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Introduction

Since a long time concepts and methods of Statistical Physics are used within
the framework of Economics and Finance. Historically, the most famous
example, in which, however, the inverse process had happened, is that of
Random Walk. In fact, the RW was originally introduced at the beginning
of 1900 by L. Bachelier [14] as a model for describing the market price dy-
namics. Only a few years later, with the famous works of E. Einstein and
J. Perrin, the RW model was formalized mathematically and was applied in
Physics as the representation of the Brownian motion. Another renowned
person who was interested in Physics applied to socio-economic sciences was
E. Majorana. In his last paper “Il Valore delle Leggi Statistiche nella Fisica
e nelle Scienze Sociali”, Majorana discussed about the possible applications
of Physics to social sciences and he described in a premonitory way some of
the developments which then have actually happened.

Going on in more recent times, we can cite the Black and Scholes model
that was drawn up in 1973 [22] (thanks to this model Scholes was also winner
of the Nobel prize in Economics in 1997). This model is based on the assump-
tion that the price fluctuations follow a geometrical Brownian motion and is
used to estimate the price of options and other financial derivate products.
The idea is that, analyzing the price fluctuations for short period, one can
predict the price fluctuations in a much longer period, with the assumptions
of considering a stationary process and the absence of temporal correlations.
The Black and Scholes model is a beautiful theoretical work but, because of
its assumptions, it does not correspond to an exact description of real mar-
kets. In fact, even though the Black and Scholes model is commonly used
in market analysis, it is often complemented with additional modifications
inspired by empirical observations. Furthermore, the fundamental assump-
tions of considering the price dynamics described by a geometrical Brownian
motion and the absence of temporal correlations, are not satisfied in real
markets. These observations pose some conceptual problems that have im-
portant practical implications because the risk estimated from the Black and
Scholes model, results much smaller than the real one. With these consid-
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erations one can realize that the socio-economic dynamics are much more
complex than the simple Random Walk and the study of such complications
is extremely important and actual.

Physics and Economics are also very different in many aspects. In Physics
it is assumed that some Law of Nature do exist and one tries to discover
them. In Economics the question if such laws with general validity exist
or not is an open question and it is still object of debate. Even it is not
clear if Economics can be considered a Science in the Popper’s view [106],
that is where an experiment can falsify a theory. Also the reproducibility of
experiments, that is one of the pillars of Physics, is indeed not an evident fact
in Economics. This last aspect is due to many factors. The first is that one
can never deal with identical situations and the dynamics in not stationary.
In fact, the laws of the dynamics are not necessarily the same at different
times. The second aspect is that Economics depends on human behavior and,
in general, on the whole society. This situation implies elements of adaptive
and evolutive nature which, in general, are not present elementary physical
phenomena and which indeed recall biological themes.

Physics of Complex Systems represents a step towards the quantitative
study of these interdisciplinary situations. In this perspective, during the last
years, there has been a great interest to analyze, and when possible explain,
the socio-economic behaviors in the perspective of Complex Systems. Let
us discuss some some fundamental aspects that cannot be disregarded when
studying economic systems.

1 An important characteristic of Economics is that the system self or-
ganizes themselves in a way that excludes the possibility of exploiting
deterministic previsions on the price behavior. This is the Arbitrage
principle that justify the use of Random Walk as the basic model for
price dynamics.

2 Many of the probability density functions of economic quantity disclose
a power law shape unlike the usual Gaussian probability density func-
tion of the elementary stochastic processes. The presence of power laws
with anomalous exponents recalls the properties of fractal structures
and of self-organized critical phenomena [84, 85].

3 The main deviation from the Random Walk model is observed in price
fluctuations. These fluctuations are much more larger than whose ex-
pected for a Gaussian dynamics or, in general terms, for a stationary
dynamics which satisfy the Central Limit Theorem. The nature itself
of these fluctuations is anomalous in the sense that their distribution
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is characterized by a power law. This is the famous problem of fat tails
[84, 88, 30].

4 The Arbitrage principle avoids the presence of elementary time correla-
tions for the sign (direction) of price fluctuations. Nevertheless, if one
considers the absolute values of price fluctuations, strong time correla-
tions are present. Also these correlations are well described by power
law functions. This features is called volatility clustering [88, 30].

These features, called stylized facts, are considered as peculiar and un-
avoidable to have a bit realistic description of economic phenomena.

Another field where the methods of Complex Systems have been used
to describe economic dynamics is the research line on Agents Based Mod-
els [13]. These models consider an heterogeneous structure with many dif-
ferent agents and investigate the development of large fluctuations and of
evolutive behaviors. Models like these deviate in a qualitative way from the
simple description of phenomena in terms of differential equations for vari-
ables that correspond to mean values. This situation is analogous to that
of Critical Phenomena in Physics where one moves from a Mean Field de-
scription to Monte Carlo and Renormalization Group approaches. At the
moment, the comparison between these models and the experimental data
is however complicated because the stylized facts are too few and as a con-
sequence many different models can reproduce the four features described
above.

Hence, an essential point for the progress in this field is to identify further
general properties and to formulate more specific models which will permit
a critical comparison. In this thesis we intend to move toward both these
directions.

In Fig. 1 we show an excellent example of self-similarity for the dynamics
of Yen/USD rates on a wide interval of time scales. A way to characterize this
property is through the scaling exponent of the so called roughness [73, 113].
What is commonly done to study the roughness of a given variable, is to
consider its fluctuations as a function of the length of the considered time
interval.

Roughness is usually considered as an important element to identify long
range correlations in the data. In this thesis we are going to challenge this
point of view by showing that a number of other effects, different from long
range correlations, can lead to non trivial roughness exponents. An impor-
tant result of our work will then be the introduction of new concepts and
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(a) Scale Invariance (b) Breakdown

Figure 1: This is an overview of a 13-years period for the time evolutions
of Yen/USD rates. The fractal property of price can be confirmed for large
time scale. This is a general property of open markets for time scale larger
than a few hours. Scale invariance breaks down at short time (< 1 hour).
At tick level there is more zig-zag and signal looks discrete.

methods which permit to distinguish the origin of non trivial roughness ex-
ponent in terms of correlations or other effects. An important example of
this problematic is given by the role of finite size effects in the data and their
implications in terms of effective roughness exponent. The problem of finite
size effects is actually very relevant in many situations. For many reasons,
one may be interested in estimating the roughness properties of a given vari-
able from a relatively limited set of data. For real time analysis, the smaller
is the dataset necessary for a reasonable signal, the more reactive and useful
is the result. In some cases this necessity is due to the nature itself of the
data. For example, this is the case if we consider high frequency, tick by tick
data from the market of New York (NYSE). During the night this market
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is close and the price undergoes a large discontinuity in its value. This im-
plies that our data are systematically homogeneous only if we consider the
transaction prices within a single trading day.

Therefore, in this thesis we have first considered the importance of finite
size effects in the estimate of the roughness. This analysis has been per-
formed both with analytical results on a finite size Random Walk and with
suitable simulations [4, 6]. The results show that, even for the simple case
of a Random Walk, the finite size effects in estimating the roughness expo-
nent are intrinsic and unavoidable. In particular, we identify a systematic
enhancement of the effective roughness exponent, even for the simple case of
a Random Walk. In addition to the Random Walk behavior, we have also
studied more complex cases in which the dynamics presents also fat tails
and correlations. Simulations of these modified Random Walk models have
led to a further bias in the estimation of the roughness exponent. Further
more, for non stationary processes, our results can also be relevant for infinite
time series. Given this situation, we have introduced a new tool to estimate
roughness by means the analysis of the fluctuations of a given variable from
a suitable moving average [9]. This new method appears much more useful
than the standard one in order to characterize the fluctuations behavior of a
given process.

The roughness exponent gives an absolute measure of fluctuations. In
some sense it is similar to volatility, but it adds to it the properties of scaling
as a function of the time interval considered. In addition to this information
on the absolute value of the fluctuations, one may also consider directional
ones. These bring us naturally to the realm of trading strategies. For ex-
ample, if the price shows a marked positive deviation from some type of
reference value, this can lead to different reactions of the traders which de-
pend on their strategic attitude. The “trend following” strategy would imply
that this deviation is the beginning of a strong upward trend. On the other
hand, a “trend adverse” strategy would instead expects that the fluctuations
will be soon absorbed by an opposite tendency.

The question we intend to consider is whether from a time series data set
one can identify the nature of the prevailing strategy. We would like to intro-
duce a new type of statistical analysis which is focused on the identification
of these “hidden forces” of effective attraction or repulsion with respect to a
certain reference value.

Together with a group of Japanese researchers (H. and M. Takayasu,
Sony Research and Tokyo Univ.) we have considered the possibility that
the price dynamics can be affected by its distance from a given reference
value [114, 5]. For example we have chosen as reference value a moving
average performed on the values of the price in the previous time steps.
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Starting from this idea, we introduce a model for the price dynamics based
on a Random Walk with the addition of force terms which depends on the
history of the walker in terms of its previous time steps. The aim is to identify
the tendency of the price dynamics to be attractive or repulsive with respect
its moving average. For example, if the force is linear means that the price
is attracted or repelled by its moving average proportionally to its distance
from it. The idea is that different kind of forces (attractive or repulsive) can
reflect various kind of market agents (trend followers or trend adverse). An
analysis on real data has led to the identification and the visualization of such
“hidden” forces, indicating that this new method is indeed suitable to detect
complex correlations in real stock price fluctuations [7]. We retain that the
development of this original method could add a new element to the stylized
facts, connected with the kind of strategy that prevails between the agents
in a certain time interval. This element could have important implications
both from the conceptual and practical point of view.

In addiction to the analysis of real data, the above concepts can suggest
a new framework for the modeling of the strategies in an Agent Based Mod-
els. In these models the rules of trading are defined at a microscopic level
and then one observes the collective macroscopic behavior. Starting from
the previous concepts of a mathematical interpretation of strategies, one can
define a new kind of agent based models in which the strategies are based on
the fluctuations moving averages, as it usually happens in real behavior of
traders. The various agents can consider a variety of moving averages calcu-
lated at different time scales and, as well, can be trend adverse trend follower.
What one expects to find is that in a phase of prevalence of trend adverse
agents the market will be stable and the price dynamics is a Random Walk
with an attractive force. Instead, if the trend followers dominate one expects
an instable market with the formation of speculative bubbles and trends, The
real dynamics should correspond to a complex equilibrium between this two
tendencies which can be described in a quantitative way. At the moment the
model is in a preliminary stage, [8] and it will to be conveniently developed
in the near future.

Now we will describe in detail as this thesis is organized.

First Chapter In this first chapter we discuss the possible applications of
Physics in Economics and Finance. The relationship between Physics
and Social Science has a long and intriguing story. Many physicists and



Introduction 7

mathematicians gave a great contribution in the filed of Economics and
Finance and vice versa. To cite some famous names we can mention
Bernoulli, Newton and Majorana who were physicists interested in the
social and economic field. On the other side the Italian economist
Pareto was the first to introduce a power law probability distribution
(also called Pareto distribution), now widely used in Physics, to de-
scribe a large number of real-world situations. Also Bechelier, in his
phD thesis dealing with the pricing of options in speculative market,
was the first to model the Brownian motion, one of the most important
model in Physics.

In spite of these historical links, Physics and Economics are also very
different. The approach of Physics in studying a given process is to look
for universal laws and fundamental principles. Furthermore, Physics
attempts to describe the natural world by the application of the scien-
tific method in which one proposes specific hypotheses as explanations
of natural phenomena, and design experimental studies that test these
predictions. In Economics, not only it is not clear if such universal laws
exists, but also the scientific approach to make an experiment to dis-
prove or not a theory is very difficult to carry out. This is mainly due
to the fact that in Economics one deals with human persons and hence
the reproducibility of experiments is not an easy task. In Economics
one deals with human person and not particles. Economic theories are
mainly based on a series of assumptions that allow the development of
models and theories. The main assumptions are that the market is in
equilibrium, that the market is efficient, i.e. possibilities of speculation
are not allowed, and that the market agents are perfectly rational in
their choices. Evidently these assumptions correspond to an idealized
market that not always matches with the reality.

In our view, one of the main goal of physicists in this field is to investi-
gate the features of real markets and to propose model and explanations
that include the real characteristics of economic systems. In this per-
spective one of the most important line of approach of physicists is
to find general features for a given observable. These general features
are called stylized facts and are very important to construct realistic
models and theories. Up to now, the main stylized facts are the fat
tailed shape of the distribution of price increments and the volatility
clustering phenomenon that is the presence of long range correlation in
the time series of absolute price fluctuations. The other main line of re-
search in this field is the implementation of models that can reproduce
these stylized facts. Models have been proposed to describe the price



8 Introduction

dynamics, such as the Lévy model or the ARCH model, but also to
explain some collective behavior of agents. These last are called Agent
Based Models in which the price formation is the results of a non linear
interaction between a large number of agents which can cooperate and
evolve.

Second Chapter In this chapter we perform a statistical analysis of finan-
cial data. In these perspective we have done an effort to systematically
analyze our data to verify the presence of the stylized facts common
to all financial time series. Our data are high frequency data from the
New York Stock Exchange (NYSE) and are a collection of 100 stock-
index for a period of nearly one year in 2005-2006. In a high frequency
dataset are reported all the transaction and the quotes, and the relative
trading volumes, of a given stock index on a tick-by-tick daily basis. We
have verified that the financial time series are highly inhomogeneous
within a trading day. In fact the trading activity, i.e. the the number
of transaction in a time interval, has a peak both at the open and at
the close of the market, with a minimum around lunch time. Similarly,
the activity is not uniform across days of the week or months of the
year. This phenomenon can be avoid if one consider the transaction
time instead of the physical time, as we have done. Therefore, consid-
ering our tick by tick dataset we have analyzed the price fluctuations
and the trading volume fluctuations. We have studied the empirical
probability density function for high frequency price differences (∼ 1
min) which displays a leptokurtotic nature. This “fat tails” in the prob-
ability distributions decrease with increasing time difference between
successive observations. Analyzing the correlation properties of price
fluctuations we have found that, while the autocorrelation function of
price increments is a delta function, the autocorrelation of absolute
price increments discloses long range correlation. This phenomenon is
called “volatility clustering”. The autocorrelation function of absolute
price fluctuations is well described by a power law with scaling exponent
between 0.3 and 0.4 as is in literature. Also the volume fluctuations
display a similar behavior. The distributions of volume increments are
fat tailed disclosing a non Gaussian behavior and the absolute volume
fluctuations are long range correlated. In the last part of the chapter
we have analyzed the quotations. Quotations are offers to buy or sell
a given quantity of shares of a given stock. When the two part reach
a mutual agreement a transactions occurs at a price that usually is an
intermediate value between the price proposed by the seller (bid price)
and that of the buyer (ask price). The transaction price is often dif-
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ferent from the exact mean value between bid and ask prices. In this
perspective we have analyzed the statistic of the mean price showing
that it has the same characteristic of the real transaction price (fat tail,
volatility clustering) but has a smoother profile.

Third Chapter In this chapter we have considered an overview of theo-
retical and empirical models to describe price dynamics. The most
common stochastic model of stock price dynamics is the Gaussian be-
havior that assumes a geometric Brownian motion for the stock price.
The Gaussian probability distribution is a universal consequence of the
central limit theorem in the limit of long time series on the condition
that the financial market is in a stationary states. This hypothesis is
not always true, in fact empirical distributions disclose non Gaussian
shapes. An improvement in describing financial price fluctuations can
be obtained considering other models. In particular we describe the
truncated Lévy process because of its impact and acceptance in the
scientific community [88]. A Lévy process is characterized by proba-
bility density function that discloses a power law like shape for large
values of the price fluctuations. This features match with the observed
fat tails of the empirical distributions of real price increments. Nev-
ertheless, the Lévy model can not reproduce the volatility clustering
feature of real data. To overcome this problem Engle in 1982 pro-
posed a stochastic process with a time dependent variance (ARCH and
GARCH models) [53]. For these models, it is possible to show analyti-
cally that the kurtosis of the probability density function is larger than
3 (that is the value for a Gaussian distribution). This leptokurtic prob-
ability density function can fit very well high frequency real data. Also
the correlation of absolute price increments for an ARCH (or GARCH)
model is non zero, such as real data. The difference is that, while the
ARCH model displays an exponentially decaying correlation, real data
has a long range correlation.

An important theoretical result obtained assuming the that the price
follows a geometrical Brownian Motion, is the Black and Scholes equa-
tion for the option pricing problem [22]. Options are a kind of financial
derivatives, that are financial products whose price depends on the
price of another financial product. Assuming a geometrical Brownian
motion for the price of the underlying product, Black and Scholes have
found a way to estimate the price of an option. This theory is based
o some hypothesis that are the efficiency of the market, the absence of
transactions cost, the existence of a constant market interest rate and
other assumptions. Real markets do not satisfy all these hypothesis,
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therefore the Black and Scholes equation is only a first approximation
in solving the option pricing problem. More realistic models for option
pricing have been developed thanks to the knowledge of the statistical
properties of real price dynamics.

At last, we have described the Minority Game Theory [39]. This is
an alternative approach in describing economic systems in which one
constructs a simplified model of the market where a large number of
agents interact and it is possible to study the collective behaviors in
financial market. The Minority Game is the formalization of the so
called “El Farol Bar” problem [10, 11]. In this game each day agents
decide whether or not to go to the bar; if there is room in the bar they
are happy, and if it is too crowded they are disappointed. By definition
only a minority of the people can be happy. With model like this
it is possible to show that players, in the absence of communication,
cooperate with each other, with the aim of maximize the collective
utility.

Fourth Chapter In this chapter we study the stock price dynamics by mean
of its roughness properties. The roughness properties of a given vari-
able are the way in which the fluctuations of the variable depend from
the time interval in which these fluctuations are calculated. In 1951
Hurst found that, for long time series, this function is empirically well
described by a power law, the scaling exponent is called the Hurst ex-
ponent. For a simple random walk the Hurst exponent measured on
long scales is H = 0.5. The usual interpretation of an exponent larger
than 0.5 is that the process studied show long range correlations and
persistence. In estimating the roughness properties of a given vari-
able, for many reasons one can be interested in considering finite size
datasets. In our case this is due to the fact that financial time series
are homogenous only within a single trading day because in the night
the price undergoes a large jump. In this perspective, we have per-
formed a detailed analysis of the problem of estimating the roughness
of a finite size process [6, 4]. We have started studying the properties
of a finite size Random Walk. With an analytical calculation we have
shown that considering finite size samples has the effect to enhance the
Hurst exponent even for a simple Random Walk. Including the effects
of correlations and fat tails, by means of simulations, we have observed
that this effect is further increased. Hence, we introduce an alternative
way of characterize the roughness properties of a process looking to the
fluctuations of a variable from a suitable moving average. In this way
be obtain an automatic detrendization of the signal that leads to some
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interesting results that could be useful also in a technical analysis of the
market. At last, we introduce a way of detecting complex correlations.
Linear correlation can be studied by means of the usual statistical tools
such as the correlation function, but higher order correlations are not
so easy to analyze. Our tool consist in using an analytical equation
that we have derived for an uncorrelated process, and see if this equa-
tion is still valid for another process. We have tested our tool for an
ARCH process and we show that it is suitable to detect the complex
correlations present in this process. Also an analysis on real financial
data have lead to good results.

Fifth Chapter While in the previous chapter we have studied the prop-
erties of the price fluctuations, now we analyze also the properties of
the sign (direction) of these fluctuations. In this perspective, we have
considered a new tool to analyze stock price dynamics that we have
introduced together with a group of Japanese researchers [114, 5]. This
model assumes the possibility that the price dynamics can be affected
by its distance from a moving average calculated on the previous steps.
This model corresponds to a Random Walk with also a term of force
(the derivative of a potential), and this force depends on the distance
of the price from the moving average. The idea is that price can be
attracted or repelled by its moving average. This aspect can be inter-
preted as due to the agents’ behavior. In a phase in which the market is
dominated by trend followers agents, the market is unstable and hence
the price is repelled by its moving average, while if fundamentalists
dominate the market is stable. The simplest case is to assume a linear
force and hence a quadratic potential. An analysis on Yen/USD rates
shows that the real data indeed are well described by this model of
Random Walk in a quadratic potential that can be either attractive
or repulsive. We have also performed an analysis of this method on
a minority-majority game as a test. This minority-majority game is a
mixed game in which there is an alternation of phases in which the mar-
ket is unstable and dominated by trend followers and other phases in
which the market is stable. This method is able to identifying the dif-
ferent phases of the game disclosing attractive potentials when agents
play a minority game and hence the market is stable and a repulsive
potential when agents are trend followers. We have also performed an
analysis on NYSE stock price one day long datasets. Here the situation
is much more complicated because this analysis shows some asymmet-
ric, non quadratic potentials. Only averaging over many trading days
one can recover a quadratic shape of the potential.
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Sixth Chapter In this last chapter we will show some very preliminary re-
sults obtained in simulating an agent based model in which the agents
have trading strategies based on some moving average. Agents can
be both fundamentalist or trend followers and perform their moving
average on different time scales. The collective behavior (price) is ob-
tained averaging over all the possible strategies. We have performed the
potential analysis described in the previous chapter on such a model.
When the market is dominated by trend followers we indeed recover
a repulsive potential while when the market is dominated by funda-
mentalist the potential is attractive. If the relative number of trend
followers exceed a given threshold the strength of the contribution of
trend followers is not balanced by the noise and the collective price
increases exponentially. This results represents only a phase of test
study of such a model. The effects of evolution must still be included
to observe a more realistic and complex behavior.



Chapter 1

Physics and Economics

In this first chapter we will explain the possible connections between Physics
and Economics. In the past decades the interest of physicists in the field
of Economics is increased and a lot of persons have began to do academic
research on the analysis and the modeling of economic systems.

In accordance with a research made by the UK Engineering and Physical
Sciences Research Council in 1997, the 48% of the PhD students in Mathe-
matical Physics and in Statistical Physics have continued their career working
in the financial field [63]. An important question may be whether the growth
of physicist doing researching in Economics is just a temporary phenomenon
or whether a background in Physics is a is a real advantage to understanding
Economics [58].

Actually the relationship between Physics and Social Science has a long
and interesting story [45] and many of the persons who carried an important
contribution to the development of Economics, had a physical or a mathe-
matical background.

1.1 The possible relevance of Statistical

Physics to Economics and Finance

Maybe the first famous example of a physicist who held an important position
in a financial institution was Isaac Newton [119]. In 1669 he was designated
director of the Royal Mint of London and he quickly began the terror of the
English falsifiers. Another illustrious example is Daniel Bernoulli that, in
1738, introduced the idea of utility to describe people’s preferences [58].

But the first who presciently outlined both the opportunities and fitfalls
in applying statistical Physics to social sciences was Ettore Majorana. In
1938 he wrote a paper called The Value of the Statistical Laws in Physics
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and in the Social Sciences [82]. In his pioneering paper he underlined the
importance that the basic principles of quantum mechanics have pointed
out the discovery that the laws of elementary processes have a statistical
character. This conclusion, in the view of Majorana, make clear the analogy
between Physics and Social Sciences. In the field of Economics and Social
Sciences, the analysis of financial markets is the discipline that better can be
suitable for a rigorous mathematical treatment.

