
i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page i — #1
i

i

i

i

i

i

UNIVERSITÀ DEGLI STUDI

ROMA

TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Quality of Mappings for Data
Exchange Applications

Salvatore Raunich

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page ii — #2
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page iii — #3
i

i

i

i

i

i

Quality of Mappings for Data Exchange Applications

A thesis presented by
Salvatore Raunich

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Dept. of Informatics and Automation

March 2009

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page iv — #4
i

i

i

i

i

i

Committee:

Prof. Giansalvatore Mecca
Prof. Paolo Atzeni

Reviewers:

Prof. Renee J. Miller
Prof. Val Tannen

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page v — #5
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page vi — #6
i

i

i

i

i

i

vi

Abstract

Research has investigated mappings among data sources under two per-

spectives. On one side, there are studies of practical tools for schema mapping

generation; these focus on algorithms to generate mappings based on visual

specifications provided by users. On the other side, we have theoretical re-

searches about data exchange. These study how to generate a solution – i.e., a

target instance – given a set of mappings usually specified as tuple generating

dependencies.

However, these two research lines have progressed in a rather independent

way and we are still far away from having a complete understanding of the

properties that a “good” schema mapping system should have; to give an ex-

ample, there are many possible solutions for a data exchange problem.

In fact, there is no consensus yet on a notion of quality for schema map-

pings. In this thesis, based on concepts provided by schema mapping and data

exchange research, we aim at investigate such a notion.

Our goal is to identify a fairly general formal context that incorporates the

different mapping-generation systems proposed in the literature, and to de-

velop algorithms, tools and methods for characterizing the quality of mappings

generated by those systems.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page vii — #7
i

i

i

i

i

i

Acknowledgments

Several people contributed to this thesis, in different ways. First of all, I would
like to thank my family that supported me in this years. In particular, my
parents, who gave me the opportunity to study and achieve my goals; my
brother, who introduced me to the “Computer Science” world. I know I can
always rely on him.

I would like to express my deep gratitude to Prof. Gianni Mecca, because
he believed in me for many years and he taught me everything about how to do
research. During last years, he has been for me a positive example to follow.

I am grateful to Prof. Paolo Atzeni who gave me the opportunity to follow
the PhD Course at Roma Tre University and to conduct this doctoral research.

Thanks also to Paolo Papotti who contributed to the results of this thesis.
I will remember long nights at work together.

I am also grateful to Prof. Erhard Rahm and his database group, who
gave me the opportunity to visit the Department of Computer Science at the
University of Leipzig. A special thank to David, Anika, Michael and Andreas
who welcomed me not only as a colleague, but also as a friend.

Even if indirectly, other people contributed to this thesis. Many thanks to
my friends Alberto, always present and helpful in each situation, with whom I
shared most of the highlights of my life, and Michele, whose friendship comes
with me from childhood.

However, my greatest gratitude is for Lucia who chose to share her life with
me. This work would be meaningless without her. Thanks for everything.

vii

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page viii — #8
i

i

i

i

i

i

Contents

Contents viii

List of Tables x

List of Figures xi

1 Introduction 1

2 Data Exchange 7

3 Generating Core Solutions 17
3.1 Overview . 17
3.2 Preliminaries . 25
3.3 A Characterization of the Core 28
3.4 Expansions . 34
3.5 The Rewriting Algorithm . 43
3.6 Complexity and Approximations 51
3.7 Experimental Results . 55

4 Schema Mapping Tools 61
4.1 Expressive Power . 62
4.2 Clio Mapping Discovery Algorithm 63
4.3 TGD Generation Algorithm . 65
4.4 The +Spicy System . 67

5 Schema Mapping Verification 69
5.1 Introduction . 69
5.2 Overview . 72

viii

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page ix — #9
i

i

i

i

i

i

CONTENTS ix

5.3 Structural Analysis . 81
5.4 Mapping Search Algorithm . 85
5.5 Experimental Results . 87

6 Related Work 93
Conclusions . 103

Appendices 104

Proofs of the Theorems 107

Bibliography 131

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page x — #10
i

i

i

i

i

i

List of Tables

5.1 Summary of Experiments . 88

x

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page xi — #11
i

i

i

i

i

i

List of Figures

2.1 An example of Nested Relational Model 8

3.1 Mapping Bibliographic References . 18
3.2 Instances for the References Scenario 19
3.3 Genes . 22
3.4 Instances for the genes example . 23
3.5 Example of dual Gaifman graphs . 27
3.6 Containment of Solutions . 54
3.7 SQL Scripts: Execution Times for the First Group 56
3.8 SQL Scripts: Execution Times for the Second Group 56
3.9 Core vs Canonical: Size Reduction in Solutions 57
3.10 Algorithm scalability with large synthetic scenarios 58

4.1 Inverse of Self Joins . 63
4.2 A sample mapping task . 64
4.3 A snapshot of the system . 67

5.1 Coupling schema matching and mapping discovery 70
5.2 Architecture of Spicy . 72
5.3 A mapping task with alias . 77
5.4 Electrical circuit for an atomic attribute 83
5.5 Examples of Circuits . 84
5.6 Precision of a priori strategies (average match) 89
5.7 Precision of a posteriori strategies (attribute features and structural anal-

ysis) . 90
5.8 Stop thresholds and execution times 91

xi

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page xii — #12
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 1 — #13
i

i

i

i

i

i

Chapter 1

Introduction

Integrating data coming from disparate sources is a crucial task in many ap-
plications. An essential requirement of any data integration task is that of
manipulating mappings between sources. Mappings are executable transfor-
mations – say, SQL or XQuery scripts – that specify how an instance of the
source repository should be translated into an instance of the target repository.
We may identify two broad research lines in the literature.

On one side, we have studies on practical tools and algorithms for schema
mapping generation. In this case, the focus is on the development of systems
that take as input an abstract specification of the mapping, usually made of a
bunch of correspondences between the two schemas, and generate the mappings
and the executable scripts needed to perform the translation. This research
topic was largely inspired by the seminal papers about the Clio system [63, 70].
The original algorithm has been subsequently extended in several ways [46, 22,
9, 72, 27] and various tools have been proposed to support users in the mapping
generation process. More recently, a benchmark has been developed [8] to
compare research mapping systems and commercial ones.

On the other side, we have theoretical studies about data exchange. Several
years after the development of the initial Clio algorithm, researchers have real-
ized that a more solid theoretical foundation was needed in order to consolidate
practical results obtained on schema mapping systems. This consideration has
motivated a rich body of research in which the notion of a data exchange prob-
lem [42] was formalized, and a number of theoretical results were established.
In this context, a data exchange setting is a collection of mappings – usually
specified as tuple generating dependencies (tgds) [16] – that are given as part

1

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 2 — #14
i

i

i

i

i

i

2 CHAPTER 1. INTRODUCTION

of the input; therefore, the focus is not on the generation of the mappings,
but rather on the characterization of their properties. This has brought to an
elegant formalization of the notion of a solution for a data exchange problem,
and of operators that manipulate mappings in order, for example, to compose
or invert them.

However, these two research lines have progressed in a rather independent
way and we are still far away from having a complete understanding of the
properties that a “good” schema mapping system should have; to give an ex-
ample, there are many possible solutions for a data exchange problem.

In fact, there is no consensus yet on a notion of quality for schema map-
pings. In this thesis, based on concepts provided by schema mapping and
data exchange research, we aim at investigate such a notion. Our goal is to
identify a fairly general formal context that incorporates the different mapping-
generation systems proposed in the literature, and to develop algorithms, tools
and methods for characterizing the quality of mappings generated by those
systems.

More specifically, we identify three crucial viewpoints under which we be-
lieve quality should be studied:

(i) which solutions a mapping system should materialize and how it should
generate them;

(ii) how to generate transformation rules (for example tgds), starting from
a minimal and high-level specification of the mapping;

(iii) finally, how to semi-automatically generate this high-level specification
of the mapping.

Choice of Solutions

About the first point, a key contribution of data exchange research was the
formalization of the notion of core [43] universal solution, which was identi-
fied as the “optimal” solution. Informally speaking, the core universal solution
has a number of nice properties: it is “irredundant”, since it is the smallest
among the solutions that preserve the semantics of the exchange, and repre-
sents a “good” instance for answering queries over the target database. It can
therefore be considered a natural requirement for a schema mapping system
to generate executable scripts that materialize core solutions. Unfortunately,
there is yet no schema mapping generation algorithm that natively produces ex-
ecutable scripts that compute the core. On the contrary, the solution produced
by known schema mapping systems – called a canonical universal solution –

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 3 — #15
i

i

i

i

i

i

3

typically contains quite a lot of redundancy. This is partly due to the fact that
computing cores is a challenging task. A possible approach to the generation of
core solutions for a relational data exchange problem is to generate a canonical
solution by chasing the tgds, and then to apply a post-processing algorithm for
core identification. Several polynomial algorithms have been identified to this
end [43, 51]. These algorithms provide a very general solution to the problem
of computing core solutions for a data exchange setting. Also, an implemen-
tation of the core-computation algorithm in [51] has been developed [74], thus
making a significant step towards the goal of integrating core computations in
schema mapping systems. However, experience with these algorithms shows
that, although polynomial, they require very high computing times since they
look for all possible endomorphisms among tuples in the canonical solution. As
a consequence, they hardly scale to large mapping scenarios: even for databases
of a few thousand tuples computing the core may require several hours.

Our goal is to introduce a core computation algorithm that lends itself to
a more efficient implementation as an executable script and that scales well to
large databases.

Transformation Rule Generation

With respect to the second point, manually writing transformation rules under
the form of logical formulas can be very difficult also for expert users. It
would be much simpler and more natural to provide a minimal and high-level
specification of the mapping and let the system generate the rules from that.
For these reasons, a typical schema mapping system takes as input an abstract
specification of the mapping under the form of value correspondences among
schema elements and generates the tgds and the executable transformations to
run them.

Each value correspondence states that an attribute of the target is seman-
tically related to one (or more) attribute in the source, and it is usually drawn
as a line from the source attribute to the corresponding target attribute.

Clio [70] was the first system to introduce value correspondences and to im-
plement a sophisticated mapping algorithm to generate source-to-target trans-
formations. The mapping generation algorithm captures all semantical rela-
tionships embedded in the source and the target schemas, and is guaranteed
to produce legal instances of the target with respect to constraints.

Our goal is to extend the expressive power of the mapping system with
respect to Clio system.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 4 — #16
i

i

i

i

i

i

4 CHAPTER 1. INTRODUCTION

Discovery of Correspondences

Finally, it is apparent how a crucial step in the mapping generation process is
the discovery of the initial value correspondences. In fact, the quality of the
mappings produced by the mapping generation system is strongly influenced by
the quality of the input lines: starting from faulty correspondences incorrect
mappings are inevitably produced, thus impairing the quality of the overall
integration process. To avoid these problems, it is usually assumed that value
correspondences are interactively provided to the system by a human expert
after carefully browsing the source and target repositories. However, such
manual process is very labor-intensive, and does not scale well to medium and
large integration tasks.

To alleviate the burden of manually specifying lines, one alternative is to
couple the mapping generation system with a schema matching system, i.e.,
a system that automatically or semi-automatically tries to discover matching
attributes in a source and target schema. The study of automatic techniques
for schema matching has received quite a lot of attention in recent years; for
a survey see [73, 38, 76]. Clio itself has been complemented with a companion
schema matching module based on attribute feature analysis [67]; this tool may
be asked to suggest attribute correspondences to the user.

Unfortunately, schema matching has been recognized as a very challenging
problem [49], for which no definitive solution exists: although current schema
matching systems perform well in some application categories, in other cases
they suffer from poor precision. According to [50], there is no perfect schema
matching tool. [50] reports that on a recent benchmark of ontology–matching
tasks [4], participating matchers on average achieved 40% precision and 45%
recall. Also, even for datasets for which such tools reached higher precision
and recall, they still produced inconsistent or erroneous mappings.

As a consequence, outputs of the attribute matching phase are hardly ready
to be fed to the mapping generation module, and human intervention is neces-
sary in order to analyze and validate them. It is worth noting that, in general,
human intervention is also necessary after mappings have been generated, since
several alternative ways of mapping the source into the target may exist. Map-
ping systems usually produce all alternatives, and offer the user the possibility
of inspecting the result of each of them in order to select the preferred one.

In the following, we present an original architecture to integrate schema
matching and mapping generation and we introduce an algorithm that com-
bines schema matching, mapping generation and mapping verification in order
to achieve good scalability and high matching quality.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 5 — #17
i

i

i

i

i

i

5

The thesis is organized as follows:

• in Chapter 2 we introduce the reference context and we recall some defi-
nitions related to data exchange;

• in Chapter 3 we formally present a core computation algorithm, based
on the rewriting of the original mappings, that lends itself to an effi-
cient implementation as an executable script and that scales well to large
databases;

• in Chapter 4 we present a new tgd generation algorithm as a generaliza-
tion of the basic mapping generation algorithm introduced in [70];

• Chapter 5 is devoted to describe an original architecture to integrate
schema matching and mapping generation tool and to define the notion
of mapping quality and the automation of mapping verification.

• some related works in the fields of schema mappings and data exchange
will be discussed in Chapter 6;

The architecture and the algorithms described in this thesis were developed
in the +Spicy1 system, a research effort at Università della Basilicata. The
prototype represents the first mapping system that integrates all quality aspects
presented above in a single tool and that contributes to bridge the gap between
the practice of mapping generation and the theory of data exchange.

1http://db.unibas.it/projects/spicy/

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 6 — #18
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 7 — #19
i

i

i

i

i

i

Chapter 2

Data Exchange

In this section we recall some definitions related to data exchange and we
describe data models used in our algorithms. In the presentation we follow the
main definitions given in [42] and [43].

As it is common, data sources are represented in the system according to an
abstract model, with the advantage of reducing different concrete data models
(for example, relational, XML, OWL, etc.) to an uniform representation. As
in [70], we use a simple nested relational data model that can be formalized as
follows.

Nested Relational Data Model

We fix two disjoint sets: a set of constants, consts, a set of labeled nulls, vars.
We also fix a set of labels {A0, A1 . . .} and a set of special values, called oids.
A type is either a base type (e.g., string, integer, date, etc.) or a set or tuple
complex type. A set type has the form set(A : τ), where A is a label and τ is a
type. A set node in a schema is a labeled set type, of the form A : set(τ), with
a child node A : τ . A tuple type has the form tuple(A0 : τ0, A1 : τ1, . . . , An : τn),
where each Ai is a label and each τi is a type. A tuple node is a labeled tuple
type with a child node Ai : τi, for i = 0, 1 . . . , n. Schemas are trees of typed
nodes. More specifically, a schema is a named type A : τ . Constraints may be
imposed over a schema. A constraint is either a key or a foreign key constraint.

Instances of types are defined as usual. An instance of a schema tree is
a tree of instance nodes. As in [70], an instance node for a schema node of
type τ , has a distinct oid value, plus a number of children, according to the
respective type.

7

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 8 — #20
i

i

i

i

i

i

8 CHAPTER 2. DATA EXCHANGE

Figure 2.1: An example of Nested Relational Model

Example 2.1 Consider the data sources in Figure 2.1. The source schema
represents a XML schema and contains informations about departments with
their staff people and professors, and courses in an University. Professors
teach some courses, as indicated by the key-foreign key constraint between pro-
fessors and courses. On the other side, the target schema represents a relational
schema with one table and contains informations about courses with their in-
structors.

It can be seen that the data model is essentially a tree-based representation
of a nested-relational model, in which set and tuple nodes alternate. Instances
are trees as well; while leaf nodes have atomic values – strings, integers, dates
etc. – values for intermediate nodes are oids. Foreign key constraints are drawn
as dashed edges going from the foreign key to the corresponding primary key.
In the example above, each course tuple in the source schema has a foreign key
constraint referencing a professor tuple.

Notice that a relational database is easily represented as a root tuple node,
plus a number of children set nodes, one for each relation.

The nested relational model described here is a generalization of the tradi-
tional flat relational model, introduced by E.F.Codd in 1970 [34]. In the fol-
lowing we will use both data models, depending on which is more convenient
in the particular context. The flat relational model is formalized as follows.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 9 — #21
i

i

i

i

i

i

9

Flat Relational Data Model

We fix a set of relation symbols {R0 ,R1 , . . .}. With each relation symbol R we
associate a relation schema R(A1, . . . , Ak). A schema S = {R1 , . . . ,Rn} is a
collection of relation schemas. An instance of a relation schema R(A1, . . . , Ak)
is a finite set of tuples of the form R(A1 : v1, . . . , Ak : vk), where, for each
i, vi is either a constant or a labeled null. An instance of a schema S is a
collection of instances, one for each relation schema in S. In the following, we
will interchangeably use the positional and non positional notation for tuples
and facts; also, with an abuse of notation, we will often blur the distinction
between a relation symbol and the corresponding instance.

Given an instance I , we shall denote by consts(I) the set of constants
occurring in I , and by vars(I) the set of labeled nulls in I . dom(I), its active
domain, will be consts(I)∪vars(I). A ground instance is an instance I without
labeled nulls (where dom(I) = consts(I)).

Given two disjoint schemas, S and T, we shall denote by 〈S,T〉 the schema
{S1 . . . Sn ,T1 . . .Tm}. If I is an instance of S and J is an instance of T, then
the pair 〈I , J 〉 is an instance of 〈S,T〉.

Dependencies and Mapping Scenario

Given two schemas, S and T, an embedded dependency [16] is a first-order
formula of the form ∀x(φ(x) → ∃y(ψ(x, y)), where x and y are vectors of
variables, φ(x) is a conjunction of atomic formulas such that all variables in x
appear in it, and ψ(x, y) is a conjunction of atomic formulas. φ(x) and ψ(x, y)
may contain equations of the form vi = vj , where vi and vj are variables.

An embedded dependency is a tuple generating dependency if φ(x) and
ψ(x, y) only contain relational atoms. It is an equality generating dependency
(egd) if ψ(x, y) contains only equations. A tgd is called a source-to-target tgd
if φ(x) is a formula over S and ψ(x, y) over T. It is a target tgd if both φ(x)
and ψ(x, y) are formulas over T.

A mapping scenario (also called a data-exchange scenario or a schema map-
ping or a data-exchange setting [42]) is a quadruple M = (S,T,Σst,Σt), where
S is a source schema, T is a target schema, Σst is a set of source-to-target tgds,
and Σt is a set of target dependencies that may contain tgds and egds. In the
case of interest for this thesis, i.e., the case in which the set of target depen-
dencies Σt is empty, we will use the notation (S,T,Σst).

A source instance for M is a ground instance I of the source schema S. A
target instance for M is an instance J of the target schema. A target instance

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 10 — #22
i

i

i

i

i

i

10 CHAPTER 2. DATA EXCHANGE

J is a solution of M and a source instance I (denoted J ∈ Sol(M, I)) iff
〈I , J 〉 |= Σst ∪ Σt.

Given two instances J , J ′ over a schema T, a homomorphism h : J → J ′ is
a mapping from dom(J) to dom(J ′) such that for each c ∈ consts(J), h(c) = c,
and for each tuple t = R(A1 : v1, . . . , Ak : vk) in J it is the case that h(t) =
R(A1 : h(v1), . . . , Ak : h(vk)) belongs to J ′. h is called an endomorphism if
J ′ ⊆ J ; if J ′ ⊂ J it is called a proper endomorphism. We say that two instances
J , J ′ are homomorphically equivalent if there are homomorphisms h : J → J ′

and h′ : J ′ → J .
A solution J is universal [42] (denoted J ∈ USol(M, I)) iff for every solution

K there is an homomorphism from J to K . Associated with scenario M is the
following data exchange problem: given a source instance I , return none iff no
solution exists, or return a universal solution J ∈ USol(M, I).

The following example summarizes these concepts:

Example 2.2 Consider the following scenario M, in which the source schema
S has four relation symbols A, B, C, D and the target schema T has two relation
symbols S and T. Let’s assume that Σt is empty. The set of source-to-target
tgds Σst is:

m1.∀x1, x2 : A(x1, x2) → ∃Y1 : S(x1, Y1), T (Y1, x2)
m2.∀x3, x4 : B(x3, x4) → S(x3, x4)
m3.∀x5, x6 : C(x5, x6) → T (x5, x6)
m4.∀x7 : D(x7) → ∃Y0 : S(x7, Y0)

and the source instance: I = {A(1, 2), B(1, 3), C(3, 2), D(1)}.
A possible solution J for M over I is:

J = {S(1, N0), T (N0, 2), S(1, 3), T (3, 2), S(1, N1)}.

Here, N0 and N1 represent labeled nulls [42], i.e., distinguished null values
that are “invented” to satisfy the existential quantifiers.

But there may exist more than one solution. For example, also the following
ones are solutions:

J0 = {S(1, 3), T (3, 2)} J1 = {S(1, 3), T (3, 2), S(1, N1), S(1, N2)}.

In this example, the solution J is a universal solution, in fact for every
solution K (for example J0 or J1) there is an homomorphism from J to K .
Instead, the solution J0 seems to be more compact than J , even if this is not

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 11 — #23
i

i

i

i

i

i

11

required by the mapping specification. Finally, J1 is also a solution for M over
I , but it has extra information that is not a consequence of the dependencies
in Σst.

While J satisfies the tgds it is possible to see that some of the tuples in it
are redundant. Consider for example tuples t1 = S(1, N0) and t2 = S(1, 3).
The fact that t1 is redundant with respect to t2 can be formalized by saying that
there is an homomorphism from t1 to t2. A homomorphism, in this context,
is a mapping of values that transforms the nulls of t1 into the constants of t2,
and therefore t1 itself into t2. This means that J has an endomorphism, i.e.,
an homomorphism into a sub-instance – the one obtained by removing t1.

The core universal solution [43] is the smallest among the solutions for a
given source instance that has homomorphisms into all other solutions. In this
example, the core of J is J0.

The Chase

Traditionally, tgds are formulas of the form ∀x(φ(x) → ∃y(ψ(x, y)), where
both φ(x) and ψ(x, y) are restricted to be conjunctive formulas in which only
relational atoms appear.

Tgds are executed using the classical chase procedure. There are several
variants of the chase. In this paper, we concentrate on the standard chase and
on the naive chase. In order to define these, we need to introduce the notion
of an assignment.

Definition 1 [Assignments] Given a formula ϕ(x, y), where x is a vector
of universally quantified variables, and y is a vector of existentially quantified
variables, an assignment for ϕ(x, y) is a mapping a : x ∪ y → consts ∪ vars

that associates with each variable xi ∈ x a constant a(xi) ∈ consts, and with
each variable yi ∈ y a value a(yi) that can be either a constant or a labeled
null.

We say that an assignment a for ϕ(x, y) is canonical if it injectively as-
sociates a labeled null with each existential variable yi ∈ y. The set of facts
a(ϕ(x, y)) is called a canonical block if a is canonical.

Given a formula ϕ(x, y), an instance of ϕ(x, y) is a set of facts of the form
ϕ(a(x), a(y)), for some assignment a, obtained by replacing each variable vi by
a(vi).

Consider for example ϕ(〈x0, x1, x2〉, 〈y0, y1〉) = S (x0, x1, y0) ∧ S (x2, y1, y0).
Following are two of its canonical blocks: S (a, b,N0)∧S (c,N1, N0), S (a, b,N2)∧

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 12 — #24
i

i

i

i

i

i

12 CHAPTER 2. DATA EXCHANGE

S (a,N3, N2). Here are two other instances of the formula that are not canonical
blocks: S (a, b,N4) (in this case a(〈x0, x1, x2〉) = 〈a, b, a〉, a(〈y0, y1〉) = 〈N4, b〉),
and S (a, b,N5) ∧ S (c, d,N5). Consider now the formula ϕ(〈x0, x1〉, 〈y0〉) =
S (x0, y0) ∧ S (x1, y0); the following blocks are canonical: S (a,N0) ∧ S (b,N0),
S (a,N1) (in this case a(〈x0, x1〉) = 〈a, a〉).

Given a formula φ(x) with free variables x, and an instance I , we say that
I satisfies φ(x) with assignment a if φ(a(x)) ⊆ I . In this case, we write
I |= φ(a(x)).

Definition 2 [Standard Chase] [42] Given an instance 〈I, J〉, during the
standard chase a tgd φ(x) → ∃y(ψ(x, y)) is fired by a value assignment a if
I |= φ(a(x)) and there is no vector of values b such that J |= ψ(a(x), b). To fire
the tgd, a is extended to a canonical assignment a′ by injectively assignining to
each variable yi ∈ y a fresh null, and then adding the facts in ψ(a′(x), a′(y))
to J .

It can be seen how the standard chase, before actually firing a tgd on a
value assignment, checks that the tgd conclusion is not already satisfied for
that assignment. An interesting variant of the chase is the so-called naive
chase, during which this check is not performed.

Definition 3 [Naive Chase] [78] Given an instance 〈I, J〉, during the naive
chase a tgd φ(x) → ∃y(ψ(x, y)) is fired for all value assignments a such that
I |= φ(a(x)) by extending a to a canonical assignment a′ by injectively as-
signining to each variable yi ∈ y a fresh null, and then adding the facts in
ψ(a′(x), a′(y)) to J .

Given a scenario M = (S,T,Σst), chasing the dependencies in Σst yields a
canonical solution.

Example 2.3 Consider the following scenario M:

m1. A(x1, x2, x3) → ∃Y1 : S(x1, Y1), S(Y1, x2), T (Y1, x3)
m2. B(x4, x5) → S(x4, x5)
m3. C(x6, x7) → S(x6, x7)

and the source instance: I = {A(1, 2, 3), B(1, 2), C(1, 2)}. The naive chase
generates the following canonical universal solution J for M over I :

J = {S(1, N0), S(N0, 2), T (N0, 3), S(1, 2)}

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 13 — #25
i

i

i

i

i

i

13

We find it useful to introduce a labeling system to identify the prove-
nance [29] of tuples in the canonical solution. More specifically, for each tgd m
in Σst and each atom R(. . .) in the conclusion of m, we associate with R(. . .) a
unique integer label, i. Then, given a source instance I , for each tuple t in the
canonical universal solution J , we keep track of its provenance, provenance(t),
as a set of labeled relation symbols. More formally, whenever t′ is generated
during the chase by firing tgd m and instantiating atom R(. . .) in the conclu-
sion of m, we add to the set provenance(t) the symbol Ri, where i is the label
of R.

In Example 2.3, assume tgds are labeled as follows:

m1. A(x1, x2, x3) → ∃Y1 : S 1(x1, Y1),S
2(Y1, x2),T

3(Y1, x3)
m2. B(x4, x5) → S 4(x4, x5)
m3. C(x6, x7) → S 5(x6, x7)

The provenance of tuples in J would be as follows:

J = {S(1, N0)[{S
1}], S(N0, 2)[{S

2}], T (N0, 3)[{T
3}], S(1, 2)[{S 4,S 5}]}

Based on the labeling system that we have introduced, in the following we
shall use labeled formulas of the form Ri(. . .) as queries that retrieve from an
instance all tuples t in relation R such that Ri ∈ provenance(t). More specifi-
cally, given an atom Ri(x, y), where x is a set of universally quantified variables,
and y a set of existentially quantified variables, an assignment a for x, y, and
a canonical instance J , we say that J |= a(Ri(x, y)) if the following hold: (i)
J contains a tuple t = R(a(x), a(y)); (ii) Ri ∈ provenance(t). Similarly for a
conjunction of labeled atoms of the form ϕl(x, y).

The canonical solution has the nice property of being a universal solution [42].
Also, the naive chase can be implemented very efficiently using first-order lan-
guages as SQL as a set of queries on the source and insert statements into the
target. However, the canonical solution is not, in general, a core solution, and
it is known that it may contain quite a lot of redundancy.

In the Chapter 3, we concentrate on the following problem: given a data-
exchange scenario M = (S,T,Σst), generate an executable script in a first-
order language like SQL that, when run on a source instance I computes the
core universal solution for M on I .

A central idea behind our approach is that the computation of core solutions
can be implemented by properly rewriting the original scenario into a new set
of source-to-target dependencies. However, in order to properly perform the
rewriting, we resort to dependencies that are strictly more expressive than
ordinary tgds. In particular, we will make extensive use of negation in the

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 14 — #26
i

i

i

i

i

i

14 CHAPTER 2. DATA EXCHANGE

premise, and of Skolem terms in the conclusion. We call these more expressive
dependencies FO-rules.

First-Order Rules

Before introducing the definition of what a FO-rule is, we need to formalize the
notion of a Skolem term.

Definition 4 [Skolem Term] Given a set of variables x, a Skolem term over
x is a term of the form f(x1, . . . , xk) where f is a function symbol of arity k
and x1, . . . , xk are universal variables in x.

Skolem terms are used to create fresh labeled nulls on the target. Tradi-
tionally, Skolem functions are considered as uninterpreted functions. Given an
assignment of values c for x, with an uninterpreted Skolem term f(x) we (in-
jectively) associate a labeled null Nf(c(x)). As an alternative, we may consider
Skolem functions as being interpreted. In this second case, we associate with
each function symbol f of arity k a function f i : constsk → vars, and, for
each value assignment c for x, we compute the labeled null as the result of f i

over c(x), f i(c(x)).
There are several possible skolemization strategies to pick from and we will

discuss them in more detail in Chapter 3.
Just to give an example, the standard strategy, skolstd, would be that of

associating a different, uninterpreted Skolem function fm,Yi
with each existen-

tial variable Yi of a rule m, and taking as arguments all universal variables
occurring in the conclusion. Consider the following formula S(1, N0), T (N0, 2)
coming from the tgd m1 in Example 2.2.
The uninterpreted Skolem function for N0 could have the following form:

fm1,N0
(1, 2)

As we will show, in some cases, the standard strategy is not enough to
properly handle isomorphisms between tuples and we need to use intepreted
Skolem functions.

Definition 5 [FO-Rule] Given a source schema S and a target schema T, an
FO-rule is a dependency of the form ∀x : φ(x) → ψ(x) where φ is a first-order
formula over S and ψ is a conjunction of atoms of the form R(t1, . . . , tn), with
R ∈ T and each term ti is either a variable ti ∈ {x} or a Skolem term over x.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 15 — #27
i

i

i

i

i

i

15

Consider the scenario in Example 2.2. Following is a FO-rule from its
rewriting:

r. ∀x1, x2 : A(x1, x2) ∧ ¬(∃x3, x4, x5, x6 : B(x3, x4) ∧ C(x5, x6)∧
x4 = x5 ∧ x1 = x3 ∧ x2 = x6) → S(x1, f(x1, x2)), T (f(x1, x2), x2)

To execute a set of FO-rules, we now introduce an extension of the naive
chase procedure.

Definition 6 [Chasing FO-Rules] Given an FO-rule ∀x : φ(x) → ψ(x), we
call Qφ(x) the first-order query over S obtained from φ(x) considering x as free
variables. We denote by Qφ(I) the set of tuples c ∈ dom(I)|x| such that c is
an answer of Qφ over I . Given c ∈ Qφ(I), we then denote by ψ(c) the set of
atoms obtained from ψ by replacing each variable xi ∈ x by the corresponding
ci ∈ c and replacing each Skolem term by the corresponding labeled null.

Given a set R = {r1, . . . , rn} of FO-rules of the form above ri.∀x : φi(x) →
ψi(x) and a source instance I, we define the result of the chase of R over I as
follows:

R(I) =
⋃

i∈[1,n]

(

⋃

c∈Qφi
(I)

(

ψi(c)
)

)

Based on this, it should be apparent how FO-rules lend themselves to a
natural implementation as an SQL script. Consider for example rule r above.
Based on the rule, we can materialize tuples in the S table by the following
SQL statement (similarly for T). Notice how string manipulation functions are
used to generate the needed Skolem terms:

INSERT into S
SELECT A.a, append(‘f(’, A.a, ‘,’, A.b,‘)’)
FROM (SELECT A.a, A.b FROM A

EXCEPT
SELECT B.a, C.b FROM B, C WHERE B.b = C.a)

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 16 — #28
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 17 — #29
i

i

i

i

i

i

Chapter 3

Generating Core Solutions

As seen earlier, the core universal solution was identified as the “optimal” solu-
tion, since it is “irredundant” – i.e. it is the smallest among the solutions that
preserve the semantics of the exchange – and it represents a “good” instance
for answering queries over the target database.

It can be seen how it is crucial to develop algorithms that natively produce
executable scripts to compute the core. On the contrary, the solution produced
by known schema mapping systems – called a canonical universal solution [42]
– typically contains quite a lot of redundancy. This is partly due to the fact
that computing cores is a challenging task.

