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Ai miei fratelli...e ar rosio!

When the solution is simple, God is answering. Where the world eases to bethe sene of our personal hopes and wishes, where we fae it as free beingsadmiring, asking and observing, there we enter the realm of Art and Siene.(A. Einstein)
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IntrodutionA graph is an abstrat mathematial representation of a set of objets, alledverties, together with a pairwise relationship between suh objets, that isrepresented by a olletion of edges onneting pairs of verties. Examples ofrelationships among objets that are representable by a graph an be foundin every �eld, ranging from interpersonal relationships to omputer networksand from knowledge representation to bioinformatis. Of ourse, the best wayto make suh a relationship learly understandable is to visualize the graph sothat verties and edges are easily reognizable at human eye. Suh an issue isaddressed in the researh �eld of Graph Drawing, whih an be regarded as aross between the areas of Graph Theory, Graph Algorithmi, and Computa-tional Geometry.In Graph Drawing, the most ommon way to visualize a graph is to draweah vertex as a point in the plane and eah edge as a urve onneting theorresponding points. The plaement of the verties in the plane and thedrawing of the urves should be performed in suh a way that the resultingdrawing be nie and readable, in the sense that the information desribed bythe graph should be possibly understandable at a glane. In order to obtainthe desired nie and readable visualization, it is important to formalize theaestheti riteria that distinguish a �good� drawing from a �bad� one. Then,the goal of Graph Drawing is to reate algorithms that automatially produedrawings respeting suh riteria.The most natural aestheti riterion that one an think of is probably theabsene of partial or omplete overlapping among verties and edges, that isalled planarity. Another important riterion that one has to onsider whendrawing a graph is the area of the drawing, as a drawing with a small area anbe better visualized inside a small sreen. Observe that, while planarity is aproperty that a drawing may satisfy or not, the drawing area is a measure ofquality that an be used to ompare two drawings. Many other properties and1
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2 CONTENTSquality measures an be de�ned onerning the visualization of graphs, evenwith the possibility of ombining some of them. However, the �best� drawingof a graph might not exist, sine drawings that are �good� in terms of a ertainriterium may be �bad� in terms of another.It is interesting to observe that some of the aestheti riteria of a drawingof a graph only depend on its topologial features, while other riteria alsodepend on the geometrial realization. For example, an important theorem inGraph Drawing, known as Fary's Theorem, states that every graph admittinga planar drawing also admits a planar drawing in whih edges are representedby straight-line segments. This implies that, in order to deide whether a givengraph admits a planar drawing, it is possible to study whether suh a graphadmits a planar embedding, that is, a irular ordering of the edges around eahvertex that determines no topologial rossing in the indued drawing, ratherthan omputing the atual oordinates of the points representing the verties.On the other hand, given a graph with a �xed embedding, di�erent geometrialrealizations may lead to drawings with di�erent area.Several natural and interesting to study questions an be formulated on-erning the aestheti riteria de�ned for the graphial representation of graphs.When onsidering a graph property, the �rst, and probably most natural,arising question is the one about the existene of graphs satisfying suh aproperty and of graphs not satisfying it. If both positive and negative instanesexist, the problem an then be studied either from a ombinatorial or from analgorithmi point of view. In the former ase, one an ask for a relationshipbetween the satis�ability of suh a property and the struture of the graph.Namely, it is interesting to understand whether there exists a family of graphssuh that all and only the graphs belonging to it satisfy the desired property.In the latter ase, one an ask for the omputational omplexity of the problemof deiding whether a given graph satis�es the property.Question 1 Given a property P , haraterize the family of graphs F suh thata graph G admits a drawing (an embedding) satisfying P if and only if G ∈ F .Question 2 Given a graph G and a property P , what is the time omplexity ofdeiding whether G satis�es P? Also, what is the time omplexity of omputingthe drawing (the embedding) of G satisfying P?Explanatory examples for the two problems ome from the study of graphplanarity. Regarding Question 1, a fundamental theorem on graph planarity,known as Kuratowsky's theorem, states that a graph is planar if and only if it



i

i �main� � 2010/2/26 � 12:27 � page 3 � #13
i

i

i

i

i

i

CONTENTS 3does not ontain any subgraph that is a subdivision of the omplete graph K5or of the omplete bipartite graph K3,3. Conerning Question 2, several linear-time planarity testing algorithms are known in the literature (see Set. 1.2 fora brief overview about planarity), so as some NP-hardness proofs related tograph planarity, like the one onerning the problem of �nding the maximalplanar subgraph of a non-planar graph. Of ourse, the two problems are oftenstritly related, sine a ombinatorial haraterization for a ertain propertymay diretly lead to a polynomial-time algorithm for testing it.On the other hand, when onsidering a partiular measure of quality of adrawing or of an embedding, the two most natural questions are ertainly theone asking for the optimal value of suh a measure among all the graphs of aertain family and the one asking for an e�ient algorithm that optimizes suha measure for a given graph.Question 3 Given a measure M and a family of graphs F , what is the optimalvalue of M among all the graphs G ∈ F?Question 4 Given a graph G and a measure M , what is the time omplexityof omputing a drawing (an embedding) of G that is optimal with respet to M?For these two questions, lear examples an be found in the ontext ofthe area-minimization problem. In fat, many results are known in GraphDrawing about lower-bounds and upper-bounds for the area needed to drawseveral families of graphs under ertain onstraints, and suh upper-bounds aregenerally obtained as a result of e�ient drawing algorithms.In this thesis we address and partially answer Questions 1�4 on severallasses and types of graphs. We mainly deal with planar graphs and with graphproperties and measures that depend on the topology of the graph rather thanon its geometry. We propose algorithms for omputing planar embeddings ordrawings that satisfy ertain properties or that are optimal with respet to er-tain measures of quality. Also, we onsider the same questions on simultaneousgraph drawing problems, that is, problems involving more than one graph, andon lustered graphs, that is, graphs where the verties are grouped into lustersby means of a hierarhial struture.Part I of this thesis deals with planar graphs and with the most ommonmethods to desribe and handle their planar embeddings.In Chapter 1 we introdue some preliminaries and de�nitions about planargraphs, their embeddings, and their drawings.
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4 CONTENTSIn Chapter 2 we introdue basi onepts about the onnetivity of graphsand we illustrate the main tehniques for desribing and handling the embed-dings of planar graphs, depending on their degree of onnetivity. In partiular,we onsider SPQR-trees, a data-struture desribing the deomposition of a bi-onneted graph into its trionneted omponents.Part II deals with problems related to properties and quality measures ofplanar graphs that only depend on their embedding.In Chapter 3 we onsider the problem of omparing two di�erent embed-dings of the same graph in terms of the minimum number of elementary op-erations that have to be performed in order to turn one embedding into theother. For this problem, that we all Topologial Morphing, we de�ne the basioperations that an be performed to transform an embedding, we show that theproblem is NP-hard for bionneted planar graphs, and we present polynomial-time algorithms for some more onstrained ases that indue a �xed-parametertratable algorithm for the general ase.In Chapter 4 we introdue and solve a problem related to the lassialplanarity testing and again related to the omparison between embeddings.In fat, given a planar embedding of a subgraph of a planar graph, we on-sider the problem of extending it to a planar embedding of the whole graphwhile maintaining the embedding of the subgraph unhanged. Although manypolynomial-time solvable problems beome harder when a partial solution is�xed in advane, we show that this is not the ase for planarity, as we desribea ombinatorial haraterization of the planar graphs that admit an embeddingextension and we present a linear-time testing algorithm.In Chapter 5 we deal with the minimization of ertain distane measuresthat desribe the quality of a planar embedding. In partiular, we study theproblem of �nding a minimum-depth embedding of a planar graph, where thedepth of an embedding is the maximum distane of its internal faes from theexternal one. We present an O(n4)-time algorithm, improving the best previousbound, that was O(n5 log n), obtained by Bienstok and Monma [BM90℄.In Part III of this thesis we deal with greedy drawings of graphs, i.e., draw-ings of graphs satisfying a partiular property that is de�ned in terms of geo-metrial distanes between verties and is related to the e�etiveness of greedyrouting algorithms for sensor networks.In Chapter 6 we give preliminary de�nitions on greedy drawings and weshow that every trionneted planar graph admits a greedy drawing, heneproving a onjeture by Papadimitriou and Ratajza.In Chapter 7 we onsider area requirements of greedy drawings and we provethat suh requirements an be non-polynomial in the worst-ase, as we present
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CONTENTS 5greedy-drawable trees requiring exponential area in any greedy drawing.Part IV deals with the simultaneous embedding of two graphs on the sameset of points on the plane.In Chapter 8 we deal with the geometri simultaneous embedding problem,in whih both graphs are required to be drawn with straight-line edges. Weshow that there exist a tree and a path that do not admit any of suh em-beddings. This problem was the main open problem in the area, as it �lls thegap in the ombinatorial haraterization of the pairs of graphs always admit-ting a geometri simultaneous embedding. In fat, it was already known thattwo aterpillars always admit suh embedding, while there exist two trees notadmitting any.Part V deals with lustered graphs, a type of graphs in whih the vertiesare grouped into sets, alled lusters, aording to a ertain given hierarhy.In Chapter 9, we give some preliminaries and de�nitions about lusteredgraphs and the problem of deiding whether a lustered graph admits a c-planar drawing, that is, a planar drawing in whih some planarity onstraintsare required also for the graphial representation of the lusters. The om-plexity of suh a problem is unknown in the general ase, while there existharaterizations and e�ient algorithms for some partiular lasses of graphs.Also, we de�ne a generalization of the problem, in whih lusters an be splitin order to make the lustered graph c-planar.In Chapter 10 we deal with the problem of drawing lustered graphs niely.In this ontext, we show that every c-planar lustered graph admits a straight-line c-planar drawing in whih lusters are represented by axis-parallel retan-gles. As the same result holds for any onvex shape �xed in advane, we anstate that the c-planarity of lustered graphs is independent on the geometrialrepresentation of the lusters, so as Fary's Theorem states that the planarityof graphs is independent on the geometrial representation of the edges.
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Chapter 1Graph Preliminaries andDe�nitionsIn this hapter, we introdue some preliminaries and de�nitions about graphs,their embeddings, and their drawings.A reader who wants to assume more familiarity with the basi oneptsabout graphs, algorithms, and geometry, may refer to books on Graph The-ory (e.g., [Har72, BM76, NC88, Die05℄), to books on Algorithms (e.g., [Eve79,AHU83, CLRS01, GT02℄), and to books on Computational Geometry (e.g., [PS85,Ede87, dvKOS00℄). Referene books ontaining detailed de�nitions, basi on-epts, and most important results about Graph Drawing an also be useful andinteresting to read [DETT99, KW01, NR04℄.The hapter is organized as follows. In Set. 1.1 we give basi de�nitionsabout graphs. In Set. 1.2 we deal with planar graphs and planar embeddings;in Set. 1.3 we desribe the main drawing onventions used in Graph Drawing;�nally, in Set. 1.4 we de�ne some interesting sublasses of planar graphs.1.1 Basi De�nitionsA graph G = (V, E) is omposed of a set V of verties or nodes, and a multiset
E of unordered pairs of verties, alled edges or ars. If the pairs of vertiesin E are ordered, G is a direted graph, also referred to as digraph. The graphobtained from a digraph G by onsidering its edges without orientation is alledthe underlying graph of G. Given an edge e = (u, v) ∈ E, we say that u and vare inident to e (u and v are the end-verties of e), and that e is inident to9
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10 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS
u and v. Also, we say that two verties are adjaent if they are inident to thesame edge, and two edges are adjaent if they are inident to the same vertex.A self-loop in a graph G = (V, E) is an edge (u, u) ∈ E. A set of multipleedges in a graph (V, E) is a set of edges onneting the same two verties
u, v ∈ V . A graph is simple if it ontains neither self-loops nor multiple edges.In the following, unless otherwise spei�ed, we always refer to simple graphs.A graph G = (V, E) is omplete if for eah pair of verties u, v ∈ V , edge
(u, v) ∈ E. A graph is bipartite if V an be partitioned into two sets V1 and
V2 suh that for eah edge (u, v) ∈ E, either u ∈ V1 and v ∈ V2 or vie versa.A graph G = (V, E) is bipartite if its vertex set V an be partitioned into twosubsets V1 and V2 so that every edge of E is inident to a vertex of V1 and toa vertex of V2.The degree of a vertex is the number of edges inident to it. The degree ofa graph is the maximum among the degrees of its verties.A graph G′ = (V ′, E′) is a subgraph of a graph G = (V, E) if V ′ ⊆ V and
E′ ⊆ E. We say that G′ = (V ′, E′) is indued by V ′ if, for eah edge (u, v) ∈ Esuh that u, v ∈ V ′, we have (u, v) ∈ E′. Also, G′ = (V ′, E′) is a spanningsubgraph of G = (V, E) if it is a subgraph of G and V ′ = V .A subdivision of a graph G is a graph G′ that an be obtained by replaingeah edge of G with a path of arbitrary length. The ontration of an edge
(u, v) onsists of the replaement of u, v, and (u, v) with a single vertex w,of eah edge (u, z) with an edge (w, z), and of eah edge (v, z′) with an edge
(w, z′). A minor of a graph G is any graph that an be obtained from G by asequene of removals of verties, removals of edges, and ontrations of edges.1.2 Planar GraphsIn this setion we give preliminaries and de�nitions about planar graphs.A drawing of a graph is a mapping of eah vertex to a distint point ofthe plane and of eah edge to a simple open Jordan urve between the pointsto whih the end-verties of the edge have been mapped. A drawing is planarif no two edges interset exept, possibly, at ommon end-points. A planargraph is a graph admitting a planar drawing. A planar drawing of a graphdetermines a irular ordering of the edges inident to eah vertex v, that weall the rotation sheme of v. Two drawings of the same graph are equivalentif they determine the same rotation sheme for eah vertex. Fig. 1.1 shows twoequivalent drawings of a planar graph. A ombinatorial embedding (or simplyembedding) is an equivalene lass of planar drawings. A planar drawing, or



i

i �main� � 2010/2/26 � 12:27 � page 11 � #21
i

i

i

i

i

i

1.2. PLANAR GRAPHS 11equivalently a ombinatorial embedding, partitions the plane into topologiallyonneted regions alled faes. A vertex (an edge) is inident to a fae if itbelongs to the yle delimiting the fae. All the faes are bounded by the yledelimiting them, exept for one fae, that we all outer fae (or external fae).The other faes are alled internal faes. A planar embedding 〈Γ, f〉 of a graph
G is omposed of an embedding Γ of G and of an outer fae f of Γ. A planegraph is a graph with a �xed planar embedding.
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1(a) (b)Figure 1.1: Two equivalent planar drawings of a planar graph.A plane graph is maximal (or equivalently is a triangulation) if all its faesare delimited by yles of three verties. A planar graph is maximal if itadmits a planar embedding that determines a triangulation. A triangulationis maximal in the sense that adding an edge to it yields a non-planar graph.Maximal planar graphs are an important and deeply studied lass of planargraphs sine any planar graph an be augmented to maximal by adding dummyedges to it and sine triangulations, as the trionneted planar graphs, admitexatly one ombinatorial embedding (a more detailed disussion about theproperties of highly-onneted planar graphs is given in Set. 2.1) and heneare often easier to deal with. A plane graph is internally-triangulated when allits internal faes have exatly three inident verties.The dual graph of an embedded planar graph G has a vertex for eah fae of
G and an edge (f, g) for eah two faes f and g of G sharing an edge. Fig. 1.2shows an embedded planar graph and its dual graph. The dual graph of G onlydepends on the embedding of G and not on the hoie of the external fae.PlanarityPlanarity is ommonly aepted as the most important aestheti riteria adrawing should satisfy to be nie and readable. In fat, the absene of partial oromplete overlapping among the objets makes the drawing aesthetially pleas-ant and easily readable by the human eye, and provides extremely high read-
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12 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS
Figure 1.2: A planar graph, whose verties are represented by blak irles andwhose edges are represented by thik lines, and its dual graph, whose vertiesare represented by white irles and whose edges are represented by dottedlines.ability of the ombinatorial struture of the graph, as on�rmed by some og-nitive experiments in graph visualization [PCJ97, Pur00, PCA02, WPCM02℄.See Fig. 1.3 for a omparison between a non-planar and a planar drawing.However, the great importane of planar graphs, so in Graph Drawing as inGraph Theory and Computational Geometry in general, also omes from themany mathematial, ombinatorial, and geometrial properties they exhibit.
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5 6(a) (b)Figure 1.3: (a) A non-planar drawing of a planar graph G. (b) A planardrawing of G.From the ombinatorial and topologial point of view, the �rst importantresult about planar graphs is the haraterization given by Kuratowski [Kur30℄in 1930, stating that a graph is planar if and only if it ontains no subdivisionof the omplete graph K5 with �ve verties and no subdivision of the ompletebipartite graph K3,3 with three verties in eah of the sets of the bipartition.Suh a haraterization has been extended by Wagner, who stated that a graphis planar if and only if it ontains no K5-minor and no K3,3-minor [Wag37℄. Theplanarity of a graph an be tested in linear time, as �rst shown by Hoproft andTarjan [HT74℄ in 1974. Linear-time algorithms for testing the planarity of a
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1.3. DRAWING CONVENTIONS 13graph are also presented, e.g., in [BL76, ET76, dR82, BM04, dFdMR06, HT08℄.Also, suh testing algorithms an be suitably modi�ed in order to omputeplanar embeddings in the ase the test is positive. If an embedding of a graphis �xed, then linear time still su�es to test if the embedding is planar [Kir88℄.The fat that the planarity testing, so as many other problems on planar graphs,an be solved in linear time is due to another important mathematial propertyof planar graphs, stating that the number of edges of a planar graph is linear inthe number of its verties. Namely, by the Euler's formula, we have m ≤ 3n−6,where m is the number of edges, in any n-vertex planar graph.1.3 Drawing ConventionsWhen aiming at high readability of a drawing, another important issue that hasto be onsidered onerns the geometrial representation of the edges and of thefaes. Namely, planar drawings in whih edges are represented by straight-linesegments (known as straight-line drawings, see Figs. 1.4(a) and ()) happen tobe more readable than drawings in whih edges are represented by poly-lines(known as poly-line drawings, see Fig. 1.4(b)) or general urves, and drawingsin whih faes are drawn as onvex polygons (known as onvex drawings, seeFig. 1.4()) are more readable than drawings in whih this is not the ase (seeFig. 1.4(a)). Among the more used and studied drawing onventions, we alsomention orthogonal drawings, in whih eah edge is represented by a sequeneof horizontal and vertial segments.
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7(a) (b) ()Figure 1.4: (a) A straight-line planar drawing of a planar graph G. (b) Apoly-line planar drawing of G. () A onvex drawing of G.Other drawing onventions that are worth to mention are the grid drawings,in whih verties and bends have integer oordinates, upward drawings of di-graphs, in whih eah edge is represented by a urve monotonially-inreasingin the upward diretion, and proximity drawings, in whih given a de�nition
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14 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONSof proximity, the proximity graph of a set of points is the graph with a vertexfor eah point of the set, and with an edge between two verties if the orre-sponding points satisfy the proximity property. Then, a proximity drawing ofa graph G is a drawing D of G suh that the proximity graph of the set ofpoints on whih the verties of G are drawn in D oinides with G itself. Anexample of proximity graphs is the Delaunay triangulation for a set P of pointsin the plane, that is, a triangulation T suh that no point in P is inside theirumsribed irle of any triangle in T .The most studied and used drawing onvention is the one of straight-linedrawings. Of ourse suh a onvention is muh more restritive than the onein whih edges an have bends, and hene many results that hold for poly-linedrawings do not hold for straight-line drawings. However, regarding planarity,this is not the ase. Indeed, a very important result, known as Fary's theo-rem and independently proved by Wagner [Wag36℄, by Fary [Far48℄, and byStein [Ste51℄, states that a graph admits a straight-line planar drawing if andonly if it admits a planar drawing. This result shows that planarity does notdepend on the geometry used for representing the edges but it only dependson the topologial properties of the graph.Some aestheti riteria an be de�ned to measure the quality of a drawing.Among them, one of the most important is ertainly the area oupied bythe drawing, that is, the area of the smallest retangle with sides parallelto the oordinate axes that ontains all the drawing. Of ourse, small areadrawings an not be obtained by simply saling down the drawing, sine someresolution rules have to be respeted in the drawing for maintaining readability.In partiular, a minimum distane, say one unit, between two elements (vertiesand edges) of the drawing has to be maintained. In order to respet some ofsuh rules, when dealing with area minimization problems, verties are usuallyplaed on an integer grid, in suh a way that the minimum distane betweenany two of them is at least one grid unit. In this diretion, it has been shownin several papers that every n-vertex plane graph admits a planar straight-linedrawing on a O(n2) area grid [dPP88, dPP90, Sh90, CN98, ZH03, BFM07℄.Further, a grid of quadrati size is asymptotially the best possible for straight-line planar drawings, sine there exist planar graphs requiring suh an area inany planar grid drawing [Val81, dPP90, FP07℄.
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1.4. FAMILIES OF PLANAR GRAPHS 151.4 Families of Planar GraphsIn this setion we present preliminaries and de�nitions about some importantsub-lasses of planar graphs that will be used in the rest of the thesis.A yle is a onneted graph suh that eah vertex has degree exatlytwo. A tree is a onneted ayli (i.e., not ontaining any yle) graph (seeFig. 1.5(a)). A path is a tree suh that eah vertex has degree at most two. Ahord of a yle (of a path) is an edge onneting two non-onseutive vertiesof the yle (of the path). A leaf of a tree is a node of degree one. A leafedge is an edge inident to a leaf. A aterpillar (see Fig. 1.5(b)) is a tree suhthat removing all the leaves and all the leaf edges yields a path, alled spine ofthe aterpillar, whose nodes and edges are alled spine nodes and spine edges,respetively. A star graph (see Fig. 1.5()) is a tree suh that removing all theleaves and all the leaf edges yields an isolated node, alled entral node.
r(a) (b) ()Figure 1.5: (a) A tree rooted at a node r. (b) A aterpillar. () A star graph.A rooted tree is a tree with one distinguished node, alled root. In a rootedtree, the depth of a node v is the length of the unique path (i.e., the numberof edges omposing the path) between v and the root. The depth of a rootedtree is the maximum depth among all the verties.A binary tree (a ternary tree) is a rooted tree suh that eah node has atmost two hildren (resp. three hildren). A tree is ordered if an order of thehildren of eah node (i.e., a planar embedding) is spei�ed. In an orderedbinary tree we distinguish the left and the right hild of a node. The subtreesof a node u of a tree T are the subtrees of T rooted at u and not ontainingthe root of T .An outerplanar graph is a graph admitting an outerplanar embedding, thatis, an embedding in whih all the verties are on the outer fae. From aombinatorial point of view, an outerplanar graph is a graph that ontains no

K4-minor and no K2,3-minor (see Fig. 1.6 (a)).A series-parallel graph is indutively de�ned as follows. An edge (u, v) is
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16 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS
2

1 v=vk

v=u1

u=u k

1 2 k

1

u=u=u =...=u

2v=v=v =...=v(a) (b) ()Figure 1.6: (a) An outerplanar graph. (b) A series omposition of a sequene
G1, G2, . . . , Gk of series-parallel graphs. () A parallel omposition of a set
G1, G2, . . . , Gk of series-parallel graphs.a series-parallel graph with poles u and v. Denote by ui and vi the poles ofa series-parallel graph Gi. A series omposition of a sequene G1, . . . , Gk ofseries-parallel graphs, with k ≥ 2, is a series-parallel graph with poles u = u1and v = vk suh that vi and ui+1 have been identi�ed, for eah i = 1, . . . , k− 1(see Fig. 1.6 (b)). A parallel omposition of a set G1, . . . , Gk of series-parallelgraphs, with k ≥ 2, is a series-parallel graph with poles u = u1 = · · · = uk and
v = v1 = · · · = vk (see Fig. 1.6 ()). From a ombinatorial point of view, aseries-parallel graph is a graph that ontains no K4-minor.A Hamiltonian yle (path) in a graph G is a simple yle (resp. path) pass-ing through all the verties of G. A Hamiltonian graph is a graph ontaininga Hamiltonian yle.
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Chapter 2Deomposition of Planar GraphsIn this hapter we study the problem of deomposing planar graphs into om-ponents with higher degree of onnetivity and we present the main data stru-tures that an be used to deal with suh deomposition and to desribe andhandle the embeddings of planar graphs. In partiular, we desribe SPQR-trees, a data struture that an be used to represent and to e�iently handleall the embeddings of a bionneted planar graph.The struture of the hapter is as follows. In Set. 2.1 we give some baside�nitions about onnetivity and about some properties that are depending onthe degree of onnetivity, while in Set. 2.2 we de�ne the main data struturesto desribe the deomposition into bionneted and trionneted omponents,with partiular fous on the SPQR-trees.2.1 ConnetivityLet G = (V, E) be a planar graph. We say that G is onneted if, for eah pairof verties u, v ∈ V , there exists a path onneting u and v. More generally,we say that G is k-onneted if, for eah pair of verties u, v ∈ V , there exist kdisjoint paths onneting u and v. Alternatively, we say that G is k-onnetedif removing any k − 1 verties leaves G onneted; 3-onneted, 2-onneted,and 1-onneted graphs are also alled trionneted, bionneted, and simplyonneted graphs, respetively. A separating k-set is a set of k verties whoseremoval disonnets the graph. Separating 1-sets and separating 2-sets arealso alled utverties and separation pairs, respetively. Hene, a onnetedgraph is bionneted if it has no utverties, and it is trionneted if it has17
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18 CHAPTER 2. DECOMPOSITION OF PLANAR GRAPHSno separation pairs. The maximal bionneted subgraphs of a graph are itsbloks, while the maximal trionneted subgraphs of a graph are its trion-neted omponents. Eah edge of G falls into a single blok of G and into asingle trionneted omponent, while utverties (resp., verties belonging toa separation pair) are shared by di�erent bloks (resp., by di�erent separationpairs). A ut of a graph G = (V, E) is a partition if its verties into two subsets
V1 and V2. A utset of G is the set E′ ⊆ E suh that (u, v) ∈ E′ if and onlyif u ∈ V1 and v ∈ V2. Observe that the removal of the edges of E′ from Einreases the number of onneted omponents of G.Connetivity and EmbeddingsIn this subsetion we give some properties of planar graphs and planar embed-dings that depend on the degree of onnetivity of the graph.First, observe that every 3-onneted planar graph admits two planar em-beddings, whih only di�er for a �ipping around their poles, that is, the listof inident edges around eah vertex in the two embeddings are one the re-versal of the other. Hene, problems onerning the researh of a partiularembedding of a planar graph that are di�ult for general planar graphs, anbe e�iently solved when the graph is trionneted. This property stronglymotivates the study of problems on low-onneted planar graphs in terms oftheir deomposition into highly-onneted omponents, as the problem an besolved more easily on suh omponents and then the problems turns into theone of putting them together e�iently. Examples of suh problems are thesubjet of the hapters of the next part of this thesis.Another important property regarding highly onneted graphs is that every
4-onneted planar graph is Hamiltonian [Tut56℄ and the Hamiltonian yle anbe found e�iently. Observe that the problem of �nding a Hamiltonian yle ina general planar graph, even if trionneted, is NP-hard [GJ79℄. Further, everybionneted outerplanar graph G has exatly one Hamiltonian yle, namelythe one delimiting the fae to whih all the verties of G are inident in anouterplanar embedding of G.2.2 Data Strutures for Planar GraphsIn order to desribe and e�iently handle the deomposition of a onnetedgraph into bionneted omponents and of a bionneted graph into trion-neted omponents, some e�ient data strutures have been de�ned.



i

i �main� � 2010/2/26 � 12:27 � page 19 � #29
i

i

i

i

i

i

2.2. DATA STRUCTURES FOR PLANAR GRAPHS 19The data struture that an be used to desribe the deomposition of aonneted graph into its bionneted omponents, alled blok-utvertex tree(usually referred to as BC-tree), was introdued by Harary and Prins in [HP66℄.The BC-tree T of a onneted graph G is a tree ontaining a B-node for eahblok of G and a C-node for eah utvertex of G. Edges in T onnet eahB-node µ to the C-nodes assoiated with the utverties belonging to the blokof µ. The BC-tree of G may be thought as rooted at a spei� blok ν. Thenumber of nodes of T is equal to the number of bloks plus the number ofutverties, that is O(n), where n is the number of verties of G. Fig. 2.1shows a onneted planar graph and its blok-utvertex tree, rooted at a blok
B1.
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(a) (b)Figure 2.1: (a) A onneted planar graph and (b) its blok-utvertex tree,rooted at B1.The data struture that an be used to desribe the deomposition of abionneted graph into its trionneted omponents, alled SPQR-tree, wasintrodued by Di Battista and Tamassia in [DT90, DT96b, DT96a℄. In thefollowing we de�ne SPQR-trees, we give their main properties, and we de-sribe how suh trees an be used to represent and e�iently handle all theembeddings of a planar bionneted graph.SPQR-TreesSPQR-trees were introdued in [DT96b℄ to desribe all the possible embed-dings of bionneted planar graphs in a suint way and were used in varioussituations when asking for planar embeddings with speial properties.A graph is st-bionnetible if adding edge (s, t) to it yields a bionnetedgraph. Let G be an st-bionnetible graph. A split pair {u, v} of G is eithera separation pair or a pair of adjaent verties. A maximal split omponent of
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20 CHAPTER 2. DECOMPOSITION OF PLANAR GRAPHS
G with respet to a split pair {u, v} (or, simply, a maximal split omponentof {u, v}) is either an edge (u, v) or a maximal subgraph G′ of G suh that G′ontains u and v, and {u, v} is not a split pair of G′. A vertex w 6= u, v belongsto exatly one maximal split omponent of {u, v}. We all split omponent of
{u, v} the union of any number of maximal split omponents of {u, v}.In [DT96b℄, SPQR-trees were introdued as rooted at one edge of G, alledreferene edge. However, they an also be viewed as unrooted, sine a deom-position starting from a di�erent referene edge would yield a tree with thesame struture. Here, in order to simplify the desription of the onstrutionof SPQR-trees, we �rst desribe them as rooted trees and then we omment onthe impliations of onsidering them as unrooted.Rooted SPQR-TreesThe rooted SPQR-tree Te of a bionneted graph G, with respet to a refereneedge e, desribes a reursive deomposition of G indued by its split pairs. Thenodes of Te are of four types: S, P, Q, and R. Their onnetions are alled ars,in order to distinguish them from the edges of G.Eah node µ of Te has an assoiated st-bionnetible multigraph, alled theskeleton of µ and denoted by skel(µ). Skeleton skel(µ) shows how the hildrenof µ, represented by �virtual edges�, are arranged into µ. The virtual edge inskel(µ) assoiated with a hild node ν, is alled the virtual edge of ν in skel(µ).For eah virtual edge ei of skel(µ), reursively replae ei with the skeletonskel(µi) of its orresponding hild µi. The subgraph of G that is obtained inthis way is the pertinent graph of µ and is denoted by pertinent(µ).Given a bionneted graph G and a referene edge e = (u′, v′), tree Te isreursively de�ned as follows. At eah step, a split omponent G∗, a pair ofverties {u, v}, and a node ν in Te are given. A node µ orresponding to G∗is introdued in Te and attahed to its parent ν. Verties u and v arethe polesof µ and denoted by u(µ) and v(µ), respetively. The deomposition possiblyreurs on some split omponents of G∗. At the beginning of the deomposition
G∗ = G− {e}, {u, v} = {u′, v′}, and ν is a Q-node orresponding to e.Base Case: If G∗ onsists of exatly one edge between u and v, then µ is aQ-node whose skeleton is G∗ itself.Parallel Case: If G∗ is omposed of at least two maximal split omponents

G1, . . . , Gk (k ≥ 2) of G with respet to {u, v}, then µ is a P-node. Graphskel(µ) onsists of k parallel virtual edges between u and v, denoted by
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2.2. DATA STRUCTURES FOR PLANAR GRAPHS 21
e1, . . . , ek and orresponding to G1, . . . , Gk, respetively. The deomposi-tion reurs on G1, . . . , Gk, with {u, v} as pair of verties for every graph,and with µ as parent node.Series Case: If G∗ is omposed of exatly one maximal split omponent of
G with respet to {u, v} and if G∗ has utverties c1, . . . , ck−1 (k ≥ 2),appearing in this order on a path from u to v, then µ is an S-node.Graph skel(µ) is the path e1, . . . , ek, where virtual edge ei onnets
ci−1 with ci (i = 2, . . . , k − 1), e1 onnets u with c1, and ek on-nets ck−1 with v. The deomposition reurs on the split omponentsorresponding to eah of e1, e2, . . . , ek−1, ek with µ as parent node, andwith {u, c1}, {c1, c2}, . . . , {ck−2, ck−1}, {ck−1, v} as pair of verties, re-spetively.Rigid Case: If none of the above ases applies, the purpose of the deompo-sition step is that of partitioning G∗ into the minimum number of splitomponents and reurring on eah of them. We need some further de�-nition. Given a maximal split omponent G′ of a split pair {s, t} of G∗,a vertex w ∈ G′ properly belongs to G′ if w 6= s, t. Given a split pair
{s, t} of G∗, a maximal split omponent G′ of {s, t} is internal if neither
u nor v (the poles of G∗) properly belongs to G′, external otherwise. Amaximal split pair {s, t} of G∗ is a split pair of G∗ that is not ontainedinto an internal maximal split omponent of any other split pair {s′, t′}of G∗. Let {u1, v1}, . . . , {uk, vk} be the maximal split pairs of G∗ (k ≥ 1)and, for i = 1, . . . , k, let Gi be the union of all the internal maximal splitomponents of {ui, vi}. Observe that eah vertex of G∗ either properlybelongs to exatly one Gi or belongs to some maximal split pair {ui, vi}.Node µ is an R-node. Graph skel(µ) is the graph obtained from G∗ byreplaing eah subgraph Gi with the virtual edge ei between ui and vi.The deomposition reurs on eah Gi with µ as parent node and with
{ui, vi} as pair of verties.For eah node µ of Te, we add to skel(µ) the virtual edge (u, v) representingthe parent of µ in Te. We say that an edge e′ of G projets to a virtual edge

e′′ of skel(µ), for some node µ in Te, if e′ belongs to the pertinent graph of thenode of Te orresponding to e′′. Fig. 2.2 depits a bionneted planar graphand its SPQR-tree.Property 2.1 Let C be a yle of G and let µ be any node of Te. Then, eitherthe edges of C belong to a single virtual edge of skel(µ), or they belong to a set
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22 CHAPTER 2. DECOMPOSITION OF PLANAR GRAPHS
P
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(a) (b)Figure 2.2: (a) A bionneted planar graph and (b) its SPQR-tree, rooted atany Q-node adjaent to the R-node whose internal verties are blak. Theskeletons of the internal R-nodes of the tree are represented inside the boxes.The virtual edge representing the parent of a node µ in the skeleton of µ isdrawn as a dotted line.of virtual edges that indue a yle in skel(µ).The SPQR-tree Te of a graph G with n verties and m edges has m Q-nodes and O(n) S-, P-, and R-nodes. Also, the total number of verties ofthe skeletons stored at the nodes of Te is O(n). Finally, SPQR-trees an beonstruted and handled e�iently. Namely, given a bionneted planar graph
G, the SPQR-tree Te of G an be omputed in linear time [GM00℄.Unrooted SPQR-TreesNow we desribe how to modify Te in order to have an unrooted tree T .Trees Te and T have the same nodes and ars. They only di�er in theskeleton of their nodes. Given a node µe of Te, with split pair {u, v} andparent νe, the virtual edge (u, v) is added to skel(µe) to obtain skel(µ) in T .Hene, in an unrooted SPQR-tree T , an ar (µ, ν) identi�es two virtualedges e(ν|µ) ∈ skel(µ) and e(µ|ν) ∈ skel(ν) that represent how the split om-ponent ν �attahes� to skel(µ) and how the split omponent µ �attahes� toskel(ν), respetively.For unrooted SPQR-trees an equivalent onept of pertinent graph is de-�ned. Namely, a merge operation of the skeletons of two adjaent nodes µ
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2.2. DATA STRUCTURES FOR PLANAR GRAPHS 23and ν onsists of removing e(ν|µ) from skel(µ) and e(µ|ν) from skel(ν) andidentifying their orresponding end-verties. Given a node µ of T , the wholegraph G an be obtained by reursively merging µ with its adjaent nodes. Weall suh an operation merging of T . If e(ν|µ) is a virtual edge of skel(µ), wede�ne pertinent(µ, e(ν|µ)) as the subgraph obtained by removing e(ν|µ) andreursively merging µ with its adjaent nodes with the exeption of ν. Thegraph pertinent(µ, e(ν|µ)) de�ned on T oinides with the graph pertinent(µ)de�ned on Te when ν is on the path from µ to the root of Te.Observe that, two SPQR-trees Te′ and Te′′ , rooted at two di�erent edges e′and e′′ of G, orrespond to the same unrooted tree T .Using SPQR-Trees to Represent Planar EmbeddingsLet G be a bionneted graph and let T be the SPQR-tree of G. Graph G isplanar if and only if the skeletons of all the nodes of T are planar [BDD00℄.The SPQR-tree T an be used to represent all the planar embeddings of
G. In fat, suppose that one of the ombinatorial embeddings of the skeletonof eah node is hosen. A ombinatorial embedding of G an be obtained bymerging the skeletons of all the adjaent nodes of T while preserving theirembedding.Observe that:(i) the skeleton of an S-node admits exatly one ombinatorial embedding(eah vertex has degree two);(ii) the skeleton of a P-node admits as many ombinatorial embeddings asthe number of permutations of its virtual edges; and(iii) the skeleton of an R-node, whih is trionneted, admits exatly oneombinatorial embedding up to a reversal of the adjaeny lists of itsverties.Hene, a ombinatorial embedding Γ of G is identi�ed by speifying for eahR-node one of its two possible embeddings and for eah P-node a permutationof its adjaent nodes, as desribed in [BDD00℄. We have the following.Property 2.2 A planar embedding of the skeleton of every node of T deter-mines a planar embedding of G and vie versa.In order to represent the external fae f in the SPQR-tree T , observe thata fae is uniquely identi�ed by the set of edges inident to it, with the onlyexeption, whih an be easily handled, of the ase when G is a simple yle.
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24 CHAPTER 2. DECOMPOSITION OF PLANAR GRAPHSGiven a fae f of a ombinatorial embedding Γ, the unique subtree of Twhose leaves are the Q-nodes inident to f is alled the alloation tree of f .Eah node of the alloation tree of f is an alloation node of f . Figure 2.3shows examples of alloation trees.
P

S

S

R

RS

P

R

R(a) (b)Figure 2.3: (a) A bionneted planar graph G and (b) the alloation trees ofthe two faes of G marked with a star.Let µ be an alloation node of f . In skel(µ) there exists exatly one fae fµthat �orresponds to� f , in the sense that fµ will be transformed into f whenthe merging of T is performed. We all fµ the representative of f in skel(µ).In the following, we will denote by f both a fae of Γ and its representativefae in the skeleton of one of its alloation nodes. We say that f belongs to allits alloation nodes. Observe that, if the graph is a simple yle, it ontainsonly two faes, whose alloation tree is the whole SPQR-tree.Therefore, a planar embedding 〈Γ, f〉 an be represented by a suitable la-beling of T . Namely, eah R-node is labeled with a Boolean value and eahP-node with the irular ordering of its adjaent nodes. The external fae f isrepresented by its alloation tree.The following lemma shows the relationship between faes belonging tonodes that are adjaent in T .Lemma 2.1 Let µ and ν be two adjaent nodes of an SPQR-tree T of a graph
G with planar embedding 〈Γ, f〉.1. There are exatly two faes f ′ and f ′′ of Γ that belong both to µ and to

ν.2. In skel(µ) (skel(ν)) f ′ and f ′′ share edge e(ν|µ) (e(µ|ν)).
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2.2. DATA STRUCTURES FOR PLANAR GRAPHS 253. If µ (ν) is not an S-node, then e(ν|µ) (e(µ|ν)) is the only edge shared by
f ′ and f ′′ in skel(µ) (skel(ν)).Proof: Observe that when merging the skeletons of µ and ν the two faesinident to e(ν|µ) are identi�ed with the two faes inident to e(µ|ν), and suhfaes orrespond to the same faes f ′ and f ′′ of Γ. Also, skel(µ) and skel(ν) donot share other faes.Faes f ′ and f ′′ are represented in skel(µ) (skel(ν)) by the two faes adjaentto e(ν|µ) (e(µ|ν)). Only if a node, say µ, is an S-node, f ′ and f ′′ an also shareother edges further than e(ν|µ), that is, the virtual edges representing the nodesthat are adjaent to µ in T . 2
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Part IIPlanar Embeddings

27



i

i �main� � 2010/2/26 � 12:27 � page 28 � #38
i

i

i

i

i

i



i

i �main� � 2010/2/26 � 12:27 � page 29 � #39
i

i

i

i

i

i

Chapter 3Topologial Morphing of PlanarGraphsIn this hapter1 we analyze the relationships among di�erent planar embed-dings of the same graph and study how two planar embeddings an be morphedone into the other with the minimum number of elementary hanges, while pre-serving the mental map of the user. We all this problem Topologial Morphing,in analogy with the well-known Geometri Morphing problem, in whih it isstudied how two planar drawings an be morphed one into the other with theminimum number of elementary hanges.First, we have to deide whih elementary hanges are admitted in orderto preserve the mental map; then, we have to de�ne whih operations betterdesribe suh hanges; �nally, we have to study the problem of minimizing thenumber of these operations. We de�ne two operations for morphing embed-dings that desribe natural transformations and we show that the problem ofmorphing embeddings with the minimum number of suh operations is NP-hardfor bionneted planar graphs. Further, we give polynomial-time algorithmsfor some restrited versions of the problem and, based on suh algorithms, wegive a �xed parameter tratable algorithm for the general ase.
1Part of the work presented in this hapter is a joint work with Pier Franeso Cortese,Giuseppe Di Battista, and Maurizio Patrignani, appeared in [ACBP08℄.29



i

i �main� � 2010/2/26 � 12:27 � page 30 � #40
i

i

i

i

i

i

30 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHS3.1 IntrodutionA useful feature of a graph drawing editor is the possibility of seleting a ertainfae of the drawing and promoting it to be the external fae (for instane,see [dO℄). In order to preserve the mental map, the user would like the editorto exeute suh an operation with as few hanges to the drawing as possible.The above operation is just an example of a topologial feature that wouldbe useful to have at disposal from an editor. More generally, it would beinteresting to have an editor allowing the user to look at a drawing and tospeify in some way, e.g. pointing at verties or edges, a new embedding. Suhan embedding ould be even requested at a more abstrat level, asking theeditor to go to one with minimum depth, or with minimum radius, et. Again,the editor should transform the urrent embedding into the new one smoothly,i.e., with the minimum number of hanges.A similar problem ours when an editor has to geometrially morph adrawing into another one, spei�ed in some way by the user, while keeping thetopology unhanged. In this ase, the operations performed by the editor aretopology-preserving translations and saling of objets. Again, the user wouldlike to see the minimum number of intermediate snapshots.The existene of a geometri morphing between two drawings was addressedsurprisingly long ago. In 1944, Cairns proved that between any two straight-line drawings of a triangulation there exists a morph in whih any intermediatedrawing is straight-line planar [Cai44℄. This result was extended to generalplanar graphs by Thomassen in 1983 [Tho83℄. The �rst algorithms to �ndsuh morphings were proposed by Floater and Gotsman, in 1999, for trian-gulations [FG99℄ and by Gotsman and Surazhsky, in 2001, for general planegraphs [GS01℄. While the searh for a geometri straight-line morph betweentwo given drawings of a planar graph with a polynomial number of steps andwith a bounded size of the needed grid is still open, some reent studies ad-dress the problem for the speial ases of poly-line morphing [LP08℄, orthogonaldrawings [LPS06, BLS05℄, and arbitrary plane drawings [EKP03℄. See [Lub07℄for a omplete survey on this subjet.We study the morphing between two drawings from the topologial per-spetive and we all it topologial morphing. There are many ways to statethe problem, ranging from the family of graphs, to the admitted operations,to their ompleteness, to their ability to apture hanges that are �natural� forthe user, and to the metris that distinguish a good morphing from a bad one.In this work we make the following basi hoies.
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3.1. INTRODUCTION 31
(a) (b) () (d)Figure 3.1: A sequene of �ips and skips transforming a planar embedding.1. We onsider bionneted planar graphs, sine this lass of graphs is thebuilding blok of several graph drawing methodologies.2. We onsider operations that move entire bloks of the drawing, identi�edby some onnetivity features, in one single step. Namely, using a termthat is ommon in planarity testing literature, we all �ip the operationthat ��ips� a omponent around its split pair. Also, borrowing the termfrom the ommon rope skipping game played by hildren, we all skip theoperation that moves the external fae to a seleted fae by �skipping� anentire omponent without modifying the ombinatorial embedding. Moreformal de�nitions for the two operations will be given later.3. We use the number of performed operations as the metri to evaluatemorphings and we onsider a topologial morphing �good� if the editoran perform it with few �ips and skips. Intuitively, the fewer operationsare performed, the better the mental map of the user is preserved.As an example, suppose that the graph is embedded as shown in Fig. 3.1(a)and that the user would like to obtain the embedding in Fig. 3.1(d). A minimumsequene of operations that performs suh a morphing onsists of �ipping theomponent separated by the square verties of Fig. 3.1(a), then by skippingthe omponent separated by the square verties of Fig. 3.1(b), and �nally byskipping the edge separated by the square verties of Fig. 3.1().We present the following results. Let G be a bionneted planar graph anddenote by 〈Γ, f〉 one of its ombinatorial embeddings Γ with f as external fae.Suppose that 〈Γ1, f1〉 is the urrent topology and that 〈Γ2, f2〉 represents atarget topology hosen by the user. In Set. 3.3 we show that, if both �ipsand skips are allowed, the general problem of morphing 〈Γ1, f1〉 into 〈Γ2, f2〉
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32 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHSwith the minimum number of �ips and skips is NP-omplete. Motivated bysuh a result we takle several restrited problems. In Set. 3.4 we give a lineartime algorithm to move the external fae from f1 to f2 with the minimumnumber of operation when Γ1 = Γ2 and only skips are allowed. In Set. 3.5 weshow that the topologial morphing problem an be e�iently solved if G doesnot ontain any parallel trionneted omponents. In Set. 3.6 we show thatthe problem is �xed-parameter tratable. De�nitions and properties of basioperations are in Set. 3.2, while onluding remarks are in Set. 3.7.3.2 Flip and Skip OperationsLet G be a bionneted planar graph and let 〈Γ, f〉 be a planar embedding of
G, where Γ is a ombinatorial embedding and f is the external fae.In the following we formally de�ne the �ip and skip operations, that anbe used to modify 〈Γ, f〉 and, as a onsequene, the labeling of the SPQR-tree
T of G representing 〈Γ, f〉. Intuitively, a �ip operation ��ips� a omponentaround its split pair, while a skip operation allows the external fae to �skip�an entire omponent, promoting a new external fae without modifying theombinatorial embedding.First, we de�ne the �ip operation with respet to a planar embedding 〈Γ, f〉.Seond, we show how it modi�es the labeling of T representing 〈Γ, f〉.Let {u, v} be a maximal split pair of G and let Gi

1, with i = 1 . . . q, be aset of topologially ontiguous maximal split omponents of G w.r.t. {u, v}.Let G1 =
⋃q

1 Gi
1 be the subgraph of G obtained as the union of all the Gi

1. Wede�ne the �ip operation on 〈Γ, f〉 with respet to G1: �ip(〈Γ, f〉, G1) = 〈Γ′, f ′〉,where Γ′ is obtained from Γ by reversing the adjaeny lists of all the vertiesof G1, but for u and v, and by reversing the order of the edges of G1 in theadjaeny lists of u and v. Fae f ′ is determined as follows. If at least oneout of u and v is not in f , then f ′ = f . Otherwise, f ′ is the unique fae of Γ′ontaining both the edges belonging to f and not belonging to G1, and someedges of G1 not belonging to f .As an example, see the �ip operation applied to the embedding of Fig. 3.1(a)that yields the embedding of Fig. 3.1(b).Now we show how the labeling of T is modi�ed by a �ip operation �ip(〈Γ,
f〉, G1). For eah maximal split omponent Gi

1 of G, with 1 ≤ i ≤ q, withrespet to {u, v} ontained into G1, onsider the node µi of T suh that perti-nent(µi, e(νi|µi)) = Gi
1, where νi is a node adjaent to µi in T . Observe that

q > 1 implies that νi is the same P-node µP for eah omponent Gi
1, whereas
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3.2. FLIP AND SKIP OPERATIONS 33
q = 1 implies that νs 6= νt for eah 1 ≤ s, t ≤ q and s 6= t. Further, onsiderthe subtree T i

1 of T rooted at µi and not ontaining νi. Then, when operation�ip(〈Γ, f〉, G1) = 〈Γ′, f ′〉 is performed, the labeling of T representing Γ′ is ob-tained from the labeling of T representing Γ by omplementing the Booleanvalue of all the nodes of T i
1 , for eah i = 1 . . . q, and, if q > 1, by reversingthe subsequene orresponding to µ1, µ2, . . . , µq in the irular ordering of theadjaent nodes of µP . If G1 ontains some edges belonging to f , then the newexternal fae f ′ is obtained as previously desribed and the new alloation treemust be evaluated aording to it.With the intent of maintaining the mental map of the user, we add theonstraint that a �ip operation �ip(〈Γ, f〉, G1) annot be performed if G1 on-tains all the edges of the external fae f , beause we regard that a �ippingof the entire external struture of the graph around an internal omponent isundesirable from a omprehension point of view.The following properties desribe three basi features of the �ip operation.Property 3.1 �ip(flip(〈Γ, f〉, G1), G1) = 〈Γ, f〉.Property 3.2 If G1 is a path, then �ip(〈Γ, f〉, G1) = 〈Γ, f〉.Property 3.3 If G − G1 is a path, then �ip(〈Γ, f〉, G1) = 〈Γ, f〉, where Γ isobtained from Γ by reversing the adjaeny lists of all the verties.Let Γ1 be a ombinatorial embedding of G and let Γ2 be a �target� ombi-natorial embedding of G. It is easy to see that it is always possible to �nd asequene of �ip operations that leads from 〈Γ1, f1〉, for an arbitrary f1 ∈ Γ1,to 〈Γ2, f2〉, for a suitable f2 ∈ Γ2. Also, suh a sequene is omposed of alinear number of operations and an be omputed in linear time. In fat, �ipoperations allow both to arbitrarily permute the irular list assoiated witheah P-node and to reverse the adjaeny lists of the skeleton of eah R-node.We formalize this onept in the following lemma.Denote by F(Γ1, Γ2) the minimum number of �ips to obtain 〈Γ2, f2〉 from

〈Γ1, f1〉, for an arbitrary f1 ∈ Γ1 and a suitable f2 ∈ Γ2.Lemma 3.1 For any two ombinatorial embeddings Γ1 and Γ2 of G we havethat F(Γ1, Γ2) is O(n), where n is the number of verties of G.Proof: Consider the labeling of the SPQR-tree of G representing Γ1. It is easyto �nd a sequene of �ips suh that eah �ip either gives to an R-node the labelthat it has in Γ2 or plaes the neighbor of a P-node µ in its position in the
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34 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHSirular order of µ in Γ2. The statement follows from the fat that the numberof nodes in the SPQR-Tree is O(n) and that eah operation an be performedin onstant time. 2Now we de�ne the skip operation, whih allows to modify the externalfae of a planar embedding. As for the �ip operation, we �rst de�ne the skipoperation with respet to a planar embedding 〈Γ, f〉 and then we show howsuh an operation modi�es the labeling of T representing 〈Γ, f〉.Let G be a planar graph and let 〈Γ, f1〉 be one of its planar embeddings.Let {u, v} be a split pair of G inident to f1 and to another fae f2 ∈ Γ. Skipis de�ned as follows: skip(〈Γ, f1〉, f2) = 〈Γ, f2〉.As an example, see the skip operation applied to the embedding of Fig. 3.1(b)that yields the embedding of Fig. 3.1().When a skip operation is applied to a planar embedding 〈Γ, f〉 and a fae
f ′ sharing a split pair {u, v} with f , Γ is not modi�ed. Hene, a skip operationonly ats on the labeling of the SPQR-tree T representing the urrent planarembedding by turning the urrent alloation tree into the one of f ′.Also, observe that a skip operation skip(〈Γ, f〉, f ′) orresponds to the skipof the virtual edge adjaent to both f and f ′ in one of the skeletons that ontainboth f and f ′ (see Lemma 2.1). Suh an observation is the main reason whywe permit the skip of an entire omponent of the graph with a single operation.Let 〈Γ, f1〉 be a planar embedding of G and let f2 be any �target� internalfae of Γ. It is easy to see that it is always possible to �nd a sequene of skipoperations leading from 〈Γ, f1〉 to 〈Γ, f2〉. Also, suh a sequene is omposedof a linear number of operations and an be omputed in linear time. In fat, asequene of skips leading from f1 to f2 an be obtained as a path on the dualof G onneting f1 and f2. We formalize this onept in the following lemma.Denote by S(〈Γ, f1〉, 〈Γ, f2〉) the minimum number of skips to obtain 〈Γ, f2〉from 〈Γ, f1〉.Lemma 3.2 Let 〈Γ, f1〉 be a planar embedding of G. For any fae f2 ∈ Γ, wehave that S(〈Γ, f1〉, 〈Γ, f2〉) is O(n), where n is the number of verties of G.Proof: Consider the dual graph D of G when the ombinatorial embedding is
Γ. A path in D from the vertex representing f1 to the vertex representing f2orresponds to a sequene of skips whih moves the external fae from f1 to
f2. Hene, the number of edges of G, that is O(n), is an upper bound on thevalue of S(〈Γ, f1〉, 〈Γ, f2〉). 2In Set.3.4 we will show that, given a planar embedding 〈Γ, f1〉 of a bion-neted planar graph G and an internal fae f2 ∈ Γ, S(〈Γ, f1〉, 〈Γ, f2〉) an be
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3.3. NP-COMPLETENESS OF THE GENERAL CASE 35omputed in linear time.Given two planar embeddings 〈Γ1, f1〉 and 〈Γ2, f2〉 of a graph G, one ouldask whih is the minimum number of �ip and skip operations for obtaining
〈Γ2, f2〉 from 〈Γ1, f1〉. We denote suh a number by FS(〈Γ1, f1〉, 〈Γ2, f2〉).A trivial upper bound to FS(〈Γ1, f1〉, 〈Γ2, f2〉) an be found by �rst per-forming all the �ips needed to transform Γ1 into Γ2, hene obtaining a newexternal fae f ′

1 whih possibly oinides with f1, and then by applying anoptimal sequene of skips to transform the resulting embedding 〈Γ2, f
′
1〉 into

〈Γ2, f2〉. However, in Set. 3.5 we will show that the obtained bound an befar from the optimum (see Fig. 3.5). Property 3.4 formalizes this upper bound.Property 3.4 FS(〈Γ1, f1〉, 〈Γ2, f2〉) ≤ F(Γ1, Γ2)+S(〈Γ2, f
′
1〉, 〈Γ2, f2〉), where

f ′
1 is the external fae obtained when omputing F(Γ1, Γ2).Lemma 3.3 For any two ombinatorial embeddings Γ1, Γ2 and any two faes

f1 ∈ Γ1 and f2 ∈ Γ2, we have that FS(〈Γ1, f1〉, 〈Γ2, f2〉) is O(n), where n isthe number of verties of G.Proof: By Property 3.4, FS(〈Γ1, f1〉, 〈Γ2, f2〉) ≤ F(Γ1, Γ2)+S(〈Γ2, f
′
1〉, 〈Γ2, f2〉).The statement follows from the fat that both F(Γ1, Γ2) and S(〈Γ2, f
′
1〉, 〈Γ2, f2〉)are O(n), by Lemmata 3.1 and 3.2, respetively. 23.3 NP-Completeness of the General CaseIn this setion we prove that, given a bionneted planar graph G and twoof its planar embeddings 〈Γ1, f1〉 and 〈Γ2, f2〉, the problem of transforming

〈Γ1, f1〉 into 〈Γ2, f2〉 with the minimum number of �ip and skip operations isNP-omplete.Lemma 3.4 Let G be a bionneted planar graph and let 〈Γ1, f1〉 and 〈Γ2, f2〉be two planar embeddings of G. The problem of omputing FS(〈Γ1, f1〉, 〈Γ2, f2〉)belongs to lass NP.Proof: By Lemma 3.3, the transformation of 〈Γ1, f1〉 into 〈Γ2, f2〉 requiresat most O(n) steps, where n is the number of verties of G. At eah step,either a �ip or a skip is performed. The number of split pairs is O(n2), andeah split pair separates O(n) maximal split omponents. Hene, for eahsplit pair, the number of onseutive maximal split omponents that an be
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36 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHS�ipped/skipped is O(n2). Therefore, a polynomial number of skip/�ip opera-tions an be performed at eah of the O(n) steps that transform 〈Γ1, f1〉 into
〈Γ2, f2〉. A non-deterministi Turing mahine ould non-deterministially per-form all the possible operations and hek, for eah of the obtained embeddings,if it oinides with 〈Γ2, f2〉. 2In order to prove that the problem of omputing FS(〈Γ1, f1〉, 〈Γ2, f2〉) isNP-hard, we introdue a problem, alled Sorting by Reversals (SBR), whihhas been deeply studied by the Computational Biology ommunity.An instane of SBR is a linear permutation σ = i1, i2, . . . , in of the �rst npositive integers 1, 2, . . . , n. A reversal operation on σ onsists of replaing asubsequene ik, ik+1, . . . , ik+h with the reversed subsequene ik+h, ik+h−1, . . . , ik.The goal of the problem is to obtain the sorted sequene 1, 2, . . . , n from σ withthe minimum number of reversal operations. Problem SBR an be also de�nedon irular permutations, where the reversal operation an be applied on ir-ular subsequenes, too. In [MWD00℄ and [SSL03℄ it has been shown that thetwo problems are equivalent, while in [Cap97℄ Caprara showed that both theproblems are NP-omplete.Theorem 3.1 Let G be a bionneted planar graph and let 〈Γ1, f1〉 and 〈Γ2, f2〉be two planar embeddings of G. The problem of omputing FS(〈Γ1, f1〉, 〈Γ2, f2〉)is NP-omplete.Proof: The proof is obtained by reduing SBR to the problem of omputing
FS(〈Γ1, f1〉, 〈Γ2, f2〉). Given an instane σ of SBR, we onstrut a bion-neted planar graph G and two embeddings 〈Γ1, f1〉 and 〈Γ2, f2〉 suh that
FS(〈Γ1, f1〉, 〈Γ2, f2〉) is the minimum number of reversals that order σ.Let σ = i1, i2, . . . , in be an instane of SBR. In order to onstrut G, on-sider a trionneted embedded graph with one fae h at distane n from theexternal fae f . Observe that O(n) verties are su�ient to build suh a graph.Consider two arbitrary verties u and v inident to h. For eah j = 1, 2, . . . , n,reate a path pj with j internal verties onneting u and v. The order of suhpaths around u is pi1 , pi2 , . . . , pin

in Γ1 and p1, p2, . . . , pn in Γ2. An example isgiven in Fig. 3.2, where the graph G orresponding to sequene σ = 1, 3, 4, 2 isshown.We now prove that the sequene of FS(〈Γ1, f〉, 〈Γ2, f〉) operations needed totransform 〈Γ1, f〉 into 〈Γ2, f〉 an be mapped into the minimum sequene of re-versals that orders σ, and vie versa. First, observe that FS(〈Γ1, f〉, 〈Γ2, f〉) ≤
n. In fat, the paths an be ordered with at most n �ips, where the j-th�ip plaes pj at position j. Further, observe that, sine fae h is at dis-
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3.3. NP-COMPLETENESS OF THE GENERAL CASE 37
u

vFigure 3.2: The graph G orresponding to sequene σ = 1, 3, 4, 2.
tane n from the external fae, performing some skip operations to simplifythe ordering of the paths p1, . . . pn would imply a sequene of at least n skipsto reah h and a sequene of at least n skips to go bak to f . Hene, anyminimum sequene of �ip and skip operations that transforms 〈Γ1, f〉 into
〈Γ2, f〉 does not ontain any skip operations. Finally, observe that a �ip oper-ation on paths pik

, pik+1
, . . . , pik+h

orresponds to a reversal of a subsequene
ik, ik+1, . . . , ik+h and that, sine eah path pi orresponds to an S-node with
i + 1 adjaent Q-nodes, the labeling of the SPQR-tree is unhanged, exeptfor the ordering of the adjaent nodes of the P-node indued by the split pair
{u, v}. In order to prove that the onstrution of G, 〈Γ1, f〉 and 〈Γ2, f〉 anbe performed in polynomial time, we observe that the trionneted embeddedgraph with one fae h at distane n from the external fae ontains O(n) ver-ties and that the total number of verties of paths pj, with j = 1, 2, . . . , n, is∑n

i=1 i = n(n− 1)/2. Hene, the problem of omputing FS(〈Γ1, f〉, 〈Γ2, f〉) isNP-hard. Sine Lemma 3.4 guarantees that the problem belongs to lass NP,the statement follows. 2Sine the redution from SBR to the problem of determining FS(〈Γ1,
f1〉, 〈Γ2, f2〉) only relies on the orrespondene between a reversal and a �ipand that skips are never performed, it is possible to use the same tehnique toredue SBR to the problem of determining F(Γ1, Γ2). In this ase, we do notneed to plae verties u and v on a fae that is at distane n from the externalfae, sine skip operations are not allowed.
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38 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHS3.4 Linearity of the Case with Fixed CombinatorialEmbeddingLet G be a bionneted planar graph, and let 〈Γ, f1〉 and 〈Γ, f2〉 be two pla-nar embeddings of G. In this setion, we show how to ompute the value of
S(〈Γ, f1〉, 〈Γ, f2〉). Fig. 3.3 shows an example of a shortest sequene of skipsmoving the external fae of an embedded graph to a seleted one.

(a) (b) () (d)Figure 3.3: A sequene of three skip operations moving the external fae to thefae marked by a star. Square verties represent the split pairs identifying theomponents that are skipped at eah of the steps.First, we need to introdue the following lemma.Lemma 3.5 Let G be a bionneted planar graph and let T be the SPQR-treeof G. Let 〈Γ, f1〉 and 〈Γ, f2〉 be two planar embeddings of G. If there exists anR-node µ of T suh that skel(µ) ontains both f1 and f2, then S(〈Γ, f1〉, 〈Γ, f2〉)is the length of the shortest path from f1 to f2 on the dual of skel(µ).Proof: First we remind that, sine eah pair of adjaent verties in skel(µ)orresponds to a split pair of G, the external fae an be moved to an adja-ent fae of the skeleton with a single skip operation. Hene, the length of ashortest path on the dual graph of skel(µ) from f1 to f2 is an upper bound for
S(〈Γ, f1〉, 〈Γ, f2〉). In order to show that suh a length is also a lower bound,it su�es to observe that any path on the dual graph of Γ leading from f1 to
f2 has to traverse the faes of skel(µ) from f1 to f2. 2Let T be the SPQR-tree of G and let T1 and T2 be the alloation treesof f1 and f2, respetively. Based on the previous Lemma, we state that thevalue of S = S(〈Γ, f1〉, 〈Γ, f2〉) an be easily omputed when T1 ∩ T2 6= ∅.Three subases have to be distinguished: T1 ∩ T2 = {µ}, T1 ∩ T2 = {µ, ν}, and
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3.4. LINEARITY OF THE CASE WITH FIXED COMBINATORIALEMBEDDING 39
T1 ∩ T2 = {µ1, µ2, . . . , µk}. Conversely, the ase T1 ∩ T2 = ∅ is more omplexand will be analyzed in detail.Case T1 ∩ T2 = {µ}. In this ase µ is the only node of T whose skeletonontains both f1 and f2. Observe that µ an not be an S-node, sine otherwiseall the nodes of T adjaent to µ would be in T1 ∩ T2. If µ is a P-node, sinea skip operation an move the external fae from f1 to any fae of skel(µ), wehave that S = 1. If µ is an R-node, by Lemma 3.5, S is the length of theshortest path on the dual of skel(µ) from f1 to f2.Case T1 ∩ T2 = {µ, ν}. In this ase µ and ν are the only nodes of T whoseskeleton ontains both f1 and f2. Hene, they are adjaent in T and they annot be both P-nodes. Then, by Lemma 2.1, f1 and f2 are adjaent both inskel(µ) and in skel(ν) and therefore we have that S = 1. Observe that, as inthe previous ase, neither µ nor ν an be S-nodes.Case T1∩T2 = {µ1, µ2, . . . , µk}, with k ≥ 3. As this ase is more involved,we treat it separately in the following lemma.Lemma 3.6 Let T1 and T2 be the alloation trees of two faes f1 and f2 of aplane graph G, respetively. If T1 ∩ T2 = T3, where T3 = {µ1, µ2, . . . , µk} and
k ≥ 3, then T3 is a star graph whose entral node is an S-node.Proof: First, we show that the seond node in eah path of length 3 in T3 isan S-node. Consider a path (µa, µb, µc) in T3 and suppose, for a ontradition,that µb is not an S-node. By Lemma 2.1, the two adjaent nodes µa and µbshare exatly two faes f ′

a,b and f ′′
a,b and the two adjaent nodes µb and µcshare exatly two faes f ′

b,c and f ′′
b,c. Also, by Lemma 2.1, sine µb is not anS-node, in skel(µb) f ′

a,b and f ′′
a,b share only virtual edge e(µa|µb), while f ′

b,c and
f ′′

b,c share only virtual edge e(µc|µb). Sine e(µa|µb) 6= e(µc|µb), we have that
{f ′

a,b, f
′′
a,b} 6= {f ′

b,c, f
′′
b,c}; hene |{f ′

a,b, f
′′
a,b}∩ {f ′

b,c, f
′′
b,c}| ≤ 1, ontraditing thefat that µa, µb, and µc share the two faes f1 and f2. Hene, we onludethat the seond node of eah path of length three in T3 is an S-node.Seond, we show that T3 ontains exatly one S-node. Sine T3 has at leastthree nodes, it ontains at least a path of length 3, whose seond node is anS-node. Suppose, by ontradition, that T3 ontains two S-nodes ν1 and ν2.Sine all the nodes of T3 share the two faes f1 and f2 and eah S-node hasexatly two faes, the two S-nodes ν1 and ν2 are adjaent in the SPQR-treeof G, a ontradition. Hene, T3 ontains exatly one S-node νS and, sine ineah path of length 3 the seond node is an S-node, eah path in T3 has lengthat most 3; hene, T3 is a star graph with νS as entral node. 2



i

i �main� � 2010/2/26 � 12:27 � page 40 � #50
i

i

i

i

i

i

40 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHSBy Lemma 3.6 and by the fat that f1 and f2 are faes of the skeleton ofthe same S-node, it follows that S = 1.In the ase T1 ∩ T2 = ∅, the omputation of S is not trivial; however, weprovide a linear time algorithm, alled SkipOnly, to solve this problem. Thealgorithm is desribed below and its pseudo-ode is provided in Algorithm 1.Algorithm 1 SkipOnlyRequire: A bionneted planar graph G and two of its planar embeddings
〈Γ, f1〉 and 〈Γ, f2〉.Ensure: The minimum length sequene of S(〈Γ, f1〉, 〈Γ, f2〉) skip operationsto obtain 〈Γ, f2〉 from 〈Γ, f1〉.Prepoessing Phase1: Compute the SPQR-tree T of G2: Compute the alloation trees T1 and T2 of f1 and f2Computation Phase3: Compute the skip path sp(f1, f2) between T1 and T24: Construt the trak graph Trak(f1, f2)5: Compute the weighted shortest path on Trak(f1, f2) from f1 to f2Exeution Phase6: Perform the sequene of skip operations on G that determined the weightof the edges of the weighted shortest path. An horizontal edge orrespondsto a skip of a whole omponent, while a vertial edge orresponds to ashortest path on the dual of the skeleton of a omponent.Suppose T1 ∩ T2 = ∅. We all skip path the (unique) shortest path in Tbetween any node of T1 and any node of T2 (see Fig. 3.4(a)). We denote suha skip path by sp(f1, f2).Sine a skip operation from a fae of skel(µ) to a fae of skel(ν) is admittedonly if µ and ν are adjaent in T , the following property holds.Property 3.5 Any sequene of skip operations moving the external fae from

f1 to f2 traverses all the nodes of the skip path sp(f1, f2) between T1 and T2.In order to ompute the sequene of S(〈Γ, f1〉, 〈Γ, f2〉) skips moving the ex-ternal fae from f1 to f2, we de�ne a weighted trak graph [BBF04℄ Trak(f1, f2)(see Fig. 3.4(b)). Nodes of Trak(f1, f2) orrespond to faes of the skeletonsof the nodes in sp(f1, f2). In partiular, let sp(f1, f2) = {µ1, . . . µk} be the
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4(a) (b)Figure 3.4: (a) The skip path onneting the alloation trees of Fig. 2.3 and(b) the orresponding weighted trak graph.skip path onneting a node µ1 of the alloation tree of f1 to a node µk of thealloation tree of f2. Observe that f1 is the external fae of skel(µ1), while f2is an internal fae of skel(µk). Trak graph Trak(f1, f2) ontains two nodesorresponding to f1 and f2. Also, for eah node µi ∈ sp(f1, f2), i = 2, . . . , k,Trak(f1, f2) ontains two nodes fi
l and fi

r orresponding to the two faes ofskel(µi) adjaent to the virtual edge e(µi−1|µi) representing µi−1 in skel(µi).Note that suh faes orrespond to the two faes of skel(µi−1) adjaent to thevirtual edge e(µi|µi−1) representing µi in skel(µi−1).Nodes of Trak(f1, f2) are assigned a leveling. The node orresponding to
f1 belongs to level 1, nodes fi

l and fi
r, for i = 2, . . . , k, belong to level i, andthe node orresponding to f2 belongs to level k + 1.Edges of Trak(f1, f2) are of two types, horizontal edges and vertial edges.Horizontal edges onnet nodes of the same level, while vertial edges onnetnodes of adjaent levels. More preisely, horizontal edges are (fi

r, fi
l), for

i = 2, . . . , k, while vertial edges are (f1, f2
l), (f1, f2

r), (fk
l, f2), (fk

r, f2) and,for i = 2, . . . , k − 1, (fi
l, fi+1

l), (fi
l, fi+1

r), (fi
r, fi+1

l), and (fi
r, fi+1

r).Edges of Trak(f1, f2) are weighted. The weight of an edge (f ′, f ′′) inTrak(f1, f2) represents the number of skip operations needed to move theexternal fae from f ′ to f ′′. Horizontal edges (fi
r, fi

l) are weighted 1. Suh aweight represents the possibility to skip virtual edge e(µi−1|µi) in skel(µi) to
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42 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHSmove from fi
r to fi

l (or from fi
l to fi

r).In order to assign a weight to the vertial edges, onsider an edge (fyi

i , f
yi+1

i+1 ),with yi, yi+1 ∈ {l, r}, spanning levels i and i + 1. If µi is a P-node, then theweight is 0 if µi−1 and µi+1 are onseutive in the irular ordering of the nodesadjaent to µi and yi 6= yi+1, and it is 1 otherwise, sine all the faes of theskeleton of a P-node are adjaent to the same split pair. If µi is an S-node,then the weight is 0 if yi = yi+1 and is 1 otherwise, sine only two faes existin the skeleton of an S-node. Finally, if µi is an R-node, then the weight of
(fyi

i , f
yi+1

i+1 ) is the length of the shortest path from fyi

i to f
yi+1

i+1 on the dualof skel(µi), where edge (fi
r, fi

l) has been removed, beause the possibility ofskipping suh an edge is already taken into aount by the horizontal edge
(fi

r, fi
l) of Trak(f1, f2).We ompute a weighted shortest path from the node orresponding to f1to the node orresponding to f2 on Trak(f1, f2). The nodes of Trak(f1, f2)that are traversed during suh a shortest path are the faes of G that haveto be traversed when morphing 〈Γ, f1〉 into 〈Γ, f2〉 with the minimum number

S(〈Γ, f1〉, 〈Γ, f2〉) of steps. The sequene of skips to be performed is given bythe operations that determined the weight of the edges of Trak(f1, f2) thatare traversed by the weighted shortest path.Theorem 3.2 Let G be a bionneted planar graph, and let 〈Γ, f1〉 and 〈Γ, f2〉be two planar embeddings of G. If only skip operations are allowed, then thereexists an algorithm to ompute S(〈Γ, f1〉, 〈Γ, f2〉) in linear time.Proof: Apply Algorithm SkipOnly. Consider the weighted shortest pathon Trak(f1, f2) from f1 to f2. Suh a path, by onstrution, orrespondsto a sequene s of skip operations that moves the external fae of G from
f1 to f2. Suppose, for a ontradition, that there exists a sequene s∗ ofskips from f1 to f2 on G suh that |s∗| < |s|. Sine, by Property 3.5, allthe nodes of sp(f1, f2) have to be traversed when moving the external faefrom f1 to f2, s∗ traverses at least one fae fi

y, with y ∈ {l, r}, for eah node
µi ∈ sp(f1, f2). Hene, we have that suh faes partition s∗ into |sp(f1, f2)|subsequenes s∗i = {fy

i , x1
i , x

2
i , . . . , x

j
i , f

y
i+1}, where x1

i may possibly be theother fae in skel(µi) adjaent to the virtual edge representing µi+1, whenthe horizontal edge (fi
r, fi

l) is traversed. Sine, by hypothesis, |s∗| < |s|, thereexists a subsequene s∗i = {fy
i , x1

i , x
2
i , . . . , x

j
i , f

y
i+1} suh that |s∗i | < w(fy

i , fy
i+1),where w(fy

i , fy
i+1) is the weight of vertial edge (fy

i , fy
i+1).If µi is a P-node or an S-node, then w(fy

i , fy
i+1) is either 0 or 1, dependingon the fat that fy

i and fy
i+1 orrespond to the same fae of G or not. Sine
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3.5. LINEARITY OF THE CASE WITHOUT P-NODES 43
|s∗i | ≥ 0 and, if fy

i 6= fy
i+1, |s∗i | ≥ 1, we have a ontradition in both the ases.If µi is an R-node, then w(fy

i , fy
i+1) is the length of the shortest path be-tween fy

i and fy
i+1 on the dual of skel(µi). Sine both fy

i and fy
i+1 belong toskel(µi) then, by Lemma 3.5, the length of suh a shortest path is the minimumnumber of skip operations to move the external fae from fy

i to fy
i+1, whihontradits the hypothesis that |s∗i | < w(fy

i , fy
i+1) and, hene, that |s∗| < |s|.We now perform an analysis of the omputational omplexity of AlgorithmSkipOnly. The SPQR-tree T [DT96b℄ and its labeling an be omputed inlinear time. The alloation trees T1 and T2 and sp(f1, f2) an be also easilyomputed in linear time. Also, graph Trak(f1, f2) is onstruted by omputingat most 4 shortest paths for eah R-node in sp(f1, f2); sine the sum of thenumber of virtual edges in the skeletons of nodes of T is O(n), we have thatTrak(f1, f2) an be omputed in linear time. Finally, the simple level-strutureof Trak(f1, f2) allows to ompute the weighted shortest path from f1 to f2 inlinear time. Namely, when onsidering a node f l

i+1 (f r
i+1, respetively) of level

i+1, we have already omputed the weighted shortest paths from f1 to nodes f l
iand f r

i of level i. Also, for eah of f l
i and f r

i , we have only two possibilities to getto f l
i+1 (f r

i+1, respetively), that is, either by using the vertial edge onnetingthem or by using the vertial edge onneting to f r
i+1 (f l

i+1, respetively) andthen traversing the horizontal edge (f l
i+1, f r

i+1) of weight 1. Hene, for eah ofthe two nodes of level i + 1, we perform a onstant number of omputations,whih proves the statement. 23.5 Linearity of the Case without P-nodesIn this setion we show that, if T does not ontain any P-nodes, the problemof omputing FS(〈Γ1, f1〉, 〈Γ2, f2〉) an be solved in linear time. For simpliity,the algorithm desribed in this setion only onsiders a subset of all the possible�ip operations. Namely, given an S-node µ, although a legitimate �ip operationmight onern the split omponents of any split pair of µ, we only onsider �ipoperations onerning split omponents of maximal split pairs of µ. Intuitively,this orresponds to �ipping either a single neighbor ν of µ or all the neighborsof µ exept for ν. At the end of the setion we handle the general ase.In order to ompute FS(〈Γ1, f1〉, 〈Γ2, f2〉) when T does not ontain anyP-nodes, we �rst assign a label in {turned, unturned} to eah node µ of T ,where the label assigned to a node µ indiates whether some transformationsare needed on the skeleton of µ in order to obtain Γ2 from Γ1, or not.
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44 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHS
• If µ is a Q-node, it is labeled unturned.
• If µ is an R-node, it is labeled unturned if the Boolean value assigned to

µ in the two labelings representing Γ1 and Γ2 is the same, and turnedotherwise.
• If µ is an S-node, it is labeled unturned (turned) if the majority of itsadjaent R-nodes is unturned (turned). In ase of a tie, we give µ anarbitrary label, unless µ is an internal node of the skip path sp. In thisase, we give µ a label that is di�erent from one of its adjaent nodes insp. Observe that both of suh nodes are R-nodes, sine two S-nodes annot be adjaent in T and Q-nodes an not be in sp, beause they do nothave any internal faes.Seond, we suitably extend the labeling {turned, unturned} from the nodesto the edges of T . If an edge e is inident to a Q-node, then it is labeledunturned. Otherwise, e is labeled unturned (turned) if its inident nodeshave the same label (di�erent labels).Consider any edge e = (µ, ν) of T . Suh an edge identi�es a split pair of Gwhih, in its turn, identi�es twomaximal split omponentsG1 = pertinent(µ, e(ν|µ))and G2 = pertinent(ν, e(µ|ν)), sine T does not ontain any P-nodes. By de�ni-tion, the e�et of performing a �ip of G1 (resp. G2) is to hange the labels of allthe nodes of the subtree of T rooted at µ and not ontaining ν (resp. rooted at