In the last decade, the market operators have made use of the calculators
and this has led to the electronic registration of events which describe detailed
economic phenomena. For example financial markets are continously mon-
itored, down to scales of seconds. Many of these informations are avaliable
in the form of electronic data for studies and researches. This informations
permits to perform empirical analysis of financial dynamics with a very accu-
rate statistical resolution. Nowadays the scientific community can dispose of
time series of million of data coming from the financial markets. In this way
is emerged the possibility to compare with extreme accuracy the informa-
tion coming from the real data with models, theories and hypothesis. These
hypothesis can also be refuted in the proper spirit of the scientific method.

Moreover, from a theoretical point of view, the financial time series can be
schematized as the result of a nonlinear interaction between many agents [81].
In this sense financial markets exhibit several of the properties that charac-
terize complex systems. Therefore we are in the conceptual scheme of the
Statistical Physics and physicists can contribute to the modeling of financial
and economic systems using tools and methodologies developed in Statistical
Mechanics and Theoretical Physics.

These considerations can explain why, starting from ’80, an increasing
number of scientists devoted oneself to the application of theories belonging
to the Physics of Complex Systems to the understanding of the subtle mecha-
nism of the socio-economic interactions. In the nineties the elimination of the
barriers for the free movements of the capitals and the increase of the volume
of the negotiations, have made essential the use of quantitative methods in
the analysis of financial markets. In these years, in fact, the major financial
institutions have recruited a lot of people coming from mathematical and
physical backgrounds.

Statistical Physics is the general study of any composite system formed of
a large number of similar components; particularly the study of the collective
behaviors of this system. It applies just as well to an assembly of something,
when that ”something”is people, rocks, cue balls, particles, cars, bits on a
network, cells, etc. It doesn’t matter what the system is, or at what level the
abstraction is made (particles to physical objects, individuals to societies,
cells to bodies, stars to galaxies; galaxies to universes; etc.). The same
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general principles will come to bear; and the same math and methods will
apply.

In this context, Economics is classified as a manifestation of Complex
Social Systems. To clarify this statement, we have to discuss what we under-
stand by Complex Systems. Unfortunately, an exact definition of a complex
systems is still an open problem. In a heuristic manner, we may describe
them as systems composed of many particles, or objects, or elements which
may be of the same or of different kinds. The elements may be interact in
a more or less complicated fashion by more or less nonlinear couplings [110].
It has been found that in spite of the vast differences among various stocks,
commodities, currencies, and stock indices, there are several stylized facts
common to all of them.

1.2 Interdisciplinarity: a critical discussion

One may wonder how such different subjects as Physics and Economics relate
to each other. Even though, the vast amount of research conducted during
the last decades proved that the marriage between these subjects is a success.
This recently developed interdisciplinary area is coined as econophysics. The
approach of these two disciplines to the field is quite different.

In Physics, it is assumed that some universals Laws exist, and one try to
discover them. In Economics it is not clear if such universal laws do exist
or not. Another open question is if Economics can be considered a Science
in the definition of Popper. In Popper’s view, any hypothesis that does not
make testable predictions is simply not Science. Such a hypothesis may be
useful or valuable, but it cannot be said to be Science. He take falsification as
his criterion of demarcation between what is and is not genuinely scientific:
a theory should be considered scientific if and only if it is refutable. So a
real Science must be disprovable with experiments. Following the Scientific
Methods, one of the major points is the reproducibility of experiments. This
last aspect is not so clear in Economics. This is due to many reasons. The
first is that in Economics one deals with human persons that could not to
behave at the same way at different times. The second is that one can never
deal with identical situations because the market is not always stationary
and the laws of the dynamics are not necessarily the same at different times.
Further more, the economists view, according to standard Economics, is
that the stock price variation is a mere reflection of external information: a
political change, environmental disaster, etc. Therefore, no one should be
able to earn huge profits just by analyzing past prices. Several researcher
have shown that this is far from the truth. If markets are so “efficient” in
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reflecting external information, it would be not possible to explain how can
many investors gain profits. In other words, human agents are not completely
rational.

Physicists approach in financial market is fundamentally different from
economists. In Physics one try to find the underlying concepts behind the
real word phenomena. The physical way offers, however, the possibility of
describing financial phenomena in a universal theoretical framework. There
is the hope that the physical progress in investigation of complex systems
with other apparent behavior allows a deeper insight also into the dynamics
of financial markets. Results that would be derived from discoveries in other
field of Physics. The financial market is a complex system from a physical
point of view.

Actually, the acceptance of econophysicists by the economic community
seems a particularly long way off [51]. Even fully fledged economists are
ostracized by the mainstream if they do not embrace the tenets of “neo-
classical” economic theory, no matter how untenable its principles (identical,
utility-maximizing economic agents operating in an equilibrium market) now
seem.

In the last year there has been an open discussion about the real merit of
econophysicists in Economics. Following [17] , some economists had hoped
that physicists might shake up the rigid theories typical of mainstream Eco-
nomics. But so far, they’re unimpressed by physicist’s handling of the mar-
kets. Another group of economists penned a paper entitled “Worrying trends
in Econophysics” [62]. In this article the authors recognize that econophysics
has already made a number of important empirical contributions to the un-
derstanding of the social and economic world. These fall mainly into the
areas of Finance and industrial Economics, where in each case there is a
large amount of reasonably well defined data. The critics are that econo-
physicists are often in the dark about the work of economists, do not use
robust statistical methodology and believe that universal empirical regulari-
ties can be found in many area of Economics. In [107] there is an advise on
how can econophysicists contribute to Economics. The idea is that the nat-
ural strength of Physics is dealing with empirical data so they should give
highest priority to solve concrete problems from economic practice rather
than from economic theory. To conclude the review, an optimistic picture
of the union between Physics and Economics comes from [58]. The authors
says that collaborations between physicists and economists can add value to
the science of Economics.
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1.3 Significant contributions of physicists in

Finance

In this section we expose some of the related problems in Finance in which
physicists have made significant contributions over the last decades. The
recent body of work done by physicists and others have produce convincing
evidences that the Standard Model of Finance is not fully capable of de-
scribing real markets, and hence new ideas and models are called for, some
of which have come straight from Physics [117]. Almost all the models used
in finance is based on hypothesis that guarantee for a mathematical analysis.
The main hypothesis are that the market is “efficient” and “arbitrage-free”.
With these hypothesis the dynamic of the the market-prices is assumed to be
a stochastic Gaussian process. The work of physicists has pointed out two
important statistical properties of the price fluctuations that shows the limits
of the classical model of the market. These properties are the non-Gaussian
nature of the stochastic process of the financial prices and the correlations
of the price fluctuations amplitude. These statistical properties are now ac-
cepted as stylized facts in the analysis of financial time series. First we will
describe what we mean for efficient and arbitrage-free market an then we will
expose the statistical stylizes facts of the real markets.

1.3.1 Efficient Market

The concept of efficiency is central in Finance and was introduced by E. Fama
in 1970 in his famous article “Efficient Capital Markets” [55]. In Finance
markets are “efficient” when the price on traded assets, e.g. stocks, bonds,
or property, already reflects all known information and therefore is unbiased
in the sense that reflects the collective beliefs of all investors about future
prospects. The efficient market hypothesis implies that it is not possible to
consistently outperform the market by using any information that the mar-
ket already knows, except through luck or obtaining and trading on inside
information. Information or news in an efficient market are defined as any-
thing that may affect stock prices that is unknowable in the present and thus
appears randomly in the future. This random information will be the cause
of future stock price changes. So one of the consequences of market efficiency
is that prices should not be predictable. In efficient markets, prices become
not predictable but random, so no investment pattern can be discerned. A
planned approach to investment, therefore, cannot be successful. This ”ran-
dom walk”of prices results in the failure of any investment strategy that aims
to beat the market consistently.
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The concept of market efficiency had been anticipated at the beginning
of the century in the dissertation submitted by Bachelier to the Sorbonne for
his PhD in Mathematics [14]. In his opening paragraph, Bachelier recognize
that past, present and even discounted future events are reflected in market
price, but often show no apparent relation to price changes. This recognition
of the informational efficiency of the market leads Bachelier to conclude that
if the market, in effect, does not predict its fluctuations, it does assess them as
being more or less likely, and this likelihood can be evaluated mathematically.
This leads to a brilliant analysis where he developed, essentially correctly,
the theory of Random Walk that anticipates the Albert Einstein’s subsequent
derivation of the Brownian motion. In his thesis, in fact, Bachelier proposed
the Random Walk as the fundamental model for financial time series many
decades before this idea became the basis for modern theoretical Finance.

The efficient market hypothesis is simple in principle, but remains elu-
sive. Evolving from an initial puzzling set of observations about the random
character of security prices, it became the dominant paradigm in finance dur-
ing the 1970s [48, 83]. Although many in finance now believe that markets
are efficient, it is not unanimous. One group of these people are technical
analysts. These people believe they can predict price movements based on
historical prices (a clear violation of efficiency). Although the vast majority
of academic papers finds no benefit to technical analysis, it has long been
difficult to explain why there are technical analysts around (how can we say
the market is inefficient in keeping technical analysts while say it is efficient
in other things). Several recent academic papers have at least suggested that
technical analysis might not be worthless.

1.3.2 Arbitrage

In Economics, arbitrage is the practice of taking advantage of a state of
imbalance between two or more markets: a combination of matching deals
are struck that capitalize upon the imbalance, the profit being the difference
between the market prices.

As an example, suppose that the exchange rate in London are L5 =
$10 = Y 1000, and that the exchange rate in Tokyo are L6 = $10 = Y 1000.
Converting $10 to L6 in Tokyo and converting that L6 into $12 in London,
for a profit of $2, would be arbitrage. In reality, this triangle arbitrage is so
simple that it almost never occurs. But more complicated foreign exchange
arbitrage are much more common.

If the market price does not allow for profitable arbitrage, the prices are
said to constitute an arbitrage equilibrium or arbitrage free market. An
arbitrage equilibrium is a precondition for a general economic equilibrium.
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If we are in an economic equilibrium, as soon as an arbitrage opportunity
begins to be exploited, the system moves in the direction that gradually
eliminate the arbitrage opportunity.

1.3.3 Fat tails

Now we are going to analyze some of the empirical evidence that real markets
deviate from the hypothesis of efficient and arbitrage free market.

Following the arguments of Bachelier and in the hypothesis of efficient
market, the most diffuse model for the price dynamic in a financial market is
the geometric Brownian motion. In a geometrical Brownian motions the dif-
ferences of the logarithms of prices are Gaussian distributed. In Finance the
differences of the logarithms of prices are called returns. It is thus important
to ask whether real markets actually fit into this model.

Mandelbrot in 1963, [84], was perhaps the first person to challenge the
paradigm that returns are normally distributed. He analyzed cotton prices
on various exchanges in the United States and found evidences that their
distribution of returns decay as a power law and hence much slower than
a Gaussian. Hence, there is an evidence that the empirical distribution of
returns has “fatter tails” when compared with a Gaussian distribution. In
his studies, Mandelbrot proposed to describe the distribution of returns with
a Lévy stable distribution.

1.3.4 Volatility clustering

Empirical studies have shown that, while returns themselves are uncorre-
lated, absolute returns or their squares display a positive, significant and
slowly decaying autocorrelation function. This phenomenon is called clus-
tered volatility. As noted by Mandelbrot, large changes tend to be followed
by large changes, of either sign, and small changes tend to be followed by
small changes. The correlation decays as a power law of the form τ−γ . Since
0 < γ < 1, the size of price changes is a long memory process and thus dis-
plays anomalous diffusion and a very slow convergence of statistical averages.

Many model for prices dynamic have been proposed to explain phe-
nomenon like volatility clustering and fat tails. Between them one of the most
famous and widely used in Finance and Economics for modeling conditional
heteroscedasticity and volatility clustering is the autoregressive conditional
heteroskedastic (ARCH) processes first proposed by Engle in 1982 [53].
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1.4 The main lines of approaches

1.4.1 Statistical analysis of financial time series

One of the main lines of research in this field is represented by the effort to
obtain a complete statistical characterization of the price dynamics and of
other quantities. The main effort is to find empirical regularities in financial
data. These features are called “stylized fact” and are very important to
test and discriminate theoretical models. The most important stylized fact
is perhaps the non Gaussian distribution of price fluctuations. A lot of work
as been done to identify the shape of the distribution of price changes [27,
67, 86, 113]. Another important stylized fact is the clustering of volatility.
This phenomenon means that the absolute price fluctuations are long ranged
correlated variables. In this perspective many works address to the detection
of complex higher order correlations in price fluctuations [41, 100]. Other
statistical analysis regard the scaling properties of the price fluctuations. A
way to characterize this property is through the scaling exponent of the so
called roughness [85]. This is a measurement of the small-scale variations in
the height of a physical variable. Another relevant aspect is the analysis of
the correlations between stocks. This kind of analysis important to obtain
a hierarchical organization of a group of stocks [26]. An interesting way to
study the correlations between stock is by means of financial networks [25].

1.4.2 Theoretical models to describe the features of
financial markets

Another area concerns the development of theoretical models which could
reproduce the stylized facts of financial data. The most common stochastic
model used to describe the price dynamics is the Random Walk model [14].
This model can reproduce the price dynamics only in a first approximation.
In fact this model can not reproduce the fat tailed distribution of real stock-
price distribution. From this situations a lot of model have been proposed
to explain the non Gaussian shape of the price increments distribution. One
of the most accepted model which can explain the empirical evidence that
the price fluctuations distribution has power law shaped tails is the Lévy
flight model [87]. Another famous model which can encompass the empiri-
cal features of financial markets is the ARCH model (and is generalization
GARCH) [52]. This model assumes that the variance is not constant but it
is a time depend stochastic variable.

A theoretical effort is also done in the problem to estimate the price of
derivative financial options. The Black & Scholes model represents the most
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renowned work in this field [22]. Nevertheless, this model represents only a
first approximation of what happens in real markets and other models have
been proposed [28].

1.4.3 Agent based models

Another way is studying financial systems is to consider a bottom-up ap-
proach analyzing the market macroscopic variables as the results of an inter-
action between many microscopic units (agents) [13]. The idea is to construct
the computational devices (known as agents with some properties) and then,
simulate them in parallel to model the real phenomena. The process is one of
emergence from the lower (micro) level of the social system to the higher level
(macro). In Physics applied to financial systems, the the most successfully
agent based model is the so called Minority Game and its developments [39].
In the Minority Game, an odd number of players have to choose one of two
choices independently at each turn. The players who end up on the minor-
ity side win. From this simple model, which also can be solved analytically
[37, 92], and from some of its developments, can be recovered the stylized
facts of real markets.





Chapter 2

Statistical Analysis of Market
Data

When economists, finance mathematicians, and physicists are dealing with
a financial problem, a wide variety of ideas and techniques are avaliable
to generate quantitative answers. The input to solve this problem may be
obtained from an empirical analysis of financial data or from other quan-
titative economic investigations. Actually, this part is an intermediate field
between financial mathematics and financial management because it requires
economic experience to decide which data are important in the context of
the problem and what is the order of their significance. Therefore, in this
chapter, we will analyze some statistical properties of the financial variables
which we consider important for our studies. In particular we will analyze
the statistical properties of financial time series from our dataset. Actually
these properties are recognized as “stylized facts” which seem to be common
for a wide variety of markets [43, 49, 102, 103].

2.1 Dataset properties

There are thousands of possible price series we could look at, and hundreds
of different markets. One of the significant contributions of Econophysics has
been to establish that the price statistics across a wide range of supposedly
different financial markets worldwide, exhibit certain universal properties. It
seems that despite the differences in detail between these markets in terms
of how trades are registered, trading hours, etc., there is something that
they hold in common which is driving the market price-dynamics. Given the
limited space, we cannot carry out a thorough statistical analysis over many
different markets. Instead the results presented here provide a flavor of the
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ones already present in the Econophysics literature. In particular we refer to
Mantegna and Stanley, [88], and Bouchaud and Potters, [30].

In this chapter we will illustrate some common features and stylized facts
present in financial markets, focusing on a specific market dataset. We will
use this dataset also to perform all the analysis present in this thesis. This
dataset is the New York Stock Exchange (NYSE) composite index recorded
on a tick-by-tick daily basis in a period of nearly one year in 2005-2006. The
NYSE composite index reflects the long-running, well-established and highly
liquid US stock market.

Figure 2.1: High frequency tick-by-tick records of AH index. The dataset
contains information about all the transactions and the quotes of the index
at each time.
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Our dataset contains the price time series of all the transactions of a
selection of 100 NYSE stocks. These have been selected to be representative
and with intermediate volatility in comparison with the other NYSE stock
indexes.

In Fig. 2.1 is shown a typical dataset with many details stored. In partic-
ular are reported all the transactions for the index AH (Armor Holdings) in a
given day. In the dataset we can see date and time of each transaction. The
time interval between two subsequent transactions is of a few seconds, due
to the high liquidity of the stock considered. The symbol “T” at the begin-
ning of a line means that the data refer to a transaction, that is an effective
change in the status of the price of the given stock. So we have the price
of the transaction and the volume of shares traded during the transaction.
Instead, the lines with the symbol “Q” refers to a quote. The term quote
specifically refers to the “bid” or “ask” prices of an asset. The bid and ask
(or offer) of a security are the prices at which buyers and sellers are willing to
purchase or sell. The bid shows the current price at which a buyer is willing
to purchase shares, while the ask shows the current price at which they are
willing to sell. The quantities at which these trades are placed are referred
to as ”bid size”and ”ask size”. For example, suppose you own 100 shares
of ABC Corporation, and you want to buy or sell these shares. You obtain
a quote which indicates that the current bid price (the price at which you
can sell this stock) is

�
100 per share, and the current ask price (the price at

which you could buy the shares) is
�
101. These quotes mean that someone is

willing to buy at least 100 shares of ABC at
�
100 and that another person is

willing to sell at least 100 shares of the stock at
�
101. The difference between

these bid and ask prices is referred to as the ”bid-ask spread”. In the above
example, the spread is one dollar. If you were to simultaneously buy and sell
100 shares of this stock in the market you would lose the

�
1.00 spread. So

the bid-ask spread is a form of transaction cost. In our dataset bid and ask
prices and the relative sizes are reported.

At last, in Fig. 2.1 appears the specific market in which the stocks are
traded. For example we can see the symbols NYSE that is New York Stock
Exchange and PSE that is Pacific Stock Exchange.

2.2 Time scales in financial data

In Natural Sciences, especially in Physics, the problem of reference units is
considered basic to all experimental and theoretical works. The problem with
the financial data is that the scales used here are often given in units that
are themselves fluctuating in time.
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The main and natural alternatives that can be used for the time scale are
physical time, number of transactions and trading time. The physical time
is well-defined, but one has to consider that stock markets are not open all
day long. Traditional stock markets close overnight, on weekends and more
or less randomly on holidays. Therefore, news that become known when the
market is closed cannot affect the price immediately, but rather accumulate
until the market open again. This lead to a gap in the price during the period
in which the market has been closed, that appears like a discontinuity. For
example, the overnight gap, i.e. the difference between the closing price of a
given day and the new opening price, has the same order of magnitude of the
fluctuation of price in a whole trading day. In Fig. 2.2 we can see a typical
overnight gap of the price for a stock index.

 47.4

 47.6

 47.8

 48

 48.2

 48.4

 48.6

 48.8

15:0013:3012:0010:30

pr
ic

e

time

∆=0.57

night

∆=0.57

night

∆=0.57

15:0013:3012:0010:30

time

∆=0.57

Figure 2.2: Overnight jump of price between two days. This gap is very
large, typically of the order of the total daily fluctuation (see Tab.2.1).

These jumps pose serious problem in linking the data of one day to those
of the next day to obtain a longer time series. This means that the data are
reasonably homogeneous from the time scale of a few seconds to a few hours
but going to longer times can be rather arbitrary due to these large overnight
jumps [6]. In Tab. 2.1 we present a detailed analysis of this phenomenon.

For each stock, which is labeled in the first column, we have, in the second
column the average over 80 days of the absolute value of the gap between
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stock < |Pop − Pcl| > < |∆| > σ∆ σP σδP
AH 0.73494 0.36950 0.59100 0.28539 0.02152
AVO 0.47561 0.18862 0.56508 0.23161 0.01698
BA 0.41926 0.21437 0.42131 0.19530 0.01056
BRO 0.40877 0.15750 0.37375 0.19091 0.01607
CAI 0.81284 0.39238 0.86836 0.31750 0.02323
DRI 0.30753 0.09850 0.23245 0.11490 0.01065
GE 0.22691 0.11688 0.17154 0.10304 0.00652
GLK 0.28272 0.10212 0.23420 0.12998 0.01054
GM 0.35593 0.15725 0.25058 0.14597 0.00833
JWN 0.44531 0.23325 0.45625 0.20444 0.01249
KSS 0.57759 0.29628 0.48844 0.22275 0.01355
MCD 0.24457 0.13850 0.20268 0.10288 0.00758
MHS 0.43605 0.20437 0.40161 0.17267 0.01126
MIK 0.34531 0.62375 3.12751 0.14479 0.01320
MLS 0.55309 0.17287 0.27860 0.21948 0.02045
PG 0.40321 0.24462 0.46493 0.17056 0.00906
TXI 0.79704 0.22362 0.62309 0.33799 0.02964
UDI 0.44679 0.22375 0.80100 0.19003 0.01469
VNO 0.65864 0.21950 0.36921 0.26285 0.02443
WGR 0.40877 0.16937 0.36687 0.17846 0.01681

Table 2.1: Properties of the night jumps with respect to the daily fluctuations
of various stocks. The data refer to the average values over 80 trading days.
< |Pop − Pcl| >: average of absolute value of the gap between opening and
closing price for each day. < |∆| >: average of the absolute value of the
night jumps. σ∆: variance of the absolute value of the night jumps. σP :
total daily variance of the price value. σδP : variance of the price fluctuations
between two transactions.

opening and closing price, (< |Pop − Pcl| >), indicated in US
�
. In the third

column we indicate with < |∆| > the average of the absolute values of the
night jumps. One can see immediately that they are of the same order of
magnitude. In the fourth column σ∆ indicates the variance of the night
jumps. These values are really very large and clearly show that there is a
strong discontinuity from the closing price to the next day opening. In the
fifth column we show the variance of price fluctuation within one day averaged
over the 80 days (average single day volatility). Finally in the sixth column
we show the variance of the price fluctuations between two transactions. One
can see therefore that the night jumps are more than one order of magnitude
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larger than the typical price change between two transactions. This leads
to a very serious problem if one tries to extend these time series beyond the
time scale of a single day. In fact, if one simply continues to the next day, one
has anomalous jumps for the night which cannot be treated as a standard
price change. An alternative possibility could be to artificially eliminate the
night jumps and rescale the price correspondingly. This would produce a
homogeneous data set which, however, does not correspond to the original
data.