Our goal is to introduce a core computation algorithm that lends itself to
a more efficient implementation as an executable script and that scales well
to large databases. To this end, we rely on two key ideas: the notion of
homomorphism among formulas and the use of negation to rewrite tgds.

3.1 Overview

Consider the following example:

Example 3.1.1 Consider the mapping scenario in Figure 3.1. A source in-
stance is shown in Figure 3.2.

A constraint-driven mapping system as Clio would generate for this scenario
several mappings, like the ones below.1 Mappings are tgds that state how tuples

1Note that the generation of mapping m1 requires an extension of the algorithms
described in [70, 46].

17

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 18 — #30
i

i

i

i

i

i

18 CHAPTER 3. GENERATING CORE SOLUTIONS

Figure 3.1: Mapping Bibliographic References

should be produced in the target based on tuples in the source. Mappings can be
expressed using different syntax flavors. In schema mapping research [46], an
XQuery-like syntax is typically used. Data exchange papers use a more classical
logic-based syntax that we also adopt in this Chapter.

m1. ∀t, y, p, i : Refs(t, y, p, i) → ∃N: TRefs(t, y, p,N)
m2. ∀i, n : Auths(i, n) → ∃T, Y, P : TRefs(T, Y, P, n)
m3. ∀t, y, p, i, n : Refs(t, y, p, i) ∧Auths(i, n) → TRefs(t, y, p, n)
m4. ∀t, p, n : WebRefs(t, p, n) → ∃Y : TRefs(t, Y, p, n)

Mapping m3 above states that for every tuple in Refs that has a join with
a tuple in Authors, a tuple in TRefs must be produced. Mapping m1 is needed
to copy into the target references that do not have authors, like “The SQL92
Standard”. Similarly, mapping m2 is needed in order to copy names of authors
for which there are no references (none in our example). Finally, mapping m4

copies tuples in WebRefs.

Given a source instance, executing the tgds amounts to running the stan-
dard chase algorithm on the source instance to obtain the canonical universal
solution; note that a natural way to chase the dependencies is to execute them
as SQL statements in the DBMS.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 19 — #31
i

i

i

i

i

i

3.1. OVERVIEW 19

Figure 3.2: Instances for the References Scenario

These expressions materialize the target instance in Figure 3.2. While this
instance satisfies the tgds, still it contains many redundant tuples, those with
a gray background. As shown in [46], for large source instances the amount
of redundancy in the target may be very large, thus impairing the efficiency
of the exchange and the query answering process. This has motivated several
practical proposals [30, 46, 27] towards the goal of removing such redundant
data. Unfortunately, these proposals are applicable only in some cases and do
not represent a general solution to the problem.

Data exchange research [43] has introduced the notion of core solutions
as “optimal” solutions for a data exchange problem. Consider for example
tuples t1 = (null, null, null, E.F.Codd) and t2 = (A Relational Model..., 1970,
CACM, E.F.Codd) in Figure 3.2. Notice that t1 is redundant with respect to
t2 because there is an homomorphism from t1 to t2. The core of the solution in
Figure 3.2 is in fact the portion of the TRefs table with a white background.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 20 — #32
i

i

i

i

i

i

20 CHAPTER 3. GENERATING CORE SOLUTIONS

A possible approach to the generation of the core for a relational data ex-
change problem is to generate a canonical solution by chasing the tgds, and
then to apply a post-processing algorithm for core identification. Several poly-
nomial algorithms have been identified to this end [43, 51]. These algorithms
provide a very general solution to the problem of computing core solutions for
a data exchange setting. Also, an implementation of the core-computation al-
gorithm in [51] has been developed [74], thus making a significant step towards
the goal of integrating core computations in schema mapping systems.

However, experience with these algorithms shows that, although polyno-
mial, they require very high computing times since they look for all possible
endomorphisms among tuples in the canonical solution. As a consequence,
they hardly scale to large mapping scenarios. Our goal is to introduce a core
computation algorithm that lends itself to a more efficient implementation as
an executable script and that scales well to large databases. To this end, in the
following sections we introduce two key ideas: the notion of homomorphism
among formulas and the use of negation to rewrite tgds.

The first intuition is that it is possible to analyze the set of formulas in
order to recognize when two tgds may generate redundant tuples in the target.
This happens when it is possible to find a homomorphism between the right-
hand sides of the two tgds. Consider tgds m2 and m3 in the Example 3.1.1;
with an abuse of notation, we consider the two formulas as sets of tuples,
with existentially quantified variables that correspond to nulls; it can be seen
that the conclusion TRefs(T, Y, P, n) of m2 can be mapped into the conclusion
TRefs(t, y, p, n) of m3 by the following mapping of variables: T → t, Y → y,
P → p. This gives us a nice necessary condition to intercept possible redun-
dancy (i.e., possible endomorphisms among tuples in the canonical solution).
Note that the condition is merely a necessary one, since the actual generation of
endomorphisms among facts depends on values coming from the source. Note
also that we are checking for the presence of homomorphisms among formulas,
i.e., conclusions of tgds, and not among instance tuples; since the number of
tgds is typically much smaller than the size of an instance, this task can be
carried out quickly.

A second important intuition is that, whenever we identify two tgds m, m′

such that there is a homomorphism between conclusions, as above, we may
prevent the generation of redundant tuples in the target instance by executing
them according to the following strategy:

(i) generate target tuples for m, the “more informative” mapping;
(ii) for m′, generate only those tuples that actually add some new content

to the target.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 21 — #33
i

i

i

i

i

i

3.1. OVERVIEW 21

In order to do this, we may rewrite the original tgds into a new set of
dependencies by adding to the premise of m′ the negation of the premise of m.
The set of rewritten dependencies for Example 3.1.1 is the following (universally
quantified variables have been omitted since they should be clear from the
context):

m′
3. Refs(t, y, p, i) ∧ Auths(i, n) → TRefs(t, y, p, n)

m′
1. Refs(t, y, p, i) ∧ ¬(Refs(t, y, p, i) ∧ Auths(i, n))

→ ∃N: TRefs(t, y, p,N)
m′

2. Auths(i, n) ∧ ¬(Refs(t, y, p, i) ∧ Auths(i, n))∧
¬(WebRefs(t, p, n)) → ∃X,Y, Z: TRefs(X,Y, Z, n)

m′
4. WebRefs(t, p, n) ∧ ¬(Refs(t, y, p, i) ∧ Auths(i, n))

→ ∃Y : TRefs(t, Y, p, n)

Once we have rewritten the original tgds in this form, we can easily generate
an executable transformation under the form of relational algebra expressions.
Here, negations become difference operators; in this simple case, nulls can be
generated by outer-union operators, ∪∗, that have the semantics of the insert

into SQL statement:2

m′
3 : TRefs = πt,y,p,n(Refs 1 Auths)

m′
1 : ∪∗(πt,y,p(Refs)− πt,y,p(Refs 1 Auths))

m′
2 : ∪∗(πn(Auths)− πn(Refs 1 Auths)− πa(WebRefs))

m′
4 : ∪∗(πt,p,n(WebRefs)− πt,p,n(Refs 1 Auths))

The algebraic expressions above can be easily implemented in an executable
script, say in SQL or XQuery, to be run in any database engine. As a conse-
quence, there is a noticeable gain in efficiency with respect to the algorithms
for core computation proposed in [43, 51, 74].

Despite the fact that this example looks pretty simple, it captures a quite
common scenario. However, removing redundancy from the target may be a
much more involved process, as discussed in the following.

Example 3.1.2 Consider now the mapping scenario in Figure 3.3. The target
has two tables, in which genes reference their protein via a foreign key. In the
source we have data coming from two different biology databases. Data in the
PDB tables comes from the Protein Database, which is organized in a way that

2Note also that in the more general case Skolem functions are needed to properly
generate nulls.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 22 — #34
i

i

i

i

i

i

22 CHAPTER 3. GENERATING CORE SOLUTIONS

is similar to the target. On the contrary, the EMBL table contains data from
the popular EMBL repository; there, tuples need to be partitioned into a gene
and a protein tuple. In this process, we need to “invent” a value to be used
as a key-foreign key pair for the target. This is usually done using a Skolem
function [70].

Figure 3.3: Genes

This transformation can be expressed using the following tgds:

m1. PDBProtein(i, p) → Protein(i, p)
m2. PDBGene(g, i) → Gene(g, i)
m3. EMBLGene(p, g) → ∃N: Gene(g,N) ∧ Protein(N, p)

Sample instances are in Figure 3.4. It can be seen that the canonical solution
contains a smaller endomorphic image – the core – since the tuples (14-A,
N2) and (N2, 14-A-antigen), where N2 was invented during the chase, can be
mapped to the tuples (14-A, p1) and (p1, 14-A-antigen). In fact, if we look
at the right-hand sides of tgds, we see that there is a homomorphism from the
right-hand side of m3, {Gene(g,N),Protein(N, p)}, into the right-hand sides
of m1 and m2, {Gene(g, i),Protein(i, p)}: it suffices to map N into i. However,
this homomorphism is a more complex one with respect to those in the previous
example. There, we were mapping the conclusion of one tgd into the conclusion
of another. We may rewrite the original tgds as follows to obtain the core:

m′
1. PDBProtein(i, p) → Protein(i, p)

m′
2. PDBGene(g, i) → Gene(g, i)

m′
3. EMBLGene(p, g) ∧ ¬(PDBGene(g, i) ∧ PDBProtein(i, p))

→ ∃N Gene(g,N) ∧ Protein(N, p)

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 23 — #35
i

i

i

i

i

i

3.1. OVERVIEW 23

Figure 3.4: Instances for the genes example

From the algebraic viewpoint, mapping m′
3 above requires to generate in Gene

and Protein tuples based on the following expression:

EMBLGene − πp,g(PDBGene 1 PDBProtein)

In the process, we also need to generate the appropriate Skolem functions
to correlate tuples in Gene with the corresponding tuples in Protein. A key
difference with respect to the previous example is that there can be a much
larger number of possible rewritings for a tgd like m3, and therefore a larger
number of additional joins and differences to compute. This is due to the
fact that we need to look for homomorphisms of every single atom into other
atoms appearing in right-hand sides of the tgds, and then combine them in all
possible ways to obtain the rewritings. To give an example, suppose the source
also contains tables XProtein, XGene that write tuples to Protein and Gene;
then, we might have to rewrite m3 by adding the negation of four different
joins: (i) PDBProtein and PDBGene; (ii) XProtein, XGene; (iii) PDBProtein
and XGene; (iv) XProtein and PDBGene. This obviously increases the time
needed to execute the exchange.

Special care must be devoted to tgds containing self-joins in the conclusion,
i.e., tgds in which the same relation symbol occurs more than once in the right-
hand side. One example of this kind is the “self-join” scenario in STMark [8],
or the “RS” scenario in [43].

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 24 — #36
i

i

i

i

i

i

24 CHAPTER 3. GENERATING CORE SOLUTIONS

Consider a simplified version of the latter, in which the source schema
contains a single relation R, the target schema a single relation S , and a single
tgd is given:

m1. R(a, b) → ∃x1, x2 : S(a, b, x1) ∧ S(b, x2, x1)

Assume table R contains a single tuple: R(1, 1); by chasingm1, we generate
two tuples in the target: S(1, 1, N1), S(1, N2, N1). It is easy to see that this
set has a proper endomorphism, and therefore its core corresponds to the single
tuple S(1, 1, N1).

Even though the example is quite simple, eliminating this kind of redun-
dancy in more complex scenarios can be rather tricky. Intuitively, the tech-
niques discussed above are of little help, since, regardless of how we rewrite the
premise of the tgd, on a tuple R(1, 1) the chase will either generate two tuples
or none of them.

As a consequence, we introduce a more sophisticate treatment of these cases.
These ideas are made more precise in the following sections.

Based on the ideas above, in this chapter we introduce a number of novel
algorithms that contribute to bridge the gap between the practice of mapping
generation and the theory of data exchange. In particular:

(i) +Spicy integrates the computation of core solutions in the mapping gen-
eration process in a highly efficient way; after a set of tgds has been generated
based on the input provided by the user, core solutions are computed by a
natural rewriting of the tgds as a new set of dependencies; this allows for an
efficient implementation of the rewritten mappings using common runtime lan-
guages like SQL (or XQuery) and guarantees very good performances, orders
of magnitude better than those of previous core-computation algorithms; we
show in the following that our strategy scales up to large databases in practical
scenarios;

(ii) we classify data exchange settings in several categories, based on the struc-
ture of the mappings and on the complexity of computing the core; correspond-
ingly, we identify several approximations of the core of increasing quality; the
rewriting algorithm is designed in a modular way, so that, in those cases in
which computing the core requires heavy computations, it is possible to fine
tune the trade off between quality and computing times;

(iii) finally, the rewriting algorithm can be applied both to mappings generated
by the mapping system, or to pre-existing tgds that are provided as part of
the input. +Spicy is the first mapping system that brings together a sophis-

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 25 — #37
i

i

i

i

i

i

3.2. PRELIMINARIES 25

ticate and expressive mapping generation algorithm with an efficient strategy
to compute irredundant solutions.

In light of these contributions, we believe this work makes a significant ad-
vancement towards the goal of integrating data exchange concepts and core
computations into existing database technology.

3.2 Preliminaries

In this Section we give some new definitions related to data exchange and core
computation, needed for the results of this thesis. Since in this Chapter we
focus on relational data, for convenience we will adopt the flat relational model
presented in Chapter 2 and, as it is common in data exchange papers, we use
a logic-based syntax.

Computing Core Solutions

Given a scenario M = (S,T,Σst), and an instance I , the core [43] of a uni-
versal solution J ∈ USolM(I), C, is a subinstance of J such that there is
a homomorphism from J to C, but there is no homomorphism from J to a
proper subinstance of C. It is known [43] that cores of the universal solutions
for a scenario M and source instance I are all isomorphic to each other, and
therefore it is possible to speak of the core universal solution.

In the following sections, we detail several algorithms that, given a mapping
scenario, rewrite the given tgds as a set of FO-rules that represent a core schema
mapping.

Definition 1 [Core Schema Mapping] Given a scenario M = (S,T,Σst),
a set of FO-rules R is called a core schema mapping for M if, for any source
instance I , the canonical target instance R(I) is the core universal solution for
M over I .

A very similar notion of laconic schema mapping was introduced in [78].
Note that we concentrate on data exchange settings expressed as a set of source-
to-target tgds, i.e., we do not consider target tgds and egds. In fact, it was
shown in [78] that it is in general not possible to rewrite a scenario with target
tgds into a laconic one. The authors conjecture that the same also holds for
target egds.

We also make the assumption that the set Σst is source-based.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 26 — #38
i

i

i

i

i

i

26 CHAPTER 3. GENERATING CORE SOLUTIONS

Definition 2 [Source-Based Tgd] A tgd φ(x) → ∃y(ψ(x, y)) is source-
based if: (i) the left-hand side φ(x) is not empty; (ii) the vector of univer-
sally quantified variables x is not empty; (iii) at least one of the variables in x
appears in the right hand side ψ(x, y).

This definition, while restricting the variety of tgds handled by the algo-
rithm, captures the notion of a “useful” tgd in a schema mapping scenario. In
fact, note that tgds in which the left-hand side is empty or it contains no uni-
versally quantified variables – like, for example→ ∃X,Y : T (X,Y), or ∀a : S(a)
→ ∃X,Y : R(X,Y)∧ S(Y,X) – would generate target tuples made exclusively
of nulls, which are hardly useful in practical cases.

Besides requiring that tgds are source-based, without loss of generality we
also require that the input tgds are in normal form, i.e., each tgd uses distinct
variables, and no tgd can be decomposed in two different tgds having the same
left-hand side. To formalize this second notion, let us introduce the Gaifman
graph of a formula as the undirected graph in which each variable in the formula
is a node, and there is an edge between v1 and v2 if v1 and v2 occur in the same
atom. The dual Gaifman graph of a formula is an undirected graph in which
nodes are atoms, and there is an edge between atoms Ri(xi, yi) and Rj(xj , yj)
if there is some existential variable yk occurring in both atoms.

Definition 3 [Normal Form for Tgds] A set of tgds Σst is in normal form
if: (i) for each mi, mj ∈ Σst, (xi ∪ yi)∩ (xj ∪ yj) = ∅, i.e, the tgds use disjoint
sets of variables; (ii) for each tgd mi, the dual Gaifman graph of atoms in the
conclusion of mi is connected.

If the input set of tgds is not in normal form, it is always possible to prelim-
inarily rewrite them to obtain an input in normal form. In particular, we intro-
duce a transformation, called normalize, that takes a set of dependencies, Σst

(tgds or FO-rules), and generates a new set of dependencies, normalize(Σst),
in normal form. To do that, it analyzes the dual Gaifman graph of a depen-
dency conclusion. If the graph is not connected, it generates a set of new
dependencies with the same premise, one for each connected component in the
dual Gaifman graph.

Example 3.2.1 Consider the following set of tgds Σst:

m1. A(x1, x2, x3) → ∃Y0, Y1, Y2 : S(x1, Y0), T (x2, Y0, Y1), U(Y2, x2), V (Y2, x3)
m2. B(x4, x5) → ∃Y3, Y4 : S(x4, Y3), T (Y3, x5, Y4), U(Y4, x4)

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 27 — #39
i

i

i

i

i

i

3.2. PRELIMINARIES 27

Figure 3.5: Example of dual Gaifman graphs

Dual Gaifman graphs for tgd m1 and m2 are represented respectively in Fig-
ure 3.5 (a) and (b). Notice that m2 is in normal form, since its dual Gaifman
graph is connected; on the contrary, m1 is not in normal form. Applying the
transformation normalize(Σst), we will obtain a new set of tgds, Σ′

st, in which
each tgd is rewritten in normal form. Σ′

st is as follows:

m′
1. A(x1, x2, x3) → ∃Y0, Y1 : S(x1, Y0), T (x2, Y0, Y1)

m′′
1 . A(x1, x2, x3) → ∃Y2 : U(Y2, x2), V (Y2, x3)

m′
2. B(x4, x5) → ∃Y3, Y4 : S(x4, Y3), T (Y3, x5, Y4), U(Y4, x4)

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 28 — #40
i

i

i

i

i

i

28 CHAPTER 3. GENERATING CORE SOLUTIONS

3.3 A Characterization of the Core

This Section provides an important result upon which we shall build the rewrit-
ing algorithms reported in the remainder of the paper. It introduces the key
concept of a witness block, and shows how it is possible to characterize the core
of the universal solutions for a mapping scenario by means of witness blocks.
In doing this, it outlines a core computation strategy that will be exploited in
the next Sections.

Consider a scenario M with a set of s-t tgds Σst; given a source instance, I ,
each tgd in Σst represents a constraint that must be satisfied by any solution
J for M over I . Informally speaking, a witness block is a set of facts in J that
guarantees that a tgd in Σst is satisfied for some vector of constants a. More
formally:

Definition 4 [Witness Block] Given a scenario M = (S,T,Σst), a source
instance I , and an universal solution J ∈ USolM(I), for each tgd m : ∀x :
φ(x) → ∃y(ψ(x, y)) ∈ Σst and any assignment c for x such that I |= φ(c(x)),
a witness block for 〈I , J 〉, m, and c = c(x) is a set of facts w ⊆ J such that,
for some assignment d for y, it is the case that w = ψ(c(x), d(y)).

In the following, W<I,J>
m,c will be used to denote the set of all witness blocks

for 〈I , J 〉, m, and c, W<I,J>
m the set of all witness blocks for 〈I , J 〉 and m,

W<I,J> the set of all witness blocks of 〈I , J 〉.
A key intuition is that there are usually multiple ways to satisfy a tgd

m for some vector of constants a, i.e., a solution usually contains multiple
witness blocks for m and a. The following examples show how the core can be
characterized in terms of witness blocks.

Example 3.3.1 Reconsider the scenario in Example 2.2. We report here the
set of source-to-target tgds Σst:

m1.∀x1, x2 : A(x1, x2) → ∃Y1 : S(x1, Y1), T (Y1, x2)
m2.∀x3, x4 : B(x3, x4) → S(x3, x4)
m3.∀x5, x6 : C(x5, x6) → T (x5, x6)
m4.∀x7 : D(x7) → ∃Y0 : S(x7, Y0)

and the source instance: I = {A(1, 2), B(1, 3), C(3, 2), D(1)}.
The canonical solution J for M over I is:

J = {S(1, N0), T (N0, 2), S(1, 3), T (3, 2), S(1, N1)}.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 29 — #41
i

i

i

i

i

i

3.3. A CHARACTERIZATION OF THE CORE 29

Following are the witness blocks for J :

W<I,J>
m1,〈1,2〉

= {{S(1, N0), T (N0, 2)}, {S(1, 3), T (3, 2)}}

W<I,J>
m2,〈1,3〉

= {{S(1, 3)}}

W<I,J>
m4,〈1〉

= {{S(1, N1)}, {S(1, N0)}, {S(1, 3)}}

W<I,J>
m3,〈3,2〉

= {{T (3, 2)}}

The core of J is as follows: J0 = {S(1, 3), T (3, 2)}. The witness blocks for J0
are as follows:

W<I,J0>
m1,〈1,2〉

= {{S(1, 3), T (3, 2)}} W<I,J0>
m2,〈1,3〉

= {{S(1, 3)}}

W<I,J0>
m4,〈1〉

= {{S(1, 3)}} W<I,J0>
m3,〈3,2〉

= {{T (3, 2)}}

Example 3.3.2 Consider now the following scenario M:

m1. R(x0, x1, x2) → ∃Y0, Y1, Y2, Y3, Y4, Y5 : S(Y0, x0, Y2, Y3),
S(Y0, x1, x1, Y1), S(Y4, x2, Y5, Y1)

m2. R(z0, z1, z2) → ∃V0, V1, V2, V3, V4, V5 : S(V0, z1, z2, V2),
S(V0, z2, z1, V1), S(V3, V4, V5, V1)

and the source instance: I = {R(e, a, a), R(e, a, b)}. The canonical universal
solution J is the following:

J = { S(N0, e,N1, N2), S(N0, a, a,N3), S(N4, a,N5, N3),
S(N6, e,N7, N8), S(N6, a, a,N9), S(N10, b,N11, N9),
S(N12, a, a,N13), S(N12, a, a,N14), S(N15, N16, N17, N14),
S(N18, a, b,N19), S(N18, b, a,N20), S(N21, N22, N23, N20) }

Following are the four sets of witness blocks:

W<I,J>
m1,〈e,a,a〉

= { {S(N0, e,N1, N2), S(N0, a, a,N3), S(N4, a,N5, N3)},

{S(N0, e,N1, N2), S(N0, a, a,N3)},
{S(N6, e,N7, N8), S(N6, a, a,N9)} }

W<I,J>
m1,〈e,a,b〉

= { {S(N6, e,N7, N8), S(N6, a, a,N9), S(N10, b,N11, N9)} }

W<I,J>
m2,〈e,a,a〉

= { {S(N12, a, a,N13), S(N12, a, a,N14), S(N15, N16, N17, N14)},

{S(N12, a, a,N13), S(N12, a, a,N14)}, {S(N12, a, a,N13)},
{S(N12, a, a,N14)}, {S(N0, a, a,N3)}, {S(N6, a, a,N9)} }

W<I,J>
m2,〈e,a,b〉

= { {S(N18, a, b,N19), S(N18, b, a,N20), S(N21, N22, N23, N20)},

{S(N18, a, b,N19), S(N18, b, a,N20)} }

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 30 — #42
i

i

i

i

i

i

30 CHAPTER 3. GENERATING CORE SOLUTIONS

The core of J is as follows:

J0 = { S(N6, e,N7, N8), S(N6, a, a,N9), S(N10, b,N11, N9)
S(N18, a, b,N19), S(N18, b, a,N20) }

The witness blocks for J0 are as follows:

W<I,J0>
m1,〈e,a,a〉

= { {S(N6, e,N7, N8), S(N6, a, a,N9)} }

W<I,J0>
m1,〈e,a,b〉

= { {S(N6, e,N7, N8), S(N6, a, a,N9), S(N10, b,N11, N9)} }

W<I,J0>
m2,〈e,a,a〉

= { {S(N6, a, a,N9)} }

W<I,J0>
m2,〈e,a,b〉

= { {S(N18, a, b,N19), S(N18, b, a,N20)} }

An important observation is that other algorithms for core computation ([43,
51, 78]) have so far concentrated on a different notion of “blocks”, namely fact
blocks. Informally speaking, a fact block in an instance is a set of facts that
are joined via labeled nulls. More formally, it is a connected component in the
dual Gaifman graph of an instance, in which facts are the nodes, and there
exists an edge between any two facts in which the same labeled null appears.

We want to emphasize that witness blocks are a different concept with
respect to fact blocks, since they are essentially instances of tgd conclusions.
In some cases the witness blocks of a tgd are also fact blocks. In other cases,
they are unions of fact blocks. However, the following example shows that there
may be witness blocks in an instance that are neither fact blocks nor unions of
fact blocks.

Example 3.3.3 Consider now the following scenario M:

m1. R(x0, x1, x2, x3) → ∃Y0, Y1, Y2, Y3, Y4 : S(x3, x0, x0, Y0, x1),
S(Y1, x0, x0, Y0, x0), S(Y1, x2, Y2, Y3, Y4)

and the source instance: I = {R(d, d, c, d), R(c, d, c, d)}. The core universal
solution for M over I is as follows:

J0 = {S(d, d, d,N0, d), S(d, c, c,N5, d), S(N6, c, c,N5, c)}

The witness blocks for J0 are as follows:

W<I,J0>
m1,〈d,d,c,d〉

= { {S(d, d, d,N0, d), S(d, c, c,N5, d)} }

W<I,J0>
m1,〈c,d,c,d〉

= { {S(d, c, c,N5, d), S(N6, c, c,N5, c)} }

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 31 — #43
i

i

i

i

i

i

3.3. A CHARACTERIZATION OF THE CORE 31

Notice how the witness block in W<I,J0>
m1,〈d,d,c,d〉

is not a fact block, nor the union of

two fact blocks (it is rather the union of a fact block and a fragment of another
fact block).

Our goal is to find a characterization of the core in terms of its witness
blocks. However, as it can be seen from the examples above, some of the witness
blocks in the canonical solution are redundant, and therefore the corresponding
tuples need to be removed to generate the core. As it is natural, we use the
notion of an homomorphism to define what a “redundant” witness block is.
Recall that, given two instances J , J ′, a homomorphism h : J → J ′ is a
mapping from dom(J) to dom(J ′) that maps constants to themselves (i.e. for
each c ∈ consts(J), h(c) = c) such that for each tuple t = R(A1 : v1, . . . , Ak :
vk) in J it is the case that h(t) = R(A1 : h(v1), . . . , Ak : h(vk)) belongs to J ′.

There are several ways in which tuples can be made redundant in a solution.
Generally speaking, tuples are redundant whenever they introduce unnecessary
nulls. One example of this is the case of a witness block w for some tgd m
and assignment a such that there is a “more compact” witness block w′ for the
same tgd and assignment.

To give an example, consider Example 3.3.2; in W<I,J>
m1,〈e,a,a〉

, the witness

block w1 = {S(N0, e,N1, N2), S(N0, a, a,N3), S(N4, a,N5, N3)} is made redun-
dant by witness block w2 = {S(N0, e,N1, N2), S(N0, a, a,N3)}; w2, in fact,
contains a lower number of nulls than w1. To formalize this notion, we intro-
duce a classification of homomorphisms, as follows.

Definition 5 [Classification of Homomorphisms] Given two instances
J , J ′, and an homomorphism h : J → J ′:

• h is proper if |J | < |J ′|, i.e., J ′ contains at least one atom that is not
the image of an atom of J ; in symbols, we write that J < J ′; otherwise,
we say that h is surjective, or that it is a surjection;

• h is compacting if it is a surjection, and |vars(J ′)| < |vars(J)|; we write
J ≺ J ′ if there is a compacting homomorphism of J into J ′;

• h is an isomorphism if it is surjective and injective and its inverse is also
a homomorphism; in this case, we say that J and J ′ are isomorphic, in
symbols J ∼= J ′.

It can be seen that the ≺ relation associated with compacting homomor-
phisms is antisymmetric and transitive, and therefore induces a partial order

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 32 — #44
i

i

i

i

i

i

32 CHAPTER 3. GENERATING CORE SOLUTIONS

on witness blocks. A first intuition of our algorithm is that of selecting, among
all possible witness blocks, only those that represent maximal elements with
respect to this partial order, in order to minimize the null values in the final
result.

However, even such maximal elements may still be redundant. In fact, other
tgds and assignments may generate witness blocks that are “more informa-
tive”. Consider again the Example 3.3.2; witness block w2 = {S(N0, e,N1, N2),
S(N0, a, a,N3)}, which is a maximal block for m1 and 〈e, a, a〉 is made re-
dundant by witness block w3 = {S(N6, e,N7, N8), S(N6, a, a,N9), S(N10, b,
N11, N9)}, since there is a proper homomorphism of w2 into w3.

Again, proper homomorphisms induce a partial order on the set of witness
blocks. In light of this, our core computation procedure will proceed as follows:
(a) first, we shall select the most compact witness blocks in any set W<I,J>

m,a ,

i.e., all maximal elements with respect to the ≺ partial order; (b) then, we will
exclude all elements such that there are more informative witness blocks, i.e.,
we will select the maximal elements with respect to the < partial order. More
formally, given a set of witness blocks W, we define:

max-compact(W) = {w | w ∈ W ∧ ¬∃ w′ ∈ W : w ≺ w′}
max-informative(W) = {w | w ∈ W ∧ ¬∃ w′ ∈ W : w < w′}

By doing this, we are able to remove most of the redundancy in the original
solution. Unfortunately, not enough to generate the core. In fact, it may be the
case that multiple isomorphic copies of a witness block survive in the result.
To see this, consider the following example:

Example 3.3.4 Consider the following scenario M:

m1. R(x3, x4) → ∃Y3, Y4 : S(x3, x4, Y3), S(x3, Y4, Y3)
m2. R(x5, x6) → ∃Y5, Y6 : S(x5, x6, Y5), S(Y6, x6, Y5)

and the source instance: I = {R(1, 2)}. The canonical universal solution J for
M over I is the following:

J = { S(1, 2, N3), S(1, N4, N3), S(1, 2, N5), S(N6, 2, N5) }

Following are some sets of witness blocks for J :

W<I,J>
m1,〈1,2〉

= { {S(1, 2, N3), S(1, N4, N3)}, {S(1, 2, N3)}, {S(1, 2, N5)} }

W<I,J>
m2,〈1,2〉

= { {S(1, 2, N5), S(N6, 2, N5)}, {S(1, 2, N3)}, {S(1, 2, N5)} }

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 33 — #45
i

i

i

i

i

i

3.3. A CHARACTERIZATION OF THE CORE 33

By taking the union of the set of maximal witness blocks, we obtain the following
solution: J∗ = {S(1, 2, N3), S(1, 2, N5)} that is obviously not the core. In fact,
the two maximal witness blocks are isomorphic to each other, and we need to
consider only one of them. We may say that, by selecting maximal witness
blocks, we are able to identify two alternative subsets of J that correspond to
the core, so that we need to pick one of them.

After we have selected a set of maximal witness blocks, in order to generate
an isomorphism-free solution we introduce a minimization algorithm, called
reduce, that works as follows:

• given a set of witness blocksW, it identifies all equivalence classes E0, . . . , Ek
of isomorphic witness blocks in W;

• for each equivalence class, it (nondeterministically) selects exactly one
representative, wEi

;

• then, it returns the subset of W obtained by taking the representative of
each equivalence class, i.e., W = {wEi

|i = 0, . . . , k}.

Based on this intuition, we are ready to formalize our characterization of the
core.

Theorem 3.3.5 Given a scenario M = (S,T,Σst), and a source instance I ,
suppose J is a universal solution for M over I . Consider the subset J0 of J
defined as follows:

J0 =
⋃

reduce(max-informative(max-compact(W<I,J>))) (3.1)

Then, J0 is the core of J .

The proof is in the Appendix.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 34 — #46
i

i

i

i

i

i

34 CHAPTER 3. GENERATING CORE SOLUTIONS

3.4 Expansions

Given a mapping scenario, M = (S,T,Σst), our goal is to rewrite the given
tgds under a set of FO-rules that represents a core schema mapping for M,
and then to generate an SQL script from them. In order to do this, we shall
rely on the characterization of the core introduced in Section 3.3. A central
intuition is that it is possible to select the needed witness blocks by using a
set of first-order rules. In this section we introduce the central notion of an
expansion of a tgd conclusion, that we shall use in the next sections to perform
the rewriting.

