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Summary

Chapter 1: introduction to CNTs and motivations of the work.

Chapter 2: an introduction on molecular dynamics. The Section 2.3 con-
tains a different derivation of what was obtained in [64]. This section contains
also a new integration scheme of MD equations.

Chapter 3: a general introduction on Density Functional Theory and pseu-
dopotentials. In Section 3.6 a method to sample semi-classical canonical mea-
sures (quantum corrections are expanded in power series of ~) by fictitious
classical MD equations is obtained. This method was applied to a simple
quantum system: the harmonic oscillator.

Chapter 4: results of calculations with norm-conserving pseudopotentials. Cr
pseudopotential was reconstructed because the library one poorly had repro-
duced some important physical quantities. All calculations reported in this
section were done with the Abinit code.

Chapter 5: results of calculations with ultrasoft pseudopotentials. All cal-
culations reported in this section were done with the CPMD code.

Appendix 1: techniques used to calculate the statistical error in time aver-
aged quantities.

Appendix 2: two definitions of quantities used in the work.

Appendix 3: notations used.
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1 General introduction

1.1 Technological applications of nanotubes

Since their discovery in 1991, carbon nanotubes (CNTs) have received the
attention of many scientists. CNTs are obtained rolling up a graphene sheet.
The axis along which the sheet is rolled up (see Fig. 1.1) defines the type of
nantube.

Figure 1.1: Left graphical representation of the (l,m) axis. Right the different types of
nanotubes.

(l, l) nanotubes are called armchair nanotubes while (l, 0) are called zigzag
nanotube. All other types are called chiral (Fig. 1.1). Multiwall carbon nan-
otubes (MWCNTs) are composed by a set of concentric nanotubes. The dis-
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Figure 1.2: Graphics of densities of states from [74]. The arrows indicate the Fermi energies.

tance between adjacent walls is of about 3.41 Å which is the distance between
graphite sheets.

Between the various technological applications of CNTs there is the possi-
bility to use them as molecular sensors. In fact even if, due to their similarity
to graphite hexagonal network structure, CNTs do not have strong chemical
interaction with most molecules, their properties can change with an appro-
priate chemical environment. For example in [74], through ab-intio MD, was
showed how Al13 metal cluster can functionalize CNTs. In Fig. 1.2 are re-
ported the densities of states of CNTs functionalized with an Al13 cluster.
With reference to Fig. 1.2 the capability of the system to detect the presence
of an NH3 molecule absorbed on the Al13 it is clear. The effect of Al13 is even
stronger when an armchair CNT is used because of the stronger interaction
between this kind of tube and the metal cluster.

The electronic transport properties of CNTs were also largely studied (see
for example [42, 43] ). For example, through ab-initio simulations, it was
obtained that armchair CNTs are always metal while zigzag tubes, with diam-
eters up to 1.5 nm, are small gap semiconductors. The conductivity property
of chiral tubes depend instead on the values of (l,m): a CNT is a metal if
l − m = 3k (where k is an integer). Moreover in [42] was also showed that
armchair tubes, with a diameter larger than 0.7 nm, keep their metallic charac-
ter for large bend angles (up to 42o). Conversely, in chiral tubes, the curvature
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induces a gap in the band structure which increases as bend angle becomes
greater. These studies have suggested to use armchair tubes as flexible con-
ductors and chiral tubes as nanostrain sensors.

The elastic properties of CNTs and MWCNTs are surprising. In general
small samples of materials do not keep the same elastic properties of large ones
due to the presence of defect and impurities. Conversely nanotubes have a
Young modulus and torsional shear modulus very similar to those of graphite
and diamond [39, 44, 45, 73]. Various works focused the attention on the
possibility of bringing different tubes together Fig. 1.3. In fact since the Van
der Waals interaction between adjacent walls is weak the shear modulus of such
a nonofiber is very similar to that of a single CNT. The links are produced
inducing defects which are produced by electron or ion-beam irradiation (see
[33] and references therein). The possibility lo link a large number of CNTs
permits the fabrication of nanoropes and nanowires.

Moreover the possibility of reinforcing the MWCNTs torsional shear mod-
ulus, producing stronger interactions between adjacent walls, was also studied
Fig. 1.3. In [31], classical MD techniques showed that the presence of a low con-
centration of inter-walls defects can improve the load transfer between shells
and increase the interlayer shear strength by several orders of magnitude.

Figure 1.3: Left link between adjacent tubes (figure from [33]). Right link between two
CNTs composing a double wall CNT (figure from [31]).
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1.2 Motivation of Cr on graphene study.

This work was motivated by results obtained by P.A. Williams et al. [71, 72].
These authors fabricated nanometer-scale mechanical devices (“paddle” os-
cillators) incorporating multiwalled carbon nanotubes as torsional spring ele-
ments (Fig. 1.4a), and developed a method for measuring the torsional stiff-
ness of the nanotubes (Fig. 1.4b). Arc grown MWCNTs were dispersed onto Si
wafers having 500 nm of oxide. Large metal pads were patterned by electron-
beam lithography over the ends of each MWCNT, and a stripe of metal over
its center to form the paddle. The metal was thermally evaporated, 15 nm of
Cr followed by 100 nm of Au. The oxide was etched such that the paddles
were completely undercut, but the larger pads pinning down the MWCNT
ends were not. Measurements revealed a remarkable stiffening behaviour of
MWCNTs: after nearly 500 repetitions of twisting cycles of small amplitude
(with estimated in-wall strains less than 1%), the stiffness of an individual
MWCNT saturated to a value 12 times larger than its initial value.

Young modulus and torsional shear modulus of CNTs and MWCNTs were
calculated in [39] using an empirical force-constant model. Young moduli of
CNTs were found to be insensitive to the size and helicity. The calculated
value was of 970 GPa. The calculated torsional shear moduli of CNTs ranged
between 436 GPa (a CNT of 0.34 nm radius) and 478 GPa (a CNT of 13.5 nm
radius). In this case only a small dependence on tube radius was found and no
dependence on helicity. MWCNTs elastic moduli had the same characteristics:

Figure 1.4: a) Paddle oscillator; b) Force-displacement traces on the substrate and on the
paddle with three different eccentricities: photodiode signal (nA) vs. piezo-displacement
(nm); the slope of the substrate trace yields the apparent overall stiffness of the AFM
cantilever, equal to -41 pA/nm (from [48]).
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Young modulus either was independent of chirality and equal to 1.1 TPa for
all nanotubes with outer shell radius between 1.7 nm and 3.4 nm. Torsional
shear moduli were independent of chirality and ranged between 0.455 GPa (a
double wall CNT with outer shell radius of 0.68 nm) and 541 GPa (a MWCNT
of 10 shell with outer shells radius of 3.39 nm). It is remarkable that elastic
properties of CNTs are similar to those in diamond and graphite. Torsional
shear moduli of MWCNTs were calculated in [39] assuming a constant value of
torsional angle for all shells of MWCNTs, that is as if the shells were strongly
interacting between themselves. Conversely the walls interact only through
Van der Waals which should not be able to produce a similar inter-shells
register.

The outcome of results reported in [71, 72], described at beginning of this
section, indicate that an ever stronger inter-walls coupling appears during
twisting cycles of the paddle. Results are quantitatively in agreement with
this hypothesis as shown with a continuum model [14]. This fact demonstrates
that initially Chromium only interacts with outer walls, since, if this was not
the case, also in the first twisting cycles all walls should contribute to the
torsional shear modulus.

In [60] various types of defect which could increase the inter-shells coupling
in MWCNTs were examined: two close vacancies in different graphene sheets,
a single vacancy, an interstitial carbon atom (see Fig. 4.2). All these defects
have a formation energy greater than 7 eV and then an even greater activation
energy. It is not possible that these defects form during the twisting cycles
which MWCNTs undergo since their formation energy is too high. Moreover

Figure 1.5: Figure from [73]. a) Formation energy of the (5-7-7-5) in a (5,5) SWCNT
(circles) and a graphene sheet (squares) as a function of uniaxial. b) Activation energy for
the formation of the (5-7-7-5) defect as a function of uniaxial.
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Device Diameter (nm) F0 (MHz) Kθ (10−4 Nm) Gs G

1 12 1.68 0.37 570 90
2 27 2.37 1.6 460 35
3 28 2.50 1.9 740 54
4 35 3.27 3.6 560 33
5 16 2.92 2.4 3420 435
6 20 3.79 2.6 2880 290
7 18 4.12 7.4 5000 565
8 22 2.98 3.9 2190 200
9 21 2.04 1.0 1200 120

Table 1.1: Experimental measurements from [49] .

in [73] the stability and activation energies of Stone-Wales defect under tensile
strain was calculated Fig. 1.5. SW defect has a formation energy similar
to vacancy and of about 7 eV. As shown in Fig. 1.5 even if the SW defect
becomes stable for strain greater than 7.5% the activation energies remain
high. Moreover in the situation in which we are interested in, the in-wall strains
are less than 1%. It doesn’t seem possible that these mechanisms produce
the described stiffening behaviour of MWCNTs [71, 72] and so Chromium-
MWCNT interaction has to play an important role in the observed stiffening.

Other measurements of the resonant frequencies of MWCNTs, fabricated in
the same way, indicate that the stiffening does not happen for all MWCNTs.
In [49] the resonant frequency F0, the diameter D and the torsional spring
constant Kθ of different MWCNTs were measured. From this data, through
the relation Kθ = (2πF0)

2I (where I is the inertia moment), the authors
obtained an estimate of Gs and G, respectively, the torsional shear modulus for
the ”outer shell model” (only the outer shell contributes to the shear modulus)
and the ”solid row model” Tab. 1.1. The error on I was of about 20% which
results in an error of about factor 2 for Gs and G. Confronting the two
estimated limit values of Gs and G with the theoretical one (about 500 GPa
[39]) it was found that one of the limiting cases was too large or too small. For
devices 1-4 the ”outer shell” model fits while for devices 5-8 fits the ”solid rod”
one. Device 9 was found in an intermediate situation Tab. 1.1. This suggests
that the stiffening of MWCNTs can be produced from a cascade of chemical
reactions which can be activated by twisting cycles or not.

This conjecture is also confirmed by the observations of other experimen-
talists which manipulate MWCNTs in a similar way [19] to fabricate nano-
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electromechanical devices where an individual MWCNT, suitably engineered,
provides a rotary bearing in which the sliding occurs between different walls.
The interwall friction is extremely small and does not increase during opera-
tion: beyond doubt, the mechanism producing the stiffening is not in action. It
is reasonable then to think that Van der Waals interactions are not the expla-
nation of the stiffening behaviour because in this case the stiffening should be
observed. Interestingly, the most effective technique for producing a nanorotor
seems to be mounting a metal plate on a MWCNT as in Fig. 1.4a, and then
breaking the outer wall off the anchors by a few twisting cycles of large ampli-
tude [19]. This fact prompts the conjecture that the interaction between the
CNT and the Chromium is crucial in determining both the fragile behaviour
under a few large twists and the ratcheting effect under many small ones. This
interaction is far from being understood.
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1.3 Aim and techniques

The aim of this work was to characterize the behaviour of Cr evaporated onto
CNTs to fabricate devices such as the one described in the previous Section.
In particular we tried to understand in what way the presence of Chromium
should facilitate the creation of defects able to link the shells of a MWCNT.
Moreover one would also like to know in what way the Chromium can penetrate
the MWCNT shells. The activation energies of such processes have to be quite
small to be activated at room temperature. Finally it should be interesting to
understand why these chemical reactions are activated in a cascade way.

We decided to use DFT ab-initio techniques. In these techniques forces
between atoms are calculated resolving the electronic problem at fixed ion
positions. The discovery of DFT and related Kohn-Sham method has per-
mitted the practical utilization of ab-initio techniques which however remain
time consuming. However even to use these techniques many approximations
have to be done to reduce the computational cost and the validity of these
approximations have to be checked. I refer, in particular to the pseudopoten-
tial (Sec. 3.4), number of basis wavefunctions (Sec. 3.4), exchange-correlation
functional (Sec. 3.2) and so on. Both norm-conserving and ultrasoft pseudopo-
tentials were used respectively with Abinit and CPMD package. This work
was done in collaboration with A. Di Carlo and F. Cleri.
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1.4 Additional material

This thesis contains also some additional works regarding molecular-dynamics.
In Sec. 2.3 I used different techniques to obtain the result obtained in [64]. In
this article differential-geometry techniques were used to show why the Nosé -
Hoover thermostat produce the canonical ensemble. I used instead a simple
theorem on the invariant measures of first order differential equations.

Sec. 2.6 a new algorithm to integrate MD equations was derived. The aim
of this algorithm is to overcome the problem of predictor-corrector algorithms
which allow a larger time-step to integrate equations of motion but are not
symplectic.

In Sec. 3.6 a way to sample semiclassical (expanded in power series of ~)
canonical partition-function was derived. The application of this techniques is
limited to high temperatures. Sections 2.6, 3.6 were developed in collaboration
with G. Ciccotti. Possible applications are reported in the Conclusions.
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2 Introduction to molecular dynamics

To describe the physical behaviour of large size systems, time averaged values
of physical phase-space (x are the phase-space points) observables are essential
to characterize the system:

〈A(x)〉 = lim
t→∞

∫ t

0

A(x(τ))dτ (2.1)

A more detailed information on the system, for example velocity and position
of particles, are experimentally inaccessible, so it is of no utility to take care
of this information in constructing a theory of such systems. In other words,
for large size systems, we are interested in statistical properties.

Thermodynamics is the phenomenological theory describing macroscopic
properties of large size system and is based on some fundamental principles.
Statistical mechanics gives a theoretical foundation to the thermodynamics of
reversible processes and, in these situations, represents the link between mi-
croscopic and macroscopic quantities. For example in thermodynamics there
are some quantities, like the specific heat or compressibility, which can be
measured applying a specific transformation to the system. SM gives us the
possibility to calculate these quantities, just by knowing the type of interac-
tions between the particles composing the system of interest. In SM time aver-
ages of phase space observables are substituted by weighted time-independent
averages over phase space accessible to the system (let us call the accessible
phase space D):

〈A(x)〉 =

∫
D

A(x)dµ(x) (2.2)

These averages are called ensemble averages. The specific measure expression
depends on the thermodynamic variables which one decides to fix (N, V,E),
(N, V, T ), etc ..

Under general hypotheses, one can effectively construct the measures in
ensembles like (N, V, T ) and (N,P, T ), from the knowledge of the measure
of (N, V,E) ensemble. The measure of (N, V,E) ensemble can be reasonably
constructed using the Liouville’s theorem.
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Unfortunately, calculations which must be done to have physical informa-
tion from SM cannot be done by hand and computer simulations become an
important tool in studying large size systems. Computational methods which
use the measure of interest expression are called Monte Carlo methods Eq. 2.2.

However in a computer simulation we can calculate velocities and positions
of all particles and then use them to make time averages. These averages have
to be equal to the ensemble average of SM if the ergodic hypothesis, on which
SM is based, is satisfied. This averaging technique is called Molecular Dynam-
ics Eq. 2.1. Using MC techniques, if one is interested in dynamic quantities,
equations of motion have to be unavoidably solved.

Two classic textbooks on MD and MC methods are [2, 20].
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2.1 Liouville’s theorem, invariant measures and ergodic theory

Let us suppose to deal with a system characterized by phase-space points x,
an evolution law(a flow: Tt) generated by a set of first order differential equa-
tions and a probability density distribution function f(x, t). f(x, t) represents
the probability to find the system in the state x at time t. If f(x, 0) is the
probability distribution at time t = 0, the probability at time t is obtained
from f(x, 0) evolving x until t.

The integral of f over phase space points D accesible to the system must
be equal to 1 for any t because f(x, t) is a probability density distribution,
that is: ∫

D

f(x, t)dx = 1 (2.3)

from now on the domain of integration D will be omitted. it is easy to show
that if Eq. 2.3 is satisfied, f(x, t) has to obey the following equation:

∂

∂t
f(x(t), t) +∇x[ẋf(x(t), t)] = 0 (2.4)

where x(t) is the evolution of x under the flow. If one is interested in equi-
librium distribution functions, f cannot depend explicitly on t, so Eq. 2.4
becomes:

∇x[ẋf(x(t), t)] = 0 (2.5)

if f(x, t) satisfies Eq. 2.5 then it generates an invariant measure:

µ(TtX) =

∫
TtX

f(y)dy =

∫
X

f(y)dy = µ(X) (2.6)

where X ⊂ D. It can be shown that a necessary and sufficient condition, so
that f(x)dx is an invariant measure, is that f(x) satisfies Eq. 2.5 (see [12]).
Eq. 2.5 will be used later to see how the Canonical ensemble is generated via
MD.

There is a branch of mathematical physics, called ergodic theory, which
concerns the study of abstract dynamical systems which possess an invariant
measure (see for example [12] ).

Suppose to have a set of objects (µ,Ω, T ), where µ is an invariant measure,
T a discrete-time evolution law and Ω a probability space. Since the evolution
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law is of discrete-type, given a point x at time zero, it will be at point T kx at
time k. The measure is invariant in the same sense of Eq. 2.6, that is:

µ(TX) = µ(X) (2.7)

The Birkoff-Khinchin theorem is of central importance in ergodic-theory. Un-
der general hypotheses, this theorem asserts that, if g ∈ L1(Ω, µ), then:

∃ ḡ(x) ∈ L1(Ω, µ) : lim
n→∞

1

n

n∑
k=0

g(T kx) = ḡ(x) µ− a.e (2.8)

g(Tx) = g(x) µ− a.e. (2.9)∫
g(x)dµ(x) =

∫
g(x)dµ(x) (2.10)

Ergodic dynamical -systems are those systems for which the average over time
of an observable g(x) does not depend on x, than from Eq. 2.10:

lim
n→∞

1

n

n∑
k=0

g(T kx) =

∫
g(x)dµ(x) (2.11)

that is, time averages are equal to ensemble-averages µ− a.e.
There are many equivalent definitions of ergodic dynamical-systems. For

example it can be shown that a dynamical system is ergodic, if and only
if, for any A ∈ Ω with µ(A) > 0, it results µ(∪nT nA) = 1. This means
that starting from any set A with measure different from zero, the trajectory
covers the full space Ω. From this point of view it is easy to understand why
a dynamical system with a symmetry cannot be ergodic. In fact, wherever
the system starts it cannot leave the set of points which respect the symmetry
and therefore cannot cover the full space. It can be shown (see for example
[18]) that, if a dynamical system has not first integrals (µ − a.e.) of motion
independent from µ, it is ergodic.