The alternative is to use the number of transactions. This scale elimi-
nates the effect of the randomly distributed time intervals elapsing between
transactions. Another source of randomness, the volume of transactions, still
remains.

At last, the trading time is the time that elapses during open market
hours. This timescale depends on the local stock exchange. Furthermore,
price changes and the release of relevant information during the night lead to
jumps at the opening. So arises the problem that in high-frequency analysis,
overnight price changes are treated as short time price changes. The second
problem is that, using this scale, one assumes that market activity is uniform
during the market hours. This last assumption is not verified by empirical
analysis, as we will see in the next section. However the trading time is the
most common choice in many research studies.

2.3 Trading activity

Trading activity is not uniform during opening hours, either in terms of
volume or in number of trades. The trading activity has a peak both at the
open and at the close of the market, with a minimum around lunch time.

In our dataset the number of transactions per day ranges from 500 to
5000 implying a typical time interval between transactions of a few seconds.
The density of operations within a day is characterized by a concave shape
which is rather universal as shown in Fig. 2.3. In this figure each point is
an average value performed over 80 trading days for 20 stock indexes from
NYSE. The result shown in Fig. 2.3 means that, with respect to the physical
time there are systematic density fluctuations up to a factor of two with a
minimum around the center. This effect is obviously eliminated using the
tick by tick time, in which the physical time is not considered.

Similarly, the activity is not uniform across days of the week, or months
of the year. This phenomenon is called the “Calendar Effects”, that is the
tendency of stocks to perform differently at different times, including such
anomalies as the January effect, month-of-the-year effect, day-of-the-week
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Figure 2.3: Behavior of the density of transactions within a day. This concave
behavior with a maximum fluctuation up to a factor of two is a general feature
for all stocks.

effect, and holiday effect.
Finally not all markets are simultaneously open, and different time zones

behave differently. A well-known effect is for example an increased activity
at 2:30 p.m. European time, due to the fact that major U.S. economic figures
are announced at 8:30 east-coast time.

2.4 Price fluctuations

Let us define X(t) as the price of a given financial asset at time t. Then, we
may ask which is the appropriate variable describing the stochastic behavior
of the price fluctuations. The simplest choice is the introduction of the price
changes:

∆X(t,∆t) = X(t+ ∆t)−X(t) (2.1)

where δt is a well-defined interval of the time series. The merit of this ap-
proach is that Eq. 2.1 is a simple linear relation. This means in particular
that the price change are additive:

∆X(t,∆t1 + ∆t2) = ∆X(t+ ∆t1,∆t2) + ∆X(t,∆t1) (2.2)
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Unfortunately, the definition in Eq. 2.1 is seriously affected by possible change
in money scales due to possible fluctuations in the global currency markets
or inflation effects. Furthermore, the strength of the fluctuations ∆X(t)
depends seriously on the order of magnitude of the actual price of the asset
X(t). A more appropriate choice is to use the returns, defined as:

R(t) =
∆X(t)

X(t)
(2.3)

The advantage of this definition is that returns provide a direct percentage
of gain or loss in a given time period. Therefore, the return is a very natural
measure describing the price fluctuations of share. The disadvantage is that
the returns are nonlinearly coupled:

R(t,∆t1 + ∆t2) = [R(t,∆t1) + 1][R(t + ∆t1,∆t2) + 1]− 1 (2.4)

To overcome this problem, we introduce the difference of the natural loga-
rithm of the price (log-returns):

η(t) = lnX(t+ ∆t)− lnX(t) = ln
X(t+ ∆t)

X(t)
(2.5)

This quantity is additive,

η(t,∆t1 + ∆t2) = η(t,∆t1) + η(t+ ∆t1,∆t2) (2.6)

and the corrections of scale changes is incorporated without requiring deflator
or discounting factors. The problem is that a nonlinear transformation is
used, and nonlinearity strongly affects the statistical properties of a stochastic
process.

In the whole of modern financial literature, it is postulated that the rel-
evant variable to study is not the increments ∆X(t) itself, but rather the
log-return η(t). Different stocks can have completely different prices, and
therefore unrelated absolute daily price changes, but rather similar daily re-
turns. Moreover, on long time scales, price changes tend to be proportional
to prices themselves. However, on shorter time scales, the choice of returns
rather than price increments is much less justified.

A lot of different models have been proposed to study the dynamic of price
fluctuations. The most common stochastic model stock price dynamics is the
Gaussian behavior that assumes a geometric Brownian diffusion of the asset
prices and a corresponding arithmetic Brownian motion for the log-returns.
This model provides a first approximation of the behavior observed in em-
pirical data. However, the Gaussian probability distribution is a universal
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consequence of the central limit theorem in the limit of long times on the
condition that the financial market is in a stationary state. Indeed, the Gaus-
sian law can possibly deviate considerably from the portability distribution
function determined empirically for short timescales.

Serious systematic deviations from the Gaussian model predictions are
observed, which indicate that the empirically determined probability dis-
tributions exhibit a pronounced leptokurtic behavior. A highly leptokurtic
distribution is characterized by a narrower and larger maximum and by fatter
tails than in the Gaussian case. The degree of leptokurtosis increases with
decreasing time difference between successive observations.
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Figure 2.4: Empirical probability density function for high frequencies (∼ 1
min) price differences of the WGR stock traded in the NYSE during a 80-days
period. This semi-logarithmic plot shows the leptokurtic nature observed
in empirical investigation. For comparison a Gaussian with the measured
standard deviation is also shown.

The pioneering study of empirical data was performed by Mantegna and
Stanley [113] who studied minute by minute data for the S � P500 index. Our
study is similar to their original analysis. We form a series of high frequencies
log-returns for an 80-days period for a given stock from NYSE.

η(t) = lnX(t+ ∆t)− lnX(t) ∆t ∼ 1 min (2.7)
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In Fig. 2.4 we can see the leptokurtic nature of the log-returns distribution.
In Chapter 3 we will discuss a set of different models, present in literature, to
describe the dynamics of price fluctuations. Another way to study empirical
data is to analyze the correlation properties. The direct method to study the
correlations of some data is by mean of the autocorrelation function. The
autocorrelation function of a discrete time series or a process Y(t) describes
the correlation between the process at different points in time. If Y(t) has
mean µ and variance σ2, the definition of the linear autocorrelation function
is:

C(τ) =
E[(Y (t)− µ)(Y (t + τ)− µ)]

σ2
(2.8)

where t is a discrete time and E(·) denotes the expectation value. For a sam-
ple time series of length n, Y (1), Y (2)...Y (n) with known mean and variance,
an estimate of the autocorrelation function may be obtained from:

Ĉ(τ) =
1

(n− τ) σ2

n−τ∑

t=1

[(Y (t)− µ)(Y (t+ τ)− µ)] (2.9)
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Figure 2.5: Linear autocorrelation function of tick by tick returns on GE
shares traded on NYSE. The time scale is the number of transactions. We
observe a negative autocorrelation for one trade.
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Now we will study the correlation properties of the log-returns variable,
η(t). Here we consider the price variations for a trade.

η(t) = lnX(t+ ∆t)− lnX(t) ∆t = 1 tick (2.10)

It is a well known fact that price movements in liquid markets do not ex-
hibit any significant autocorrelation: the autocorrelation function of the log-
returns, C(τ), rapidly decays to zero in few minutes. The absence of signifi-
cant linear correlations in price increments has been widely studied [55, 103]
and is often cited as support for the “efficient market hypothesis” [56].
In high-frequency log-return series of transactions prices, one actually ob-
serves a negative autocorrelation at a very short lags (typically one or a
few trades) [43]. This is traditionally attributed to the bid-ask bounce [31]:
transactions prices may take place either close to the ask or closer to the
bid price and tend to bounce between these two limits. This feature can be
attributed to the action of a market maker [66].

In Fig. 2.5 we show the linear autocorrelation function for a time series
of tick by tick log-returns on GE index traded on the NYSE. The length
of the time series is around 80 trading days which corresponds nearly to
450000 transactions. The absence of autocorrelation does not seem to hold
systematically when the time scale ∆t for calculating the log-returns is in-
creased [43]. Anyway the available data-sets are inversely proportional to
∆t, so the statistical evidences are less conclusive and more variable from
sample to sample. The absence of autocorrelation in log-return gave some
empirical support for “random walk” models of prices in which the returns
are considered to be independent random variables. However it is well known
that the absence of serial correlation does not imply the independence of the
increments: independence implies that any nonlinear function of log-returns
will also have no-autocorrelation [43]. For the real data this property does
not hold.

Simple nonlinear functions of the log-returns, such as absolute log-returns,
squared log-returns, exhibit significant positive autocorrelations. Unlike price
changes that are correlated only on very short time scales, the absolute values
of price log-returns show long-range power-law correlations on time scales
up to a year or more [103, 104]. This is a quantitative signature of the
well-known phenomenon of the volatility clustering. This means that large
price variations are more likely to be followed by large price variations and
vice versa. Fig. 2.6 illustrates this phenomenon for the same time series
shown in Fig. 2.5, i.e. a tick by tick series of the index GE traded in the
NYSE, for a period of 80 trading days. We can see that the autocorrelation
function, C(τ), remain different from zero for all the time lags considered,
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Figure 2.6: Nonlinear autocorrelation function for log-returns of the index
GE averaged. The function plotted is the autocorrelation function of the
absolute value of the the log returns. We can observe that this function
remains different from zero for the entire time window considered. This
phenomenon is called volatility clustering.

and slowly goes to zero. A power law fit on the data, disclose a scaling
exponent γ = −0.472± 0.006.

The phenomenon of volatility clustering has intrigued many researchers
and oriented in a major way the development of stochastic models in finance.
In Chapter 3 we will analyze ARCH and GARCH models that are intended
to model the volatility clustering phenomenon.

2.5 Trading Volume

The trading volume represents the total number of shares traded for a given
time frame. Volume is a measure of liquidity in a stock or index. The higher
the volume, the more liquidity is present and the more competitive the market
will be. Similarly to the trading activity, also the trading volume is not
uniform during the trading hours. In Fig. 2.7 we can see the typical U-shaped
intra-daily pattern of the trading volume. The trading volume is not constant
during a trading day but displays a concave shape with a minimum at lunch-
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Figure 2.7: Trading volume during a trading day. We can observe that
the volume is not uniform, having a minimum at lunch-time. The data
correspond to an average over 20 stocks from NYSE for a period of 80 trading
days.

time. Although trading volume is, like price, an important quantity that
characterizes the activities of financial markets, only a few attempts have so
far been made to understand the statistical properties of trading volume [68].
If we look to the statistical properties of the fluctuations of trading volume,
we can observe some properties that are very similar to those of stock-prices
fluctuations: non-Gaussian probability density function, absence of linear
correlations and presence of non-linear long-range correlations. This suggests
a correlation between trading volume and price fluctuations. In [61] is argued
that large price movements are associated with higher subsequent volumes.
So price changes lead to volume movements.

Now we investigate the statistical properties of the data of trading volume
using a 80-trading days database from NYSE. We define V (t) to be the
traded volume of the transaction occurred at time t. We have analyzed the
increments of volume:

∆V (t,∆t) = V (t + ∆t)− V (t) ∆t = 1 tick (2.11)

In Fig. 2.8 are plotted the trading volume fluctuations for the stock GE
over a period of 80 trading days. We can observe the non Gaussian and non
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Figure 2.8: In this figure is plotted the time series of trading volume fluc-
tuations of the stock GE for a period of 80 trading days without overnight,
weekend and holidays closing. The plot shows the presence of large fluctua-
tions that are strikingly non-Gaussian.

stationary nature of the trading volume fluctuations. The times series of
trading volume fluctuations shows large fluctuations that are strikingly non-
Gaussian. In Fig. 2.9 is shown the probability distribution of the increments
of trading volume ∆V for the stock GE. At a glance, the difference with a
Gaussian distribution can be appreciated. The mean value is close to zero
and the distribution shows a positive kurtosis. The probability distribution
of trading volume fluctuations exhibits apparently greater probability mass
in the tails than in the center.

Regarding the correlation properties of trading volume fluctuations, we
can see in Fig. 2.10 that the linear autocorrelation function is approximately
zero. Instead absolute trading volume fluctuations are correlated over a
long time period. The autocorrelation function seems to be well fitted by
a power law function, disclosing a long range correlation in the trading vol-
ume absolute fluctuations. We can also observe, comparing Fig. 2.10(b) and
Fig. 2.6, that trading volume and volatility show the same type of “long
memory” behavior [79]. The scaling exponent, estimate by a power law fit,
is γ = −0.431± 0.003. In his article [42], Clark proposed the idea that the
leptokurtic nature of prices log-returns, can be explained by the fact that
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Figure 2.9: Probability density distribution of trading volume tick-by-tick
increments for a 80-days period. We can observe that the distribution shows
excess kurtosis, disclosing a non-Gaussian behavior.

trading activity is not uniform during time. Clark assumed that trading vol-
ume is a plausible measure of the evolution of price dynamics. The model
is based on the assumption that the time in which a transaction occurs are
themselves a stochastic process and he used the cumulative distribution of
trading volumes up to time t as the probability distribution to have a transac-
tion at time t. In this picture the probability distribution of prices increments
is subordinate to the one of trading volumes. In this way Clark was able to
prove that the distribution of prices increments is a leptokurtic distribution
with all the moments finite. This model has quantitatively pointed out the
strict connection between trading volume fluctuations and price dynamics
and hence the importance of a careful analysis of trading volume statistical
properties to understand and model the dynamics of price fluctuations.

2.6 Bid and Ask

Financial market investors who wish to buy or sell assets, do so by contacting
their broker. There are different kind of requests an investor can make. The
first type of request is the so called market order, i.e. an order to buy or
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Figure 2.10: The autocorrelation functions for the trading volume fluctua-
tions, (a), and trading volume absolute fluctuations, (b), are shown. The
time τ is measured in ticks (transactions). The volume fluctuations (a) seem
to be anti-correlated for few ticks and then the correlation drops to zero. The
autocorrelation function for the absolute trading fluctuations (b) behaves like
a power law, disclosing a long range correlation.

sell a stock at the current market price. When a market order is placed, it
is almost guaranteed that the order will be executed. Ultimately, however,
this depends on whether or not there is a willing buyer or seller. The second
type of request is the limit order. A limit order specifies the maximum
(minimum) price at which an investor is willing to buy (sell) a certain number
of shares. A market order is usually less expensive than a limit order, but
one disadvantage of a market order is that the price is paid when the order
is executed. The price may not always be the same as that presented by
a real-time quote service. This often happens when the market is changing
very quickly. Placing an order ”at the market,”especially when it involves a
large number of shares, offers a greater chance of getting different prices for
different parts of the whole order.

The list of all buy and sell limit order, with their corresponding price
and volume, at a given instant of time, is the order book. At a given instant
of time, all limit buy orders are below the best buy order, called the bid
price, while all sell orders are above the best sell order, called the ask price.
Therefore at any instant two prices are quoted: the bid price and the ask
price, which are called the quotes. When arrives a new buy order below
the bid price or sell order above the ask price, it adds to the queue at the
corresponding price. If someone requests for a market order to buy or with a
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limit price above the current ask price, he will then make a trade at the ask
price with the person with the lowest ask. The corresponding price is printed
as the transaction price. The activity of the market is therefore a succession
of quotes and trades.

The person, or the firm, which manage the order book is the market
maker. Market makers must be compensated for the risk they take: for
example, if he buys your shares in IBM then IBM’s stock price begins to fall
before a willing buyer has purchased the shares, the market maker will lose
money. To prevent this, the market maker maintains a spread (bid-ask spread
) on each stock he covers. Using our previous example, the market maker
may purchase your shares of IBM from you for

�
100 each (ask price) and then

offer to sell them to a buyer at
�
100.05 (bid price). The difference between

the ask and bid price is only $0.05, but by trading millions of shares a day,
he’s managed to pocket a significant chunk of change to offset his risk. The
market maker must then update his calculation of the excess demand in the
market, by adding up all the buy orders in the order book and subtracting
all the sell orders. Due to the revised calculation of the excess demand, the
market maker may then consequently wish to move the price of the asset.

The study of the order book is very interesting both for academic and
practical reasons [29], in fact provides information on the processes of trading
and price formation. In our dataset, see Sec. 2.1, complete data on the order
book is not available, so we could not perform any statistical analysis on
this kind of data. Systematic investigation of these datasets have been done
[29, 21, 95, 96], and has motivated a number of interesting theoretical works
[38, 16, 40, 80, 112, 47]. Some of the main results are [29]:

� the price at which new limit orders are placed is very broadly (power-
law) distributed around the current bid/ask;

� the average order book has a maximum away from the current bid/ask,
and a tail reflecting the statistics of the incoming orders, see Fig. 2.11;

� the distribution of volume at the bid (or ask) follows a Gamma distri-
bution.

As already said, our dataset does not contain the information about the
entire order book, but only gives, at any given time, the quotes, that are the
bid price and the ask prices, together with the corresponding sizes (volumes).
Therefore we was able to perform a statistical analysis of the dynamics of
the midpoint between the bid price and the ask price. This gives an estimate
of the “fair” value of the transaction price at the next step. The midpoint
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Figure 2.11: Average volume of the queue in the order book for three stocks,
as a function of the distance from the current bid (or ask) in a log-linear scale.
The axis have been rescaled in order to obtain a data collapse. In the inset
are plotted the same data in log-log scale. We can see that the size of the
queue reaches a maximum away from the best offered price. This results from
the competition of two effects: the order flow is maximum around the current
price but an order very near to the current price has a larger probability to
be executed and disappear from the book. Figure from [29].

value is defined as:

M(t) =
a(t) + b(t)

2
(2.12)

where a(t) and b(t) are the ask and bid prices. Similarly to the analysis
performed for the stock price, we define a log-return for the midpoint price
M(t):

µ(t) = lnM(t + ∆t)− lnM(t). (2.13)

We have studied the statistical properties of the autocorrelation function
for the log-returns and the absolute log-returns of the midpoint price. In
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Figure 2.12: Autocorrelation of the log-return of the midpoint price fluctu-
ations. We can observe an anti-correlation for few trade steps. In the inset
are shown the same date in a magnified zone. Comparing this figure with
Fig. 2.5 it is possible to observe that the level of correlation of the midpoint
price fluctuation is an order of magnitude smaller than that one of the real
price fluctuations.

Fig. 2.12 is plotted the autocorrelation function for the log-returns of the
midpoint price M(t) for the stock GE from NYSE calculated on an 80-trading
days period. We can observe an anti-correlation of the midpoint price log-
return, that persists for a few trades. Comparing this figure with Fig. 2.5 we
can see that the level of anti-correlation is one order of magnitude larger for
the price log-returns than for the midpoint log-returns. This implies that the
prices log-returns tend more likely to invert sign from one step to another and
the resulting signal for the price looks like a zigzag. The dynamic of midpoint
price is instead smoother than that of the real price, this is probably due to
the fact that the midpoint price is only the fair expectation for the price.
The position of the price fluctuates in the bid-ask spread being sometimes
nearer to the bid price and sometimes nearer to the ask price. In some rare
case, when the price rapidly drop or rise, the price can have a value smaller
than the bid price or larger than the ask price.

We have also studied the autocorrelation function of the absolute mid-
point log-returns, as is shown in Fig. 2.13. In Fig. 2.13 we can observe the
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Figure 2.13: Autocorrelation function of the absolute log-return of the mid-
point price fluctuations. Both axis are in a logarithmic scale. We can ob-
served that the autocorrelation function shows a power law behavior disclos-
ing long range correlations in the process.

power law behavior of the autocorrelation function of the absolute log-returns
of the midpoint price. From a theoretical point of view this suggests a long-
range correlation. The scaling exponent, estimated by a power law fit, is
γ = −0.485 ± 0.002. We have seen that those statistical properties of the
prices fluctuations hold also for the midpoint price fluctuations, nevertheless
this last has a smoother profile. In Fig. 2.14 is shown a profile of price and
midpoint price for a nearly fifteens minutes time interval for a stock from
NYSE. We can observe that the value of the price is almost never equal to
the midpoint price and oscillates up and down the midpoint line. Instead the
midpoint price is smoother and often remains constant for some time steps.
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Figure 2.14: Time evolution for the real price (circle with blue line) and for
midpoint price (red line). We can see that the real price dynamics is much
oscillating while the midpoint price remains often constant.





Chapter 3

Theoretical Models

In Chapter 2 we have discussed the statistical properties of financial time
series. This analysis has revealed a wealth of interesting stylized facts which
seem to be common to a wide variety of markets, instruments and periods.

These properties has incited many researchers to develop models which
can explain and reproduce these characteristics. Most of the work in model-
ing financial markets is addressed to describe the statistical properties of the
time evolution of the price. In this regard, one of the main task is to find
which is the stochastic model of stock price dynamics.

The standard theory of finance provides that the logarithm of a stock price
executes a random walk. This means that price changes are uncorrelated in
time and are drawn from a normal distribution.

While the first assumption is rather well satisfied, deviations from a nor-
mal distribution will lead to consider another class of stochastic processes.
One of the most confirmed is the truncated stable Lévy process whose proba-
bility distribution function shows fat tails and which describes financial data
much better than a normal distribution. This stable stochastic process was
first introduced to model price dynamics in [87].

Both in random walk model and truncated stable Lévy process, volatility
is assumed to be a constant. This is true over rather short time scales, at
best. Empirical volatilities vary strongly with time and suggest considering
volatility as a stochastic variable. This fact has led to the development of
the ARCH and GARCH models [52, 24].

An alternative to model the price dynamic as a stochastic process is
to develop highly simplified models of strategic interaction to capture the
essence of the collective behavior in a financial market. In this case the
prices dynamics is the result of the interaction of agents, whose behavior is
modeled. One of the most famous agent based model is the “El Farol Bar”
problem [10]. This model was simplified and abstracted by Challet e Zhang
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in a way that make it suitable to be studied with the methods of statistical
mechanics. The new formulation of the problem is called “Minority Game”
and is one of the main results of Physics applied to Economics [39].

Another very important theoretical result obtained by physicists studying
Economics is the famous Black and Scholes equation for a rational option
pricing [22]. We will see the main features of this model together with its
limitations.

3.1 Random Walk Model

The first who modeled stock prices by a random walk was Bachelier [14] in
1900. Nowadays, the theoretical descriptions used in standard finance theory,
are typically built around this assumption that asset prices follow some form
of random walk. We therefore need to understand the details, and hence the
limitations, of a random walk.
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Figure 3.1: Eight different representation of a particle performing a random
walk are plotted.