Expansions and Formula Homomorphisms

Once the canonical universal solution J for I has been generated by chasing
the original tgds, our next step is to select the witness blocks that belong to
the core. To discuss how this is done, we shall mainly refer to the scenario in
Example 3.3.2, of which we report the tgds here, complete of labels.

m1. R(x0, x1, x2) → ∃Y0, Y1, Y2, Y3, Y4, Y5 : S 1(Y0, x0, Y2, Y3),
S 2(Y0, x1, x1, Y1),S

3(Y4, x2, Y5, Y1)
m2. R(x3, x4, x5) → ∃Y6, Y7, Y8, Y9, Y10, Y11 : S 4(Y6, x4, x5, Y8),

S 5(Y6, x5, x4, Y7),S
6(Y9, Y10, Y11, Y7)

Notice that, since J is a finite instance, W<I,J> is a finite set, and therefore
the set of witness blocks for each tgd is finite. Our intuition is to generate a
set of queries, called expansions, that capture the witness blocks in W<I,J>.

To give an example, consider mapping m1 above: it states that the target
must contain a number of tuples in S that satisfy the two joins in the tgd
conclusion. Recall that in our labeling system, atom S i corresponds to all
tuples in relation S whose provenance contains label i. The formula:

ǫ11. S
1(Y0, x0, Y2, Y3) ∧ S 2(Y0, x1, x1, Y1) ∧ S 3(Y4, x2, Y5, Y1)

is called the base expansion ofm1, and by running the corresponding query over
J we find a number of witness blocks for m1. However, not all witness blocks.
In fact, tuples in J that satisfy the conclusion of m1 (i) do not necessarily
belong to the extent of S 1, S 2, S 3, since they may also come from S 4, S 5 or
S 6; (ii) these tuples are not necessarily distinct, since there may be tuples that
perform a self-join.

One alternative way to generate valid witness blocks for m1 is to use only
one tuple from S 1 and one from S 2, the second one in join with itself on the last

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 35 — #47
i

i

i

i

i

i

3.4. EXPANSIONS 35

attribute – i.e., S 2 is used to “cover” the S 3 atom. However, this may work as
long as the two atoms generate tuples that do not conflict with the constants
in the base expansion; in our example, the values generated by the S 2 atom
must be consistent with those that would be generated by the S 3 atom we are
eliminating, i.e., x1 = x2. We write this second expansion as follows:

ǫ12. S
1(Y0, x0, Y2, Y3) ∧ S 2(Y0, x1, x1, Y1)∧

∃x2b, Y4b, Y5b : (S
3(Y4b, x2b, Y5b, Y1) ∧ x1 = x2b)

It is possible to see that – from the algebraic viewpoint – the formula requires to
compute a join between S 1 and S 2, and then an intersection with the content
of S 3. This is even more apparent if we look at another possible expansion,
the one that replaces the three atoms with a single covering atom from S 5:

ǫ13. S
5(Y6, x5, x4, Y7) ∧ ∃x0b, x1b, x2b, Y0b, Y1b, Y2b, Y3b, Y4b, Y5b :

(S 1(Y0b, x0b, Y2b, Y3b) ∧ S 2(Y0b, x1b, x1b, Y1b) ∧ S 3(Y4b, x2b, Y5b, Y1b)∧
x5 = x0b ∧ x5 = x1b ∧ x4 = x1b ∧ x5 = x2b)

In algebraic terms, expansion ǫ13 corresponds to taking the intersection on the
appropriate attributes of S 5 with the base expansion, i.e., S 1 ⊲⊳ S 2 ⊲⊳ S 3.

A similar approach can be used for tgdm2 above. In this case, the algorithm
first generates the base expansion:

ǫ21. S
4(Y6, x4, x5, Y8) ∧ S 5(Y6, x5, x4, Y7) ∧ S 6(Y9, Y10, Y11, Y7)

However the base expansion is hardly useful for core computation purposes.
Consider the facts obtained from ǫ21 by considering each xi as a constant and
each Yi as a labeled null. It is easy to see that this set is not a core. In fact,
the third atom is useless (it generates tuples that only contain nulls and no
constants).3 A more interesting expansion is the following;

ǫ22. S
4(Y6, x4, x5, Y8) ∧ S 5(Y6, x5, x4, Y7)

Notice that no intersection is present, here, since we are removing from the
base expansion an atom that only contains existential variables.

In order to develop an algorithm that finds all expansions of a tgd conclu-
sion, we introduce a notion of formula homomorphism, which is reminiscent of
the notion of containment mapping used in [57]. We find it useful to define
homomorphisms among variable occurrences, and not among variables. In the
following, we use the notation ϕ(x, y) to denote a (labeled) conjunctive formula
with universally quantified variables x, and existentially quantified variables y.

3This was first noted in [78] with respect to the different notion of a fact-block type.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 36 — #48
i

i

i

i

i

i

36 CHAPTER 3. GENERATING CORE SOLUTIONS

Definition 6 [Variable Occurrence] Given an atom Rl(A1 : v1, . . . , Ak :
vk) in a formula ϕ(x, y), a variable occurrence is a pair Rl.Aj : vi. A variable
occurrence Rl.Aj : vi in ϕ(x, y) is a universal occurrence if vi ∈ x; it is an
existential occurrence if vi ∈ y.

In the following, we denote by occ(ϕ(x, y)) the set of all variable occurrences
in ϕ(x, y); u-occ(ϕ(x, y)), e-occ(ϕ(x, y)) will denote the set of universal and
existential occurrences, respectively. Similarly, occ(v), u-occ(v), e-occ(v) will
denote the set of all (universal, existential) occurrences of a given variable v.

Definition 7 [Formula Homomorphism] Given two conjunctive formulas
ϕ(x, y), ϕ′(x′, y′), a formula homomorphism is an injective mapping hf from
the set occ(ϕ(x, y)) to occ(ϕ′(x′, y′)) such that: (i) hf maps universal occur-
rences into universal occurrences; (ii) for each atom Rl(A1 : v1, . . . , Ak : vk) ∈
ϕ(x, y), it is the case that R(hf (Rl.A1 : v1), . . . , h

f (Rl.Ak : vk)) ∈ ϕ′(x′, y′);
(iii) for each pair of occurrences of an existential variable y ∈ y, Rl

i.Aj : y,
Rl

n.Am : y it is the case that either hf (Rl
i.Aj : y) and hf (Rl

n.Am : y) are both
universal, or they are occurrences of the same existential variable y′ ∈ y′.

It is useful to classify formula homomorphisms in several categories, as
follows.

Definition 8 [Classification of Formula Homomorphisms] Given two
formulas ϕ(x, y), ϕ′(x′, y′), and a formula homomorphism hf from occ(ϕ(x, y))
to occ(ϕ′(x′, y′)),

• hf is said to be proper if |ϕ(x, y)| < |ϕ′(x′, y′)|, i.e., there is at least one
atom in ϕ′(x′, y′) which is not the image of an atom of ϕ(x, y); on the
contrary, hf is surjective, or a surjection, if all atoms in ϕ′(x′, y′) are
the image of some atom in ϕ(x, y);

• hf is compacting if it is a surjection, and either |ϕ(x, y)| > |ϕ′(x′, y′)|
or |y′| < |y|, i.e., either ϕ′(x′, y′) is smaller than ϕ(x, y) or it contains
less existential variables;

It can be seen that, since formula homomorphisms map variable occurrences
into variable occurrences, they may relate occurrences of the same variable on
the left hand side to occurrences of different variables on the right hand side.
In the following, we shall refer to the variable occurrence hf (Rl.Aj : vi) by

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 37 — #49
i

i

i

i

i

i

3.4. EXPANSIONS 37

the syntax Aj : hfRl.Aj
(vi), so that hfRl.Aj

(vi) will be the variable whose

occurrence is associated with occurrence Rl.Aj of vi.
Note that homomorphisms among formulas map occurrences of a universal

variable into occurrences of other universal variables. However, these variables
do not necessarily receive the same values. Therefore, the homomorphism may
be “realized” or not among facts, i.e., instances of the formulas, depending on
values assumed by the universal variables. Given a formula homomorphism
hf , we introduce several sets of equalities among universal variables that are
associated with hf :

• the set intersecthf states the set of equalities among universal variables
of ϕ(x, y) and universal variables of ϕ′(x′, y′) that must hold to realize
the homomorphism among instances of the two formulas:

intersecthf (x, x′) = {xi = x′j | hf (R.A : xi) = R.A : x′j , xi ∈ x}

• the set joinshf states the set of equalities among universal variables of
ϕ′(x′, y′) whose occurrences are images of occurrences of the same exis-
tential variable in ϕ(x, y).

joinshf (x′) = {x′h = x′l | x
′
h = hfRi.Aj

(yk), x
′
l = hfRn.Am

(yk), yk ∈ y}

The set equalhf will be the union of the two, as follows:

equalhf (x, x′) = intersecthf (x, x′) ∪ joinshf (x′)

We are now ready to introduce the notion of an expansion. To do that, we shall
repeatedly make use of labeled formulas, i.e., formulas in which atom labels may
appear. Given a formula ψ(x, y), the associated labeled formula is a formula
ψl(x, y) in which each atom R(x, y) is replaced by a labeled atom Ri(x, y). In
the following, we will often go from a labeled formula ψl(x, y) to its unlabeled
version ψ(x, y).

Given a scenarioM = (S,T,Σst), we shall denote by
⋃

i ψi(xi, yi) the union
of all tgd conclusions in Σst.

Definition 9 [Expansion] Given a tgd m.φ(x2) → ∃y2(ψ
l(x2, y2)) in Σst,

an expansion of m is a logical formula of the form:

ǫ = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf
ǫ
(x1, x2))

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 38 — #50
i

i

i

i

i

i

38 CHAPTER 3. GENERATING CORE SOLUTIONS

where χl(x1, y1) is a multiset of labeled atoms in
⋃

i ψ
l
i(xi, yi) such that there

is a surjection hf ǫ : ψ(x2, y2) → χ(x1, y1). Without loss of generality, in the
following we shall assume that expansions are such that x1∩x2 = ∅, y1∩y2 = ∅,
i.e., x1, x2 (y1, y2, respectively) are disjoint.

Notice that an expansion ǫ can be also considered as a query ǫ(x1, y1) with
free variables x1, y1. In fact, we will show that the result of evaluating such
queries on a solution J ∈ USolM(I) returns exactly a set of witness blocks in
W<I,J>. More formally, given an instance J , and an assignment a1 for x1, y1,
we say that J |= a1(ǫ(x1, y1)) if the following holds: (i) J |= a1(χ

l(x1, y1));
(ii) there exists an assignment a2 such that J |= a2(ψ

l(x2, y2)); (iii) a1, a2 are
such that equalhf

ǫ
(a1(x1), a2(x2)) evaluates to true.

Algorithm 1 describes how to derive all expansions of a tgd m, denoted by
expan(m).

In order to find them, for each tgd m : ∀x : φ(x) → ∃y(ψ(x, y)) we need
to consider the set Rpow of all multisets of atoms from

⋃

{ψl
i(xi, yi) | φi(xi) →

∃yi(ψi(xi, yi)) ∈ Σst}, and select those into which ψ(x, y) has a surjective
homomorphism. Some care must be devoted to properly renaming variables;
in particular, whenever multiple copies of the same atom appear in a multiset,
we assume that they have been properly renamed to avoid variable collisions.

It can be seen that the number of expansions of a tgd conclusion may
significantly increase when the number of self-joins increase, and is in general
exponential in the size of the input tgds.

Rewriting Expansions

Expansions represent all possible ways in which the original constraints may be
satisfied, and in fact they capture all possible witness blocks of a tgd. However,
to identify redundant witness blocks, we need to properly rewrite expansions
according to their formula homomorphisms, as follows.

Definition 10 [More Compact, More Informative] Given expansions:

ǫ = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf
ǫ
(x1, x2))

ǫ′ = χl′(x′1, y
′
1) ∧ ∃x′2, y

′
2 : (ψl′(x′2, y

′
2)

∧

equalhf
ǫ′
(x′1, x

′
2))

• ǫ′ is more compact than ǫ if there exists a compacting homomorphism
hf c : χ(x1, y1) → χ′(x′1, y

′
1);

• ǫ′ is more informative than ǫ if there exists a proper homomorphism hf p :
χ(x1, y1) → χ′(x′1, y

′
1).

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 39 — #51
i

i

i

i

i

i

3.4. EXPANSIONS 39

Algorithm 1 Finding Expansions

Input: a scenario M = (S,T,Σst),
a tgd m : ∀x : φ(x) → ∃y(ψ(x, y)) ∈ Σst

Output: the set of expansions expan(m)

Let expan(m) = ∅

Let R =
⋃

{ψl
i(xi, yi) | φi(xi) → ∃yi(ψi(xi, yi)) ∈ Σst}

Let k = |ψ(x, y)|

Rename variables in ψl(x, y) as ψl(x2, y2)

Let Rpow be the set of all (renamed) multisets of atoms in R of size k or less

For each χl(x1, y1) ∈ Rpow

If there exists a surjection hf : ψl(x2, y2) → χ(x1, y1)

Let intersecthf (x1, x2) = ∅

For each Rl.Ai : x2j ∈ u-occ(ψl(x2, y2))

intersecthf (x1, x2) = intersecthf (x1, x2) ∪ {x2j = hf
Rl.Ai

(x2j)}

Let joinshf (x1) = ∅

For each pair Rl
i.Aj : y2k, R

l
n.Am : y2k in e-occ(ψl(x2, y2))

such that hf (Rl
i.Aj : y2k) and h

f (Rl
n.Am : y2k) are in u-occ(χl(x1, y1))

joinshf (x1) = joinshf (x1) ∪ {hf
Rl

i
.Aj

(y2k) = hf
Rl

n.Am
(y2k)}

Let equalhf (x1, x2) = intersecthf (x1, x2) ∪ joinshf (x1)

expan(m) = expan(m) ∪ {χl(x1, y1) ∧ ∃x2, y2 :

(ψl(x2, y2)
∧

equalhf (x1, x2))}

Given an expansion ǫ, we generate a first rewriting of ǫ, called rew-cǫ,
by adding to ǫ the negation of each expansion ǫ′ that is more compact than
ǫ, with the appropriate equalities. With respect to our reference example,
it can be seen that expansion ǫ12 and ǫ13 generate witness blocks that are
more compact than those generated by ǫ11. Called hf 12, h

f
13 the compacting

homomorphisms of ǫ11 into ǫ12, ǫ13, respectively, ǫ11 must be rewritten into a
new formula rew-cǫ11 as follows (the actual formula is omitted since it is quite
long):

rew-cǫ11 = ǫ11(x1, y1)∧
¬∃x′1, y

′
1 : (ǫ12(x

′
1, y

′
1) ∧ equalhf

12
(x1, x

′
1))∧

¬∃x′′1 , y
′′
1 : (ǫ13(x

′′
1 , y

′′
1) ∧ equalhf

13
(x1, x

′′
1))

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 40 — #52
i

i

i

i

i

i

40 CHAPTER 3. GENERATING CORE SOLUTIONS

This also means that ǫ21 must be rewritten into a new formula rew-cǫ21 as
follows:

rew-cǫ21 = ǫ21(x1, y1) ∧ ¬∃x′1, y
′
1 : (ǫ22(x

′
1, y

′
1) ∧ equalhf

22
(x1, x

′
1))

The actual formula is reported below:

rew-cǫ21 = S 4(Y6, x4, x5, Y8) ∧ S 5(Y6, x5, x4, Y7) ∧ S 6(Y9, Y10, Y11, Y7)∧
¬∃x′4, x

′
5, Y

′
6 , Y

′
7 , Y

′
8 : (S 4(Y ′

6 , x
′
4, x

′
5, Y

′
8) ∧ S 5(Y ′

6 , x
′
5, x

′
4, Y

′
7)∧

x4 = x′4 ∧ x5 = x′5)

Note that rew-cǫ21 is never satisfied. In fact, for any set of tuples such that
ǫ21 is true, also ǫ22 is true. This justifies our observation that, whenever an
expansion is generated, if we verify that χ(x, y) generates canonical blocks that
are not a core, we can safely discard the expansion since it will not contribute
to the core.

After this first rewriting, we look among other expansions to favor those
that generate more informative witness blocks in the target, and we further
rewrite rew-cǫ accordingly. To see an example, consider expansion ǫ22 above:
it is easy to see that – once we have removed tuples for which there are more
compact expansions – we have to ensure that expansion ǫ11 of the other tgd
does not generate a more informative witness block in the target (we omit the
rewriting here because it is quite long).

To summarize, to generate the final rewriting, we consider each expansion, ǫ
of a tgd m; then: (i) we first rewrite ǫ into a new formula rew-cǫ by adding the
negation of all expansions ǫi such that ǫi is more compact than ǫ; (ii) we further
rewrite rew-cǫ into a new formula rew-iǫ by adding the negation of rew-cǫj ,
for all expansions ǫj such that ǫj is more informative than ǫ. Intuitively, the
union of all rew-iǫ for a tgd m generates all maximal witness blocks for that
tgd.

Definition 11 [Rewriting Expansions: rew-c and rew-i] Given an ex-
pansion ǫ = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)

∧

equalhf
ǫ
(x1, x2)), the formula

rew-cǫ is obtained as follows:

• initialize rew-cǫ = ǫ;

• for any expansion ǫ′ = χl′(x′1, y
′
1)∧∃x

′
2, y

′
2 : (ψl′(x′2, y

′
2)

∧

equalhf
ǫ′
(x′1, x

′
2))

in expan(M) such that ǫ′ is more compact than ǫ, call hf c the compact-
ing homomorphism of χl(x1, y1) into χl′(x′1, y

′
1); then, add to rew-cǫ a

formula

∧¬∃x′1, y
′
1 : (ǫ′

∧

equalhf
c
(x1, x

′
1))

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 41 — #53
i

i

i

i

i

i

3.4. EXPANSIONS 41

The formula rew-iǫ is obtained as follows:

• initialize rew-iǫ = rew-cǫ;

• for any expansion ǫ′ = χl′(x′1, y
′
1)∧∃x

′
2, y

′
2 : (ψl′(x′2, y

′
2)

∧

equalhf
ǫ′
(x′1, x

′
2))

in expan(M) such that ǫ′ is more informative than ǫ, call hf i the proper
homomorphism of χl(x1, y1) into χl′(x′1, y

′
1); then, add to rew-iǫ a for-

mula

∧¬∃x′1, y
′
1 : (rew-cǫ′

∧

equalhf
i
(x1, x

′
1))

Isomorphisms

We can now get back to our original goal, that is, find the set of witness blocks
that belong to the core. Rewriting expansions in order to capture maximal
witness blocks is a promising step forward. Unfortunately, it is not sufficient
to generate the core. In fact, it is still possible that expansions select witness
blocks that are isomorphic to each other.

Handling isomorphic witness blocks by means of expansions is a tricky is-
sue. In fact, there are two possible sources of isomorphisms among witness
blocks. The first one corresponds to multiple isomorphic copies of a witness
block that are generated by different expansions. This is the easiest one to
capture. However, there is also the possibility that isomorphic witness blocks
are generated by the same expansion. As it was noted in [78], this may happen
if an expansion has non-trivial automorphisms.

Consider for example expansion ǫ22 above.

ǫ22. S
4(Y6, x4, x5, Y8) ∧ S 5(Y6, x5, x4, Y7)

it can be seen that χ(x1, y1) has a non-trivial automorphism that maps x4 into
x5 and viceversa.

Therefore, the expansion will select pairs of isomorphic witness blocks
in J of the form S 4(N0, a, b,N1),S

5(N0, b, a,N2) and S 4(N3, b, a,N4),S
5(N3,

a, b,N5). This problem does not arise if J is isomorphism–free, i.e., it does not
contain witness blocks that are isomorphic to each other.

Definition 12 [Isomorphism-Free Solution] Given a scenario M, a source
instance I , and a solution J ∈ SolMI , we say that J is isomorphism–free if
there exist no witness blocks w,w′ ∈ W<I,J> such that w ∼= w′.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 42 — #54
i

i

i

i

i

i

42 CHAPTER 3. GENERATING CORE SOLUTIONS

Let us assume for now that, given a scenario M and a source instance I ,
we have generated an isomorphism-free solution. In the following sections, we
shall discuss how it is possible to achieve this goal. In the meanwhile, we notice
that one simple way to do this is to generate J by running the standard chase
procedure instead of the naive one. The semantics of the standard chase, in fact,
prevents the generation in the canonical solution of any form of isomorphisms.

We are now ready to introduce our main result about expansions.

Theorem 3.4.1 Given a scenario M = (S,T,Σst), a source instance I , call J
a canonical universal solution of Σst over I . If J is isomorphism–free, consider
the following set:

EJ
rew-i =

⋃

ǫ∈expan(M)

{a(χl(x1, y1)) | a s.t. J |= a(rew-iǫ(x1, y1))}

then it is the case that:

EJ
rew-i = reduce(max-informative(max-compact(W<I,J>)))

The full proof is reported in the Appendix. From Theorem 3.3.5 it follows
that EJ

rew-i is exactly the core of J .

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 43 — #55
i

i

i

i

i

i

3.5. THE REWRITING ALGORITHM 43

3.5 The Rewriting Algorithm

Theorems 3.4.1 and 3.3.5 suggest a natural rewriting strategy for the original
scenario M. In fact, once an isomorphism-free solution J has been generated
for M over a source instance I (for example by running the standard chase
of the original tgds), it is possible to compute the core of J by executing the
following set of full tgds, one for each expansion ǫ ∈ expan(M):

∀x1, y1 : rew-iǫ(x1, y1) → χ(x1, y1) (3.2)

The tgds are based on the idea of using (rewritten) expansions to select maximal
witness blocks inside J , and copy them to the core. No new null value needs
to be invented in this process. This is, in fact, the strategy proposed in [59].
Notice that this strategy is a two-step strategy, i.e., it assumes that two different
exchanges are executed: the first is needed to generate J , and the second to
select inside J the witness blocks that belong to the core.

In [78] it was shown that this two-step approach is not strictly necessary, i.e.,
it is possible to produce a rewriting that achieves the same goal by running
a single exchange. Our goal is therefore to refine the expansion-based core
computation strategy in order to compute the core within a single exchange.

Source Rewriting

An expansion is a formula over the target schema. However, in this section we
show that it is rather straightforward to rewrite it in terms of source relations.
We call this the source rewriting of the expansion. In order to do this, we first
introduce the notion of premise of an atom.

Definition 13 [Premise of an Atom and of a Formula] Given a tgd
φ(x) → ∃y(ψ(x, y)), and an atom Rl(xi, yi) ∈ ψl(x, y), its premise premRl(xi,yi)

is the formula φ(x). Given a conjunctive formula, χl(x1, y1), its premise is the
formula:

premχl(x1,y1)
=

∧

{premRl
i
(xi,yi)

| Rl
i(xi, yi) ∈ χl(x1, y1)}

Definition 14 [Source Rewriting] Given a tgd φ(x2) → ∃y2(ψ
l(x2, y2)) and

an expansion ǫ = χl(x1, y1)∧∃x2, y2 : (ψl(x2, y2)
∧

equalhf
ǫ
(x1, x2)) of m, its

source rewriting, rew-sǫ, is the following formula:

rew-sǫ = premχl(x1,y1)
∧ ∃x2 : (φ(x2)

∧

equalhf
ǫ
(x1, x2))

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 44 — #56
i

i

i

i

i

i

44 CHAPTER 3. GENERATING CORE SOLUTIONS

Example 3.5.1 Consider the scenario in Example 3.3.1. Tgd m1 has the
following expansions:

ǫ11 = S1(x1, Y1) ∧ T
2(Y1, x2) (the base expansion)

ǫ12 = S3(x3, x4) ∧ T
4(x5, x6) ∧ ∃x1, x2, Y1 :

(S1(x1, Y1), T
2(Y1, x2) ∧ x3 = x1 ∧ x6 = x2 ∧ x4 = x5)

Their source rewritings are as follows:

rew-sǫ11 = A(x1, x2)
rew-sǫ12 = B(x3, x4) ∧ C(x5, x6) ∧ ∃x1, x2 :

(A(x1, x2) ∧ x3 = x1 ∧ x6 = x2 ∧ x4 = x5)

Similarly for tgd m4:

ǫ41 = S5(x7, Y0) (the base expansion)
ǫ42 = S1(x1, Y1) ∧ ∃x7, Y0 : (S5(x7, Y0) ∧ x1 = x7)
ǫ43 = S3(x3, x4) ∧ ∃x7, Y0 : (S5(x7, Y0) ∧ x3 = x7)
rew-sǫ41 = D(x7)
rew-sǫ42 = A(x1, x2) ∧ ∃x7 : (D(x7) ∧ x1 = x7)
rew-sǫ43 = B(x3, x4) ∧ ∃x7 : (D(x7) ∧ x3 = x7)

Example 3.5.2 Consider the scenario in Example 3.3.2:

m1. R(x0, x1, x2) → ∃Y0, Y1, Y2, Y3, Y4, Y5 : S 1(Y0, x0, Y2, Y3),
S 2(Y0, x1, x1, Y1),S

3(Y4, x2, Y5, Y1)
m2. R(x3, x4, x5) → ∃Y6, Y7, Y8, Y9, Y10, Y11 : S 4(Y6, x4, x5, Y8),

S 5(Y6, x5, x4, Y7),S
6(Y9, Y10, Y11, Y7)

Here are some expansions and their source rewritings:

ǫ11 = S 1(Y0, x0, Y2, Y3) ∧ S 2(Y0, x1, x1, Y1) ∧ S 3(Y4, x2, Y5, Y1)
ǫ12 = S 1(Y0, x0, Y2, Y3) ∧ S 2(Y0, x1, x1, Y1)∧

∃x2b, Y4b, Y5b : (S
3(Y4b, x2b, Y5b, Y1) ∧ x1 = x2b)

ǫ13 = S 5(Y6, x5, x4, Y7) ∧ ∃x0b, x1b, x2b, Y0b, Y1b, Y2b, Y3b, Y4b, Y5b :
(S 1(Y0b, x0b, Y2b, Y3b) ∧ S 2(Y0b, x1b, x1b, Y1b)∧
S 3(Y4b, x2b, Y5b, Y1b) ∧ x5 = x0b ∧ x5 = x1b∧
x4 = x1b ∧ x5 = x2b)

rew-sǫ11 = R(x0, x1, x2)
rew-sǫ12 = R(x0, x1, x2) ∧ x1 = x2
rew-sǫ13 = R(x3, x4, x5) ∧ ∃x1b, x2b, x3b : (R(x0b, x1b, x2b)∧

x5 = x0b ∧ x5 = x1b ∧ x4 = x1b ∧ x5 = x2b)

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 45 — #57
i

i

i

i

i

i

3.5. THE REWRITING ALGORITHM 45

Given an expansion ǫ, we can now introduce the formulas rew-sc and rew-si,
that are analogous to rew-c and rew-i, but are based on the source rewriting
of the expansion.

Definition 15 [Rewriting Source Expansions: rew-sc and rew-si] Given
an expansion ǫ, the formula rew-scǫ is obtained as follows:

• initialize rew-scǫ = rew-sǫ;

• for any expansion ǫ′ in expan(M) such that ǫ′ is more compact than
ǫ, call hf c the compacting homomorphism of χl(x1, y1) into χl′(x′1, y

′
1);

then, add to rew-scǫ a formula

∧¬∃x′1 : (rew-s
′
ǫ

∧

equalhf
c
(x1, x

′
1))

The formula rew-siǫ is obtained as follows:

• initialize rew-siǫ = rew-scǫ;

• for any expansion ǫ′ in expan(M) such that ǫ′ is more informative than
ǫ, call hf i the proper homomorphism of χl(x1, y1) into χl′(x′1, y

′
1); then,

add to rew-siǫ a formula:

∧¬∃x′1 : (rew-sc
′
ǫ

∧

equalhf
i
(x1, x

′
1))

Consider, again, Example 3.5.2. Recall that rew-cǫ11 is the following for-
mula:

rew-cǫ11 = ǫ11(x1, y1)∧
¬∃x′1, y

′
1 : (ǫ12(x

′
1, y

′
1) ∧ equalhf

12
(x1, x

′
1))∧

¬∃x′′1 , y
′′
1 : (ǫ13(x

′′
1 , y

′′
1) ∧ equalhf

13
(x1, x

′′
1))

This generates the following source rewriting:

rew-scǫ11 = R(x0, x1, x2)∧
¬∃x′0, x

′
1, x

′
2 : (R(x′0, x

′
1, x

′
2) ∧ x

′
1 = x′2∧

x0 = x′0 ∧ x1 = x′1 ∧ x2 = x′1)∧
¬∃x′′3 , x

′′
4 , x

′′
5 : (R(x′′3 , x

′′
4 , x

′′
5) ∧ ∃x1b, x2b, x3b : (R(x0b, x1b, x2b)∧

x′′5 = x0b ∧ x
′′
5 = x1b ∧ x

′′
4 = x1b ∧ x

′′
5 = x2b)∧

x0 = x′′5 ∧ x1 = x′′5 ∧ x1 = x′′4 ∧ x2 = x′′5)

We are now almost ready to introduce our final rewriting. Before doing that,
we need to discuss our skolemization strategy.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 46 — #58
i

i

i

i

i

i

46 CHAPTER 3. GENERATING CORE SOLUTIONS

There is, in fact, a significant difference between the two–step strategy
based on the full tgds in Formula 3.2, and the single exchange we are trying
to develop here. While the two-step approach selects witness blocks that have
already been generated in the canonical solution, here we need to generate
them. To do this, we use rew-siǫ to select all vectors of universally quantified
variables that are actually needed to generate the witness blocks in the core.
Then, we need Skolem terms in order to properly invent labeled nulls. In order
to do that, we rely on a skolemization strategy, skol, i.e., a transformation that
takes a formula with existential variables and replaces them by Skolem terms.

Definition 16 [Skolemization Strategy] Given a formula ϕ(x, y) with uni-
versal variables x, and existential variables y, a skolemization strategy is a
mapping skol that associates with each existential variable yi ∈ y a Skolem
term fϕ,yi

(x).

In the following, we assume that a Skolemization strategy has been fixed.
Based on that, we introduce our rewriting, based on the notion of expansion
rules :

Definition 17 [Expansion Rules] Fixed a skolemization strategy, skol, and
an expansion ǫ = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)

∧

equalhf
ǫ
(x1, x2)) its ex-

pansion rule, rǫ, is the following formula:

rǫ. ∀x1 : rew-siǫ(x1) → skol(χ(x1, y1))

The set of expansion rules of a scenario M is the set:

ΣFO,exp
M,skol = {rǫ | ǫ ∈ expan(M)}

As discussed in the previous sections, a straightforward optimization con-
sists of generating expansion rules only for expansions whose set of atoms is a
core.

Normalization

There is a final issue we need to discuss. As we discussed in Section 3.3, witness
blocks do not need to coincide with fact blocks. More specifically, a witness
block may be in some cases a fact block of the core solution (i.e., a connected
component of the dual Gaifman graph of the core), but it may also be the
union of portions of fact blocks, whose facts are joined over constants instead
of nulls.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 47 — #59
i

i

i

i

i

i

3.5. THE REWRITING ALGORITHM 47

This feature of witness blocks has a direct counterpart in their expansions.
In fact, it is easy to see that expansions do not need to be normalized. Recall
that we say that a formula is normalized if its dual Gaifman graph is connected.
Therefore, once the expansion rules have been generated, we need to normalize
them. By doing this, however, we may end up with different, unnecessary rules,
that generate portions of witness blocks.

