+ns
‖ζp)

=
+∞∑

`=−∞
e

i` arccos(ns
‖)

J`(n1ρp)e
i`θp (1.48)

Downward-propagating waves, instead, satisfy the following relation: arcsin(nsr
‖ ) =

arcsin(ns
‖). Therefore, in this case arcsin(nsr

‖ ) = π/2+arccos(ns
‖), and the expansion

(1.47) becomes

e
in1(ns

⊥ξp+ns
‖ζp)

=
+∞∑

`=−∞
e
−i` arccos(ns

‖)
J`(n1ρp)e

i`θp (1.49)
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The expansions (1.48) and (1.49) can be introduced in (1.46), and the expo-

nential e±i` arccos(n‖) can be included in Fm, according to definition (1.33), leading

to

V 1,0
sr(j)(ξ, ζ) = V0

+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqm×

× 1

2π

+∞∫

−∞

[Γ10(n
s
‖)]

f[Γ12(n
s
‖)]

gFm+`(−1)j{n1[−hΛ− χq + (−1)jχp], n
s
‖}e

in1ns
‖(ηp−ηq)

dns
‖

(1.50)

The scattered-reflected field V 1,0
sr(j) in a point of coordinates (ξ, ζ), as a function of

the coordinates in RFp, is the following

V 1,0
sr(j)(ξ, ζ) = V0

+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqm×

×RW
1,0(j)
m+`(−1)j{n1[−hΛ− χq + (−1)jχp], n1(ηp − ηq)},

{
h = j, if j = 2, 4, 6, ...

h = j − 1, if j = 1, 3, 5, ...

(1.51)

Scattered-reflected field from lower interface

The procedure applied to the scattered-reflected fields V 1,0
sr(j) can be extended to

the scattered-reflected fields V 1,2
sr(j), i.e. scattered-reflected fields excited by a first

reflection on the lower interface, placed in ξ = Λ.

We consider the scattered-reflected field with 1 order of reflection, V 1,2
sr(1). The

expression of the reflected cylindrical wave excited from reflection of the wave CWm

(1.29) on the plane of abscissa ξq = Λ − χq is looked for. The generic plane-wave

Fm(n1ξq, n
s
‖)e

in1ns
‖ζs

q of the expansion (1.29), with propagation vector ns
⊥ξ̂q + ns

‖ζ̂q,

is evaluated on the lower interface, and we get Fm[n1(Λ − χq), n
s
‖]e

in1ns
‖ζq. The

corresponding reflected plane-wave has propagation vector −ns
⊥ξ̂q +ns

‖ζ̂q, and in the

plane ξq is Γ12(n
s
‖)Fm[n1(Λ−χq), n

s
‖]e

in1ns
‖ζqe−in1ns

⊥(ξq+χq−Λ). The second exponential

of the latter expression can be included in Fm, according to definition (1.33). We get

Γ12(n
s
‖)Fm

[
n1(2Λ − 2χq − ξq), n

s
‖

]
e

in1ns
‖ζq. Thus, downward-propagating reflected

cylindrical wave CW r(j)
m , relevant to a single reflection j = 1, is derived

CW r(1)
m (ξq, ζq) =

1

2π

+∞∫

−∞

Γ12(n
s
‖)Fm[n1(2Λ − 2χq − ξq), n

s
‖]e

in1ns
‖ζqdns

‖ (1.52)

Recalling definition (1.34), the field generated by one reflection of the cylindrical
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wave (1.29) is

CW r(1)
m (ξq, ζq) =RW 1,2(1)

m [n1(2Λ − 2χq − ξq), n1ζq] (1.53)

The scattered-reflected field from the upper interface V 1,2
dr(1) is given by a superim-

position of the scattered-reflected fields by the N cylinders, and making use of (1.1)

in (1.52) we get

V 1,2
sr(1)(ξ, ζ) = V0

+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqmRW

1,2(1)
m+` [n1(2Λ − χq − ξ), n1(ζ − ηq)]

(1.54)

The reflected cylindrical waves CW r(j)
m , for a number of reflections j > 1, are defined

starting from definition (1.52). We consider the case of j = 2 reflections: the generic

plane-wave Fm[n1(2Λ − 2χq − ξq), n
s
‖] of the expansion (1.52) is evaluated at the

upper interface, placed in ξq = −χq, giving Fm[n1(2Λ−χq), n
s
‖]. In the plane ξq, the

reflected plane-wave is Γ10(n
s
‖)Γ12(n

s
‖)Fm[n1(2Λ − χq), n

s
‖]e

in1ns
‖ζqein1ns

⊥(ξq+χq), with

propagation vector is ns
⊥ξ̂q +ns

‖ζ̂q. Including the second exponential in Fm by means

of definition (1.33), the reflected cylindrical wave CW r(j)
m , with j = 2 reflections, is

CW r(2)
m (ξq, ζq) =

1

2π

+∞∫

−∞

Γ10(n
s
‖)Γ12(n

s
‖)Fm[n1(2Λ + ξq), n

s
‖]e

in1ns
‖ζqdns

‖ (1.55)

which satisfies the following equality with Reflected Cylindrical Functions (1.34)

CW r(2)
m (ξq, ζq) =RW 1,2(2)

m [n1(2Λ + ξq), n1ζq] (1.56)

With j = 3 reflections, the generic plane-wave Fm[n1(2Λ + ξq), n
s
‖] of the expan-

sion (1.55) is evaluated at the upper interface, in ξq = Λ − χq, giving Fm[n1(3Λ −
χq), n

s
‖]. In the plane ξq, the reflected plane-wave is Γ10(n

s
‖)[Γ12(n

s
‖)]

2Fm[n1(3Λ −
χq), n

s
‖]e

in1ns
‖ζqe−in1ns

⊥(ξq+χq−Λ), with propagation vector −ns
⊥ξ̂q +ns

‖ζ̂q. The reflected

cylindrical wave CW r(j)
m , with j = 3, is

CW r(3)
m (ξ, ζ) =

1

2π

+∞∫

−∞

Γ10(n
s
‖)[Γ12(n

s
‖)]

2Fm[n1(4Λ − 2χq − ξq), n
s
‖]e

in1ns
‖ζqdns

‖

(1.57)

and it follows

CW r(3)
m (ξq, ζq) =RW 1,2(3)

m [n1(4Λ − 2χq − ξq), n1ζq] (1.58)

As a general rule, the argument of the plane-wave Fm corresponding to j reflections

is {n1[(j + 1)Λ − 2χq − ξq],n
s
‖}, when the number of reflections j is odd. With an

even number of reflections, the argument of Fm is [n1(jΛ + ξq),n
s
‖].
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Generalized Reflected Cylindrical Functions RW 1,2(j)
m are finally defined, with a

first reflection at the lower interface:

RW 1,2(j)
m {n1[hΛ − χq + (−1)jξ], n1(ζ − ηq)} =

1

2π

+∞∫

−∞

[Γ12(n
s
‖)]

f[Γ10(n
s
‖)]

gFm{n1[hΛ − χq + (−1)jξ], ns
‖}e

in1ns
‖(ζ−ηq)dns

‖,

{
h = j, if j = 2, 4, 6, ..

h = j + 1, if j = 1, 3, 5, ..

(1.59)

where the symbol h takes into account the number of reflections j, distinguishing

the cases of odd or even reflections. Moreover, it is f = g = j/2 with even j, and

f = (j − 1)/2 and g = (j + 1)/2 when j is odd.

In MRF, the scattered-reflected fields V 1,2
sr(j), relevant to a first reflection occuring

upwards at the lower interface, are defined by the following expression

V 1,2
sr(j)(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqmRW 1,2(j)

m {n1[hΛ− χq + (−1)jξ], n1(ζ − ηq)} (1.60)

To make easier the imposition of the boundary conditions on the p-th cylinder sur-

face, the diffracted-reflected field is expressed in the coordinates of RFp. Introducing

(1.1) in (1.60)

V 1,2
sr(j)(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqm×

×RW 1,2(j)
m {n1[hΛ− χq + (−1)j(ξp + χp)], n1(ζp + ηp − ηq)}

(1.61)

and employing definition (1.59), the field can be written as

V 1,2
sr(j)(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqm

1

2π

+∞∫

−∞

[Γ10(n
s
‖)]

f[Γ12(n
s
‖)]

g×

×Fm{n1[hΛ − χq + (−1)j(ξp + χp)], n
s
‖}e

in1ns
‖(ζp+ηp−ηq)

dns
‖

(1.62)

Making use of (1.33), the former equation becomes

V 1,2
sr(j)(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqm

1

2π

+∞∫

−∞

[Γ10(n
s
‖)]

f[Γ12(n
s
‖)]

g×

×Fm{n1[hΛ− χq + (−1)jχp], n
s
‖}e

in1(nsr
⊥ξp+nsr

‖ ζp)
e

in1ns
‖(ηp−ηq)

dns
‖

(1.63)

The exponential e
in1(n

sr
⊥ξp+nsr

‖ ζp)
in (1.63) represents a reflected plane-wave in the
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reference frame RFp, with nsr
‖ = ns

‖, and nsr
⊥ = ±ns

⊥, taking the sign ‘+’ for a

downward-propagating wave and ‘-’ for an upward-propagating one. Such plane

wave can be expanded into a series of Bessel functions

e
in1(n

sr
⊥ξp+nsr

‖ ζp)
=

+∞∑

`=−∞
i`e

−i` arcsin(nsr
‖ )

J`(n1ρp)e
i`θp (1.64)

being arcsin(nsr
‖ ) the angle of propagation ϕsr.

According to the Snell law, for the upward-propagating waves it turns out:

arcsin(nsr
‖ ) = π − arcsin(ns

‖). Being arcsin(ns
‖) ≤ π/2, it follows arcsin(ns

‖) = π/2 −
arccos(ns

‖), and the expansion (1.64) becomes

e
in1(−ns

⊥ξp+ns
‖ζp)

=
+∞∑

`=−∞
e
−i` arccos(ns

‖)
J`(n1ρp)e

i`θp (1.65)

Downward-propagating waves, instead, satisfy the following relation: arcsin(nsr
‖ ) =

arcsin(ns
‖). Therefore, in this case arcsin(nsr

‖ ) = π/2−arccos(ns
‖), and the expansion

(1.64) becomes

e
in1(n

s
⊥ξp+ns

‖ζp)
=

+∞∑

`=−∞
e

i` arccos(ns
‖)

J`(n1ρp)e
i`θp (1.66)

The expansions (1.65) and (1.66) can be introduced in (1.63), and the exponen-

tial e∓i` arccos(n‖) can be included in Fm, according to definition (1.33); this yields

to

V 1,2
sr(j)(ξ, ζ) = V0

+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqm×

× 1

2π

+∞∫

−∞

[Γ10(n
s
‖)]

f[Γ12(n
s
‖)]

gFm+`(−1)j{n1[hΛ − χq + (−1)jχp], n
s
‖}e

in1ns
‖(ηp−ηq)

dns
‖

(1.67)

The scattered-reflected fields, associated to a point of coordinated (ξ, ζ), as a func-

tion of the coordinates in RFp, are the following

V 1,2
sr(j)(ξ, ζ) = V0

+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqm×

×RW
1,2(j)
m+`(−1)j{n1[hΛ − χq + (−1)jχp], n1(ηp − ηq)},

{
h = j, if j = 2, 4, 6, ..

h = j + 1, if j = 1, 3, 5, ..

(1.68)
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1.2.6 Scattered-transmitted fields

To express the diffracted-transmitted fields, the evaluation of the cylindrical wave

given in (1.29), through the upper or lower interface, is needed. The procedure

applied is shown in detail for the scattered field transmitted from medium 1 to

medium 0.

The followings are the orthogonal and parallel components, respectively, of the

unit vector nst relevant to the transmitted spectral plane-wave in medium 1




nst
⊥ = −

√
1 − (n1ns

‖)
2

nst
‖ = n1n

s
‖

(1.69)

The transmitted plane-wave corresponds to the spectrum Fm(n1ξq, n
s
‖)e

in1ns
‖ζq of the

expansion (1.29), and in the plane of abscissa ξq it is defined as

T10(n
s
‖)Fm(−n1χq, n

s
‖)e

in1ns
‖ζqe

−i(ξq+χq)
√

1−(n1ns
‖)2

(1.70)

The transmitted cylindrical wave CW t
m, given by the transmission through the upper

interface of the wave (1.29), is so expressed as

CW t
m(ξq, ζq) =

1

2π

+∞∫

−∞

T10(n
s
‖)Fm(−n1χq, n

s
‖)e

in1ns
‖ζqe

−i(ξq+χq)
√

1−(n1ns
‖)2

dns
‖ (1.71)

Once defined the Transmitted Cylindrical Wave Function [34] of order m TW 1,0
m as

TW 1,0
m (ξ; ζ, χ) =

1

2π

+∞∫

−∞

T10(n
s
‖)Fm(−n1χ, ns

‖)e
in1ns

‖ζ
e
−i(ξ+χ)

√
1−(n1ns

‖)2
dns

‖ (1.72)

we get that the field given by the transmission of the cylindrical wave (1.29) corre-

sponds to

CW t
m(ξq, ζq) = TWm(ξq, ζq;χq) (1.73)

The scattered-transmitted field by the q-th cylinder is given by a superimposition

of the transmitted functions CW t
m(ξq, ζq), with unknown coefficients

V 1,0
st(q)(ξ, ζ) = V0

+∞∑

m=−∞
cqmCW t

m(ξq, ζq) (1.74)

With a superimposition of the N scattered-transmitted field by each cylinder, and

taking into account equations (1.1) where p is replaced with q, we get

V 1,0
st (ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqmTW 1,0

m (ξ − χq, ζ − ηq;χq) (1.75)
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which is the scattered-transmitted field V
(1,0)
st .

In the same way, from the cylindrical wave (1.29), the Transmitted Cylindrical

Functions TW 1,2
m , for transmission from medium 1 to medium 2, can be derived

TW 1,2
m (ξ − Λ, ζ;χ) =

1

2π

+∞∫

−∞

T12(n
s
‖)Fm[n1(Λ − χ), ns

‖]e
in1ns

‖ζ
e

i(ξ+χ−Λ)
√

1−(n1ns
‖/n2)2dns

‖

(1.76)

The orthogonal and parallel components, respectively, of the unit vector nst relevant

to the transmitted spectral plane-wave in medium 2 are




nst
⊥ =

√
1 − (n1ns

‖/n2)2

nst
‖ = n1n

s
‖/n2

(1.77)

The scattered field V 1,2
st , transmitted from medium 1 to medium 2 , is the following

V 1,2
st (ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqmTW 1,2

m (ξ − Λ − χq, ζ − ηq; Λ− χq) (1.78)

1.2.7 Scattered reflected-transmitted field

The scattered-reflected-transmitted fields V 1,0
srt(j) and V 1,2

srt(j) are scattered fields trans-

mitted in medium 0 or medium 2, respectively, after multiple reflections inside the

dielectric layer.

In order express the scattered-reflected-transmitted fields, the following Reflected-

Transmitted Cylindrical Functions are introduced

RTW (1,·) (j)
m (ξ, ζ;χ,hΛ, n1, n) =

1

2π

+∞∫

−∞

T(1·)(n
s
‖)[Γ10(n

s
‖)]

p[Γ12(n
s
‖)]

rFm(χ + hΛ, ns
‖)e

insrt
⊥ (ξ+χ)e

inns
‖ζ

dns
‖

(1.79)

The symbol (1, ·) stands for (1, 0) when the field is transmitted from medium 1 to

medium 0, being T(1·)(n
s
‖) the plane-wave transmission coefficient T10(n

s
‖). When

the transmission occurs from medium 1 to medium 2, (1, ·) stands for (1, 2), and

the plane-wave transmission coefficient is T12(n
s
‖). Γ10(n

s
‖), Γ12(n

s
‖) are the plane-

wave reflection coefficients, with respect to the medium 0/medium 1 and medium

1/medium 2 interfaces, respectively. The exponents p and r stands for the number of

reflections occurred at such interfaces, being j = p+r the total number of reflections.

The field V 1,0
srt(j) is the scattered-reflected-transmitted field in medium 0, i.e. it

undergoes j reflections inside the slab before transmission through the upper inter-

face in medium 0. The spectral reflected-transmitted plane-wave is obtained by the
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generic reflected plane-wave of the spectrum in equation (1.42) and (1.59), evaluated

at the ξ = 0 interface.

The propagation unit vector nsrt of the reflected-transmitted plane-wave in

medium 1 has components




nsrt
⊥ = −

√
1 − (n1nsr

‖ )2

nsrt
‖ = n1n

sr
‖

(1.80)

being nsr the propagation unit vector of the plane waves of the spectrum (1.42),

with components nsr
⊥ = ns

⊥ and nsr
‖ = ns

‖, or of spectrum (1.59), with nsr
⊥ = −ns

⊥ and

nsr
‖ = ns

‖. Finally, we can state that




nsrt
⊥ ≡ nst

⊥

nsrt
‖ ≡ nst

‖
(1.81)

with nst
‖ and nst

⊥ given by (1.69).

In particular, final transmission in medium 1 depends just on upward-propagating

plane-waves (1.42) and (1.59). Transmission spectrum is evaluated from the spec-

trum of Reflected Cylindrical Functions (1.42), with first reflection on upper interface

and an even number of reflections j. Instead, as regards to the spectrum of Reflected

Cylindrical Functions (1.59), where the first reflection occurs at the lower interface,

such waves are upward-propagating for an odd number of reflections j (Fig. 1.5).

Figure 1.5: Sketch of the reflected-transmitted cylindrical waves propagating in

medium 0, excited by a multiple-reflected wave with first reflection either at the

upper (solid arrows) and lower (dashed arrows) interface of the slab, corresponding

to even and odd reflections, respectively.

We consider now the upward-propagating Reflected Cylindrical Functions de-

fined in MRF (1.42), corresponding to even values of h = j. The evaluation of the
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generic reflected plane-wave [Γ10(n
s
‖)]

j
2 [Γ12(n

s
‖)]

j
2 Fm[n1(−jΛ + ξq), n

s
‖)]e

in1ns
‖ζq of the

expansion (1.42), on the upper interface, leads to [Γ10(n
s
‖)]

j
2 [Γ12(n

s
‖)]

j
2 Fm[n1(−jΛ −

χq), n
s
‖]e

in1ns
‖ζq. The corresponding reflected-transmitted plane-wave in the plane

of abscissa ξq is T10(n
s
‖)[Γ10(n

s
‖)]

j
2 [Γ12(n

s
‖)]

j
2 Fm[n1(−jΛ − χq), n

s
‖]e

in1ns
‖ζqeinst

⊥(ξq+χq).

Thus, the reflected-transmitted cylindrical waves in medium 0, for an even number

of reflections j inside the slab, are

CW rt(j)
m (ξ, ζ) =

1

2π

+∞∫

−∞

T10(n
s
‖)[Γ10(n

s
‖)]

j
2 [Γ12(n

s
‖)]

j
2×

×Fm[n1(−jΛ − χq), n
s
‖]e

inst
⊥(ξq+χq)e

in1ns
‖(ζq)

dns
‖,

with j = 2, 4, 6, ..

(1.82)

which compared with definition (1.79) give

CW rt(j)
m (ξ, ζ) = RTW 1,0(j)

m [ξ − χq, ζ − ηq;−χq,−jΛ, n1, n0] (1.83)

Upward-propagating Reflected Cylindrical Functions defined in MRF (1.59) are, in-

stead, associated to odd values of h = j. The generic reflected plane-wave [Γ10(n
s
‖)]

j
2

[Γ12(n
s
‖)]

j+1
2 Fm{n1[(j + 1)Λ − 2χq − ξq], n

s
‖}e

in1ns
‖ζq of the expansion (1.59) is eval-

uated on the upper interface, leading to [Γ10(n
s
‖)]

j−1
2 [Γ12(n

s
‖)]

j+1
2 Fm{n1[(j + 1)Λ −

χq], n
s
‖}e

in1ns
‖ζq. In the plane ξq, the reflected-transmitted plane-wave has ampli-

tude T10(n
s
‖)[Γ10(n

s
‖)]

j−1
2 [Γ12(n

s
‖)]

j+1
2 Fm{n1[(j + 1)Λ − χq], n

s
‖}e

in1ns
‖ζqeinst

⊥(ξq+χq). The

reflected-transmitted cylindrical waves in medium 0, for an odd number of reflections

j inside the slab, are

CW rt(j)
m (ξ, ζ) =

1

2π

+∞∫

−∞

T10(n
s
‖)[Γ10(n

s
‖)]

j−1
2 [Γ12(n

s
‖)]

j+1
2 ×

×Fm{n1[(j + 1)Λ − χq], n
s
‖}einst

⊥(ξq+χq)e
in1ns

‖ζqdns
‖,

with j = 1, 3, 5, ..

(1.84)

and recalling definition (1.79) we get

CW rt(j)
m (ξ, ζ) = RTW 1,0(j)

m [ξ − χq, ζ − ηq;−χq, (j + 1)Λ, n1, n0] (1.85)

From equations (1.82) and (1.84), general expression for Reflected-Transmitted Cylin-

drical Functions in medium 0 of order m RTW 1,0(j)
m can be derived

RTW 1,0(j)
m [ξ − χq, ζ − ηq;−χq, (−1)j+1hΛ, n1, n0] =

=
1

2π

+∞∫

−∞

T10(n
s
‖)[Γ10(n

s
‖)]

p[Γ12(n
s
‖)]

rFm{n1[(−1)j+1hΛ − χq], n
s
‖}einst

⊥ξe
in1ns

‖(ζ−ηq)
dns

‖

(1.86)
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where the spectrum Fm is defined in (1.33), and it corresponds to the definition for

ξ ≥ 0 and ξ ≤ 0 when the number of reflections is odd or even, respectively. We

remark that p + r = j; moreover, it is p = r = j/2 when j is even, and p = (j− 1)/2,

r = (j + 1)/2 when j is odd. The scattered reflected-transmitted fields by the q-th

cylinder is given by a superimposition of the transmitted functions RTW 1,0(j)
m (ξq, ζq),

with unknown coefficients

V 1,0
srt(q)(ξ, ζ) = V0

+∞∑

m=−∞
cqmRTW 1,0(j)

m [ξ − χq, ζ − ηq;χq, (−1)j+1hΛ, n1, n0] (1.87)

A superimposition of the N scattered-transmitted field by each cylinder yields

V 1,0
srt(j)(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqmRTW 1,0(j)

m [ξ − χq, ζ − ηq;χq, (−1)j+1hΛ, n1, n0],

{
h = j, if j = 2, 4, 6, ..

h = j + 1, if j = 1, 3, 5, ..