Suppose we are tossing a fair coin, hence heads and tails have equal
probability of occurring. In this case p[heads] = 1−q[tails] = 0.5. In principle
p could be different from q. These events can be thought to represent some
increments Xi (price changes) in one time step ∆t. For example we can
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denote Xi = 1 if at the i − th time step the outcome of the game was head
and Xi = −1 if it was tail. The successive partial sums S1, S2, ..., Sn (S0 = 0),
where:

Sn = X1 +X2 + ... +Xn, (3.1)

can be marked as point on a vertical axis and can represent the position of a
particle performing a random walk [59]. In Fig. 3.1 are plotted some different
representations of the time evolution of a particle performing a random walk.
The probability of observing, in n events, α realizations of heads and n− α
realizations of tails and hence to have Sn = r = α − (n − α) = 2α − n, is
given by the binomial distribution:

P (Sn = r) =
(
n
α

)
pα(1− p)n−α, (3.2)

where is understood that the binomial coefficient is to be interpreted as zero
unless α is an integer between 0 and n, inclusive. We can observe that in the
case we are considering, p = q = 1

2
, the expected value of for the variable r

is zero. In the limit n → ∞ the binomial distribution tends to a Gaussian
distribution:

p(r) =
1√

2πnpq
exp

(
− r2

2npq

)
. (3.3)

For p = q = 1
2

and setting t = n∆t, with ∆t the unit time step, r = x,and
H = 4∆t, we obtain:

p(x) =
1√

2π t
H

exp
(
− x2

2 t
H

)
. (3.4)

So in this limit of large n one has passed from discrete time and discrete
positions to continuous variables. To write the Gaussian in the standard
form we set σ2 = t

H
, and we obtain:

p(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
, (3.5)

where σ2 is the variance of the distribution. We can observe that the variance
is proportional to the time, σ2 ∼ t so the shape of the Gaussian distribution
evolves with time becoming broader and broader as we can observe in Fig. 3.2.
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Figure 3.2: The probability density function for the variable Sn is plotted.
The histogram is obtained performing 106 different realization of random
walks of various size n. We can see that the pdf is a Gaussian that spreads
its amplitude for increasing values of the time n.

Turning back to the time evolution of the walker we can write the follow-
ing recursive equation:

Sn = Sn−1 +Xn, (3.6)

where Xi is an increment taking the value ±1 with equal probability, there-
fore the increments Xi are independent and identically distributed random
variables with zero mean and unit variance. This make sense for a coin-toss
mechanism where successive coin-toss outcomes are indeed independent, and
since we are using always the same coin, then the probability density function
ρ[X] is identical at every time step.

The Eq. 3.6 can be generalized substituting the increments Xi with a
generic independent and identically distributed random variable with zero
mean and unit variance drawn from a generic probability density function:

Sn = Sn−1 + ξn. (3.7)
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In this perspective ξi can be Gaussian, exponential, uniform, etc. The ran-
dom walk model for price asserts that the logarithm of prices performs a
random walk. This is due to the fact that the quantity that is indepen-
dent in time is not the price increments but the relative increments of price.
Therefore the recursive equation for the logarithm of price is:

lnPt = lnPt−1 + ξt and hence (3.8)

ln
Pt
pt−1

= ξt. (3.9)

Substituting ξ with another random variable η = exp ξ we obtain the recur-
sive equation for the prices:

Pt = Pt−1ηt. (3.10)

Taking the limit of small price increments and small time steps in Eq. 3.8
we obtain a continuous stochastic differential equation for the logarithm of
price y = lnP :

dy = ξ, (3.11)

where ξ is a random variable taken for example from a Gaussian probabil-
ity density function with zero mean and standard deviation proportional to
(dt)1/2. Physicists call equation 3.11 Brownian motion and use it to describe
the random-walk dynamics of particles diffusing in a gas. Following the same
steps we can obtain the stochastic equation for price taking the limit of small
increments in Eq. 3.10:

dP

P
= ξ. (3.12)

Equation 3.12 is called Geometric Brownian motion.
In Fig. 3.3 we have plotted a price chart generated from a geometric

Brownian motion. Also a comparison with the time evolution of the price of
GE stock for a trading day time period is shown. We can observe that the
similarity of the two behaviors is striking.

The random walk model for price is also consistent with the Efficient
Market Hypothesis that we have discussed in subsection 1.3.1. In fact in this
model is impossible to forecast the next outcome based on the past outcomes.
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Figure 3.3: Computer simulation of price chart as a geometric Brownian
motion (a) and comparison with the evolution of the GE share index during
a trading day period. At a glance we can observe that the similarity of the
two behaviors is striking.

In other words, if we were betting in future outcomes, we would not be able
to gain systematically over time. In Chapter 2 we have seen that real stock
prices follow the random walk model only in first approximation. In fact, in
the short time regime many deviations from the random-walk model appear,
such as the tails in the distribution of returns. In the next section we will
see a model for price dynamics which is able to describe the high frequency
observations of price returns.

3.2 Lévy Distributions and Truncated Lévy

Distributions

The most common stochastic model of stock price dynamics is the Gaussian
behavior discussed above that assumes a geometric Brownian diffusion of the
asset prices and a corresponding arithmetic Brownian motion of the loga-
rithm of price differences. This model provides a first approximation of the
behavior observed in empirical data.

However, the Gaussian probability distribution function is a universal
consequence of the central limit theorem in the limit of long times on the
condition that the financial market is in a stationary state. Indeed, the Gaus-
sian law can possibly deviate considerably from the probability distribution
function determined empirically for short timescales. In Chapter 2 we have
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observed serious systematic deviations from the Gaussian model predictions,
which indicate that the empirically determined probability distributions ex-
hibit a pronounced leptokurtic behavior. A highly leptokurtic function is
characterized by a narrower and larger maximum and by fatter tails than
in the Gaussian case. Obviously, the degree of leptokurtosis increases with
decreasing time difference ∆t between successive observations. Mandelbrot
[84] in 1963 was perhaps the first person to challenge the paradigm that
returns are normally distributed. He analyzed cotton prices on various ex-
changes in the United States and found evidences that their distribution of
returns decays as a power law and hence much slower than a Gaussian. A lot
of models had been developed in order to describe the short-time behavior of
price fluctuations in terms of alternative probability functions. Among these
models, a partial subset is the the Lévy stable model [84], the Student’s t-
distribution [23], the mixture of Gaussian distributions [42], the truncated
Lévy flight [87], the jump diffusion model [98] and the hyperbolic-distributed
stochastic process [50]. In this section we will expose the Lévy flight and
truncated Lévy flight models because of their impact and acceptance in the
scientific community.

Therefore, we will first introduce the so-called Lévy stable distributions
and then the truncated Lévy flight distributions and their possible applica-
tions to financial data. To introduce the Lévy stable distributions it may be
useful to recall the definition of characteristic function ϕ(q) of a random vari-
able x. Let p(x) be the probability density function of the random variable
x; hence the characteristic function of the stochastic process is the Fourier
transform of p(x):

ϕ(q) =
∫ ∞

−∞
p(x) exp(iqx)dx. (3.13)

Now let x1 and x2 be two independent random variables with probability
density functions p1(x1) and p2(x2). Since x1 and x2 are independent, the
probability density function of the sum x = x1 + x2 is the convolution of the
original probability density functions:

p(x) =
∫ ∞

−∞
p1(s)p2(x− s)ds. (3.14)

Let now ϕ(q) denote the characteristic function of x. In view of the convo-
lution theorem which states that the Fourier transform of the convolution is
the product of the Fourier transforms, it then follows that

ϕ(q, 2) = ϕ1(q)ϕ2(q). (3.15)
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Suppose furthermore that x1 and x2 are identically distributed. In this case

ϕ1(q) = ϕ2(q) = ϕ(q). (3.16)

From equations 3.15 and 3.16 follows that

ϕ(q, 2) = [ϕ(q)]2. (3.17)

In general, if Sn =
∑n
i=1 xi, where the xi’s are independent and identically

distributed (i.i.d) random variables, then:

ϕ(q, n) = [ϕ(q)]n, (3.18)

from which the probability density function of Sn can be obtained by calcu-
lating the inverse Fourier transform.

Note that the probability density function of the sum of n i.i.d. ran-
dom variables will in general be quite different from the probability density
function of the individual variables. There is however a special class of distri-
butions, the stable distributions, for which the probability density function
of the sum has the same functional form of the individual probability density
functions.

Definition 1. [117] A probability distribution p(x) is stable if for each n ≥
2 there exist numbers an > 0 and bn, such that, if x1, x2, ..., xn are i.i.d.
random variables with distribution p(x), then Sn and the variable anxi + bn
are identically distributed for every i.

In other words, a distribution is stable if its form is invariant under ad-
dition, up to a rescaling of the variable by a translation and a dilation. The
Gaussian distribution is stable. To see this, we recall that the Fourier trans-
form of a Gaussian is a Gaussian and that the product of Gaussian is again a
Gaussian, so from Eq. 3.18 it follows that the characteristic function ϕ(q, n)
will indeed be that of a Gaussian variable.

The class of stable distributions is rather small and was completely de-
termined by the mathematicians P. Lévy [77] and A.Ya. Khintchine [76] in
1920’s. They found that, restricting ourselves to the subclass of symmetric
distributions, the most general form of a characteristic function of a stable
process is:

ϕα(q) = exp(−γ|q|α), (3.19)
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where 0 < α ≤ 2 is called the stability exponent and γ is a positive scale
factor. Taking the inverse of ϕα(q) we obtain the corresponding probability
density function ϕα(x):

pα(x) =
1

2π

∫ ∞

−∞
ϕα(q) exp (−iqx)dq =

1

π

∫ ∞

0
exp (−γqα) cos (qx)dq. (3.20)

The integral in equation 3.20 can be explicitly calculated only for two partic-
ular values of α for which the analytical form of the Lévy stable distribution
is known:

� α = 1 (Lorentzian or Cauchy distribution):

p(x) =
2a

π

1

x2 + 4a2
; (3.21)

� α = 2 (Gaussian distribution):

p(x) =
1√

2πa2
exp (− x2

2a2
). (3.22)

Although, for arbitrary α the probability density function pα(x) cannot be
found in closed form, its asymptotic behavior for large x can be easily calcu-
lated from Eq. 3.20. Here one finds [111, 20] that:

pα(x) ∼ Γ(1 + α) sin(πα/2)

π|x|1+α
∼ |x|−(1+α), |x| → ∞. (3.23)

We thus see that the Lévy distribution for α < 2 has the interesting property
that it shows scaling behavior for large x, i.e., p(x) decays as a power-law.
The power-law decay of Lévy distributions implies the absence of a charac-
teristic scale. The downside of this is that all Lévy distributions with α < 2
have infinite variance. In fact all moments of order higher than one are infi-
nite, since E[|x|k] diverges for k ≥ α, as can be shown from Eq. 3.23. Now we
show that the Lévy stable distributions are self-similar [88]. This property
can be obtained as follow. One can consider the probability of return to the
origin p(Sn = 0) starting from the the characteristic function for Sn:

ϕ(q, n) = exp(−nγ|q|n). (3.24)

Performing the Fourier transform:
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p(Sn) =
1

π

∫ ∞

0
exp (−nγ|q|α) cos (qSn)dq. (3.25)

Hence

p(Sn = 0) =
1

π

∫ ∞

0
exp (−nγ|q|α)dq =

Γ(1/α)

πα(γn)1/α
. (3.26)

Then the p(Sn) is properly rescaled by defining

p̃(S̃n) = p(Sn)n1/α. (3.27)

The normalization

∫ ∞

−∞
p̃(S̃n)dS̃n = 1, (3.28)

is assured if:

S̃n =
Sn
n1/α

. (3.29)

When α = 2 the scaling relations coincide with the standard normalization
of a Gaussian variable by mean of n1/2 (standard deviation).

In section 3.1 we have discussed the central limit theorem which asserts
that the limit distribution of a variable that is the sum of independent and
identically distributed random variables with finite variance, is the Gaussian
stable distribution. This theorem is only a special case of a much more
general theorem. The generalized central limit theorem [64, 65] affirms that
if one consider a random variable that is the sum of i.i.d random variable
with infinite variance then the asymptotic probability distribution is a Lévy
stable distribution.

This property together with the self-similarity (stability) and the power-
law asymptotic behavior have led to the development of the Lévy stable
process as a model for price dynamics. This model was first proposed by
Mandelbrot [84] in 1963 to describe the leptokurtotic behavior of the distri-
bution of returns for a series of cotton prices. Also Fama [54] in 1965 used
the Lévy stable process to model the price dynamics in his analysis of stock
prices in the NYSE.
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We have seen that the Lévy processes with α < 2 have infinite variance.
Processes with infinite variance are not physically plausible and a real Lévy
distribution is not observed in financial data. To obtain a distribution with
finite variance, several prescriptions to truncated Lévy distributions have
been proposed. In particular we refer to the model proposed by Mantegna
and Stanley in [87]. A truncated Lévy distribution is defined as:

p(x) =





0 x > l
c pα(x) −l ≤ x ≤ l

0 x < −l,
(3.30)

where pα(x) is the symmetrical Lévy stable distribution defined in equa-
tion 3.20.

Since a truncated Lévy distribution has finite variance, then by the central
limit theorem the distribution of the sum of n i.i.d. variable with such a
distribution will converge to a Gaussian distribution for large n. However
this convergence is usually very slow and depends from α and l. In [87] is
shown that the crossover, nx form the Lévy to the Gaussian regime is given
by:

nx ∼ A lα, (3.31)

where A is an α-dependent factor.
Mantegna and Stanley performed a systematic investigation of the scaling

behavior of the American S&P500 index [113]. They analyzed high-frequency
data over the period from January 1984 to December 1989. Index changes
∆X(t,∆t) = X(t = δt)−X(t) have been determined over different timescales
∆t ranging from 1 to 1000 minutes (∼ 16 hours). If these data are drawn
from a Lévy stable distribution, they should show a characteristic scaling
behavior, i.e., one must be able, by a suitable change of scale, to collapse
them onto a single master curve. So they rescale the variable and probability
distribution according to equations 3.27 and 3.29:

∆̃X =
∆X

(∆t)1/α
and p̃(∆̃X) =

p(∆X)

(∆t)−1/α
. (3.32)

They then computed the empirical probability density function p(∆X,∆t)
and analyzed the scaling of p(0,∆t) with ∆t. In log-log plot p(0, δt) showed
a linear behavior, as predicted by the Eq. 3.26, with a slope corresponding
to α = 1.4 for 30 < ∆t < 10000 minutes. For ∆t > 104 the slope of p(0,∆t)
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approaches −0.5 indicating convergence to a Gaussian behavior. The value
α = 1.4 was used to rescale the variables and distributions and indeed the
data approximately collapse onto a single distribution.

In the Lévy regime (i.e. small ∆t), however, the tail of their empirical
probability density function decays slower than a Gaussian but faster than a
pure Lévy distribution with the exponent α found from the scaling argument.

Analyzing the data, it is clear that Gaussian provides bad description
of the data. The Lévy distribution is much better, especially in the central
part of the distribution. For very large index fluctuations ∆t ≥ 8σ, the Lévy
distribution seems to somewhat overestimate the frequency of such extremal
events. These facts thus suggest that a truncated Lévy distribution would
perhaps be more appropriate for modeling the actual distribution.

Indeed, Bouchaud and Potters [30] found that the probability of 15-
minutes changes of the S&P500 index is well described by an exponentially
truncated Lévy distribution with α = 1.5.

Many other applications of Lévy processes in Finance have been discussed
in the literature [109].

3.3 ARCH and GARCH processes

All the models described until now are stochastic processes with constant
parameter and in particular with constant variance. In section 2.4 we have
seen that this assumption is not true for empirical data where the variance
(volatility) is a parameter that fluctuates as a function of time.

To overcome this problem Engle [53] proposed a stochastic process char-
acterized by a time dependent variance. The phenomenon that indicates the
fact the the variance is time dependent is called heteroscedasticity. In fact
the model described by Engle is called ARCH that is the acronym of Auto-
Regressive Conditional Heteroscedasticity, namely a stochastic process with
non constant variance conditional on the past, but constant unconditional
variance.

Before describing the ARCH process and its generalization GARCH pro-
cess, let us explain a peculiarity of the processes with time dependent vari-
ance [30].

Let us consider a random process with a time dependent variance and
construct the series of increments ηk. If the process is time dependent every
increment ηi is drown from a different probability density function. So we
have p1(η1), p2(η2), ..., pn(ηn) that are not all identical. Suppose that the
distributions pk varies sufficiently slowly that one can measure some of its
moments (for example its mean and its variance) over a time scale which is
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long enough to allow a precise estimation of these parameters but short if
compared to the time scale of the variation of pk. Suppose for example that
pk(ηk) is a Gaussian distribution with variance σk that is itself a random
variable. So there are two kind of average: the average over the random
variable σk (·) and the average over the probability distribution pk (< · >).
In this case the empirical histogram of the variables η1, ..., ηk leads to an
apparent distribution p that is non-Gaussian also if all the pk are Gaussian.
In fact, if we perform the average over the σk (in the continuous limit), we
obtain:

p(η) =
∫
p(σ)

1√
2πσ2

exp(− η2

2σ2
)dσ. (3.33)

If now we calculate the kurtosis of p(η):

κ =
< η4 >

(< η2 >)2
− 3 = 3

(
σ4

(σ2)2
− 1

)
. (3.34)

For any random variable one has σ4 ≥ (σ2)2, where the equality is true only
if σ is not time dependent. This means that the kurtosis is always positive,
hence volatility fluctuations lead to fat tails.

Now we are going to describe the main features of the ARCH process [52].
Autoregressive conditional heteroscedastic (ARCH) processes are a form of
stochastic process that are widely used in finance and economics for modeling
conditional heteroscedasticity (time-varying volatility) and volatility cluster-
ing. First proposed by Engle [53], ARCH model considers the variance of
the current step to be a function of the variances of the previous time steps.
Here we consider the general ARCH(p) process where the variance at each
time step depends on the variance of previous p steps. Specifically, let ηi be
the increment and assume that:

ηi = σiεi, (3.35)

where ε is a Gaussian (but not necessarily Gaussian) random variable with
zero mean and unit variance. Hence η is a random variable with zero mean
and variance σ2

i , characterized by a Gaussian conditional probability density
function fi(η). The original ARCH(p) model has the variance equation:

σ2
i = α0 + α1η

2
i−1 + α2η

2
i−2 + ...+ αpη

2
i−p = α0 +

p∑

k=1

αkη
2
i−k, (3.36)
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where α0, α1, ..., αp are positive random variables. By varying the number p
of terms in Eq. 3.36, one can control the degree of memory of the variance
σ2
i .

The ARCH(p) process is particular case of weighted moving average pro-
cess, over the variance fluctuations.

This model captures the conditional heteroscedasticity of stock prices
fluctuations by using a moving average of the past squared errors: if a major
market movement in either direction occurred at m ≤ p time steps ago, the
error square will be large, and assuming its coefficient is nonzero, the effect
will be to increase the actual variance. In other words, large fluctuations tend
to follow large fluctuations of either sign. Mandelbrot [84] had first described
this phenomenon, which today we call conditional heteroscedasticity.

The unconditional variance of an ARCH process is simply the average
over the conditional variance using the probability distribution function of
the corresponding ARCH(p) model.

Because ε is an i.i.d. random variables with zero mean and unit variance,
we have:

< ηiηj >= δij, (3.37)

where δij is the Kroeneker delta function (δij = 1 if i = j, 0 otherwise).
Therefore the autocorrelation function of the increments ηk is given by:

< ηiηj > = σiσj < εiεj >= δijσ2. (3.38)

In particular we obtain:

η2
k = σ2

k. (3.39)

Furthermore, the stationarity requires σ2
k = σ2 for all k. Hence, we obtain

from equation 3.36:

σ2 =
α0

1−∑p
k=1 αk

. (3.40)

Therefore, to obtain a finite and positive unconditional variance the coeffi-
cient αk must satisfy the constraint

p∑

k=1

αk < 1. (3.41)



3.3 ARCH and GARCH processes 59

For the sake of simplicity, we focus now on the ARCH(1) process:

σ2
i = α0 + α1η

2
i−1. (3.42)

If we consider the sum variable Sn, defined as:
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Figure 3.4: In this figure we have performed a numerical simulation of an
ARCH(1) process. The parameters chosen are α0 = 0.45 and α1 = .55 while
the random noise is Gaussian with zero mean and unit variance. In the top
panel is plotted the time evolution of a the “price” S(n) and in the bottom
panel is plotted the conditional variance σ2(n).

Sn =
i=n∑

i=1

ηi, (3.43)

we can obtain the time evolution of the “price” of an ARCH(1) process. In
Fig. 3.4 we have plotted the time evolution of an ARCH(1) process with
parameters α0 = 0.45 and α1 = 0.55, together with the respective time
evolution of the conditional variance σ2

i .
In this case of ARCH(1) process, the unconditional variance, from equa-

tion 3.40, is given by:



60 Theoretical Models

σ2 =
α0

1− α1
. (3.44)

Furthermore, we get from the relation < (ε)4 >=3 so that we find:

σ4 = (α0)2 + 2α0α1σ2 + 3α2
1σ

4. (3.45)

Then the kurtosis of the ARCH(1) process is:

κ =
< η4 >

< η2 >
2 =

3σ4

(σ2)2
= 3 +

6α2
1

1− 3α2
1

, (3.46)

which is positive and finite for 0 ≤ α1 ≤ 1/
√

3.
Hence, by varying α0 and α1, it is possible to obtain stochastic processes

with the same unconditional variance but with different values of the kurtosis.
In Fig. 3.5 we have plotted the increments ηi as functions of the discrete

time i, for a simple ARCH(1) process, for three different combinations of the
values of the parameters α0 and α1, in a way to obtain the same unconditional
variance (σ2 = 1) but different values of the kurtosis (κ = 3, 9, 23). Also the
Gaussian process (α0 = 1, α1 = 0, κ = 3) is plotted for comparison. We can
observe that in the Gaussian case large jumps (jumps larger than 3 times
the unconditional variance) are almost absent while are observed when the
kurtosis κ > 3.

Also the probability distributions of the increments η will then be lep-
tokurtotic. In Fig. 3.6 the probability density functions for the increments
generated by three different ARCH(1) processes are shown. The three func-
tions refer to the same values of Fig. 3.5. We can observe higher degree of
leptokurtosis when κ > 3. When α0 = 1 and α1 = 0 the probability density
function of the increments η is Gaussian. For 0 < α1 < 1, the exact shape of
the ARCH(1) probability density function is unknown.