Example 3.5.3 Consider the scenario in Example 3.3.3. There are three rel-
evant expansions that generate the core:

ǫa = S 1(x3, x0, x0, Y0, x1) ∧ S 2(Y1, x0, x0, Y0, x0) ∧ ∃x′2, Y
′
2 , Y

′
3 , Y

′
4 :

(S 3(Y1, x
′
2, Y

′
2 , Y

′
3 , Y

′
4) ∧ x0 = x′2)

ǫb = S 1(x3, x0, x0, Y0, x1) ∧ ∃x′2, Y
′
1 , Y

′
2 , Y

′
3 , Y

′
4 :

(S 2(Y ′
1 , x0, x0, Y0, x0) ∧ S 3(Y ′

1 , x
′
2, Y

′
2 , Y

′
3 , Y

′
4) ∧ x1 = x0 ∧ x0 = x′2)

ǫc = S 1(x3, x0, x0, Y0, x1) ∧ S 1(x3, x0a, x0a,W0, x1a) ∧ ∃x′2, Y
′
1 , Y

′
2 , Y

′
3 , Y

′
4 :

(S 2(Y ′
1 , x0, x0, Y0, x0) ∧ S 3(Y ′

1 , x
′
2, Y

′
2 , Y

′
3 , Y

′
4) ∧ x1 = x0 ∧ x0a = x′2)

Of these expansions, ǫc is not normalized. Therefore, when we generate the
final expansion rules, we would end up with something like this:

ra : rew-siǫa(x) → skol(S 1(x3, x0, x0, Y0, x1) ∧ S 2(Y1, x0, x0, Y0, x0))
rb : rew-siǫb(x) → skol(S 1(x3, x0, x0, Y0, x1))
rc : rew-siǫc(x) → skol(S 1(x3, x0, x0, Y0, x1) ∧ S 1(x3, x0a, x0a,W0, x1a))

If we normalize the last rule, we end up with:

ra : rew-siǫa(x) → skol(S 1(x3, x0, x0, Y0, x1) ∧ S 2(Y1, x0, x0, Y0, x0))
rb : rew-siǫb(x) → skol(S 1(x3, x0, x0, Y0, x1))
rc1 : rew-siǫc1(x) → skol(S 1(x3, x0, x0, Y0, x1))
rc2 : rew-siǫc2(x) → skol(S 1(x3, x0a, x0a,W0, x1a))

But it is possible to see that we need to generate an atom according to rb, rc1, rc2
only as long as a more informative atom is not generated by ra.

In order to handle non-normalized blocks, we look for proper homomor-
phisms among rule conclusions. In order to do that, we extend the notion of
formula homomorphism to skolemized formulas, by considering Skolem terms
as existentially quantified variable. Then, we introduce a further rewriting, as
follows:

Definition 18 [Rewriting Expansion Rules: rew-ei] Given an expansion
rule, r : φ(x1) → ψ(x1), the formula rew-eir is obtained as follows:

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 48 — #60
i

i

i

i

i

i

48 CHAPTER 3. GENERATING CORE SOLUTIONS

• initialize rew-eir = r;

• for any expansion rule r′ : φ′(x′1) → ψ′(x′1) in ΣFO,exp
M,skol such that ψ′(x′1)

is more informative than ψ(x1) according to homomorphism hf i, add to
rew-eir a formula

∧¬∃x′1 : (φ′(x′1)
∧

equalhf
i
(x1, x

′
1))

This gives us a new set of FO-rules, obtained as follows:

ΣFO,core
M,skol = {rew-eir | r ∈ normalize(ΣFO,exp

M,skol)}

Skolemization Strategy

There are several possible skolemization strategies to pick from. The standard
strategy, skolstd, would be that of associating a different, uninterpreted Skolem
function fm,Yi

with each existential variable Yi of a rule m, and taking as
arguments all universal variables occurring in the conclusion. However, there
are alternatives to this scheme. In fact, in order for our rewriting to correctly
compute core solutions, we need to properly handle isomorphic witness blocks.

Recall that there may be two different sources of isomorphic witness blocks
inside a solution. The first one is due to different rules that have isomorphic
conclusions. The second one to a single rule that has non-trivial automor-
phisms. Our solution to the problem is to use interpreted Skolem functions,
and design them in such a way that all isomorphic copies of a witness block
collapse into one.

More specifically, we introduce a notion of isomorphism–invariant skolem-
ization strategy. In order to do this, we compare the result of a given skolem-
ization with that of the standard strategy. More specifically, given a formula
ϕ(x, y), and an assignment a to x, we call a(skol(ϕ(x, y))) the instance of
ϕ(x, y) generated as follows: (a) first replace each existential variable yi ∈ y by
the corresponding Skolem term; this gives a new formula ϕ′(x) that depends on
x only; (b) then, generate the set of facts a(ϕ′(x)). We call a(skolstd(ϕ(x, y)))
the standard instance of the formula.

Definition 19 [Isomorphism–Invariant Skolemization Strategy] A sko-
lemization strategy, skol, is isomorphism–invariant if:

• given a formula, ϕ(x, y), and an assignment a, then a(skol(ϕ(x, y))) is
isomorphic to a(skolstd(ϕ(x, y)));

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 49 — #61
i

i

i

i

i

i

3.5. THE REWRITING ALGORITHM 49

• given two formulas, ϕ(x, y), ϕ′(x′, y′), and two assignments a, a′, if the
standard instances a(skolstd(ϕ(x, y))), a

′(skolstd(ϕ
′(x′, y′))) are isomor-

phic, then a(skol(ϕ(x, y)) = a′(skol(ϕ′(x′, y′)).

There are several ways in which it is possible to build an isomorphism–
invariant strategy. One solution is to consider the dual Gaifman graph of the
standard instance, and design a Skolem function that returns strings based on
an encoding of the graph. To implement this behavior, we embed in the Skolem
string a full description of the Gaifman graph, in terms of constants.

Consider for example the following formula: S(x0, Y0), T (x1, Y0, Y1),W (Y1).
The Skolem functions for Y0 and Y1 will have three arguments: (i) a description
of the graph nodes, in terms of constants; (ii) an encoding of the graph edges;
(iii) a reference to the specific variable for which the function is used. The
actual functions would be as follows:

fsk({S(A : x0), T (A : x1),W ()}, {S.B = T.B, T.C =W.A}, S.B = T.B)
fsk({S(A : x0), T (A : x1),W ()}, {S.B = T.B, T.C =W.A}, T.C =W.A)

An important point here is that set elements must be encoded in lexicographic
order, so that the functions generate appropriate values regardless of the order
in which atoms appear in the rule conclusion. This last requirement intro-
duces further subtleties in the way exchanges with self-joins are handled. In
fact, note that in formulas like the one above – in which all relation sym-
bols in the conclusion are distinct – the order of set elements can be estab-
lished at script generation time (they depend on relation names). If, on the
contrary, the same atom may appear more than once in the conclusion, like,
for example, in S(x0, Y0), S(x1, Y0), then functions of this form are allowed:
fsk({S(A : x0), S(A : x1)}, {S.B = S.B}). To properly handle the non-trivial
automorphism of the formula, it can be seen how the description of nodes must
be reordered at execution time, based on the actual assignment of values to
variables.

To do this, we assume that there is a linear order on the constants. This is
consistent with the linear–order requirement that was introduced in [78].

Computing the Core

We are now ready to introduce our main result.

Theorem 3.5.4 Given a M = (S,T,Σst) and an isomorphism-invariant skolem-

ization strategy, skol, ΣFO,core
M,skol is a core schema mapping for M.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 50 — #62
i

i

i

i

i

i

50 CHAPTER 3. GENERATING CORE SOLUTIONS

The full proof is in the Appendix. Based on Theorem 3.5.4, we can provide
a complete description of our approach to the computation of core solutions.
Given a scenario M = (S,T,Σst), the rewriting algorithm works as follows:

1. it generates expan(M) as the union of all expansions expan(m), for each
tgd m ∈ Σst;

2. for each expansion ǫ ∈ expan(M):

a) it generates its source rewriting rew-sǫ;

b) then, it looks for compacting homomorphisms among expansions,
and generates rew-scǫ;

c) based on that, it looks for proper homomorphisms among expan-
sions, and generates rew-siǫ;

3. it picks an isomorphism-invariant skolemization strategy (for example,
the one based on the encoding of the dual Gaifman graph described
above), and generates the set of expansion rules ΣFO,exp

M,skol;

4. it normalizes the rules, and further rewrites them to generate the core
schema mapping, ΣFO,core

M,skol;

5. finally, from this set of dependencies, it generates a runtime SQL script
that can be executed on source instances to generate core universal solu-
tions.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 51 — #63
i

i

i

i

i

i

3.6. COMPLEXITY AND APPROXIMATIONS 51

3.6 Complexity and Approximations

A few comments are worth making here on the complexity of the rewriting
algorithm. Recall that our goal is to execute the rewritten tgds under the
form of SQL scripts; in the scripts, source rewritings of expansions give rise to
joins, and negated atoms give rise to difference operators. Generally speaking,
joins and differences are executed very efficiently by the DBMS. However, the
number of joins and differences needed to filter out redundant tuples largely
depends on the nature of the scenario.

Scenarios with No Self-Joins

It is important to make a distinction between scenarios with self-joins in tgd
conclusions and scenarios that do not have self-joins. We say that a scenario
M = (S,T,Σst) has self-joins in tgd conclusions (or simply self-joins) if the
same relational atom may appear more than once in the conclusions of tgds
in Σst. The scenarios in Examples 3.3.2, 3.3.3, 3.3.4 have self-joins in tgd
conclusions. The scenario in Example 3.3.1 does not have self-joins.

In [59], an alternative rewriting algorithm to generate core schema mappings
for scenarios without self-joins was given. The algorithm can be seen as a
special case of the one described in this paper, with two significant exceptions:
(a) it considers a much smaller search space for expansions; (b) it generates a
lower number of tgds in the final rewriting.

In this section, we want to justify that algorithm in the framework of the one
introduced in this paper. In fact, the complexity of the final script generated
by the algorithm described in Section 3.5 is strongly influenced on the number
of expansions of a tgd conclusion that must be generated. Generally speaking,
an expansion for a tgd whose conclusion has k atoms may be any multiset of
atoms in

⋃

{ψi(xi, yi)}, of size k or less. This gives an upper bound on the
number of expansions in expan(M) that is clearly exponential with respect to
the size of

⋃

{ψi(xi, yi)}. Also, among these expansions it is necessary to look
for compacting homomorphisms first, and then for proper homomorphisms.
Finally, each expansion generates a new dependency.

However, if we restrict our attention to scenarios that do not have self-joins,
things improve significantly. In fact, we have the following result.

Theorem 3.6.1 Given a M = (S,T,Σst), suppose Σst does not contain self-
joins in tgd conclusions. Given a source instance I , call J a canonical universal
solution for M over I , and J0 the core universal solution for M over I . Then:

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 52 — #64
i

i

i

i

i

i

52 CHAPTER 3. GENERATING CORE SOLUTIONS

• for any fact block bf in J , either all tuples in bf belongs also to J0, or
none of them does;

• for each tgd m ∈ Σst whose conclusion has size k, all witness blocks in
W<I,J>

m have size exactly k.

The proof is in the Appendix. Based on Theorem 3.6.1, we can infer several
conclusions. First, if a tgd whose conclusion has size k does not have self-joins,
then it may only have fixed-size expansions, i.e., sets of atoms of size exactly
k. In fact, it is easy to see that it is not necessary to consider multisets of
atoms in

⋃

{ψi(xi, yi)} (no atom may appear more than once, since there are
no self-joins), and that exactly one atom in the expansion is needed to “cover”
each of the k distinct atoms in the tgd conclusion. This significantly reduces
the number of expansions for a given tgd.

Second, since, according to Theorem 3.6.1, the core is the union of a subset
of fact blocks in J , it is possible to see that, we only need to discover which
fact blocks to keep and which to discard. Since the tgds in Σst are normal-
ized by hypothesis, fact blocks correspond to instances of the base expansions.
Therefore, we adopt the following strategy: (a) for each tgd, generate only
fixed-size expansions; (b) then, concentrate on the base expansion alone; (c)
find all compacting and proper homomorphisms into all other expansions, in
order to remove unnecessary witness blocks from the result; (d) finally, gen-
erate one FO-rule for each base expansion in order to produce the result, and
disregard rules for other expansions. This significantly reduces the number of
final tgds.

Based on this ideas, we find it useful to classify the relevant homomorphisms
among expansions in a scenario without self-join in two categories. We call a
subsumption any compacting or proper homomorphism of a base expansion into
a base expansion. We call a coverage any compacting or proper homomorphism
of a base expansion into a fixed-size expansion that uses atoms of different tgd
conclusions. Consider the tgds in Example 3.3.1. There is a subsumption of the
base expansion of m4, S(x7, Y0) by the base expansion of m2, S(x3, x4). There
is a coverage of the base expansion of m1, S(x1, Y1), T (Y1, x2), by the union
of atoms S(x3, x4), T (x5, x6). It should be apparent from the discussion above
that, if a scenario does not have self-joins, then subsumptions and coverages
are the only relevant forms of homomorphisms that must be taken into account
in order to generate the core.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 53 — #65
i

i

i

i

i

i

3.6. COMPLEXITY AND APPROXIMATIONS 53

Complexity

As a first remark, let us note that subsumptions are handled more efficiently
than coverages. Consider the graph of the subsumption relation among tgd
conclusions, obtained by removing transitive edges. In the worst case – the
graph is a path – there areO(n2) subsumptions. However, this is rather unlikely
in real scenarios. Typically, the graph is broken into several smaller connected
components, and the number of subsumptions is linear in the number of tgds.
This means that only a linear number of differences will be introduced in the
final SQL script.

The worst-case complexity of the rewriting is higher for coverages, for two
reasons. First, coverages always require to perform additional joins before
computing the actual difference, since they reuse atoms from different tgd
conclusions. Second, and more important, if we call k the number of atoms
in a tgd, and assume that each atom can be mapped into n other atoms via
homomorphisms, then we need to generate nk different coverages, and therefore
nk differences.

This exponential bound on the number of coverages is not surprising. In
fact, Gottlob and Nash have shown that the problem of computing core so-
lutions is fixed-parameter intractable[51] wrt the size of the tgds (in fact, wrt
the size of blocks), and therefore it is very unlikely that the exponential bound
can be removed. We want to emphasize however that we are talking about
expression complexity and not data complexity (the data complexity remains
polynomial).

Despite this important difference in complexity between subsumptions and
coverages, coverages can usually be handled quite efficiently. In brief, the
exponential bound is reached only under rather unlikely conditions; to see
why, recall that coverages tend to follow the pattern shown above. Note that
m2 and m3 write into the key–foreign key pair, while m1 invents a labeled
null. Complexity may become an issue, here, only if the set of tgds contains
a significant number of other tgds like m2 and m3 which write into S and T
separately. This may happen only in those scenarios in which a very large
number of different data sources with a poor design of foreign key relationships
must be merged into the same target, which can hardly be considered asa
frequent case. In fact, in our experiments with both real-life scenarios and
large randomly generated schemas, coverages have never been an issue.

Computing times are usually higher for scenarios with self-joins in tgd con-
clusions. In fact, the exponential bound is more severe in these cases. There-
fore, the number of joins, intersections and differences in the final SQL script

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 54 — #66
i

i

i

i

i

i

54 CHAPTER 3. GENERATING CORE SOLUTIONS

Figure 3.6: Containment of Solutions

may be very high. In fact, it is not difficult to design synthetic scenarios that
actually trigger the exponential explosion of rewritings.

However, in more realistic scenarios containing self-joins, the overhead is
usually much lower. To understand why, let us note that expansions tend to
increase when tgds are designed in such a way that it is possible for a tuple
to perform a join with itself. In practice, this happens very seldom. Consider
for example a Person(name, father) relation, in which children reference their
father. It can be seen that no tuple in the Person table actually joins with
itself. Similarly, in a Gene(name, type, protein) table, in which “synonym”
genes refer to their “primary” gene via the protein attribute, since no gene
is at the same time a synonym and a primary gene. In light of these ideas,
we may say that, while it is true that the rewriting algorithm may generate
expensive queries, this happens only in rather specific cases that hardly reflect
practical scenarios. In practice, scalability is very good. In fact, we may say
that the 90% of the complexity of the algorithm is needed to address a small
minority of the cases. Our experiments confirm this intuition.

It is also worth noting that, when the complexity of the rewriting becomes
high, our algorithm allows to produce several acceptable approximations of the
core. In fact, the algorithm is modular in nature; when the core computation
requires very high computing times and does not scale to large databases,
the mapping designer may decide to discard the “full” rewriting, and select
a “reduced” rewriting (i.e., a rewriting wrt to a subset of homomorphisms)
to generate an approximation of the core more efficiently. This can be done
by rewriting tgds with respect to subsumptions only or to subsumptions and
coverages, as shown in Figure 3.6.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 55 — #67
i

i

i

i

i

i

3.7. EXPERIMENTAL RESULTS 55

3.7 Experimental Results

The algorithms introduced in the paper have been implemented in a working
prototype written in Java. In this section, we first study the performance of
the SQL scripts generated by our rewriting algorithm on mapping scenarios
of various kinds and sizes. We show that the rewriting algorithm efficiently
computes the core, even for large databases and complex scenarios. Then,
we study the scalability of the rewriting algorithm with respect to synthetic
scenarios of increasing complexity. We show that the algorithm scales with
respect to larger number of relations and join constraints. All experiments
have been executed on a Intel Core 2 Duo machine with 2.4Ghz processor and
4 GB of RAM under Linux. The DBMS was PostgreSQL 8.3.

Execution Times for Core Computation

We selected a set of nine experiments to evaluate the execution times of the
SQL scripts generated using our algorithms. The eight scenarios are divided
in two groups. The first group includes two scenarios with subsumptions only
(s1, s2) and two with subsumptions and coverages (c1, c2). The second group is
composed of five scenarios with self-joins (sj1–sj5). The scenarios were taken
from the literature (s2 and sj3 from [43], sj2 from [81]), and from variants of
the basic scenarios in STBenchmark [8]. Among the scenarios with self-joins,
sj4 and sj5 are the ones with automorphisms in rule conclusions: sj4 is a
variant of Example 3.3.2, while sj5 has been designed to artificially trigger the
exponential complexity of the algorithm. In sj5, ten tgds with the same target
symbol repeated 25 times and eight three-way self-joins have been used. On
average we had 7 tables, with a minimum of 2 and a maximum of 10.

Computing Times for Large Source Instances To study how the algorithm
performs on databases of large sizes, we ran every scenario with five different
source instances of 10k, 100k, 250k, 500k, and 1M tuples, respectively. We start
by comparing our algorithm with an implementation [74] of the core compu-
tation algorithm developed in [51], made available to us by the authors. In
the following we will refer to this implementation as the “post-processing ap-
proach”. A first evidence is that the post processing approach does not scale.
We have been able to run experiments with 1k and 5k tuples, but starting at
around 10k tuples the experiments took on average several hours. This result
is not surprising, since these algorithms exhaustively look for endomorphisms
in the canonical solution in order to remove variables (i.e, invented nulls). For

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 56 — #68
i

i

i

i

i

i

56 CHAPTER 3. GENERATING CORE SOLUTIONS

instance, our first subsumption scenario with 5k tuples in the source generated
13500 variables in the target; the post-processing algorithm took on our ma-
chine running PostgreSQL around 7 hours to compute the final solution. It is
interesting to note that in some cases the post processing algorithm finds the
core after only one iteration (in the previous case, it took 3 hours), but the
algorithm is not able to recognize this fact and stop the search. For all exper-
iments, we fixed a timeout of 1 hour. If the experiment was not completed by
that time, it was stopped. Since none of the scenarios we selected was executed
in less than 1 hour we do not report computing times for the post-processing
algorithm in our graphs.

Figure 3.7: SQL Scripts: Execution Times for the First Group

Figure 3.8: SQL Scripts: Execution Times for the Second Group

Since we were interested in comparing computing times of the scripts for
core solution to those of scripts for canonical solutions, we ran the two sets
of scripts over the same scenarios and reported the results in Figure 3.7 and
Figure 3.8. Figure 3.7 shows executing times for the four scenarios that do
not contain self-joins in the target. As it can be seen, execution times for all
scenarios were extremely fast for both configurations. The overhead introduced

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 57 — #69
i

i

i

i

i

i

3.7. EXPERIMENTAL RESULTS 57

by the rewriting of the FO-rules using negations is always acceptable, with a
maximum of around 10 seconds for scenarios of one million tuples.

Figure 3.8 reports the results for the five scenarios with self-joins. It can
be seen that the first three self-joins scenarios, sj1 – sj3, show times increasing
linearly and did scale up to 1M tuples both in the core and in the canonical
scripts executions. The difference is instead notable with sj4 and sj5, but
is not surprising for two reasons. First, considering that many self-joins can
trigger the exponential behavior discussed in the previous Section. Second, the
running time to interpret the Skolem functions fills some of the overhead time.
For these reasons, the core computation script for sj4 took up to four times
the canonical script execution time (21 minutes for the 1 million tuples source
instance), while we stopped the execution for sj5 on the biggest input (the core
script took 41 minutes for the 500k tuples source instance).

Quality of Solutions In data exchange core solutions are preferable with re-
spect to canonical solutions because they preserve the same information but
in a more compact databases. To exploit the difference between the two so-
lutions we used different databases with fixed size (10k tuples) and increasing
redundancy. We dropped sj5 from this comparison. For each of the remaining
eight scenarios, we generated five synthetic source instances based on a pool of
values of decreasing size. This process generated different levels of redundancy
(from 0% to 40%) in the source databases and enabled a comparison of the
quality of the two solutions. Figure 3.9 shows the percent reduction in the

Figure 3.9: Core vs Canonical: Size Reduction in Solutions

output size for core solutions compared to canonical solutions. As output size,
we measured the number of tuples in the solutions. Figure 3.9.a shows results
for the four scenarios that do not contain self-joins in the target. As expected,
core solutions are more compact than canonical ones in all the scenarios and
this behavior becomes more apparent with the increasing redundancy. The two

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 58 — #70
i

i

i

i

i

i

58 CHAPTER 3. GENERATING CORE SOLUTIONS

subsumptions scenarios – s1 and s2 – follow the trend, but less significantly
than the two coverage scenarios c1 and c2. This is not surprising, since the
design of the tgds in s1 and s2 tend to generate many duplicate tuples in the
solutions, and those are removed both by the core script and the canonical
one. Figure 3.9.b reports the percent reductions for the four self-join scenarios.
Again, core solutions are more compact than canonical ones in all the scenarios
except sj1. This is also expected, since sj1 is a full mapping and no Skolem
nor null values are generated in the solution, i.e. canonical and core solution
coincide.

Algorithm Scalability on Large Scenarios

To test the scalability of our algorithm on schemas of large size we gener-
ated a set of synthetic scenarios using the scenario generator developed for the
STBenchmark. We generated four relational scenarios containing 20/50/75/100
tables, with an average join path length of 3, variance 1. Note that, to simulate
real-application scenarios, we did not include self-joins. To generate complex
schemas we used a composition of basic cases with an increasing number be-
tween 1 and 15, in particular we used: Vertical Partitioning (3/6/11/15 rep-
etitions), Denormalization (3/6/12/15), and Copy (1 repetition). With such
settings we got schemas varying between 11 relations with 3 joins and 52 re-
lations with 29 joins. Figure 3.10 summarizes the results. In the graph, we

Figure 3.10: Algorithm scalability with large synthetic scenarios

report several values. One is the number of tgds processed by the algorithm,
with the number of subsumptions and coverages. Then, since we wanted to
study how the tgd rewriting phase scales on large schemas, we measured the
time needed to generate the SQL script. In all cases the algorithm was able to

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 59 — #71
i

i

i

i

i

i

3.7. EXPERIMENTAL RESULTS 59

generate the SQL script in a few seconds. Finally, we report execution times
in seconds for source databases of 100K tuples.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 60 — #72
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 61 — #73
i

i

i

i

i

i

Chapter 4

Schema Mapping Tools

Manually writing transformation rules under the form of logical formulas,
mainly for a complex scenario, can be very difficult also for expert users. It
is much more simple and natural to provide a minimal and high-level specifi-
cation of the mapping. For these reasons, a schema mapping system takes as
input an abstract specification of the mapping under the form of value corre-
spondences among schema elements and generates the tgds and the executable
transformations to run them.

Each of these correspondences states that an attribute of the target is se-
mantically related to one (or more) attribute in the source, and it is usually
drawn as a line from the source attribute to the corresponding target attribute.

Clio [70] was the first system to introduce value correspondences and to im-
plement a sophisticated mapping algorithm to generate source-to-target trans-
formations. The mapping generation algorithm captures all semantical rela-
tionships embedded in the source and the target schemas, and is guaranteed
to produce legal instances of the target with respect to constraints.

In this Chapter we give a quick overview of how the input tgds are generated
by the system. Note that, as an alternative, +Spicy allows to load a set of
pre-defined tgds provided as logical formulas encoded in a fixed textual format.

In the following, we use the nested relational data model introduced in
Chapter 2 to represent data sources, and we adopt a XQuery-like syntax to
express transformation rules as in [70].

61

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 62 — #74
i

i

i

i

i

i

62 CHAPTER 4. SCHEMA MAPPING TOOLS

4.1 Expressive Power

It can be seen that the rewriting algorithm can be applied to any set of tgds,
not necessarily generated by the mapping system. To do this, one of our goals
was to extend the expressive power of the mapping system with respect to
previous ones.

Suppose we are given the following set of pre-defined tgds that refer to a
variant of the self-join example in STBenchmark [8]. The target schema con-
tains a single relationGene with attributes name, type and protein, which holds
together primary genes and secondary genes, called “synonyms”. A primary
gene and its synonyms share the same protein. In the source, we have genes
organized in separate tables PrimaryGene and Synonym, connected through a
key-foreign key constraint. In addition, we have a Protein table, from which
we want to copy only tuples about genes coming from the EMBL database. A
key feature of this example is the self-join of table Gene in the target on the
protein attribute. The tgds, expressed in logical form, are the following:

m1. Protein(p, g, ‘EBML’) → Gene(g, p, ‘primary’)
m2. PrimaryGene(i, n, p) → Gene(n, p, ‘primary’)
m3. Synonym(n, i) ∧ PrimaryGene(i, n′, p)

→ Gene(n, p, ‘synonym’),Gene(n′, p, ‘primary’)

Our goal is to generate a mapping scenario for these tgds, and then rewrite
them in order to generate core solutions. In this case, +Spicy proposes to the
user the scenario in Figure 4.1.

To handle arbitrary tgds of this form, we had to enrich the set of primitives
that can be used to specify a mapping scenario.

We extend these inputs in several ways:

(i) we introduce the possibility of duplicating sets in the source and in the
target; to handle tgd m3 above, we duplicate the Gene table in the target;
each duplication of a set R corresponds to adding to the data source a new set
named R(i), for some i, that is an exact copy of R;

(ii) we give users full control over joins in the two data sources, in addition
to those corresponding to foreign key constraints; using this feature, users can
specify arbitrary join paths, like the self-join on the protein attribute in m3;

(iii) finally, we allow users to express selection conditions on sets, like source
= ’EMBL’ on the protein table in m1.

This richer set of primitives poses some challenges with respect to the rewrit-
ing algorithm. In fact, duplications in the target correspond to different ways

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 63 — #75
i

i

i

i

i

i

4.2. CLIO MAPPING DISCOVERY ALGORITHM 63

Figure 4.1: Inverse of Self Joins

of contributing tuples to the same set. This makes the search form homomor-
phisms more delicate, since there exist tgds that write more than one tuple at
a time in the same target table, and therefore redundancy can be generated
not only across different tgds, but also by firing a single tgd.

4.2 Clio Mapping Discovery Algorithm

The mapping discovery algorithm employed in our system is a generalization
of the one developed in Clio. In this Section, we briefly review the main steps
of this algorithm [70].

Given a source and a target schema, the algorithm produces a number of
executable queries. Each query is the union of several mappings that repre-
sent source-to-target tuple generating dependencies. In order to identify such
dependencies, several preliminary steps are necessary.

As a first step, we need to identify the logical relations both in the source
and target schemas. Logical relations are maximal tableaux [6]. In order to
generate them, the algorithm finds the so called primary paths in each schema.
These are essentially linear tableaux, and are obtained by the enumeration of
all paths from the root to any intermediate node of set type in such a schema.
With respect to the schemas in Figure 4.2, the primary paths generated for
the source and target schemas respectively, are the following (with an abuse of
notation we use “select *” to refer to all attributes that are directly reachable
from a set node in the tableaux):

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 64 — #76
i

i

i

i

i

i

64 CHAPTER 4. SCHEMA MAPPING TOOLS

Figure 4.2: A sample mapping task

select * from d in univDB.departments

select * from d in univDB.departments, s in d.department.staffSet

select * from d in univDB.departments, p in d.department.professors

select * from c in univDB.courses

select * from p in courseDB

Logical relations are obtained by chasing constraints against primary paths.
In our example, a single constraint, from univDB.courses.course.instructor to
univDB.departments.department.professors.professor.id, must be considered. Thus,
we obtain the following logical relations:

select * from d in univDB.departments

select * from d in univDB.departments, s in d.department.staffSet

select * from d in univDB.departments, p in d.department.professors

select * from c in univDB.courses,

d in univDB.departments, p in d.department.professors

where c.course.instructor = p.professor.id

select * from p in courseDB

During the third step, inter-schema correspondences are processed to yield
a set of mappings. To generate mappings, all possible pairs made of a source

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 65 — #77
i

i

i

i

i

i

4.3. TGD GENERATION ALGORITHM 65

logical relation and a target logical relation are considered; a pair generates
a mapping if it covers one or more value correspondences. As an example,
assume the following correspondences have been provided to the algorithm for
the mapping task in Figure 4.2 (similarities are omitted since they are not
strictly relevant to the mapping generation algorithm):

courseDB.course.name → univDB.courses.course.courseName

courseDB.course.credits → univDB.courses.course.credits

courseDB.course.instructor → univDB....professor.name

The algorithm will generate the following tgds, written in XQuery-like form:

for d in univDB.departments, p in d.professors,

c in univDB.courses

where c.course.instructor = p.professor.id

exists c’ in courseDB

where c’.course.name = c.course.courseName and

c’.course.credits = c.course.credits and

c’.professor.name = c’.course.instructor

for d in univDB.departments, p in d.professors,

exists c’ in courseDB

where p.professor.name = c’.course.instructor

Such tgds represent different ways to cover the correspondences and gener-
ate tuples in the target. The final transformation query is obtained by taking
the union of the two. Once transformations have been generated, it is then
rather straightforward to translate this abstract syntax into a concrete one, for
example XQuery.

4.3 TGD Generation Algorithm

The tgd generation algorithm we describe here is a generalization of the basic
mapping generation algorithm introduced in [70]. The input to the algorithm
is a mapping scenario, i.e., an abstract specification of the mapping between
source and target. In order to achieve a greater expressive power, as discussed
in Section 4.1, we enrich the primitives for specifying scenarios. More specifi-
cally, given a source schema S and a target T, a mapping scenario is specified
as follows:

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 66 — #78
i

i

i

i

i

i

66 CHAPTER 4. SCHEMA MAPPING TOOLS

(i) two (possibly empty) sets of duplications of the sets in S and in T;
each duplication of a set R corresponds to adding to the data source a new set
named Ri, for some i, that is an exact copy of R;

(ii) two (possibly empty) sets of join constraints over S and over T; each
join constraint specifies that the system needs to chase a join between two sets;
foreign key constraints also generate join constraints;

(iii) a set of value correspondences, or lines ; for the sake of simplicity in
this paper we concentrate on 1 : 1 correspondences of the form AS → AT .

In its general form, a correspondence maps n source attributes into a tar-
get attribute via a transformation function; moreover, it can have an attached
filter that states under which conditions the correspondence must be applied;
our system handles the most general form of correspondences; it also han-
dles constant lines. It is possible to extend the algorithms presented in this
thesis to handle the most general form of correspondence; this would be impor-
tant in order to incorporate conditional tgds [26]; while the extension is rather
straightforward for constants appearing in tgd premises, it is more elaborate
for constants in tgd conclusions, and is therefore left to future work.

The tgd generation algorithm is made of several steps. As a first step,
duplications are processed; for each duplication of a set R in the source (tar-
get, respectively), a new set Ri is added to the source (target, respectively).
Then, the algorithm finds all sets in the source and in the target schema; this
corresponds, in the terminology of [70], to finding primary paths.

The next step is concerned with generating views over the source and the
target. Views are a generalization of logical relations in [70] and are the building
blocks for tgds. Each view is an algebraic expression over sets in the data
source. Let us now restrict our attention to the source (views in the target are
generated in a similar way).

The set of views, Vinit, is initialized as follows: for each set R a view R
is generated. This initial set of views is then processed in order to chase join
constraints and assemble complex views; intuitively, chasing a join constraint
from set R to set R′ means to build a view that corresponds to the join of R
and R′. As such, each join constraint can be seen as an operator that takes a
set of existing views and transforms them into a new set, possibly adding new
views or changing the input ones. Join constraints can be mandatory or non
mandatory ; intuitively, a mandatory join constraint states that two sets must
either appear together in a view, or not appear at all.