ν and not ontaining µ). Hene, e is the only edge of T whose label is hangedby suh a �ip operation. It follows that, if e is labeled as turned, any minimumsequene of �ips that transforms Γ1 into Γ2 ontains either �ip(〈Γ′, f ′〉, G1) or�ip(〈Γ′′, f ′′〉, G2), for some suitable Γ′, Γ′′, f ′, and f ′′. Hene, the number ofturned edges of T orresponds to the minimum number of �ips that must beperformed on Γ1 in order to obtain Γ2.As in the �xed ombinatorial embedding ase, when the intersetion of thetwo alloation trees T1 and T2 of f1 and f2 is non-empty, the problem has atrivial solution. In fat, sine in this ase there exists at least one node µ suhthat f1 and f2 belong to skel(µ), there is no �ip that an help to redue thenumber of skips. Hene, the trivial algorithm that �rst performs all the �ipsto transform Γ1 into Γ2 and then performs all the skips to move the obtainedexternal fae f3 to f2 uses FS(〈Γ1, f1〉, 〈Γ2, f2〉) operations.When the intersetion of the two alloation trees is empty, we have to takeinto aount the fat that a �ip operation may modify the distane betweenany two faes not belonging to the same skeleton, hene modifying the number
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3.5. LINEARITY OF THE CASE WITHOUT P-NODES 45of needed skips to move from one to the other. Therefore, in order to om-pute FS(〈Γ1, f1〉, 〈Γ2, f2〉), we have to onsider the ase in whih �ip and skipoperations are alternated.Consider, for an example, the starting embedding 〈Γ1, f1〉 of Fig. 3.5(a)and the target embedding 〈Γ2, f2〉 of Fig. 3.5(b). In Γ1 we have that f2 isadjaent to f1, while in Γ2 the minimum number of skips to reah f2 from f1is 5 (observe that an example where the distane is k an be easily onstrutedby adding O(k) verties and edges). Hene, it would be possible to save 4(in general, k − 1) skip operations by moving the external fae to f2 beforeperforming the �ips needed to transform Γ1 into Γ2. On the other hand, suhan operation would make the rigid omponent R4 not possible to be �ipped,sine it would ontain all the edges of the new external fae f2. However,when a �ip operation of a omponent Ri, with 1 ≤ i ≤ 4, that involves R4 isneeded in order to obtain an embedding Γ∗, it is possible to perform suh a�ip operation on the unique omponent Rj , with 1 ≤ j ≤ 4 and i 6= j, thatshares its split pair with Ri, so obtaining an embedding Γ∗ that is equal to Γ∗,but for a reversal of the adjaeny lists of all the verties. Hene, when all the�ips are performed, the ombinatorial embedding Γ3 that is obtained is suhthat either Γ3 = Γ2 or Γ3 = Γ2, depending on the fat that the number of �ipsinvolving the omponent ontaining f2 is even or odd. In this example, 3 �ipsinvolving R4 are needed to obtain Γ2 from Γ1, that is, the �ip of R2, R3, and
R4, and hene the �nal embedding is Γ2. In order to obtain Γ2, it is possibleto perform a �ip of the whole graph G around a simple edge e inident to f2sine, by Property 3.3, we have that �ip(〈Γ2, f2〉, G \ e) = 〈Γ2, f2〉. Therefore,the total number of �ip operations is equal to the number of �ips needed totransform Γ1 into Γ2 plus one. Hene, the total number of operations that aresaved by �rst moving the external fae to f2 and then transforming Γ1 into Γ2is 3 (in general, at least k − 2).An analogous example where �rst performing all the skips and then per-forming all the �ips leads to a solution with a non-optimal number of operationsan be easily onstruted by onsidering the embedding of Fig. 3.5(b) as thestarting one and the embedding of Fig. 3.5(a) as the target one.Based on these observations, we propose an algorithm, alledNoParallel,to ompute FS(〈Γ1, f1〉, 〈Γ2, f2〉) when T1 ∩ T2 = ∅ and T does not ontainany P-nodes. Suh an algorithm is similar to Algorithm SkipOnly and itspseudo-ode is given in Algorithm 2. The main di�erene is on the assignmentof the weights to the edges of Trak(f1, f2), whih have to take into aount thepossibility of alternating �ips and skips in order to redue the total number ofoperations. Namely, onsider two nodes µi and µi+1 of the skip path sp(f1, f2)
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46 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHS
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(a) (b)Figure 3.5: An example of morphing in whih it is possible to save 3 operationsby performing some skips before the �ips.whih are adjaent through a turned edge e, and onsider a skip operation on
µi+1. Suh an operation has the e�et of transferring the external fae from
f l

i+1 to f r
i+1, or vie versa. The same e�et would be obtained by �ipping

µi+1 with respet to µi. Therefore, we set to 0 the weight of the horizontaledge linking f l
i+1 to f r

i+1 in graph Trak(f1, f2) and we all shortut suh anedge. Using a shortut in the shortest path from f1 to f2 orresponds to thepossibility of performing a �ip in advane to save a skip operation, while ashortut that is not in the shortest path orresponds to a �ip that has to beperformed at the end of the omputation.First observe that all the �ips that do not involve nodes on the skip pathan be performed independently at eah step of the omputation, sine none ofthese nodes will ontain all the edges of the external fae during the morphing.We deide to perform suh �ips as the �rst step of the algorithm. As forAlgorithm 1, ompute a weighted shortest path p on Trak(f1, f2) from f1to f2. First, perform the �ip operations orresponding to the shortuts thatare traversed by p, while the external fae is still f1. Seond, perform all theskip operations orresponding to the edges of sp. Finally, perform the �ipoperations orresponding to all the other turned edges (the shortuts that arenot traversed by p), while the external fae is f2.Regarding the �ips that are performed before the skips, we have to onsiderthe fat that the weighted shortest path between f1 and f2 on Trak(f1, f2) does
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3.5. LINEARITY OF THE CASE WITHOUT P-NODES 47not take into aount the label of the last node µk of the skip path sp(f1, f2).Suh a matter is onsidered in the omputation of FS(〈Γ1, f1〉, 〈Γ2, f2〉) bysuitably seleting one of the weighted shortest paths, as follows.Suppose that µk is labeled turned (unturned). Also, suppose that aweighted shortest path p1 from f1 to f2 uses an even (odd) number of short-uts. If the �ip operations orresponding to suh shortuts are performed inadvane, while f1 is the external fae, the embedding of µk is reversed an even(odd) number of times, i.e., µk ends up with a turned label. Hene, in orderto obtain Γ2, aording to Property 3.1, we would need to perform a �nal �ipoperation with respet to any edge inident to f2. However, in this ase, if aweighted shortest path p2 from f1 to f2 exists with the same ost of p1 andtraversing an odd (even) number of shortuts, using p2 would make it possibleto save the last �ip. Therefore, we ompute two weighted shortest paths from
f1 to f2 using an even and an odd number of shortuts, respetively. Then, ifthey have di�erent ost we hoose the shorter one, while if they have the sameost we selet the one that makes the label of µk unturned. Hene, when all ofsuh �ips have been performed, µk an be labeled either turned or unturned.Regarding the �ips that are performed after all the skips, we reall that, inorder to preserve the mental map of the user, a �ip operation on a omponent
G1 is permitted only if G1 does not ontain all the edges of the external fae.Further, we observe that, if µk is labeled turned, then at least one of suh �ipsmust involve µk, whih ontains all the edges of the urrent external fae f2and hene an not be �ipped. However, in this ase, it is possible to exploit thefat that, when a �ip operation of a omponent µ is needed in order to obtainan embedding Γ∗, it is possible to perform suh a �ip operation on the uniqueomponent ν sharing its split pair with µ, obtaining an embedding Γ∗ that isequal to Γ∗, but for a reversal of the adjaeny lists of all the verties.Hene, when both the �ips before the skips and the ones after the skipsare performed, the ombinatorial embedding Γ3 that is obtained is suh thateither Γ3 = Γ2 or Γ3 = Γ2, depending on the fat that the total number of �ipsinvolving µk is even or odd. However, when Γ3 = Γ2, it is possible to obtain
Γ2 by performing a �ip of the entire graph G around one edge e inident to f2,sine, by Property 3.3, we have that �ip(〈Γ2, f2〉, G \ e) = 〈Γ2, f2〉.Finally observe that, if the two weighted shortest paths traversing an evenand an odd number of shortuts, respetively, have the same ost, it is al-ways possible to obtain Γ2 at the end of the omputation without the need ofperforming the last �ip of the whole graph around e.Theorem 3.3 Let G be a bionneted planar graph, and let 〈Γ1, f1〉 and 〈Γ2, f2〉
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48 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHSbe two planar embeddings of G. Let T be the SPQR-tree of G. If T does notontain any P-nodes, then FS(〈Γ1, f1〉, 〈Γ2, f2〉) an be omputed in linear time.Proof: Apply algorithm NoParallel. Let s be the number of operationsperformed on G. First observe that, sine eah �ip operation modi�es theBoolean value of all the nodes of a subtree of T , we have that only one edge of
T has its label modi�ed by this operation. Hene, the number of �ip operationsperformed on G is greater than, or equal to, the number of turned edges in Tplus (possibly) one �ip of the whole graph that has to be performed at the endof the omputation (see Property 3.3).First observe that the �ips involving nodes that are not on the skip pathan not be saved by any skip operation, sine moving the external fae to thesenodes in order to save one �ip would imply at least two unneessary skips, oneto reah it and one to go bak to the skip path. Hene, all of suh �ips have tobe performed at some point. Moreover, the nodes involved in these �ips willnot ontain all the edges of the external fae at any step of the omputationand hene they an be performed as the �rst step of the algorithm withouta�eting the optimality of the solution.Consider an horizontal edge e of weight 1, that is, orresponding to anunturned edge. Sine any �ip operation an redue the skip-distane between
f1 and f2 of at most 1, it is not useful to perform a �ip operation on a ompo-nent orresponding to e, beause in this ase another �ip operation would beneeded to restore the ombinatorial embedding. Hene, any optimal sequeneof operations that morphs Γ1 into Γ2 must not ontain any �ip operations onthe unturned edges.Consider an horizontal edge e = (f l

i , f
r
i ) of weight 0 (a shortut), that is,orresponding to a turned edge, belonging to the suitably seleted weightedshortest path in Trak(f1, f2) from f1 to f2. The fat that the weighted shortestpath traverses e means that, in the optimal sequene of operations indued bythis path, a skip of the whole omponent orresponding to e would be neededto move the external fae from f l

i to f r
i , or vie versa. However, if the �ip orre-sponding to e, whih is needed anyhow, is performed before the skips, the rolesof f l

i and f r
i are swithed and hene the skip of the omponent orrespondingto e is no longer needed, whih results in saving one operation. Therefore, wehave that any optimal sequene of operations must perform all the �ip oper-ations orresponding to shortuts that are traversed by the suitable seletedweighted shortest path before the skip operations involving suh omponents.Consider an horizontal edge e = (f l

i , f
r
i ) of weight 0 (a shortut), thatis, orresponding to a turned edge, not belonging to the seleted weighted
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3.5. LINEARITY OF THE CASE WITHOUT P-NODES 49Algorithm 2 NoParallelRequire: A bionneted planar graph G and two of its planar embeddings
〈Γ1, f1〉 and 〈Γ2, f2〉.Ensure: The minimum length sequene FS(〈Γ1, f1〉, 〈Γ2, f2〉) of �ip and skipoperations to obtain 〈Γ2, f2〉 from 〈Γ1, f1〉.Prepoessing Phase1: Compute the SPQR-tree T of G2: Label the nodes of T aording to Γ13: Label the nodes of T aording to Γ24: Compute the alloation trees T1 and T2 of f1 and f2, respetively5: Label the nodes of T as turned or unturned as desribed in Set. 3.56: Label the edges of T as turned or unturned as desribed in Set. 3.5Computation Phase7: Compute the skip path sp(f1, f2) between T1 and T28: Construt the trak graph Trak(f1, f2), assigning weight 0 to an horizontaledge (f l

i , f
r
i ) if the edge of T onneting µi and µi−1 is turned and weight

1 otherwise9: Compute two weighted shortest paths peven and podd on Trak(f1, f2) from
f1 to f2 traversing an even and an odd number of shortuts, respetively10: if ost(peven) < ost(podd) then11: p = peven12: else13: if ost(peven) > ost(podd) then14: p = podd15: else16: Selet the one of p = peven or p = podd that makes the label of µkunturned17: end if18: end ifExeution Phase19: Perform all the �ips that do not involve nodes on the skip path20: Perform all the �ips orresponding to the shortuts traversed by p21: Perform all the skips orresponding to the edges of p to move the externalfae from f1 to f222: Perform all the �ips orresponding to the shortuts not traversed by p onthe omponents not ontaining all the edges inident to f223: if label(µk) == turned then24: Perform a skip of the whole graph around an edge inident to f225: end if
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50 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHSshortest path p in Trak(f1, f2). Suppose, by ontradition, that there existsa sequene s∗ of operations suh that e is �ipped before the skips, and that
|s∗| < |s|. Sine s∗ ontains the same �ip operations as s, then s∗ must ontaina smaller number of skips. Hene, whereas the external fae must traverse allthe nodes of sp(f1, f2), by Property 3.5, sequene s∗ would identify a path inTrak(f1, f2) that is shorter than p, whih is a ontradition. Therefore, wehave that any optimal sequene of operations must perform all the �ip opera-tions orresponding to shortuts that are not traversed by the suitable seletedweighted shortest path after the skip operations involving suh omponents.Sine a �ip operation of the whole graph reverses the adjaeny lists ofall the verties but does not modify the number of turned edges, any optimalsequene will perform at most one of suh �ips. Moreover, if two shortest pathsexist traversing an even and an odd number of shortuts, respetively, suh a�ip an be saved by hoosing the shortest path whih ends with an unturnedlabel on the last node of the skip path.Finally, sine eah edge of Trak(f1, f2) is weighted with the length of theshortest path on the skeleton of the orresponding omponent, we have thatno other sequene of skips an outperform the one that is omputed with Al-gorithm NoParallel, when the savings permitted by the �ips are onsidered.Hene, we have that algorithmNoParallel omputes FS(〈Γ1, f1〉, 〈Γ2, f2〉).The fat that NoParallel an be exeuted in linear time an be shownwith the same argumentation presented in the proof of Theorem 3.2. In fat, theomputation of the two shortest paths traversing an even and an odd numberof shortuts an be performed in linear time sine, for eah level i, we have toperform a hoie for the two nodes f l

i and f r
i that is based on the hoies madefor the two nodes f l

i−1 to f r
i−1 of level i− 1 and on the weight of the four edgesthat onnet the verties of the two levels, whih results in a onstant numberof operations for eah level. 2Now we show how to modify AlgorithmNoParallel in order to handle thegeneral ase in whih a �ip operation may onern the split omponent induedby any split pair of an S-node µ. Intuitively, this orresponds to allow the �ipof an arbitrary number of onseutive neighbors of µ with one single operation.The idea is to relax the onstraint that two S-nodes an not be adjaent inthe SPQR-tree of G. Namely, for any maximal sequene σi = ν1, ν2, . . . , νkof onseutive nodes with the same label adjaent to µ, we add an S-node µiadjaent to µ and move σi from the adjaeny list of µ to the one of µi. Thelabel of µi is the same as the one of all the nodes on σi. The label of µ isomputed as for Algorithm NoParallel.
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3.6. FIXED-PARAMETER TRACTABILITY OF THE GENERAL CASE513.6 Fixed-Parameter Tratability of the General CaseIn Set. 3.3, we showed that the problem of transforming 〈Γ1, f1〉 into 〈Γ2, f2〉with the minimum number of �ip and skip operations is NP-omplete when Gis an arbitrary bionneted planar graph. In this setion, we study the �xed-parameter tratability of the problem when the struture of G is of limitedomplexity.Let T be the SPQR-tree of a bionneted planar graph G and let 〈Γ1, f1〉and 〈Γ2, f2〉 be two planar embeddings of G. We present an algorithm to om-pute a sequene of FS(〈Γ1, f1〉, 〈Γ2, f2〉) �ip and skip operations that trans-forms 〈Γ1, f1〉 into 〈Γ2, f2〉 in O(n2×2k+h) time, where k and h are two param-eters that desribe the arrangement of the P-nodes of T and their relationshipswith the S-nodes.We �rst sketh out how to handle P-nodes, whih are responsible for the NP-hardness of the general problem, with a �xed-parameter tratability approah.Reall that the embedding of the skeleton of a P-node µP is desribed in thelabelings of T representing Γ1 and Γ2 by two irular sequenes σ1 and σ2,respetively, of its adjaent virtual edges. As shown in the proof of Theorem 3.1,the problem of morphing σ1 into σ2 with the minimum number of �ips isequivalent to the sorting by reversal problem (SBR), whih has been provedto be NP-hard in both ases of linear and irular sequenes [Cap97, SSL03℄.In fat, sorting virtual edges is equivalent to sorting integer numbers, where a�ip of l ontiguous edges orresponds to a reversal of l ontiguous elements ofthe sequene of integer numbers.The �xed-parameter approah is based on the fat that the SBR probleman be solved in polynomial time, both in its linear and in its irular for-mulation, when eah number is given a sign and the reversal of l ontiguouselements of a sequene also hanges their signs [KST97, TBS07, MWD00℄.Indeed, when all the virtual edges adjaent to a P-node orrespond to om-ponents that have to be suitably ��ipped� while being reordered, that is, theyan be provided with a sign, then the problem of morphing σ1 into σ2 anbe modeled as an instane of the signed SBR problem, hene admitting apolynomial-time solution. For example, if all the nodes adjaent to a P-nodeare R-nodes, whih an always be provided with a sign, then the minimumnumber of �ips to sort them an be omputed in polynomial time. Unfortu-nately, some virtual edges, as for example those orresponding to paths, usedin the NP-hardness proof of Set. 3.3, do not need to be �ipped in a spei�way.In order to exploit the polynomial-time solvability of the signed SBR prob-
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52 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHSlem while taking into aount the fat that not all the virtual edges an beassigned a sign without a�eting the optimality of the solution, we assumethat the number of suh virtual edges around eah P-node is limited by aparameter k. Then, we onventionally assign to suh k virtual edges all theombinations of signs, and we apply 2k times the signed SBR polynomial-timealgorithm. In fat, there exists an assignment of signs suh that the minimumnumber of reversals to order the orresponding signed sequene is equal tothe minimum number of reversals to order the original mixed signed/unsignedsequene [AA04℄.As in the previous ases, we fous on the ase in whih T1 ∩ T2 = ∅, thatis the most omplex. The ase when T1 ∩ T2 6= ∅ an be takled with similartehniques. The algorithm is desribed in detail below.In order to ompute FS(〈Γ1, f1〉, 〈Γ2, f2〉), eah node of T is labeled asturned, unturned, or neutral, as desribed in the following. Intuitively, labelsturned and unturned represent the sign of a omponent, while label neutralis assigned to omponents that an not be provided with a sign. First, we orderthe nodes of T based on their distane from the skip path sp. Then, startingfrom the farthest ones, we label the nodes that are not in sp with the strategydesribed below. Finally, we label the nodes of sp with a di�erent strategy.Now we desribe how to label the elements that are not on the skip path.Consider the urrent unlabeled node µ not in sp. Observe that all the nodesadjaent to µ, with the exeption of the node that links µ to sp, have alreadybeen assigned a label.
• If µ is an R-node, we label µ based on its embedding, as desribed inSetion 3.5 for Algorithm NoParallel. Observe that suh a label iseither turned or unturned, but it is never neutral.
• If µ is a Q-node, we label µ neutral.
• If µ is an S-node, we assign µ the label of the majority of its non-neutrallabeled adjaent nodes. In ase of a tie, we label µ neutral.
• If µ is a P-node, denote by σ1 and σ2 the two irular sequenes asso-iated with µ in the labelings of T representing Γ1 and Γ2, respetively.When labeling µ, at the same time we also ompute the minimum num-ber of �ips that are needed to transform σ1 into σ2.First observe that, sine the external fae traverses only the nodes of Tbelonging to the skip path, by Property 3.5, at eah step of the om-putation all the edges inident to the external fae are ontained into
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3.6. FIXED-PARAMETER TRACTABILITY OF THE GENERAL CASE53pertinent(ν, e(µ|ν)), where ν is the node of T that links µ to sp. Hene,node ν an never be part of a �ip/reversal during the sorting of the ir-ular sequene of the nodes adjaent to µ, whih implies that σ1 and σ2are atually linear sequenes, as far as only �ip operations are onerned.Namely, denote by σ′
1 and σ′

2 the two linear sequenes obtained from σ1and σ2, respetively, by removing the virtual edge e(ν|µ) and startingwith the virtual edge that follows e(ν|µ) in σ1.Let k be the number of neutral elements of σ′
1 and σ′

2. We assign allpossible ombinations of turned and unturned values to suh elements,and ompute 2k times the linear signed SBR distane d from σ′
1 to σ′

2.Also, we ompute the analogous distane d from σ′
1 to σ′

2, where σ′
2 isthe sequene obtained from σ′

2 by ompletely reversing the order and byhanging the signs of all the elements of the sequene. More preisely,
σ′

2 is obtained as the result of a �ip/reversal of the whole sequene σ′
2.If d < d (d > d, d = d, respetively) we assign µ the label unturned(turned, neutral, respetively).Now we desribe how to assign labels to the elements of the skip pathsp= µ1, µ2, . . . , µk from T1 to T2. We onstrut a labeling suh that nodes insp are never labeled neutral.First observe that no Q-node µ an be on sp, as pertinent(µ, e(ν|µ)), where

ν is the only node of T adjaent to µ, does not ontain any internal faes. Thelabels of the R-nodes are assigned based on their embeddings, as in Set. 3.5.Labels to the S-nodes µS are assigned as in Set. 3.5, that is, by breakinga possible tie in the number of turned and unturned neighbors in suh a waythat the label of µS is di�erent from the label of at least one of its neighborsin sp. Sine R-nodes have always a sign and two S-nodes an not be adjaentin T , the only ase to onsider is when both of its neighbors in sp are P-nodes,whose sign still depends on its neighbors, whih reates a mutual dependene.Suh a problem an be extended to the ase in whih we have an alternatedsequene of S- and P-nodes on sp. Hene, we assume that the number of P-nodes in sp is limited by a parameter h and we ompute the �xed-parametertratable solution based also on this parameter. Namely, if we have h P-nodesin sp, we onsider for them all the 2h ombinations of the two labels turnedand unturned and, for eah of them, we ompute the labels of the adjaentS-nodes in sp and we perform the following omputation.As in Algorithm NoParallel, we extend the labeling from the nodes tothe edges of T . In partiular, an edge is labeled turned if its inident nodeshave di�erent labels and none of them is a P-node, otherwise it is unturned.
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54 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHSWe onstrut a weighted trak graph Trak(f1, f2) as in Algorithm NoPar-allel, where P-nodes were not present. Here we desribe how to set theweights of the edges exiting nodes f l
i and f r

i orresponding to a P-node µi insp. All other weights are set as desribed in Set. 3.5.The weight of an horizontal edge for a P-node is 1, representing the possi-bility to skip the whole parallel omponent with one single operation.In order to set the weight of a vertial edge for a P-node, we have to onsiderthat, sine the external fae moves along the nodes of the skip path sp, thereis no neighbor νi of µi suh that pertinent(ν, e(µi, ν)) ontains all the edgesinident to the external fae during all the omputation. Therefore, it is notpossible to remove one of the nodes from the sequene and onsider it as linear,as done for the P-nodes that are not in sp.However, it is still possible to represent the fat that the urrent exter-nal fae is a fae of the skeleton of µi by means of two linear sequenes, byutting the irular sequene in suh a way that the virtual edge representingthe omponent µi−1, that preedes µi in sp, is the �rst and the last element,respetively, of the two obtained linear sequenes.More preisely, denote by σ1,i and σ2,i the two irular sequenes represent-ing the embedding of µi in Γ1 and Γ2, respetively. From σ1,i we obtain thelinear sequene σl
1,i (σr

1,i) ending with (starting with, respetively) the virtualedge orresponding to µi−1. Intuitively, sequene σl
1,i (σr

1,i) orresponds tothe on�guration of the parallel omponent when the external fae is f l
i (f r

i ).Analogously, from σ2,i we obtain the linear sequene σl
2,i (σr

2,i) ending with(starting with, respetively) the virtual edge orresponding to µi+1.Our aim is to set the weight of eah vertial edge (fs
i , f t

i+1), with s, t ∈
{l, r}, as the minimum number of operations needed to transform σs

1,i into
σt

2,i. Observe that, when the external fae is moved from fs
i to another fae

f of skel(µi) in Γ1, we obtain a new linear sequene σ∗
1,i orresponding to adi�erent ut of the same irular order as σs

1,i. Namely, σ∗
1 is obtained from

σ1 by utting it between the two virtual edges adjaent to f . Hene, whenomputing the minimum number of operations needed to transform σs
1,i into

σt
2,i, we have to onsider the possibility of �rst transforming σs

1,i into a di�erentlinear sequene σ∗
1,i with the same irular order, that an be done with oneskip operation, and then transforming σ∗

1,i into σt
2,i with the minimum numberof �ips, that an be done by applying the signed SBR algorithm. In order todo this, observe that all the nodes adjaent to µi in T are labeled as turned,unturned, or neutral. Let k be the number of nodes adjaent to µi and labeledneutral. As desribed above, we onsider all possible assignments of turned
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3.6. FIXED-PARAMETER TRACTABILITY OF THE GENERAL CASE55and unturned values to suh nodes, and we ompute 2k times the linear signedSBR distane from σ∗
1,i to σt

2,i. The weight of the vertial edge (fs
i , f t

i+1) is theminimum of suh ni × 2k values, where ni is the number of faes of skel(µi),whih is equal to the number of nodes adjaent to µi in T .The remaining part of the algorithm stritly follows the lines of AlgorithmNoParallel. Namely, we ompute a weighted shortest path from f1 to f2in Trak(f1, f2) and, based on suh a path, we deide the sequene of skipand �ip operations to be performed. Again, if Trak(f1, f2) admits more thanone weighted shortest path, we hoose among suh paths taking into aountthe number of shortuts traversed, orresponding to �ip operations that areonvenient to be performed in advane.Here we analyze the omputational omplexity of the algorithm. All theoperations, exept for those involving P-nodes, an be performed in linear time,as stated in Setion 3.5.For eah P-node µi not belonging to the skip path, the omputation of theminimum sequene of �ips needed to transform σ1,i into σ2,i an be performedin O(ni×2k) time, where ni is the number of neighbors of µi in T . Observe thatomputing the minimum SBR distane an be done in linear time [BMY01℄,while atually �nding the sequene of operations that yields that minimum anbe done in time O(n
3
2

i

√
log(ni)) time [TBS07℄. Hene, when onsidering the 2kpossible assignments, we only ompute the minimum SBR distane and then,when the optimal assignment has been found, we perform the algorithm for�nding the atual sequene of �ips.For eah P-node µ belonging to sp, the omputation of the minimum se-quene of �ips needed to transform σs

1,i into σt
2,i an be performed in O(n2

i×2k).Namely, we have to onsider the 2k assignments of signs to the k neutral neigh-bors of µi, whih requires O(ni×2k) time, and the possibility to transform σs
1,iinto σt

2,i by �rst moving the external fae to eah of the ni faes of skel(µi) in
Γ1 and then performing the omputation of the signed linear SBR distane inlinear time. Sine suh a omputation has to be performed for eah of the 2hassignments of labels to the h P-nodes of sp, the total omputational omplex-ity of the algorithm is O(2h×∑h

i=1(n
2
i × 2k)), whih is equal to O(n2× 2k+h),sine the total number of neighbors of all the P-nodes is less than, or equal to,the total number of edges of T , that is O(n).Based on the above disussion we have:Theorem 3.4 Let G be a bionneted planar graph and let 〈Γ1, f1〉 and 〈Γ2, f2〉be two planar embeddings of G. Let T be the SPQR-tree of G, let k be the
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56 CHAPTER 3. TOPOLOGICAL MORPHING OF PLANAR GRAPHSmaximum number of neutral S-nodes adjaent to a P-node in T , and let h be thenumber of P-nodes in the skip path sp(f1, f2). If both �ip and skip operationsare allowed, then FS(〈Γ1, f1〉, 〈Γ2, f2〉) an be omputed in O(n2× 2k+h) time.3.7 ConlusionsPreserving the user mental map while oping with ever-hanging informationis a ommon goal of the Graph Drawing and the Information Visualizationareas. The information represented, in fat, may hange with respet to threedi�erent levels of abstration: (i) strutural hanges may modify the graphthat the user is inspeting; (ii) topologial hanges may a�et the way thesame graph is embedded on the plane; and (iii) drawing hanges may map thesame embedded graph to di�erently positioned graphi objets.A large body of literature has been devoted to strutural hanges, address-ing the representation models and tehniques in the so-alled dynami andon-line settings. Also, muh researh e�ort has been devoted to manage draw-ing hanges, where the target is to preserve the mental map by morphing thepiture while avoiding intersetions and overlappings. On the ontrary, to ourknowledge, no attention at all has been devoted to topologial hanges, thatis, hanges of the embedding of a graph in the plane. In [KL08℄, Kobourovand Landis onsider the morphing of two planar drawings of a maximal planargraph on the sphere, with the intent of studying the e�ets of hanging theexternal fae in the drawing while maintaining the ombinatorial embedding.In this hapter we addressed the topologial morphing problem. Namely,the problem of morphing a topology into another one with a limited numberof hanges. Many open problems are left. (1) Primitives. We onsidered twotopologial primitives, alled �ip and skip. It would be important to enrihsuh a set with other operations that an be onsidered �natural� for the user'spereption. (2) Connetivity. It is easy to extend the results presented inSet. 3.4 to simply onneted graphs. However, the other presented resultsare deeply related to bionnetivity. There is a lot of spae here for furtherinvestigation. (3) We gave the same weight to the operations performed duringthe morphing. However, other metris are possible. For example, one ouldweight an operation as a non-dereasing funtion of the moved edges or of thethikness of the moved omponent.As a �nal remark we underline how usually the Computational Biology �eldlooks at Graph Drawing as a tool. In this ase it happened the opposite. Infat, Theorems 3.1 and 3.4 exploit Computational Biology results.
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Chapter 4Testing Planarity of PartiallyEmbedded GraphsIn this hapter1, we onsider a problem strongly related to the lassial pla-narity testing problem, as we study the planarity testing in a setting in whihthe planar embedding that we aim to ompute has to respet some furtheronstraints given as part of the input. Namely, given a planar graph and aplanar embedding of one of its subgraphs, we ask whether the embedding ofsuh a subgraph an be extended to a planar embedding of the entire graph.Observe that this problem is a generalization of the planarity testing prob-lem, as solving an instane in whih H does not ontain any edge (or in whihthe edge-set of H indues a set of paths) is equivalent to solving an instane ofthe planarity testing with G as input.This problem �ts the paradigm of extending a partial solution to a om-plete one, whih has been studied before in many di�erent settings. Unlikemany ases, in whih the presene of a partial solution in the input makeshard an otherwise easy problem, we show that the planarity question remainspolynomial-time solvable, that is, we show a haraterization of the partiallyembedded graphs that admit an embedding extension and a linear-time algo-rithm for testing embedding extension.Finally, we onsider several generalizations of the problem, e.g. minimizingthe number of edges of the partial embedding that need to be rerouted to extend1The work presented in this hapter is part of a joint work with Giuseppe Di Battista,Fabrizio Frati, Vít Jelínek, Jan Kratohvíl, Maurizio Patrignani, and Ignaz Rutter, appearedin [ADF+10℄. 57
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58 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSit, and argue that they are NP-hard. Also, we show how our algorithm an beapplied to solve related Graph Drawing problems, as the one of embeddingstwo planar graphs on the same set of points when the edges shared by the twographs have to be represented by the same urve and the embedding of one ofthe two graphs is �xed in advane.4.1 IntrodutionIn this hapter we pose and study the question of planarity testing in a on-strained setting, namely when a part of the input graph is already embeddedand annot be hanged. A pratial motivation for this question is, e.g., thevisualization of large networks in whih ertain patterns are required to bedrawn in a standard way. The known planarity testing algorithms, even thosethat build an embedding inrementally, are of no help here, sine they areallowed to redraw at eah step the part of the graph proessed so far. For sim-ilar reasons, online planar embedding and planarity testing algorithms, suh as[Wes92, Tam96, DT96b, Pou94℄, are not suitable to be used in this ontext.The question of testing the planarity of partially embedded graphs �ts intothe general paradigm of extending a partial solution to a full one. This has beenstudied in various settings and it often happens that the extendability problemis more di�ult than the unonstrained one. As an example, graph oloring isNP-omplete for perfet graphs even if only four verties are already olored[KS97℄, while the hromati number of a perfet graph an be determined inpolynomial time. Another example is provided by edge olorings � deiding 3-edge-olorability of ubi bipartite graphs if some edges are already olored isNP-omplete [Fia03℄, while it follows from the famous König-Hall theorem thatubi bipartite graphs are always 3-edge olorable. In view of these hardnessresults it is somewhat surprising that the planarity of partially drawn graphsan be tested in polynomial time, in fat linear, as we show in this hapter. Allthe more so sine this problem is known to be NP-hard [Pat06℄ for drawingswhere edges are onstrained to be straight-line segments.Spei� onstraints on planar graph drawings have been studied by sev-eral authors. See, e.g., [TDB88, Tam98, Dor02, GKM08℄. Unfortunately,none of those results an be exploited to solve the question we pose. Mo-har [Moh99, JM05℄ gives algorithms for extending 2-ell embeddings on thetorus and surfaes of higher genus. However, the 2-ell embedding is a verystrong ondition that substantially hanges the nature of the problem.In order to solve the general problem, we allow disonneted or low on-
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4.1. INTRODUCTION 59neted graphs to be part of the input. It is readily seen that in this ase therotation shemes of the verties do not fully desribe the input. In fat, therelative position of verties against yles in the graph must also be onsidered.Further, we make use of the fat that drawing graphs on the plane and on thesphere are equivalent onepts. The advantage of onsidering embeddings onthe sphere lies in the fat that we do not need to distinguish between the outerfae and the inner faes.The main idea of our algorithm is to look at the problem from the �oppo-site� perspetive. Namely, we do not try to diretly extend the input partialembedding (whih seems muh harder than one would expet). Instead, welook at the possible embeddings of the entire graph and deide if any of themontains the partially embedded part as presribed by the input.Our algorithm is based on several ombinatorial lemmata, relating the prob-lem to the onnetivity of the graph. Most of them exhibit the �onas� property� the obvious neessary onditions are also su�ient. This is partiularly ele-gant in the ase of 2-onneted graphs. In this ase, we exploit the SPQR-treedeomposition of the graph. It is indeed obvious that if a 2-onneted graphadmits a feasible drawing, then the skeleton of eah node of the SPQR-treehas a drawing ompatible (a preise de�nition of ompatibility will ome later)with the partial embedding. We prove that the onverse is also true. Hene� if we only aim at polynomial running time � we do not need to performany dynami programming on the SPQR-tree and we ould proess its nodesindependently. However, for the ultimate goal of linear running time, we mustre�ne the approah and pass some information through the SPQR-tree. Then,dynami programming beomes more than useful. Also, the SPQR-trees areexploited at two levels of abstration, both for deomposing an entire blokand for omputing the embedding of the subgraph indued by eah fae of theonstrained part of the drawing.Further, we study some problems that are a generalization of the planaritytesting of partially embedded graphs, as for example the problem in whih themaximum number of edges that an be reinserted in the partially drawn graphwhile maintaining planarity is requested, and we show that they are NP-hard.Finally, we show that testing the planarity of partially drawn graphs isequivalent to the speial ase of the simultaneous embedding with �xed edgesproblem in whih one of the two graphs has a �xed embedding. Hene, as aside result, we show that our algorithm solves this problem in linear time.The hapter is organized as follows. In Setion 4.2 we desribe the termi-nology and list auxiliary topologial lemmata. In partiular, the ombinatorialinvariants of equivalent embeddings are introdued. In Setion 4.3 we state the
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60 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSombinatorial haraterization theorems for disonneted, simply onneted,and 2-onneted ases. The onsequene of them is a simple polynomial-timealgorithm outlined at the end of the setion. Setion 4.4 is then devoted todesribe tehnial details of the linear-time algorithm. In Set. 4.5 we presentsome generalizations of the problem. In Set. 4.6 we study how our tehniquesan be used to solve other Graph Drawing problems, as the speial ase ofsimultaneous embedding with �xed edges. Setion 4.7 summarizes the resultsand lists some related open problems.4.2 Notation and PreliminariesIn this setion we introdue some notations and preliminaries.First, we give a de�nition of embedding that is slightly di�erent from the oneused till now, sine it has to take into aount the relative positions of di�erentonneted omponent of a non-onneted graph, that happens to be importantin the problem onsidered in this hapter, but that is usually irrelevant for othertype of problems. For example, in the planarity testing di�erent onnetedomponents an be treated separately and then reomposed in any way, whilein this ase it is not possible. Namely, suppose that the part of the graphthat has already been drawn ontains a yle C and a vertex v, belongingto a di�erent onneted omponent, that is drawn inside C. Then, suh aninformation an not be enoded by simply speifying the rotation sheme ofeah vertex, and a further information is needed.Let D be a planar drawing of a graph G. Visiting the (not neessarilyonneted) border of a fae f of D in suh a way to keep f to the left, wedetermine a set of irular lists of verties. Suh a set is the boundary of
f . We say that two drawings are equivalent if they have the same rotationsheme for eah vertex and the same fae boundaries. A planar embedding isan equivalene lass of planar drawings.Let H be a subgraph of a graph G and let H and G be embeddings of Hand G, respetively. The restrition of G to H is the embedding of H that isobtained from G by onsidering only the verties and the edges of H . Further,
G is an extension of H if the restrition of G to H is H. We study the followingdeision problem (see Fig. 4.1 for an example):Problem 4.1 (Partially Embedded Planarity (Pep)) Given a triplet
(G, H,H) of two graphs G and H, with H ⊆ G, and a planar embedding H of
H, does G admit a planar embedding whose restrition to H is H?
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4.2. NOTATION AND PRELIMINARIES 61

Figure 4.1: Embedding of a planar graph G whose restrition to H is H.Verties and edges in H are blak; verties and edges in G \H are grey.Connetivity and data struturesLet (G, H,H) be an instane of Pep. In the following we de�ne some datastrutures that are widely used throughout the hapter.The omponent-fae tree CF of H is a tree whose nodes are the onnetedomponents of H and the faes of H. A fae f and a omponent C are joinedby an edge if a vertex of C is inident to f . The blok-fae tree BF of H is atree whose nodes are the bloks of H and the faes of H. A fae f and a blok
B are joined by an edge if B ontains an edge inident to f . The vertex-faeinidene graph VF of H is a graph whose nodes are the verties of H and thefaes of H. A vertex x and a fae f are joined by an edge if x appears on theboundary of f . The enrihed blok-utvertex tree of a onneted graph G is atree obtained by adding to the blok-utvertex tree of G eah vertex v of Gthat is not a utvertex and by onneting v to the unique blok it belongs to.Also, we will make deep use of BC-trees [HP66℄ and SPQR-trees [DT96b℄.In the following we disuss the time omplexity of onstruting suh datastrutures.First, observe that a linear-time preproessing an assoiate eah edge ofa planar graph with the unique onneted omponent it belongs to, with theunique blok it belongs to, and (given a planar embedding of the graph) with



i

i �main� � 2010/2/26 � 12:27 � page 62 � #72
i

i

i

i

i

i

62 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSthe at most two faes it is inident to, and an assoiate eah vertex of a graphwith the unique onneted omponent it belongs to.The blok-utvertex tree of a onneted planar graph and the SPQR-treeof a bionneted planar graph an be onstruted in linear time [GM00℄.The enrihed blok-utvertex tree of a onneted planar graph G is on-struted by adding to the blok-utvertex tree of G eah vertex v that is not autvertex of G and an edge between v and the only blok it belongs to.The blok-fae tree BF of a planar embedding G of a graph G an beonstruted in linear time. Namely, for eah edge e of G, let Be be the uniqueblok of G ontaining e and let f ′
e and f ′′

e be the two faes of G adjaent to e(possibly f ′
e = f ′′

e ). Add edges (f ′
e, Be) and (f ′′

e , Be) to BF . When all the edgesof G have been onsidered, the resulting multigraph BF has a linear numberof edges. Remove multiple edges as follows. Root BF at any node and orient
BF so that all the edges point toward the root. Remove all the edges, exeptfor one, exiting from eah node, thus obtaining BF .The omponent-fae tree CF of a planar embedding G of a planar graph Gan be onstruted in linear time, analogously as for the blok-fae tree.The vertex-fae inidene graph VF of a planar embedding G of a graph Gis onstruted in linear time by proessing faes of G one by one. In fat, foreah fae f , walk along the boundary of f and add to VF edges between f andthe verties on the boundary. To avoid multiple edges, we remember, for eahvertex x, the last fae f that has been onneted to x in VF .Kowalik and Kurowski [KK03℄ have shown that for a given planar graph
F and an integer k, it is possible to build in linear time a `short-path' datastruture, whih allows to hek in onstant time whether two given vertiesof F are onneted by a path of length at most k, and return suh a path if itexists. We will employ this data struture to searh for paths of length 1 and2 in our auxiliary graphs. Using this data struture, we an, e.g., determine inonstant time whether two verties share the same fae in H (by �nding a pathof length two in the vertex-fae inidene graph VF) or whether they share thesame blok (by �nding a path of length 2 in the enrihed blok-utvertex tree).Faial yles and H-bridgesLet Γ be a planar drawing of a graph H (see Fig. 4.2.a). Let ~C be a simple ylein H with an arbitrary orientation. The oriented yle ~C splits the plane intotwo onneted parts. Denote by V left

Γ (~C) and V right
Γ (~C) the sets of vertiesof the graph that are to the left and to the right of ~C in Γ, respetively. Theboundary of eah fae f of Γ an be uniquely deomposed into simple edge-
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4.2. NOTATION AND PRELIMINARIES 63disjoint yles, bridges (i.e., edges that are not part of a yle), and isolatedverties (see Fig. 4.2.b). Orient the yles in suh a way that f is to the leftwhen walking along the yle aording to the orientation. Call these orientedyles the faial yles of f (see Fig. 4.2.). Observe that the sets V left
Γ (~C),

V right
Γ (~C) and the notion of faial yles only depend on the embedding H of

Γ. Hene, it makes sense to denote V left
H (~C) and V right

H (~C), and to onsiderthe faial yles of H.
1

2 3
4

5 6 7

89

10
3018

21 2022
19

23
24

25
26

27 28
29

32
31 3313

12
14 11

16 17

15

34

(a)
4 9

1018

20
19 29

32
31 3313

12
14 11

16 17

15

34

4
9

1018

20
19 29

13
12

11

16 17

15

34

(b) ()Figure 4.2: (a) A planar drawing of a graph G. The shaded regionrepresents a fae f of the drawing. (b) The boundary of f . Theirular lists de�ning the boundary of f are: [15, 16, 17], [33, 31, 32, 31],
[13, 12, 14, 12, 11, 10, 9, 4, 29, 20, 19, 18, 20, 4]. () The faial yles of f .Let x be a vertex of a graph G with embedding G. Denote by EG(x) theset of edges inident to x and by σG(x) the rotation sheme of x in G.Lemma 4.1 Let (G, H,H) be an instane of Pep and let G be a planar em-bedding of G. The restrition of G to H is H if and only if the followingonditions hold: 1) for every vertex x ∈ V (H), σG(x) restrited to EH(x) o-inides with σH(x), and 2) for every faial yle ~C of eah fae of H, we havethat V left

H (~C) ⊆ V left
G (~C) and V right

H (~C) ⊆ V right
G (~C).
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64 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSProof: The proof easily desends from the following statement. Let Γ1 and
Γ2 be two drawings of the same graph G suh that, for every vertex x ∈ V (G),
σΓ1

(x) = σΓ2
(x). Drawings Γ1 and Γ2 have the same embedding if and only if

Γ1 and Γ2 have the same oriented faial yles and for eah faial yle ~C wehave V left
Γ1

(~C) = V left
Γ2

(~C).We need to prove this statement in both diretions: (i) if Γ1 and Γ2 havethe same embedding then they have the same oriented faial yles and for eahfaial yle we have V left
Γ1

(~C) = V left
Γ2

(~C) and (ii) if Γ1 and Γ2 have the sameoriented faial yles and for eah faial yle we have V left
Γ1

(~C) = V left
Γ2

(~C),then Γ1 and Γ2 have the same embedding.The �rst diretion trivially desends from the observation that drawingswith the same embedding have the same faial yles. Suppose for a ontra-dition that, for some faial yle ~C, V left
Γ1

(~C) 6= V left
Γ2

(~C). Then, at least onevertex v is to the left of ~C in Γ1 and to the right of ~C in Γ2 (the opposite asebeing analogous). Hene, v is part of the boundary of a fae that is to the leftof ~C in Γ1 and to the right of ~C in Γ2, ontraditing the hypothesis that Γ1and Γ2 have the same faial boundaries.For the seond diretion, �rst suppose that G is onneted and has at leastone vertex of degree three. In this ase, the fat that Γ1 and Γ2 have thesame rotation sheme implies that they also have the same fae boundaries,and, hene, the same embedding. Seond, suppose that G is onneted andhas maximum degree two. Then, G is either a path or a yle. In both ases,the fae boundaries of Γ1 and Γ2 are the same (reall that G is drawn onthe sphere). Finally, suppose that G has several onneted omponents C1,
C2, . . . , Ck. Then, Γ1 and Γ2 have the same fae boundaries if: (a) for eah
Ci, i = 1, . . . , k, the embedding G1 of Γ1 restrited to Ci is the same as theembedding G2 of Γ2 restrited to Ci and (b) eah pair of onneted omponents
Ci and Cj , with i, j = 1, . . . , k and i 6= j, either do not share a fae both in
G1 and in G2 or they ontribute with the same irular lists to the boundary ofthe same fae f in G1 and in G2.Condition (a) is guaranteed as in the two ases in whih G is onneted.Condition (b) follows from the hypothesis that, for eah faial yle ~C, we have
V left

Γ1
(~C) = V left

Γ2
(~C). In fat, suppose for a ontradition that two onnetedomponents Cx and Cy share a fae f in G1 and no fae in G2. Sine Cxand Cy share a fae in G1, they are on the same side of any faial yle ~Cbelonging to any other omponent Cz (more intuitively, Cx and Cy an not beseparated by any faial yle of Γ1). On the other hand, onsider the uniquepath Cx, f1, C1, f2, . . . , Cy in the omponent-fae tree of G2. By hypothesis,
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4.3. COMBINATORIAL CHARACTERIZATION 65
C1 6= Cx, Cy. Hene, the faial yle ~C obtained from the boundary of f1and ontaining verties of C1 separates Cx from Cy, thus ontraditing thehypothesis that V left

Γ1
(~C) = V left

Γ2
(~C).Finally, suppose for a ontradition that two onneted omponents Cx and

Cy ontribute with irular lists Lx
1 and Ly

1 to the boundary of the same fae
f1 of G1 and with irular lists Lx

2 and Ly
2 to the boundary of the same fae

f2 of G2 and suppose that Lx
1 6= Lx

2 . The boundary of f1 is oriented in suh away that every faial yle has f1 to its left. Then, every faial yle obtainedfrom Lx
1 has Cy to its left. Further, for every yle C′ of Cx that is not a faialyle obtained from Lx

1 , there exists a faial yle ~C obtained from Lx
1 that has

C′ to its right (part of ~C and of C′ may oinide). As G1 and G2 restrited to
Cx give the same embedding, the last statement is true both in G1 and in G2.Then, for every faial yle ~C′ obtained from Lx

2 and not from Lx
1 , there existsa faial yle ~C obtained from Lx

1 hat has ~C′ to its right. Sine ~C′ is inidentto f2 and sine Cy is inident to f2, suh a omponent is to the right of ~C,ontraditing the hypothesis that V left
Γ1

(~C) = V left
Γ2

(~C). 2Let G be a graph and let H be a subgraph of G. An H-bridge K of G isa subgraph of G formed either by a single edge e ∈ E(G) \ E(H) whose end-verties belong to H or by a onneted omponent K− of G− V (H), togetherwith all the edges (and their end-verties) that onnet a vertex in K− to avertex in H . In the �rst ase, the H-bridge is trivial. A vertex that belongs to
V (H) ∩ V (K) is alled an attahment vertex (or attahment) of K. Note thatthe edge-sets of the H-bridges form a partition of E(G) \ E(H).An H-bridge K is loal to a blok B of H if all the attahments of K belongto B. Notie that an H-bridge with a single attahment an be loal to morethan one blok, while an H-bridge with at least two attahments is loal to atmost one blok. An H-bridge that is not loal to any blok of H is non-loal.4.3 Combinatorial CharaterizationWe �rst present a ombinatorial haraterization of the instanes of Pep thatallow an embedding extension. This not only forms a basis of our algorithm,but it is also interesting in its own right, sine it shows that an instane of Pephas an embedding extension if and only if it satis�es simple onditions that areobviously neessary for an embedding extension to exist.
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66 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHS
G bionnetedWe fous on instanes (G, H,H) of Pep in whih G is bionneted. Thisassumption allows us to use the SPQR-tree of G as the main tool of our har-aterization.De�nition 4.1 A planar embedding of the skeleton of a node of the SPQR-treeof G is edge-ompatible with H if, for every vertex x of the skeleton and forevery three edges of EH(x) belonging to di�erent virtual edges of the skeleton,their lokwise order determined by the embedding of the skeleton is a suborderof σH(x).Lemma 4.2 Let (G, H,H) be an instane of Pep where G is bionneted.Let T be the SPQR-tree of G. An embedding G of G satis�es Condition 1 ofLemma 4.1 if and only if, for eah node µ of T , the orresponding embeddingof skel(µ) is edge-ompatible with H.Proof: Obviously, ifG has an embedding satisfying Condition 1 of Lemma 4.1,then the orresponding embedding of skel(µ) is edge-ompatible with H, foreah node µ of T .To prove the onverse, assume that the skeleton of every node of T hasan embedding that is edge-ompatible with H, and let G be the embeddingof G determined by all suh skeleton embeddings. We laim that G satis�esCondition 1 of Lemma 4.1. To prove the laim, it su�es to show that anythree edges e, f, and g of H that share a ommon vertex x appear in the samelokwise order around x in H and in G. Assume that the triple (e, f, g) isembedded in lokwise order around x in H. Let µ be the node of T withthe property that the Q-nodes representing e, f , and g appear in distintomponents of T − µ. Note that suh a node µ exists and is unique. Thethree edges e, f , and g projet into three distint virtual edges e′, f ′, and g′ ofskel(µ). Sine the embedding of skel(µ) is assumed to be edge-ompatible with
H, the triple (e′, f ′, g′) is embedded in lokwise order in skel(µ), and henethe triple (e, f, g) is embedded in lokwise order in G. 2Consider a simple yle ~C of G with an arbitrary orientation and a node µof the SPQR-tree of G. Either all the edges of ~C belong to the pertinent graphof a single virtual edge of skel(µ) or the virtual edges whose pertinent graphsontain the edges of ~C form a simple yle in skel(µ). Suh a yle in skel(µ)inherits the orientation of ~C in a natural way.
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4.3. COMBINATORIAL CHARACTERIZATION 67De�nition 4.2 A planar embedding of the skeleton of a node µ of the SPQR-tree of G is yle-ompatible with H if, for every faial yle ~C of H whoseedges projet to a simple yle ~C′ in skel(µ), all the verties of skel(µ) thatbelong to V left
H (~C) and all the virtual edges that ontain verties of V left

H (~C)(exept for the virtual edges of ~C′ itself) are embedded to the left of ~C′; andanalogously for V right
H (~C).Lemma 4.3 Let (G, H,H) be an instane of Pep where G is bionneted.Let T be the SPQR-tree of G. An embedding G of G satis�es Condition 2 ofLemma 4.1 if and only if, for eah node µ of T , the orresponding embeddingof skel(µ) is yle-ompatible with H.Proof: Obviously, if G is an embedding of G that satis�es Condition 2 ofLemma 4.1, then the orresponding embedding of skel(µ) is yle-ompatiblewith H, for eah node µ of T .To prove the onverse, assume that skel(µ) has an embedding that is yle-ompatible with H, for eah node µ of T , and let G be the resulting embeddingof G. Our goal is to show that, for every faial yle ~C of H and for everyvertex x of H − V (~C), the relative left/right position of x with respet to ~C isthe same in H as in G.Refer to Fig. 4.3. Assume that x is to the right of ~C in G (the other asebeing analogous). Let P be the shortest path in G onneting x to a vertex of

~C. Path P exists sine G is onneted. Let y be the vertex of ~C ∩P , and let eand f be the two edges of ~C adjaent to y, where e diretly preedes f in theorientation of ~C. By the minimality of P , all the verties of P − y avoid ~C,hene all the verties of P − y are to the right of ~C in G. Let g be the edge of
P adjaent to y. In G, the triple (e, f, g) appears in lokwise order around y.Let µ be the (unique) internal node of T in whih e, f , and g projet todistint edges e′, f ′, and g′ of skel(µ). Let ~C′ be the projetion of ~C into skel(µ)(in other words, ~C′ is the subgraph of skel(µ) formed by edges that ontainthe projetion of at least one edge of ~C), and let P ′ be the projetion of P .It is easy to see that ~C′ is a yle of length at least two, while P ′ is either apath or a yle. Assume that the edges of ~C′ are oriented onsistently with theorientation of ~C and that the edges of P ′ form an ordered sequene, where theedge ontaining x is the �rst and g′ is the last.Both the endpoints of an edge of ~C′ are verties of ~C. Analogously, boththe endpoints of an edge of P ′ are verties of P , with the possible exeptionof the �rst vertex of P ′. It follows that no vertex of P ′ belongs to ~C′, exept
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68 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHS
y
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gx P

C
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eC’
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’

P

f
g(a) (b)Figure 4.3: Illustration for the proof of Lemma 4.3. Grey regions representvirtual edges of the skeleton of a node of T .possibly for the �rst one and the last one. Thus, no edge of P ′ belongs to ~C′and, by the assumption that the embedding of skel(µ) is planar and that G isthe embedding resulting from the skeleton embedding hoies, all the edges of

P ′ are embedded to the right of the direted yle ~C′ in skel(µ). In partiular,the edge of skel(µ) ontaining x is to the right of ~C′. Sine the embedding ofskel(µ) is assumed to be yle-ompatible with H, x is to the right of ~C in H.This shows that G satis�es Condition 2 of Lemma 4.1, as laimed. 2De�nition 4.3 A planar embedding of the skeleton of a node µ of the SPQR-tree of G is ompatible with H if it is both edge- and yle-ompatible with
H. As a onsequene of Lemmata 4.2 and 4.3, we obtain the following result,haraterizing the positive instanes of Pep in whih G is bionneted.Theorem 4.1 Let (G, H,H) be an instane of Pep where G is bionneted.Then G has an embedding whih extends H if and only if the skeleton of eahnode of its SPQR-tree has an embedding ompatible with H.If G is bionneted we an use Theorem 4.1 for devising a polynomial timealgorithm for Pep. Namely, we an test, for eah node µ of the SPQR-tree T of
G whether µ has an embedding ompatible with H. For Q-, S-, and R-nodes,this test is easily done in polynomial time.If µ is a P-node, the test is more omplex. Let x and y be the two poles ofskel(µ). We say that a virtual edge e of skel(µ) is onstrained if the pertinentgraph of e (that is, the pertinent graph of the hild node of µ in T orrespondingto e) ontains at least one edge of H inident to x and at least one edge
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4.3. COMBINATORIAL CHARACTERIZATION 69of H inident to y. To obtain an embedding of µ edge-ompatible with H,the onstrained edges must be embedded in a yli order that is onsistentwith σH(x) and σH(y). Suh a yli order, if it exists, is unique and anbe determined in polynomial time. Note that, if H has a faial yle ~C thatprojets to a proper yle ~C′ in µ, then ~C′ has exatly two edges and these twoedges are both onstrained. Thus, the embedding of any suh yle ~C′ in µ is�xed as soon as we �x the yli order of the onstrained edges. One the yliorder of the onstrained edges of µ is determined, we proess the remainingedges one-by-one and insert them among the edges that are already embedded,in suh a way that no edge-ompatibility or yle-ompatibility onstraintsare violated. It is not di�ult to verify that this proedure onstruts anembedding of µ ompatible with H, if suh an embedding exists.
G simply-onneted or disonnetedA graph is planar if and only if eah of its bloks is planar. Thus, planaritytesting of general graphs an be redued to planarity testing of bionnetedgraphs. For partially embedded planarity, the same simple redution does notwork (see Fig. 4.4). However, we will show that solving partially embeddedplanarity for a general instane (G, H,H) an be redued to solving the subin-stanes indued by the bloks of G and to heking additional onditions thatguarantee that the partial solutions an be ombined into a full solution for G.

(a) (b) ()Figure 4.4: Three examples of Pep instanes (G, H,H) with no embeddingextension, even if eah blok of G admits an embedding extending the or-responding sub-embedding of H. Blak edges and verties represent H, grayedges and verties belong to G but not to H . Note that instane (a) fails tosatisfy Condition 3 of Lemma 4.4, instane (b) fails to satisfy Condition 2 ofLemma 4.4, and instane () has a non-trivial non-loal H-bridge.Let us onsider instanes (G, H,H) of Pep in whih G is onneted. Whendealing with suh an instane, it is often useful to assume that G has no non-trivial non-loal H-bridge. We will now show that any instane of Pep an betransformed to an equivalent instane that satis�es this additional assumption.
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70 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSLet K be a non-trivial non-loal H-bridge of G. Sine K is non-loal, itmust have at least two attahments, and these attahments do not belong toany single blok of H .Let fK be the fae of H whose boundary ontains all the attahments of the
H-bridge K. Note that there an be at most one suh a fae (see Fig. 4.5.a):If the attahments of K were ontained in the intersetion of the boundaries oftwo distint faes of H, then K would neessarily be loal. If there is no faeof H inident to all the attahments of K, then G learly has no embeddingextension (see Fig. 4.5.b). In this ase, we de�ne fK as an arbitrary fae of H.

fK(a) (b)Figure 4.5: A non-loal bridge is either neessarily ontained in a fae fK (a)or auses a non-planarity (b).Let K be the set of non-trivial non-loal H-bridges of G. It is lear that, inany embedding of G extending H, all the verties of K − V (H) are embeddedinside fK , for every K ∈ K. This motivates the following de�nition.De�nition 4.4 Let H ′ be the graph whose edge set is equal to the edge set of
H, and whose vertex set is de�ned by V (H ′) = V (H)∪⋃

K∈K V (K). Let H′ bethe embedding of H ′ that is obtained from H by inserting, for every H-bridge
K ∈ K, all the verties of K − V (H) into the interior of the fae fK.Observe that the graph G has no non-trivial non-loal H ′-bridges. Observealso, that any embedding of G that extends H also extends H′, and vie versa.Thus, the instane (G, H,H) of Pep is equivalent to the instane (G, H ′,H′),whih ontains no non-trivial non-loal bridges.Let H be an embedding of a graph H , and let H1 and H2 be edge-disjointsubgraphs of H . We say that H1 and H2 alternate around a vertex x of H ifthere are two pairs of edges e, e′ ∈ E(H1) and f, f ′ ∈ E(H2) that are inidentto x and that appear in the yli order (e, f, e′, f ′) in the rotation sheme of
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4.3. COMBINATORIAL CHARACTERIZATION 71
x restrited to these four edges. Let x and y be two verties of H and let ~C bea direted yle in H. We say that ~C separates x and y if x ∈ V left

H (~C) and
y ∈ V right

H (~C), or vie versa.Lemma 4.4 Let (G, H,H) be an instane of Pep where G is onneted andevery non-trivial H-bridge of G is loal. Let G1, . . . , Gt be the bloks of G, let
Hi be the subgraph of H indued by the verties of Gi, and let Hi be H restritedto Hi. Then, G has an embedding extending H if and only if 1) eah Gi has anembedding extending Hi, 2) no two distint graphs Hi and Hj alternate aroundany vertex of H, and 3) for every faial yle ~C of H and for any two verties
x and y of H separated by ~C, any path in G onneting x and y ontains avertex of ~C.Proof: Clearly, the three onditions of the lemma are neessary. To showthat they are also su�ient, assume that the three onditions are satis�ed andproeed by indution on the number t of bloks of G.If t = 1, then G is bionneted, and there is nothing to prove. Assume that
t ≥ 2. If there is at least one blok Gi that does not ontain any vertex of
H , we restrit our attention to the subgraph G′ of G indued by those bloksthat ontain at least one vertex of H . Sine every non-trivial H-bridge of G isloal, graph G′ is onneted, and hene it satis�es the three onditions of thelemma. By indution, the embedding H an be extended into an embedding
G′ of G′. Sine every blok Gi of G is planar (by ondition 1 of the lemma), itis easy to extend the embedding G′ into an embedding of G.Assume now that every blok of G ontains at least one vertex of H . Thisimplies that every utvertex of G belongs to H , beause otherwise the utvertexwould belong to a non-loal H-bridge, whih is impossible by assumption. Let
x be any utvertex of G. Let G′

1, G
′
2, . . . , G

′
k be the onneted omponents of

G − x, where we selet G′
1 by the following rules: if there is a omponent of

G− x that has no vertex onneted to x by an edge of H , then let G′
1 be suha omponent; if eah omponent of G − x is onneted to x by an edge of H ,then hoose G′

1 in suh a way that the edges of H inident to x and belongingto G′
1 form an interval in σH(x). Suh a hoie of G′

1 is always possible, dueto ondition 2 of the lemma.Let G′ be the subgraph of G indued by V (G′
1) ∪ {x}, and let G′′ be thesubgraph of G indued by V (G′

2) ∪ · · · ∪ V (G′
k) ∪ {x}. Let H ′ and H ′′ be thesubgraphs of H indued by the verties of G′ and G′′, respetively, and let H′and H′′ be H restrited to H ′ and H ′′, respetively. Both G′ and G′′ havefewer bloks than G. Also, both the instanes (G′, H ′,H′) and (G′′, H ′′,H′′)
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72 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSsatisfy the onditions of the lemma. Thus, by indution, there is an embedding
G′ of G′ that extends H′ and an embedding G′′ of G′′ that extends H′′.Our goal is to ombine G′ and G′′ into a single embedding of G that extends
H. To see that this is possible, we prove two auxiliary laims.Claim 1. H′ has a fae f ′ whose boundary ontains x and, for any faialyle ~C of f ′, all the verties of H ′′ exept for x are in V left

H (~C), i.e., theyare `inside' f ′. To see that the laim holds, assume �rst that H ′ has no edgeinident to x (see Fig. 4.6.a). Let f ′ be the unique fae of H′ inident to x.We show that all the verties of H ′′ are inside f ′ in H. Let y be any vertexof H ′′. Sine G′′ is onneted, there is a path P in G′′ from y to x. Assumefor ontradition that H′ has a faial yle ~C suh that ~C separates y from xin H. This yle belongs to H ′ − x, hene ~C and P are disjoint, ontraditingondition 3 of the lemma.
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i’G(a) (b)Figure 4.6: Illustration for the proof of Lemma 4.4. (a) H ′ has no edge inidentto x. (b) H ′ has an edge inident to x.Next, assume that H ′ has an edge inident to x (see Fig. 4.6.b). By theonstrution of G1, eah onneted omponent of G−x has at least one vertexadjaent to x in H . Moreover, the edges of H′ inident to x form an intervalin σH(x). Hene, H′ has a fae f ′ ontaining x on its boundary, and suh thatevery vertex of H ′′ adjaent to x is inside f ′ in H. We now show that all theverties of H ′′ exept for x are inside f ′. Let y be a vertex of H ′′ di�erent from
x. Let G′

i be the omponent of G − x ontaining y. We know that G′
i has avertex z adjaent to x by an edge of H and that z is inside f ′ in H. Let P bea path in G′

i onneting y and z. If y is not inside f ′, then y is separated from
z in H by a faial yle of H′, ontraditing ondition 3 of the lemma.Claim 2. All the verties of H ′, exept for x, appear in H inside the samefae f ′′ of H′′; further, x is on the boundary of f ′′. Note that any two verties
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4.3. COMBINATORIAL CHARACTERIZATION 73in H ′ − x are inside the same fae f ′′ of H′′ in H by ondition 3 of the lemma,as they are onneted by a path in G′
1. Vertex x is on the boundary of f ′′,sine otherwise it would be separated in H from the remaining verties of H ′by a faial yle of f ′′, ontraditing ondition 3 of the lemma.In view of the previous two laims, it is easy to see that the embedding G′of G′ and the embedding G′′ of G′′ an be ombined into a single embedding Gof G that extends H. To see this, note that, when H′ is extended into G′, thefae f ′ from Claim 1 an be subdivided into several faes of G′, at least oneof whih, say g′, ontains x on its boundary. Analogously, the fae f ′′ fromClaim 2 an be subdivided into several faes of G′′, at least one of whih, say

g′′, ontains x on its boundary. We then obtain the embedding G by mergingthe faes g′ and g′′ into a single fae. 2Observe that the seond and third onditions of Lemma 4.4 an be easilyheked in polynomial time.Next, we fous on the instanes (G, H,H) of Pep in whih G is not on-neted. The possibility of solving the subinstanes of (G, H,H) indued bythe onneted omponents of G does not guarantee that instane (G, H,H)of Pep has a solution. However, we show that solving Pep for an instane
(G, H,H) an be redued to solving the subinstanes indued by the onnetedomponents of G and to heking additional onditions that guarantee that thepartial solutions an be ombined into a full solution for G.Lemma 4.5 Let (G, H,H) be an instane of Pep. Let G1, . . . , Gt be the on-neted omponents of G. Let Hi be the subgraph of H indued by the vertiesof Gi, and let Hi be H restrited to Hi. Then G has an embedding extending
H if and only if: 1) eah Gi has an embedding extending Hi, and 2) for eah
i, for eah faial yle ~C of Hi and for every j 6= i, no two verties of Hj areseparated by ~C.Proof: Clearly, the two onditions of the lemma are neessary. To showthat they are also su�ient, assume that the two onditions are satis�ed andproeed by indution on the number t of onneted omponents of G.If t = 1 then G is onneted and there is nothing to prove. Assume nowthat G has t ≥ 2 onneted omponents G1, . . . , Gt. Let Hi and Hi be de�nedas in the statement of the lemma. Let CF be the omponent-fae tree of H,rooted at a node that represents an arbitrary fae of H. We say that a fae fiof H is the outer fae of Hi if at least one hild of fi in CF is a omponent of
Hi, but the parent of fi is not a omponent of Hi. Observe that, due to the
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74 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSseond ondition of the lemma, eah Hi has exatly one outer fae fi. We thushave a sequene of (not neessarily distint) outer faes f1, . . . , ft.Let us now assume, without loss of generality, that in the subtree of CFrooted at f1, there is no outer fae fi 6= f1. This implies that f1 is the only faeof H that is inident both to H1 and to H −H1. By indution, the embedding
H −H1 an be extended to an embedding G≥2 of the graph G − G1. By the�rst ondition of the lemma, H1 an be extended into an embedding G1 of G1.The two embeddings H−H1 and H1 share a single fae f1.When extending the embedding H1 into G1, the fae f1 of H1 an be subdi-vided into several faes of G1. Let f ′ be any fae of G1 obtained by subdividing
f1. Analogously, in the embedding G≥2 the fae f1 an be subdivided intoseveral faes, among whih we hoose an arbitrary fae f ′′.We then glue the two embeddings G1 and G≥2 by identifying fae f ′ of
G1 and fae f ′′ of G≥2 into a single fae whose boundary is the union of theboundaries of f ′ and f ′′. This yields an embedding of G that extends H. 2Note that the seond ondition of Lemma 4.5 an be easily tested in poly-nomial time. Thus, we an use the haraterization to diretly prove that Pepis solvable in polynomial time. In the rest of the hapter, we desribe a moresophistiated algorithm that solves Pep in linear time.4.4 Linear-Time AlgorithmIn this setion we show a linear time algorithm for solving Pep. First, we taklethe ase in whih G is bionneted. The algorithm solving this ase, presentedin Subsetion 4.4, uses the algorithms presented in Subsetions 4.4 and 4.4 assubroutines. Then, we deal with the ase in whih G is simply onneted andwith the general ase in Subsetion 4.4. Some data strutures are exploited bythe algorithm we present, namely blok-utvertex trees, SPQR-trees, enrihedblok-utvertex trees, blok-fae trees, omponent-fae trees, and vertex-faeinidene graphs. These data strutures an be easily omputed in linear time.
G bionneted, H bionnetedIn this setion we show how to solve Pep in linear time if both G and H arebionneted.Lemma 4.6 Let (G, H,H) be an instane of Pep suh that both G and Hare bionneted. Let G be any planar embedding of G satisfying Condition 1 ofLemma 4.1. Then, G satis�es Condition 2 of Lemma 4.1.
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4.4. LINEAR-TIME ALGORITHM 75Proof: Suppose, for a ontradition, that a planar embedding G of G existssuh that G satis�es Condition 1 and does not satisfy Condition 2 of Lemma 4.1.Then, there exists a faial yle ~C of H suh that either there exists a vertex
x ∈ V left

H (~C) with x ∈ V right
G (~C) or there exists a vertex x ∈ V right

H (~C) with
x ∈ V left

G (~C). Suppose that we are in the former ase, as the latter ase anbe disussed analogously. Sine H is a planar embedding and H is onneted,there exists a path P = (x1, x2, . . . , xk) ∈ H suh that x1 is a vertex of ~C,
xi ∈ V left

H (~C), for eah i = 2, . . . , k, and xk = x. Denote by x−
1 and by x+

1the vertex preeding and following x1 in the oriented yle ~C, respetively.Consider the plaement of x2 with respet to ~C in G. As x2 /∈ ~C, either
x2 ∈ V left

G (~C) or x2 ∈ V right
G (~C). In the �rst ase, path (x2, . . . , xk) rosses

~C, sine x2 ∈ V left
G (~C), xk ∈ V right

G (~C), and no vertex vi belongs to ~C, for
i = 2, . . . , k, thus ontraditing the planarity of the embedding G. In theseond ase, the lokwise order of the edges inident to x1 in H is (x1, x

−
1 ),

(x1, x2), and (x1, x
+
1 ), while the lokwise order of the edges inident to x1 in

G is (x1, x
−
1 ), (x1, x

+
1 ), and (x1, x2), thus ontraditing the assumption that Gsatis�es Condition 1 of Lemma 4.1. 2Due to Lemma 4.6, testing whether a planar embedding G exists satisfyingConditions 1 and 2 of Lemma 4.1 is equivalent to testing whether a planarembedding G exists satisfying Condition 1 of Lemma 4.1. Due to Lemma 4.2,testing whether a planar embedding G exists satisfying Condition 1 is equivalentto testing whether the skeleton of eah node of the SPQR-tree of G has a planarembedding that is edge-ompatible with H.Algorithm BB Construt the SPQR-tree T of G rooted at an arbitraryinternal node. A bottom-up visit of T is performed. After a node µ of Thas been visited, an embedding of skel(µ) that is edge-ompatible with H isseleted, if it exists.In order to keep trak of the edges of H that belong to pertinent(µ) andthat are inident to the poles u(µ) and v(µ), de�ne the �rst edge fu(µ) andthe last edge lu(µ) (the �rst edge fv(µ) and the last edge lv(µ)) as the edgesof H suh that all and only the edges between fu(µ) and lu(µ) (resp. between

fv(µ) and lv(µ)) in the ounterlokwise order of the edges inident to u(µ)(resp. to v(µ)) in H belong to pertinent(µ). After a node µ of T has beenvisited by the algorithm, edges fu(µ), lu(µ), fv(µ), and lv(µ) are assoiated with
µ. Refer also to fu(e) and lu(e) (resp. fv(e) and lv(e)) where e is the virtualedge orresponding to µ in the skeleton of the parent of µ.If µ is a Q- or an S-node, no hek is needed. As skel(µ) is a yle, the only
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76 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSplanar embedding of skel(µ) is edge-ompatible with H. Edges fu(µ), lu(µ),
fv(µ), and lv(µ) are easily omputed.If µ is an R-node, then skel(µ) has only two planar embeddings. For eah ofthem, verify if it is edge-ompatible with H by performing the following hek.For eah vertex x of skel(µ) restrit the irular list of its inident virtual edgesto the virtual edges e1, . . . , eh that ontain an edge of H inident to x. Chek if
lx(ei) preedes fx(ei+1) (for i = 1, . . . , h, where eh+1 = e1) in the list of the edgesinident to x in H. If x is a pole, do an analogous hek on the linear list of itsinident virtual edges obtained by removing the virtual edge orresponding tothe parent of µ from the irular list. If one of the tests sueeds, then seletthe orresponding embedding for skel(µ). Set fu(µ) = fu(f1), lu(µ) = lu(fp),
fv(µ) = fv(g1), and lv(µ) = lv(gq), where f1 and fp (g1 and gq) are the �rst andthe last virtual edge in the linear list of the virtual edges ontaining an edgeof H and inident to u(µ) (resp. to v(µ)).If µ is a P-node, an embedding of skel(µ) is a ounterlokwise order ofits virtual edges around u(µ). We desribe how to verify if an embedding ofskel(µ) exists edge-ompatible with H. Consider the virtual edges ontainingedges of H inident to u(µ). Construt a list Lu of suh edges orrespondingto the ordering they have in any embedding of skel(µ) edge-ompatible with
H. Insert any of suh edges, say ei, into Lu. Repeatedly onsider the lastelement ej of Lu and insert as last element of Lu edge ej+1 suh that l(u(ej))immediately preedes f(u(ej+1)) in the ounterlokwise order of the edgesinident to u(µ) in H. If ej+1 = ei, then Lu is the desired irular list. If
ej+1 does not exist, then the edge following l(u(ej)) belongs to the virtual edgeorresponding to the parent of µ. Then, onsider again edge ei. Repeatedlyonsider the �rst element ej of Lu and insert as �rst element of Lu edge ej−1suh that f(u(ej)) immediately follows l(u(ej−1)) in the ounterlokwise orderof the edges inident to u(µ) in H. If ej−1 does not exist, then hek whetherall the virtual edges ontaining edges of H inident to u(µ) have been proessedand in suh a ase insert the virtual edge orresponding to the parent of µ as�rst element of Lu. Analogously onstrut a list Lv. Let Luv be the sublistobtained by restriting Lu to those edges that appear in Lv. Let Lvu be theorresponding sublist of Lv. Chek whether Luv and Lvu are the reverse of eahother. If this is the ase, a list L of the virtual edges of skel(µ) ontaining edgesof H inident to u(µ) or to v(µ) an be easily onstruted ompatible with both
Lu and Lv. Finally, arbitrarily insert into L the virtual edges of skel(µ) notin Lu and not in Lv, thus obtaining an embedding of skel(µ) edge-ompatiblewith H. Denote by f1 and fp (by g1 and gq) the virtual edges ontainingedges of H inident to u(µ) (resp. to v(µ)) following and preeding the virtual
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4.4. LINEAR-TIME ALGORITHM 77edge representing the parent of µ in L. Set fu(µ) = fu(f1), lu(µ) = lu(fp),
fv(µ) = fv(g1), and lv(µ) = lv(gq).Theorem 4.2 Let (G, H,H) be an n-vertex instane of Pep suh that both Gand H are bionneted. Algorithm BB solves Pep for (G, H,H) in O(n) time.Proof: We show that Algorithm BB proesses eah node µ of T in O(kµ)time, where kµ is the number of hildren of µ in T .First, observe that the omputation of fu(µ), lu(µ), fv(µ), and lv(µ) is triviallydone in O(1) time one the embedding of skel(µ) has been deided.If µ is a Q-node or an S-node, Algorithm BB does not perform any hekor embedding hoie.If µ is an R-node, Algorithm BB omputes the two planar embeddings ofskel(µ) in O(kµ) time. For eah of suh embeddings, Algorithm BB proesseseah node x of skel(µ) separately, onsidering the list of the virtual edges ini-dent to x (whih is trivially onstruted in O(t) time, where t is the number ofsuh edges), and restriting the list to those virtual edges ontaining an edgeof H inident to x (for eah virtual edge, it su�es to hek whether the �rstedge inident to x is assoiated with an edge of H , whih is done in O(1) time).Cheking whether lx(ei) preedes fx(ei+1) in the list of the edges inident to xin H is done in O(1) time. Hene, the total time spent for eah node x is O(t).Summing up all the nodes of skel(µ) results in a total O(kµ) time, as everyedge is inident to two nodes and the total number of edges in skel(µ) is O(kµ).If µ is a P-node, extrating the virtual edges of skel(µ) ontaining edges of
H inident to u(µ) or to v(µ) an be done in O(kµ) time, as in the R-node ase.For eah of suh edges, equipping fu(e), lu(e), fv(e), and lv(e) with a link to e isdone in onstant time. Determining an ordering of the virtual edges ontainingedges of H inident to u(µ) an be done in O(kµ) time, as the operationsperformed for eah virtual edge ei are aessing to the �rst and the last edge of
ei, aessing to the edge following the last edge of ei (preeding the �rst edge of
ei) in the ounterlokwise order of the edges inident to u(µ) in H, aessingto a virtual edge linked from a �rst or last edge; eah of suh operations istrivially done in O(1) time. Marking the virtual edges in Lu and in Lv is donein O(kµ) time, as Lu and Lv have O(kµ) elements. Then, obtaining Luv and
Lvu, and heking whether they are the reverse of eah other is done in O(kµ)time. Finally, extending Luv to L is also easily done in O(kµ) time; namely, if
Luv is empty, then let L be the onatenation of Lu and Lv (where suh listsare made linear by utting them at any point). Otherwise, start from an edge
ei of Luv; ei is also in Lu and in Lv; insert ei into L; insert into L all the edges
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78 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSof Lu following ei till the next edge ei+1 of Luv has been found; insert into Lall the edges of Lv preeding ei till the next edge ei+1 of Luv has been found;insert ei+1 into L, and repeat the proedure. Eah element of Luv, Lu, and Lvis visited one, hene suh a step is performed in O(kµ) time.As ∑
µ∈T kµ = O(n), the total running time of the algorithm is O(n). 2

G bionneted, all the verties and edges of G are in the samefae f of HThe instanes of Pep onsidered in this setion are denoted by (G(f), H(f),H(f))and assumed to satisfy the following properties: (i) G(f) is bionneted, (ii)
G(f) and H(f) have the same vertex set, (iii) all the verties and edges of
H(f) are inident to the same fae f of H(f), and (iv) no edge of G(f) \H(f)onnets two verties of the same blok of H(f). Algorithm BF, that deals withsuh a setting, is used as a subroutine by Algorithm BA, to be shown later,dealing with the instanes of Pep in whih G is bionneted and H arbitrary.Algorithm BF As in Algorithm BB, the SPQR-tree T (f) of G(f) is on-struted, rooted at an arbitrary internal node. Tree T (f) is visited bottom-up.After a node µ of T has been visited, an embedding of skel(µ) that is ompatiblewith H(f) is seleted, if it exists.Edges fu(µ), lu(µ), fv(µ), and lv(µ) of a node µ of T (f) (and of a virtualedge e) are de�ned as in Algorithm BB. After eah node µ of T (f) is visited,a �ag p(µ) is set equal to true if there exists a traversing path P , that is, apath between u(µ) and v(µ) that is omposed of edges of H(f), that belongs topertinent(µ), and that is part of a simple yle ~C of H(f) not entirely ontainedin pertinent(µ); �ag p(µ) is set equal to false otherwise. If p(µ) = true, a�ag uv(µ) is set equal to true if P is oriented from u(µ) to v(µ) aording tothe orientation of ~C, and it is set equal to false otherwise. Refer also to p(e)and uv(e), where e is the virtual edge orresponding to µ in the skeleton of theparent of µ.We state some useful lemmata. The �rst one exploits the partiular stru-ture of the input to simplify the test of yle-ompatibility with H(f) for theskeleton of a node µ of T (f).Lemma 4.7 Consider any node µ of T (f). Then, an embedding of skel(µ)is yle-ompatible with H(f) if and only if, for every faial yle ~C of H(f)
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4.4. LINEAR-TIME ALGORITHM 79whose edges projet to a yle ~C′ of skel(µ), no vertex and no edge of skel(µ)is to the right of ~C′, where ~C′ is oriented aording to the orientation of ~C.Proof: By assumption (iii) of the input, all the verties and edges of H(f)are inident to the same fae f of H(f). By onstrution, every faial yle ~Cof H(f) is oriented in suh a way that f and hene all the verties of H(f) areto the left of ~C. Then, by Lemma 4.3, if the edges of ~C determine a yle ~C′of virtual edges of skel(µ), all the verties of skel(µ) that are not in ~C and allthe virtual edges of skel(µ) that are not in ~C′ and that ontain verties of G(f)have to be to the left of ~C′. Finally, all the virtual edges that are not in ~C′ andthat do not ontain any vertex of G(f) (that is, virtual edges orrespondingto Q-nodes) have one end-vertex that is not in ~C, by assumption (iv) of theinput. Suh an end-vertex fores the edge to be to the left of ~C′. 2The next property relates the edges of H(f) to the yles of suh a graph.Property 4.1 Every simple path of H(f) belongs to at most one simple yleof H(f).Proof: Suppose that there exists a path (that an possibly be a singleedge) of H(f) belonging to at least two simple yles of H(f). Then, suhyles de�ne at least three regions of the plane. Not all the edges of the twoyles an be inident to the same region, ontraditing the fat that all theedges of H(f) are inident to the same region of the plane in H(f). 2We state lemmata spei�ally dealing with S-, R-, and P-nodes of T (f).Lemma 4.8 Let µ be an S-node of T (f) with hildren µ1, µ2, . . . , µk. Then,
p(µi) = true for some 1 ≤ i ≤ k if and only if p(µj) = true for all 1 ≤ j ≤ k.Proof: If p(µj) = true for all 1 ≤ j ≤ k, then p(µi) = true. If p(µi) =true for some 1 ≤ i ≤ k, there exists a traversing path of µi that is part of asimple yle ~C of H(f) not entirely ontained in pertinent(µi); however, as µis an S-node, ~C does not entirely lie inside pertinent(µ), as otherwise it wouldlie inside pertinent(µi). Then, ~C onsists of a traversing path of pertinent(µj),for all 1 ≤ j ≤ k, and of a traversing path of the virtual edge of skel(µ)orresponding to the parent of µ in T (f), thus proving the lemma. 2Lemma 4.9 Let µ be an R-node of T (f). If an edge e of skel(µ) has a travers-ing path belonging to a faial yle ~C, let us orient e in the diretion determined
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80 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSby the projetion of ~C in skel(µ). An embedding of skel(µ) is yle-ompatiblewith H(f) if and only if, for eah fae g of the embedding of skel(µ), either (i)every virtual edge e on the boundary of g is oriented so that g is to the rightof e, or (ii) none of the virtual edges on the boundary of g is oriented in a waythat g is to the right of it.Proof: Suppose that an embedding of skel(µ) is yle-ompatible with H(f).Let g be a fae of the embedding with an edge e on its boundary ontaining atraversing path P , suh that g is to the right of e. Let ~C be the faial yleof H(f) that ontains P . By Lemma 4.7, ~C projets to a direted yle ~C′ inskel(µ), and no vertex or edge of skel(µ) is embedded to the right of ~C′. Thus,
~C′ orresponds to the boundary of the fae g, and hene g satis�es ondition (i).Suppose now that in an embedding of skel(µ), every fae satis�es ondition(i) or ondition (ii). We laim that the embedding of skel(µ) is yle-ompatiblewith H(f). To prove it, we use Lemma 4.7. Let ~C be a faial yle of H(f)that projets to a simple yle ~C′ in skel(µ). Let e be any edge of ~C′ andlet g be the fae to the right of e in the embedding of skel(µ). Neessarily, gsatis�es ondition (i). Hene, eah edge on the boundary of g has a traversingpath. The union of these paths forms a yle in H(f), and by Property 4.1,this yle is equal to ~C. Thus, the boundary of g oinides with the yle ~C′.In partiular, no vertex and no edge of skel(µ) is embedded to the right of ~C′.By Lemma 4.7, the embedding of skel(µ) is yle-ompatible with H(f). 2Lemma 4.10 Let µ be a P-node of T (f). There exist either zero or two virtualedges of skel(µ) ontaining a traversing path.Proof: If there exists one virtual edge ei of skel(µ) ontaining a travers-ing path that is part of a simple yle ~C of H(f) not entirely ontained inpertinent(ei), another virtual edge of skel(µ) ontaining a traversing path thatis part of ~C exists, as otherwise ~C would not be a yle. Further, if there existat least three virtual edges of skel(µ) ontaining traversing paths, then eah ofsuh paths belongs to three simple yles, thus ontraditing Property 4.1. 2We are now ready to exhibit the main steps of Algorithm BF.If µ is a Q- or an S-node, no hek is needed. As skel(µ) is a yle, the onlyplanar embedding of skel(µ) is ompatible with H(f). Edges fu(µ), lu(µ), fv(µ),and lv(µ), and �ags p(µ) and uv(µ) an be easily omputed.If µ is an R-node, for eah of the two planar embeddings of skel(µ), hek ifit is edge-ompatible with H(f) and set values for fu(µ), lu(µ), fv(µ), and lv(µ)
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4.4. LINEAR-TIME ALGORITHM 81as in Algorithm BB. In order to do this, hek if Lemma 4.7 is satis�ed, by�rst determining if the virtual edge ep of skel(µ) representing the parent of µin T (f) ontains a traversing path Pp and, in ase it does, by determining itsorientation. By de�nition, Pp exists if and only if there exists a traversing pathin pertinent(µ). Restrit skel(µ) to those edges ei 6= ep with p(ei) = true anddenote by skel′(µ) the obtained graph. Chek if the degree of u(µ) and v(µ) inskel′(µ) is even or odd. In the former ase, Pp does not exist; set p(µ) = falseand p(ep) = false. In the latter ase, Pp exists; set p(µ) = true and p(ep) =true; the orientation of Pp is the only one that makes the number of edges eiinident to u(µ) with uv(ei) = true equal to the number of edges ei inidentto u(µ) with uv(ei) = false; this determines uv(µ) and uv(ep).Now, p(ei) and uv(ei) are de�ned for every virtual edge ei of skel(µ). Con-sider every fae g of skel(µ) and denote by ej = (uj , vj) any edge inident to g.Suppose, without loss of generality, that g is to the right of ej when traversingsuh an edge from uj to vj . Then, hek if p(ej) = false, or p(ej) = true and
uv(ej) = false, for all edges ej inident to g, and hek whether p(ej) = trueand uv(ej) = true, for all edges ej inident to g. If one of the two hekssueeds, the fae does not violate Lemma 4.7, otherwise it does.If µ is a P-node, hek if an embedding of skel(µ) exists that is ompatiblewith H(f) as follows. By Lemma 4.10, there exist either zero or two virtualedges of skel(µ) ontaining a traversing path. Then, onsider the hildren µiof µ suh that p(µi) = true. If zero or two suh hildren exist, then theedge of skel(µ) orresponding to the parent ν of µ in T has no traversingpath; if one suh a hild exists, then the edge of skel(µ) orresponding to νhas a traversing path. Denote by ei and ej the edges of skel(µ) ontaining atraversing path, if suh edges exist, where possibly ej orresponds to ν (in thisase, set p(ej) = true, and set uv(ej) = true if uv(ei) = false and uv(ej) =false otherwise). If there exists no edge ei of skel(µ) suh that p(ei) = true,then onstrut an embedding of skel(µ) that is edge-ompatible with H(f), ifpossible, as in Algorithm BB; as there exists no faial yle ofH(f) whose edgesbelong to distint edges of skel(µ), then an edge-ompatible embedding is alsoyle-ompatible with H(f). Edges fu(µ), lu(µ), fv(µ), and lv(µ) are omputedas in Algorithm BB. Flag p(µ) = false. If there exist two edges ei and ej suhthat p(ei) = true, p(ej) = true, and p(el) = false for every edge el 6= ei, ej,suppose that uv(ei) = true and uv(ej) = false, the ase in whih uv(ei) =false and uv(ej) = true being analogous. Then, by Lemma 4.7, ej has toimmediately preede ei in the ounterlokwise order of the edges inident to
u(µ). Then, onstrut Lu and Lv as in Algorithm BB; hek whether Lu and
Lv, restrited to the edges that appear in both lists, are the reverse of eah
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82 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSother; further, hek whether ej preedes ei in Lu and whether ei preedes ejin Lv; if the heks are positive onstrut the list L of all the edges of skel(µ)as in Algorithm BB, exept for the fat that the edges of skel(µ) not in Lu andnot in Lv are not inserted between ej and ei. Edges fu(µ), lu(µ), fv(µ), and
lv(µ) are omputed as in Algorithm BB. Set p(µ) = false if ej orresponds toa hild µj of µ and p(µ) = true if ej orresponds to the parent of µ in T ; inthe latter ase, uv(µ) = true if uv(µi) = true and uv(µ) = false otherwise.We get the following:Theorem 4.3 Let (G(f), H(f),H(f)) be an n-vertex instane of Pep suhthat G(f) is bionneted, G(f) and H(f) have the same vertex set, all theverties and edges of H(f) are inident to the same fae f of H(f), and noedge of G(f) \H(f) onnets two verties belonging to the same blok of H(f).Algorithm BF solves Pep for (G(f), H(f),H(f)) in O(n) time.Proof: We show that Algorithm BF proesses eah node µ of T (f) in
O(kµ) time, where µ1, . . . , µkµ

are the hildren of µ in T (f). Observe that theomputation of fu(µ), lu(µ), fv(µ), and lv(µ) and the hek of edge-ompatibilityare done as in Algorithm BB, hene they take O(kµ) time. We desribe howto hek the yle-ompatibility of an embedding of skel(µ) in O(kµ) time.If µ is a Q-node or an S-node, Algorithm BF does not perform any heknor embedding hoie.If µ is a P-node, then Algorithm BF performs the same heks and embed-ding hoies as Algorithm BB, plus the hek that the two edges ei and ej with
p(ei) = true and p(ej) = true (one of suh edges ould be the virtual edgeorresponding to the parent of µ) are onseutive (with the right order) in Luand Lv, that is done in onstant time. Flags p(µ) and uv(µ) are omputed in
O(kµ) time by heking the �ags p(µi) and uv(µi), for i = 1, . . . , k.If µ is an R-node, the onstrution of skel′(µ) an be done in O(kµ) time,as suh a graph an be obtained from skel(µ) by simply heking �ag p(ei), foreah edge ei in skel(µ). Then, the degree of u(µ) and v(µ) in skel′(µ), and the�ags p(µ), uv(µ), p(ep) and uv(ep) an be omputed in total O(kµ) time. Thetest on eah fae takes time linear in the number of edges inident to the fae.Namely, suh a test onsists of two heks, eah of whih requires to onsider aonstant number of �ags assoiated with eah edge of the fae. As every edgeis inident to two faes of skel(µ) and the number of edges in skel(µ) is O(kµ),the total time spent for the test on the faes of skel(µ) is O(kµ).As ∑