Under appropriate regularity hypotheses, Poincaré showed (see [18]) that
quasi-integrable dynamical systems (an integrable system plus an O(ε) pertur-
bation) cannot have regular first integrals of motion independent of the total
energy of the system (H). Following this theorem Fermi tried to show that all
quasi-integrable systems with more then two degrees of freedom are ergodic.
In fact Fermi showed that, under the same hypotheses of the Poincarè theorem,
for such systems the surface H = cost cannot be decomposed into two surfaces
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with a smooth boundary. Such a frontier should be a first integral of motion
independent on H.

However, as was noted by Urbanski and recognized by Fermi, Fermi’s the-
orem does not exclude the presence of an irregular boundary.

Paradoxically Kolmogorov-Arnold-Moser theorem prooved that, given a suf-
ficiently small ε, exists a set of positive measure starting from which the system
doesn’t cover the full phase space (invariant tori), then it is not ergodic. SM
however, also gives good results for systems which are not ergodic (for example
a gas of noninteracting particles).
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2.2 Hamiltonian dynamical systems and microcanonical ensemble

The statistical ensemble of an isolated N particles system is called ”micro-
canonical ensemble”. Isolated classical physical systems are described, in the
formalism of analytical mechanics, by Hamiltonian equations. Suppose to
have a classical system in three dimensions. Let (qi, pi) (with i = 1, .., 3N) be
the positions and momenta of particles and H(qi, pi) the total energy of the
system. Equations of motion in the phase-space (qi, pi) can be written as:

q̇i =
∂H

∂pi
= {qi, H}

ṗi = −∂H
∂qi

= {pi, H} (2.12)

where {f,H} is the Poisson bracket of f with H:

{f, g} =
3N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi
) (2.13)

It can be shown that g is a constant of motion if and only if {g,H} = 0.
Let us return to Eq. 2.6 and let f(qi, pi)

∏
dqidpi = f(qi, pi)dΓ be an invari-

ant measure. In the case of Hamiltonian dynamical systems Eq. 2.6 writes:

{f,H} = 0 (2.14)

i.e., f can depend only on the constants of motion, that is if we suppose that
H is the only constant of motion, f = f(H).

As we shall see later, in a computer simulation of an N classical particles
system, we have to solve Eq. 2.12 as to conserve, at least approximately, con-
stants of motion. In other words, if (q(t), p(t)) is the approximate solution of
equations of motion and at time t and H(q(0), p(0)) = E then:

H(q(t), p(t)) = E +O(ε) for all t (2.15)

There are also discrete symmetries which have to be preserved by the approx-
imate dynamics, like time-reversal. This mean that in a computer simulation,
if one decides to solve Eq. 2.12, the invariant measure f can only have the
form:
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f =

{
constant in ΓE+ε ΓE+ε = {Γ : E < E ′ < E + ε}

0 elsewhere

from wherever value of E we start the simulation.
However, as we have seen in the previous section, a system with symmetries

cannot cover the full space Γ. This means that partition function has to be
written as:

Q(N, V,E) =

∫
E<E′<E+ε

f(q, p)dΓ =

∫
E<E′<E+ε

δ(H(q, p)− E ′)dΓ (2.16)

where V is the space-volume in which the system is confined. It can be shown
that the measure δ(H − E ′)E<E′<E+εdΓ admits a limit for small ε:

dµ = lim
ε→0

δ(H − E ′)dΓ
E<E′<E+ε

∝ dΣ

||∇H||
(2.17)

If the system is ergodic (if there aren’t other symmetries independent of H)
time averages can be replaced by ensemble averages. The calculation of parti-
tion function is of central importance in statistical mechanics and all thermo-
dynamics quantities can obtained by it:

S(N, V,E) = kB lnQ(N, V,E)

1/T = ( ∂S
∂V

)E,N

P = T ( ∂S
∂E

)V,N (2.18)

The equilibrium distribution function in canonical ensemble (see [30]) can be
obtained dividing the total system of N particles into two systems: one with
N1 particles and the other with N2. Suppose that the total system is micro-
canonical and that N1 � N2. If E is the energy of the whole system, than
E = E1 + E2 with E1 � E2. Since the total system is microcanonical the
probability to find the system 1 in a state with energy E1 must be:

fN1(q1, p1, E − E1) ∝ Q2(E − E1) =

∫
E2'E−E1

fN(q1, p1, q2, p2)dΓ2 (2.19)

where fN is the microcanonical density probability function. Using relations
2.18 and the fact that E � E1 we can expand fN1 near E obtaining:

fN1 ∝ e−H1/kT (2.20)
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This is the equilibrium distribution function of the canonical ensemble or
(N, V, T ) ensemble. In a similar way equilibrium distribution functions in
other ensembles can be obtained [30].

The way in which the canonical ensemble has been obtained from micro-
canonical ensemble is of no practical utility in a computer simulation. In fact,
we should simulate N2 +N1 particles to extract a statistics of only N1 particles
with N2 � N1. In general in a computer simulation one has to modify the
Hamiltonian equations of motion adding thermostats such that equilibrium
distribution function of the system only, (after integrating out the thermostat
degrees of freedom) is of the desired type.
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2.3 Non-Hamiltonian dynamical systems: canonical and constrained
ensemble

In [28, 46] non-Hamiltonian equations of motion which couple the system to a
thermostat (Nosé -Hoover thermostat) to generate a canonical ensemble were
introduced. A similar procedure can also be used to generate (N,P, T ) ensem-
ble [29].

In this section we show explicitly how Nosé -Hoover thermostat generates
a canonical partition function [64]. A different derivation can be found in
[64] and a more geometrical treatment of the problem in [16]. Moreover we
derive partition function of a constrained system [64]. Partition function of
constrained systems will be used in Sec. 2.7. Nosé -Hoover equations write:

ṙi =
pi
mi

ṗi = Fi −
pη
Q
pi

η̇ =
pη
Q

ṗη =
dN∑
i=1

p2
i

mi

− LkBT (2.21)

where L is a parameter (to be determined), d is the spatial dimension, Fi
are the forces and Q determines the thermostat’s time-scale. (η, pη) are the
thermostat’s degrees of freedom and i = 1, ..., dN . it is easy to verify that the
function:

H ′ =
dN∑
i=1

p2
i

2mi

+ V (ri) +
p2
η

2Q
+ LkBTη

= H(pi, ri) +
p2
η

2Q
+ LkBTη (2.22)

is a constant of motion. To obtain the invariant measure we have to solve
Eq. 2.5 which writes:∑
i

∇ri [(pif(η, ri, pη, pi)/mi)] +
∑
i

[∇pi
(Fi − pηpi/Q)f(η, ri, pη, pi)/mi)] +
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+∂η[pηf(η, ri, pη, pi)/Q] + ∂pη [(
∑
i

p2
i

mi

− LkBT )f(η, ri, pη, pi)] =

=
∑
i

[pi/mi∇ri + (Fi − pηpi/Q)∇pi
]f(η, ri, pη, pi) +

+[pη∇η + (
∑
i

p2
i

mi

− LkBT )∇pη ]f(η, ri, pη, pi) = Ndpηf(η, ri, pη, pi)/Q =

= ẋ∇xf = dNpηf/Q where x = (ri, pi, η, pη)

(2.23)

In analogy to what has been said in section 2.2 for Hamiltonian dynamical
systems, in a MD simulation of Eq. 2.21, only phase-space points which belong
to H ′ = constant have to be sampled. It follows that the invariant density
measure has to be written as:

f = δ(H ′ − C)f2(ri, pi, η.pη) = f1(H
′)f2(ri, pi, η.pη) (2.24)

Inserting f in Eq. 2.23 we find:

f2ẋ∇xf1(H
′) + f1ẋ∇xf2 = Ndpηf1f2 = f1ẋ∇xf2 (2.25)

where the last equality follows from the fact that H ′ is a constant of motion.
From Eq. 2.25 it follows that:

f2 ∝ edNη (2.26)

The invariant measure is then:

dµ ∝ δ(H ′ − C)edNηdηdpη

dN∏
i=1

dqidpi = δ(H ′ − C)edNηdηdpηdΓ (2.27)

The microcanonical partition function of the system coupled to a Nosé -Hoover
thermostat takes the form:

Ω =

∫
δ(H ′ − C)edNηdηdpηdΓ (2.28)

Now we only have to integrate over the thermostat’s degrees of freedom to
obtain the partition function of the system. We can eliminate the δ measure
integrating over dη. From Eq. 2.22 it follows:

η = (C −H − p2
η/2Q)/LkbT = β(C −H − p2

η/2Q)/L (2.29)
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Substituting into Eq. 2.28 and integrating over dpη we obtain:

Ω ∝
∫
e−βdNH/LdΓ (2.30)

If we choose L = dN the partition function of the system (i.e. after integrating
the thermostat degrees of freedom) is canonical. If

∑
i Fi = 0 system 2.21 has

an additional constant of motion:

(
∑
i

pi)e
η = constant (2.31)

In this case the problem is solved with a chain of thermostats which eliminate
this symmetry (see [64]). Equations of motion, for a chain of M thermostats,
write:

ṙi =
pi
mi

ṗi = Fi −
pη1
Q1

pi

η̇i =
pηi

Qi

i = 1, ...,M

ṗη1 =
dN∑
i=1

p2
i

mi

− dNkBT −
pη2
Q2

pη1 (2.32)

ṗηk
=

p2
ηk−1

Qk−1

− dNkBT −
pηk+1

Qk+1

pηk
k = 2, ...,M − 1 (2.33)

ṗηM
=

p2
ηM−1

QM−1

− dNkBT (2.34)

Let us now consider the partition function of a constrained system. We are in-
terested in the relation between the partition function of a constrained system
with the unconstrained one. Consider a system whose equations of motion
have the form:

ṙi = pi/mi

ṗi = Fi (2.35)

If we add a constraint σ(ri) = 0 we have to generate trajectories satisfying:

σ(ri) = 0

σ̇(ri) =
∑
i

pi/mi∇iσ (2.36)
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Equations of motion become:

ṙi = pi/mi

ṗi = Fi − λ∇iσ(rj) (2.37)

where λ is the Lagrange multiplier. With a little algebra, from σ̈(ri) = 0, λ
can be obtained as a function of phase-space variables (see [64]):

ṙi = pi/mi

ṗi = Fi −
(∑

j Fj · ∇jσ/mj +
∑

j,k(∇j∇kσ)·· pjpk/(mjmk)∑
l(∇lσ)2/ml

)
∇iσ

(2.38)

We can write Eq. 2.5 for this non Hamiltonian dynamical system:

ẋ∇xf =
2
∑

i∇iσ/mi · ∇i

∑
j∇jσ · pj/mj∑

j(∇jσ)2/mj

f (2.39)

As for the case of Nosé -Hoover thermostat, because σ and σ̇ are constant of
motion, f must have the form:

f = δ(σ)δ(σ̇)f3(..) (2.40)

from which we obtain the equation for f3:

ẋ∇xf3 =
2
∑

i∇iσ/mi · ∇i

∑
j∇jσ · pj/mj∑

l(∇lσ)2/ml

f (2.41)

whose solution is:
f3 =

∑
l

(∇lσ)2/ml = Z(r) (2.42)

It follows that if f(pi, ri) is the density distribution function of the uncon-
strained system, the partition function of the constrained ensemble is:

Ωσ =

∫
dΓZ(r)δ(σ(ri))δ(σ̇(ri, pi))f(pi, ri) (2.43)

If the system has more than one constraint σk, k = 1, ...,M , it can be shown
(what follows in this section can be found in [10, 11, 57] and references therein)
that relation 2.43 writes:

Ωσ =

∫
dΓ det(Z(r))

M∏
i=1

δ(σ(ri))
M∏
i=1

δ(σ̇(ri, pi))f(pi, ri) (2.44)
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where:

Zlm =
dN∑
i=1

1

mi

∂σl
∂ri
· ∂σm
∂ri

l,m = 1, ...,M (2.45)

Now we want to obtain the relation between constrained and unconstrained
averages of observables independent of pi. To obtain this relation we have to
integrate over pi. An expression of δ(σ̇()) in function of pi is needed. Suppose
that the system has sufficiently smooth constraints. If this is the case, the
system state can be described in generalized coordinates u:

u = (u1, ..., u3N) = (q1, .., q3N−M , qσ1 , ..., qσM
) = (q, qσ)

ui = ui(r1, .., r3N) (2.46)

The notation (q, qσ) means that generalized coordinates qσ and velocities q̇σ
are zero if constraints are satisfied. With the same notation, for the conjugate
momenta:

pu = (pq1 , .., pq3N−M
, pσ1 , ..., pσM

) = (pq, pσ) (2.47)

pσ is equal to p̃σ = Z−1σ̇ when q̇σ = 0. Then fσ can be written as:

fσ = dΓδ(σ(ri))δ(pσ − p̃σ)f(ri, pi) (2.48)

If f is the canonical density probability function and the Hamiltonian of the
system is of the form H = K(pi) + V (ri):

f(pi, ri) = e−βH(ri,pi) = e−βK(pi)e−βV (ri) (2.49)

with a change of coordinates r → q , it can be shown that the reduced density
of fσ is:

fσ(ri) =

∫ ∏
i

dpi δ(pσ − p̃σ)fσ(ri, pi) =
e−βV (ri)(detZ)1/2δ(σ(ri))∫ ∏

i dri {...}
(2.50)

From the last equation it is clear that if O is an observable depending only on
ri then:

〈O(ri)δ(σ(ri))〉 = 〈(detZ)−1/2O(ri)〉σ (2.51)

where 〈...〉, 〈...〉σ are respectively averages over unconstrained and constrained
trajectories.
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2.4 Symplectic integrators

As we have seen, to simulate a system of particles in microcanonical ensemble,
we have to solve the Hamiltonian equations of motion:

q̇i =
∂H

∂pi
= {pi, H}

ṗi = −∂H
∂qi

= {qi, H}

These equations define an evolution (qi(0), pi(0))→ (qi(t), pi(t)) which is called
symplectic.

The attainment of equilibrium starting from a non-equilibrium configura-
tion is however another problem. We have to start the simulation in a state
as close as possible to equilibrium.

Once we choose an initial condition, we have to solve in an approximate way
the 3N equations of motion. Even if, due to Lyapunov instability, numerical
errors will produce an exponential divergence from the ”true trajectory” for
a long time, if the numerical algorithm preserves some characteristic proper-
ties of the true trajectory, the approximate trajectories will be always close to
some characteristic trajectory. In general the algorithm has to preserve sym-
metries of the Hamiltonian equations of motion. Hamiltonian equations have
N Poincaré constants of motion [18, 22] which are:

ω2k =
∑

16i16...6ik

dpi1 ⊗ ...⊗ dpik ⊗ dqi1 ⊗ ...⊗ dqik (2.52)

Moreover Hamiltonian equations are time-reversible and conserve the total
energy H. An algorithm which conserves differential forms 2.52 and is time
reversible is called a symplectic integrator.

Consider an algorithm of type:

do k = 1, ..., N

pk = pk−1 + dt αkF (qk−1)

qk = qk−1 + dt βkK(pk) (2.53)

where p = (p1, .., p3N), q = (q1, .., q3N), F (q) = −∂V (q)/∂q, K(p) = ∂T (p)/∂p
(V (q), T (p) are respectively the potential and the kinetic energy of the sys-

tem), αk, βk are numerical constants and dt the time step. It is easy to see
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that algorithm 2.53 consists of two steps:
an exact evolution under a Hamiltonian V (q) for a time αkdt;

an exact evolution under a Hamiltonian T (p) for a time βkdt;
Algorithm 2.53 is a succession of two symplectic transformations (since Hamil-
tonian) which is a symplectic transformation and thus it is symplectic [25].

A way to obtain symplectic stable integrators is to use the Liouvillian for-
malism. In this formalism it is easy to obtain that total energy H is approx-
imately conserved uniformly in time and the time-reversibility algorithm is
obvious (see next). Consider an arbitrary function g(qi, pi). If (qi, pi), briefly
(q,p), evolves in some way, the evolution of g can be formally written as:

ġ(q, p) = iL g(q, p) with L = ṙ
∂

∂r
+ ṗ

∂

∂p
= Lr + Lp (2.54)

whose formal solution is:

g[q(t), p(t)] = eiLtg[q(0), p(0)] (2.55)

This solution is formal because, since Lr and Lp do not commute, it is not pos-
sible to evaluate the action of eiLt on an arbitrary function of (q, p). However
it is possible to evaluate the action of eitLr or eitLp , on an arbitrary function g
(see [20]):

eitLrg[q(0), p(0)] = g[q(0) + ṙ(0) t , p(0)]

eitLpg[q(0), p(0)] = g[q(0) , p(0) + ṗ(0) t] (2.56)

Since Lr and Lp do not commute:

eit(Lr+Lp) 6= eitLreitLp (2.57)

At this point we can use the Trotter expansion:

e(A+B) = lim
k→∞

(
eA/2keB/keA/2k

)k
=

(
eA/2keB/keA/2k

)k
eO(1/k2) (2.58)

Let us make the position:

A

2k
= iLp

t

2k
= iLp

dt

2
B

k
= iLr

t

t/k
= iLrdt (2.59)



A DFT study of Cr on graphene, with additional material on MD 29

Using Eq. 2.56 it is easy to verify that (see [20]):

eiLpdt/2eiLrdteiLpdt/2g[(q(0), p(0)] = g[p(dt), q(dt)] (2.60)

where:

p(dt/2) = p(0) + ṗ(0)dt/2

q(dt) = q(0) + p(dt/2)dt

p(dt) = p(dt/2) + ṗ(dt/2)dt/2 (2.61)

If the system is Hamiltonian ṗ = −∂V
∂r

= F and ṙ = p
m

then Eq. 2.61 writes:

q(dt) = q(0) + ṙ(0)dt+
1

2
F (0)

dt2

m

ṙ(dt) = ṙ(0) +
1

2

(
F (0) + F (dt)

)dt
m

(2.62)

If we want to obtain velocities and positions at time t, we have to repeat
algorithm 2.62 k times. This is the so called velocity-Verlet algorithm. Eq .2.61
are of type of Eq. 2.53, so the velocity-Verlet algorithm is symplectic.