Once views have been generated for the source and the target schema, it
is possible to produce a number of candidate tgds. We say that a source
view v covers a value correspondence AS → AT if AS is an attribute of a set

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 67 — #79
i

i

i

i

i

i

4.4. THE +SPICY SYSTEM 67

that appears in v; similarly for target views. We generate a candidate tgd for
each pair made of a source view and a target view that covers at least one
correspondence. The source view generates the left-hand side of the tgd, the
target view the right-hand side; lines are used to generate universally quantified
variables in the tgd; for each attribute in the target view that is not covered
by a line, we add an existentially quantified variable.

4.4 The +Spicy System

The +Spicy system has been developed in Java using the NetBeans Platform
as a basis for the graphical user interface. A snapshot is shown in Figure 4.3.
The system architecture will be described in Chapter 5. The system supports

Figure 4.3: A snapshot of the system

various usage scenarios. The typical one is that in which a user provides to the
system a mapping specification using the GUI; in doing this, besides specifying
the source and target schema, users can rely on the primitives offered by the
system, namely: (i) a rich set of correspondences that include traditional 1:1
correspondences but also n:1 value correspondences with complex transforma-

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 68 — #80
i

i

i

i

i

i

68 CHAPTER 4. SCHEMA MAPPING TOOLS

tion functions, constant correspondences, and correspondences with filters; (ii)
the possibility of duplicating sets in the two schemas; (iii) the possibility to
define arbitrary join-conditions in the sources; (iv) the possibility of specifying
selection conditions on sets in the source. The mapping specification is handled
by the mapping generation module, which generates the tgds.

As an alternative, a simple parser is available to load a set of pre-defined
tgds. The parser will generate a scenario from the tgds, and show it to the user
so that s/he can visually inspect and possibly modify it.

At this point, the user has a set of tgds, either generated internally or pre-
defined and loaded by the parser. Before moving to the actual query generation
phase, the tgds are rewritten by the rewriting engine in order to ensure that
core solutions are generated.

Based on these rewritten tgds, an executable query either in SQL or in
XQuery can be generated. The system integrates interfaces to various popular
SQL and XQuery engines (like PostgreSQL and Saxon), so that the final query
can be executed against one or more source instances and results inspected
using the GUI. To simplify the debugging of the mapping scenario and to reduce
dependencies wrt external systems, +Spicy also incorporates an internal chase
engine to execute the tgds and generate solutions internally. In our experience,
this is more immediate than sending a query to an external engine, and greatly
helps users during their work sessions.

+Spicy can generate both the canonical universal solution generated by the
original tgds and the core solution generated by the tgds after the rewriting,
allowing the evaluation of the quality of solutions.

In terms of expressiveness, +Spicy can handle all of the mapping scenarios
proposed in [8], but can also handle scenarios of the kind discussed in [9] by
allowing users to explicitly manipulate join conditions.

Note that all algorithms discussed in the previous sections are applica-
ble to both flat and nested data. However, data exchange research has so
far concentrated on relational data and there is still no formal definition of
a data exchange setting for nested data. But it’s possible compare the so-
lutions produced by the system for nested scenarios with the ones generated
by the basic [70] and the nested [46] mapping generation algorithms, that we
have reimplemented in our prototype. We show that the rewriting algorithm
invariably produces smaller solutions, without losing informative content.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 69 — #81
i

i

i

i

i

i

Chapter 5

Schema Mapping Verification

5.1 Introduction

As discussed in the previous chapter, several systems in recent literature have
studied the problem of deriving mappings among sources based on value corre-
spondences. A prominent example of a line–based mapping generation system
is Clio [63, 70]. Clio implements a sophisticated mapping algorithm to generate
source-to-target transformations, i.e., executable queries capable of translating
an arbitrary instance of the source into an instance of the target. The map-
ping generation algorithm captures all semantical relationships embedded in
the source and target schemas, and is guaranteed to produce legal instances of
the target with respect to constraints.

It can be seen, however, how a crucial step in the mapping generation pro-
cess is the discovery of the initial value correspondences. In fact, the quality
of the mappings produced by the mapping generation system is strongly influ-
enced by the quality of the input lines: starting from faulty correspondences
incorrect mappings are inevitably produced, thus impairing the quality of the
overall integration process. To avoid these problems, it is usually assumed that
value correspondences are interactively provided to the system by a human ex-
pert after carefully browsing the source and target repositories. However, such
manual process is very labor-intensive, and does not scale well to medium and
large integration tasks.

To alleviate the burden of manually specifying lines, one alternative is to
couple the mapping generation system with a schema matching system, i.e.,
a system that automatically or semi-automatically tries to discover matching

69

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 70 — #82
i

i

i

i

i

i

70 CHAPTER 5. SCHEMA MAPPING VERIFICATION

attributes in a source and target schema. The study of automatic techniques
for schema matching has received quite a lot of attention in recent years; for
a survey see [73, 38, 76]. Clio itself has been complemented with a companion
schema matching module based on attribute feature analysis [67]; this tool may
be asked to suggest attribute correspondences to the user.

Unfortunately, schema matching has been recognized as a very challenging
problem [49], for which no definitive solution exists: although current schema
matching systems perform well in some application categories, in other cases
they suffer from poor precision. According to [50], there is no perfect schema
matching tool. [50] reports that on a recent benchmark of ontology–matching
tasks [4], participating matchers on average achieved 40% precision and 45%
recall. Also, even for datasets for which such tools reached higher precision
and recall, they still produced inconsistent or erroneous mappings.

As a consequence, outputs of the attribute matching phase are hardly ready
to be fed to the mapping generation module, and human intervention is neces-
sary in order to analyze and validate them. It is worth noting that, in general,
human intervention is also necessary after mappings have been generated, since
several alternative ways of mapping the source into the target may exist. Map-
ping systems usually produce all alternatives, and offer the user the possibility
of inspecting the result of each of them in order to select the preferred one.
Based on such an architecture, Figure 5.1 illustrates the overall mapping pro-
cess and highlights the phases in which user intervention is required.

Figure 5.1: Coupling schema matching and mapping discovery

The main intuition behind our approach is that in many cases the mapping
generation process can be automated to a larger extent by introducing a third
step, which we call mapping verification. More specifically, we assume that
instances of the target data source are available, and not only its schema. This

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 71 — #83
i

i

i

i

i

i

5.1. INTRODUCTION 71

is typical in many settings, like, for example, Web data sources. In this case,
whenever we select a set of candidate correspondences produced in the schema
matching phase, we may think of checking the corresponding source-to-target
transformation – i.e., the executable query induced by such correspondences
– by running the query on (a subset of) the source, and comparing the result
to the available target instance. Based on such comparison, we may on one
side identify incorrect transformations due to wrong correspondences produced
during the schema matching phase, and, on the other side, rank the remain-
ing candidates to suggest to users the ones that more likely represent correct
translations of the source.

The main contributions brought by the project can be summarized as fol-
lows:

(a) +Spicy proposes an original architecture to integrate schema match-
ing and mapping generation; so far, these two problems have been studied
essentially as independent steps of the integration process;

(b) +Spicy represents one of the first proposals towards the definition of
a notion of mapping quality and the automation of mapping verification; we
believe that such notions are crucial in order to improve the quality of current
integration systems; we introduce an algorithm that combines schema match-
ing, mapping generation and mapping verification in order to achieve good
scalability and high matching quality;

(c) in view of this, +Spicy introduces an original approach, called structural
analysis, to the comparison of data sources; structural analysis uses electrical
circuits to compare the topology and the information content of tree-like struc-
tures in order to have a quick measure of their similarity; in the following
sections, we show that structural analysis represents a very powerful tool for
mapping verification;

(d) finally, the system architecture is generic and modular by nature; it can
handle both flat (i.e., relational) sources, and nested ones, as XML repositories
or OWL ontologies; also, it is designed to work in conjunction with any existing
schema matching and mapping generation system, thus allowing to leverage the
vast body of research in this field.

We believe the issue of coupling schema matchers with mapping generation
systems, and the related issue of verifying mapping quality, represent relevant
research problems. To the best of our knowledge, +Spicy represents the first
proposal towards the automated verification of schema mappings. So far, the
only step in the direction of verifying mappings produced by a mapping gener-
ation system has been presented in [31], under the form of an ad hoc tool that
serves as a debugger for the mapping generation process. The tool allows users

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 72 — #84
i

i

i

i

i

i

72 CHAPTER 5. SCHEMA MAPPING VERIFICATION

Figure 5.2: Architecture of Spicy

to trace and inspect mappings step by step during their generation, similarly to
source code debuggers. Note that our approach is significantly different from
the one pursued in [31], since we aim at reducing human intervention, while
human users play a major role in the debugging process.

This chapter is organized as follows. Section 5.2 gives an overview of our
approach and introduces the mapping verification algorithm by means of ex-
amples. Structural analysis is introduced in Section 5.3, and the mapping
algorithm in Section 5.4. Experimental results are discussed in Section 5.5.

5.2 Overview

The mapping problem we want to solve can be informally described as follows:
given (a portion of) a repository T , called the target, and a repository S, called
the source, find a transformation query – i.e., an executable view – that can
be used to map instances of S into instances of T . In the process, we aim at
minimizing the amount of human intervention. The overall system architecture
is shown in Figure 5.2. In order to solve the problem, we assume the availability
of one or more schema matchers, and of a mapping generation module. The
main advancement of +Spicy with respect to the simple pipelining described
in Figure 5.1 is that these modules are decoupled by a number of intermediate
additional modules that coordinate the mapping generation process in order to
select the best results.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 73 — #85
i

i

i

i

i

i

5.2. OVERVIEW 73

Given the variety of schema matching systems available, the system ar-
chitecture has been designed in such a way that any of those can be easily
integrated. We have tested the system using both a schema-based and an
instance-based matcher [73]. As an example of a schema-based tool, the system
may be integrated with COMA++ [38, 15]. As there were no instance-based
tools available to us at the time of writing, we developed an internal instance-
based matcher. Spicy’s attribute matcher allows for two different matching
strategies: on the one side, it may compare attributes in a rather standard
way using features extracted by a sample of their values; on the other side, it
may adopt structural analysis, as described below. Since the matching module
is not the primary subject of this thesis, we will not elaborate further on this
issue.

Several points are worth mentioning with respect to the matching phase.
First, let us only note that, as it is common in the literature,1 in this thesis
we shall mainly concentrate on 1:1 attribute correspondences. However, the
+Spicy schema matching module also handles a common class of n:1 element
correspondences. Note also that, for the sake of simplicity, we do not con-
sider more expressive classes of correspondences, like for example contextual
matches [22], in which the same source attribute must be matched to different
target attributes in different contexts. However, our setting can be extended
to handle these cases. Finally, our architecture naturally lends itself to the
integration of different schema matchers. However, integrating the outputs of
different matchers goes beyond the scope of this thesis and is left to future
investigations.

The system also assumes the availability of a mapping generation module.
The mapping generation module takes as input a set of correspondences, and
generates a number of mappings under the form of source to target depen-
dencies. These mappings can then be assembled into complex transformation
queries. A transformation query is the union of several mappings; it corre-
sponds to an executable query that can be run over a source instance to obtain
a target instance. Examples of transformations are provided below. To de-
rive mappings in +Spicy, we have implemented a version of Clio’s mapping
algorithm [70]. However, other mapping generation tools, like, for example,
HePToX [23], could be easily integrated into the system.

The first step of our mapping discovery procedure consists of running the
schema matcher to produce a number of candidate element correspondences.

1In fact, essentially all systems in the literature with a few exceptions [37, 77] are restricted

to 1:1 correspondences.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 74 — #86
i

i

i

i

i

i

74 CHAPTER 5. SCHEMA MAPPING VERIFICATION

Each correspondence is usually labeled with a similarity measure, i.e., a level of
confidence. Note that, in most cases, the schema matching system will not be
able to produce a single correspondence for each target attribute. It will rather
produce a number of compatible source attributes for each target attribute,
with different degrees of similarity. Since in our setting each target attribute
must be matched to a single source attribute, we need to consider these as
alternative lines to be given as input to the mapping generation module.

Example 5.2.1 Consider for example the data sources in Figure 4.2. We are
adopting the nested relational data model presented in Chapter 2. Assume that,
when run on the two data sources in our example, the selected schema matcher
suggests the following correspondences:

courseDB.course.name → univDB.courses.course.courseName, 0.95

courseDB.course.credits → univDB.courses.course.credits, 0.92

courseDB.course.instructor → univDB....professor.name, 0.87

courseDB.course.instructor → univDB ...staff.name, 0.90

It can be seen how we are deliberately assuming that the schema matcher
considers staff names to be more similar to course instructors’ names than
professors’ names. It is also apparent that such similarities cannot be fed to
the mapping generation algorithm as they are; since attribute course.instructor

has been matched to two different source attributes, the system must choose
between two different consistent line sets: in both sets course names and credits
are correctly mapped to their counterparts; then, in set (a) instructors’ names
are mapped to professors’ names, while in set (b) to staff names.

If we were to select the preferred lines exclusively based on similarity values,
we would choose the second candidate set. However, let us reason for a moment
on the two transformations that would be produced. How these transformations
are generated was discussed in major details in Section 4.2.

Set (a) yields the following transformation (we are adopting the syntax used
in [70]):

for d in univDB.departments, p in d.professors,

c in univDB.courses

where c.course.instructor = p.professor.id

exists c’ in courseDB

where c’.course.name = c.course.courseName and

c’.course.credits = c.course.credits and

p.professor.name = c’.course.instructor

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 75 — #87
i

i

i

i

i

i

5.2. OVERVIEW 75

UNION

for d in univDB.departments, p in d.professors,

exists c’ in courseDB

where p.professor.name = c’.course.instructor

The transformation is the union of two tgds. The first one states that, in
order to obtain an instance of the target, we need to join courses and profes-
sors in the source, and then produce a tuple for each course name, credits and
professor name. The second mapping, on the contrary, maps professor names.
However, it only contributes to the result for those professors that do not have
courses and therefore do not participate to the join above. If, how it is rea-
sonable, we assume that the vast majority of professors have courses, very few
tuples will be generated by the second tgd. Based on these observations, we may
say that the translated target instance, reported in tabular form, would look as
follows:

name credits instructor

Databases 6 Frank Castle

Networks 3 Scott Summers

...

Set (b), on the contrary, yields a quite different transformation:

for c in univDB.courses

exists c’ in courseDB

where c’.course.name = c.course.courseName and

c’.course.credits = c.course.credits

UNION

for d in univDB.departments, s in d.staffSet

exists c’ in courseDB

where c’.course.instructor = s.staff.name

In this case, both mappings contribute to the result, because nobody in the
staff teaches courses. The resulting instance is quite different from the previous
one, since the two mappings generate a number of null values:

name credits instructor

Databases 6 NULL

Networks 3 NULL

NULL NULL Frank Castle

NULL NULL Scott Summers

...

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 76 — #88
i

i

i

i

i

i

76 CHAPTER 5. SCHEMA MAPPING VERIFICATION

If we compare this second instance to the target instance shown in Fig-
ure 4.2, we may see how information “flows” quite differently through them.
This might allow us to correctly infer that set (a) more likely represents the
correct choice.

Although this example has been kept very small and rather simple for clar-
ity’s sake, we may summarize by saying that schema matchers typically output
correspondences that may be assembled in different ways. This leads to differ-
ent candidate transformations. We advocate that, while an a priori selection
of the right correspondences is often very difficult and typically leads to poor
results, an a posteriori comparison of the instances produced by the various
transformations to the original target instance may give very useful insights on
the quality of these transformations, and therefore on the correctness of the
associated lines.

Note that a similar procedure may also help to rank transformations when
the right correspondences are known, as shown in the following example.

Example 5.2.2 This example is a variant of the running example used in [70].
Suppose both the source and the target are relational databases, as shown in
Figure 5.3. We assume that correspondences have been identified without am-
biguity. Still, the mapping generation algorithm will suggest two different trans-
formations. This is a consequence of the multiple join paths that exist in the
source among companies and funds: to each fund we may attach both the com-
pany to which the fund was granted and the company that served as a sponsor.
As a consequence, the mapping generation algorithm cannot univocally cover
correspondences for company names and budgets, and two different mappings
are generated, as follows (variables corresponding to aliases have been empha-
sized):

for f in expenseDB.fundings,

G in expenseDB.companies,

S in expenseDB.companies

where f.fund.grantee = G.company.companyId and

f.fund.sponsor = S.company.companyId

exists p in projectDB

where f.fund.projectName = p.project.name and

G.company.name = p.project.company.name and

G.company.budget = p.project.company.budget

for f in expenseDB.fundings,

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 77 — #89
i

i

i

i

i

i

5.2. OVERVIEW 77

Figure 5.3: A mapping task with alias

G in expenseDB.companies,

S in expenseDB.companies

where f.fund.grantee = G.company.companyId and

f.fund.sponsor = S.company.companyId

exists p in projectDB

where f.fund.projectName = p.project.name and

S.company.name = p.project.company.name and

S.company.budget = p.project.company.budget

In the first one, the company associated with the project in the target is the
grantee (G), in the second case is the sponsor (S). In general, it is not possible
to choose one of these mappings without resorting to explicit user feedback [81].
However, also in this case, by looking at the original target instance, we may
have some hints. More specifically, companies in the source are divided in two
categories: companies that sponsor projects, and companies that do not. It is
conceivable that the first ones have considerably higher budgets that the second
ones. As a consequence, the first mapping above will produce a translated in-
stance in which budgets have lower values on average than the second mapping.
Again, by comparing the two instances to the original target instance we may
use this knowledge to choose the preferred mapping.

A fundamental role in our architecture is played by the mapping verification
module. Besides the availability of a source schema and instance, we assume

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 78 — #90
i

i

i

i

i

i

78 CHAPTER 5. SCHEMA MAPPING VERIFICATION

that instances of the target data source are also available, and not only its
schema; this is typical in many settings, like, for example, Web data sources.
In these cases, whenever we select a set of candidate correspondences produced
in the schema matching phase, we may think of running the mapping generation
algorithm to obtain the transformation induced by these correspondences; then,
we may check such transformation by running the query on (a subset of) the
source, and comparing the result to the available target instance. The level of
similarity obtained by this comparison is taken as an estimate of the quality
of the mapping. Based on such comparison, we may on the one side identify
incorrect transformations due to wrong correspondences produced during the
schema matching phase, and on the other side rank the remaining candidates
to suggest to users the ones that more likely represent correct translations of
the source.

These examples show that a post-translation check of translated instances
against the original target instance may help to rank them and suggest the
preferred ones. It is still open how such comparison must be conducted. In the
following section we introduce a novel strategy to compare trees that serves
this purpose.

Overview of Structural Analysis

Structural analysis is based on the adoption of a suitable model to analyze and
compare data structures. Suppose we are given a portion s of a repository S
and a portion t of a repository T ; in order to compare them, we might proceed
as follows: (i) analyze s using the selected model in order to derive a number of
descriptive features; (ii) do the same for t; (iii) compare the features computed
by the model and return an index of similarity that is as high as close are the
selected features.

To do this, we have selected a model that we believe meets two critical
requirements – simplicity and good level of abstraction: the model of electrical
circuits.2 The main intuition behind this choice is that a data structure can be
seen as a “generator of information”; in essence, we may imagine that its ele-
ments – for example, its atomic fields like strings or numbers – tend to produce
a flow of information in the repository – i.e., they generate an internal stress;
each element, in turn, has some consistency due to its nature – for example,
numbers may be considered of different consistency with respect to strings or
dates; from the interaction between stress and consistencies we may predict the

2In fact, the name of the project is inspired by SPICE, the well-known circuit emulator.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 79 — #91
i

i

i

i

i

i

5.2. OVERVIEW 79

flow of information. Intuitively, two instances will be considered to be similar
when information flows similarly through them; in this way, circuits allow us
to check the validity of mappings as discussed in Examples 5.2.1 and 5.2.2.

Electrical circuits exhibit nice and elegant properties that make them a very
effective means to study similarities about data structures. In the following
sections, we formalize a transformation function, that, when applied to a tree-
like portion of a data source, generates an electrical circuit that can be used
for the purpose of comparison. For now let us mention some features of this
transformation.

First, the resulting circuit has a tree-like topology that is isomorphic to
that of the original tree; also, the circuit embodies instance-based features; in
fact, values for resistors and voltage generators associated with attributes are
derived from numerical features of a sample of instance values; hence, it is an
ideal means to model the informative content of the data structure.

Second, circuits are an excellent summarization technique for the purpose of
verifying mappings. Recall that our goal is to evaluate the quality of a mapping
by checking the similarity of the instance obtained by executing the mapping
with respect to the instance originally provided with the target data source.
To do this, in principle, we might adopt a rather straightforward attribute-to-
attribute comparison approach, as follows: (i) after the translated instance has
been generated, we might consider each attribute Ai in the target separately;
(ii) take a sample of values for Ai in both the original and the translated
instance, and derive a number of numerical features based on this sample;
(iii) calculate the overall similarity between the two instances based on the
similarity of the various features. However, combining independent similarity
measures into a single similarity value is known to be a hard problem [49].
Circuits provide a nice and elegant solution to this problem. They naturally
lend themselves to a black-box analysis to characterize the behavior of the two
trees, through which we can collect a small number of descriptive parameters
– output current, average current, internal voltages – that can be effectively
used to measure the similarity of the original structure to other structures.
Our experiments show that circuits perform better than attribute-to-attribute
feature comparisons.

Finally, the comparison technique based on circuits is fully automatic and
does not require any additional inputs; it is also quite efficient, since, for the
kind of stationary, continuous current circuits used in the system, solving the
circuit amounts to solve a system of linear equations of the form Ax = b.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 80 — #92
i

i

i

i

i

i

80 CHAPTER 5. SCHEMA MAPPING VERIFICATION

The Mapping Search Algorithm

We now give an intuition of the mapping discovery and verification process
pictured in Figure 5.2. A key observation, here, is that the mapping gen-
eration process can be quite demanding from the computational viewpoint.
As a consequence, it is mandatory to design the search algorithm in such a
way to achieve a good trade-off between precision and scalability. Recall that
our starting point is a number of candidate correspondences generated by the
schema matching module. Whenever multiple source attributes are matched –
possibly with different degrees of similarity – to the same target attribute, we
need to generate alternative transformations and then rank them. The higher
is the number of correspondences produced by the schema matching step, the
more mappings will be generated and verified.

In view of this, our algorithm is based on a feedback loop in which we ini-
tially fix a similarity threshold; at each step: (i) we consider only candidate
correspondences with similarity above the threshold; (ii) we combine these cor-
respondences into consistent sets, and run the mapping generation algorithm to
generate the corresponding transformations; (iii) we use each transformation
to translate (a sample of) the source instance into an instance of the target, and
then use structural analysis to compare the obtained instances to the original
target instance; (iv) we rank transformations – and therefore correspondence
sets – according to such similarity measure. If no satisfactory mappings are
produced at a given iteration, we progressively lower the threshold and ana-
lyze more alternative mappings. In essence, using this process, users are not
required to manually inspect and select correspondences before mappings are
generated; also, when the process stops, the system will present to them a
ranked list of source-to-target transformations, suggesting which ones are be-
lieved to better reproduce the target.

A key idea in this process is that outputs of the schema matching module
are not considered as a definitive proof that a source and target attribute are
semantically equivalent, but rather as a measure of compatibility between them.
Such compatibility is then checked in subsequent steps. Our experimental
results show that our verification algorithm achieves very good precision and
allows to handle many errors due to incorrect matches.

The following sections introduce with greater detail the algorithms used in
the system.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 81 — #93
i

i

i

i

i

i

5.3. STRUCTURAL ANALYSIS 81

5.3 Structural Analysis

To compare repository portions we transform their trees into circuits, solve the
circuits, and then compare features of the two circuits (e.g., output currents).
In the following, we first introduce the circuit mapping function, and then the
actual compare procedure.

Electrical Circuits

We consider electrical circuits [32] made of elements connected to nodes. In
our case, elements may be voltage generators and resistors. In such circuits,
voltage generators cause a flow of current through resistors. A voltage generator
imposes a constant difference Vk of electric potential between two nodes. A
resistor of value r causes a drop of potential V at its nodes due to the current
I that flows through it; current and voltage are related by Ohm’s law V = rI.
A circuit usually has two distinctive nodes: (i) a ground node, whose potential
is conventionally 0; voltages at other nodes are measured as differences of
potential with respect to the ground; (ii) an output node, i.e., a node at which
output voltage and current are measured. We define the output current of
the circuit as the current flowing through the output node when an external
resistor of fixed value is added from output to ground. Solving the circuits
amounts to calculating voltages at the nodes and currents through elements.
This corresponds to solving a system of linear equations based on Kirchhoff’s
law of size n× n, where n is the number of nodes in the circuit.

Sampling

In order to build the circuit associated with a data source, we need to sample
instances. For each leaf A in a tree we select a random sample of instances,
sample(A) of size K (or less) from the repository. Two attributes are con-
sidered to match when they represent the same concept, and their values are
coded using the same format and conventions. As a consequence, we are inter-
ested in studying features such as the length of values in the sample and the
distribution of characters. For each attribute A we build a number of distri-
butions. The distributions of lengths DL(sample(A)) contains the frequencies
of lengths in the sample, measured in bytes. Fixed an ordered collection of
character categories C = {c0, c1, . . . cn−1} (i.e., letters, capitalized letters, dig-
its, special characters, at-signs, slashes etc.), we also compute the distribution

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 82 — #94
i

i

i

i

i

i

82 CHAPTER 5. SCHEMA MAPPING VERIFICATION

of character categories, DC(sample(A)) = {fc0 , fc1 , . . . fcn−1
}, where fci is the

frequency of characters belonging to category ci in the sample.

Given a distribution of frequenciesD = {f0, f1, . . . , fn−1} such that
∑n−1

i=0 fi
= 1, we measure several statistical parameters. Besides the usual ones (mean
value, standard deviation, mode), we also consider the Simpson concentration

index [69] of the distribution, defined as IC(D) =
∑n−1

i=0 f
2
i ; intuitively, this

index gives a measure of the entropy of values in the distribution, in the spirit
of information theory: the higher is the entropy in the sample, the lower is the
concentration index.

Finally, we define the density of a sample of values of attribute A, density(
sample(A)) as n/K, where K is the size of sample(A), and n is the number of
non-null values in sample(A). This is a measure of the number of null values
generated by a transformation, as discussed in Example 5.2.1.

Circuit Generation Function

We introduce a recursive function circ(t), that, given a tree t generates a circuit.
In order to do this, we need to formalize the output of circ() on an atomic
attribute, i.e., a leaf in the tree. There are several ways to map a sampled
attribute to a circuit; intuitively, this depends on the features one decides to
embed into the circuit, and on the topology of circuit elements that represent
them. In the following, we describe the strategy that has provided the best
results in our experiments. Given an attribute A in a schema tree, annotated
with a sample of values, sample(A), with length and character distributions
DL and DC respectively, we define the following features:

• density index (ID): ID(A) = density(sample(A));

• consistency (C): C(A) = 20 × fc0 + 21 × fc1 + . . . 2n−1 × fcn−1
, where

c0, c1, . . . cn−1 are character categories, and fc0 , fc1 , . . . fcn−1
the respec-

tive frequencies in DC(sample(A));
for the sake of convenience we will refer to the polynomial function above
simply as C(A) = pol(DC(sample(A)));

• stress (S): S(A) = mean(DL(sample(A)), i.e., the mean value of the
distribution of lengths in the sample;

• conc. index 1 (IC1): IC1(A) = IC(DC(sample(A)), i.e., the index of
concentration of the distribution of character categories;

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 83 — #95
i

i

i

i

i

i

5.3. STRUCTURAL ANALYSIS 83

• conc. index 2 (IC2): IC2(A) = IC(DL(sample(A)), i.e., the index of
concentration of the distribution of lengths.

circ(A) is assembled by assigning these features to a number of resistor and
voltage generators, as described in Figure 5.4.

Figure 5.4: Electrical circuit for an atomic attribute

The circuit for a tree is easily constructed starting from building blocks cor-
responding to atomic attributes; more specifically, for each intermediate node
n in a schema tree t, we define a resistance value, r(n). Such value cannot be
based on instances, since intermediate nodes do not have a sample of instances,
but rather on the topology of the tree. More specifically, we define r(n) =
k×level(n), where k is a constant multiplicative factor, and level(n) is the level
of n in t, defined as follows: (i) leaves have level 0; (ii) an intermediate node
with children n0, n1, . . . nk has level max(level(n0), level(n1), . . . level(nk))+1;
nodes(t) will denote the set of nodes in tree t.

We can now give a complete definition of the circuit mapping function,
circ(t) over a tree t. For a leaf node A, circ(A) is as defined above. For a tree
t rooted at node n with children n0, n1, . . . nk, circ(t) is the circuit obtained
by connecting in parallel circ(n0), circ(n1), . . . circ(nk) between ground and an
intermediate circuit node ntop, and then adding a resistor of value r(n) from
node ntop to output. Examples of such transformation are given in Figure 5.5.
Note how the resulting circuits are essentially isomorphic to the original trees.

Note that, coherently with the opaque [55] nature of our approach, labels
are not taken into account by the circuit mapping function, and we are treating
values essentially as uninterpreted strings. Also, we concentrate on ordinary
alphanumeric data: the features discussed above reflect this choice. However,
the circuit model is sufficiently flexible to allow the treatment of special data,

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 84 — #96
i

i

i

i

i

i

84 CHAPTER 5. SCHEMA MAPPING VERIFICATION

Figure 5.5: Examples of Circuits

like large texts or multimedia, as well; for these data different features must be
adopted [44].

Compare Procedure

Similarly to [39], our compare module adopts a modular library of comparators,
that can be mixed and matched in various ways. Given two trees t1 and
t2, we compute a measure of their similarity, as follows: (i) map t1 and t2
to the corresponding circuits, circ(t1), circ(t2); (ii) solve the two circuits to
determine currents and voltages; (iii) choose a number of descriptive features of
the corresponding circuits, f0, f1, . . . fi; we introduce the notion of a comparator
for feature fi as a module that computes the index of similarity ∆i between

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 85 — #97
i

i

i

i

i

i

5.4. MAPPING SEARCH ALGORITHM 85

the two structures with respect to feature fi, as follows ∆i = abs(fi(circ(t1))−
fi(circ(t2)))/fi(circ(t1)); (iv) finally, we compute the overall similarity of the
two trees based on ∆0,∆1, . . .∆i.

A very delicate problem in this setting is represented by assembling dif-
ferent similarity measures into an overall quality estimate; to this end, the
system provides three alternative strategies to compute an overall similarity
measure based on a collection of feature similarity values like ∆0, ∆1, . . . ∆i,
namely: standard average (A), i.e., arithmetic mean, of similarity values; har-
monic mean (HM) of similarity values; euclidean distance (D); in this case,
candidates are considered as points in an n-dimensional space, whose coordi-
nates correspond to ∆0,∆1, . . .∆i; euclidean distances give a measure of how
far away a point is from the origin or from another point; in this case two
points are considered to be the more similar the less is their distance.

Using such a setting, we may compare circuits – and therefore trees – using
different collections of comparators and aggregation strategies. To give an ex-
ample, suppose we decide to use output current alone as a comparison feature.
In this case, we would have a single comparator, and similarity would be equal
to the percentual difference between the output currents measured in the two
circuits. If we decide to employ both output current and average current, than
we have two different comparators, and we need to choose an aggregation strat-
egy – say, harmonic means; the overall compare will be the harmonic means of
∆outCurr and ∆avgCurr. Similarly for other features. In Section 5.5 we discuss
how the selection of comparators affect precision.

5.4 Mapping Search Algorithm

We can now describe the mapping discovery and verification process pictured
in Figure 5.2.

A mapping task for +Spicy is a pair of data sources, < S, T >, where S is
the source and T the target. As a first step, the source and target are submitted
to the schema matching module, and a list of candidate correspondences is
generated. This step is performed only once for each mapping task. The line
selection module of +Spicy stores the result of the match step, and generates
inputs to the subsequent phases. Typically, it will only consider a subset of
correspondences, those with a confidence level above a fixed threshold, th.

As discussed in Section 5.2, it is possible that multiple source attributes are
matched – possibly with different degrees of similarity – to the same target at-
tribute. We call unambiguous a collection of correspondences if each attribute –

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 86 — #98
i

i

i

i

i

i

86 CHAPTER 5. SCHEMA MAPPING VERIFICATION

both from the source and the target – appears in at most one of the correspon-
dences. Correspondences generated by the matching module contain in general
ambiguities, and therefore need to be partitioned into a number of alternative
unambiguous sets. Each unambiguous set of correspondences will then be fed
to the mapping generation module, and will produce a transformation query.
These transformations need to be ranked by running structural analysis.