(1.88)

which is the scattered reflected-transmitted field V 1,0
srt(j) in a point of coordinates (ξ, ζ)

in MRF .

In a similar way, the field and V 1,2
srt(j), transmitted in medium 2, can be evaluated

by means of reflected-transmitted cylindrical waves relevant to the propagation from

medium 1 to medium 2.

General expression for Reflected-Transmitted Cylindrical Functions in medium

2 is derived from down-propagating waves in the spectra of Reflected Cylindrical

Functions (1.42) and (1.59), and it is the following

RTW 1,2(j)
m [ξ − Λ − χq, ζ − ηq;−χq, (−1)jhΛ, n1, n2] =

=
1

2π

+∞∫

−∞

T12(n
s
‖)[Γ10(n

s
‖)]

p[Γ12(n
s
‖)]

rFm{n1[(−1)jhΛ − χq], n
s
‖}einst

⊥(ξ−Λ)e
in1ns

‖(ζ−ηq)
dns

‖

(1.89)

The propagation unit vector nsrt of the reflected-transmitted plane-wave in medium

2 has components 



nsrt
⊥ =

√
1 − (n1nsr

‖ /n2)2

nsrt
‖ = n1n

sr
‖ /n2

(1.90)

being nsr the propagation unit vector of the plane waves of the spectrum (1.42),

with components nsr
⊥ = −ns

⊥ and nsr
‖ = ns

‖, or of spectrum (1.59), with nsr
⊥ = ns

⊥ and

nsr
‖ = ns

‖. We can also state that




nsrt
⊥ ≡ nst

⊥

nsrt
‖ ≡ nst

‖
(1.91)
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with nst
‖ and nst

⊥ given by (1.77).

In (1.89), the spectrum Fm is defined in (1.33), and it corresponds to the defini-

tion for ξ ≥ 0 or ξ ≤ 0 when the number of reflections is even or odd, respectively.

It is p+ r = j, and p = r = j/2 when j is even, and p = (j+1)/2, r = (j− 1)/2 when

j is odd.

From (1.89), the scattered reflected-transmitted field in medium 2 V 1,2
srt(j) in a

point of coordinates (ξ, ζ) in MRF is defined as

V 1,2
srt(j)(ξ, ζ) = V0

N∑

q=1

+∞∑

m=−∞
cqmRTW 1,2(j)

m [ξ −Λ − χq, ζ − ηq;−χq,+(−1)jhΛ, n1, n2],

{
h = j, if j = 2, 4, 6, ..

h = j − 1, if j = 1, 3, 5, ..

(1.92)

1.3 Boundary conditions

Once the expressions of the fields have been obtained, the scattering problem is

solved imposing the boundary conditions on the cylinders surfaces, being the bound-

ary condition on the planar interfaces already included in the plane-wave reflection

and transmission coefficients. We distinguish the two cases of E and H polarization.

1.3.1 E polarization

In case of E polarization, the electric field has only the Ey component, corresponding

to the scalar function V . The boundary condition to be imposed of the p−th cylinder

is the following:

[
Vt1 + Vr1 + Vs +

+∞∑

j=1

V 1,0
sr(j) +

+∞∑

j=1

V 1,2
sr(j)

]

ρp=αp

= 0, with p = 1, ..., N (1.93)
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Substituting in (1.93) equations (1.16), (1.11), (1.28), (1.51) and (1.68), with ρp =

αp, and simplifying the constant V0

T01(n
i
‖)e

in1 [nt1
⊥ (χp−Λ)+nt1

‖ ηp]
+∞∑

`=−∞
i`e−i`ϕt1J`(n1ρp)e

i`θp+

+T01(n
i
‖)Γ12(n

i
‖)e

in1[−nt1
⊥ (χp−Λ)+nt1

‖ ηp] ×
+∞∑

`=−∞
i`e−i`ϕr1

J`(n1ρp)e
i`θp+

+
+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqm

[
CWm−`(n1ξqp, n1ζqp)(1 − δqp) +

H
(1)
` (n1ρp)
J`(n1ρp)

δqpδ`m

]
+

+
+∞∑

j=1

+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqmRW

1,0(j)
m+`(−1)j{n1[−hΛ− χq + (−1)jχp], n1(ηp − ηq)}+

+
+∞∑

j=1

+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqmRW

1,2(j)
m+`(−1)j{n1[hΛ − χq + (−1)jχp], n1(ηp − ηq)} = 0

(1.94)

Multiplying the (1.94) by e−iνθp , integrating between 0 and 2π in the variable θp,

and employing the orthogonality property of exponential functions 1
2π

2π∫

0

ei`θpe−iνθpdθp =

δ`ν , we obtain

T01(n
i
‖)e

in1[n
t1
⊥ (χp−Λ)+nt1

‖ ηp]
iνe−iνϕt1Jν(n1ρp)+

+T01(n
i
‖)Γ12(n

i
‖)e

in1 [−nt1
⊥ (χp−Λ)+nt1

‖ ηp]
iνe−iνϕr1

Jν(n1ρp)+

+Jν(n1ρp)
N∑

q=1

+∞∑

m=−∞
cqm

[
CWm−ν(n1ξqp, n1ζqp)(1 − δqp) +

H(1)
ν (n1ρp)

Jν(n1ρp)
δqpδνm

]
+

+
+∞∑

j=1

Jν(n1ρp)
N∑

q=1

+∞∑

m=−∞
cqmRW

1,0(j)
m+ν(−1)j{n1[−hΛ − χq + (−1)jχp], n1(ηp − ηq)}+

+
+∞∑

j=1

Jν(n1ρp)
N∑

q=1

+∞∑

m=−∞
cqmRW

1,2(j)
m+ν(−1)j{n1[hΛ− χq + (−1)jχp], n1(ηp − ηq)} = 0

(1.95)

In (1.95) the term Jν(n1αp) can be simplified; isolating the unknown terms on left

side, putting Gν(·) = Jν(·)/H(1)
ν (·), multiplying both sides by Gν(n1αp), and dividing

by iν, we get
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N∑

q=1

+∞∑

m=−∞
cqmi−νGν(n1ρp)

{[
CWm−ν(n1ξqp, n1ζqp)(1 − δqp) +

δqpδνm

Gν(n1ρp)
+

+
+∞∑

j=1

RW
1,0(j)

m+ν(−1)j{n1[−hΛ− χq + (−1)jχp], n1(ηp − ηq)+

+
+∞∑

j=1

RW
1,2(j)
m+ν(−1)j{n1[hΛ− χq + (−1)jχp], n1(ηp − ηq)}

}
=

= −T01(n
i
‖)Gν(n1ρp)e

in1[n
t1
⊥ (χp−Λ)+nt1

‖ ηp]
e−iνϕt1+

−T01(n
i
‖)Γ12(n

i
‖)Gν(n1ρp)e

in1[−nt1
⊥ (χp−Λ)+nt1

‖ ηp]
e−iνϕr1

(1.96)

We can substitute ν with `, and write the system (1.96) in a more compact way

N∑

q=1

+∞∑

m=−∞
Aqp

`mcqm − Bp
` = 0

{
` = 0,±1, ...,±∞
p = 1, ..., N

(1.97)

with

Aqp
`m = i−`G`(n1ρp)

{
CWm−`(n1ξqp, n1ζqp)(1 − δqp) +

δqpδ`m

G`(n1ρp)

+
+∞∑

j=1

RW
1,0(j)
m+`(−1)j{n1[−hΛ − χq + (−1)jχp], n1(ηp − ηq)}

+
+∞∑

j=1

RW
1,2(j)
m+`(−1)j{n1[hΛ− χq + (−1)jχp], n1(ηp − ηq)}

}

(1.98)

Bp
` = −G`(n1ρp){T01(n

i
‖)e

in1[n
t1
⊥ (χp−Λ)+nt1

‖ ηp]
e−i`ϕt1

+Γ12(n
i
‖)T01(n

i
‖)e

in1 [nt1
⊥ (χp−Λ)+nt1

‖ ηp]
e−i`ϕr1}

(1.99)

The (1.97) is a linear system of (∞ · N) equations in (∞ · N) unknowns cqm.

1.3.2 H Polarization

For TE polarization, from Maxwell equations the condition is the following

{ ∂

∂ρp
[Vt1 + Vr1 + Vs +

+∞∑

j=1

V 1,0
sr(j) +

+∞∑

j=1

V 1,2
sr(j)]

}

ρp=αp

= 0, with p = 1, ..., N (1.100)

Substituting in (1.100) equations (1.16), (1.11), (1.28), (1.51) and (1.68), with ρp =

αp, and simplifying the constant n1V0
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T01(n
i
‖)e

in1 [nt1
⊥ (χp−Λ)+nt1

‖ ηp]
+∞∑

`=−∞
i`e−i`ϕt1J ′

`(n1ρp)e
i`θp+

+T01(n
i
‖)Γ12(n

i
‖)e

in1[−nt1
⊥ (χp−Λ)+nt1

‖ ηp] ×
+∞∑

`=−∞
i`e−i`ϕr1

J ′
`(n1ρp)e

i`θp+

+
+∞∑

`=−∞
J ′

`(n1ρp)e
i`θp

N∑

q=1

+∞∑

m=−∞
cqm

[
CWm−`(n1ξqp, n1ζqp)(1 − δqp) +

H
′(1)
` (n1ρp)
J ′

`(n1ρp)
δqpδ`m

]
+

+
+∞∑

j=1

+∞∑

`=−∞
J ′

`(n1ρp)e
i`θp

N∑

q=1

+∞∑

m=−∞
cqmRW

1,0(j)
m+`(−1)j{n1[−hΛ− χq + (−1)jχp], n1(ηp − ηq)}+

+
+∞∑

j=1

+∞∑

`=−∞
J ′

`(n1ρp)e
i`θp

N∑

q=1

+∞∑

m=−∞
cqmRW

1,2(j)
m+`(−1)j{n1[hΛ − χq + (−1)jχp], n1(ηp − ηq)} = 0

(1.101)

with J ′
`(n1αp) =

1

n1

[
∂J`(n1ρp)

∂ρp

]

ρp=αp

and H
′(1)
` (n1αp) =

1

n1


∂H

(1)
` (n1ρp)

∂ρs




ρp=αp

.

From a comparison of equation (1.101) with (1.95), it turns out that the sys-

tem for the H polarization is the same for the E polarization, being now G`(·) =

J ′
`(·)/H

′(1)
` (·).



Chapter 2

Dielectric cylinders buried in a

dielectric layer

The analytical approach applied to the solution of scattering of a plane wave by

perfectly-conducting cylinders, buried in a dielectric layer, is now generalizeded to

the case of dielectric scatterers.

In addition to the field contributions already considered in Section 1.2, a scat-

tered field transmitted inside the p-th cylinder of refraction index ncp is introduced,

in Section 2.1. The latter is expressed into a modal expansion with coefficients which

represent further unknowns of the problem.

Boundary conditions for dielectric scatterers are expressed imposing the conti-

nuity of both the electric and magnetic field tangential to the cylinders surfaces. A

system of matched equations is derived in Section 2.2, for coefficients of the scattered

fields external to the cylinders and coefficients of the field internal to the cylinder.

2.1 Field internal to the cylinders

The field Vcp(ξ, ζ) inside the p-th cylinder is now introduced. It can be easily ob-

tained as a modal expansion in terms of first-kind Bessel functions J`, with expansion

coefficients dp` representing further unknowns:

Vcp(ξ, ζ) = V0

+∞∑

`=−∞
dp`J`(ncpρp)e

i`θp (2.1)
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2.2 Boundary conditions

Let us consider Maxwell’s equations in a medium of permittivity ε and permeability

µ 



E = − 1

iωε
∇×H

H =
1

iωµ
∇× E

(2.2)

Recalling the normalized coordinates defined in Section 1.1, in the (2.2) we can

substitute ∇ = k∇̃, being ∇̃ the curl with respect to the normalized coordinates

(ξ, ζ) and k the wave number of the concerned medium; thus we get





E =
ik

ωε
∇̃ × H = iZ∇̃ ×H

H =
k

iωµ
∇̃ × E =

1

iZ
∇̃ ×E

(2.3)

where Z is the impedance of medium.

Inside the dieletric slab, equations (2.3) can be written in the following way





E =
iZ

Q
∇̃ × H

H =
1

iZ
∇̃ × E

(2.4)

being the parameter Q defined as

Q =





1 outside the cylinders
(ncp

n1

)2
inside the p-th cylinder

(2.5)

The curl of the function V (ξ, ζ)ŷ in cylindrical coordinates is

∇̃ × V (ξ, ζ)ŷ =
1

ρ

∂V (ξ, ζ)

∂θ
r̂ − ∂V (ξ, ζ)

∂ρ
θ̂ (2.6)

where ŷ, r̂ e θ̂ are unit vectors in the cylindrical frame.

2.2.1 E Polarization

Once all the field contributions have been defined, the unknown coefficients cqm

and dpm can be determined by imposing the boundary conditions at the cylinders

surfaces [
Vt1 + Vr1 + Vs +

+∞∑

j=1

V 1,0
sr(j) +

+∞∑

j=1

V 1,2
sr(j)

]

ρp=αp

=

[
Vcp

]

ρp=αp

(2.7)



2.2. BOUNDARY CONDITIONS 37

{
∂

∂ρp

[
Vt1 + Vr1 + Vs +

+∞∑

j=1

V 1,0
sr(j) +

+∞∑

j=1

V 1,2
sr(j)

]}

ρp=αp

=

[
Vcp

]

ρp=αp

(2.8)

We consider equations (2.7), and act as already done on (1.94) in Section 1.3.1: on

the left side we get what obtained at left side of (1.97), i.e., Aqp
`m and Bp

` . In this

case, they are called A
qp(1)
`m and B

p(1)
` , defined exactly by (1.98) and (1.99). Now we

analyze the same passages on the right side of (2.7): substituting Vcp as given in

(2.1), with ρp = αp, and simplifying the constant V0, it turns out to be

+∞∑

`=−∞
i`dp`J`(ncpαp)e

i`θp (2.9)

Multiplying (2.9) by e−iνθp , integrating between 0 and 2π in the variable θp, and

exploiting the property of orthogonality of exponential functions, we obtain

iνdpνJν(ncpαp) (2.10)

Dividing by iνJν(n1αp), and multiplying by Jν(n1αp)/H
(1)
ν (n1αp)

dpν
Jν(ncpαp)

H
(1)
ν (n1αp)

(2.11)

Finally, replacing ν with ` in (2.11), from the condition (2.7) we obtain the following

expression
N∑

q=1

+∞∑

m=−∞
A

qp(1)
`m cqm − B

p(1)
` = L

p(1)
` dp` (2.12)

with p = 1, ..., N , ` = 0,±1,±2, .... The system coefficients A
qp(1)
`m and B

p(1)
` are

equal to the coefficients Aqp
`m and Bp

` defined by (1.98) and (1.99), where G`(·) =

G
(1)
` (·) = J`(·)/H(1)

` (·), and with the superscripts (1) standing for the boundary

conditions (2.7).

The system coefficients are given by

A
qp(1)
`m = i−`G

(1)
`

{
CWm−`(n1ξqp, n1ζqp)(1 − δqp) +

δqpδ`m

G
(1)
` (n1ρp)

+
+∞∑

j=1

RW
1,0(j)
m+`(−1)j{n1[−hΛ − χq + (−1)jχp], n1(ηp − ηq)}

+
+∞∑

j=1

RW
1,2(j)
m+`(−1)j{n1[hΛ− χq + (−1)jχp], n1(ηp − ηq)}

}

(2.13)

B
p(1)
` = −G

(1)
` {T01(n

i
‖)e

in1 [nt1
⊥ (χp−Λ)+nt1

‖ ηp]
e−i`ϕt1

+Γ12(n
i
‖)T01(n

i
‖)e

in1 [nt1
⊥ (χp−Λ)+nt1

‖ ηp]
e−i`ϕr1}

(2.14)
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L
p(1)
` =

J`(ncpαp)

H
(1)
` (n1αp)

(2.15)

where δ is the Kronecker symbol.

Now we consider equation (2.8), and act as already done for (1.101) in Section

1.3.2. On the left side we obtain the same left side of (1.97), with Aqp
`m and Bp

`

in this case called A
qp(2)
`m and B

p(2)
` , and defined by (1.98) and (1.99). It is now

G` = G
(2)
` = J ′

`(n1αp)/H
′(1)
` (n1αp). We introduce the same passages on right side

of (2.8): substituting Vcp as given in (2.1), with ρp = αp, and dividing by n1V0, it

turns out to be
+∞∑

`=−∞
i`dp`

ncp

n1
J ′

`(ncpαp)e
i`θp (2.16)

From a comparison of equation (2.16) with equation (2.9), it can be easily obtained

dp`
ncp

n1

J ′
`(ncpαp)

H
′(1)
` (n1αp)

(2.17)

Finally, from condition (2.8) it turns out

N∑

q=1

+∞∑

m=−∞
A

qp(2)
`m cqm − B

p(2)
` = L

p(2)
` dp` (2.18)

being for the system coefficients:

A
qp(2)
`m = i−`G

(2)
`

{
CWm−`(n1ξqp, n1ζqp)(1 − δqp) +

δqpδ`m

G
(2)
` (n1ρp)

+
+∞∑

j=1

RW
1,0(j)
m+`(−1)j{n1[−hΛ− χq + (−1)jχp], n1(ηp − ηq)}

+
+∞∑

j=1

RW
1,2(j)
m+`(−1)j{n1[hΛ− χq + (−1)jχp], n1(ηp − ηq)}

}

(2.19)

B
p(2)
` = −G

(2)
` {T01(n

i
‖)e

in1[n
t1
⊥ (χp−Λ)+nt1

‖ ηp]
e−i`ϕt1

+Γ12(n
i
‖)T01(n

i
‖)e

in1 [nt1
⊥ (χp−Λ)+nt1

‖ ηp]
e−i`ϕr1}

(2.20)

L
p(2)
` =

ncp

n1

J ′
`(ncpαp)

H
′(1)
` (n1αp)

(2.21)

The system established by the equations (2.12) and (2.18) can be solved by elim-

inating the coefficients dp`, thus obtaining a linear system with coefficients cqm as

only unknowns. From system (2.12), it follows

dp` =

N∑

q=1

+∞∑

m=−∞
A

qp(1)
`m cqm − B

p(1)
`

L
p(1)
`

(2.22)
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and from (2.18)

dp` =

N∑

q=1

+∞∑

m=−∞
A

qp(2)
`m cqm − B

p(2)
`

L
p(2)
`

(2.23)

Equating the right sides of (2.22) and (2.23), the wanted system in the unknowns

cqm is
N∑

q=1

+∞∑

m=−∞
Dqp

m`cqm = Mp
` (2.24)

being Dqp
m` = L

p(2)
` A

qp(1)
`m − L

p(1)
` A

qp(2)
`m and Mp

` = B
p(1)
` L

p(2)
` − B

p(2)
` L

p(1)
` . It can be

appreciated how the computational effort needed to solve system (2.18) is the same

as the one for perfectly-conducting cylinders.

Once the system (2.24) has been solved, the coefficients dp` can be evaluated by

means of equation (2.22) or (2.23). After some algebra, we obtain:

dp` = n1
J`(n1αp)H

′(1)
` (n1αp) − J ′

`(n1αp)H
(1)
` (n1αp)

n1J`(n1αp)H
′(1)
` (n1αp) − ncpJ ′

`(n1αp)H
(1)
` (n1αp)

×
{

N∑

q=1

+∞∑

m=−∞
i−`cqm

{
CWm−`(n1ξqp, n1ζqp)(1 − δqp)

+
+∞∑

j=1

RW
1,0(j)
m+`(−1)j{n1[−hΛ− χq + (−1)jχp], n1(ηp − ηq)}

+
+∞∑

j=1

RW
1,2(j)
m+`(−1)j{n1[hΛ − χq + (−1)jχp], n1(ηp − ηq)}

}

+T01(n
i
‖)e

in1[nt1
⊥ (χp−Λ)+nt1

‖ ηp]
e−i`ϕt1

+Γ12(n
i
‖)T01(n

i
‖)e

in1[nt1
⊥ (χp−Λ)+nt1

‖ ηp]
e−i`ϕr1

}

(2.25)

In the last four terms in curly braces the effect of the planar interfaces is contained,

in terms of scattered-reflected fields, and transmitted and reflected plane-wave fields.

In absence of the two interfaces, the scattered-reflected fields and the reflected field

vanish, while the transmitted field Vt1 coincides with the incident field Vi, being

T01=1.

The knowledge of the cqm and dpm coefficients gives the total electromagnetic

field in any point of space and for both polarizations.
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2.2.2 H polarization

In this case H = V (ξ, ζ)ŷ. The boundary conditions deriving from the continuity

of the tangential components of the magnetic and electric field, to the cylinders

surfaces, are:

[
Vt1 + Vr1 + Vs +

+∞∑

j=1

V 1,0
sr(j) +

+∞∑

j=1

V 1,2
sr(j)

]

ρp=αp

=

[
Vcp

]

ρp=αp

(2.26)

{
∂

∂ρp

[
Vt1 + Vr1 + Vs +

+∞∑

j=1

V 1,0
sr(j) +

+∞∑

j=1

V 1,2
sr(j)

]}

ρp=αp

=
( n1

ncp

)2
[
Vcp

]

ρp=αp

(2.27)

From the condition (2.26), equal to (2.7) written for the E polarization, we come

to the equation (2.12). Moreover, from the condition (2.27), to be compared with

(2.8), an equation equal to (2.18) is obtained, with the only difference that in this

case

L
p(2)
` =

n1

ncp

J ′
`(ncpαp)

H ′(1)
` (n1αp)

(2.28)

Definition of coefficients dp` is

dp` = ncp
J`(n1αp)H

′(1)
` (n1αp) − J ′

`(n1αp)H
(1)
` (n1αp)

ncpJ`(ncpαp)H ′(1)
` (n1αp) − n1J ′

`(ncpαp)H
(1)
` (n1αp)

×
{

N∑

q=1

+∞∑

m=−∞
i−`cqm [CWm−` (n1ξqp, n1ζqp) (1 − δqp)+

+
+∞∑

j=1

RW
1,0(j)
m+`(−1)j{n1[−hΛ− χq + (−1)jχp], n1(ηp − ηq)}

+
+∞∑

j=1

RW
1,2(j)
m+`(−1)j{n1[hΛ− χq + (−1)jχp], n1(ηp − ηq)}

+T01(n
i
‖)e

in1[n
t1
⊥ (χp−Λ)+nt1

‖ ηp]
e−i`ϕt1

+Γ12(n
i
‖)T01(n

i
‖)e

in1[n
t1
⊥ (χp−Λ)+nt1

‖ ηp]
e−i`ϕr1

}

(2.29)



Chapter 3

Perfectly-conducting cylinders:

results

In this chapter, numerical results from the theoretical analysis on perfectly-conducting

cylinders are reported.