Let us rewrite Eq. 2.58 with position 2.59:

eit(Lr+Lp) = eO(t/k2)(eitLp/2keitLr/keitLp/2k)k = eO(dt2)(eidtLp/2eidtLreidtLp/2)k

(2.63)
Consider the action of operator 2.63 on a generic constant of motion C[q, p]:

eit(Lr+Lp)C[q(0), p(0)] = C[q(0), p(0)] =

= eO(dt2)(eidtLp/2eidtLreidtLp/2)kC[q(0), p(0)] (2.64)

Clearly:
(eidtLp/2eidtLreidtLp/2)kC[q(0), p(0)] (2.65)

represents the value of the constant of motion C when phase space coordinates
are evolved under the approximate propagator:

eiLpst = (eidtLp/2eidtLreidtLp/2)k (2.66)

let us indicate these trajectories as (qps, pps) (”ps” means pseudo-trajectories),
then Eq. 2.64 writes:

C[q(0), p(0)] ' C[qps(t), pps(t)] +O(dt2) (2.67)
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this equation explains why no energy drift is present in algorithms derived
with this formalism. (for a rigorous derivation see [5, 26, 53]). Obviously time
reversibility follows from:

eiLpste−iLpst = 1 (2.68)

The Velocity-Verlet algorithm was derived assuming Hamiltonian equations
of motion and with a specific factorization of eiLt which is arbitrary. In general
external terms in factorization of the 2.63 type are those which contains higher
frequencies as for example in multiple time step algorithms [20].

For non-Hamiltonian time-evolution the same type of formalism can be used
to derive time-reversible algorithms [62]. In fact property 2.67 remains valid
also for non-Hamiltonian flows. This assures that, for any time, approximated
trajectories will not produce a drift in constants of motion. In the case of
constrained systems, a special type of symplectic algorithm, called SHAKE, is
used to satisfy constraints (see [3, 37, 55]).
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2.5 The SHAKE algorithm

SHAKE is an algorithm to deal with constrained systems (see [55]). Let us
suppose to have a N particle system subject to a constraint σ:

σ(r1, ..., r3n) = 0 (2.69)

If we indicate with λ(t, r1, ..., r3N , ṙ1, ..., ṙ3N) the Lagrange multiplier at time t
(see Eq. 2.38) we should try to obtain a solution of equations of motion simply
by writing:

ri(h) = ri(0) + ..− 1

2

h2

mi

λ(0, ..)∇riσ(r1, ..., r3N)(0) (2.70)

where ... stays for some symplectic integrator and h is the time step. If one
solves equations of motion calculating at each time step the constrained force
and adds this force to the internal force as in Eq. 2.70, constraints are violated
more and more during the motion. In fact, the constrained force is not able
to bring the system at σ = 0. then, in this way, only the constrained force
compatible with σ(run) 6= 0 is calculated. It is clear now that this is not a
good method to solve equations of motion of systems with constraints.

The central idea of the SHAKE algorithm is to use constraints to obtain a
λ which exactly satisfies σ = 0. Let us indicate with ..c, ..un the constrained
and unconstrained quantities. At each time step:

1) starting from (rci (0), ṙci (0)) one solves unconstrained equations of motion
with some algorithm to obtain (runi (h), ṙuni (h)).
2) Substituting the following expression of runi :

rci (h) = runi (h)− h2

mi

λ∇riσ(r1, ..., r3N)|run(0)
= runi (h)− h2

mi

λ(∇iσ)(0)

(2.71)

in Eq. 2.69:
σ(rc1(h), ..., r

c
3N(h)) = 0 (2.72)

λ is calculated as to satisfy exactly the constraint. Unfortunately only in some
cases λ can be calculated exactly and anyway the analytical calculation of λ
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should result computationally time consuming. For these reasons the following
iterative procedure is adopted to calculate λ. Let us write:

σ(h) = σ(runi (h))

(∇riσ)(run1 (h), ..., run3N(h)) = ∇iσ(h), (∇riσ)(runi (0)) = ∇iσ(0)

(2.73)

Using Eq. 2.71, Eq. 2.72 can be approximatively rewritten as:

0 = σ(h) = σ
(
rc(0)

)
+

3N∑
i=1

∇iσ(h)[rci (h)− runi (h)] +O(h4) =

σ(h) = 0 +
3N∑
i=1

h2

mi

∇iσ(h)∇iσ(0)λ+O(h4)→

→ λh2 ' σ(h)∑3N
i=1

1
mi
∇iσ(h)∇iσ(0)

(2.74)

Obviously, since a Taylor expansion has been used, with the obtained λ re-
sults σ(rci (h)) 6= 0. Then the procedure has to be repeated until the desired
convergence is reached.

In presence of more than one constraint σ1, ..., σl Eq. 2.71, 2.74 become:

rci (h) = runi (h)−
l∑

k=1

h2

mi

λk(∇iσk)(0) (2.75)

σk(h) =
3N∑
i=1

h2

mi

l∑
k′=1

∇iσk(h)∇iσk′(0)λk′ (2.76)

In this case a matrix inversion is needed, which is computationally expen-
sive. For this reason a modification of the previous scheme is applied, which
considers the constraints in succession. Instead of Eq. 2.76 one writes:

rci (h) ' runi −
h2

mi

λk∇iσ(0) (2.77)

and hence for λk the obtained estimation is:

λkh
2 =

σk(0)∑3N
i=1

1
mi
∇iσk(h)∇iσk(0)

(2.78)
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This is repeated for each constraint. The entire cycle is repeated until the
desired convergence on each constraint is reached.

The SHAKE algorithm cannot be symplectic in the strictly sense. In fact
the condition: ∑

i

ṙi∇iσ = 0 (2.79)

which represents the orthogonality of velocities to constrained force is not
guaranteed. A combination of SHAKE algorithm with the velocity-Verlet al-
gorithm can be used to ensure this condition. Such generalized algorithm is
called RATTLE [3]. However it can be shown that SHAKE (if a Verlet scheme
is used for unconstrained dynamics) and RATTLE algorithms are equivalent
at h/2 (see velocity-Verlet algorithm, Eq. 2.61) and the last one is symplectic
[37].
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2.6 A SHAKE-like predictor-corrector algorithm

In this section, to fix ideas, we always refer to NVE type equations of motion.
In general symplectic integrators, like Verlet or velocity-Verlet, violate in a
certain sense the second Newton law. In fact the general scheme to obtain so-
lutions of equations of motion through numerical integrators have the following
characteristic: consider a single step evolution: (ri(0), vi(0)) are transformed
in some way to (ri(h), vi(h)). For t ∈ [0, h[ accelerations are not equal to
fi(t)/mi, but are equal to fi(0)/mi and then the second Newton law is not
strictly verified. At time h it is placed ai(h) = fi(h)/mi. There are some types
of algorithms, called predictor-corrector, which try to overcome this problem
[2, 20]. These schemes generate more correct solutions for short times, but
produce a systematic energy drift since they are not symplectic. No symplec-
tic property implies that they are also not time-reversible. Then, even if such
a scheme permits a longer time step, they are usually not used because a sin-
gle time-step is computationally more expansive than a symplectic integrator
time-step (forces have to be calculated more times for each step) and moreover
they don’t have good long time properties (energy drift, time reversibility).

In general every type of equation of motion has some conserved quantity.
NVE equations of motion conserve the total energy of the system:

H =
3N∑
i=1

1

2
mṙ2

i + U(ri) = constant (2.80)

Since numerical schemes as we have just said violate the second Newton law,
one should impose the constraint of total energy conservation. In other words
one can use some symplectic scheme to solve unconstrained equations and
at each step impose the total energy constraint in a way similar to SHAKE
algorithm. The case treated in the previous section refers to holonomic con-
straints that are constraints which don’t depend on particles velocities. The
Gauss principle of least constraint permits to deal also with not holonomic
constraints when the constraints are quadratic in particles velocities. This
principle is also used to write isokinetic equations of motion [15]. In [17] it is
given the expression of force due to the presence of a not holonomic constraint.
Equations of motion can be written in general as:

mäi = fi +Ri (2.81)
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The reaction forces Ri will depend in general on the type of constraint. In
the case of total energy constraint, the Newton second law has to be obtained,
then Ri = 0. This fact is true for every constraint which is a constant of
motion. However, since a numerical algorithm is used, these constraint forces
are not equal to zero. As in the case of holonomic constraints, Gauss’s princi-
ple of least constraint doesn’t help us since, even if Ri were calculated, these
forces are unable able to bring the system at the initial value of H. Also in
this case a SHAKE-like scheme can be used. Let us indicate the limt→h− a(t)
with a(h−). The following SHAKE-like algorithm can be used to impose total
energy conservation at each step (notation are as in Eq. 2.73):

1) starting from (rci (0), ṙci (0)) one solves unconstraint equations of motion with
some algorithm to obtain (runi (h), ṙuni (h)).
2) Substituting the following expressions of runi , ṙ

un
i :

rci = runi (h) +
1

2
λ
h2

m
Ri(h

−) = runi (h) +
1

2
λ
h2

m
[fi(h

−)−mai(h−)]

ṙci = ṙuni (h) + λhRi(h
−) = ṙuni (h) + λh[fi(h

−)−mai(h−)] (2.82)

in Eq. 2.80 and expanding the equation to order O(λ2h2), λ is calculated.
The cycle is repeated until the desired convergence is reached. In the case of
particles of equal mass, it is easy to verify that the obtained expression of λ
is:

λ =
−b+

√
b2 − ac
a

if b > 0

λ =
−b−

√
b2 − ac
a

if b < 0 (2.83)

where:

a = mh
∑
i

[fi(h
−)−mai(h−)][fi(h

−)−mai(h−)]

b = m
∑
i

ṙuni h[fi(h
−)−mai(h−)]− h

2

∑
i

fi(h
−)[fi(h

−)−mai(h−)]

c =
−2∆E

h
; ∆E = H(0)−H(runi , ṙ

un
i ) (2.84)

This integration scheme has exactly the same form as a second order predictor-
corrector scheme. The only differences is that in a predictor-corrector algo-
rithm in Eq. 2.82, instead of λ there are numerical constants [2, 20]. Symplectic
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properties of this algorithm I suppose can be obtained in a way similar to[37]
where the SHAKE algorithm is treated. This algorithm was introduced in a
classical molecular dynamics code. The case studied consists of a system of Si
atoms interacting through a classical Stillinger-Weber potential. The initial
temperature was of 900 K. In Fig. 2.1 the behaviour of pressure and total
energy of a 64 atoms system with a time step length of 5 fs are reported.
From these figures it is clear that typical fluctuations of pressure are equal for
both algorithms but the total energy fluctuations are practically zero for this
SHAKE like algorithm. For potential and kinetic energy the behaviour is the
same as for pressure. The numerical precision of this algorithm was tested
calculating the divergence (see App.A.2) of two trajectories differing for the
initial position of a Si atom which was shifted of 0.1 Bohr in each direction.
In Fig. 2.2 a comparison of a velocity-Verlet algorithm with this algorithm is
reported and it is clear that the asymptotic slope (Lyapunov exponents de-
pend on this slope) is better estimated with this method when one increases
the time-step length. The code performance is reported in Tab. 2.1.

Algorithm Time step (fs) ∆E (eV/Atom) CPU time/step (ms)
Velocity-Verlet 1 1.6E-4 7
Velocity-Verlet 5 2.2E-3 8
This algorithm 1 < 10E-6 11
This algorithm 5 < 10E-6 16
This algorithm 7 < 10E-6 28

Table 2.1: Code performance table for 1000 Si atoms with a 1.6 GHz G5.
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Figure 2.1: Comparison of velocity-Verlet algorithm with this algorithm for h = 5 fs. Up
total energy (the initial total energies are equal). Down the pressure.
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Figure 2.2: Average divergence (defined in A.2) comparison.
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2.7 Free energies from MD

To know which state, let us say ξ1, ξ2, is stable at given values of (N,V,T), we
have to compute the free energy difference between these states:

F (N, V, T ) = −kBT lnQ(N, V, T ) Q(N, V, T ) =

∫
dΓe−βH (2.85)

Free energy is the thermodynamic potential in the canonical ensemble. Dif-
ferences in free energy (as for all potentials) depend only on the states ξ1, ξ2.
Free energies calculations are used to study the phase-diagrams of substances
at given (N, V, T ) conditions. However, quantities like Q, which are called
thermal quantities, cannot be computed directly in a MD simulation because
they are not canonical averages over phase space but depend on the phase
space volume accessible to the system. The same situation is present in real
experiments [20]. Let us introduce the reversible work W (the free energy dif-
ference) to bring the system from a state ξ to ξ′ (what follows in this section
can be found in [10, 11, 57] and references therein). From Eq. 2.85 it follows
that:

W (ξ′) = −kBT lnPξ(ξ
′) Pξ(ξ

′) =
1

Q

∫
dΓe−βHδ(ξ(ri)− ξ′) (2.86)

From Eq. 2.86 we can write :

W (ξ2)−W (ξ1) =

∫ ξ2

ξ1

dξ′
dW (ξ′)

dξ′
=

∫
dξ′
〈 − ∂H

∂ξ
δ(ξ(ri)− ξ′)〉

〈δ(ξ2(ri)− ξ′)〉
=

=

∫ ξ2

ξ1

dξ′
〈
− ∂H

∂ξ

〉cond
ξ′

(2.87)

where 〈...〉 denotes canonical averages. The definition of conditional canonical
averages is:

〈...〉condξ′ =
〈...δ(ξ(ri)− ξ′)〉
〈δ(ξ(ri)− ξ′)〉

=

∫
dΓe−βH ...δ(ξ(ri)− ξ′)∫
dΓe−βHδ(ξ(ri)− ξ′))

(2.88)

Eq. 2.87 is called a thermodynamic integration. If we want to use this ex-
pression to calculate free energy differences in an MD run, we have to do
unconstrained equilibrium time averages of 〈 − ∂H

∂ξ
〉condξ′ for different values of
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ξ′ and then calculate the integral 2.88. However if ξ′ is ”rare” we should have
to do a ”long” run to have a sufficient statistics for ξ′ (for system we studied
we are able to simulate not more than some ps of dynamics). We could use at
this point what has been said at the end of Sec. 2.3, Eq. 2.51. In fact for an
observable O which depends only on ri we have:

〈O(ri)〉condξ′ =
〈O(ri)δ(ξ(ri)− ξ′)〉
〈δ(ξ(ri)− ξ′)〉

=
〈Z−1/2O(ri)〉ξ′
〈Z−1/2〉ξ′

(2.89)

Since ∂H
∂ξ

in general depends on pi this property cannot be used. We have to

integrate analytically Eq. 2.88 (for · · · = ∂H
∂ξ

without ξ̇ = 0). The result is:

dW

dξ′
=

〈
− ∂H

∂ξ

〉cond
ξ′

=

〈
Z−1/2 ∂

∂ξ

[
V − kBT ln(|J |Z1/2)

]〉
ξ′

〈Z−1/2〉ξ′
(2.90)

To use this result one has to make the coordinate transformation r → u.
Moreover the knowledge of J and its partial derivative with respect to ξ is
needed. If we call λ the Lagrange multiplier which determines the constraint
force, it can be shown that Eq. 2.90 can be rewritten as:

dW

dξ′
=
〈Z−1/2[λ+ kBTG]〉ξ′

〈Z−1/2〉ξ′
(2.91)

where:

G =
1

Z2

∑
i,j

1

mimj

∂ξ

∂ri
· ∂

2ξ

∂rirj
· ∂ξ
∂rj

(2.92)

Moreover λ is independent of the coordinates system. In our calculation ξ is
of type |ri − rj| = 0 for some i, j. In this case Z is constant and G = 0.

A generalization of this techniques permits to calculate also time-dependent
properties from constrained MD [10, 11].

The method exposed here is an equilibrium method, that is, time aver-
ages are calculated in thermodynamic equilibrium. Other techniques use non-
equilibrium simulations [20, 54, 69].
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3 Introduction to Density Functional Theory

In the previous sections we referred in particular to classical statistical mechan-
ics. In fact, in problems we are interested in, ions can be treated as classical
objects. This approximation is valid if:

λT � a (3.1)

where a is the average distance between ions and λT =
√

2πh2

MKT
the thermal

de Broglie wavelength. The main problem, which we don’t take into account,
concerns interatomic forces calculation. In some cases, forces can be obtained
using effective classical potentials. In other words the system properties are
calculated solving classical equations of motion deriving from a classical Hamil-
tonian of the form:

H(ri, pi) =
∑
i

p2
i

2Mi

+
∑
i<j

u2(ri, rj) +
∑
i<j<k

u3(ri, rj, rk) + ... (3.2)

In other cases forces have to be calculated from electronic configurations, that
is from ”ab-initio” principles. In this case the quantum characteristic of elec-
trons is taken into account but only partially because, due to the small elec-
tronic mass, electronic motion time-scale is lower than atomic one. This is
called Born-Oppenheimer approximation, which however is valid in a wide
range of interesting cases in condensed matter physics. Under this assumption
one can uncouple the equations determining the electronic eigenfunctions from
those determining the atomic ones.
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3.1 Born-Oppenheimer approximation

To see which assumptions are done in Born-Oppenheimer approximation (see [8]),
let us write the time-independent Schrodinger equation for a full quantum me-
chanical system:

[Ke +KI + VIe(RI , ri) + Vee(ri) + VII(RI)]ψ(ri, Ri) = Eψ(RI , ri) (3.3)

Where e, I stay respectively for electrons and ions, K is the kinetic energy and
V the interaction potential. This equation, written for electrons at fixed ions
positions, reduces to:

[Ke + VIe(ri, RI) + Vee(ri)]φp(ri|RI) = Ep(RI)φp(ri|RI) (3.4)

In the last equation, ions positions are parameters of electronic wavefunction.
We can choose eigenfunctions φp(ri|RI) as complete set of eigenfunctions in
which expand ψ(RI , ri) which is the full solution of Eq. 3.3, that is:

ψ(RI , ri) =
∑
p

cp(RI)φp(ri|RI) (3.5)

The coefficients cp(RI) represent ionic wavefunctions if the electronic state is
q and are found inserting Eq. 3.5 in Eq. 3.3 and projecting it on a generic
φq(RI |ri):∑

p

[

∫
dr1....drnφ

∗
qKIφpcp(RI)] + Eq(RI)cq(RI) = Ecq(RI) (3.6)

where:

KIφpcp(RI) = − 1
2MI

∑
I [cp(RI)∇2

Iφp(ri|RI) + 2∇Icp(RI) ∗ ∇Iφp(ri|RI)+

+φp(ri|RI)∇2
Icp(RI)] (3.7)

The Born-Oppenheimer approximation consists on the following assumptions:

|∇Iφq(RI |ri)| << |∇Icq(RI)| for all q, I (3.8)

Eq. 3.8 can be interpreted as the condition that ionic wavefunctions are much
more localized than electronic ones. In this case equations Eq. 3.6 uncouple
and cq(R) satisfy:

[
∑
I

KI + Eq(RI)]cq(RI) = Ecq(RI) (3.9)
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This equation means that ions wavefunctions (in the state q) are obtained
solving the Schrodinger equation in the effective potential Eq.

Due to their small mass, the Fermi temperature of electrons is very high so
that, in many situations, they can be considered to be in ground state. If the
gap between the ground and the excited states remains large during atomic
motion, electrons remain in their ground state also during atomic motion.