µ∈T kµ = O(n), the total running time of the algorithm is O(n). 2



i

i �main� � 2010/2/26 � 12:27 � page 83 � #93
i

i

i

i

i

i

4.4. LINEAR-TIME ALGORITHM 83
G bionnetedWe show how to solve Pep in the ase in whih G is bionneted and H isarbitrary. The algorithm we propose is as follows. First, ompute a subgraph
H+ of G with the following properties: (i) H+ is bionneted; (ii) H is asubgraph of H+; (iii) H+ ontains every non-loal H-bridge of G. Seond,solve instane (H+, H,H) obtaining an embedding H+ of H+ extending H, if
H+ admits one. Finally, solve instane (G, H+,H+) with Algorithm BB.Let H ′ and H′ be as in De�nition 4.4. Let f be a fae of H′. Let V (f) bethe set of verties of H ′ inident to f . Let H(f) be the subgraph of H ′ induedby V (f). Let H(f) be H′ restrited to H(f). Let H+ be the graph obtainedfrom G by removing the verties and edges (but not the attahments) of all theloal H-bridges of G. Note that H+ has the same vertex set as H ′. Let G(f)be the subgraph of H+ indued by V (f). Any embedding of H+ extending Halso extends H′, and vie versa. Also, in any embedding of H+ extending Hthe edges of G(f) not belonging to H(f) are embedded inside f .Lemma 4.11 H+ is bionneted.Proof: By onstrution of H+, eah H+-bridge of G has all its attahmentverties in the same blok of H , and hene in the same blok of H+, as H is asubgraph of H+. Therefore, the number of bloks of H+ is not modi�ed by theaddition of the H+-bridges of G. Sine suh an addition produes G, whih isbionneted, H+ is bionneted. 2Lemma 4.12 An instane (G, H,H) of Pep suh that G is bionneted admitsa solution if and only if (a) instane (H+, H,H) admits a solution and (b) forevery suh a solution H+, instane (G, H+,H+) admits a solution.Proof: Clearly, if onditions (a) and (b) hold, then G has an embeddingextending H.To prove the onverse, assume that G has an embedding G extending H.Clearly, G ontains a sub-embedding H+ of H+ that extends H, so ondition(a) holds. It remains to prove that ondition (b) holds, too.First, we introdue some terminology: Let f be any fae of H and let H+ beany embedding of H+ that extendsH. InH+, the fae f an be partitioned intoseveral faes, whih we will all the subfaes of f . A set of verties S ⊆ V (H)is said to be mutually visible in f with respet to H+ if H+ has a subfae of fthat ontains all the verties of S on its boundary.
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84 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSThe proof that ondition (b) holds is based on two laims. The �rst oneshows that for the verties that belong to the same blok of H , mutual visibilityis independent of the hoie of H+:Claim 1. Let ~C be a faial yle of f and let S ⊆ V (~C) be a set of vertiesof ~C. If the verties in S are mutually visible in f with respet to at least oneembedding of H+ that extendsH, then they are mutually visible in f with respetto every embedding of H+ that extends H. Note that the mutual visibility of
S in f only depends on the embedding H+ restrited to G(f). Let T be theSPQR-tree of G(f). By Theorem 4.1, the embeddings of G(f) extending H(f)are obtained by speifying a ompatible embedding for eah skeleton of T . Let
G1 and G2 be two embeddings of G(f) that extend H. Assume that the vertiesof S are mutually visible in f with respet to G1. We show that they are alsomutually visible with respet to G2. In view of Theorem 4.1, we may assumethat G2 was obtained from G1 by hanging the embedding of the skeleton ofa single node µ ∈ T . Let us distinguish two ases, depending on whether theyle ~C is ontained in the pertinent graph of a single edge of µ, or whether itprojets to a yle in µ. If ~C is part of the pertinent graph of a single virtualedge e = {x, y} ∈ µ, then let Ge be the embedded graph obtained as the unionof the pertinent graph of e and a single edge onneting x and y, embeddedin the outer fae of the pertinent graph. We easily see that the verties S aremutually visible in f if and only if they share the same fae of Ge, other thanthe fae that is to the right of ~C. Sine Ge does not depend on the embeddingof µ, we see that S are mutually visible in G2.Assume now that the yle ~C projets to a yle ~C′ in µ. By Lemma 4.7,in any ompatible embedding of µ, all the verties and edges of µ that do notbelong to ~C′ are embedded to the left of ~C′. In partiular, if µ is an R-node, itonly has a single ompatible embedding. Thus, µ must be a P-node. Let e and
e′ be the two virtual edges of µ that form ~C′. In eah ompatible embedding of
µ, these two edges must be embedded next to eah other, and in the same order.It easily follows that any two ompatible embeddings of µ yield embeddingsof G(f) in whih the verties from S have the same mutual visibility. Thisompletes the proof of the laim.We prove that ondition (b) holds. We need more terminology: Let K and
K ′ be a pair of loal H-bridges of G whose attahments all appear on a faialyle ~C of a fae f in H. We say that K and K ′ have a three-vertex on�iton ~C if they share at least three attahments, and that they have a four-vertexon�it on ~C if there are four verties x, x′, y, y′ whih appear on ~C in thisyli order, and x, y are attahments of K, while x′, y′ are attahments of K ′.
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4.4. LINEAR-TIME ALGORITHM 85Claim 2. Assume that a fae fK of H has been assigned to every loal H-bridge K of G so that all the attahments of K are on the boundary of fK .Let H+ be an embedding of H+ extending H. There is an embedding G of
G extending H+, with the additional property that eah loal H-bridge K isembedded inside a subfae of fK , if and only if:1. For any loal H-bridge K, all the attahments of K are mutually visiblein fK with respet to H+.2. If K and L are distint loal H-bridges assigned to the same fae fK = fL,suh that the attahments of K and L appear on a ommon faial yle

~C of H+, then K and L have no on�it on ~C.Clearly, the two onditions are neessary. In order to prove that they arealso su�ient, assume that both onditions hold. Construt an embedding of
G with the desired properties as follows. Let f be any fae of H and let f ′ bea fae of H+ whih is a subfae of f . Let K1, . . .Ks be the loal H-bridgesassigned to f and suh that all their attahments are on the boundary of f ′.The �rst ondition of the laim guarantees that every H-bridge Ki an beassigned to a fae f ′ suh that all the attahments of Ki are mutually visiblein f ′. We show that all the bridges K1, . . .Ks an be embedded inside f ′.First, observe that the boundary of f ′ is a simple yle C′, as H+ is bion-neted. Also, no two bridges Ki and Kj have a on�it on C′, by the seondondition of the laim. To show that all the bridges K1, . . . , Ks an be em-bedded inside C′, proeed by indution on s. If s = 1 the statement is true.Assume that s ≥ 2 and that bridge K1 has been suessfully embedded into f ′.The embedding of K1 partitions f ′ into subfaes f ′

1, . . . , f
′
t, eah one boundedby a simple yle, as otherwise G would not be bionneted. We laim that,for every bridge Ki, with i ≥ 2, there is a subfae f ′

j ontaining all the attah-ments of Ki. Consider any bridge Ki. If Ki has an attahment x that is notan attahment of K1, then x belongs to a unique subfae f ′
j . Hene, if Ki hasanother attahment not belonging to f ′

j , K1 and Ki have a four-vertex on�itof on ~C′, ontraditing the seond ondition of the laim. If eah attahmentof Ki is also an attahment of K1, then Ki has exatly two attahments and, ifsuh attahments do not share a fae f ′
j, K1 and Ki have a four-vertex on�iton ~C′, again ontraditing the seond ondition of the laim. Thus, we anassign to eah Ki a subfae f ′

j ontaining all its attahments. By indution, allthe Ki's an be embedded into their assigned faes, thus proving the laim.The proof that ondition (b) holds follows from the two laims. Namely,assume that G has an embedding G extending H. Let H+ be G restrited to
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86 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHS
H+. For every loal H-bridge K of G, let fK be the fae of H inside whih
K is embedded in G. Clearly, H+ satis�es the two onditions Claim 2, sine itan be extended to G. Then, every embedding of H+ that extends H satis�esthe two onditions of Claim 2: For the �rst ondition, it is a onsequene ofClaim 1, and for the seond ondition, it is obvious. We onlude that everyembedding of H+ extending H an be extended into an embedding of G, thusproving ondition (b) and hene the lemma. 2Algorithm BA Starting from an instane (G, H,H) of Pep, graphs G(f)and H(f), and embeddingH(f), for every fae f ofH, are omputed as follows.For eah H-bridge K of G, determine whether it is loal to a blok of H ornot. In the former ase, K is not assoiated to any fae f of H. In the latterase, we ompute the unique fae f of H in whih K has to be embedded inany solution of instane (G, H,H) of Pep and we assoiate K with f . Suhomputations involve heks on the CF-tree of H, on the BF-tree of H, on the
VF-graph of H, and on the enrihed blok-utvertex tree of eah onnetedomponent of H . However, all suh a omputation an be performed in timelinear in the size of K, as shown in the following.Lemma 4.13 Let (G, H,H) be any instane of Pep. Let K be an H-bridgeof G. There is an algorithm that heks whether K is loal to any blok of Hin time linear in the size of K. Further, if K is non-loal, suh an algorithmomputes the only fae of H inident to all the attahment verties of K, ifsuh a fae exists, in time linear in the size of K.Proof: Compute the omponent-fae tree CF ofH, rooted at any node, thevertex-fae inidene graph VF of H, the blok-fae tree BF of H, rooted atany node, and, for eah onneted omponent Ci of H , the enrihed blok-utvertex tree B+

i of Ci, rooted at any node. Suh omputations an be performedin linear time (as shows in the Data Strutures setion).Consider the attahment verties a1, a2, . . . , ah of K. If h = 1, then K isloal. Otherwise, h ≥ 2. In order to deide whether K is loal for some blokof H , we perform the following hek. Consider the attahment verties a1 and
a2. If a1 and a2 belong to distint onneted omponents, then K is not loalto any blok. Otherwise, they belong to the same onneted omponent Ci.Chek whether a1 and a2 have distane 2 in B+

i , that is, whether they belong tothe same blok B. This an be done in onstant time [KK03℄. If the hek fails,then K is not loal to any blok. Otherwise, B ontains both a1 and a2. In thelatter ase, hek whether B is also adjaent in B+
i to all the other attahment
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4.4. LINEAR-TIME ALGORITHM 87verties a3, . . . , ah of K. Again, eah suh a hek is performed in onstanttime [KK03℄. If the test sueeds, then K is loal to blok B. Otherwise, thereexists a vertex aj, with 3 ≤ j ≤ h, that is not inident to B, and K is not loalto any blok.If K is non-loal, we ompute the unique fae f of H to whih all theattahment verties of K are inident. Consider two attahment verties apand aq, with 1 ≤ p, q ≤ h, that do not belong to the same blok. Observethat, if a1 and a2 do not belong to the same blok, then ap = a1 and aq = a2.If the hek failed on an attahment vertex aj in a3, . . . , ah, then either a1and aj , or a2 and aj do not belong to the same blok. In the former aseset ap = a1 and aq = aj , in the latter one ap = a2 and aq = aj . Sine thevertex-fae inidene graph VF is planar, we may use the approah of [KK03℄to determine in onstant time whether ap and aq are onneted by a path oflength two in VF , and �nd the middle vertex of suh a path. This middlevertex orresponds to the unique ommon fae f of ap and aq. Chek whetherall the attahments of K are adjaent to f in VF . If the test fails, then nofae of H ontains all the attahments of K. Otherwise, f is the only fae of
H whose boundary ontains all the attahments of K. 2For eah fae f of H, onsider every H-bridge K assoiated with f . Addthe verties and the edges of K to G(f), and add the verties of K to H(f)inside f . Let H+ =

⋃
f∈H G(f). For eah fae f of H all Algorithm BFwith input (G(f), H(f),H(f)). If Algorithm BF sueeds for every instane

(G(f), H(f),H(f)) (thus providing an embedding H+(f) of G(f) whose re-strition to H(f) is H(f)), merge the embeddings H+(f) of G(f) into a planarembedding H+ of H+. Finally, all Algorithm BB with (G, H+,H+).Theorem 4.4 Let (G, H,H) be an n-vertex instane of Pep suh that G isbionneted. Algorithm BA solves Pep for (G, H,H) in O(n) time.Proof: The orretness of the algorithm desends from Lemma 4.12.By Lemma 4.13, determining whether an H-bridge K is loal or not an bedone in time linear in the size of K. Further, if K is non-loal, the only faeof H inident to all the attahment verties of K an be omputed, if it exists,in time linear in the size of K. Then, the onstrution of graphs G(f), H(f),
H+ and of embeddings H(f) takes O(n) time, as it only requires to performthe union of graphs that have total O(n) edges.By Theorem 4.3, Algorithm BF runs in time linear in the number of edgesof G(f), hene all the exeutions of Algorithm BF take a total O(n) time. By
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88 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSTheorem 4.2, Algorithm BB runs in O(n) time, hene the total running timeof Algorithm BA is O(n). 2

G simply onneted or disonnetedFirst, we deal with instanes (G, H,H) of Pep in whih G is simply onneted,every non-trivial H-bridge of G is loal, and H is arbitrary. We show thatthe three onditions of Lemma 4.4 an be heked in linear time. The �rstondition an be heked in linear time by Lemma 4.13. The seond and thethird onditions an be heked in linear time by the following two lemmata.Lemma 4.14 Let (G, H,H) be an instane of Pep, where G is onneted. Let
G1, . . . , Gt be the bloks of G, and let Hi be the subgraph of H indued by theverties of Gi. There is a linear-time algorithm that heks whether any twodistint graphs among H1, . . . , Ht alternate around a vertex of H.Proof: Assume that every edge e ofH has an assoiated label indiating theblok of G that ontains e. Also, assoiate to eah blok two integer ountersthat will be used in the algorithm.We desribe a proedure TEST(x) whih, for a given vertex x ∈ V (H),heks whether any two graphs Hi, Hj alternate around x. We all x-edge anyedge of H inident to x and x-blok any blok of G that ontains at least one
x-edge. Proedure TEST(x) proeeds as follows: First, for every x-blok Gi, itdetermines the number of x-edges in Gi and stores this number in the ounterassoiated with Gi, by onsidering every edge inident to x and inrementingthe ounter of the orresponding blok. Next, TEST(x) visits all the x-edgesin the order determined by the rotation sheme σH(x), starting at an arbitrary
x-edge. For eah x-blok, it maintains in a ounter the number of its x-edgesvisited so far. An x-blok is ative if some but not all of its x-edges havealready been visited. A stak ontaining the ative x-bloks is maintained. Atthe beginning all the ounters are set to zero and the stak is empty.For every visited edge e, TEST(x) performs the following steps:1. Inrement the ounter of visited x-edges of the blok Gi ontaining e.2. If no other edge of Gi has been visited so far, push Gi on the stak.3. If some x-edge of Gi has been visited before e, we know that Gi is ur-rently somewhere on the stak. Chek whether Gi is on the top of thestak. If the top of the stak ontains an x-blok Gj di�erent from Gi,output that Hi and Hj alternate around x and stop.
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4.4. LINEAR-TIME ALGORITHM 894. Chek whether e is the last x-edge of Gi to be visited (omparing itsounter of visited x-edges to the ounter of total x-edges), and if it is,pop Gi from the stak. (Note that if Gi has only one x-edge, it is pushedand popped during the visit of this edge.)If TEST(x) visits all the x-edges without rejeting, it outputs that there is noalternation around x.The proedure TEST(x) takes time proportional to the number of x-edges.Thus, we an all TEST(x) for all the verties x ∈ V (H) in linear time to testwhether there is any alternation in H.We prove the orretness of TEST(x). Assume that TEST(x) outputs analternation of Hi and Hj . This an only happen when Gj is on the top of thestak while an x-edge e ∈ Gi is visited and e is not the �rst visited edge of Gi.Hene, the �rst edge of Gi was visited before the �rst edge of Gj , and Gj isstill ative when e is visited. Thus, Hi and Hj alternate around x.Conversely, assume that there is a pair of graphs Hi and Hj that alternatearound x, and the alternation is witnessed by two pairs of x-edges e, e′ ∈ Hiand f, f ′ ∈ Hj . For ontradition, assume that TEST(x) outputs that thereis no alternation. Without loss of generality, assume that at least one x-edgeof Hi is visited before any x-edge of Hj , that e is visited before e′, and that fis visited before f ′. Thus, the four x-edges are visited in the order e, f, e′, f ′.When the proedure visits e′, both Gi and Gj are ative, and Gj is on thestak above Gi, sine we assumed that the �rst x-edge of Gi is visited beforethe �rst x-edge of Gj . This means that when TEST(x) visited e′, Gi was noton the top of the stak and an alternation should have been reported.This ontradition ompletes the proof of the lemma. 2Lemma 4.15 Let (G, H,H) be an instane of Pep where G is onneted. Let
G1, . . . , Gt be the bloks of G, and let Hi be the subgraph of H indued bythe verties of Gi. Let Hi be H restrited to Hi. Assume that the followingonditions hold. 1) eah non-trivial H-bridge of G is loal, 2) eah Gi has anembedding that extends Hi, and 3) no two of the graphs H1, . . . , Ht alternatearound any vertex of H. There is a linear time algorithm whih deides whetherthere exists a faial yle ~C of H that separates a pair of verties x and y suhthat x and y are onneted by a path of G that has no vertex in ommon with ~C.Proof: Let P be a path in G with end-verties in H and let ~C be afaial yle of H. If P and ~C are vertex-disjoint and the end-verties of P areseparated by ~C, we say that P and ~C form a PC-obstrution. A PC-obstrution
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90 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHS
(P, ~C) is alled minimal if no proper subpath P ′ ⊂ P forms a PC-obstrutionwith ~C. Observe that, in a minimal PC-obstrution, all the internal verties of
P belong to V (G) \ V (H).We show that the existene of a PC-obstrution an be tested in linear time.Note that it is su�ient to test the existene of a minimal PC-obstrution.Let (P, ~C) be a minimal PC-obstrution, and let x and y be the end-vertiesof P . As the internal verties of P belong to V (G) \ V (H), then P is a subsetof an H-bridge K, and x and y are among the attahments of K. Let us nowdistinguish two ases, depending on whether K is loal to some blok or not.First, assume that K is loal to a blok B of H . Then, both B and P arepart of the same blok Gi of G. Hene, ~C belongs to a di�erent blok of G,beause if it belonged to Gi, then Gi would ontain the whole PC-obstrution
(P, ~C) and it would be impossible to extend the embedding Hi to Gi, thusontraditing ondition 2 of the lemma. Then, let Gj be the blok of G thatontains ~C. Sine x and y belong to a ommon blok B of H , they are onnetedby a path Q ⊆ B. Sine x and y are separated by ~C, Q shares a vertex z with
~C (otherwise the embedding H would not be planar). Sine Q and ~C belongto distint bloks, z is their unique ommon vertex. Hene, in the rotationsheme of z, the two edges that belong to Q alternate with the two edges thatbelong to ~C, beause ~C separates x and y. Thus, Gi alternates with Gj around
z, ontraditing ondition 3 of the lemma. Then, K annot be a loal bridge.Seond, assume that K is non-loal. By ondition 1 of the lemma, Konsists of a single edge of E(G) \ E(H).We onlude that any minimal PC-obstrution (P, ~C) has the property that
P is a single edge that forms a non-loal H-bridge of G. Note that two verties
x and y belonging to distint bloks of H are separated by a faial yle of Hif and only if there is no fae of H to whih both x and y are inident.We are now ready to desribe the algorithm to determine the existene of aminimal PC-obstrution. The algorithm tests all the edges of E(G)\E(H) oneby one. For any edge e, it determines in onstant time whether it is anH-bridge,i.e., whether its endpoints x and y belong to H . If it is an H-bridge, it hekswhether it is non-loal in onstant time, by using Lemma 4.13. For a non-loalbridge, the algorithm then heks in onstant time whether there is a fae f of
H into whih this bridge an be embedded, again using Lemma 4.13. Suh afae, if it exists, is uniquely determined. Finally, the algorithm heks whetherboth x and y are inident to f , using the vertex-fae inidene graph VF .Overall, for any edge e, the algorithm determines in onstant time whetherthis edge is a non-loal bridge that is part of a minimal PC-obstrution. Thus,
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4.4. LINEAR-TIME ALGORITHM 91in linear time, we determine whether G has any PC-obstrution. 2Combining Lemmata 4.4, 4.13, 4.14 and 4.15 with Theorem 4.4, we obtainthe following result.Theorem 4.5 Pep an be solved in linear time when restrited to instanes
(G, H,H) where G is onneted.Proof: By Lemma 4.13, an instane of Pep where G is onneted an beredued in linear time to an equivalent instane that has the additional propertythat all the non-trivial H-bridges are loal. Namely, whether an H-bridge Kis non-loal and, in suh a ase, whih is the fae of H in whih K has to beembedded an be omputed in time linear in the size of K, by Lemma 4.13.We may thus assume that (G, H,H) is an instane of Pep where G is simplyonneted and all non-trivial H-bridges in G are loal to some blok.To solve Pep for (G, H,H), we present an algorithm based on the hara-terization of Lemma 4.4. First, we generate all the subinstanes (Gi, Hi,Hi)for i = 1, . . . , t, indued by the bloks of G. It is not di�ult to see that thesubinstanes an be generated in linear time. We then solve these subinstanesusing Algorithm BA, whih takes linear time, by Theorem 4.4, sine the totalsize of the subinstanes is linear. If any of the subinstanes does not have anembedding extension, we rejet (G, H,H), otherwise we ontinue.In the next step, we hek whether there is a pair of graphs Hi, Hj alternat-ing around a vertex of H. If this is the ase, we rejet the instane, otherwisewe ontinue. This step an be implemented in linear time, due to Lemma 4.14.Finally, we hek the existene of PC-obstrutions, whih by Lemma 4.15an be done in linear time. We aept the instane if and only if we �nd noPC-obstrution. The orretness of this algorithm follows from Lemma 4.4. 2Next, we deal with the instanes (G, H,H) of Pep in whih G is dison-neted and H arbitrary. We use Lemma 4.5 diretly, and show that the twoonditions of the lemma an be heked in linear time. The �rst ondition ofLemma 4.5 an be heked in linear time by Theorem 4.5. To hek the seondondition, the CF tree of H is onsidered and rooted at any node representinga fae; then, the embedding Hi is onsidered as H restrited to the subgraph
Hi of H indued by the verties of Gi; then, for every i, eah node of CFthat represents a fae of H inident to a omponent of Hi and whose parentrepresents a omponent of H not in Hi is onsidered; if there is more than oneof suh nodes, for some i, (G, H,H) admits no solution, otherwise it does. Theorretness of suh an argument and an e�ient implementation of it are inthe proof of the following theorem.
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92 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSTheorem 4.6 Pep an be solved in linear time.Proof: Let (G, H,H) be an instane of Pep. Let G1, . . . , Gt be the on-neted omponents of G, let Hi be the subgraph of H indued by the vertiesof Gi, and let Hi be H restrited to Hi.By Lemma 4.5, (G, H,H) has an embedding extension if and only if eahinstane (Gi, Hi,Hi) has an embedding extension and, for i 6= j, no faial yleof Hi separates a pair of verties of Hj . By Theorem 4.5, we an test in lineartime whether all the instanes (Gi, Hi,Hi) have an embedding extension.It remains to test the existene of a faial yle of Hi that separates vertiesof Hj . For this test, we use the omponent-fae tree CF of H. Assume that
CF is rooted at any node representing a fae of H; all this fae the root faeof H. A fae f is an outer fae of Hj if at least one hild of f in CF is aomponent of Hj , but the parent of f does not belong to Hj (whih inludesthe possibility that f is the root fae).We laim that a pair of verties of Hj is separated by a faial yle belongingto another omponent of H if and only if there are at least two distint outerfaes of Hj in CF . To see this, assume �rst that Hj has two distint outerfaes f1 and f2, and let C1 (or C2) be a omponent of Hj whih is a hild of f1(or f2, respetively). Any path from C1 to C2 in CF visits the parent of f1 orthe parent of f2. These parents orrespond to omponents of H not belongingto Hj , and at least one faial yle determined by these omponents separates
C1 from C2.Conversely, if C1 and C2 are omponents of Hj separated by a faial ylebelonging to a omponent C3 of Hi (i 6= j), then the path in CF that onnets
C1 to C2 visits C3, and in suh a ase Hj has at least two outer faes.We now desribe the algorithm that tests the seond ondition of Lemma 4.5.We assume that eah omponent of H has assoiated its orresponding sub-graph Hi in CF . We then proess the omponents of H one by one and, foreah omponent C, we hek whether its parent node is an outer fae of theembedding Hi of the subgraph Hi ontaining C. We aept (G, H,H) if andonly if eah Hi has one outer fae. This algorithm learly runs in linear time.

2The algorithms for Pep we presented in this setion are non-onstrutive,i.e., they test whether an embedding extension exists, without atually on-struting the embedding. While it is possible to extend these algorithms intoonstrutive linear-time algorithms, we preferred to present a shorter non-onstrutive version.
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4.5. GENERALIZATIONS OF PEP 934.5 Generalizations of PepSeveral generalizations of the Partially Embedded Planarity problemnaturally arise. The following two generalizations are readily seen to be NP-omplete, sine they are speial ases of Crossing number and Maximumplanar subgraph, respetively:
• Deiding whether an embedding H an be extended to a planar drawingof G with at most k rossings; and
• deiding whether at least k edges of E(G) \ E(H) an be added to Hpreserving planarity.Two additional problems that generalize Pep in di�erent diretions are thefollowing:Minimum Rerouting Partially Embedded Planarity Given a planar graph

G, a planar embedding H of a subgraph H of G, and an integer k ≥ 0,deide whether G admits a planar embedding G in whih at least k edgesof H are embedded the same as in H; andMaximum Preserved Partially Embedded Planarity Given a planar graph
G, a planar embedding H of a subgraph H of G, and an integer k ≥ 0,deide whether a set F of at most k edges an be deleted from H , sothat G \F has a planar embedding G in whih the indued embedding of
H \ F oinides with H \ F .In the following theorem we prove that even these two problems are NP-hard.Theorem 4.7 Minimum Rerouting Partially Embedded Planarity andMaximum Preserved Partially Embedded Planarity are NP-hard.Proof: The proof is obtained by means of a redution from SteinerTree inplanar graphs, whih is known to be NP-hard [GJ77℄. Let G = (V, E) be aplanar graph and let T ⊆ V be a set of terminals. Choose an embedding G of

G and let H be the dual of G with embedding H. For eah terminal t ∈ T weadd a new vertex vt to H and presribe it inside the fae t⋆ that is dual to t.Moreover let S be the edge set of any onneted graph on the verties vt. Weset G′ := H + S.
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94 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHSNow onsider the problem of identifying a set F of edges of H suh that
G−F an be drawn planar and suh that the subgraph H −F has embedding
H− F . Clearly S an be drawn if and only if we remove edges of H suh thatall verties vt lie in the same fae. This is equivalent to the property that theset F ⋆ of edges dual to F is a Steiner Tree in G with terminal set T .This shows thatMaximum Preserved Partially Embedded Planarityis NP-hard. Moreover, as the verties vt form a separate onneted omponent,we an reinsert the edges of F without rossings into the drawing, i.e., it issu�ient to reroute the edges in F . This shows that Minimum ReroutingPartially Embedded Planarity is NP-hard, as well. 2In the ase of Maximum Preserved Partially Embedded Planarity,the NP-hardness result holds even if H is onneted. Namely, onnet eah ver-tex vt to an arbitrary vertex of its presribed fae and hoose for S the edge setof a star graph on the verties vt. The same result does not hold for MinimumRerouting Partially Embedded Planarity, as in that ase the redutionrelies on the property that every edge of eah fae an be removed and rein-serted after drawing S, that is not the ase if H is onneted. We leave open thequestion whether Minimum Rerouting Partially Embedded Planarityis NP-hard if the presribed graph H is onneted.4.6 Simultaneous Embedding with Fixed EdgesThe results presented in this hapter solve speial ases of the so alled simul-taneous embedding problem.A Simultaneous Embedding with Fixed Edges (in the following alled SEFE,for short) of a tuple (G1 = (V, E1), G2 = (V, E2), . . . , Gk = (V, Ek)) of graphson the same set of n verties is a tuple (Γ1, Γ2, . . . , Γk) of drawings suh that:(i) Γi is a planar drawing of Gi, for eah i = 1, 2, . . . , k; (ii) eah vertex v ∈ Vis drawn on the same point in Γi, for every i = 1, 2, . . . , k; (iii) eah edge
(u, v) ∈ Ei ∩Ej is represented by the same Jordan urve in Γi and in Γj .Several ombinatorial results are known on the problem of determiningwhih graphs always have a SEFE: Erten and Kobourov proved that a treeand a path always have a SEFE with at most one bend per edge [EK04℄. DiGiaomo and Liotta proved that an outerplanar graph and a yle always havea SEFE with one bend per edge [DL07℄. Frati proved that a planar graph anda tree always have a SEFE, while there exist pairs of outerplanar graphs thathave no SEFE [Fra06℄. Fowler et al. haraterized the lass of planar graphsthat always have a SEFE with any other planar graph [FJKS08℄.
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4.6. SIMULTANEOUS EMBEDDING WITH FIXED EDGES 95Further, the problem of testing whether a given set of planar graphs havea SEFE has also been deeply investigated. Gassner et al. proved that deid-ing whether three graphs have a SEFE is an NP-omplete problem [GJP+06℄.Fowler et al. proved that testing whether two bionneted outerplanar graphshave a SEFE and that testing whether two planar graphs whose union ishomeomorphi to K5 or to K3,3 have a SEFE are polynomial-time-solvableproblems [FJKS08℄. Fowler et al. proved that whether two planar graphshave a SEFE is a polynomial-time-solvable problem if one of the graphs hasat most one yle [FGJ+08℄. Estrella-Balderrama et al. proved that deid-ing whether two graphs have a SEFE is an NP-hard problem if the furtheronstraint that the edges have to be represented by straight-line segments isonsidered [EBGJ+07℄ (in suh a setting the problem is usually regarded as ge-ometri simultaneous embedding). Determining the time omplexity of testingwhether two planar graphs have a SEFE is, in general, an open problem.As a onsequene of the results we presented on the Pep problem, deidingwhether two graphs have a SEFE is a linear-time solvable problem if one thegraphs has a �xed embedding. Namely, let G1 = (V, E1) and G2 = (V, E2) betwo planar graphs and let G2 be a planar embedding of G2. Denote by G1∩G2a planar graph whose vertex set is V and whose edges are those belonging toboth E1 and E2. Denote by G1∩2 the planar embedding of G1 ∩ G2 obtainedas G2 restrited to the edges of G1 ∩G2.Theorem 4.8 Let G1 and G2 be two graphs with the same n verties, let G2be a planar embedding of G2 and let G1∩2 be the restrition of G2 to G1 ∩G2.Then G1 and G2 have a SEFE in whih the planar embedding of G2 is G2 ifand only if (G1, G1 ∩G2,G1∩2) is a Yes-instane of Pep.Proof: Suppose that G1 and G2 have a SEFE (Γ1, Γ2) in whih the planarembedding of G2 is G2. We prove that (G1, G1∩G2,G1∩2) is a positive instaneof Pep. Denote by G1 the planar embedding of G1 orresponding to Γ1. Welaim that G1 restrited to G1 ∩ G2 is G1∩2. However, this is easily proved byobserving that, if the embedding of G1 ∩ G2 is not G1∩2, then the embeddingof G2 orresponding to Γ2 is not G2, a ontradition.Suppose that (G1, G1∩G2,G1∩2) is a positive instane of Pep. Then, thereexists a planar embedding G1 of G1 suh that G1 restrited to G1 ∩ G2 is
G1∩2. We show how to onstrut a SEFE (Γ1, Γ2) of (G1, G2). Drawing Γ1is any planar drawing with embedding G1. Consider the planar drawing Γ1∩2of G1 ∩ G2 that is obtained from Γ1 by removing the edges not in G1 ∩ G2.Observe that Γ1∩2 orresponds to embedding G1∩2, by de�nition of Pep. Sine
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96 CHAPTER 4. TESTING PLANARITY OF PARTIALLY EMBEDDEDGRAPHS
G2 restrited to G1 ∩ G2 is also G1∩2, drawing Γ1∩2 an be ompleted to aplanar drawing Γ2 of G2, thus obtaining a SEFE (Γ1, Γ2) of (G1, G2). 24.7 ConlusionsIn this hapter we have shown that Partially Embedded Planarity (Pep),i.e. the problem of deiding whether a partial drawing an be extended to aplanar drawing of the entire graph, is solvable in linear time. Also, we provedthat some generalizations of Partially Embedded Planarity where theminimum number of rossings, of edges to be rerouted, or of edges to be deletedare requested, are NP-hard. Finally, we proved that Partially EmbeddedPlanarity is the same problem as the Simultaneous Embedding with FixedEdges problem, when one of the two graphs has a �xed embedding, whihimplies that suh a problem an be solved in linear time, as well.One diretion of future work is to extend the algorithm suh that it not onlyrejets unsolvable Pep instanes but also provides a small erti�ate provingthat the extension is not possible. To this aim, an intriguing goal would be tohave a haraterization of solvable Pep instanes via an obstrution set. Thealgorithm should then be modi�ed to �nd an obstrution quikly in ase aninstane is not solvable.Another interesting question is whether our approah an be generalized towork for embeddings on the torus or on surfaes of higher genus.
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Chapter 5Minimum-Depth EmbeddingsIn this hapter1 we deal with a problem onerning the optimization of qual-ity measures of embeddings. Namely, we onsider the problem of e�ientlyomputing an embedding of a planar graph that is optimal with respet tosome topologial distane measures. In partiular, we aim at minimizing themaximum distane of the internal faes of an embedding of a given planargraph from the external fae. Among the several possible ways to de�ne thedistane between two faes, we onsider the one, alled depth, that is basedon the adjaeny relationship in whih two faes are adjaent if they share anedge.Problem 5.1 (Minimum-Depth Embedding) Given a planar graph G, whatis the time omplexity of omputing an embedding of G with minimum depth?This problem is worth of study for several reasons, as many researherspointed out that the quality of a planar embedding an be measured in termsof its depth and as the omputation of an optimal embedding with respet tosuh a measure is the basi step of many drawing algorithms.In this hapter we present anO(n4)-time algorithm for omputing a minimum-depth embedding of any given planar graph. This bound improves on the bestprevious bound [BM90℄ by an O(n log n) fator. As a side e�et, our algorithmimproves the bounds of several algorithms that require the omputation of aminimum-depth embedding.1Some of the ontents of this hapter are a joint work with Giuseppe Di Battista andMaurizio Patrignani, appeared in [ADP07℄ and to appear in [ADP10℄.97
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98 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGS5.1 IntrodutionAs pointed out in [BM90, PT00, Piz05℄, the quality of a planar embedding ofa planar graph an be measured in terms of the maximum distane of its ver-ties from the external fae. Suh a distane an be given in terms of di�erentinidene or adjaeny relationships between verties and faes. For example,if we onsider an adjaeny relationship in whih two faes are adjaent whenthey share a vertex, then the maximum distane to the external fae is alledradius [RS84℄. If the adjaeny relationship is suh that two verties are adja-ent when they are endpoints of an edge, then the maximum distane to theexternal fae is alled width [DLT84℄. If the adjaeny relationship is suh thattwo verties are adjaent when they are on the same fae and the external faeis adjaent to all its verties, then the maximum distane to the external fae isalled outerplanarity [Bak94℄. Finally, if we onsider two faes to be adjaentwhen they share an edge, then the maximum distane to the external fae isalled depth [BM88℄. Fig. 5.1 shows two embeddings of the same graph whereinternal faes are labeled with their depth.Pizzonia and Tamassia present an algorithm to minimize the maximum dis-tane of the bionneted omponents of the graph from the external fae, wheretwo bionneted omponents are adjaent if they share a ut-vertex [PT00℄.This measure, whih they also all �depth�, is a rougher indiator of the qual-ity of the embedding but an be omputed in O(n) time.
1

1
1 1

1
2

22

1

u

v
10

2

1

5

7
6

8

9

12

11

3
4

u
1

1 1

3
2

3

2

12v

8

7
6

4
3

2

5

1

10

9

11

12(a) (b)Figure 5.1: Two embeddings of the same graph G lead to di�erent values ofdepth. Internal faes are labeled with their distane from the external fae.The algorithms that ompute a planar embedding to minimize the maxi-
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5.1. INTRODUCTION 99mum distane of any internal vertex or fae from the external fae, for somede�nition of distane, have several appliations. Let us give a few examples.The algorithm by Dolev, Leighton, and Trikey for drawing planar graphs withasymptotially optimal area [DLT84℄ requires the omputation of the embed-ding with minimum width. In [Bak94℄ Baker gives approximation algorithms onplanar graphs for many NP-omplete problems, inluding maximum indepen-dent set and minimum vertex over. The time omplexity and the optimalitybounds of suh algorithms depend on the outerplanarity of the graph. Finally,the algorithm by Di Giaomo et al. [DDLM05℄ for onstruting minimum radialdrawings of planar graphs relies on the omputation of their outerplanarity.In [BM90℄, Bienstok and Monma present an algorithm to ompute a pla-nar embedding of an n-vertex planar graph with minimum maximum distaneto the external fae in O(n5 log n) time. The distane they onsider is thedepth. However, they observe that it is possible to ompute radius, width,and outerplanarity by modifying and simplifying the algorithm for the mini-mum depth, sine suh distane measures are intrinsially simpler to omputethan the depth. In [Kam07℄, Kammer fouses on suh simpler distane mea-sures and improves the omplexity bounds for omputing them by presentingan algorithm that omputes the outerplanarity of an n-vertex planar graph in
O(n2) time. Also, he observes that simple variations of his algorithm an leadto ompute the radius in O(n2) time and the width in O(n3) time.The algorithm of Bienstok and Monma for omputing the minimum-depthembedding is based on the deomposition of the graph into its bionnetedand trionneted omponents. The general approah is the one of seleting apositive integer k and heking if an embedding exists with depth k. A binarysearh is done to determine the optimal value of k. For eah seleted k thedeomposition of G is visited assoiating to eah omponent µ a left and aright weight, orresponding to the distanes of the left and right border of µfrom the external fae of G. Suh weights are independent on the embeddingof the other omponents. The omponents are then visited to hek if theirweights an be omposed to onstrut an embedding with depth k. The spaeomplexity of the algorithm is not analyzed in the paper.In this hapter we present an algorithm that improves the time boundof [BM90℄ to O(n4) time. As a side e�et, we improve the time bound of thealgorithms that need to ompute a planar embedding with minimum depth.Our approah is inspired by the methods in [BM90℄ and develops on topof suh methods several new tehniques. As in [BM90℄, we deompose the graphinto bi- and tri-onneted omponents, using BC-trees and SPQR-trees [DT96b℄.However, we are able to solve the problem on eah bionneted omponent,
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100 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSwith a given edge on the external fae, in O(n3) time. Then, we use tehniquesanalogous to those in [BM90℄ for assembling the results on eah bionnetedomponent into a general solution. Among the tehniques presented in thishapter, a key issue, that might have other appliations, is the ability of rep-resenting impliitly and with reasonable size all the possible values of depth ofeah trionneted omponent. The spae omplexity of the algorithm is O(n3).The hapter is organized as follows. Setion 5.2 provides an informal high-level desription of the algorithm and a hint of its omputational omplexity.Setion 5.3 gives basi de�nitions. Setion 5.4 deals with the ombinatorialstruture of the depth of the planar embeddings and develops a theory of theset of integer pairs that is exploited in the algorithm. Setion 5.5 presentsthe algorithm for bionneted graphs and Setion 5.6 extends the algorithm togeneral onneted graphs. In Setion 5.7 we give onluding remarks and wefurther ompare our approah with the one in [BM90℄.5.2 High-Level Desription of the AlgorithmIn this setion we give a high-level informal desription of the algorithm foromputing the minimum value of the depth among all the embeddings of aplanar graph. The details of the algorithm are the subjet of the next setions,whih also desribe how to atually obtain a minimum-depth embedding of thegraph. First, we show how to handle bionneted graphs. Seond, we showhow to extend the algorithm to simply onneted graphs.The ruial ingredient of the algorithm for bionneted graphs is fousingon all the possible embeddings of the subgraphs that are attahed to G bya separation pair. By using the SPQR-tree deomposition, we deorate eahseparation pair of G with suitable labels that desribe the properties of allthe embeddings of its assoiated subgraph with respet to the depth of theinner faes. In partiular, we assoiate to eah separation pair an in�nite set ofinteger pairs. Eah pair 〈x, y〉 represents the fat that the subgraph assoiatedto the separation pair admits an embedding, with the separation pair on theexternal fae, suh that eah internal fae has depth at most x (y) with respetto the �left border� (�right border�) of the subgraph.Notie that, being able to ompute suh set of pairs for the root of thehierarhy allows us to �nd the value of a minimum-depth embedding when thestarting edge is on the external fae. By hoosing all the possible starting edgesand omparing the obtained values the problem is solved.However, this strategy requires to represent in a suint way the in�nite
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5.3. PROPERTIES OF SETS OF INTEGER PAIRS 101sets of integer pairs and to e�iently ompute these suint representations.For solving the �rst problem we study in Setion 5.3 the properties of suhsets, showing that a �nite subset of pairs, that we all �gist� and whose sizeis linear in the size of the subgraph assoiated to the separation pair, an beused to impliitly represent the whole in�nite set.For the seond problem, the one of e�iently ompute suint represen-tations of in�nite sets, we ompute gists bottom-up on the SPQR-tree. Thisis the most di�ult part, espeially for parallel nodes, as the fatorial numberof possible permutations must be taken into aount. This is also the mostomputationally expensive step, requiring an overall O(n3) time to omputethe gists of all the parallel nodes and yielding an O(n4) time algorithm whenthe root of the deomposition is hosen in all possible ways.The algorithm for simply onneted graphs starts from a deompositionof the input graph into its bionneted omponents and follows an approahsimilar to the one used in [BM90℄. The basi step of this algorithm is a modi�edversion of the O(n3)-time algorithm to ompute the minimum depth of all theembeddings of a bionneted graph with a spei�ed edge on the external fae.Suh a modi�ed version takes into aount the fat that some spei� vertiesmay have a subgraph attahed to them. This algorithm is launhed at mosttwie for eah edge of eah bionneted omponent, hene yielding an O(n4)time algorithm for the whole graph.5.3 Properties of Sets of Integer PairsIn this setion we give basi properties of pairs 〈x, y〉 of non-negative integers.We say that pair p1 = 〈x1, y1〉 preedes with respet to x (preedes with respetto y) pair p2 = 〈x2, y2〉 when x1 ≤ x2 (y1 ≤ y2). We denote this relationship by
p1 �x p2 (p1 �y p2). For example 〈3, 2〉 �y 〈4, 3〉. We say that pair p1 preedespair p2 when p1 �x p2 and p1 �y p2. We denote this relationship by p1 � p2.For example 〈3, 2〉 � 〈4, 3〉. Sine this relationship is re�exive, antisymmetri,and transitive, it determines a poset (P,�), where P is the set of non-negativeinteger pairs. We say that two pairs p1 and p2 are inomparable if none of thempreedes the other, i.e., if p1 � p2 and p2 � p1, and we denote it by p1 ≁ p2.For example, 〈3, 2〉 ≁ 〈2, 3〉.A set S ⊆ P of pairs of non-negative integers is suint if the pairs of
S are pairwise inomparable. In terms of poset theory, a suint set is anindependent subset of (P,�) or an antihain. Given two sets S and S′ of pairsof integers, S′ preedes S if for any pair p ∈ S there exists at least one pair
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102 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGS
p′ ∈ S′ suh that p′ � p. We write S′ � S to mean that S′ preedes S. Forexample {〈0, 4〉〈3, 3〉〈5, 4〉} � {〈0, 5〉〈4, 5〉}. Also, S′ redues S if S′ � S and
S′ ⊆ S. Further, if S′ is suint and redues S, then S′ is a gist of S. Interms of poset theory, a gist of S is a set of minimal elements of (S,�). A pair
p ∈ S is a minimal element if there exists no pair p′ ∈ S suh that p′ � p. Forexample, {〈0, 4〉〈3, 3〉} is a gist of {〈0, 4〉〈3, 3〉〈5, 4〉}.The following property desends from the poset theory.Property 5.1 Let S be a possibly in�nite set of non-negative integer pairs andlet p1 = 〈x1, y1〉, p2 = 〈x2, y2〉, and p3 = 〈x3, y3〉 be three elements of S.1. The gist of S is unique and is the smallest set preeding S.2. If S is suint, then p1 �x p2 ⇔ p2 �y p1.3. If S is suint, then the relationship �x indues a total order on S. Suha total order is an inverse total order with respet to relationship �y.4. If S is �nite, denote by xmax(S) (ymax(S)) the maximum value of xi (yi)in any pair 〈xi, yi〉 ∈ S. If S is suint, then |S| ≤ 1 + xmax(S) and

|S| ≤ 1 + ymax(S).5. If p1 �x p2 �x p3, then p1 ≁ p2, p2 ≁ p3 ⇒ p1 ≁ p3.In the following, the gist of S is denoted by Ŝ.5.4 The Combinatorial Struture of Planar Embeddingsand their DepthsLet T be the SPQR-tree of a bionneted planar graph G, rooted at a givenQ-node orresponding to a referene edge e. Let µ be a node of T . Observethat any embedding ΓG of G with e on the external fae orresponds to anembedding ΓGµ
of the pertinent graph Gµ of µ with the poles on the externalfae. Also, the external fae of ΓGµ

orresponds to two faes of ΓG, whih anbe arbitrarily alled left and right external faes of Gµ, and denoted by fµ
land fµ

r . For example, Fig. 5.2(a) shows a subtree rooted at an R-node R1 ofan SPQR-tree of a graph G and Fig. 5.2(b) shows an embedding of G. Theembedding of G indues an embedding of the pertinent graph of R1 (shown ingrey), whose external fae orresponds to the two faes labeled fR1

l and fR1
r .
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(a) (b)Figure 5.2: (a) The subtree rooted at a node R1 of the SPQR-tree of a graph
G. (b) An embedding of G where the pertinent graph of R1 is drawn with grayfaes and the two external faes fR1

l and fR1
r of R1 are shown.Following the approah of [BM90℄, we use a de�nition of faes fµ

l and fµ
rwhih is independent on the embedding ΓG of G and only depends on ΓGµ

. Let
(u, v) be the virtual edge of µ that represents in µ the portion of G ontaining
e and denote by G+

µ the graph obtained by adding edge (u, v) to the pertinentgraph Gµ of µ. Suppose G+
µ is planarly embedded with edge (u, v) on theexternal fae. The (u, v)-dual of Gµ is obtained by omputing the dual of G+

µand by then removing the edge of the dual orresponding to (u, v). The faesinident to the removed edge are fµ
l and fµ

r . Fig. 5.3 shows the onstrutionof the (u, v)-dual graph of omponent R2 of the SPQR-tree represented inFig. 5.2(a).A omponent µ satis�es the pair of non-negative integers 〈x, y〉 if its perti-nent graph Gµ admits an embedding ΓGµ
, with its poles on the external fae,where it is possible to �nd a partition of the set of its internal faes into twosets, denoted by Fl and Fr, suh that all faes in Fl have distane from fµ

l lessor equal than x and all faes in Fr have distane from fµ
r less or equal than y.Fig. 5.4 shows an embedding of an S-node S2 and three possible partitions ofits faes orresponding to integer pairs 〈0, 2〉, 〈1, 2〉, and 〈2, 0〉.The set of integer pairs 〈x, y〉 satis�ed by omponent µ is the admissibleset of µ, and is denoted by A(µ). Observe that, as x and y are non-negative
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l(a) (b)Figure 5.3: Constrution of the (u, v)-dual graph of omponent R2 of theSPQR-tree represented in Fig. 5.2(a). (a) Virtual edge (u, v) is drawn dashed,the pertinent graph of R2 is drawn blak, and the dual graph is drawn withthiker gray edges and square verties. (b) The (u, v)-dual graph of R2.integers, Property 5.1 applies to admissible set A(µ). Also, observe that p ∈

A(µ) implies p′ ∈ A(µ) for any p′ suh that p � p′. We all this propertyontinuity. Continuous sets of non-negative integer pairs suh as A(µ) arein�nite. In the following we show that A(µ), although in�nite, an be e�ientlyrepresented and managed by means of its gist Â(µ), whose size is linear in thenumber of edges of Gµ.Properties of Gists of Admissible SetsWith respet to the gist of a generi set of integer pairs, the gist of an admissibleset satis�es additional properties that an be used to simplify the operationsand to bound the omplexity of the algorithms. Let µ be a omponent, Gµ itspertinent graph, and nµ the number of verties of Gµ.Property 5.2 If 〈x, y〉 ∈ Â(µ), then 〈y, x〉 ∈ Â(µ).Proof: Suppose, for a ontradition, that 〈x, y〉 ∈ Â(µ) and 〈y, x〉 /∈ Â(µ).Sine 〈x, y〉 ∈ A(µ), �ipping the embedding of the pertinent graph of µ whihsatis�es 〈x, y〉 yields 〈y, x〉 ∈ A(µ). Hene, sine 〈y, x〉 /∈ Â(µ), there existsa pair 〈x′, y′〉 ∈ A(µ) suh that 〈x′, y′〉 � 〈y, x〉. Hene, 〈y′, x′〉 ∈ A(µ). Byonstrution, 〈y′, x′〉 � 〈x, y〉, ontraditing the hypothesis 〈x, y〉 ∈ Â(µ). 2Property 5.3 Â(µ) ontains exatly one pair 〈x, y〉 with x = 0 and one pair
〈x′, y′〉 with y′ = 0. In suh pairs, y = x′ = O(nµ).
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r , respe-tively. Labels lying inside a square are those onsidered in the orrespondingpartition. The pitures show that S2 satis�es pairs: 〈0, 2〉 (a), 〈1, 2〉 (b), and

〈2, 0〉 ().Proof: Let F be the set of internal faes of an arbitrary embedding ΓGµ
of Gµ.Consider the trivial partition of F into two sets suh that one is empty andthe other one oinides with F . Suh a partition implies that A(µ) ontains apair 〈x∗, y∗〉 with x∗ = 0 and y∗ ≤ |F |. Sine any pair 〈x, y〉 preeding 〈x∗, y∗〉has x = 0, Â(µ) ontains at least one pair 〈x, y〉 with x = 0. Two suh pairsan not be ontained into Â(µ) sine Â(µ) is suint. The bound on the valueof y is due to the fat that y ≤ y∗ ≤ |F | and that |F | = O(nµ). Analogousonsiderations show that there exists exatly one pair 〈x′, y′〉 ∈ Â(µ) with

x′ = O(nµ) and y′ = 0. By Property 5.2 we have y = x′. 2Property 5.4 Let 〈x, y〉 be a pair in Â(µ) satis�ed by the embedding ΓGµ
.There exists at least one fae of ΓGµ

that is at distane x from fµ
l and atdistane greater than y from fµ

r .Proof: Consider the partition of the internal faes of ΓGµ
into the two sets

Fl and Fr that shows that ΓGµ
satis�es 〈x, y〉. At least one fae in Fl is atdistane x from fµ

l , otherwise ΓGµ
would satisfy 〈x − 1, y〉 and 〈x, y〉 would
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Figure 5.5: Computation of Û , where U = A1 ∪ A2, given Â1 and Â2. Aninteger pair 〈x, y〉 belonging to a gist is represented by a blak irle withoordinates (x, y).not be in Â(µ). Denote by Fl,x the set of faes of Fl that are at distane xfrom fµ
l . If all faes in Fl,x were at distane less or equal than y from fµ

r , thenthe partition Fl \ Fl,x and Fr ∪ Fl,x ould be used to show that ΓGµ
satis�es

〈x− 1, y〉, ontraditing the hypothesis that 〈x, y〉 is in Â(µ). 2Property 5.5 Â(µ) is �nite and |Â(µ)| is O(nµ).Proof: By Property 5.3, Â(µ) ontains two pairs 〈x1, y1〉 and 〈x2, y2〉, with
x1 = 0 and x2 = O(nµ). Sine, by Property 5.1.3, Â(µ) is totally ordered withrespet to the �x relationship, it follows that |Â(µ)| = O(nµ). 2Some steps of the algorithm desribed in this hapter require the ompu-tation of unions and intersetions among admissible sets. Sine suh sets arein�nite, we perform these operations fousing on their �nite representations.In the following we present algorithms that, given two admissible sets repre-sented by their gists, e�iently ompute the gist of their union and of theirintersetion. In fat, the results of these operations are ontinuous but alsoadmit a �nite gist.Union of Admissible SetsLet A1 and A2 be two admissible sets and assume that their gists Â1 and Â2are sorted with respet to the �x relationship. Let U = A1 ∪A2, we omputeits gist Û . Observe that all the pairs ontained in Û are preeded by at leastone pair of either Â1 or Â2. Also observe that, for eah pair p ∈ Û , either
p ∈ Â1 or p ∈ Â2.
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5.4. THE COMBINATORIAL STRUCTURE OF PLANAR EMBEDDINGSAND THEIR DEPTHS 107We propose a reursive algorithm, alled Gist_Union, whih, given thegists Â1 and Â2, sorted with respet to the �x relationship, builds a set S thatis the gist Û of U = A1 ∪A2, sorted with respet to the �x relationship.Initialize S to the empty set. Then, starting from the �rst pairs of the twosets, ompare the two urrent pairs, (possibly) add to S one of the two, andupdate the urrent pairs, onsuming at eah omparison one pair of at leastone of the two sets. When one of the two sets is empty, add to S all the pairsof the other set.More in detail, when omparing p1 = 〈x1, y1〉 ∈ Â1 and p2 = 〈x2, y2〉 ∈ Â2,if p1 ≁ p2, then add the pair with minimum x, say p1, to S and remove itfrom Â1. If p1 � p2, then remove p2 from Â2 without adding any pair to S.Analogously, if p2 � p1 then remove p1 from Â1 without adding any pair to S.Lemma 5.1 Starting from the gists Â1 and Â2 of two admissible sets, sortedwith respet to the �x relationship, Algorithm Gist_Union omputes the gist
Û of U = A1 ∪A2, sorted with respet to the �x relationship.Proof: Let S be the set of integer pairs omputed by AlgorithmGist_Union.We prove the statement by proving that (a) S is suint; (b) S ⊂ U ; and ()
S � U . First observe that, sine the pairs added to S have inreasing valuesof x, S is sorted with respet to the �x relationship.(a) (S is suint) We prove that the pair pi added to S at step i is inom-parable with the pairs p1, p2, . . . , pi−1 added to S at the previous steps.For i = 1 the statement is trivially true. Consider step i > 1. By Prop-erty 5.1.5 and by the fat that S is sorted with respet to the �x relation-ship, we have that if pi ≁ pi−1, then pi ≁ pj , for j = 1, . . . , i− 1. Hene,it is su�ient to prove that pi = 〈xi, yi〉 ≁ pi−1 = 〈xi−1, yi−1〉. Suppose,without loss of generality, that pi ∈ Â1. If pi−1 ∈ Â1, sine Â1 is suint,we have pi ≁ pi−1. If pi−1 ∈ Â2, onsider the pair p∗ = 〈x∗, y∗〉 ∈ Â1ompared with pi−1 when it was added to S. By onstrution, pi−1 ≁ p∗and xi−1 < x∗. Sine Â1 is suint and sorted with respet to the �xrelationship, we have that p∗ ≁ pi and x∗ < xi. Hene, by Property 5.1.5,we have pi ≁ pi−1.(b) (S ⊂ U) By onstrution, eah pair p ∈ S belongs to either Â1 or Â2.Hene, by de�nition, it belongs to U = A1 ∪A2.() (S � U) We show that any pair p ∈ U is preeded by at least one pairin S. Suppose, without loss of generality, that p is preeded by at least
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108 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSone pair of Â1. Let p1 = 〈x1, y1〉 be the pair with the greatest value of xpreeding p in Â1. If p1 ∈ S, the statement follows. If p1 /∈ S, sine p1was not added to S, there exists a pair p2 ∈ Â2 suh that p2 � p1 � p.Sine Â1 is suint, no pair of Â1 preedes p2. Hene, p2 ∈ S.
2Lemma 5.2 (Union omplexity by size) Let A1 and A2 be two admissiblesets and let Â1 and Â2 be their gists, sorted with respet to the �x relationship.The gist Û of U = A1 ∪A2, sorted with respet to the �x relationship, an beomputed in O(|Â1|+ |Â2|) time.Proof: Apply Algorithm Gist_Union to Â1 and Â2. At every step thealgorithm removes one pair from at least one of the two sets. Hene, at most

O(|Â1| + |Â2|) steps are performed. Sine eah step an be exeuted in O(1)time, the statement follows. 2Lemma 5.3 (Union omplexity by value) Let A1 and A2 be two admissiblesets and let Â1 and Â2 be their gists, sorted with respet to the �x relation-ship. The gist Û of U = A1 ∪ A2, sorted with respet to the �x relationship,an be omputed in O(max(xmax(Â1), x
max(Â2))) time. Further, xmax(Û) is

min(xmax(Â1), x
max(Â2)).Proof: Apply Algorithm Gist_Union to Â1 and Â2. The time omplexitybound follows from Lemma 5.2 and from the fat that, by Property 5.1.4, wehave |Â1| ≤ xmax(Â1) and |Â2| ≤ xmax(Â2). For the bound on xmax(Û), on-sider the last pair of Û , that is, by Properties 5.1.3 and 5.3, pair 〈xmax(Û), 0〉.By onstrution, suh a pair is either p1 = 〈xmax(Â1), 0〉 ∈ Â1 or p2 =

〈xmax(Â2), 0〉 ∈ Â2. Sine 〈min(xmax(Â1), x
max(Â2)), 0〉 preedes both p1 and

p2, it follows that xmax(Û) is min(xmax(Â1), x
max(Â2)). 2Lemma 5.4 Let Aj , j = 1, . . . , k, be k admissible sets and let Âj be theirgists, eah one sorted with respet to the �x relationship. The gist of U =

A1 ∪A2 ∪ · · · ∪Ak, sorted with respet to the �x relationship, an be omputedin O(
∑k

j=1(x
max(Âj))) or, equivalently, in O(

∑k
j=1(|Âj |)) time.Proof: Let Am be the admissible set suh that xmax(Âm) ≤ xmax(Âj), for

j = 1, . . . , k. Starting from U0 = Am, apply Gist_Union to Uj−1 and Aj inorder to obtain Uj, j = 1, . . . , k, j 6= m, where U = Uk. By Lemma 5.3 eah
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76543Figure 5.6: Computation of Î, where I = A1∩A2, given Â1 and Â2. An integerpair 〈x, y〉 belonging to a gist is represented by a blak irle with oordinates
(x, y).step has time omplexity O(xmax(Âj)) and xmax(Uj) = xmax(Âm). Hene, theomputation an be performed in O(

∑k
j=1(|Âj |)) time. 2Intersetion of Admissible SetsLet A1 and A2 be two admissible sets and assume that their gists Â1 and Â2are sorted with respet to the �x relationship. Let I = A1 ∩ A2, we omputeits gist Î. Observe that all the pairs ontained in Î are preeded by at least onepair of both Â1 and Â2. Also, observe that Î may ontain some pair p suh that

p /∈ Â1 and p /∈ Â2. This an be seen, for example, by pairs 〈2, 4〉, 〈4, 2〉 ∈ Î ofFig. 5.6, and is proved in the following lemma.Lemma 5.5 Let A1 and A2 be two admissible sets and let Â1 and Â2 be theirgists, sorted with respet to the �x relationship, suh that Â1 = {〈x1, y1〉, . . . ,
〈xj , yj〉, 〈xj+1, yj+1〉, . . . , 〈xm, ym〉} and 〈x, y〉 ∈ Â2. If xj ≤ x < xj+1, then
〈x, max(y, yj)〉 ∈ I = A1 ∩A2.Proof: For eah pair 〈xk, yk〉 ∈ Â1, with k = 1, . . . , j, by xk ≤ x, there existin�nite pairs 〈x, yk + m〉 ∈ A1, with m ≥ 0. By Property 5.1.3, 〈x, yj〉 �
〈x, yk + m〉, for any k = 1, . . . , j and m ≥ 0. Hene, by xj < x, we have
〈xj , yj〉 � 〈x, max(y, yj)〉. Sine 〈x, max(y, yj)〉 is preeded by 〈xj , yj〉 ∈ Â1and by 〈x, y〉 ∈ Â2, the statement follows. 2
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110 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSWe propose a reursive algorithm, alled Gist_Intersetion, whih,given the gists Â1 and Â2, sorted with respet to the �x relationship, builds aset S that is the gist Î of I = A1∩A2, sorted with respet to the �x relationship.Algorithm Gist_Intersetion is analogous to Gist_Union. The onlydi�erene is in the way the pairs are seleted to be added to S and to beremoved from Â1 and Â2.More in detail, onsider the two urrent pairs p1 = 〈x1, y1〉 ∈ Â1 and
p2 = 〈x2, y2〉 ∈ Â2. Suppose x1 = x2. Let p∗ = 〈x1, max(y1, y2)〉. Remove
p1 and p2 from Â1 and Â2, respetively, and if p∗ is not preeded by the lastpair added to S, then add p∗ to S. Suppose x1 < x2, the ase x1 > x2 beinganalogous. Consider the pair p∗ = 〈x1, max(y1, y

′
2)〉, where 〈x′

2, y
′
2〉 is the lastpair removed from Â2. Remove p1 from Â1 and if p∗ is not preeded by thelast pair added to S, then add p∗ to S.Lemma 5.6 Starting from the gists Â1 and Â2 of two admissible sets A1 and

A2, sorted with respet to the �x relationship, Algorithm Gist_Intersetionomputes the gist Î of I = A1 ∩A2, sorted with respet to the �x relationship.Proof: Let S be the set of integer pairs omputed by AlgorithmGist_Intersetion.First observe that the pairs added to S have inreasing values of x. We provethe statement by proving that (a) S is suint; (b) S ⊂ I; and () S � I.(a) (S is suint) Analogously to the proof of point (a) of Lemma 5.1, itis su�ient to prove that pi ≁ pi−1, where pi is the pair added to S atstep i. Sine pi is added to S only if it is not preeded by pi−1 and, byProperty 5.1.3, it holds pi � pi−1, the statement follows.(b) (S ⊂ I) Consider the pairs p1 = 〈x1, y1〉 ∈ Â1 and p2 = 〈x2, y2〉 ∈ Â2ompared at step i when adding pair pi to S. If x1 = x2, then pi =
〈x1, max(y1, y2)〉 belongs to both A1 and A2, sine it is preeded by both
p1 and p2. If x1 6= x2, then pi = 〈x1, max(y1, y

′
2)〉, where 〈x′

2, y
′
2〉 is thelast pair removed from Â2. By Lemma 5.5, pi ∈ A1 ∩A2.() (S � I) We show that any pair p ∈ A1 ∩ A2 is preeded by at least onepair in S. Let p1 = 〈x1, y1〉 and p2 = 〈x2, y2〉 be the two pairs with thegreatest value of x preeding p in Â1 and Â2, respetively. If x1 = x2,let pi = 〈x1, max(y1, y2)〉. If pi is not preeded by the last pair addedto S, pi is added to S. If x1 < x2 (ase x1 > x2 being analogous),Algorithm Gist_Intersetion adds a suitable pair to S, removes p1from Â1, and ompares p∗1 = 〈x∗

1, y
∗
1〉 and p2 = 〈x2, y2〉, where p∗1 is the
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5.4. THE COMBINATORIAL STRUCTURE OF PLANAR EMBEDDINGSAND THEIR DEPTHS 111pair immediately following p1 in Â1. Observe that, sine p1 and p2 werehosen to be the two pairs with greatest x preeding p in Â1 and Â2, wehave x∗
1 > x2. If pi+1 = 〈x2, max(y2, y1)〉 is not preeded by the last pairadded to S, then pi+1 is added to S. Hene, in all ases, a pair preeding

p is added to S. In fat, sine x ≥ x1, y ≥ y1, and y ≥ y2, we have pi � p,and sine x ≥ x2, y ≥ y1, and y ≥ y2, we have pi+1 � p.
2The following lemma an be proved analogously to Lemma 5.2.Lemma 5.7 (Intersetion omplexity by size) Let A1 and A2 be two ad-missible sets and let Â1 and Â2 be their gists, sorted with respet to the �xrelationship. The gist Î of I = A1 ∩A2, sorted with respet to the �x relation-ship, an be omputed in O(|Â1|+ |Â2|) time.Lemma 5.8 (Intersetion omplexity by value) Let A1 and A2 be twoadmissible sets and let Â1 and Â2 be their gists, sorted with respet to the

�x relationship. The gist Î of I = A1 ∩ A2, sorted with respet to the �xrelationship, an be omputed in O(min(xmax(Â1), x
max(Â2)) time. Further,

xmax(Î) is max(xmax(Â1), x
max(Â2)).Proof: Apply Algorithm Gist_Intersetion to Â1 and Â2. At eah stepthe algorithm removes the pair with smallest x from Â1 or Â2. Hene, a pair

p = 〈x, y〉 is removed from Â1 or Â2 after at most x steps. Let Âm (ÂM ) bethe set with minimum (maximum) value of xmax between Â1 and Â2. After
O(min(xmax(Â1), x

max(Â2)) steps the set Âm is empty. Using an appropriatedata struture, all the remaining pairs of the non-empty set an be added to
Î in O(1) time, yielding the time omplexity bound. The seond part of thestatement follows from the fat that the last pair of Î is the last pair of ÂM . 2Analogously to Lemma 5.4, the following lemma shows that the gist of theintersetion of k sets of integer pairs an be omputed in time linear in the sumof the sizes of their gists.Lemma 5.9 Let Aj , for j = 1, . . . , k, be k admissible sets and let Âj be theirgists, eah one sorted with respet to the �x relationship. The gist Î of I =
A1 ∩A2 ∩ · · · ∩Ak, sorted with respet to the �x relationship, an be omputedin O(

∑k
j=1(x

max(Âj))) or, equivalently, in O(
∑k

j=1(|Âj |)) time.Proof: Let AM be the admissible set suh that xmax(ÂM ) ≥ xmax(Âj), for
j = 1, . . . , k. Starting from I0 = AM , apply Gist_Intersetion to Ij−1 and
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112 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGS
Aj in order to obtain Ij , j = 1, . . . , k, j 6= M , where I = Ik. By Lemma 5.8eah step has time omplexity O(xmax(Âj)) and xmax(Ij) = xmax(ÂM ). Hene,the omputation an be performed in O(

∑k
j=1(|Âj |)) time. 25.5 Computing a Minimum-Depth Embedding of aBionneted Planar GraphIn order to determine the minimum k for whih a bionneted planar graph Gadmits an embedding with depth k, we apply for eah edge e of G the algorithmpresented in this setion, whih determines the minimum k for whih G admitsan embedding of depth k with e on the external fae.Suh a omputation is performed by means of a bottom-up traversal of theSPQR-tree of G whose purpose is to label eah virtual edge ei, orrespondingto node µi, with suitable values that desribe the properties related to thedepth of all possible embeddings of the pertinent graph Gµi

.Suh values, alled depth desriptors, are:
• The gist Â(µi) of the admissible set of µi

• The distane between fµi

l and fµi
r in the (ui, vi)-dual of Gµi

, whih isalled the thikness of µi and is denoted by t(µi).In [BM90℄, where the onept of thikness was also used, it is shown that
t(µi) is independent of the embedding of Gµi

. Hene, t(µi) an also be de�nedas the distane between fµi

l and fµi
r in the (ui, vi)-dual of sk(µi), where theedges have been suitably weighted. Namely, eah edge of the (ui, vi)-dual of

sk(µi) that orresponds to a virtual edge eν of sk(µi) representing a hildomponent ν is given a weight that is equal to the thikness of ν.At the end of the bottom-up traversal of the SPQR-tree T , the unique hildomponent of the root e of T is labeled with the gist of the admissible set of
G, desribing all possible depths of the embeddings of G with e on the externalfae. From suh an admissible set an optimal pair an be seleted to determinethe minimum depth k when e is on the external fae. The minimum depth of
G an be obtained by performing suh a omputation for eah edge e of G.In order to atually ompute an optimal embedding of G, the bottom-uptraversal has to be re�ned by labeling eah virtual edge ei, orresponding tonode µi, with additional embedding desriptors (see Setion 5.5) meant to de-sribe how the omponents must be ombined together in order to obtain an
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5.5. COMPUTING A MINIMUM-DEPTH EMBEDDING OF ABICONNECTED PLANAR GRAPH 113embedding satisfying eah pair of the gist of the admissible set. Suh desrip-tors are used in a subsequent top-down traversal of T , rooted at the edge e thatyielded the minimum value of k, to selet a suitable embedding for the skeletonof eah node of T , produing an embedding of G with minimum depth k.Labeling an SPQR-tree with Depth DesriptorsDuring the bottom-up traversal of T , for eah omponent µ, we ompute itsthikness t(µ) and its gist Â(µ) based on the analogous values of its hildren.The omputation of t(µ) is easy and, sometimes, trivial. The omputation of
Â(µ), instead, is muh more omplex. The most di�ult ase arises when µ is aparallel node. Here, we sketh the general strategy to ompute Â(µ), espeiallywhen µ is a series or rigid omponent. Details on the omputation of depthdesriptors for series, rigid, and parallel ases an be found in the followingthree subsetions. For the series and rigid ases, our strategy is based on thefat that the set of all embeddings of the pertinent graphGµ of µ an be suitablypartitioned, and eah blok of the partition an be separately analyzed. For theparallel ase, instead, our strategy is based on the exploration of a bounded-sizesubset of the set of all possible embeddings of Gµ whih maintains the sameadmissible set of all embeddings of Gµ.Let µ be a node of T and let sk(µ) be its skeleton. If µ is a series, then sk(µ)has a unique embedding Γ1

µ; if µ is a rigid, then sk(µ) admits two embeddings
Γ1

µ and Γ2
µ; and if µ is a parallel with k hild omponents, then sk(µ) admits k!embeddings Γh

µ, with h = 1, . . . , k!. Eah embedding of Gµ is ompatible withexatly one embedding Γj
µ of sk(µ). Hene, the embeddings of sk(µ) induea partition on the embeddings of Gµ. For series and rigid nodes, in order toompute A(µ) through all possible embeddings of Gµ, we �rst ompute theadmissible sets Aj(µ), restrited to those embeddings of Gµ orresponding toa single embedding Γj

µ of sk(µ), and then perform their union.Given an embedding ΓGµ
of the pertinent graph Gµ of µ we distinguish twotypes of faes. We all hildren faes the faes of ΓGµ

that are also faes ofsome ΓGν
, with ν hild of µ, and skeleton faes all the other faes. Essentially,�shrinking� eah pertinent graph of the hildren of µ into a single (virtual)edge, the skeleton faes of ΓGµ

beome the faes of an embedding Γj
µ of sk(µ).Observe that, one the embedding Γj

µ of sk(µ) has been �xed, the distanesof eah skeleton fae of any embedding of ΓGµ
from fµ

l and fµ
r depend on thevalues t(ν1), . . . , t(νk) only, whih, in turn, are independent on the embeddingof the hild omponents of µ. Hene, eah fae f of Γj

µ an be labeled with suh
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12(a) (b)Figure 5.7: (a) Embedding Γ1
P1

of the skeleton of parallel omponent P1. (b) Anembedding ΓP1
of P1 ompatible with Γ1

P1
. Skeleton faes are drawn white andhildren faes are drawn grey. Skeleton faes are labeled with their distanesfrom the external faes.distanes, that are alled left and right depths and denoted by dl(f) and dr(f).Fig. 5.7(a) shows an embedding Γ1

P1
of the skeleton of parallel omponent P1and Fig. 5.7(b) shows an embedding ΓP1
of the pertinent graph of P1 ompatiblewith Γ1

P1
. Notie that skeleton faes, whih are drawn white, have the samevalues of depth in Γ1

P1
and in ΓP1

.De�nitions analogous to those given for Gµ an be given for sk(µ). Inpartiular, we say that Γj
µ satis�es the pair of non-negative integers 〈x, y〉 if itis possible to �nd a partition of its internal faes into two sets, denoted by Fland Fr , suh that eah fae f ∈ Fl has dl(f) ≤ x and eah fae f ∈ Fr has

dr(f) ≤ y. The in�nite set of integer pairs satis�ed by Γj
µ is the admissible setof Γj

µ, and is denoted by A(Γj
µ).One the embedding Γj

µ of sk(µ) has been �xed, the admissible set Aj(µ),i.e., the admissible set of µ restrited to the embeddings ompatible with Γj
µ,an be omputed starting from A(Γj

µ) and from the depths of the skeletonfaes, together with the admissible set A(νi) of eah hild omponent νi, with
i = 1, . . . , δ(µ).Namely, µ satis�es the integer pair 〈x, y〉 if 〈x, y〉 ∈ A(Γj

µ) and eah hildomponent νi satis�es a pair 〈xi, yi〉 suh that:
• xi + dl(f

νi

l ) ≤ x or xi + dr(f
νi

l ) ≤ y, and
• yi + dr(f

νi
r ) ≤ y or yi + dl(f

νi
r ) ≤ x.
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5.5. COMPUTING A MINIMUM-DEPTH EMBEDDING OF ABICONNECTED PLANAR GRAPH 115Hene, in order to obtain Aj(µ), we ompute for eah hild omponent νiof µ the set of integer pairs that are satis�ed by νi when inserted into Γj
µ, thatis, the set of integer pairs that verify the onditions above.Namely, let µ be a node of the SPQR-tree T , let Γj

µ be an embedding of
sk(µ), let ν be a hild of µ, and let 〈x, y〉 be a pair of non-negative integers.Node ν satis�es 〈x, y〉, nested into Γj

µ, if the pertinent graph Gµ of µ admitsan embedding ΓGµ
, ompatible with Γj

µ, where it is possible to �nd a partitionof the set of the hildren faes orresponding to the internal faes of ν intotwo sets, denoted by Fl and Fr, suh that all faes in Fl have distane from
fµ

l less or equal than x and all faes in Fr have distane from fµ
r less or equalthan y. In Fig. 5.8 it is shown how omponent S2 satis�es, nested into Γj(P1),pairs 〈0, 2〉, 〈3, 2〉, and 〈4, 0〉, with the orresponding partitions of its internalfaes. Eah internal fae of S2 is labeled with a pair of integers representingits distane from the left and the right external faes of Γj(P1), respetively.
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(a) (b) ()Figure 5.8: An embedding of omponent S2, nested into Γj(P1). Figures (a),(b), and () represent three possible partitions of the internal faes of S2. Dark-shaded faes belong to Fl, light-shaded faes belong to Fr, skeleton faes aredrawn white, and hildren faes not belonging to S2 are drawn blak. Eahfae is labeled with two integers representing its distane from fP1

l and fP1
r ,respetively. Labels lying inside a square are those used in the orrespondingpartition. The pitures show that S2 satis�es, nested into Γj(P1), pairs: 〈0, 2〉(a), 〈3, 2〉 (b), and 〈4, 0〉 ().The in�nite set of integer pairs satis�ed by ν, nested into Γj

µ, is the ad-
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116 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSmissible set of ν into Γj
µ, and is denoted by A(ν|Γj

µ). The gist of A(ν|Γj
µ) isdenoted by Â(ν|Γj

µ) and assumed ordered with respet to the �x relationship.Lemma 5.10 Given an embedding Γj
µ of sk(µ), the admissible set Aj(µ) of

Gµ (restrited to those embeddings of Gµ orresponding to Γj
µ) an be obtainedby interseting the δ(µ) sets A(νi|Γj

µ), for i = 1, . . . , δ(µ), and A(Γj
µ).Proof: The proof is based on the fat that the distanes between the internalfaes of the embedding of a omponent νk and the external faes fµ

l and fµ
r of

µ are independent on the embedding of other hild omponents of µ.We �rst show that, given Γj
µ of sk(µ), a pair belonging to Aj(µ) of Gµ alsobelongs to A(νi|Γj

µ) and to A(Γj
µ). Seond, we show that if a pair belongs to

A(νi|Γj
µ) and to A(Γj

µ), then it also belongs to Aj(µ) of Gµ.Let p = 〈x, y〉 be a pair of non-negative integers belonging to Aj(µ) of Gµand let A(νk|Γj
µ) be the admissible set of omponent νk nested into Γj

µ. Sine
p ∈ Aj(µ), there exists an embedding ΓGµ

of Gµ, oherent with the embedding
Γj

µ of sk(µ), whose internal faes an be partitioned into two sets Fl and Frsuh that faes in Fl are at distane less or equal than x from fµ
l and faes in

Fr are at distane less or equal than y from fµ
r . In order to show that p belongsto A(νk|Γj

µ), it su�es to observe that the faes of the embedding ΓGµ
thatalso belong to νk an be partitioned into two sets F ′

l ⊆ Fl and F ′
r ⊆ Fr suhthat faes in F ′

l are at distane less or equal than x from fµ
l and faes in F ′

rare at distane less or equal than y from fµ
r . Analogously, it an be shown that

p belongs to A(Γj
µ), sine from Fl and Fr a suitable partition of the skeletonfaes an be found as required by the de�nition of A(Γj

µ).Conversely, let p = 〈x, y〉 be a pair of non-negative integers belonging to
A(νi|Γj

µ) and to A(Γj
µ). An embedding ΓGµ

of Gµ an be obtained from theembeddings of νi and sk(µ) that satisfy p. 2As said above, the admissible set A(µ) an be easily obtained as the unionof the admissible sets Aj(µ) omputed for any embedding Γj
µ of sk(µ).The Series Case.Let µ be an S-node with hildren νi, for i = 1, . . . , δ(µ), and let n(νi) be thenumber of verties of νi. The omputation of the thikness of µ is addressedin the following lemma.Lemma 5.11 The thikness t(µ) = mini{t(νi)}, for i = 1, . . . , δ(µ), an beomputed in O(δ(µ)) time.
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5

f
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l
S2 f

r
S27

Figure 5.9: The unique embedding of sk(S2) and its (u, v)-dual.Proof: As shown in Fig. 5.9 for a series of two hild omponents, the (u, v)-dual graph of sk(µ) is made up of two verties, orresponding to fµ
l and fµ

r , and
O(δ(µ)) edges onneting them, eah one orresponding to a hild omponent
νi and assoiated with a weight that is t(νi). Sine, by de�nition, t(µ) is thedistane between fµ

l and fµ
r in suh a (u, v)-dual graph, the statement follows.