Some details on the numerical implementation of the method are given in Section

3.1, in particular for the evaluation of the integrals defining Reflected, Transmitted,

and Reflected-Transmitted Cylindrical Functions.

A scattering scenario with an isolated perfectly-conducting cylinder buried in

a grounded slab is analyzed in detail in Section 3.2. Truncation criteria for the

modal expansions and the multiple reflections are widely dealt with and validated

by convergence checks. Furthermore, some self-consistency tests are proposed. The

particular geometrical layout is also compared with results given in the literature.

Two scattering problems with cylinders below and above the planar interface

between two half-spaces are shown in Section 3.3, highligthing the possibility to

apply the method to scattering by cylinders buried in a semi-infinite medium. A

study of convergence of numerical results is reported. Finally, results are validated

through a comparison with the literature.

In Section 3.4 a practical application of the method to detection of buried utilities

is shown, with results for a typical scenario surveyed by GPR.

3.1 Numerical implementation

The implementation of the method requires the numerical evaluation of the involved

cylindrical reflected and transmitted functions. In fact, in all practical cases, the

expressions of reflection and transmission coefficients do not allow an analytical

evaluation of the integrals in Eqs. (1.42), (1.59), (1.72), (1.86), and (1.89).
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The techniques already developed in [36] and [37] for the RWm functions, and

in [33] for the TWm functions, are generalized to deal with the additional cylindrical

functions introduced here, and turn out to be very fast and accurate. The algorithms

take into account the infinite extension of the integration domains, and detect where

the spectrum of each wave function is oscillating or evanescent.

For what concerns the evanescent spectra, generalized Gaussian method are

adopted, consisting of an integration-interval decomposition in subintervals of suit-

able length on which a fixed low-order Gauss-Legendre rule gives good accuracy.

As far as the homogeneous spectra are regarded, they are decomposed into two

terms representing the contribution of partially and totally reflected components.

Both terms are evaluated by adaptive generalized Gaussian quadrature rules, based

on a decomposition of the integration interval in a suitable number of subdomains;

the number of subdomains, and their amplitudes, depend on the oscillatory behavior

of the integrand. The oscillations are higher as the expansion order of the cylindrical

functions increases. Since the adaptive algorithms are based on the assumption

that the local oscillation rate is monotonic, it is necessary to perform a preliminary

decomposition of the whole interval in a suitable number of subintervals in which

the oscillation rate behaves monotonically.

The implementation of the CWA requires also to establish two truncation crite-

ria.

The first criterion involves the index m in the system (1.97), for which the

limitation M = b3n1αc [43] reveals to be a good compromise beetween accuracy

and computational heaviness.

The second truncation criterion involves the number of multiple scattered-reflected

and scattered-reflected-transmitted fields to be taken into account, i.e. the index j in

the equations (1.51), (1.68), (1.75), and (1.88). Such truncation is strictly dependent

on the desidered accuracy for the results, once noticed a stable convergence as the

number j is increased. In the numerical cases reported in this chapter, a convergence

up to the fourth significant figure in the expansion coefficients is looked for. Under

such a criterion, it has been obtained that just a limited number of reflections is

needed, as it will be pointed out in Sections 3.2.1 and 3.3.2.

3.2 Cylinder buried in a grounded slab

Let us consider the geometrical layout of Fig. 3.1, where a perfectly-conducting

cylinder is buried in a grounded dielectic slab. In Fig. 3.1 (b), an equivalent (for

ξ < Λ) geometry is depicted: according to the image theory, the ground plane is

removed while the substrate and the cylinder are doubled and the image source,
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represented by a plane wave impinging from a lower half-space, is introduced. For

the geometry in Fig. 3.1 (a), it is: α = π, η = 0, χ = 20π, Λ = 30π, n1 =
√

2, ϕi = 0

(normal incidence) and TM polarization.

Figure 3.1: a) Geometrical layout for a cylinder buried in a grounded dielectric slab;

b) Equivalent (for ξ < Λ) geometry, according to the image theory.

3.2.1 Study of convergence and results

Some tests on convergence for results of geometry in Fig. 3.1 (a) are now discussed.

The number of reflections R in Eqs. (1.51) and (1.68), to be taken into account for an

accurate representation of the electromagnetic field, can be established by inspecting

the convergence of the expansion coefficients c1m = cm (m = −M, ...,M,with M =

b3n1αc = 13). The magnitude and phase of such coefficients are reported in Tab.

3.1 (in this case cm = c−m for symmetry reasons). It can be appreciated that a stable

convergence up to the fourth significant figure is reached from the tenth reflection.

The convergence is obviously faster if, in place of the perfectly conducting wall, an

interface between two dielectric media is present. An estimation of the computer

time to obtain the coefficient set, on an Intel Core 2, CPU 6400 @2.13 GHz, RAM

3.25 GB, is reported in the last row of Tab. 3.1.

In Tab. 3.2, the magnitude and phase of the axial current induced on the

cylinder of Fig. 3.1 (a) are reported for different choices of M . In particular, M is

set as the nearest integer lower than µn1α, with µ = 1, 2, .., and the corresponding
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Magnitude

m

∖
R 4 5 6 7 8 9 10 11

0 0.7245D+0 0.7278D+0 0.7285D+0 0.7290D+0 0.7291D+0 0.7292D+0 0.7292D+0 0.7292D+0

1 0.7722D+0 0.7707D+0 0.7704D+0 0.7704D+0 0.7703D+0 0.7703D+0 0.7703D+0 0.7703D+0

2 0.4829D+0 0.4851D+0 0.4856D+0 0.4859D+0 0.4860D+0 0.4861D+0 0.4861D+0 0.4861D+0

3 0.1374D+1 0.1372D+1 0.1371D+1 0.1371D+1 0.1371D+1 0.1371D+1 0.1371D+1 0.1371D+1

4 0.5416D+0 0.5442D+0 0.5448D+0 0.5452D+0 0.5452D+0 0.5453D+0 0.5453D+0 0.5453D+0

5 0.4058D+0 0.4050D+0 0.4048D+0 0.4048D+0 0.4048D+0 0.4048D+0 0.4048D+0 0.4048D+0

6 0.5702D-1 0.5732D-1 0.5738D-1 0.5742D-1 0.5743D-1 0.5744D-1 0.5744D-1 0.5744D-1

7 0.1842D-1 0.1838D-1 0.1837D-1 0.1837D-1 0.1837D-1 0.1837D-1 0.1837D-1 0.1837D-1

8 0.9758D-3 0.9815D-3 0.9826D-3 0.9834D-3 0.9836D-3 0.9837D-3 0.9838D-3 0.9838D-3

9 0.1730D-3 0.1726D-3 0.1726D-3 0.1726D-3 0.1726D-3 0.1726D-3 0.1726D-3 0.1726D-3

10 0.4362D-5 0.4391D-5 0.4397D-5 0.4401D-5 0.4402D-5 0.4403D-5 0.4403D-5 0.4403D-5

11 0.5603D-6 0.5590D-6 0.5590D-6 0.5588D-6 0.5588D-6 0.5588D-6 0.5588D-6 0.5588D-6

12 0.7565D-8 0.7623D-8 0.7631D-8 0.7640D-8 0.7642D-8 0.7644D-8 0.7644D-8 0.7644D-8

13 0.8160D-9 0.8140D-9 0.8139D-9 0.8137D-9 0.8137D-9 0.8137D-9 0.8137D-9 0.8137D-9

Phase [rad]

m

∖
R 4 5 6 7 8 9 10 11

0 0.290512D+1 0.2906D+1 0.2907D+1 0.2907D+1 0.2907D+1 0.2907D+1 0.2907D+1 0.2907D+1

1 -0.9824D+0 -0.9796D+0 -0.9803D+0 -0.9798D+0 -0.9799D+0 -0.9798D+0 -0.9798D+0 -0.9798D+0

2 0.2462D+1 0.2463D+1 0.2464D+1 0.2464D+1 0.2464D+1 0.2464D+1 0.2464D+1 0.2464D+1

3 -0.1900D+1 -0.1898D+1 -0.1898D+1 -0.1898D+1 -0.1898D+1 -0.1898D+1 -0.1898D+1 -0.1898D+1

4 -0.2075D+1 -0.2074D+1 -0.2073D+1 -0.2074D+1 -0.2074D+1 -0.2074D+1 -0.2074D+1 -0.2074D+1

5 -0.7132D+0 -0.7105D+0 -0.7112D+0 -0.7107D+0 -0.7108D+0 -0.7107D+0 -0.7107D+0 -0.7107D+0

6 -0.1387D+1 -0.1385D+1 -0.1384D+1 -0.1385D+1 -0.1385D+1 -0.1385D+1 -0.1385D+1 -0.1385D+1

7 -0.4604D+0 -0.4578D+0 0-.4585D+0 -0.4580D+0 -0.4581D+0 -0.1380D+1 -0.1380D+1 -0.1380D+1

8 -0.1318D+1 -0.1316D+1 -0.1315D+1 -0.1315D+1 -0.1315D+1 -0.1315D+1 -0.1315D+1 -0.1315D+1

9 -0.4796D+0 -0.4772D+0 -0.4780D+0 -0.4775D+0 -0.4776D+0 -0.4775D+0 -0.4775D+0 -0.4775D+0

10 -0.1350D+1 -0.1348D+1 -0.1346D+1 -0.1347D+1 -0.1346D+1 -0.1347D+1 -0.1347D+1 -0.1347D+1

11 -0.5071D+0 -0.5049D+0 -0.5057D+0 -0.5053D+0 -0.5054D+0 -0.5053D+0 -0.5053D+0 -0.5053D+0

12 -0.1439D+1 -0.1436D+1 -0.1434D+1 -0.1434D+1 -0.1434D+1 -0.1434D+1 -0.1434D+1 -0.1434D+1

13 -0.5231D+0 -0.5211D+0 -0.5219D+0 -0.5215D+0 -0.5216D+0 -0.5215D+0 -0.5215D+0 -0.5215D+0

Computer Time [seconds]

R 4 5 6 7 8 9 10 11

1.766 2.625 3.625 4.891 6.219 7.844 9.546 11.375

Table 3.1: Magnitude and phase of the expansion coefficients cm for R orders of

reflections, and the corresponding computer time expressed in seconds.
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matrix size of the system in (1.97) is MS = (2M + 1)2. The current is calculated

at the points labeled a and b in Fig. 3.1, and it is normalized with respect to the

tangential component of the incident magnetic field Hi, evaluated at the point a;

R = 10 reflections are considered. This table is useful to appreciate the efficiency

of our algorithm and it can be noted that a stable convergence up to the fourth

significant figure is reached from µ = 3.

a b

M MS magnitude phase magnitude phase

4 (µ = 1) 81 0.2118D+02 0.1498D+01 0.1652D+02 -.2726D+01

8 (µ = 2) 289 0.6134D+01 0.1599D+01 0.3308D+01 -.2524D+01

13 (µ = 3) 729 0.5921D+01 0.1608D+01 0.3141D+01 -.2513D+01

17 (µ = 4) 1225 0.5921D+01 0.1608D+01 0.3141D+01 -.2513D+01

Table 3.2: Magnitude and phase of the normalized current, induced on the cylinder

of Fig. 3.1, relevant to the points a and b; different values of the truncation index

M , and of the corresponding matrix size MS of the system in (1.97), are considered.

The convergence of the field with the number of reflections is also explored

evaluating the far-field diagram in the air-region, which is obtained from the super-

position of the fields (1.75) and (1.88). In Fig. 3.2 the diagram (normalized to its
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Figure 3.2: Scattered far-field diagram (normalized to its maximum value) for a

perfectly-conducting cylinder in a grounded slab, for different orders of reflections.
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maximum value) for the geometry of Fig. 3.1 (a) is reported, being θ′ = θ− 90◦ the

observation angle, for different reflection orders R. It can be noted that the curves

for R = 5 and R = 10 are superimposed.

In Figs. 3.3 (a)-(b) the absolute error magnitude |εabs| is plotted: it is calculated

as the difference between far-field results obtained considering two consecutive orders

of reflections. In the plot (a) the error is less than 10−2, in (b) it is less than 10−4.

(a)

(b)

Figure 3.3: a) Absolute-error magnitude, as difference between far-fields results

obtained considering four and five reflections; b) Absolute-error magnitude, as dif-

ference between far-fields results obtained considering ten and eleven reflections.

A comparison between the results, relevant to the geometries of Fig. 3.1 (a)

and Fig. 3.1 (b), is performed in Fig. 3.4: they are practically coincident. This

comparison validates our technique when applied to a two-cylinders geometry, as a

particular case of multiple cylinders. Moreover, it points out the accuracy of our

numerical analysis in a self-consistent way. A further check on convergence is

proposed. In Fig. 3.1 (a), a finite value for the lower half-space refractive index n2

has been introduced. In Fig. 3.5, far-field diagrams as a function of the observation

angle are reported for increasing values in the lower half-space refractive index n2,

up to consider the grounded dielectric slab as a limiting case. A gradual convergence



3.2. CYLINDER BURIED IN A GROUNDED SLAB 47

0 30 60 90 120 150 180
0

0.2

0.4

0.6

0.8

1

θ [°]

   
|V

dt
+

Σ dr
t(

j)
R

 V
dr

tj|

(a
. u

.)

Grounded
dielectric slab
Image theory

Figure 3.4: Comparison between the results relevant to the geometries of Fig. 3.1

(a) and Fig. 3.1 (b).
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Figure 3.5: Scattered far-field diagram (normalized to its maximum value) for a

perfectly-conducting circular cylinder buried in a dielectric slab, for different values

of refractive index of the lower half-space.
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of the diagram shape to the one relevant to the grounded slab is observed, as the

refractive index of the half-space is increased, which can be interpreted as a self-

consistency test for our results.

3.2.2 Comparison with the literature

A comparison between our results of Fig. 3.4 and the results reported in Fig. 2 of

[22] for the same layout is reported in Fig. 3.6: the agreement is quite good.

Figure 3.6: Comparison between our results (solid line) and Fig. 2 of [22] (dashed

line).

3.3 Cylinder in a semi-infinite medium

Our approach can be used also for the scattering by perfectly conducting cylinders

located near the planar interface between two semi-infinite media. This can be

shown through a comparison with Fig. 6 of Butler et al. [9], where the magnitude

and phase of the axial currents induced on a cylinder with α = 0.35π are determined,

for TM polarization and normal incidence. The current is normalized with respect

to the tangential component of the incident magnetic field Hi, evaluated at the

point labeled b in Fig. 3.7. Two layouts are considered, in Figs. 3.7 (a) and (b),

where a cylinder is respectively placed above and below the interface between two
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semi-infinite half-spaces. The simulation of the layout in Fig. 3.7(a) is implemented

with our method setting n1 = n2 and an arbitrary Λ, so as to represent two uniform

half-spaces. The cylinder below a planar interface, as in Fig. 3.7 (b), is instead

simulated setting n1 = n0 = 1.

3.3.1 Results and comparisons with the literature

Results for the layout of Fig. 3.7 are reported in Fig. 3.8: the solid and dashed lines

refer respectively to the cylinder placed above (χ = 0.35π) and below the interface

(Λ − χ = 0.35π). The agreement between our results and those of [9] (circles) is

excellent.

(a) (b)

Figure 3.7: Geometrical layout for a cylinder near a planar interface: a) Cylinder

placed below the interface n1 = n2; b) Cylinder placed above the interface n0 = n1.

3.3.2 Study of convergence

The convergence properties of the layout are investigated for two different choices

of the distance between the object and the interface. In Table III, the magnitude

and phase of the normalized axial current, induced on the buried cylinder of Fig.

3.7(a), when χ = 0.35π and χ = 35π, are reported. The current is relevant to

the points b and d of Fig. 3.7; different values of the truncation index M and of
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χ = 0.35π

b d

M MS magnitude phase magnitude phase

2 (µ = 1) 25 0.192996D+01 0.300452D+01 0.392359D+00 -.223417D+01

4 (µ = 2) 81 0.166856D+01 0.292268D+01 0.733897D+00 0.407724D+00

6 (µ = 3) 169 0.173223D+01 0.289329D+01 0.940199D-01 0.156458D+01

8 (µ = 4) 289 0.173922D+01 0.289573D+01 0.969002D-01 0.149330D+01

10 (µ = 5) 441 0.174020D+01 0.289626D+01 0.768065D+00 0.410202D+00

13 (µ = 6) 729 0.174036D+01 0.289640D+01 0.767990D+00 0.410161D+00

χ = 35π

b d

M MS magnitude phase magnitude phase

2 (µ = 1) 25 0.234753D+01 0.305348D+01 0.470936D+00 -.228050D+01

4 (µ = 2) 81 0.212710D+01 0.297919D+01 0.178319D+00 0.101836D+01

6 (µ = 3) 169 0.214622D+01 0.298023D+01 0.997681D-01 0.136332D+01

8 (µ = 4) 289 0.214542D+01 0.298023D+01 0.103147D+00 0.134035D+01

10 (µ = 5) 441 0.214543D+01 0.298023D+01 0.103069D+00 0.134082D+01

13 (µ = 6) 729 0.214543D+01 0.298023D+01 0.103070D+00 0.134082D+01

Table 3.3: Magnitude and phase of the normalized current, induced on the cylinder

of Fig. 3.7, placed below the interface, for χ = 0.35π and χ = 35π, respectively.

The current is relevant to the points b and d of Fig. 3.7; different values of M , and

of the corresponding matrix size MS of the system in (1.97), are considered.

the corresponding matrix size MS of the system in (1.97) are considered. When

χ = 0.35π, the cylinder touches the interface and the computational convergence of

our codes is slightly slower, due to a stronger interaction between the buried object

and the interface.
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(a)

(b)

Figure 3.8: Magnitude (a) and phase (b) of the normalized axial current induced

on a cylinder of radius α = 0.35π placed above (χ = 0.35π, full line) and below

(Λ − χ = 0.35π, dashed line) the interface between two half-spaces, for normal

incidence and TM polarization. A comparison is performed between our results and

Fig. 6 of [9] (dots).
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3.4 Detection of buried utilities

Detection of buried utilities is a common application of subterranean diagnostic by

electromagnetic techniques [39]. Buried utilities can be either metallic, i.e. telephone

and electricity cables, or dielectric, i.e. plastic pipes for gas or water. The frequency

range of operation with a GPR survey depends on the target depth and resolution,

and it extends from few MHz up to 2 GHz. The block diagram of this radar system

is shown in Fig. 3.9. A few nanoseconds short impulse of electromagnetic energy is

launched by a transmitting antenna. The antenna is mounted on a mobile trolley

which is moved forward over the soil, at a very close distance from the ground

surface. The energy scattered by the target is gathered by the receiving antenna,

which is usually identical to the transmitting antenna, and then processed by the

receiver, to display the signal in a suitable form for the operator.

Figure 3.9: Block diagram of a GPR system.

Standard depth of buried utilities is around 50 cm, which suggests a frequency

range between 1 and 1.5 GHz on which to operate. A metallic cylindrical target

with 6 cm diameter is assumed, embedded in ground layer of permittivity ε1 = 4. In

our normalized analysis, these geometrical values correspond to a depth χ = 5π and

a radius α = 0.6π, at a frequency of 1.5 GHz. The layout is sketched in Fig. 3.10.

The scattered field is evaluated in the upper medium, at the near-field distance of

5 cm, for a normally-incident plane-wave in TM polarization.

In Fig. 3.11, the scattered field is plotted for a layer of thickness L = 120 cm and

different permittivities of the lower half-space. Relative permittivities of dry soil,

such as dry sand, dry clay and rock, are assumed, with values between 4 and 7. The

assumption of dry materials is made to better meet the approximation of lossless

materials of our analysis. Moreover, even in practical surveys, the application of

GPR to detection of utilities is limited by attenuation due to wet soil. The effect of
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a variation in the thickness of the layer is reported in Fig. 3.12. In both Figs. 3.11

and 3.12, results are compared to the limit case with target buried in a semi-infinite

medium, i.e. when ε1 = ε2 = 4.

Figure 3.10: Geometrical layout of a buried utility.
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Figure 3.11: Scattered field along a line parallel to the interface, for the layout of

Fig. 3.10, with L = 120 cm.
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Figure 3.12: Scattered field along a line parallel to the interface, for the layout of

Fig. 3.10, with ε2 = 7.



Chapter 4

Dielectric cylinders: results

In this chapter, numerical results of the analytical technique developed in chapter 2

are reported.

In Section 4.1, the case of a dielectric cylinder buried in a grounded layer is dealt

with. Results are given in terms of scattered field in the air region, and they are

compared with the literature. The convergence for the multiple reflections, in terms

of expansion coefficients, is also discussed.

Further comparisons with the literature are reported in Section 4.2, for the case

of a cylinder embedded in a semi-infinite medium, below or above a planar interface,

as possible generalization of the method.

Finally, a layout of scattering by multiple cylinders is examined in Section 4.4.

4.1 Cylinder buried in a grounded slab

Let us consider the geometry given in [31], with an isolated cylinder of normalized

radius α = 2π buried in a grounded dielectric layer (see Fig. 4.1). The cylinder has

a low dielectric contrast with the dielectric layer: being n1 =
√

2, a perturbation

1 + δ from n1 is assumed for the refraction index of the cylinder nc1 = nc. In Fig. 3

of [31], results are reported for a normally-incident plane wave on a dielectric slab

with three different thicknesses Λ = 12π, 13π, 14π and a fixed value Λ − χ = 6π of

the distance between the cylinder axis and the lower interface. This corresponds

to three different depths χ for the cylinder. The perturbation is δ = 0.01 and

the polarization is TM. A comparison with our results is reported in Fig. 4.2 in

terms of scattered field in the air-filled region, as a function of the scattering angle

θ′ = θ − 90◦. An excellent agreement can be appreciated. For the given results, a

stable convergence up to the fourth significant figure is reached with a number of

reflections R = 11. In Fig. 4.3, the magnitude of the expansion coefficients c1m = cm

55
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Figure 4.1: Geometrical layout for a dielectric cylinder buried in a grounded dielec-

tric slab.