In conclusion for classical ions, using the Hellmann-Feynman theorem, the
whole problem can be reduced to the following form:

MIR̈I = −∂E(RI)

∂RI

− dVII(RI)

dRI

(3.10)

where:
E(RI) = min

ψ
E(ψ,RI) = min

ψ
〈ψ|Ki + Vee + VeI |ψ〉 (3.11)

Although many approximations have been done until this point, the previous
equations are still computationally very expansive. The reason is that, for
every ions configuration we have to solve Eq. 3.11 for an antisymmetric (the
problem grows like N !) function ψ(r1, ...., rn) which depends on 3N electronic
positions: this is very expansive even for a small number of electrons.
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3.2 Hoenberg-Kohn theorem

To reduce the computationally cost of simulations ”Density Functional The-
ory” is used to treat the electronic subsystem. DFT is a reduction theory
which simplifies the problem of previous section written in Eq. 3.10. Given a
wavefunction ψ(r1, .., rn) of a system of N electrons, its density is defined as:

n(r) = N

∫
d3r2...d

3rn|ψ(r, r2, .., rn)|2 (3.12)

in this way: ∫
d3r n(r) = N (3.13)

DFT theory shows that electronic ground state can be uniquely described with
the scalar function n.

The Hohenberg-Kohn theorem [27] has represented the starting point of the
theory but only with the Kohn-Sham method [34] the theory became of real
applicability. Let us begin with the exposition of Hohenberg-Kohn theorem
and related variational principle. In what follows we consider an Hamiltonian
of the form:

H = Ke + Vee + Vext = Ke + Vee + VIe (3.14)

The Hohenberg-Kohn theorem states that the correspondence between:

Vext(r) → ψ0(r1, ..., rn) → n(r) (3.15)

is bijective (ψ0 is the ground state function). Thus all properties of electronic
ground state system are unique functionals of n(r). In particular the total
energy can be expressed as:

E[n] =

∫
d3rn(r)vext(r) +K[n] + Vee[n] =

∫
d3rn(r)vext(r) +FHK [n] (3.16)

where:

K[n] = 〈ψ[n]|K̂|ψ[n]〉 (3.17)

Vee[n] = 〈ψ[n]|V̂ |ψ[n]〉 (3.18)
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Moreover it can be shown that Evext [n] =
∫
d3rn(r)vext(r) +FHK [n] is min-

imal for n = n0, the ground state density of vext. In fact for each ψ[n] which
does not correspond to the ground state wavefunction ψ[n0] we have:

〈ψ[n]|K̂ + V̂ee + V̂ext|ψ[n]〉 > 〈ψ[n0]||K̂ + V̂ee + V̂ext|ψ[n0]〉 (3.19)

The functional FHK [n] is not known so that other approximations are needed.
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3.3 Kohn-Sham method

Let us rewrite the total energy functional in the following way:

Ev[n] = Ks[n] +

∫
d3r n(r)v(r) + J [n] + Exc[n] (3.20)

with:

Ks[n] =
N∑
i

〈φi| −
1

2
∇2|φi〉 (3.21)

Ks[n] is the kinetic energy of a gas of non-interacting electrons and J [n] rep-
resents the hartree mean field term:

EH [n] = J [n] =
1

2

∫ ∫
d3rd3r′

n(r)n(r′)

|r − r′|
(3.22)

Finally the exchange and correlation term Exc has the following form:

Exc[n] = (K[n]−Ks[n]) + (Vee[n]− J [n]) (3.23)

Exc is calculated in various approximation (GGA, LDA,...) with other tech-
niques like quantum Monte Carlo. Now if n(r) minimizes Ev[n] from the
Hohenberg-Kohn theorem we know that n(r) also minimizes the energy Evs [n]
of a system of N non interacting electrons in an effective potential vs:

Evs [n] =
N∑
i=1

〈φi| −
1

2
∇2 + vs|φi〉 (3.24)

In fact Hohenberg-Kohn theorem asserts that there is a bijective correspon-
dence between n and vext which in this case we call vs. Imposing the minimum
condition δEv = δEvs = 0 (with

∫
d3rδn(r) = 0) we can obtain an expression

for the effective potential vs. Let us first write:

δEv = δKs +

∫
d3r

(
v(r) +

∂J

∂n(r)
+
∂Exc
∂n(r)

)
δn(r) = 0 (3.25)

with:
∂J

∂n(r)
= vH(r) =

∫
d3r′

n(r′)

|r − r′|
(3.26)
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∂Exc
∂n(r)

= vxc(r) (3.27)

for δEvs we obtain:

δEvs = δKs +

∫
d3r vs(r)δn(r′) = 0 (3.28)

Substituting δKs obtained from Eq. 3.32 in Eq. 3.29 we obtain:

δEv = δKs +

∫
d3r

(
v(r) +

∂J

∂n(r)
+
∂Exc
∂n(r)

)
δn(r) = 0 (3.29)

with:
∂J

∂n(r)
= vH(r) =

∫
d3r′

n(r′)

|r − r′|
(3.30)

∂Exc
∂n(r)

= vxc(r) (3.31)

for δEvs we obtain:

δEvs = δKs +

∫
d3r vs(r)δn(r′) = 0 (3.32)

Substituting δTs obtained from Eq. 3.32 in Eq. 3.29 we obtain:

vs(r) = v(r) +

∫
d3r′

n(r)

|r − r′|
+ vxc(r, n(r)) (3.33)

This is the desired equation for the effective interaction potential vs. To resolve
the KS equations diagonalization techniques or direct minimization techniques
can be used. In the first case the method consist of the following steps:

1) with a trial n(r) calculate the KS potential from Eq. 3.33;
2) diagonalize HKS:

[−1

2
∇2 + vs(r)]φ

′
i(r) = ε′iφ

′
i(r) (3.34)

and from φ′i(r) calculate the new n′(r):

n′(r) =
N∑
i=1

|φ′i(r)|2 (3.35)

3) iterate the procedure until |n(r)− n′(r)| is smaller than a chosen value.

Direct minimization techniques (see [51, 58]) are more robust with respect
to diagonalization techniques even if more expansive.



A DFT study of Cr on graphene, with additional material on MD 48

3.4 Periodic boundary conditions:
plane waves and pseudopotentials

In order to simulate the bulk properties of a physical system, periodical bound-
ary conditions are used. In fact surface effects should produce a large number
of simulated atoms near the surface of volume of the considered system. The
surface area decays like N−1/3 and then for small systems the surface atoms
should be a big fraction of the total system. The only use of periodic boundary
conditions is not directly a solution of the problem because one should have to
consider an infinite numbers of periodic image atoms (or image cells) to calcu-
late forces on the system. Depending on the system size and on the interaction
between atoms, to take into account only a finite numbers of image-cells is a
good approximation. If the system is sufficiently large or the interaction-range
sufficiently short, one can take into account only some image cells (often only
the first-image cell) to calculate forces. Moreover a general technique, called
Ewald summation (see for example [20]), can be used to calculate the correc-
tions of the interaction truncation.

Consider now the representation of density n(r) in some basis set. From

Bloch theorem, if ~T is the lattice period, we know that n must have the form:

n~k,i(~r) = ei
~k·~rφ~k,i(~r)

φ~k,i(~r + ~T ) = φ~k,i(~r),
~k =

2π

Lx
~i+

2π

Ly
~j +

2π

Lz
~k (3.36)

where i is an energy index. This condition is fulfilled if we choose:

φ~k,i(~r) =
1√
Ω

∑
| ~G|6Gmax

c~k,ie
i ~G~r, ~G =

2π

Lx
~i+

2π

Ly
~j +

2π

Lz
~k (3.37)

where Ω is the box volume. Often only the Γ point ~k = ~0 is considered and
in other cases efficient sampling of the first Brillouin-zone is used (Monkhorst-
Pack grid)[41]. This type of expansion is called a plane-waves expansion and
has several advantages:
- the basis doesn’t depend on the ions positions;
- only the parameter Gmax controls the basis size;

The principal disadvantage of this expansion is instead that a large number
of plane-waves should be necessary in general. This is due to the fact that
plane-waves don’t take into account of the atomic structure.
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To overcome the problem of large size basis set, pseudopotentials can be
used. General ideas which brings to pseudopotentials use are the following:
- to consider the more internal electrons as frozen (frozen-core approxima-
tion); - replace the true all electrons potential with a pseudo potential which
takes into account the frozen electrons and whose effect on valence electrons
is included in the pseudopotential.

Pseudopotentials construction can be a delicate operation and in each case
validity of approximations and transferability tests must be done. There are
various types of pseudopotentials constructions like H and TM [4, 21, 32, 61]
(in the next we will see why these are called norm-conserving pseudopoten-
tials). All norm-conserving pseudopotential constructions have the following
properties in common.

Suppose we want to construct a pseudopotential of a N states atom. Of
these N states only M are treated as valence electrons while the remaining
N −M are frozen. Suppose also to know the all electrons wavefunctions (this
in general can be calculated numerically) which satisfy:

(−1

2
∇2 + vs)[n]ψi(~r) = εiψi(~r) i = 1, ..., N, vs = vxc + vH + vIe

nv(~r) =
M∑
i=1

|ψi(~r)|2 ; nc(~r) =
N−M∑
i=1

|ψi(~r)|2

ntot = nc + nv (3.38)

where nv, nc, ntot are respectively the valence, core and total density. In gen-
eral ψi have several nodes. let usindicate with ric, i = 1, ...,M a set of cut-off
distances which are near to the last node of ψi, i = 1, ...,M . We have to gen-
erate a set of normalized pseudo wavefunctions ψpsi which:
- haven’t got nodes;
- are equal to ψi, i = 1, ..,M for ri > ric for some reference energies εpsi (ob-
viously this condition implies that pseudo and true potential are equal for
ri > ric);
- logarithmic derivatives ( d

d|~r| lnψ) of all electrons and pseudo wavefunctions

are equal at ri = ric.
The fact that pseudo-wavefunctions are normalized and are equal to all-

electrons wavefunctions for ri > ric implies that (norm conservation):∫ ∫ ri
c

0

r2|ψi(r, ε′)|2drdΩ =

∫ ∫ ri
c

0

r2|ψpsi (r, ε′)|2drdΩ =
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=
[
− 1

2
r2|ψpsi (r, ε)|2 d

dε

d

dr
lnψpsi (r, ε)

]
|ri

c,ε
′

=

=
[
− 1

2
r2|ψi(r, ε)|2

d

dε

d

dr
lnψi(r, ε)

]
|ri

c,ε
′

(3.39)

Eq. 3.39 means that at ric, not only the logarithmic derivatives but also their
first derivative with respect to ε are equal. Scattering properties depend on
logarithmic derivatives (see [8]), thus this property assures that scattering
properties are correct even around the reference energies εpsi . Inverting the
Schrodinger equation in 3.38 an expression for the pseudopotential can be
obtained. For example suppose that i = {n, l} where l is the angular momenta.
Let us write ψpsn,l as:

ψpsnl = upsn,l(r)Ylm(θ, φ) (3.40)

and consequently the pseudopotential (semilocal form) as:

〈~r|V ps|~r′〉 =
∑
n

∑
l

vpsn,l(r)|l,m〉〈l
′,m′| (3.41)

where the sum over n, l runs over pseudized states. In polar coordinates the
result for the {n, l} pseudopotential channel is:

vps,scrn,l (~r) = εpsn,l −
l(l + 1)

r2
+

1

2upsn,l

d2

dr2
upsn,l(r) (3.42)

The superscript ”scr” stays screened as it contains the contribution of EXC
and EH of pseudo-valence electrons between themselves. The final unscreened
psudopotential is obtained by subtracting the XC and electrostatic contribu-
tion:

vpsi = vps,scri − vH [nps0 , ~r]− vXC [nps0 , ~r] nps0 =
M∑
i=1

|ψpsi (r)|2 (3.43)

then the total energy of the system is:

E = Ke[nv] + V ps[nv] + EH [nv] + EXC [nv] (3.44)

where n is the valence density and EXC refers to the interaction between
valence electrons between themselves. The term of EXC between valence elec-
trons and core is included in V ps with a term linear in nv. EXC in general is
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not linear in n = nc + nv and if the linear approximation doesn’t work non-
linear core corrections are needed. This happens if there is a large overlap
between nc and nv. In these cases a partial-core density, which reproduces the
exact core-density for r > rnlc and is smoother than the exact core density for
r 6 rnlc, is added to the valence density.

What we said until this point is common to all constructions of norm-
conserving pseudopotentials. What changes depending on type construction
is the ansatz which is done for the pseudowavefunction for rn,l 6 rn,lc :
- in hamman construction it is posed ψpsn,l = rl+1fn,l(r), with:

fn,l(r) = c4n,lr
4 + c3n,lr

3 + c2n,lr
2 + c0 (3.45)

Note that the linear term in r is absent such that d
dr
ψpsn,l|0 = 0. These coeffi-

cients can be obtained imposing the conditions we said and:

dm

drm
ψn,l|ri +

c
=

dm

drm
ψpsn,l|rn,l−

c
m = 1, 2 (3.46)

- in Troullier-Martins construction it is posed ψpsn,l = rl+1epn,l(r), with:

fn,l(r) = c0n,l + c2n,lr
2 + ....+ c12n,lr

12 (3.47)

To determine the extra coefficients used in this construction other extra smooth-
ness conditions are imposed:

d

dr
ψpsn,l|0 = 0

dm

drm
ψn,l|rn,l +

c
=

dm

drm
ψpsn,l|rn,l−

c
m = 0, ..., 4 (3.48)

Pseudoptentials can be written in more computationally convenient forms in
which one separates their local (which are independent of l) from the non local
part. The more convenient is the Kleinman-Bylander form. To use KB form
one needs some approximations. This can generate ”ghost states” (they are
not present in the real atom). The presence of such states must be verified
when constructing a pseudopotential [23, 24].

It can happen that the all-electrons wavefunction, for some quantum state,
doesn’t have nodes at r 6= 0 and that the only maximum of ψ stays at ”small”
r (deep-electrons). In this case the pseudization technique here described pro-
duces a small decrease of the energy cut-off needed to describe the state. In
fact, due to the norm-conservation condition, pseudo and all-electrons wave-
functions are very similar also for r ≤ rc. Ultrasoft pseudopotentials were
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introduced by Vanderbilt to solve this problem in [35, 67]. In ultrasoft pseu-
dopotentials construction, pseudowavefunctions have norm less than one but
satisfy the same properties of norm-conserving pseudopotentials: logarithmic
derivatives, matching of eigenvalues, equality to the all electrons wavefunction
for r ≥ rc. The charge deficit (wavefunctions are not normalized) is made up
adding to the valence density an extra-charge term.
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3.5 Car-Parrinello molecular dynamics

In section 3.3 we briefly pointed out the various techniques one can use to
calculate the electron density n(r) at fixed ion positions. In [9] R. Car and M.
Parrinello introduced a method to optimize approximatively wavefuntion on
the fly, that is during the atomic motions. With this method the BO surface is
not sampled exactly during atomic motions (also optimizing wavefunction at
each ionic step one must fix a convergence threshold for orbitals) but orbitals
oscillate around the ”true” BO surface with an amplitude which has to be
bounded during the simulation. CP, introducing a fictitious electronic motion,
postulated the following Lagrangian:

LCP = µ
∑
i

∫
|ψ̇i(r)|2dr +

1

2

∑
I

MiṘ
2
I − EKS[ψi, RI ] +

+
∑
ij

Λij

(
〈ψi|ψj〉 − δij

)
= Kf + L

EKS[ψi, RI ] =
∑
i

fi

∫
ψ∗i (r)(−

1

2
∇2)ψi(r)dr + EH [n] +

+ Exc[n] + VeI(ψi,RI) + VII(RI)

(3.49)

where µ is a parameter called fictitious electron mass, EKS is the KS energy,
fi are the orbitals occupation numbers and Λij are the Lagrangian multipliers
introduced to ensure the orthonormalization condition of KS orbitals. Con-
straints are always treated with SHAKE-RATTLE algorithms.

The equations of motion then write:

d

dt

∂L
∂RI

=
∂L
∂RI

→ MIR̈I = −∂EKS
∂RI

d

dt

δL
δψ∗i

=
δL
δψ∗i

→ µψ̈i(r, t) = −fiHKSψi(r, t) +
∑
j

Λijψj(r, t)

with
δEKS
δψ∗i

= fiHKS (3.50)

These equations can be integrated with methods of classical molecular dynam-
ics [65, 66] also using norm-conserving or ultrasoft pseudopotentials [36]. The
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idea underlying these equations is that classical equations of motion move par-
ticles towards energy minimums that is they try to minimize potential energy.
Oscillations amplitude around potential energy minimums depend on the fic-
titious electronic temperature Tf , then if one wants to have small amplitude
oscillations, in order to have a good approximation of BO surface, the fictitious
electronic temperature has to be ”small”. In other words let us suppose we
apply a thermostat to the ions, then:

e−βHCP = e−β(Kf+H) ∼ e−βH if Tf � T (3.51)

Moreover let us indicate with ωmaxI the maximum ionic frequency and with
ωmine the minimum fictitious electronic frequency. We have (see [50]):

ωmine ∝ Egap
µ

(3.52)

where Egap is the smallest energy gap between occupied states or occupied-
unoccupied states. If the electrons must be able to follow ions during their
motion then must be:

ωmine

ωmaxI

� 1 (3.53)

From these two observations it follows that the fictitious electronic mass must
be ”small”. Unfortunately the time-step integration length decreases as 1/µ
so an ad-hoc value for µ must be chosen.

There are also cases in which Egap can be very small as for example in metal
simulations. If Egap becomes small one observes an increase in the fictitious
electron kinetic energy. In these cases one can thermostat the electronic sub-
system at a temperature much smaller than the ionic system one [7]. However
the target electron kinetic must be carefully chosen because a too small kinetic
energy should violate adiabadicity of ionic motion with respect to electronic
one.

In [59] the error on the BO trajectories was estimated in the rigid ion model.
In this model each ion carries its own electronic orbitals which move rigidly
with the ion itself. Taking into account the orbitals inertia to atomic motion
in [59] was shown that atomic trajectories satisfy:

(MI + ∆MI)R̈I = FBO
I ∆MI =

2

3
µ

∑
i

〈ψi| −
1

2
∇2|ψi〉 (3.54)

where FBO are the BO forces. These equations show that CP equations intro-
duce an effective ion mass. Then if one wants to calculate dynamical quantities
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a mass renormalization is needed. Moreover in this approximation if:

|| |δψi〉CP || � || |ψi〉BO|| where |ψi〉CP = |ψi〉BO + |δψi〉CP (3.55)

it can be shown that the fictitious electron kinetic energy writes:

Kf = µ
∑
i

〈ψ̇i|ψ̇i〉 =
1

2

∑
I

∆MI〈v2
I 〉 = 2kBT

µ

MI

∑
i

〈ψi| −
1

2
∇2|ψi〉 (3.56)

Since in this case electrons move with ions, their motion is sufficiently fast to
follow ions. Then this value of Kf can be used as a guideline in the choice of
the target fictitious electrons kinetic energy when electrons have to be ther-
mostatted. In [7] a value at least two times larger was suggested.