2As for the admissible set of µ, in the series ase sk(µ) has exatly oneembedding and suh an embedding has no internal fae. Hene, in order toompute Â(µ), it is not neessary to ompute A(Γ1
µ) and it is su�ient, byLemma 5.10, to interset the gists Â(νi|Γ1

µ) of the admissible sets of the hildomponents νi nested into Γ1
µ.We propose an algorithm, alled Nested_Series, whih, given an S-node

µ and one of its hildren ν, suitably builds a set S starting from Â(ν) and
t(µ), and we show that S = Â(ν|Γ1

µ). The algorithm starts initializing S with
Â(ν). Observe that, by Property 5.3, Â(ν) ontains the two pairs pfirst =
〈0, ymax〉 and plast = 〈xmax, 0〉, with ymax = xmax. For eah pair pk = 〈xk, yk〉of Â(ν), de�ne pk

first = 〈0, max(yk, xk + t(µ))〉. Denote by pfirst the pk
firstwith minimum y and by plast the pair obtained from pfirst swapping the twoelements x and y. If pfirst � pfirst, then insert pfirst into S and remove from

S any pair p∗ suh that pfirst � p∗. If plast � plast, then append plast to Sand remove from S any pair p∗ suh that plast � p∗.Property 5.6 The set S omputed by Algorithm Nested_Series is suint.Proof: Set S is initialized to Â(ν), that is suint, and, when the two pairs
pfirst and plast are added, no pair of S preedes them and all pairs of S preededby them are removed from S. 2
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118 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSAlgorithm 3 Nested_SeriesRequire: An S-node µ, with its thikness t(µ), and one of its hildren ν, withits gist Â(ν).Ensure: The gist Â(ν|Γ1
µ) of the admissible set of ν nested into Γj

µ.1: S = Â(ν);2: pfirst = Â(ν).getFirst();3: for all pk = 〈xk, yk〉 ∈ Â(ν) do4: pk
first = 〈0, max(yk, xk + t(µ))〉5: if pk

first � pfirst then6: pfirst = pk
first;7: end if8: end for9: if pfirst � pfirst then10: S.addFirst(pfirst);11: plast = pfirst.swapElements();12: S.addLast(plast);13: for all p∗ 6= pfirst ∈ S and p∗ 6= plast ∈ S do14: if pfirst � p∗ or plast � p∗ then15: S.remove(p∗);16: end if17: end for18: end if19: return S;Property 5.7 The set S omputed by Algorithm Nested_Series is a subsetof A(ν|Γ1

µ).Proof: Consider a pair p = 〈x, y〉 ∈ S. Two are the ases: Either p is alsoin Â(ν) or not. If p ∈ Â(ν), then p ∈ A(ν|Γ1
µ), sine µ is an S-node. If

p /∈ Â(ν), then p is either pfirst or plast. First, onsider the ase p = pfirst.We show that p ∈ A(ν|Γ1
µ) as follows. Consider the pair pk = 〈xk, yk〉 suhthat pk

first = pfirst. Sine pk ∈ Â(ν), there exists an embedding Γk
ν suh thatthe set of the internal faes of Γk

ν an be partitioned into two sets F k
l and F k

rsuh that all faes in F k
l have distane from fν

l less or equal than xk and allfaes in F k
r have distane from fν

r less or equal than yk.
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12(a) (b) ()Figure 5.10: (a) Component R1 satis�es pair pk = 〈xk, yk〉 = 〈1, 2〉. (b) Edge
(5, 7) has thikness 1. () Component R1 satis�es, nested into Γj

S2
, pair pk

first =
〈0, max(yk, xk + t(µ))〉 = 〈0, max(2, 1 + 1)〉 = 〈0, 2〉. Dark-shaded faes are in
F k

l and light-shaded faes are in F k
r . Eah fae is labeled with two integersrepresenting its distane from left and right external fae, respetively. Labelslying inside a square are those used in the orresponding partition. Dashededges are those used to reah the left external fae, while dotted edges arethose used to reah the right external fae.Consider any embedding Γ∗

Gµ
suh that Γ∗

Gµ
restrited to ν is Γk

ν . Eah faeof Γ∗
Gµ

internal to ν is at distane less or equal than max(yk, xk +t(µ)) from fµ
rin Gµ. In fat, faes in F k

l are at distane less or equal than xk from fν
l whih,in turn, is at distane t(µ) from fµ

r , and faes in F k
r are at distane less orequal than yk from fµ

r . It follows that pk
first = 〈0, max(yk, xk + t(µ))〉 belongsto A(ν|Γ1

µ). See Fig. 5.10 for an example. The proof for the ase p = plast isanalogous. 2Property 5.8 The set S omputed by Algorithm Nested_Series preedes
A(ν|Γ1

µ).Proof: Sine Â(ν|Γ1
µ) � A(ν|Γ1

µ), it is su�ient to show that S � Â(ν|Γ1
µ).Suppose, for a ontradition, that there exists a pair p = 〈x, y〉 suh that

p ∈ Â(ν|Γ1
µ) and there is no pair p′ ∈ S suh that p′ � p. Sine p ∈ Â(ν|Γ1

µ),there exists an embedding ΓGµ
suh that all faes of ν an be partitioned into
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120 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGStwo sets Fl and Fr suh that all faes in Fl are at distane less or equal than
x from fµ

l and all faes in Fr are at distane less or equal than y from fµ
r .First, suppose that x, y 6= 0. By Property 5.4, there exists at least onefae f in Fl whih is at distane x from fµ

l and at distane greater than yfrom fµ
r . Consider a path γ(f, fµ

l ) of minimum length x from f to fµ
l . Weshow that fµ

r /∈ γ(f, fµ
l ). Suppose, for a ontradition, that fµ

r ∈ γ(f, fµ
l ). Wesplit γ(f, fµ

l ) into a subpath γ(f, fµ
r ) of length greater than y and a subpath

γ(fµ
r , fµ

l ) of length t(µ). Sine |γ(f, fµ
l )| = x and |γ(f, fµ

r )| > y, it follows that
t(µ) < x− y. Hene, eah fae in Fr , whih is at distane at most y from fµ

r , isalso at distane at most x from fµ
l . This implies that the two sets Fl∪Fr and ∅an be used to show that ΓGµ

satis�es pair 〈x, 0〉. This is a ontradition sine
Â(ν|Γ1

µ) is suint and ontains p = 〈x, y〉. Therefore, no path of minimumlength from a fae f ∈ Fl to fµ
l ontains fµ

r . Analogously, no path of minimumlength from a fae f ∈ Fr to fµ
r ontains fµ

l . It follows that p ∈ Â(ν), infat Algorithm Nested_Series added p to S when S was initialized to Â(ν).Sine, by onstrution, S � Â(ν), there exists a pair p′ ∈ S suh that p′ � p,a ontradition.Now, suppose p = 〈x, 0〉. Two are the ases: Either p ∈ Â(ν) or not. In the�rst ase, by onstrution, there exists a pair p′ ∈ S suh that p′ � p, ontra-diting the hypothesis that there is no pair in S preeding p. If p /∈ Â(ν), thenfor at least a fae f ∈ Fl the minimum length path γ(f, fµ
l ) to fµ

l passes through
fµ

r and traverses a hild of µ di�erent from ν. It follows that the pair p′ = 〈x, y〉with y = x− t(µ) belongs to A(ν). Hene, by onstrution, there exists a pair
p ∈ S that preedes plast � 〈max(x, y + t(µ)), 0〉 = 〈max(x, x), 0〉 = 〈x, 0〉 = p,ontraditing the hypothesis that there is no pair in S preeding p.Analogous onsiderations show that if p = 〈0, y〉, then there exists a pair
p ∈ S that preedes pfirst � p, ontraditing the hypothesis. 2Lemma 5.12 Starting from Â(νi) and t(µ), Algorithm Nested_Series om-putes Â(νi|Γ1

µ) in time O(n(νi)).Proof: The set S omputed by Algorithm Nested_Series is suh that S �
A(νi|Γ1

µ) (Property 5.8) and S ⊆ A(νi|Γ1
µ) (Property 5.7). It follows that Sredues A(νi|Γ1

µ). Further, by Property 5.6, S is suint. Hene, S is Â(νi|Γ1
µ).The time omplexity bound follows from the fat that the onstrution of thepairs pfirst and plast, as well as their insertion into S, is performed in lineartime with respet to the ardinality of Â(νi) beause in both ases eah elementof the set is onsidered only one. 2
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5.5. COMPUTING A MINIMUM-DEPTH EMBEDDING OF ABICONNECTED PLANAR GRAPH 121Lemma 5.13 Starting from Â(νi) and t(νi), for i = 1, . . . , δ(µ), the gist Â(µ)an be omputed in time O(
∑δ(µ)

i=1 n(νi)).Proof: By Lemma 5.11, the thikness t(µ) an be omputed in O(δ(µ)) time.By Lemma 5.12, given Â(νi) and t(µ), the gists Â(νi|Γ1
µ) of the admissiblesets of νi nested into Γ1

µ an be omputed in O(
∑δ(µ)

i=1 n(νi)) total time. ByLemma 5.9, the intersetion of suh sets an be omputed in O(
∑δ(µ)

i=1 n(νi))time. 2The Rigid Case.Let µ be an R-node with hildren νi, for i = 1, . . . , δ(µ), and let n(νi) be thenumber of verties of νi. The omputation of the thikness is addressed by thefollowing lemma.Lemma 5.14 The thikness t(µ) an be omputed in O(δ(µ)) time.Proof: The (u, v)-dual graph of sk(µ) is a trionneted omponent with thetwo verties orresponding to fµ
l and fµ

r on the external fae (see, for example,Fig. 5.3). By de�nition, t(µ) is the distane between fµ
l and fµ

r in suh a
(u, v)-dual graph and an be omputed in O(δ(µ)) performing a shortest pathalgorithm between fµ

l and fµ
r [Tho99℄. 2The remaining part of this setion is devoted to the omputation of theadmissible set of µ. In the rigid ase, sine sk(µ) is a 3-onneted omponent,it admits exatly two embeddings, Γ1

µ and Γ2
µ, whih only di�er for a �ippingaround their poles. For example, Figs. 5.11(a) and 5.11(b) show the two em-beddings Γ1

R1
and Γ2

R1
of the skeleton of a rigid omponent R1. Sine the twoembeddings of sk(µ) are symmetrial, it is possible to onsider one of the twoembeddings only, say Γ1
µ, ompute the admissible set A1(µ) of µ restrited to

Γ1
µ, and obtain the admissible set A2(µ) of µ restrited to Γ2

µ by swapping, foreah pair of A1(µ), elements x and y. The gist Â(µ) is given by the union ofthe two sets. By Lemma 5.10, A1(µ) an be obtained by interseting the gist
Â(Γ1

µ) of the admissible set of sk(µ) and the gists Â(νi|Γ1
µ) of the admissiblesets of the δ(µ) hild omponents νi nested into Γ1

µ. Fig. 5.11() shows anembedding of the pertinent graph GR1
ompatible with Γ1

R1
.In order to ompute Â(νi|Γ1

µ) and Â(Γ1
µ) it is useful to label eah fae f of

Γ1
µ with its depths dl(f) and dr(f), as shown in Fig. 5.11. This an be done in
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1,(a) (b) ()Figure 5.11: (a) Embedding Γ1
R1

of sk(R1). (b) Embedding Γ2
R1

of sk(R1),di�ering from Γ1
R1

for a �ipping around the poles. () An embedding of thepertinent graph GR1
ompatible with Γ1

R1
. Skeleton faes are drawn whiteand hildren faes are drawn blak. Eah skeleton fae f is labeled with twointegers representing its depths dl(f) and dr(f), respetively.linear time by performing a single-soure shortest path from the two externalfaes fµ

l and fµ
r [Tho99℄.Given an R-node µ and one of its hildren ν, we propose an algorithm,alled Nested_Rigid, whih, starting from Â(ν), t(µ), and the values of thedepths dl(f) and dr(f) of eah fae f of Γ1

µ, omputes S = Â(ν|Γ1
µ).The algorithm �rst generates a set S′, ontaining a pair 〈xk + dl(f

ν
l ), yk +

dr(f
ν
r )〉 for eah pair 〈xk, yk〉 ∈ Â(ν), and a set S′′, ontaining a pair 〈yk +

dl(f
ν
r ), xk + dr(f

ν
l )〉 for eah pair 〈xk, yk〉 ∈ Â(ν). Then, it initializes S =

S′ ∪ S′′.For eah pair pk = 〈xk, yk〉 of Â(ν), de�ne pk
first = 〈0, max(xk+dr(f

ν
l ), yk+

dr(f
ν
r ))〉. Denote by pfirst the pk

first with minimum y and by plast the pairobtained from pfirst by swapping the two elements x and y. If pfirst is notpreeded by the �rst pair of S, then insert pfirst as the �rst element of S andappend plast to S as the last element. Remove from S any pair p∗ suh thateither pfirst � p∗ or plast � p∗.Property 5.9 The set S omputed by Algorithm Nested_Rigid is suint.Proof: S′ is suint and ordered with respet to the �x relationship sineit is obtained by adding the same onstant values dl(f
ν
l ) and dr(f

ν
r ) to the�rst and seond element, respetively, of all the pairs of Â(ν), whih is su-int and assumed ordered with respet to the �x relationship. For analogous
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5.5. COMPUTING A MINIMUM-DEPTH EMBEDDING OF ABICONNECTED PLANAR GRAPH 123Algorithm 4 Nested_RigidRequire: An R-node µ, with its thikness t(µ) and the values of the depths
dl(f) and dr(f) of eah fae of the embedding Γ1

µ of sk(µ), and one of itshildren ν, with its gist Â(ν).Ensure: The gist Â(ν|Γ1
µ) of the admissible set of ν nested into Γ1

µ.1: for all pk = 〈xk, yk〉 ∈ Â(ν) do2: S′.addLast(〈xk + dl(f
ν
l ), yk + dr(f

ν
r )〉);3: S′′.addLast(〈yk + dl(f

ν
r ), xk + dr(f

ν
l )〉);4: pk

first = 〈0, max(xk + dr(f
ν
l ), yk + dr(f

ν
r ))〉;5: pk

last = 〈max(xk + dl(f
ν
l ), yk + dl(f

ν
r )), 0〉;6: if pk

first � pfirst then7: pfirst = pk
first;8: end if9: end for10: S = S′ ∪ S′′;11: pfirst = S.getFirst();12: if pfirst � pfirst then13: S.addFirst(pfirst);14: plast = pfirst.swapElements();15: S.addLast(plast);16: for all p∗ 6= pfirst ∈ S and p∗ 6= plast ∈ S do17: if pfirst � p∗ or plast � p∗ then18: S.remove(p∗);19: end if20: end for21: end if22: return S;reasons also S′′ is suint and ordered with respet to the �x relationship.By Lemma 5.4, the set S′ ∪ S′′, omputed with Algorithm Gist_Union, issuint. The statement follows from the fat that S is initialized to S′ ∪ S′′and, every time the two pairs pfirst and plast are added to S, none of its pairspreedes them and all of its pairs that are preeded by suh pairs are removedfrom S. 2
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124 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSProperty 5.10 The set S omputed by Algorithm Nested_Rigid is a subsetof A(ν|Γ1
µ).Proof: Consider a pair pk = 〈xk, yk〉 ∈ Â(ν). There exists an embedding Γk

νsuh that the set of the internal faes of Γk
ν an be partitioned into two sets

F k
l and F k

r suh that all faes in F k
l have distane from fν

l less or equal than
xk and all faes in F k

r have distane from fν
r less or equal than yk. Considerany embedding Γ∗

Gµ
suh that Γ∗

Gµ
restrited to ν is Γk

ν .Consider a pair p ∈ S. Four are the ases: p ∈ S′, p ∈ S′′, p = pfirst, or
p = plast. If p ∈ S′, then p = 〈xk + dl(f

ν
l ), yk + dr(f

ν
r )〉, for some k. We showthat p ∈ Â(ν|Γ1

µ) as follows. Consider the faes of the embedding Γ∗
Gµ

internalto ν, that is, the faes orresponding to Γk
ν , and their partition into the sets

F k
r and F k

l satisfying pair 〈xk, yk〉. For example, onsider the partition of theinternal faes of omponent R2, shown in Fig. 5.12(a), satisfying pair 〈0, 1〉. Asshown in Fig. 5.12(b), faes f ∈ F k
l are at distane less or equal than xk+dl(f

ν
l )from fµ

l , sine they are at distane less or equal than xk from fν
l whih, in turn,is at distane dl(f

ν
l ) from fµ

l . Faes f ∈ F k
r are at distane less or equal than

yk + dr(f
ν
r ) from fµ

r , sine they are at distane less or equal than yk from fν
rwhih, in turn, is at distane dr(f

ν
r ) from fµ

r . Analogous onsiderations, alsoshown in Fig. 5.12(), prove that p ∈ S′′ implies p ∈ A(ν|Γ1
µ).If p = pfirst, then p = 〈0, max(xk + dr(f

ν
l ), yk + dr(f

ν
r ))〉, for some k.We show that p ∈ Â(ν|Γ1

µ) as follows. Consider the faes of the embedding
Γ∗

Gµ
internal to ν. Faes in F k

l are at distane less or equal than xk + dr(f
ν
l )from fµ

r sine they are at distane less or equal than xk from fν
l whih, inturn, is at distane dr(f

ν
l ) from fµ

r . Faes in F k
r are at distane less or equalthan yk + dr(f

ν
r ) from fµ

r sine they are at distane less or equal than ykfrom fν
r whih, in turn, is at distane dr(f

ν
r ) from fµ

r . Therefore, eah faeis at distane less or equal than max(xk + dr(f
ν
l )), yk + dr(f

ν
r )) from fµ

r , andhene p ∈ Â(ν|Γ1
µ). Analogous onsiderations prove that p = plast implies

p ∈ A(ν|Γ1
µ). 2Property 5.11 The set S omputed by Algorithm Nested_Rigid preedes

A(ν|Γ1
µ).Proof: Sine Â(ν|Γ1

µ) � A(ν|Γ1
µ), it is su�ient to show that S � Â(ν|Γ1

µ).Suppose, for a ontradition, that there exists a pair p = 〈x, y〉 ∈ Â(ν|Γ1
µ) andthere exists no pair p′ ∈ S suh that p′ � p. Sine p ∈ Â(ν|Γ1

µ), by de�nitionthere exists an embedding ΓGµ
, ompatible with Γ1

µ, suh that all faes of ν an
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11(a) (b) ()Figure 5.12: Nesting omponent R2 into omponent R1. (a) Component R2satis�es pair pk = 〈xk, yk〉 = 〈0, 1〉. (b) Component R2 satis�es, nested into
Γ1(R1), pair 〈xk +dl(f

ν
l ), yk +dr(f

ν
r )〉 = 〈0+1, 1+1〉 = 〈1, 2〉. () Component

R2 satis�es, nested into Γ1(R1), pair 〈yk + dl(f
ν
r ), xk + dr(f

ν
l )〉 = 〈1 + 1, 0 +

2〉 = 〈2, 2〉. Skeleton faes are drawn white, hildren faes not belonging to
R2 are drawn blak, and light-shaded faes are in F k

r . Eah fae is labeledwith two integers representing its distane from the left and the right externalfaes, respetively. Labels lying inside a square are those used in the partition.Dashed edges are those used to reah the left external fae, while dotted edgesare those used to reah the right external fae.be partitioned into two sets Fl and Fr suh that all faes in Fl are at distanefrom fµ
l less or equal than x and all faes in Fr are at distane from fµ

r less orequal than y.Suppose that x, y 6= 0. Then, Fl, Fr 6= ∅. Consider the set Pl of the paths
γ(f, fµ

l ) of minimum length from eah fae f ∈ Fl to fµ
l and the set Pr ofthe paths γ(f ′, fµ

r ) of minimum length from eah fae f ′ ∈ Fr to fµ
r . By theminimality of the paths and by the fat that x, y 6= 0, we may assume that allthe paths in Pl ontain fν

l and all the paths in Pr ontain fµ
r , or vie-versa.If this is not the ase an equivalent partition F ′

l , F
′
r 6= ∅ satisfying x, y andsuitable minimum paths P ′

l and P ′
r an be found.It follows that there exists a pair p′ = 〈x′, y′〉 ∈ A(ν) suh that either

x′ = x− dl(f
ν
l ) and y′ = y − dr(f

ν
r ), or x′ = y − dr(f

ν
l ) and y′ = x− dl(f

ν
r ).Consider the ase p′ = 〈x−dl(f

ν
l ), y−dr(f

ν
r )〉 ∈ A(ν). Denote by p̂′ the pair

p̂′ = 〈x̂′, ŷ′〉 ∈ Â(ν) preeding p′. By the fat that for eah pair 〈xk, yk〉 ∈ Â(ν)Algorithm Nested_Rigid adds a pair pk = 〈xk + dl(f
ν
l ), yk + dr(f

ν
r )〉 to S′,
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126 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSwe have that there exists a pair p̂k = 〈x̂′ + dl(f
ν
l ), ŷ′ + dr(f

ν
r )〉 ∈ S′ suhthat p̂k � 〈x − dl(f

ν
l ) + dl(f

ν
l ), y − dr(f

ν
r ) + dr(f

ν
r )〉 = 〈x, y〉 = p. Hene, byonstrution, either p̂k ∈ S or there exists a pair p ∈ S suh that p � p̂k � p,ontraditing the hypothesis that there is no pair in S preeding p.Otherwise, if p′ = 〈y − dr(f

ν
l ), x − dl(f

ν
r )〉, analogous onsiderations showthat there exists a pair p ∈ S that preedes a pair p̂k ∈ S′′ suh that p̂k � p,ontraditing the hypothesis that there is no pair in S preeding p.Suppose p = 〈0, y〉. Construt a partition of the internal faes of ν intotwo sets F ′

l and F ′
r suh that f ∈ F ′

r if fν
r ∈ γ(f, fµ

r ) and fν
l /∈ γ(f, fµ

r ), and
f ∈ F ′

l in the other ases. In suh a partition faes in F ′
r are at distane lessor equal than y − dr(f

ν
r ) from fν

r and faes in F ′
l are at distane less or equalthan y − dr(f

ν
l ) from fν

l . It follows that pair p′ = 〈y − dr(f
ν
l ), y − dr(f

ν
r )〉belongs to A(ν). By the fat that Algorithm Nested_Rigid builds a pair

pk
first = 〈0, max(xk + dr(f

ν
l ), yk + dr(f

ν
r ))〉 for eah pair pk = 〈xk, yk〉 of Â(ν)and possibly adds to S the pair, alled pfirst, with minimum y among them,we have that there exists a pair p̂k = 〈0, max(x̂k + dr(f

ν
l ), ŷk + dr(f

ν
r ))〉 suhthat p̂k � 〈0, max(y− dr(f

ν
l ) + dr(f

ν
l ), y− dr(f

ν
r ) + dr(f

ν
r )〉 = 〈0, max(y, y)〉 =

〈0, y〉 = p. Hene, by onstrution, either p̂k ∈ S or there exists a pair p ∈ Ssuh that p � p̂k � p, ontraditing the hypothesis that there is no pair in Spreeding p.Analogous onsiderations show that, if p = 〈x, 0〉, then there exists a pair
p ∈ S that preedes p̂k � p, ontraditing the hypothesis that there is no pairin S preeding p. 2Lemma 5.15 Starting from Â(νi) and t(µ), Algorithm Nested_Rigid om-putes Â(νi|Γ1

µ) in time O(n(νi)).Proof: The set S omputed by Algorithm Nested_Rigid is suh that S �
A(νi|Γ1

µ) (Property 5.11) and S ⊆ A(νi|Γ1
µ) (Property 5.10). It follows that

S redues A(νi|Γ1
µ). Further, by Property 5.9, S is suint. Hene, S is

Â(νi|Γ1
µ). Now we show that AlgorithmNested_Rigid runs in O(n(νi)) time.The onstrution of sets S′ and S′′ an be performed in O(n(νi)) time, sine aonstant number of operations is performed for eah pair of Â(νi). Lemma 5.4ensures that the union of S′ and S′′ is omputed by Algorithm Gist_Unionin O(n(νi)) time, sine |S′| = |S′′| = O(n(νi)). The onstrution of the pairs

pfirst and plast, as well as their insertion into S, is performed in O(n(νi)) time,sine in both ases eah element of the set is onsidered only one. 2By using the above disussed algorithm, for eah hild νi of µ, we omputethe set Â(νi|Γ1
µ). As desribed in the beginning of this setion, in order to �nd
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Â1(µ), we need to ompute also Â(Γ1

µ), whih is the gist of the admissible setof the skeleton of µ restrited to its embedding Γ1
µ. We propose an algorithm,alled Skeleton_Rigid, whih, starting from the values of the depths dl(f)and dr(f) of eah fae f of Γ1

µ, omputes S = Â(Γ1
µ).Set S is initialized to ∅. Let xmax = max

f∈Γ1
µ

{dl(f)}. Then, for inreasingvalues of x, starting from zero and ending with xmax, onstrut a partitionof the internal faes of Γ1
µ into the two sets Fl and Fr suh that all faes atdistane less or equal than x from fµ

l are in Fl and all the other faes are in
Fr. Compute the maximum distane y from the faes in Fr to fµ

r . If 〈x, y〉 isinomparable with the last pair added to S, add 〈x, y〉 to S.Algorithm 5 Skeleton_RigidRequire: An R-node µ, with the values of the depths dl(f) and dr(f) of eahinternal fae f of the embedding Γ1
µ of sk(µ).Ensure: The gist Â(Γ1

µ) of the admissible set of sk(µ).1: S = ∅;2: for x = 0 to max
f∈Γ1

µ

{dl(f)} do3: p = 〈x, max
f∈Γ1

µ & dl(f)>x
{dr(f)} 〉;4: if S.getLast() ≁ p then5: S.addLast(p);6: end if7: end for8: return S;Lemma 5.16 Starting from the values of the depths dl(f) and dr(f) of eahinternal fae f of Γ1

µ, Algorithm Skeleton_Rigid omputes the gist Â(Γ1
µ)of the admissible set of sk(µ) in O(δ(µ)) time.Proof: Let S be the set of integer pairs omputed by Algorithm Skele-ton_Rigid. We prove the statement by proving that (a) S is suint; (b)

S ⊂ A(Γ1
µ); and () S � A(Γ1

µ).(a) (S is suint) We prove that pair pi added to S by Algorithm Skele-ton_Rigid at step i is inomparable with pairs p1, p2, . . . , pi−1 addedto S at the previous steps. For i = 1 the statement is trivially true.
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128 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSConsider step i > 1. By Property 5.1.5 and by the fat that pairs 〈x, y〉are onsidered for inreasing values of x, we have that if pi ≁ pi−1,then pi ≁ pj , for j = 1, . . . , i − 1. Hene, it is su�ient to prove that
pi = 〈xi, yi〉 ≁ pi−1 = 〈xi−1, yi−1〉. Sine, by onstrution, pi is insertedonly if it is inomparable with the last pair of S, we have that S issuint.(b) (S ⊂ A(Γ1

µ)) Eah pair p ∈ S is built onsidering a partiular partitionof the internal faes of Γ1
µ into the two sets Fl and Fr whih satis�es p.Hene, by de�nition, p ∈ A(Γ1

µ).() (S � A(Γ1
µ)) Suppose, for a ontradition, that there exists a pair p′ =

〈x′, y′〉 ∈ A(Γ1
µ) and there exists no pair p ∈ S suh that p � p′. Let

xmax = max
f∈Γ1

µ

{dl(f)}. Two are the ases: either x′ > xmax or not.If x′ > xmax, onsider the pair p = 〈x, y〉 reated by Algorithm Skele-ton_Rigid suh that x = xmax. By onstrution, it is possible to �nd apartition of the internal faes of Γ1
µ into two sets Fl and Fr suh that allfaes are in Fl and Fr = ∅. Hene, we have that y = 0. By the fat that

x < x′ and 0 ≤ y′, we have that p � p′. Sine, by onstrution, either
p ∈ S or there exists a pair p′′ ∈ S suh that p′′ � p � p′, we have aontradition to the hypothesis that there exists no pair p ∈ S suh that
p � p′.Otherwise, if x′ ≤ xmax, onsider the pair p = 〈x, y〉 reated by AlgorithmSkeleton_Rigid suh that x = x′ and onsider the two partitions Fl,
Fr and F ′

l , F ′
r satisfying p and p′, respetively. Sine, by onstrution, allthe faes assigned to Fr by Algorithm Skeleton_Rigid are at distanegreater than x from fµ

l , we have that Fr ⊆ F ′
r. Hene, y ≤ y′ and, sine

x = x′, we have that p � p′. Sine, by onstrution, we have that either
p ∈ S or there exists a pair p′′ ∈ S suh that p′′ � p � p′, we have aontradition to the hypothesis that there exists no pair p ∈ S suh that
p � p′.The time omplexity bound follows from the fat that Algorithm Skele-ton_Rigid iterates xmax = max

f∈Γ1
µ

{dl(f)} times, whih, by Property 5.5, is
O(δ(µ)), and eah iteration is exeuted in O(1) time. 2Lemma 5.17 Starting from Â(νi) and t(νi), for i = 1, . . . , δ(µ), the gist Â(µ)an be omputed in time O(

∑δ(µ)
j=1

∑j
i=1 n(νi)).
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5.5. COMPUTING A MINIMUM-DEPTH EMBEDDING OF ABICONNECTED PLANAR GRAPH 129Proof: In order to ompute Â(µ) we have to perform a sequene of om-putations. The proof is based on the fat that the heaviest of these om-putations needs O(
∑δ(µ)

j=1

∑j
i=1 n(νi)) time. By Lemma 5.14, the thikness

t(µ) an be omputed in O(δ(µ)) time. Given the embedding Γ1
µ of sk(µ), byLemma 5.16 the gist Â(Γ1

µ) an be omputed in O(δ(µ)) time. By Lemma 5.15,the gists Â(νi|Γ1
µ) of the admissible sets of νi nested into Γ1

µ an be omputedin O(
∑δ(µ)

i=1 n(νi)) total time. By Lemma 5.9, the gist Â1(µ) of the admissibleset A1(µ) = (
⋂δ(µ)

i=1 A(νi|Γ1
µ)) ∩ A(Γ1

µ) of omponent µ restrited to the em-bedding Γ1
µ an be omputed in O(

∑δ(µ)
j=1

∑j
i=1 n(νi)) time. The gist Â2(µ) ofthe admissible set of µ restrited to the seond embedding Γ2

µ of sk(µ) an beomputed in O(
∑δ(µ)

i=1 n(νi)) time by adding to Â2(µ) a pair 〈y, x〉 for eah pair
〈x, y〉 ∈ Â1(µ). The gist Â(µ) of the admissible set A(µ) = A1(µ) ∪ A2(µ) isomputed in O(

∑δ(µ)
i=1 n(νi)) time, aording to Lemma 5.4. 2The Parallel Case.

11Pf
l

f
r

u

v

P

10

5

Figure 5.13: One of the δ(µ)! embeddings of the skeleton sk(P1) of the parallelomponent P1 and the orresponding (u, v)-dual.Let µ be a P-node with hildren νi, for i = 1, . . . , δ(µ), and let n(νi) be thenumber of verties of νi. The omputation of the thikness is addressed by thefollowing lemma.Lemma 5.18 The thikness t(µ) =
∑δ(µ)

i=1 t(νi) an be omputed in O(δ(µ))time.
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130 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSProof: The (u, v)-dual graph of eah embedding of sk(µ) is made up of asingle path of length δ(µ) onneting the two verties orresponding to fµ
l and

fµ
r and passing for all the verties orresponding to the internal faes (see, forexample, Fig. 5.13). Sine, by de�nition, t(µ) is the distane between fµ

l and
fµ

r in suh a (u, v)-dual graph, the statement follows. 2The remaining part of this setion is devoted to the omputation of theadmissible set of µ. In the parallel ase the skeleton sk(µ) of a omponent
µ is omposed of two verties, the poles u and v, with δ(µ) parallel edgesonneting them and admits a fatorial number of embeddings, that is, thenumber of all possible permutations of its δ(µ) edges. In Fig. 5.13 one ofthe embeddings of sk(µ) is shown together with its orresponding (u, v)-dual.Hene, aording to Lemma 5.10, the gist Â(µ) an be obtained by performingthe union among δ(µ)! sets, where eah set Aj(µ) orresponds to a di�erentembedding Γj

µ of sk(µ). Also, Aj(µ) an be omputed by interseting Â(Γj
µ)and the gists Â(νi|Γj

µ) of the admissible sets of eah omponent νi nestedinto Γj
µ. Hene, a naïve omputation of Â(µ) employs a fatorial number ofsteps. We redue the number of permutations to be analyzed by exploiting thefollowing properties and onsiderations.Let µ be a P-node with hildren νi, for i = 1, . . . , δ(µ). First, onsider apair 〈x, y〉 ∈ Â(µ) and an embedding ΓGµ

of Gµ satisfying 〈x, y〉, i.e., whoseinternal faes an be partitioned into two sets Fl and Fr suh that all faesin Fl (Fr) have distane from fµ
l (fµ

r ) less or equal than x (y). Given a fae
f ∈ ΓGµ

, onsider paths γ(f, fµ
l ) of minimum length from f to fµ

l , and paths
γ(f, fµ

r ) of minimum length from f to fµ
r . The following properties hold.Property 5.12 Let ν be one of the hild omponents of µ. If the hildren faesof ΓGµ

orresponding to the internal faes of ν are split by Fl and Fr, then, foreah fae f ∈ Fl, we have that fν
l ∈ γ(f, fµ

l ) and fν
r /∈ γ(fν

l , fµ
l ). Analogously,for eah fae f ∈ Fr, we have that fν

r ∈ γ(f, fµ
r ) and fν

l /∈ γ(fν
r , fµ

r ).Proof: Consider the sequene of skeleton faes fµ
l = f1, f2, . . . , fδ(µ), fδ(µ)+1 =

fµ
r . The values of left depths dl(fi), with i = 1, . . . , δ(µ) + 1, are inreasing,while the values of the depths dr(fi) are dereasing. Hene, dl(f

ν
l ) < dl(f

ν
r )and dr(f

ν
l ) > dr(f

ν
r ). Consider a fae f ∈ Fl. Sine γ(f, fµ

l ) is a path ofminimum length and dl(f
ν
l ) < dl(f

ν
r ), the statement follows. The same for afae f ∈ Fr. 2Property 5.13 Let fsk be a skeleton fae of ΓGµ

and let νl and νr be the twohild omponents of µ inident to fsk suh that fνl
r = fsk = fνr

l . If some
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5.5. COMPUTING A MINIMUM-DEPTH EMBEDDING OF ABICONNECTED PLANAR GRAPH 131internal fae fl of νl belongs to Fr and some internal fae fr of νr belongs to
Fl, then there exists a partition F ′

l , F
′
r suh that all faes in F ′

l have distanefrom fµ
l less or equal than x and all faes in F ′

r have distane from fµ
r lessor equal than y and suh that either all internal faes of νl belong to Fl or allinternal faes of νr belong to Fr.Proof: By Property 5.12, we have that, for eah fae fl internal to νl,

fsk = fνl
r ∈ γ(fl, f

µ
l ) and, for eah fae fr internal to νr, fsk = fνr

l ∈ γ(fr, f
µ
l ).Denote by d′l(νr) the maximum distane from fνr

l = fsk of the internal faesof νr belonging to Fl, and by d′r(νl) the maximum distane from fνl
r = fsk ofthe internal faes of νl belonging to Fr.If d′l(νr) < d′r(νl), then onsider the partition F ′

l , F
′
r obtained from Fl and

Fr by moving all the internal faes of νr to Fr . By F ′
l ⊂ Fl, we have that allfaes in F ′

l are at distane from fµ
l less or equal than x; by onstrution, faes

f ∈ Fr are at distane from fµ
r less or equal than y; also, by onstrution, eahfae fr internal to νr is at distane from fµ

r less or equal than d′l(νr)+dr(fsk) <
d′r(νl) + dr(fsk) ≤ y. Hene, partition F ′

l , F
′
r satis�es the onditions of thestatement.Analogously, if d′l(νr) > d′r(νl), then the partition F ′

l , F
′
r obtained from Fland Fr by moving all the internal faes of νl to Fl is suh that all faes in F ′

lhave distane from fµ
l less or equal than x and all faes in F ′

r have distanefrom fµ
r less or equal than y. Fig. 5.14 shows the latter ase (d′l(νr) > d′r(νl)).

2Lemma 5.19 Let ΓGµ
be an embedding of Gµ satisfying pair 〈x, y〉 ∈ Â(µ).There exists a partition F ′

l and F ′
r suh that:1. All faes in F ′

l have distane from fµ
l less or equal than x;2. all faes in F ′

r have distane from fµ
r less or equal than y;3. there exists at most one omponent νc whose internal faes belong to boththe sets F ′

l and F ′
r;4. eah hild omponent to the left of νc has its internal faes in F ′

l and eahhild omponent to the right of νc has its internal faes in F ′
r.Proof: If there exist in ΓGµ

two hild omponents ν1 and ν2, possibly notsharing an external fae, with ν1 to the left of ν2, and suh that some of theinternal faes of ν1 are in Fr and some of the internal faes of ν2 are in Fl, then
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(a) (b)Figure 5.14: Property 5.13. Component S1 is νl and omponent S2 is νr. (a)Parallel omponent {S1, S2} satis�es pair 〈2, 2〉 when some faes of S1 are in
Fr and some faes of S2 are in Fl. (b) Parallel omponent {S1, S2} satis�espair 〈0, 2〉 � 〈2, 2〉 when all faes of S2 are in F ′

r . Dark-shaded faes are in
Fl, light-shaded faes are in Fr and F ′

r, and fae fsk is drawn white. Eahfae is labeled with two integers representing its distane from left and rightexternal fae, respetively. Labels lying inside a square are those onsidered inthe orresponding partition.there is at least one skeleton fae fsk whose two inidents omponents νl and
νr, with fνl

r = fsk = fνr

l , have some internal fae in Fr and some internal faein Fl, respetively. A proof of this fat is shown in Fig. 5.15, where the �rstomponent ν1 has some faes in Fr and the last omponent ν2 has some faesin Fl. Observe that we analyze only the ase where omponents lying between
ν1 and ν2 have all their internal faes in the same set sine, in the other ase,it is possible to �nd at least one subsequene of omponents where the aboveproperty is satis�ed.By Property 5.13, it is possible to �nd a partition F ′

l , F
′
r suh that all faesin F ′

l have distane from fµ
l less or equal than x, all faes in F ′

r have distanefrom fµ
r less or equal than y and either all internal faes of νl belong to F ′

lor all internal faes of νr belong to F ′
r . Partition F ′

l , F
′
r an be repeatedlymodi�ed as desribed above until Property 5.13 an not be further applied.Two are the ases: either there is a single hild omponent νc whose internal
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u

v v

u

v

u

(a) (b) ()Figure 5.15: Proof of Lemma 5.19. The leftmost omponent is ν1 and therightmost omponent is ν2. Dark-shaded faes are in Fl, light-shaded faes arein Fr, fsk is drawn dark grey, while the other skeleton faes are drawn white.faes belong to both the sets F ′
l and F ′

r or there is none. In the �rst ase,sine Property 5.13 an not be applied, all hild omponents to the left (right)of νc have their internal faes in F ′
l (F ′

r, respetively). In the seond ase, foranalogous reasons, all hild omponents with their faes in F ′
l are to the left ofthose hild omponents whose faes are in F ′

r. 2The unique omponent νc, if any, whose faes belong to both F ′
l and F ′

r isalled the enter of the permutation. Intuitively, Lemma 5.19 states that wean restrit to onsider those partitions Fl, Fr of the internal faes of ΓGµ
suhthat eah hild omponent di�erent from νc has its internal faes into the sameset Fl or Fr. Consider, for example, embedding Γj

P1
of parallel omponent P1,shown in Fig. 5.16, orresponding to permutation S1, Q5,10, S2, and onsider

Q5,10 as the enter of the permutation. It is possible to observe that a partition
Fl, Fr, where the hildren faes of S2 are split by the two sets (Fig. 5.16(a)),satis�es a pair that is preeded by a pair satis�ed by a partition where allfaes of S2 are in Fr(Fig. 5.16(b)). In other words, for eah hild omponent
νi di�erent from νc, Â(νi) an be assumed to ontain the two pairs 〈x, 0〉 and
〈0, y〉 only.The gist Â(µ) an be omputed by hoosing, one by one, eah hild ompo-nent as the enter of the permutation νc and by inserting the other omponentseither to the left or the right of νc, until a omplete permutation is obtained.Eah subsequene σ of omponents is assoiated with the gist Â(σ) of its ad-missible set A(σ), whih is properly updated when a omponent is inserted.This approah would obtain the same permutation δ(µ) times, so exploring
O(δ(µ) · δ(µ)!) sequenes. Hene, at �rst glane, the omputational omplex-
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(a) (b)Figure 5.16: Embedding Γj
P1

orresponds to permutation S1, Q5,10, S2 and
Q5,10 is the enter of the permutation. (a) Γj

P1
satis�es pair 〈3, 2〉 when hildrenfaes of S2 are split by Fl and Fr. (b) Γj

P1
satis�es pair 〈1, 2〉 � 〈3, 2〉 whenall hildren faes of S2 are in Fr. Skeleton faes are drawn white, dark-shadedfaes are in Fl, and light-shaded faes are in Fr. Eah fae is labeled with twointegers representing its distane from left and right external fae, respetively.Labels lying inside a square are those onsidered in the orresponding partition.ity is augmented. However, we show in the following that fousing on νc angreatly help to redue the number of permutations to be onsidered.Lemma 5.20 Let σ be a sequene of hild omponents, with νc ∈ σ, and let

νi /∈ σ be a hild omponent of µ with 〈0, yi〉, 〈xi, 0〉 ∈ Â(νi). By adding νi tothe left of σ we obtain a sequene σ′. Consider the set S′ ontaining a pair
〈max(x + t(νi), xi), y〉 for eah pair 〈x, y〉 ∈ Â(σ). We have that S′ � A(σ′)and S′ ⊂ A(σ′). Analogously, by adding νi to the right of σ we obtain asequene σ′′ and the set S′′ ontaining a pair 〈x, max(y + t(νi), yi)〉 for eahpair 〈x, y〉 ∈ Â(σ) is suh that S′′ � A(σ′′) and S′′ ⊂ A(σ′′).Proof: First, we show that S′ ⊂ A(σ′). Consider a pair 〈x, y〉 ∈ Â(σ) and theembedding Γσ of σ suh that there exists a partition of its internal faes intotwo sets Fl and Fr where faes in Fl are at distane from fσ

l less or equal than
x and faes in Fr are at distane from fσ

r less or equal than y. Then, onsiderthe embedding Γνi
of νi suh that all its internal faes are at distane from fνi

l
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5.5. COMPUTING A MINIMUM-DEPTH EMBEDDING OF ABICONNECTED PLANAR GRAPH 135less or equal than xi and the planar embedding Γσ′ of σ′ obtained by adding νito the left of σ while preserving the original embeddings of σ and νi. Considerthe partition of the internal faes of Γσ′ into two sets F ′
l and F ′

r , where F ′
l is theset of faes omposed of Fl plus all the faes of Γνi

and F ′
r = Fr. Faes in Fl areat distane less or equal than x+ t(νi) from fσ′

l , sine they are at distane lessor equal than x from fσ
l whih, in turn, is at distane t(νi) from fσ′

l . Also, byonstrution, faes in Γνi
are at distane less or equal than xi from fσ′

l . Hene,all faes in F ′
l are at distane from fσ′

l less or equal than max(x + t(νi), xi).By F ′
r = Fr we have that 〈max(x + t(νi), xi), y〉 ∈ A(σ′). Repeating suh aproedure for eah pair 〈x, y〉 ∈ Â(σ) we have that S′ ⊂ A(σ′).Seond, we show that S′ � A(σ′). Suppose, for a ontradition, that thereexists a pair p′ = 〈x′, y′〉 suh that p′ ∈ A(σ′) and there is not a pair p ∈ S′suh that p � p′. Sine p′ ∈ A(σ′), by de�nition, there exists an embedding

Γσ′ whose internal faes an be partitioned into two sets F ′
l and F ′

r suh thatall faes in F ′
l are at distane from fσ′

l less or equal than x′ and all faes in F ′
rare at distane from fσ′

r less or equal than y′. Consider the embeddings Γσ of
σ and Γνi

of νi indued by Γσ′ . By Property 5.13, sine νc ∈ σ and νi is to theleft of σ, we have that Γνi
has all its internal faes into F ′

l . Hene, xi ≤ x′.Consider the partition of the internal faes of Γσ into the sets Fl = F ′
l \Γνiand Fr = F ′

r. We have that faes fl ∈ Fl are at distane less or equal than
x′ − t(νi) from fσ

l , sine fσ
l ∈ γ(fl, f

σ′

l ) and |γ(fσ
l , fσ′

l )| = t(νi), and faesin Fr are at distane y′ from fσ
r , sine Fr = F ′

r. Hene, embedding Γσ of
σ satis�es pair 〈x′ − t(νi), y

′〉. Hene, by onstrution, S′ ontains a pair
p = 〈max(x+t(νi), xi), y〉 = 〈max(x′−t(νi)+t(νi), xi), y

′〉 = 〈max(x′, xi), y
′〉 =

〈x′, y′〉 � p′, whih is a ontradition.Analogous onsiderations show that, when adding νi to the right of σ,
S′′ � A(σ′′) and S′′ ⊂ A(σ′′). 2Let νi be a hild omponent of a parallel node. We introdue funtion
l(νi) = t(νi) − xi, where xi is suh that pair 〈xi, 0〉 ∈ Â(νi). The followinglemma holds.Lemma 5.21 Let σ be a sequene of hild omponents of µ, with νc ∈ σ, andlet ν′ and ν′′ be two hild omponents of µ, with ν′, ν′′ /∈ σ. Let Γ1

µ and Γ2
µ betwo embeddings of sk(µ) orresponding to two permutations of hild omponentswhih only di�er for the swapping of ν′ and ν′′ in suh a way that ν′ and ν′′ lieon the same side of σ and that ν′ is between νc and ν′′ in Γ1

µ. If l(ν′) < l(ν′′),then A2(µ) � A1(µ).Proof: Consider a pair 〈x, y〉 ∈ Â(σ), and pairs 〈x′, 0〉 ∈ Â(ν′) and 〈x′′, 0〉 ∈
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(a) (b) ()Figure 5.17: (a) Parallel omponent {S1, Q5,10} satis�es pair 〈1, 0〉. (b) Pair
〈0, 2〉 ∈ Â(S2). () After inserting S2 to the right of the enter, paral-lel omponent P1 = {S1, Q5,10, S2} satis�es pair 〈xj , max(yj + t(νi), yi)〉 =
〈1, max(0 + 1, 2)〉 = 〈1, 2〉. Skeleton faes are drawn white, dark-shaded faesare in Fl, and light-shaded faes are in Fr. Eah fae is labeled with two in-tegers representing its distane from left and right external fae, respetively.Labels lying inside a square are those onsidered in the orresponding partition.
Â(ν′′). We analyze the ase when both ν′ and ν′′ are added to the left of σ, theother ase being analogous. First, onsider embedding Γ1

µ. When omponent
ν′ is added to the left of σ, by Lemma 5.20, we obtain a new sequene satisfyingpair 〈max(x+t(ν′), x′), y〉. Then, when ν′′ is inserted, we obtain a new sequenesatisfying p1 = 〈max(max(x+t(ν′), x′)+t(ν′′), x′′), y〉. Seond, onsider embed-ding Γ2

µ. In this ase, after inserting ν′′ and ν′, we obtain a new sequene satis-fying pair p2 = 〈max(max(x + t(ν′′), x′′) + t(ν′), x′), y〉. Suppose, for a ontra-dition, that p2 � p1. Two are the ases: either x+ t(ν′) > x′ or not. Considerthe ase x + t(ν′) > x′. Sine, by hypothesis, t(ν′)− x′ < t(ν′′)− x′′, we have
x+t(ν′′) > x′′. Hene, p1 = 〈max(x+t(ν′)+t(ν′′), x′′), y〉 = 〈x+t(ν′)+t(ν′′), y〉and p2 = 〈max(x+ t(ν′′)+ t(ν′), x′), y〉 = 〈x+ t(ν′′)+ t(ν′), y〉 = p1, ontradit-ing the hypothesis that p2 � p1. Now onsider the ase x + t(ν′) ≤ x′. Then,
p1 = 〈max(x′ + t(ν′′), x′′), y〉. Again, we have to distinguish two ases: Either
x+t(ν′′) > x′′ or not. If x+t(ν′′) > x′′, then p2 = 〈max(x+t(ν′′)+t(ν′), x′), y〉.Sine, by hypothesis, x′ + t(ν′′) ≥ x + t(ν′′) + t(ν′) and, by t(ν′′) ≥ 0, it holds
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5.5. COMPUTING A MINIMUM-DEPTH EMBEDDING OF ABICONNECTED PLANAR GRAPH 137
x′ + t(ν′′) ≥ x′, we onlude that p2 � p1, ontraditing the hypothesis. If
x + t(ν′′) ≤ x′′, then p2 = 〈max(x′′ + t(ν′), x′), y〉. Sine, by l(ν′) < l(ν′′),we have x′ + t(ν′′) > x′′ + t(ν′) and, by t(ν′′) ≥ 0, we have x′ + t(ν′′) > x′,we onlude that p2 � p1, ontraditing the hypothesis. Sine, for every pair
p1 ∈ A1(µ), there exists a pair p2 ∈ A2(µ) suh that p2 � p1, it follows that
A2(µ) � A1(µ). 2Let ν′ and ν′′ be two hild omponents of µ with l(ν′′) < l(ν′). Intuitively,any permutation of the hild omponents of µ with ν′ further from νc than ν′′an be ignored, sine its admissible set is preeded by the one omputed witha di�erent permutation. Therefore, the number of analyzed permutations anbe redued by ordering hild omponents by dereasing values of funtion l(νi)and, one the enter νc of the permutation has been hosen, by adding theother omponents, ordered with respet to funtion l(νi), either to the left orto the right of the sequene of the omponents already added.In order to do so, we build a rooted tree T (νc) of height δ(µ)+1 where eahnode p at distane d from the root is a pair 〈xp, yp〉 of non-negative integersand is assoiated with a sequene σp of d hild omponents of µ suh that
〈xp, yp〉 ∈ Â(σp). The nodes at distane d from the root are the inomparablepairs of integers satis�ed by some sequene of length d. Hene, the set of nodesat distane δ(µ) from the root is Â(µ) restrited to the permutations having νcas the enter. Suh a set is denoted by Âνc

(µ). Tree T (νc) is built as follows.The root is pair 〈0, 0〉 and is assoiated with the empty sequene. The rootis added as many hildren as many pairs in the gist Â(νc) of the admissibleset of the enter of the permutation νc, eah one assoiated with the sequeneomposed by νc only. The following levels are obtained by onsidering, oneby one, all the other omponents in dereasing order of funtion l(νi). Whenthe k-th omponent νk is proessed, eah node p at depth k − 1 is added twohildren pl and pr, orresponding to the addition of νk to the left or to theright of σp, respetively. Pairs pl and pr are omputed, starting from p, withthe funtion desribed in Lemma 5.20. From the set of all pairs introduedat level k all those preeded by a pair of the same level an be removed, sopruning the tree.The gist Â(µ) of the admissible set of the P-node µ an be obtained as theunion of the gists Âνc
(µ) of the admissible sets obtained by hoosing, one byone, eah hild omponent as the enter of the permutation νc.Consider, for example, the P-node P1 with hild omponents Q5,10, S1, and

S2 shown in Fig. 5.17. Regarding omponent Q5,10 we have 〈0, 0〉 ∈ Â(Q5,10)and t(Q5,10) = 1, regarding omponent S1 we have 〈1, 0〉 ∈ Â(S1) and t(S1) =
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1, and regarding omponent S2 we have 〈0, 2〉 ∈ Â(S2) and t(S2) = 1. Hene,
l(Q5,10) = 1, l(S1) = 0 and l(S2) = −1. The ordering of the omponents isthen Q5,10 − S1 − S2. Consider Q5,10 as the enter of the permutation. Wehave Â(Q5,10) = {〈0, 0〉}. The tree that omputes the admissible set restritedto all the permutations having Q5,10 as enter is shown in Fig. 5.18.

<0,0>

S

1

2 <1,2> <2,1><2,0> <0,2>

<0,1><1,0>

<0,0>Q 5,10

S

Figure 5.18: Computation of tree T (Q5,10) for the P-node P1 with hild om-ponents Q5,10, S1, and S2 added in this order. Pairs 〈1, 2〉 and 〈2, 1〉 have beenremoved sine they are preeded by 〈0, 2〉 and 〈2, 0〉, respetively.We propose an algorithm, alled Tree_Parallel, whih, given a P-node
µ and its hildren νi, for i = 1, . . . , δ(µ), with one of them hosen as theenter of the permutation νc, suitably builds a set S that is the gist Âνc

(µ)of the admissible set restrited to all the permutations having νc as enter.Components νi are onsidered ordered with respet to dereasing values offuntion l(νi). At eah step of the omputation, S ontains the pairs assoiatedto the nodes of the urrent level of the tree T (νc). S is initialized to Â(νc).When adding the k-th omponent νk, �rst produe the two sets Sl and Srof hildren obtained by onatenating νk to the left and to the right of σp,respetively, for eah p ∈ S. Pairs in Sl and Sr are reated by applying toeah pair of S the funtion presented in Lemma 5.20. Sine S is orderedwith respet to the �x relationship, and due to the fat that pairs in Sl and
Sr are reated by adding a onstant value to the �rst and seond element,respetively, of all the pairs of S, whih is suint and assumed ordered withrespet to the �x relationship, these two sets an be kept ordered with respetto the �x relationship and suint, by omparing the pair to be inserted withthe last pair only. S is omputed by performing the union between Sl and
Sr as desribed in Lemma 5.4. The algorithm iterates until all the hildren
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5.5. COMPUTING A MINIMUM-DEPTH EMBEDDING OF ABICONNECTED PLANAR GRAPH 139Algorithm 6 Tree_ParallelRequire: A P-node µ, thikness t(νi) and pairs 〈xi, 0〉, 〈0, yi〉 ∈ Â(νi) of eahhild omponent νi, for i = 1, . . . , δ(µ), and the gist Â(νc) of the admissibleset of the hild νc hosen as the enter of the permutation.Ensure: The gist Âνc
(µ) of the admissible set restrited to all the permuta-tions having νc as enter.1: S = Â(νc);2: for i = 1 to δ(µ) do3: pl = pr = 〈∞,∞〉;4: for all pk = 〈xk, yk〉 ∈ S do5: if pl � 〈max(xk + t(νi), xi), yk〉 then6: pl = 〈max(xk + t(νi), xi), yk〉;7: Sl.addLast(pl);8: end if9: if pr � 〈xk, max(yk + t(νi), yi)〉 then10: pr = 〈xk, max(yk + t(νi), yi)〉;11: Sr.addLast(pr);12: end if13: end for14: S = Sl ∪ Sr;15: end for16: return S;omponents have been added.Lemma 5.22 Starting from Â(νi) and t(νi), Algorithm Tree_Parallel om-putes the gist Âνc

(µ) of the admissible set of µ, restrited to all the permutationshaving νc as enter, in O(
∑δ(µ)

k=1

∑k
i=1 n(νi)) time.Proof: When the k-th omponent is added, the omputational omplexity ofthe onstrution of Sl and Sr and of their union depends on the number of nodesof T (νc) at distane k from the root, whih is, by de�nition, O(

∑k
i=1 n(νi)).Sine suh operations have to be performed for eah level, the overall timeomplexity bound follows. 2
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140 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSLemma 5.23 Starting from Â(νi) and t(νi), for i = 1, . . . , δ(µ), the gist Â(µ)of the admissible set of µ an be omputed in time O(δ(µ) ·∑δ(µ)
k=1

∑k
i=1 n(νi)).Proof: In order to ompute Â(µ) we have to perform a sequene of ompu-tations. The proof is based on the fat that the heaviest of these omputa-tions needs O(δ(µ) ·∑δ(µ)

k=1

∑k
i=1(n(νi))) time. By Lemma 5.18, the thikness

t(µ) an be omputed in O(δ(µ)) time. The gists Âνc
(µ), for c = 1, . . . , δ(µ),of the admissible sets restrited to all the permutations having νc as enteran be omputed, by Lemma 5.22, in O(δ(µ) ·∑δ(µ)

k=1

∑k
i=1(n(νi))) total time.Sine, by Property 5.5, for eah gist Âνc

(µ) we have |Âνc
(µ)| = O(n), the gist

Â(µ) = ∪δ(µ)
c=1 Âνc

(µ) of the admissible set of µ an be omputed with Algo-rithm Gist_Union in O(δ(µ) · n) time, aording to Lemma 5.4. 2Computing the Minimum Depth and the Minimum-DepthEmbeddingAt the end of the bottom-up traversal of T , the value of the minimum depthan be omputed starting from the gist of the admissible set of the omponent
µ that is the hild of the root e of T . Namely, for eah pair 〈xh, yh〉 ∈ Â(µ), let
mh be xh + 1 if xh = yh, and let mh be max(xh, yh) otherwise. The minimumdepth is the minimum of the mh, for h = 1, . . . , |Â(µ)|.Lemma 5.24 Let T be the SPQR-tree rooted at edge e of an n-vertex graph
G, and let µ be the hild of e. Starting from Â(µ), the minimum depth of theembeddings of G with e on the external fae an be omputed in O(n) time.Proof: Consider a pair 〈xh, yh〉 ∈ Â(µ). By de�nition, there exists an embed-ding Γh

µ suh that eah fae f ∈ Γh
µ is at distane less or equal than xh from

fµ
l or at distane less or equal than yh from fµ

r . Two planar embeddings of Gwith e on the external fae are obtained from Γh
µ by adding edge e between thepoles of µ, and by hoosing either fµ

l or fµ
r as the external fae fµ, respetively.If xh > yh we set fµ = fµ

l and mh = xh. If xh = yh we set fµ = fµ
l and

mh = xh + 1. Otherwise, if xh < yh we set fµ = fµ
r and mh = yh. Denote Γh

Gthe orresponding embedding.We have that if xh > yh, eah fae f ∈ Γh
G is at distane from fµ less or equalthan max(xh, yh + 1) = xh = mh. If xh = yh eah fae f ∈ Γh

G is at distanefrom fµ less or equal than max(xh, yh +1) = xh +1 = mh. If xh < yh eah fae
f ∈ Γh

G is at distane from fµ less or equal than max(xh + 1, yh) = yh = mh.
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5.5. COMPUTING A MINIMUM-DEPTH EMBEDDING OF ABICONNECTED PLANAR GRAPH 141Sine Â(µ) aounts for the depths of all possible embeddings of the pertinentgraph Gµ, the minimum among all the mh is the minimum depth of the em-beddings of G with e on the external fae. The operations to be performed are
|Â(µ)| integer omparisons and the omputation of the minimum among |Â(µ)|integer values. Sine, by Property 5.5, |Â(µ)| is O(n), the statement follows.

2Theorem 5.1 Let G be an n-vertex bionneted planar graph and let T be theSPQR-tree of G rooted at e. The minimum depth of an embedding of G with eon the external fae an be omputed in O(n3) time and O(n2) spae.Proof: Consider the three sets S, R and P ontaining the series, rigid, andparallel nodes of T , respetively. For eah series omponent µs ∈ S, by Lem-mas 5.11 and 5.13, t(µs) and Â(µs) an be omputed in O(
∑δ(µs)

i=1 n(νi)) time.Hene, the overall omplexity for all the series nodes is O(
∑

µs∈S

∑δ(µs)
i=1 n(νi)).Sine the number of the series nodes is O(n), the above sum is O(n2).For eah rigid omponent µr ∈ R, by Lemmas 5.14 and 5.17, t(µr) and

Â(µr) an be omputed in O(
∑δ(µr)

j=1

∑j
i=1 n(νi)). Hene, the overall omplex-ity for all the rigid nodes is O(

O(n)︷ ︸︸ ︷
∑

µr∈R

δ(µr)∑

j=1

O(n)︷ ︸︸ ︷
j∑

i=1

n(νi)), whih is O(n2), sine thetotal number of hildren of all the rigid nodes is less or equal than the totalnumber of ars of T , that is O(n).For eah parallel omponent µp ∈ P , by Lemmas 5.18 and 5.23, t(µp) and
Â(µp) an be omputed in O(δ(µp)

∑δ(µp)
k=1

∑k
i=1 n(νi)) time. Hene, the overallomplexity for all the parallel nodes is O(

O(n2)︷ ︸︸ ︷
∑

µp∈P

δ(µp)

δ(µp)∑

k=1

O(n)︷ ︸︸ ︷
k∑

i=1

n(νi)), whih is
O(n3), sine the total number of hildren of all the parallel nodes is O(n). Thetime omplexity of the bottom-up traversal is O(n2)+O(n2)+O(n3) = O(n3).Starting from the gist of the admissible set of the root, the minimum depth isomputed, by Lemma 5.24, in O(n) time.The spae bound an be obtained by onsidering that there are O(n) om-ponents in T and that, by Property 5.5, the size of the gists of their admissiblesets is O(n). 2
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142 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGSTo produe a minimum-depth embedding of G with an edge e on the exter-nal fae we need some additional information to be added to eah omponentduring the bottom-up traversal of T , meant to desribe how the omponentsmust be attahed together in order to obtain an embedding satisfying eah pairof the gist of the admissible set.Namely, for eah node µ and for eah pair p ∈ Â(µ) we attah an �embeddingdesriptor� omposed of :
• A Boolean variable bµ speifying how µ must be attahed to its parentomponent ν. Namely, onsider the two faes fl and fr of sk(ν) inidentto the virtual edge eµ representing µ in sk(ν). Variable bµ desribeswhether µ must replae eµ in sk(ν) with fµ

l orresponding to fl or not.
• An integer pair pi for eah hild omponent νi of µ speifying how νimust be embedded to obtain an embedding of µ satisfying p.
• If µ is a parallel omponent we also reord the needed ordering of its hildomponents νi.The minimum-depth embedding is omputed with a top-down traversal ofthe SPQR-tree T rooted at e, using the above desribed additional strutures,by suitably replaing eah virtual edge with the skeleton of the orrespondingomponent.Theorem 5.2 Let G be an n-vertex bionneted planar graph. A minimum-depth embedding of G an be omputed in O(n4) time and O(n3) spae.Proof: For eah edge e of G, ompute the SPQR-tree rooted at e in O(n) timeand the minimum-depth embedding with e on the external fae in O(n3) time.The ubi spae bound is due to the fat that, for eah omponent and for eahinteger pair of the gist of its admissible set, an integer pair for eah hildrenmust be reorded. 25.6 Extension to General Planar GraphsThe minimum-depth embedding of a simply-onneted planar graph G, de-sribed by its BC-tree, an be found with an approah similar to that usedin [BM90℄. The key point of suh an approah is that the algorithm to om-pute a minimum-depth embedding of a bionneted graph with a spei�ed edgeon the external fae an be suitably modi�ed in order to be applied to eah



i

i �main� � 2010/2/26 � 12:27 � page 143 � #153
i

i

i

i

i

i

5.6. EXTENSION TO GENERAL PLANAR GRAPHS 143blok ρi, taking into aount the depth of the bloks that are attahed to theverties of ρi that are ut-verties of G, while maintaining the O(n3
i ) timeomplexity, where ni is the number of verties of ρi.In order to ompute the minimum-depth embedding of G, we perform aseparate omputation with eah edge e on the external fae, rooting the BC-tree at the blok ontaining e. We traverse bottom-up the BC-tree applyingthe algorithm skethed in the following. Eah blok ρj , sharing ut-vertex vjwith its parent ρi, must be embedded with vj on its external fae. Hene,we apply the modi�ed algorithm to ρj using as referene edge eah one of theedges inident to vj and hoose the embedding with minimum depth.This omputation has to be performed for eah edge of eah blok hosen asthe root blok. The overall O(n4) omplexity an be obtained by onsideringthat the modi�ed algorithm has to be launhed at most three times for eahedge of G. Namely, we launh the algorithm on eah edge e of G when suhan edge is hosen to be on the external fae, taking into aount the depths ofall the attahed bloks, and we launh the algorithm on eah edge e inidentto a ut-vertex v (hene, at most two times for eah e) taking into aount thedepths of all the attahed bloks with the exeption of those attahed to v.Theorem 5.3 Let G be an n-vertex onneted planar graph. A minimum-depth embedding of G an be omputed in O(n4) time and O(n3) spae.Here we provide a sketh of the algorithm to �nd a minimum-depth embed-ding of a blok ρ of a BC-tree B with a spei�ed edge e on the external faethat takes into aount the depths of the hild bloks πi sharing a ut-vertex

vi with ρ. The input of suh an algorithm is a minimum-depth embedding foreah hild blok πi of ρ with vi on the external fae. The algorithm desribedin Setion 5.5 for omputing a minimum-depth embedding of a bionnetedgraph with a spei�ed edge on the external fae has to be modi�ed in order totake into aount the fat that eah hild blok πi has to be plaed inside one ofthe faes of ρ inident to vi. Consider the skeleton of a series, rigid, or parallelomponent µ of the SPQR-tree of the blok ρ. The hild bloks of ρ, whosedepths have to be taken into aount, may only attah to the poles of the hildomponents of µ that are not poles of µ. In fat, hild bloks attahed to thepoles of µ will be taken into aount when the parent of µ is onsidered by thealgorithm. Hene, the omputation for a parallel omponent µp is unhangedwith respet of the algorithm desribed in Setion 5.5.The key observation for modifying the algorithm for a series or a rigidomponent µ is that the admissible set of sk(µ) and the admissible sets of eah
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144 CHAPTER 5. MINIMUM-DEPTH EMBEDDINGShild omponent νi nested into Γj(µ) do not hange whihever will be the faesof sk(µ) that will be hosen to ontain the hild bloks πi attahed to ρ.The seond key observation is that eah blok πi, with depth di, an be mod-eled by means of an additional admissible set representing the ontribution ofthe blok on the depth of the whole omponent. Namely, for a series ompo-nent µs, it is su�ient to interset the gists of the admissible sets Â(νh|Γj(µ))omputed for eah hild omponent νh of µ with the additional admissible setontaining the pairs 〈0, di〉 and 〈di, 0〉, whih represent the fat that the blok
πi will be plaed into fµs

r or fµs

l , respetively. Analogously, the algorithm fora rigid omponent µr must be modi�ed by onsidering for eah hild blok πi,with depth di, an additional admissible set representing the fat that πi an beplaed in any fae inident to vi. Suh a set ontains two pairs 〈0, di + dr(f)〉and 〈di + dl(f), 0〉 for eah fae inident to vi (its gist will ontain two pairsonly). It an be proved that the above hanges do not a�et the overall O(n3)omplexity of the algorithm, where n is the number of verties of ρ.5.7 ConlusionsIn this hapter we presented anO(n4)-time algorithm for omputing a minimum-depth embedding of a planar graph.Sine our approah is inspired by the one in [BM90℄, it is useful to stressthe similarities and the di�erenes between the two ontributions. We takefrom [BM90℄ the fundamental idea of deomposing the graph into omponentsand to separately onsider eah omponent. Also, the onept of thikness isthe same as in [BM90℄. Both the approahes exploit the strategy of equippingeah omponent with pairs of integers, representing their distane from theexternal fae. However, in [BM90℄ a pair represents the result of a �probe� thatsays that a ertain omponent is feasible with that depth. In our ase a setof pairs represents impliitly all the admissible values of depth of the ompo-nent. The ombinatorial struture of suh pairs and their nie omputationalproperties are a key ingredient of our approah. The tehniques for ombiningthe omponents are similar. However, in the ritial problem of dealing withparallel ompositions, we develop an approah that has many new features.The natural problem that remains open is to �ll the gap from ourO(n4) timeto the linear time obtained in [PT00℄ for a simpli�ed version of the problem.Also, it would be interesting to understand whether the tehniques used inthis hapter ould be applied to improve the omplexity bounds for the otherdistane measures, suh as radius, outerplanarity, and width.
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Part IIIGreedy Drawings of Planar Graphs

145



i

i �main� � 2010/2/26 � 12:27 � page 146 � #156
i

i

i

i

i

i



i

i �main� � 2010/2/26 � 12:27 � page 147 � #157
i

i

i

i

i

i

Chapter 6Greedy Drawings of Planar GraphsIn this hapter1, we study greedy drawings of planar graphs, a type of drawingsthat have to satisfy some geometrial properties related to the distane amongthe verties. Namely, in suh a type of drawings, every vertex is onneted toany other vertex by a path suh that at eah step the geometri distane to thedestination is dereased. This problem has reently been the subjet of someinvestigation, as it is motivated by its appliation in greedy routing algorithmsfor sensor networks.We study the problem aiming at a ombinatorial haraterization of thegraphs admitting a drawing with this property. In this ontext, we �rst presentan algorithm to onstrut greedy drawings of every given triangulation and thenwe show how to extend it to work for every given trionneted planar graph,hene proving a onjeture by Papadimitriou and Ratajzak [PR05℄, that wasindependently proved by Leighton and Moitra [LM08℄.Our algorithm for triangulations relies on two main results. First, we showhow to onstrut greedy drawings of a fairly simple lass of graphs, alledtriangulated binary atuses. Seond, we show that every triangulation an bespanned by a triangulated binary atus. The tehnique used for trionnetedplanar graphs is the same, but in this ase we use a slightly di�erent lass ofgraphs, alled non-triangulated binary atuses.1Part of the ontents of this hapter are a joint work with Fabrizio Frati and Lua Grilli,appeared in [AFG08℄ and to appear in [AFG10℄. Thanks to Tom Leighton and Ankur Moitrafor providing us with their paper, for introduing us to Gao and Rihter's results, and forhelping us to larify the relationship between our results, their own, and Gao and Rihter'sones. 147
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148 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHS6.1 IntrodutionThe standard Internet routing protool is as follows: Eah omputer is uni-voally identi�ed by an IP-address ; IP-addresses are aggregated, i.e., omput-ers that are topologially or geographially lose in the network are assignedaddresses with the same most signi�ative bits; onsequently, routers do nothave to know the route to eah address in the network, but they maintain intheir routing tables only the information on the route to take for reahing eahset of aggregated addresses. Suh an approah does not work in many wire-less networks, suh as ad-ho and sensor networks, where the addresses thatare assigned to nodes geographially or topologially lose are not neessarilysimilar. Despite of their importane, no universally-aepted ommuniationprotool exists for suh wireless environments.Geographi routing is a lass of routing protools in whih nodes forwardpakets based on their geographi loations. Among suh protools, geomet-ri routing, or greedy routing, has been well investigated, beause it relies ona very simple strategy in whih, in order to forward pakets, eah node hasto know only loal information and the destination address. In fat, in thegreedy routing a node forwards pakets to a neighbor that is loser than itselfto the destination's geographi loation. Di�erent distane metris de�ne dif-ferent meanings for the word �loser�, and onsequently de�ne di�erent routingalgorithms for the paket delivery. The most used and studied metri is ofourse the Eulidean distane. The e�ieny of geographi routing algorithmsstrongly relies on the geographi oordinates of the nodes. This is indeed adrawbak of suh routing algorithms, for the following reasons: (i) Nodes ofthe network have to know their loations, hene they have to be equipped withGPS devies, whih are expensive and inrease the energy onsumption of thenodes; (ii) geographi oordinates are independent of the network obstrutions,i.e. obstales making the ommuniation between two lose nodes impossible,and, more in general, they are independent of the network topology; this ouldlead to situations in whih the ommuniation fails beause a void has beenreahed, i.e., the paket has reahed a node whose neighbors are all fartherfrom the destination than the node itself.A brilliant solution to the geographi routing weakness has been proposedby Rao, Papadimitriou, Shenker and Stoia, who in [RPSS03℄ proposed asheme in whih nodes deide virtual oordinates and then apply the stan-dard geometri routing algorithm relying on suh virtual loations rather thanon the real geographi oordinates. Clearly, virtual oordinates do not need tore�et the nodes atual positions, hene they an be suitably hosen to guaran-



i

i �main� � 2010/2/26 � 12:27 � page 149 � #159
i

i

i

i

i

i

6.1. INTRODUCTION 149tee that the geometri routing algorithm delivers pakets with high probability.It has been experimentally shown that suh an approah strongly improves thereliability of geometri routing [RPSS03, PR05℄.Unfortunately, greedy routing in the Eulidean plane is not always possi-ble, as for example if the network is represented as a star graph with sevenverties. Thus, in order to apply greedy routing to arbitrary networks, re-searhers have had to either abandon the natural geometry of the Eulideanplane and use hyperboli oordinates or to abandon the simple greedy routingprotool. Namely, it has been proved that virtual oordinates guarantee geo-metri routing to work for every onneted topology when they an be hosenin the hyperboli plane [Kle07℄, even if only a logarithmi number of bits areavailable to store the oordinates of eah node [EG08℄. Moreover, some easymodi�ations of the routing algorithm guarantee that Eulidean virtual oor-dinates an be hosen so that the paket delivery always sueeds [BCGG06℄,even if the oordinates need to be loally omputed [BCGW07℄.Conerning greedy routing in the Eulidean plane, the most intense researhe�ort has been devoted to determining network topologies for whih greedyrouting with Eulidean virtual oordinates is guaranteed to work. From agraph-theoreti point of view, the problem an be restated as follows: Whihgraphs admit a greedy drawing, i.e., a straight-line drawing Γ in the planesuh that, for every pair of nodes, there exists a distane-dereasing path in
Γ? A path (v0, v1, . . . , vm) is distane-dereasing if d(vi, vm) < d(vi−1, vm), for
i = 1, . . . , m, where d(u, v) denotes the Eulidean distane between points uand v. This formulation of the problem gives a lear pereption of how greedyrouting an be seen as a �bridge� problem between the theory of routing andGraph Drawing, thus explaining why it attrated attention in both areas.In [PR05℄ Papadimitriou and Ratajzak onjetured the following:Conjeture 6.1 Every trionneted planar graph admits a greedy drawing.Papadimitriou and Ratajzak observed that, if a graph G admits a greedydrawing, then any graph ontaining G as a spanning subgraph admits one, aswell. It follows that Conjeture 6.1 extends to all graphs whih are spanned by atrionneted planar graph. Related to suh an observation, Papadimitriou andRatajzak proved that every trionneted graph not ontaining any K3,3-minorhas a trionneted planar spanning subgraph.Some examples of graphs not admitting any greedy drawings in the planeadopting the Eulidean distane have been provided. Namely, Papadimitriouand Ratajzak [PR05℄ proved that Kk,5k+1 has no greedy drawing, for k ≥ 1.
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150 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSThis result is interesting when related to Conjeture 6.1, as it states that K2,11,that is planar but non-trionneted, and K3,16, that is trionneted but non-planar, do not admit any greedy drawing, hene making the two onditions ofthe onjeture neessary. Also, in [LM08℄ it is proved that there exist trees notadmitting any greedy drawing, as the omplete binary tree with 31 verties.There are a few lasses of trionneted planar graphs for whih the onje-ture is easily shown to be true, for example graphs with a Hamiltonian pathand Delaunay Triangulations. At SODA 2008 [Dha08℄, Dhandapani proved theonjeture for the �rst non-trivial lass of trionneted planar graphs, namelyhe showed that every triangulation admits a greedy embedding. The proof ofDhandapani is probabilisti, namely the author proves that, for every giventriangulation G, a random Shnyder drawing of G [Sh90℄ is greedy with pos-itive probability; hene, there exists a greedy drawing of every triangulation.Although suh a proof is elegant, relying at the same time on an old Com-binatorial Geometry theorem, known as the Knaster-Kuratowski-MazurkievizTheorem [KKM29℄, and on standard Graph Drawing tehniques, as the Shny-der realizers [Sh90℄ and the anonial orderings of a triangulation [dPP90℄, itdoes not lead to an embedding algorithm.In this hapter we show an algorithm for onstruting greedy drawings oftriangulations. We de�ne a simple lass of graphs, alled triangulated binaryatuses, and we provide an algorithm to onstrut a greedy drawing of any suha graph. Further, we show how to �nd, for every triangulation, a triangulatedbinary atus spanning it. It is lear that the previous statements imply analgorithm for onstruting greedy drawings of triangulations. Namely, onsiderany triangulation G, apply the algorithm to �nd a triangulated binary atus
S spanning G, and then apply the algorithm to onstrut a greedy drawing of
S. As already observed, adding edges to a greedy drawing leaves the drawinggreedy, hene S an be augmented to G, obtaining a greedy drawing of G.Theorem 6.1 Given a triangulation G, there exists an algorithm to omputea greedy drawing of G.Further, we provide an algorithm to onstrut greedy drawings of generaltrionneted planar graphs. The strategy of suh an algorithm is the same asthe one of the algorithm for onstruting greedy drawings of triangulations. Infat, we de�ne a simple lass of graphs, alled non-triangulated binary atuses,and we provide an algorithm to onstrut a greedy drawing of any suh a graph.Finally, we show how to �nd, for every trionneted planar graph, a non-triangulated binary atus spanning it. Suh a result proves Conjeture 6.1;
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6.2. TRIANGULATED BINARY CACTUSES 151however, the onjeture has been very reently (and independently) proved byLeighton and Moitra [LM08℄, by using tehniques whih are amazingly similarto ours. Hene, we will only sketh how to modify the algorithm we provide fortriangulations in order to make it work for general trionneted planar graphsand we will extensively disuss di�erenes and similarities of our algorithmwith respet to Leighton and Moitra's.The rest of the hapter is organized as follows. In Set. 6.2 we introduetriangulated binary atuses; in Set. 6.3 we show an algorithm to onstrutgreedy drawings of triangulated binary atuses; in Set. 6.4 we show an algo-rithm to onstrut a triangulated binary atus spanning a given triangulation;in Set. 6.5 we show how to modify the algorithm desribed for triangulationsin order to make it work for general trionneted planar graphs and we om-pare our tehniques with Leighton and Moitra's ones; �nally, in Set. 6.6 weonlude and present some open problems onerning greedy graph drawings.6.2 Triangulated Binary CatusesConsider a graph G. Consider its BC-tree T and suppose it is rooted at aspei� B-node orresponding to a blok ν. When the BC-tree T of a graph Gis rooted at a ertain blok ν, we denote by G(µ) the subgraph of G induedby all the verties in the bloks ontained in the subtree of T rooted at µ. Ina rooted BC-tree T of a graph G, for eah B-node µ we denote by r(µ) theutvertex of G parent of µ in T . If µ is the root of T , i.e., µ = ν, then welet r(µ) denote any non-utvertex node of the blok assoiated with µ. In thefollowing, unless otherwise spei�ed, eah onsidered BC-tree is meant to berooted at a ertain B-node ν suh that the blok assoiated with ν has at leastone vertex r(ν) whih is not a utvertex. It is not di�ult to see that suh ablok exists in every planar graph.A triangulated binary atus S, in the following two setions simply alledbinary atus, is a onneted graph suh that (see Fig 6.1):
• The blok assoiated with eah B-node of T is either an edge or a trian-gulated yle, i.e., a yle (r(µ), u1, u2, . . . , uh) triangulated by the edgesfrom r(µ) to eah of u1, u2, . . . , uh.
• Every utvertex is shared by exatly two bloks of S.
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152 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHS
ν

µ1
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r(µ1)

r(µ2)
r(µ3)
r(µ4)
r(µ5)

r(µ6)

r(µ7)
r(ν) ν

µ1
µ2

µ3

µ4

µ5

µ6

µ7
r(µ1)

r(µ2)
r(µ6)

r(µ3)

r(µ4)
r(µ5)

r(µ7)(a) (b)Figure 6.1: (a) A binary atus S. (b) The blok-utvertex tree of S. White(resp. blak) irles represent C-nodes (resp. B-nodes).6.3 Greedy Drawings of Binary CatusesIn this setion, we give an algorithm to ompute a greedy drawing of a binaryatus S. Suh a drawing is onstruted by performing a bottom-up traversalof the BC-tree T of S.Consider the root µ of a subtree of T orresponding to a blok of S, onsiderthe k hildren of µ, whih orrespond to utverties of S, and onsider thehildren of suh utverties, say µ1, µ2, . . . , µk. Notie that eah C-node hild of
µ is parent of exatly one B-node µi of T , by the de�nition of binary atus. Foreah i = 1, . . . , k, indutively assume there is a drawing Γi of S(µi) satisfyingthe properties listed below.Let C be a irle, let (ai, bi) be an ar of C, let p∗i be a point of C suhthat the diameter through p∗i uts (ai, bi) in two ars of the same length. Let
αi and βi be any two angles suh that αi ≤ βi ≤ π

4 . Consider the tangent
t(p∗i ) to C in p∗i . Consider two half-lines l∗1 and l∗2 inident to p∗i , lying on theopposite part of C with respet to t(p∗i ), and forming angles equal to βi with
t(p∗i ). Denote by W (p∗i ) the wedge entered at p∗i , delimited by l∗1 and l∗2, andnot ontaining C. Refer to Fig. 6.2(a).
• Property 1. Γi is a greedy drawing.
• Property 2. Γi is entirely ontained inside a region R(Γi) delimited byar (ai, bi), and by segments p∗i ai and p∗i bi. The angle âip∗i bi is αi.
• Property 3. For every vertex v in S(µi) and for every point p internalto W (p∗i ), there exists in Γi a path (v = v0, v1, . . . , vl = r(µi)) from v to

r(µi) suh that d(vj , p) < d(vj−1, p), for j = 1, . . . , l.
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6.3. GREEDY DRAWINGS OF BINARY CACTUSES 153
• Property 4. For every vertex v in S(µi) and for every point p internal to