Let us now discuss the correlation properties of an ARCH(1) process.
From Eq. 3.38 we can observe that the increments ηk are uncorrelated random
variables but, as we will see they are not independent since higher-order
correlations are present and reveal a richer structure. For example consider
the correlation of the square increments:

C(i, j) = < η2
i η

2
j >−< η2

i >< η2
j > = σ2

i σ
2
j − σ2

i σ
2
j i 6= j, (3.47)
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Figure 3.5: Numerical simulation of increments generated by an ARCH(1)
process for different values of the parameters α0 and α1. The couples of
parameters are chosen in a way to obtain the same unconditional variance
(σ2 = 1) but different values of kurtosis κ. In (a) α0 = 1 and α1 = 0, hence
from Eq. 3.46 we obtain κ = 3, that is the case of the Brownian motion. In
(b) α0 = α1 = 0.5 and κ = 9. In (c) α0 = 0.45, α1 = 0.55 and hence the
kurtosis is κ = 23.

which indeed has an interesting temporal behavior in financial time series
as we have seen in Chapter 2. Notice that for i 6= j this correlation can be
zero either because σ is identically equal to a certain value σ0, or because
the correlations of σ are completely uncorrelated from one time to the next.
Hence, let us now determine the volatility autocorrelation function of the
ARCH(1) process. We start from

σ2
i+j+1σ

2
i = (α0 + α1η2

i+j)σ
2
i = α0σ2 + α1σ2

i+jσ
2
n, (3.48)

for j > 0. Considering Eq. 3.44, one can observe that:
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Figure 3.6: In this figure is plotted the probability density function for the
increments η of an ARCH(1) process. In the figure are plotted three differ-
ent histograms for ARCH(1) process generated with different values of the
parameters α0 and α1. In particular the values used are that of Fig. 3.5. The
blue line is the case of κ = 3 that is the simple RW. In fact in this case we
obtain a Gaussian probability density function. In the other two curves the
degree of κ increases and we can observe fat-tailed shapes.

α0σ2 − σ22
= −α1σ22

. (3.49)

Then we arrive at

C(j + 1) = σ2
i+j+1σ

2
n − σ22

= α1(σ2
i+j − σ22

) = α1C(j). (3.50)

This recursion law is equivalent to

C(t) ∼ C0 exp(t/τ), (3.51)

with τ = 1/ lnα1. Thus, the autocorrelation of the ARCH(1) process shows
an exponential decay in contradiction to various observations, suggesting
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a power law decay. This problem appears also for higher ARCH(p) pro-
cesses [24], where the autocorrelation function is a weighted sum of various
exponential decays.

Many different types of ARCH models have been proposed in the litera-
ture, such as ARMA-ARCH [118], CHARMA [116], threshold ARCH [120],
or double threshold ARCH [78]. A model with quite attractive features is
the generalized ARCH (GARCH) model [24].

In various applications using ARCH(p) model, a large value of p is re-
quired. This usually poses some problems in the determination of the param-
eters α0 and αn describing the evolution of a given time series. Overcoming
this problem and some other inadequacies of the ARCH(p) model leads to the
introduction of a generalized ARCH process, the so-called GARCH(p,q) pro-
cess [24]. This generalized model adds q autoregressive terms to the moving
averages of squared errors. The variance equation takes the form:

σ2
i = α0 + α1η

2
i−1 + ... + αpη

2
i−p + β1σ

2
i−1 + ...+ βqσ

2
i−q. (3.52)

From here we obtain immediately that the unconditional variance of the
GARCH(p,q) model is given by

σ2 =
α0

1−∑p
k=1 αk +

∑q
k=1 βk

. (3.53)

Let us now focalize on the GARCH(1,1) process:

σ2
i = α0 + α1η

2
i−1 + β1σ

2
i−1. (3.54)

In this case the unconditional variance, from Eq. 3.53, is given by [15]:

σ2 =
α0

1− α1 − β1
, (3.55)

and the kurtosis is given by the relation:

κ = 3 +
6α2

1

1− 3α2
1 − 2α1β1

. (3.56)

Thus unconditional finite variance requires α1 +β1 < 1 while a finite positive
kurtosis appears for 2α2

1 + (α1 + β1)2 < 1.
Recalling equation 3.35 and substituting it in equation 3.54, we obtain:
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σ2
i = α0 + (α1ε

2
i−1 + β1)σ2

i−1. (3.57)

Eq. 3.57 shows the multiplicative nature of the GARCH process.
The autocorrelation function of the random variable ηk = εkσk, is propor-

tional to a delta function, because of the nature of εk. Nevertheless, similarly
to the ARCH process, also the GARCH process shows some higher-order
correlations. Following [24], it can be shown that in a GARCH process, the
variable η2

k is a Markovian random variable characterized by the time scale
τ = | ln(α1 + β1)|−1. Hence, a GARCH(1,1) process provides an interesting
example of a stochastic process ηk that is second-order uncorrelated, but is
higher-order correlated.

An analogous computation as used for the derivation of Eq. 3.50, yields
the recursion law for the volatility autocorrelation function,

C(j + 1) = (α1 + β1)C(j). (3.58)

So we obtain again an exponential decay:

C(t) ∼ C0 exp(t/τ) (3.59)

with the correlation time τ = 1/ ln (α1 + β1).
However, an important difference between ARCH(1) and GARCH(1,1) is

detected by comparing the characteristic timescale for these two processes.
Let us consider only processes with finite unconditional variance and finite
kurtosis. The finiteness of the kurtosis implies that the coefficient α1 of
ARCH(1) must be lower than 1/

√
3. Hence, this process may be charac-

terized by a relatively short maximal correlation time in the volatility fluc-
tuations of τ = 1/ln (1/

√
3) ∼ 1.8 time units whereas in the GARCH(1,1)

process with finite variance and kurtosis we can observe a characteristic time
scale longer than hundreds of time units, the only condition being that the
β1 parameter must be larger than 0.7.

In Chapter 2 we have shown the evidence that the variance (or the ab-
solute value) of returns has a power-law behavior. The correlations of the
square increments of a GARCH process is exponential, so one should reject
the GARCH process as a model for price dynamics. In spite of this limita-
tion, GARCH(1,1) model is widely used to describe financial time series. The
limitation is overcome by using values of the sum (α1 + β1), that defines the
time scale, close to 1 for the empirical analysis [1, 3]. In fact, a value of the
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sum (α1 + β1), implies a time memory that could be of the order of months.
For example, the empirically determined coefficients of the US dollar rate
GARCH(1,1) volatility for sterling and the Japanese yen, obtained in the
time period 1983 to 1991 by analyzing the daily data [3], are α1 = 0.052 and
β1 = 0.931 (sterling) and α1 = 0.094 and β1 = 0.839 (yen). Thus we obtain
a correlation time of τ = 58 trading days in the sterling case and τ = 15
trading days for the yen. Such a long time memory mimics in an approximate
way the power law correlation of the volatility over a finite window.

In [88] Mantegna and Stanley have performed an empirical test to investi-
gate if the GARCH(1,1) model could describe a set of S&P500 high-frequency
data. They compared the probability density function and the scaling prop-
erties of the empirical data with the same for a GARCH(1,1) process with the
same variance and kurtosis measured in the time series of the S&P500 data.
The chose the set of parameter α0, α1, β1 which better described the data
with the imposition that the kurtosis an the variance of the GARCH(1,1)
process were the same of the empirical ones. From the empirical analysis
of the ∆t = 1 minute data, they found that σ2 = 0.00257 and κ = 43, so
they obtain α0 = 2.30 · 10−5 and α1 = 0.09105. The variable β1 is fixed to
the value 0.9 as is used to be in literature [1]. They found that the process
describes well the ∆t = 1 minute probability density function. In reality this
agreement does not assure that the same process describes well the empirical
data for any time horizon ∆t. In fact, from a scaling analysis, they found
that the GARCH(1,1) process fails to to describe the scaling properties of the
probability density functions for all time horizon using the same parameters.

3.4 Option Pricing

In this section we are going to describe an important theoretical tool, i.e.
the famous Black and Scholes equation [22], to estimate the price of finan-
cial contracts, in particular of options. Financial contracts [72] are financial
derivative products whose price depend upon the price of another financial
product that for example can be the price of a stock. Before introducing
the Black and Scholes equation, let us spend some words to describe some
financial contracts. The simplest financial contract is a forward contract.
This contract is an agreement between two parties to buy or sell an asset at
a pre-agreed future point in time (the delivery date T) at a given forward
price (the delivery price K). Therefore, the trade date and delivery date are
separated. The buyer of the contract is said to have a long position, the
seller of the contract is in a short position. The price y(T ) of the asset at
the delivery date T usually differs from the pre-assigned delivery price K.
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This contract is a symmetrical contract for the two parties (long and short),
when one has a positive payoff the other has a negative one and vice versa.
In fact the short position will have a positive payoff if y(T ) < K. In this case
the trader who has this short position can sell his stocks at a price K and
immediately buy again stocks at price y(T ) > K. Following the opposite
reasoning, the long position has a positive payoff if y(T > K).

Another important financial contracts are the options. An option is a
contract between two people that conveys the right to buy or sell a given
stock (or another financial product) at a specified price K (called the strike
price) at time T (called the maturity date). We want to underline that in
an option contract one has the right but not the obligation to execute the
contract. There are two forms of option contracts: calls and puts. A call
option is a contract that permits the holder to buy an asset at a specified
maturity date for a designed strike price and requires the seller to sell. At
the time the contract is written, the two parties agree to both the strike price
and the maturity date and the buyer of the option contract has to pay an
amount of money C(y, t) to the seller of the option. A put option allows
the holder to sell rather than purchase the stock. When the exercise of the
contract can be done only at maturity date the option is called European.
If the contract can be exercised at any time up to the maturity date, the
option is called American. Here we discuss only European Options. Let us
see some example of how works an option. Suppose that the stocks ABC are
quoted in the market for 3,50 USD. How much one is disposed to pay to have
the right to buy ABC stocks at 3,50 USD in a month? If one thinks that
the price of ABC will rise up to 4,00 USD the maximum price one will be
disposed to pay to have the right to buy ABC stocks is 0,50 USD. If instead
one supposes that the price of ABC will go down, this right is not worth a
bean. If one has the right to buy the only interesting thing is that price will
rise. Suppose that one thinks that in a month the price of ABC will rise up
to 4,00 USD and he buy a call option paying 0,30 USD (C(y, t) = 0.30 USD)
per stock to have the right to buy ABC stocks at 3,50 USD in a month. After
a month the price of ABC can be larger, smaller or equal to the actual price
3,50 USD. If the price will be 4,00 USD the option will be exercised and the
holder of the contract will buy ABC stocks at 3,50 USD with the possibility
of immediately sell them at 4,00 USD earning 0,50 USD per stock. If the
price will go down up to 3,00 USD the holder of the option will not exercised
his right to buy ABC stocks. One can observe that the holder of an option
has a limited risk. If the price will go down he will loose only the price of
the option but, the hypothetical gain if the price will rise can be unlimited.
The seller of the option will surely gain the cost of the option but can meet
an unlimited loss. In Fig. 3.7 this concept is graphically represented.
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(b) seller of a call option

Figure 3.7: In this figures we show the payoff for a buyer of a call option
(a) and a seller of a call option (b), as function of the price of the asset y at
maturity date T . The cost of the option is C(y, t) and the strike price is K.
We can observer that the holder of the option can obtain an unlimited gain.

In the case of a put option we have the opposite situation.
At this point we derive the most important result of option pricing theory:

the Black and Scholes equation [22].

The Black and Scholes equation is valid under the following assumptions:

1 The market is assumed to be in a steady state at least over the time of
the option contract.

2 There are no costs associated with exercising the option.

3 There are no riskless arbitrage opportunities.

4 The holder will exercise the option if it is profitable to do so.

5 There is no possibility of default on the contract.

6 Selling of securities is possible at any time.

7 The trading is continuous.

8 The stock pays no dividends during the option’s life.

Black and Scholes assume that the stock price follows a geometric Brow-
nian motion therefore the stochastic differential equation for the price y is:
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dy = µydt+ σydW, (3.60)

where µ is the drift, σ the standard deviation per unit time and W the
Wiener process. With this assumption, it can be shown that any function of
the price, and hence also the price of the option C(y, t), must be a solution
of the following differential equation:

dC =
[
∂C

∂y
µy +

∂C

∂t
+

1

2

∂2C

∂y2
σ2y2

]
dt+

∂C

∂y
σydW. (3.61)

Now we consider a simplified strategy with a portfolio of only one type of
stocks. The generalization to a multicomponent portfolio is always possible.
We suppose further that the portfolio is constructed by buying n shares of
price y(t) and selling an option of price C(y, T − t,K). Thus, the value of
the portfolio is:

p(t) = ny(t)− C(y, T − t,K). (3.62)

The fluctuation of the share price y leads to fluctuations of the portfolio:

∆p ≈ n∆y −
[
∂C

∂y

]
∆y. (3.63)

A riskless investment requires

n =
[
∂C

∂y

]
. (3.64)

The value of the portfolio is therefore

p = y
[
∂C

∂y

]
− C (3.65)

From here, we get the total differential

dp =
∂C

∂y
dy − dC. (3.66)
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Substituting equations 3.60 and 3.61 in this last equation, we obtain:

dp =
[
−∂C
∂y

µy−∂C
∂t
− 1

2

∂2C

∂y2
σ2y2+

∂C

∂yµy

]
dt−∂C

∂y
σydW+

∂C

∂y
σydW. (3.67)

and therefore, simplifying,

dp =
[
− ∂C

∂t
− 1

2

partial2C

∂y2
σ2y2

]
dt (3.68)

Now we use the hypothesis of absence of arbitrage. This means that the
change in the value of the portfolio must equal the gain obtained by investing
the same amount of money in the corresponding security providing an average
return r per unit of time. If r is constant:

dp

dt
= rp. (3.69)

By equating equations 3.68 and 3.69, we obtain the famous Black and Scholes
differential equation.

rC =
∂C

∂t
+ ry

∂C

∂y
+

1

2

∂2C

∂y2
σ2y2. (3.70)

To obtain the appropriate option price function C, we have to fix the bound-
ary conditions. In the case of a call option, one executes the contract if
y(T ) > K and the buyer gets assets of the value y(T ) at price K. Thus the
option has the cost y(T )−K. If y(T ) < K the contract is not executed, and
the value of the option is 0. Hence

C = max
{
y(T )−K, 0

}
(3.71)

To solve the differential equation 3.70, Black and Scholes make the substitu-
tion:

C(y, t) = exp(r(t− T ))y(x, τ), (3.72)

where
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x ≡ 2

σ2

(
r
σ2

2

)[
ln
(
y

K

)
−
(
r − σ2

2

)(
t− T

)
], (3.73)

and

τ ≡ − 2

σ2

(
r − σ2

2

)(
t− T

)
. (3.74)

With this substitution, the Black and Scholes equation becomes equivalent
to the heat transfer equation in Physics, which is the standard form of a
parabolic partial differential equation

∂y(x, τ)

∂τ
=
∂2y(x, τ)

∂x2
(3.75)

which can be solved exactly for the boundary condition in Eq. 3.71. The
final solution is:

C(y, t) = yΦ(η1)−K exp(r(t− T ))Φ(η2) (3.76)

where

η1 =
ln y − lnK + (2r − σ2)(T − t)

2σ
√
T − t (3.77)

and

η2 = η1 − σ
√
T − t (3.78)

and Φ is the cumulative density function for a Gaussian variable with zero
mean and unit standard deviation

Equation 3.76 allows the determination of the value of a European option
for all times before the maturity date in order to provide a fair price only
from the knowledge of the strike price, the actual price of the underlying
stock, and the time remaining to maturity. While in practice more advanced
models are often used, many of the key insights provided by the Black and
Scholes formula have become an integral part of market conventions.
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3.5 Agent Based Models and the Minority

Game

In the preceding sections, we described the price fluctuations of financial
assets in statistical terms. We did not ask question about their origin, and
how they are related to individual investments decisions. In the language
of Physics, the precedent approach was macroscopic and phenomenological.
We considered the macro-variables (prices, returns, volatilities) and checked
the internal consistency of the phenomena observed. In this section, we
wish to discuss how these macroscopic observable are possibly related to the
microscopic structure and rules governing capital markets.

In this perspective, a typical approach is to study the economic system
starting from the behavior of a set of interacting agents. This is the field of
game theory which deals with decision making and strategy selection under
constraints. Game theory as applied by economists is built on one standard
assumption of Economics that is agents behave in a rational manner. The
non-trivial problem comes from constraints, and conflicting through similar
behavior of other agents. This assumption of rationality eliminates ran-
domness from the games, and make them essentially deterministic. In this
perspective, games involves an optimization problem. The benefits of an
agent are often described by a utility function which, of course, depends on
the strategies of all players. Under the assumption of complete information
sharing between players, the solution of the game is a Nash equilibrium. A
Nash equilibrium is a state which is locally optimal simultaneously for each
player (a local maximum of all utility functions).

In a Physics perspective, such Nash equilibria in deterministic games,
might be viewed as a zero-temperature solution, where all possible fluctua-
tions are frozen [93]. Introducing fluctuations, or randomness, then would
correspond to finite-temperature properties.

One may wonder to what extent game theory can improve our under-
standing of financial markets. Financial Markets certainly provide the basic
ingredients of game theory: a common goal and the necessity of strategy
selection and decision making under constraints. However, uncertainty is an
essential feature of capital markets, and while some information is available
at high frequency and quality, the information an the strategies of other
players is very limited.

In this section, we will explore a very simple game where agents have to
make decisions using strategies chosen from a finite given set. In this model
agents are far from being hyper-rational and their behavior often changes over
time. Thus the dynamical approach towards the steady state is considered
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through evolution, adaptation and learning. This game is called Minority
Game and was introduced by Challet and Zhang in 1997 [39].

The Minority Game is the mathematical formalization of “El Farol Bar”
problem considered By Brian Arthur [10, 11]. The “El Farol Bar” problem
was proposed as an example of inductive reasoning [99] as an alternative
to the deductive one, which is usually assumed in Economics and that is
extremely useful to generate theoretical solutions [60]. Inductive reason-
ing assumes that by feeding back the information about the game outcome,
agents could eventually reach perfect knowledge about the game and arrive
to a steady state. On the contrary, deductive reasoning assumes that the
precedents contain full information about the game and then there is not
any dynamical approach to the steady state, which is attained in a single
step.

The economist Brian Arthur proposed the “El Farol Bar” model to em-
body why the economy is so complex. In particular it shows the importance
of out-of-equilibrium behavior in a financial system, where agents behave in-
ductively since they only have limited information available. Let us discuss it
in some detail. There is a bar, the “El Farol” bar in Santa Fe, and N agents
have to decide whether to go or not on a given night each week. The goal of
each agent is to attend provided he can get a seat. The problem is that space
is limited and only aN with a < 1 of the possible N agents can get a seat.
Thus the agents have two actions: go if they expect the attendance to be
less than aN people or stay at home if they expect the bar will overcrowded.
There is no interaction among agents, the only information available is the
numbers who came in the past weeks. Based on this, each player tries to
predict whether the bar is likely to be overcrowded the following week (im-
plying he stay at home) or under-crowded (implying the agent should make
the effort to go to the bar). Hence, there is no correct expectation model; if
everybody made the same decision, it would be automatically the wrong de-
cision since everyone would either stay at home or go to the bar. A so-called
mean-field theory describing a “typical” agent will not work.

This situation can be simulated on a computer choosing a pool of possible
prediction methods given a particular set of recent outcomes, and randomly
assign a few such prediction methods to each agent. Computer simulations
of this model [10, 11] show that the attendance fluctuates around aN . Thus,
predictors self-organize so that this structure emerges in the complex dynam-
ics of the system.

The El Farol bar problem can be considered as a kind of very simple
“market toy model”[91, 89, 121]: at each time step agents can buy (go to the
bar) or sell or sell an asset and after each time step the price of the asset is
determined by a simple supply-demand rule.
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Since the actual attendance numbers range from 0 to N , the number of
possible patterns of past attendance is enormous and hence so is the number
of possible strategies. So in [39] Challet and Zhang have abstracted the basic
features of this model using a binary approach in the so-called Minority Game
(MG).

In order to describe the MG, let us consider a population of N (odd)
players, each with a finite number of strategies S. At every time step t,
every player i must choose one of two alternatives, ±1, so his action will be
ai(t) = ±1. Those players who are in the minority side win. After a round,
the total action is:

A(t) =
N∑

i=1

ai(t). (3.79)

At each time step, if a player is in the minority side, he collects a payoff
−ai(t)g[A(t)], with g and odd function of A(t). Challet and Zhang’s initial
choice was g(x) = sign(x), but other analytical functions can be more suit-
able. The information about the winning group is released to the agents only
in terms of the sign of A(t), without the actual attendance number. So, at
time step t + 1, the information given to the agents regarding the game at
time t is W (t+ 1) = signA(t). Let us assume that the players are limited in
their analyzing power, then they can only retain last M winning sides, i.e.
the last M numbers W . Moreover they base thir decisions ai(t) on these last
M bits only. To this end they have a set of s ≥ 2 strategies. A strategy is
just a mapping from the sequence of the last M winning sides to the action of
agent i. So different strategies are distinguished by the different predictions
from the same signal. An example of strategy is illustrate in table 3.1 in the
case M = 3.

There are 2M possible signals of M bits, and two predictions for each
signals. The space of strategies with memory M therefore is of size 22M .
At the beginning of the game each agent is given a set of S strategies ran-
domly drawn from the total 22M possible strategies. The heterogeneity among
agents is in the fact that the set of S strategies could be very different for
different agents. Adaptation comes in the way agents choose at each time
step one of their S strategies. They take the strategy within their own set
of strategies whose performance over time to predict the next winning group
is biggest. In order to do that, each agent i assigns a virtual point to his
strategy after each time step when it predicted correctly the winning group.
However this points are only virtual points as they record only the agents’
strategies performance and serve only to rank the strategies within each agent
set. After time t each agent choose the first strategy in his personal ranking
which tells him what to do in the future.
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Signal Prediction
-1 -1 -1 1
-1 -1 1 -1
-1 1 -1 -1
-1 1 1 1

1 -1 -1 1
1 -1 1 -1
1 1 -1 1
1 1 1 -1

Table 3.1: An example of strategy for M = 3. In the first column there are all
the possible outcomes of the game in the case M = 3, i.e. 8 possible different
outcomes. In the second column there is the action to make in accordance
with the given strategy for any given outcome of the game.

When the game is simulated, in the case g[A(t)] = sign(A(t)) the times
series A(t) oscillates rather randomly around 0. Instead, the fluctuations
of A(t) around zero, given by the variance σ2 =< [A(t)− < A(t) >]2 >,
have a more interesting behavior [71, 70]. First, note that large fluctuations
imply large waste since still more players could have taken the winning side
without harm done to the others. On the other hand, smaller fluctuations
imply more efficient usage of available resources, in general this would require
coordination and cooperation, which are not built-in explictly. In [39] is
shown that, for fixed values of N and S, the fluctuations around A(t) = 0
are smaller for increasing values of M , so populations having larger memory
cope with each other better.

The behavior of σ2 as a function of the parameters of the model M , S
and N shows quite remarkably behavior. Numerical [108] and analytical
studies [74, 35, 36] show that in this game exists an order parameter α =
2M/N , which value controls the phase in which is the system.

In fact, it was found by extensive simulations that σ2/N is only a function
of α for each value of S, as is shown in Fig. 3.8. For large values of α, σ2/N
approaches the value for the random choice game σ2/N = 1, i.e. the game
in which each agent randomly chooses ai(t) = 1 or ai(t) = −1 independently
and with equal probability at each time step. At low values of α, the average
values of σ2 is vary large, it scales like σ2/N ∼ α−1 which means that σ ∼ N
and thus the size of the losing group is much larger thanN/2. At intermediate
values of α, the volatility σ is less than in the random case. In this region
the size of the losing group is close to N/2.