Thermalization of electronic subsystem can be used to be sure that energy
transfer between ionic and electronic subsystem doesn’t verify. In these cases
one needs to thermalize ionic and electronic system with different tempera-
tures. When different temperatures are used it is not possible to obtain an
analytical expression of invariant measure using Eq. 2.5, 2.23. What one would
like to sample with the two thermostats is:

dµ(Γ) = e−βfKf e−βH (3.57)

This is true if the interaction between ionic and electronic subsystem is ”small”.
With this approximation the measure can be obtained directly from Eq. 2.5
and has the desired form. In conclusion when thermostatting electronic sub-
system the absence of energy transfer is a test that the desired sampling is
happening.
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3.6 Quantum ion corrections via molecular dynamics

Until now, ions were always considered as classical objects. In some cases
quantum corrections to this approximation are important and must be explic-
itly taken into account. A method to calculate these corrections makes use of
the expression of partition function in terms of path integrals whichever way
forces are calculated (for example from ab-initio principles). A very compre-
hensive review on the following results can be found in [63]. For simplicity
consider the case of a single atom in an external potential φ. it is easy to
obtain the following expression for partition function Z(β):

Z(β) = lim
P→∞

ZP (β)

ZP (β) =
( mP

2πβ~2

)P/2 ∫
dx1 · · · dxP e−βUeff

Ueff = −
P∑
i=1

(1

2
mω2

P (xi+1 − xi)2 +
1

P
φ(xi)

)
x1=xP

, ωP =

√
P

β~
(3.58)

Given an observable O depending only on x, from Eq. 3.58 it is easy to obtain:

〈O〉 =
Tr(O e−βH)

Tr(e−βH)
= lim

P→∞

( mP

2πβ~2

)P/2 ∫
dx1 · · · dxP e−βUeff OP

est(x1, ..., xP )

OP
est =

1

P

P∑
i=1

O(xi) (3.59)

OP
est is an estimator of the observable O at fixed P . Estimators, which depend

only on x can also be constructed for total energy, virial and so on. At fixed
P let us introduce P fictitious momenta p1, ..., pP and consider the following
evolution equations:

ṗi = − ∂

∂xi
Ueff (x1, ..., xp)−

pη
Q
pi

ẋi =
pi
m

η̇ =
pη
Q

ṗη =
P∑
i=1

p2
i

m
−NkBT (3.60)
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These equations represent the time evolution of a close polymer composed of
P particles which interact through harmonic potentials in an external field 1

P
φ,

thermalized at temperature T . Given an observable whose estimator depends
only on x and under ergodic hypothesis for the system 3.60, for what said in
section 2.3 it follows:( mP

2πβ~2

)P/2 ∫
dx1 · · · dxP e−βUeff OP

est(x1, ..., xP ) = lim
t→∞

1

t

∫ t

0

OP
est(τ)dτ

(3.61)

where xi evolve through 3.60. In practice given an observable estimator one
has to reach a plateau in time-average value for increasing P . In such form of
evolution equations various convergence problem appear increasing P :
1) time evolution of not thermostatted system is of quasi integrable form since
the harmonic terms become dominant on the external potential increasing P .
The magnitude of the external potential decreases as 1/P . As was pointed out
in section 2.1 it can be shown that these types of systems are not ergodic.
2) Since the harmonic frequencies increase as P an always shorter tim-step
length is needed. This problem can be solved recasting the partition function
and then time evolution so as to decouple the harmonic forces. In this way,
using a multiple time step algorithm, the harmonic part of evolution, which
is the faster one, can be analytically calculated. At fixed P increasing the
temperature the harmonic term decreases and the problem of quasi integra-
bility reduces. In any case the convergence in P of observable averages can be
difficult.

Generalization of this technique to many particle systems can be done. Even
for identical particles such a scheme can be used [63] but obviously also this
technique is affected by the ”sign problem” in the case of fermions.

Instead of starting from the full quantum partition function one can also
try to expand the quantum partition function in series of ~. In some cases one
should need only few terms in ~. In practice one has to check the convergence
in function of powers of ~ for the desired observables. The correction term
to classical partition function can be quite easily computed analytically, for
example in the Wigner transform formalism [70]. To fix ideas let us consider
the h2 correction. It can be shown (see [2] and references therein) that to order
~2 the partition function can be written as:

QNV T ∝
∫
dr1 · · · dr3N

[
1− β3~2

24m

3N∑
i=1

(
(∇riV (r1, ..., r3N)

)2]
e−βV (r1,...,r3N )

(3.62)
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Higher order terms contain higher powers of β. Increasing the temperature,
the higher order terms become less important. Eq. 3.62 can be rewritten as:

QNV T ∝
∫
dΓ e−βVeff , Veff = V − 1

β
ln

[
1− β3~2

24m

3N∑
i=1

(
∇riV (r1, ..., r3N)

)2]
(3.63)

Note that Wigner transform formalism gives us an expression for the power
series expansion in ~ of partition function but doesn’t say nothing about power
series expansion of dynamics. In fact the Wigner transform of a quantum
observable O (function of (r, p)) of a N particles system is defined as:

OW (r, p) =
1

(2π~)3N

∫
dzeiP ·z~

〈
r − z

2

∣∣∣Ô∣∣∣r +
z

2

〉
(3.64)

Time evolution can be written as:

i~
∂

∂t
OW (r, p) = {OW , HW}M = OW ∗HW −HW ∗OW (3.65)

where {}M stays for Moyal brackets and:

(ÂB̂)W = AW ∗BW = AW exp (i
~
2
Λ)BW (3.66)

Λ = (
←−∇r
−→∇p −

←−∇p
−→∇r) (3.67)

For r and p one simply obtains:

ṙW =
pW
m

ṗW = − ∂

∂r
VW (r) (3.68)

Since Wigner’s transform of an observable function of r only is simply the
function evaluated at r, the last equation is saying nothing about power series
~ expansion of dynamics. Conversely a power series in ~ for the equilibrium
canonical partition function can be obtained simply calculating to desired or-
der:

[e−β
bH ]W =

∑
k=0

−βk

k!
[Ĥk]W (3.69)
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using 3.66. We can however sample this measure via fictitious MD equations.
The following Hamiltonian must be used to generate MD trajectories:

Heff = T + Veff , Veff = V − 1

β
ln

[
1− β3~2

24m

3N∑
i=1

(
∇riV (r1, ..., r3N)

)2]
q̇i =

pi
m

ṗi = −∂Veff
∂ri

(3.70)

In fact coupling this system to a NH thermostat the following equations are
obtained:

q̇i =
pi
m

ṗi = −∂Veff
∂ri

− pipη
Q

,

η̇ =
pη
Q

ṗη =
3N∑
i=1

p2
i

mi

− dNkBT (3.71)

In section 2.3 it was shown that these equations sample the following measure:

dµ(Γ) = dΓ e−βHeff (3.72)

Then modifying equations of motion in this way, all ~ correction terms can be
included. Moreover not ergodicity problems are present in this case. To test
this method I have calculated the specific heat of a one dimensional harmonic
oscillator. In this case, taking ω = m− 1

2 , Heff simply writes:

Heff =
p2

2m
+

1

2
q2 − kBT ln[1− α2q

2], α2 = (24mk3
BT

3)−1 (3.73)

coupling this system to a NH chain thermostat, the following equations are
obtained:

q̇ =
p

m
, η̇i =

pηi

Q
i = 1, ...,M

ṗ = −q − α1q

1− α2q2
− p pη1

Q1

, α1 = (12mk2
BT

2)−1



A DFT study of Cr on graphene, with additional material on MD 60

ṗη1 =
p2

m
− kBT −

pη2pη1
Q2

, ṗηk
=
p2
ηk−1

Qk−1

− kBT −
pηk+1

Qk+1

pηk
k = 2, ...,M − 1

ṗηM
=

p2
ηM−1

QM−1

− kBT (3.74)

The average total energy of the system has to be calculated through the for-
mula:

〈E〉 = − ∂

∂β
ln Q = − ∂

∂β
ln

[ ∫
e−βHeff (q,p,β)dqdp

]
=

=
1

Q

∫
[Heff + β

∂

∂β
Heff

]
e−βHeffdqdp =

=
1

Q

∫ [ p2

2m
+
q2

2
+

3

2

( α1q
2

1− α2q2

)]
e−βHeffdqdp (3.75)

This means that the function:

Est[E] =
p2

2m
+
q2

2
+

3

2

( α1q
2

1− α2q2

)
(3.76)

is the estimator of total energy and has to be time averaged with (q, p) evolving
through 3.74. Using thermodynamics relations the estimators of any observ-
able can be obtained. Note that the estimator of 〈E〉 does not depend on
logarithm of some quantity, which is a good property. Moreover exactly the
same procedure can be used in presence of corrections depending on p with an
appropriate redefinition of dynamics and estimators.

For high T ,since q '
√
kbT , Est[E] ' p2

2m
+ q2

2
= H, then the following

formula can be used to estimate the heat capacity CV :

CV =
〈H2〉eff − 〈H〉

2
eff

kBT 2
(3.77)

where:

〈O〉eff = lim
t→∞

1

t

∫ ∞

0

O(q(τ), p(τ))dτ (3.78)

and (q, p)(τ) is a solution of Eq. 3.74.
The system parameters were chosen as follows:

M = 2, m = 1836 a.u. (Hydrogen mass), Q1 = Q2 = 50 a.u., dt = 0.08
√

Q
2kBT

,

η1(0) = η2(0) = 0, pη2(0) = 0, pη1(0) =
√

2kBTQ, q(0) =
√
kBT , p(0) =

√
mkBT .

The integration algorithm was derived using Liouville formalism and can be
found in [20]. Obtained results are reported in Fig. 3.1.
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Figure 3.1: Heat capacity CV as function of temperature for harmonic oscillator. Quantum
is the value calculated using quantum statistical mechanics, classical is the classical sta-
tistical mechanics result and corrected is the value obtained including the O(~2) quantum
corrections (kB ' 3 ∗ 10−6 a.u.).
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4 Calculations with norm conserving pseudopotentials

In this section we present the first ab-initio calculations of Chromium and Car-
bon. All calculations reported in this section were done with ”AbInit” code
and the pseudopotential generator code was ”fhi98pp”. The program gen-
erates norm-conserving pseudopotentials and contains a library of previous
constructed pseudopotentials. At first, some tests for both C and Cr pseu-
dopotentials were done. C library pseudopotential tests seemed to be quite
correct. Conversely we decided to rebuild Cr pseudopotential since some phys-
ical properties obtained with library pseudopotential were poorly reproduced
(see next). All total energy calculation reported in this section were done using
the BFGS geometry optimization algorithm which is a quasi-Newton method
different from the conjugate gradient minimization algorithm (a review of var-
ious optimization techniques can be found in [52]). All calculations, except
those differently specified, were done without spin polarization corrections.

In all optimized geometry of lattice structures (perfect graphite, Cr crys-
tal, ...), where acell (the length of primitive cell in the three spatial directions)
is optimized and atom positions are fixed, the convergence criteria chosen for
forces is 5d−5 Ha/Bohr. For geometries different from these, like those reported
in section 4.6, 4.7 the threshold is 5d−4 Ha/Bohr.
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4.1 Carbon pseudopotential test

The carbon library pseudopotential is of the TM type with 2s2 and 2p2 as
valence states. At first we tried to obtain the following experimental graphite
data:

a = b = 2.46 Å c = 3.41 Å, Ech = −7.4 eV (4.1)

where the cohesive energy Ech of a crystal structure whose primitive cell has
N atoms is defined as:

Ech = Etot/N − Eatom (4.2)

All energies are calculated at T = 0 and Eatom is the energy of an isolated
atom of the same substance.

We confronted results with respect to the type of XC functional used. The
use of a GGA functional produces some improvements of results and this type
of functional will be used in all other calculations. In particular we used
the PBE functional of GGA type and compare it with PW92 functional of
LDA type. The value of cohesive energy is better estimated if spin-polarized
calculations are done. To test the quality of carbon pseudopotential, the lattice
parameters and cohesive energy of bulk graphite have been calculated after
a convergence study with respect to k-points grid and energy cut-off. The
primitive cell of graphite has four atoms and is of hexagonal type (Table 4.1).

Graphite primitive cell
acell(Bohr) 4.649 4.649 12.627

rprim 1.0 0.0 0.0
-0.5

√
3/2 0.0

0.0 0.0 1.0
xred 0.0 0.0 0.0

2/3 1/3 0.0
0.0 0.0 0.5
1/3 2/3 0.5

Table 4.1: Input variables for the primitive cell of graphite: acell corresponds to the length
of primitive cell in the three spatial directions; rprim are the director vectors of the primitive
cell and xred the scaled positions of atoms.

In order to estimate the cohesive energy, the total energy of an isolated
carbon atom has to be calculated. Convergence study with respect to the box
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dimension was done (Tab. 4.2). The convergence study with respect to the

acell(x,y,z) (Bohr) Total energy (Ha)

16.00 -5.35907
18.00 -5.35900
20.00 -5.35900
22.00 -5.35900

Table 4.2: Results of convergence study with respect to box dimension for an isolated carbon
atom, cut-off 40 Ha.

energy cut-off for graphite lattice was done at first using a grid of 4 4 4 k-points.
As can be seen in Tab. 4.3, the changes of calculated lattice parameters and
total energy are very small even if with a cut-off of 30 Ha. Fixing the cut-off
at 40 Ha the convergence with respect to k-points grid was studied (Tab. 4.4).
Also using the 4 4 2 grid the total energy error is of abut 19 meV with respect
to the 6 6 6 grid. Moreover the lattice parameters error with respect to its
experimental value is of 0.3%.

Cut-off (Ha) a, b, c (Bohr) Ech (Ha) ∆Ech (eV)

30 4.6476 4.6476 12.6230 -0.34598 0.000
35 4.6474 4.6474 12.6223 -0.34613 -0.0041
40 4.6471 4.6471 12.6215 -0.34627 -0.0038
45 4.6473 4.6473 12.6222 -0.34638 -0.0030

Table 4.3: Results of convergence study of graphite with respect to cut-off energy .

k-points a, b, c (Bohr) Ech (Ha) ∆Ech (eV)

4 4 2 4.6474 4.6474 12.6224 -0.34529 0.0000
4 4 4 4.6474 4.6474 12.6223 -0.34599 -0.0190
5 5 5 4.6508 4.6508 12.6316 -0.34509 0.0245
6 6 6 4.6511 4.6511 12.6325 -0.34470 0.0106

Table 4.4: Results of k-points convergence study of graphite with 40 Ha energy cut-off .
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The final estimated values of cohesive energy and lattice parameters are:

a = b = 2.458 Å, c = 3.35 Å, Ech = −9.2 eV (4.3)

Using an LDA XC functional and pseudopotential was obtained:

a = b = 2.448 Å, c = 3.30 Å Ech = −10 eV (4.4)

Then we chose to use GGA corrections in our calculations.
Also the band structure of graphite has been calculated (Fig. 4.1). In gen-

eral, both LDA and GGA approximations tend to overestimate the cohesive
energy of crystals. Also in our case, while the lattice parameters error is very
small, the cohesive energy error is quite large (about 25%).

In this section we referred to spin restricted calculations. This approxima-
tion is correct for graphite which isn’t a magnetic material but isn’t correct for
isolated carbon atom which has the two 2p electrons with the same spin. The
spin unrestricted calculation for the carbon atom reduces the cohesive energy
error. The obtained values are:

Ech = −8.8 eV in LDA Ech = −7.9 eV in GGA. (4.5)
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Figure 4.1: Band structure of graphite: points 1 to 10 correspond to the first five eigenvalues
from the k-point L=(1/2,0,0) to Γ=(0,0,0), points 11 to 22 from Γ=(0,0,0) to X=(0,1/2,1/2)
and points 23 to 40 from X to Γ=(1,1,1).
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4.2 Graphite four-fold defect

In [60] the formation energy was calculated and bond length of the four-fold
spiro-interstitial defect in graphite (Fig. 4.2). If the graphite cell to which a
defective atom is added has N atoms, the formation energy is defined as:

Ef = Edef − EN+1 (4.6)

We have calculated the same properties of this type of defect and compared
them with [60]. The energy cut-off is the same as the previous calculations
and only the k-points grid has been changed (Tab. 4.5) since cell dimension
and atomic geometries are changed. In this calculation we use a 2x2x1 cell.
We chose a 2 2 2 grid and the total energy error with respect to the 4 4 4 grid
is of about 0.2%.

At first, keeping all carbon graphite atoms fixed, the total energy of the sys-
tem was calculated moving the interstitial carbon between the planes (Fig. 4.3-
4.4). Then a geometry optimization, starting from the estimated minimum
energy position for the interstitial carbon,was done. The bond length and the

k-points a, b, c (Bohr) Total Energy (Ha)

2 2 2 9.2942 9.2942 12.6215 -91.28434
3 3 3 9.3015 9.3015 12.6314 -91.26559
4 4 4 9.3000 9.3000 12.6294 -91.27560

Table 4.5: Convergence study with respect to k-points for a 2x2x1 graphite cell.

formation energy calculated are:

Ef = 7.2 eV, dbond = 1.48 Å (4.7)

These values are in accordance with those obtained in [60] with a 4x4x1 cell:

Ef = 7.0 eV, dbond = 1.5 Å (4.8)
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Figure 4.2: Isodensity surface (ρ(r) ' 0.2) for a 2x2x1 graphite cell with the interstitial
four-fold coordinated carbon defect.
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Figure 4.3: Total energy of the system vs reduced x coordinate of the interstitial carbon
atom.



A DFT study of Cr on graphene, with additional material on MD 70

Figure 4.4: Total energy of the system vs reduced y coordinate of the interstitial carbon
atom.
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4.3 Construction of Chromium pseudopotential

For Chromium some tests of a library pseudopotential lead us to rebuild a new
pseudopotential. In this pseudopotential NLCC are not present and semicore
states are all included in the core.