Before turning to the description of the actual algorithm, we need to make
some preliminary observations. A key point, here, is that the mapping genera-
tion process can be quite demanding from the computational viewpoint. As a
consequence, it is mandatory to design the algorithm in such a way to achieve
a good trade-off between precision and scalability. It can be easily seen that
the higher is the number of correspondences that are considered, the higher is
the probability of finding ambiguities, and therefore the number of instances of
the mapping generation process to execute. It is therefore very important to
choose the confidence threshold, th, in such a way to be selective enough and
discard poor mappings, without excluding promising ones. High values of the
threshold generate a few candidate mappings, potentially none, and may re-
duce precision. Low values increase the number of candidates, and may impose
a significant overhead in terms of computing times. In fact, experiments con-
firm that precision tends to increase as the threshold decreases. However, this
improvement in precision has a cost in terms of computing times: the number
of candidate mappings tends to increase very rapidly, and computation times
with them.

Based on these results, it can be seen that it is very difficult to statically
fix an optimal value for the compatibility threshold th. In view of this, we
adopt a dynamic threshold, initially very high in order to consider only a few
candidate correspondences; then, if no satisfactory mapping is produced, we
progressively lower the threshold and analyze more alternative mappings. In
essence, the mapping algorithm starts with a very high value for the compat-
ibility threshold (0.99). If no mapping of acceptable quality is produced, the
algorithm backtracks, it lowers the threshold (of 0.01), and iterates. By lower-
ing the value of th, more correspondences are taken into account, and therefore
more potential mappings. This process proceeds until either a mapping is
produced, or the threshold falls below a stop value, thstop (0.6).

Given a mapping task < S, T >, the algorithm can be sketched as follows:

1. run the external schema matcher module to generate candidate corre-
spondences, match(S, T);

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 87 — #99
i

i

i

i

i

i

5.5. EXPERIMENTAL RESULTS 87

2. fix a step, step, and a stop value thstop for the compatibility threshold;
initialize th = 1− step; fix a minimum value for mapping quality minQ;

3. consider all correspondences in match(S, T) with confidence above th;
assemble them into maximal unambiguous subsets;

4. feed each subset of lines Si to the mapping generation module, and gen-
erate the corresponding transformations (one or more, depending on the
presence of aliases in the data sources); process each transformation using
the internal execution engine to translate a sample of the source instance
into an instance of the target;

5. sample each translated instance and use structural analysis as discussed
in Section 5.3 to compare it to the original target instance; the quality
of the associated transformation is given by the compare value;

6. if no transformation with quality above minQ is produced, then th =
th − step, and iterate step 3; otherwise output all transformations with
quality above minQ, ranked according to their estimated quality.

Note that at each step a number of candidates that have already been processed
in previous steps are re-generated. An aggressive caching strategy has been
implemented into the system in order to improve efficiency. More specifically,
we cache logical relations, mappings and circuits in order to avoid repeated
computations along the path. This is quite effective in reducing the time cost
but makes the algorithm quite demanding in terms of memory.

5.5 Experimental Results

We have used the prototype presented in Section 4.4 to run a number of exper-
iments. Table 5.1 summarizes the list of experiments that were used to test the
system. We analyzed 12 mapping tasks, based on different data sources, both
relational and XML. Besides well known data sources like DBLP, Mondial 3,
and Amalgam 4, we tested several real–life databases serving the information
system of our School of Computer Science (CS-IS, LbDb, Moodle), and some
synthetic datasets.

Experiments were run on an Intel core-duo processor machine, with 2 GB of
RAM. Mapping tasks were designed in such a way that the source was known

3http://www.dbis.informatik.uni-goettingen.de/Mondial/
4http://www.cs.toronto.edu/˜miller/amalgam/

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 88 — #100
i

i

i

i

i

i

88 CHAPTER 5. SCHEMA MAPPING VERIFICATION

Table 5.1: Summary of Experiments

to contain a mapping for the entire target. For each target, we identified
the correct set of correspondences that would generate such mapping. These
correspondences were called the ideal match Mid; then, we ran the system, and
considered as output a single transformation, Tbest, the one with the highest
similarity score. We considered the value correspondences from which Tbest
was generated, called MTbest

. We measured quality in terms of precision and
recall of MTbest

with respect to Mid. Note however that, in this section we
report precision results only. This is due to the fact that in all cases the
system returned a number of correspondences that was equal to the size of
the target (combinations with less correspondences were discarded since they
lowered the similarity to the target instance due to excessive presence of nulls);
as a consequence, precision and recall are both equal to the number of correct
correspondences in MTbest

over the size of the target.

A key issue to validate our approach was to compare the quality obtained
by selecting attribute matches a posteriori, i.e., after mapping generation and

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 89 — #101
i

i

i

i

i

i

5.5. EXPERIMENTAL RESULTS 89

translation, with respect to selecting them a priori, i.e., relying only on the
output of the attribute matcher. To test this, we have run our experiments
with several configurations.
Average Match (AM): the best line set was chosen a priori, as follows: the
attribute matcher was run to find candidate correspondences; then, the un-
ambiguous line sets (one or more) with the highest confidence were selected;
attribute similarities were aggregated in various ways to give variants of this
configuration: AM-A (average match computed as average), AM-HM (av-
erage match computed as harmonic mean), AM-D (average match computed
as euclidean distance). An alternative to these approaches would be to adopt
a top-K strategy, as in [48]. These configurations were applied to the various
schema matchers employed by the system, i.e., Spicy’s instance-based matcher
based on attribute features Spicy-F, and Spicy’s matcher based on structural
analysis, Spicy-SA.5

Figure 5.6: Precision of a priori strategies (average match)

To assess a posteriori strategies, a second, important point, is how struc-
tural analysis performs with respect to more traditional comparison procedures,

5We have also run several preliminary experiments using COMA++. We saw that the
performance of COMA degrades on opaque schemas or schemas with very different vocabu-
laries. Overall, its performance was in line with those of Spicy’s instance-based matchers.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 90 — #102
i

i

i

i

i

i

90 CHAPTER 5. SCHEMA MAPPING VERIFICATION

based on attribute features alone. To do this, we have tested two different con-
figurations:

Attribute Features (AF): the best line set was chosen a posteriori, as fol-
lows: the mapping find algorithm was run as described in Section 5.4; however,
after candidate transformations were run on the source to obtain a translated
instance of the target, their quality was measured by comparing it to the orig-
inal target instance in a standard fashion, i.e., by comparing each attribute
in the translated instance to its counterpart using instance-based features; we
adopted the same features that had been used to compare source and tar-
get attributes during the match phase (ID, S, C, IC1, IC2, as defined in
Section 5.3), and then assembled the similarity measures using average and
harmonic means (AF-A, AF-HM). Since, as discussed in Section 5.3, our
comparison algorithm has been designed to allow for the combination of differ-
ent comparators, we tested different combinations of these.

Figure 5.7: Precision of a posteriori strategies (attribute features and structural
analysis)

Structural Analysis (SA, LSA): finally, we used structural analysis – i.e.,
circuits – as described in the previous sections. Among the many different
combinations of comparators based on circuit features, we found these two to be
the most interesting: SA: the current in each branch of one circuit is compared

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 91 — #103
i

i

i

i

i

i

5.5. EXPERIMENTAL RESULTS 91

Figure 5.8: Stop thresholds and execution times

to the current in the corresponding branch of the second circuit; LSA: the global
output current, i.e., the output of the whole circuit was considered, plus the
local output currents, i.e., output currents in each subcircuit corresponding to
an attribute.

Average precision over the 12 experiments for a priori strategies is shown
in Figure 5.6, while average precision for a posteriori evaluations is shown
in Figure 5.7. As a first observation, note that, as it was expected, all a
priori configurations had mediocre performance – below 70%, while significantly
higher values of precision were obtained by some a posteriori configurations.
This confirms the intuition of Examples 5.2.1 and 5.2.2 in Section 5.2: since the
schema matcher does not take into account semantic mappings, as a posteriori
verification strategies do, it is frequently mistaken.

A second key observation is that structural analysis had excellent perfor-
mance: both configurations based on circuits outperformed attribute features,
whose best precision was around 80%, while the LSA configuration has preci-
sion above 90%, thus confirming the effectiveness of circuits.

More results are shown in Figure 5.8, in terms of average stop threshold
and total execution times. It can be seen that verification strategies based on
structural analysis have lower stop thresholds on average; intuitively, this is
due to the fact that, given the search algorithm discussed above, they perform
deeper searches before finding high quality solutions; this also explains why
they achieve higher precision than other strategies. This higher level of accu-
racy comes at the price of higher execution times. This increase, however, is
acceptable, since under the LSA configuration the 12 experiments were run in
less than 3 minutes.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 92 — #104
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 93 — #105
i

i

i

i

i

i

Chapter 6

Related Work

In this chapter we review some related works in the fields of schema mappings
and data exchange.

Data Exchange and Query Answering

Data exchange is the problem of generating an instance consistent with the
target schema, given a source instance and a specification of the relationships
between source and target schemas. This is not a recent problem, in fact one
of the first data exchange systems was EXPRESS [75], presented in 1977. It
was a complex system with the main functionality of converting data between
hierarchical schemas. In the last years, with the increasing of web data, also
the need for data exchange increased.

The data exchange problem is strictly related to the data integration prob-
lem, since both problems manage data stored in different formats, but these
are different for some reasons. One of the main differences is that in data ex-
change the main focus is on moving data from the source and on materializing
a target instance; in data integration, instead, no exchange is required and the
main focus is on answering queries posed on a global schema, i.e. one or more
views expressing the relationships between the source and the target schemas.

There exist various algorithms that have been developed in the literature.
A key problem, however, is represented by the nature of the mappings that
these algorithms assume are given as input.

In some cases, for example, the translation system assumes that transforma-
tions are specified as declarative rules in suitable languages. Various systems
have been defined to this end. Examples are YAT [33], TransCM [66] and WOL

93

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 94 — #106
i

i

i

i

i

i

94 CHAPTER 6. RELATED WORK

[35]. A survey is contained in [5]. These systems assume that the human de-
veloper specifies translation rules using the language; the system will compile
and execute the translation based on these rules.

Query answering algorithms, on the other side, typically assume that struc-
tures in one source are described in terms of views over the other source. This
approach is rather typical in mediator-based systems. There are essentially
three ways to specify mappings among the global and the local schemas:

• LAV (Local As View) [80], in which local relations are defined as views
over the global schema;

• GAV (Global As View) [52], in which global relations are defined as views
on local schemas;

• GLAV (Global Logic As View) [45], in which views over the local schemas
are mapped to views over the global schema. Based on such mappings,
view expansion algorithms [56] have been defined to execute integrated
queries. Similar techniques have been used also in the peer-to-peer con-
text [28] [23] [47].

A large body of research has revolved around formalizing the notion of data
exchange problem. Motivated by their experience with Clio project, Fagin et
al. presented important theoretical results in [42]. They introduced the use
of tuple generating dependencies (tgds) [56] and the definition of universal
solution. In [42] it has been shown how it is possible to generate universal
solutions by applying the chase algorithm [6] to the source instance and to the
dependencies; this work have also pinpointed the computational complexity
and the polynomial tractability under certain conditions.

An extension of the chase algorithm for universal models other than the
standard chase applied to universal solutions in data exchange has been ana-
lyzed in [36]. The standard chase has been proved to be incomplete for universal
models and an extended core chase definition is proposed.

Fagin et al. studied the data exchange problem for relational data, while
the basic properties of XML data exchange was introduced in [11]. They define
XML data exchange settings in which source-to-target dependencies refer to the
hierarchical structure of the data, with particular attention to the consistency
problem and the complexity.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 95 — #107
i

i

i

i

i

i

95

Core Computation

The notion of a core solution was first introduced in [43]; it represents a nice
formalization of the notion of a “minimal” solution, since cores of finite struc-
tures arise in many areas of computer science (see, for example, [53]). Note that
computing the core of an arbitrary instance is an intractable problem [43, 51].
However, we are not interested in computing cores for arbitrary instances, but
rather for solutions of a data exchange problem; these show a number of regu-
larities, so that polynomial-time algorithms exist.

In [43] the authors first introduce a polynomial greedy algorithm for com-
puting the core of universal solutions, and then a blocks algorithm. A block is
a connected component in the Gaifman graph of nulls. The block algorithm
looks at the nulls in J and computes the core of J by successively finding and
applying a sequence of small useful endomorphisms; here, useful means that
at least one null disappears. Only egds are allowed as target constraints.

The bounds are improved in [51]. The authors introduce various polyno-
mial algorithms to compute the core of universal solutions in the presence of
weakly-acyclic target tgds and arbitrary egds, that is, a more general frame-
work than the one discussed in this paper. The authors prove two complexity
bounds. Using an exhaustive enumeration algorithm they get an upper bound
of O(vm|dom(J)|b), where v is the number of variables in J , m is the size of
J , and b is the block size of J . There exist cases where a better bound can be
achieved by relying on hypertree decomposition techniques. In such cases, the
upper bound is O(vm[b/2]+2), with special benefits if the target constraints of
the data exchange scenario are LAV (local-as-view) tgds. One of the algorithms
introduced [51] has been revised and implemented in a working prototype [74].
The prototype uses a relational DBMS to chase tgds and egds, and a specialized
engine to find endomorphisms and minimize the universal solution. Unfortu-
nately, as discussed in Chapter 3, the technique does not scale to large size
databases.

The problem of computing the core for a set of s-t tgds using SQL queries
has been recently studied in [30, 78, 59]. [30] represents an early approach at
computing core solutions for schema mappings specified by the limited class of
s-t tgds with single atomic formulas (without repetition of existential quantified
variables) in the conclusions.

The first proposal of an algorithm for rewriting a set of s-t tgds in order to
generate core solutions was introduced in [59]. The algorithm presented in [59]
is the two step algorithm outlined at the beginning of Section 3.5, and then
further discussed in Section 3.6. Here, we show that it is possible to reduce the

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 96 — #108
i

i

i

i

i

i

96 CHAPTER 6. RELATED WORK

two-step process to a single exchange. Notice how this produces a speed-up in
computing times: in fact, our rewriting algorithm produces SQL scripts that
are significantly faster than those reported in the experiments in [59].

In [78] the authors independently developed an algorithm to rewrite a set of
s-t tgds as a laconic mapping, that is, a new set of dependencies from which to
generate an SQL script that computes core solutions for the original scenario.
There are several differences with the approach we propose in this thesis.

First, the algorithm proposed in [78] is more general than the one proposed
in this thesis, since it can be applied to dependencies that make use of arbitrary
first-order formulas in the premises, and not only conjunctive formulas. This
is done by relying on a procedure called certain, to rewrite the certain answers
of a query on the target as a query on the source. However, the only practical
algorithm to implement certain proposed in the paper relies on a variant of the
MiniCon [71] algorithm, which only works for conjunctive formulas.

In terms of dependencies generated by the rewriting, a laconic mapping
tends to contain a lower number of dependencies with more complex premises
with respect to a core schema mapping, which typically contains more rules. In
fact, laconic mappings reason on fact-blocks and fact-block types at a “global”
level, while core schema mappings reason on witness blocks at a “local” level,
i.e., at the tgd level.

With respect to the complexity of the rewriting algorithm, we notice that
laconic mappings require to compute certain many times – actually, a combi-
natorial number of times with respect to the size of the existential variables
– for each fact-block type. This may be expensive, since computing certain
requires to run an high-complexity algorithm (MiniCon). Our algorithm, al-
beit exponential, looks for formula homomorphisms, whose number is tipically
lower.

We believe that both approches generate efficient scripts for the generation
of core solution, but no implementation of the laconic mappings algorithm is
available at the moment, so that it was not possible to compare the performance
of our approach to that of laconic mappings.

Mapping Generation Algorithms and Mapping Tools

The original schema mapping generation algorithm was introduced in [63, 70] in
the framework of the Clio project. The algorithm relies on a nested relational
model to handle relational and XML data. The primary inputs are value
correspondences and foreign key constraints on the two sources that are chased
to build tableaux called logical relations; a tgd is produced for each source

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 97 — #109
i

i

i

i

i

i

97

and target logical relations that cover at least one correspondence. The tgd
generation algorithm we use in our system is a generalization of the basic
mapping algorithm that captures a larger class of mappings, like self-joins [8]
or those in [9]. Note that the need for explicit joins was first advocated in [72];
the duplication of symbols in schemas has been first introduced in the MapForce
commercial system [1].

The amount of redundancy generated by basic mappings has motivated a
revision of the algorithm known as nested mappings [46]. Intuitively, whenever
a tgd m1 writes into an external target set R and a tgd m2 writes into a set
nested into R, it is possible to “merge” the two mappings by nestingm2 intom1.
This reduces the amount of redundant tuples in the target. Another attempt to
reduce the redundancy generated by basic mappings has been proposed by [27].
Unfortunately, these approaches are applicable only in some specific cases and
do not represent a general solution to the problem of generating core universal
solutions.

We note that the notion of provenance in a schema mappings framework
has been studied in [31] under the notion of routes. In this thesis we make a
more restricted use of the notion of provenance.

Our system adopts a Clio-style algorithm for mapping generation. Clio [63,
70] does not offer a module for automatic mapping verification, but supports
an interactive mapping refinement process by visualizing mapping examples,
i.e. smaller samples of the source instance that has been translated using
the current mapping. These may help the user to select among alternative
solutions.

An early attempt at semi-automatically generating transformation expres-
sions for different data formats was reported in [66]. Their approach is based
on a library of pre-determined mapping-rules, and is better suited to those
cases in which the target and source schemas have high similarity.

Clio has pioneered the field of schema mapping generation algorithms and in
the last years many schema mapping tools have been developed, both commer-
cial tools such as Altova MapForce [1], StylusStudio [3], BizTalk [2], ADO.Net [7]
and research prototypes, such as Rondo [61], HepToX [23], and Spicy [24].

All these tools allow to specify correspondences as a set of lines using a
visual interface.

Research prototypes (e.g. Clio, Rondo and Spicy) also allow the generation
of a set of mappings in a logic formalism from these correspondences and the
executable transformations that materialize the target database in a data ex-
change setting. On the other hand, no intermediate logic formalism is used by
commercial tools (such as MapForce, StylusStudio, etc.), and the executable

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 98 — #110
i

i

i

i

i

i

98 CHAPTER 6. RELATED WORK

transformations are produced in a query or transformation language, such as
XSLT or XQuery.

Clio is among those data exchange systems that are restricted to a specific
data model - essentially a nested relational model; to give an example, Clio
cannot handle the class of transformations that are generated in [60], which
involve object hierarchies. Such mappings allow developers to interact with a
relational database via both conceptual schemas and object-oriented program-
ming interfaces.

With respect to debugging schema mappings, it is a recent research topic
and has been addressed in [31]. There, schema mappings can be traced and
inspected, similarly to source code instructions. Their approach gives the user a
major role in debugging the schema mappings, thus being significantly different
from ours.

In [22], contextual schema matching is introduced, to denote correspon-
dences annotated with a predicate saying when the match is valid. These
conditions are then translated into actual views, and the mapping generation
is done by extending the Clio algorithm. We currently do not deal with con-
textual matches, but our setting can be extended to incorporate such kind of
matches.

Finally, an early attempt towards defining operations on schemas, includ-
ing mappings, has been done in model management research [18, 13], as we
will discuss in the next Section. The need for more expressive mappings has
been advocated in [18]. In their work, they address the so called data pro-
grammability problems, which basically deal with the complexity of handling
different heterogeneous models and coping with the impedence mismatch be-
tween applications and databases. To date, none of the above mapping systems
has steadily solved the data programmability problem, or has adopted a more
generic class of mappings, that goes beyond the expressiveness of the above
models.

Model Management

The general framework of model management has been introduced in [17] [19].
The idea is to develop a generic infrastructure to obtain a significant pro-
ductivity improvement to builders of applications by offering them high-level
operations on schemas and mappings between schemas. The main operators on
schemas are match, merge and compose; the modelGen operator corresponds
to the translation of schemas between different data models.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 99 — #111
i

i

i

i

i

i

99

The problems of schema translation and data translation have been con-
sidered in the database literature for various decades. A comparison of data
models is reported in [79] [54]. Schema translation and data translation can be
seen as related but different problems: schema translation assumes that we are
given a “source” model, a “target” model, and a schema in the source model,
and we want to obtain a schema in the target model that suitably “represents”
the source schema; data translation assumes that we are given a source and
target schema (possibly in different models) and a source database and we want
to obtain a target database that represents the same information as the source
one. Indeed, the two problems can be seen as two facets of a single, composed
problem: given a source schema and a source instance, find a target schema
(as a result of schema translation) and a target instance (as a result of data
translation, as at this point the target schema is available).

In both problems, it is important to understand what are the properties
that the target schema and database have to satisfy, in order to be considered
suitable representations of the source ones. In this area, important work has
been developed over the years [12] [54] [64] [65].

Given the difficulty of the schema translation problem, there is no complete
general approach available to its solution, but there have been a few partial
efforts [25].

In [14], the notion of a metamodel is introduced. The approach is based
on the observation that the constructs used in most known models can be
expressed by a limited set of generic metaconstructs: lexical, abstract, aggre-
gation, generalization, function. In MDM, the metamodel allows to describe
any data model in terms of these generic metaconstructs. Similarly for schemas
of a model. The translation of a schema from one model to another one is de-
fined in terms of translations of metaconstructs, rather than translations for
every pair of models.

The solution introduced within the MDM framework is reasonably effec-
tive, but it is not really flexible; in particular, it does not consider the data
translation problem. Recent extensions [13] [20] represent a first step forward,
but they are quite preliminary.

Schema Matching

The fact that schema matching tools may return uncertain results has inspired
an active body of research [48, 50]. In [48], it is highlighted that a schema
matcher often tries to derive a single best set of correspondences, whereas
in most cases the discarded correspondences may convey useful information.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 100 — #112
i

i

i

i

i

i

100 CHAPTER 6. RELATED WORK

An heuristic based on confidence values is used to verify the top-K mappings
yielded by a schema matcher, and refine the matches accordingly.

Many tools for semi-automatic schema matching have been proposed in the
past. For a complete reference, we refer the reader to comprehensive surveys
in [73, 38, 76]. Schema matching systems are usually classified in two main
categories: schema-based systems use a combination of linguistic and graph-
based techniques in order to find similarities in schema labels; instance-based
ones rely on actual values in instances to derive attribute features and similar-
ities. Although schema-based tools represent the vast majority, instance-based
tools perform better than schema-based ones in those contexts in which the
databases are essentially opaque [55], i.e., labels and/or values are difficult or
impossible to interpret.

COMA++ [39] bases on well-founded software engineering principles to
build a fully-fledged set of matching techniques. It introduces the notions of
reuse and composition of matchers.

Similarity Flooding [62] (SF, for brevity) proposes a structural algorithm
that can be used to compute similarities between arbitrary data structures,
such as schemas, instances or both. Despite the apparent similarity between
the terms “flood” and “current flow”, the two systems have hardly any points
in common. Given two structures to compare – called models – SF runs a
fixpoint algorithm over an auxiliary data structure, called a similarity prop-
agation graph in which elements of the first and second model are embedded
together; similarities are propagated along the edges of such graph according
to the intuition that two nodes are similar when their adjacent elements are
similar. On the contrary, in +Spicy, the two tree structures to compare are
kept separate, and no common data structure is employed; moreover, each
tree is turned into an isomorphic circuit, and the circuit is solved to calculate
currents and voltages; this is based on a very different intuition with respect
to SF, namely that currents model the “flow of information” inside the tree;
no similarity flows through the circuit. Similarities in +Spicy are explicitly
computed by selecting a number of features that describe the circuits response
and measuring their distance.

Both SF [62] and COMA++ [39] are schema matchers, thus can be used
within our matching module.

Among the instance-based mapping tools, we recall [21], [55], [58], and [40].
A more exhaustive survey is beside the scope of this thesis and can be found
in [38].

DUMAS [21] exploits the presence of duplicates within relations to effec-
tively drive the schema matching process. Despite their actual labels, attributes

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 101 — #113
i

i

i

i

i

i

101

that are semantically similar are detected and used to output the mapping cor-
respondences. +Spicy does not assume the presence of duplicates.

In [55], the authors develop an instance-based approach to matching opaque
databases, i.e., database in which labels and/or values are difficult or impossible
to interpret. They measure the pair-wise attribute correlations in the tables
and use mutual information and entropy to build a dependency graph, which
is then explored to find matching node pairs. While such information-theoretic
approach has some points in common with our use of entropy, note that+Spicy

does not exploit mutual entropy to find matches. Both [21, 55] are orthogonal
to +Spicy, which can be used to verify the outcome of the formers.

SemInt [58] clusters similar attributes by using data patterns and catalog
information as inputs to neural network. The entire approach is automated,
yet a set of parsers need to be instructed at the beginning of a matching task.

LSD [40] adopts a machine learning approach: a set of learners must be
trained by feeding examples of mappings among a smaller set of sources. Then,
the accumulated knowledge is reused to automatically derive mappings between
other sources in the same domain. The instance-based module in +Spicy is
based on electrical circuits and does not require additional input, nor training
in order to verify the mappings.

Finally, the idea of using electricity to address computer science prob-
lems has also been exploited in other cases. One example are graphs random
walks [41, 68]. In [10], the author builds an Hex-playing machine: Hex is a
two-player game that aims at connecting two opposite sides of a rhombic board
through continuous black or white cells. In the paper, a two-dimensional elec-
trical charge distribution is associated with any given Hex cell. This machine
made decisions based on properties of the corresponding potential field.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 102 — #114
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 103 — #115
i

i

i

i

i

i

CONCLUSIONS 103

Conclusions

In this thesis, based on concepts provided by schema mapping and data ex-
change research, we studied the notion of quality for schema mappings.

We identified three crucial viewpoint under which such a notion should be
studied: (i) which solutions a mapping system should materialize and how it
should generate them; (ii) how to generate transformation rules (for example
tgds), starting from a minimal and high-level specification of the mapping; (iii)
finally, how to semi-automatically generate this high-level specification of the
mapping.

With respect to the first aspect, we have introduced new algorithms for
schema mappings that rely on the theoretical foundations of data exchange to
generate optimal solutions. From the theoretical viewpoint, it represents a step
forward towards answering the following question: “is it possible to compute
core solutions by using the chase ?” Moreover, we showed that, despite their
intrinsic complexity, core solutions can be computed very efficiently in practical,
real-life scenarios by using relational database engines.

About the second point, we extended the expressive power of the mapping
system with respect to previous systems, in order to handle any set of depen-
dencies, both generated by the mapping system and provided by the user.

Finally, we presented an original architecture to integrate schema matching
and mapping generation and we introduced an algorithm that combines schema
matching, mapping generation and mapping verification in order to achieve
good scalability and high matching quality.

+Spicy is the first mapping generation system that integrates a feasible
implementation of a core computation algorithm into the mapping generation
process. Previous mapping algorithms tend to produce non-core solutions of
poor quality, and previous core-computation algorithms are actually unfeasible,
since even for very small databases they require many hours of computation.

We believe that this represents a concrete advancement towards an explicit
notion of quality for schema mapping systems.

In this respect, there are several interesting research problems that are
worth studying in order to further bridge the gap between schema mappings
and data exchange. A relevant one is the extension of the notion of data
exchange setting to nested data. Another one is the revision of existing schema
mapping benchmarks in order to incorporate the notion of a core solution, and
measure how close to the core is the solution generated by a mapping system.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 104 — #116
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 105 — #117
i

i

i

i

i

i

Appendices

105

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 106 — #118
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 107 — #119
i

i

i

i

i

i

Proofs of the Theorems

Proof of Theorem 3.3.5 Given a scenario M = (S,T,Σst), and a source
instance I , suppose J is a universal solution for M over I . Consider the subset
J0 of J defined as follows:

J0 =
⋃

reduce(max-informative(max-compact(W<I,J>))) (A.1)

Then, J0 is the core of J .

Proof: Before getting to the actual proof, let us introduce two preliminary
results about witness blocks.

Proposition A.1 Given a solution J ∈ USolM(I), for any tgd m and vector

of constants a, the set of witness blocks W<I,J>
m,a is closed under isomorphisms.

Proof: Consider a witness block w ∈ W<I,J>
m,a , and suppose there exists w′ ∈

W<I,J> such that w ∼= w′, i.e., there exists an isomorphism h : w′ → w.
We need to show that w′ ∈ W<I,J>

m,a . Since w ∈ W<I,J>
m,a , we know that

w = ψ(a, b), for some vector b of values in dom(J). To prove the claim it

is sufficient to show that also w′ = ψ(a, b
′
), for some b

′
. But we know that

w′ = h−1(w) = h−1(ψ(a, b)) = ψ(a, h−1(b)). This proves the claim. ⋄

Consider instance J0 defined according to Equation A.1. It can be seen
that the witness blocks of J0 fall in two categories: beside “maximal” witness
blocks, there may be induced witness blocks. A witness block w in W<I,J0>

is said to be induced if it is a proper subset of another witness block w′ in
W<I,J0>. We shall call maximal any witness block that is not induced.

Proposition A.2 Consider the set of witness blocks W<I,J0>. There cannot
be two witness blocks w,w′ ∈ W<I,J0> such that w is a maximal witness block,
w′ is an induced witness block and there exists an homomorphism h : w → w′.

107

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 108 — #120
i

i

i

i

i

i

108 PROOFS OF THE THEOREMS

Proof: We shall prove the claim by contradiction. Suppose there exists h :
w → w′. Since w′ is induced, there exists w′′ in W<I,J0> such that w′ ⊂ w′′

and w′′ is maximal. But this means that h is also an homomorphism of w
into w′′; moreover, h is proper, since there are atoms in w′′ − w′ that do not
belong to h(w). However, this is not possible by construction of J0, since by
hypothesis w is a maximal witness block, and therefore cannot have proper
homomorphisms into other witness blocks of J0. ⋄

We are now ready to prove the main claim. We need to prove the following:

Part 1. J0 is a universal solution for M over I , i.e., J0 ∈ USolM(I);

Part 2. J0 does not contain any smaller endomorphic image that is also a solution.

Part 1. – J0 is a universal solution for M over I – To prove that
J0 ∈ USolM(I), we shall first prove that J0 is a solution, and then that it is
universal.

To prove that J0 is a solution, i.e., J0 ∈ SolM(I), it is sufficient to show that,
for any tgd m : ∀x : φ(x) → ∃y(ψ(x, y)) in Σst, and any vector of constants a
such that I |= φ(a), the set of witness blocks corresponding to m and a in J0,

W<I,J0>
m,a , is not empty.

Consider now a tgd m : ∀x : φ(x) → ∃y(ψ(x, y)) in Σst, and a vector
of constants a such that I |= φ(a). We know that the set of witness blocks

W<I,J>
m,a is not empty, since J is a solution; also, it is a finite set, since J

is finite. Consider a maximal element w in W<I,J0>
m,a with respect to the ≺

relation. We need to distinguish two cases.

(a) There is no other w′ ∈ W<I,J> such that w < w′, i.e., w is also maximal
with respect to <. In this case, since witness blocks are closed under isomor-
phisms by Proposition A.1, the equivalence class of witness blocks isomorphic
to w, Ew, is included in W<I,J>

m,a . Call wEw
the representative selected for Ew

by reduce; by construction of J0, wEw
belongs to W<I,J0>

m,a , which cannot be
empty.

(b) There exists some w′ ∈ W<I,J> such that w < w′; in this case, consider
the set of witness blocks W = {wi|wi ∈ W<I,J> and w < wi}, and a maximal
element w∗ in W. Consider the equivalence class of witness blocks isomorphic
to w∗, Ew∗ , and call wEw∗

the representative selected for Ew∗ by reduce; by

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 109 — #121
i

i

i

i

i

i

109

construction of J0, wEw∗
⊆ J0. We know that the following homomorphisms

exist:
h : w → w∗ h′ : w∗ → wEw∗

It can be seen that the set of tuples h′(h(w)) is a subset of wEw∗
and therefore

is contained in J0. We now show that h′(h(w)) ∈ W<I,J0>
m,a . In fact, we know

that w = ψ(a, b); therefore, h(w) = ψ(a, h(b)), and h′(h(w)) = ψ(a, h′(h(b))).

This proves that W<I,J0>
m,a is not empty.