W (p∗i ), d(v, p∗i ) < d(v, p).
ai

C

bi

pi*l1* l2*
t(pi )*

R(Γi  )

W(pi )*
βi

αi

βi

p0 ph

C

p*
W(p )*
β β

p1

p

ph-1

(a) (b)Figure 6.2: (a) Illustration for Properties 1�4 of Γi. (b) Base ase of thealgorithm. The light and dark shaded region representsR(Γ) (the angle of R(Γ)at p∗ is α). The dark shaded region represents the intersetion of W (p∗, α
2 )with the disk delimited by C.In the base ase, blok µ has no hild. Denote by (r(µ) = u0, u1, . . . , uh−1)the blok of S orresponding to µ. Notie that h ≥ 2. Consider any irle Cwith enter c. Let p∗ be the point of C with smallest y-oordinate. Consider thewedges W (p∗, α) and W (p∗, α

2 ) with angles α and α
2 , respetively, inident to

p∗ and suh that the diameter of C through p∗ is their bisetor (see Fig. 6.2(b)).Plae r(µ) at p∗. Denote by p′a and p′b the intersetion points (di�erent from
p∗) of the half-lines delimiting W (p∗, α

2 ) with C. Denote by A the ar of Cbetween p′a and p′b and not ontaining p∗. Consider h + 1 points p0, p1, . . . , phon A suh that p0 = p′a, ph = p′b, and the distane between any two onseutivepoints pi and pi+1 is the same. Plae vertex ui at point pi, for i = 1, 2, . . . , h−1.Notie that, if h = 2, µ orresponds to an edge of S that is drawn as a vertialsegment, with u1 above u0.In order to show that the onstruted drawing Γ satis�es Property 1, on-sider any two verties ui and uj, with i < j. If i = 0, then u0 and uj arejoined by an edge, whih provides a distane-dereasing path between them.Otherwise, we prove that (ui, ui+1, . . . , uj) is a distane-dereasing path from
ui to uj, the proof that (uj , uj−1, . . . , ui) is a distane-dereasing path from
uj to ui being analogous. For eah l = i, i + 1, . . . , j − 2, angle ̂ulul+1uj isgreater than π

2 , beause triangle (ul, ul+1, uj) is insribed in less than half airle with ul+1 as middle point (see Fig. 6.3(a)). Hene, (ul, uj) is the longest
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154 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSside of triangle (ul, ul+1, uj) and d(ul+1, uj) < d(ul, uj) follows. Drawing Γsatis�es Property 2 by onstrution. In order to prove that Γ satis�es Property3, we have to prove that, for every vertex ui, with i ≥ 1, and for every point
p in W (p∗), d(u0, p) < d(ui, p). Angle p̂p∗pi is at least β + (π

2 − α
4 ), whih isgreater than π

2 (see Fig. 6.3(b)). It follows that segment ppi is the longest sideof triangle (p, p∗, pi), thus proving that d(u0, p) < d(ui, p). For the same reason
d(u0, ui) < d(p, ui), hene proving Property 4.

ul+1 ujul
p*β

α/4

p

pi

(a) (b)Figure 6.3: (a) Γ satis�es Property 1. (b) Γ satis�es Properties 3 and 4.Now we disuss the indutive ase. Suppose that µ is a node of T hav-ing k hildren. We show how to onstrut a drawing Γ of S(µ) satisfyingProperties 1�4 with parameters α and β. Refer to Fig. 6.4. Denote by
(r(µ) = u0, u1, . . . , uh−1) the blok of S orresponding to µ. Remember that
h ≥ 2 and that if h = 2, then the blok is an edge, otherwise it is a trian-gulated yle. Consider any irle C with enter c. Let p∗ be the point of Cwith smallest y-oordinate. Consider the wedges W (p∗, α) and W (p∗, α

2 ) withangles α and α
2 , respetively, inident to p∗ and suh that the diameter of Cthrough p∗ is their bisetor. Region R(Γ) is the intersetion region of W (p∗, α)with the losed disk delimited by C.Consider a seond irle C′ with enter c interseting the two lines delimiting

W (p∗, α
2 ) in two points p′a and p′b suh that angle p̂′acp′b = 3α

2 . It is not di�ultto see that suh a irle always exists. Denote by A the ar of C′ delimitedby p′a and p′b and farther from p∗. Consider h + 1 points p0, p1, . . . , ph on Asuh that p0 = p′a and ph = p′b, and the distane between any two onseutivepoints pi and pi+1 is the same. Observe that, for eah i = 0, 1, . . . , h− 1, angle
p̂icpi+1 = 3α

2h .
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0=p

p*

c

β β

α

p’a p’=pb hA
3α/2

Figure 6.4: Constrution of a drawing Γ in the indutive ase of the algorithm.First, we draw the blok of S orresponding to µ. As in the base ase,plae vertex u0 = r(µ) at p∗ and, for i = 1, 2, . . . , h − 1, plae ui at point
pi. Reursively onstrut a drawing Γi of S(µi) satisfying Properties 1�4 with
αi = 3α

16h and βi = 3α
8h .We are going to plae eah drawing Γi of S(µi) together with the on-struted drawing of the blok of S orresponding to µ, thus obtaining a drawing

Γ of S(µ). Notie that not all the h nodes ui are utverties of S. However,with a slight abuse of notation, we suppose that blok S(µi) has to be plaedat node ui. Refer to Fig 6.5. Consider point pi and its �neighbors� pi−1 and
pi+1, for i = 1, 2, . . . , h− 1. Consider lines t(pi−1) and t(pi+1) tangent to C′ in
pi−1 and pi+1, respetively. Further, onsider irles Ci−1 and Ci+1 entered at
pi−1 and pi+1, respetively, and passing through pi. Moreover, onsider lines
hi−1 and hi+1 tangent to Ci−1 and Ci+1 in pi, respetively. For eah point
pi, with i = 0, . . . , h, onsider two half-lines ti1 and ti2 inident to pi, formingangles βi = 3α

8h with t(pi), and both lying in the half-plane delimited by t(pi)and ontaining C′. Denote by W (pi) the wedge delimited by ti1 and by ti2, andontaining c.We will plae Γi inside (a part of) the bounded region Ri obtained as theintersetion of: (i) the half-plane Hi−1 delimited by hi−1 and not ontaining
Ci−1, (ii) the half-plane Hi+1 delimited by hi+1 and not ontaining Ci+1, (iii)wedge W (pi−1), (iv) wedge W (pi+1), and (v) the disk delimited by C.First, we prove that Ri is �large enough� to ontain Γi, namely we laimthat there exists an isoseles triangle T that has an angle larger than αi = 3α

16h
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pi

li

pi+1pi-1
βi

hi-1

to c

hi+1

Ci-1 Ci+1

t(pi-1)
t(pi+1)

t1i+1 t2i-1

C

C’
to cto c

βi

Figure 6.5: Lines and irles in the onstrution of Γ. The shaded areas repre-sent angles βi and region Ri.inident to pi and that is ompletely ontained in Ri. Suh a triangle willhave the further feature that the angle inident to pi is biseted by the line lithrough c and pi.Lines hi−1 and hi+1 are both passing through pi; we prove that they havedi�erent slopes and we ompute the angles that they form at pi. Refer toFig. 6.6. Line hi−1 forms an angle of π
2 with segment pi−1pi; angle ̂cpipi−1 isequal to π

2 − 3α
4h , sine p̂icpi−1 = 3α

2h and sine triangle (pi−1, c, pi) is isoseles.Hene, the angle delimited by hi−1 and li is π− π
2−(π

2− 3α
4h ) = 3α

4h . Analogously,the angle between li and hi+1 is 3α
4h . Hene, the intersetion of Hi−1 and Hi+1is a wedge W (pi, hi−1, hi+1) entered at pi, with an angle of 3α

2h , and bisetedby li.We laim that eah of ti−1
2 and ti+1

1 uts the border of W (pi, hi−1, hi+1)twie. The angle between t(pi−1) and pi−1pi is 3α
4h , beause the angle between

t(pi−1) and cpi−1 is π
2 , and angle ̂cpi−1pi is π

2 − 3α
4h . The angle between t(pi−1)and ti−1

2 is βi = 3α
8h , by onstrution. Hene, the angle between ti−1

2 and pi−1piis 3α
4h − 3α

8h = 3α
8h . Sine the slope of both hi−1 and hi+1 with respet to pi−1piis greater than 3α

8h and smaller than π− 3α
8h , beause the slopes of hi−1 and hi+1with respet to pi−1pi are π

2 and π
2 − 3α

4h , respetively (notie that α ≤ π
4 and

h ≥ 2), then ti−1
2 intersets both hi−1 and hi+1. It an be analogously proved
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pi

c

pi-1

t(pi-1)

3α/2h

π/2−
3α/4h

3α/
8h3α
/8h

3α/4h

3α/4h

π/2−
3α/4h

hi-1

li

Figure 6.6: The angle between li and hi−1.that ti+1
1 intersets hi−1 and hi+1. It follows that the intersetion of Hi−1,

Hi+1, W (pi−1), and W (pi+1) ontains a triangle T as required by the laim(notie that the angle of T inident to pi is 3α
2h ). Considering irle C does notinvalidate the existene of T , sine C is onentri with C′ and has a biggerradius, hene T an always be hosen su�iently small so that it ompletelylies inside C.Now Γi an be plaed inside T , by saling Γi down till it �ts inside T (seeFig. 6.7(a)). The saling always allows to plae Γi inside T , sine the angle of

R(Γi) inident to pi is αi = 3α
16h , that is smaller than the angle of T inident to

pi, whih is 3α
2h . In partiular, we hoose to plae Γi inside T so that li bisetsthe angle of R(Γi) inident to pi. This onludes the onstrution of Γ.In the following we will prove that the onstruted drawing Γ satis�es Prop-erties 1�4. However, for this purpose, we need some preliminary lemmata.Consider the tangent t(p∗) to C in p∗. Consider two half-lines l∗1 and l∗2inident to p∗, lying in the opposite part of C with respet to t(p∗), and formingangles equal to β with t(p∗). Denote by W (p∗) the wedge entered at p∗,delimited by l∗1 and l∗2 , and not ontaining C. We have the following lemmata.
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pi

li
t1i+1
hi-1 hi+1

t2i-1
C

C’

p0αa
t10

t20
βi

βi ’C C
c

p*
* W(p )*

W(p )*
β β

ββ

h(c)

l1 *l2

h(p0)

t(p )*

t(p0)

(a) (b)Figure 6.7: (a) Plaement of Γ inside Ri. Region R(Γ) is the darkest, triangle
T is omposed of R(Γ) and of the seond darkest region, Ri is omposed of Tand of the light shaded region. (b) Illustration for the proof of Lemma 6.1.Lemma 6.1 The losed wedge W (p∗) is ompletely ontained inside the openwedge W (pi), for eah i = 0, 1, . . . , h.Proof: Consider any point pi. First, observe that pi is ontained in thewedge W (p∗) obtained by re�eting W (p∗) with respet to t(p∗). Namely,
pi is ontained in W (p∗, α

2 ), whih is in turn ontained inside W (p∗), sine
α
2 < π − 2β, as a onsequene of the fat that π

4 > β ≥ α. Hene, in orderto prove the lemma, it su�es to show that the absolute value of the slope ofeah of ti1 and ti2 is smaller than the absolute value of the slope of the half-linesdelimiting W (p∗). Suh latter half-lines form angles of β, by onstrution, withthe x-axis.The slope of ti1 an be omputed by adding the slope of ti1 with respetto t(pi) and the slope of t(pi). The former slope is equal to βi = 3α
8h , byonstrution. Realling that t(pi) is the tangent to A in pi, the slope of t(pi)is bounded by the maximum among the slopes of the tangents to points of A.Suh a maximum is learly ahieved at p0 and ph and is equal to 3α

4 . Namely,refer to Fig. 6.7(b) and onsider the horizontal lines h(c) and h(p0) through cand p0, respetively, that are traversed by radius (c, p0). Suh a radius formsangles of π
2 with t(p0); hene, the slope of t(p0), that is equal to the anglebetween t(p0) and h(p0), is π

2 minus the angle αa between h(p0) and (c, p0).
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6.3. GREEDY DRAWINGS OF BINARY CACTUSES 159Angle αa is the alternate interior of the angle between h(c) and (c, p0), whih isomplementary to the half of angle p̂0cph, whih is equal to 3α
2 , by onstrution.Hene, αa is equal to π

2 − 3α
4 and the slope of t(p0) is 3α

4 .It follows that the absolute value of the slope of ti1 is at most 3α
4 + 3α

8h , whihis smaller than α, sine h ≥ 2, and hene smaller than β. Analogously, theabsolute value of the slope of ti2 is smaller than β, and the lemma follows. 2Corollary 6.1 Point p∗ is inside the open wedge W (pi), for eah i = 1, 2, . . . , h.Lemma 6.2 For every pair of indies i and j suh that 1 ≤ i < j ≤ k,the drawing of S(µj) is ontained inside W (pi) and the drawing of S(µi) isontained inside W (pj).

p*

ph
p0

Figure 6.8: Illustration for the proof of Lemma 6.2.Proof: We prove that the drawing of S(µj) is ontained inside W (pi), theproof that the drawing of S(µi) is ontained inside W (pj) being analogous.If S(µi) and S(µj) are onseutive, i.e., the utverties parents of S(µi) and
S(µj) are ui and uj , with j = i+1, then the statement is true by onstrution.Suppose S(µi) and S(µj) are not onseutive. Refer to Fig. 6.8. Consider thetriangle Ti delimited by (p∗, pi), by ti2, and by the line through p∗ and ph. Suha triangle ontains the triangle delimited by (p∗, pi+1), by ti+1

2 , and by the linethrough p∗ and ph, whih in turn ontains the triangle delimited by (p∗, pi+2),by ti+2
2 , and by the line through p∗ and p′b. The repetition of suh an argumentshows that Ti ontains the triangle Tj−1 delimited by (p∗, pj−1), by tj−1

2 , and
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160 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSby the line through p∗ and ph. By onstrution, Γj lies inside Tj−1, and thelemma follows. 2We are now ready to prove that the onstruted drawing Γ satis�es Prop-erties 1�4.Property 1. We show that, for every ordered pair of verties w1 and w2,there exists a distane-dereasing path from w1 to w2 in Γ. Observe thata distane-dereasing path from w1 to w2 is not neessarily a distane-dereasing path from w2 to w1. If both w1 and w2 are internal to thesame graph S(µi), the property follows by indution. If w2 = r(µ) and
w1 is a node in S(µi), then, by Property 3, there exists a path (w1 =
v0, v1, . . . , vl = r(µi)) from w1 to r(µi) suh that, for every point p in
W (pi), d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l. By Corollary 6.1, p∗ isontained inside W (pi). Hene, path (w1 = v0, v1, . . . , vl = r(µi), w2 =
r(µ)) is a distane-dereasing path between w1 and w2. If w1 = r(µ)and w2 is a node in S(µi), then, by indution, there exists a distane-dereasing path (v1 = r(µi), v2, . . . , vl = w2). By Corollary 6.1, p∗ isontained inside W (pi). Hene, by Property 4, d(pi, w2) < d(p∗, w2). Itfollows that path (w1 = r(µ), v1 = r(µi), v2, . . . , vl = w2) is a distane-dereasing path between w1 and w2. If w1 belongs to S(µi) and w2belongs to S(µk) then suppose, w.l.o.g., that k > i. We show the existeneof a distane-dereasing path P in Γ, omposed of three subpaths P1,P2,and P3. By Property 3, Γi is suh that there exists a path P1 = (w1 =
v0, v1, . . . , vl = r(µi)) from w1 to r(µi) suh that, for every point p in
W (pi), d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l. By Lemma 6.2, drawing
Γk, and hene vertex w2, is ontained inside W (pi). Hene, at everyvertex of path P1, the distane from w2 dereases. Path P2 = (ui =
r(µi), ui+1, . . . , uk = r(µk)) is easily shown to be distane-dereasing withrespet to w2. In fat, for eah l = i, i + 1, . . . , k − 2, angle ̂ulul+1uk isgreater than π

2 , beause triangle (ul, ul+1, uk) is insribed in less than halfa irle with ul+1 as middle point. Angle ̂ulul+1w2 is stritly greater than
̂ulul+1uk, hene it is the biggest angle in triangle (ul, ul+1, w2), whihimplies d(ul+1, w2) < d(ul, w2). By indution, there exists a distane-dereasing path P3 from r(µk) to w2, thus obtaining a distane-dereasingpath P from w1 to w2.Property 2. Suh a property holds for Γ by onstrution.Property 3. Consider any node v in S(µi) and onsider any point p internal to

W (p∗). By Lemma 6.1, p is internal to W (pi), as well. By indution, there
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6.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 161exists a path (v = v0, v1, . . . , vl = r(µi)) suh that d(vj , p) < d(vj−1, p),for j = 1, 2, . . . , l. Hene, path (v = v0, v1, . . . , vl = r(µi), vl+1 = r(µ)) isa path suh that d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l + 1, if and onlyif d(r(µ), p) < d(r(µi), p). Angle ̂pp∗r(µi) is at least β + (π
2 − α

2 ), whihis greater than π
2 . It follows that (p, r(µi)) is the longest side of triangle

(p, p∗, r(µi)), thus proving that d(p, p∗) < d(p, r(µi)) and that Property3 holds for Γ.Property 4. By Property 2, v is ontained inside the wedge W (p∗, α) withangle α, entered at p∗, and biseted by the line through p∗ and c. Con-sider any point p inside W (p∗). Angle p̂p∗v is at least β +(π
2 − α

2 ), whihis greater than π
2 . It follows that (p, v) is the longest side of triangle

(p, p∗, v), thus proving that d(p, v) < d(p∗, v) and that Property 4 holdsfor Γ.When the indution is performed with µ equal to the root ν of the BC-tree
T , we obtain a greedy drawing of S, thus proving the following:Theorem 6.2 There exists an algorithm that onstruts a greedy drawing ofany triangulated binary atus.6.4 Spanning a Triangulation with a Binary CatusIn this setion we prove the following theorem:Theorem 6.3 Given a triangulation G, there exists a spanning subgraph S of
G suh that S is a triangulated binary atus.Consider any triangulation G. We are going to onstrut a binary atus Sspanning G. First, we outline the algorithm to onstrut S. Suh an algorithmhas several steps. At the �rst step, we hoose a vertex u inident to the outerfae of G and we onstrut a triangulated yle CT omposed of u and ofall its neighbors. We remove u and its inident edges from G, obtaining abionneted internally-triangulated plane graph G∗. At the beginning of eahstep after the �rst one, we suppose to have already onstruted a binary atus
S whose verties are a subset of the verties of G (at the beginning of theseond step, S oinides with CT ), and we assume to have a set G of subgraphsof G (at the beginning of the seond step, G∗ is the only graph in G). Eahof suh subgraphs is bionneted, internally-triangulated, has an outer fae
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162 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSwhose verties already belong to S, and has internal verties. All suh internalverties do not belong to S and eah vertex of G not belonging to S is internalto a graph in G. Only one of the graphs in G may have hords. During eahstep, we perform the following two ations:
• Ation 1. We partition the only graph GC of G with hords, if any,into several bionneted internally-triangulated hordless plane graphs;we remove GC from G and we add to G all graphs with internal vertiesinto whih GC has been partitioned.
• Ation 2. We hoose a graph Gi from G, we hoose a vertex u inident tothe outer fae of Gi and already belonging to exatly one blok of S, andwe add to S a blok omposed of u and of all its neighbors internal to

Gi. We remove u and its inident edges from Gi, obtaining a bionnetedinternally-triangulated plane graph G∗
i . We remove Gi from G and weadd G∗

i to G.The algorithm stops when G is empty, that is, when all the verties of Ghave been spanned by S. An example of exeution of the algorithm is shownin Figs. 6.9�6.16.Now we give the details of the above outlined algorithm. At the �rst stepof the algorithm, hoose any vertex u inident to the outer fae of G. Considerall the neighbors (u1, u2, . . . , ul) of u in lokwise order around it. Sine Gis a triangulation, C = (u, u1, u2, . . . , ul) is a yle, hene the subgraph of Gomposed of C and of the edges onneting u to its neighbors is a triangulatedyle CT . Let S = CT . Remove vertex u and all its inident edges from G,obtaining a bionneted internally-triangulated plane graph G∗.If G∗ has no internal vertex, then all the verties of G belong to S andwe have the desired binary atus spanning G. Otherwise, G∗ has internalverties. Let G = {G∗}.At eah step of the algorithm, for eah graph Gi ∈ G, onsider the vertiesinident to f(Gi). Eah of suh verties an be either forbidden for Gi orassigned to Gi. A vertex w is forbidden for Gi if the hoie of not introduingin S any new blok inident to w and spanning a subgraph of Gi has beendone. Conversely, a vertex w is assigned to Gi if a new blok inident to wand spanning a subgraph of Gi ould be introdued in S. For example, w isforbidden for Gi if two bloks of S already exist sharing w as a utvertex. Atthe end of the �rst step of the algorithm, hoose any two verties inident to
f(G∗) as the only forbidden verties for G∗. All the other verties inident to
f(G∗) are assigned to G∗.
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6.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 163
(a) (b)Figure 6.9: First step of the algorithm: (a) A triangulation G, from whih avertex u and its neighbors are seleted. The thik subgraph is the triangulatedyle CT suh that S = CT after Step 1. (b) Graph G∗ obtained from G byremoving u and its inident edges. Two arbitrarily hosen verties (representedby blak irles) inident to f(G∗) are forbidden for G∗, all others (representedby white irles) are assigned to it.

(a) (b) ()
(d) (e) (f)Figure 6.10: Step 2, Ation 1. (a)�() Outerplane graphs O0

C , O1
C , and O2

C =
OC , and the assignment of verties to their faes. (d)�(f) Graphs G1, G2,and G3, where G = {G1, G2, G3}, obtained by partitioning G∗ in bionneted,internally triangulated, hordless subgraphs.
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164 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHS
(a) (b)Figure 6.11: Step 2, Ation 2. (a) Choie of a graph Gi in G (here Gi = G1)and of a vertex u inident to f(Gi). The thik subgraph is the edge (u, u1)added to S after Ation 2 of Step 2. (b) Binary atus S after Ation 2 of Step2. G = {G2, G3}.

(a) (b)Figure 6.12: Step 3, Ation 2 (Ation 1 of Step 3 is skipped beause no graphin G has hords). (a) Choie of a graph Gi in G (here Gi = G2) and of a vertex
u inident to f(Gi). The thik subgraph is the triangulated yle CT added to
S after Step 3, Ation 2. (b) Binary atus after Ation 2 of Step 3. G = {G3}.At the beginning of the i-th step, with i ≥ 2, we assume that eah of thefollowing holds:
• Invariant A: Graph S is a binary atus spanning all and only the vertiesthat are not internal to any graph in G.
• Invariant B: Eah graph in G is bionneted, internally-triangulated, andhas internal verties.
• Invariant C: Only one of the graphs in G may have hords.
• Invariant D: No internal vertex of a graph Gi ∈ G belongs to a graph

Gj ∈ G, with i 6= j.
• Invariant E: For eah graph Gi ∈ G, all the verties inident to f(Gi) areassigned to Gi, exept for two verties, whih are forbidden.
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6.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 165
(a) (b)Figure 6.13: Step 4, Ation 2 (Ation 1 of Step 4 is skipped beause no graphin G has hords). (a) Choie of a graph Gi in G (here Gi = G3) and of avertex u inident to f(Gi). The thik subgraph is the triangulated yle CTadded to S after Step 4, Ation 2. (b) Binary atus S after Ation 2 of Step4. G = {G∗

3}, where G∗
3 is the graph obtained from G3 by removing u and itsinident edges.

(a) (b)Figure 6.14: Step 5, before Ation 1. (a) The only graph GC = G∗
3 in G, withits assigned verties (white irles) and forbidden verties (blak irles). (b)The outerplane graph OC indued by the verties inident to f(GC).

• Invariant F: Eah vertex v inident to the outer fae of a graph in G isassigned to at most one graph Gi ∈ G. If a vertex v inident to the outerfae of a graph in G is assigned to a graph Gi ∈ G, then v is forbiddenfor all graphs Gj ∈ G suh that v is inident to f(Gj), with j 6= i.
• Invariant G: Eah vertex assigned to a graph in G belongs to exatly oneblok of S.Suh invariants learly hold after the �rst step of the algorithm. Duringeah step of the algorithm after the �rst one, we perform the following twoations.Ation 1: If G does not ontain any graph with hords, go to Ation 2.Otherwise, by Invariant C, only one of the graphs in G, say GC , has hords. Weuse the hords of GC to partition it into k bionneted, internally-triangulated,hordless graphs Gj

C , with j = 1, 2, . . . , k.
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166 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHS
(a) (b) () (d)Figure 6.15: Step 5, Ation 1. (a)�(d) Outerplane graphs O0

C , O1
C , O2

C ,
O3

C = OC , and the assignment of verties to their faes. Partitioning GCinto subgraphs Gj
C produes only one graph, say G4, with internal verties.Hene, set G is now {G4}.Consider the subgraph OC of GC indued by the verties inident to f(GC).Clearly, OC is a bionneted outerplane graph. To eah internal fae f of OCdelimited by a yle C, a graph Gj

C is assoiated suh that Gj
C is the subgraphof GC indued by the verties of C or inside C. We are going to replae GCwith graphs Gj

C in G. However, we �rst show how to deide whih vertiesinident to the outer fae of a graph Gj
C are assigned to Gj

C and whih vertiesare forbidden for Gj
C . Sine eah graph Gj

C is univoally assoiated with a faeof OC , in the following we assign verties to the faes of OC and we forbidverties for the faes of OC , meaning that if a vertex is assigned to (forbiddenfor) a fae f of OC , then it is assigned to (resp. forbidden for) the assoiatedgraph Gj
C .We want to assign the verties inident to f(OC) to faes of OC so that:

• Property 1: No forbidden vertex is assigned to any fae of OC ;
• Property 2: No vertex is assigned to more than one fae of OC ;
• Property 3: Eah fae of OC has exatly two inident verties whih areforbidden for it; all the other verties of the fae are assigned to it.By Invariant E, GC has two forbidden verties. We onstrut an assignmentof verties to the faes of OC in some steps. Let p be the number of hords of

OC . Consider the Hamiltonian yle O0
C of OC , and assign all the verties of

O0
C , but for the two forbidden verties, to the only internal fae of O0

C . At the
i-th step, 1 ≤ i ≤ p, we insert into Oi−1

C a hord of OC , obtaining a graph Oi
C .This is done so that Properties 1�3 are satis�ed by Oi

C (with Oi
C instead of

OC). After all the p hords of OC have been inserted, Op
C = OC , and we havean assignment of verties to faes of OC satisfying Properties 1�3.
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6.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 167
(a) (b)

()Figure 6.16: Step 5, Ation 2: (a) Choie of a graph Gi in G (here Gi = G4) andof a vertex u inident to f(Gi). The thik subgraph is the edge (u, u1) addedto S after Step 5, Ation 2. (b) Binary atus S at the end of the algorithm.() The obtained binary atus S spans G.Properties 1�3 are learly satis�ed by the assignment of verties to the faesof O0
C . Indutively assume that Properties 1�3 are satis�ed by the assignmentof verties to the faes of Oi−1

C . Let (ua, ub) be the hord that is inserted at the
i-th step. Chord (ua, ub) partitions a fae f of Oi−1

C into two faes f1 and f2.By Property 3, two verties u∗
1 and u∗

2 inident to f are forbidden for it andall other verties inident to f are assigned to it. For eah fae of Oi
C di�erentfrom f1 and f2, assign and forbid verties as in the same fae in Oi−1

C . Assignand forbid verties for f1 and f2 as follows:
• If verties ua and ub are the same verties as u∗

1 and u∗
2 (see Fig. 6.17),assign to f1 and f2 all the verties inident to it, exept for ua and ub.No forbidden vertex has been assigned to any fae of Oi

C (Property 1).Verties ua and ub have not been assigned to any fae. All the vertiesassigned to f belong to exatly one of f1 and f2 and so they have beenassigned to exatly one fae (Property 2). The only verties of f1 (resp.
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168 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSof f2) not assigned to it are ua and ub, while all the other verties areassigned to suh a fae (Property 3).
u1*

u2*

f

u1*

u2*

f1
ua=

ub=

f2(a) (b)Figure 6.17: Verties ua and ub are the same verties of u∗
1 and u∗

2.
• If verties ua and ub are both distint from eah of u∗

1 and u∗
2 and both

u∗
1 and u∗

2 are in the same of f1 and f2, say in f1 (see Fig. 6.18), assignto f1 all the verties inident to it, exept for u∗
1 and u∗

2, and assign to f2all the verties inident to it, exept for ua and ub. No forbidden vertexhas been assigned to any fae of Oi
C (Property 1). Verties ua and ubhave been assigned to exatly one fae, namely f1. All the other vertiesassigned to f belong to exatly one of f1 and f2 and so they have beenassigned to exatly one fae (Property 2). The only verties of f1 (resp.of f2) not assigned to it are u∗

1 and u∗
2 (resp. ua and ub), while all theother verties are assigned to suh a fae (Property 3).

• If verties ua and ub are both distint from eah of u∗
1 and u∗

2 and one of
u∗

1 and u∗
2, say u∗

1, is in f1 while u∗
2 is in f2 (see Fig. 6.19), assign to f1all the verties inident to it, exept for u∗

1 and ua, and assign to f2 allthe verties inident to it, exept for u∗
2 and ub. No forbidden vertex hasbeen assigned to any fae of Oi

C (Property 1). Verties ua and ub havebeen assigned to exatly one fae, namely f2 and f1, respetively. Allthe other verties assigned to f belong to exatly one of f1 and f2 andso they have been assigned to exatly one fae (Property 2). The onlyverties of f1 (resp. of f2) not assigned to it are u∗
1 and ua (resp. u∗

2 and
ub), while all the other verties are assigned to suh a fae (Property 3).
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6.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 169
u1*

u2*

f

u1*

u2*

f1
ua

ub

f2(a) (b)Figure 6.18: Verties ua and ub are both distint from eah of u∗
1 and u∗

2 andboth u∗
1 and u∗

2 are in f1.
u1*

u2*

f

u1*

u2*

f1

ua

ub

f2(a) (b)Figure 6.19: Verties ua and ub are both distint from eah of u∗
1 and u∗

2, u∗
1 isin f1, and u∗

2 is in f2.
• If one of the verties u∗

1 and u∗
2 oinides with one of ua and ub, say u∗

1oinides with ua, and u∗
2 is in one of f1 and f2, say in f1 (see Fig. 6.20),assign to f1 all the verties inident to it, exept for u∗

2 and ua, and assignto f2 all the verties inident to it, exept for ua and ub. No forbiddenvertex has been assigned to any fae of Oi
C (Property 1). Vertex uahas not been assigned to any fae and vertex ub has been assigned toexatly one fae, namely f1. All the other verties assigned to f belongto exatly one of f1 and f2 and so they have been assigned to exatly one
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170 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSfae (Property 2). The only verties of f1 (resp. of f2) not assigned to itare u∗
2 and ua (resp. ua and ub), while all the other verties are assignedto suh a fae (Property 3).
u1*

u2*

f

u1*

u2*

f1

ua
ub

f2

ua=

(a) (b)Figure 6.20: Vertex u∗
1 oinides with ua and vertex u∗

2 is in f1.Graph GC is removed from G. All the graphs Gj
C having internal vertiesare added to G. We prove that Invariants A�G are satis�ed after Ation 1.Invariant A: A vertex is internal to a graph in G after Ation 1 if and only ifit is internal to a graph in G before Ation 1. Sine no blok is added to

S during Ation 1, then Invariant A holds after Ation 1.Invariant B: By onstrution, eah graph Gj
C inserted into G after Ation 1has internal verties. Further, Gj

C is the graph ontained inside a simpleyle of a bionneted internally triangulated plane graph, hene it isbionneted and internally triangulated, as well, satisfying Invariant B.Invariant C: By Invariant C, before Ation 1 only graph GC may have hordsamong the graphs in G. After Ation 1, however, GC is replaed in
G by hordless graphs and hene no graph in G has hords, satisfyingInvariant C.Invariant D: By Invariant D, eah vertex that, before Ation 1, is internalto a graph Gi 6= GC in G does not belong to any graph Gj 6= Gi in G.Sine the set of verties belonging to graphs Gj

C is a subset of the vertiesof GC , after Ation 1 Invariant D holds for all the verties internal to a
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6.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 171graph Gi 6= Gj
C . An internal vertex of a graph Gj

C is an internal vertex of
GC , as well, hene, by Invariant D, it does not belong to any graph thathas not been introdued in G during Ation 1. It remains to prove thatan internal vertex of a graph Gj

C does not belong to any graph Gl
C , with

l 6= j. By onstrution, the internal verties of suh graphs are insideyles orresponding to distint faes of OC . Hene, an internal vertexof Gj
C does not belong to Gl

C .Invariant E: Invariant E holds for all the graphs that are in G before Ation1 and that are still in G after Ation 1. By Property 3, eah graph Gj
Cinserted into G after Ation 1 satis�es Invariant E.Invariant F: All the verties that, before Ation 1, are assigned to a graph

Gi 6= GC in G satisfy Invariant F after Ation 1. Namely, by Invariant Fbefore Ation 1, if they are inident to f(GC), then they are forbiddenfor GC and, by Property 1, they are not assigned to any graph Gj
C . ByInvariant F, before Ation 1 eah vertex w assigned to GC is not assignedto any graph Gi 6= GC in G. After Ation 1, GC is not a graph in G anylonger, hene w is not assigned to it. By Property 2, after Ation 1 eahvertex is assigned to at most one graph Gj

C , hene Invariant F holds afterAtion 1.Invariant G: Sine no blok is added to S during Ation 1, and sine the setof verties assigned to graphs in G after Ation 1 is a subset of the set ofverties assigned to graphs in G before Ation 1, then Invariant G holdsafter Ation 1.Ation 2: After Ation 1 all graphs in G are hordless. Notie that thereis at least one graph Gi in G, otherwise the algorithm would have stoppedbefore Ation 1. By Invariant B, Gi has internal verties. Choose any vertex
u that is inident to f(Gi) and that is assigned to Gi (see Fig. 6.21). Bythe bionnetivity of Gi and by the fat that it has internal verties, f(Gi)has at least three verties. Sine eah graph in G has at most two forbiddenverties (by Invariant E), a vertex u assigned to Gi always exists. Considerall the neighbors (u1, u2, . . . , ul) of u internal to Gi, in lokwise order around
u. Sine G is bionneted, hordless, internally triangulated, and has internalverties, then l ≥ 1. If l = 1, then let CT be edge (u, u1). Otherwise, let CTbe the triangulated yle omposed of yle (u, u1, u2, . . . , ul) and of the edgesonneting u to its neighbors. Add CT to S. Remove u and its inident edgesfrom Gi, obtaining a graph G∗

i . Assign to G∗
i all the verties inident to f(G∗

i ),
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172 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSexept for the two verties that are forbidden for Gi. Remove Gi from G andinsert G∗
i , if it has internal verties, into G.

u1

u

u2
u3
G*

ul

i

Figure 6.21: Ation 2 of a step of the algorithm.We prove that Invariants A�G are satis�ed after Ation 2.Invariant A: The blok (u, u1, u2, . . . , ul) added to S is either an edge or atriangulated yle. By Invariant A, before Ation 2 all verties internalto a graph in G are not spanned by S. Further, by Invariant G, beforeAtion 2 vertex u belongs to exatly one blok of S. It follows that S isstill a binary atus after Ation 2. Before Ation 2, S spans all and onlythe verties that are not internal to any graph in G. The only vertiesthat are internal to a graph in G before Ation 2 and that are inident tothe outer fae of a graph in G after Ation 2 are u1, u2, . . . , ul, whih arespanned by S after Ation 2. Hene, S spans all the verties of G thatare not internal to any graph in G. Before Ation 2, no internal vertex ofa graph in G is spanned by S. The verties whih are added to S duringAtion 2 are inident to f(G∗
i ), hene, by Invariant D to be proved below,they are not internal to any graph in G after Ation 2. Hene, S does notspan verties of G that are internal to a graph in G, satisfying InvariantA.Invariant B: By onstrution, G∗
i is the only graph inserted into G after A-tion 2. However, G∗

i is bionneted and internally triangulated, sine it isobtained from a graph Gi that, by Invariant B before Ation 2, is bion-neted, internally triangulated, hordless, and has internal verties, byremoving a vertex inident to f(Gi). Further, G∗
i has internal verties,otherwise it would not have been inserted into G. Hene, Invariant B issatis�ed after Ation 2.
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6.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 173Invariant C: Before Ation 2, all graphs in G have no hord. At most onegraph, namely G∗
i , is inserted into G after Ation 2, hene Invariant C isstill satis�ed.Invariant D: By Invariant D, before Ation 2 no internal vertex of a graph

Gl 6= Gi in G belongs to a graph Gj 6= Gl in G. Sine the verties of G∗
iare a subset of the verties of Gi then, after Ation 2, Invariant D holdsfor eah internal vertex of Gl. Further, the internal verties of G∗

i are asubset of the internal verties of Gi and hene, after Ation 2, Invariant
D holds also for eah internal vertex of G∗

i .Invariant E: Invariant E holds for all the graphs that are in G before Ation2 and that are still in G after Ation 2. By onstrution, all the vertiesinident to the outer fae of G∗
i , exept for the two forbidden verties of

Gi, are assigned to G∗
i , satisfying Invariant E.Invariant F: The only verties that are assigned to a graph in G during Ation2 are the verties inident to the outer fae of G∗

i . All the verties internalto Gi before Ation 2 and inident to the outer fae of G∗
i after Ation2 are assigned exlusively to G∗

i , namely if before Ation 2 one of suhverties is assigned to a graph Gj 6= Gi, then suh a vertex would beinident to the outer fae of Gj , ontraditing Invariant D. All the vertiesthat are assigned to Gi before Ation 2 and that are inident to the outerfae of G∗
i after Ation 2, are assigned exlusively to Gi before Ation 2,by Invariant F, and hene they are assigned only to G∗

i after Ation 2.All the verties that are assigned to a graph di�erent from Gi are suhthat, if they are inident to the outer fae of Gi, then they are forbiddenfor it. Sine all the verties forbidden for Gi are forbidden for G∗
i , thenInvariant F holds for suh verties, as well.Invariant G: The blok added to S after Ation 2 spans only verties internalto Gi and vertex u. Hene, all the verties assigned to a graph in G andnot belonging to Gi are still spanned by a single blok of S. All theverties inident to the outer fae of Gi, exept for u, are not spannedby the blok added during Ation 2. All the verties internal to Gi andassigned to G∗

i are spanned by the only blok added during Ation 2.Finally, after Ation 2, vertex u is not assigned to any graph in G anylonger.
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174 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSWhen the algorithm stops, i.e., when there is no graph in G, by Invari-ant A graph S is a binary atus spanning all verties of G, hene provingTheorem 6.3.6.5 Extension to Trionneted Planar GraphsIn this setion, we show how slight modi�ations of the two main arguments(see Set. 6.3 and Set. 6.4) used to prove that every triangulation has a greedydrawing allow us to prove Conjeture 6.1. First, we show how to onstrut agreedy drawing of any non-triangulated binary atus, that is a onneted graphsuh that: (i) the blok assoiated with eah B-node of T is either an edge ora simple yle; and (ii) every utvertex is shared by exatly two bloks of S.Seond, we show that a trionneted planar graph an always be spanned by anon-triangulated binary atus. Notie that a non-triangulated binary atusis easily obtained from a triangulated binary atus by removing the edgesinternal to the triangulated yles.It is not di�ult to argue that the algorithm shown in Set. 6.3 also on-struts greedy drawings of any non-triangulated binary atus S. More speif-ially, onstrut the BC-tree T of S; onsider eah blok (r(µ) = u0, u1, . . . ,
uh−1) orresponding to a B-node µ of T and insert a dummy edge between r(µ)and eah node ui, with 1 ≤ i ≤ h− 2; the resulting graph S′ is a triangulatedbinary atus; apply the algorithm desribed in Set. 6.3 to onstrut a greedydrawing Γ′ of S′; �nally, remove dummy edges from Γ′, obtaining a drawing Γof S.We laim that Γ is a greedy drawing. Notie that the validity of Lem-mata 6.1 and 6.2 only depends on the angles of the geometri onstrution.Hene, suh Lemmata hold for Γ. Then, it is su�ient to prove that at eahstep of the indution Γ satis�es Properties 1�4 desribed in Set. 6.3.Atually, Property 2 and Property 4 are trivially veri�ed, sine they onlydepend on the angles of the onstrution.The proof of Property 1 an be ondued analogously to the one presentedin Set. 6.3, namely by proving that, for every pair of verties w1 and w2, thereexists a distane-dereasing path between them. However, the ase in whihthe distane-dereasing path ontains edge (ui, r(µ)), for some 2 ≤ i ≤ h − 2,deserves an expliit disussion, beause suh an edge is no longer an edge ofthe graph. Observe that it an be supposed that one out of w1 and w2 is r(µ),beause in all the other ases the distane-dereasing path between w1 and w2does not ontain (ui, r(µ)).
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6.5. EXTENSION TO TRICONNECTED PLANAR GRAPHS 175First, suppose that the path ends at r(µ), i.e., w2 = r(µ). Edge (ui, r(µ))an be replaed either by path (ui, ui−1, . . . , u1, u0) or by path (ui, ui+1, . . . , uh−1, u0),depending on whether i ≤ h
2 or i ≥ h

2 , still leaving the path distane-dereasing.In fat (see Fig.6.22(a)), denote by p′ the intersetion point between C′ andsegment cp∗ and suppose that i ≥ h
2 , the ase in whih i ≤ h

2 being analogous;angle ̂uiui+1p′ is greater than or equal to π
2 beause triangle (ui, ui+1, p

′) isinsribed in no more than half a irle with ui+1 as middle point; then, an-gle ̂uiui+1p∗ is also greater than π
2 beause it is stritly greater than ̂uiui+1p′;hene, p∗ui is longer than p∗ui+1; it follows that, when traversing edge (ui, ui+1),the path dereases its distane from the point p∗ where r(µ) is drawn.Seond, suppose that the path starts at r(µ), i.e., w1 = r(µ). Edge (r(µ), ui)an be replaed either by path (u0, u1, . . . , ui−1, ui) or by path (u0, uh−1, . . . ,

ui+1, ui), depending on whether i ≤ h
2 or i ≥ h

2 , still leaving the path distane-dereasing. In fat, suppose that i ≥ h
2 , the ase in whih i ≤ h

2 being analo-gous; as in the previous ase, edge (r(µ), uh−1) an be shown to derease thedistane from w2 by onsidering triangle (r(µ), uh−1, w2) and arguing that angle
̂p∗uh−1w2 is greater than π

2 . Further, path (uh−1, uh−2, . . . , ui+1, ui, . . . , w2)an be shown to be distane-dereasing as in the proof of Property 1 in Set. 6.3(in the ase in whih w1 belongs to S(µi) and w2 belongs to S(µj)).In order to prove Property 3, it is su�ient to observe that an edge (ui, r(µ))an be replaed either by path (ui, ui−1, . . . , u1, u0) or by path (ui, ui+1, . . . , uh−1,
u0), still obtaining a path in whih at every step the distane from any pointin W (p∗) dereases. In fat (see Fig.6.22 (b)), denote by p any point inside
W (p∗), and denote by ai−1,i and ai,i+1 the axes of segments pi−1pi and pipi+1,respetively. Sine ai−1,i and ai,i+1 interset in the enter of C′, we havethat p is either to the left of ai−1,i or to the right of ai,i+1, or both. Sup-pose that p is to the right of ai,i+1, the other ase being analogous. Then,
d(p, pi+1) < d(p, pi). The repetition of suh an argument leads to prove thatpath (ui, ui+1, . . . , uh−1, u0) dereases the distane from p at every vertex.As we proved that there exists an algorithm to onstrut greedy drawingsof non-triangulated binary atuses, in order to prove Conjeture 6.1 it su�esto show that every trionneted planar graph admits a non-triangulated binaryatus as a spanning subgraph. In the following we sketh how to extend thearguments of Set. 6.4 in order to prove suh a result.The algorithm to �nd a non-triangulated binary atus spanning a giventrionneted planar graph G onsists of several steps, in whih the atus isonstruted inrementally by adding to it one blok at a time. As in thetriangulated ase, at the beginning of eah step after the �rst one, we suppose
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p*

ui ui+1

p’
p*

ui-1

a i+1,i+
2

a i,i+
1

a i-1
,i

ui ui+1ui+2

p

c

(a) (b)Figure 6.22: (a) When traversing edge (ui, ui+1), the distane from p∗ de-reases. (b) When traversing edge (ui, ui+1), the distane from p dereases.to have already onstruted a non-triangulated binary atus S whose vertiesare a subset of the verties of G, and we assume to have a set G of subgraphsof G. Further, we assume that the following invariants hold:
• Invariant A: Graph S is a non-triangulated binary atus spanning alland only the verties that are not internal to any graph in G.
• Invariant B: Eah graph in G is bionneted and has internal verties.
• Invariant C: At most one graph GC ∈ G has separation pairs. However,if GC exists, eah of its separation pairs has both verties inident to

f(GC).
• Invariant D: No internal vertex of a graph Gi ∈ G belongs to a graph

Gj ∈ G, with i 6= j.
• Invariant E: For eah graph Gi ∈ G, all the verties inident to f(Gi) areassigned to Gi, exept for two verties, whih are forbidden.
• Invariant F: Eah vertex v inident to the outer fae of a graph in G isassigned to at most one graph Gi ∈ G. If a vertex v inident to the outer
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6.5. EXTENSION TO TRICONNECTED PLANAR GRAPHS 177fae of a graph in G is assigned to a graph Gi ∈ G, then v is forbiddenfor all graphs Gj ∈ G suh that v is inident to f(Gj), with j 6= i.
• Invariant G: Eah vertex assigned to a graph in G belongs to exatly oneblok of S.During eah step, we perform two di�erent ations. Ation 1 removes from

G the only graph GC whih ontains separation pairs, if suh a graph exists,and partitions GC into a set of trionneted planar graphs Gi
C to be added to

G. Ation 2 removes from a graph Gi ∈ G a vertex inident to f(Gi) and itsinident edges and reates a new blok to be added to S. At the end of eahof the two ations, Invariants A�G are satis�ed. The algorithm stops when Gis empty, that is, when all the verties of G are spanned by S.A �rst di�erene between the triangulated and the non-triangulated aseonerns the �rst step of the algorithm. Namely, while in the triangulated asewe selet one vertex v of the outer fae and we initialize the atus with theblok omposed of v and of its neighbors, in this new algorithm we initializethe atus with the yle delimiting the outer fae.Another important di�erene lies in Ation 1, that is, in the way the graph
GC whih may be not trionneted is partitioned into subgraphs. In the tri-angulated ase, suh a partition is done by onsidering the hords of f(GC).In the non-triangulated ase we have to more generally onsider separationpairs inident to f(GC), sine we are not guaranteed that every two vertiesomposing a separation pair are joined by an edge. Refer to Fig. 6.23. Thepartition is performed by onsidering one separation pair at a time. At thebeginning of every step of suh an algorithm, we have a partition of GC intoa set of graphs Gi. Eah graph Gi whih still has a separation pair is furtherpartitioned into two subgraphs G1

i and G2
i and eah of the verties inidentto f(Gi) is assigned to, or forbidden for, G1

i and G2
i by means of the samealgorithm desribed in Set. 6.4. Hene, the assignment of the verties to thegraphs G1

i and G2
i an be done in suh a way that the invariant that eah of

G1
i and G2

i has at most two forbidden verties is maintained. A dummy edgeonneting the two verties of the separation pair has to be added inident tothe outer fae of eah of G1
i and G2

i , if it does not exist yet, in order to main-tain the invariant that all the verties of the outer faes of G1
i and G2

i havealready been assigned to some blok of S. Suh a dummy edge is inident tothe outer faes of G1
i and G2

i and hene it will not be part of any new blokthat is added to S in the following steps of the algorithm. It is easy to seethat the desribed proedure for partitioning a graph into subgraphs does not
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178 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSintrodue new separation pairs, does not introdue multiple edges, and heneit terminates providing a set of trionneted planar graphs.
(a)
(b)Figure 6.23: Partition of a bionneted graph having all separating pairs ini-dent to the outer fae into a set of trionneted planar graphs.Conerning Ation 2, while in the triangulated ase at every step we add tothe atus either an edge or a triangulated yle, in the non-triangulated asewe add either an edge or a simple yle. Suh a yle is obtained as follows(see Fig. 6.24). As in the triangulated ase, onsider a vertex v inident to theouter fae of a subgraph Gi ∈ G and suh that v is assigned to Gi. Considerthe internal faes of Gi that are inident to v, exept for the two faes f1 and

f2 sharing an edge with f(Gi). Add to S the yle that passes through allthe verties that are inident to suh faes. Remove vertex v and its inidentedges from Gi, obtaining a new graph G∗
i . Consider the two verties v′1 and v′′1adjaent to v and belonging to f1. A dummy edge (v′1, v

′′
1 ) is added to G∗

1, ifit does not exist yet, inident to f(G∗
i ). Analogously, onsider the two verties
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6.5. EXTENSION TO TRICONNECTED PLANAR GRAPHS 179
v′2 and v′′2 adjaent to v and belonging to f2 and add a dummy edge (v′2, v

′′
2 )to G∗

i , if it does not exist yet, inident to f(G∗
i ). Suh dummy edges allowto maintain the invariant that all the verties inident to f(G∗

i ) have alreadybeen assigned to some blok of S.
f1v1’

v2’
v2’’

v1’’
f2

iG*

vFigure 6.24: Ation 2. The thik yle is added to S. The dotted edgesare inserted inident to f(G∗
i ), in order to maintain the invariant that all theverties inident to f(G∗

i ) have already been assigned to some blok of S.We hoose to present the algorithm for triangulations as the main ontri-bution of this hapter beause a proof of Conjeture 6.1 was very reently andindependently presented by Leighton and Moitra at FOCS'08 [LM08℄. Surpris-ingly, the approah used by Leighton and Moitra is exatly the same as ours.In fat, in [LM08℄ the authors de�ne a lass of graphs, alled Christmas atusgraphs, whih oinides with the lass of non-triangulated binary atuses; theyshow an algorithm to onstrut greedy drawings of Christmas atus graphsand they show that every trionneted planar graph is spanned by a Christmasatus graph. However, the way suh results are ahieved di�ers from ours.Suh an issue is disussed below.Conerning the geometri onstrution of greedy drawings of Christmasatus graphs, the algorithm by Leighton and Moitra is quite similar to ours,even if a slightly di�erent onstrution is used. Their algorithm plaes thenodes of the graph on a set of onentri irles C0, C1, . . . , Ck, so that theblok orresponding to the root ν of the BC-tree T has its nodes plaed on
C0 and eah blok µ at depth i (where the depth is meant to be the numberof B-nodes in the path from ν to µ in T ) is plaed on Ci, exept for the C-
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180 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSnode parent of µ, whih is plaed on Ci−1. The di�erene between the radiiof two onseutive irles (and hene the length of the edges of the drawing)exponentially dereases with i.Conerning the onstrution of a Christmas atus graph spanning a giventrionneted planar graph, we have the main di�erenes between our tehniquesand Leighton and Moitra's ones. In fat, in order to show that every trion-neted planar graph is spanned by a Christmas atus graph, they use someresults from a paper [GR94℄ by Gao and Rihter.De�ne a iruit graph to be an ordered pair (G, C) suh that: (1) G is
2-onneted and C is a polygon in G; (2) there exists an embedding of G in theplane suh that C bounds a fae; and (3) every separating pair of G has bothverties belonging to C. Hene, iruit graphs are a superlass of trionnetedplanar graphs. De�ne a hain of bloks Bi,1, bi,1, Bi,2, bi,2, . . . , Bi,ki−1, bi,ki−1, Bi,kito be a onneted graph suh that eah blok ontains at most two utvertiesand eah utvertex is shared by exatly two bloks.In [GR94℄, Gao and Rihter prove some strong strutural results about ir-uit graphs, whih are brie�y desribed below. Gao and Rihter prove that,given a iruit graph (G, C) and given two verties x and y belonging to C, thereexists a partition of V (G)−V (C) into subsets V1, V2, . . . , Vm and there exist dis-tint verties v1, v2, . . . , vm ∈ V (C)−{x, y} suh that: (i) the subgraph induedby Vi∪{vi} is a hain of bloks Bi,1, bi,1, Bi,2, bi,2, . . . , Bi,ki−1, bi,ki−1, Bi,ki

, and(ii) vi ∈ V (Bi,1) \ {bi,1}.Gao and Rihter used this strutural result in order to indutively provethat every trionneted planar graph (in fat, every iruit graph) has a losed
2-walk, whih is a walk on the graph starting and ending at the same vertexand passing through eah vertex of the graph at least one and at most twie.The same result is used by Leighton and Moitra to indutively prove that,for every iruit graph (G, C) (and hene every trionneted planar graph G),a Christmas atus graph S spanning G exists. In fat, the outline of their al-gorithm for spanningG onsists of the following steps: (i) use Gao and Rihter'sstrutural result to �nd hains of bloksBi,1, bi,1, Bi,2, bi,2, . . . , Bi,ki−1, bi,ki−1, Bi,kispanning all verties of G not in C; (ii) indutively ompute Christmas atusgraphs spanning eah blok Bi,j (whih is in turn a iruit graph); (iii) glue theChristmas atus graphs spanning the bloks and C into a unique Christmasatus graph spanning G.Our spanning algorithm, as disussed above, �nds the spanning graph of
G without using Gao and Rihter's result. Moreover, one one has a non-triangulated binary atus spanning a trionneted planar graph G, it is easyto �nd a losed 2-walk that passes only through the edges of suh a spanning
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6.6. CONCLUSIONS AND OPEN PROBLEMS 181graph. Hene, our algorithm for spanning trionneted planar graphs alsoprovides an alternative proof that every trionneted planar graph has a losed
2-walk.It is worth observing that our algorithm for spanning a trionneted planargraph with a non-triangulated binary atus works more generally for iruitgraphs (as the Leighton and Moitra's algorithm). In fat, in our algorithm,the only graph whih may ontain separating pairs before Ation 1 is atuallya iruit graph, sine all its separating pairs are inident to the outer fae. Aspanning atus for suh a graph an hene be found with the same algorithmdesribed above.6.6 Conlusions and Open ProblemsIn this hapter we have shown an algorithm for onstruting greedy drawingsof triangulations. The algorithm relies on two main results. The �rst one statesthat every triangulated binary atus admits a greedy drawing. The seond onestates that, for every triangulation G, there exists a triangulated binary atus
S spanning G. Then, we have shown how to modify the algorithm provided fortriangulations in order to deal with trionneted planar graphs thus provinga onjeture by Papadimitriou and Ratajzak [PR05℄, that was independentlysettled by Leighton and Moitra [LM08℄.The main drawbak of our algorithm (and of Leighton and Moitra's algo-rithm, as well) is that it uses real oordinates, hene it onstruts drawingsrequiring exponential area one a �nite resolution rule has been �xed. It wouldbe interesting to understand whether suh exponential area is neessary insome ases or there exists an algorithm to produe polynomial-area greedydrawings for triangulations and trionneted planar graphs. We deal with arelated problem in the next Chapter of this thesis. In fat, we study the arearequirements for greedy-drawable graphs in general and we show that thereexist greedy-drawable trees requiring exponential area in any greedy drawing.Although greedy drawings have been proved to be feasible for large lassesof planar graphs (like trionneted planar graphs), a haraterization of thegraphs that admit a greedy drawing seems still to be an elusive goal.Open Problem 6.1 Charaterize the lass of (planar) graphs that admit agreedy drawing.A stronger version of the Papadimitriou and Ratajzak's onjeture [PR05℄says that for every trionneted planar graph there exists a onvex greedy
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182 CHAPTER 6. GREEDY DRAWINGS OF PLANAR GRAPHSdrawing. Although some partial positive results are known [Dha08, GS09a℄,the following problem is still open:Open Problem 6.2 Does a onvex greedy drawing of every trionneted pla-nar graph exist?Finally, most of the known algorithms for onstruting greedy graph draw-ings rely on the knowledge of the entire graph topology. Designing distributedalgorithms for omputing greedy drawings or proving that suh algorithms donot exist would be theoretially interesting and useful in pratie for greedyrouting.
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Chapter 7Suint Representation of GreedyDrawingsIn this hapter1, we onsider the problem of onstruting greedy drawings inthe plane with a small area. Suh a problem is worth to study not only fromthe Graph Drawing perspetive, but also from the greedy routing one, as in agreedy drawing with polynomial area the Cartesian oordinates of the vertiesan be represented with few bits, whih is a neessary ondition for making thegreedy routing useful in pratie.However, having polynomial area greedy drawings is not always possible, atleast for trees. In fat, we prove that there exists an in�nite lass of aterpillarsrequiring exponential area in any greedy drawing.Observe that the main theorem of this hapter is one of the few results(e.g., [DTT92℄) showing that ertain families of graph drawings require expo-nential area. Also, greedy drawings are a kind of proximity drawings [DLL95℄, alass of graph drawings, inluding Eulidean Minimum Spanning Trees [MS92,Kau08℄, for whih very little is known about the area requirements [PV04℄.7.1 IntrodutionAs disussed in the previous hapter, it is possible to onstrut greedy drawingsof any given trionneted planar graph [LM08, AFG10℄. However, the drawingsonstruted by the algorithms presented so far have the undesired property to1Part of the ontents of this hapter are a joint work with Giuseppe Di Battista andFabrizio Frati, appeared in [ADF09℄. 183
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184 CHAPTER 7. SUCCINCT REPRESENTATION OF GREEDYDRAWINGSbe not suint, i.e. they require Ω(n log n) bits in the worst ase for repre-senting the vertex oordinates, as their onstrution requires exponential area.This makes them unsuitable for the motivating appliation of greedy routing,as suh a number of bits is asymptotially equivalent to the number of bitsneeded to expliitly represent the information about how to reah eah nodeof the network in a lassial routing table.Conerning the problem of representing vertex oordinates in a suintway, Eppstein and Goodrih [EG08℄ proposed an elegant algorithm for greedyrouting in the hyperboli plane representing vertex oordinates with O(log n)bits. A similar result was obtained by Goodrih and Strash [GS09b℄ for greedyrouting in the Eulidean plane, where the positions of the verties are repre-sented in an appropriate oordinate system whih is stritly related to the wayin whih the drawing is onstruted.However, the perhaps most natural question of whether greedy drawingsan be onstruted in the plane using O(log n) bits for representing vertexCartesian oordinates and using the Eulidean distane as a metri was, upto now, open. Observe that, when the Cartesian oordinates system and theEulidean distane are used, this problem is equivalent to the one in whihpolynomial-area greedy drawings are requested.In this hapter, we give a negative answer to the above question.Theorem 7.1 For in�nitely many n, there exists a (3n + 3)-node greedy-drawable tree that requires bn area in any greedy drawing in the plane, underany resolution rule, for some onstant b > 1.We prove the theorem by showing that, in any greedy drawing of a suitablyde�ned (3n + 3)-node greedy-drawable aterpillar Tn, the ratio between thelength of the longest edge and the length of the shortest edge is exponentialin n. Hene, one a resolution rule stating that the shortest edge has one unitlength has been �xed, the length of the longest edge, and hene the area of thedrawing, is exponential in n.The hapter is organized as follows. In Set. 7.2, we introdue some def-initions and preliminaries; in Set. 7.3 we prove that there exists an n-nodetree Tn requiring exponential area in any greedy drawing; in Set. 7.4 we showan algorithm for onstruting a greedy drawing of Tn; �nally, in Set. 7.5 weonlude and present some open problems.
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7.2. DEFINITIONS AND PRELIMINARIES 185
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e(a) (b)Figure 7.1: (a) If w lies in the half-plane delimited by the axis of (u, v) andontaining v, then the drawing is not greedy. (b) A rossing in the drawingdetermines a violation of Lemma 7.3.7.2 De�nitions and PreliminariesThe ell of a node v in a drawing is the set of all the points in the planethat are loser to v than to any of its neighbors. The following lemma, due toPapadimitriou and Ratajzak [PR05℄, an be used to state greedy drawings interms of proximity drawings.Lemma 7.1 [PR05℄ A drawing is greedy if and only if the ell of eah node vontains no node other than v.We remark that the ell of a leaf node v is the half-plane ontaining v anddelimited by the axis of the segment having v as an endpoint.We now state some basi properties of the greedy drawings of trees.Lemma 7.2 Given a greedy drawing Γ of a tree T , any subtree of T is repre-sented in Γ by a greedy drawing.Proof: Suppose, for a ontradition, that a subtree T ′ of T exists notrepresented in Γ by a greedy drawing. Then, there exist two nodes u and vsuh that the only path in T ′ from u to v is not distane-dereasing. However,suh a path is also the only path from u to v in T , a ontradition. 2Lemma 7.3 Given a greedy drawing Γ of a tree T and given any edge (u, v)of T , the subtree T ′ of T obtained by removing edge (u, v) from T that ontains
u (resp. v) ompletely lies in Γ in the half-plane ontaining u (resp. v) anddelimited by the axis of (u, v).
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186 CHAPTER 7. SUCCINCT REPRESENTATION OF GREEDYDRAWINGSProof: Refer to Fig. 7.1(a). Suppose, for a ontradition, that there exists anode w of T ′ that lies in Γ in the half-plane ontaining v (resp. u) and delimitedby the axis of (u, v). Then, d(v, w) < d(u, w) (resp. d(u, w) < d(v, w)). Theonly path from v to w (resp. from u to w) in T passes through u (resp. through
v), hene it is not distane-dereasing, a ontradition. 2Lemma 7.4 Any greedy drawing of a tree is planar.Proof: Refer to Fig. 7.1(b). Suppose, for a ontradition, that there existsa tree T admitting a non-planar greedy drawing Γ. Let e1 = (u, v) and e2 =
(w, z) be two edges that ross in Γ. Edges e1 and e2 are not adjaent, otherwisethey would overlap and Γ would not be greedy. Then, there exists an edge
e3 6= e1, e2 in the only path onneting u to w. Lemma 7.3 implies that e1and e2 lie in distint half-planes delimited by the axis of e3, hene they do notross, a ontradition. 2Lemma 7.5 In any greedy drawing of a tree T , the angle between two adjaentsegments is stritly greater than 60◦.Proof: Consider any greedy drawing of T in whih the angle between twoadjaent segments w1w2 and w2w3 is no more than 60◦. Then, |w1w3| ≤ |w1w2|or |w1w3| ≤ |w2w3|, say |w1w3| ≤ |w2w3|. Sine d(w1, w3) ≤ d(w2, w3), theunique path (w1, w2, w3) from w1 to w3 in T is not distane-dereasing. 2In the following we de�ne a family of trees with 3n + 3 nodes, for every
n ≥ 2, that will be exploited in order to prove Theorem 7.1. Refer to Fig. 7.2.Let Tn be a aterpillar with spine (v1, v2, . . . , vn) suh that v1 has degree
5 and vi has degree 4, for eah i = 2, 3, . . . , n. Let a1, b1, c1, and d1 be theleaves of Tn adjaent to v1, let ai and bi be the leaves of Tn adjaent to vi, for
i = 2, 3, . . . , n− 1, and let an, bn, and cn be the leaves of Tn adjaent to vn.Distint embeddings of Tn di�er for the order of the edges inident to thespine nodes. More preisely, the lokwise order of the edges inident to eahnode vi is one of the following: 1) (vi−1, vi), then a leaf edge, then (vi, vi+1),then a leaf edge: vi is a entral node (node vn in Fig. 7.2.b); 2) (vi−1, vi), thentwo leaf edges, then (vi, vi+1): vi is a bottom node (node v2 in Fig. 7.2.b); or3) (vi−1, vi), then (vi, vi+1), then two leaf edges: vi is a top node (node v3 inFig. 7.2.b). Node v1 is onsidered as a entral node.
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(a) (b)Figure 7.2: Two embeddings of aterpillar Tn. In (a) all the spine nodes areentral nodes. In (b) node v2 is a bottom node and node v3 is a top node.7.3 The Lower BoundIn this setion we prove that any greedy drawing of Tn requires exponentialarea. The proof is based on the following intuitions: (i) For any entral node
vi there exists a �small� onvex region ontaining all the spine nodes vj , with
j > i, and their adjaent leaves (Lemma 7.6). (ii) Almost all the spine nodesare entral nodes (Lemma 7.8). (iii) The slopes of edges (vi, ai), (vi, vi+1), and
(vi, bi) inident to a entral node vi are in a ertain range, whih is more re-strited for the edges inident to vi+1 than for those inident to vi (Lemma 7.6).(iv) If the angle between (vi, ai) and (vi, bi) is too small, then vj , aj , and bj,with j ≥ i+2, an not be drawn (Lemma 7.10). (v) If both the angles between
(vi, ai) and (vi, bi) and between (vi+1, ai+1) and (vi+1, bi+1) are large enough,then the ratio between the length of the edges inident to vi and the length ofthe edges inident to vi+1 is onstant (Lemma 7.9).First, we disuss some properties of the slopes of the edges in the drawing.Seond, we argue about the exponential derease of the edge lengths.SlopesConsider any drawing of v1 and of its adjaent leaves; rename suh leaves sothat the ounter-lokwise order of the verties around v1 is a1, c1, d1, b1, v2.In the following, when we refer to an angle v̂1v2v3, we mean the angle thatbrings the half-line from v2 through v1 to oinide with the half-line from v2through v3 by a ounter-lokwise rotation.Property 7.1 b̂1v1a1 < 180◦.Proof: By Lemma 7.5, â1v1c1 > 60◦, ĉ1v1d1 > 60◦, and d̂1v1b1 > 60◦. 2
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188 CHAPTER 7. SUCCINCT REPRESENTATION OF GREEDYDRAWINGS
h1

a

h1
b

b1

a1

v1

c1

d1

p1 i+1

hi
a

hi
b

bi

vi

ai

pi
v(a) (b)Figure 7.3: (a) Region R1 ontains the drawing of Tn \ {a1, b1, c1, d1, v1}. Theslopes of a1p1 and b1p1 are shown. (b) Region Ri ontains the drawing of path

(vi+1, vi+2, . . . , vn) and of its adjaent leaves.We argue that, for any entral node vi, there exists a �small� onvex regionontaining all the spine nodes vj , with j > i, and their adjaent leaves.Let vi be a entral node and suppose that b̂iviai < 180◦. Denote by Ri theonvex region delimited by viai, by vibi, and by the axes of suh segments (seeFig. 7.3(b)). Denote by pi the intersetion between the axes of viai and vibi,and by ha
i (hb

i) the midpoint of viai (resp. vibi).Assume that x(ai) = x(bi), x(vi) < x(ai), and y(ai) > y(bi). Suh asetting an be ahieved w.l.o.g. up to a rotation/mirroring of the drawingand a renaming of the leaves. In the following, whenever a entral node vi isonsidered, the drawing is rotated/mirrored and the leaves adjaent to vi arerenamed so that x(ai) = x(bi), x(vi) < x(ai), and y(ai) > y(bi).Let slope(u, v) be the angle bringing the half-line from u direted downwardto oinide with the half-line from u through v by a ounter-lokwise rotation(see Fig. 7.3(a)). Further, let slope⊥(u, v) be equal to slope(u, v) − 90◦. Weobserve the following:Property 7.2 slope(vi, bi) < slope⊥(bi, pi) < slope⊥(pi, ai) < slope(vi, ai).Proof: Inequality slope(vi, bi) < slope⊥(bi, pi) (and analogously inequality
slope⊥(pi, ai) < slope(vi, ai)) holds sine slope(hb

i , pi) < slope(bi, pi). Inequal-ity slope⊥(bi, pi) < slope⊥(pi, ai) holds by assumption. 2Lemma 7.6 Suppose that vi is a entral node. Then, the following hold: (i)
b̂iviai < 180◦; (ii) the drawing of path (vi+1, vi+2, . . . , vn) and of its adjaent
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(a) (b)Figure 7.4: (a) Possible slopes for an edge (vj , x). (b) Illustration for the proofof Lemma 7.7.leaves lies in Ri; and (iii) any edge (vj , x), where x ∈ {aj, bj , vj+1} with j > i,is suh that slope⊥(bi, pi) < slope(vj, x) < slope⊥(pi, ai). See Fig. 7.4(a).Proof: When i = 1, Property 7.1 ensures part (i). Further, Lemma 7.1ensures part (ii), that is, the drawing of Tn \ {a1, b1, c1, d1, v1} lies in R1 (seeFig. 7.3(a)). In order to prove that part (iii) of the lemma holds when i = 1,suppose, for a ontradition, that an edge (vj , x) exists, where x ∈ {aj, bj , vj+1}with j > 1, suh that slope⊥(b1, p1) < slope(vj, x) < slope⊥(p1, a1) does nothold. Then, it is easy to see that the half-plane delimited by the axis of vjxand ontaining x also ontains at least one out of a1, v1, and b1, thus providinga ontradition to the greediness of the drawing, by Lemma 7.3.By indution, suppose that part (i), part (ii), and part (iii) of the lemmahold for some i. Let k be the smallest index greater than i suh that vk is a en-tral node. Then, by part (iii) of the indutive hypothesis and by Property 7.2,
slope(vi, bi) < slope⊥(bi, pi) < slope(vk, bk) < slope(vk, ak) < slope⊥(pi, ai) <

slope(vi, ai) holds, whih implies b̂kvkak < b̂iviai < 180◦, and part (i) of thelemma follows for k.By Lemma 7.4, the drawing is planar; by Lemma 7.1, the ells of ak and bkdo not ontain any node other than ak and bk, respetively. Hene, if a node
u is in Rk, then no node of any subtree of Tn ontaining u and not ontaining
vk lies outside Rk. Thus, vk−1 does not lie in Rk (sine a subtree of Tn existsontaining vk−1, vi, and not ontaining vk); sine vk is a entral node, then
vk+1 lies on the opposite side of vk−1 with respet to the path omposed ofedges (vk, ak) and (vk, bk). Hene, vk+1 (and path (vk+1, vk+2, . . . , vn) togetherwith its adjaent leaves) lies inside Rk, and part (ii) of the lemma follows for
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190 CHAPTER 7. SUCCINCT REPRESENTATION OF GREEDYDRAWINGS
k. One parts (i) and (ii) of the lemma have been proved for k, part (iii) ofthe lemma an also be proved for k analogously as in the base ase. Namely,if slope⊥(bk, pk) < slope(vj , x) < slope⊥(pk, ak) does not hold, for some edge
(vj , x) with j > k, then the half-plane delimited by the axis of vjx and on-taining x also ontains at least one out of ak, vk, and bk, thus implying thatthe drawing is not greedy, by Lemma 7.3. 2Consider two edges (u, v) and (w, z) suh that the path from u to w does notontain v and z. Suppose, w.l.o.g. up to a rotation/mirroring of the drawing,that v and z lie in the same half-plane delimited by the line through u and w,and that x(u) = x(w), y(u) < y(w), and 0◦ < slope(u, v), slope(w, z) < 180◦.Lemma 7.7 slope(u, v) < slope(w, z).Proof: Refer to Fig. 7.4(b). Suppose, for a ontradition, that slope(u, v) ≥
slope(w, z). Then, either v lies in the half-plane delimited by the axis of (w, z)and ontaining z, or z lies in the half-plane delimited by the axis of (u, v) andontaining v. Hene, by Lemma 7.2, the drawing is not greedy. 2Exponential Dereasing Edge LengthsNow we are ready to go in the mainstream of the proof that any greedy drawingof Tn requires exponential area. Suh a proof is in fat based on the followingthree lemmata. The �rst one states that a linear number of spine nodes areentral nodes, in any greedy drawing of Tn.Lemma 7.8 Suppose that vi is a entral node, for some i ≤ n−3. Then, vi+1is a entral node.Proof: Refer to Fig. 7.5. Suppose, for a ontradition, that vi+1 is nota entral node. Suppose that vi+1 is a top node, the ase in whih it is abottom node being analogous. Rename the leaves adjaent to vi+1 in suh away that the ounter-lokwise order of the neighbors of vi+1 is vi, bi+1, ai+1,and vi+2. By Lemma 7.6 part (i), b̂iviai < 180◦. By Lemma 7.6 part (iii), byProperty 7.2, and by the assumption that vi+1 is a top node, slope(vi, bi) <
slope(vi+1, bi+1) < slope(vi+1, ai+1) < slope(vi+1, vi+2) < slope(vi, ai). ByLemma 7.5, ̂bi+1vi+1ai+1 > 60◦. It follows that ̂ai+1vi+1vi+2 < 120◦.Suppose that vi+2 is a entral node (a top node; a bottom node). Re-name the leaves adjaent to vi+2 in suh a way that the ounter-lokwise or-der of the neighbors of vi+2 is vi+1, bi+2, vi+3, and ai+2 (resp. vi+1, bi+2,
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7.3. THE LOWER BOUND 191
i
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i+1b
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vi+2
ai+1

bi

ai

vFigure 7.5: Illustration for the proof of Lemma 7.8.
ai+2, and vi+3; vi+1, vi+3, bi+2, and ai+2). Notie that node vi+3 existssine i ≤ n − 3. By Lemma 7.7, slope(vi+2, bi+2) > slope(vi+1, ai+1) (resp.
slope(vi+2, bi+2) > slope(vi+1, ai+1); slope(vi+2, vi+3) > slope(vi+1, ai+1)).Further, by Lemma 7.6 part (iii), it holds slope(vi+2, ai+2) < slope(vi, ai) (resp.
slope(vi+2, vi+3) < slope(vi, ai); slope(vi+2, ai+2) < slope(vi, ai)). It followsthat ̂bi+2vi+2ai+2 < 120◦ (resp. ̂bi+2vi+2vi+3 < 120◦; ̂vi+3vi+2ai+2 < 120◦),hene at least one of ̂bi+2vi+2vi+3 and ̂vi+3vi+2ai+2 (resp. of ̂bi+2vi+2ai+2and ̂ai+2vi+2vi+3; of ̂vi+3vi+2bi+2 and ̂bi+2vi+2ai+2) is less than 60◦. ByLemma 7.5, the drawing is not greedy. 2The next lemma shows that, if the angles b̂iviai inident to eah entralnode vi are large enough, then the sum of the lengths of viai and vibi dereasesexponentially in the number of onsidered entral nodes.Lemma 7.9 Let vi be a entral node, with i ≤ n − 3. Suppose that boththe angles b̂iviai and ̂bi+1vi+1ai+1 are greater than 150◦. Then, the followinginequality holds: |vi+1ai+1|+ |vi+1bi+1| ≤ (|viai|+ |vibi|)/

√
3.Proof: Refer to Fig. 7.6(a). By Lemma 7.8, vi+1 is a entral node. Denoteby l(vi+1) the vertial line through vi+1 and denote by l(ha

i ) and l(hb
i) thehorizontal lines through ha

i and hb
i , respetively.By Lemma 7.6 part (iii), slope⊥(bi, pi) < slope(vi+1, bi+1) < slope(vi+1, ai+1)

< slope⊥(pi, ai). Hene, by Property 7.2, we have slope(vi, bi) < slope(vi+1, bi+1)
< slope(vi+1, ai+1) < slope(vi, ai). It follows that both ai+1 and bi+1 lie inthe half-plane delimited by l(vi+1) and not ontaining vi. Denote by da

i+1(db
i+1) the intersetion point between l(vi+1) and l(ha

i ) (resp. and l(hb
i)).Observe that |db

i+1d
a
i+1| < (|vibi| + |viai|)/2. Denote by fa

i+1 (by f b
i+1) the
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(a) (b)Figure 7.6: Illustrations for the proofs of Lemma 7.9 (a) and Lemma 7.10 (b).intersetion point between l(ha
i ) and the line through vi+1 and ai+1 (resp.between l(hb

i) and the line through vi+1 and bi+1). Clearly, |vi+1ai+1| <

|vi+1fa
i+1| and |vi+1bi+1| < |vi+1f b

i+1|. Angles ̂db
i+1vi+1f b

i+1 and ̂fa
i+1vi+1da

i+1are eah less than 30◦, namely suh angles sum up to an angle whih is
180◦ minus ̂f b

i+1vi+1fa
i+1, whih by hypothesis is greater than 150◦. Hene,

|vi+1ai+1| < |vi+1fa
i+1| < |vi+1da

i+1|/ cos(30) and |vi+1bi+1| < |vi+1f b
i+1| <

|vi+1db
i+1|/ cos(30). It follows that |vi+1ai+1| + |vi+1bi+1| < (|vi+1da

i+1| +
|vi+1db

i+1|)/ cos(30) < 2(|vibi|+ |viai|)/2
√

3, thus proving the lemma. 2The next lemma shows that having large angles inident to entral nodesis unavoidable for almost all entral nodes.Lemma 7.10 No entral node vi, with i ≤ n−3, is inident to an angle b̂iviaithat is less than or equal to 150◦.Proof: Refer to Fig. 7.6(b). Suppose, for a ontradition, that there existsa entral node vi, with i ≤ n − 3, that is inident to an angle b̂iviai ≤ 150◦.Denote by α and β the angles p̂iviai and b̂ivipi, respetively. Sine triangles
(vi, pi, h

a
i ) and (ai, pi, h

a
i ) are ongruent, v̂iaipi = α. Analogously, v̂ibipi = β.Summing up the angles of quadrilateral (vi, ai, pi, bi), we get âipibi = 360◦ −

2(α + β).
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7.4. DRAWABILITY OF TN 193By Lemma 7.8, vi+1 is a entral node. Consider the line through vi+1orthogonal to aipi and denote by ga
i+1 the intersetion point between suh a lineand aipi. Further, onsider the line through vi+1 orthogonal to bipi and denoteby gb

i+1 the intersetion point between suh a line and bipi. By Lemma 7.6 part(iii), slope⊥(bi, pi) < slope(vi+1, bi+1) < slope(vi+1, ai+1) < slope⊥(pi, ai).Hene, ̂bi+1vi+1ai+1 < ̂gb
i+1vi+1ga

i+1. Further, ̂gb
i+1vi+1ga

i+1 = 2α + 2β − 180◦,as an be derived by onsidering quadrilateral (gb
i+1, vi+1, g

a
i+1, pi). Sine, byhypothesis, α + β ≤ 150◦, we have ̂bi+1vi+1ai+1 < ̂gb

i+1vi+1ga
i+1 = 2α + 2β −

180◦ ≤ 120◦. However, sine vi+1 is a entral node, edge (vi+1vi+2), that existssine i ≤ n− 3, uts angle ̂bi+1vi+1ai+1. It follows that at least one of angles
̂bi+1vi+1vi+2 and ̂vi+2vi+1ai+1 is less than 60◦. By Lemma 7.5, the drawing isnot greedy. 2The previous lemmata immediately imply an exponential lower bound be-tween the ratio of the lengths of the longest and the shortest edge of the draw-ing. Namely, node v1 is a entral node. By Lemma 7.8, vi is a entral node, for

i = 2, . . . , n−3. By Lemma 7.10, angle b̂iviai > 150◦, for eah i ≤ n−3. Hene,by Lemma 7.9, |vi+1ai+1|+ |vi+1bi+1| ≤ (|viai|+ |vibi|)/
√

3, for eah i ≤ n− 4;it follows that |vn−3an−3|+ |vn−3bn−3| ≤ (|v1a1|+ |v1b1|)/(
√

3)n−4. Sine oneout of v1a1 and v1b1, say v1a1, has length at least half of |v1a1| + |v1b1|, andsine one out of vn−3an−3 and vn−3bn−3, say vn−3an−3, has length at most halfof |vn−3an−3| + |vn−3bn−3|, then |v1a1|/|vn−3an−3| ≥ 1
9 (
√

3)n, thus implyingthe laimed lower bound.7.4 Drawability of T
nIn Set. 7.3 we have shown that any greedy drawing of Tn requires exponentialarea. Sine in [PR05, LM08℄ it has been shown that there exist trees thatdo not admit any greedy drawing, one might ask whether the lower boundrefers to a greedy-drawable tree or not. Of ourse, if Tn were not drawable,then the lower bound would not make sense. In this setion we show that Tnadmits a greedy drawing by providing a drawing algorithm, using a supportingexponential-size grid.Sine the algorithm draws the spine nodes in the order they appear on thespine with the degree-5 node as the last node, we revert the indies of the nodeswith respet to Sets. 7.2 and 7.3, that is, node vi of Tn is now node vn−i+1.The algorithm onstruts a drawing of Tn in whih all the spine nodes viare entral nodes lying on the horizontal line y = 0. Sine eah leaf node ai is
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1a
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2i
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2(i+1)

22(i+1)

a

vi

2

ha

ahi(a) (b)Figure 7.7: Illustrations for the algorithm to onstrut a greedy drawing of Tn.(a) Base ase. (b) Indutive ase.drawn above line y = 0 and bi is plaed on the symmetrial point of ai withrespet to suh a line, we only desribe, for eah i = 1, . . . , n, how to draw viand ai.In order to deal with drawings that lie on a grid, in this setion we denoteby ∆y/∆x the slope of a line (of a segment), meaning that whenever there is ahorizontal distane ∆x between two nodes of suh a line (of suh a segment),then their vertial distane is ∆y.The drawing is onstruted by means of an indutive algorithm. In thebase ase, plae v1 at (0, 0), ha
1 at (−1, 2), a1 at (−2, 4), and c1 at (−9/2, 0)(see Fig. 7.7(a)). At step i of the algorithm suppose, by indutive hypothesis,that: (i) The drawing of path (v1, v2, . . . , vi) with its leaf nodes a1, a2, . . . , aiis greedy, and (ii) y(vi) = 0, y(ha

i ) = 22i, y(ai) = 22i+1, and x(vi) − x(ha
i ) =

x(ha
i )− x(ai) = 1.From the above indutive hypothesis it follows that the slope of segment

viai is −22i/1 and the slope of its axis is 1/22i. We show step i + 1 of thealgorithm.Plae vi+1 at point (x(vi) + 24i+3 − 2, 0), ha
i+1 at point (x(vi) + 24i+3 −

3, 22i+2), and ai+1 at point (x(vi) + 24i+3 − 4, 22i+3) (see Fig. 7.7(b)). Suhplaements guarantee that part (ii) of the hypothesis is veri�ed. The slope ofsegment vi+1ai+1 is −22(i+1)/1. Hene, the slope of its axis is 1/22(i+1). Suhan axis passes through point qi ≡ (x(vi)−3, 22i+1). Sine 0 < 1/22(i+1) < 1/22i,it follows that path (v1, v2, . . . , vi) with nodes a1, a2, . . . , ai lie below the axis of
vi+1ai+1. Finally, the axis of viai passes through point pi+1 ≡ (x(vi)+24i+3−
4, 22i+22i+3−3/22i). Thus, y(pi+1) > y(ai+1), sine 22i+22i+3−3/22i > 22i+3as long as 24i > 3, whih holds for eah i ≥ 1. This implies that part (i) of thehypothesis is veri�ed.



i

i �main� � 2010/2/26 � 12:27 � page 195 � #205
i

i

i

i

i

i

7.5. CONCLUSIONS 195When the algorithm has drawn vn and an (and symmetrially bn), cn and
dn still have to be drawn. However, this an be easily done by assigning tosegments vncn and vndn the same length as segment vnan and by plaing themin suh a way that the angle ̂bnvnan, whih is stritly greater than 180◦, is splitinto three angles stritly greater than 60◦.We remark that cn and dn are not plaed at points with rational oordinates.However, they still obey to any resolution rule, namely their distane from anynode or edge of the drawing is exponential with respet to the grid unit. Plaingsuh nodes at grid points is possible after a saling of the whole drawing andsome non-trivial alulations. However, we preferred not to deal with suh anissue sine we just needed to prove that a greedy drawing of Tn exists.7.5 ConlusionsWe have shown that onstruting suint greedy drawings in the plane, whenthe Eulidean distane is adopted, may be unfeasible even for simple lasses oftrees. In fat, we proved that there exist aterpillars requiring exponential areain any greedy drawing, under any �nite resolution rule. The proof uses a mixedgeometri-topologial tehnique that allows us to analyze the ombinatorialspae of the possible embeddings and to identify nie invariants of the slopesof the edges in any greedy drawing of suh aterpillars.Many problems remain open in this researh �eld related to the area ofgreedy drawings. The most natural is summarized in the following question:Open Problem 7.1 What are the area requirements of greedy drawings oftriangulations and trionneted planar graphs?Another intriguing question arises from the disussion presented in thisChapter. We have shown, in Lemma 7.4, that every greedy drawing of a tree isplanar. It would be interesting to understand whether trees are the only lassof planar graphs with suh a property.Open Problem 7.2 Charaterize the lass of planar graphs suh that everygreedy drawing is planar.
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Part IVSimultaneous Embedding of PlanarGraphs
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Chapter 8Geometri SimultaneousEmbedding of a Tree and a PathIn this hapter1 we deal with the problem of simultaneously drawing two planargraphs on the same set of points in suh a way that eah of the drawings isplanar. In partiular, we onsider the most natural version of the problem,that is, the one in whih both the graphs have to be drawn with straight-lineedges, that is alled geometri simultaneous embedding.Many results are known on this �eld, onerning the existene of suh em-beddings for some lasses of graphs and the omputational omplexity of theorresponding deision problem. While it is known that two aterpillars alwaysadmit a geometri simultaneous embedding and that two trees not always ad-mit one, the question about a tree and a path is still open and is often regardedas the most prominent open problem in this area.We answer this question in the negative by providing a ounterexample. Ad-ditionally, sine the ounterexample uses disjoint edge sets for the two graphs,we also negatively answer another open question, that is, whether it is possibleto simultaneously embed two edge-disjoint trees.As a �nal result of this hapter, we study the same problem when someonstraints on the tree are imposed. Namely, we show that a tree of depth 2and a path always admit a geometri simultaneous embedding. In fat, suha strong onstraint is not so far from losing the gap with the instanes not1Parts of the ontents of this hapter are a joint work with Markus Geyer, MihaelKaufmann, and Daniel Neuwirth, appeared in [AGKN10℄ and submitted to internationalonferene. 199



i

i �main� � 2010/2/26 � 12:27 � page 200 � #210
i

i

i

i

i

i

200 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHadmitting any solution, as the tree used in our ounterexample has depth 4.8.1 IntrodutionEmbedding planar graphs is a well-established �eld in graph theory and algo-rithms with a great variety of appliations. Reently, motivated by the needof onurrently represent several di�erent relationships among the same set ofelements, a major fous in the researh lies on simultaneous graph embedding.In this setting, given a set of graphs with the same vertex-set, the goal is to�nd a set of points in the plane and a mapping between these points and theverties of the graphs suh that plaing eah vertex on the point it is mapped toyields a planar drawing for eah of the graphs, if they are displayed separately.Problems of this kind frequently arise when dealing with the visualization ofevolving networks and with the visualization of huge and omplex relationships,as in the ase of the graph of the Web.Among the many variants of this problem, the most important and naturalone is the geometri simultaneous embedding. Given two graphs G1 = (V, E′)and G2 = (V, E′′), the task is to �nd a set of points P and a bijetion M : P →
V that indue planar straight-line drawings for both G1 and G2.In the seminal paper on this topi [BCD+07℄, Brass et al. proved that ge-ometri simultaneous embeddings of pairs of paths, pairs of yles, and pairsof aterpillars always exist. On the other hand, many negative results havebeen shown. Brass et al. [BCD+07℄ presented a pair of outerplanar graphsnot admitting any simultaneous embedding and provided negative results forthree paths, as well. Erten and Kobourov [EK04℄ found a planar graph and apath not allowing any simultaneous embedding. Geyer et al. [GKV09℄ provedthat there exist two trees that do not admit any geometri simultaneous em-bedding. However, the two trees used in the ounterexample have ommonedges, and so the problem is still open for edge-disjoint trees. Finally, Cabelloet al. [CvKL+09℄ showed a planar graph and a mathing that do not admitany geometri simultaneous embedding and presented algorithms to obtain ageometri simultaneous embedding of a mathing and a wheel, an outerpath,or a tree.The most important open problem in this area is the question whether atree and a path always admit a geometri simultaneous embedding or not. Inthis hapter we answer this question in the negative.Many variants of the problem, where some onstraints are relaxed, havebeen studied. If the edges do not need to be straight-line segments, any number
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8.1. INTRODUCTION 201of planar graphs admit a simultaneous embedding, sine any planar graph anbe planarly embedded on any given set of points in the plane [Hal91, PW01℄.However, the same result does not hold if the edges that are shared by twographs have to be represented by the same Jordan urve. In this setting theproblem is alled simultaneous embedding with �xed edges [Fra06, GJP+06,FJKS08℄.The researh on this problem opened a new exiting �eld of problems andtehniques, like ULP trees and graphs [EBFK09, FK07a, FK07b℄, olored si-multaneous embedding [BEF+07℄, near-simultaneous embedding [FKK07℄, andmathed drawings [DDv+07℄, deeply related to the general fundamental ques-tion of point-set embeddability.In this hapter we answer the question about the geometri simultaneousembedding of a tree and a path in the negative by providing a ounterexample.Moreover, sine the tree and the path used in our ounterexample do not shareany edge, we also negatively answer the question on two edge-disjoint trees.The main idea behind our ounterexample is to use the path to enfore apart of the tree to be in a ertain on�guration whih annot be drawn planar.Namely, we make use of level nonplanar trees [EBFK09, FK07b℄, that is, treesnot admitting any planar embedding if their verties have to be plaed insideertain regions aording to a partiular leveling. The tree of the ounterex-ample ontains many opies of suh trees, while the path is used to reate theregions. To prove that at least one opy has to be in the partiular levelingthat determines a rossing, we need a quite huge number of verties. However,suh a huge number is often needed just to ensure the existene of partiularstrutures playing a role in our proof. A muh smaller ounterexample ouldlikely be onstruted with the same tehniques, but we deided to prefer thesimpliity of the arguments rather than the searh for the minimum size.The hapter is organized as follows. In Set. 8.2 we give preliminary de�-nitions and we introdue the onept of level nonplanar trees. In Set. 8.3 wedesribe the tree T and the path P used in the ounterexample. In Set. 8.4we give an overview of the proof that T and P do not admit any geometrisimultaneous embedding, while in Set. 8.5 we give the details of suh a proof.In Set. 8.6 we present an algorithm for the simultaneous embedding of a treeof depth 2 and a path, and in Set. 8.7 we make some �nal remarks.
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202 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATH
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(a) (b) ()Figure 8.1: (a) A tree Tu. (b) A level nonplanar tree T whose underlying treeis Tu. () A region-level nonplanar tree T whose underlying tree is Tu.8.2 PreliminariesA (undireted) k-level tree T = (V, E, φ) on n verties is a tree T ′ = (V, E),alled the underlying tree of T , together with a leveling of its verties given bya funtion φ : V 7→ {1, . . . , k}, suh that for every edge (u, v) ∈ E, it holds
φ(u) 6= φ(v) (See [EBFK09, FK07b℄). A drawing of T = (V, E, φ) is a leveldrawing if eah vertex v ∈ V suh that φ(v) = i is plaed on a horizontal line
li = {(x, i) | x ∈ R}. A level drawing of T is planar if no two edges intersetexept, possibly, at ommon end-points. A tree T = (V, E, φ) is level nonplanarif it does not admit any planar level drawing.We extend this onept to the one of region-level drawing by enforing theverties of eah level to lie inside a ertain region rather than on a horizontalline. Let l1, . . . , lk be k pairwise non-rossing straight-line segments and let
r1, . . . , rk+1 be the regions of the plane suh that any straight-line segmentonneting a point in ri and a point in rh, with 1 ≤ i < h ≤ k + 1, utsall and only the segments li, li+1, . . . , lh−1, in this order. A drawing of a k-level tree T = (V, E, φ) is alled region-level drawing if eah vertex v ∈ Vsuh that φ(v) = i is plaed inside region ri. A region-level drawing of T isplanar if no two edges interset exept, possibly, at ommon end-points. Atree T = (V, E, φ) is region-level nonplanar if it does not admit any planarregion-level drawing.The 4-level tree T whose underlying tree is shown in Fig. 8.1(a) has beenshown to be level nonplanar [FK07b℄ (see Fig. 8.1(b)). In the next lemma weshow that T is also region-level nonplanar (see Fig. 8.1()).
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8.3. THE COUNTEREXAMPLE 203Lemma 8.1 The 4-level tree T whose underlying tree is shown in Fig. 8.1(a)is region-level nonplanar.Proof: Refer to Fig. 8.1(). First observe that, in any possible region-level planar drawing of T , there exists a polygon Q2 inside region r2 delimitedby paths p1 = v5, v2, v8 and p2 = v6, v3, v9, and by segments l1 and l2, anda polygon Q3 inside region r3 delimited by paths p1 = v5, v2, v8 and p2 =
v6, v3, v9, and by segments l2 and l3. We have that v1 is inside Q2, as otherwiseone of edges (v1, v2) or (v1, v3) would ross one of p1 or p2. Hene, vertex v4 hasto be inside Q3, as otherwise edge (v1, v4) would ross one of p1 or p2. However,in this ase, there is no plaement for verties v7 and v10 that avoids a rossingbetween one of edges (v4, v7) or (v4, v10) and one of the already drawn edges.