After convergence studies with respect to k-points grid and energy cut-off
(50 Ha) the lattice parameters and cohesive energy of bulk Chromium were
calculated. The lattice parameters are very accurate:

a, b, c = 5.46 Bohr, 5.44 Bohr Experimental (4.9)

The cohesive energy instead is grossly overestimated. In a spin restricted
calculation we obtained:

Ech ' −9 eV, −4.1 eV Experimental (4.10)

If an unrestricted calculation is done Ech results positive. In fact even if the
spin correction has no effect in the bulk calculus, as reported in Tab. 4.6 (we’ve
checked different initial spin states), the total energy of an isolated Cr atom
is of -9.55 Ha while the energy/atom of the crystal is of about -9.51 Ha.

Spin Pol. a, b, c (Bohr) Total Energy (Ha)
0 5.4703 -9.51168
1 5.4835 -9.51108
2 5.4703 -9.51168
3 5.4834 -9.51108
4 5.4584 -9.50829
5 5.4827 -9.51108

Table 4.6: Lattice parameters and total energy for different initial spin polarization.

For these reasons we’ve tried to construct a new pseudopotential.
The used pseudopotentials generation code is ”fhi98pp” which can construct

TM pseudopotentials in the fully not local KB form. The code can also do a
ghost states analysis, logarithmic derivatives calculations and energy cut-off
convergence study.

The fact that the total energy of an isolated spin polarized atom is lower
with respect to the unpolarized case is general. The difference between these
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energies is called spin polarization energy and depends on the pseudopotential
used. The spin polarization energy, calculated using pseudopotentials, both in
GGA or LDA, is in general bigger with respect to the all electron case.

We cannot calculate the spin polarization energy because there are conver-
gence problem with an AE calculation using ”fhi98pp” and PBE functional.

Using the PW91 functional, the spin polarization energy in AE case is of
0.188 Ha. For the library pseudopotential this energy was 0.27 Ha.

The electronic structure of the Cr atom is [Ar]4s13d5 and the 3d are the
first occupied d orbitals then very deep. In our pseudopotential are not present
semicore states. The maximum angular momentum channel is l = 2 and the
local part is with l = 0. Other choices of local part produce ghost states.

Choosing rmatch =2.56 Bohr for both l = 1, 2 channels, a smaller rmatch for
d orbitals (rd =1.60 Bohr) and taking into account NLCC (rnlc = 0.8 Bohr),
a better estimation of the spin polarization energy is obtained:

Espinpol = 0.208 Ha (4.11)

Moreover we can do the following considerations:
1) we can decrease the values of (rd, rnlc) to better estimate Espinpol with the
pseudopotential. If we set (rd, rnlc) to 0.2 Bohr, the spin polarization energy
is 0.199 Ha.
2) In general even if these parameters (rd, rnlc) are very small, the spin po-
larization energy is still not correct. In the case of Mn, the error that the
pseudopotential with very small (rd, rnlc) with respect to the AE case is of
about 5%. The total error is of about 10%.

Correcting our value of the 10% we find 0.1872 Ha which is very close to
the LDA AE calculation. The estimated total energy of the spin polarized Cr
atom is:

ECr = −17.246455 Ha (4.12)

In Tab. 4.7 a transferability test is reported for the pseudopotential and in
Fig. 4.3 its logarithmic derivatives. In the transferability test we compare
eigenvalues energies of pseudopotential with respect to AE calculation in elec-
tronic configurations different from the ground state 4s13d5. Also fractional
electron occupation numbers can be compared.
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AE Atom (eV) Pseudo Atom (eV)

ConFig. Ed Es Ed Es

4s03d5 -9.8747 -9.9518 -9.8273 -9.9951

4s1/43d5 -7.9957 -8.3801 -7.9612 -8.4100

4s1/23d5 -6.2056 -6.8635 -6.1836 -6.8817

4s3/43d5 -4.5090 -5.4042 -4.4985 -5.4125
4s13d5 -2.9133 -4.0074 -2.9134 -4.0074

Table 4.7: Total energies and first eigenvalues energies of the pseudoatom and AE atom in
different configurations.

Figure 4.5: Logarithmic derivatives of the AE and pseudoatom in semilocal and fully non-
local form.
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4.4 Chromium crystal

Chromium has a bcc lattice and only one atom at origin in its primitive cell.
Starting with a 8 8 8 grid, we check the convergence with respect to the energy
cut-off. The code used to generate the pseudopotential makes a convergence
study of the kinetic energy in the k-space. In particular the code calculates
the kinetic energy difference, for a given angular momentum, at fixed cut-off
with respect to continuum plane waves basis set. The kinetic energy part
is often the dominant one but, since NLCC are present, we check again the
convergence (Tab. 4.8). The d part is the hardest and an error of 0.1% (' 50
meV) is done with a 50 Ha cut-off for d eigenvalue.

We checked also that 50 Ha is sufficient for the values of lattice parameters
which we used to calculate the bulk modulus (4.8-6.0 Bohr) (Tab. 4.9).

Cut-off (Ha) a, b, c (Bohr) Ech (Ha) ∆Ech (eV)
45 5.4380 -0.15170 0.0000
50 5.4328 -0.15309 -0.0378
55 5.4516 -0.15319 -0.0027

Table 4.8: Convergence with respect to the cut-off energy.

Cut-off (Ha) Total Energy (Ha)
50 -17.34000
55 -17.34011
60 -17.34011

Table 4.9: Total energies for a=b=c=4.8 Bohr in function of the energy cut-off.

With a 50 Ha cut-off we checked the convergence with respect to k-points
grid (Tab. 4.10). Dealing with a metallic system the k-point convergence could
be very slow. In fact for metals the band structure should not be a sharp func-
tion and a very dense grid should be necessary. In this case one can accelerate
the convergence using a smearing function for the occupation numbers. The
Fermi-Dirac smearing function is not particularly useful to accelerate k-point
convergence. Other type of smearing functions were introduced which are
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more efficient [68]. Smearing functions, different from Fermi-Dirac function,
are characterized by a fictitious temperature parameter. (Tab. 4.11).

k-points a, b, c (Bohr) Ech (Ha) ∆Ech (eV)
10 10 10 5.4540 -0.15328 0.0000
12 12 12 5.4450 -0.15303 0.0070
14 14 14 5.4325 -0.15326 -0.0063
16 16 16 5.4490 -0.15299 0.0072

Table 4.10: Convergence study with respect to the k-points grid.

k-points a, b, c (Bohr) Ech (Ha) ∆Ech (eV)
4 4 4 5.4192 -0.15860 0.0000
6 6 6 5.4475 -0.15193 0.1814
8 8 8 5.4342 -0.15309 -0.0314

10 10 10 5.4527 -0.15316 -0.0019

Table 4.11: Convergence study with respect to the k-points grid with fictitious electronic
temperature fixed at 1.0d-2 Ha. The occupation scheme is of Marzari type.

The estimated cohesive energy is:

Ech = −4.17 eV, ' −4.1 eV Experimental (4.13)

The final value of pressure in the cell is of about 4.0d-2 GPa.
The bulk modulus was estimated calculating the total energy in function of

the lattice parameter (see Fig. 4.6) through:

B = V
∂2E(V )

∂2V
(4.14)

calculated at the minimum of E(V ). For a bcc lattice a = b = c and V = 1
2
a

then:

BCr =
1

9a

∂2E(a)

∂2a
(4.15)

We obtained:

BCr = 244 GPa, ' 170 GPa Experimental (4.16)

However experimental values refer to a policrystalline situation. Moreover in
[47] the chromium bulk modulus was calculated in the LDA approximation
and the obtained value is of 250 GPa.
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Figure 4.6: Energy difference with respect to acell 5.45 vs acell, α is the second derivative
of ∆E with respect to acell (Ha/Bohr2) and σ its standard deviation.
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4.5 Cr-C compounds

Figure 4.7: Unit cell of Cr3C2 carbide, distances are in Å.

To check that the pseudopotential describes correctly the Cr-C interaction
we have calculated the lattice parameters of two compounds of Cr and C. From
now on the cut-off is fixed at 50 Ha. The simplest carbide is Cr3C2, its spacial
group symmetry is Pnma 62 and has twenty atoms in the unit cell with:

a = 10.4574, b = 5.3468, c = 21.6821 Bohr (4.17)

The k-points grid is 4 4 4 which, taking into account the symmetries, produces
an uniformous k-points density in the three directions.

The obtained lattice parameters are:

a = 10.5072, b = 5.3723, c = 21.6853 Bohr (4.18)

The error is of 0.5%. We also calculated the lattice parameters of CrC with a
NaCl type structure [56]. The calculated lattice parameters are:

a = b = c = 7.8216 Bohr, 7.6167 Bohr Experimental (4.19)

and in this case the error is of about 2.5%. In [56] the calculated value is
7.5789 Bohr and the LDA approximation was used. However in some cases
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the LDA approximation reproduces better than GGA the lattice parameters.
In fact using an LDA pseudopotential we obtained

a = b = c = 7.6223 Bohr (4.20)

Both in the CrC and in Cr3C2 (Fig. 4.7) the distances between carbon and
chromium atoms are of about 2 Å.
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4.6 Graphene surface and chromium

In this section are reported the results of the adhesive properties of a Cr atom
on a perfect graphene surface. The cell dimension is like a 2x2x1 graphite cell
but only the plane at z = 0 is present and k-points grid is 2x2x2.

Five trial configurations were chosen (Fig. 4.8-4.9). At first the z positions
of Cr which minimize the total energy were simply estimated moving the Cr
atom along the z axis. The obtained plane-Cr distances are all around 3.4 Bohr
(Fig 4.10). Subsequently the geometry was optimized in the five configurations.
The results can be summarized as follows:
- configurations 4 and 5 move towards the configuration 3;
- in the configurations 1, 2, 3 the Cr atom binds strongly to the surface.
Since starting from configurations 3, 4 or 5 the same final configuration is
reached, only the configuration 4 was carried to convergence (see Tab. 4.12)
Reference energy is the sum of energy of an isolated Cr atom plus the energy
of a graphene surface in a 2x2x1 cell.

Figure 4.8: On the left the configuration 1; on the right the configuration 2. In all cases the
initial Cr-plane distance is 3.4 Bohr.



A DFT study of Cr on graphene, with additional material on MD 80

Figure 4.9: Above, on the left the configuration 3; on the right the configuration 4. Below,
configuration 5. In all cases the initial Cr-plane distance is 3.4 Bohr.
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Figure 4.10: Total energy differences for different plane-Cr distances in the configuration 1.
For the other configurations similar curves were obtained.
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Conf. Final Distance (Bohr) Final Stress(Ha/Bohr3) ∆E (Ha) Pressure (GPa)
1 3.8046 σ11= -1.37E-04 σ32= 0.0E+00 -0.12731 2.0

σ22= -7.7E-05 σ31= 0.0E+00
σ33= 9.E-06 σ21= 0.0E+00

2 3.7186 σ11= -8.9E-05 σ32= 1.E-06 -0.13556 1.7
σ22= -9.3E-05 σ31= 0.0E+00
σ33= 1.E-05 σ21= 0.0E+00

3 3.0940 σ11= -1.73E-04 σ32= 0.0E+00 -0.14203 3.1
σ22= -1.59E-04 σ31= 0.0E+00
σ33= 1.1E-05 σ21= 0.0E+00

4 3.3072 σ11= -1.41E-04 σ32= -3.E-07 -0.14513 2.4
σ22= -1.50E-04 σ31= 0.0E+00
σ33= 4.1E-05 σ21= 0.0E+00

5 3.2873 σ11= -1.77E-04 σ32= 0.0E+00 -0.14060 2.9
σ22= -1.32E-04 σ31= -1.9E-05
σ33= -1.E-05 σ21= 0.0E+00

Table 4.12: In this table the final plane Cr distances are reported, the final stress tensors, the
final pressures and the total energy differences with respect to the reference configuration
for the different configurations.

Conf. ∆E (eV) Dx, Dy, Dz (10−4 Bohr2)
1 -3.46 1.07 0.59 13.64
2 -3.69 0.29 5.97 49.81
3 -3.86 0.16 1.28 39.52
4 -3.95 198.21 0.66 9.351
5 -3.82 0.71 111.40 5.661

Table 4.13: Bond energies and distortion/atom of C atoms (see Appendix A.2) in the three
spatial directions.
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4.7 Chromium intercalated between graphite planes

Figure 4.11: Trial configurations: in green the superior graphite plane, in red the inferior
one. The arrow indicates the movement of the configuration 7 towards configuration 4
during geometry optimization. The 4f (four-fold) is the same configuration of the four-fold
spiro interstitial defect studied with a C atom.

The trial configurations are shown in Fig. 4.11 and the cell is a 2x2x1
graphite cell with a Cr atom intercalated between planes. k-points grid is
2x2x2. The configuration 7 moves towards configuration 4 during geometry
optimization and as can be seen in Tab. 4.14 the final energies are also sim-
ilar. Configuration 3 produces a bound state with properties summarized in
Tab. 4.14, 4.15.

Configurations 4f and 6 produce a shift of the graphite planes and the Cr
ends up in the center of the hexagons up and down. This configuration is im-
possible in graphite where the planes are shifted one with the other but should
be possible in carbon nanotubes. The shift of the planes is not physically rel-
evant and is due to the wrong Van der Waals forces calculation in DFT. In
fact all the XC energy functionals are of the short-range type Fig. 4.12. LDA
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and GGA XC functionals have the following form:

ELDA
xc =

∫
εLDAxc [n(r)]d3r

EGGA
xc =

∫
εGGAxc

[
n(r), |∇n(r)|

]
d3r (4.21)

From these expressions is easy to understand that interaction is zero when the
density is zero while Van der Waals forces are dispersion long-range forces. In
some cases it is necessary to take correctly into account these interactions and
one can add a classical potential which reproduces such forces [1, 75].

To calculate the bond energy of this configuration we have calculated the
total energy of two overlapped graphene planes. This energy is 0.01 Ha greater
than the total energy of the same number of atoms in graphite. This configu-
ration has the lowest energy. The fact that this configuration is more bonded
than others is consistent with the surface calculations. In fact in that case
the minimum energy, among all trial configurations, was reached when the Cr
atom is in the center of a graphene hexagon.

Figure 4.12: Short range interaction.
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Conf. Plane distance (Bohr) Final Stress(Ha/Bohr3) ∆E (Ha) Pressure (GPa)
3 3.15537 σ11= -2.09E-04 σ32= 1.7E-05 -0.17539 7.6

σ22= -2.57E-04 σ31= 0.00E+00
σ33= -3.13E-04 σ21= 0.00E+00

4 3.31363 σ11= -2.74E-04 σ32= -1.5E-05 -0.20400 7.8
σ22= -3.24E-04 σ31= 0.00E+00
σ33= -1.97E-04 σ21= 0.00E+00

4f 3.14578 σ11= -2.60E-04 σ32= 2.E-06 -0.25434 7.2
σ22= -3.06E-04 σ31= -7.E-06
σ33= -1.67E-04 σ21= -3.9E-5

6 3.15537 σ11= -2.59E-04 σ32= -5.E-07 7.1
σ22= -3.04E-04 σ31= 7.E-07 -0.25438
σ33= -1.63E-04 σ21= -3.9E-05

7 3.32234 σ11= -2.68E-04 σ32= -1.E-06 -0.20421 7.7
σ22= -3.23E-04 σ31= 0.00E+00
σ33= -1.91E-04 σ21= 0.00E+00

Table 4.14: In this table are reported final Cr distances from the lower plane, the final stress
tensors, the final pressures and the total energy differences with respect to the reference
configurations (energy of graphite plus isolated Cr atom for configurations 3-4-7 and energy
of overlapped graphene planes plus isolated Cr atom for the configurations 4f-6) for the
different configurations.

Conf. ∆E (eV) Dx, Dy, Dz (10−4 Bohr2)
3 -4.77 0.46 4.32 1393.63
4 -5.55 0.85 3.32 292.23
4f -6.92 // // //
6 -6.92 // // //
7 -5.56 // // //

Table 4.15: Bond energies and distortion/atom of C atoms in the three spatial directions.
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Figure 4.13: Above, the initial and final distances in Å between atoms in the configuration
4. Below, final distances in the configuration with shifted planes.
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5 Calculations with ultrasoft pseudopotentials

5.1 Tests of pseudopotentials

From now on all calculations reported were done with CPMD code and
ultrasoft library pseudopotentials (generated with ”uspp” code) for Cr and C
were used. As we saw, the cut-off needed for Chromium is higher with respect
to Carbon. This is even more true in the following calculations, because Cr
pseudoptential has also the 3s23p6 as valence states. For this reason we only
did a cut-off convergence study for Cr. All calculations were done in Γ point
approximation since larger systems were considered. The exchange correlation
functional is PBE of GGA type and the convergence criteria for forces are as
those found in previous chapter.

The cut-off convergence study was done considering the Cr dimer Tab. 5.1.
As can be seen in Tab. 5.1 bond length of Cr2 converges much faster than en-
ergy. In general energy differences always need a higher cut-off than geometric
properties or time averages of observables. A cut-off of 75 Ry was chosen for
all total energy differences reported in this section. Even if 75 Ry is not so
smaller than 100 Ry of the previous chapter, the ultrasoft Cr pseudopotential
contains the 3s23p6 as valence states. A similar choice for a norm-conserving
pseudopotential increases the cut-off energy very much. The estimated cohe-

Cut-Off (Ry) ∆ E (eV) Bond Length (Bohr)
50 0.00 3.2452
60 -0.67 3.2474
75 -0.25 3.2458
85 0.07 3.2460

Table 5.1: Cut-off convergence for a dimer of Chromium. ∆E is the atomization energy
difference.
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sive energy of bulk Chromium, calculated with a 4x4x4 cell and of Graphite
with a 4x4x1 cell are:

EC
ch = −7.60 eV, ECr

ch = −4.03 eV (5.1)

A Chromium dimer is a difficult molecule to treat in DFT and for an ac-
ceptable description semicore states must be included in the pseudopotential
[6, 13]. Experimental results for bond length and atomization energy of Cr2

are respectively:
dCr2 ' 3.2 Bohr, Eatomiz ' 1.5 eV (5.2)

Our results for a cell of '10 Å are reported in Tab. 5.2 The bond length has
been well estimated without spin but not with it. Conversely atomization
energy is better estimated with spin than without it. This situation is charac-
teristic of other transition metals like Cr (see [6] and references therein). In [13]
atomization energy and bond length were estimated using the Multireference
Configuration Interaction method and was found that:

dCr2 = 3.25 Bohr, Eatomiz = 1.09 eV (5.3)

even with this too expansive method the atomization energy is quite far from
its experimental value and similar to ours. Conversely the bond length is
better estimated with the Multireference Configuration Interaction method .
This method however can be adopted only to treat few atoms. Total energies

Spin Atomization energy (eV) Bond Length (Bohr)
No 10.92 3.22
Yes 1.07 4.33

Table 5.2: Final results of the Cr dimer.

differences of configuration 4 and with shifted planes, reported in section 4.7,
were recalculated with ultrasoft pseudopotentials in a 4x4x1 cell. The results
are reported in Tab. 5.3.
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CPMD Abinit
Conf ∆ E(eV) ∆ E(eV)

4 -5.09 -5.55
Shift -5.97 -6.92

Table 5.3: Bond energies of configurations 4 and with shifted planes calculated with Abinit
and CPMD. Note that also cell dimensions are different: 2x2x1 with Abinit and 4x4x1 with
CPMD.
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5.2 Graphene surface with vacancy

As we saw the Cr bind to a perfect graphene surface. The same type of
calculations were done with a graphene surface with a vacancy. At first the
formation energy of a vacancy was calculated with a 4x4x1 cell:

Eform = 7.66 eV (5.4)

This value is in perfect accordance with previous calculations (see [40] and
references therein). In all calculations reported in this section the cell is 2x2x1
(with only the plane at z = 0) and one atom of graphene plane is fixed to
avoid plain from shifting rigidly during geometry optimization. The trial con-
figurations are represented in Fig. 5.1. The configuration Pushed 1 is the same
as configuration 1 but in this case the Cr atom is put at a zero initial distance
from the plane and its z-coordinate is fixed during optimization.