(m = −M, ...,M,with M = b3n1αc = 23), for a slab thickness Λ = 12π, is shown.

A stable convergence can be noticed, as the number of reflections R is increased.

Figure 4.2: Comparison between our results (solid lines) and results in Fig. 3 of [31]

(circles).

4.2 Cylinder in a semi-infinite medium

Two further comparisons are shown, to both validate the method and stress the

possibility of its employment for scattering problems with cylinders located near a

planar interface of separation between two homogeneous media.

The first comparison has been performed with [26], where results for a cylinder

located above a planar interface of separation between two dielectric half-spaces are
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Figure 4.3: Behaviour of the magnitude of the expansion coefficents cm for different

numbers of reflections R, for the geometrical layout of Fig. 4.1(a) when Λ = 12π.

given. The geometrical layout is sketched in Fig. 4.4(a): a SiO2 (nc = 1.46) cylinder

of 0.35 µm radius is placed on silicon (n2 = 3.8) and excited by a plane wave of

wavelength 0.6328 µm and in TM polarization, impinging at an angle ϕi = −30◦.

Results are given in Fig. 4.4(b) in terms of far-field scattered intensity I, expressed

as the squared modulus of the electric field, as a function of the scattering angle

θ′ = θ − 90◦. The agreement between our results and the ones of Fig. 2 of [26] is

excellent.

To validate the method in the case of a cylinder below the planar interface

of separation between two half-spaces, results given in [28] have been considered.

A dielectric cylinder of permittivity nc = 1.5 and radius α = 0.32π is located

at a depth χ = 2.6π, in a homogeneous half-space with relative permittivity 1.2,

assuming εr2 = εr1 = 1.2 so as to simulate a semi-infinite medium, as depicted in

Fig. 4.5(a). A plane-wave in TE polarization impinges on the structure at an angle

ϕi = 30◦. In Fig. 4.5(b) results are reported in terms of far-field radar cross section

σ(θ′): the comparison with the ones of Fig. 2 of [28] shows a good agreement.
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Figure 4.4: a) Geometrical layout for a dielectric cylinder on a planar interface;

b) Far-field scattered intensity in arbitrary units as a function of the scattering

angle θ′ = θ − 90◦, with a = 0.35 µm, nc = 1.46, n2 = 3.8, ϕi = −30◦, and TM

polarization. Comparison between our results (solid line) and Fig. 2 of [26] (circles).
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Figure 4.5: a) Geometrical layout for a dielectric cylinder below a planar interface;

b) Far-field radar cross section σ, as a function of the scattering angle θ′ = θ − 90◦,

for a half-space of permittivity ε1 = ε2 = 1.2, with α = 0.32π, χ = 2.6π, nc = 1.5,

ϕi = 30◦, and TE polarization. Comparison between our results (solid line) and Fig.

2 of [28] (circles).
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4.3 Detection of a buried air cavity

In GPR surveys, introduced in Section 3.4, either the detection of concealed objects

or the determination of materials internal structure can be concerned. Typical

examples of the latter application are archeological investigations, study of geological

formations, or inspection of roads, bridges and tunnels. GPR technique has become

an established method for non-destructive testing of civil engineering structures.

When employed for roads survey, it allows to determine the position of voids and

anomalies within the roads structure, as well as to measure the thickness of roads

layers. Non metallic targets are investigated, which include air-filled objects, as in

the case of voids detection.

Here some results are given for an air-filled cavity in a ground layer. A scheme

of the geometrical layout is depicted in Fig. 4.6: a cylinder of variable radius a with

permittivity εc1 = 1 is placed at a fixed distance h − a = 10 cm from the plane

of abscissa x = 0. The normalized depth and radius are χ = k0h, and α = k0a,

respectively, evaluated at 1.5 GHz. The slab has permittivity ε1 = 4, and normalized

thickness Λ = k0 L, with L = 80 cm; it is followed by a half-space of permittivity

ε2 = 5 (Fig. 4.7) and ε2 = 7 (Fig. 4.8). The scattered filed is evaluated in near-field

region, along a line of abscissa x = −5 cm, with a normally-incident plane wave in

TM polarization.

Figure 4.6: Geometrical layout of a buried air cavity, placed at a fixed distance h−a

from the upper interface, with variable radius a.
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Figure 4.7: Scattered near-field along a line parallel to the interface, for the geomet-

rical layout of Fig. 4.6, with h − a = 10 cm, L = 80 cm, ε2 = 4, and ε2 = 5.
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Figure 4.8: Scattered near-field along a line parallel to the interface, for the geomet-

rical layout of Fig. 4.6, with h − a = 10 cm, L = 80 cm, ε2 = 4, and ε2 = 7.
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A geometry with a single air cavity of fixed radius a = 10 cm, buried at a

variable depth h in a layer of permittivity ε1 = 4 and thickness 100 cm, is sketched

in Fig. 4.9. Results are reported in Fig. 4.10, for a lower half-space with ε2 = 5.

Keeping the same layout, results are compared with the cylinder buried at 20 cm

from the upper interface, in the cases of semi-infinite medium, and layered medium

followed by a half space of permittivity 5 and 7 (Fig. 4.11). It can be noticed how

the detection of a cavity, as well as any concealed dishomogeneity, is made easier

when the target is buried in a layer followed by a denser medium, because of the

reflection from the layer/medium 2 interface.

Figure 4.9: Geometrical layout of a buried air cavity, placed at a varible depth h

from the upper interface.
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Figure 4.10: Scattered near-field along a line parallel to the interface, for the geo-

metrical layout of Fig. 4.9, with a = 10 cm, L = 100 cm, ε2 = 4, and ε2 = 7.
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Figure 4.11: Scattered near-field along a line parallel to the interface, for the geo-

metrical layout of Fig. 4.9, with a = 10 cm, d = 20 cm, and L = 100 cm.
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4.4 Scattering by multiple cylinders

A case of scattering by multiple objects embedded in a dielectric layer is now dealt

with, for a finite grating of three equally-spaced cylinders. A normally-incident plane

wave of wavelength λ = 10.6 µm, and in TM polarization, impinges on a 50 µm

thick dielectric layer with refraction index n1 = 1.333, followed by a half-space with

parametrized refraction index (n2 = 1, 1.333, 1.5). When n2 = 1.333, media 1 and

2 form a homogeneous half-space, in order to perform a comparison with the cases

of layered geometry (Fig. 4.12 (a)). Three silicon cylinders (nc = 3.4211), with

radius of 2.5 µm, are located at a depth of 20 µm. The scattered field in the upper

air-filled region is evaluated in the near-field zone, at a distance x = −λ/2, along a

line parallel to the upper interface.

In Fig.4.12 (b), results are reported for different permittivities n2, when cylinders

are spaced of one wavelength λ. The response is higher when the slab is sorrounded

by an air-filled medium (n2 = 1), and is instead damped when cylinders are in

a homogeneous medium (n2 = 1.333), due to the lack of reflections from the lower

interfaces. The lowest response is observed when medium 1 is followed by the denser

medium (n2 = 1.5). The effect of cylinder radius a on the near-field responce is

reported in Fig. 4.12 (c), where the scattered field is evaluated for the the slab

followed by a denser medium (n2 = 1.5).

The scattered field for cylinder radius a = λ is compared to the one for a halved

radius a = λ/2 and a doubled one a = 2λ. The cylinder-cylinder distance is such

that strong mutual-interaction phenomena occur.

Scattered field for radius a = λ as a function of the cylinder-cylinder distance

d is plotted in Fig. 4.12 (d), when n2 = 1.5: with cylinders 3λ apart, three peaks

corresponding to cylinder location appear, but responses are still interacting. With

a cylinder-cylinder distance of 6λ, the peaks are isolated and a precise detection of

each cylinder can be performed.
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Figure 4.12: a) Geometrical layout for a grid of three equally-spaced silicon cylinders

(nc = 3.4211), with radius of 2.5 µm and spacing d = λ, embedded in a layer 50 µm

thick at a depth of 20 µm, with refraction index n1 = 1.333. Scattered near-field is

evaluated along a line at x = −λ/2 for different refraction indexes n2 (b), cylinders

radius a (c), and cylinder-cylinder distance d (d).



Chapter 5

Line source

In this chaper, a different source is dealt with in the problem of scattering by buried

objects, i.e. the cylindrical wave radiated from a line current. A two-dimensional

scattering problem with two semi-infinite media separated by a planar interface is

considered, with the source placed in the upper half-space, and perfecly-conducting

cylinders buried in the lower medium. The geometry of the problem is described in

Section 5.1.

The theoretical analysis is developed extending the model proposed in chapter

1, for the scattering of a plane-wave, to the cylindrical wave emitted by the line

current. The field contributions needed to cope with the new source are given in

Section 5.2.

Finally a linear system is derived in Section 5.3, for both E and H polarization.

5.1 Geometry of the problem

The geometry of the problem is depicted in Fig. 5.1, with N perfectly-conducting

cyrcular cylinders buried in a dielectric half-space. The source is a line of constant

current, of infinite-extension and parallel to the planar interfaces and the cylinders

axis. The source is placed in air, in vicinity of the planar interface, and its axis has

centre in (χL, ηL) in MRF. With (OL, ξL, ζL) standing for the reference frame RFL

centered on the line source, the following change of coordinates applies





ξ = ξL + χL

ζ = ζL + ηL

(5.1)

where χL < 0.

65
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Figure 5.1: Geometrical layout for a line source.

5.2 Decomposition of the total field

The interaction of the field Vi(ξ, ζ) with the planar interface, in absence of the

cylinders, gives in each medium the following fields

• V (0)(ξ, ζ) = Vi(ξ, ζ) + Vr(ξ, ζ)

• V (1)(ξ, ζ) = Vt(ξ, ζ)

as shown in Fig. 5.2. As far as the diffracted fields are concerned, the fields intro-

duced for the dielectric slab, in Section 5.2, can be applied to the present geometry.

In particular, the scattered field Vs does propagate and encounters reflection by the

only interface, which is placed in ξ = 0. Therefore, the scattered-reflected field

V 1,0
sr(j) is excited, with a single reflection j = 1. The scattered-transmitted field V 1,0

st

propagates in medium 0, due to transmission of Vs through the interface. The other

fields contributions, i.e. scattered-reflected field V 1,2
sr(j), scattered-reflected transmit-

ted fields V 1,0
srt(j) and V 1,2

srt(j), and the scattered-transmitted field V 1,2
st are not excited

with an unlayered geometry.

Due to the geometry of the source, the incident field Vi is described by a cylindri-

cal wave centered on (χL, ηL), and the reflected and transmitted fields are determined

by means of plane-wave spectrum of a cylindrical wave.
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Figure 5.2: Cylindrical waves excited by the line source through the planar interface.

5.2.1 Incident field

The line source emits a y-directed field proportional to an Hankel funtion of second

kind, with argument proportional to the distance from the source to the observation

point. If the source is placed as in Fig. 5.1, the field generated in absence of the

planar interfaces and the cylinders can be written as

Vi(ξ, ζ) = V0H
(2)
0 [n1

√
(ξ − χL)2 + (ζ − ηL)2] (5.2)

The cylindrical functions H
(1)
0 can be expressed in a spectrum of plane waves

CW0(ξ, ζ) =
1

2π

+∞∫

−∞

F0(ξL, ni
‖)e

ini
‖ζLdni

‖ (5.3)

where the function F0 evaluated in ξL > 0 is

Fo(ξL, n‖) =
2e

iξL

√
1−n2

‖

√
1 − n2

‖

(5.4)

5.2.2 Reflected field

We want to evaluate the field Vr due to the reflection in medium 0, at the interface

placed in ξ = 0, of the incident field Vi. For the incident cylindrical wave in (5.2),

the plane-wave representation given in (5.3) is employed. The generical plane-wave

is evaluated in ξ = 0, leading to F0(−χL, n
i
‖)e

inr1
‖ (ζ−ηL)

. The reflected plane-wave

in ξ = 0 has amplitude Γ01(n
i
‖)F0(−χL, n

i
‖)e

inr1
⊥ ξe

inr1
‖ (ζ−ηL)

, where the parallel and
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perpendicular components of the propagation vector are nr1
‖ = ni

‖ and nr1
⊥ = −ni

⊥,

respectively. The exponential einr1
⊥ ξ can be included in the spectrum F0, according

to definition (5.4), and we get the 0-th order cylindrical wave reflected in medium 0

CW r
0(ξ, ζ) =

1

2π

+∞∫

−∞

Γ01(n
i
‖)F0(ξ − χL, ni

‖)e
ini

‖ζLdni
‖ (5.5)

The field Vr as a function of a point of coordinates (0, ξ, ζ) in MRF is

Vr(ξ, ζ) = V0CW r
0(ξ, ζ) (5.6)

5.2.3 Transmitted field

The cylindrical wave transmitted in medium 1 is evaluated from (5.3). The generical

plane wave of the spectrum (5.3) is F0(ξL, ni
‖)e

ini
‖ζL, with propagation vector ni

⊥ξ̂L +

ni
‖ζ̂L, and at the air-medium 1 interface in ξ = 0 it is F0(−χL, n

i
‖)e

ini
‖(ζ−ηL)

. In the

reference frame (O, ξ, ζ), the transmitted plane-wave in medium 1 has propagation

vector nt1
⊥ ξ̂ + nt1

‖ ζ̂, being 



nt
⊥ =

√
1 − (ni

‖/n1)2

nt
‖ = ni

‖/n1

(5.7)

and in the plane of abscissa ξ its amplitude is T01(n
i
‖)F0(−χL, n

i
‖)e

in1nt
⊥ξe

ini
‖(ζ−ηL)

.

For the 0-th order transmitted cylindrical wave in medium 1 we obtain

CW t
0(ξ, ζ;−χL) =

=
1

2π

+∞∫

−∞

T01(n
i
‖)F0(−χL, n

i
‖)e

in1

√
1−(ni

‖/n1)2ξ
e

ini
‖(ζ−ηL)

dni
‖

(5.8)

Making use of the change of coordinates (5.1) defined in Section 1.1 of chapter 1,

equation (5.8) can be written as follows

CW t
0(ξp, ζp;−χL) =

=
1

2π

+∞∫

−∞

T01(n
i
‖)F0(−χL, n

i
‖)e

in1

√
1−(ni

‖/n1)2χp

e
ini

‖(ηp−ηL)
e

in1(nt
⊥ξp+nt

‖ζp)
dni

‖

(5.9)

where the exponential e
in1(n

t
⊥ξp+nt

‖ζp)
stands for a transmitted plane wave in RFp,

which can be expanded into Bessel functions

e
in1(n

t
⊥ξp+nt

‖ζp)
=

+∞∑

`=−∞
i`e−i`ϕtJ`(n1ρp)e

i`θp (5.10)
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With the position e−i`ϕt1 = e

−i` arctan
ni
‖√

1−(ni
‖/n1)2

, we obtain for the transmitted field

Vt(ξp, ζp) = V0

+∞∑

`=−∞
i`J`(n1ρp)e

i`θp×

× 1

2π

+∞∫

−∞

T01(n
i
‖)F0(−χL, n

i
‖)e

in1

√
1−(ni

‖/n1)2χp

e
ini

‖(ηp−ηL)
e

−i` arctan
ni
‖√

1−(ni
‖/n1)2

dni
‖

(5.11)

The field transmitted in medium 1, associated to a point of coordinates (0, ξ, ζ), as

a function of the coordinates in RFp, can be written in the following more compact

form

Vt(ξp, ζp) = V0

+∞∑

`=−∞
i`J`(n1ρp)ei`θpCW t

0`(χp, ηp − ηL;−χL) (5.12)

5.3 Boundary conditions

The scattering problem is solved imposing the boundary conditions on the cylin-

ders‘surfaces, as already exlplained in Section 1.3. We distinghuish the two cases of

TM and TE polarization.

5.3.1 E polarization

In case of E polarization the electric field has the only Ey component, corresponding

to the scalar function V . The boundary condition to be imposed of the p−th cylinder

is the following
[
Vt + Vs + Vr(1)

]

ρp=αp

= 0, with p = 1, ..., N (5.13)

which is similar to the condition (1.93), in Section 1.3.1.

Substituting in (5.13) equations (5.12), (1.28), (1.51) evaluated for (j = 1), with

ρp = αp, and simplifying the constant V0

+∞∑

`=−∞
i`J`(n1ρp)e

i`θpCW t
0`(χp, ηp − ηL;−χL)+

+
+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqm

[
CWm−`(n1ξqp, n1ζqp)(1 − δqp) +

H
(1)
` (n1ρp)
J`(n1ρp)

δqpδ`m

]
+

+
+∞∑

`=−∞
J`(n1ρp)e

i`θp

N∑

q=1

+∞∑

m=−∞
cqmRW

1,0(1)
m+` [−n1(χq + χp), n1(ηp − ηq)] = 0

(5.14)
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Multiplying (5.14) by e−iνθp , integrating between 0 and 2π in the variable θp, and

employing the orthogonality property of exponential functions 1
2π

2π∫
0

ei`θpe−iνθpdθp =

δ`ν , we obtain

iνJν(n1ρp)CW t
0ν(χp, ηp − ηL;−χL)+

+Jν(n1ρp)
N∑

q=1

+∞∑

m=−∞
cqm

[
CWm−ν(n1ξqp, n1ζqp)(1 − δqp) +

H(1)
ν (n1ρp)

Jν(n1ρp)
δqpδνm

]
+

+Jν(n1ρp)
N∑

q=1

+∞∑

m=−∞
cqmRW

1,0(1)
m+ν [n1(χq + (χp), n1(ηp − ηq)] = 0

(5.15)

The term Jν(n1αp) can be simplified; moreover, isolating the unknown terms on

left side, putting Gν(·) = Jν(·)/H(1)
ν (·), multiplying both sides by Gν(n1αp), and

dividing by iν

N∑

q=1

+∞∑

m=−∞
cqmi−νGν(n1ρp)

{
CWm−ν(n1ξqp, n1ζqp)(1 − δqp) +

δqpδνm

Gν(n1ρp)
+

+RW
1,0(1)
m+ν [−n1(χq + χp), n1(ηp − ηq)]

}
=

= −Gν(n1ρp)(n1ρp)CW t
0ν(χp, ηp − ηL;−χL)

(5.16)

We can substitute ν with `, and write the system (5.16) in a more compact way:

N∑

q=1

+∞∑

m=−∞
Aqp

`mcqm = Bp
`

{
` = 0,±1, ...,±∞
p = 1, ..., N

(5.17)

with

Aqp
`m = i−`G`(n1ρp)

{
CWm−`(n1ξqp, n1ζqp)(1 − δqp) +

δqpδ`m

G`(n1ρp)

+
+∞∑

j=1

RW
1,0(j)
m+` [−n1(χq + χp), n1(ηp − ηq)]

} (5.18)

Bp
` = −G`(n1ρp)CW t

0`(χp, ηp − ηL;−χL) (5.19)

The (5.18) is a linear system of (∞ · N) equations in (∞ · N) unknowns cqm.

5.3.2 H Polarization

For TE polarization, from Maxwell equations, the condition is the following



5.3. BOUNDARY CONDITIONS 71

{
∂

∂ρt

[
Vt + Vs + V 1,0

sr(1)

]}

ρp=αp

= 0, with p = 1, ..., N (5.20)

Substituting in (5.20) equations (5.12), (1.28), and (1.51) with j = 1, evaluated in

ρp = αp, and simplifying the constant n1V0

+∞∑

`=−∞
i`J ′

`(n1ρp)e
i`θpCW t

0`(ξp, ζp)+

+
+∞∑

`=−∞
J ′

`(n1ρp)e
i`θp

N∑

q=1

+∞∑

m=−∞
cqm

[
CWm−`(n1ξqp, n1ζqp)(1 − δqp) +

H
′(1)
` (n1ρp)
J ′

`(n1ρp)
δqpδ`m

]
+

+
+∞∑

`=−∞
J ′

`(n1ρp)e
i`θp

N∑

q=1

+∞∑

m=−∞
cqmRW

1,0(1)
m+` [n1(χq + χp), n1(ηp − ηq)] = 0

(5.21)

with J ′
`(n1αp) =

1

n1

[
∂J`(n1ρp)

∂ρp

]

ρp=αp

and H
′(1)
` (n1αp) =

1

n1


∂H

(1)
` (n1ρp)

∂ρs




ρp=αp

.

From a comparison of equation (5.21) with (5.15), it turns out that the system for the

H polarization is the same for the E polarization, being now G`(·) = J ′
`(·)/H

′(1)
` (·).
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Introduction to part II

Electromagnetic Band-Gap (EBG) materials, also known as photonic crystals (PCs)

or photonic bandgap (PBG) materials, are periodic arrangements of dielectric or/and

metallic inclusions inside a host medium, with interesting applications from the

microwave to optical frequencies [46].

Properly designed EBGs allow to control the propagation of electromagnetic

waves, i.e. they display frequency intervals in which propagation of waves is in-

hibited or allowed only along certain directions. The ability to control the flow of

electromagnetic waves is due to their photonic band structure, which is completely

analogous to the concept of electronic band structure. Periodic space variations of

the permittivity are origin of band gaps, just as electron waves traveling in the pe-

riodic potential of a crystal are arranged into energy bands separated by band gaps.

Periodicity can be in one, two or three spatial directions, but an omni-directional

band gap could be obtained only in the case of three-dimensional (3D) crystals.

The first periodic structure with a full band gap, as proposed by Ho et al.

[47], was conceived as a periodic arrangement of dielectric spheres, in a lattice-

like diamond. However, this structure is very hard to fabricate, especially in the

micrometer- and submicrometer-scale. An ingenious structure with diamond lattice

symmetry was proposed by Yablonovitch [48]. It was the first experimental struc-

ture that proved the existence of a full photonic band gap, in agreement with the

theoretical calculations. Another example of a 3D structure with complete band

gap is the so-called woodpile, a layer-by-layer structure, where gratings of parallel

dielectric rods are stacked toghether. Within each layer, rods are spaced with period

d, and rods belonging to two neighbouring layers are rotated of 90◦. Depending on

the dimensions of the rods cross section and on the period, the woodpile exhibit

band gaps from few gigaherz up to optical frequencies. This structure was designed

by [49]; it was first fabricated [50] by alumina cylinders, and it was demonstrated

to have a full 3D band gap from 12 to 14 GHz.