This proves that J0 is a solution. We now need to prove that J0 is a
universal solution for M over I , i.e., that for any other solution J ′ ∈ SolM(I)
there exists an homomorphism h′ : J0 → J ′. Since we know that J is universal,
this amounts to show that J0 is homomorphically equivalent to J . However, we
know that there exists an homomorphism h : J → J0, since J is universal and J0
is a solution. We also know that there exists a straightforward homomorphism
h′′ : J0 → J , since J0 is a subset of J . Therefore, J0 is homomorphically
equivalent to J , and as a consequence J0 ∈ USolM(I).

Part 2.: J0 does not contain any smaller endomorphic image that
is also a universal solution – We shall prove the claim by contradiction.
Suppose there exists a smaller universal solution than J0, i.e., a solution J# ⊂
J0. Since J# is properly contained in J0, there is at least one tuple t in J0−J#;
by removing t from J0, we are also removing any witness block w ∈ W<I,J0>

that contains t.

Since J# is a universal solution, it must be homomorphically equivalent to
J0. Therefore, we know there exists an homomorphism h# : J0 → J#. This is
obviously true for any subset of J0. Let us consider one of the maximal witness
blocks w that belongs to J0 but not to J#, i.e., w ∈ W<I,J0>−W<I,J#>. Let’s
call hw the restriction of h# to w, i.e., hw : w → J#. We shall now prove that
such an homomorphism cannot exist.

Let’s consider the image of w in J#, hw(w). Note that w 6= hw(w), since
w is not contained in J#. On the contrary, since hw(w) is contained in J#, it

is also contained in J0. Call W
<I,J0>
m,a one of the witness block sets to which w

belongs. It is easy to see that, since w is of the form ψ(a, b), hw(w) is of the

form ψ(a, hw(b)). Therefore, also hw(w) is a witness block in W<I,J0>
m,a . As a

consequence, we know that W<I,J0>
m,a contains two distinct witness blocks, w

and hw(w).

Let us consider the number of nulls in w and hw(w). There are three
possible cases.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 110 — #122
i

i

i

i

i

i

110 PROOFS OF THE THEOREMS

(a) |vars(w)| = |vars(hw(w))| – in this case hw(w) is simply a renaming
of the labeled nulls of w and hw must be one to one; this means that w and
hw(w) are isomorphic; therefore, hw(w) cannot be a maximal witness block,
by construction of J0; however, it cannot be an induced witness block, either,
because of Proposition A.2;

(b) |vars(w)| < |vars(hw(w))| – in this case, it is not possible that hw(w) is
a maximal witness block, since it would not be maximal with respect to the ≺
relation; therefore, hw(w) must be induced; however, this cannot be the case,
either, because of Proposition A.2;

(c) |vars(w)| > |vars(hw(w))| – this is clearly not possible, since by hypoth-
esis w is maximal with respect to compacting homomorphisms.

Therefore, we have shown that hw cannot exist. This proves Part 2. of the
claim and concludes the proof. ⋄

Proof of Theorem 3.4.1 Given a M = (S,T,Σst), a source instance I , call
J a canonical universal solution of Σst over I . If J is isomorphism–free, con-
sider the following set:

EJ
rew-i =

⋃

ǫ∈expan(M)

{a(χl(x1, y1)) | a s.t. J |= a(rew-iǫ(x1, y1))}

then it is the case that:

EJ
rew-i = reduce(max-informative(max-compact(W<I,J>)))

Proof:
Before getting to the actual proof, we shall introduce several preliminary

definitions and lemmas.

Images of a Variable Since formula homomorphisms map variable occur-
rences to variable occurrences, they are not mappings among variables. In
fact, they typically relate occurrences of a variable with occurrences of several
different variables. To formalize this notion, we need to introduce the notion
of an image of a variable according to a formula homomorphism.

Definition 1 [Image of a Variable] Given a formula homomorphism hf :
ϕ(x, y) → ϕ′(x′, y′); for every variable vi in ϕ(x, y), the image of vi according
to hf is the set of variables Vhf (vi) whose occurrences are images of occurrences
of vi via h

f , defined as follows:

Vhf (vi) = {v′k | R.A : vi ∈ occ(ϕ(x, y)) and hf (R.A : vi) = R.A : v′k}

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 111 — #123
i

i

i

i

i

i

111

Let us first establish an important property of variable images.

Proposition A.3 Given an instance J and two formulas ϕ(x, y), ϕ′(x′, y′)
such that there exists a formula homomorphism hf : ϕ(x, y) → ϕ′(x′, y′), sup-
pose there are assignments a, a′ such that: J |= a(ϕ(x, y)), J |= a′(ϕ′(x′, y′))
and a, a′ are such that equalhf (a(x), a′(x′)) evaluates to true. Then, for every
variable v ∈ x ∪ y, it is the case that:

• a′ has the same value on all variables v′ ∈ Vhf (v);

• if v is universal, then it is the case that a(v) = a′(v′), for every variable
v′ ∈ Vhf (v).

Proof: We shall first prove the claim in the case in which the variable is
universal, and then existential.

Consider a universal variable x ∈ x. Consider intersecthf (x, x′). We know
that it contains an equality of the form x = x′ for every variable occurrence
in ϕ′(x′, y′) such that R.A : x′ = hf (R.A : x). This means that, for any two
variables x′i, x

′
j in Vhf (x), intersecthf (x, x′) contains equalities of the form

x = x′i, x = x′j . Since we know that a, a′ are such that equalhf (a(x), a′(x′))
evaluates to true, it must be the case that a(x) = a′(x′i) = a′(x′j), which proves
the claim.

Consider now an existentially quantified variable y ∈ y. We need to prove
that all variables in v′ ∈ Vhf (v) receive by a′ the same value. In this case,
for every pair of occurrences Ri.Aj : y,Rn.Am : y, by definition of a for-
mula homomorphism, we have two possible cases: (i) either both occurrences
are mapped to occurrences of the same existential variable y′; in this case,
Vhf (y) is a singleton set containing y′, and the claim is obviously true; (ii) or
they are mapped to universal occurrences of variables x′h, x

′
k; but in this case,

joinshf (x, x′) contains an equality of the form x′h = x′k, and it must be the case
that a′(x′h) = a′(x′k); therefore all variables in Vhf (y) receive the same value
by a′. This proves the claim. ⋄

Homomorphisms and Formula Homomorphisms We now want to es-
tablish two important lemmas, that show the dual nature of homomorphisms
among facts and homomorphisms among formulas. More specifically, under
appropriate conditions, whenever one exists there exists also the other. In or-
der to do this, we need to introduce a notion of compatibility among these two
kinds of homomorphisms, as follows.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 112 — #124
i

i

i

i

i

i

112 PROOFS OF THE THEOREMS

Definition 2 [Compatible Formula Homomorphism] Given a formula
homomorphism between conjunctive formulas, hf : ϕ(x, y) → ϕ′(x′, y′), and as-
signments a, a′ such that there is an homomorphism h : a(ϕ(x, y)) → a′(ϕ′(x′, y′)),
we say that hf is compatible with h, a, a′ if it is the case that, for every variable
v ∈ x∪y, and for every variable v′ ∈ Vhf (v), it is the case that h(a(v)) = a′(v′).

In essence, we are requiring that h maps the value a(v) of a variable v to
the value a′(v′) of every variable that is in the image of v according to hf . We
also need to introduce the notion of an invertible assignment.

Definition 3 [Invertible Assignment] A canonical assignment is called in-
vertible if |a(ϕ(x, y))| = |ϕ(x, y)|, i.e., each atom in ϕ(x, y) generates a differ-
ent fact.

We are now ready to state our result about the dual nature of fact and
formula homomorphisms.

Lemma A.4 Given an instance J , and two conjunctive formulas ϕ(x, y) and
ϕ′(x′, y′) such that there exists a formula homomorphism hf : ϕ(x, y) →
ϕ′(x′, y′), suppose there exist canonical assignments a, a′ such that J |= a(ϕ(x, y)),
J |= a′(ϕ′(x′, y′)), and a, a′ are such that equalhf (a(x), a′(x′)) evaluates to
true. Then, there exists an homomorphism h : a(ϕ(x, y)) → a′(ϕ′(x′, y′)), and
hf is compatible with h, a, a′. Moreover:

• if hf is a surjection, h is a surjection;

• if hf is proper, and a′ is invertible, h is proper.

Proof: We shall construct h, and then show that it is a valid homomorphism.
For any variable v ∈ x ∪ y, consider the value a(v), and let us define h(a(v))
in such a way that h(a(v)) = a′(v′), where v′ is any variable in Vhf (v). By
Proposition A.3, we know that this is a well defined mapping. Note also that,
by construction, if h is indeed an homomorphism, hf is compatible with h, a, a′.

We shall now prove that h is an homomorphism of a(ϕ(x, y)) into a′(ϕ′(x′, y′)).
To see this, consider any atom Ri(. . . Aj : vk . . .) in ϕ(x, y). Recall that, since
hf is a valid formula homomorphism, we know thatRi(. . . Aj : h

f
Ri.Aj

(vk) . . .) ∈
ϕ′(x′, y′). By construction of h, we also know that, for any occurrence Ri.Aj :
vk, we have that h(a(vk)) = a′(hfRi.Aj

(vk)). It follows that:

h(a(Ri(. . . Aj : vk . . .))) = Ri(. . . Aj : h(a(vk)) . . .) =
Ri(. . . Aj : a

′(hfRi.Aj
(vk)) . . .) = a′(Ri(. . . Aj : h

f
Ri.Aj

(vk) . . .)) ∈ a′(ϕ′(x′, y′))

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 113 — #125
i

i

i

i

i

i

113

This proves that h is a valid homomorphism, and also that hf is indeed com-
patible with h, a, a′. To complete the proof, we need to show that:

• if hf is a surjection, h is a surjection;

• if hf is proper, and a′ is invertible, h is proper.

Suppose hf is a surjection. Then, every atom Ri(x
′
i, y

′
i) ∈ ϕ′(x′, y′) is the

image of some atom Ri(xi, yi) ∈ ϕ(x, y). By construction of h, it is the case
that a′(Ri(x

′
i, y

′
i)) is the image of a(Ri(xi, yi)) according to h, and therefore h

is a surjection.

On the contrary, assume hf is proper. Then, there exists an atomRi(x
′
i, y

′
i) ∈

ϕ′(x′, y′) that is not the image of an atom in ϕ(x, y). Since a′ is invertible,
the fact a′(Ri(x

′
i, y

′
i)) is such that it can only be generated by Ri(x

′
i, y

′
i). Since

there is no atom in ϕ(x, y) that maps into Ri(x
′
i, y

′
i), by construction of h,

a′(Ri(x
′
i, y

′
i)) cannot belong to the image of h. This proves that h is proper. ⋄

The relationship among fact homomorphisms and formula homomorphisms
stated in Lemma A.4 has a dual aspect, as stated in Lemma A.5. Before
stating the lemma, we need to introduce a tool that plays an important role
in the proof. More specifically, given a formula and one of its instances, we
introduce a way to map each tuple in the formula instance to an atom in the
formula, as follows:

Definition 4 [Mapping Facts to Atoms] Given a formula ϕ(x, y) and a
canonical assignment a for it, we introduce a mapping, called atom, of each
fact in a(ϕ(x, y)) to an atom in ϕ(x, y). More specifically, given a fact t ∈
a(ϕ(x, y)), we define atom(t) as any atom Ri(xi, yi) of ϕ(x, y) such that t =
a(Ri(xi, yi)). Note that there may be in general more than one atom of this
kind, in which case we pick exactly one.

Lemma A.5 Given two conjunctive formulas ϕ(x, y), ϕ′(x′, y′), suppose there
are assignments a, a′ such that there exists an homomorphism: h : a(ϕ(x, y)) →
a′(ϕ′(x′, y′)) and a′ is a canonical assignment for ϕ′(x′, y′). Then, there exists
a formula homomorphism: hf : ϕ(x, y) → ϕ′(x′, y′) and hf is compatible with
h, a, a′. Moreover:

• if h is a surjection, hf is a surjection;

• if h is proper, hf is proper;

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 114 — #126
i

i

i

i

i

i

114 PROOFS OF THE THEOREMS

Proof: Let’s call w = a(ϕ(x, y)), w′ = a′(ϕ′(x′, y′)). We want to build a for-
mula homomorphism hf of ϕ(x, y) into ϕ′(x′, y′). As a first step, we introduce
a mapping of each atom Ri(xi, yi) ∈ ϕ(x, y) to an atom in ϕ′(x′, y′), called
matchh,a,a′(Ri(xi, yi)), according to the following strategy:

• we first map Ri(xi, yi) to a(Ri(xi, yi)) ∈ w;

• then, we map a(Ri(xi, yi)) to h(a(Ri(xi, yi))) ∈ w′;

• finally, we map h(a(Ri(xi, yi))) to atom
′(h(a(Ri(xi, yi)))) ∈ ϕ′(x′, y′);

i.e., we have that: matchh,a,a′(Ri(xi, yi)) = atom′(h(a(Ri(xi, yi)))).
To build hf , we consider each variable occurrence Ri.Aj : vk in ϕ(x, y),

and choose hf (Ri.Aj : vk) to be the corresponding variable occurrence in the
formula matchh,a,a′(Ri(xi, yi)), called occAj

(matchh,a,a′(Ri(xi, yi))), i.e.:

hf (Ri.Aj : vk) = occAj
(matchh,a,a′(Ri(xi, yi))) (A.2)

To prove that hf is a formula homomorphism of ϕ(x, y) into ϕ′(x′, y′), according
to the definition, we need to show that:

• hf maps each atom in ϕ(x, y) to an atom in ϕ′(x′, y′);

• hf maps universal occurrences in ϕ(x, y) to universal occurrences in
ϕ′(x′, y′);

• hf is such that two different occurrences of the same existential variable
in ϕ(x, y) are either mapped to universal occurrences, or to occurrences
of the same existential variable in ϕ′(x′, y′).

It can be seen immediately that, by construction, hf maps each atom Ri(xi, yi)
in ϕ(x, y) to an atom matchh,a,a′(Ri(xi, yi)) in ϕ

′(x′, y′). In fact, by construc-
tion hf maps each occurrence Ri.A : vi in Ri(xi, yi) to the corresponding
occurrence in matchh,a,a′(Ri(xi, yi)).

We note that hf maps universal occurrences into universal occurrences.
In fact, each universal occurrence Ri.Aj : vk in ϕ(x, y) is first mapped to a
constant in a(Ri(. . . Aj : vk . . .)) ∈ w, and then to a constant in h(a(Ri(. . . Aj :
vk . . .))) ∈ w′; then, since we know that w′ is a canonical block for ϕ′(x′, y′),
only universal variables are mapped by a′ to constants;
therefore, occAj

(matchh,a,a′(Ri(xi, yi))) must be a universal occurrence.
Finally, consider two occurrences Ri.Aj : yk, Rn.Am : yk of the same exis-

tential variable yk in ϕ(x, y). There are two possible cases:

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 115 — #127
i

i

i

i

i

i

115

(i) a(yk) is a constant; in this case, since w′ is a canonical block, we know
that both Ri.Aj : yk, Rn.Am : yk will be mapped to universal variable occur-
rences in ϕ′(x′, y′);

(ii) a(yk) is a labeled null; in this case, both occurrences in ϕ(x, y) will
be mapped to the same labeled null a(yk) in w; this, in turn, can be either
mapped to a constant or a labeled null by h; if h(a(yk)) is a constant, then, by
the same reasoning as (i) above, we know that both occurrences of yk will be
mapped to universal occurrences; if, on the contrary, h(a(yk)) is a labeled null,
since we know that w′ is a canonical block, i.e., a′ maps existential variables
injectively to labeled nulls, both occurrences will be mapped to occurrences of
the same existential variable in ϕ′(x′, y′).

This proves that hf is a valid formula homomorphism.
To show that hf is compatible with h, a, a′, we need to prove that, for

every variable v ∈ x ∪ y, and for every variable v′ ∈ Vhf (v), it is the case that
h(a(v)) = a′(v′). Call Ri.Aj : v the occurrence of v such that hf (Ri.Aj : v) =
Ri.Aj : v

′. By construction of hf , we know that:

Ri(. . . Aj : v
′ . . .) = hf (Ri(. . . Aj : v . . .)) =

matchh,a,a′(Ri(. . . Aj : v . . .))) = atom′(h(a(Ri(. . . Aj : v . . .)))) =
= atom′(Ri(. . . Aj : h(a(v)) . . .))

Recall now that, by the definition of atom′, a′(atom′(t)) = t. If we apply a′ to
both the first and the last atom in the equation above, we therefore have:

a′(Ri(. . . Aj : v
′ . . .)) = Ri(. . . Aj : a

′(v′) . . .)) =
a′(atom′(Ri(. . . Aj : h(a(v)) . . .))) = Ri(. . . Aj : h(a(v)) . . .)

Based on this, we can conclude that a′(v′) = h(a(v)). This proves that hf is
compatible with h, a, a′. To complete the proof, we need to prove that:

• if h is a surjection, hf is a surjection;

• if h is proper, hf is proper;

This follows immediately from the definition of atom′. In fact, assume h is a
surjection. In this case, we note that matchh,a,a′ is obtained by the composi-
tion of three surjective mappings – a, h, and atom′, and therefore it is itself
surjective.

On the contrary, assume h is proper. In this case, h(a(ϕ(x, y)) does not
coincide with a′(ϕ′(x′, y′)). Call a′(Ri(x

′
i, y

′
i)) the atom in a′(ϕ′(x′, y′)) that

is not image of an atom in a(ϕ(x, y)). Since each atom in a formula gener-
ates a single fact, it must be the case that Ri(x

′
i, y

′
i) does not belong to the

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 116 — #128
i

i

i

i

i

i

116 PROOFS OF THE THEOREMS

image of ϕ(x, y) according to matchh,a,a′ . Therefore, hf is a proper formula
homomorphism.

This proves the claim. ⋄

Lemma A.5 has a direct impact on the way in which our rewritings are
evaluated, as stated by the following Lemma.

Lemma A.6 Given two conjunctive formulas ϕ(x, y), ϕ′(x′, y′), suppose there
are canonical assignments a, a′ such that J |= a(ϕ(x, y)) and J |= a′(ϕ′(x′, y′))
and there exists an homomorphism: h : a(ϕ(x, y)) → a′(ϕ′(x′, y′)). Call hf

the formula homomorphism of ϕ(x, y) into ϕ′(x′, y′) compatible with h, a, a′.
Then, equalhf (a(x), a′(x′)) evaluates to true.

Proof: Consider equalhf (x, x′); it contains equalities of two forms:

intersecthf (x, x′) = {xk = x′k | xk ∈ x, Ri.Aj : x
′
k = hfRi.Aj

(xk)}
joinshf (x′) = {x′h = x′l | yk ∈ y, x′h = hfRi.Aj

(yk), x
′
l = hfRn.Am

(yk)}
equalhf (x, x′) = intersecthf (x, x′) ∪ joinshf (x, x′)

Let us first consider intersecthf (x, x′). To prove the claim we need to show
that a(xk) = a′(x′k), whenever Ri.Aj : x′k = hfRi.Aj

(xk). But it is easily seen
that, since x′k ∈ Vhf (xk), and hf is compatible with h, a, a′, by definition of
compatible homomorphism, it is the case that h(a(xk)) = a′(x′k). Since both
xk and x′k are universal, a(xk) is a constant, and therefore h(a(xk)) = a(xk) =
a′(x′k). This proves that intersecthf (a(x), a′(x′)) evaluates to true.

Let us now consider joinshf (x′). To prove the claim, we need to show
that, a′(x′h) = a′(x′l), for every pair of universal variables in the image of some
yk ∈ y. But since both x′h and x′l belong to Vhf (yk), by definition of compatible
homomorphism it must be the case that h(a(yk)) = a′(x′h) = a′(x′l). Therefore
also joinshf (a′(x′)) evaluates to true. This proves the claim. ⋄

We are now ready to prove the main claim. We introduce the following
additional sets:

EJ =
⋃

ǫ∈expan(M){a(χ
l(x1, y1)) | a s.t. J |= a(ǫ(x1, y1))}

EJ
rew-c =

⋃

ǫ∈expan(M){a(χ
l(x1, y1)) | a s.t. J |= a(rew-cǫ(x1, y1))}

The proof is organized in three parts. We shall prove the following claims:

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 117 — #129
i

i

i

i

i

i

117

Part 1. EJ = W<I,J>

Part 2. EJ
rew-c = max-compact(W<I,J>)

Part 3. EJ
rew-i = max-informative(max-compact(W<I,J>))

Notice, in fact, that, once we have proven Part 3., the thesis follows immediately
from the hypothesis that J is isomorphism-free. This means that any equiva-
lence class Ei of isomorphic witness blocks in EJ

rew-i is a singleton. Therefore,
reduce() is the identity mapping on max-informative(max-compact(W<I,J>)),
and therefore the thesis is proven.

Part 1. – EJ = W<I,J>

We shall first prove that EJ
m ⊆ W<I,J>

m , and then that W<I,J>
m ⊆ EJ

m , for
each m ∈ Σst.

Part 1.(first half) – EJ ⊆ W<I,J>

To show that EJ ⊆ W<I,J>, consider a set of facts we ∈ EJ . We need to
show that we is a witness block for some tgd m : ∀x : φ(x) → ∃y(ψ(x, y)), i.e.,

there exists a vector of constants aw such that we ∈ W<I,J>
m,aw

. This amount
to prove that there exists an assignment aw that satisfies the following two
conditions:

• I |= φ(aw(x)), i.e., aw = aw(x);

• we has the form ψ(aw(x), aw(y)).

In the following, we construct such an assignment aw. We know that we belongs
to some EJ

m , for some tgd φ(x2) → ∃y2(ψ
l(x2, y2)) and some expansion

ǫ = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf
ǫ
(x1, x2))

Recall that we know that J |= a1(ǫ(x1, y1)), for some assignment a1, i.e.,
J |= a1(χ

l(x1, y1)) = we; call a2 the assignment such that J |= a2(ψ(x2, y2)).
We know that equalhf

ǫ
(a1(x1), a2(x2)) evaluates to true.

Since, by definition of expansion, there exists a surjective formula homo-
morphism hf of ψ(x2, y2) into χ(x1, y1), we know by Lemma A.4 that there
exists a surjective homomorphism h : a2(ψ(x2, y2)) → a1(χ(x1, y1)). Since h is
surjective, we have that:

we = a1(χ(x1, y1)) = h(a2(ψ(x2, y2))) = ψ(h(a2(x2)), h(a2(y2)))

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 118 — #130
i

i

i

i

i

i

118 PROOFS OF THE THEOREMS

If we take aw = h ◦ a2, then we has the form aw(ψ
l(x2, y2)).

In order to complete the proof that we is a witness block for m, we also
need to prove that aw is such that I |= φ(aw(x2)). Recall that we know that
J |= a2(ψ(x2, y2). Since a2(ψ(x2, y2)) is a witness block for m in J , and
J ∈ USolM(I), we know that it must be the case that I |= φ(a2(x2)). We
now show that aw(x2) = a2(x2), and therefore I |= φ(aw(x2)). In fact, for any
variable x2i ∈ x2, by definition we have that aw(x2i) = h(a2(x2i)). But x2i is
a universal variable, and therefore a2(x2i) is a constant. As a consequence, h
is the identity on it. It follows that aw(x2i) = a2(x2i).

This proves that we is a witness block for tgd m, and concludes the proof
of the first half of Part 1.

Part 1. (second half) – W<I,J> ⊆ EJ

Consider a witness block w ∈ W<I,J>. Call m : ∀x : φ(x) → ∃y(ψ(x, y)) a
tgd such that w ∈ W<I,J>

m . We need to prove that w ∈ EJ
m .

Since w is a witness block in EJ
m , we know that there exists an assignment aw

such that w = ψ(aw(x2), aw(y2)). We now construct χl(x1, y1) as follows: since
w is a set of facts in a canonical universal solution J ∈ USolM(I), for each fact
ti in w, we consider its provenance, provenance(ti), and we pick exactly one
of the labeled atoms in it. We notice that w is a canonical block for χl(x1, y1),
i.e., there exists a canonical assignment aχ such that w = aχ(χ

l(x1, y1)). Also,
aχ is an invertible assignment. In fact, by construction, |χ(x1, y1)| = |w| =
|aχ(χ(x1, y1))|. We shall now prove that

ǫ = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf
ǫ
(x1, x2))

is actually a valid expansion for m. In order to do this, it is necessary to prove
that there is a surjection hf : ψ(x2, y2) → χ(x1, y1).

By Lemma A.5, we know that there exists a formula homomorphism hf

of ψl(x2, y2) into χ(x1, y1). In fact, we know that w = aw(ψ(x2, y2)) =
aχ(χ(x1, y1)). Therefore, there is a trivial automorphism hi of aw(ψ(x2, y2))
into aχ(χ(x1, y1)); since w is a canonical block for χ(x1, y1), Lemma A.5 holds.
Moreover, since hi is surjective, also h

f is surjective. This proves that hf is a
valid formula homomorphism and a surjection, and that ǫ is a valid expansion.

To complete the proof, we need to show that J |= aχ(ǫ(x1, y1)), i.e.,
J |= aχ(χ

l(x1, y1)) = w, and there exists an assignment ab such that J |=
ab(ψ(x2, y2)), and equalhf

ǫ
(aχ(x1), ab(x2)) evaluates to true.

In order to show that ab exists, we notice that w has the form aw(ψ(x2, y2)).
As a consequence, by definition of a witness block, there exists a canonical

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 119 — #131
i

i

i

i

i

i

119

assignment ab for x2∪y2 such that ab(x2) = aw(x2) and: (a) I |= φ(ab(x2)); (b)
m has been fired with assignment ab to generate a canonical block ab(ψ(x2, y2)).

From the discussion above, it follows that J |= aχ(χ
l(x1, y1)) = w and that

J |= ab(ψ(x2, y2)). In order to conclude the proof, we only need to prove that
aχ, ab are such that equalhf

ǫ
(aχ(x1), ab(x2)) evaluates to true.

But this follows from Lemma A.6. In order to apply the Lemma, we need to
show that there is a formula homomorphism h : ab(ψ(x2, y2)) → aχ(χ

l(x1, y1)).
To see, this, consider that we know that w = aχ(χ

l(x1, y1)) = aw(ψ(x2, y2)).
For any variable v2k ∈ x2 ∪ y2, let’s choose h in such a way that h(ab(v2k)) =
aw(v2k). This is a valid homomorphism of ab(ψ(x2, y2)) into aw(ψ(x2, y2)). In
fact, hmaps atoms in ab(ψ(x2, y2)) into atoms in aw(ψ(x2, y2)) by construction.
To prove that it is a valid homomorphism, it remains to show that it maps
constants to themselves. To see this, notice that ab is a canonical assignment.
Therefore, it only associates constants with universal variables. Based on this,
for every universal variable x2k ∈ x2, it is the case that h(ab(x2k)) = aw(x2k) =
ab(x2k), since we know that ab(x2) = aw(x2). We can conclude that h is the
identity on constants, and therefore it is a valid homomorphism. Note also
that hf is compatible with h, aχ, ab by construction. This means that we can
apply Lemma A.6. It follows that equalhf

ǫ
(aχ(x1), ab(x2)) evaluates to true.

This proves that J |= aχ(ǫ(x1, y1)), and concludes the proof of Part 1.

Part 2. – EJ
rew-c = max-compact(W<I,J>)

Part 2. (first half) – EJ
rew-c ⊆ max-compact(W<I,J>)

In order to prove the claim, we need to prove that any block of facts we ∈
EJ
rew-c belongs also to max-compact(W<I,J>). This amounts to show that
we is maximal with respect to ≺, i.e., there is no other witness block w′ such
that we ≺ w′. We shall prove this by contradiction.

Call ǫ the expansion such that, for assignment a, J |= a(rew-cǫ(x1, y1)).
Suppose there exists a witness block w′ such that we ≺ w′. By Part 1 of the
proof, we know there exists an expansion ǫ′ in expan(M) and an assignment
a′ such that J |= a′(ǫ′(x′1, y

′
1)) = w′.

Since we assume that we ≺ w′, i.e., there is a compacting homomorphism
h′ : we → w′, we know by Lemma A.5 that there must be a formula homomor-
phism hf

′
of χ(x1, y1) into χ

′(x′1, y
′
1), defined as follows:

hf
′
(Ri.Aj : vk) = occAj

(atom′(h′(a(Ri(. . . Aj : vk . . .)))))

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 120 — #132
i

i

i

i

i

i

120 PROOFS OF THE THEOREMS

We also know that hf
′
is a surjection, since h′ is a surjection. We want to prove

that hf
′
is compacting, i.e., either |χ′(x′1, y

′
1)| < |χ(x1, y1)| or |y

′
1| < |y1|.

Since hf
′
is a surjection, we know that |χ′(x′1, y

′
1)| ≤ |χ(x1, y1)| (otherwise

hf
′
would be proper). If |χ′(x′1, y

′
1)| < |χ(x1, y1)| then h

f ′ is compacting.
Suppose, on the contrary, that |χ′(x′1, y

′
1)| = |χ(x1, y1)|. Since we know that

h′ is compacting, it is the case that it is a surjection and |vars(w′)| < |vars(we)|.
It is possible to see that this may only happen if at least one of the following
cases occurs:

(a) h′ maps some null Ni ∈ vars(we) to a constant;
(b) h′ is not an injective mapping of vars(we) into vars(w′), i.e., it maps

two different nulls Ni, Nj ∈ vars(we) to the same null Nk ∈ vars(w′).
Let us consider the two cases separately. In case (a), call yi the existential

variable such that a(yi) = Ni. If h
′(a(yi)) is a constant, all occurrences of the

form occAj
(atom′(Rk(. . . Aj : h

′(a(yi)) . . .))) are universal occurrences, since a
′

is a canonical assignment, and therefore a constant can be generated by a′ only
from a universal variable; this means that all occurrences of yi are mapped
to universal occurrences, and it is the case that Vhf ′(yi) does not contain any
existential variables. Consider the mapping of variables I : y1 → y′1 that
associates with each existential variable yi in χ(x1, y1) the existential variable

I(yi) in χ
′(x′1, y

′
1) that is image of yi via h

f ′, i.e., such that I(yi) ∈ Vyi
, if this

exists. This is in fact a mapping since, by definition, a formula homomorphism
either maps all occurrences of an existential variable to occurrences of the
same existential variable, or to universal occurrences. It can be seen that I is
surjective, since hf

′
is surjective, but it is not total. As a consequence, it must

be the case that |y1| > |y′1|, i.e., h
f ′ is compacting.

Consider now case (b) above. By a similar argument, it can be seen that
also in this case I is surjective but it is not injective; in fact, two different
existential variables are mapped to the same image. Also in this case, this can
happen only if |y1| > |y′1|, i.e., if h

f ′ is compacting.
Since we have shown that there exists an expansion ǫ′ such that there is

a compacting homomorphism hf
′
from χ(x1, y1) into χ′(x′1, y

′
1). This means

that rew-cǫ is of the following form:

rew-cǫ = ǫ ∧ ¬∃x′1, y
′
1 : (ǫ′ ∧ equalhf ′(x1, x

′
1)) ∧ ...

but this in turn implies that it is not possible that we ∈ EJ
rew-c. In fact, it

must be the case that J 6|= a(rew-cǫ(x1, y1)). To see this, notice that there are
assignments a, a′ such that we = a(χ(x1, y1)) ⊆ J , we

′ = a′(χ′(x′1, y
′
1)) ⊆ J ,

and an homomorphism h′ǫ : we → we
′.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 121 — #133
i

i

i

i

i

i

121

Therefore, by Lemma A.6, equalhf ′(a(x1), a
′(x′1)) evaluates to true, and the

existentially quantified subformula evaluates to true. This means that we have
reached a contradiction, since we cannot belong to EJ

rew-c, and the claim is
proven.

This proves the first half of Part 2.

Part 2. (second half) – max-compact(W<I,J>) ⊆ EJ
rew-c

In order to prove the claim, we need to show that, for any witness block
w ∈ max-compact(W<I,J>), it is the case that w ∈ EJ

rew-c. We know, by Part
1 of the proof, that there exists an expansion ǫ such that, for some invertible
assignment a, it is the case that J |= a(ǫ(x1, y1)) = w. We need to prove that
J |= a(rew-cǫ(x1, y1)).