The atom of Cr in the configuration 3 moves towards the position of Cr
in the configuration 1 during geometry optimization. Configurations 1 and
2 produce two bound states Tab. 5.5. The distances between atoms after
geometry optimization are reported in Fig. 5.2-5.3.

The configuration pushed 1 was considered to try to understand if Cr atom
can penetrate the graphene plane through vacant site. The results of calcula-
tions suggest that the Cr atom should not penetrate the plane so easily. In fact
in configuration pushed 1 the graphene plane deforms to reproduce the same
type of bounds of configuration 1. As can be seen in Tab. 5.4 energy contribu-
tions of the two configurations are quite similar except that in configuration 1
the ∆LPs (long-range) contribution is larger that ∆NLPs (short-range) while
in configuration Pushed 1 the contrary happens. From Tab. 5.4 it is clear that
the plane distorts itself more than in configuration 1 along the z-axis while
distortions along other directions are similar. See also Fig. 5.2.

Conf. ∆Es (Ha) ∆LPs (Ha) ∆NLPs (Ha) ∆XC (Ha) ∆EGGA (Ha)
1 -0.10049 -0.94012 -0.19744 -0.53677 0.05161
2 -0.17111 -0.49466 -0.10743 -0.41496 0.04806

Pushed 1 -0.12227 -0.77642 -0.53641 -0.50862 0.05802

Table 5.4: Differences of some energy contributions with respect to reference configuration.
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Conf. ∆E (eV) Dx, Dy, Dz 10−3 Bohr2 Distance (Bohr)
1 -9.77 2.544 1.264 74.128 2.5396
2 -6.40 2.691 3.629 64.170 2.9326

Pushed 1 -8.81 2.637 9.243 967.390 0.0000

Table 5.5: The bond energy ∆E is the total energy difference with respect to the energy of a
graphene surface with a vacancy plus the total energy of an isolated Cr atom. The distance
is the final z-coordinate of Cr atom.

Figure 5.1: Above on the left the relative position of the Cr atom with respect to the
graphene surface in the configuration 1; on the right in the configuration 2. Below in the
configuration 3.
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Figure 5.2: Above, the two configurations one. Below, inter atomic distances in Å after
geometry optimization in the configuration 1.
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Figure 5.3: Interatomic distances in Å after geometry optimization in the configuration 2.
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Figure 5.4: Isodensity surface for ρ ' 0.1 in presence of vacancy. Above, for configuration
1, below, for configuration 2.
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5.3 Chromium intercalated in graphite with vacancy

Figure 5.5: Initial positions of the atoms in the four trial configurations.

In this section the results of adhesive properties of bulk graphite with a
vacant site and Cr atom are reported. The trial initial positions of atoms are
reported in Fig. 5.5 and the cell is 4x4x1 as before. Configurations 1 and 2
produce two bound states (Tab. 5.6, Fig. 5.6). The Cr atom in configuration 3
moves toward the position of the Cr atom in the configuration 1. Configuration
4 produces an unphysical shift of the graphite planes as happened for graphite
planes without vacancy with norm-conserving pseudopotentials.

In this and the previous section configurations with very large bound en-
ergies were found (' 10 eV). On this purpose, we can note that separations
between states (3s, 3p), not pseudized with norm-conserving pseudopotentials,
and states (3d, 4s) is not so away from bound energies found Tab. 5.8. Then
a characterization of these configurations with norm-conserving pseudopoten-
tials should result wrong.
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Conf. ∆E (eV) Dx, Dy, Dz 10−3 Bohr2 Distance (Bohr)
1 -10.79 0.962 2.431 29.984 2.6875
2 -7.77 31.097 4.224 17.051 2.8229

Table 5.6: The ∆E is the total energy difference with respect to the energy of bulk graphite
with a vacancy plus the total energy of an isolated Cr atom. The distance is with respect
to the lower plane.

Conf. ∆Es (Ha) ∆LPs (Ha) ∆NLPs (Ha) ∆XC (Ha) ∆EGGA (Ha)
1 -0.12144 -1.15278 -0.08024 -0.67495 0.07067
2 -0.13671 -0.87269 -0.02895 -0.58376 0.07500

Table 5.7: Differences of energy contributions with respect to reference configuration.

State Occupation ∆E (eV)
3s 2 0.00
3p 6 28.71
3d 1 44.35
3s 5 1.09

Table 5.8: Energy separation of Cr levels for pseudized orbitals.
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Figure 5.6: Above, final inter-atomic distances in Å in configuration 1, below, in configura-
tion 2.



A DFT study of Cr on graphene, with additional material on MD 98

Figure 5.7: Isodensity surfaces for ρ ' 0.1. Above, for configuration 1, below, for configu-
ration 2.
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5.4 Graphene surfaces and Cr2

Figure 5.8: Positions relative to the graphene surface in configuration 1

We have also studied the bonding properties of a Cr2 molecule on a perfect
graphene surface and on a graphene plane with a vacant site or a SW defect.
In the case of perfect plane the cell used is 2x2x2 (with only the plane at
z = 0), that is ' 24 Bohr in z direction. In fact the bond lengths in this case
are larger and a bigger cell in z direction has to reduce the effect of periodic
boundary conditions. Only the lower graphene plane at zero z coordinate is
present. Trial configuration 1 is showed in Fig. 5.8. In the configuration 2
the Cr2 dimer is perpendicular to the graphene surface and the lowest Cr is
above the center of an hexagon of C atoms (Fig. 5.9). In the Tab. 5.9, 5.10
calculations details are reported.

Conf. ∆E (eV) Dx, Dy, Dz 10−3 Bohr2 Distance (Bohr)
1 -0.07 0.762 16.645 0.050 6.5339
2 -0.30 0.070 0.606 4.334 3.7035

Table 5.9: Results of calculations in the configurations 1 and 2. Distances refer to the
nearest plane Cr atom.
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Conf. ∆Es (Ha) ∆LPs (Ha) ∆NLPs (Ha) ∆XC (Ha) ∆EGGA (Ha)
1 0.00249 0.00613 0.00366 -0.00186 0.00559
2 -0.13594 0.23699 -0.13593 -0.02860 0.02485

Table 5.10: Differences in energy contributions with respect to reference configuration.



A DFT study of Cr on graphene, with additional material on MD 101

Figure 5.9: Above, final plane dimer distances in Å in configuration 1, below, in configura-
tion 2.
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Figure 5.10: Positions of the Cr atoms in the configurations 1 and 4 relative to the graphene
surface.

The bond energy of a Cr2 dimer with a graphene surface with a vacancy
are much higher than those with a perfect graphene plane. The cell used
is 4x4x1.5, that is ' 18 Bohr in z direction. Four trial configurations were
chosen. Configurations 1 and 4 are shown in Fig. 5.10. In the configurations
2 and 3 the Cr2 dimer is initially perpendicular to the plane and the lowest
Cr atom is respectively in the position 1 and 2 of the Fig. 5.1. In these two
last configurations the dimer begins to rotate (Fig. 5.12). This intermediate
configuration is reconsidered next. The details of calculations of configurations
1 and 4 are shown in Tab. 5.11, 5.12.

Conf. ∆E (eV) Dx, Dy, Dz 10−3 Bohr2 Distance (Bohr)
1 -3.72 1.548 14.153 70.158 3.6821
4 -4.68 2.914 3.156 113.462 2.7431

Table 5.11: Results of the calculations in the configurations 1 and 4.

Conf. ∆Es (Ha) ∆LPs (Ha) ∆NLPs (Ha) ∆XC (Ha) ∆EGGA (Ha)
1 -0.34622 -0.19734 -0.68328 -0.40082 0.03976
4 -0.43949 -0.20388 -0.73265 -0.49936 0.04095

Table 5.12: Differences in energy contributions relative to reference configuration.
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Figure 5.11: Final inter-atomic distances in Å for configuration 1.



A DFT study of Cr on graphene, with additional material on MD 104

Figure 5.12: Above, isodensity surface for ρ ' 0.1 in configuration 1. Below, isodensity
surface for ρ ' 0.1 in configuration 4.
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Figure 5.13: Position with respect to the graphene surface in the case of SW defect.

As we said previously if initially the dimer is perpendicular to the graphene
plane it begins to rotate to align itself to the plane. The minimum config-
uration reached starting from these initial conditions is lower in energy with
respect to the previously considered configurations. The same type of calcula-
tion was also done for a plane with an SW defect with the dimer centered on
the 7 ring Fig 5.13. The energy formation of a 5x7 SW defect was estimated
using a 4x5x1 cell and the result is:

Eform = 6.73 eV (5.5)

This value is in accordance with other DFT calculations (see [38] and refer-
ences therein). In Tab. 5.13, 5.14 the results obtained starting with dimer
perpendicular to the plane at a distance of 3 Bohr are summarized.

Type defect ∆E (eV) Dx, Dy, Dz 10−3 Bohr2 Distance (Bohr)
Vacancy -4.90 1.195 3.623 105.526 2.8026

SW -0.74 0.057 0.087 1.695 3.2412

Table 5.13: Results of the calculations for two types of defect starting with a perpendicular
dimer. Distances refer to the nearest plane Cr atom.
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Defect type ∆Es (Ha) ∆LPs (Ha) ∆NLPs (Ha) ∆XC (Ha) ∆EGGA (Ha)
Vacancy -0.45906 -0.16975 -0.19546 -0.43140 0.03967

SW -0.19300 0.31757 -0.18155 -0.03343 0.02764

Table 5.14: Differences in energy contributions relative to reference configuration for two
type of defect starting with a perpendicular dimer.

From these tables it is clear that in the case of a vacancy defect the dimer is
more bounded to the plane. With respect to the minimum configuration 4 an
extra charge localization between a Cr and a C atom can be noted Fig. 5.14.
This should be the reason for the larger bond energy of this configuration with
respect to configuration 4. For the case of SW defect the plane is distorted
very little and even the bond energy is smaller. Moreover the dimer remains
almost perpendicular to the plane Fig. 5.13.
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Figure 5.14: Above, the final configuration reached starting with dimer perpendicular to
the surface, the extra bond present in this case is evident. Below, differences between the
final position of the two configurations.
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5.5 Formation and dissociation of a Cr dimer: total energies

In section 5.2 we have seen that for a Cr atom it should be very difficult to
penetrate a graphene plane through a vacant site and it should be even more
difficult to penetrate a perfect plane so we have tried to find a process in
which the penetration process include a Cr dimer. Considering this process
two problems were aroused. The first problem regards the possible presence of
Cr dimers in the gas evaporated on outer shell of MWCNTs. In experimental
situations we are interested in, a Cr gas is evaporated at a temperature of
about 1500 K. This temperature corresponds to an energy of about 0.3 eV.
Such temperature should not be sufficient to form dimers. However some
dimers should be present in the evaporated gas. Then we investigated if two
Cr atoms on a graphene plane initially placed at large distance (with respect
to dimer bound distance ' 1.7 Å) tend to move further away or to approach
each other. These however are preliminary calculations where convergence was
not reached. A similar process was studied in higher detail in the free energy
calculations reported in the next section.

The trial configurations are shown in Fig. 5.15. Starting from the configu-
ration 1 and 2 the distance between Cr atoms becomes much smaller than the
initial ones (Fig. 5.16).

Figure 5.15: Trial configurations of two Cr atoms on a graphene surface with a vacancy.
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Figure 5.16: Above initial and final distances in Å for configuration 1. Below for configura-
tion 2.



A DFT study of Cr on graphene, with additional material on MD 110

Figure 5.17: Illustrations of z, θ and plane-dimer distance.

These calculations suggest that the dimer formation on a defective graphene
plane could be possible.

The second problem regards the dissociation process itself. In a trial MD
run for a dimer initially not stretched through a vacant site, it was found
that dimer practically dissociates in few MD steps at 350 K. These two facts
suggest to search for a process in which the dimer penetrates the plane and
dissociates.

For these reasons was studied the energy landscape of a Cr dimer which is
placed closer and closer to the ideal plane situated at zero z coordinate. Cal-
culations were done both for a SW-defective plane and for a vacancy-defective
plane. In these calculations a C atom of the plane is kept fixed to avoid a shift
of the plane itself. The dimer is instead placed on the plane keeping fixed only
the z coordinate of the initial nearest plane Cr atom Fig. 5.17. In the first and
the last configurations in Tab. 5.15 and Fig. 5.18 , the dimer is completely free
so these are local minima Fig. 5.14,5.13. In general even if the dimer is ini-
tially perpendicular to the plane during geometry optimization, it rotates and
the angle to the ideal plane is called θ Fig. 5.17. The plane dimer distance is
defined as the distance between the ideal plane and the dimer center Fig. 5.17.
Results are summarized in Tab. 5.15, Fig. 5.18.

In the case of a vacancy defect a 4x4x1.5 cell (with only a plane at z = 0)
was used. The more stretched configuration is also the more stable one and
the total energy barrier to reach such configuration is 1.3 eV.

In the case of a Stone-Wales defect a 5x4x1.5 (with only a plane at z = 0)
cell was used. The more stretched configuration is not the more stable. If
a calculation is started from the more penetrating configuration, adding the
inferior perfect graphene plane and the dimer completely free, a state with
binding energy of -1.12 eV and a stretch of 0.55 Å is reached. Also this
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configuration is not the most stable one. Moreover from Fig. 5.20 it is clear
that the penetrating dimer tends to pull out a carbon atom so as to prefer a
vacancy.

Figure 5.18: Energy landscape in function of the dimer distance z (Fig. 5.17). These curves
are symmetric around the points labeled in figure as S-SW and S-V.
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Vacancy
z (Å) Distance (Å) θo Stretch (Å) ∆E (eV)
1.48 1.81 19.2 0.28 -4.9
0.53 1.21 43.4 0.28 -4.4
0.37 1.20 59.8 0.22 -4.4
0.26 0.82 34.1 0.30 -3.6
0.16 1.00 59.8 0.30 -4.8
0.05 0.90 60.2 0.24 -4.9
-1.00 0.00 58.9 0.30 -5.1

Table 5.15: Energy landscape for the two type of defects. z is the z coordinate of initially
nearest Cr atom. The stretch refers to Cr dimer. ∆E is the binding energy.

Stone-Wales
z (Å) Distance (Å) θo Stretch (Å) ∆E (eV)
1.71 2.60 90.0 0.05 -0.74
0.80 1.64 72.9 0.07 -0.95
0.26 1.12 71.9 0.09 -0.50
0.05 0.86 54.5 0.28 -2.29
-0.14 0.66 53.5 0.30 -2.36
-0.76 0.20 67.9 0.39 -1.17
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Figure 5.19: Optimized geometries in the configurations 1,2,3,4,5,6,7 in the case of vacancy
defect (see Fig. 5.18). The z coordinate of the Cr atoms labeled in figures was kept fixed
during the optimizations.
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Figure 5.20: Optimized geometries in the configurations 1,2,3,4,5,6 in the case of SW defect
(see Fig. 5.18). The z coordinate of the Cr atoms labeled in the figures was kept fixed during
the optimizations.
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5.6 Formation and dissociation of a Cr dimer: free energies

In section 2.7 we had seen that the free energy difference between two states
ξN , ξ1 can be calculated using the formula:

W (ξN)−W (ξ1) =

∫ ξN

ξ1

dξ′
〈Z−1/2[λ+ kBTG]〉ξ′

〈Z−1/2〉ξ′
(5.6)

In the cases reported in this section the constraint coordinate ξ is always
represented has a distance between two atoms so that Z = 1 and G = 0 and
Eq. 5.6 writes:

W (ξN)−W (ξ1) =

∫ ξN

ξ1

dξ′〈λ〉ξ′ (5.7)

Obviously, to calculate this integral one has to divide the interval [ξ1, ξN ] in
subintervals so as to obtain the free energy differences as:

W (ξ2)−W (ξ1) '
N∑
i=1

1

2

(
〈λ〉ξi − 〈λ〉ξi−1

)(
ξi − ξi−1

)
=

N∑
i=1

∆idξi (5.8)

where {ξ2, ..., ξn} is a partition of the interval [ξ1, ξN ] and:

∆i =
1

2

(
〈λ〉ξi − 〈λ〉ξi−1

)
dξi = ξi − ξi−1 (5.9)

This approximation is better as it is smoother the behaviour of 〈λ〉ξi in
function of ξi. Two free energy differences were calculated. The free energy
difference of a dimer penetrating a graphene plane through a vacant site and
the free energy difference of dimer formation when a Cr atom is placed at
the center of an hexagon contiguous to a vacant site where another Cr atom
is present. The coordination constraints for these reactions are graphically
represented in Fig. 5.22. The case of dissociation reaction was studied using
a two layer 4x4 graphite cell (63 atoms). The box length in the z direction is
of about 10 Å and ξ represents the distance of the lower Cr atom and the C
atom of the inferior graphite plane under the vacant site Fig 5.22. The case of
formation reaction was studied with a single graphene plane (31 atoms) and
the same length in z direction. In this case ξ represent the distance between
Cr atoms. In previous sections the energy cut-off was 75 Ry. Since we are now
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Figure 5.21: 2∆(9.367, 7.654) = λ(ξ = 9.367)− λ(ξ = 7.654) in function of simulated steps
for different values of the energy cut-off.

interested in constraint force more than total energy differences, the cut-off
convergence was tested with respect to this quantity. In particular what has
to be correctly estimated in these MD runs are the differences in constraint
forces between two consecutive values of constraint coordinate ξ Eq. 5.8. In
Fig. 5.21 is reported the instantaneous difference of constraint force for two
values of ξ is reported. From this figure it is clear that a cut-off of 40 Ry is
sufficient.