Such structures are very attractive for their frequency and spacial selectivity,

which suggests the implementation of innovative microwave and optical devices.
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Nevertheless, fabrication and testing may be a very difficult task, especially in the

infrared and optical regions.

As regards the woodpile structure, different constructive techniques are proposed

in the literature, depending on the frequency range of application. In the microwave

frequency regime, the fabrication is really made up layer-by-layer, in the sense that,

once the first layer is built, the second one is directly glued on its top at the touching

point of the rods. This is the technique employed by Ozbay et al. [50]; for higher

frequencies, rods are directly etched from the basic material, as in [51], where a

silicon woodpile crystal with a band gap centered on 500 GHz has been fabricated.

Mechanical methods with computer-controlled diamond saw, designed for the silicon

industry, are applied: parallel grooves are opened up from both sides of a silicon

wafer, with a rotation of 90◦ from one side to the other. One half of a vertical

period of the woodpile crystal is so obtained. Then, automatic alignement for the

stacking of the layer-by-layer structure is performed, after having cut the grooved

wafers in such a specific way to achieve an offset of half a period between two

consecutive layers. To build a woodpile at still higher frequencies, in the near-

infrared wavelengths, GaAs stripes are stacked with a wafer fusion technique, and

the stripes alignement is performed by means of laser diffraction, as reported in [52].

Interesting applications of 3D EBGs concern layouts where the periodicity is

broken up. In fact, transmission peaks are displayed inside the band gap, which can

be employed to filter or localize electromagnetic waves in the desired directions. The

interruption of the periodicity may be performed with a spacing between two EBG

layers of identical thickness. When the image theory is applied, by removing the

lower part of the structure and placing a ground plane in line with the symmetry

plane, a cavity delimited by a lower perfect-reflecting wall and an upper partially-

reflecting wall is obtained. A physical understanding of this structure was proposed

by Jackson et al. in [53] in terms of leaky-wave propagation modes, for the case

of an upper wall made of a dielectric multilayer. The whole structure produced a

narrow conical beam, with radiation direction strictly dependent on frequency. An

application is proposed in [54], where a multilayer is employed as a cover for a feed

of a reflector antenna. When modes excited inside the cavity are, instead, below

the cut-off of the guided modes, they can be interpreted as evanescent modes of

a leaky-wave cavity [55]. In this case the radiation direction is just normal, with

respect to the layers, and is unchanged with frequency.

As far as antenna applications of EBGs are concerned, many interesting results

are given in literature, to implement directive and high-efficiency radiators. Surface-

wave suppression is accomplished when EBGs are used as substrates of patch an-
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tennas [56]. An improvement of directivity is obtained when they are employed

as antenna superstrates. In this case, EBGs are employed as cavities, with defect

modes that couple with the radiation coming from the antenna. In [57], the ground

plane of a patch antenna is used to open a defect mode inside the photonic band

gap crystal used as cover. A woodpile resonator antenna based on woodpile EBG

material and metallic ground plane is proposed in [58]. In [59], when EBGs are

employed as superstrates of a patch antenna, two classes of defects are considered,

one introduced by the ground plane of the antenna and the other produced by a row

of defect rods with different dielectric constants in the EBG structure. A ceramic

woodpile EBG structures for millimeter-wave applications is given in [60]. Moreover,

for microstrip patch antennas, a combined EBGs use as superstrate and substrate

can be devised [61].

In this part of the thesis, a study carried out on the woodpile structure and its

application to the design of a high-directivity antenna is presented.

A woodpile EBG made of alumina, with band gap in the 12-14 GHz frequency

range, is studied in chapter 1. Properties of cavities obtained by this woodpile

structure are investigated, in terms of rods orientation with respect to the polariza-

tion of the field and the permittivity of rods constituent material. A comparison

with unidimensional cavities, i.e., the multilayer film, is also performed. Results are

simulated with commercial software Ansoft HFSS v11.

In chapter 2, the implementation of the woodpile and multilayer cavities to the

design of high-directivity radiators is presented. Two kind of planar radiators are

considered: a double-slot antenna and a patch antenna.

After this preliminary study, a woodpile structure has been deviced. This im-

plementation had to face restictions given by the experimental setup which would

be employed for measurements on the final structure. In chapter 3, the design of

the structure, and details on the fabrication of two woodpile layers, are reported.

In the same chapter, experimental data on these layers are shown, and compared to

simulated results.

The woodpile layers have been finally employed as superstrates of a patch an-

tenna. In chapter 4, the most interesting experimental results for this new composite

high-gain radiator are reported.
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Chapter 1

Properties of EBG materials

Electromagnatic Band-Gap materials are one-, two- or three-dimensional periodic

structures. The analysis carried on a woodpile structure, i.e., a three-dimensional

periodicity EBG material, is reported in Section 1.1. Properties of a woodpile crystal

with band gap in the 12-14 GHz frequency range, and the relevant cavities made up

with two identycal woodpile layers separated by a spacing, are investigated by means

of commercial software Ansoft HFSS v11. Cavities with high-selectivity frequency

response in the microwave range are looked for. Thus the effect of the permittivity of

the constituent materials and other constructive parameters are taken into account.

Fabrication of a woodpile structure is really a hard task, with many problems

related to the tolerances in the rods alignment, gluing of the rods, etc. For this

reason, in Section 1.2, properties of simpler 1D EBG geometries showing a similar

frequency behavior, and possibly smaller extension, are investigated too. Design

resonance-frequency has been chosen such that properties of these structures are

directly comparable. The role of the design parameters such as layers thickness,

permittivity, and number of layers is studied in order to exhibit a unitary transmis-

sion at the desired frequency. A both compact, in terms of spatial extension, and

frequency-selective resonator is aimed at.

1.1 The woodpile structure

The woodpile is a 3D EBG, made of a stack of rectangular-cross-section rods (Fig.

1.1 (a)). The elementary cell has four layers of rods, and rods belonging to two

consecutive layers are orthogonal, while parallel rods have an offset of half a period

from each other.

The woodpile considered in the following has square-cross-section rods of side

w = 3.2 mm; the periods of the elementary cell in the x, y, and z-directions are
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dx = dy = 11.2 mm and dz = 12.8 mm, respectively (Fig. 1.1 (b)). Constituent

material of the rods is alumina, a ceramic material with permittivity between 8.4

and 10. In the simulated results, alumina has relative permittivity εr,al = 8.4, with

tanδ = 0.002.

A woodpile with infinite extension in the xy plane and two unit-cells superim-

posed in the z-direction is considered; a unit-amplitude monochromatic plane wave

with wavelength λ impinges on the structure with normal incidence. In Fig. 1.4, the

transmission coefficient through the woodpile is plotted as a function of frequency,

for the chosen parameters, and it is seen that the crystal exhibits a band gap inside

the Ku band, from 12 to 14 GHz.

(a)
(b)

Figure 1.1: a) The woodpile unit-cell; b) Woodpile EBG.

1.1.1 Analysis of woodpile cavities

The woodpile is now used as a cavity (Fig. 1.3), with two identical layers separated

by a spacing of width h along the z-direction. The electromagnetic behavior depends

on the orientation of the woodpile with respect to the polarization of the incident

electric field. In our simulations, we consider two layouts: in Fig. 1.3 (a) the most

internal alignment of rods is orthogonal to the polarization of the incident electric

field, while it is parallel in Fig. 1.3 (b). In both cavities, a spacing h = 23.4 mm is

introduced: it corresponds to about a wavelength, when f = 12.8 GHz. In the first

case, two transmission peaks appear, centered at f = 11.4 GHz and f = 14.5 GHz,

as it can be seen from Fig. 1.4, where the magnitude of the transmission coefficient

ηt through the woodpile is plotted as a function of frequency. In the second case,

a transmission peak appears inside the band gap, centered at f = 12.44 GHz (Fig.

1.5), which is very close to the theoretical resonance of 12.8 GHz corresponding to

the chosen value of h. Anyway, in both cases, the transmission peaks don’t appear
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Figure 1.2: Magnitude of the transmission coefficient ηt for one woodpile layer.

(a) (b)

Figure 1.3: Woodpile cavities symmetrical with respect to the xy plane, with most

internal rods orthogonal (a) and parallel (b) to the polarization of the incident

electric field.

at exactly 12.8 GHz. This happens, in fact, just in the case of a simpler cavity with

plane parallel interfaces. In the woodpile cavity, instead, a frequency shift in the

resonance is like to occur, according to the more complex geometry. As a general

rule, reduction in the spacing h shifts the resonce towards higher frequencies, due

to a decrease of the wavelength. On the contrary, as h is increased, the resonance is

shifted towards lower frequencies. In Fig. 1.6, a parametric variation of h is reported,

for the structure of Fig. 1.3 (b). A cavity with alumina rods of permittivity

εr,al = 9.8 and without losses is considered in Fig. 1.7. A comparison with results

in Fig. 1.6 shows that, on equal values of h, the peak is much narrower and shifted
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towards lower frequencies with a higher-permittivity of the woodpile constiutuent

material. Moreover, peaks reach the unitary transmission efficiency in the higher-

permittivity cavity due to the absence of losses, besides they are slightly attenuated

in the lower-permittivity cavity becoause of losses.
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Figure 1.4: Magnitude of the transmission coefficient ηt, for the structure depicted

in Fig. 1.3 (a), as a function of frequency (εr,al = 8.4).
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Figure 1.5: Magnitude of the transmission coefficient ηt, for the structure depicted

in Fig. 1.3 (b), as a function of frequency (εr,al = 8.4).
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Figure 1.6: Magnitude of the transmission coefficient ηt, for the structure depicted

in Fig. 1.3 (b), as a function of frequency, for different spacings h (εr,al = 8.4).
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Figure 1.7: Magnitude of the transmission coefficient ηt, for the structure depicted

in Fig. 1.3 (b), as a function of frequency, for different spacings h (εr,al = 9.8).
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1.2 Unidimensional cavities

The simplest possible EBG is the multilayer film, a structure with 1D periodicity

along the z-direction, which is realized by alternating layers with different materials:

the design parameters are, therefore, the layers thicknesses and the permittivity of

the constituent materials. At optical frequencies, this structure is also known as

Bragg mirror. As a multilayer, it can be studied in terms of the multiple reflection

and refraction phenomena which occur at the interfaces between the different me-

dia. As an EBG cavity, instead, the simplest approach is the analysis of its band

structure.

Multilayer EBG cavities, with two identical mirrors alternating dielectric alu-

mina layers (thickness d1, relative permittivity εr1 = 8.4, tanδ = 0.002) with air

layers (d2, εr2), and separated by a spacing h, have been designed (Fig. 1.8). A

fixed value for the spacing was chosen as h = 23.4 mm, which should correspond

to a wavelength, so that a resonance occurs at about 12.50 GHz. The simple case

Figure 1.8: Geometry of the multilayer cavity.

of an EBG made of a single alumina layer has been examined. A first band gap

appears between the normalized frequencies ωd/2πc of 0 and 0.2 (Fig. 1.9), being

d the period along the orthogonal direction, and c the speed of light. An alumina

layer of thickness d1 = 0.5d = 2.4 mm, , such that ωd/2πc = 0.1, being c the speed

light, has been considered, and employed to design a cavity formed by two alumina

layers with a spacing h in between. With the choice ωd/2πc = 0.1, a transmission

peak about centered on the band gap is expected; the results show a transmission

peak at 12.12 GHz. Anyway, a single layer does not allow a good isolation of the

peak, and an increase in the number of layers in each mirror is needed to lower the

surrounding band gap. A well-isolated peak is observed as the number of mirror
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Number of layers Maximum ηi Q = f0/4f Frequency [GHz]

1 εr2 = 8.4, d1 = 2.4 mm 0.99 13.57 12.49

εr2 = 8.4, d1 = 2.85 mm 0.99 11.01 12.11

3 εr2 = 8.4, εr2 = 1, d1 = 2.4 mm, d2 = 2.4 mm 0.97 80.51 12.88

εr2 = 8.4, εr2 = 1, d1 = 2.4 mm, d2 = 5.4 mm 0.95 156.25 12.50

εr2 = 8.4, εr2 = 1, d1 = 2.85 mm, d2 = 2.4 mm 0.97 62.10 12.24

εr2 = 8.4, εr2 = 2.1, d1 = 2.4 mm, d2 = 5.4 mm 0.98 43.93 12.30

5 εr2 = 8.4, εr2 = 1, d1 = 2.4 mm, d2 = 2.4 mm 0.88 324.25 12.97

εr2 = 8.4, εr2 = 1, d1 = 2.4 mm, d2 = 5.4 mm 0.64 624.50 12.49

εr2 = 8.4, εr2 = 1, d1 = 2.85 mm, d2 = 2.4 mm 0.88 312.25 12.49

εr2 = 8.4, εr2 = 2.1, d1 = 2.4 mm, d2 = 5.4 mm 0.92 157.50 12.32

Table 1.1: Transmission properties of some multilayer cavities with mirrors of 1, 3

or 5 layers

layers is increased (Fig. 1.10), together with a shift of the resonance towards higher

frequencies. Employing lossy materials, just a limited number of layers can be taken

into account, due to a gradual reduction in the peak amplitude, from a value of 0.99

with a single alumina layer, up to 0.62 with a seven-layer mirror (four alumina layers

alternate with three air layers). Since the goal resonance frequency is 12.50 GHz, the

transmission peak of these multilayer mirrors has to be moved to the left. Different

choices are possible, as a separate variation in the thicknesses d1 and d2 of the alu-

mina and air layers, respectively. A considerable increase in the air-layer thickness

d2 is needed to centre the resonance at about 12.50 GHz; with a three-layer cavity it

is d2 = 5.4 mm, that means, with d1 = 2.4 mm, a total mirror thickness of 13.2 mm.

Instead, a more compact cavity can be obtained when the alumina thickness d1 is

changed. With the three-layer cavity it is now d1 = 2.85 mm, yielding a total mirror

thickness of only 8.1 mm, and a spatial reduction of more than 30% with respect

to a variation in the value of d2. A further possibility is to substitute the air layers

with a material of different permittivity εr2. Moreover, this choice allows a practical

implementation of the cavity, since the intermediated material between the alumina

layers would be a filling material to fix them. Low-permittivity materials can be

employed, as Teflon (εr2 = 2.1), with a frequency behaviour quite similar. All the

results are summed up in Table 1.1, where the maximum transmission efficiency,

quality factor Q = f0/4f , and resonance frequency are reported.
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Figure 1.9: Magnitude of the transmission coefficient ηt as a function of the normal-

ized frequency, for a single alumina layer.
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Figure 1.10: Magnitude of the transmission coefficient ηt of an alumina/air multi-

layer cavity, with d1 = d2 = 2.4 mm.
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Figure 1.11: Magnitude of the transmission coefficient ηt of a multilayer cavity with

different number of layers, with d1 = 2.85 mm and d2 = 2.4 mm.
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Chapter 2

Properties of EBG-covered planar

antennas

On the basis of the analysis performed in the previous chapter, the EBG cavities

given in Sections 1.1 and 1.2 have been used as superstrates of planar antennas.

The idea is to employ the effect of angular filtering, carried out by the woodpile and

multilayer cavity, to enhance the directivity of a basically low-directive antenna.

This can be implemented through the image theory, with an halving with respect

to the cavity symmetry-plane, where a ground plane is introduced. By this way, a

planar antenna can be mounted on this ground and a final antenna with an EBG

superstrate is obtained. The radiation coming from the basic antenna couples with

the evanescent modes of the cavity and is filtered through the normal direction:

a directive broadside pattern is therefore expected, for frequencies near the reso-

nance of the corresponding cavity. A new illumination field is also noticeable, on an

equivalent aperture defined on the EBG upper surface.

Two basic radiators containing a ground plane are here considered: a double-slot

antenna (Section 2.1) and a patch antenna (Section 2.2). A comparison between the

simple 1D EBG walls and a 3D woodpile EBG is performed in the case of the patch

antenna, stressing the main differences and similarities in the trade-off between

radiative performances and complexity/compactness of the EBG structure.

2.1 Double-slot antenna

The double-slot antenna depicted in Fig. 2.1 (a) has been analyzed. It is made of

slots of width ws = 4 mm, length ls = 9.6 mm, and axis distance ds = 9.6 mm. The

antenna is fed from below by the TE10 mode of a square cross-section waveguide

(19.2 mm × 19.2 mm), whose transverse electric field is plotted in Fig. 2.1 (b). The
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(a) (b)

Figure 2.1: a) Front view of the double-slot antenna; b) Excitation electric field.

double-slot antenna presents an acceptable matching at 14.75 GHz, when |S11| =

-16.8 dB, as it can be seen from Fig. 2.2, where the magnitude of the S11 scattering

parameter is reported as a function of frequency. The radiation patterns in the
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Figure 2.2: Magnitude of the reflection coefficient S11 of the antenna in Fig. 2.1(a),

as a function of frequency.

planes ϕ = 0 and ϕ = 90◦, at the matching frequency, are reported in Fig. 2.3,

and the low-directivity behavior of the antenna can be noticed. The radiated field

is about ominidirectional, apart from two lateral lobes in the ϕ = 0◦-pattern, which

are due to the array factor introduced by two slots arranged along the x direction.
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Figure 2.3: Directivity of the double-slot antenna as a function of frequency, in the

planes ϕ = 0 (a) and ϕ = 90◦ (b), when f = 14.75 GHz.
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2.1.1 Antenna with woodpile superstrate

Now we considered the compound radiator obtained by the use of the woodpile

cavities analyzed in Section 1.1.1 as superstrates of the double-slot antenna. Placing

the ground plane of the antenna in the symmetry plane of such cavities (Fig. 2.4),

and removing the lower woodpile layer, a new radiator is obtained, which filters

radiation coming from the basic antenna according to the frequency behaviour of

the relevant cavity (Fig. 2.5). Let us start with a cavity where the most internal

Figure 2.4: Halving of the cavity in the symmetry plane.

rods are orthogonal to the excitation field, as in Fig. 1.4 of Section 1.1, being

εr,al = 8.4 the rods permittivity, with tanδ = 0.002. For the given radiator, the

excitation field is the aperture field of the waveguide TE10 mode, as in Fig. 2.1 (b).

The spacing between the ground plane and the woodpile is now h/2 = 11.7 mm,

which is half the height of the cavity investigated. A woodpile of finite extension

137.6 mm × 137.6 mm in the xy plane is considered. The antenna shows a poor

matching, as noticeable in Fig. 2.7. Anyway, a comparison between the directivity

plots, normalized at their maximum value, at 10.8 GHz (Fig. 2.8), and the ones

relevant to the antenna without EBG, points out that an interaction between the

field radiated by the slot antenna and the woodpile cavity has occurred, even if it

is not sufficiently appreciable.

We consider now a 90◦-rotation of the woodpile in the xy plane: rods are now

parallel to the excitation field (Fig. 2.9). The antenna covered by the woodpile layer

is matched at 12.35 GHz, as shown in Fig. 2.10. At this new frequency, a highly-

directive behavior occurs. This improvement can be observed in Fig. 2.11, where

the directivity plots of the antenna in the planes ϕ = 0 and ϕ = 90◦ are directly

compared to the ones of the double-slot antenna without the woodpile cover, and

evaluated at the same frequency of 12.35 GHz.
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Figure 2.5: Geometry of a woodpile-covered double-slot antenna.

The properties of the antenna with internal rods parallel to the excitation field

have been further investigated. In Fig. 2.12, a map of the electric field strength on

the upper face of woodpile is reported. The field significantly extends across a region

which is much larger than the area of the antenna itself. In particular, assuming

that the electric field is reduced of one tenth from the peak value, the active region

covers an area of about 98.4 mm × 41 mm, which is approximately 5 × 2 times

larger than the area covered by the double-slot antenna. As expected, the effective

area is increased with respect to the double-slot feeding antenna, since a directivity

enhancement must correspond to an increase in antenna aperture.

Let us consider what happens to the directivity when the woodpile dimensions

are enlarged in the xy plane, from the starting value of 137.6 mm × 137.6 mm, to

160.0 mm × 160.0 mm, and to 182.4 mm × 182.4 mm. In Fig. 2.13, directivity is

reported, in the frequency interval 12 - 12.6 GHz, for the chosen woodpile extensions.

In the three cases, directivity keeps larger than 16 dB, and reaches a maximum near

the resonant frequency of the cavity (12.45 GHz). Moreover, the important result

that a too large woodpile is not needed emerges. Anyway, these remarks are not

enough to establish a bandwidth, but an investigation of the Side Lobe Level (SLL)

and an overall insight in the radiation patterns are needed, to find a compromise

between directivity and SLL. The SLL are reported in Figs. 2.14 and 2.15 for the

smallest and largest woodpile. Starting from a comparison between Fig. 2.14 and
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Figure 2.6: Antenna covered by a woodpile superstrate with rods orthogonal to the

excitation electric field.

the correspondent directivity in Fig. 2.13, a SLL greater than 10 dB but a directivity

lower than 20 dB are found, for frequencies in the lower part of the interval; on the

contrary, for frequencies higher than 12.5 GHz, the directivity is still high but the

SLL becomes unacceptable, due to the presence of grating lobes, and the radiation

pattern turns out to be similar to the one without the woodpile superstrate. Indeed,

as the frequency is increased, a progressive rising of the lateral lobes takes place:

they are included into the main beam, which is finally broadened. The bandwidth

can so be located between 12.3 and 12.5 GHz. When a larger woodpile (182.4 mm

× 182.4 mm) is employed, the SLL reaches values of more than 25 dB (Fig. 2.15),

but the bandwidth is extremely reduced, because for frequencies greater than 12.5

GHz the radiation pattern is already non-directive, with the secondary lobes higher

than the main lobe, so that the SLL parameter is not significant.

The antenna radiative behaviour near the resonance and the described grating-

lobe phenomenon can be further pointed out by observing the radiation patterns.

In the next Figs. 2.16 and 2.17 the directivity is plotted for frequencies greater than

the resonance one, for the minimum and maximum woodpile extension, respectively.