2Lemma 8.1 will be vital for proving that there exist a tree T and a path
P not admitting any geometri simultaneous embedding. In fat, T ontainsmany opies of the underlying tree of T , while P onnets verties of T in suha way to reate the regions satisfying the above onditions and to enfore atleast one of suh opies to lie inside these regions aording to the levelingmaking it nonplanar.8.3 The CounterexampleIn this setion we desribe a tree T and a path P not admitting any geometrisimultaneous embedding.Tree TThe tree T ontains a root r and q verties j1, . . . , jq at distane 1 from r, alledjoints. Eah joint jh, with h = 1, . . . , q, is onneted to x opies B1, . . . , Bx ofa subtree, alled branhes, and to l := (s−1)4 ·32 ·x verties of degree 1, alledstabilizers. See Fig. 8.2(a). Eah branh Bi onsists of a root ri, (s − 1) · 3verties of degree (s−1) adjaent to ri, and (s−2) · (s−1) ·3 leaves at distane
2 from ri. Verties belonging to a branh Bi are alled B-verties and denotedby 1-, 2-, or 3-verties, aording to their distane from their joint. Fig. 8.2(b)displays 1-, 2-, and 3-verties of a branh Bi.Beause of the huge number of verties, in the rest of the hapter, for thesake of readability, we use variables n, s, and x as parameters desribing thesize of ertain on�gurations. Suh parameters will be given a value when thetehnial details of the arguments are desribed. At this stage we just laim
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204 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATH
j h
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3
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(a) (b)Figure 8.2: (a) A shematization of the omplete tree T . Joints and stabilizersare small irles, branhes are solid triangles, while omplete subtrees onnetedto a joint are dashed triangles. (b) A shematization of a branh Bi.that a total number n ≤
(
27·3·x+2

3

) of verties (see Lemmata 8.5 and 8.4) su�esfor the ounterexample.As a �rst observation we note that, despite the oversized number of verties,tree T has limited depth, that is, every vertex is at distane from the root atmost 4. This leads to the following property.Property 8.1 Any path of tree edges starting at the root has at most 3 bends.Path PPath P is given by desribing some basi and reurring subpaths on the ver-ties of T and how suh subpaths are onneted to eah other. The idea isto partition the set of branhes Bi adjaent to eah joint jh into subsets of
s branhes eah and to onnet their verties with path edges, aording tosome features of the tree struture, so de�ning the �rst building blok, alledell. Then, ells belonging to di�erent branhes are onneted to eah other,hene reating strutures, alled formations, for whih we an ensure ertainproperties regarding the intersetion between tree and path edges. Further,di�erent formations are onneted to eah other by path edges in suh a wayto reate bigger strutures, alled extended formations, whih are, in their turn,onneted to reate a sequene of extended formations.All of these strutures are onstruted in suh a way that there exists aset of ells suh that any four of its ells, onneted to the same joint andbeing part of the same formation or extended formation, ontain a region-level
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8.3. THE COUNTEREXAMPLE 205
1

j

332233222

1 11 1 1

hFigure 8.3: A ell. B-verties of the head are depited by large white irles, B-verties of the tail are large grey irles, B-verties not part of the ell (showingthe tree struture) are small grey irles and stabilizers are small white irles.Tree edges are grey and path edges are blak.nonplanar tree for any possible leveling, where the levels orrespond to ells.Hene, proving that four of suh ells lie in di�erent regions satisfying theproperties of separation desribed above is equivalent to proving the existeneof a rossing in the tree. This allows us to onsider only the bigger struturesinstead of dealing with single opies of the region-level nonplanar tree.In the following we de�ne suh strutures more formally and state theirproperties.Cell: The most basi struture de�ned by P is de�ned by looking at howit onnets verties of a set of branhes onneted to the same joint of T .Assume the verties of a level inside eah branh to be arbitrarily ordered.For eah joint jh, h = 1, . . . , q, and for eah disjoint subset of s branhes
Bi, i = 1, . . . , s, onneted to jh, we onstrut a set of s ells as follows. Foreah r = 1, . . . , s, a ell cr(h) is omposed of its head, its tail, and a number tof stabilizers of jh.The head of cr(h) onsists of the unique 1-vertex of Br, the �rst three 2-verties of eah branh Bk, with 1 ≤ k ≤ s and k 6= r, that are not alreadyused in a ell ca(h), with 1 ≤ a < r, and, for eah 2-vertex not in cr(h) andnot in Br, the �rst 3-verties not already used in a ell ca(h), with 1 ≤ a < r.The tail of cr(h) onsists of a set of 3 ·s ·(s−1)2 branhes Bk adjaent to jh.This set is partitioned into 3 · (s− 1)2 subsets of s subtrees eah. The vertiesof eah of the subsets are distributed between the ells in the same way as forthe verties of the head.This implies that eah ell ontains one 1-vertex, 3 · (s− 1) 2-verties, and
3 · (s − 2) · (s − 1) 3-verties of the head, an additional 3 · (s − 1)2 1-verties,
32 · (s − 1)3 2-verties, and 32 · (s − 2) · (s − 1)3 3-verties of the tail, plus
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206 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATH
32 · (s− 1)4 stabilizers.Path P inside ell cr(h) visits the verties in the following order: It startsat the unique 1-vertex of the head, then it reahes all the 2-verties of the head,then all the 3-verties of the head, then all the 2-verties of the tail, and �nallyall the 3-verties of the tail, visiting eah set in arbitrary order. After eahourrene of a 2- or 3-vertex of the head, P visits a 1-vertex of the tail, andafter eah ourrene of a 2- or a 3-vertex of the tail, it visits a stabilizer ofjoint jh (see Fig. 8.3).Note that, by this onstrution, eah set of s ells onneted to the samejoint and onstruted starting from the same set of s branhes is suh thateah subset of size four ontains region-level nonplanar trees with all possiblelevelings, where the levels orrespond to the membership of the verties to aell. As an example, onsider four arbitrary ells c1, . . . , c4 belonging to thesame set, leveled in this order. A region level nonplanar tree as in Fig. 8.1onsists of the 1-vertex v of the head of c2, the three 2-verties of c3 onnetedto v and, for eah of them, the 3-vertex of c1 and the 3-vertex of c4 onnetedto it. Other levelings are onstruted analogously.We now de�ne two bigger strutures desribing how ells of this set areonneted to ells of sets onneted to other joints.Formation: In the de�nition of a ell we desribed how the path traversesthrough one set of branhes onneted to the same joint. Now we desribe howells from four di�erent sets are onneted.A formation F (H), where H = (h1, h2, h3, h4) is a 4-tuple of indies ofjoints, onsists of 592 ells, namely of 148 ells cr(hi) from one set of s ellsas onstruted above for eah joint jhi

, 1 ≤ i ≤ 4. Path P onnets theseells in the order ((h1h2h3)
37h37

4 )4, that is, P repeats four times the followingsequene: It onnets c1(h1) to c1(h2), then to c1(h3), then to c2(h1), and soon till c37(h3), from whih it then onnets to c1(h4), to c2(h4), and so on till
c37(h4) (see Fig. 8.4(a)). A onnetion between two onseutive ells cr(a) and
cr(b) is done with an edge onneting the end verties of the parts P (cr(a))and P (cr(b)) of P restrited to the verties of cr(a) and cr(b), respetively.Namely, the unique vertex in cr(a) having degree 1 both in P (cr(a)) and in
T is onneted to the unique vertex in cr(b) having degree 1 in P (cr(b)) butnot in T . Sine the ells in the formation that are onneted to the same jointbelong to the same set of s ells as onstruted above, the following propertyholds:Property 8.2 For any formation F (H) and any joint jh, with h ∈ H, if fourells cr(h) ∈ F (H) are pairwise separated by straight lines, then there exists a
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c (j  )
11

j (a) (b)Figure 8.4: (a) A formation. Tree edges are depited by grey and path edgesby blak lines. Please note in this �gure also the bundle of tree edges on-neting the di�erent ells belonging to the same branh. (b) A subsequene
(H1, . . . , Hx)2 of an extended formation. Formations are inside a table to rep-resent the 4-tuple they belong to and to emphasize that in eah repetition (arow of the table) a formation at a ertain 4-tuple is missing.rossing in T .Extended Formation: Formations are onneted by the path in a spe-ial sequene, de�ned as extended formation and denoted by EF (H), where
H = (H1 = (h1, . . . , h4),
H2 = (h5, . . . , h8), . . . , Hx = (h4x−3, . . . h4x)) is a tuple of 4−tuples of disjointindexes of joints (see Fig. 8.4(b)). Let F1(Hi), . . . , Fy− y

x
(Hi) be y − y

x forma-tions not belonging to any other extended formation and omposed of ells ofthe same set S. These formations are onneted in the order (H1, H2, . . . , Hx)y,but in eah of these y repetitions one Hi is missing. Namely, in the k-th rep-etition the path does not reah any formation at Hm, with m = k mod x.We say that the k-th repetition has a defet at m. We all a subsequene
(H1, H2, . . . , Hx)x a full repetition inside EF (J). A full repetition has exatlyone defet at eah tuple.Note that the size of s an now be �xed as the number of formations reatingrepetitions inside one extended formation times the number of ells inside eahof these formations, that is s := (y − y

x ) · 37 · 4. We laim that x ≤ 7 · 32 · 223and y ≤ 72 ·33 ·226 is su�ient throughout the proofs. However, for readabilityreasons, we will keep on using variables x and y in the remainder of the hapter.Sequene of Extended Formation: Extended formations are onneted
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208 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHby the path in a speial sequene, alled sequene of extended formations anddenoted by SEF (H), where H = (H∗
1 , . . . , H∗

12) is a 12−tuple of tuples of
4−tuples. For eah tuple H∗

i , where i = 1, . . . , 12, onsider 110 extended for-mations (EFi(H
∗
1 ), . . . , EFi(H

∗
12)), with i = 1, . . . , 110, not already belongingto any other sequene of extended formations. These extended formations areonneted inside SEF (H) in the order (H∗

1 , . . . ,
H∗

12)
(120). There exist two types of sequenes of extended formations. Namely,in the �rst type there is one extended formation missing in eah subsequene

(H∗
1 , . . . , H∗

12), that we all defet, as for the extended formations. In the se-ond type, two onseutive extended formations are missing. Namely, in the
k-th repetition the path skips the extended formations onneting at H∗

m andat H∗
m+1, with m = k mod 12. In this ase, we say that the repetition has adouble defet.Sine, for eah set of 48x joints, (48x)! di�erent disjoint sequenes of ex-tended formations exist, we just onsider the sequenes where the order de�nedby the tuple is the order of the joints around the root.8.4 OverviewIn this setion we present the main arguments leading to the �nal onlusionthat the tree T and the path P desribed in Set. 8.3 do not admit any geo-metri simultaneous embedding. The main idea in this proof sheme is to usethe strutures given by the path to �x a part of the tree in a spei� shapereating spei� restritions for the plaement of the further substrutures of

T and of P attahed to it.We �rst give some further de�nitions and basi topologial properties onthe interation among ells that are enfored by the preliminary argumentsabout region-level planar drawings and by the order in whih the subtrees areonneted inside one formation.Passage: Consider two ells c1(h), c2(h) that an not be separated by astraight line and a ell c′(h′), with h′ 6= h. We say that there exists a passage Pbetween c1, c2, and c′ if the polyline given by the path of c′ separates verties of
c1 from verties of c2 (see Fig. 8.5(a)). Sine the polyline an not be straight,there is a vertex of c′ lying inside the onvex hull of the verties of c1 ∪ c2,whih implies the following.Property 8.3 In a passage between ells c1, c2, and c′ there exist at least twopath-edges e1, e2 of c′ suh that both e1 and e2 are interseted by tree-edgesonneting verties of c1 to verties of c2.
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(a) (b)Figure 8.5: (a) A passage between ells c1(h), c2(h), and c′(h′). (b) Twointeronneted passages.For two passages P1 between c1(h1), c2(h1), and c′(h′
1), and P2 between

c3(h2) , c4(h2), and c′(h′
2) (w.l.o.g., we assume h1 < h′

1, h2 < h′
2, and h1 < h2),we distinguish three di�erent on�gurations: (i) If h′

1 < h2, P1 and P2 areindependent ; (ii) if h′
2 < h′

1, P2 is nested into P1; and (iii) if h2 < h′
1 < h′

2, P1and P2 are interonneted (see Fig. 8.5(b)).Doors: Let c1(h), c2(h), and c′(h′) be three ells reating a passage. Con-sider any triangle given by a vertex v′ of c′ inside the onvex hull of c1 ∪ c2and by any two verties of c1 ∪ c2. This triangle is a door if it enloses neitherany other vertex of c1, c2 nor any vertex of c′ that is loser than v′ to jh′ in
T . A door is open if no tree edge inident to v′ rosses the opposite side ofthe triangle, that is, the side between the verties of c1 and c2 (see Fig. 8.6(a)),otherwise it is losed (see Fig. 8.6(b)).
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r(a) (b)Figure 8.6: (a) An open door. (B) A losed door.
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210 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHConsider two joints ja and jb, with h, a, h′, b appearing in this irular orderaround the root. Any polyline onneting the root to ja, then to jb, and againto the root, without rossing tree edges, must traverse eah door by rossingboth the sides adjaent to v′. If a door is losed, suh a polyline has to bendafter rossing one side adjaent to v′ and before rossing the other one. Also,if two passages P1 and P2 are interonneted, either all the losed doors of P1are traversed by a path of tree-edges belonging to P2 or all the losed doors of
P2 are traversed by a path of tree-edges belonging to P1 (see Fig. 8.5(b)).In the rest of the argument we will exploit the fat that the losed door of apassage requires a bend in the tree to obtain the laimed property that a largepart of T has to follow the same shape. In view of this, we state the followinglemmata relating the onepts of doors, passages, and formations.Lemma 8.2 For eah formation F (H), with H = (h1, . . . , h4), there exists apassage between some ells c1(ha), c2(ha), c′(hb) ∈ F (H), with 1 ≤ a, b ≤ 4.Lemma 8.3 Eah passage ontains at least one losed door.From the previous lemmata we onlude that eah formation ontains atleast one losed door. To prove that the e�ets of losed doors belonging todi�erent formations an be ombined to obtain more restritions on the way inwhih the tree has to bend, we exploit a ombinatorial argument based on theRamsey Theorem [GRS90℄ and state that there exists a set of joints pairwisereating passages.Lemma 8.4 Given a set of joints J = {j1, . . . , jy}, with |J | = y :=

(
27·3·x+2

3

),there exists a subset J ′ = {j′1, . . . , j′r}, with |J ′| = r ≥ 27 · 3 · x, suh that foreah pair of joints j′i, j
′
h ∈ J ′ there exist two ells c1(i), c2(i) reating a passagewith a ell c′(h).Now we formally de�ne the laimed property that part of the tree has tofollow a �xed shape by onsidering how the drawing of the subtrees attahedto two di�erent joints fore the drawing of the subtrees attahed to the jointsbetween them in the order around the root.Enlosing bendpoints: Consider two paths p1 = {u1, v1, w1} and p2 =

{u2, v2, w2}. The bendpoint v1 of p1 enloses the bendpoint v2 of p2 if v2 isinternal to triangle △(u1, v1, w1). See Fig. 8.7(a).Channels: Consider a set of joints J = {j1, . . . , jk} in lokwise orderaround the root. The hannel ci of a joint ji, with i = 2, . . . , k − 1, is the
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1v

u 2v
1w

w22u

1

1 cs2
cs

43cs
cs(a) (b)Figure 8.7: (a) An enlosing bendpoint. (b) A 3-hannel and its hannel seg-ments.region given by the pair of paths, one path of ji−1 and one path of ji+1, withthe maximum number of enlosing bendpoints with eah other. We say that ciis an x-hannel if the number of enlosing bendpoints is x. Observe that, byProperty 8.1, x ≤ 3. A 3-hannel is depited in Fig. 8.7(b). Note that, givenan x-hannel ci of ji, all the verties of the subtree rooted at ji that are atdistane at most x from the root lie inside ci.Channel segments: An x-hannel ci is omposed of x + 1 parts alledhannel segments (see Fig. 8.7(b)). The �rst hannel segment cs1 is the part of

ci that is visible from the root. The h-th hannel segment csh is the region of
ci disjoint from csh−1 that is bounded by the elongations of the paths of ji−1and ji+1 after the h-th bend.Observe that, as the hannels are reated by tree-edges, any tree-edge on-neting verties in the hannel has to be drawn inside the hannel, while path-edges an ross other hannels. In the following we study the relationshipsbetween path-edges and hannels.The following property desends from the fat that every seond vertexreahed by P in a ell is either a 1-vertex or a stabilizer.Property 8.4 For any path edge e = (a, b), at least one of a and b lie insideeither cs1 or cs2.Bloking uts: A bloking ut is a path edge onneting two onseutivehannel segments by utting some of the other hannels twie. See Fig. 8.8.Property 8.5 Let c be a hannel that is ut twie by a bloking ut. If c hasverties in both the hannel segments ut by the path edge, then it has someverties in a di�erent hannel segment.
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212 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHProof: Consider the verties lying in the two hannel segments of c. In order toonnet them in T , a vertex v is needed in the bendpoint area of c. However, inorder to have path onnetivity between v and the verties in the two hannelsegments, some verties in a di�erent hannel segment are needed. 2

Figure 8.8: A bloking ut.In the following lemma we show that in a set of joints as in Lemma 8.4 itis possible to �nd a suitable subset suh that eah pair of paths of tree-edgesstarting from the root and ontaining suh joints has at least two ommonenlosing bendpoints, whih implies that most of them reate 2-hannels.Lemma 8.5 Consider a set of joints J = {j1, . . . , jk} suh that there ex-ists a passage between eah pair (ji, jh), with 1 ≤ i, h ≤ k. Let P1 = {P |
P onnets ci and c 3k

4
+1−i, for i = 1, . . . , k

4} and P2 = {P | P onnets c k
4
+iand ck+1−i, for i = 1, . . . , k

4} be two sets of passages between pairs of joints in
J (see Fig. 8.17). Then, for at least k

4 of the joints of one set of passages, say
P1, there exist paths in T , starting at the root and ontaining these joints,whih traverse all the doors of P2 with at least 2 and at most 3 bends. Also, atleast half of these joints reate an x-hannel, with 2 ≤ x ≤ 3.By Lemma 8.5, any formation attahed to a ertain subset of joints must useat least three di�erent hannel segments. In the remainder of the argument wefous on this subset of joints and give some properties holding for it, in termsof interation between di�erent formations with respet to hannels. Sine weneed a full sequene of extended formations attahed to these joints, k has tobe at least eight times the number of hannels inside a sequene of extendedformations, that is, k ≥ 8 · 48x = 27 · 3x.First, we give some further de�nitions.Nested formations A formation F is nested in a formation F ′ if thereexist two edges e1, e2 ∈ F and two edges e′1, e

′
2 ∈ F ′ utting a border cb ofa hannel c suh that all the verties of the path in F between e1 and e2 lie
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j j
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j
jjFigure 8.9: Two sets of passages P1 and P2 as desribed in Lemma 8.5.inside the region delimited by cb and by the path in F ′ between e′1 and e′2 (seeFig. 8.10(a)).A series of pairwise nested formations F1, . . . , Fk is r-nested if there exist rformations Fq1

, . . . , Fqr
, with 1 ≤ q1, . . . , qr ≤ k, belonging to the same hanneland suh that, for eah pair Fqp

, Fqp+1
, there exists at least one formation Fz,

1 ≤ z ≤ k, belonging to another hannel and suh that Fqp
is nested in Fz and

Fz is nested in Fqp+1
(see Fig. 8.10(b)).
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J(a) (b) ()Figure 8.10: (a) A formation F nested in a formation F ′. (b) A series of
r-nested formations. () Two independent sets S1 and S2.Independent sets of formations Let S1, . . . , Sk be sets of formations ofone extended formation suh that eah set Si ontains formations Fi(H1), . . . ,
Fi(Hr) on the set of 4-tuples H = {H1, . . . , Hr}, where the joints of Hi arebetween the joints of Hi−1 and of Hi+1 in the order around the root. Further,let Fa(Hc) be not nested in Fb(Hd), for eah 1 ≤ a, b ≤ k, a 6= b, and 1 ≤
c, d ≤ r. If for eah pair of sets Sa, Sb there exist two lines l1, l2 separating theverties of Sa and Sb inside hannel segment cs1 and cs2, respetively, the setsare independent (see Fig. 8.10()).
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214 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHIn the following lemmata we prove that in any extended formation thereexists a nesting of a ertain depth (Lemma 8.8). This important property willbe the starting point for the �nal argument and will be deeply exploited inthe rest of the hapter. We get to this onlusion by �rst proving that in anextended formation the number of independent sets of formations is limited(Lemma 8.6) and then by showing that, although there exist formations thatare neither nested nor independent, in any extended formation there exists aertain number of pairs of formation that have to be either independent ornested (Lemma 8.7).Lemma 8.6 There exist no n ≥ 222·14 independent sets of formations S1, . . . , Sninside any extended formation, where eah Si ontains formations of a �xed setof hannels of size r ≥ 22.Lemma 8.7 Consider four subsequenes Q1, . . . , Q4, where Qi = (H1, H2, . . . , Hx),of an extended formation EF , eah onsisting of a whole repetition of EF .Then, there exists either a pair of nested subsequenes or a pair of independentsubsequenes.Lemma 8.8 Consider an extended formation EF (H1, H2, . . . , Hx). Then, thereexists a k-nesting, where k ≥ 6, among the formations of EF .One the existene of 2-hannels and of a nesting of a ertain depth in eahextended formation has been shown, we turn our attention to study how suha deep nesting an be performed inside the hannels.Let csa and csb, with 1 ≤ a, b ≤ 4, be two hannel segments. If theelongation of csa intersets csb, then it is possible to onnet from csb to csa byutting both the sides of csa. In this ase, csa and csb have a 2-side onnetion(see Fig. 8.11(b)). On the ontrary, if the elongation of csa does not interset
csb, only one side of csa an be used. In this ase, csa and csb have a 1-sideonnetion (see Fig. 8.11(a)).Based on these di�erent ways of onneting distint hannel segments, wesplit our proof into three parts, the �rst one dealing with the setting in whihonly 1-side onnetions are allowed, the seond one allowing one single 2-sideonnetion, and the last one takling the general ase.Proposition 8.1 If there exist only 1-side onnetions, then T and P do notadmit any geometri simultaneous embedding.
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8.4. OVERVIEW 215
(a) (b)Figure 8.11: (a) A 1-side onnetion. (b) A 2-side onnetion.We prove this proposition by showing that, in this on�guration, the exis-tene of a deep nesting in a single extended formation, proved in Lemma 8.8,results in a rossing in either T or P .Lemma 8.9 If an extended formation lies in a part of the hannel that on-tains only 1-side onnetions, then T and P do not admit any geometri si-multaneous embedding.Next, we study the ase in whih there exist 2-side onnetions. We distin-guish two types of 2-side onnetions, based on the fat that the elongation ofhannel segment csa interseting hannel segment csb starts at the bendpointthat is loser to the root, or not. In the �rst ase we have a low Intersetion(see Fig. 8.12(a)), denoted by I l

(a,b), and in the seond ase we have a highIntersetion (see Fig. 8.12(b)), denoted by Ih
(a,b), where a, b ∈ {1, . . . , 4}. Weuse the notation I(a,b) to desribe both Ih

(a,b) and I l
(a,b). We say that two in-tersetions I(a,b) and I(c,d) are disjoint if a, d ∈ {1, 2} and b, c ∈ {3, 4}. Forexample, I(1,3) and I(4,2) are disjoint, while I(1,3) and I(2,4) are not.

r r(a) (b)Figure 8.12: (a) A low Intersetion. (b) A high Intersetion.
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216 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHSine onseutive hannel segments an not reate any 2-side onnetion, inorder to explore all the possible shapes we onsider all the ombinations of lowand high intersetions reated by hannel segments cs1 and cs2 with hannelsegments cs3 and cs4. With the intent of proving that intersetions of di�erenthannels have to maintain ertain onsistenies, we state the following lemma.Lemma 8.10 Consider two hannels chp, chq with the same intersetions. Then,none of hannels chi, where p < i < q, have an intersetion that is disjointwith the intersetions of chp and of chq.As for Proposition 8.1, in order to prove that 2-side onnetions are notsu�ient to obtain a simultaneous embedding of T and P , we exploit theexistene of the deep nesting shown in Lemma 8.8. First, we analyze someproperties relating suh nesting to hannel segments and bending areas. Abending area b(a, a + 1) is the region between csa and csa+1 where bendpointsan be plaed. We �rst observe that all the extended formations have to plaeverties inside the bending area of the hannel segment where the nesting takesplae, and then prove that not many of the formations involved in the nestingan use the part of the path that reates the nesting to plae verties in suha bending area, whih implies that the extended formations have to reah thebending area in a di�erent way.Lemma 8.11 Consider an x-nesting of a sequene of extended formations onan intersetion I(a,b), with a ≤ 2. Then, there exists a triangle t in the nestingthat separates some of the triangles nesting with t from the bending area b(a, a+
1) (or b(a− 1, a)).Then, we study some of the ases involving 2-side onnetions and we showthat the onnetions between the bending area and the "endpoints" of thenesting reate a further nesting of depth greater than 6. Hene, if no further2-side onnetion is available, this seond nesting is not drawable.Proposition 8.2 Let t be a triangle open on a side splitting a hannel segment
cs into two parts suh that every extended formation EF has verties in bothparts. If the only possibility to onnet verties in di�erent parts of cs is with a
1-side onnetion and if any suh onnetion reates a triangle open on a sidethat is nested with t, then T and P do not admit any geometri simultaneousembedding.
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8.4. OVERVIEW 217
w

cs
v

uFigure 8.13: A situation as in Proposition 8.2. The hosen turning vertex isrepresented by a big blak irle and is in on�guration β. The inner and theouter areas are represented by a light grey and a dark grey region, respetively.Refer to Fig. 8.13. Consider the two path-edges e1 = (u, v), e2 = (v, w)reating t suh that the ommon point v is in the hannel segment cs that issplit into two parts, that we all inner area and outer area, respetively. Weassume that e1, e2 do not ut any hannel segment cs′ ompletely, sine suha ut would reate more restritions than plaing u or w inside cs′. Considerthe path in an extended formation EF onneting the inner and the outer areathrough a 1-side onnetion at cs′. As a generalization, onsider for suh a pathof EF only a vertex, alled turning vertex, whih is plaed in cs′ and for whihno other path in EF exists that onnets the inner and the outer area by usinga hannel segment cs′′ suh that the subpath to cs′′ intersets either cs′′ or itselongation. If there exist more than one of suh verties, then arbitrarily hooseone of them. Observe that the path onneting from the inner area to the outerarea through the turning vertex enloses exatly one of u and w. If it enloses
u, it is in on�guration α, otherwise it is in on�guration β. If there exist bothpaths in α and paths in β on�guration, then we arbitrarily onsider one ofthem. Finally, onsider the onnetions between di�erent extended formationsinside a sequene of extended formations. Consider a turning vertex v in ahannel segment cs of a hannel ch suh that the edges inident to v ut ahannel ch′. Then, any onnetion of an extended formation of ch′ from theinner to the outer area in the same on�guration as ch and with its turningvertex v′ in cs is suh that v′ lies inside the onvex hull of the two edges inidentto v.In the following two lemmata we show that in the setting desribed inProposition 8.2 there exists a rossing either in T or in P .
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218 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHLemma 8.12 In a situation as desribed in Proposition 8.2, not all the ex-tended formations in a sequene of extended formations an plae turning ver-ties in the same hannel segment.Lemma 8.13 In a situation as desribed in Proposition 8.2, T and P do notadmit any geometri simultaneous embedding.Based on the property given by Proposition 8.2, we present the seond partof the proof, in whih we show that having two intersetions I(a,b) and I(c,d)does not help if I(a,b) and I(c,d) are not disjoint.Proposition 8.3 If there exists no pair of disjoint 2-side onnetions, then
T and P do not admit any geometri simultaneous embedding.Observe that, in this setting, it is su�ient to restrit the analysis to ases
I(1,3) and I(3,1), sine the ases involving 2 and 4 an be redued to them.Lemma 8.14 If a shape ontains an intersetion I(1,3) and does not ontainany other intersetion that is disjoint with I(1,3), then T and P do not admitany geometri simultaneous embedding.Lemma 8.15 If there exists a sequene of extended formation in any shapeontaining an intersetion I(3,1), then T and P do not admit any geometrisimultaneous embedding.Observe that, in the latter lemma, we proved a property that is strongerthan the one stated in Proposition 8.3. In fat, we proved that a simultaneousembedding annot be obtained in any shape ontaining an intersetion I(3,1),even if a seond intersetion that is disjoint with I(3,1) is present.Finally, in the third part of the proof, we takle the general ase where twodisjoint intersetions exist.Proposition 8.4 If there exists two disjoint 2-side onnetions, then T and
P do not admit any geometri simultaneous embedding.Sine the ases involving intersetion I3,1 were onsidered in Lemma 8.15,we only have to onsider the eight di�erent on�gurations where one interse-tion is I(1,3) and the other is one of I(4,{1,2}). In the next three lemmata weover the ases involving Ih

(1,3) and in Lemma 8.19 the ones involving I l
(1,3).
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8.4. OVERVIEW 219Consider two onseutive hannel segments csi and csi+1 of a hannel c andlet e be a path-edge rossing the border of one of csi and csi+1, say csi. Wesay that e reates a double ut at c if the elongation of e uts c in csi+1. Adouble ut is simple if e does not ross csi+1 (see Fig. 8.14(a)) and non-simpleotherwise (see Fig. 8.14(b)). Also, a double ut of an extended formation EFis extremal with respet to a bending area b(x, x + 1) if there exists no doubleut of EF that is loser than it to b(x, x + 1).
c

i+1
csi

e
cs

c

i

csi+1e

cs(a) (b)Figure 8.14: (a) A simple double ut. (b) A non-simple double ut.Property 8.6 Any edge ek reating a double ut at a hannel k in hannelsegment csi bloks visibility to the bending area b(i, i + 1) for a part of csi ineah hannel chh with h > k (with h < k).In the following lemma we show that a partiular ordering of extremaldouble uts in two onseutive hannel segments leads to a non-planarity in
T or P . Note that, any order of extremal double uts orresponds to an orderof the onnetions of a subset of extended formations to the bending area.Lemma 8.16 Let csi and csi+1 be two onseutive hannel segments. If thereexists an ordered set S := (1, 2, . . . , 5)3 of extremal double uts utting csiand csi+1 suh that the order of the intersetions of the double uts with csi(with csi+1) is oherent with the order of S, then T and P do not admit anygeometri simultaneous embedding.Then, we show that shape Ih

(1,3) I(4,2) indues this order. To prove this, we�rst state the existene of double uts in shape Ih
(1,3) Ih

(4,2). The existene ofdouble uts in shape Ih
(1,3) I l

(4,2) an be easily seen.
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220 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHLemma 8.17 Eah extended formation in shape Ih
(1,3) Ih

(4,2) reates double utsin at least one bending area.Lemma 8.18 Every sequene of extending formations in shape Ih
(1,3) Ih,l

(4,2)ontains an ordered set (1, 2, . . . , 5)3 of extremal double uts with respet tobending area either b(2, 3) or b(3, 4).Finally, we onsider the on�gurations where one intersetion is I l
(1,3) andthe other one is one of Ih,l

(4,2). Observe that, in both ases, hannel segment cs2is on the onvex hull.Lemma 8.19 If hannel segment cs2 is part of the onvex hull, then T and
P do not admit any geometri simultaneous embedding.Based on the above disussion, we state the following theorem.Theorem 8.1 There exist a tree and a path that do not admit any geometrisimultaneous embedding.Proof: Let T and P be the tree and the path desribed in Set. 8.3. Then,by Lemma 8.5, Lemma 8.10, and Property 8.1, a part of T has to be drawninside hannels having at most four hannel segments. Also, by Lemma 8.8,there exists a nesting of depth at least 6 inside eah extended formation.By Proposition 8.1, if there exist only 1-side onnetions, then T and P donot admit any simultaneous embedding. By Proposition 8.3, if there existseither one 2-side onnetions or a pair of non-disjoint intersetions, then T and
P do not admit any simultaneous embedding. By Proposition 8.4, even ifthere exist two disjoint 2-side intersetions, then T and P do not admit anysimultaneous embedding. Sine it is not possible to have more than two disjoint
2-side intersetions, the statement follows. 28.5 Detailed ProofsLemma 8.2. For eah formation F (H), with H = (h1, . . . , h4), there existsa passage between some ells c1(ha), c2(ha), c′(hb) ∈ F (H), with 1 ≤ a, b ≤ 4.Proof: Suppose, for a ontradition, that there exists no passage inside
F (H). First observe that, if two ells c1(ha), c2(ha) ∈ F (H) are separatedby a polyline given by the path passing through F (H), then either they areseparable by a straight line or suh a polyline is omposed of edges belonging
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8.5. DETAILED PROOFS 221to a ell c3(ha) of the same joint jha
. Sine, by Property 8.2, there exists no setof four ells of a given joint inside F (H) that are separable by a straight line,all the ells of F (H) of a given joint an be grouped into at most 3 di�erent sets

S1, S2, and S3 suh that ells from di�erent sets an be separated by straightlines, but ells from the same set an not. Therefore, the ells inside one ofthese sets an only be separated by other ells of the same set.
2
h1 S1

h1

S2
h3

S3
h3

S1
h2

S2
h2

S3

S 2

jh2
jh3

jh1

S1
h3

h3
h1

S
3

e

e

e
e

r

e

1

2

4

5Figure 8.15: The �ve path edges e1, . . . , e5 onneting �ve ells of set Sa
h1

with�ve ells of set Sb
h2
.Consider the onnetions of the path through F (H) with regard to thisnotion of sets of ells. Let Sy

hx
, with x = 1, . . . , 4 and y = 1, . . . , 3, be the setof ells belonging to set Sy and attahed to joint jhx

. Hene, for any two ells
c1(hx), c2(hx+1) there are nine possible ways to onnet between some Sy

hx
and

Sy′

hx+1
. Sine the part of P through F (H) visits 37 times ells from jh1

, jh2
, jh3

,in this order, there exist �ve path edges e1, . . . , e5 onneting �ve ells of set
Sa

h1
with �ve ells of set Sb

h2
, where 1 ≤ a, b ≤ 3 (see Fig.8.15). Without lossof generality, we assume that edges e1, . . . , e5 appear in this order in the partof P through F (H). Observe that e1, . . . , e5, together with the �ve ells of Sa

h1and the �ve ells of Sb
h2

they onnet, subdivide the plane into �ve regions.Sine the path is ontinuous in F (H), it onnets from the end of e1 (a ellof joint jh2
) to the beginning of e2 (a ell of joint jh1

), from the end of e2 tothe beginning of e3, and so on. If in the region between edges es and es+1,with 1 ≤ s ≤ 4, there exists no ell of joint jh3
, then the path through F (H)
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222 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHwill not traverse the region between these edges in the opposite diretion, sinethe path ontains no edges going from a ell of jh2
to a ell of jh1

and sinethe start- (and end-) ells of these edges annot be separated by straight lines.Furthermore, note that, in this ase, the path-onnetion from es to es+1 doesnot traverse the region between the edges, therefore forming a spiral shape, inthe sense that the part of the path following es+1 is separated from the part ofthe path prior to es. Sine we have �ve edges between Sa
h1

and Sb
h2

but only 3possible sets of ells on joint jh3
, at least one pair of edges exists reating anempty region and therefore a spiral separating the path.By this argument, it follows that ells attahed to joint jh4

in di�erentrepetitions of the subsequene ((h1h2h3)
37h37

4 ) in F (H) are separated by pathedges of the spirals formed by the repeated subsequene of visited ells of thejoints jh1
, jh2

, jh3
. Sine four repetitions reate four of suh separated ellson jh4

, by Property 8.2 there exists a pair of ells that are not separableby a straight line but are separated by the path. Sine the path of the spiralseparating them onsists only of ells on di�erent joints, any possible separatingpolyline leads to a ontradition to the non-existene of a passage inside F (H).
2Lemma 8.3. Eah passage ontains at least one losed door.

h’

v v’

j

Figure 8.16: There exists a losed door in eah passage.Proof: Refer to Fig. 8.16. Let P1 be a passage between c1(h), c2(h),and c′(h′). Consider any vertex v of c′ inside the onvex hull of C := c1 ∪ c2.Further, onsider all the triangles△(v, v1, v2) reated by v with any two verties
v1, v2 ∈ C suh that △(v, v1, v2) does not enlose any other vertex of C. Thepath of tree edges onneting v to jh′ enters one of the triangles. Then, eitherit leaves the triangle on the opposite side, thereby reating a losed door, orit enounters a vertex v′ of c′. Sine at least one vertex of c′ lies outside theonvex hull of C, otherwise they would not be separated by c′, it is possible torepeat the argument on triangle △(v′, v1, v2) until a losed door is found. 2
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8.5. DETAILED PROOFS 223Lemma 8.4. Given a set of joints J = {j1, . . . , jy}, with |J | = y :=
(
27·3·x+2

3

),there exists a subset J ′ = {j′1, . . . , j′r}, with |J ′| = r ≥ 27 · 3 · x, suh that foreah pair of joints j′i, j
′
h ∈ J ′ there exist two ells c1(i), c2(i) reating a passagewith a ell c′(h).Proof: By onstrution of the tree, for eah set of four joints, there areformations that visit only ells of these joints. By Lemma 8.2, there exists apassage inside eah of these formations, whih implies that for eah set of fourjoints there exists a subset of two joints reating a passage. The atual numberof joints needed to ensure the existene of a subset of joints of size r suhthat passages exist between eah pair of joints is given by the Ramsey Number

R(r, 4). This number is de�ned as the minimal number of verties of a graph
G suh that G either has a omplete subgraph of size r or an independent setof size 4. Sine in our ase we an never have an independent set of size 4, weonlude that a subset of size r exists with the laimed property. The Ramseynumber R(r, 4) is not exatly known, but we an use the upper bound diretlyextrated from the proof of the Ramsey theorem to arrive at the bound statedabove. [GRS90℄ 2Lemma 8.5. Consider a set of joints J = {j1, . . . , jk} suh that there ex-ists a passage between eah pair (ji, jh), with 1 ≤ i, h ≤ k. Let P1 = {P |
P onnets ci and c 3k

4
+1−i, for i = 1, . . . , k

4} and P2 = {P | P onnets c k
4
+iand ck+1−i, for i = 1, . . . , k

4} be two sets of passages between pairs of joints in
J (see Fig. 8.17). Then, for at least k

4 of the joints of one set of passages, say
P1, there exist paths in T , starting at the root and ontaining these joints,whih traverse all the doors of P2 with at least 2 and at most 3 bends. Also, atleast half of these joints reate an x-hannel, with 2 ≤ x ≤ 3.

j j
3k/4

2
1

k
k/2k/4

1

r

j
jjFigure 8.17: The two sets of passages P1 and P2 desribed in Lemma 8.5.Proof: Observe �rst that eah passage of P1 is interonneted with eah
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224 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHpassage of P2 and that all the passages of P1 and all the passages of P2 arenested.By Lemma 8.3 and Property 8.1, for one of P1 and P2, say P1, either forevery joint of P1 between the joints of P2 in the order around the root or forevery joint of P1 not between the joints of P2, there exists a path pi in T ,starting at the root and ontaining these joints, whih has to traverse all thedoors of P2 by making at least 1 and at most 3 bends. Also, paths p1, . . . , p k
4an be ordered in suh a way that a bendpoint of pi enloses a bendpoint of phfor eah h > i. It follows that there exist x-hannels with 1 ≤ x ≤ 3 for eahjoint. Consider now the set of joints J ′ ⊂ J visited by these paths. We assumethe joints of J ′ = {j′1, . . . j′r} to be in this order around the root.

p
1

p
r

e2

e1

p
r

p
1

e2

1e

(a) (b)Figure 8.18: (a) The separating ell c′ is in the outermost hannel. (b) Theseparating ell c′ is in the innermost hannel.Consider the path p1 whose bendpoint enloses the bendpoint of eah ofall the other paths and the path pr whose bendpoint enloses the bendpoint ofnone of the other paths (see Figs. 8.18(a) and 8.18(b)). Please note that either
p1 visits j′1 and pr visits j′r or vie versa, say p1 visits j′1. By onstrution, thereexists a passage between ells from j′1 and ells from j′r. In this passage thereexist either two path-edges e1, e2 of a ell c′(1) separating two ells c1(r), c2(r),thereby rossing the hannel of j′r, or two edges of a ell c′(r) separating twoells c1(1), c2(1), thereby rossing the hannel of j′1. We show that 1-hannelsare not su�ient to draw these passages.In the �rst ase (see Fig. 8.18(a)), both separating edges e1, e2 ross thepath pr before and after the bend, thereby reating bloking uts separatingverties of the same ell, say c1. Sine they are onneted by the path, byProperty 8.5, an additional bend is needed. In the other ase (see Fig. 8.18(b)),
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8.5. DETAILED PROOFS 225any edge onneting verties of c′(j′r) is not even rossing any edge of p1 andtherefore at least another bend is needed in the hannel. So at least one of thejoints needs an additional bend. Sine there are passages between eah pair ofjoints in J ′, all but one joint jq have a path that has to bend an additionaltime. We note that the additional bendpoint of eah path pk aside from p1,
pr, and pq has to enlose all the additional bendpoints either of p1, . . . , pk−1or of pk+1, . . . , pr. It follows that, for at least half of the joints, there exist
x-hannels where 2 ≤ x ≤ 3. 2Lemma 8.6. There exist no n ≥ 222 · 14 independent sets of formations
S1, . . . , Sn inside any extended formation, where eah Si ontains formationsof a �xed set of hannels of size r ≥ 22.Proof: Assume for a ontradition, that suh independent sets S1, . . . , Snexist. By Lemma 8.2, eah formation in eah set will ontain a passage andthereby an edge utting the hannel border. By Property 8.4 eah formationin eah set will plae an edge to either hannel segment cs1 or cs2. As an beeasily seen, there exists a set S1 of size n

2 of sets of formations that will haveat least one ommon onnetion for a �xed formation Fi in eah set Sa ⊂ S1,where 1 ≤ n. By repeating the argument we an �nd a subset S2 ⊂ S1 of size n
4suh that these sets will have at least two ommon onnetions for formations

Fi, Fh in eah set Sa ⊂ S2. By ontinuing this proedure we arrive at a subset
Sr of size n

2r that will have at least r ommon onnetions. Sine all theseommon onnetions have to onnet to either cs1 or cs2, we have identi�ed aset S = {S′
1, . . . , S

′
n
2r
} of size n

2r of sets of formations of size at least r
2 that hasall the onnetions to one spei� hannel segment CS.We now onsider the utting edges for eah of the formations of S in CS.Sine any of those an interset the hannel border on two di�erent sides, atleast half of the onnetions for a �xed formation F r

4
in all the sets will in-terset with one side of the hannel border, thereby rossing either all thehannels 1, . . . , r

4 − 1 or all the hannels r
4 + 1, . . . , r

2 , assume the �rst. Con-sider now the formations F r
8
in eah of the sets. These formations of the sets

S′
2, S

′
4, . . . , S

′
n

2r+1
will be separated on CS by the edges of the formations F r

4of the sets S′
3, S

′
5, . . . , S

′
n
2r −1. To avoid a monotoni ordering of the separatedformations and thereby the existene of an region-level nonplanar tree theseformations F r

8
have to plae verties in an adjaent hannel segment CS′. Thiswill reate bloking uts for either all the hannels 1, . . . , r

8 − 1 or all the han-nels r
8 + 1, . . . , r

4 , assume the �rst. Consider now the formations F1 in eah ofthe sets. These formations of the sets S′
3, S

′
5, . . . , S

′
n
2r −2 will be separated on

CS by the edges of the formations F r
8
of the sets S′

4, S
′
6, . . . , S

′
n
2r −3. By the
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226 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHsame argument as above also these formations have to plae verties in an adja-ent hannel segment that are visible from some of the separated areas of CS.Sine the onnetion from the formations F r
8
are bloking for the onnetionto CS′, the formations F1 have to use the remaining adjaent hannel segment

CS′′, thereby bloking all the hannels 1, . . . r2. We �nally onsider the for-mations F2 of the sets S′
4, S

′
6, . . . , S

′
10. These formations are now separated in

CS by the bloking edges to CS′ of the formations F r
8
and by the blokingedges to CS′′ of the formations F1. Therefore, these formations annot usepart of any hannel segment (tree-)visible to the separated areas in CS. So,by Property 8.2, we identi�ed a region-level nonplanar tree, in ontradition tothe assumption. 2Lemma 8.7. Consider four subsequenes Q1, . . . , Q4, where Qi = (H1, H2, . . . ,

Hx), of an extended formation EF , eah onsisting of a whole repetition of EF .Then, there exists either a pair of nested subsequenes or a pair of independentsubsequenes.Proof: Assume that no pair of nested subsequenes exists. We show thata pair of independent subsequenes exists.First, we onsider how Q1, . . . , Q4 use the �rst two hannel segments cs1and cs2. Eah of these subsequenes uses either only cs1, only cs1, or both toplae its formations. Observe that, if a subsequene uses only cs1 and anotherone uses only cs2, then suh subsequenes are learly independent. So we anassume that all of Q1, . . . , Q4 use a ommon hannel segment, say cs2.
aFigure 8.19: If three subsequenes use the same hannel segment cs, then atleast two of them are either nesting or separated in cs.Then we show that, if three subsequenes use the same hannel segment cs,then at least two of them are separated in cs. In fat, if two subsequenes using

cs are not independent, then they ontain formations on the same hannel athat interset with di�erent hannel borders of a. However, a third subsequeneontaining a formation that intersets a hannel border of a is suh that there
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8.5. DETAILED PROOFS 227exists either a nesting or a lear separation between this subsequene and theother subsequene interseting the same hannel border of a (see Fig. 8.19).This fat implies that if three subsequenes use only cs2, then at least two ofthem are independent. From this and from the fat that there are four subse-quenes using cs2, we derive that two subsequenes, say Q1, Q2, are separatedin cs2 and are not separated in cs1. Then, the third subsequene Q3 an beplaed in suh a way that it is not separated from Q1 and Q2 in cs2. However,this implies that Q4 is separated in cs1 from two of Q1, Q2, Q3 and in cs2 fromtwo of Q1, Q2, Q3, whih implies that Q4 is separated in both hannel segmentsfrom one of Q1, Q2, Q3. 2Lemma 8.8. Consider an extended formation EF (H1, H2, . . . , Hx). Then,there exists a k-nesting, where k ≥ 6, among the formations of EF .Proof: Assume, for a ontradition, that there is no k-nesting among thesequene of formations in EF . We laim that, under this assumption, thereexist more than n sequenes of independent formations in EF from the sameset of hannels C, where n ≥ 222 · 14 and |C| ≥ 22. By Lemma 8.6, suh alaim learly implies the statement.Consider sequenes that use some ommon hannels in hannel segments cs1and cs2. Then, their separation in cs1 has the opposite ordering with respetto their separation in cs2.Observe that, by Lemma 8.7, there exist at most (n− 1) · 3 di�erent nest-ings of subsequenes suh that there are less than n independent sets of sub-sequenes. Also note that, if some formations belonging to two di�erent sub-sequenes are nesting, then all the formations of these subsequenes have tobe part of some nesting. However, this does not neessarily mean for all theformations to nest with eah other and to build a single nesting.Sine the number of hannels used inside EF is greater than (n− 1) · 3 · 3,where n ≥ 222 · 14, we have a nesting onsisting of subsequenes with at least
3 di�erent defets.Let the nesting onsist of subsequenes Q1

1, . . . , Q
r
1, Q

1
2, . . . , Q

r
2, . . . , Q

1
k . . . ,

Qr
k, where Qh

i denotes the h-th ourrene of a subsequene of EF with a de-fet at hannel i. Further, let the path onnet them in the order Q1
1, Q

1
2, . . . ,

Q1
k, Q2

1, . . . , Q
2
k, . . . , Qr

k. We show that there exists a pair of independent sub-sequenes within this nesting.Consider now the �rst two nesting repetitions of sequene (H1, H2, . . . , Hx),that is, Q1
1 and Q1

2. Let the nesting onsist of a formation F (k) from Q1
1nesting in a formation F ′(s) from Q1

2. Consider the edges e1, e2 ∈ F (k) and
e′1, e

′
2 ∈ F ′(s) that are responsible for the nesting. Without loss of generality
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228 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATH
4 3 2 1 1 2 3 4 4 3 2 1 1 2 3 4 23 1 2 44 3 4 3 2 11

(a) (b) ()Figure 8.20: (a) and (b) Possible on�gurations for Q1
1, Q1

2, and Q1
3. () Therepetitions follow the outward orientation.

123 1 2 3 4 44 3 2 1 23 1 2 3 4 44 3 2 11

(a) (b)Figure 8.21: The onnetion between hannels 2 and 4 bloks visibility forthe following repetitions to the part of the hannel segment where verties ofhannel 3 were plaed till that repetition.we assume the path p that onnets e′2 and e1 not to ontain edges e′1, e2.Consider the two parts a, b of the hannel border of s, where a is between e1and e′1 and b is between e2 and e′2. Consider now the losed region delimitedby the path through F ′(s), the path p, the path through F (k), and b. Suh aregion is split into two losed regions Rin and Rnest by a (see Fig. 8.23).Observe that, in order to reah from Rin to the outer region, any pathhas to ross both a and b. We note that the part of P starting at e′2 and notontaining F (k) is either ompletely ontained in the outer region or has toross over between Rin and the outer region by traversing Rnest. Similarly, thethe part of P starting at e1 and not ontaining F ′(s) either does not reah theouter region or has to ross over between Rin and the outer region by traversing
Rnest. Furthermore, any formation F ′′ on suh a path is also either rossing
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8.5. DETAILED PROOFS 229
123 1 2 3 4 44 3 2 1

Figure 8.22: All the hannels c, . . . , x are shifted and the next repetition startsin a ompletely di�erent region.
1e’ e’2

Rin

Rnest

e21e

F’

F
a bFigure 8.23: Regions Rin and Rnest.over and thereby utting both a and b, or not. In the �rst ase F is nested in

F ′′ and F ′′ is nested in F ′.Consider now the third nesting repetition Q1
3 of sequene (H1, H2, . . . , Hx)(see Figs. 8.20(a) and 8.20(b)). It is easy to see that if Q1

3 is nested between
Q1

1 and Q1
2, then there exists a nesting of depth 1 beause Q1

3 ontains a defetat a di�erent hannel. So we have to onsider the ases when the repetitionsreate the nesting by stritly going either outward or inward. By this we meanthat the i-th repetition Q1
i has to be plaed suh that either Q1

i is nested inside
Q1

i−1 (inward) or vie versa (outward). Without loss of generality, we assumethe latter (see Fig. 8.20()).Consider now a defet in a hannel c, with 1 < c < k, at a ertain repetition
Qh

i . Sine the path is moving outward, the onnetion between hannels c −
1 and c + 1 bloks visibility for the following repetitions to the part of thehannel segment where verties of hannel c were plaed till that repetition(see Fig. 8.21(a) for an example with c = 3).



i

i �main� � 2010/2/26 � 12:27 � page 230 � #240
i

i

i

i

i

i

230 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHA possible plaement for the verties of c in the following repetitions thatdoes not inrease the depth of the nesting ould be in the same part of thehannel segment where verties of a hannel c′, with c′ 6= c, were plaed tillthat repetition. We all shift suh a move. However, in order to plae vertiesof c and of c′ in the same zone, all the verties of c belonging to the urrent ellhave to be plaed there (see dashed lines in Fig. 8.21(b), where c′ = c+1), whihimplies that a further defet in hannel c at one of the following repetitionsenloses all the verties of eah of the previously drawn ells, hene separatingthem with a straight line from the following ells. Hene, also the vertiesof c′ have to perform a shift to a hannel c′′, with c 6= c′′ 6= c′. Again, ifthe verties of c′ and of c′′ lie in the same zone, we have two ells that areseparated by a straight line and hene also the verties of c′′ have to performa shift. By repeating suh an argument we onlude that the only possibilityfor not having verties of di�erent hannels lying in the same zone is to shiftall the hannels c, . . . , x and to go bak to hannel 1 for starting the followingrepetition in a ompletely di�erent region (see Fig. 8.22, where the followingrepetition is performed ompletely below the previous one). However, thisimplies that there exist two repetitions in one on�guration that have to beseparated by a straight line and therefore are independent, in ontradition toour assumption. Therefore, we an assume that, after 3 · x + 1 repetitions,we arrive at a nesting of depth 1. By repeating this argument we arrive after
3 · x · 6 repetitions at the nesting of depth 6 laimed in the lemma. 2Lemma 8.9. If an extended formation lies in a part of the hannel thatontains only 1-side onnetions, then T and P do not admit any geometrisimultaneous embedding.Proof: First observe that, by Lemma 8.8, there exists a k-nesting with
k ≥ 6 in any extended formation EF .

F

F’
F’’

Figure 8.24: Illustration for the ase with only 1-side onnetions.
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8.5. DETAILED PROOFS 231Consider two nested formations F, F ′ ∈ EF belonging to the k-nesting.Suh formations, by de�nition, belong to the same hannel. Consider now theformation F ′′ ∈ EF belonging to a di�erent hannel suh that F is nested in
F ′′ and F ′′ is nested in F ′. Sine eah pair of hannel segments have a 1-sideonnetion, we have that F ′′ bloks visibility for F ′ on the hannel segmentused by F for the nesting (see Fig. 8.24). Hene, F ′ has to use a di�erenthannel segment to perform its nesting, whih inreases by one the numberof used hannel segments for eah level of nesting. Sine the tree supports atmost 4 hannel segments, the statement follows. 2Lemma 8.10. Consider two hannels chp, chq with the same intersetions.Then, none of hannels chi, where p < i < q, have an intersetion that isdisjoint with the intersetions of chp and of chq.Proof: The statement follows from the fat that the hannel borders of chpand chq delimit the hannel for all joints between p and q. So, if any hannel
chi, with p < i < q, had an intersetion di�erent from the one of chp and chq, itwould either interset with one of the hannel borders of chp or chq or it wouldhave to bend around one of the hannel borders, hene rossing a straight linetwie. 2Lemma 8.11. Consider an x-nesting of a sequene of extended formationson an intersetion I(a,b), with a ≤ 2. Then, there exists a triangle t in thenesting that separates some of the triangles nesting with t from the bendingarea b(a, a + 1) (or b(a− 1, a)).Proof: Consider three extended formations EF1(H1), EF2(H1), EF3(H1)lying in a hannel ch1 and two extended formations EF1(H2), EF2(H2) lying ina hannel ch2 suh that all the hannels of the sequene of extended formationsare between ch1 and ch2 and there is no formation F 6∈ EF (H1), EF (H2) nest-ing between EF1(H1), EF2(H1), EF3(H1) and EF1(H2), EF2(H2). Suppose,without loss of generality, that the bending point of ch1 is enlosed into thebending point of ch2.Consider a formation F1 ∈ EF1(H1) nesting with a formation F ′

1 ∈ EF1(H2).We have that the onnetions from F ′
1 to hannel segment a and bak has to goaround the vertex plaed by F1 on hannel segment a. Therefore, at least one ofthe onnetions of F ′

1 uts all the hannels between ch1 and ch2, that is, all thehannels where the sequene of extended formations is plaed. Suh a onne-tion separates the verties of F1 from the verties of a formation F2 ∈ EF2(H1)on hannel segment a. Therefore, at least one of the onnetions of F2 to han-nel segment a uts either all the hannels in hannel segment a or all thehannels in hannel segment a + 1 (or a − 1), hene beoming a bloking ut
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232 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHfor suh hannels. It follows that all the formations nesting inside F2 on suhhannels an not plae verties in the bending area b(a, a + 1) (or b(a− 1, a))outside F2. 2Lemma 8.12. In a situation as desribed in Proposition 8.2, not all theextended formations in a sequene of extended formations an plae turningverties in the same hannel segment.Proof: Assume, for a ontradition, that all the turning verties are in thesame hannel segment. Consider a sequene of extended formations SEF andthe extended formations in SEF using one of the sets of hannels {H1, . . . , H4}.We �rst show that in SEF there exist some extended formations usingonnetions in α on�guration and some using onnetions in β on�gurationon hannels {H1, . . . , H4}. Consider the ontinuous subsequene of extendedformations EF (H1), . . . , EF (H3) in SEF . Assume that all the turning ver-ties of these extended formations are in α on�guration. Consider a furthersubsequene of SEF on the same set of hannels with a defet at H2. Then,the onnetion between H1 and H3 rosses H2, thereby bloking any further
EF (H2) from being in α on�guration. Hene, when onsidering another sub-sequene of SEF on the same set of hannels whih does not ontain defetsat H1, . . . , H3, either the extended formation EF (H2) is in β on�guration orit uses another hannel segment to plae the turning vertex.So, onsider two hannels H1, H2 suh that there exists an extended for-mation EF (H1) in α on�guration and an extended formation EF (H2) in βon�guration. Sine all the extended formations ontain a triangle open on oneside that is nested with triangle t, we onsider �ve of suh triangles, one foreah set of hannels H2, H3, H4 and two for set H1, suh that four of the on-sidered extended formations EF (H1), . . . , EF (H4) are ontinuous in SEF andthe other one EF ′(H1) is the �rst extended formation on the set of hannels
H1 following EF (H4) in SEF .Note that, if a triangle of an extended formation EF (Hk) is nested in a tri-angle of an extended formation EF (Hs) and the triangle of EF (Hs) is nestedin a triangle of an extended formation EF ′(Hk), with k < s, then EF (Hk) hasto use a di�erent hannel segment to plae its turning vertex (see Fig. 8.25(a)).Hene, the triangles have to be ordered aording to the order of the used han-nels. Also, if the ontinuous path onneting two triangles t1 = (u, v, w), t2 =
(u′, v′, w′) of onseutive extended formations EF (Hs), EF (Hs+1) onnetsvertex u to vertex w′ (or u′ to w) via the outer area, then a triangle of
EF (H1) that ours prior to EF (Hs) and a triangle of EF ′(H1) that oursafter EF (Hs+1) are nested with the triangle given by the onnetion of t1 and
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8.5. DETAILED PROOFS 233
(a) (b)Figure 8.25: (a) Two triangles from the same hannel have to use di�erent han-nel segments if a triangle of another hannel is between them. Turning vertiesare represented by blak irles. (b) When a defet at H2 in enountered,the onnetion between EF (H1) and EF (H3) does not permit the following

EF (H2) to respet the ordering of triangles.
t2 in an ordering di�erent from the order of the hannels.Consider now the following subsequene of SEF having a defet at H2.The onnetion of EF (H1) to EF (H3) in this subsequene bloks aess forthe following EF (H2) to the area where it would have to plae verties in orderto respet the ordering of triangles (see Fig. 8.25(b)). Therefore, after 3 fullrepetitions of the sequene in SEF , at least one extended formation has to usea di�erent hannel segment to plae its turning vertex. 2Lemma 8.13. In a situation as desribed in Proposition 8.2, T and P do notadmit any geometri simultaneous embedding.Proof: Consider two extended formations EF (Hx), EF (H1) that are on-seutive in SEF . First note that the onnetion between EF (Hx) and EF (H1)uts all hannels 2, . . . , x − 1 in either hannel segment cs1 or cs2. Sine bothof these extended formations are also onneted to the bending area betweenhannel segments cs3 and cs4, it is not possible for an extended formation
EF (s), with s ∈ {2, . . . , x− 1}, to onnet from verties above the onnetionbetween EF (Hx) and EF (H1) to verties below it by following a path to thebending area. Note, further, that if all the extended formations EF (s), with
s ∈ {2, . . . , x−1}, are in the hannel segment that is not ut by the onnetionbetween EF (1) and EF (x), then a onnetion is needed from cs1 to cs2 inhannel x. However, by Lemma 8.12, after three defets in the subsequene of
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234 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATH
{2, . . . , x−1} it is no longer possible for some extended formation EF (s), with
s ∈ {2, . . . , x − 1}, to plae its turning vertex in the same hannel segment.Therefore, di�erent hannel segments have to be used by the extended forma-tion EF (s), with s ∈ {2, . . . , x − 1}. However, sine the path is ontinuousand sine the onnetion between EF (Hx) and EF (H1) is repeated after aertain number of steps, we an follow that the path reates a spiral. Also, wenote that, in order to respet the order of the sequene, it will be impossiblefor the path to reverse the diretion of the spiral. Hene, one a diretionof the spiral has been hosen, either inward or outward, all the onnetionsin the remaining part of the sequene have to follow the same. This impliesthat, if a onnetion between EF (s) and EF (s + 1) hanges hannel segment,that is, it is performed in a di�erent hannel segment than the one between
EF (s − 1) and EF (s), then all the onnetions of this type have to hange.However, when a defet at hannel s + 1 is enountered, also the onnetionbetween EF (s) and EF (s+2) has to hange hannel segment, thereby makingimpossible for any future onnetion between EF (s) to EF (s + 1) to hangehannel segment. Therefore, after a whole repetition of the sequene of SEFontaining defets at eah hannel, all the extended formations have to plaetheir turning verties in the same hannel segment, whih is not possible, byLemma 8.12, hene proving the statement 2Lemma 8.14. If a shape ontains an intersetion I(1,3) and does not ontainany other intersetion that is disjoint with I(1,3), then T and P do not admitany geometri simultaneous embedding.Proof: First observe that only the intersetions I(2,4) and I(1,4) are notdisjoint with I(1,3) and ould our at the same time as I(1,3). By Lemma 8.8,there exists at least a nesting greater than, or equal to, 6. Eah of suh nestingshas to take plae either at intersetions I(1,3), I(2,4) or at I(1,4). Remind that,by Property 8.4, 1-verties an only be plaed in cs1 or cs2. Also, the sortingof head verties to avoid a region-level nonplanar trees an only be done byplaing verties into cs3 or cs4. This implies that the stabilizers have to beplaed in cs1 or cs2. Note that the stabilizers also work as 1-verties in thetails of other ells. This means that if there exist seven sets of tails that anbe separated by straight lines, then there exist a region-level nonplanar tree,by Lemma 8.6. Observe that, by nesting them aording to the sequene,the previous ondition would be ful�lled. This means that we have either asorting or other nestings. We �rst show that there exist at most two x-nestingswith x ≥ 6. Every x-nesting has to take plae at either I(1,3), I(2,4) or I(1,4).We assume, w.l.o.g., to have to deal with the greatest possible number of
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8.5. DETAILED PROOFS 235intersetions.Consider the ase Ih
(2,4) (see Fig 8.26(a)). Observe that intersetions I(1,4)and I(1,3) are either both high or both low and use hannel segment cs1. Also,every onnetion from cs1 to cs4 uts either cs2 or cs3 and, if one of theseonnetions uts cs2, then every nesting utting cs1 loser to b(1, 2) has to ut

cs2. Hene, we an onsider all the onnetions to cs4 as onnetions to cs2 or
cs3. Also, sine any onnetion utting a hannel segment is more restritivethan a onnetion inside the same hannel segment, suh two nestings an beonsidered as one. Finally, sine suh a nesting onnets to b(2,3), it is notpossible to have at the same time a nesting taking plae at Ih

(2,4). Hene, weonlude that only one nesting is possible in this ase.
1

4 4
1(a) (b)Figure 8.26: (a) Case I(1,3) Ih

(2,4). (b) Case I(1,3) I l
(2,4).Consider the ase I l

(2,4) (see Fig 8.26(b)). Observe that 1-verties an beplaed at most in cs2 and 2-verties an be plaed at most in cs3. This meansthat the extended formations in every nesting have to visit these verties.Therefore, if there exists both a nesting at I(1,3) and at I(1,4), then the onne-tions to the 1- and 2-verties in the bending areas b(2, 3) and b(3, 4) are suhthat every EF nesting at I(1,4) makes a nesting with the extended formationsnesting at I(1,3). Hene, also in this ase only one nesting is possible.So we onsider the unique nesting of depth x ≤ 6 and we show that anyway of sorting the nesting formations in the hannels will ause separated ells,hene proving the existene of a nonplanar region-level tree. Consider fouronseutive repetitions of the sequene of formations. It is lear that theseformations are visiting areas of cs1 and are separated by previously plaedformations from other formations on the same hannels. This will result insome ells to beome separated in cs1. Sine, by Property 8.2, the number
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236 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHof monotonially separated ells in cs1 annot be larger than 3, for any setof four suh separated formations there exists a pair of formations F1, F2 thathange their order in cs1. These onnetions have to be made on either sideof the nesting. If between this pair of formations there is a formation of adi�erent hannel, then this formation has to hoose the other side to reorderwith a formation outside F1, F2. We further note that, if there are two suhonnetions F1, F4 and F2, F3 on the same side that are onneting formationsof one hannel, nested in the order F1, F2, F3, F4, and another onnetion onthe same side between F ′
1, F

′
2 suh that F ′

1 is nested between F1, F2 and F ′
2between F3, F4, then this reates a 1-nesting. In the following we show that anesting of depth at least 6 is reahed.Assume the repetitions of formations in the extended formation to be plaedin the order a, b, c, d, e. If this order is not oherent with the order in whihthe hannels appear in the sequene of formations inside the EF , then we havealready some onnetions that are losing either side of the nesting for someformations. So we assume them to be in the order given by the sequene. Then,onsider a repetition of formations with a defet at some hannel Ci. We havethat there exists a onnetion losing o� at one side all the previously plaedformations of Ci. However, there are sequenes with defets also at hannels

Ci+1 and Ci−1, whih an not be realized on the same side as the defets at
Ci. We generalize this to the fat that all the defets at odd hannels are toone side, while the defets at even hannels are to the other side. Sine thepath is ontinuous and has to reah from the last formation in a sequene againto the �rst one, the ontinuation of the path an only use either the odd orthe even defets. This implies that, when onsidering three further repetitionsof formations, the �rst and the third having a defet at a hannel Ci and theseond having no defet at Ci, there will be a nesting of depth one betweenthese three formations. Sine, by Lemma 8.9, there annot be a nesting ofdepth greater than 5 at this plae, we onlude that after 6 repetitions of suha triple of formations there will be at least two formations that are separatedfrom eah other. By repeating this argument we arrive after 7·6·2 repetitions ateither the existene of 7 formations that are separated on cs1 and cs2 or at theexistene of a nesting of depth 6, both of whih will not be drawable withoutthe aid of another intersetion that is able to support the seond nesting ofdepth greater than 5. 2Lemma 8.15. If there exists a sequene of extended formation in any shapeontaining an intersetion I(3,1), then T and P do not admit any geometrisimultaneous embedding.
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8.5. DETAILED PROOFS 237Proof: Consider a sequene of extended formation in a shape ontaining anintersetion I(3,1). We show that T and P do not admit any geometri simul-taneous embedding. Observe that there exist several possibilities for hannelsegment cs4 to be plaed. Either there exists no intersetion of an elongationof one hannel segment with another hannel segment or there exists at leastone of the intersetions I(1,4), I(4,2), I(4,1) or I(2,4). If there are more than oneof suh intersetions, then it is possible to have several nestings of depth x. Wenote that, if there exists the intersetion I(3,1), then at least one of cs1, cs2,and cs4 are part of the onvex hull (see Fig. 8.27).
1

3 31(a) (b)Figure 8.27: If hannel segment four is not part of the onvex hull then either
cs1 or cs2 is part of the onvex hull. (a) Case I l

(1,3). (b) Case Ih
(1,3).First, we show that there exists a nesting at I(3,1).Consider ase Ih

(3,1). We have that cs2 is on the onvex hull restrited to the�rst three hannel segments and cs4 an fore at most one of cs2 or cs1 out ofthe onvex hull. Hene, one of them is part of the onvex hull. We distinguishthe two ases.Suppose cs2 to be part of the onvex hull. Assume there exists a nestingat I(1,4). From cs4 the only possible onnetion without a 1-side onnetionis the one to cs2, whih, however, is on the onvex hull. Hene, an argumentanalogous to the one used in Lemma 8.14 proves that the nesting at I(2,4) hassize smaller than 7 ∗ 12, whih implies that the rest of the nesting has to takeplae at I(3,1).Suppose cs1 to be part of the onvex hull. Assume that there exists anesting at I(2,4). Every onnetion from cs4 has to be either to cs1 or to cs2,by Property 8.4. Sine cs2 is already part of the nesting, we have onnetions to
cs1. However, cs1 is on the onvex hull, hene allowing only 1-side onnetions.Therefore, an argument analogous to the one used in Lemma 8.14 proves thatthe nesting at I(2,4) has size smaller than 7 ∗ 12, whih implies the rest of thenesting has to take plae at I(3,1).
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238 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHConsider ase I l
(3,1). Sine cs2 is not part of the onvex hull, either cs1 or

cs4 are. If cs1 is on the onvex hull, then the same argument as before holds,while if cs4 is on the onvex hull, then no reordering is possible.Clearly, if there is no intersetion other than I(3,1), a nesting in the inter-setion I(3,1) has to be performed.Hene, we onlude that a nesting with a depth of 7 ∗ 12 in every extendedformation has to take plae at I(3,1) (or at I(4,1), whih an be onsidered asthe same ase).By Lemma 8.11, the nesting in the bending area is limited. Every extendedformation EF whih has at least one vertex either in cs3 or in cs4 has avertex in the bending area. Consider a sequene of extended formations SEFwhih uses only hannels in this partiular shape. It's obvious that all ofthese EF in SEF have to do a nesting at I(3,4,1). Observe that there existtwo onseutive edges whih are forming a triangle with cs1, cs2, and cs3 bysimply plaing verties inside the hannel segments. Sine every EF reatessuh triangles, there exists a triangle whih is not in the bending area and suhthat there exists no other triangle between the bending area and this triangle.This triangle is separating the nesting area from the bending area in all but sextended formations. However, sine every EF has to use both of suh areas,the inner area of cs3 (or cs4) has to onnet to the outer area of cs3 (or cs4).If cs1 is on the onvex hull, then there exist only 1-sided onnetions, whihimplies the statement, by Lemma 8.13. On the other hand, if cs1 is not onthe onvex hull, then there exists I(1,4) and cs4 an be also used to performonnetions from the inner to the outer area. However, sine cs4 is on theonvex hull, suh onnetions are only 1-side. Hene, by Lemma 8.13, thestatement follows. 2Lemma 8.16. Let csi and csi+1 be two onseutive hannel segments. Ifthere exists an ordered set S := (1, 2, . . . , 5)3 of extremal double uts utting
csi and csi+1 suh that the order of the intersetions of the double uts with
csi (with csi+1) is oherent with the order of S, then T and P do not admitany geometri simultaneous embedding.Proof: Suppose, for a ontradition, that suh a set S exists. Assume�rst that csi and csi+1 are suh that the bendpoint of hannel 5 enloses thebendpoint of all the other hannels. Hene, any edge reating a double ut ata hannel c has to ut all the hannels c′ with c′ > c, either in csi or in csi+1.Refer to Fig. 8.28.Consider the �rst repetition (1, 2, . . . , 5). Let e1 be an edge reating a doubleut at hannel 1. Assume, without loss of generality, that e1 uts hannel
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8.5. DETAILED PROOFS 239segment csi. Observe that, for hannel 1, the visibility onstraints determinedin hannels 2, . . . , 5 in csi and in csi+1 by the double ut reated by e1 do notdepend on whether it is simple or non-simple. Indeed, by Property 8.6, edge
e1 bloks visibility to b(i, i + 1) for the part of csi where edges reating doubleuts at hannels 2, . . . , 5 following e1 in S have to plae their end-verties.