The fact that σ gets below the random case for a given interval of values
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Figure 3.8: Volatility as a function of the control parameter α = 2M/N
for s = 2 and different number of agents N = 101, 201, 301, 501, 701. The
different symbols in the graph correspond to different values of N . We can
see that, for small α the volatility is greater than the random case, while in
the region of large α is smaller. Figure adapted form [99].

of α suggests the possibility that agents coordinate in order to reach a state
in which less resource are globally wasted [108]. In the market formalism,
this means that agents can exploit information available and predict future
market movements. This fact led some authors to study the information
contained in the time series of A(t). Specifically, it was found that W (t+1) =
signA(t) is independent of the sequence of the last attendances in the high
volatility region (α small), while there is a strong dependence for α large. To
quantify this behavior, it was proposed in [36] to measure the information
as:

H =
1

2M

2M∑

ν=1

< W (t+ 1)|µ(t) = ν >2, (3.80)

where µ(t) is the binary representation of the string of M bits giving the
last M outcomes of the game. If there is no significant dependence between
W (t+1) and µ(t) then < W (t+1) >=< signA(t) >= 0 and hence H = 0. In
the market context, H 6= 0 indicates the presence of information or arbitrage
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in the signal A(t). Simulations in [36] shows that H = 0 for α < αc and
H 6= 0 for α > αc with αc ∼ 0.3. This fact suggests the possibility that
there is a phase transition at α = αc which separates those two efficient and
inefficient phases.

Since information is fed back into the system, many studies was con-
centrated in the possibility that the system of N agents could exploit this
information to achieve better coordination. However, A. Cavagna in [34]
showed by means of simulations that if the information µ(t) on the M past
outcomes of the game that is given to the agents at any time steps is chosen
randomly and independently of time from its possible values, the behavior
of the MG remains the same regarding time averaged extensive quantities
like the volatility, the information, etc. This means that in this game co-
ordination do not come through exploitation of available information in the
sequence of winning groups.

We have seen that in the phase α > αc the total waste is smaller than
in the random solution. We can interpret this fact saying that the agents’
dynamics tends to maximize the global efficiency. The concept that the
system is trying to minimize a given quantity is very appealing to statistical
mechanics. If this quantity exists, the system can be studied by considering
its minima and perturbation around them. However, due to the rules of MG,
the game never settles down because some of the agents keep on changing
their strategies forever. However, since the actions of agents ai(t) depend on
the points of the strategies that depend on the past history of actions, one
could wonder whether there is any time pattern in the long run that agents
follow. It might be that ai(t) never come to a rest, but mi(t) =

∑t
τ=0 ai(τ)

can converge when t → ∞ to a given quantity. This is the key point in the
first attempt at a solution of the MG in [37, 92]. In [37, 92] is shown that
a slightly modified MG can be solved exactly using methods from spin-glass
Physics in the limit N →∞. Agents do not simply choose the strategy with
the highest virtual score, but proceed in a probabilistic manner: a strategy
is chosen with a probability which depends exponentially on its virtual score
in the game. To see the essentials, we limit our ourselves to S = 2 strategies
which would correspond to spin 1/2. Therefore each agent i = 1, ..., N has
S = 2 strategies, denoted by a±,i, which are randomly drawn from the set

of 22M possible strategies. For each history µ, i.e. the string of the last M
action taken by the minority, a strategy a specifies a fixed action aµ. We can
define:

ωµi =
aµ+,i + aµ−,i

2
, ξµi =

aµ+,i − aµ−,i
2

(3.81)

so that the strategies of agents i can be written as aµsi,i = ωµi + siξ
µ
i with
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si = ±. The current best strategy of agent i, which he shall adopt at time t, is
that which has the highest cumulated payoff. Let us define ∆i,t = U

(+)
i,t −U (−)

i,t

as the difference between the cumulated payoff of strategies + and - for agent
i at time i. Therefore the choice is:

si = sign∆i,t, (3.82)

The difference in population of agents choosing the + and - sign, at time t,
is then

At =
N∑

i=1

aµtsi,i = Ωµt +
N∑

i=1

ξµti si, (3.83)

where Ωµ =
∑
i ω

µ
i .

An important quantity is the variance σ2 =< A2 >, where < · > stands
for a time average. Then, the variance is given by:

σ2 = < A2 > = Ω2 +
∑

i

[ξ2
i + 2Ωξi < si >] +

∑

i6=j
ξiξj < si >< sj > . (3.84)

Here, < x > denotes the time average of the quantity x and x is the average
over histories. This allows us to decompose a temporal average into one
conditioned on history < xh >, followed by one over histories, i.e. < x >=
< xh >. By symmetry, < A >= 0. However, for particular histories, there
may be a finite expectation value < Ah >6= 0. One may then calculate the
average over the histories of the history dependent expectation values of A:

< Ah >2 = Ω2 + 2
∑

i

Ωξi < si > +
∑

i6=j
ξiξj < si >< sj >= H. (3.85)

When the strategies scores are updated using:

Us,i(t + 1) = Us,i(t)−
as,i(t)

2M
A(t) (3.86)

and a probabilistic strategy selection rule P [si(t) = s] ∼ exp [ΓUs,i(t)] is
adopted, the evolution of < si > can be cast in the form:

d < si >

dt
= −Γ(1− < si >

2)(
∂H

∂ < si >
). (3.87)
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Formally, these are the equations of motion for magnetic moments
mi =< si > in local magnetic field Ωξi interacting with each other through
exchange integrals ξiξj.

Note that H is a positive definite quadratic form, which has a unique
minimum.

H = < A >2 = σ2 −
∑

i

ξ2
i (1− < si >

2). (3.88)

This implies that the stationary states of the MG is described by the ground
state properties of H.

The calculations in [37, 92] showed that there is a phase transition at
αc ∼ 0.33740. In fact, for α < αc one has H = 0, while for α > αc one has
H 6= 0.

A variety of extensions of the MG have been formulated. For example
the agent population can be made heterogeneous in various dimensions such
as memory size, strategy diversification, etc., and agents may choose to stay
out of the market (grancanonical MG). One may further diversify the traders
population in terms of wealth, investment size and investment strategy (trend
following versus contrarians).

The MG is only the most famous agent based models studied by economists
and physicists. For a review of these agent based models one can con-
sult [115].

A model different to the MG is the mixed minority-majority where agents
are divided into two groups: fundamentalists and chartists. This is a very
simplified model to describe the traders behavior in a market. In spite of his
simplicity, this model can describe many of the stylized facts of the real price
fluctuations observed in the financial market [81].

Another class of models that can describe the stylized facts of real finan-
cial market are the so called zero-intelligence models [46, 57]. These models
describe the agents action in a random manner, compatibly with the market
constraints.



Chapter 4

Roughness and Finite Size
Effect in the NYSE Stock-Price
Fluctuations

The dynamics and fluctuations of stock-prices is represented, at the simplest
level, by a random walk which guarantees for the basic property of an efficient
market. In the past years it has become clear that one faces a rather subtle
and complex form of random walk. Simple correlations of price change are
indeed zero at the shortest time but many other features, often related to
power law behavior have been discovered [85]. Among the most preeminent
one may mention the power law distributions of returns (“fat tails”) and
the volatility clustering [88, 30] These properties, however, are far from
exhaustive and other approaches have been introduced in the attempt of
describing the subtle correlations of stock-price dynamics.

One of these methods is the attempt to characterize the “roughness”
of the dynamics which can provide additional information with respect to
the fat tails and volatility. The scaling properties of the roughness can be
defined via the Hurst exponent H [73], through the so called R/S analysis.
We consider the roughness problem for high frequency NYSE stock-prices.
This means that we take into account all the transactions which occur (tick
by tick).

First we discuss the statistical properties of the data set and show that fi-
nite size effects are unavoidable and very important [44]. Then we show that
fat tails and correlations affect the value of the Hurst exponent in an impor-
tant way [75]. Finally we analyze the real stock-price fluctuations and ar-
gue that the Hurst exponent alone cannot properly characterize their rough-
ness [6]. To this purpose we use a new method to study the roughness which
is able to automatically eliminate the trend problem. This is based on the
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deviation from a suitable moving average and it resolves various ambiguities
of the Hurst’s R/S analysis.

4.1 Database properties

For our roughness analysis we consider as database the price time series of all
the transactions of a selection of 20 NYSE stocks. These have been selected
to be representative and with intermediate volatility. This corresponds to
volumes of 105 − 106 stocks exchanged per day. We consider 80 days from
October 2004 to February 2005. This data are a subset of the dataset de-
scribed in Sec. 2.1

The time series we consider are by a sequential order tick by tick. This
is not identical to the price value as a function of physical time but we have
tested that the results are rather insensitive to this choice.

The number of transactions per day ranges from 500 to 5000 implying a
typical time interval between transactions of a few seconds. The density of
operations within a day is characterized by a concave shape which is rather
universal as we have observed in section 2.3 and shown in figure 2.3. This
means that, with respect to the physical time there are systematic density
fluctuations up to a factor of two with a minimum around the center. This
effect is obviously eliminated in our tick by tick time, in which physical time
is not considered and we have tested that it is not relevant for the roughness
properties.

Another problem which is very important and that we have also discussed
in section 2.2 is the fact that the closing price of a given day is usually
very different than the opening price of the next day. A typical behavior is
illustrated in figure 2.2. and it shows that these jumps are serious problem
in linking the data of one day to those of the next day.

This means that the data are reasonably homogeneous from the time
scale of a few seconds to a few hours but going to longer times can be rather
arbitrary due to these large night jumps.

This leads to a very serious problem if one tries to extend these time series
beyond the time scale of a single day. In fact, if one simply continues to the
next day, one has anomalous jumps for the night which cannot be treated
as a standard price change. An alternative possibility could be to artificially
eliminate the night jumps and rescale the price correspondingly. This would
produce a homogeneous data set which, however, does not correspond to the
original data.

This discussion clarifies that there is a fundamental problem in extending
the data beyond a single day. Since the transactions within each day range
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from 500 to 5000, this leads to an important problem of finite size effects
in relation to the roughness exponent. In the next section we are going to
discuss these finite size effects and show that they are strongly amplified by
the fat tail phenomenon.

4.2 Roughness and Hurst exponent
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Figure 4.1: Examples of the day price dynamics of two stocks whose behavior,
with respect to the roughness, appears very different on a visual inspection.
The two stocks have a very similar variance (σ) for the price distribution.
Surprisingly, also the Hurst exponent will be similar for the two cases.

The importance of a characterization of the roughness properties is clearly
illustrated in Fig. 4.1. Here we see the behavior of the price of two stocks
which are clearly very different with respect to their roughness properties.
The visual difference in roughness, however, does not influence the day
volatility σ, which is almost identical. The idea is therefore to add new
concepts to characterize their different behavior. We are going to see in the
end that even the Hurst exponent is not really optimal to this purpose and
the challenge of this new characterization should proceed along novel lines
which we outline at the end of the paper.

We first consider the problem of the characterization of the roughness in
the Hurst exponent including the finite size effects. The roughness exponent
characterizes the scaling of the price fluctuation as a function of the size of
the interval considered.

Originally this exponent was introduced for the time series of the levels
of the floods of the Nile river. He invented a new statistical method, which



82 Roughness and Finite Size Effects

he called the rescaled range analysis (R/S analysis). The basic idea was to
construct a profile from these series and analyze its roughness. This implied
some peculiar construction which we can avoid because we have the profile
directly.

The characterization of the roughness is complicated by the fact that
it corresponds to a problem of anisotropic scaling [18] and it can lead to
confusing results in its practical applications [105]. An example of these
difficulties is illustrated by the fact that for the growth of a rough profile
the Renormalization Group procedure has to be implemented in a rather
sophisticated and unusual way [33]. An illustration of this problem is also
given by the fact that the value of the fractal dimension of a rough surface is
crucially dependent on the type of procedure one considers [33]. The usual
approach is to take the limit of small length scales for which the relation
between the dimension of the profile, D, and the Hurst exponent is [18]:

D = 2−H . (4.1)

However, if one consider the limit of large scales (not rigorous mathematically
but often used in physics), one can get D = 1 for the Brownian profiles which
does not correspond any more to equation 4.1.

In the data analysis one is forced to consider a finite interval and nec-
essarily the two tendencies get mixed. Even considering equation 4.1 one
can have various ambiguities. In fact a large Hurst exponent corresponds to
small value of the fractal dimension which may appear strange.

Various problems contribute to this possible confusion. The first is how
one looks at a scaling law for an anisotropic problem. The scaling for rough-
ness links the vertical fluctuation ∆h as a function of the interval considered:

∆h(∆L) ∼ ∆LH (4.2)

In a physical perspective one has typically a lower cutoff and looks at the
behavior for large values of ∆L. Since for a random walk (Brownian profile)
one has H = 1/2 one could say that if H > 1/2 this corresponds to a case
which is more rough than the Brownian profile. However this is in apparent
contradiction with equation 4.1 because the value of D, if H > 1/2, results
smaller than the Brownian value (D = 3/2). This is because equation 4.1 is
derived in the limit ∆L→ 0 in the spirit of the coverage approach to derive
the fractal dimension.

A similar confusion can be given by the existence of trends in the dynam-
ics of the system. Consider for example a straight line behavior for which
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∆h ∼ ∆L. In this case one would have H = 1 and D = 1, namely the
system is not rough in the ∆L → 0 perspective but it is very rough in the
∆L→∞ view. In such a situation one should realize that a trend is present
and that the system is smooth. However, this distinction is not possible with
the Hurst’s R/S analysis.

Actually in the real data one has an upper and a lower limit for ∆L, due
to the intrinsic statistical limitation of the sample. The exponent H is then
obtained by a fit in a certain range of scales and all the above problems are
difficult to sort out.

4.3 Roughness in a finite size Random Walk

In this section we discuss the role of finite size effects in the determination of
the Hurst exponent. We start by deriving some analytical results for a finite
size random walk. Consider the function:

R(n) = 〈 max
k=(ln+1),(ln+n)

(Xk) − min
k=(ln+1),(ln+n)

(Xk)〉l (4.3)

where l = 1, 2, ..., N
n

and {X1, X2, ..., XN} are N record in time of a variable
X. The function R(n) describes the expectation value of the difference be-
tween maximum and minimum over an interval of size n. R(n), for many
records in time is very well described by the following empirical relation:

R(n) ∝ nH (4.4)

where H is the Hurst exponent. Now we want to check which is the effect
of the finite size in estimating the Hurst exponent. To perform this analysis
we consider a random walk and try to make an analytical calculation of the
function R(n) [4].

Suppose that δx1, δx2, ..., δxn are independent random variables, each tak-
ing the value +1 with probability p, and −1 otherwise. Consider the sums:

Xn =
n∑

i=1

δxi (4.5)

then the sequence X = {Xi : i ≥ 0} is a simple random walk starting at
the origin. In order to compute the expectation value of the maximum and
the minimum of the walk after n steps, is useful to consider the following
theorem.

Theorem 1 (Spitzer’s identity). [69] Assume that X is a right-continuous
random walk, and let Mn = max {Xi : 0 ≥ i ≥ n} be the maximum of the
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walk up to time n. Then, introducing the auxiliary variables s and t, for
|s|, |t| < 1 one has Eq.4.6,

log
( ∞∑

n=0

tn E(sMn)
)

=
∞∑

n=1

1

n
tn E (sX

+
n ) (4.6)

where X+
n = max {0, Xn} and E is the expectation value.

The term right-continuous refers essentially to the fact that the step size
should be bounded by a characteristic maximum size. In this respect the ran-
dom walk can be both continuous or discrete in terms of the step distribution.
For a mathematically rigorous definition see Ref. [69]

Considering the exponential of both member of Eq.4.6 one has:

∞∑

n=0

tn E(sMn) = exp
( ∞∑

n=1

1

n
tn E (sX

+
n )
)

(4.7)

The k-derivative with respect to t of the left hand side of Eq.4.7 for t = 0,
gives:

∂k

∂tk

∣∣∣∣∣∣
0

= k! E(sMk) (4.8)

Defining the right side member of Eq.4.7 as f(t) one can derive:

∂k

∂tk
f(t)

∣∣∣∣∣∣
0

=
∑

j=1

k
(k − 1)!

(k − j)!E(sX
+
j )


 ∂(k−j)

∂t(k−j)
f(t)



∣∣∣∣∣∣
0

f(0) = 1 (4.9)

By equating Eq.4.8 and Eq.4.9 one obtains:

E(sMk) =
1

k

k∑

j=1

E(sX
+
j )

(k − j)!


 ∂(k−j)

∂t(k−j)
f(t)



∣∣∣∣∣∣
0

(4.10)

In order to obtain E(Mk) from the function E(sMk) it is useful to consider
the following expansion which holds for a symmetrical probability density
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function:

E (sX
+
j ) =

∫ ∞

−∞
sX

+
j Pj(Xj) dXj (4.11)

=
∫ 0

−∞
Pj(Xj) dXj +

∫ ∞

0
sXjPj(Xj) dXj

=
1

2
+
∫ ∞

0
sXjPj(Xj) dXj

' 1

2
+
∫ ∞

0
(1 +Xj ln(s) +

1

2
X2
j (ln(s))2 + ...)Pj(Xj) dXj

' 1 + ln(s)
∫ ∞

0
XjPj(Xj) dXj + O(ln(s))2

= 1 +
1

2
E(|Xj|) ln(s) + O(ln(s))2

We now insert this result into Eq. 4.10. Considering also the identity:

E(Mk) = lim
s→1

E(sMk)− 1

ln(s)
(4.12)

we finally obtain:

E(Mk) =
k∑

i=1

E(|Xi|)
2i

(4.13)

Now we consider various possibilities for the specific nature of the random
walk:

a) If the increments δx are independent and corresponding to a Gaussian
distribution with E(δx) = 0 and variance σ2 = 1, one obtains:

E(|Xi|) =

√
2i

π
(4.14)

b) If δx have values ±1 with equal probability one gets:

E(|Xi|) =
i∑

Xi=−i
|Xi|Pi(Xi) (4.15)

where

Pi(Xi) =

(
i

Xi+i
2

)
1

2



i

(4.16)

This leads to

E(|Xi|) =





(i−1)!!
(i−2)!!

if i is even
(i)!!

(i−1)!!
if i is odd
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These explicit results permit now to compute the exact expectation for finite
size random walk properties [4]. Note that Eq.4.13 has a general value with
the only assumption that the increments are not correlated and symmetrically
distributed. This means, for example, that one could test the properties of
stock-prices for finite size samples being able to separate the role of fat tail,
included in Eq.4.13, from the role of correlations.

Eq.4.13 gives an exact relation between the expectation value of the max-
imum value Mk of a symmetric random walk of k steps and E(|Xi|), for a
given probability distribution of the individual step. In terms of Monte Carlo
simulations this would correspond to an infinite number of samples. Since
the Monte Carlo method will be applied also to cases for which the analytical
result is not available, we can use the present case as a test for the conver-
gency of the Monte Carlo method.
This comparison is shown in Fig.4.2 (a and b) where the two inserts show
precisely the degree of convergency as a function of the samples considered.

From this expression it is possible to derive explicitly the expected value
of the maximum as a function of the number of steps of the walk. By consid-
ering that a similar expression holds also for the minimum, one can directly
compute the effective Hurst exponent for random walk of any size. Replac-
ing the results obtained for E(Mn) in the expression of R(n) we can plot the
average span as a function of n and execute a fit to estimate the value of
H. Executing a fit in the region [10, 1000] we obtain a value of the slope
that is grater then the asymptotic one. In Fig. 4.3 we shows the result for
the effective Hurst exponent that we have obtained performing the fit in the
region [10, n] for the random walk with two identical steps (±1). One can see
that finite size effects are very important and a seriously affect the apparent
value of H.

The random walk models considered until now have a distribution of
individual steps corresponding to a Gaussian distribution or to two identical
steps. Real price differences however, are characterized by a distribution of
sizes which strongly deviates from these (“fat tails“). For example, if we
consider the histogram of the quantity:

S(t) = lnP (t+ 1)− lnP (t), (4.17)

we find a distributions with large tails, as shown in Fig. 4.4.
To analyze the effect of the fat tails in the evaluation of the Hurst expo-

nent, we can consider a model of random walk with increments that take the
values δx = ±ε with probability 0.45 and δx = ±10ε with probability 0.05.
The histogram in Fig. 4.4 represent such a model. We have performed a
numerical analysis of the Hurst exponent for a random walk with fat tails to
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Figure 4.2: The log-log graph shows E(Mk) as a function of k in the case of
a) random walk with two identical steps and b) Gaussian random walk. In
the inserts we show the convergency of the simulations to expected value as
a function of the number of realizations considered.

study their role on the finite size effects. To this purpose we have generated
1000 random walks of this kind of size n with n = [100 : 5000] and we have
calculated the function R(n) for each sample. After calculating the average
of R(n), we have considered the plot R(n) as a function of n and the evalua-
tion of H(n) has been performed in the region [ n

100
; n

10
]. Figure 4.5 shows the

result obtained, a comparison with a normal and a correlated random walk
and real data is also shown.

The fact that fat tails and correlations enhance the finite size effects is
easy to understand. In case of correlated random walks the effective number
of independent steps is strongly reduced. In the case of fat tails instead only
the tails give the main contribution to the profile.



88 Roughness and Finite Size Effects

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 10  100  1000  10000

H
(n

)

n

Hfit

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 10  100  1000  10000

H
(n

)

n

Htheorical

Figure 4.3: This plot shows the trend obtained fitting the curve R(n) for
different values of the size n. The results shows a systematic overestimate
of Hurst exponent for small size, due to finite size effects. This is a general
result and it shows that finite size effects always enhance the apparent Hurst
exponent. This enhancement can be understood by considering that, in some
sense, a single step would correspond to H = 1, so the asymptotic value
H = 1/2 is approached from above.

This findings could also have implications for very long times if combined
with the non stationarity of the price dynamics. It should be considered the
possibility that even the asymptotic regime is still altered by these effects.
This could suggest a different interpretation of the deviation of H from the
value 1/2, which is usually proposed in terms of long range correlations [97].

The Fig. 4.5 shows the inefficiency of the Hurst exponent’s approach
to the study of the roughness for systems with a small size. The results are
clearly affected by the effect of a finite size and the interpretation of H > 1/2
as a long range correlation could be misleading.

4.4 Analysis of NYSE stocks

First we consider the Hurst’s R/S analysis for the two stocks plotted in Fig.
4.1 and the relative results are shown in Fig. 4.6.
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Figure 4.4: Probability function for high frequency price differences of the
BRO stock during a day. The solid line is the Gaussian fit of the data. The
boxes represent a model to estimate the effect of the tails for the random
walk. The probability is estimate by an histogram given by a value ±ε which
has 0.45 of probability and a tail ±10ε with probability 0.05. In this plot
ε = 0.2.