In both cases, the first lateral lobes are merged into the main lobe at 12.5 GHz, and

the central part of the radiation pattern changes from a one-lobe behaviour to a

three-lobes one at 12.65 GHz. Anyway, this last attribute is more appreciable in

the second case (Fig. 2.17), where at 12.65 GHz the main beam is even split. This

phenomenon is also more pronounced in the ϕ = 90◦ plane, since in the ϕ = 0 plane

the radiation pattern of the double-slot antenna itself is narrower due to the array
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Figure 2.7: Magnitude of the reflection coefficient S11 of the antenna in Fig. 2.5,

with most internal rods orthogonal to field excitation, as a function of frequency

(εr,al = 8.4).

factor along the x-direction.

The effect of the woodpile position with respect to the excitation field from the

double-slot antenna can also be investigated. As already mentioned, the woodpile is

oriented with the most internal rods parallel to the electric excitation field. Anyway,

two different symmetries are possible. The shown results have been obtained with

the symmetry of Fig. 13 (a), but the symmetry of Fig. 13 (b) is possible, too. A

comparison in terms of directivity is reported in Fig. 2.19, for the smallest woodpile,

at 12.35 GHz: the main-lobe shape is approximately the same, but some differences

can be observed in the lateral lobes. A similar behaviour can be observed in Fig.

12.20, for the largest woodpile. In this second case the coincidence between the

main beam is slightly better, maybe due to the lower edge-effects occurring with a

large woodpile cover.

Finally, a woodpile-covered double-slot antenna, with alumina rods of higher

permittivity εr,al = 9.8 has been simulated. A narrow bandwidth response, with

a peak centered on f = 12.27 GHz, is observed in Fig. 2.21: these results are in

complete agreement with the transmission efficiency of the corresponding cavity in

Fig. 1.7 of Section 1.1.1, with h = 23.4 mm. The radiation diagrams at the matching

frequency (Fig. 2.22) are more directive than the ones observed in Fig. 2.11, where

a lower-permittivity alumina was employed.
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In Fig. 2.23 the directivity is reported as a function of frequency, considerering

three different woodpile dimensions in the xy plane. Differently from the one in

Fig. 2.13, now the frequency interval extends from 11.9 to 12.4 GHz: this shift

in the response is strictly related to the position of the resonant frequency of the

cavity, which is lower with respect to the other case. Moreover, the directivity is

reported in frequency intervals progressively reduced as the woodpile is enlarged in

the xy plane: for higher frequencies the grating lobes are too high, and the antenna

behaviour is not efficient. A high-permittivity woodpile is extremely selective in

both space and frequency. The spatial selectivity turns into lower SLL (Fig. 2.24),

but the frequency makes the bandwidth more critical.
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Figure 2.8: Directivity as a function of the angle θ for the woodpile-covered slot

antenna with most internal rods orthogonal to the excitation field (solid line), and

for the antenna without superstrate (dashed line): a) ϕ = 0 ; b) ϕ = 90◦, when f =

10.80 GHz (εr,al = 8.4).
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Figure 2.9: Antenna covered by a woodpile superstrate with rods parallel to the

excitation electric field.
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Figure 2.10: Magnitude of the reflection coefficient S11 of the antenna in Fig. 2.5,

with most internal rods parallel to field excitation, as a function of frequency (εr,al =

8.4).
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Figure 2.11: Directivity as a function of the angle θ for the woodpile-covered slot

antenna with most internal rods parallel to the excitation field (solid line), and for

the antenna without superstrate (dashed line): a) ϕ = 0 ; b) ϕ = 90◦, when f =

12.35 GHz (εr,al = 8.4).
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Figure 2.12: Electric field strength on the upper surface of woodpile, for the radiating

device of Fig. 2.9
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Figure 2.13: Directivity as a function of frequency, for different woodpile extensions

in the xy plane (εr,al = 8.4).



2.1. DOUBLE-SLOT ANTENNA 101

12 12.1 12.2 12.3 12.4 12.5 12.6
0

5

10

15

20

25

30

f [GHz]

S
LL

 [d
B

]

φ = 0

φ = 90°

Figure 2.14: SLL, as a function of frequency, for the minimum woodpile extension

(137.6 mm × 137.6 mm) (εr,al = 8.4).
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Figure 2.15: SLL, as a function of frequency, for the maximum woodpile extension

(182.4 mm × 182.4 mm). (εr,al = 8.4).
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Figure 2.16: Directivity as a function of the angle θ and of frequency, for the smallest

woodpile (137.6 mm × 137.6 mm): a) ϕ = 0 ; b) ϕ = 90◦ plane (εr,al = 8.4).
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Figure 2.17: Directivity as a function of the angle θ and of frequency, for the largest

woodpile (182.4 mm × 182.4 mm): a) ϕ = 0 ; b) ϕ = 90◦ plane (εr,al = 8.4).
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(a)

(b)

Figure 2.18: : Possible symmetries for the woodpile, with most internal rods parallel

to the excitation electric field: a) Symmetry A; b) Symmetry B..
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Figure 2.19: Directivity as a function of the angle θ for symmetry A (solid line) and

B (dashed line) of Fig. 13, and with the smallest woodpile (137.6 × 137.6 mm): a)

ϕ = 0 ; b) ϕ = 90◦ plane (εr,al = 8.4).
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Figure 2.20: Directivity as a function of the angle for symmetry A (solid line) and

B (dashed line) of Fig. 13, and with the largest woodpile (182.4 mm × 182.4 mm):

a) ϕ = 0 ; b) ϕ = 90◦ plane (εr,al = 8.4).
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Figure 2.21: Magnitude of the reflection coefficient S11 of the antenna in Fig. 2.5,

with most internal rods parallel to field excitation, as a function of frequency (εr,al =

9.8).
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Figure 2.22: Directivity as a function of the angle θ of the woodpile-covered slot

antenna with most internal rods parallel to the excitation field (solid line), and of

the antenna without superstrate (dashed line): a) ϕ = 0 ; b) ϕ = 90◦, when f =

12.27 GHz (εr,al = 9.8).
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Figure 2.23: Directivity as a function of frequency, for different woodpile extensions

in the xy plane (εr,al = 9.8).
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Figure 2.24: SLL, as a function of frequency, for the minimum woodpile extension

(137.6 mm × 137.6 mm). (εr,al = 9.8).
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2.2 Patch antenna

In this Section, a patch antenna is assumed as the reference source. It is made of a

substrate of Rogers RT/duroid 5880 of relative permittivity 2.2 and thickness 0.787

mm, with a square patch of side 7.6 mm, fed by a coaxial probe (Fig. 2.25). The

Figure 2.25: Geometry of a patch antenna.

ground-plane and EBG-superstrate extension in the xy plane is ax = ay = 92.6 mm,

which corresponds to almost four wavelengths. As a typical patch antenna, a broad

radiation diagram with a maximum gain lower than 8 dB is observed; this behaviour

can be related to a small extension of the illumination area, which is just limited to

the patch.

2.2.1 Antenna with multilayer superstrate

Let us consider a single alumina layer of thickness d1 = 2.4 mm, corresponding to the

cavity presented in Section 1.2, as a superstrate placed at a distance h/2 = 11.7 mm

from the patch ground-plane. In Fig. 2.26, the magnitude of the E-field on the

upper face of the dielectric layer is reported with respect to the x- and y-directions.

Considering a field-amplitude reduction of a tenth with respect to its maximum

value, the illumination field covers an area of (29.6 mm × 35.4 mm). A maximum

gain of 14.77 dB at the matching frequency of the antenna (12.12 GHz), and of 15.42

dB at the resonant frequency of the corresponding cavity (12.49 GHz), presented in
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Section 1.2, have been evaluated. At both frequencies, the effect of the dielectric

cover on the final directivity of the antenna can be appreciated through a direct

comparison with the radiation diagram of the patch antenna alone (Fig. 2.27).
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Figure 2.26: Normalized magnitude of the E-field on the equivalent aperture eval-

uated at the resonant frequency of the cavity (12.29 GHz), for a patch antenna

covered by an alumina layer with d1 = 2.4 mm.

An improvement in the antenna performances is expected when a multilayer EBG

is employed, since a more pronounced transmission efficiency is observed (Table 1,

Section 1.2). The cavity with alumina layers of 2.85 mm thickness alternating with

air layers of 2.4 mm is now adopted. The magnitude of the E-field on the equivalent

aperture and the radiation diagrams in the planes ϕ = 0 and ϕ = 90◦ are reported

in Fig. 2.29-2.28, for an EBG with 1, 3, and 5 layers, and are evaluated at the

resonant frequencies of the corresponding cavities. With a single alumina layer the

illumination area is (26.5 mm 21.6 mm), and the antenna behaviour is similar to

the one describe above, with a maximum gain of 15.95 dB at the cavity resonance.

A rise to a number of two alumina layers produces an enlargement of the equivalent

illumination area up to (31 mm × 29 mm), with a maximum gain of 18 dB. In both

cases, a non-uniform illumination gives good results in terms of gain. Moreover,

we remark that when the superstrate is employed, a new matching for the antenna

is needed by varying the feed position along the patch, with the result that the

matching frequency never corresponds to the resonant frequency. It means that

these gains, which are evaluated at the input of the antenna transmission line, are

really noticeable values, considering that a significant return loss is introduced at

the resonance due to the mismatching.
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Figure 2.27: Directivity plots as a function of θ, for a patch antenna covered by an

alumina layer with d1 = 2.85mm. The plots are evaluated at the resonant frequency

of the cavity (f = 12.49 GHz) and at the matching frequency (f = 12.12 GHz), and

compared with the radiation diagram of the patch antenna without EBG superstrate:

a) ϕ = 0 ; b) ϕ = 90◦.
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Figure 2.28: 2D maps for the E-field strength on the equivalent aperture of a patch

antenna with a multilayer superstrate (d1 = 2.85mm (alumina) and d2 = 2.4mm

(air)), evaluated at the resonant frequency of the multilayer cavity: a) 1 layer (12.11

GHz); b) 3 layers (12.42 GHz); c) 5 layers (12.49 GHz).

With the employment of a five-layer superstrate, a more uniform illumination is

produced, and the equivalent area covers the whole EBG extension. Anyway, a worse

radiative behaviour is observed, with a larger main-beam width and a maximum

gain of 8.96 dB, since the losses introduced by a thicker mirror deteriorate the

cavity efficiency. The results for the radiation diagrams with these geometries are

reported in Fig. 2.30. In terms of bandwidth, the response reflects the frequency

behaviour of the corresponding cavity acting as a superstrate, as put in evidence

by the magnitude of the reflection coefficient S11 (Fig. 2.31). A larger bandwidth

is observed for a single layer, up to a peaked matching response for the five-layer

EBG. With three and five layers, multiple peaks appear in the |S11|; anyway the

enhanced-directivity effect due to the interaction with the EBG is displayed just in

correspondence of the first one, which is close to the resonant frequency.
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Figure 2.29: Normalized magnitude of the E-field on the equivalent aperture of a

patch antenna with a multilayer superstrate (d1 = 2.85mm (alumina) and d2 =

2.4mm (air)), evaluated at the resonant frequency of a 1-, 3-, 5-layers cavity (12.11

GHz, 12.42 GHz, 12.49 GHz): a) ϕ = 0 ; b) ϕ = 90◦.
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Figure 2.30: Directivity plots as a function of , for a patch antenna with a multi-

layer superstrate (d1 = 2.85mm (alumina) and d2 = 2.4mm (air)), evaluated at the

resonant frequency of a 1-, 3-, 5-layers cavity (12.11 GHz, 12.42 GHz, 12.49 GHz):

a) ϕ = 0 ; b) ϕ = 90◦.
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Figure 2.31: Magnitude of the scattering parameter S11, as a function of frequency,

of a patch antenna with a 1-, 3-, 5-layers superstrate (d1 = 2.85mm (alumina) and

d2 = 2.4mm (air)).
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2.2.2 Antenna with woodpile superstrate

A comparison with a woodpile-covered patch antenna has been performed. The

single woodpile layer has a total thickness of 12.8 mm in the z-direction, and it is

(92.4 mm × 92 mm) large in the xy plane. Along the x-direction, the amplitude of

the illumination field, evaluated on the upper side of the EBG, is gradually reduced

with the distance from the centre, but its value is never negligible, so that it covers

the structure in its whole extensions. In the y-directed illumination field, a step

profile can be observed, with local maxima in line with the rods (Figs. 2.32-2.33).

The illumination field extends over the entire structure, as in the five-layer 1D EBG,

but in this case a maximum peak gain of 18.89 dB is evaluated at the cavity resonant

frequency of 12.44 Ghz, which is a really significant value, notwithstanding a strong

return loss of -5.53 dB (Fig. 2.34). It means that best performances can be obtained

only with a 3D cavity, notwithstanding the high values of return loss. In Fig. 2.11,

the directivity plots of the antenna in the planes ϕ = 0 and ϕ = 90◦ are directly

compared to the ones of the double-slot antenna without the woodpile cover, and

evaluated at the same frequency of 12.44 GHz.
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Figure 2.32: Normalized magnitude of the E-field along the x- and y- directions,

on the equivalent aperture of a woodpile-covered patch antenna, evaluated at the

resonant frequency of the woodpile cavity (12.44 GHz).
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Figure 2.33: 2D E-field map on the aperture of a woodpile-covered patch antenna,

evaluated at the resonant frequency of the woodpile cavity (12.44 GHz).
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Figure 2.34: Magnitude of the reflection coefficient S11 of the woodpile-covered

patch antenna, with most internal rods parallel to the excitation field, as a function

of frequency (εr,al = 8.4).
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Figure 2.35: Directivity as a function of the angle θ for the woodpile-covered patch

antenna with most internal rods parallel to the excitation field (solid line), and for

the antenna without superstrate (dashed line): a) ϕ = 0 ; b) ϕ = 90◦, when f =

12.44 GHz (εr,al = 8.4).
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Chapter 3

Design, fabrication and

measurements of a woodpile

The results presented in chapters 1 and 2 are preliminary studies to the implementa-

tion of a planar antenna with woodpile superstrate. Once we resolved to fabricate a

woodpile structure, the practical setup available for measurements had to be taken

into account. For this reason, a new woodpile unit cell has been designed, consistent

with the anechoic chamber and the spectrum analyzer which would be employed in

the experimental analysis.

In Section 3.1, the design of a woodpile unit cell satisfying the constraint af a

transmission peak centered on about 11 GHz is described.

Next, two woodpile prototypes in alumina have been built. Details concerning

the fabrication are given in Section 3.2.

A Teflon support has been devised, with frames that keep parallel and at the

desired distance the woodpile layers, in order to form a cavity. Transmission mea-

surements through the layers have been performed in a shielded anechoic chamber,

in two different layouts of the experimental setup. Several sets of measurements

have been carried out, and all the experimental results are presented and discussed

in Section 3.3.

3.1 Design of the woodpile unit cell

In Section 1.1 the elementary cell of a woodpile structure has been introduced.

Considering square cross-section rods, the design parameters of cell are the side w

and the periods d = dx = dy and dz = 4w (see Fig. 1.1 (a)). The new woodpile

structure has been designed in view to be employed as superstrate of a patch antenna.

Thus, simulations have been run on a cavity made up of two woodpile layers of

121
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Figure 3.1: Transmission efficiency of a cavity with spacing h = 27.3 mm and period

d = 11.2 mm.

infinite extension, and separated by a spacing h. For reasons of compatibility with

the experimental setup, available for measurements on the woodpile cavity, and on

the woodpile-covered antenna, the constraint is a transmission peak at a frequency

around 11 GHz. The commercial rods chosen to fabricate the woodpile structure

have a square cross-section of side w = 3.18 mm and are made of alumina. Being

unknown the exact permittivity value of such rods, a relative permittivity εr = 9 is

assumed in the simulations. It represents a mean value, being for the real part of

alumina permittivity 8.4 ≤ ε ≤ 10. Once fixed side w and εr, the free parameters

are the period d of the cell along the x- and y-directions and the spacing h. A

cavity satisfying specifications of good transmission efficiency and period as highest

as possible is looked for. The latter is to meet requirements of reasonable fabrication

costs, since a higher numbers of rods is needed when the period is reduced.

A cavity with spacing h = 12 mm, corresponding to a wavelength λ for the

frequency of 11 GHZ, has been simulated, with electric field polarized as parallel to

the most internal rods of the cavity. As starting value, a period d = 11.2 mm has

been assumed, corresponding to the the one of the woodpile cell described in Section

1.1 . For the chosen parameters, the transmission occurs at a frequency higher than

11 GHz (Fig. 3.1).

The transmission peak may be shifted to the design frequency through a reduc-



3.2. FABRICATION OF THE WOODPILE STRUCTURE 123

8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

f [GHz]

η T

d = 12 mm

d = 9 mm

d = 7 mm

d = 5 mm

Figure 3.2: Transmission efficiency of a cavity with spacing h = 27.3 mm and

different periods d.

tion in the period d. In Fig. 3.2 the transmission efficiency is reported for decreasing

values of d. When d = 7 mm the peak is centered on 11 GHz. Anyway, a larger

period would be needed to employ a lower number of alumina rods, i.e. to reduce

the fabrication costs.

To increase the period while keeping the transmission peak at 11 GHz, an in-

crease in the cavity spacing h is needed. Couples of parameters satisfying the speci-

fication of a peak centered on 11 GHz are reported in Fig. 3.3. With high values of d

and h, the band-gap at the left of the transmission peak is less and less pronounced.

A cavity with period d = 8 mm has been chosen, as a good compromise in the trade

off cavity efficiency/costs.

3.2 Fabrication of the woodpile structure

As already stressed, the practical implementation of the woodpile cavity has to deal

with the available experimental setup. In particular, rods length, i.e. the minimum

woodpile dimensions along x- and y-directions, has been chosen such as to minimize

edge-diffraction effects.

For transmission measurements on the cavity, the setup employs two iden-
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Figure 3.3: Transmission efficiency for a cavity with different couples h, d of spacing

and period.

tical horn antennas, as depicted in Fig. 3.4 (a). The minimum far-field dis-

tance is rmin = 2D2/λ, being D = 9 cm the diagonal length of our horn aperture.

At 11 GHz, rmin = 54cm. Moreover, the horn has a Half Power Beam Width

HPBW = 18◦ = 2α. From the simple scheme in Fig. 3.4 (b), the minimum wood-

pile dimension needed by the transmission horn to see a periodic structure of infinite

extension is Rmin = 2rmin tanα = 17.10 cm. In order to meet this requirement, a

length of 25d = 20 cm, corresponding to about 7 wavelengths, has been assigned

to the alumina rods. We expect that a (20 cm × 20 cm) woodpile should provide

a good directivity enhancement when placed at a suitable distance from a planar

antenna.

The alignment of the rods has been performed by means of a metallic structure

made up of equally-spaced steel pins mounted on the four external sides of an alu-

minum plate (Fig. 3.6). The design of such structure is sketched in Fig. 3.5, where

all the geometrical constraints, as the rods cross-section and length, and the period

d are taken into account.

Each layer of the woodpile structure has been formed placing the rods through

two opposite rows of pins, with a distance corresponding to the period d. Once a

layer has been arranged, the neighbouring one has been obtained with an alignment
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(a)
(b)

Figure 3.4: a) Sketch of the experimental setup for the woodpile-cavity measure-

ment; b) Scheme for the evaluation of the woodpile dimensions.

through the two remaining rows of pins, thus achieving a rotation of 90◦ between

rods of two consecutive layers. Moreover, the new rods have been glued on the top of

the rods of the previous layer, at the touching points. Thus, two identical woodpile

prototypes have been fabricated; a detail of the final structure is reported in Fig.

3.7.

3.3 Measurements on the woodpile structure

The woodpile structure and the cavities have been measured in a shielded anechoic

chamber of external dimensions (3.20 m × 3.20 m × 2.70 m), placed in Department

of Electronic Engineering at Sapienza University of Rome. Experimental data have

been acquired by a vectorial network analyzer (HP 8510w) and next processed.

In the following sections, the results of four sets of measurements are reported.

The magnitude of the transmission efficiency through the structure, as function of

frequency, has been evaluated, in the 8-12 GHz range. With measurements on a

single layer, or on two consecutive layers, the band-gap of the woodpile crystal has

been determined. Then, woodpile cavities have been formed introducing a spacing

h between the layers; depending on the layers orientation, both asymmetric and

symmetric cavities have been assembled, considering several values of h. As far as

symmetric cavities are concerned, which are the most interesting in view to their

implementation into a resonating antenna, two different alignements of the most
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Figure 3.5: Sketch of the metallic support employed to align rods in a woodpile

configuration.

internal rods with respect to the polarization of the electric field have been arranged,

i.e. orthogonal and parallel to the field.

Transmission measurements have been carried out in two different layouts. A

first experimental setup has included two identical horn antennas, with diagonal of 9

cm, as receiving and transmitting antennas. Results for three sets of measurements

are shown in the following, for three different distances between the antennas. The

first set has been carried out at a 1 m distance, which turned out to be too high,

since strong edge-diffraction due to the finite woodpile dimensions was observed.

Thus, shorter distances of 44 cm, i.e. Fresnel distance, and 54 cm, corresponding to

minimum far-field distance, have been considered. A second experimental setup has

employed a parabolic reflector with a 40 cm diameter as transmitting antenna, and

the horn as receiving antenna. In this case, being the minimum far-field distance of

10 m too long for the available anechoic chamber, the receiving antenna has been
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Figure 3.6: Metallic support employed to align rods in a woodpile configuration.

placed in Fresnel zone of the parabolic reflector.

The experimental results are compared to simulations run with Ansoft HFSS

v11. Woodpile has been simulated for three values of alumina permittivity (8.4, 9,

and 9.8), being unknown the relative permittivity of the employed alumina in the

8-12 GHz frequency range. The agreement between HFSS simulations and mea-

surements is good; possible differences could be ascribed to the fact that, in the

simulated results, the excitation is a monochromatic plane-wave, the involved mate-

rials are supposed to be lossless, and the woodpile extension is infinite in the x and

y directions, so that diffraction effects at the edges of the prototypes are neglected.

3.3.1 Description of the experimental setup

The experimental part of this work has needed the working out of a suitable work-

bench, which could support the woodpile layers between the two antennas in a

vertical position and space the layers at the desired distance. Moreover, a support

stable enough to bear the considerable weight of the alumina-made woodpile was

called for. The support would be employed for three different classes of measure-
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Figure 3.7: Detail of the woodpile layer.

ments. First, the band-gap of the woodpile structure would be measured, both with

a single layer and two attached woodpile layers. This would ask a structure with

two frames where one or two attached layers could be mounted on. Second, the

same structure would be employed to perfom cavity measurements, i.e. on the two

woodpile layers, separated by an arbitrary spacing h. Thus, at least one of the two

frames of the structure should be movable, with a view to removing one of the two

layers away from the other one. Third, as it will be clearer in the next chapter, the

idea was to employ the same structure to build a woodpile-covered patch antenna.