CP molecular dynamics was used starting from the previous optimized ge-
ometry. The time step length was of about 0.1 fs. For every value of ξ an
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MD run of about 1.7 ps was done. At first a MD run of 0.5 ps was done to
equilibrate the system at 350 K using velocity rescaling. Then a run of about
1.2 ps was used to sample the constraint force λ thermalizing both the ionic
and electronic system with a Nosé -Hoover chain thermostat. The ionic tem-
perature was fixed at 350 K while target fictitious electronic kinetic energy
was fixed through Eq. 3.56. Ionic and electronic temperature for a typical run
are plotted in Fig. 5.23.

Results of calculations are reported in Tab 5.16 and Fig 5.24, 5.25. The
correlation time and then the error on average constraint force were calculated
using the technique reported in App. A.1. The statistical error on ∆i is simply:

σ∆i
=

1

2

√
σ2

〈λ〉
ξi

+ σ2

〈λ〉
ξi−1

(5.10)

and statistical error on free energy difference between ξ1 and ξL 6 ξN is:

σ∆F (L,1) =

√√√√ L∑
i=1

σ2
∆i
dξ2

i (5.11)

Both free energy differences are negative so the final states are thermodynami-
cally stable. Free energy reaction barriers are of the order of some meV/Atom
(Fig. 5.24, 5.25) which corresponds to some tens of Kelvin/Atom. The fact
that the activation energy to form a Cr dimer on a graphene sheet is much
smaller than the corresponding energy in vacuum has an easy interpretation:
the energy needed to approach the electronic densities of the two Cr atoms is
smaller because on graphene this electronic density is occupied to form bonds
with graphene atoms.
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Figure 5.22: Graphical representation of the constraint coordinate in the two cases studied.
Above, the constraint for the case of dissociation through a vacant site. Below, the constraint
for the migration of Cr atom over a graphene plane.
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Figure 5.23: Typical behaviour of the ionic and fictitious electronic temperature. Above, the
case of dissociation of the dimer, below, the case of formation. In red the ionic temperature.
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ξ 〈λ〉 σ2
λ tc σtc σ2

〈λ〉 σ∆i σ∆i ×∆ξi

9.367 9.89E-03 1.64E-04 187 7 2.5E-06 0.0 0.00
8.398 1.79E-02 1.84E-04 211 18 3.2E-06 1.2E-03 1.2E-03
7.654 3.80E-02 3.14E-04 529 6 1.4E-05 2.0E-03 7.0E-04
7.464 -1.42E-02 3.05E-04 378 6 9.6E-06 2.4E-03 4.6E-04
7.275 -1.23E-02 2.70E-04 228 11 5.1E-06 1.9E-03 3.6E-04
7.097 -1.11E-02 2.64E-04 227 5 5.0E-06 1.6E-03 2.8E-04
6.732 -6.00E-03 2.44E-04 223 5 4.5E-06 1.5E-03 5.5E-04
4.387 1.18E-03 1.80E-04 65 5 9.0E-07 1.1E-03 2.6E-03

Table 5.16: Results of the calculations for the cases studied. Atomic unit are used. The
correlation time tc is in number steps unit. Above, the case of dissociation, below, the case
of formation.

ξ 〈λ〉 σ2
λ tc σtc σ2

〈λ〉 σ∆i σ∆i ×∆ξi

5.0159 -2.59E-02 3.44E-04 452 16 1.3E-05 0.0 0.0
4.5408 -3.43E-02 2.89E-04 416 20 1.0E-05 2.4E-3 1.1E-3
3.9800 -2.77E-02 9.45E-05 203 7 1.6E-06 1.7E-3 9.5E-4
3.7667 -1.10E-03 9.50E-05 244 15 1.9E-06 9.3E-4 2.0E-4
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Figure 5.24: Free energy difference and statistical errors for the dissociation reaction in
function of the reaction coordinate ξ (Fig. 5.22 above).
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Figure 5.25: Free energy difference and statistical errors for the formation reaction in func-
tion of the reaction coordinate ξ (Fig. 5.22 below).
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Some computational details

Although it was not emphasized elsewhere, ab-initio calculations require ex-
pensive machines to be performed in reasonable times. CASPUR’s clusters
were used in all calculations, except those with one or two atoms. In par-
ticular, I used Power-4, Power-5 and SX6 clusters. Power 4-5 clusters are
composed by several processors, of the order of hundred, with a RISC (Re-
duced Instruction Set Computer) architecture. The SX6 cluster is composed
by only eight processors with a vectorial architecture. A Power processor can
execute only few operations in a clock cycle, while vectorial machines execute
one operation for each RAM (Random Access Memory) address in a clock
cycle. Obviously not all the codes can benefit of the vectorial architecture.
However, even if each cluster is composed by several CPUs, one finds that,
fixed the problem’s size, the time needed to perform a calculation does not
scale linearly with the number of CPUs used.

The calculations reported in Chapter 4 were done using the Abinit code
which has a very detailed documentation and several utilities to investigate
system’s properties. This code scale linearly with the number of k-points used
(in fact the calculations at each k-point are independent between themselves)
so it works well for ”small” systems which are in general studied with a large
number of k-points. Abinit is not efficient for ”large” systems when the cal-
culations over the bands have to be efficiently parallelized. So I have used the
CPMD code which is more performing for ”large” systems. I used ultrasoft
pseudopotentials whit CPMD instead of norm-conseving ones. The minimiza-
tion of the total energy of the ionic system requires a number of geometry
optimization steps which is not a priori predictable. Moreover, at each step
of geometry optimization the electronic wavefunction (at fixed ion positions)
must be calculated. This calculation requires a number of diagonalizations,
or a number of direct minimization steps (depending on the algorithm used),
which is not a priori predictable. In fortunate cases the number of these oper-
ations is of the order of 20,30 but it is not rare that one needs to do 100,150
steps. Each diagonalization or direct minimization requires a number of opera-
tions which grows like Npw lnNpw (Npw represents the number of plane waves).
The number of plane waves depend on the problem size in the following way:

Npw ∝ ΩE
3/2
cutNband (5.12)

where Ω is the volume of the periodic box, Nband the number of bands (which
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is proportional to the number of atoms and k-points) and Ecut the energy cut-
off. This shows why one always tries to use a system, energy cut-off, etc... as
small as possible.

Even performing CP dynamical simulations one cannot a priori estimate the
time simulation length (ts) needed to have a well converged average. That is in
dynamical simulations which we performed we have to calculate (see Sec. 5.6):

〈λ〉ξ(ts) =
1

ts

∫ ts

0

λ(τ)dτ (5.13)

for a set of values of the reaction coordinate ξ.
Let us now make some examples to have an idea about the computational

cost. The calculation, performed with Abinit, of the Cr3C2 crystal which con-
tains 20 atoms in its primitive cell had 8 k-points than the use of more than 8
CPUs (Abinit parallelization is not efficient over the bands) is of no utility. At
first the atomic positions at fixed cell dimensions were optimized, this required
50 geometry optimization steps. Subsequently, both atomic positions and lat-
tice parameters were optimized with other 35 optimization steps. The total
calculation required 2 days with the Power4 cluster. However the convergence
properties of the wavefunction in this situation were good (20-30 steps) since it
is a bulk system and atoms are very close to their equilibrium configurations.
Between the calculations performed with CPMD those reported in Fig. 5.18
required from 24 to 48 hours for each point in the fortunate cases (these were
done in Γ point approximation and more than 4 CPUs, using the SX6 cluster,
produced small performance improvement) and also a week in the unfortunate
ones. The cost of each 〈λ〉ξ in the free energies calculations of Sec. 5.6 (start-

ing from the optimized geometry at fixed z) in the case of the dissociation
reaction, was of about 24 hours (16 Power5 CPUs).
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Conclusions

The aim of this work was to have an understanding of the mechanical prop-
erties of MWCNTs under repeated twisting cycles. In particular we concen-
trated on the interaction between Chromium and graphene and on how this
interaction can produce links between MWCNT’s walls. This interaction seems
to be crucial in characterizing the observed behaviour of MWCNTs (see the
Chapter 1). Chromium in fact is evaporated on outer MWCNT’s walls in all
experiments to which we refer [71, 72, 49] because, as experimentally observed,
it binds strongly to MWCNTs.

The calculations have confirmed that Cr atoms have strong interaction with
graphene surface, both defective or not, and with two sheets of graphene if it
is intercalated between them. It is then easy for Chromium to create links
between MWCNT’s walls. It is also clear that these simulations characterize
well CNTs where the walls interaction is lower as their deformation properties
indicate. In fact the geometry is easily distorted in z directions and a Cr
atom can shift graphite planes. This simply shows as VdW forces are badly
reproduced in DFT calculations.

The bond energies of Cr atom on graphene are all similar (0.4 eV of max
difference). This suggests that once a Cr atom bounds to a plane, it can easily
move on the surface. For Cr atoms intercalated through graphite planes,
the max difference of bound energy is of about 1.3 eV, which is also not so
high. The bound energies of intercalated Cr atoms are higher with respect
to on surface energies. In all cases bond lengths are of the same order of
magnitudes of typical Cr-C compounds, that is about 2 Å. These calculations
were done with norm-conserving pseudopotentials and the Abinit code. The
Cr pseudopotential was rebuilt since the library one has poorly reproduced
some important physical quantities (Chapter 4).

Once the strong Cr-C interaction was clear, as also the calculations with ul-
trasoft pseudopotentials and the CPMD code was confirmed, we concentrated
on the possible mechanisms which could generate the Chromium penetration
inside MWCNT’s walls. As suggested by calculations, a Cr atom cannot pen-
etrate a graphene sheet even in presence of a vacancy. In fact even if one
pushs a Cr atom in the center of a vacancy and locks its coordinates, graphene
deforms to produce the same bonds obtained with a free Cr.

We have then tried with the smallest composite of Cr atoms: the Cr dimer.
This was suggested when observing that a dimer not initially stretched in a
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vacant site, dissociates Fig. 5.19. Some Cr dimers should also be present in
the Cr gas evaporated onto MWCNTs. However while the activation energy
required to form a dimer calculated in vacuum was of about 3 eV the calculated
free energy barrier to form a dimer on a graphene surface was less than 0.1 eV.
This suggests that dimers can form on graphene surface and can be interpreted
in this way: the energy needed to approach the electronic densities of the two
Cr atoms is smaller because on graphene this electronic density is occupied to
form bonds with graphene atoms. The interaction of Cr dimers and graphene
are also strong but in this case a defect on surface, in particular a vacancy,
produces stronger bonds: on a perfect surface the higher binding energy was
of -0.3 eV, on an SW defect -0.7 eV and on a vacant site -4.9 eV (Chapter 5).
The preferred configuration for a dimer must then be on a vacant site. The
activation energies of a dimer which, penetrating a defective graphene sheet,
dissociates were calculated. The defects considered were a vacancy and a SW
defect. The final state of a dimer stretched through a SW defect is not the
most stable one and so it is not thermodynamically stable. In the case of
vacancy the activation energy is 1.3 eV and the final states is the most stable
one. The free energy difference of a dimer dissociating through a vacant site
was calculated. It was found that ∆F ' −0.2 eV and the free energy barrier
was of about 0.35 eV.

There is a large number of investigations which could be done on these
systems: at first, even if we found some processes which can explain the way
in which Cr intercalates between graphene sheets, the reasons of the cascade
mechanisms is still not clear. Secondly, since stable configurations of Cr atom
intercalated between graphene or graphite sheets were found, it should be also
interesting to understand how much this concentration can be increased to
obtain stable composite and analyze their elastic properties. The electronic
transport properties of CNTs or MWCTNs doped with Cr atoms or dimer
should also be interesting. Finally the interface effects of Chromium crystal
with CNTs should be investigated.

Let us now focus on possible applications of what reported in Sec. 2.6. The
algorithm has to be better studied to understand if it effectively allows a larger
time step. If this is the case, one can gain about 50% of CPU time. Another in-
teresting application is the following: MC methods are faster to estimate static
quantities. The reason is that in the MC sampling not correlated phase-space
points are used to make average. Conversely in MD statistical errors are pe-
nalized by correlations. In other words, with the same number of phase-space
points, one set obtained with a MD and another with MC sampling, the sta-
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tistical error in the MC case is smaller. To treat constrained systems with MC
techniques is very hard. For this reason (the total energy is a constraint) the
(N, V,E) ensemble is never used with MC. An high increase of the time-step
in the SHAKE-like algorithm can produce almost not correlated phase-space
points. This can also be done considering higher order terms in the expres-
sion used to calculate λ. For the same reason (the presence of constraints)
polymers are always treated in MD. The generalization of the SHAKE-like
algorithm to also include additional holonomic constraints is straightforward.
Using the algorithm in Nosé -Hoover equations can produce in the same way
not correlated, canonical distributed, phase-space points, also in presence of
additional holonomic constraints.

The technique exposed in Sec. 3.6 should also be applied for arbitrary tem-
peratures. Let us consider the case of a one particle system. Instead of the
Trotter factorization, one should write:

Tr[e−βH ] =

∫
dx〈x|e−

β
n
H · · · e−

β
n
H |x〉 =

=

∫
dxdx1 · · · dxnKβ/n(x− x1)Kβ/n(x1 − x2) · · ·Kβ/n(xN − x) (5.14)

where:
Kβ/n(xN−1 − xN) = 〈xN−1|e−

β
n
H |xN〉 (5.15)

If n is large enough, this kernel can be evaluated at hight temperature so that:

〈xN−1|e−
β
n
H |xN〉 ∝ e−β/nVeff (xN−1−xN ) (5.16)

Then Eq. 5.14 represents a closed polymer composed by n particles interacting
through Veff . This partition function can be computed by MD.
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Appendices

A.1 Statistical errors in time averages

In section 5.6 we needed to calculate the statistical error of average constraint
force obtained with a MD run. Since the values λ(tk) are not statistically
independent, indicating with nr the number of sampled values of λ during the
MD run (nr ∗ dt = tr, where dt is time-step length), we cannot use the well
known formula:

σ2(〈λrun〉) =
1

nr
(〈λ2

run〉 − 〈λrun〉
2) (A.1)

where:

〈λ〉run =
1

tr

r∑
i=1

λ(ti) (A.2)

let us write σ2 in the following way:

σ2(〈λrun〉) =
1

t2r

∫ tr

0

∫ tr

0

dtdt′〈[λ(t)− 〈λ〉][λ(t′)− 〈λ〉]〉 =

=
1

t2r

∫ tr

0

∫ tr

0

dtdt′Cλ(t− t′) (A.3)

where Cλ is the time correlation function of λ (what follows can be found in
[2, 20] and reference therein). Define the correlation time tcλ as:

tcλ =
1

2

∫ ∞

−∞

Cλ(t)

Cλ(0)
dt (A.4)

Supposing in A.3 that tr � tcλ we obtain:

σ2(〈λrun〉) ≈
1

tr

∫ ∞

0

Cλ(t)dt =
1

2tr

∫ ∞

−∞
Cλ(t)dt =

=
tcλ
tr
Cλ(0) =

tcλ
tr

(〈λ2
run〉 − 〈λrun〉

2) (A.5)
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It follows that from the knowledge of tCλ an estimate of the variance of 〈λrun〉
can be obtained. Suppose now to divide the sampled time tr in nb block of
length tb (nb ∗ tb = tr). For each block we define:

〈λ〉b =
1

tb

tb∑
i=1

λ(ti) (A.6)

Then the variance of 〈λ〉b writes:

σ2(〈λ〉b) =
1

nb

nb∑
b=1

(
〈λ〉b − 〈λ〉run

)2

(A.7)

Increasing the block length, 〈λ〉b becomes uncorrelated, then from Eq. A.3 we
expect that:

σ2(〈λ〉b) ∝
1

tb
(A.8)

An estimate of tCλ can be obtained as:

tCλ = lim
tb→∞

s(tb) = lim
tb→∞

tb
σ2(〈λ〉b)
σ2(〈λ〉run)

(A.9)

The function s(tb) is called statistical efficiency. From Eq. A.3 we obtain:

σ2(〈λrun〉) =
1

tb
· (〈λ2

run〉 − 〈λrun〉
2) · lim

tb→∞
s(tb) (A.10)

To estimate practically tc we had calculated s(nb) for different values of nb.
When the plateau was reached we took four values of s(nb) with nb increased
of fifty steps for each point. Then the asymptotic value of s(nb), was obtained
fitting the asymptote with four points. An example of the behaviour of s(nb)
is showed in Fig. A.1. The estimated tc in number of steps unit is also reported
in the figure.
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Figure A.1: An example of tc estimation measured in number of steps. The x-axis represent
the square root of points per block.
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A.2 Distortion and divergence

To measure the variation of atomic position in a configuration r′i relatively to
a reference configuration ri we introduce the distortion as:

Dx =
1

N

N∑
i=1

(x′i − xi)2

Dy =
1

N

N∑
i=1

(y′i − yi)2

Dz =
1

N

N∑
i=1

(z′i − zi)2 (A.11)

where N is the number of atoms. Analogously we define the divergence of two
trajectories of Nstep configurations r′ki , r

k
i , with k = 1, ..., Nstep as:

D =

Nstep∑
k=1

N∑
i=1

|r′ki − rki |2 (A.12)

The average separation of two trajectories of length Nstep is:

Davg = D/Nstep (A.13)
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A.3 Notations

a, b, c Lattice parameters
B Bulk modulus
BFGS Broyden-Fletcher-Goldfarb-Shanno
BO Born-Oppenheimer
CNT Carbon nanotubes
CP Car-Parrinello
Ech Cohesive energy
eV Electronvolt
∆Es Variation of electrostatic energy
∆EGGA Variation of gradient corrected energy
∆LPs Variation of local pseudopotential energy
∆NLPs Variation of non-local psudopotential energy
∆XC Variation of exchange correlation energy
D Trajectories divergence
Dx, Dy, Dz Distortion/atoms in the three spatial directions
GGA Generalized gradient approximation
GPa Giga Pascal
H Hamman
Ha Hartree
kB Boltzmann constant
KB Kleinman-Bylander
KS Kohn-Sham
LDA Local density approximation
MC Monte Carlo
MD Molecular dynamics
MWCNT Multi-walled carbon nanotubes
NLCC Nonlinear core correction
PBE Perdew-Burke-Ernzerhof
PW92 Perdew-Wang 1992
rl Matching distance for l pseudopotential channel
rnlc Matching distance for core density in NLCC
Ry Rydberg
σ Standard deviation
σik i, k component of the stress tensor
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SM Statistical mechanics
T Temperature
TM Troullier-Martins
V Volume
XC Exchange Correlation
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