5e

3e’

2e

3e

i+1csics

1e

1
35 5

3
1

5e

3e

i+1csics

1e

3 1
5 5

3
1(a) (b)Figure 8.28: Proof of Lemma 8.16. (a) e3 uts csi. (b) e3 uts csi+1.Then, onsider an edge e3 reating a double ut at hannel 3 in the �rstrepetition of (1, 2, . . . , 5).If e3 uts csi (see Fig. 8.28(a)), then it has to reate either a non-simpledouble ut or a simple one. However, in the latter ase, an edge e′3 between csiand csi+1 in hannel 3, whih reates a bloking ut in hannel 2, is needed.Hene, in both ases, hannel 2 is ut both in csi and in csi+1, either by e3or by e′3. It follows that an edge e2 reating a double ut at hannel 2 in theseond repetition of (1, 2, . . . , 5) has to ut csi+1, hene bloking visibility to

b(i, i + 1) for the part of csi+1 where edges reating double uts at hannels
3, . . . , 5 following it in S have to plae their end-verties, by Property 8.6.Further, onsider an edge e5 reating a double ut at hannel 5 in the seondrepetition of (1, 2, . . . , 5). Sine visibility to b(i, i + 1) is bloked by e1 and e3in csi and by e2 in csi+1, e2 has to reate a non-simple double ut (or a simpleone plus a bloking ut), hene utting hannel 4 both in csi and in csi+1. Itfollows that, by Property 8.5, an edge e4 reating a double ut at hannel 4 inthe third repetition of (1, 2, . . . , 5) an plae its end-vertex neither in csi norin csi+1.If e3 uts csi+1 (see Fig. 8.28(b)), then it has to reate a simple double ut.Again, by Property 8.6, edge e3 bloks visibility to b(i, i + 1) for the part of
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240 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATH
csi+1 where edges reating double uts following e3 in S have to plae theirend-verties. Hene, an edge e5 reating a double ut at hannel 5 in the �rstrepetition of (1, 2, . . . , 5) annot reate a simple double ut, sine its visibilityto b(i, i + 1) is bloked by e1 in csi and by e3 in csi+1. This implies that e5reates a non-simple double ut (or a simple one plus a bloking ut) at hannel
5, utting either csi or csi+1, hene utting hannel 4 both in csi and in csi+1.It follows that, by Property 8.5, an edge e4 reating a double ut at hannel 4in the seond repetition of (1, 2, . . . , 5) an plae its end-vertex neither in csinor in csi+1.The ase in whih csi and csi+1 are suh that the bendpoint of 1 enlosesthe bendpoint of all the other hannels an be proved analogously. Namely, thesame argument holds with hannel 5 playing the role of hannel 1, hannel 1playing the role of hannel 5, hannel 3 having the same role as before, hannel
4 playing the role of hannel 2, and hannel 2 playing the role of hannel
4. Observe that, in order to obtain the needed ordering in this setting, 3repetitions of (1, 2, . . . , 5) are needed. In fat, we onsider hannel 5 in the �rstrepetition, hannels 3 and 4 in the seond one, and hannels 1 and 2 in thethird one. 2Lemma 8.17. Eah extended formation in shape Ih

(1,3) Ih
(4,2) reates doubleuts in at least one bending area.Proof: Refer to Fig. 8.29(a). Assume, without loss of generality, thatthe �rst bendpoint of hannel c1 enloses the �rst bendpoint of all the otherhannels. This implies that the seond and the third bendpoints of hannel c1are enlosed by the seond and the third bendpoints of all the other hannels,respetively.Suppose, for a ontradition, that there exists no double ut in b(2, 3) andin b(3, 4). Hene, any edge e onneting to b(2, 3) (to b(3, 4)) is suh that e andits elongation ut eah hannel one. Consider an edge onneting to b(2, 3) ina hannel ci. Suh an edge reates a triangle together with hannel segments

3 and 4 of hannel ci whih enloses the bending areas b(3, 4) of all the thehannels ch with h < i by utting suh hannels twie. Hene, a onnetion tosuh a bending area in one of these hannels has to be performed from outsidethe triangle. However, sine in shape Ih
(1,3) Ih

(4,2) both the bending areas b(2, 3)and b(3, 4) are on the onvex hull, this is only possible with a double ut, whihontradits the hypothesis. 2Lemma 8.18. Every sequene of extending formations in shape Ih
(1,3) Ih,l

(4,2)ontains an ordered set (1, 2, . . . , 5)3 of extremal double uts with respet tobending area either b(2, 3) or b(3, 4).
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8.5. DETAILED PROOFS 241
1

4

3

2

1cr r

4

3
1

2

(a) (b)Figure 8.29: (a) Shape Ih
(1,3) Ih

(4,{1,2}) has to onnet at least one bend withdouble uts. (b) Shape Ih
(1,3) I l

(4,2) has to onnet bend b(2, 3) with doubleuts.Proof: Shape Ih
(1,3) Ih

(4,2) is similar to shape Ih
(1,3) Ih

(4,1), depited in Fig. 8.29(a),with the only di�erene on the slope of hannel segment 4, whih is suh thatits elongation rosses hannel segment 2 and not hannel segment 1. Shape
Ih
(1,3) I l

(4,2) is depited in Fig. 8.29(b).Assume, without loss of generality, that the �rst bendpoint of hannel c1 isenlosed by the �rst bendpoint of all the other hannels. This implies that theseond bendpoint of hannel c1 enloses the seond bendpoint of all the otherhannels.First observe that bending area b(2, 3) is on the onvex hull, both in shape
Ih
(1,3) Ih

(4,2) and in shape Ih
(1,3) I l

(4,2).Also, observe that all the extended formations have some verties in b(2, 3)and in b(3, 4), and hene all the extended formations have to reah suh vertieswith path-edges.In shape Ih
(1,3) Ih

(4,2), by Lemma 8.17, there exist double uts either in b(2, 3)or in b(3, 4), while in shape Ih
(1,3) I l

(4,2) there exist double uts in b(2, 3), sinethe only possible onnetions to b(2, 3) are from hannel segments 1 and 4,whih are both reating double uts (see Fig. 8.29(b)). Hene, we onsider theextremal double uts of eah extended formation with respet to one of b(2, 3)or b(3, 4), say b(2, 3).However, every repetition of extended formations inside a sequene of ex-tended formations ontains a double defet at some hannel. We show, withan argument similar to the one used in Lemma 8.8, that the presene of suhdouble defets determines an ordering (1, 2, . . . , 5)3 of extremal double uts af-
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242 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHter a ertain number of repetitions of extended formations inside a sequeneof extended formations. Namely, onsider a double defet at hannel i in aertain repetition. The onnetion between hannels i− 1 and i + 2 annot beperformed in the same area as the onnetion between hannels i−1 and i andbetween hannels i and i + 1 was performed in the previous repetition. Hene,suh a onnetion has to be performed either in the same area as the onnetionbetween hannels i+1 and i+2 was performed (see Fig. 8.30(b)), or in hannelsegment 4 (this is only possible in shape Ih
(1,3) I l

(4,2), see Fig. 8.30()). Observethat, going to hannel segment 4 to make the onnetion, then to hannel seg-ment 1, and �nally bak to b(2, 3), hene reating a spiral, implies that theonsidered double ut is not extremal (see Fig. 8.30(d)). Therefore, the onlypossibility to onsider when hannel segment 4 is used is to make the onne-tion between hannels i − 1 and i + 2 there and then to ome bak to b(2, 3)with a double ut. Hene, independently on whether hannel segment 4 is usedor not, the onnetion between hannels i− 1 and i + 2 bloks visibility for thefollowing repetitions to the areas where the onnetions between some han-nels were performed in the previous repetition. This implies that the ordering
(1n, 2n, . . . , 5n) of extremal double uts annot be respeted in the followingrepetitions. In fat, a partial order (i, i+1, i+2)2 is obtained in a repetition offormations reating extremal double uts at hannels 1, . . . , 5. Also, when twodi�erent double defets having a hannel in ommon are onsidered, the e�etof suh defets is ombined. Namely, onsider a double defet at hannel 3 ina ertain repetition. Consider two sets of extended formations reating doubleuts in b(2, 3) at hannels 1, . . . , 5, respetively. Observe that the extendedformations in these two sets ould be plaed in suh a way that the orderingof their extremal double uts is (1, 1, 2, 2, . . . , 5, 5). The same holds for thefollowing ourrenes of extended formations reating double uts in b(2, 3) athannels 1, . . . , 5, respetively. Clearly, in this way an ordering (1n, 2n, . . . , 5n)ould be ahieved and hene an ordered set (1, 2, . . . , 5)3 of double uts wouldbe never obtained (see Fig. 8.30(a)). The onnetion between hannels 2 and 5bloks visibility to the areas where the onnetion between 2 and 3 and between
3 and 4 were performed at the previous repetitions (see Fig. 8.31(a)).
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5
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() (d)Figure 8.30: (a) The ordering of the extremal double uts is (1, 1, 2, 2, . . . , 5, 5).(b) and () When a double defet is enountered, the onnetion between han-nels i − 1 and i + 2 annot be performed in the same area as the onnetionbetween hannels i− 1 and i and between hannels i and i + 1 was performedin the previous repetition: (b) The onnetion is performed in the same areaas the onnetion between hannels i + 1 and i + 2 was performed. () Theonnetion is performed in hannel segment 4. (d) If hannel segment four isused to spiral, the onsidered double ut was not extremal.
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() (d)Figure 8.31: (a) A repetition with a double defet in hannel 2 is onsidered.(b) A repetition with a double defet in hannel 0 is onsidered. () A repetitionwithout any double defet in hannels 1, . . . , 5 is onsidered. (d) An orderedset (1, . . . , 5) is obtained.
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8.5. DETAILED PROOFS 245Then, onsider a double defet at hannel 1 in a following repetition. Wehave that the onnetion between hannels 0 and 3 an not be performed wherethe onnetion between 2 and 3 was performed in the previous repetitions, sinesuh an area is bloked by the presene of the onnetion between hannels 2and 5. Hene, a double ut at hannel 3 has to be plaed after the double utat hannel 5 reated in the previous repetition (see Fig. 8.31(b)). Considernow a further repetition with a defet not involving any of hannels 1, . . . , 5.The region where the onnetion from 1 to 2 was performed in the previousrepetitions is bloked by the onnetion between 0 and 3 and hene a doubleut at hannel 1 has to be plaed after the one at hannel 3 of the previ-ous repetition, whih, in its turn, was reated after the one at hannel 5 (seeFig. 8.31()). Also, all the double uts at hannels 2, . . . , 5 have to be plaedafter the double ut at 1, and hene a shift of the whole sequene 1, . . . , 5 afterthe double ut at 5 is performed and an ordered set (1, 2, . . . , 5)2 is obtained(see Fig. 8.31(d)). Observe that at most two sets of repetitions of extendedformation inside a sequene of extended formations suh that eah set ontainsa double defet at eah hannel are needed to obtain suh a shift. By repeatingsuh an argument we obtain another shifting of the whole sequene (1, . . . , 5),whih results in the desired ordered set (1, 2, . . . , 5)3. We have that a set ofrepetitions of extended formation ontaining a double defet at eah hannelis needed to obtain the �rst sequene (1, 2, . . . , 5)2, then two of suh sets areneeded to get to (1, 2, . . . , 5)2, and two more are needed to get to (1, 2, . . . , 5)3,whih proves the statement.Observe that, if it were possible to partition the defets into two sets suhthat there exists no pair of defets involving a ommon hannel inside the sameset, then suh sets ould be independently drawn inside two di�erent areasand the e�ets of the defets ould not be ombined to obtain (1, 2, . . . , 5)3.However, sine eah double defet involves two onseutive hannels, at leastthree sets are needed to obtain a partition with suh a property. In that ase,however, an ordered set (1, 2, . . . , 5)3 ould be obtained by simply onsideringa repetition of (1, 2, . . . , 5) in eah of the sets. 2Lemma 8.19. If hannel segment cs2 is part of the onvex hull, then T and
P do not admit any geometri simultaneous embedding.Proof: First observe that, with an argument analogous to the one used inLemma 8.14, it is possible to show that there exists a nesting at intersetion
I(4, 1, 2). Then, by Property 8.4, every vertex that is plaed in cs4 is onnetedto two verties that are plaed either in cs1 or in cs2. Hene, the ontinuouspath onneting to a vertex plaed in cs4 reates a triangle, having one orner
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246 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATHin cs4 and two orners either in cs1 or in its elongation, whih uts cs4 intotwo parts, the inner and the outer area.By Lemma 8.11, not all of these triangles an be plaed in the bendingarea b(3, 4). Hene, every extended formation, starting from the seond of thesequene, have to plae their verties in both the inner and the outer area ofthe triangle reated by the �rst one.Observe that, in order to onnet the inner to the outer area, the extendedformations an only use 1-side onnetions. Namely, cs1 reates a 1-side on-netion. Channel segment cs2 is on the onvex hull. Sine, by Property 8.4,every vertex that is plaed in cs3 is onneted to two verties that are plaedeither in cs1 or in cs2, also cs3 reates a 1-side onnetion.From this we onlude that in this on�guration the preonditions of Propo-sition 8.2 are satis�ed, and hene the statement follows. 28.6 An Algorithm for the Geometri SimultaneousEmbedding of a Tree of Depth 2 and a PathIn this setion we desribe an algorithm for onstruting a geometri simulta-neous embedding of any tree T of depth 2 and any path P . Refer to Fig. 8.32.Start by drawing the root r of T on the origin in a oordinate system.Choose a ray R1 emanating from the origin and entering the �rst quadrant,and a ray R2 emanating from the origin and entering the fourth quadrant.Consider the wedge W delimited by R1 and R2 and ontaining the positive
x-axis. Split W into t wedges W1, . . . , Wt, in this lokwise order around theorigin, where t is the number of verties adjaent to r in T , by emanating t−2equispaed rays from the origin.Then, onsider the two subpaths P1 and P2 of P starting at r. Assign anorientation to P1 and P2 suh that the two edges (r, u) ∈ P1 and (r, v) ∈ P2inident to r in P are exiting r.Finally, onsider the t subtrees T1, . . . , Tt of T rooted at a node adjaent to
r, suh that u ∈ T1 and v ∈ Tt.The verties of a subtree Ti are drawn inside wedge Wi, in suh a way that:
• vertex u is the vertex with the lowest x-oordinate in the drawing, exeptfor r;
• verties belonging to P1 are plaed in inreasing order of x-oordinateaording to the orientation of p1;
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8.6. AN ALGORITHM FOR THE GEOMETRIC SIMULTANEOUSEMBEDDING OF A TREE OF DEPTH 2 AND A PATH 247
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WFigure 8.32: A tree with depth two and a path always admit a geometrisimultaneous embedding.
• vertex v is the vertex with the highest x-oordinate in the drawing;
• verties belonging to P2 \r are plaed in dereasing order of x-oordinateaording to the orientation of p2, in suh a way that the leftmost vertexof P2 \ r is to the right of the rightmost vertex of P1; and
• no vertex is plaed below segment rv.Sine T has depth 2, eah subtree Ti, with i = 1 . . . , t, is a star. Hene, itan be drawn inside its own wedge Wi without reating any intersetion amongtree-edges. Observe that the same holds even for subtree Tt, where the wedgeto onsider is the part of Wt above segment rv.Sine P1 and P2 \ {r} are drawn in monotoni order of x-oordinate andare separated from eah other, and edge (r, v) onneting suh two paths is onthe onvex hull of the point-set, no intersetion among path-edges is reated.From the disussion above, we have the following theorem.Theorem 8.2 A tree of depth 2 and a path always admit a geometri simul-taneous embedding.
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248 CHAPTER 8. GEOMETRIC SIMULTANEOUS EMBEDDING OF ATREE AND A PATH8.7 ConlusionsIn this hapter we have shown that there exist a tree T and a path P on thesame set of verties that do not admit any geometri simultaneous embed-ding, whih means that there exists no set of points in the plane allowing aplanar drawing of both T and P . We obtained this result by extending theonept of level nonplanar trees [FK07b℄ to the one of region-level nonplanartrees. Namely, we showed that there exist trees that do not admit any planarembedding if the verties are fored to lie inside partiularly de�ned regions.Then, we onstruted T and P so that P reates these partiular regions andat least one of the many region-level nonplanar trees omposing T has its ver-ties fored to lie inside them in the desired order. Observe that our result alsoimplies that there exist two edge-disjoint trees that do not admit any geometrisimultaneous embedding, whih answers an open question posed in [GKV09℄,where the ase of two non-edge-disjoint trees was solved.It is important to note that, even if our ounterexample onsists of a hugenumber of verties, it an also be onsidered as �simple�, in the sense that thedepth of the tree is just 4. In this diretion, we proved that, if the tree hasdepth 2, then it admits a geometri simultaneous embedding with any path.This gives raise to an intriguing open question about whether a tree of depth
3 and a path always admit a geometri simultaneous embedding or not.
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Chapter 9
c-Planar Clustered GraphsIn this hapter we deal with lustered graphs and their drawings.A lustered graph is a graph together with a hierarhy tree desribing howverties are grouped into lusters. Clustered graphs are widely used in appli-ations where it is needed at the same time to represent relationships betweenentities and to group entities with semanti a�nities. For example, onsiderthe graph representing the Internet network, where the verties are the routersand the edges are the links among them. In this ase it is useful to group geo-graphially lose routers into areas, whih in turn an be further grouped intoAutonomous Systems. Also, the lustered model an be e�etively applied torepresent graphs at di�erent levels of abstrations, showing semanti relationsbetween verties and making easy the navigation of large graphs.When onsidering the problem of drawing a lustered graph, not only theplaement of the verties and the drawing of the edges have to be deided, butalso the drawing of the lusters, whih are usually represented as losed regionsenlosing all and only the verties belonging to the luster they represent. Then,the onept of planarity has to be extended to the one of c-planarity in orderto deal with the representation of the lusters. It is interesting to observethat, while testing the planarity of a given graph is a linear-time solvableproblem, testing whether a given lustered graph admits a c-planar drawing isstill a problem of unknown omplexity and represents one of the most studiedproblems in Graph Drawing in the last years.In this hapter we introdue de�nitions about lustered graphs (Set. 9.1)and their drawings (Set. 9.2), and we present the state of the art about c-planarity testing (Set. 9.3). Also, in Set. 9.3, we desribe a generalization of251
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252 CHAPTER 9. C-PLANAR CLUSTERED GRAPHSthe c-planarity testing problem, in whih it is possible to split a luster intotwo smaller lusters whenever a non-c-planarity of the input lustered graphis found. Then, the suh a problem asks for the minimum number of splits tomake the lustered graph c-planar.9.1 Clustered GraphsA lustered graph is a pair C(G, T ), where G is a graph, alled the underlyinggraph, and T is a rooted tree, alled the inlusion tree. The leaves of T are theverties of G, while eah internal node µ of T orresponds to the subset (alledluster) of the verties of G that are leaves of the subtree of T rooted at µ.A lustered graph C(G, T ) with its inlusion tree T are depited in Fig. 9.1.An edge (u, v) of G is inident to a luster µ of T if u belongs to µ and vdoes not belong to µ. We denote by σ(u1, u2, . . . , uk) the smallest luster of Tontaining verties u1, u2, . . . , uk of G, i.e., the node of T ontaining all verties
u1, u2, . . . , uk and suh that none of its hildren in T , if any, ontains all verties
u1, u2, . . . , uk. A luster is minimal if it ontains no luster. A luster µ is ananestor (desendant) of a luster ν if µ is an anestor (desendant) of ν in T .

(a) (b)Figure 9.1: (a) A lustered graph C(G, T ). (b) The inlusion tree T . Big irlesrepresent lusters, while small irles represent verties. Dashed, dotted, dash-dot alternated irles desribe the orrespondene of the nodes of T with thelusters. Suh a orrespondene is desribed only for the lusters that arehildren of the root.A lustered graph C(G, T ) is maximal if G is a maximal planar graph. Alustered graph C(G, T ) is internally-triangulated if every internal fae of G isdelimited by a 3-yle.
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9.2. DRAWING CLUSTERED GRAPHS 253Families of Clustered GraphsBesides the sub-families of lustered graphs that an be de�ned by simplify-ing the graph struture, that is, by restriting the underlying graph to belongto a simpler family of graphs, other interesting sub-lasses an be de�ned byonsidering limitations in the luster hierarhy. We say that a lustered graph
C(G, T ) is �at if any path from the root to a leaf of T ontains at most threenodes, that is, eah luster of T , exept for the root luster, is minimal. Anothertype of onstraints that an be added in order to de�ne simpler lasses of lus-tered graphs is the one onerning the degree of onnetivity of the subgraphsindued by the lusters. We say that a lustered graph C(G, T ) is -onnetedif eah luster of T indues a onneted subgraph of G, and non--onnetedotherwise. Further, we say that C(G, T ) is ompletely onneted [CW06℄ if itis c-onneted and the omplement of eah luster of T indues a onnetedsubgraph of G.9.2 Drawing Clustered GraphsA drawing Γ of a lustered graph C(G, T ) onsists of a drawing of G and ofa representation of eah node µ of T as a simple losed region ontaining alland only the verties belonging to µ. In this thesis, when we say �luster�,we refer both to the set of verties belonging to the luster and to the regionrepresenting the luster in a drawing, the meaning of the word being lear fromthe ontext.Consider an edge e of G and a node µ of T . If e rosses the boundaryof the region representing µ in Γ more than one, we say that Γ ontains anedge-region rossing between e and µ. Further, onsider two nodes µ and ν of
T . If the boundaries of the regions representing them in Γ have an intersetion,we say that Γ ontains an region-region rossing between µ and ν. We say thata drawing Γ of a lustered graph C(G, T ) is -planar if G is drawn as a planegraph in Γ and if Γ ontains no edge-region rossings and no region-regionrossings. A lustered graph is c-planar if it admits a c-planar drawing.A c-planar embedding of a c-planar lustered graph C(G, T ) is an equiva-lene lass of c-planar drawings of C, where two c-planar drawings are equiv-alent if they have the same order of the edges inident to eah vertex and thesame order of the edges inident to eah luster.The researh on lustered graphs has been quite intense in the last years inthe Graph Drawing ommunity, mainly dealing with the following two prob-lems:
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254 CHAPTER 9. C-PLANAR CLUSTERED GRAPHS1. Given a c-planar lustered graph C, onstrut a c-planar drawing of Crespeting some aestheti riteria.2. Given a lustered graph C, test whether C admits a c-planar drawing.We �rst give some results on the state of the art for the former problem.Among the aestheti riteria that are ommonly requested to be respetedfor a drawing of a lustered graph (for a drawing of a graph, in general) to bereadable, one of the most important is the one of having a small area. Conern-ing this subjet, Eades et al. showed in [EFN99℄ how to onstrut O(n2)-area
c-planar orthogonal drawings and O(n2)-area c-planar polyline drawings of c-planar lustered graphs with lusters drawn as axis-parallel retangles. Also,Di Battista et al. [DDF07℄ showed algorithms and bounds for onstrutingsmall-area drawings of c-planar lustered trees within several drawing styles.In [HN09℄, the problem of onstruting a c-planar drawing of a lustered graph
C(G, T ) suh that eah fae of G is represented as a onvex polygon is studied.When dealing with lustered drawings, another very important issue toonsider is the one of providing a nie and readable geometri representationfor the lusters, other than for the edges. In this area, the strongest result isperhaps the one that Eades et al. present in [EFLN06℄. Namely, the authorsshow an algorithm for onstruting c-planar straight-line drawings of c-planarlustered graphs in whih eah luster is drawn as a onvex region (see alsoa paper of Nagamohi and Kuroya [NK07℄). Suh an algorithm requires, ingeneral, exponential area. However, in [FCE95a℄ Feng et al. have shown thatsuh a bound is asymptotially optimal in the worst ase. In Chapter 10 ofthis thesis we show an improvement of suh a result by presenting an algorithmfor onstruting c-planar straight-line drawings of c-planar lustered graphs inwhih eah luster is drawn as an axis-parallel retangle.The state of the art on the c-planarity testing problem is presented in thefollowing setion.9.3 Testing c-Planarity of Clustered GraphsIn this setion we deal with the problem of testing c-planarity of a given lus-tered graph. Despite of the many researh e�orts spent in the last �fteen yearson this problem, the question whether the c-planarity testing an be performedin polynomial time or not is still open, as its omputational omplexity is un-known.
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9.3. TESTING C-PLANARITY OF CLUSTERED GRAPHS 255However, many interesting results have been proved onerning the c-planaritytesting of simpler families of lustered graphs obtained by adding onstraintsboth on the graph struture and on the lustering struture.A survey on the problem of testing the c-planarity of lustered graphs anbe found in [CB05℄.Conerning the possibility of onsidering simpler families of graphs in orderto obtain e�ient c-planarity testing algorithms, only few results have beenobtained. In fat, a polynomial-time algorithm is known only for yles oflusters, that is, �at lustered graphs in whih the underlying graph is a sim-ple yle and the lusters are arranged in a yle [CDPP05a℄. Suh a resultwas then improved to work for lustered yles, that is, �at lustered graphsin whih the underlying graph is a simple yle and the lusters are arrangedinto an embedded plane graph [CDPP05b℄. If the embedding is �xed and thefaes are small, that is, eah fae ontains at most �ve verties, a harater-ization and an e�ient testing algorithm exist [BF07℄. Further, it has beenshown a polynomial-time algorithm for k-rib Eulerian graphs, that is, lus-tered graphs suh that the underlying graph is Eulerian and an be obtainedfrom a 3-onneted graph on k verties, for some onstant k, by multiplyingand subdividing some edges [JKK+07℄. Finally, a polynomial-time test existsif the lusters have at most four inident edges [SJTV08℄.On the other hand, from the simpli�ation of the lustering struture pointof view, espeially onerning the onnetivity of the graphs indued by thelusters, the families of lustered graphs for whih the problem an be solvedis a bit wider.If the lustered graph is c-onneted, a �rst polynomial-time testing al-gorithm has been presented in 1995 [FCE95b℄, then improved in 1998 to alinear-time testing algorithm [Dah98℄. A haraterization and a onsequentlinear-time testing algorithm have been shown in [CBF+08℄. Notie that everymaximal c-planar lustered graph is c-onneted. Namely, Feng et al. provedin [FCE95b℄ that a lustered graph C(G, T ) is c-planar if and only if edgesan be added to G so that the resulting lustered graph C′(G′, T ) is c-planarand c-onneted. As no edge an be added to a maximal c-planar lusteredgraph without losing c-planarity, every maximal c-planar lustered graph is
c-onneted.In 2008, Jelinek et al. [JJKL08℄ proved that the c-onnetivity onstraintan be slightly relaxed while maintaining the possibility of performing e�ient
c-planarity testings. Namely, they showed that a polynomial-time testing al-gorithm exists for embedded lustered graphs suh that eah luster indues asubgraph of G with at most two onneted omponents. If the lustered graph
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256 CHAPTER 9. C-PLANAR CLUSTERED GRAPHSis almost onneted, there exists a polynomial-time testing algorithm [GJL+02℄.A lustered graph is almost onneted if either all the nodes orresponding tonon-onneted lusters are on the same path in the luster hierarhy, or foreah non-onneted luster its parent and all its siblings are onneted. Al-most onneted lustered graphs are a generalization of c-onneted lusteredgraphs, so as the extrovert lustered graphs [GLS05℄, for whih a O(n3) timealgorithm is known. Extrovert lustered graphs are suh that eah onnetedomponent of the graph indued by eah luster µ is onneted by an edgeto the graph indued by the parent ν of µ in the luster hierarhy and thegraph indued by ν is onneted. Finally, if the lustered graph C(G, T ) isompletely onneted, it has been shown [CW06℄ that C is c-planar if and onlyif G is planar.Generalization of the c-Planarity TestingLet C(G, T ) be a lustered graph and suppose that a -planar drawing of C isimpossible or very di�ult to �nd. A natural question is whether C admits adrawing where eah luster is represented by a small set of onneted regionsinstead of a single onneted region of the plane. In [AFP09℄ we formalize thisonept by introduing the split operation, that replaes a luster µ of T withtwo lusters µ1 and µ2 with the same parent as µ, and distributes the hildrenof µ between µ1 and µ2. An example of split is depited in Fig. 9.2. We searhfor the minimum number of splits turning C into a -planar lustered graph.Formally, the orresponding deision problem is as follows:Problem 9.1 Split-C-PlanarityGiven a lustered graph C = (G, T ) and an integer k ≥ 0, an C(G, T ) beturned into a -planar lustered graph C(G, T ′) by performing at most k splitoperations?Split-C-Planarity is motivated not only by the pratial need of drawingnon--planar lustered graphs, but also by its impliations on the -planaritytheory. In fat, the long-standing problem of testing -planarity is a parti-ular ase of Split-C-Planarity, where zero splits are allowed. Therefore,Split-C-Planarity extends the -planarity testing problem to a more gen-eral setting, where we are able to show the NP-hardness even for �at lusteredgraphs whose underlying graphs are paths or yles.Also, we show that Split-C-Planarity is NP-hard even for �at -onnetedlustered graphs whose underlying graph is trionneted (hene even for �at
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9.3. TESTING C-PLANARITY OF CLUSTERED GRAPHS 257
µ

2

1

µ
µ

(a) (b)Figure 9.2: (a) A lustered graph C(G, T ) with a luster µ ontaining twoverties. Observe that C is not c-planar, as µ ontains two verties that areseparated by a yle and it does not ontain any vertex of suh a yle. (b)The lustered graph C′(G, T ′) obtained by splitting µ into two lusters µ1 and
µ2. Observe that C′ is c-planar, as eah luster ontains only one vertex.-onneted embedded lustered graphs). On the other hand, we show thatSplit-C-Planarity is polynomial-time solvable for �at -onneted lusteredgraphs whose underlying graph is a bionneted series-parallel graph (both ifthe underlying graph has �xed or variable embedding) if the splits are assumedto preserve the -onnetivity of the graph.
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Chapter 10Straight-Line RetangularDrawings of Clustered GraphsIn this hapter1 we deal with a problem related to the researh of �nie andreadable� drawings of lustered graphs. Namely, we study a problem posed byEades, Feng, Lin, and Nagamohi [EFLN06℄:Problem 10.1 Does every c-planar lustered graph admit a straight-line c-planar drawing in whih eah luster is represented by an axis-parallel retan-gle?We answer this question in the a�rmative by showing an algorithm toonstrut a straight-line retangular drawing of every given c-planar lusteredgraph. This result improves a result of the same authors, stating that every
c-planar lustered graph admits a straight-line c-planar drawing in whih eahluster is represented by a onvex polygon [EFLN06℄.Sine the onstrution used in this hapter is independent on the fat thatthe shape we onsider is retangular, the same property holds if lusters arerepresented by any onvex shape �xed in advane. This result allows us to on-lude that the c-planarity of lustered graphs is independent on the geometrialrepresentation of the lusters. In some sense, the main theorem of this hapteran be onsidered as the analogous of Fary's Theorem [Far48℄, whih statesthat the planarity of graphs is independent on the geometrial representationof the edges.1Part of the work presented in this hapter is a joint work with Fabrizio Frati and MihaelKaufmann, appeared in [AFK09℄ and submitted to journal.259
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260 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHS10.1 IntrodutionSuppose that a c-planar embedded lustered graph C is given. How an thegraph be drawn? Suh a problem has been intensively studied in the literatureand a number of papers have been presented for onstruting c-planar drawingsof c-planar lustered graphs within many drawing onventions.Eades et al. show in [EFN99℄ how to onstrut O(n2)-area c-planar or-thogonal drawings and O(n2)-area c-planar polyline drawings of c-planar lus-tered graphs with lusters drawn as axis-parallel retangles. Di Battista etal. [DDF07℄ show algorithms and bounds for onstruting small-area drawingsof c-planar lustered trees within several drawing styles. The strongest resultin the area is perhaps the one that Eades et al. present in [EFLN06℄. Namely,the authors show an algorithm for onstruting c-planar straight-line drawingsof c-planar lustered graphs in whih eah luster is drawn as a onvex region(see also a paper of Nagamohi and Kuroya [NK07℄). Suh an algorithm re-quires, in general, exponential area. However, in [FCE95a℄ Feng et al. haveshown that suh a bound is asymptotially optimal in the worst ase.In this hapter we address a problem posed by Eades et al. in [EFL96,Fen97, EFLN06℄, namely whether every c-planar lustered graph has a straight-line retangular drawing, i.e., a c-planar straight-line drawing in whih eahluster is drawn as an axis-parallel retangle. An example of a straight-lineretangular drawing of a c-planar lustered graph is given in Fig. 10.1. Eadeset al. observe how pleasant and readable straight-line retangular drawings are;however, they provide evidene that their algorithm [EFLN06℄ for onstruting
c-planar straight-line onvex drawings of lustered graphs annot be modi�edin order to get retangular lusters without introduing edge-region rossings.We show that every c-planar lustered graph has a straight-line retangulardrawing. Atually, we prove a stronger theorem stating that a straight-lineretangular drawing of a c-planar lustered graph exists for an arbitrary onvex-separated drawing of its outer fae, that is, a drawing satisfying some propertiesof onvexity and of visibility among verties and lusters.Suh a stronger result is proved by means of an indutive algorithm rem-inisent of Fary's drawing algorithm for planar graphs [Far48℄. Namely, thealgorithm onsists of three indutive ases. Eah ase onsiders a lusteredgraph C and performs an operation (removal of a luster, split of the graph inorrespondene of a separating 3-yle, or ontration of an edge) turning Cinto a smaller lustered graph C′ for whih a straight-line retangular drawingan be indutively onstruted. Then, suh a drawing an be easily augmentedto a straight-line retangular drawing of C.
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10.1. INTRODUCTION 261

Figure 10.1: A straight-line retangular drawing of a c-planar lustered graph.When none of the three indutive ases applies, every luster ontains avertex inident to the outer fae. We use the term outerlustered graph for alustered graph satisfying this property. We prove that every outerlusteredgraph admits a straight-line retangular drawing even if a onvex-separateddrawing of its outer fae is arbitrarily �xed, thus providing a base ase forthe above indutive algorithm for general lustered graphs. In order to drawan outerlustered graph C, we split it into three linearly-ordered outerlusteredgraphs (an even more restrited family of lustered graphs), we separately drawsuh graphs, and we ompose the obtained drawings to get a drawing of C.A linearly-ordered outerlustered graph is an outerlustered graph in whihall the verties of the underlying graph belong to a path in the inlusion tree.A drawing algorithm is provided for onstruting a straight-line retangulardrawing of any linearly-ordered outerlustered graph C(G, T ) for an arbitraryonvex-separated drawing of its outer fae. Suh an indutive algorithm �nds asubgraph of G (a path plus an edge) that splits G into smaller linearly-orderedouterlustered graphs and draws suh a subgraph so that the outer faes ofthe smaller linearly-ordered outerlustered graphs are onvex-separated, thusallowing the indution to go through.The rest of the hapter is organized as follows. In Set. 10.2 we intro-due some de�nitions about lustered graphs, linearly-ordered outerlusteredgraphs, and onvex-separated drawings; in Set. 10.3 we show an algorithm forlinearly-ordered outerlustered graphs; in Set. 10.4 we show an algorithm forouterlustered graphs; in Set. 10.5 we show an algorithm for general lusteredgraphs; �nally, in Set. 10.6 we onlude and present some open problems.
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262 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHS10.2 PreliminariesIn this hapter we are interested in straight-line retangular drawings of lus-tered graphs, i.e., c-planar drawings suh that eah edge is represented by astraight-line segment and eah luster is represented by an axis-parallel ret-angle. From now on, lustered graphs will be assumed to be c-planar, whiledrawings will be assumed to be straight-line retangular.In order to prove that every lustered graph admits a straight-line retan-gular drawing, it su�es to prove that every maximal lustered graph admitsa straight-line retangular drawing, as every non-maximal c-planar lusteredgraph C(G, T ) an be augmented in linear time to a maximal c-planar lusteredgraph C′(G′, T ) by adding dummy edges to G [JLP02℄. We remark that everymaximal c-planar lustered graph is c-onneted.From now on, we will always assume that the embedding (that is, the orderof the edges inident to eah vertex) and the outer fae of any onsidered graph
G is �xed in advane. We denote by o(G) the outer fae of G.Fig. 10.2.a shows a bionneted internally-triangulated lustered graph.

(a) (b)Figure 10.2: (a) A bionneted internally-triangulated lustered graph. (b) Abionneted internally-triangulated outerlustered graph.Let C(G, T ) be a lustered graph. Let f be any fae of G. Denote by
Cf (Gf , Tf) the lustered graph whose underlying graph Gf is the yle induedby the verties inident to f and whose inlusion tree Tf is the subtree of
T indued by the lusters ontaining verties inident to f . In partiular,the outer fae of C(G, T ) is the lustered graph Co(G)(Go(G), To(G)), that issimply denoted by Co in the following. In Set. 10.3, Set. 10.4, and Set. 10.5,we will prove that a drawing of a lustered graph an be onstruted for an
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10.2. PRELIMINARIES 263arbitrary drawing of its outer fae that satis�es some geometri properties to bedesribed below. Then, we say that a straight-line retangular drawing Γ(C)of C ompletes a straight-line retangular drawing Γ(Co) of Co if the part of
Γ(C) representing Co oinides with Γ(Co).In order to prove that every lustered graph admits a straight-line retan-gular drawing, it will be useful to study the lass of lustered graphs that isde�ned below (see Fig. 10.2(b)).De�nition 10.1 A c-planar lustered graph C(G, T ) is outerlustered if:
• O1: every luster ontains at least one vertex inident to o(G);
• O2: the boundary of every luster µ that does not ontain all the vertiesinident to o(G) intersets o(G) exatly twie, that is, it intersets exatlytwo edges e1(µ) and e2(µ) inident to o(G); and
• O3: every edge (u, v) with σ(u) = σ(v) is inident to o(G).Let C(G, T ) be a bionneted internally-triangulated outerlustered graphand let C be any simple yle in G suh that the boundary of every luster in Tontaining some but not all the verties of C intersets C exatly twie. Denoteby C′(G′, T ′) the lustered graph suh that G′ is the subgraph of G induedby the verties inident to and internal to C, and suh that T ′ is the subtree of

T indued by the lusters ontaining verties of G′.Lemma 10.1 C′(G′, T ′) is a bionneted internally-triangulated outerlusteredgraph.Proof: Sine G is bionneted and internally-triangulated, G′ is bion-neted and internally-triangulated, as well. We prove that C′ satis�es Property
O1 of De�nition 10.1. Suppose that there exists a luster µ in T ′ that does notontain any vertex inident to o(G′). Then, µ ontains a vertex internal to G′,otherwise it would not be a luster in T ′. Also, µ ontains a vertex inident to
o(G), otherwise C would not be an outerlustered graph. Sine the boundaryof µ is a losed urve ontaining a vertex inside C and a vertex outside C, theneither µ ontains a vertex of C or it intersets twie the same edge of C, in bothases ontraditing the c-planarity of C. Clustered graph C′ satis�es Property
O2 by hypothesis. We prove that C′ satis�es Property O3. Suppose that thereexists an edge (u′, v′) suh that σ(u′) = σ(v′) and u′ is an internal vertex of
G′. Then, u′ is an internal vertex of G, as well, and C is not an outerlusteredgraph, a ontradition. 2
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264 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSAn interesting sublass of the outerlustered graphs is onsidered in thefollowing (see Fig. 10.3).De�nition 10.2 A bionneted internally-triangulated outerlustered graph C(G, T )is linearly-ordered if there exists a sequene µ1, µ2, . . . , µk of lusters in T andan index 1 ≤ h ≤ k, suh that:
• LO1: for eah vertex vj of G, σ(vj) = µi, for some 1 ≤ i ≤ k;
• LO2: let vi and vj be any two verties inident to o(G) suh that σ(vi) =

µ1 and σ(vj) = µk; then o(G) is delimited by two monotone paths P1 =
(vi, vi+1, . . . , vj−1, vj) and P2 = (vi, vi−1, . . . , vj+1, vj), i.e., paths suhthat, if σ(vt) = µa and σ(vt+1) = µb, then a ≤ b if (vt, vt+1) ∈ P1 and
b ≤ a if (vt, vt+1) ∈ P2; and
• LO3: µi+1 is the parent of µi, for eah 1 ≤ i < h, and µi+1 is a hild of

µi, for eah h ≤ i < k.
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Figure 10.3: An outerlustered graph that is linearly-ordered aording to theluster sequene µ1, µ2, . . . , µ12. Notie that h = 6.Let C(G, T ) be a bionneted internally-triangulated outerlustered graphand suppose that C is linearly-ordered aording to a sequene µ1, µ2, . . . , µkof lusters of T . Let vi ∈ µ1 and vj ∈ µk. Then, denote by V1 (resp. by V2)the vertex set ontaining all the internal verties of P1 (resp. of P2).
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10.2. PRELIMINARIES 265In Set. 10.3 we will prove that a drawing of any linearly-ordered outerlus-tered graph C(G, T ) an be obtained even if the drawing of Co is arbitrarily�xed. However, we will deal with a onstrained version of straight-line retan-gular drawings that is de�ned below (see Fig. 10.4).De�nition 10.3 A straight-line retangular drawing Γ(Co) of Co is a onvex-separated drawing if:
• CS1: the polygon P representing o(G) is onvex;
• CS2: there exist two verties vi and vj , with σ(vi) = µ1 and σ(vj) = µk,suh that the angle of P inident to vi and the angle of P inident to vjare stritly less than 180◦; and
• CS3: for every pair of lusters µ and ν suh that µ is the parent of ν in

T and suh that µ is not an anestor of the smallest luster ontainingall the verties of o(G), there exists a onvex region R(µ, ν) suh that:(i) R(µ, ν) is entirely ontained inside µ ∩ (P ∪ int(P )), where int(P )denotes the interior of polygon P; (ii) for any luster µ′ 6= µ and anyhild ν′ of µ′, R(µ, ν) intersets neither R(µ′, ν′) nor the boundary of µ′;(iii) R(µ, ν)∩P onsists of two polygonal lines l1(µ, ν) and l2(µ, ν) suhthat l1(µ, ν) belongs to the polygonal line representing P1 in Γ(Co) and
l2(µ, ν) belongs to the polygonal line representing P2 in Γ(Co); further,at least one endpoint of l1(µ, ν) (resp. of l2(µ, ν)) lies on e1(ν) (resp. on
e2(ν)).Let C(G, T ) be an outerlustered graph with outer fae o(G) delimitedby a yle C = (vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vi−1, vi). Suppose that C islinearly-ordered aording to a sequene Σ = µ1, µ2, . . . , µk of lusters in T .Let (vx, vy) be a hord of C. Consider the lustered graphs C1(G1, T 1) and

C2(G2, T 2) suh that G1 (resp. G2) is the subgraph of G indued by theverties inident to and internal to yle C1 = (vx, vx+1, . . . , vy−1, vy, vx) (resp.to yle C2 = (vy , vy+1, . . . , vx−1, vx, vy)), and suh that T 1 (resp. T 2) is thesubtree of T indued by the lusters ontaining verties of G1 (resp. of G2).Lemma 10.2 C1(G1, T 1) and C2(G2, T 2) are linearly-ordered outerlusteredgraphs.Proof: We prove the statement for C1, the proof for C2 being analogous.Refer to Fig. 10.5.
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Figure 10.4: A onvex-separated drawing of the outer fae of a linearly-orderedouterlustered graph.
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(a) (b)Figure 10.5: The linearly-ordered outerlustered graphs obtained by splittingthe linearly-ordered outerlustered graph of Fig. 10.3 by hord (vx, vy). (a)
C1(G1, T 1). (b) C2(G2, T 2).We laim that C1 is a bionneted internally-triangulated outerlusteredgraph. In order to prove the laim, by Lemma 10.1, it su�es to show that noluster in T 1 exists that ontains some but not all the verties of C1 and thatdoes not interset C1 exatly twie. Namely, the boundary of every luster µis a simple losed urve, and hene it intersets C1 an even number of times.Suppose that the boundary of µ does not interset C1. Then, sine µ ontains
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10.2. PRELIMINARIES 267verties of G1, it ontains all of suh verties. Suppose that µ intersets C1at least four times. At most two of suh intersetions an be on the edgesof C1 \ (vx, vy), sine C is an outerlustered graph. Then, the boundary of µintersets (vx, vy) at least twie, ontraditing the c-planarity of C.Consider the subsequene Σ1 of Σ indued by the lusters in T 1. Obtain asequene Σ′
1 by removing from Σ1 all the lusters that ontain all the verties of

G1 and that are di�erent from σ(vx, vx+1, . . . , vy), if any suh a luster exists.We laim that C1 is linearly-ordered aording to Σ′
1.We prove that C1 satis�es Property LO1 of De�nition 10.2. By de�ni-tion, Σ′

1 ontains all the lusters of T 1 that ontain verties of G1, exeptfor eah luster µ that ontains all the verties of G1 and that is di�erentfrom σ(vx, vx+1, . . . , vy). However, for any vertex v of G1, σ(v) 6= µ, beause
σ(vx, vx+1, . . . , vy) is a desendant of µ and ontains v.We prove that C1 satis�es Property LO2. Sine C is linearly-ordered,
o(G) is delimited by two monotone paths P1 = (vi, vi+1, . . . , vj) and P2 =
(vi, vi−1, . . . , vj). Suppose that (see Fig. 10.6(a)) both vx and vy belong to P1and vx preedes vy in P1 (the other ases in whih both vx and vy belong to
P1 or both belong to P2 being analogous); then, the subpath of P1 between vxand vy and edge (vx, vy) are monotone paths delimiting o(G1); further, P2 andthe path obtained from P1 by replaing the subpath between vx and vy withedge (vx, vy) are monotone paths delimiting o(G2). Suppose that vx belongs to
P1 and vy belongs to P2. If σ(vx) preedes σ(vy) in Σ (see Fig. 10.6(b)), thenthe two monotone paths delimiting o(G1) are (i) the subpath of P1 between
vx and vj and (ii) edge (vx, vy) plus the subpath of P2 between vy and vj ;the two monotone paths delimiting o(G2) are (i) the subpath of P1 between
vi and vx plus edge (vx, vy) and (ii) the subpath of P2 between vi and vy. If
σ(vy) preedes σ(vx) in Σ, then the two monotone paths delimiting o(G1) are(i) edge (vy , vx) plus the subpath of P1 between vx and vj and (ii) the subpathof P2 between vy and vj ; the two monotone paths delimiting o(G2) are (i) thesubpath of P1 between vi and vx and (ii) the subpath of P2 between vi and vyplus edge (vy, vx).We prove that C1 satis�es Property LO3. Sine C is linearly-ordered a-ording to Σ and Σ′

1 is a subsequene of Σ, it su�es to show that any twoonseutive lusters µx and µy of Σ′
1 are adjaent in T 1. Suppose, for a on-tradition, that µy and µx are not adjaent in T 1. First, onsider the ase inwhih µx and µy are omparable, that is, µy is either an anestor or a desen-dant of µx. If µy is an anestor of µx (the ase in whih µx is an anestor of

µy being analogous), onsider the parent µx+1 of µx. Suh a luster ontainsall the verties ontained in µx, hene either µx+1 belongs to Σ′
1, ontraditing
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vj+1(a) (b)Figure 10.6: C1 and C2 satisfy LO2. (a) vx and vy belong to P1, and vxpreedes vy in P1. (b) vx belongs to P1, vy belongs to P2, and σ(vx) preedes
σ(vy) in Σ.the fat that µx and µy are onseutive in Σ′

1, or µx+1 ontains all the vertiesof G1 and is di�erent from σ(vx, vx+1, . . . , vy). However, this would imply thatalso µy ontains all the vertie s of G1 and is di�erent from σ(vx, vx+1, . . . , vy),a ontradition to the fat that µy is in Σ′
1. Seond, onsider the ase in whih

µx and µy are inomparable, that is, µy is neither an anestor nor a desen-dant of µx. Again, onsider the parent µx+1 of µx. Suh a luster ontainsall the verties ontained in µx, still not being in Σ′
1. Hene, µx+1 ontainsall the verties of G1 and is di�erent from σ(vx, vx+1, . . . , vy); this implies that

µx = σ(vx, vx+1, . . . , vy), hene µy is a desendant of µx, a ontradition. 2Let C(G, T ), C1(G1, T 1), and C2(G2, T 2), Σ, vx, and vy be de�ned asabove. Let Γ be any onvex-separated drawing of Co and let P be the polygonrepresenting o(G) in Γ; let vi and vj be any two verties with σ(vi) = µ1and σ(vj) = µk suh that the angle of P inident to vi and the angle of Pinident to vj are stritly less than 180◦ (suh verties exist by Property CS2of De�nition 10.3). Suppose that vx and vy are not ollinear with any vertexof o(G). Let Γ1 and Γ2 be the drawings of C1
o and C2

o obtained by drawing
(vx, vy) in Γ as a straight-line segment. Denote by P 1 and P 2 the polygonsrepresenting o(G1) and o(G2) in Γ1 and in Γ2, respetively.Lemma 10.3 Γ1 and Γ2 are onvex-separated drawings.Proof: We prove the statement for Γ1, the proof for Γ2 being analogous.Refer to Fig. 10.7. The drawing is straight-line and retangular by onstrution.
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(b) ()Figure 10.7: (a) A onvex-separated drawing Γ of the outer fae Co of a linearly-ordered outerlustered graph C. (b) and () Convex-separated drawings Γ1 and
Γ2 of the outer faes C1

o and C2
o of the linearly-ordered outerlustered graphs

C1 and C2.Sine Γ is a onvex-separated drawing, by Property CS1 of De�nition 10.3, thepolygon P representing o(G) in Γ is onvex. Further, by hypothesis, ux and
uy are not ollinear with any vertex of G. Hene, P 1 is onvex, thus satisfyingProperty CS1.Drawing Γ1 has no region-region rossings, sine eah luster is representedin Γ1 by the same retangle as in Γ. We prove that Γ1 has no edge-regionrossings. Refer to Fig. 10.8. Suppose that an edge-region rossing existsbetween an edge e and a luster ν. Then, e is edge (vx, vy), otherwise Γ wouldnot be c-planar. Cluster ν does not ontain both of vx and vy otherwise, bythe onvexity of ν, e would be internal to ν; further, ν does not ontain exatlyone of vx and vy otherwise, by the onvexity of ν, e would ross ν exatly one.It follows that ν ontains neither vx nor vy. Consider the parent µ of ν in T1.
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270 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSSuh a parent exists, otherwise ν would be the root of T , ontraditing thefat that ν ontains neither vx nor vy. Sine Γ satis�es Property CS3, thereexists a onvex region R(µ, ν) with the properties des ribed in De�nition 10.3whih �separates� ν from the rest of the drawing, thus avoiding an edge-regionrossing between e and ν. More preisely, sine Γ satis�es Property O2 ofDe�nition 10.1, ν has exatly two inident edges e1(ν) and e2(ν) belongingto o(G). Denote by u(e1(ν)) and u(e2(ν)) the endverties of e1(ν) and e2(ν)belonging to ν. Denote by p(l1) the endpoint of l1(µ, ν) that lies on e1(ν) (ifboth endpoints of l1(µ, ν) lie on e1(ν), then p(l1) is the one that is loser to
u(e1(ν))). Note that an endpoint of l1(µ, ν) lying on e1(ν) exists as Γ satis�esProperty CS3. Analogously de�ne p(l2). Then, segment p(l1)p(l2) splits P intotwo disjoint onvex polygons P ′ and P ′′, where P ′ ontains all and only theverties in ν and P ′′ ontains all and only the verties not in ν, a s Γ satis�esProperty CS3. By the onvexity of P ′ and P ′′, e is internal to P ′′, while thepart of ν inside P is internal to P ′. Hene, e does not ross ν.
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Figure 10.8: Drawing Γ1 has no rossing between an edge e and a lusterontaining none of the endverties of e. The thik line represents segment
p(l1)p(l2).We prove that Γ1 satis�es Property CS2. First, observe that the anglesinident to vi and vj in P 1 are stritly less than 180◦, sine they are stritlyless than 180◦ in Γ; further, the angles inident to vx and vy in P 1 are stritlyless than 180◦, sine they are stritly less than the angles inident to vx and
vy in P , that are at most 180◦, by the onvexity of P . Suppose that σ(vx)preedes σ(vy) in Σ, the opposite ase being analogous. It su�es to observethat: (i) if C1 ontains both vi and vj , then Σ′

1 = Σ; hene, vi and vj areverties satisfying the desired properties; (ii) if C1 ontains neither vi nor vj ,
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10.2. PRELIMINARIES 271then Σ′
1 is the subsequene of Σ that starts at σ(vx) and ends at σ(vy); hene,

vx and vy are verties satisfying the desired properties; (iii) if C1 ontains vjand does not ontain vi (as in Fig. 10.7), then Σ′
1 is the subsequene of Σ thatstarts at σ(vx) and ends at σ(vj) = µk; hene, vx and vj are verties satisfyingthe desired properties.We prove that Γ1 satis�es Property CS3. The existene of regions R(µ, ν)inside P 1, for every luster ν, is easily dedued from the existene of regions

R(µ, ν) inside P , whih is guaranteed as Γ satis�es Property CS3. Namely, if
R(µ, ν) is not interseted by e, then a region R(µ, ν) inside P 1 an be on-struted oinident with the same region inside P . Further, if R(µ, ν) is utby e, then two regions are reated, one inside P 1 and the other one inside P 2.The properties that have to be satis�ed by R(µ, ν) inside P 1 easily desendfrom the analogous properties satis�ed by R(µ, ν) inside P . 2When dealing with outerlustered graphs and general lustered graphs, it issu�ient to onsider lustered graphs whose underlying graphs have triangularouter faes. This leads us to the following re�ned de�nition (see Fig. 10.9):De�nition 10.4 Let C(G, T ) be a lustered graph suh that G is a 3-yle
(u, v, z). A straight-line retangular drawing Γ(C) of C is a triangular-onvex-separated drawing if:
• TCS1: for every pair of lusters µ and ν suh that µ is the parent of

ν in T and suh that µ is not an anestor of σ(u, v, z), there exists aonvex region R(µ, ν) suh that: (i) R(µ, ν) is entirely ontained inside
µ ∩ (P ∪ int(P )), where P is the triangle representing G in Γ(C); (ii)for any luster µ′ 6= µ and any hild ν′ of µ′, R(µ, ν) intersets neither
R(µ′, ν′) nor the boundary of µ′; (iii) R(µ, ν)∩P onsists of two polygonallines l1(µ, ν) and l2(µ, ν) suh that at least one endpoint of l1(µ, ν) (resp.of l2(µ, ν)) belongs to e1(ν) (resp. to e2(ν)).The interplay between a triangular-onvex-separated drawing of a lustered3-yle and a onvex-separated drawing of a linearly-ordered maximal outer-lustered graph is lari�ed in the following lemma.Lemma 10.4 Let C(G, T ) be a linearly-ordered maximal outerlustered graph.Then, a triangular-onvex-separated drawing of Co is a onvex-separated draw-ing of Co.Proof: Consider any triangular-onvex-separated drawing Γ(Co) of Co. Weprove that Γ(Co) is a onvex-separated drawing. Properties CS1 and CS2 of



i

i �main� � 2010/2/26 � 12:27 � page 272 � #282
i

i

i

i

i

i

272 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHS
u

z

vFigure 10.9: A triangular-onvex-separated drawing of a lustered graph whoseunderlying graph is a 3-yle.De�nition 10.3 easily desend from the fat that, sine o(G) is a 3-yle, it isrepresented as a onvex polygon P whose internal angles are smaller than 180◦.Property CS3 oinides with Property TCS1. 2Finally, we de�ne a lass of drawings in whih the properties of onvexityand visibility among verties and lusters are imposed on all the internal faesrather than on the outer fae.De�nition 10.5 Let C(G, T ) be an internally-triangulated lustered graph. Adrawing Γ(C) of C is an internally-onvex-separated drawing if, for every in-ternal fae f of G, the part Γ(Cf ) of Γ(C) representing Cf is a triangular-onvex-separated drawing.10.3 How to Draw Linearly-Ordered OuterlusteredGraphsIn this setion we show how to onstrut an internally-onvex-separated draw-ing of any linearly-ordered outerlustered graph C for an arbitrary triangular-onvex-separated drawing of the outer fae Co of C. This is done by meansof an indutive algorithm that uses the following lemma as the main tool (seeFig. 10.10):Lemma 10.5 Let C(G, T ) be an internally-triangulated trionneted outer-lustered graph. Suppose that C is linearly-ordered aording to a sequene
µ1, µ2, . . . , µk of lusters of T . Let vi and vj be any two verties suh that
σ(vi) = µ1 and σ(vj) = µk. Let V1 (resp. V2) be the set of verties between viand vj (resp. between vj and vi) in the lokwise order of the verties around
o(G). Then, if V1 6= ∅, there exists a path Pu = (u1, u2, . . . , ur) suh that:
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• P1: u1 and ur belong to V2 ∪ {vi, vj};
• P2: ui is an internal vertex of G, for eah 2 ≤ i ≤ r − 1;
• P3: if σ(ui) = µj1 and σ(ui+1) = µj2 , then j1 < j2, for eah 1 ≤ i ≤ r−1;
• P4: there exists exatly one vertex ux, where 2 ≤ x ≤ r − 1, that isadjaent to at least one vertex vx in V1;
• P5: there exist no hord among the verties of path (u1, u2, . . . , ux) andno hord among the verties of path (ux, ux+1, . . . , ur).Proof: We derive path Pu in several steps. At step s + 1 a path Ps+1 isfound by modifying the path Ps obtained at the previous step. At the last step

m of the algorithm, a path Pu an be obtained as a subpath of Pm satisfyingthe properties required by the lemma. A path satisfying properties P1�P5 isshown in Fig. 10.10.
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rFigure 10.10: A path satisfying properties P1�P5.More in detail, at eah step s ≤ m, a path Ps = (us
1, u

s
2, . . . , u

s
r(s)) is foundsatisfying the properties desribed below (see Fig. 10.11).Denote by P1 = (vi, vi+1, . . . , vj−1, vj) and P2 = (vi, vi−1, . . . , vj+1, vj) themonotone paths on the verties of V1∪{vi, vj} and of V2∪{vi, vj}, respetively,delimiting o(G).

• PP1: us
1 = vi and us

r(s) = vj ;
• PP2: eah vertex us

t is either an internal vertex of G or a vertex of P2,for eah 2 ≤ t ≤ r(s) − 1;
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• PP3: if σ(ut) = µj1 and σ(ut+1) = µj2 , then j1 ≤ j2, for eah 1 ≤ t ≤

r(s) − 1; and
• PP4: there exists no hord inside yle Ps ∪ P1.At the �rst step, set P1 = P2. Path P1 satis�es Property PP1 and PP2by de�nition, Property PP3 sine C satis�es Property LO2 of De�nition 10.2,and Property PP4 beause G is trionneted.
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Figure 10.11: A path Ps satisfying properties PP1�PP4.Suppose that a path Ps has been found at step s of the algorithm. Weshow how to determine Ps+1 at step s + 1 of the algorithm.Consider any edge (us
t , u

s
t+1) of Ps. Suh an edge is inident to a faeinternal to yle Ps ∪ P1. Let z∗1 be the third vertex of suh a fae. As Pssatis�es Property PP4, z∗1 is neither a vertex of P1 nor a vertex of Ps. Hene,

z∗1 is internal to Ps ∪ P1.Denote by us
a and by us

b the �rst and the last vertex of Ps adjaent to z∗1 .We distinguish two ases.In the �rst ase, σ(us
a), σ(z∗1), and σ(us

b) appear in this order in Σ. Then,path Ps+1 is obtained by replaing the subpath of Ps between us
a and us

b withpath (us
a, z∗1 , us

b). An example of this ase is shown in Fig. 10.12.Suppose that z∗1 is adjaent to at least one vertex in V1. Sine the �rstand the last vertex of Ps+1 (that are vi and vj , respetively) belong to P2,the verties shared by Ps+1 and P2 partition Ps+1 into subpaths, where theinternal verties of eah subpath are internal to P1 ∪P2. Let Pu be the one ofsuh subpaths ontaining z∗1 . Path Pu = (u1, u2, . . . , ux, ux+1, . . . , ur) de�nedas above is easily shown to satisfy properties P1�P4 (where ux = z∗1). In par-tiular, notie that Pu satis�es Property P3 sine Ps+1 satis�es Property PP3
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Figure 10.12: Obtaining Ps+1 from Ps if σ(us
a), σ(z∗1), and σ(us

b) appear inthis order in Σ. Dashed lines show the subpath of Ps not belonging to Ps+1.and no two adjaent verties of Pu have the same smallest ontaining luster,as C satis�es Property O3 of De�nition 10.1. Further, if there exists a hord
(ua, ub) among the verties of path (u1, u2, . . . , ux) (resp. among the vertiesof path (ux, ux+1, . . . , ur)), then replae the subpath of (u1, u2, . . . , ux) (resp.of (ux, ux+1, . . . , ur)) between ua and ub with suh a hord. The repetition ofsuh an argument eventually leads to a path Pu also satisfying Property P5.Hene, the algorithm stops beause a path with the properties required by thelemma has been found.Suppose that z∗1 is not adjaent to any vertex in V1. Then, Ps+1 is easilyshown to satisfy properties PP1�PP4. Hene, the algorithm ontinues withstep s + 2.In the seond ase, either σ(z∗1), σ(us

a), and σ(us
b) appear in this order in Σ,or they appear in the order σ(us

a), σ(us
b), σ(z∗1). Suppose that σ(z∗1), σ(us

a), and
σ(us

b) appear in this order in Σ, the other ase being analogous. See Fig. 10.13.Consider edge (us
a−1, u

s
a) of Ps. Suh an edge is inident to a fae internalto yle Ps ∪ P1. Let z∗2 be the third vertex of suh a fae. By Property PP4,

z∗2 is neither a vertex of P1 nor a vertex of Ps. Hene, z∗2 is internal to Ps∪P1.Further, σ(z∗2) is not the same luster of σ(us
a) (sine C satis�es Property O3 ofDe�nition 10.1), and σ(z∗2) does not follow σ(us

a) in Σ, otherwise edge (us
a, z∗2)would ross twie the boundary of σ(us

a) or the boundary of the luster omingbefore σ(us
a) in Σ (depending on whether σ(us

a) is a hild or is the parent ofthe luster oming before σ(us
a) in Σ). Hene, σ(z∗2) preedes σ(us

a) in Σ.Then, the whole argument an be repeated, namely denote by us
c and by

us
d the �rst and the last vertex adjaent to z∗2 in Ps. Sine C satis�es PropertyO3, then σ(us

c) 6= σ(z∗2); sine σ(z∗2) preedes σ(us
a) in Σ and sine σ(us

a) does
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276 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSnot follow σ(us
d) in Σ, then σ(z∗2) preedes σ(us

d) in Σ. Then, either σ(us
c)preedes σ(z∗2) in Σ or σ(z∗2) preedes σ(us

c) in Σ. If σ(us
c) preedes σ(z∗2),then a path Ps+1 is found by replaing the subpath of Ps between us

c and
us

d with path (us
c, z

∗
2 , us

d); then, either a path Pu satisfying properties P1�P5an be derived from Ps+1 or Ps+1 satis�es properties PP1�PP4, depending onwhether z∗2 is adjaent to at least one vertex in V1 or not. If σ(z∗2 ) preedes
σ(us

c), then edge (us
c−1, u

s
c) and the vertex z∗3 inident to the fae (us

c−1, u
s
c, z

∗
3)internal to yle Ps ∪ P1 are onsidered and the argument is repeated again.The repetition of suh an argument eventually leads to �nd a vertex z∗f that isinident to a fae (us

y−1, u
s
y, z∗f) and suh that, denoting by us

p and us
q the �rstand the last neighbor of z∗f in Ps, σ(us

p), σ(z∗f ), and σ(us
q) appear in this orderin Σ. Namely, at every repetition of suh an argument, the onsidered edge(that is equal to (us

t , u
s
t+1) at the �rst repetition, to (us

a−1, u
s
a) at the seondrepetition, to (us

c−1, u
s
c) at the third repetition, and to (us

y−1, u
s
y) at the lastrepetition) gets loser to vi in Ps; then, after a ertain number of repetitionsof the algorithm, vertex us

y−1 eventually belongs to luster µ1 and no lusterpreedi ng µ1 exists in Σ.
2

s

z

u

z
3
*

e
s

c−1
s

a−1
s

t+1
s

t
s

a
s

2
*

1
*

v =u s

1i

u u
suc u

v =u  (s)j r
s

1

z

u u
u

bFigure 10.13: Three repetitions of the argument for the ase in whih σ(z∗1)(resp. σ(z∗2) and σ(z∗3)) preedes the smallest lusters ontaining the �rst andlast neighbor of z∗1 (resp. of z∗2 or of z∗3) in Ps. Thik segments represent Ps.It remains to observe that, after a ertain number m of steps of the algo-rithm, a path Pu satisfying properties P1�P5 an be derived from Pm. Namely,the number of verties internal to yle Ps ∪ P1 dereases at every step of thealgorithm, hene a vertex z∗ adjaent to a vertex in V1 is eventually added toa path Pm−1 to form a path Pm, from whih a path Pu satisfying propertiesP1�P5 an then be derived. Notie that z∗ is the only vertex of Pm adjaentto a vertex in V1, sine no vertex of Pm−1 is adjaent to a vertex in V1, as
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10.3. HOW TO DRAW LINEARLY-ORDERED OUTERCLUSTEREDGRAPHS 277
Pm−1 satis�es Property PP4. 2A pseudo-ode desription of the algorithm for �nding a path Pu satisfyingthe properties required by Lemma 10.5 (supposing that V1 6= ∅) is presented inAlgorithm 7.A lemma similar to Lemma 10.5 is presented in the following. The proof ofsuh a lemma an be obtained analogously to the one of Lemma 10.5, where
V1 replaes V2 and vie versa.Lemma 10.6 Let C(G, T ) be an internally-triangulated trionneted outer-lustered graph. Suppose that C is linearly-ordered aording to a sequene
µ1, µ2, . . . , µk of lusters of T . Let vi and vj be any two verties suh that
σ(vi) = µ1 and σ(vj) = µk. Let V1 (resp. V2) be the set of verties between viand vj (resp. between vj and vi) in the lokwise order of the verties around
o(G). Then, if V2 6= ∅, there exists a path Pu = (u1, u2, . . . , ur) suh that:
• P1: u1 and ur belong to V1 ∪ {vi, vj};
• P2: ui is an internal vertex of G, for eah 2 ≤ i ≤ r − 1;
• P3: if σ(ui) = µj1 and σ(ui+1) = µj2 , then j1 < j2, for eah 1 ≤ i ≤ r−1;
• P4: there exists exatly one vertex ux, where 2 ≤ x ≤ r − 1, that isadjaent to at least one vertex vx in V2;
• P5: there exist no hord among the verties of path (u1, u2, . . . , ux) andno hord among the verties of path (ux, ux+1, . . . , ur).We now present the main theorem of this setion.Theorem 10.1 Let C(G, T ) be a linearly-ordered internally-triangulated tri-onneted outerlustered graph. Then, for every onvex-separated drawing Γ(Co)of Co, there exists an internally-onvex-separated drawing Γ(C) of C ompleting

Γ(Co).Proof: We prove the statement by indution on the number of internalverties of G. First observe that, sine G is trionneted, o(G) has no hords.Hene, if G has no internal verties, then Co and C are the same graph and thestatement trivially follows. Otherwise, G has internal verties. Denote by Cthe yle delimiting o(G). We show how to split C into smaller linearly-orderedinternally-triangulated trionneted outerlustered graphs.
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278 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSAlgorithm 7 Paths in Linearly-Ordered Outerlustered GraphsRequire: C(G, T ), Σ, V1 6= ∅, P1, and P2, as in Lemma 10.5.Ensure: A path Pu = (u1, u2, . . . , ur) satisfying Properties P1�P5 ofLemma 10.5.1: s← 1; Ps ← P2; path_found ← false; e← any edge (us
t , u

s
t+1) of Ps;2: while path_found = false do3: i← 1;4: z∗i ← the vertex reating a fae with e inside Ps ∪ P1;5: us

L ← the �rst vertex of Ps adjaent to z∗i ;6: us
R ← the last vertex of Ps adjaent to z∗i ;7: if σ(us

L), σ(z∗i ), and σ(us
R) do not appear in this order in Σ then8: while σ(z∗i ), σ(us

L), and σ(us
R) appear in this order in Σ do9: e← edge (us

L−1, u
s
L) of Ps; i← i + 1;10: z∗i ← the vertex reating a fae with e inside Ps ∪ P1;11: us

L ← the �rst vertex of Ps adjaent to z∗i ;12: us
R ← the last vertex of Ps adjaent to z∗i ;13: end while14: while σ(us

L), σ(us
R), and σ(z∗i ) appear in this order in Σ do15: e← edge (us

R, us
R+1) of Ps; i← i + 1;16: z∗i ← the vertex reating a fae with e inside Ps ∪ P1;17: us

L ← the �rst vertex of Ps adjaent to z∗i ;18: us
R ← the last vertex of Ps adjaent to z∗i ;19: end while20: end if21: z∗ ← z∗i ;22: Ps+1 ← the path obtained from Ps by replaing the subpath between

us
L and us

R with path (us
L, z∗, us

R);23: if z∗ is adjaent to at least one vertex in V1 then24: m← s + 1;25: partition Pm into subpaths, based on the verties of Pm ∩ P2;26: Pu ← the subpath of Pm ontaining z∗;27: while (u1, u2, . . . , ux = z∗) has a hord (ua, ub) do28: replae the subpath of Pu between ua and ub with (ua, ub);29: end while30: while (ux = z∗, ux+1, . . . , ur) has a hord (ua, ub) do31: replae the subpath of Pu between ua and ub with (ua, ub);32: end while33: path_found ← true;34: else35: s← s + 1; e← any edge (us
t , u

s
t+1) of Ps;36: end if37: end while38: return Pu;
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10.3. HOW TO DRAW LINEARLY-ORDERED OUTERCLUSTEREDGRAPHS 279Let Γ(Co) be an arbitrary onvex-separated drawing of Co. Denote by Pthe polygon representing o(G) in Γ(Co). Sine Γ(Co) satis�es Property CS1 ofDe�nition 10.3, P is onvex. Suppose that C is linearly-ordered aording toa sequene Σ = µ1, µ2, . . . , µh, . . . , µk of lusters of T . Let vi and vj be twoverties of C with σ(vi) = µ1 and σ(vj) = µk suh that the angle of P inidentto vi and the angle of P inident to vj are stritly less than 180◦. Suh vertiesexist sine Γ(Co) satis�es Property CS2 of De�nition 10.3.We distinguish two ases:Case 1 applies when the verties of V1 ∪ {vi, vj} are not all ollinear. Insuh a ase, V1 6= ∅, otherwise the only two verties of V1 ∪ {vi, vj} would beollinear. Hene, a path (u1, u2, . . . , ux, . . . , ur) an be found as in Lemma 10.5.Let vx be any vertex of V1 adjaent to ux.Lemma 10.7 Vertex vx does not lie on the line l(u1, ur) through u1 and ur.Proof: Denote by P(u1, vx, ur) the subpath of C between verties u1 and
ur ontaining vx. Suh a path is hene part of the boundary of o(G). If thereexists an internal vertex of P(u1, vx, ur) lying on the segment u1ur, then allthe verties in P(u1, vx, ur) lie on u1ur, otherwise polygon P would not beonvex (see Fig. 10.14(a)). However, P(u1, vx, ur) ontains all the verties of
V1∪{vi, vj}, that are not all ollinear, by hypothesis. Now suppose that vx lieson the half-line that is part of l(u1, ur), that starts at u1, and that does notontain ur (the ase in whih vx lies on the half-line that is part of l(u1, ur),that starts at ur, and that does not ontain u1 being analogous). By theonvexity of P , all the verties in the path between vx and ur ontaining u1 lieon l(u1, ur) (see Fig. 10.14(b)). However, sine vx ∈ V1 and sine vi and vj arethe �rst and the last vertex in the path between u1 and ur not ontaining vx,it follows that vi is one of the internal verties of suh a path, thus its inidentangle in P is exatly 180◦, ontraditing the hypothesis. 2Consider the triangle T (vx, u1, ur) with verties vx, u1, and ur. By Lemma 10.7,suh a triangle is non-degenerate and, by the onvexity of P , it is entirely on-tained inside P (observe that parts of triangle T (vx, u1, ur) and of polygon Pould oinide). Denote by σ′(ui) any luster in Σ whih is a hild of σ(ui),for eah 2 ≤ i ≤ r − 1.Lemma 10.8 There exists a small disk D entirely ontained inside int(T (vx, u1, ur))∩
R(σ(ux), σ′(ux)).Proof: Let µj1 , µj2 , µj3 , and µj4 be lusters σ(u1), σ(ux), σ(ur), and σ(vx)in Σ, respetively. Denote by µ′

j any luster in Σ whih is a hild of µj . Sine
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1(a) (b)Figure 10.14: Illustration for the proof of Lemma 10.7. (a) Vertex vx lies on
u1ur. (b) Vertex vx lies on the half-line that is part of l(u1, ur), that starts at
u1, and that does not ontain ur.
2 ≤ x ≤ r− 1 and sine σ(ui) = µl1 and σ(ui+1) = µl2 implies l1 < l2, we have
j1 < j2 < j3. Sine C satis�es Property O3 of De�nition 10.1, σ(ux) 6= σ(vx)and hene j2 6= j4. Suppose that j2 < j4, the ase j2 > j4 being analogous.We laim that s1 = R(µj2 , µ

′
j2

) ∩ u1ur and s2 = R(µj2 , µ
′
j2

) ∩ u1vx arestraight-line segments. The laim implies the lemma, as if the laim holds,then the interior of the quadrilateral having s1 and s2 as opposite sides entirelybelongs to int(T (vx, u1, ur))∩R(µj2 , µ
′
j2

) and any disk entirely ontained insidesuh a quadrilateral satis�es the requirements of the lemma. See Fig. 10.15.
R(   (u ),   (u ))

µj2

l (     ,     )’µ µ

T(v ,u ,u )
1 r

µj2

µµ
µ

3

µ

v

u

1

i

1

6

1 j2 j2

j4

j3

9

10

j

r

x

x x
2

µ =µj1

4

5

µ =µ
j2

µ =µ
7

µ =µ
8

µ

1

µ

s

s2

v
D

u

vx
σ σ’

l (     ,     )2 ’Figure 10.15: Illustration for the proof of Lemma 10.8.By Property CS3 of De�nition 10.3, R(µj2 , µ
′
j2

) ∩ P onsists of two linesegments l1(µj2 , µ
′
j2) and l2(µj2 , µ

′
j2). Sine j2 6= j1, j3, j4, none of verties u1,

ur, and vx belongs to R(µj2 , µ
′
j2

). Consider the two line segments la and lb
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10.3. HOW TO DRAW LINEARLY-ORDERED OUTERCLUSTEREDGRAPHS 281obtained by removing l1(µj2 , µ
′
j2

) and l2(µj2 , µ
′
j2

) from P . Sine P is onvex,it su�es to show that u1 is in la and ur is in lb, or vie versa, in order toprove that s1 is a straight-line segment; analogously, it su�es to show that u1is in la and vx is in lb, or vie versa, in order to prove that s2 is a straight-linesegment. However, this follows from the fat that one of the sides of R(µj2 , µ
′
j2

)separates the verties whose smallest ontaining luster is µj , with j < j2, fromthe verties whose smallest ontaining luster is µj , with j > j2. 2Plae ux at any point inside D. Draw edge (ux, vx) as a straight-line seg-ment. Consider the straight-line segment u1ux and onsider any luster µj suhthat j1 < j < j2. Then, R(µj , µ
′
j)∩u1ux is a straight-line segment, namely oneof the sides of region R(µj , µ

′
j) separates the verties whose smallest ontainingluster is µj∗ , with j∗ < j, from the verties whose smallest ontaining lus-ter is µj∗ , with j∗ > j. Analogously, onsider the straight-line segment uxurand onsider any luster µj suh that j2 < j < j3. Then, R(µj , µ

′
j) ∩ uxur isa straight-line segment, namely one of the sides of region R(µj , µ
′
j) separatesthe verties whose smallest ontaining luster is µj∗ , with j∗ < j, from theverties whose smallest ontaining luster is µj∗ , with j∗ > j. Draw eah ver-tex ui, with 2 ≤ i ≤ x − 1, at any internal point of u1ux ∩ R(σ(ui), σ

′(ui)).Analogously, draw eah vertex ui, with x + 1 ≤ i ≤ r − 1, at any point of
uxur ∩R(σ(ui), σ

′(ui)). Denote by Γ the onstruted drawing. The onstru-tion of Γ is depited in Fig. 10.16.
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Figure 10.16: Drawing path (u1, u2, . . . , ux, . . . , ur) and edge (ux, vx).Let C1 be the yle omposed of path (u1, u2, . . . , ux), of edge (ux, vx),and of the path between u1 and vx in C not ontaining ur. Let C2 be the
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282 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSyle omposed of path (ux, ux+1, . . . , ur), of edge (ux, vx), and of the pathbetween vx and ur in C not ontaining u1. Let C3 be the yle omposedof path (u1, u2, . . . , ux, . . . , ur) and of the path between u1 and ur in C notontaining vx. Let T1, T2, and T3 be the subtrees of T indued by the lustersontaining verties of C1, C2, and C3, respetively. Denote by G1, G2, and G3the subgraphs of G indued by the verties inside or on the border of C1, C2,and C3, respetively. Finally, let C1, C2, and C3 be the lustered graphs whoseunderlying graphs are G1, G2, and G3, respetively, and whose inlusion trees
T1, T2, and T3 are the subtrees of T indued by the lusters ontaining vertiesof G1, G2, and G3, respetively.Lemma 10.9 C1, C2, and C3 are linearly-ordered outerlustered graphs.Proof: Denote by C1,2 the yle omposed of path (u1, u2, . . . , ux, . . . , ur)and of the path between u1 and ur in C ontaining vx. Let C1,2 be the lusteredgraph whose underlying graph G1,2 is the subgraph of G whose verties areinident to or internal to C1,2, and whose inlusion tree T1,2 is the subtree of Tindued by the lusters ontaining verties of G1,2. It su�es to prove that C1,2and C3 are linearly-ordered outerlustered graphs. Namely, by Lemma 10.2,if C1,2 is a linearly-ordered outerlustered graph, then C1 and C2 are linearly-ordered outerlustered graphs, as well.Sine C is linearly-ordered, o(G) is delimited by two monotone paths P1and P2, where P1 (resp. P2) has the verties in V1 (resp. in V2) as internalverties.Consider the sequene Σ = µ1, µ2, . . . , µk aording to whih C is linearly-ordered. Denote by Σ3 the subsequene of Σ that starts at σ(u1) and ends at
σ(ur). We prove that C1,2 is an outerlustered graph linearly-ordered aordingto Σ and that C3 is an outerlustered graph linearly-ordered aording to Σ3.Eah luster µi that is not rossed by path (u1, u2, . . . , ux, . . . , ur) has twointersetions with C1,2 and none with C3. Consider any luster µi that is rossedby path (u1, u2, . . . , ux, . . . , ur). Sine C satis�es Property O2, the boundary
B(µi) of eah luster µi intersets C exatly twie. One of suh intersetionsbelongs to C1,2, the other one to C3. Hene, eah of C1,2 and C3 rosses B(µi)exatly twie. Then, Lemma 10.1 ensures that C1,2 and C3 are bionnetedinternally-triangulated outerlustered graphs.We prove that C1,2 and C3 satisfy Property LO2 of De�nition 10.2. Path
P1 and the path obtained by replaing the subpath of P2 between u1 and
ur with path (u1, u2, . . . , ux, . . . , ur) are monotone paths delimiting o(G1,2).
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10.3. HOW TO DRAW LINEARLY-ORDERED OUTERCLUSTEREDGRAPHS 283Further, path (u1, u2, . . . , ux, . . . , ur) and the subpath of P2 between u1 and
ur are monotone paths delimiting o(G3).We prove that C1,2 and C3 satisfy Property LO1. Sine C is linearly-ordered, the smallest luster ontaining eah vertex in G (and eah vertex in
G1,2) is a luster µi, that by hypothesis belongs to Σ. Conerning C3, observethat o(G3) is delimited by two monotone paths. Hene, if the smallest lusterontaining a vertex in G3 does not belong to Σ3, then suh a vertex is outside
o(G3), a ontradition.We prove that C1,2 and C3 satisfy Property LO3. Sequene Σ for C1,2oinides with sequene Σ for C, hene the property follows. Conerning C3,the existene of an index h suh that (i) µi+1 is the parent of µi, for eah i < hsuh that µi belongs to Σ3, and (ii) µi+1 is a hild of µi, for eah i ≥ h suhthat µi+1 belongs to Σ3, easily desends from the existene of index h for thesequene Σ of C and from the fat that Σ3 is a subsequene of Σ. 2We turn our attention to the geometry supporting the above topologial results.Lemma 10.10 The onstruted drawings of (C1, T1), (C2, T2), and (C3, T3) areonvex-separated drawings.Proof: Drawing Γ is straight-line and retangular by onstrution. Byonstrution, ux lies in int(T (vx, u1, ur)) that in turn is entirely ontained in
int(P ). By the onvexity of P , straight-line segments an be drawn from uxto any vertex of P (and hene to u1, vx, and ur) not ausing rossings; hene,the drawings of C1, C2, and C3 have no edge rossings. Sine Γ(Co) has noregion-region rossings, Γ has no region-region rossings (namely, eah lusterhas the same drawing in Γ and in Γ(Co)).We prove that Γ has no edge-region rossing. Suppose that there is anedge-region rossing between an edge e and a luster ν. Then, e is either anedge of path (u1, u2, . . . , ux), or an edge of path (ux, ux+1, . . . , ur), or edge
(ux, vx). Namely, all other edge-luster pairs have the same drawings in Γ andin Γ(Co), hene they do not ross more than one by hypothesis. Suppose that
e = (ui, ui+1) is an edge of (u1, u2, . . . , ux), the other ases being analogous. Ifboth ui and ui+1 belong to ν then, by the onvexity of ν, e is internal to ν. Ifexatly one of ui and ui+1 belongs to ν then, by the onvexity of ν, e rosses
ν exatly one. It follows that ν ontains neither ui nor ui+1. Consider theparent µ of ν in T . Suh a parent exists sine otherwise ν would be the rootof T , ontraditing the fat that ν ontains neither ui nor ui+1. By de�nitionof onvex-separated drawing, there exists a onvex region R(µ, ν) with theproperties desribed in De�nition 10.3 whih separates ν from the rest of the
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284 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSdrawing, thus avoiding an edge-region rossing between e and ν. More preisely,by de�nition of outerlustered graph, ν has exatly two inident edges e1(ν)and e2(ν) belonging to o(G). Denote by u(e1(ν)) and u(e2(ν)) the endvertiesof e1(ν) and e2(ν) belonging to ν. Denote by p(l1) the endpoint of l1(µ, ν) thatlies on e1(ν) (if both endpoints of l1(µ, ν) lie on e1(ν), then p(l1) is the one thatis loser to u(e1(ν))). Note that an endpoint of l1(µ, ν) lying on e1(ν) exists as
Γ satis�es Property CS3. Analogously de�ne p(l2). Then, segment p(l1)p(l2)splits P into two disjoint onvex polygons P ′ and P ′′, where P ′ ontains alland only the verties of o(G) and of path (u1, u2, . . . , ux) in ν and P ′′ ontainsall and only the verties of o(G) and of path (u1, u2, . . . , ux) not in ν, as Γsatis�es Property CS3. By the onvexity of P ′ and P ′′, e is internal to P ′′,while the part of ν inside P is internal to P ′. Hene, e does not ross ν.We prove that Γ satis�es Property CS1 of De�nition 10.3. Denote by Pithe polygon representing Ci in Γ, for eah i ∈ {1, 2, 3}. Every angle that isinident to a vertex in C di�erent from u1, ur, and vx in P1, P2, or P3 is nomore than 180◦, sine it is the same angle as in P . Every angle that is inidentto a vertex in the path (u1, u2, . . . , ur) di�erent from u1, ux, and ur in P1, P2,or P3 is exatly 180◦, by onstrution. Every angle inident to u1, vx, and
ur in P1, P2, or P3 is stritly less than 180◦, sine it is stritly less than anangle that is at most 180◦ (namely the angle inident to the same vertex in
P ); �nally, the three angles û1uxvx, û1uxur, and ûruxvx inident to ux are allstritly less than 180◦, sine they are angles in the non-degenerate triangles
T (u1uxvx), T (u1uxur), and T (uruxvx), respetively.We prove that Γ satis�es Property CS2. Conerning the drawing of C1 (thearguments for the drawing of C2 being analogous), observe that C1 is linearly-ordered aording to the subsequene Σ1 of Σ that starts at σ(vi) = µ1 andends at the one of σ(ux) and σ(vx) that omes after in Σ. The angle inident to
vi in P1 is stritly less than 180◦, by hypothesis; further, as proved above, theangles inident to ux and vx in P1 are stritly less than 180◦. Conerning thedrawing of C3, observe that σ(u1) and σ(ur) are the �rst and the last lusterin Σ3. Further, the angles inident to u1 and to ur in P3 are stritly smallerthan 180◦, as proved above.We prove that Γ satis�es Property CS3. For eah i = 1, 2, 3, let µj beany luster (exept for the �rst and the last one) belonging to the sequeneaording to whih Ci is linearly-ordered and let µ′

j be any hild of µj . Theexistene of a region R(µj , µ
′
j) inside Pi is easily dedued from the existeneof region R(µj , µ