Thus, a third frame, where to place a patch radiator, would be needed. The design

of the final structure is Fig. 3.8: it is made of a Teflon support where three PVC

frames are mounted on. On the first frame the patch antenna is mounted, while

the other two frames are for the woodpile layers. The external frames are movable,

while the central one is fixed. Low permittivity materials, as Teflon and PVC, have

been chosen, in order to minimize the impact with the objects under measurement.

The structure in Fig. 3.8 is finally placed on a PVC table, with such a height that

the structure under measurement is aligned to beam emitted by the antennas.
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Figure 3.8: Support for the experimental measuremnts on the woodpile layers.
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3.3.2 Experimental results: first setup

The first experimental setup has employed two identical horn antennas in Trans-

mission and Reception, with characteristics given in Table 3.1). With the present

arrangement, experimental data have been collected in three different sets of mea-

surements, relevant to three different distances between the antennas, of 1 m, 44 cm

and 54 cm, respectively.

Transmitting and Receiving Antenna (TX, RX)

Type Horn

Dimension d = 9 cm

Gain 16 dB @ 9.5 GHz

Table 3.1: Characteristics of the transmititng and receiving antenna employed in

the first set of measurements (d=diagonal).

First set: dant = 1 m

The first set of measurements has been carried out with the two horn antennas at a 1

m distance. The fixed woodpile layer is at half-way between the antennas, while the

layer placed in the movable frame is closer to the receiving antenna, at a distance

dant/2 − h, i.e. 50 cm − h, being h the cavity spacing, as it gets gradually moved

away from the fixed layer in order to enlarge the cavity.

The calibration measurements on the anechoic chamber point out that the

present experimental setup is inappropriate for the structure under measurement.

The distance between the two antennas and the woodpile is probably too high, since

a positive transmission efficiency, comprised between 0 and 3 dB, is recorded as the

experimental support is introduced inside the anechoic chamber, as evident in Fig.

3.9. The effect of a PEC surface introduced at half-way between the antennas is

shown in Fig. 3.10: the surface has the same dimension of the woodpile layers, and

its screening effect is not very strong.

Calibration results are confirmed by the measured transmission efficiency ηt

through the woodpile structure. In the plots of Figs. ??-3.15, strong diffractions

effects at the edges of the layers can be appreciated, which leads to measured values

of ηt greater than 0 dB.

Transmission efficiency has been measured on two consecutive woodpile layers

(3.11), i.e. the band gap of the structure has been examined for a normally-incident

radiation.
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Figure 3.9: Calibration measurements on the anechoic chamber.
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Figure 3.10: Calibration measurements on the anechoic chamber: effect of a PEC

surface.
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Two kinds of cavities have been measured, both asymmetric (Figs. 3.12 and

3.13) and symmetric with internal rods orthogonal to the polarization of the incident

electric field (Figs. 3.15 and 3.15), with h = 36, 37 mm. Transmission peaks

emerging inside the band gap can be observed, in agreement with prediction of

simulated results by HFSS.
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Figure 3.11: Transmission efficiency as a function of frequency for two woodpile

layers.
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Figure 3.12: Asymmetrical cavity with h = 36 mm.
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Figure 3.13: Asymmetrical cavity with h = 37 mm.
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Figure 3.14: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 36 mm.
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Figure 3.15: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 37 mm.
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Second set: dant = 44 cm

The second set of measurements has employed the two horn antennas at a 44 cm

distance, in the Fresnel zone. A shorter distance between the antennas has been

chosen in the effort to reduce edge diffraction due to the finite dimensions of the

layers.

The fixed woodpile layer is at half-way between the antennas, and the layer

placed in the movable frame is closer to the receiving antenna, at a distance dant/2−
h, i.e. 22 cm − h, as it gets gradually moved away from the fixed layer in order to

enlarge the cavity.

With a closer distance dant, the calibration measurements on the chamber point

out that a lower diffraction is introduced by the plastic support placed between

the antennas. As it can be appreciated in Fig. 3.16, the noise due to the frames

is negligible with respect to the one of Fig. 3.9. Edge-diffraction is still observed,

with a slightly-positive transmission efficiency for frequency between 10 and 12 GHz.

Neverthelss, a narrower distance between the two antennas turns out to be more

appropriate. This is confirmed by the experiment with the PEC layer, that, as placed

at half-way between the antennas, exhibits a more screening effect, with reflections

lower than -25 dB (Fig. 3.17).

Measurement for the band gap on a single woodpile layer is too noisy to appre-

ciate the comparison with HFSS results. The agreement is good when band gap is

evaluated in case of transmission through two consecutive layers (Fig. 3.18).

Cavities have been measured, both asymmetric (Figs. 3.19 and 3.20), and sym-

metric with internal rods orthogonal (Fig. 3.21) and parallel (Figs. 3.22 and 3.23)

to the polarization of the incident electric field. For this second set of measure-

ments, transmission efficiency is always lower than 0 dB, and the agreement with

simulated results is good, even if the wave-front emitted by the antenna impinging

on the woodpile layers is quite far from the plane-wave approximation assumed in

the simulated results. Some mismatches between experimental/simulated curves, in

terms of position and amplitude of the peaks, especially in the higher part of the

frequency interval, can be observed in some plots. This may be due to the uncer-

tainty introduced by a manual placing of the layers at the wanted distance h, with

respect to an external graduated scale.
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Figure 3.16: Calibration measurements on the anechoic chamber.
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Figure 3.17: Calibration measurements on the anechoic chamber: effect of a PEC

surface.
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Figure 3.18: Transmission efficiency as a function of frequency for two woodpile

layers.
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Figure 3.19: Asymmetrical cavity with h = 36 mm.
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Figure 3.20: Asymmetrical cavity with h = 37 mm.
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Figure 3.21: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 32 mm.
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Figure 3.22: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 36 mm.
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Figure 3.23: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 40 mm.
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Third set: dant = 54 cm

The third set of measurements has been carried out with the antennas at a 54 cm

distance, i.e. the minium far-field distance between the antennas. The woodpile

cavity is placed at 12 cm from the receiving antenna and is placed in the near field

radiated from the transmitting antenna.

Calibration measurements have been carried out for empty anechoic-chamber,

chamber with the wood table, and with table, Teflon support and PVC frames.

Results are compared in Fig. 3.24.
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Figure 3.24: Calibration measurements on the anechoic chamber.

This set of measurements benefits from the introduction of a graduated scale

fixed to the Teflon support; anyway, small uncertainties on the exact value of h, i.e.

on the exact peaks position, are still possible.

Transmission though symmetrical cavities has been measured and compared to

numerical results with HFSS, and the agreement is quite good. Cavities with most

internal rods orthogonal to the electric field have been measured from the starting

value h = 36 mm up to h = 42 mm, with step 1 mm (see Figs. 3.25-3.31). In

the case case of rods parallel to the electric field, spacings from h = 40 mm up

to h = 48 mm with step 1 mm have been considered (Figs. 3.32-3.40). A good

agreemnt with the HFSS data can be appreciated.



3.3. MEASUREMENTS ON THE WOODPILE STRUCTURE 141

8 9 10 11 12
−25

−20

−15

−10

−5

0

5

η T
 [d

B
]

f [GHz]

measurements
HFSS ε

r
 = 8.4

HFSS ε
r
 = 9

HFSS ε
r
 = 9.8

Figure 3.25: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 36 mm.
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Figure 3.26: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 37 mm.
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Figure 3.27: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 38 mm.
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Figure 3.28: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 39 mm.
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Figure 3.29: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 40 mm.
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Figure 3.30: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 41 mm.
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Figure 3.31: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 42 mm.
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Figure 3.32: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 40 mm.
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Figure 3.33: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 41 mm.
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Figure 3.34: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 42 mm.
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Figure 3.35: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 43 mm.
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Figure 3.36: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 44 mm.
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Figure 3.37: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 45 mm.
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Figure 3.38: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 46 mm.
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Figure 3.39: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 47 mm.
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Figure 3.40: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 48 mm.
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3.3.3 Experimental results: second setup

The second setup has employed a parabolic reflector antenna in Transmission and an

horn antenna in Reception. As already mentioned, the minimum far-field distance

for the employed reflector antenna would be 10 m, of course too large for our in-door

measurements. A distance dant = 125 cm between the antenna has been arranged,

which is the largest allowed by the anechoic chamber. The cavity has been placed

at 12 cm from the receiving antenna.

Transmitting Antenna (TX) Receiving Antenna (RX)

Type Parabolic reflector Horn

Dimension D = 36 cm, f/D = 0.42 d = 9 cm

Gain 25 dB @ 9.5 GHz 16 dB @ 9.5 GHz

Table 3.2: Characteristics of the transmititng and receiving antenna employed in

the first set of measurements (D=diameter, f=focal length, d=diagonal).

Calibration measurements (Fig. 3.41) show low edge diffraction, confirmed by

the behaviour with a PEC surface between the antennas (Fig. 3.42), with reflections

lower than -20 dB almost over the whole frequency interval 8-12 GHz.

Measurements of the band gap for one (Fig. 3.43) and two (Fig. 3.44) layers is

really good. Differently from the experimental setup with two horn antennas, the

plot are more noisy, with very fast oscillations, but the envelope follows very well

the simulated results. This is noticeable also for the plots of transmission through

the cavities (Figs. 3.45-3.53), where the measured peaks perfectly match the one

given by the simulations.

Results for an asymmetric cavity are reported in Fig. 3.45, with h = 36 mm.

Symmetric cavities with most internal rods both orthogonal and parallel to the

electric field have been measured, with h = 36, 39, 42, 48 mm. Results are given in

Figs. 3.46-3.49 and in Figs. 3.50-3.53, for orthogonal and parallel rods, respectively.
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Figure 3.41: Calibration measurements on the anechoic chamber.
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Figure 3.42: Calibration measurements on the anechoic chamber: effect of a PEC

surface.
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Figure 3.43: Transmission efficiency as a function of frequency for a woodpile layer.
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Figure 3.44: Transmission efficiency as a function of frequency for two woodpile

layers.
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Figure 3.45: Asymmetrical cavity with h = 36 mm.
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Figure 3.46: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 36 mm.
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Figure 3.47: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 39 mm.
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Figure 3.48: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 42 mm.



154 CHAPTER 3. DESIGN, FABRICATION AND MEASUREMENTS ...

8 9 10 11 12
−30

−25

−20

−15

−10

−5

0

5

f [GHz]

η T
 [d

B
]

measurements
HFSS ε

r
 = 8.4

HFSS ε
r
= 9

HFSS ε
r
 = 9.8

Figure 3.49: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 48 mm.
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Figure 3.50: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 36 mm.
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Figure 3.51: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 39 mm.
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Figure 3.52: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 42 mm.
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Figure 3.53: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 48 mm.



Chapter 4

A woodpile-covered patch antenna

In this chapter, experimental results for woodpile cavities used for gain-enhancement

of a patch antenna are presented.

A patch antenna has been fabricated and measured. Its characteristics are pre-

sented in Section 4.1. Measurement of its reflection coefficient has given a matching

at 10.3 GHz. Thus, symmetric woodpile cavities with a transmission peak at 10.3

GHz have been looked for, in order to maximize the antenna gain enhancement

when employed as superstrates. The distance between the woodpile prototypes has

been progressively varied up to define two sets of cavities with transmission peak at

the searched frequency, one set with most internal rods orthogonal to the electric

field, the other one with rods parallel to the electric field. Then, reflection coeffi-

cient and gain of these two sets of cavities, employed as superstrates of the patch

antenna, have been measured. It has been experimentally found that the gain of the

woodpile-covered patch can be enhanced up to 10 dB in comparison with the gain

of the patch alone. Radiation pattern of two particular layouts has been measured,

with good features of Half-Power Beam Width and Side Lobe Level. A full report

of the experimental analysis carried out on the new radiator is given in Section 4.2.

4.1 Design and fabrication of a patch antenna

A patch antenna has been realized with a layer of 0.76 mm thick Rogers/RT Duroid

5870 with εr = 2.33, printed on both sides with 1 OZ copper. With a PC-controlled

microforge, on one side of the layer a rectangular patch of (8 mm× 8.4 mm) has

been cut. The patch antenna is fed from below by a coaxial probe, centered on the

x-direction, and placed at a distance of 1.2 mm from the centre with respect to the

y-direction.

The antenna is shown in Fig. 4.2. A measure of the input scattering parameter

157
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has been performed using a network analyzer; the result is reported in Fig. 4.3.

The antenna resonates at 10.3 GHz; at this frequency, its gain is 6.7 dB and the

magnitude of its return loss is |S11| = -11.69 dB.

Figure 4.1: Square-patch antenna of side 8 mm on a Rogers/RT Duroid 5870 sub-

strate with εr = 2.33 and thickness 0.76 mm.

Figure 4.2: Feeding of the patch antenna through coaxial probe.
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Figure 4.3: Measured return loss (magnitude) for the antenna in Fig. 4.2.

4.2 Measurements on a woodpile-covered patch

antenna

According to the image theory, an equivalent configuration for the cavity described in

Section 4.1 has been considered, consisting in a halving with respect to the symmetry

plane, where a perfect ground plane is introduced. The ground plane of the patch

antenna itself has been employed, thus obtaining a new compound radiator with a

woodpile superstrate spaced of h/2. This layout has been implemented mounting

the patch antenna and the woodpile layer on the experimental support. A photo of

the experimental setup is in Fig. 4.5.

4.2.1 Characterization of the cavities

It has been observed that the patch antenna resonates at 10.3 GHz. Thus, cavities

realized by the two woodpile prototypes at a distance h and which resonate at

10.3 GHz have been looked for. Measurements have been performed on symmetric

cavities, with spacings h which are multiples of the wavelength λ.
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Figure 4.4: Measured and simulated radiation patterns for the patch antenna of Fig.

4.2.
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Cavities with most internal rods orthogonal to the electric field

Here the plots of transmission efficiency for symmetric cavities with most internal

rods orthogonal to the electric field are given. It has been observed that resonance

occurs at 10.3 GHz if h ∼= (15N − 5 ± 1) mm, with N positive integer.

Figure 4.5: Experimental setup for the measurements on the antenna.
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Figure 4.6: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 11 mm.
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Figure 4.7: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 26 mm.
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Figure 4.8: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 40 mm.
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Figure 4.9: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 55 mm.
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Figure 4.10: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 70 mm.
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Figure 4.11: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 84 mm.
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Figure 4.12: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 99 mm.
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Figure 4.13: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 113 mm.
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Figure 4.14: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 128 mm.
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Figure 4.15: Symmetrical cavity with most internal rods orthogonal to the electric

field, and h = 142 mm.

Cavities with most internal rods parallel to the electric field

In Figs. 4.16-4.25 are reported the plots of transmission efficiency of symmetric

cavities with internal rods parallel to the electric field, showing a resonance at 10.3

GHz. This structure resonates when the equivalent length is an integer multiple of

λ/2, being λ ∼= 29.12 mm the wavelength of the electromagnetic field in air. It has

been observed that h ∼= (15N ± 1) mm, with N positive integer.
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Figure 4.16: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 16 mm.
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Figure 4.17: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 31 mm.
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Figure 4.18: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 45 mm.
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Figure 4.19: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 60 mm.
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Figure 4.20: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 75 mm.
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Figure 4.21: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 90 mm.
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Figure 4.22: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 104 mm.
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Figure 4.23: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 119 mm.
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Figure 4.24: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 133 mm.
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Figure 4.25: Symmetrical cavity with most internal rods parallel to the electric field,

and h = 148 mm.
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4.2.2 Measurements of the input return loss

In Section 4.2.1 cavities with a transmission peak at 10.3 GHz, which is equal to the

matching frequency measured on the patch antenna (Fig. 4.3), have been found.

Thus, they have been employed as superstrates of the patch antenna, placing one

layer of the cavity at a distance of h/2 from the radiator ground-plane. The mag-

nitude of the S11 parameters are here reported, being the antenna covered by the

same cavities given in Section 4.2.1, with rods closest to the patch both orthogonal

(Figs. 4.46-4.55) and parallel (Figs. 4.56-4.65) to the electric field.

Results show a particular behaviour of the return loss. Some h/2 distances give

a regular frequency plot for the |S11| parameter, with a peaked matching tipically

lower than -12 dB. They alternate to h/2 distances showing an uneven and large

band-width responce, with values of return loss higher to the one of the patch

antenna without cover.

Cavities with most internal rods orthogonal to the electric field
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Figure 4.26: Measured return loss of the patch antenna with woodpile cavity having

most internal rods orthogonal to the electric field, and h = 11 mm.
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Figure 4.27: Measured return loss of the patch antenna with woodpile cavity having

most internal rods orthogonal to the electric field, and h = 26 mm.
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Figure 4.28: Measured return loss of the patch antenna with woodpile cavity having

most internal rods orthogonal to the electric field, and h = 40 mm.
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Figure 4.29: Measured return loss of the patch antenna with woodpile cavity having

most internal rods orthogonal to the electric field, and h = 55 mm.
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Figure 4.30: Measured return loss of the patch antenna with woodpile cavity having

most internal rods orthogonal to the electric field, and h = 70 mm.
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Figure 4.31: Measured return loss of the patch antenna with woodpile cavity having

most internal rods orthogonal to the electric field, and h = 84 mm.
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Figure 4.32: Measured return loss of the patch antenna with woodpile cavity having

most internal rods orthogonal to the electric field, and h = 99 mm.
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Figure 4.33: Measured return loss of the patch antenna with woodpile cavity having

most internal rods orthogonal to the electric field, and h = 113 mm.
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Figure 4.34: Measured return loss of the patch antenna with woodpile cavity having

most internal rods orthogonal to the electric field, and h = 128 mm.
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Figure 4.35: Measured return loss of the patch antenna with woodpile cavity having

most internal rods orthogonal to the electric field, and h = 142 mm.

Cavities with most internal rods parallel to the electric field
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Figure 4.36: Measured return loss of the patch antenna with woodpile cavity having

most internal rods parallel to the electric field, and h = 16 mm.
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Figure 4.37: Measured return loss of the patch antenna with woodpile cavity having

most internal rods parallel to the electric field, and h = 31 mm.
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Figure 4.38: Measured return loss of the patch antenna with woodpile cavity having

most internal rods parallel to the electric field, and h = 45 mm.



4.2. MEASUREMENTS ON A WOODPILE-COVERED PATCH ANTENNA179

8 9 10 11 12
−16

−12

−8

−4

0

f [GHz]

|S
11

| [
dB

]

Figure 4.39: Measured return loss of the patch antenna with woodpile cavity having

most internal rods parallel to the electric field, and h = 60 mm.
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Figure 4.40: Measured return loss of the patch antenna with woodpile cavity having

most internal rods parallel to the electric field, and h = 75 mm.
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Figure 4.41: Measured return loss of the patch antenna with woodpile cavity having

most internal rods parallel to the electric field, and h = 90 mm.
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Figure 4.42: Measured return loss of the patch antenna with woodpile cavity having

most internal rods parallel to the electric field, and h = 104 mm.
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Figure 4.43: Measured return loss of the patch antenna with woodpile cavity having

most internal rods parallel to the electric field, and h = 119 mm.
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Figure 4.44: Measured return loss of the patch antenna with woodpile cavity having

most internal rods parallel to the electric field, and h = 133 mm.
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Figure 4.45: Measured return loss of the patch antenna with woodpile cavity having

most internal rods parallel to the electric field, and h = 148 mm.

4.2.3 Measurements of gain

Gain has been measured on the same woodpile-covered antennas considered in Sec-

tion 4.2.2. The best antenna layouts, with lowest as possible reflection coefficient

and highest as possible gain, are looked for.

The anechoic chamber has been calibrated with the patch antenna in transmis-

sion and the horn in reception. The gain of the woodpile-covered patch antenna,

Gpw, normalized to the gain of the patch alone, Gpw, is plotted for the same layouts

given in Section 4.2.2,

Employing cavities with rods closest to the patch which are parallel to the

excitation electric field, a considerable gain-enhancement due to the woodpile is

observed at 10.3 GHz, when the equivalent distance between the woodpile and the

patch is roughly equal to an even integer multiple of λ/2. Instead, when the above-

mentioned equivalent distance is an odd integer multiple of λ/2, at 10.3 GHz the

effect of the woodpile is a strong reduction of the gain. In fact, only the modes which

are zero at the location of the ground plane exhist when the woodpile is employed

as antenna superstrate, and they correspond to integer even multiples of λ/2, i.e.,

integer multiples of the wavelength λ. Modes which have maxima at the ground
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plane, i.e. odd integer multiples of λ/2, cannot propagate, because the condition of

tangential electric field vanishing on the perfect conductor is not satisfied. Similar

results are collected for the configurations with the rods nearest to the patch parallel

or orthogonal to the electric field. Moreover, it can be noticed that the highest gain

ehnancements are with larger cavities. For example, cavities with h/2 ∼= 45 mm give

satisfactory results: in the h/2 = 45 mm case (rods nearest to the patch parallel to

the electric field), the gain enhancement is 10.17 dB; for the h/2 = 42 mm radiator

rods nearest to the patch orthogonal to the electric field), a gain enhancement of

9.44 dB has been measured.

Cavities with most internal rods orthogonal to the electric field
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Figure 4.46: Gain of the patch antenna with woodpile cavity having most internal

rods orthogonal to the electric field, and h = 11 mm.
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Figure 4.47: Gain of the patch antenna with woodpile cavity having most internal

rods orthogonal to the electric field, and h = 26 mm.
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Figure 4.48: Gain of the patch antenna with woodpile cavity having most internal

rods orthogonal to the electric field, and h = 40 mm.
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Figure 4.49: Gain of the patch antenna with woodpile cavity having most internal

rods orthogonal to the electric field, and h = 55 mm.
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Figure 4.50: Gain of the patch antenna with woodpile cavity having most internal

rods orthogonal to the electric field, and h = 70 mm.
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Figure 4.51: Gain of the patch antenna with woodpile cavity having most internal

rods orthogonal to the electric field, and h = 84 mm.
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Figure 4.52: Gain of the patch antenna with woodpile cavity having most internal

rods orthogonal to the electric field, and h = 99 mm.
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Figure 4.53: Gain of the patch antenna with woodpile cavity having most internal

rods orthogonal to the electric field, and h = 113 mm.
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Figure 4.54: Gain of the patch antenna with woodpile cavity having most internal

rods orthogonal to the electric field, and h = 128 mm.
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Figure 4.55: Gain of the patch antenna with woodpile cavity having most internal

rods orthogonal to the electric field, and h = 142 mm.