The values of the two exponents H are very similar in spite of the large
difference of the two stocks in their apparent roughness properties [6]. This
shows that the exponent H is not suitable to characterize the different rough-
ness properties of the two stocks.

We then consider the entire series of 20 stocks and the results are reported
in Tab. 4.1. Here H represents the daily value averaged over 80 days. Then
Hmax and Hmin are the maximum and the minimum values respectively, σ is
the variance averaged over the 80 values and < N > is the average number
of transactions per day. In Fig. 4.7 we report the time behavior of H(t) for
the 80 days for the two stocks of Fig. 4.1. With respect to previous analysis
of the time dependence of H(t) [32], we can observe that the daily variability
of single stocks is much larger than that of global indices over long times. In
addition also the average is appreciably larger.

A general result is that the value of H is systematically larger than 1/2.
The usual interpretation would be to conclude that long range correlations
are present [97]. However, in view of our previous discussion we would in-
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Figure 4.5: The value of H(n) is shown for three different random walk
models (normal, correlated and with fat tails) and for real data. Finite
size effect already present in the normal random walk are amplified by the
presence of fat tails and correlations. In the x-axis is plotted the effective
size, that is n

10
. The values are averaged over 1000 realizations.
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Figure 4.6: Analysis in terms of the Hurst exponent of the two stocks shown
in Fig. 4.1. The case (a) refers to the stock which appears smooth, while (b)
is the other one. One can see that the value of H is very similar despite the
apparent differences between the two behavior (Fig. 4.1).
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stock H Hmax Hmin σ < N >
AH 0.599 0.732 0.489 0.0215 1535.77
AVO 0.615 0.785 0.501 0.0170 1296.71
BA 0.573 0.694 0.478 0.0106 3323.37
BRO 0.662 0.792 0.557 0.0161 853.91
CAI 0.641 0.751 0.478 0.0232 1052.58
DRI 0.575 0.699 0.445 0.0106 1446.65
GE 0.526 0.653 0.406 0.0065 5598.83
GLK 0.627 0.780 0.484 0.0105 1114.01
GM 0.574 0.677 0.462 0.0083 3405.84
JWN 0.579 0.738 0.457 0.0125 2025.67
KSS 0.570 0.686 0.438 0.0135 2789.09
MCD 0.559 0.691 0.417 0.0076 3480.63
MHS 0.612 0.750 0.460 0.0113 1792.51
MIK 0.591 0.752 0.456 0.0132 1377.84
MLS 0.635 0.914 0.496 0.0204 759.27
PG 0.551 0.662 0.456 0.0091 4135.80
TXI 0.636 0.776 0.473 0.0296 733.68
UDI 0.679 0.781 0.524 0.0147 774.25
VNO 0.622 0.777 0.506 0.0244 883.78

Table 4.1: Hurst exponent for 20 NYSE stocks. H is the average daily value
over the 80 days. Hmax and Hmin are the maximum and the minimum and
σ the variance. < N > is the average number of transactions per day.

stead propose that this deviation from 1/2 is precisely due to finite size effects,
combined with the fat tail phenomenon. A further support to this interpre-
tation is that if we built a long time series by eliminating the night jumps,
one observes a convergency towards the value 1/2. Also one may note that
stocks with a relatively large number of transactions per day (< N >), like
for example GE stock, are much closer to the random walk value H = 1/2.

The fact that apparently different profiles with respect to the roughness
lead to value of H which are very similar is due to a variety of reasons.
The overall enhancement with respect to the standard value 1/2 is, in our
opinion, mostly due to the finite size effects phenomenon. However, this
does not explain why two profiles which appear very different, like those in
Fig. 4.1, finally, lead to very similar values of H. This is probably due
to the fact that the Hurst’s R/S analysis tends to mix the role of trends
with fluctuations and in the next section we are going to propose a different
method to resolve this problem.
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Figure 4.7: Time dependence of the Hurst exponent H(t) for the two stocks
shown in Fig. 4.1.

To complete our analysis, we consider the generalized Hurst exponent in
the spirit of Ref. [12]. To this purpose we analyze a q-th order price difference
correlation function defined by:

Gq(τ) =< |P (t)− P (t+ τ)|q > 1
q (4.18)

The generalized Hurst exponent Hq can be defined from the scaling be-
havior of Gq(τ):

Gq(τ) ∼ τHq (4.19)

For a simple random walk Hq = H = 1/2 independently of q. We have
calculate the function Gq(τ) for the two test-stocks.

The results are shown in Fig. 4.8 and show that Hq is not a constant
but strongly depends on q. This result provides an evidence that the char-
acteristics of the profile are dominated by the large jumps due to the fat tail
properties that are present in the plotted data.
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Figure 4.8: Gq(τ) as a function of τ in a log-log scale for the two test-stock
((a) is the smooth and (b) the rough one). In both (a) and (b), from bottom
to top q = 1, 2, 3, 4, 5, 6.

4.5 New approach to roughness as

fluctuation from Moving Average

In this section we consider a new method to characterize the roughness. The
basic idea is to be able to perform an automatic detrendization of the price
signal. This can be achieved by the difference between the price variable and
its moving average defined in an optimal way. At each transaction point ti
we define the moving average of the price P (ti), with a characteristic time τ ,
as:

Pτ (ti) =
1

Nτ

∑

j

P (tj) (4.20)

where Nτ are the number of transactions in the time interval [−τ/2 : τ/2].
This function corresponds to the symmetric average over an interval of size
Nτ around ti.

One can then consider the maximum deviation of P (ti) from Pτ (ti) over
an interval of a certain size, in our case we consider a single day:

Rτ = max
i
|P (ti)− Pτ (ti)| (4.21)

This may appear similar to the standard definition of roughness which
gives the absolute fluctuation in a time interval τ . Instead the use of Rτ

corresponds to an automatic detrendization which appears more appropriate
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Figure 4.9: Example of price fluctuations and the corresponding moving
average. In our case we consider a symmetrized moving average defined as
the average of the price over a symmetric interval of total size τ .

to study the roughness. Our approach is similar to the one of Ref. [2],
but with the difference that we use a symmetrized definition of the moving
average while Ref. [2] defines the moving average only with respect to a
previous time interval.

In Fig. 4.10 we show the values of Rτ for the two stocks shown in Fig. 4.1
and, for comparison, the same stocks analyzed with the R/S analysis. One
can see that the fluctuations from the moving average are more appropriate
to describe the difference between these stocks which cannot be detected with
the standard Hurst’s R/S analysis.

4.6 A finite range test for correlation in

time series

Detecting complex correlations in finite size time series is not an easy task.
Linear correlations are easy to identified by means the usual statistical tools,
such as the autocorrelation function. If one has to identify some high or-
der correlations, for example three point correlations, the simple correlation
function become hard to calculate expecially in the case of short time series.
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Figure 4.10: (a) Fluctuations over intervals of different size (τ) defined by
the differences between maximum and minimum values over intervals of size
τ . These curves were used in the previous sections to compute the Hurst
exponent in the standard way. The two curves refer to the two stock of
Fig. 4.1. One can observe that the slope is similar for the two cases and,
at relatively large scale (τ), even the amplitudes become rather similar. (b)
In this case the amplitudes are defined by the fluctuations from the moving
averages as given by Eq. (4.21). In this case there is a marked difference
in slope and even more in amplitude. This example clarifies that this new
definition of roughness can be more useful to classify the stock dynamics.

In this perspective, one of main challenge is to find new statistical tools able
to identify complex correlations from experimental data. In this section we
present a new tool to analyze real time series which seems to work in this
direction [9]. To introduce this method to to extract information about cor-
relations in time series, let’s start recalling the Eq. 4.13 valid for of a finite
RW. We write again Eq. 4.13 for a clearness discussion.

E(Mk) =
k∑

i=1

E(|Xi|)
2i

This result is valid for any uncorrelated process X which is the sum of limited
and symmetrically distributed increments. In section 4.3 we have verified
that this equation is valid for a simple Random Walk. One expects that this
equation is not still valid considering correlated processes. Our strategy to
detect correlations is to separately evaluate both the sides of Eq. 4.13 and
after check if they match or not. Our aim is to verify if this method is able to
detect complex correlations in data. We have chosen three different processes
to test our method. The first is simple k-steps correlated Random Walk
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which has simple linear correlations. The second process we have considered
is the ARCH(1) process that we have described in section 3.3. This process
has no linear correlations but displays some higher order correlations. At
last we analyze the two dataset described Fig. 4.1. As we have shown
is sections 4.2 and 4.4 these two stocks look very different but have the
same roughness properties and no linear correlations. We will see that this
method is suitable to distinguish these two datasets in terms of their complex
correlations properties.

4.6.1 Simple k-steps correlated RW

The simplest process for illustrating the method proposed here is a RW with
a simple correlation in the increments. So we consider a RW with increments
η taking the values +1 with probability p = 1/2 and −1 otherwise with the
further rule that if ηi = 1 then ηi+1 = ηi+2 = ... = ηi+k−1 = 1 and the same
if ηi = −1. We have generated a correlated RW with this rules and we have
calculated both the members of Eq. 4.13 performing the averages over an
ensemble of 1000 realizations. In Fig. 4.11(a) is plotted the autocorrelation
function ρ(τ) of the increments δxi = Xi+1−Xi for a 5-steps correlated RW.
In Fig. 4.11(b) are plotted both the side of Eq. 4.13 as function of the RW
size k.
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Figure 4.11: In this figure are shown the results for a 5-steps correlated RW.
In (a) is plotted the autocorrelation function ρ(τ) for the increments δx. This
function is zero when τ > 5. In (b) are plotted the two side of Eq. 4.13 as
a function of the size of the RW. We can see that the correlations in the
increments δx lead to a mismatch of the two side.

As we can see from Fig. 4.11 the presence of positive correlations in the
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increments η is reflected in a mismatch in Eq. 4.13. We can see that the
right-side value of equation Eq. 4.13 is greater then the left-side (E(Mk)).

4.6.2 ARCH process

To test our method we use the simple ARCH(1) process we have described
in section 3.3. We recall the ARCH(1) model equation for the variance σ2

i

and the increments ηi:

σ2
i = α0 + α1η

2
i−1 ηi = σiεi, (4.22)

where ε is a Gaussian random variable with zero mean and zero variance.
It is easy to see that the autocorrelation function for the increments η is

a delta function but the ARCH(1) process shows some higher-order correla-
tion. In particular the correlation of square increments have an exponentially
decaying correlation function.

ρ(τ) =< η2
i η

2xi+τ >= Ae−τ/λ, (4.23)

where λ and A are functions of α0 and α1. In Fig. 4.12 are shown the
autocorrelation functions for the increments and for the square-increments
for an ARCH(1) process. with parameters α0 = 0.45 and α1 = 0.55.

To see if our test is able to detect also these higher-order correlation, we
have performed our analysis. In Fig. 4.13 we have plotted the two side of
Eq. 4.13 as usual. As we can see from Fig. 4.13, although the autocorrelation
function of the increments δx is a delta function, the two side of Eq. 4.13
do not match, showing that this method is able to identify and visualize the
complex correlations of the process.

4.6.3 Test on Real Data from NYSE Stock-Market

In this section we perform our correlation test on some data from the NYSE
Stock-Price. In particular we want to check is our test is able to distinguish
the two stock plotted in Fig. 4.1

To make our correlation test we calculate the value of E(Mk) and of the
sums of the right side of Eq. 4.13. The expectation values are estimated
splitting our data set in windows of size k and than averaging over all the
values for each window.

We have choose the two time series in Fig. 4.1 to have the same statistical
characteristics. The total fluctuation of the price during the day and also the
volatility calculated in the day have very similar values for the two stocks.
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Figure 4.12: In (a) the autocorrelation function for the increments of an
ARCH(1) process is shown. The parameters of the model are α0 = 0.45
and α1 = 0.55. The autocorrelation function of price increments is a delta
function. The autocorrelation function for the square-increments is plotted
in (b) and we can see that it decays exponentially to zero.

Despite these similar features, we can see that the stock plotted in Fig. 4.1(a)
looks very smooth with a well defined trend, instead the one in Fig. 4.1(b)
has larger fluctuations and looks very rough. In this perspective we suppose
to observe some kind of correlations in the stock plotted in Fig. 4.1. First
we look to the autocorrelation function of the price increments. As we can
see from Fig. 4.14 both the stocks plotted in Fig. 4.1 have uncorrelated price
increments.

Now we try to detect some higher-order correlations using our test based
on Eq. 4.13. We have calculated separately the two side of Eq. 4.13 subdi-
viding the size of both data sets in windows of length n. In each window we
numerically calculate Mk and |Xk| then we average all the values. Varying
the windows length we can perform our correlation test. The results are
shown in Fig. 4.15. We can see from Fig. 4.15 that for the stock plotted in
Fig. 4.1(a), our test points out a correlation that does not appear studying
the only autocorrelation function of the price increments. On the other hand,
for the stock plotted in Fig. 4.1(b), our test do not shows any correlations
confirming the absence of trend that we can see ”at sight”.
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Figure 4.13: In this figure are plotted the two side of Eq. 4.13 for an ARCH(1)
process with parameters α0 = 0.45 and α1 = 0.55. We can see that also in
this case where the simple correlations are zero the two side of Eq. 4.13 do
not match because of the presence of higher-order correlations.
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Figure 4.14: Autocorrelation function (ρ) for the price increments of the two
stocks plotted in Fig. 4.1. One can see that there are no correlations between
price differences for both the stocks.
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Figure 4.15: The two side of Eq. 4.13 are plotted for the two stocks in Fig. 4.1.
We can observe that for the smooth stock with a trend, the one in Fig. 4.1(a),
the two side do not match showing complex correlations not detectable with
the usual statistical indicators. The stock plotted in Fig. 4.1(b) satisfies the
Eq. 4.13. In this case our test does not reveal hidden correlations, as we
expect.

4.7 Discussion and Conclusions

We have considered the roughness properties as a new element to characterize
the high frequency stock-price fluctuations. The data considered include all
transactions and show a large night jump between one day and the next. For
these reasons the dataset are statistically homogeneous only within each day.
This leads to a serious problem of finite size effects which we have analyzed
by using various random walk models as examples. We have computed the
effective Hurst exponent as a function of the size of the system. The basic
result is that the finite size effects lead to a systematic enhancement of the
effective Hurst exponent and this tendency is amplified by the inclusion of
fat tails and eventual correlations.

An analysis of real stock-price behavior leads to the conclusion that most
of the deviations from the random walk value (H = 1/2) are indeed due to fi-
nite size effects. Considering the importance of non-stationarity phenomenon
one may conjecture that the finite size effects could be important even for
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long series of data.
Concerning the roughness analysis we conclude that the standard Hurst’s

R/S analysis is not very sensitive in order to characterize the various stock-
price behaviors. We propose a different roughness analysis based on the
fluctuations from a symmetrized moving average. This has the advantage of
an automatic detrendization of the signal without any ad hoc modification
of the original data. This new method appears much more useful than the
standard one in order to characterize the fluctuations behavior of different
stock as shown clearly by the analysis of the two cases in Fig. 4.1. An other
improvement has be obtained considering a new tool for detecting complex
correlations in finite size time series.





Chapter 5

Hidden Forces and Fluctuations
from Moving Averages

The concept of moving average is very popular in empirical trading algo-
rithms [101] but, up to now, it has received little attention from a scientific
point of view [85, 88, 30]. In [6] we have proposed that a new definition of
roughness can be introduced by considering fluctuations from moving aver-
ages with different time scales. This new definition seems to have various
advantages with respect to the usual Hurst exponent in describing the fluc-
tuations of high frequencies stock-prices.

A more specific analysis of these fluctuations can be found in two recent
papers [19, 114, 5] which attempt to determine the tendency of the price
to be attracted or repelled from its own moving average (Fig. 5.1). This
is completely different from the use of moving averages in finance, in which
empirical rules and predictions are defined in terms of a priori concepts [101].
The idea is instead to introduce a statistical framework which is able to
extract these tendencies from the price dynamics.

5.1 The Effective Potential Model

The basic idea is to describe price dynamics in terms of an active random walk
(RW) which is influenced by its own moving average. This induces complex
long range correlations which cannot be determined by the usual correlation
functions and that can be explored by this new approach [19, 114]. The basic
ansatz is that price dynamics P (t) can be described in terms of a stochastic
equation of type:
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Figure 5.1: Example of a model of price dynamics (in this case a simple
random walk) together with its moving average defined as the average over
the previous 50 points. The idea is that the distance of the price from its
moving average can lead to repulsive (blue arrows) or attractive (red arrows)
effective forces.

P (t+1)−P (t)=

= −b(t) d

d
(
P (t)−PM(t)

)Φ
(
P (t)−PM(t)

)
+

+ σ(t)ω(t) (5.1)

where ω(t) corresponds to a random noise with unitary variance and

PM(t) ≡ 1

M

M∑

k=1

P (t− k) (5.2)

is the moving average over the previous M steps.
The potential Φ together with the pre-factor b(t) describe the interaction

between the price and the moving average. In both approaches [19, 114] it
is assumed to be quadratic:
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φ
(
P (t)− PM(t)

)
=
(
P (t)− PM(t)

)2

. (5.3)

The time evolution of the “price” of such a process, is shown in Fig. 5.2,

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  50  100  150  200

t

P
(t)

Repulsive Potential 

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  50  100  150  200

t

P
(t)

Repulsive Potential

Attractive Potential 

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  50  100  150  200

t

P
(t)

Repulsive Potential

Attractive Potential

Flat Potential 

Figure 5.2: Time evolution of the price described by Eq. 5.1 in the case of a
quadratic potential as Eq. 5.3. Three different behavior are plotted. The red
lines represents the time evolution of a RW in a repulsive quadratic potential
while the blue line is in an attractive quadratic potential. The green line is
the case of flat potential (simple RW). The parameters are fixed to M = 20
and b = ±1. We can observe an over diffusion (under diffusion) in the case
of repulsive (attractive) potential.

where we can observe three cases in which the potential is attractive, repulsive
and constant (simple RW).

Despite this similar starting point the two studies proceed along rather
different perspectives. In Ref. [19] the three essential parameters of the model
(b;M ; σ) are considered as constants with respect to t. Then, by analyzing
the price fluctuations over a suitable time interval and for a long time series,
the values of the three parameters are identified.

In Ref. [114] instead the analysis is performed by looking directly at the
relation between P (t + 1) − P (t) and P (t) − PM(t). In this way one can
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reconstruct the force of the process plotting P (t + 1) − P (t) as a function
of P (t) − PM(t). Then, integrating from the center, one can obtain the
potential. This permits to derive the form of the potential and to identify
the parameter b(t) and its time variation. In Fig. 5.3 are shown the potential
obtained from a simulation of the process described in Eqs. 5.1 and 5.3 in
the case of attractive force for various values of M .
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Figure 5.3: The plot shows the shapes of the quadratic attractive potentials
defined by Eqs. 5.1 and 5.3. We can see that the amplitude of the potentials
depend on the choice of the parameter M .

We can observe that the potentials have an amplitude (that is the slope
of the linear force) which depends on M . In [114] is shown that such a
dependence can be eliminated rescaling the potential by a factor (M − 1).
This would imply that it is not necessary to specify the time scale of the
moving average.

In Fig. 5.4 are shown the potentials plotted in Fig. 5.3, rescaled by the
factor (M − 1). Indeed we can observe a good data collapse.

This idea of assuming a linear force in Eq. 5.1 has been tested on real
data. In [114] a series of data from the Yen-Dollar exchange rates have been
analyzed. The potential analysis for the case of the Yen-Dollar exchange
rates indeed leads to the observation of rather quadratic potentials.
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Figure 5.4: The different potential plotted in Fig. 5.3 are re-plotted scaling
the potential with the factor (M −1). We can see that in this way we obtain
a good data collapse.

5.2 Test Studies

Given these different perspectives, which arise from the same basic model,
we decided to perform a series of tests of this approach which we present in
this thesis [5]. We believe that these tests can elucidate various properties
and limitations of the new approach and represent a useful information for
its future developments and applications.

In Fig. 5.1 we show a simple RW and a moving average which represents
its own smoothed profile. The analysis is performed by plotting the values
of P (t + 1)− P (t) as a function of P (t)− PM(t) and deriving the potential
by integrating from the center [114]. The simple RW leads to a flat potential
(no force) as expected (Fig. 5.5). Than we can take the smoothed profile
(previous moving average) as a dataset by itself and repeat the analysis by
comparing it to a new, smoother moving average (not shown). As one can
see in Fig. 5.5 this leads to an apparent repulsive potential which should
be considered as spurious. This is due to the fact that the smoothed curve
implies some positive correlations as shown in Fig. 5.6. Therefore in this
framework positive correlations lead to a destabilizing potential with respect
to the moving average.
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Figure 5.5: Effective potential for a random walk (flat line) and a smoothed
random walk (convex parabola). The apparent repulsive potential corre-
sponding to the smoothed RW is spurious and due to the correlations corre-
sponding to the smoothing procedure. The units of the potential are defined
by Eq.(5.1).

The opposite would happen for negative correlations (zig-zag behavior).
The interesting question is however if one can identify a non trivial situa-

tion in terms of the effective potential but in absence of simple correlations.
This would be the new, interesting situation and the corresponding forces can
be considered as hidden, in the sense that they do not have any effect in the
usual correlation functions. Real stock-prices data clearly do not show any
appreciable correlation, otherwise they would violate the simple arbitrage
hypothesis. In the exchange rates instead there is a zig-zag behavior (neg-
ative correlation) at very short times which should be filtered with suitable
methods in order to perform the potential analysis [114].

We now consider the model of the quadratic potential as in Refs. [19, 114].
The effective potential is easily reconstructed as shown in Fig. 5.7. We also
show in Fig. 5.8 the behavior of the absolute price variations for different
time steps. The correlation function for the price and volatility are shown in
Fig. 5.9 which clarifies that, in this case, no simple correlation is present, nor
is there any volatility clustering effect. This is an interesting result because
it shows that the new method is able to detect hidden forces which have no
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Figure 5.6: Autocorrelation (ρ) of the price increments for the simple RW
and its smoothed profile. One can see that the smoothing procedure induces
positive correlations up to the smoothing length (in this case 10 steps).

effect in the usual correlations of prices or volatility.

5.3 Probabilistic Models

We now consider some variations to the RW which depend on P (t)− PM(t).
We modify the probability of a certain step rather than the size of the step
as in Eq.(5.1). The simplest model is to add a constant drift, independent
on the value of PM(t). The effective potential corresponding to this case is
simply linear as shown in Fig. 5.10. One can see that in this case the point
where P (t)− PM(t) = 0 is not a special point and this model appears to be
oversimplified with respect to the dataset analyzed up to now [19, 114].