′
j) inside P . Namely, either R(µj , µ

′
j) inside P is intersetedneither by path (u1, u2, . . . , ur) nor by edge (ux, vx), implying that a region

R(µj, µ
′
j) inside Pi an be onstruted oinident with the same region inside
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P , or R(µj , µ

′
j) inside P is interseted by one or both of path (u1, u2, . . . , ur)and edge (ux, vx), that thus split R(µj , µ

′
j) into two or three regions inside thepolygons Pi. The properties that have to be satis�ed by R(µj , µ

′
j) inside Pieasily desend from the analogous properties satis�ed by R(µj , µ

′
j) inside P . 2Graphs C1, C2, and C3 are, in general, not trionneted; namely, thereould exist hords between any vertex in (u1, u2, . . . , ux−1) and any vertex in

(ux+1, ux+2, . . . , ur), or hords between any vertex in (u1, u2, . . . , ur) and anyvertex in the path of C onneting u1 and ur and not ontaining vx, or hordsbetween ux and any vertex in the path of C onneting u1 and ur and ontaining
vx. By Lemma 10.2, eah of these hords splits a linearly-ordered outerlusteredgraph into two smaller linearly-ordered outerlustered graphs. Further, by on-strution the endverties of eah of suh hords are not ollinear with any othervertex of the yle. Hene, by Lemma 10.3, drawing the hords as straight-linesegments splits the drawings of C1, C2, and C3, that are onvex-separated byLemma 10.10, into onvex-separated drawings. When all the hords have beenadded, the underlying graphs of the resulting internally-triangulated linearly-ordered outerlustered graphs are all trionneted. Hene, the indution appliesand an internally-onvex-separated drawing of eah of suh linearly-orderedlustered graphs an be onstruted inside the orresponding outer fae, thusobtaining an internally-onvex-separated drawing of C.A pseudo-ode desription of the algorithm for drawing a linearly-orderedouterlustered graph C (supposing that V1 6= ∅) is presented in Algorithm 8.Case 2 applies when the verties of V2 ∪ {vi, vj} are not all ollinear.In suh a ase, V2 6= ∅ and a path (u1, u2, . . . , ux, . . . , ur) an be found asin Lemma 10.6. Analogously to Case 1, C is deomposed into smaller tri-onneted internally-triangulated linearly-ordered outerlustered graphs; path
(u1, u2, . . . , ux, . . . , ur) and all the edges onneting verties of suh a path withverties of C an be drawn so that the outer faes of the orresponding out-erlustered graphs are represented by onvex-separated drawings. Hene, theindution applies and an internally-onvex-separated drawing of eah of suhlinearly-ordered lustered graphs an be onstruted inside the orrespondingouter fae, thus obtaining an internally-onvex-separated drawing of C.It remains to prove that one out of Case 1 and Case 2 applies. If Case 1does not apply, then the verties of V1 ∪ {vi, vj} are ollinear, and if Case 2does not apply, then the verties of V2 ∪ {vi, vj} are ollinear. However, thisimplies that all the verties of C are ollinear, ontraditing the fat that Γ(Co)is a onvex-separated drawing. This onludes the proof of Theorem 10.1. 2
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286 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSAlgorithm 8 Drawing Linearly-Ordered Outerlustered GraphsRequire: C(G, T ), Γ(Co), Σ, V1 6= ∅, P1, and P2.Ensure: An internally-onvex-separated drawing Γ(C) of C ompleting Γ(Co).1: Pu = (u1, . . . , ux, . . . , ur) ← the path obtained from Algorithm 7 withinput C(G, T ), Σ, V1 6= ∅, P1, and P2;2: σ′(ui)← any luster in Σ hild of σ(ui);3: vx ← any vertex in V1 adjaent to ux;4: D ← disk in the interior of T (vx, u1, ur); plae ux at any point inside D;5: for 2 ≤ i ≤ x− 1 do6: plae ui at any internal point of u1ux ∩R(σ(ui), σ
′(ui));7: end for8: for x + 1 ≤ i ≤ r − 1 do9: plae ui at any internal point of uxur ∩R(σ(ui), σ
′(ui));10: end for11: draw eah edge between two verties among the ones in C and in Pu as astraight-line segment;12: apply Algorithm 8 on eah resulting linearly-ordered outerlustered graphompleting a drawing of the orresponding outer fae;13: Γ(C)← the resulting internally-onvex-separated drawing of C;14: return Γ(C);10.4 How to Draw Outerlustered GraphsIn this setion we generalize from linearly-ordered outerlustered graphs togeneral outerlustered graphs. In order to show that any maximal outerlus-tered graph has an internally-onvex-separated drawing ompleting an arbi-trary triangular-onvex-separated drawing of its outer fae, we show how toredue the problem of drawing an outerlustered graph to the one of drawingsome linearly-ordered outerlustered graphs.First, we need the following preliminary results.Lemma 10.11 Let C(G, T ) be a maximal outerlustered graph and let u, v,and z be the verties inident to o(G). Let ui 6= u be any internal vertex of Gsuh that σ(ui) ontains u and ontains neither v nor z. Then, there exists anedge (ui, ui+1) in G suh that σ(ui+1) is a desendant of σ(ui).Proof: Refer to a c-planar embedding of C and to Fig. 10.17. Let µi+1
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7eFigure 10.17: Illustration for the proof of Lemma 10.11.be the only luster hild of σ(ui) and ontaining u. Notie that suh a hildexists. Namely, if suh a hild does not exist, then σ(ui) = σ(u); however,this would imply that ui = u, sine σ(u) indues a onneted graph, by the

c-planarity and the maximality of C, and sine an outerlustered graph doesnot ontain two adjaent verties having the same smallest ontaining lusterif one of them is internal, by Property O3 of De�nition 10.1. Suppose, for aontradition, that ui is not adjaent to any vertex in µi+1. By Property O3,
ui is not adjaent to any vertex vj suh that σ(vj) = σ(ui). It follows thateah edge el inident to ui intersets the boundary B(σ(ui)) of σ(ui) in a point
pl belonging to the line segment l(σ(ui)) that is the part of B(σ(ui)) lying inthe interior of o(G). Order the points pl as they are enountered walking on
l(σ(ui)) from one endpoint to the other one. Denote by p1, p2, . . . , pm suhpoints. By the maximality of G, m ≥ 3 and there exists an internal faedelimited by a 3-yle ontaining edges e1 and em. However, the third edge
e∗ of suh a yle rosses twie l(σ(ui)) and hene B(σ(ui)), ontraditing the
c-planarity of the onsidered embedding. 2Corollary 10.1 Let C(G, T ) be any maximal outerlustered graph and let u, v,and z be the verties inident to o(G). Suppose that σ(u) 6= σ(v), σ(z). Let u1be any internal vertex of G suh that σ(u1) ontains u and ontains neither vnor z. Then, there exists a hordless path (u1, u2, . . . , uk) in G suh that uk = uand suh that σ(ui+1) is a desendant of σ(ui), for eah i = 1, 2, . . . , k − 1.Proof: Suppose that a path (u1, u2, . . . , ui) has already been determinedsuh that uj+1 is a desendant of uj , for eah j = 1, 2, . . . , i−1. By Lemma 10.11,there exists an edge (ui, ui+1) in G suh that σ(ui+1) is a desendant of σ(ui).
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288 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSAlgorithm 9 Chordless Paths in Outerlustered GraphsRequire: C(G, T ), u, and u1, as in Corollary 10.1.Ensure: A path (u1, u2, . . . , uk) suh that uk = u and suh that σ(ui+1) is adesendant of σ(ui).1: uj ← u1;2: while uj 6= u do3: ui ← uj;4: (ui, ui+1)← an edge in G suh that σ(ui+1) is a desendant of σ(ui);5: add (ui, ui+1) to the urrent path;6: uj ← ui+1;7: end while8: (u1, u2, . . . , uk)← the path obtained by Algorithm 10 on G and the urrentpath;9: return (u1, u2, . . . , uk);Algorithm 10 Replae Chords in PathsRequire: A graph G and a path (u1, u2, . . . , uk) in G.Ensure: A hordless path in G whose verties are a subset of {u1, u2, . . . , uk}in the same order as in (u1, u2, . . . , uk).1: while the urrent path (u1, u2, . . . , uk) has a hord (ui, uj) in G do2: replae the subpath of (u1, u2, . . . , uk) between ui and uj with edge
(ui, uj);3: end while4: return the obtained path;Repeating suh an argument eventually leads to hoose a vertex uk in σ(u).Sine σ(u) 6= σ(v), σ(z), then, by Property O3 of De�nition 10.1, u is the onlyvertex in σ(u). It follows that uk = u. The obtained path Pu may have hords.Suppose that the urrently onsidered path P l

u = (ul
1, u

l
2, . . . , u

l
k) has a hord

(ul
i, u

l
j), with j > i+1 and with P1

u = Pu. Obtain a new path P l+1
u by replaingthe subpath (ul

i, u
l
i+1, . . . , u

l
j) of P l

u with the hord (ul
i, u

l
j). Clearly, σ(ul

j) is adesendant of σ(ul
i). Further, P l+1

u has at least one hord less than P l
u whihimplies that, after a ertain number of steps, the urrent path is hordless. 2A pseudo-ode desription of the algorithm for �nding a path satisfying therequirements of Corollary 10.1 in a maximal outerlustered graph is presented
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10.4. HOW TO DRAW OUTERCLUSTERED GRAPHS 289in Algorithm 9�10.Let C(G, T ) be a maximal outerlustered graph and let u, v, and z bethe verties inident to o(G). Suppose that: (i) σ(u) 6= σ(v), σ(u) 6= σ(z),and σ(v) 6= σ(z); (ii) if there exists a luster ontaining exatly two vertiesinident to o(G), then suh verties are u and v; (iii) if the smallest ontainingluster of one of u and v ontains the other one, then σ(v) ontains u; and(iv) G has internal verties. The following lemma states that in a maximalouterlustered graph some edge-disjoint paths an be found satisfying ertainproperties of �monotoniity� with respet to the luster hierarhy. After thelemma, it will be shown how suh paths, together with their hords, split Cinto linearly-ordered outerlustered graphs.Lemma 10.12 One of the following holds:1. There exist three paths Pu = (u1, u2, . . . , uU ), Pv = (v1, v2, . . . , vV ), and
Pz = (z1, z2, . . . , zZ) suh that (see Figs. 10.18.a�10.18.):a) uU = u, vV = v, zZ = z, and u1 = v1 = z1;b) the verties of Pu \ {u1}, Pv \ {v1}, and Pz \ {z1} are distint;) eah of paths Pu \ {u1}, Pv \ {v1}, and Pz has no hords;d) σ(ui) ontains neither v nor z, for eah 2 ≤ i ≤ U ; σ(vi) ontainsneither u nor z, for eah 2 ≤ i ≤ V ; σ(zi) ontains neither u nor v,for eah Z∗ ≤ i ≤ Z, where Z∗ is an index suh that 1 ≤ Z∗ ≤ Z;e) σ(ui+1) is a desendant of σ(ui), for eah 2 ≤ i ≤ U − 1; σ(vi+1) isa desendant of σ(vi), for eah 2 ≤ i ≤ V − 1;f ) σ(z1) is either a luster ontaining z and not ontaining u and v(then Z∗ = 1 and σ(zi+1) is a desendant of σ(zi), for eah 1 ≤

i ≤ Z − 1), or σ(u, v, z) (then Z∗ = 2 and σ(zi+1) is a desendantof σ(zi), for eah 1 ≤ i ≤ Z − 1), or a luster not ontaining zand ontaining u and v. In the latter ase Z∗ ≥ 2, σ(zi+1) is ananestor of σ(zi), for eah 1 ≤ i ≤ Z∗ − 2, σ(zi+1) is a desendantof σ(zi), for eah Z∗ ≤ i ≤ Z−1, and either σ(zZ∗) is a desendantof σ(zZ∗−1) (if σ(zZ∗−1) = σ(u, v, z)), or σ(zZ∗) is not omparablewith σ(zZ∗−1) (if σ(zZ∗−1) ontains u and v and does not ontain
z).g) G ontains an internal fae having inident verties u1, u2, and v2.
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u v() (d)Figure 10.18: (a)�() Three paths satisfying Condition 1 of Lemma 10.12. In(a) σ(z1) is a luster ontaining z and not ontaining u and v; in (b) σ(z1) =
σ(u, v, z); in () σ(z1) is a luster not ontaining z and ontaining u and v. (d)Two paths satisfying Condition 2 of Lemma 10.12.2. There exist two paths Pu = (u1, u2, . . . , uU ) and Pv = (v1, v2, . . . , vV )suh that (see Fig. 10.18.d):a) uU = u, vV = v, and u1 = v1 = z;b) the verties of Pu \ {u1} and Pv \ {v1} are distint;) eah of paths Pu \ {u1} and Pv \ {v1} has no hords;d) σ(ui) ontains neither v nor z, for eah 2 ≤ i ≤ U ; σ(vi) ontainsneither u nor z, for eah 2 ≤ i ≤ V ;e) σ(ui+1) is a desendant of σ(ui), for eah 2 ≤ i ≤ U − 1; σ(vi+1) isa desendant of σ(vi), for eah 2 ≤ i ≤ V − 1;f ) G ontains an internal fae having inident verties u2, v2, and z.
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10.4. HOW TO DRAW OUTERCLUSTERED GRAPHS 291Proof: Consider the biggest luster µu ontaining u and not ontaining v.Notie that suh a luster exists, as σ(u) does not ontain v by hypothesis.Consider the biggest luster µv ontaining v and not ontaining u, if any suha luster exists. If µv exists, let E′ be the set of edges whose end-verties areone in µu and one in µv. If µv does not exist, let E′ be the set of edges inidentto v whose other end-vertex is in µu. In both ases, there exists at least oneof suh edges, in fat (u, v). Order the edges in E′ as they are enounteredwhen walking on the part l(µu) of the border B(µu) of µu that is internal to
G, starting from the intersetion of (u, v) with B(µu). See Fig. 10.19.
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1(a) (b)Figure 10.19: The edges in E′. The numbers on suh edges indiate the order inwhih suh edges are enountered when walking on the part of B(µu) internalto G, starting from the intersetion of (u, v) with B(µu). (a) µv exists. (b) µvdoes not exist.Consider the last edge (u′, v′) in E′ and onsider the internal fae (u′, v′, z′)suh that (u′, z′) is the edge following (u′, v′) in the order in whih the edgesinident to µu are enountered when walking on the part of B(µu) that isinternal to G, starting from the intersetion of (u, v) with B(µu). Let Pu =
(u1, u2, . . . , uU ) be a path suh that u1 = z′, u2 = u′, and (u2, u3, . . . , uU ) isa hordless path suh that uU = u and σ(ui+1) is a desendant of σ(ui), for
2 ≤ i ≤ U−1. Suh a path exists by Corollary 10.1 (notie that σ(u2) ontains
u and ontains neither v nor z). Further, let Pv = (v1, v2, . . . , vV ) be a pathsuh that v1 = z′, v2 = v′, and (v2, v3, . . . , vV ) is a hordless path suh that
vV = v and σ(vi+1) is a desendant of σ(vi), for 2 ≤ i ≤ V − 1. Notie that if
µv exists, then suh a path exists by Corollary 10.1 (notie that σ(v2) ontains
v and ontains neither u nor z). Otherwise, v2 = vV = v.Suppose that z′ = z (see Fig. 10.20). Then, G ontains an internal faehaving inident verties u2, v2, and z. By onstrution, paths Pu and Pvsatisfy Condition 2 of the lemma.
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Figure 10.20: If z′ = z, then paths Pu and Pv satisfy Condition 2 ofLemma 10.12.Suppose that z 6= z′. Vertex z′ belongs neither to µu nor to µv, otherwiseedge (z′, v′) or edge (z′, u′) would follow (u′, v′) in E′, a ontradition. Hene,
σ(z′) is either a luster ontaining z and not ontaining u and v, or is σ(u, v, z),or is a luster ontaining u and v and not ontaining z.
• Suppose that σ(z′) ontains z and ontains neither u nor v (see Fig. 10.21).Let Pz = (z1, z2, . . . , zZ) be a hordless path suh that z1 = z′, zZ = z,and σ(zi+1) is a desendant of σ(zi), for 2 ≤ i ≤ Z − 1. Suh a path ex-ists by Corollary 10.1 (notie that σ(z1) ontains z and ontains neither

u nor v). By onstrution, paths Pu, Pv, and Pz satisfy Condition 1 ofthe lemma.
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• Suppose that σ(z′) = σ(u, v, z). Refer to a c-planar embedding of C. Let

µz be the biggest luster ontaining z and ontaining neither u nor v.We laim that µz exists. Suppose, for a ontradition, that µz does notexist. Then, every luster ontaining z also ontains one between u and v;therefore, any suh a luster ontains both u and v, by the assumptions ofthe lemma. Hene, σ(z) = σ(u, v, z) = σ(z′), and σ(u, v, z) is the smallestontaining luster of at least two verties, namely z and z′. We provethat there exists an edge between two verties whose smallest ontainingluster is σ(z), thus ontraditing the fat that C satis�es Property O3,and hene proving that µz exists. Consider the edges inident to z′.First, suppose that a luster ontaining both u and v and not ontaining
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Figure 10.22: If z′ 6= z, if σ(z′) = σ(u, v, z), and if a luster ontaining both uand v and not ontaining z exists, then µz exists.
z exists (see Fig. 10.22). Let µu,v be the biggest luster ontaining both
u and v and not ontaining z. Then, if no neighbor of z′ has σ(z′)as smallest ontaining luster, eah edge el inident to z′ intersets theboundary B(µu,v) of µu,v in a point pl belonging to the line segment
l(µu,v) that is the part of B(µu,v) lying in the interior of o(G). Orderthe points pl as they are enountered when walking on l(µu,v) from oneendpoint to the other one. Denote by p1, p2, . . . , pm suh points. By themaximality of G, m ≥ 3 and there exists a fae delimited by a 3-yleontaining edges e1 and em. However, the third edge e∗ of suh a ylerosses twie l(µu,v) and hene B(µu,v), ontraditing the c-planarity ofthe onsidered embedding. Seond, suppose that a luster ontainingboth u and v and not ontaining z does not exist (see Fig. 10.23). Then,if µv exists and if no neighbor of z′ has σ(z′) as smallest ontaining



i

i �main� � 2010/2/26 � 12:27 � page 294 � #304
i

i

i

i

i

i

294 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHS
µ

σ

µ

2

1e e6

e4 e5

v

e*

(u,v,z)

’ v

z

u

’

’

v

z

u
u

e3

e

Figure 10.23: If z′ 6= z, if σ(z′) = σ(u, v, z), and if a luster ontaining both uand v and not ontaining z does not exist, then µz exists.luster, eah edge el inident to z′ is also inident either to a vertexbelonging to µu or to a vertex belonging to µv; if µv does not exist andif no neighbor of z′ has σ(z′) as smallest ontaining luster, eah edge
el inident to z′ is also inident to a vertex belonging to µu. By the
c-planarity of the embedding, the order of the edges inident to z′ is asequene (e1, e2, . . . , ei, ei+1, . . . , em) so that: (i) ej is inident to a vertexin µu, for j = 1, 2, . . . , i, (ii) ei = (z′, u′), (iii) ei+1 = (z′, v′), and (iv) ejis inident to a vertex in µv, for j = i + 1, i + 2, . . . , m. Observe that, if
µv does not exist, ei+1 = (z′, v) and m = i + 1. By the maximality of G,
m ≥ 3 and there exists a fae delimited by a 3-yle ontaining edges e1and em. However, the third edge e∗ of suh a yle is an edge betweena vertex in µu and a vertex in µv (if µv exists) or is an edge betweena vertex in µu and v (if µv does not exist), ontraditing the fat that
(u′, v′) is the last edge in E′. This ompletes the proof of the laim that
µz exists.Next, we laim that there exists an edge inident to z′ and to a vertexbelonging to µz. The proof of suh a laim an be done analogously tothe proof that µz exists, namely by supposing, for a ontradition, thatno edge inident to z′ is inident to a vertex belonging to µz , and byshowing that this implies that the onsidered embedding is not c-planar(if a luster ontaining both u and v and not ontaining z exists), or that
(u′, v′) is not the last edge in E′ (if a luster ontaining both u and v andnot ontaining z does not exist).Then, there exists an edge (z′, z2) inident to z′ suh that z2 belongs
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10.4. HOW TO DRAW OUTERCLUSTERED GRAPHS 295to µz . Let (z2, z3, . . . , zZ) be a hordless path suh that zZ = z and
zi+1 is a desendant of zi, for 2 ≤ i ≤ Z − 1, whih exists by Corol-lary 10.1 (σ(z2) ontains z and ontains neither u nor v). Consider path
(z1, z2, z3, . . . , zZ). For eah hord (z1, zj), with j > 2, replae the sub-path of the urrent path with (z1, zj), resulting in a hordless path Pz.By onstrution, paths Pu, Pv, and Pz satisfy Condition 1 of the lemma.
• Suppose that σ(z′) ontains u and v and does not ontain z. In thefollowing we show how to �nd a path P1

z = (z1, z2, . . . , zZ∗) suh that:(i) z1 = z′, (ii) σ(zi) ontains u and v and does not ontain z, for 1 ≤
i ≤ Z∗ − 2, (iii) σ(zZ∗−1) is either σ(u, v, z) or a luster ontaining uand v and not ontaining z, (iv) zZ∗ belongs to µz, and (v) σ(zi+1) is ananestor of σ(zi), for eah 1 ≤ i ≤ Z∗ − 2.Assume that P1

z has already been determined till a vertex zi. We laimthat there exists an edge inident to zi and to a vertex zi+1 suh thateither σ(zi+1) is an anestor of σ(zi) ontaining u and v and not ontain-ing z, or σ(zi+1) = σ(u, v, z), or σ(zi+1) ontains z and does not ontain
u and v.Suppose, for a ontradition, that every edge inident to zi is inident toa vertex belonging to µu, or to a vertex belonging to µv, or to a vertexbelonging to a luster that ontains u and v, that does not ontain z, andthat is a desendant of σ(zi). Observe that vertex zi is not adjaent toany vertex vj suh that σ(vj) = σ(zi), by Property O3 of De�nition 10.1.First, onsider the ase in whih σ(zi) 6= σ(u, v), that is, there exists ahild µ(u, v,¬zi) of σ(zi) in T ontaining u and v and not ontaining
z. Then, eah edge inident to zi is also inident to a vertex belongingto µ(u, v,¬zi). Analogously as above, a ontradition an be reahedby proving that there exists an edge e∗ that rosses twie the boundary
B(µ(u, v,¬zi)) of µ(u, v,¬zi).Seond, onsider the ase in whih σ(zi) = σ(u, v). Then, a ontraditionan be reahed by proving that: (i) if all the edges inident to zi are alsoinident to verties belonging to µu (or if all the edges inident to zi arealso inident to verties belonging to µv), then there exists an edge thatrosses twie the boundary B(µu) of µu (resp. the boundary B(µv) of
µv); (ii) if some edges inident to zi are also inident to verties in µuand some edges inident to zi are also inident to verties in µv, then
(u′, v′) is not the last edge in E′.
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296 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSThis proves the laim, namely that there exists an edge inident to ziand to a vertex zi+1 suh that either σ(zi+1) is an anestor of σ(zi)ontaining u and v and not ontaining z, or σ(zi+1) = σ(u, v, z), or
σ(zi+1) ontains z and does not ontain u and v. The repetition of suhan argument eventually leads to the hoie of a vertex zZ∗ that belongsto µz or to the hoie of a vertex zZ∗−1 suh that σ(zZ∗−1) = σ(u, v, z).If zZ∗ belongs to µz, then P1

z has already been determined satisfying thedesired properties. If σ(zZ∗−1) = σ(u, v, z) then the same argument asabove shows that there exists an edge (zZ∗−1, zZ∗) suh that zZ∗ belongsto µz, thus obtaining a path P1
z satisfying the desired properties.Let P2

z = (zZ∗ , zZ∗+1, . . . , zZ) be a hordless path suh that zZ = z, and
zi+1 is a desendant of zi, for Z∗ ≤ i ≤ Z − 1. Suh a path exists byCorollary 10.1 (σ(zZ∗) ontains z and ontains neither u nor v).Finally, onsider the path obtained by onatenating P1

z and P2
z . Suh apath may eventually have hords. For eah hord (zi, zj), with j > i + 1,replae the subpath of the urrent path with (zi, zj), whih results ina hordless path Pz. By onstrution, paths Pu, Pv, and Pz satisfyCondition 1 of the lemma.

2A pseudo-ode desription of the algorithm for �nding three paths sat-isfying Condition 1 of Lemma 10.12 or two paths satisfying Condition 2 ofLemma 10.12 is presented in Algorithm 11.As in Lemma 10.12, let C(G, T ) be a maximal outerlustered graph, let u,
v, and z be the verties inident to o(G), and suppose that: (i) σ(u) 6= σ(v),
σ(u) 6= σ(z), and σ(v) 6= σ(z); (ii) if there exists a luster ontaining exatlytwo verties inident to o(G), then suh verties are u and v; (iii) if the smallestontaining luster of one of u and v ontains the other one, then σ(v) ontains
u; and (iv) G has internal verties.Suppose that Condition 1 of Lemma 10.12 holds (see Fig. 10.24).Denote by Cu,v, by Cu,z, and by Cv,z the lustered graphs whose underlyinggraphs Gu,v, Gu,z , and Gv,z are the subgraphs of G indued by the vertiesinident to and internal to yle Cu,v ≡ (u, v)∪(Pu\{u1})∪(u2, v2)∪(Pv \{v1}),inident to and internal to yle Cu,z ≡ (u, z) ∪ Pu ∪ Pz, and inident to andinternal to yle Cv,z ≡ (v, z) ∪ Pv ∪ Pz, and whose inlusion trees Tu,v, Tu,z,and Tv,z are the subtrees of T indued by the lusters ontaining verties of
Gu,v, of Gu,z , and of Gv,z, respetively.
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10.4. HOW TO DRAW OUTERCLUSTERED GRAPHS 297Algorithm 11 Two or Three Paths in Outerlustered GraphsRequire: C(G, T ), as in Lemma 10.12.Ensure: Paths Pu, Pv, and Pz satisfying Condition 1 of Lemma 10.12, orpaths Pu and Pv satisfying Condition 2 of Lemma 10.121: µu ← biggest luster ontaining u and not ontaining v;2: µv ← biggest luster ontaining v and not ontaining u (if it exists);3: if µv exists then4: E′ ← set of edges whose end-verties are one in µu and one in µv;5: else6: E′ ← set of edges inident to v whose other end-vertex is in µu;7: end if8: (u′, v′)← last of the edges in E′ inident to l(µu) starting from (u, v);9: z′ ← vertex forming a fae with (u′, v′);10: Pu ← edge (z′, u′) plus the path obtained by Algorithm 9 on C and u′;11: Pv ← edge (z′, v′) plus the path obtained by Algorithm 9 on C and v′;12: if z′ = z then13: return Pu and Pv;14: else15: if σ(z′) ontains z and ontains neither u nor v then16: Pz ← the path obtained by Algorithm 9 on C and z′;17: return Pu, Pv, and Pz;18: end if19: if σ(z′) = σ(u, v, z) then20: (z′, z2)← edge suh that z2 is in a luster ontaining z and neither unor v;21: (z2, z3, . . . , zZ)← path obtained by Algorithm 9 on C and z2;22: Pz ← the path obtained by Algorithm 10 on G and (z′, z2, z3, . . . , zZ);23: return Pu, Pv, and Pz;24: end if25: if σ(z′) ontains u and v and does not ontain z then26: zj ← z′;27: while σ(zj) ontains u and v and does not ontain z do28: zi ← zj ; (zi, zi+1) ← edge suh that σ(zi+1) is not a desendant of
σ(zi);29: add (zi, zi+1) to the urrent path; zj ← zi+1;30: end while31: if σ(zi) = σ(u, v, z) then32: (zi, zi+1)← edge suh that σ(zi+1) ontains z and neither u nor v;33: add (zi, zi+1) to the urrent path;34: end if35: P1

z = (z1, z2, . . . , zZ∗)← the urrent path;36: P2
z = (zZ∗ , zZ∗+1, . . . , zZ)← path obtained by Algorithm 9 on C and

zZ∗ ;37: Pz ← the path obtained by Algorithm 10 on G and P1
z plus P2

z ;38: return Pu, Pv, and Pz;39: end if40: end if
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Figure 10.24: Graphs Cu,v, Cu,z, and Cv,z when Condition 1 of Lemma 10.12holds. Thik edges show paths Pu, Pv, Pz, and edges (u, v), (u, z), (v, z), and
(u2, v2).Lemma 10.13 Cu,v, Cu,z, and Cv,z are linearly-ordered outerlustered graphs.Proof: We prove the statement for Cu,v, the proofs for Cu,z and Cv,z beinganalogous. Refer to a c-planar embedding of Cu,v and to Fig. 10.25. The outerfae of Gu,v is delimited by a simple yle Cu,v. We prove that the boundary ofeah luster µ ontaining verties of Cu,v and not ontaining all the verties of
Cu,v intersets Cu,v exatly twie. By onstrution, eah luster ontaining both
u and v ontains all the verties of Gu,v and eah luster ontaining neither unor v does not ontain any vertex of Gu,v. Finally, eah luster µ ontaining
u and not ontaining v (the arguments for eah luster µ ontaining v and notontaining u being analogous) intersets edge (u, v) exatly one, intersetspath (Pu \ {u1})∪ (u2, v2) exatly one, and does not interset path Pv \ {v1}.It follows that µ intersets Cu,v twie. By Lemma 10.1, Cu,v is a bionnetedinternally-triangulated outerlustered graph.Consider the sequene of lusters Σ = µ1, µ2, . . . , µk suh that: (i) µ1 =
σ(u), (ii) µi+1 is the parent of µi in Tu,v, for i = 1, 2, . . . , h − 2, (iii) µh−1 isthe biggest luster ontaining u and not ontaining v, (iv) µh is σ(u, v), (v)
µh+1 is the biggest luster ontaining v and not ontaining u, (vi) µi+1 is theonly hild of µi in Tu,v ontaining v, for i = h + 1, h + 2, . . . , k − 1, and (vii)
µk = σ(v). Notie that, if a luster ontaining v and not ontaining u does notexist, then µh = µk. In the following we prove that Cu,v is linearly-orderedaording to Σ.We prove that Cu,v satis�es Property LO1 of De�nition 10.2. Eah vertex
x in Gu,v either belongs to µh−1, or to µh+1, or is suh that σ(x) = σ(u, v).
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v=v2C(a) (b)Figure 10.25: A loser look to Cu,v. Cluster sequene Σ is shown. (a) A lusterontaining v and not ontaining u exists. (b) A luster ontaining v and notontaining u does not exist.Namely, if µv exists, then all the verties inident to o(Gu,v) either belong to
µh−1 or to µh+1, by onstrution; hene, all the verties of Gu,v belong to thesmallest luster ontaining both µh−1 and µh+1, that is σ(u, v), and do notbelong to any luster ontaining neither u nor v. If µv does not exist, then allthe verties inident to o(Gu,v), exept for v, belong to µh−1 and v belongs to
σ(u, v); hene, all the verties of Gu,v belong to the smallest luster ontainingboth µh−1 and v, that is σ(u, v), and do not belong to any luster ontainingneither u nor v. Further, Σ inludes all and only the lusters ontaining at leastone of u and v, exept for the lusters ontaining both u and v and anestors of
σ(u, v); however, eah luster ontaining both u and v, and anestor of σ(u, v)is di�erent from σ(x), for any vertex x of Gu,v, sine x is also ontained in
σ(u, v). Sine, for eah internal vertex x of G, σ(x) is a luster ontaining atleast one out of u and v, then σ(x) = µi, for some 1 ≤ i ≤ k.We prove that Cu,v satis�es Property LO2. Edge (u, v) and the path ob-tained by onatenating Pu \ {u1}, (u2, v2), and Pv \ {v1} are monotone pathsdelimiting o(Gu,v).We prove that Cu,v satis�es Property LO3. By onstrution, µi+1 is theparent of µi, for i = 1, 2, . . . , h − 2, and µi+1 is a hild of µi, for i = h +
1, h + 2, . . . , k − 1. Hene, in order to prove that Cu,v satis�es Property LO3,it su�es to show that µh is the parent of µh−1 and that µh is the parent of
µh+1. By onstrution, µh−1 (resp. µh+1) is the biggest luster ontaining uand not ontaining v (resp. ontaining v and not ontaining u). Hene, theparent of µh−1 (resp. of µh+1) is σ(u, v), that by de�nition is µh. 2Suppose that Condition 2 of Lemma 10.12 holds (see Fig. 10.26).Denote by Cu,v, by Cu,z , and by Cv,z the lustered graphs whose underlyinggraphs Gu,v, Gu,z, and Gv,z are the subgraphs of G indued by the verties
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2Figure 10.26: Graphs Cu,v, Cu,z, and Cv,z when Condition 2 of Lemma 10.12holds. Thik edges show paths Pu, Pv, and edges (u, v), (u, z), (v, z), and
(u2, v2).inident to and internal to yle Cu,v ≡ (u, v)∪(Pu\{u1})∪(u2, v2)∪(Pv \{v1}),inident to and internal to yle Cu,z ≡ (u, z)∪Pu, and inident to and internalto yle Cv,z ≡ (v, z)∪Pv, and whose inlusion trees Tu,v, Tu,z, and Tv,z are thesubtrees of T indued by the lusters ontaining verties of Gu,v, of Gu,z , andof Gv,z , respetively. We have the following lemma, whose proof is analogousto the one of Lemma 10.13.Lemma 10.14 Cu,v, Cu,z, and Cv,z are linearly-ordered outerlustered graphs.We are now ready to exhibit the main theorem of this setion.Theorem 10.2 Let C(G, T ) be a maximal outerlustered graph. Then, for ev-ery triangular-onvex-separated drawing Γ(Co) of Co, there exists an internally-onvex-separated drawing Γ(C) of C ompleting Γ(Co).Proof: Let u, v, and z be the verties inident to o(G). Suppose that G hasinternal verties, otherwise Co and C are the same graph, and the statementtrivially follows.If σ(u) = σ(v), then we laim that C is a linearly-ordered outerlusteredgraph. Refer to Fig. 10.27. Observe that C is a maximal outerlustered graphby hypothesis, hene G is bionneted and internally-triangulated.De�ne the sequene of lusters Σ = µ1, µ2, . . . , µk suh that: (i) µ1 =
σ(u) = σ(v), (ii) µi+1 is the parent of µi in T , for i = 1, 2, . . . , h− 2, (iii) µh−1is the biggest luster ontaining u and v and not ontaining z, if any suh a
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Figure 10.27: If σ(u) = σ(v), then C is a linearly-ordered outerlustered graph.luster exists, (iv) µh = σ(u, v, z), (v) µh+1 is the biggest luster ontaining zand not ontaining u and v, if any suh a luster exists, (vi) µi+1 is the onlyhild of µi in T ontaining z, for i = h+1, h+2, . . . , k−1, and (vii) µk = σ(z).We laim that C is linearly-ordered aording to Σ.We prove that C satis�es Property LO1 of De�nition 10.2. By onstrution,
Σ inludes all the lusters ontaining at least one out of u, v, and z, with theexeption of the lusters that ontain all of u, v, and z and that are anestorsof σ(u, v, z); however, eah luster ontaining all of u, v, and z and anestor of
σ(u, v, z) is di�erent from σ(x), for any vertex x of G, sine x is also ontainedin σ(u, v, z). Sine, for eah vertex x of G, σ(x) is a luster ontaining at leastone out of u, v, and z, by de�nition of outerlustered graph, then σ(x) = µi,for some 1 ≤ i ≤ k.We prove that C satis�es Property LO2. Path (u, v, z) and edge (u, z) aremonotone paths delimiting o(G).We prove that C satis�es Property LO3. By onstrution, µi+1 is the parentof µi, for i = 1, 2, . . . , h−2, and µi+1 is a hild of µi, for i = h+1, h+2, . . . , k−1.Hene, in order to prove that C satis�es Property LO3, it su�es to show that
µh is the parent of µh−1 and that µh is the parent of µh+1. By onstrution,
µh−1 (resp. µh+1) is the biggest luster ontaining u and v and not ontaining
z (resp. ontaining z and not ontaining u and v). Hene, the parent of µh−1(resp. of µh+1) is σ(u, v, z), that by de�nition is µh.Analogously, if σ(u) = σ(z) or if σ(v) = σ(z), C is a linearly-orderedouterlustered graph. By Lemma 10.4, a triangular-onvex-separated drawingof Co is also a onvex-separated drawing of Co, hene in suh ases the theoremdiretly follows from Theorem 10.1.Now suppose that σ(u) 6= σ(v), σ(u) 6= σ(z), and σ(v) 6= σ(z). Suppose
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302 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSalso that, if there exists a luster ontaining exatly two verties inident to
o(G), then suh verties are u and v. The ases in whih suh verties are u and
z, or v and z an be treated analogously. Suppose �nally that if the smallestontaining luster of one of u and v ontains the other one, then σ(v) ontains
u. The ase in whih σ(u) ontains v an be treated analogously.By Lemma 10.12, there exist three paths Pu = (u1, u2, . . . , uU ), Pv =
(v1, v2, . . . , vV ), and Pz = (z1, z2, . . . , zZ) satisfying Condition 1 of Lemma 10.12,or there exist two paths Pu = (u1, u2, . . . , uU ) and Pv = (v1, v2, . . . , vV ) satis-fying Condition 2 of Lemma 10.12.Suppose that Condition 1 of Lemma 10.12 holds. By Lemma 10.13, Cu,v(Gu,v, Tu,v),
Cu,z(Gu,z , Tu,z), and Cv,z(Gv,z , Tv,z) are linearly-ordered outerlustered graphs.Refer to Fig. 10.28. Suppose that U > 2 and that V > 2. Consider a hild
σ′(z1) of σ(z1) suh that: (i) if σ(z1) ontains z and does not ontain u and v,then σ′(z1) is the unique hild of σ(z1); (ii) if σ(z1) = σ(u, v, z), then σ′(z1) isthe unique hild of σ(z1) ontaining z; (iii) if σ(z1) ontains u and v and doesnot ontain z, then σ′(z1) is the unique hild of σ(z1) ontaining u. The exis-tene of suh lusters in eah of the three ases an be proved as in the proof ofLemma 10.12. Notie that, in any ase, one of the two polygonal lines obtainedas intersetion of the triangle representing (u, v, z) and R(σ(z1), σ

′(z1)) lies onedge (u, z). Consider a point p(z1) of int(R(σ(z1), σ
′(z1))) arbitrarily lose toedge (u, z). Plae u1 = v1 = z1 at p(z1).Let σ′(zi) be any hild of σ(zi) suh that the border of σ′(zi) has intersetionwith (u, z), for eah 2 ≤ i ≤ Z − 1. Notie that suh a hild is unique, exeptfor the ase in whih σ(zi) = σ(u, v, z), in whih σ(zi) may have two hildrensatisfying the required properties, namely the biggest luster ontaining u andnot ontaining z and the biggest luster ontaining z and not ontaining u.Draw a straight-line segment p(z1)z and plae zi at any point of the segment

int(R(σ(zi), σ
′(zi))) ∩ p(z1)z, for eah 2 ≤ l ≤ Z − 1.Denote by T (u, v, p(z1)) the triangle with verties u, v, and p(z1). Denoteby H(l(z, p(z1)), u) (by H(l(z, p(z1)), v)) the open half-plane delimited by theline through z and p(z1), and ontaining u (resp. ontaining v). Considerthe unique hild σ′(u2) of σ(u2). One of the two polygonal lines obtained asintersetion of the triangle representing (u, v, z) and R(σ(u2), σ

′(u2)) lies onedge (u, z). Consider a point p(u2) in H(l(z, p(z1)), u) ∩ int(T (u, v, p(z1))) ∩
int(R(σ(u2), σ

′(u2))) arbitrarily lose to edge (u, p(z1)). Plae u2 at p(u2).Let σ′(ui) be the unique hild of σ(ui), for eah 3 ≤ i ≤ U − 1. Draw astraight-line segment p(u2)u and plae ui at any point of the segment int(R(σ(ui),
σ′(ui))) ∩ p(u2)u, for eah 3 ≤ i ≤ U − 1.Denote by T (p(u2), v, p(z1)) the triangle having p(u2), v, and p(z1) as ver-
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10.4. HOW TO DRAW OUTERCLUSTERED GRAPHS 303ties. Denote also by H(l(u, p(u2)), v) the open half-plane delimited by theline through u and p(u2), and ontaining v. Consider the unique hild σ′(v2)of σ(v2). Consider any point p(v2) in H(l(z, p(z1)), v) ∩ H(l(u, p(u2)), v) ∩
int(T (p(u2), v, p(z1))) ∩ int(R(σ(v2), σ

′(v2))). Observe that, sine p(z1) and
p(u2) are arbitrarily lose to edge (u, z), both half-planes H(l(z, p(z1)), v)and H(l(u, p(u2)), v) entirely ontain triangle T (u, v, z), exept for an arbi-trarily small strip lose to edge (u, z). This guarantees that H(l(z, p(z1)), v) ∩
H(l(u, p(u2)), v)∩int(T (p(u2), v, p(z1)))∩int(R(σ(v2), σ

′(v2))) is a onvex non-empty region. Then, plae v2 at p(v2).Let σ′(vi) be the unique hild of σ(vi), for eah 3 ≤ i ≤ V − 1. Draw astraight-line segment p(v2)v and plae vi at any point of int(R(σ(vi), σ
′(vi)))

∩ p(v2)v, for eah 3 ≤ i ≤ V − 1. Straightforward modi�ations make thedesribed algorithm work also for the ases in whih U = 2 and/or V = 2.Suh modi�ations are desribed in Algorithm 13 below.
Cu,z

Cv,z

Cu,v

H(l(u,p(u )),v)z=z
2Z

u=u
U uU−1 vV−1 v=v

V

p(v )2

p(u )=p(v )=p(z )
111

2p(u )

u3

H(l(z,p(z )),u)
1 H(l(z,p(z )),v)

1

z =z2 Z−1

Figure 10.28: Constrution of drawings Γ(Cu,v, Tu,v), Γ(Cu,z , Tu,z), and
Γ(Cv,z, Tv,z) when Condition 1 of Lemma 10.12 holds.Denote by Γ(Cu,v, Tu,v), by Γ(Cu,z, Tu,z), and by Γ(Cv,z, Tv,z) the onstruteddrawings of (Cu,v, Tu,v), of (Cu,z, Tu,z), and of (Cv,z, Tv,z), respetively. We havethe following:Lemma 10.15 Γ(Cu,v, Tu,v), Γ(Cu,z, Tu,z), and Γ(Cv,z , Tv,z) are onvex-separateddrawings of the outer faes of Cu,v(Gu,v, Tu,v), Cu,z(Gu,z , Tu,z), and Cv,z(Gv,z , Tv,z),respetively.
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304 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSProof: We prove the statement for Γ(Cu,v, Tu,v), the proof for Γ(Cu,z , Tu,z),and Γ(Cv,z, Tv,z) being analogous. Denote by P , Pu,v, Pu,z , and Pv,z the poly-gons representing yles C, Cu,v, Cu,z, and Cv,z, respetively. The drawing isstraight-line and retangular by onstrution. The absene of edge rossingseasily desends from the onstrution. The absene of region-region rossingsdesends from the fat that no luster is drawn by the algorithm.We prove that Γ(Cu,v, Tu,v) has no edge-region rossings. Suppose, for aontradition, that there is an edge-region rossing between an edge e and aluster ν. If both endverties of e belong to ν then, by the onvexity of ν, eis internal to ν; if one endvertex of e belongs to ν then, by the onvexity of ν,
e rosses ν exatly one; hene, it an be assumed that both the endvertiesof e do not belong to ν. Any luster ontaining both u and v ontains all theverties of Gu,v, hene it ontains all the drawing of Cu,v and does not ross
e. Hene, it an be assumed that ν ontains u and does not ontain v, orvie versa. Suppose that ν ontains u and does not ontain v, the other asebeing analogous. Consider the parent µ of ν in Tu,v. Suh a parent exists sineotherwise ν would be the root of T , ontraditing the fat that ν does notontain v. By de�nition of triangular-onvex-separated drawing, there exists aonvex region R(µ, ν) with the properties desribed in De�nition 10.4; one ofthe sides of suh a region separates ν from the rest of the drawing, thus avoidingan edge-region rossing between e and ν. More preisely, sine C(G, T ) is anouterlustered graph, ν has exatly two inident edges e1(ν) and e2(ν) inidentto o(G). Denote by u(e1(ν)) and u(e2(ν)) the endverties of e1(ν) and e2(ν)belonging to ν. Denote by p(l1) the endpoint of l1(µ, ν) that lies on e1(ν) (ifboth endpoints of l1(µ, ν) lie on e1(ν), then p(l1) is the one that is loser to
u(e1(ν))). Note that an endpoint of l1(µ, ν) lying on e1(ν) exists as Γ satis�esProperty CS3. Analogously de�ne p(l2). Then, segment p(l1)p(l2) splits P intotwo disjoint onvex polygons P ′ and P ′′, where P ′ ontains all and only theverties belonging to ν and P ′′ ontains all and only the verties not belongingto ν, as Γ(Co) satis�es Property CS3. By onvexity, e is internal to P ′′, whilethe part of ν inside P is internal to P ′. Hene, e does not ross ν.We prove that Γ(Cu,v, Tu,v) satis�es Property CS1 of De�nition 10.3. Theangles û2uv and v̂2vu inident to u and v inside Pu,v are stritly less than
180◦, sine they are respetively less than angles ẑuv and ẑvu, that are anglesof P , whih is a triangle. By onstrution, v2 is ontained inside triangle
T (p(u2), v, p(z1)), hene û2v2v is the angle of a triangle having u2, v2, and vas verties, hene it is less than 180◦. Finally, angle ûu2v2 is less than 180◦,sine by onstrution v2 is plaed in the half-plane H(l(u, p(u2)), v) delimitedby the line through u and p(u2), and ontaining v.
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10.4. HOW TO DRAW OUTERCLUSTERED GRAPHS 305We prove that Γ(Cu,v, Tu,v) satis�es Property CS2. Observe that σ(u) and
σ(v) are the �rst and the last luster in Σ, respetively, and that the angles
û2uv and v̂2vu inident to u and v inside Pu,v are stritly less than 180◦, asproved above.We prove that Γ(Cu,v, Tu,v) satis�es Property CS3. The existene of re-gions R(µ, ν) inside Pu,v desends from the existene of regions R(µ, ν) inside
P , where ν is any hild of µ in Tu,v. Namely, the drawn edges ut eah onvexregion R(µ, ν) into two or three onvex regions. Suh regions satisfy the prop-erties that have to be satis�ed by R(µ, ν) inside Pu,v, as an be easily deduedfrom the fat that the same properties are satis�ed by R(µ, ν) inside P . 2Graphs Cu,v, Cu,z, and Cv,z are, in general, not trionneted sine thereould exist hords: (i) in Cu,v between any vertex in Pu \ {u1} and any vertexin Pv \ {v1}; (ii) in Cu,z between vertex u1 and any vertex in Pu \ {u1}, andbetween any vertex in Pu\{u1} and any vertex in Pz\{z1}; (iii) in Cv,z betweenvertex v1 and any vertex in Pv \ {v1}, and between any vertex in Pv \ {v1} andany vertex in Pz \ {z1}. By Lemma 10.2, eah of suh hords splits a linearly-ordered outerlustered graph into two smaller linearly-ordered outerlusteredgraphs. Further, by onstrution the endverties of eah of suh hords are notollinear with any other vertex of the yle. Hene, by Lemma 10.3, insertingthe hords as straight-line segments into drawings Γ(Cu,v, Tu,v), Γ(Cu,z, Tu,z),and Γ(Cv,z, Tv,z), that are onvex-separated by Lemma 10.15, splits them intoonvex-separated drawings. When all the hords have been added, the underly-ing graphs of the resulting lustered graphs are all trionneted and internally-triangulated. Hene, Theorem 10.1 applies and an internally-onvex-separateddrawing of eah of suh linearly-ordered outerlustered graphs an be on-struted inside the orresponding outer fae, thus obtaining an internally-onvex-separated drawing of C.Now suppose that Condition 2 of Lemma 10.12 holds.By Lemma 10.14, Cu,v(Gu,v, Tu,v), Cu,z(Gu,z , Tu,z), and Cv,z(Gv,z , Tv,z) arelinearly-ordered outerlustered graphs.Refer to Fig. 10.29. Suppose that U > 2 and that V > 2. Considerthe unique hild σ′(ui) of σ(ui), for eah 2 ≤ i ≤ U − 1. Notie that oneof the two polygonal lines obtained as intersetion of the triangle represent-ing (u, v, z) and R(σ(u2), σ

′(u2)) lies on edge (u, z). Consider a point p(u2)of int(R(σ(u2), σ
′(u2))) arbitrarily lose to (u, z). Plae u2 at p(u2). Draw astraight-line segment p(u2)u and plae ui at any point of the segment int(R(σ(ui),

σ′(ui))) ∩ p(u2)u, for eah 3 ≤ i ≤ U − 1.Denote by T (p(u2), v, z) the triangle having p(u2), v, and z as verties. De-
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306 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSnote also by H(l(u, p(u2)), v) the open half-plane delimited by the line through
u and p(u2), and ontaining v.Let σ′(vi) be the unique hild of σ(vi), for eah 2 ≤ i ≤ V − 1. Considerany point p(v2) in H(l(u, p(u2)), v)∩ int(T (p(u2), v, z))∩ int(R(σ(v2), σ

′(v2)))and plae v2 at p(v2). Draw a straight-line segment p(v2)v and plae vi at anypoint of the segment int(R(σ(vi), σ
′(vi))) ∩ p(v2)v, for eah 3 ≤ i ≤ V − 1.Straightforward modi�ations make the desribed algorithm work also for theases in whih U = 2 or V = 2 (notie that U = 2 and V = 2 do not holdsimultaneously when Condition 2 of Lemma 10.12 holds, otherwise G wouldnot have internal verties). Suh modi�ations are desribed in Algorithm 14below.

2Z
z=z

3u

p(u )2

v,zCu,zC

vU−1uU
u=u C

2p(v )

V
v=vV−1u,v

H(l(u,p(u )),v)

Figure 10.29: Constrution of drawings Γ(Cu,v, Tu,v), Γ(Cu,z, Tu,z), and
Γ(Cv,z, Tv,z) when Condition 2 of Lemma 10.12 holds.Denote by Γ(Cu,v, Tu,v), by Γ(Cu,z , Tu,z), and by Γ(Cv,z, Tv,z) the onstruteddrawings of (Cu,v, Tu,v), of (Cu,z, Tu,z), and of (Cv,z , Tv,z), respetively. We havethe following lemma, whose proof is analogous to the proof of Lemma 10.15.Lemma 10.16 Γ(Cu,v, Tu,v), Γ(Cu,z, Tu,z), and Γ(Cv,z, Tv,z) are onvex-separateddrawings of the outer faes of Cu,v(Gu,v, Tu,v), Cu,z(Gu,z , Tu,z), and Cv,z(Gv,z, Tv,z),respetively.Graphs Cu,v, Cu,z, and Cv,z are, in general, not trionneted, sine thereould exist hords: (i) in Cu,v between any vertex in Pu \ {u1} and any vertexin Pv \ {v1}; (ii) in Cu,z between vertex u1 and any vertex in Pu \ {u1}; (iii)in Cv,z between vertex v1 and any vertex in Pv \ {v1}. By Lemma 10.2, eah
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10.5. HOW TO DRAW CLUSTERED GRAPHS 307of suh hords splits a linearly-ordered outerlustered graph into two smallerlinearly-ordered outerlustered graphs. Further, by onstrution, the endver-ties of eah of suh hords are not ollinear with any other vertex of the yle.Hene, by Lemma 10.3, inserting the hords as straight-line segments into draw-ings Γ(Cu,v, Tu,v), Γ(Cu,z , Tu,z), and Γ(Cv,z, Tv,z), that are onvex-separated byLemma 10.16, splits them into onvex-separated drawings. When all hordshave been added, the underlying graphs of the resulting lustered graphs areall trionneted and internally-triangulated. Hene, Theorem 10.1 applies andan internally-onvex-separated drawing of eah of suh linearly-ordered outer-lustered graphs an be onstruted inside the orresponding outer fae, thusobtaining an internally-onvex-separated drawing of C. 2A pseudo-ode desription of the algorithm for drawing a maximal outer-lustered graph C (supposing that, if there exists a luster ontaining exatlytwo verties inident to o(G), then suh verties are u and v, and that, if thesmallest ontaining luster of one of u and v ontains the other one, then σ(v)ontains u) is presented in Algorithms 12�15.10.5 How to Draw Clustered GraphsIn this setion we prove that every lustered graph C(G, T ) admits an internally-onvex-separated drawing Γ(C) ompleting an arbitrary triangular-onvex-separateddrawing Γ(Co) of Co. The result is ahieved by means of an indutive algo-rithm, where the indution is on the number of verties plus the number oflusters of C. In the base ase, C is an outerlustered graph and the statementfollows from Theorem 10.2. Consider any maximal lustered graph C(G, T ).Case 1: There exists a minimal luster ontaining exatly oneinternal vertex and no external vertex. Refer to Fig. 10.30. Let µ be aminimal luster ontaining exatly one vertex v internal to G and ontainingno vertex inident to o(G). Remove µ from T obtaining a lustered graph
C′(G, T ′). Observe that Co and C′

o are the same graph, sine µ does notontain verties inident to o(G). The number of verties plus the numberof lusters of C′ is one less than the number of verties plus the number oflusters of C. Hene, the indutive hypothesis applies and, for an arbitrarytriangular-onvex-separated drawing Γ(Co), there exists an internally-onvex-separated drawing Γ(C′) of C′ ompleting Γ(Co). In Γ(C′) a small disk D anbe drawn with the following properties: it is entered at v, it does not intersetthe boundary of any luster, it does not ontain any vertex of G di� erent from
v, and it has intersetion only with the edges inident to v. For eah edge ei
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308 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSAlgorithm 12 Drawing Outerlustered GraphsRequire: C(G, T ) and Γ(Co).Ensure: An internally-onvex-separated drawing Γ(C) of C ompleting Γ(Co).1: if G has no internal vertex then2: Γ(C)← Γ(Co);3: else4: if σ(u) = σ(v) or σ(u) = σ(z) or σ(v) = σ(z) then5: Γ(C) ← the drawing obtained by applying Algorithm 8 on C and
Γ(Co);6: else7: apply Algorithm 11 on C, obtaining either three paths Pu, Pv, and
Pz, or two paths Pu and Pv;8: for 2 ≤ i ≤ U − 1 do9: σ′(ui)← the unique hild of σ(ui);10: end for11: for 2 ≤ i ≤ V − 1 do12: σ′(vi)← the unique hild of σ(vi);13: end for14: if Algorithm 11 on C returns three paths Pu = (u1, . . . , uU ), Pv =
(v1, . . . , vV ), and Pz = (z1, z2, . . . , zZ) then15: for 1 ≤ i ≤ Z − 1 do16: if U > 2 then17: σ′(zi)← any hild of σ(zi) whose border has intersetion with

(u, z);18: else19: σ′(zi)← any hild of σ(zi) whose border has intersetion with
(v, z);20: end if21: end for22: Γ(C) ← the drawing obtained by applying Algorithm 13on C, Pu, σ′(u2), . . . , σ

′(uU−1), Pv, σ′(v2), . . . , σ
′(vV −1), Pz,

σ′(z1), . . . , σ
′(zZ−1), and Γ(Co);23: end if24: if Algorithm 11 on C returns two paths Pu = (u1, . . . , uU ) and Pv =

(v1, . . . , vV ) then25: Γ(C)← the drawing obtained by applying Algorithm 14 on C, Pu,
σ′(u2), . . . , σ

′(uU−1), Pv, σ′(v2), . . . , σ
′(vV −1), and Γ(Co);26: end if27: end if28: end if29: return Γ(C);
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10.5. HOW TO DRAW CLUSTERED GRAPHS 309Algorithm 13 Drawing Outerlustered Graphs with Three PathsRequire: C, Pu = (u1, . . . , uU ), σ′(u2), . . . , σ
′(uU−1), Pv = (v1, . . . , vV ),

σ′(v2), . . . , σ
′(vV −1), Pz = (z1, z2, . . . , zZ), σ′(z1), . . . , σ

′(zZ−1), and Γ(Co);Ensure: An internally-onvex-separated drawing Γ(C) of C ompleting Γ(Co).1: if U > 2 then2: p(z1)← point of int(R(σ(z1), σ
′(z1))) lose to (u, z); plae z1 at p(z1);3: H(l(z, p(z1)), u), H(l(z, p(z1)), v) ← the open half-planes delimited bythe line through z and p(z1), and ontaining u and v, respetively;4: p(u2) ← point of H(l(z, p(z1)), u) ∩ int(T (u, v, p(z1))) ∩

int(R(σ(u2), σ
′(u2))) lose to (u, p(z1)); plae u2 at p(u2);5: apply Algorithm 15 on Pu\{u1}, R(σ(u3), σ

′(u3)), R(σ(u4), σ
′(u4)), . . . ,

R(σ(uU−1), σ
′(uU−1)), and p(u2)u;6: if V > 2 then7: H(l(u, p(u2)), v) ← the open half-plane delimited by the line through

u and p(u2) and ontaining v;8: p(v2) ← point of H(l(z, p(z1)), v) ∩ H(l(u, p(u2)), v) ∩
int(T (p(u2), v, p(z1))) ∩ int(R(σ(v2), σ

′(v2))); plae v2 at p(v2);9: apply Algorithm 15 on Pv \ {v1}, R(σ(v3), σ
′(v3)), R(σ(v4), σ

′(v4)),
. . . , R(σ(vV −1), σ

′(vV −1)), and p(v2)v;10: end if11: else12: if V > 2 then13: p(z1)← point of int(R(σ(z1), σ
′(z1))) lose to (v, z); plae z1 at p(z1);14: H(l(z, p(z1)), v) ← the open half-plane delimited by the line through

z and p(z1), and ontaining v;15: p(v2) ← point of H(l(z, p(z1)), v) ∩ int(T (u, v, p(z1))) ∩
int(R(σ(v2), σ

′(v2))) lose to (v, p(z1)); plae v2 at p(v2);16: apply Algorithm 15 on Pv \ {v1}, R(σ(v3), σ
′(v3)), R(σ(v4), σ

′(v4)),
. . . , R(σ(vV −1), σ

′(vV −1)), and p(v2)v;17: end if18: end if19: if U = 2 and V = 2 then20: p(z1)← point of int(R(σ(z1), σ
′(z1))); plae z1 at p(z1);21: end if22: apply Algorithm 15 on Pz, R(σ(z2), σ

′(z2)), R(σ(z3), σ
′(z3)), . . . ,

R(σ(zZ−1), σ
′(zZ−1)), and p(z1)z;23: draw eah edge of G between two verties belonging to Pu, to Pv, or to Pzas a straight-line segment;24: apply Algorithm 8 on eah resulting linearly-ordered outerlustered graphompleting a drawing of the orresponding outer fae;25: Γ(C)← the resulting internally-onvex-separated drawing of C;26: return Γ(C);
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310 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSAlgorithm 14 Drawing Outerlustered Graphs with Two PathsRequire: C, Pu = (u1, . . . , uU ), σ′(u2), . . . , σ
′(uU−1), Pv = (v1, . . . , vV ),

σ′(v2), . . . , σ
′(vV −1), and Γ(Co);Ensure: An internally-onvex-separated drawing Γ(C) of C ompleting Γ(Co).1: if U > 2 then2: p(u2)← point of int(R(σ(u2), σ

′(u2))) lose to (u, z); plae u2 at p(u2);3: apply Algorithm 15 on Pu\{u1}, R(σ(u3), σ
′(u3)), R(σ(u4), σ

′(u4)), . . . ,
R(σ(uU−1), σ

′(uU−1)), and p(u2)u;4: if V > 2 then5: H(l(u, p(u2)), v)← the open half-plane delimited by the line through
u and p(u2), and ontaining v;6: p(v2) ← point of H(l(u, p(u2)), v) ∩ int(T (p(u2), v, z)) ∩
int(R(σ(v2), σ

′(v2))); plae v2 at p(v2);7: apply Algorithm 15 on Pv \ {v1}, R(σ(v3), σ
′(v3)), R(σ(v4), σ

′(v4)),
. . . , R(σ(vV −1), σ

′(vV −1)), and p(v2)v;8: end if9: else10: p(v2)← point of int(R(σ(v2), σ
′(v2))); plae v2 at p(v2);11: apply Algorithm 15 on Pv \ {v1}, R(σ(v3), σ

′(v3)), R(σ(v4), σ
′(v4)), . . . ,

R(σ(vV −1), σ
′(vV −1)), and p(v2)v;12: end if13: draw eah edge of G between two verties belonging to Pu or to Pv as astraight-line segment;14: apply Algorithm 8 on eah resulting linearly-ordered outerlustered graphompleting a drawing of the orresponding outer fae;15: Γ(C)← the resulting internally-onvex-separated drawing of C;16: return Γ(C);Algorithm 15 Drawing Path in Outerlustered GraphsRequire: Px = (x1, x2, . . . , xX), R(σ(x2), σ

′(x2))), R(σ(x3), σ
′(x3))), . . . ,

R(σ(xX−1), σ
′(xX−1))), and p(x1)xX .1: for 2 ≤ i ≤ X − 1 do2: plae xi at any point of int(R(σ(xi), σ

′(xi))) ∩ p(x1)xX ;3: end for
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10.5. HOW TO DRAW CLUSTERED GRAPHS 311inident to v, hoose two points p1
i and p2

i inside D, where p1
i is loser to v than

p2
i . For eah two edges ei and ei+1 onseutively inident to v denote by fi thefae of G inident to edges ei and ei+1, and denote by R(µ, i) the quadrilateralhaving p1

i , p2
i , p1

i+1, and p2
i+1 as verties. Finally, insert a drawing of µ in Γ(C′)as a retangle ontaining v and ontained inside the polygon (p1

1, p
1
2, . . . , p

1
k, p1

1),thus obtaining a drawing Γ(C).
2

p
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2

2
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1
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1
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Figure 10.30: Illustration for Case 1 of the algorithm for drawing lusteredgraphs.Lemma 10.17 Γ(C) is an internally-onvex-separated drawing of C.Proof: Γ(C) has no edge rossing, by indution. Γ(C) has no edge-regionrossing sine any luster di�erent from µ has no rossing with any edge byindution, and sine µ does not interset any edge not inident to v, beause itompletely lies inside D. Γ(C) has no region-region rossing sine the bound-aries of any two lusters di�erent from µ have no rossing by indution, andsine the boundary of µ does not interset the boundary of any luster, be-ause it ompletely lies inside D. The drawing is straight-line and retan-gular by onstrution. Further, every internal fae of G not inident to vis triangular-onvex-separated by indution. Finally, for eah fae fi, region
R(ν, µ) ≡ R(µ, i), where ν is the parent of µ in T , satis�es Property TCS1 ofa triangular-onvex-separated drawing, due to the fat that suh a region isompletely ontained inside D, and that D is ompletely ontained inside ν. 2Case 2: There exists a separating 3-yle. Suppose that G ontainsa separating 3-yle (u′, v′, z′). Let C1(G1, T 1) be the lustered graph de�nedas follows. G1 is the subgraph of G indued by all the verties external to
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312 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHS
(u′, v′, z′), by u′, by v′, and by z′. T 1 is the subtree of T whose lusters ontainat least one vertex of G1. Observe that Co and C1

o are the same graph. Further,let C2(G2, T 2) be the lustered graph de�ned as follows. G2 is the subgraphof G indued by all the verties internal to (u′, v′, z′), by u′, by v′, and by
z′. T 2 is the subtree of T whose lusters ontain at least one vertex of G2.Sine (u′, v′, z′) is a separating 3-yle, the number of verties plus the numberof lusters of eah of C1 and C2 is stritly less than the number of vertiesplus the number of lusters of C. Hene, the indutive hypothesis appliesand, for an arbitrary triangular-onvex-separated drawi ng Γ(Co), there existsan internally-onvex-separated drawing Γ(C1) of C1 ompleting Γ(Co). Cyle
(u′, v′, z′) is a fae f ofG1. By de�nition of internally-onvex-separated drawingof a graph, the drawing Γ(Cf ) of Cf in Γ(C1) is a triangular-onvex-separateddrawing. Observe that Cf and C2

o are the same graph. Hene, the indutivehypothesis applies again and an internally-onvex-separated drawing Γ(C2)an be onstruted ompleting Γ(C2
o ). Plugging Γ(C2) into Γ(C1) provides adrawing Γ(C) of C.Lemma 10.18 Γ(C) is an internally-onvex-separated drawing of C.Proof: Γ(C) has no edge rossing. Namely, any edge belonging to G1 (resp.to G2) does not ross any edge belonging to G1 (resp. to G2) by indution.Further, any edge belonging to G1 and not belonging to G2 does not ross anyedge belonging to G2 and not belonging to G1 sine suh edges are separated byyle (u′, v′, z′). Γ(C) has no edge-region rossing. Namely, any edge belongingto G1 (resp. to G2) does not ross the boundary of any luster of T 1 (resp.of T 2) by indution. Further, any edge belonging to G1 (resp. to G2) andnot belonging to G2 (resp. to G1) does not ross the boundary of any lusterbelonging to T 2 (resp. to T 1) and not belonging to T 1 (resp. to T 2), sinesuh an edge and suh a luster are separated by yle (u′, v′, z′). Γ(C) hasno region-region rossing. Namely, the boundary of any luster belonging to

T 1 (resp. to T 2) does not ross the boundary of any luster belonging to T 1(resp. to T 2) by indution. Further, the boundary of any luster belongingto T 1 (resp. to T 2) and not belonging to T 2 (resp. to T 1) does not ross theboundary of any luster belonging to T 2 (resp. to T 1) and not belonging to
T 1 (resp. to T 2), sine suh lusters are separated by yle (u′, v′, z′). Γ(C)is straight-line and retangular by onstrution. Further, the drawing of anyinternal fae f of G is triangular-onvex-separated sine it is triangular-onvex-separated in Γ(C1) (if f is also a fae of G1) or in Γ(C2) (if f is also a fae of
G2). 2
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10.5. HOW TO DRAW CLUSTERED GRAPHS 313Case 3: There exists no separating 3-yle and there exists an edge
(u′, v′) not inident to o(G) suh that σ(u′) = σ(v′). Refer to Fig. 10.31.Suppose that G ontains an edge (u′, v′) with σ(u′) = σ(v′) suh that u′ isinternal and suppose that there exists no separating 3-yle ontaining edge
(u′, v′). Sine G is internally-triangulated, u′ and v′ have exatly two ommonneighbors z′1 and z′2. Contrat edge (u′, v′) to a vertex w′, that is, replae ver-ties u′ and v′ with a single vertex w′ that is onneted to all the verties u′ and
v′ are onneted to. Vertex w′ belongs to luster σ(u′) and to all the anestorsof σ(u′) in T . The resulting lustered graph C′(G′, T ′) is easily shown to bea maximal c-planar lustered graph. In partiular, the absene of separating
3-yles in G guarantees that G′ is simple and internally-triangulated. Observethat Co and C′

o are the same graph. Hene, the indutive hypothesis appliesand, for an arbitrary triangular-onvex-separated drawing Γ(Co), there existsan internally-onvex-separated drawing Γ(C′) of C′ ompleting Γ(Co). Then,onsider a small disk D entered at w′ and onsider any line l from w′ to aninterior point of the segment between z′1 and z′2. Replae w′ with u′ and v′ sothat suh verties lie on l and inside D. Connet u′ and v′ to their neighbors,obtaining a drawing Γ(C) of C.
w’

l

D

z’2

z’1

z

1

2’

’ D

l

’v

u’

zFigure 10.31: Illustration for Case 3 of the algorithm for drawing lusteredgraphs.Lemma 10.19 Γ(C) is an internally-onvex-separated drawing of C.Proof: In [Far48℄ the following property of planar straight-line drawingshas been proved. In a planar straight-line drawing, for any vertex w′, thereexists a disk D entered at w′ suh that moving w′ to any point inside D leavesthe straight-line drawing planar. The proof of this property takes into aount
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314 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSthe set of points from whih all the neighbors of w′ are visible, i.e., straight-line segments an be drawn without ausing rossings. This property of planarstraight-line drawings has been exploited in [Far48, DT88, DFP08℄ to arguethat, in a graph G with no separating 3-yle, an edge (u′, v′) that has beenontrated to a single vertex w′ (obtaining a graph G′) an suitably replae w′so that the resulting straight-line drawing of G is planar. Here the ontinuityarguments used in [Far48℄ to prove the existene of D are still valid; however,the visibility between any point p of D and any neighbor z′ of w′ means thatit is possible to draw a straight-line segment from p to z′ not rossing any edgeof G and not rossing twie the boundary of the same luster; further, D hasto be so small that it does not interset the boundary of any luster.Then, the plaement of u′ and v′ guarantees that Γ(C) has no edge rossingand no edge-region rossing. Further, Γ(C) has no region-region rossing, byindution. Γ(C) is a straight-line retangular drawing, by onstrution. Finally,for eah internal fae f of G not inident to u′ and v′ regions R(µ, ν) an bedrawn as in Γ(C′), sine f has the same drawing in Γ(C) and in Γ(C′); for eahinternal fae f of G inident to u′ and not to v′, or vieversa, regions R(µ, ν)an be drawn similarly to Γ(C′), sine the drawings of f in Γ(C) and in Γ(C′)di�er for an arbitrary small displaement of an inident vertex (in C′, fae fis inident to vertex w′, that replaes the one out of u′ and v′ that is inidentto f in C); faes (u′, v′, z′1) and (u′, v′, z′2) are so thin that no vertex of anyretangle representing a luster lies inside suh faes, hene regions R(µ, ν) aneasily be drawn. 2It remains to prove that the ase in whih C is an outerlustered graph isthe base ase.Lemma 10.20 Suppose that none of Cases 1, 2, and 3 applies. Then C is anouterlustered graph.Proof: Suppose, for a ontradition, that none of Cases 1, 2, and 3 applies,and that C is not an outerlustered graph. By the maximality of G, o(G) isdelimited by a 3-yle. By the c-planarity of C, eah luster that ontainssome but not all the verties inident to o(G) intersets o(G) exatly twie,thus proving Property O2 of De�nition 10.1.Suppose that C ontains a luster µ not ontaining any vertex inidentto o(G). Then, C ontains a minimal luster µ′ not ontaining any vertexinident to o(G), namely µ′ = µ if µ is minimal, and µ′ is any minimal lusterdesendant of µ, if µ is not minimal. If µ′ ontains exatly one vertex v, then µ′is a minimal luster ontaining only v, and Case 1 applies. If µ′ ontains more
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10.5. HOW TO DRAW CLUSTERED GRAPHS 315Algorithm 16 Drawing Clustered GraphsRequire: C(G, T ) and Γ(Co).Ensure: An internally-onvex-separated drawing Γ(C) of C ompleting Γ(Co).1: if a minimal luster µ exists ontaining exatly one internal vertex v andno external vertex then2: C′ ← the graph obtained from C by removing µ;3: Γ(C′) ← the drawing obtained by applying Algorithm 16 on C′ and
Γ(Co);4: Γ(C)← the drawing obtained by inserting µ in Γ(C′) as a small retangleontaining v;5: else6: if there exists a separating 3-yle f = (u′, v′, z′) then7: G1 ← the subgraph of G indued by the verties external to or be-longing to (u′, v′, z′);8: T 1 ← the subtree of T whose lusters ontain verties of G1;9: C1 ← (G1, T 1);10: G2 ← the subgraph of G indued by the verties internal to or belong-ing to (u′, v′, z′);11: T 2 ← the subtree of T whose lusters ontain verties of G2;12: C2 ← (G2, T 2);13: Γ(C1) ← the drawing obtained by applying Algorithm 16 on C1 and

Γ(Co);14: Γ(Cf )← the drawing of Cf in Γ(C1);15: Γ(C2) ← the drawing obtained by applying Algorithm 16 on C2 and
Γ(Cf );16: Γ(C)← the drawing obtained by plugging Γ(C2) into Γ(C1);17: else18: if an edge (u′, v′) exists not inident to o(G) suh that σ(u′) = σ(v′)then19: z′1 and z′2 ← the ommon neighbors of u′ and v′;20: G′ ← the graph obtained from G by ontrating (u′, v′) to a vertex

w′;21: T ′ ← the tree obtained from T by assigning w′ to σ(u′);22: C′ ← (G′, T ′);23: Γ(C′)← the drawing obtained by applying Algorithm 16 on C′ and
Γ(Co);24: l ← a line from w′ to an interior point of z′1z

′
2 in Γ(C′);25: Γ(C) ← the drawing obtained from Γ(C′) by replaing w′ with u′and v′ so that u′ and v′ lie on l inside a small disk entered at w′;26: else27: Γ(C) ← the drawing obtained by applying Algorithm 12 on C and

Γ(Co);28: end if29: end if30: end if31: return Γ(C);
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316 CHAPTER 10. STRAIGHT-LINE RECTANGULAR DRAWINGS OFCLUSTERED GRAPHSthan one vertex, then, by the c-onnetivity of C, there exists at least one edge
(u, v) suh that σ(u) = σ(v) = µ′. If (u, v) is an edge of a separating 3-yle,then Case 2 applies. Otherwise, Case 3 applies. This proves Property O1.Suppose that C ontains an edge (u, v) suh that σ(u) = σ(v) and supposethat at least one out of u and v is an internal vertex of G. If edge (u, v) belongsto a separating 3-yle, then Case 2 applies. Otherwise, Case 3 applies. Thisproves Property O3. 2Hene, we get the following:Theorem 10.3 Let C(G, T ) be a maximal c-planar lustered graph. Then,for every triangular-onvex-separated drawing Γ(Co) of Co, there exists aninternally-onvex-separated drawing Γ(C) of C ompleting Γ(Co).A pseudo-ode desription of the algorithm for drawing a lustered graph
C is presented in Algorithm 16.10.6 ConlusionsIn this hapter we have shown that every c-planar lustered graph admits a c-planar straight-line retangular drawing. Atually, the algorithms we proposeddo not exploit at all the fat that lusters are drawn as retangles. The onlyproperty that must be satis�ed by eah region representing a luster for thealgorithm to work is that any edge between a vertex inside the luster anda vertex outside the luster should ross its boundary exatly one. Hene,the algorithm we proposed an be modi�ed in order to onstrut a c-planarstraight-line drawing of a given lustered graph for an arbitrary assignment ofonvex shapes to the lusters (atually, star-shaped polygons are more generallyfeasible, i.e., polygons that have a set of points, alled kernel, from whih it ispossible to draw edges towards all the verties of the polygon without rossingits sides).The algorithmwe desribed uses real oordinates, hene it requires exponen-tial area to be implemented in a system with a �nite resolution rule. However,this drawbak is unavoidable, sine it has been proved by Feng et al. [FCE95a℄that there exist lustered graphs requiring exponential area in any straight-linedrawing in whih lusters are represented by onvex regions. We believe worthof interest studying the same problem for �at lustered graphs.Open Problem 10.1 What are the area requirements for onvex (retangu-lar) lustered drawings of �at lustered graphs?
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Chapter 11Other Researh AtivitiesSimultaneously with the researh for the development of this thesis, other topisin the area of Graph Drawing have been dealt with:
• Right-Angle Crossing Drawings. Right Angle Crossing (RAC) drawingsare polyline drawings where eah rossing forms four right angles. RACdrawings have been introdued in [DEL09℄ beause, even if experimen-tal results show that the human performane in path traing tasks isnegatively orrelated to the number of edge rossings [Pur00, PCA02,WPCM02℄, further ognitive experiments in graph visualization providedevidene that the number of rossings does not derease the readabilityof the drawing if the edges ross at right angles [Hua08, HHE08℄.As the lass of graphs that an be drawn with right-angle rossings in-ludes the lass of planar graphs, in [ACD+09℄ we investigate to whatextent RAC drawings an help in overoming the limitations of widelyadopted planar graph drawing onventions, providing both positive andnegative results. First, we prove that there exist ayli planar digraphsnot admitting any straight-line upward RAC drawing and that the or-responding deision problem is NP-hard. Also, we show digraphs whosestraight-line upward RAC drawings require exponential area. Seond,we study if RAC drawings allow to draw bounded-degree graphs withlower urve omplexity than the one required by more onstrained draw-ing onventions. We prove that every graph with vertex-degree at most6 (at most 3) admits a RAC drawing with urve omplexity 2 (resp. 1)and with quadrati area. Third, we onsider a natural non-planar gen-319
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320 CHAPTER 11. OTHER RESEARCH ACTIVITIESeralization of planar embedded graphs. Here we give bounds for urveomplexity and area di�erent from the ones known for planar embeddings.
• Ayli 3-Coloring of Planar Graphs. A oloring of a graph is an assign-ment of olors to the verties suh that no two adjaent verties havethe same olor. A k-oloring is a oloring using k olors. Planar grapholorings have been widely studied from both a ombinatorial and analgorithmi point of view. The existene of a 4-oloring for every planargraph, proved by Appel and Haken [AH77, AHK77℄, is one of the mostfamous results in Graph Theory.An ayli oloring is a oloring with no bihromati yle. An ayli

k-oloring is an ayli oloring using k olors. Ayli olorings havebeen deeply investigated in the literature. From an algorithmi pointof view, Kostohka proved in [Kos78℄ that deiding whether a graph ad-mits an ayli 3-oloring is NP-hard. From a ombinatorial point ofview, the most interesting result is perhaps the one proved by Alon etal. in [AMR91℄, namely that every graph with degree ∆ an be ayli-ally olored with O(∆4/3) olors, while there exist graphs requiring
Ω(∆4/3/ 3

√
log ∆) olors in any ayli oloring. Ayli olorings of pla-nar graphs have been �rst onsidered in 1973 by Grünbaum, who provedin [Gru73℄ that there exist planar graphs requiring 5 olors in any aylioloring. The same lower bound holds even for 3-degenerate bipartite pla-nar graphs [KM76℄. Suh a bound is tight, as proved by Borodin [Bor79℄.In [AF10℄, we study the planar graphs that admit an ayli 3-oloring.We show that testing ayli 3-olorability is NP-hard, even for planargraphs of maximum degree 4, and we show that there exist in�nite lassesof ubi planar graphs that are not aylially 3-olorable. Further, weshow that every planar graph has a subdivision with one vertex per edgethat admits an ayli 3-oloring. Finally, we show that every series-parallel graph admits an ayli 3-oloring and we give a linear-timealgorithm for reognizing whether every 3-oloring of a series-parallelgraph is ayli.
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