Cavities with most internal rods parallel to the electric field
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Figure 4.56: Gain of the patch antenna with woodpile cavity having most internal

rods parallel to the electric field, and h = 16 mm.



4.2. MEASUREMENTS ON A WOODPILE-COVERED PATCH ANTENNA189

8 9 10 11 12
−30

−25

−20

−15

−10

−5

0

5

10

f [GHz]

G
pw

−
G

p [d
B

]

Figure 4.57: Gain of the patch antenna with woodpile cavity having most internal

rods parallel to the electric field, and h = 31 mm.
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Figure 4.58: Gain of the patch antenna with woodpile cavity having most internal

rods parallel to the electric field, and h = 45 mm.
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Figure 4.59: Gain of the patch antenna with woodpile cavity having most internal

rods parallel to the electric field, and h = 60 mm.
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Figure 4.60: Gain of the patch antenna with woodpile cavity having most internal

rods parallel to the electric field, and h = 75 mm.
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Figure 4.61: Gain of the patch antenna with woodpile cavity having most internal

rods parallel to the electric field, and h = 90 mm.
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Figure 4.62: Gain of the patch antenna with woodpile cavity having most internal

rods parallel to the electric field, and h = 104 mm.
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Figure 4.63: Gain of the patch antenna with woodpile cavity having most internal

rods parallel to the electric field, and h = 119 mm.
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Figure 4.64: Gain of the patch antenna with woodpile cavity having most internal

rods parallel to the electric field, and h = 133 mm.
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Figure 4.65: Gain of the patch antenna with woodpile cavity having most internal

rods parallel to the electric field, and h = 148 mm.

4.2.4 Radiation patterns

According to the results discussed in the previous Sections 4.2.2 and 4.2.3, two

layouts have been chosen for measurements on radiation pattern. Measurements

have been carried out in the anechoic chamber, with the woodpile-covered patch

antenna placed on a rotating support. The radiation pattern has been measured in

a range of 180◦, with a step of 2◦, in two orthogonal planes.

The layout with rods nearest to the patch orthogonal to the electric field has

been measured in the case h/2 = 42 mm. Radiation patterns of the woodpile-covered

patch antenna in two orthogonal planes, normalized to gain maximum-value, are

reported in Fig. 4.66, and compared the radiation pattern measured on the patch

antenna without woodpile. In the same plots, simulated results with HFSS, for

three values of alumina permittivity, i.e. 8.4, 9, and 9.8, are given. The effect of

the cavity is strongly evident, with a gain enhancement of 9.44 dB. The measured

half-power beam-width (HPBW) is 18◦ in the E-plane and 14◦ in the H-plane; the

SLL is -7.55 dB in the E-plane, -13.19 dB in the H-plane. The pattern is more

directive in the H-plane, with the main lobe much more pronounced than lateral

lobes. In the E-plane, the pattern is strongly asymmetric, with high lateral lobes.
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The same effect of directivity enhancement can be appreciated in the layout with

rods nearest to the patch parallel to the electric field, and h/2 = 45 mm. Radiation

patterns are given in Fig. 4.67, being now the gain enhancement of 10.17 dB. The

HPBW is 12◦ in the E-plane, 14◦ in the H-plane; the side-lobe level (SLL) is -9.84

dB in the E-plane, -13.15 dB in the H-plane. In the H-plane, the radiation diagram

is almost symmetric, with a main lobe much more pronounced than lateral lobes.

In the E-plane, the pattern is still directive, but with higher lateral lobes.

Figure 4.66: Measured and simulated results for a patch antenna covered by a

woodpile cavity, with h/2 = 42 mm.
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Figure 4.67: Measured and simulated results for a patch antenna covered by a

woodpile cavity, with h/2 = 45 mm.
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Appendix A

Reflection and transmission in a

dielectric layer

The expressions of reflections and transmission coefficients employed for fields (1.7),

(1.11), (1.16), (1.19) are given.

A.1 TM polarization

In TM polarization, the scalar function V (ξ, ζ) corresponds to the field Ey. We

recall the total field V (ξ, ζ), relevant to reflection and transmission of the incident

plane-wave, in each medium of the single-layer structure

• Medium 0 V0e
i(ni

⊥ξ+ni
‖ζ)

+ Vre
i(−ni

⊥ξ+ni
‖ζ)

• Medium 1 Vt1e
in1 [nt1

⊥ (ξ−Λ)+nt1
‖ ζ]

+ Vr1e
in1[−nt1

⊥ (ξ−Λ)+nt1
‖ ζ]

• Medium 2 Vt2e
in2 [nt2

⊥ (ξ−Λ)+nt2
‖ ζ]

(A.1)

The H-field is derived by the E-field by the normalized curl

H =
k

iωµ
∇̃ ×E =

1

iZ
∇̃ × E (A.2)

For the E-field, we impose boundary conditions on the planar interface ξ = 0

V0e
ini

‖ζ
+ Vre

ini
‖ζ

= Vt1e
in1[n

t1
⊥ (−Λ)+nt1

‖ ζ]
+ Vr1e

in1[−nt1
⊥ (−Λ)+nt1

‖ ζ]
(A.3)

and ξ = Λ

Vt1e
in1nt1

‖ ζ
+ Vr1e

in1nt1
‖ ζ

= Vt2e
in2nt2

‖ ζ
(A.4)

From (A.2), we have the following boundary conditions for H-field on the planar

interface ξ = 0

ini
⊥(V0e

ini
‖ζ − Vre

ini
‖ζ

) = in1n
t1
⊥{Vt1e

in1[n
t1
⊥ (−Λ)+nt1

‖ ζ] − Vr1e
in1 [−nt1

⊥ (−Λ)+nt1
‖ ζ]} (A.5)
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and ξ = Λ

in1n
t1
⊥ (Vt1e

in1nt1
‖ ζ − Vr1e

in1nt1
‖ ζ

) = in2n
t2
⊥ (Vt2e

in2nt2
‖ ζ

) (A.6)

Boundary conditions (A.5) and (A.6) can be written as

V0e
ini

‖ζ − Vre
ini

‖ζ
=

n1n
t1
⊥

ni
⊥

[Vt1e
in1(−nt1

⊥Λ+nt1
‖ ζ) − Vr1e

in1(n
t1
⊥Λ+nt1

‖ ζ)
] (A.7)

Vt1e
in1nt1

‖ ζ − Vr1e
in1nt1

‖ ζ
=

n2n
t2
⊥

n1nt1
⊥

Vt2e
in2nt2

‖ ζ
(A.8)

We consider the linear system made by equations (A.12) and (A.7), i.e. by the

boundary conditions for both E- and H-field at the interface on ξ = Λ, removing

the exponential in ζ
{ Vt1 + Vr1 = Vt2

Vt1 − Vr1 =
n2n

t2
⊥

n1nt1
⊥

Vt2

(A.9)

Solving linear system (A.9) we get the reflection coefficient

Γ21 = Vr1
Vt1

=
n1n

t1
⊥ − n2n

t2
⊥

n1n
t1
⊥ + n2n

t2
⊥

(A.10)

and the transmission coefficient

T21 = Vt2
Vt1

=
2n1n

t1
⊥

n1n
t1
⊥ + n2n

t2
⊥

(A.11)

at the planar interface in ξ = Λ. Once known the coefficients (A.10) and (A.11), in

ξ = Λ, the linear system formed by equations (A.12) and (A.7) can be solved

{ Vi + Vr = Vt1e
−in1nt1

⊥Λ − Vr1e
in1nt1

⊥Λ

Vi + Vr =
n1n

t1
⊥

ni
⊥

(Vt1e
−in1nt1

⊥Λ − Vr1e
in1nt1

⊥Λ)
(A.12)

where the exponential in ζ has been removed.

We get the reflection coefficient

Γ01 = Vr
Vi

=
e−in1nt1

⊥Λ
(
1 +

n2n
t2
⊥

n1nt1
⊥

)(
1 − n1n

t1
⊥

ni
⊥

)
− ein1nt1

⊥Λ
(
1 − n2n

t2
⊥

n1nt1
⊥

)(
1 +

n1n
t1
⊥

ni
⊥

)

e−in1nt1
⊥Λ

(
1 +

n2n
t2
⊥

n1nt1
⊥

)(
1 +

n1n
t1
⊥

ni
⊥

)
+ ein1nt1

⊥Λ
(
1 − n2n

t2
⊥

n1nt1
⊥

)(
1 − n1n

t1
⊥

ni
⊥

)

(A.13)

and the transmission coefficient

T01 = Vt1
Vi

=
2
(
1 +

n2n
t2
⊥

n1n
t1
⊥

)

e−in1nt1
⊥Λ

(
1 +

n2n
t2
⊥

n1n
t1
⊥

)(
1 +

n1n
t1
⊥

ni
⊥

)
+ ein1nt1

⊥Λ
(
1 − n2n

t2
⊥

n1n
t1
⊥

)(
1 − n1n

t1
⊥

ni
⊥

)

(A.14)

at the planar interface in ξ = 0.
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A.2 TE polarization

In TE polarization, the scalar function V (ξ, ζ) corresponds to the field Hy, given by

A.1.

The E-field is derived by the H-field through the normalized curl

E =
ik

ωε
∇̃ × H = iZ∇̃ × H (A.15)

For the H-field, boundary condition on the planar interface ξ = 0 is

V0e
ini

‖ζ
+ Vre

ini
‖ζ

= Vt1e
in1[n

t1
⊥ (−Λ)+nt1

‖ ζ]
+ Vr1e

in1[−nt1
⊥ (−Λ)+nt1

‖ ζ]
(A.16)

and in ξ = Λ

Vt1e
in1nt1

‖ ζ
+ Vr1e

in1nt1
‖ ζ

= Vt2e
in2nt2

‖ ζ
(A.17)

From (A.1), we have the following boundary conditions for H-field on the planar

interface ξ = 0

ik0

ωε0

[ini
⊥(V0e

ini
‖ζ − Vre

ini
‖ζ

)] =
ik0

ωε1

[in1n
t1
⊥ [Vt1e

in1(−nt1
⊥Λ+nt1

‖ ζ) − Vr1e
in1(n

t1
⊥Λ+nt1

‖ ζ)
]

(A.18)

and ξ = Λ

ik0

ωε0
[in1n

t1
⊥ (Vt1e

in1nt1
‖ ζ − Vr1e

in1nt1
‖ ζ

)] =
ik0

ωε1
[in2n

t2
⊥ (Vt2e

in2nt2
‖ ζ

)] (A.19)

Boundary conditions (A.18) and (A.19) can be written as

V0e
ini

‖ζ − Vre
ini

‖ζ
=

nt1
⊥

n1ni
⊥

[Vt1e
in1(−nt1

⊥Λ+nt1
‖ ζ) − Vr1e

in1(n
t1
⊥Λ+nt1

‖ ζ)
] (A.20)

Vt1e
in1nt1

‖ ζ − Vr1e
in1nt1

‖ ζ
=

n1n
t2
⊥

n2nt1
⊥

Vt2e
in2nt2

‖ ζ
(A.21)

We consider the linear system made by equations (A.25) and (A.20), i.e. by the

boundary conditions for both E- and H-field at the interface on ξ = Λ; removing

the exponential in ζ
{ Vt1 + Vr1 = Vt2

Vt1 − Vr1 =
n1n

t2
⊥

n2nt1
⊥

Vt2

(A.22)

Solving linear system (A.22) we get the reflection coefficient

Γ21 = Vr1
Vt1

=
n2n

t1
⊥ − n1n

t2
⊥

n2n
t1
⊥ + n1n

t2
⊥

(A.23)
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and the transmission coefficient

T21 = Vt2
Vt1

=
2n2n

t1
⊥

n2n
t1
⊥ + n1n

t2
⊥

(A.24)

at the planar interface in ξ = Λ. Once known coefficients (A.23) and (A.24), in

ξ = Λ, the linear system formed by equations (A.25) and (A.20) can be solved

{ Vi + Vr = Vt1e
−in1nt1

⊥Λ − Vr1e
in1nt1

⊥Λ

Vi + Vr =
nt1
⊥

n1n
i
⊥

(Vt1e
−in1nt1

⊥Λ − Vr1e
in1nt1

⊥Λ)
(A.25)

where the exponential in ζ has been removed.

We get the reflection coefficient

Γ01 = Vr
Vi

=
e−in1nt1

⊥Λ
(
1 +

n1n
t2
⊥

n2nt1
⊥

)(
1 − nt2

⊥
n1ni

⊥

)
− ein1nt1

⊥Λ
(
1 − n1n

t2
⊥

n2nt1
⊥

)(
1 +

nt2
⊥

n1ni
⊥

)

e−in1nt1
⊥Λ

(
1 +

n1n
t2
⊥

n2nt1
⊥

)(
1 +

nt2
⊥

n1ni
⊥

)
+ ein1nt1

⊥Λ
(
1 − n1n

t2
⊥

n2nt1
⊥

)(
1 − nt2

⊥
n1ni

⊥

)

(A.26)

and the transmission coefficient

T01 =
Vt1

Vi
=

2
(
1 +

n1n
t2
⊥

n2nt1
⊥

)

e−in1nt1
⊥Λ

(
1 +

n1n
t2
⊥

n2nt1
⊥

)(
1 − nt2

⊥
n1ni

⊥

)
+ ein1nt2

⊥Λ
(
1 − n2n

t1
⊥

n1nt2
⊥

)(
1 +

nt2
⊥

n1ni
⊥

)

(A.27)

at the planar interface in ξ = 0.



Conclusions

In the first part of this thesis, the two-dimensional plane-wave scattering problem by

a set of perfectly-conducting circular cylinders buried in a dielectric slab has been

solved, through the CWA. Reflected-transmitted and multiple-reflected cylindrical

functions have been introduced, to consider the cylinder-cylinder interaction and

the multiple reflections between cylinders and interfaces. The theoretical approach

has been also extended to the cases of dielectric cylindrical scatterers.

A numerical implementation in a Fortran code has been carried out, which can

deal with both TM and TE polarization cases and yields results in both the near-

and far-field zones. Moreover, it may be applied to any value of the cylinder size

and of the distance between obstacles and planar interfaces.

The method has been tested by means of comparisons with the literature and

self-consistency tests; moreover, convergence checks have been also performed.

In the reported results, the application of the method to characterization of

some scenarios of practical interest has been examined. In the case of perfectly-

conducting cylinders, typical geometries with buried utilities have been shown. As

regards dielectric targets, buried air-filled cavity has been simulated, which is a

typical application of civil engineering.

The theoretical analysis has been extended to the cylindrical wave emitted by

a line current as excitation source of the problem. In this case, solution has been

given in case of perfectly-conducting cylinders buried in a semi-infinite medium. This

extension has been performed in view to achieving a more accurate characterization

of the scenarios investigated by GPR.

Future work may regard the study of scattering by a line source with cylinders

buried in a layered medium. Moreover, an extension of the method to scattering of a

plane wave by objects buried beneath a rough surface is presently considered. Future

works may also regard the generalization to scatterers of arbitrary cross-section, and

to the presence of lossy media.

In the second part of this thesis, the study of EBGs and their application to

i
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directivity-enhancement of planar antennas have been dealt with.

In particular, a woodpile structure, i.e., an EBG with three dimensional period-

icity, has been considered. Properties of cavities made up of two identical woodpile

layers have been investigated and implemented to form woodpile-covered antennas.

The interaction between woodpile cavities and antennas has been studied in the

cases of a double-slot antenna and a microstrip patch.

After this preliminary study, two woodpile prototypes have been fabricated.

Measurements have been performed to characterize the transmission properties

through the woodpile layers when assembled to form a cavity. Next, they have

been employed as superstrates of a patch antenna. Gain measurements on the new

radiator have shown an actual directivity enhancement up to 10 dB, in comparison

with the patch antenna.

As future developments of this work, further measurements will be performed

on the antenna in order to have a full understanding of its interaction with the

woodpile cavity. Moreover, simpler EBG structures will be considered in order to

have easiness of fabrication and lower costs.
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“Plane wave expansion of cylindrical functions,” Opt. Comm., Vol. 95, pp. 192-

198, Jan. 1993.

[36] R. Borghi, F. Frezza, M. Santarsiero, C. Santini, and G. Schettini, “Numerical

study of the reflection of cylindrical waves of arbitrary order by a generic planar

interface,” J. Electromagn. Waves and Appl., Vol. 13, pp. 27-50, Jan. 1999.

[37] R. Borghi, F. Frezza, M. Santarsiero, C. Santini, and G. Schettini, “A quadra-

ture algorithm for the evaluation of a 2D radiation integral with highly oscil-

lating kernel,” J. Electromagn. Waves and Appl., Vol. 14, pp. 1353-1370, Oct.

2000.

[38] M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by buried

dielectric cylindrical structures,” Radio Sci., Vol. 40, no. 6, RS6S18, Aug. 2005.

[39] D. J. Daniels, Surface Penetrating Radar, 2nd ed., London: IEE (2004).

[40] R. Borghi, F. Gori, M. Santarsiero, F. Frezza e G. Schettini, “Plane-wave

scattering by a perfectly conducting circular cylinder near a plane surface:

cylindrical-wave approach,” J. Opt. Soc. Am. A, Vol. 13, pp. 483-493, 1996.

[41] A. I. Markushevich, The Theory of Analytic Functions: a Brief Course, Mir,

Mosca (1983).

[42] I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory. Amster-

dam: North-Holland (1966).

[43] A. Z. Elsherbeni, “A comparative study of two-dimensional multiple scattering

techniques,” Radio Sci., Vol. 29, pp. 1023-1033, Jul.-Aug. 1994.



BIBLIOGRAPHY vii

[44] W. H. Press, S. A. Teukolski, V. T. Vetterling, B. P. Flannery, and M. Met-

calf, Numerical recipes in FORTRAN: the art of scientific computing, 2nd ed.,

Cambridge University Press (1992).

[45] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, 2nd ed.,

New York (1972).

[46] J. D. Joannopoulos, R. D. Meade e J. N. Winn, Photonic Crystals: Molding

the Flow of Light, Princeton University Press, Princeton, NJ (1995).

[47] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in

periodic dielectric structures,” Phys. Rev. Lett., Vol. 65, pp. 31523155, Dec.

1990.

[48] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure:

The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.,

Vol. 67, pp. 22952298, Oct. 1991.

[49] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic

band gaps in three dimensions: New layer-by-layer periodic structures,” Solid

State Comm., Vol. 89, pp. 413416, Feb. 1994.

[50] E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C.T. Chan, C.M.

Soukoulis, and K. M. Ho, “Measurements of three-dimensional photonic band

gap in a crystal structure made of dielectric rods,” Phys. Rev. B, Vol. 50, pp.

1945-1949, 1994.

[51] R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. Haring Bolivar, and P.

de Maagt, “A low cost fabrication technique for symmetrical and asymmetrical

layer by layer photonic crystal at submillimeter-wave frequencies,” IEEE Trans.

Microwave Theory Tech., Vol. 50, pp. 2384-2393, 2002.

[52] S. Noda, N. Yamamoto, H. Kobayashi, M. Okano, and K. Tomoda, “Optical

properties of three-dimensional photonic crystals based on III-V semiconductors

at infrared to near-infrared wavelengths,” Appl. Phys. Lett., Vol. 75, pp. 905-

907, 1999.

[53] D. R. Jackson, A. A. Oliner, and A. Ip, “Leaky wave propagation and radia-

tion for a narrow-beam multiple-layer dielectric structure,” IEEE Trans Ant.

Propag., Vol. 41, no. 3, pp. 344-348, Mar. 1993.



viii BIBLIOGRAPHY

[54] A. Neto, N. Llombart, G. Gerini, M. D. Bonnedal, and P. de Maagt, “EBG

enhanced feeds for the improvement of the aperture efficiency of reflector an-

tennas,” IEEE Trans Ant. Propag., Vol. 55, no. 8, pp. 2185-2190, Aug. 2007.

[55] M. Thevenot, J. Drouet, R. Chantalat, E. Arnaud, T. Mondiere, and B. Jecko,

“Improvements for the EBG resonator antenna technology,” EUCAP, The 2nd

Europ. Conf. on Ant. Prop., pp. 1-6, Nov. 11-16, 2007.

[56] R. Gonzalo, P. de Maagt, and M. Sorolla, “Enhanced patch-antenna perfor-

mance by suppressing surface waves using photonic-bandgap substrates,” IEEE

Trans. on Microwave Theory Tech., Vol. 47, no. 11, pp. 2131-8, 1999.

[57] M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-

bandgap antennas,” IEEE Trans Microw. Theory Tech., Vol. 47, no. 11, pp.

2115-2122, Nov. 1999.

[58] A. R. Weily, L. Horvath, K. P. Esselle, B. C. Sanders, and W. S. Park, “A

planar resonator antenna based on a woodpile EBG material,” IEEE Trans. on

Ant. and Propag., Vol. 53, no. 1, pp. 216-223, Jan. 2005.

[59] Y. J. Lee, J. Jeo, R. Mittra, and T. S. Bird, “Application of electromagnetic

bandgap (EBG) superstrates with controllable defects for a class of patch an-

tennas as spatial angular filters,” IEEE Trans. on Ant. and Propag., Vol. 53,

no. 1, pp. 224-235, Jan. 2005.

[60] Y. J. Lee, J. Lu, Y. Hao, S. Yang, Julian R. G. Evans, and Clivan G. Parini,

“Low-Profile Directive Millimeter-Wave Antennas Using Free-Formed Three-

Dimensional (3-D) Electromagnetic Bandgap Structures,” IEEE Trans. on Ant.

and Propag., Vol. 57, no. 10, pp. 2893-2903, Oct. 2009.

[61] M. Qiu and S. He, “High-directivity patch antenna with both photonic bandgap

substrate and photonic cover,” Microw. Opt. Tech. Lett., Vol. 30, no. 1, pp. 41-

44, May 2001.

[62] F. Yang and Y, Rahmat-Samii, Electromagnetic Band Gap Structures in An-

tenna Engineering, New York: Cambridge University Press (2009).