A more interesting model is represented by the following dynamics for a
RW with only up and down steps:




p(↑) = 1/2 + ε1 for P (t)− PM(t) > 0
p(↓) = 1/2− ε1 (5.4)




p(↑) = 1/2− ε2 for P (t)− PM(t) < 0
p(↓) = 1/2 + ε2 .
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Figure 5.7: Effective potential reconstructed from a series of data obtained
by a dynamics corresponding to Eqs.(5.1, 5.2) for the two cases of attractive
and repulsive potentials. In this case M = 30 and b = ±1. The units of the
potential are defined by Eq.(5.1).

This implies a tendency of destabilization (repulsion from PM(t)) whose
strength is only dependent on the sign of P (t) − PM(t). In principle the
situation can be asymmetric with ε1 6= ε2.

In Fig. 5.11 is shown the time evolutions of a price whose dynamical
equations is given by Eq. 5.4 in the case of asymmetric repulsive potential.
Also the comparison with a simple RW is shown.

The potential analysis for this case leads to a piecewise linear potential
in which the slopes are related to ε1 and ε2 (Fig. 5.12).

One can also see that one line extends more than the other indicating
an asymmetric distribution. Also in this case the correlation of the price
variations and volatilities show no detectable effect as shown in Fig. 5.13.
Clearly in this case the effective potential is just a representation of the
correlations between P (t + 1) − P (t) and P (t) − PM(t) whose microscopic
origin is instead in the modification of the probability for unitary steps.
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Figure 5.8: Absolute price variations for different time steps(τ = 1 (yellow);
τ = 5 (blue); τ = 10 (red)) corresponding to the dynamics of Eqs.(5.1, 5.2).

5.4 Fractal Model

It may be interesting to consider also the case of a fractal model constructed
by an iterative procedure [85], Fig. 5.14.

The fractal model does not have a specific dynamics but, since it is often
considered as to capture some properties of real prices, we consider of some
interest to study if this model would correspond to some type of effective
potential. In Fig. 5.15 we can see that the effective potential is slightly
attractive. Given the symmetry of the model construction, the asymmetry
observed in the effective potential is probably due to the backward construc-
tion of the corresponding moving average.

5.5 Analysis of the Fluctuations

We now consider the nature of fluctuations from the moving average by ana-

lyzing the probability distribution W
(
P (t)−PM(t)

)
for the various models.

In Fig. 5.16 we show the distributions corresponding to the quadratic poten-
tial as compared to that of a reference RW (b = 0). The first observation is
that the repulsive potential makes the distribution broader (super diffusion)
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Figure 5.9: The correlation analysis of price variations shows no correlations
between price differences and no volatility clustering effect. This implies
that the presence of attractive or repulsive forces with respect to the moving
averages is not detectable with the usual statistical indicators.

while the attractive potential makes it narrower (sub diffusion).
This behavior was already observed in Refs. [19, 114]. Less trivial is the

fact that the distributions are well represented by Gaussian curves.
In Fig. 5.17 we show the same distributions corresponding to the proba-

bilistic model of Eq. (5.4) for the case of asymmetric attractive and repulsive
effects. In this case there is a marked deviation from the Gaussian behavior
and the case of repulsive trend develops two separate peaks. It will be inter-
esting to check the corresponding distribution on real stock-prices which we
intend to perform in the future.

5.6 Application and test on an agent based

model

It is instructive to analyze the effective potential scenario in agent-based
models, where the price process is not defined explicitly but only through
the aggregate choices of a group of traders. The simplest and most studied
framework from a Statistical Physics perspective is that of Minority Games
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Figure 5.10: Effective potential corresponding to a RW with a constant drift
which alters the probability for a step up or down. The units of the potential
are defined by Eq.(5.1).

[34, 39], in which each of N agents must decide at every (discrete) time step
whether to buy (ai(t) = 1) or sell (ai(t) = −1) an asset. The resulting
price process is determined by the decisions of all agents through the “excess
demand” A(t) =

∑N
i=1 ai(t). In particular, neglecting liquidity effects for the

sake of simplicity, one can write that

P (t+ 1)− P (t) = A(t), (5.5)

which amounts to defining the (log-)price as P (t) =
∑
t′<tA(t′).

It is clear that an agent’s trading behavior will depend on his expectations
about the future price increment A(t), denoted by Ei[A(t)]. For example, it
has been argued [90] that if

Ei[A(t)] = ψiA(t− 1) + (1− ψi)A(t− 2), (5.6)

agent i behaves as a trend-follower for ψi > 1 (correspondingly he perceives
the market as a Majority Game with payoff πi(t) = ai(t)A(t)), while he
behaves as a fundamentalist for 0 < ψi < 1 and plays a Minority Game with
payoff πi(t) = −ai(t)A(t).
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Figure 5.11: In figure (a) is plotted the time evolution the price whose dy-
namics is described by Eq. 5.4 , compared with the time evolution of a simple
RW.

Let us now consider an agent who forms expectations with the simple
assumption to adopt a linear dependence (quadratic potential):

P (t+ 1)− P (t) ∝ P (t)− PM(t) (5.7)

It is easy to see that such an agent is described by a generalization of (5.6).
Indeed, a direct calculation shows that (5.7) corresponds to

Ei[A(t)] ∝
M−1∑

τ=1

M − τ
M

A(t− τ). (5.8)

Agents thus tend to discount events further back in time and give larger
weight to recent price changes when estimating the future returns. Clearly,
such an agent has a more complicated reaction pattern than a pure Minority
or Majority Game player and will be described by a payoff function that
accounts for the possibility of behaving differently in different market regimes.

Models of this type have been introduced recently and appear to be an
ideal testing ground to verify the emergence of the effective potential scenario
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Figure 5.12: Effective potential corresponding to the dynamics of Eq.(5.4)
with ε1 = 0.05 and ε2 = 0.10. One can see that in this case the distribution
is asymmetric and it extends more in the direction for which the instability
is stronger. In this model the effective force only depends on the sign of
P (t) − PM(t) and not on its specific value. The units of the potential are
defined by Eq.(5.1).

in a microscopic setting [7]. Specifically, we have tested it on a model in which
agents may switch from a trend-following to a fundamentalist attitude (and
vice-versa) depending on the market conditions they perceive, which was
introduced in Ref. [94]. We refer the reader to the literature for a detailed
account of the model’s definition and properties. In a nutshell, it describes
agents who strive to maximize the payoff

πi(t) = ai(t)[A(t)− εA(t)3], (5.9)

where A(t) = A(t)/
√
N is the normalized excess demand. The idea is that

for small price movements (A(t) ' 0) agents perceive the game as a Ma-
jority Game as they try to identify profitable trends. However when price
movements become too large, the game is perceived as a Minority Game, i.e.
agents expect the price to revert to its fundamental value. As in most Mi-
nority Games, agents have fixed schemes (‘strategies’) to react to the receipt
of one of P possible external information patterns and learn from experience
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Figure 5.13: Correlation analysis of price variations and volatility for the
model of Eq. (5.4). Also in this case no detectable correlations are present.

Figure 5.14: Example of a fractal model distribution of price



5.6 Application and test on an agent based model 117

-5e-06

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

-0.01 -0.005  0  0.005  0.01  0.015

P(t)-PM(t)

P
ot

en
tia

l

Figure 5.15: Effective potential corresponding to the fractal price model.
The units of the potential are defined by Eq.(5.1).

to select the strategy and, in turn, the action ai(t) that is more likely to
deliver a positive payoff. A realistic dynamical phenomenology is obtained
in a whole range of values of the model parameter ε when the number N of
players is large compared to the amount of information available to them P
(this is measured by a parameter α = P/N , see [94] for details).

In Fig. 5.18 is shown the time evolution of P (t) for a game with parame-
ters α = 0.05 and ε = 1. This choice of parameters corresponds to be in the
range in which the competition between trend followers and contrarians is
stronger. In fact, in Fig. 5.18, we can observe some “ordered” periods, where
A(t) is small and well defined trends in the price dynamics appear, but also
“chaotic” periods where the dynamics of the price is dominated by the con-
trarians. In Fig. 5.18 we have identified two periods in which the different
behaviors of the agents are well defined and we have used these periods as
dataset for our potential analysis.

In Fig. 5.19 are plotted the potentials obtained performing the effective
potential analysis with M = 20. We can observe that, when the market
is dominated by contrarians, we obtain an attractive potential. This shape
of the potential reproduces the agents’ tendency to keep the price near its
“fundamental” value. We can also note that this potential is not perfectly
quadratic as in model described in Eqs. 5.1 and 5.3. In fact, plotting different
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Figure 5.16: Distribution of the fluctuations, W (P (t) − PM(t)), for the dy-
namics of Eq. (5.1-5.3) and different values of the parameter b.

potentials with various values of M we can not obtain a data collapse scaling
the potentials with the factor (M−1). In case of market dominated by trend
followers, we can observe the presence of well defined trends (bubbles and
crashes). In this case the agents try to follow the trends and the price tends
to go away from its fundamental value. In this case we obtain a repulsive
potential.

Therefore, the potential analysis is able to detect the agents’ behavior
based on microscopic rules only analyzing the data of a macroscopic variable,
P (t).

From the viewpoint of modeling real markets, it will be very interesting
to introduce an agent based model in which agents perform their decision
(buy/sell) by considering their expectations about the next price increment
using Eq. 5.8, with different constant of proportionality and different values
of the ’memory’ M and not on the basis of a set of given strategies (as in the
minority game framework). Work along these lines is currently in progress.
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Figure 5.17: Distributions of the fluctuations, W (P (t) − PM(t)), for the
dynamics of Eq. (5.4). In this case the distributions became asymmetric due
to different values of ε1 and ε2.
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Figure 5.18: The time evolution of P (t) for a minority-majority game with
ε = 1 and α = 0.05 is shown. We can observe the alternation of different
regimes. In the graph are indicated two periods by means of arrows. In the
minority regime the price remains near to its fundamental value, while in the
majority regime appears a well defined trend.
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Figure 5.19: The potential analysis with M = 20 for the two periods indi-
cated in Fig. 5.18 is shown. The analysis for the minority region leads to an
attractive (even though not really quadratic) potential. Instead, analyzing
the majority region we found a repulsive potential.

5.7 Results for Real Stock Prices from

NYSE

For our potential analysis we consider as database the price time series of all
the transactions of a selection of 20 NYSE stocks. These have been selected
to be representative and with intermediate volatility. This corresponds to
volumes of 105 − 106 stocks exchanged per day. We consider 80 days from
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(a) (b)

(c)

Figure 5.20: The time evolution of three stock indexes (CLF, ITU and TOL)
is shown. The time is expressed in tick and correspond to one trading day.

October 2004 to February 2005.
The time series we consider are by a sequential order tick by tick. This

is not identical to the price value as a function of physical time but we have
tested that the results are rather insensitive to this choice.

The statistical properties of these kind of data are relatively homogeneous
within the time scale of a trading day but the large jumps of the prices
between different days prevent the extension of the analysis to large times [6].
So we focus our potential analysis considering the stock-prices fluctuations
within a trading day. In Fig. 5.20 are plotted the time evolutions of three
stock indexes in a trading day.

If we perform the effective potential method for a trading day of a given
stock, we found shapes of the effective potential that are very irregular and
often asymmetric. In Fig 5.21 are plotted the results obtained for the data
plotted in Fig 5.20. We can see that the shapes of the potentials are not
always quadratic. The potential in Fig. 5.21(a) it seems rather quadratic
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Figure 5.21: The effective potential method has been applied to the price
evolution of the three stocks plotted in Fig. 5.20. We can see that the effective
potential are rather asymmetric and not all quadratic. The potential in (a)
seems quadratic and attractive in the central part but has asymmetric tails.
The potential in (b) and (c) are not quadratic. In particular the potential in
b is asymmetric and looks like piecewise linear as in Fig. 5.12. The potential
in (c) is flat like a simple RW potential.

and attractive while in Fig. 5.21(b) has a piecewise linear shape similar to
the potential plotted in Fig. 5.12. The potential in Fig 5.21(c) seems flat as
one expects from a simple RW model.

Instead, if we consider some average over a long period (80 trading days)
of the potentials obtained for a single day, the resulting potentials seems to
be quadratic as in [114]. In Fig. 5.22 are shown the average shape of the
potential for two stock indexes (BRO and PG). We can observe a rather
quadratic shape for the potential. In Fig. 5.22(a) the potential is quadratic
and repulsive while for the index PG the potential is attractive, as we can
see in Fig. 5.22(b).
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Figure 5.22: This plot shows the average shape of the potential over 80
trading days for two different stock indexes (BRO and PG). The shape is
quite quadratic and symmetric, and in (a) is repulsive while in (b) attractive.

5.8 Conclusions and Perspectives

In summary the idea to consider price dynamics as influenced by an effective
force dependent on the distance of price P (t) from its own moving average
PM(t) represents a new statistical tool to detect hidden forces in the market.
The implementation of the analysis can be seriously affected by the eventual
presence of positive or negative correlations. However, we have shown by
a series of models and tests, that this new method is able to explore com-
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plex correlations which have no effect on the usual statistical tools like the
correlations of price variation and the volatility clustering.

The method provides an analysis of the sentiment of the market: aggres-
sive for the case of repulsive forces and conservative for attractive ones. In
this respect it may represent a bridge between the financial technical analysis
and the application of Statistical Physics to this field. In addition it may
also be useful to analyze the results of the different strategies and behaviors
which arise in agent based models.



Chapter 6

Agent Based Model in an
Active Random Walk

Moving averages are one of the most popular and easy to use tools available
to the technical analysts. They smooth a data series and make it easier
to spot trends, something that is especially helpful in volatile markets. In
this chapter we want to analyze an agent based model in which agents base
their strategies on some suitable moving average. Our aim is to consider a
model with evolutive and adaptive agents which can be either trend follower
or trend adverse. The main idea comes from the potential model we have
introduced in chapter 5. The macroscopic price emerging from this model
will follow a Random Walk in which a term of force is present. The strength
and the direction of this force depends on which type of agent dominates.
This model is on a preliminary stage and, up to now, many of the main
features have still to be considered. At the moment we have considered on
oversimplified model with no interacting and evolutive agents, with the only
purpose to check the basic running of the model [8].

6.1 Definition of the Model

We start from the hypothesis that the price fluctuation in a market can be
described by the active Random Walk defined in Eq. 5.1. We recall this
equation considering a quadratic potential:

P (t+1)−P (t)=B(t)
d

d
(
P (t)−PM(t)

)
(
P (t)−PM(t)

)2

+ ω(t) (6.1)
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where ω(t) is a Gaussian random noise with zero mean and unit variance. The
idea is that B(t) is an effective parameter that comes from the microscopic
actions of each agents. In our model we consider N agents which at each time
step t calculate an arithmetic moving average of the price. Agents differ from
each other by the number of time steps back they use in performing their
moving average. Every agent i calculates his moving average considering the
previous Mi values of the price:

PMi
(t) =

1

Mi

Mi∑

j=1

P (t− j) (6.2)

Each agents can also be either trend follower or adverse. In the first case
he will always move in the direction which put the next price away from the
moving average he has calculated. The opposite is true for a trend adverse
agent. In this simplified stage we consider only two possible type of agent:
a trend follower agent which has a microscopic positive force parameter bi =
+1, and a trend adverse agents which has bi = −1. The contribution of each
agent i in the price formation is

ρi = bi(t)
d

d[P (t)− PMi
]
[P (t)− PMi

]2. (6.3)

The macroscopic price will be give by:

P (t+1)−P (t)=
N∑

i=1

ρi + ω(t) (6.4)

The price dynamics will depend on the relative number, Φ of agents with
positive b, and on the number, k of different steps Mi used in calculating the
moving averages.

6.2 Simulations

Now we check if the simulations will reproduce what we expect. When trend
followers dominate we expect to find an over diffusion of the price. On the
contrary an over diffusion is expected when trend adverse agents dominate.

We have performed a simulation with N = 100 agents, which are in a
fraction Φ trend followers and 1 − Φ trend adverse. The parameter of the
possible different moving average is set to K = 2 (5, 25).
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Figure 6.1: Three different output of the model are plotted. The red line
represent a case in which trend adverse agents dominate. In this case we
observe an under diffusion of the price. The contrary happens when trend
followers dominate (blue line). Also an intermediate situation is plotted
(green line) in which we observe a normal diffusion.

We have performed a simulation for three different values of Φ (0.45, 0.50,
0.55) to observe all the possible behaviors as one can see in Fig. 6.1.

In the future it will be interesting to see how the coefficient of diffusion of
this active Random Walk is dependent on the fraction Φ of trend followers.
Also a more detailed analysis of the collective behavior as a function of Φ is
necessary. In fact we expect that for large number of Φ, the strength of the
force due to the action of trend followers will overcome the Gaussian noise,
and the price will grow up exponentially. Finally we will perform a statistical
analysis of the distribution of price increments for the three regimes (Φ Q 0).

6.3 Potential Analysis

In this preliminary stage, we conclude our test performing the potential anal-
ysis described in chapter 5 on the outputs of the simulations. As usual we
expect to find attractive potential when the market is stable and under dif-
fusive and a repulsive potential in the opposite case. A flat potential is
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expected when there is an equilibrium between agents (Φ = 0.5).
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Figure 6.2: Three different output of the model are plotted. These different
behaviors depends on the values of the parameter Φ. The red line represent
a case in which trend adverse agents dominate. In this case we observe an
stable potential. The contrary happens when trend followers dominate (blue
line). In this case the potential is unstable. A flat potential is observed when
Φ = 0.5.

The results obtained from the potential analysis are plotted in Fig. 6.2.
We can observe that the potential analysis is able to characterize the dif-
ferent phases of the game. A repulsive potential is observed when trend
followers dominate. On the opposite the potential is stable when the market
is dominated by trend adverse agents.



Conclusions

In this thesis we have collected a panoramic of analysis and models concerning
the dynamics of stock price fluctuations. The most common stochastic model
of stock price dynamics is the Gaussian behavior that assumes a geometric
Brownian motion for the stock price. The Gaussian probability distribution is
a universal consequence of the central limit theorem in the limit of long time
series on the condition that the financial market is in a stationary states.
This hypothesis is not always true, in fact empirical distributions of price
increments disclose non Gaussian shapes. Further more the price fluctuations
have complex correlations.

A way to characterize stock price dynamics is to consider the properties of
the so called Roughness, that is to consider the price fluctuation as function of
the length of the considered time interval and to estimate the relative scaling
exponent. The usual interpretation of a non trivial roughness exponent is the
presence of long range correlations in the underlying process. In this thesis
we have shown that this interpretation is not always true because other
elements can lead to non trivial roughness exponent without the presence of
correlations and persistence in the analyzed process. One of this elements
is the effect given by considering finite size samples. The need to consider
finite size time series can be due to different reasons. In our case the problem
concerns the nature itself of our financial data. We have analyzed data
from the NYSE. The NYSE market is close during the night and the price
undergoes a significant discontinuity. The overnight jump of price implies
that our data are statistically homogeneous only within a single trading days.
This limit our analysis in considering finite size time series.

Starting from this situation, we have analyzed the role of finite size effects
in estimating the roughness exponent from a given time series. We have
started our analysis considering a finite size Random Walk. By means of an
analytical calculation, we have been able to show that considering finite size
time series has the effect to systematically enhance the roughness exponent.
In addition to the Random Walk behavior, we have also studied other cases
in which the dynamics presents also fat tails and correlations. Simulations
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of these more complex models have led to a further bias in the estimation of
the roughness exponent. This effect is intrinsic and unavoidable in studying
the roughness properties of finite size datasets but it is often omitted in
literature.

In this perspective, we have introduced new tools to estimate roughness.
The first is by means the analysis of the fluctuations of a given variable
from a suitable reference value. This new method appears much more useful
than the standard one in order to characterize the absolute fluctuations of
a given process. Another method we have proposed consists in a test of
complex correlations. We have considered an exact analytical equation that
is valid for uncorrelated variables and we have checked if it is still satisfied by
other process. We have shown that this method is indeed suitable to detect
complex, higher order correlations in finite size time series. In our view these
methods provide an useful tool to detect and visualize the characteristics of
absolute price fluctuations in finite size time series.

In addition to this information on the absolute value of the fluctuations,
one may also consider directional ones. In fact the dynamics of directional
fluctuations is another source of complexity. This fluctuations are often re-
lated to the traders’ strategy. In facts two different strategies can react
differently to a given deviation of the price from a given reference value.
In this perspective, together with a group of Japanese researchers, we have
introduced that idea that price dynamics can be influenced by its distance
from a given reference value, i.e. a moving average of the price performed
in the previous time steps. Starting from this idea, we have considered a
model for the price dynamics that is a Random Walk in which is present a
term of force. This force can be either attractive or repulsive reveling the
stable or unstable nature of the market in a given time interval. In this way
it has been possible to identify the prevailing strategy present in the market
directly from the data.

To test this method we have considered a minority-majority game in
which the emerging dynamics is an alternation of phases in which the market
is stable and a “trend adverse” strategy is prevailing, and phases in which
the market is unstable and “trend followers” dominate. Our method was
indeed suitable to detect the agents’ behavior analyzing the output of the
game. When the market is unstable we have found repulsive forces and, on
the contrary, attractive forces when the market is stable. An analysis of real
data has shown that this method is also suitable to visualize the complex
correlations of financial price fluctuations. We have analyzed our data from
NYSE. If no correlations would have been in our data, nor force has to emerge
from the analysis. Instead we have found that this method can detect the
“hidden forces” present in the market. In fact, an extensive analysis has
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shown that the force is systematically different from zero and can be both
attractive or repulsive. This is very interesting because, only looking to the
data, we can obtain a direct measure of the “sentiment” of the market, i.e
stable or unstable. It is important to highlight that this new method is able
to explore complex correlations which have no effect on the usual statistical
tools like the correlations of price variation and the volatility clustering. In
a wide perspective, one can interpret the presence of non trivial forces in
the stock price datasets as a universal features of financial data, such as
the fat tail and volatility clustering phenomena. The importance to find
new “stylized fact” is crucial. This is due to the fact that many different
models for price dynamic can all reproduce the market features. Discover
new universal characteristics can be a powerful tool to find more realistic
and specific models. Hence, an essential point for the progress in this field is
to identify further general properties which will permit a critical comparison
between models.

In addiction to the analysis of real data, the above concepts can suggest a
new framework for the modeling of the strategies in an Agent Based Models.
In this perspective we have defined an agent based model in which the trad-
ing strategies are based on some different moving averages. The strategies
differs between each other in the time scales in which the moving average
are performed. The traders can be either trend followers or adverse. The
resulting behavior depends on which kind of strategy is prevailing. If trend
followers dominate the dynamic is unstable and well defined trends (bubbles
or crashes) appear. On the other side, if trend adverse traders dominate the
market is stable. This model is in a preliminary stage and other important
features have to be considered. For example we want to introduce the pos-
sibility that agents switch their strategies to include role of evolution and
adaptation.
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dynamics and kinetic roughening in fractals. Phys. Rev E, 65:052104,
2002.

[13] R. Axelrod. The Complexity of Cooperation: Agent-based Models of
Competition and Collaboration. Princeton University Press, Princeton,
1997.
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