We shall prove the claim by way of contradiction. More specifically, sup-
pose that J 6|= a(rew-cǫ(x1, y1)). Since J |= a(ǫ(x1, y1)) = w, by definition
of rew-cǫ, there must be some expansion ǫ′ such that there is a compacting
homomorphism hf

′
of χ(x1, y1) into χ′(x′1, y

′
1), and, for some assignment a′,

J |= a′(ǫ′(x′1, y
′
1)), and a, a

′ are such that equalhf ′(a(x1), a
′(x′1)) evaluates to

true.

Consider now w′ = a′(χ′(x′1, y
′
1)). Based on Lemma A.4, we know that there

exists an homomorphism h′ : w → w′. We also know that h′ is a surjection,
since hf

′
is a surjection. We now want to prove that h′ is compacting, i.e.,

|vars(w′)| < |vars(w)|. Since we know that hf
′
is compacting, we also know

that either |χ′(x′1, y
′
1)| < |χ(x1, y1)| or |y

′
1| < |y1|.

Let us first consider the case in which |χ′(x′1, y
′
1)| < |χ(x1, y1)|. Since we

know that a is invertible, it must be the case that

|w′| = |a′(χ′(x′1, y
′
1))| ≤ |χ′(x′1, y

′
1)| < |χ(x1, y1)| = |a(χ(x1, y1))| = |w|

i.e., |w′| < |w|. This may only happen if w contains at least two distinct atoms
R(t), R(t′) such that h′(R(t)) = h′(R(t′)). It can be seen that these atoms
must contain some labeled nulls. In fact, any ground atom can be mapped by
h′ only to itself, and therefore must belong to both w and w′. Moreover, since
h′(R(t)) = h′(R(t′)), it must be the case that:

• at least one labeled null in R(t) or in R(t′) is mapped by h′ to a constant;

• some null N ′ in R(t′) is mapped to the same null to which a null N in
R(t) is mapped, i.e., h′(N) = h′(N ′).

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 122 — #134
i

i

i

i

i

i

122 PROOFS OF THE THEOREMS

In the first case, since there is at least one null that is mapped by h′ to a
constant, and h′ is a surjection, it must be the case that |vars(w′)| < |vars(w)|,
i.e., h′ is compacting.

In the second case, we know that the size of the image of vars(w) according
to h′, h′(vars(w)), is smaller than the size of vars(w), since two different nulls
in w are mapped to the same null in w′; but we know that h′ is a surjection,
and therefore it must be the case that |h′(vars(w))| = |vars(w′)|. Therefore,
we have that:

|vars(w′)| = |h′(vars(w))| < |vars(w)|

and also in this case h′ is compacting.
Let us now consider the second case, the one in which hf

′
is such that

|y′1| < |y1|. Since h
f ′ is a surjection, this may happen in the following cases:

• there exists y ∈ y1 such that its image according to hf
′
, Vhf ′(y) contains

only universal variables;

• there exist yi, yj ∈ y1 such that Vhf ′(yi) = Vhf ′(yj) = y′ ∈ y′1, i.e., two
different variables are mapped to the same existential variable.

We know that h′ is a surjection by construction. But then, it must be the case
that |vars(w′)| < |vars(w)|. Suppose, in fact, that for every other existential
variable yk ∈ y, yk 6= y, yk is mapped to a different variable y′k ∈ y′1. Then, since
a, a′ are canonical, vars(w) contains a distinct element a(yk), and vars(w′) a
distinct element h′(a(yk)), for any of such variables. But in turn, in both cases,
vars(w) contains a distinct element a(y) for which there is no counterpart in
vars(w′).

Therefore, h′ is compacting, and w ≺ w′. But this is obviously a contra-
diction, since w ∈ max-compact(W<I,J>), and therefore w is maximal with
respect to ≺. Therefore, we have proven the claim.

This concludes the proof of Part 2.

Part 3. – EJ
rew-i = max-informative(max-compact(W<I,J>))

Part 3. (first half) – EJ
rew-i ⊆ max-informative(max-compact(W<I,J>))

In order to prove the claim, we need to prove that any block of facts
we ∈ EJ

rew-i belongs also to max-informative(max-compact(W<I,J>)). This
amounts to prove that we is maximal with respect to <, i.e., there exists no
witness block w′ such that there is a proper homomorphism h′ : we → w′.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 123 — #135
i

i

i

i

i

i

123

The proof is very similar to that of the first half of Part 2. Also in this
case we proceed by way of contradiction. We call ǫ the expansion such that
J |= a(rew-iǫ(x1, y1)) = we, for some assignment a. Assume that there
exists a witness block w′ in max-compact(W<I,J>) such that there exists
a proper homomorphism h′ : we → w′. In this case, we know by Part 2
of the proof that there exists an expansion ǫ′ and assignment a′ such that
J |= a′(rew-c′ǫ(x

′
1, y

′
1)). Also, by Lemma A.5, we know that there is a proper

formula homomorphism hf
′
of χ(x1, y1) into χ

′(x′1, y
′
1). This means that rew-iǫ

has the following form:

rew-iǫ = rew-cǫ ∧ ¬∃x′1, y
′
1 : (rew-c′ǫ ∧ equalhf ′(x1, x

′
1)) ∧ ...

It follows that J 6|= a(rew-iǫ(x1, y1)). In fact, equalhf ′(a(x1), a
′(x′1)) evaluates

to true by Lemma A.6. This means that it is not possible that we ∈ EJ
rew-i,

i.e., we have reached a contradiction. This proves the claim.

Part 3. (second half) – max-informative(max-compact(W<I,J>)) ⊆ EJ
rew-i

In order to prove the claim, we need to show that, for any witness block
w ∈ max-informative(max-compact(W<I,J>)), it is the case that w ∈ EJ

rew-i.
The proof is very similar to that of the second half of Part 2. We know from
Part 1 of the proof that there exists an expansion ǫ and invertible assignment a
such that J |= a(ǫ(x1, y1)) = w. We need to prove that J |= a(rew-iǫ(x1, y1)).

Again, this is done by way of contradiction. Assume J 6|= a(rew-iǫ(x1, y1));
there must be some expansion ǫ′ such that there is a proper homomorphism
hf

′
of χ(x1, y1) into χ

′(x′1, y
′
1), for some assignment a′, J |= rew-cǫ′(a

′(x′1, y
′
1),

and a, a′ are such that equalhf ′(a(x1), a
′(x′1)) evaluates to true.

Consider now w′ = a′(χ′(x′1, y
′
1)). Based on Lemma A.4, we know there

must be an homomorphism h′ : w → w′. We want to show that h′ is proper.
In order to do this, we first show that a′ is invertible.

But any assignment such that J |= rew-cǫ′(a
′(x′1, y

′
1)) must be invert-

ible. Suppose, in fact, that a′ is not invertible. This means that there ex-
ist two different atoms Ri(. . .), Rj(. . .) in χ

′l(x′1, y
′
1) that generate the same

fact. Consider now the formula χ
′′l(x′′1 , y

′′
1) obtained from χ

′l(x′1, y
′
1) by re-

moving atom Rj(. . .). Call a′′ the restriction of a′ to x′′1 , y
′′
2 . Notice that

a′(χ
′l(x′1, y

′
1)) = a′′(χ

′′l(x′′1 , y
′′
1)) = w′.

Based on Lemma A.4, we know that, since there is a surjective homomor-
phism (the identity), from a′(χ

′l(x′1, y
′
1)) to a′′(χ

′′l(x′′1 , y
′′
1)), there must be a

surjective formula homomorphism hf
′′
of a′(χ

′l(x′1, y
′
1)) into a′′(χ

′′l(x′′1 , y
′′
1)).

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 124 — #136
i

i

i

i

i

i

124 PROOFS OF THE THEOREMS

Therefore, we have that:

ǫ′′ = χ
′′l(x′′1 , y

′′
1) ∧ ∃x2, y2 : (ψl(x2, y2)

∧

equalhf
ǫ′′
(x′′1 , x2))

is a valid expansion of m. In fact, since ǫ′ is an expansion, we know there
exists a surjection hf e′ : ψ

l(x2, y2) → χl′(x′1, y
′
1), and therefore there exists a

surjection hf e′′ : ψ
l(x2, y2) → χ

′′l(x′′1 , y
′′
1), obtained by the composition of the

two surjective formula homomorphisms hf e′ and h
f ′′.

Consider now the two expansions ǫ′, ǫ′′. We know there exists a surjection
hf

′′
of χl′(x′1, y

′
1) into χ

′′l(x′′1 , y
′′
1). But notice that hf

′′
is also compacting,

since |χ
′′l(x′′1 , y

′′
1)| < |χl′(x′1, y

′
1)|. Therefore, rew-c′ǫ has the following form:

rew-c′ǫ = ǫ′ ∧ ¬∃x′′1 , y
′′
1 : (ǫ′′ ∧ equalhf ′′(x′1, x

′′
1)) ∧ ...

But then, by Lemma A.6, it is not possible that J |= rew-cǫ′(a
′(x′1, y

′
1)), which

contradicts our hypothesis. Therefore, a′ must be invertible.
Since a′ is invertible, by Lemma A.4, we know that h is proper, and therefore

w < w′. But this is not possible, since w is maximal with respect to <.
This proves the claim and concludes the proof. ⋄

Proof of Theorem 3.5.4 Given a M = (S,T,Σst). Given an isomorphism-

invariant skolemization strategy, skol, ΣFO,core
M,skol is a core schema mapping for

M.

Proof: Recall that ΣFO,core
M,skol = rew-ei(normalize(ΣFO,exp

M,skol)). In order to
prove the claim, we need to show that, given a source instance I , the result of
the chase of ΣFO,core

M,skol over I is the core universal solution for M over I , J0,
i.e.:

Jchase = ΣFO
M,skol(I)

∼= J0
In order to prove the claim, we shall make use of the strong connection between
the two possible strategies suggested in the paper to generate the core: the two-
step one, and the single-step one that uses source rewritings. More specifically,
recall that, as an alternative to chasing ΣFO,core

M,skol, we might generate the core
following a two step process. Based on Theorem 3.4.1, we could first gener-
ate an isomorphism-free solution, J , by standard chasing Σst on I , and then
could chase the following set of full rules, ΣFO,full

M , one for each expansion
ǫ ∈ expan(M):

ΣFO,full
M = {rfullǫ . ∀x1, y1 : rew-iǫ(x1, y1) → χ(x1, y1) | ǫ ∈ expan(M)}

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 125 — #137
i

i

i

i

i

i

125

Notice how this double-exchange approach uses a composition of s-t tgds plus
full FO-rules. Our strategy in the proof is to show that chasing the skolemized
FO-rules in ΣFO,core

M,skol generates the same result using a single exchange. How-
ever, there is a significant difference in structure among these two sets of rules:
the rules in ΣFO,core

M,skol are the product of a normalization step and of a further
rewriting step, according to rew-ei.

We shall therefore apply the same transformations also to ΣFO,full
M ; in doing

this, despite the fact that these rules only contain universally quantified vari-
ables, in each rule we shall treat the variables in y1 as existentially quantified.
This will generate the following set of full FO-rules:

ΣFO,norm
M = {rew-eir(x1, y1) | r ∈ normalize(expan(ΣFO,full

M)}

As a first intermediate result, we now want to prove that this normalization
and this final rewriting do not have impact on the generation of the core.

Lemma A.7 Given an isomorphism-free solution J , the result of chasing the
two sets of rules ΣFO,full

M and ΣFO,norm
M over J is the same.

Proof: Let’s call J0 the result of chasing ΣFO,full
M , and J∗ the result of chasing

ΣFO,norm
M over J .

Being ΣFO,full
M a set of full dependencies, the normalization procedure gen-

erates a set of logically equivalent new dependencies. Since rew-ei only adds
negated atoms to the premises of these equivalent dependencies, we know that
J∗ ⊆ J0. We now want to prove that it is also the case that J0 ⊆ J∗.

Consider a witness block w in J0. Assume w is generated by a rule of the
form rfullǫ . ∀x1, y1 : rew-iǫ(x1, y1) → χ(x1, y1) and assignment a.

Consider a(rew-iǫ(x1, y1)). If χl(x1, y1) is normalized, w also belongs to
J∗. Assume χl(x1, y1) is not normalized. Then, let’s consider each of its con-
nected components. Each component ϕi(xi, yi) generates a rule of the form

rfullǫ,i .rew-iǫ(x1, y1) → ϕi(xi, yi). We want to prove that all sets of facts corre-
sponding to instances of the connected components,

⋃

i{a(ϕi(xi, yi))} belongs
to J∗. There are two possible cases:

(a) J |= a(rew-eirfull

ǫ,i

(x1, y1)), and therefore a(ϕi(xi, yi)) belongs to J∗ as

well;
(b) J 6|= a(rew-eirfull

ǫ,i

(x1, y1)); this means that there must be a differ-

ent rule rfullǫ,j with a conclusion ϕ′(x′, y′) such that there is a proper formula

homomorphism hf of ϕ(xi, yi) into ϕ′(x′, y′), and some assignment a′ such

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 126 — #138
i

i

i

i

i

i

126 PROOFS OF THE THEOREMS

J |= a′(rew-iǫ,j(x1, y1)) and that equalhf (a(xi), a
′(x′)) evaluates to true. Sup-

pose, without loss of generality, that rfullǫ,j is maximal with respect to proper
homomorphisms, i.e., its conclusion does not have homomorphisms into other
rule conclusions. Notice that, since J |= a′(rew-iǫ,j(x1, y1)), it must be the

case that a′(ϕ′(x′, y′)) also belongs to J0; moreover, since we assume that rfullǫ,j

is maximal, it also belongs to J∗.

In this case, by Lemma A.4, we know there exists an homomorphism h
of a(ϕ(xi, yi)) into a′(ϕ′(x′, y′)), and that both belong to J0. Let’s consider
the image of a(ϕ(xi, yi)) according to h: h(a(ϕ(xi, yi))). It is possible to see
that a(ϕ(xi, yi)) = h(a(ϕ(xi, yi))), i.e., h must be the identity mapping. In
fact, assume a(ϕ(xi, yi)) 6= h(a(ϕ(xi, yi))). In this case, consider the original
witness block w ∈ J , of which a(ϕ(xi, yi)) is a connected component. By
taking the other connected components, and adding to them h(a′(ϕ′(x′, y′)))
it would be possible to construct a new witness block w′ that also belongs to
J0, such that w 6⊆ w′, i.e., w is not an induced witness block of w′, and there
exists an homomorphism of w into w′. Notice that this homomorphism is either
proper, or compacting, or an isomorphism. But this obviously contradicts the
hypothesis, since by definition of J0 w is not an induced block, it cannot have
isomorphic witness blocks, and is maximal with respect to ≺ and <. Since h
is the identity mapping, then a(ϕi(xi, yi)) belongs to J∗.

This proves that J∗ contains all connected components of w, and therefore
w itself. ⋄

We are now ready to correlate the results of the two sets of rules, ΣFO,core
M,skol,

and ΣFO,norm
M . Based on the semantics of FO-rules, for each expansion ǫ we

concentrate on the two queries Qrew-eirew-siǫ
(I) and Qrew-eirew-iǫ

(I). We
now want to prove the following Lemma.

Lemma A.8 Consider an expansion ǫ ∈ expan(M), a source instance I and
a canonical universal solution J ∈ USolM(I). There is a block of facts of the
form

rew-eirew-iǫ(a(x1), b(y1)) ∈ Qrew-eirew-iǫ
(J)

if and only if there is a block of facts

rew-eirew-siǫ(a(x1)) ∈ Qrew-eirew-siǫ
(I)

Proof: Consider expansion ǫ. It is possible to see that, by construction, a block
of facts of the form ǫ(a(x1), b(y1)) may exist in J if and only if a block of facts

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 127 — #139
i

i

i

i

i

i

127

of the form rew-sǫ(a(x1)) exists in I . In fact, recall that

ǫ = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf
ǫ
(x1, x2))

rew-sǫ = premχl(x1,y1)
∧ ∃x2 : (φ(x2)

∧

equalhf
ǫ
(x1, x2))

Let’s consider the three parts of each formula. Recall that any assignment c
such that J |= χl(c(x1), c(y1)) must be a canonical assignment.
For χl(a(x1), b(y1)) to be contained in J , each fact Rl(a(xi), b(yi)) in it must
be contained in J . But, by definition of canonical universal solution, this may
happen only if each premise of the corresponding tgds is satisfied by a, i.e., if
premχl(x1,y1)

(a(x1)) is contained in I .
Consider now the existentially quantified subformula. There, obviously

there exists some assignments a2, b2 such that J |= ψl(a2(x2), b2(y2)) if and
only if I |= φ(a2(x2)). Note also that the two sets of equalities are ex-
actly the same. Therefore we may conclude that a block of facts of the
form ǫ(a(x1), b(y1)) may exist in J if and only if a block of facts of the form
rew-sǫ(a(x1)) exists in I .

A very similar argument holds for rew-cǫ and rew-scǫ, and for rew-iǫ and
rew-siǫ. Since the two sets of rules are normalized in the same way, the claim
also holds for the final rewritings, i.e., rew-ei(rew-iǫ) and rew-ei(rew-siǫ). ⋄

Based on Lemma A.8, we have established a very close connection between
expansions and their source rewriting. More specifically, given an isomorphism-
free solution J , consider the two sets:

Jchase = ΣFO,core
M,skol(I) J0 = ΣFO,norm

M (J)

We can show that the two instances are equal up to isomorphisms. In fact, we
know that for each rule r ∈ ΣFO,core

M,skol:

r : rew-eirew-siǫ(x1) → ϕskol(x)

there is a corresponding rule rn ∈ ΣFO,norm
M :

rnrew-eirew-iǫ(x1, y1) → ϕ(x, y)

According to Lemma A.8, the premise of r is satisfied by I for an assignment
a if and only if the premise of rn is also satisfied by J for assignment a on
x1. Let us consider the facts generated by firing the two rules. We know that
ϕ(a(x), b(y)) is fact block in J0, while ϕskol(a(x)) is a block of facts generated
by properly assigning values to Skolem terms. However, the two blocks must
be isomorphic. In fact, we know that ϕ(a(x), b(y)) is a canonical block, and
therefore it has been generated by the standard skolemization strategy over

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 128 — #140
i

i

i

i

i

i

128 PROOFS OF THE THEOREMS

ϕ(a(x), b(y)). But, by hypothesis, the chosen skolemization strategy, skol, is
isomorphism-invariant, and therefore it produces blocks of facts isomorphic to
those produced by the standard skolemization strategy.

Moreover, we know that, since J is isomorphism-free, J0 contains exactly
one isomorphic copy of each witness block. But this is true also for Jchase, since
skol is isomorphism-invariant, and therefore by definition isomorphic instances
of rule conclusions collapse into a single representative.

Since we have proven that Jchase ∼= J0, this concludes the proof. ⋄

Proof of Theorem 3.6.1 Given a M = (S,T,Σst) such that Σst does not
contain self-joins in tgd conclusions. Given a source instance I , call J a canon-
ical universal solution for M over I , and J0 the core universal solution for M
over I . Then:

1. for any fact block bf in J , either all tuples in bf belongs also to J0, or
none of them does.

2. for each tgd m ∈ Σst whose conclusion has size k, all witness blocks in
W<I,J>

m have size exactly k.

Proof: Let us first prove item 1 of the claim. Assume there is a fact block
bf ⊆ J such that bf 6⊆ J0 but at least one tuple in bf belongs to J0. Let us first
note that, since bf must contain more than one tuple, it therefore contains at
least one null value. Call bf0 the proper subset of bf that belongs to J0. Call
N any null value in bf − bf0, and Ri(tN), Rj(tN0) two tuples that contain N ,
such that Rj(tN0) ∈ bf0, Ri(tN) ∈ bf − bf0. Notice that, since M does not
contain self-joins in tgd conclusions, it must be the case that Ri 6= Rj .

Since J0 is the core of J , there must be an endomorphism h : J → J0.
Consider the image of bf according to h, h(bf). It is possible to see that
Ri(tN) 6∈ h(bf). In fact, since Ri(tN) ∈ bf but Ri(tN) 6∈ bf0, it must be the
case that h(Ri(tN)) 6= Ri(tN). This, in turn, means that h(N) 6= N . In fact,
Ri(tN) cannot be mapped to any other tuple Rj(tN0) ∈ bf0 that contains N ,
since we know that Ri 6= Rj . Therefore, Ri(tN) must be mapped to a tuple
that not contains N , and h(N) 6= N .

Consider now a tuple Rj(tN0) ∈ bf0. Since h(N) 6= N , it must be the
case that h(Rj(tN0) 6= Rj(tN0). But this means that J0 contains two different
tuples, Rj(tN0) and h(Rj(tN0)), and therefore it has an endomorphism into its

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 129 — #141
i

i

i

i

i

i

129

proper subset J0 − {Rj(tN0)}. As a consequence, J0 is not the core universal
solution. This contradicts the assumption and proves the claim.

Let us now prove item 2. Assume there is a tgd m with conclusion ψ(x, y)
of size k such that there exists a witness block w ∈ W<I,J>

m of size k′ 6= k. By
definition of witness block, we know that it must be that k′ ≤ k. Therefore, it
must be the case that k′ < k. But this is clearly impossible, since any witness
block for m must be an instance of ψ(x, y) according to some assignment c.
Since ψ(x, y) does not contain self-joins, for any assignment c, c(ψ(x, y)) is a
collection of facts each belonging to a different relation and therefore has size
exactly k, which contradicts the assumption.

This concludes the proof. ⋄

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 130 — #142
i

i

i

i

i

i

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 131 — #143
i

i

i

i

i

i

Bibliography

[1] Altova MapForce. http://www.altova.com/MapForce.

[2] Microsoft BizTalk Server 2006 R2. http://www.microsoft.com/biztalk.

[3] Stylus Studio 2008, XML Enterprise Suite. http://www.stylusstudio.com.

[4] The Ontology Alignment Evaluation Initiative – 2007.
http://oaei.ontologymatching.org/2007/.

[5] Data Engineering Bullettin. Special Issue on Data Transformations, 1999.

[6] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[7] A. Adya, J.A. Blakeley, S. Melnik, S. Muralidhar, and the ADO.NET
Team. Anatomy of the ADO.NET entity framework. In Proc. of ACM
SIGMOD, pages 877–888, 2007.

[8] B. Alexe, W. Tan, and Y. Velegrakis. Comparing and Evaluating Mapping
Systems with STBenchmark. Proc. of the VLDB Endowment, 1(2):1468–
1471, 2008.

[9] Y. An, A. Borgida, R.J. Miller, and J. Mylopoulos. A Semantic Approach
to Discovering Schema Mapping Expressions. In Proc. of ICDE, pages
206–215, 2007.

[10] V. V. Anshelevich. A Hierarchical Approach to Computer Hex. Artif.
Intell., 134(1–2):101–120, 2002.

[11] M. Arenas and L. Libkin. XML Data Exchange: Consistency and Query
Answering. J. of the ACM, 55(2):1–72, 2008.

131

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 132 — #144
i

i

i

i

i

i

132 BIBLIOGRAPHY

[12] P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini. Inclusion and equiva-
lence between relational database schemata. Theor. Comput. Sci., 19:267–
285, 1982.

[13] P. Atzeni, P. Cappellari, and P.A. Bernstein. Model-Independent Schema
and Data Translations. In Proc. of EDBT, 2006.

[14] P. Atzeni and R. Torlone. Management of multiple models in an extensible
database design tool. In Proc. of EDBT, pages 79–95, London, UK, 1996.
Springer-Verlag.

[15] D. Aumueller, H. Do, Massmann S., and E. Rahm. Schema and Ontology
Matching with COMA++. In Proc. of ACM SIGMOD, pages 906–908,
2005.

[16] C. Beeri and M.Y. Vardi. A Proof Procedure for Data Dependencies. J.
of the ACM, 31(4):718–741, 1984.

[17] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A Vision for Manage-
ment of Complex Models. ACM SIGMOD Record, 29(4):55–63, 2000.

[18] P. A. Bernstein and S. Melnik. Model Management 2.0: Manipulating
Richer Mappings. In Proc. of ACM SIGMOD, pages 1–12, 2007.

[19] P.A. Bernstein. Applying Model Management to Classical Metadata Prob-
lems. In Proc. of CIDR, 2003.

[20] P.A. Bernstein, S. Melnik, and P. Mork. Interactive schema translation
with instance-level mappings. In Proc. of VLDB, pages 1283–1286. VLDB
Endowment, 2005.

[21] A. Bilke and F. Naumann. Schema Matching using Duplicates. In Proc.
of ICDE, pages 69–80, 2005.

[22] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster. Putting Context into
Schema Matching. In Proc. of VLDB, pages 307–318. VLDB Endowment,
2006.

[23] A. Bonifati, E. Q. Chang, T. Ho, L. Lakshmanan, and R. Pottinger. HeP-
ToX: Marrying XML and Heterogeneity in Your P2P Databases. In Proc.
of VLDB, pages 1267–1270, 2005.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 133 — #145
i

i

i

i

i

i

BIBLIOGRAPHY 133

[24] A. Bonifati, G. Mecca, A. Pappalardo, S Raunich, and G. Summa. Schema
Mapping Verification: The Spicy Way. In Proc. of EDBT, pages 85 – 96,
2008.

[25] S. Bowers and L. Delcambre. The uni-level description: A uniform frame-
work for representing information in multiple data models. In Proc. of the
22 nd International Conference on Conceptual Modeling (ER 2003, pages
45–58. Springer-Verlag, 2003.

[26] L. Bravo, W. Fan, and S. Ma. Extending Dependencies with Conditions.
In Proc. of VLDB, pages 243–254, 2007.

[27] L. Cabibbo. On Keys, Foreign Keys and Nullable Attributes in Relational
Mapping Systems. In Proc. of EDBT, pages 263–274, 2009.

[28] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical Foun-
dations fo Peer-to-Peer Data Integration. In Proc. of ACM PODS, pages
241–251, 2004.

[29] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in Databases: Why,
How, and Where. Foundations and Trends in Databases, 1(4):379–474,
2009.

[30] L. Chiticariu. Computing the Core in Data Exchange: Algorithmic Issues.
MS Project Report, 2005. Unpublished manuscript.

[31] L. Chiticariu and W. C. Tan. Debugging Schema Mappings with Routes.
In Proc. of VLDB, pages 79–90, 2006.

[32] P. R. Clayton. Fundamentals of Electric Circuit Analysis. John Wiley &
Sons, 2001.

[33] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your Mediators Need
Data Conversion! In Proc. of ACM SIGMOD, pages 177–188, 1998.

[34] E. F. Codd. A Relational Model of Data for Large Shared Data Banks,
volume 13. ACM, New York, NY, USA, 1970.

[35] S. Davidson and A. Kosky. WOL: A Language for Database Transforma-
tions and Constraints. In Proc. of ICDE, pages 55–65, 1997.

[36] A. Deutsch, A. Nash, and J. Remmel. The chase revisited. In Proc. of
ACM PODS, pages 149–158, New York, NY, USA, 2008. ACM.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 134 — #146
i

i

i

i

i

i

134 BIBLIOGRAPHY

[37] R. Dhamankar, Y. Lee, A. H. Doan, A. Halevy, and P. Domingos. iMAP:
Discovering Complex Semantic Matches between Database Schemas. In
Proc. of ACM SIGMOD, pages 383–394, 2004.

[38] H. H. Do, S. Melnik, and E. Rahm. Comparison of Schema Matching
Evaluations. In Proc. of the 2nd GI Workshop on Web Databases, pages
221–237, 2002.

[39] H. H. Do and E. Rahm. COMA - A System for Flexible Combination of
Schema Matching Approaches. In Proc. of VLDB, pages 610–621, 2002.

[40] A. H. Doan, P. Domingos, and A. Halevy. Reconciling Schemas of Dis-
parate Data Sources: A Machine-Learning Approach. In Proc. of ACM
SIGMOD, pages 509–520, 2001.

[41] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. In
Proc. of the Mathematical Associations of America, 1984.

[42] R. Fagin, P.G. Kolaitis, R.J. Miller, and L. Popa. Data exchange: Seman-
tics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[43] R. Fagin, P.G. Kolaitis, and L. Popa. Data Exchange: Getting to the
Core. ACM TODS, 30(1):174–210, 2005.

[44] C. Faloutsos. Indexing multimedia databases. In Proc. of ACM SIGMOD,
page 467, New York, NY, USA, 1995. ACM Press.

[45] M. Friedman, A. Levy, and T. Millstein. Navigational plans for data in-
tegration. In AAAI ’99/IAAI ’99: Proceedings of the sixteenth national
conference on Artificial intelligence and the eleventh Innovative applica-
tions of artificial intelligence conference innovative applications of arti-
ficial intelligence, pages 67–73, Menlo Park, CA, USA, 1999. American
Association for Artificial Intelligence.

[46] A. Fuxman, M. A. Hernández, C. T. Howard, R. J. Miller, P. Papotti,
and L. Popa. Nested Mappings: Schema Mapping Reloaded. In Proc. of
VLDB, pages 67–78, 2006.

[47] A. Fuxman, P.G. Kolaitis, R.J. Miller, and W. Tan. Peer data exchange.
In Proc. of ACM PODS, pages 160–171, New York, NY, USA, 2005. ACM.

[48] A. Gal. Managing Uncertainty in Schema Matching with Top-K Schema
Mappings. J. of Data Semantics, VI:90–114, 2006.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 135 — #147
i

i

i

i

i

i

BIBLIOGRAPHY 135

[49] A. Gal. Why is Schema Matching Tough and What We Can Do About It.
Sigmod Record, 35(4):2–5, 2006.

[50] A. Gal. The Generation Y of XML Schema Matching (Panel Description).
In Proceedings of XML Database Symposium, pages 137–139, 2007.

[51] G. Gottlob and A. Nash. Efficient Core Computation in Data Exchange.
J. of the ACM, 55(2):1–49, 2008.

[52] A. Y. Halevy. Answering Queries Using Views: A Survey. VLDB J.,
10(4):270–294, 2001.

[53] P. Hell and J. Nešetřil. The Core of a Graph. Discrete Mathematics,
109(1-3):117–126, 1992.

[54] R. Hull and R. King. Semantic database modeling: survey, applications,
and research issues. ACM Comp. Surv., 19(3):201–260, 1987.

[55] J. Kang and J. F. Naughton. On Schema Matching with Opaque Column
Names and Data Values. In Proc. of ACM SIGMOD, pages 205–216, 2003.

[56] M. Lenzerini. Data integration: a Theoretical Perspective. In Proc. of
ACM PODS, pages 233–246, 2002.

[57] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering
queries using views. In PODS, pages 95–104, 1995.

[58] W. S. Li and C. Clifton. SEMINT: A Tool for Identifying Attribute Cor-
respondences in Heterogeneous Databases using Neural Networks. Data
and Know. Eng., 33(1):49–84, 2000.

[59] G. Mecca, P. Papotti, and S. Raunich. Core Schema Mappings. In Proc.
of ACM SIGMOD, pages 655–668, 2009.

[60] S. Melnik, A. Adya, and P.A. Bernstein. Compiling mappings to bridge
applications and databases. In Proc. of ACM SIGMOD, pages 461–472,
2007.

[61] S. Melnik, P.A. Bernstein, A. Halevy, and E. Rahm. Supporting executable
mappings in model management. In Proc. of ACM SIGMOD, pages 167–
178, 2005.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 136 — #148
i

i

i

i

i

i

136 BIBLIOGRAPHY

[62] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versa-
tile Graph Matching Algorithm and Its Application to Schema Matching.
In Proc. of ICDE, pages 117–128, 2002.

[63] R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema Mapping as Query
Discovery. In Proc. of VLDB, pages 77–99, 2000.

[64] R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan. The use of information
capacity in schema integration and translation. In Proc. of VLDB, pages
120–133, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers
Inc.

[65] R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan. Schema equivalence in
heterogeneous systems: bridging theory and practice. Inf. Syst., 19(1):3–
31, 1994.

[66] T. Milo and S. Zohar. Using Schema Matching to Simplify Heterogeneous
Data Translation. In Proc. of VLDB, pages 122–133, 1998.

[67] F. Naumann, C.-T. Ho, X. Tian, L. M. Haas, and N. Megiddo. Attribute
Classification Using Feature Analysis. In Proc. of ICDE, page 271, 2002.

[68] C. R. Palmer and C. Faloutsos. Electricity-Based External Similarity of
Categorical Attributes. In Proc. of PAKDD, pages 486–500, 2003.

[69] R. Pierce. An Introduction to Information Theory. Dover Publications,
1980.

[70] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin.
Translating Web Data. In Proc. of VLDB, pages 598–609, 2002.

[71] R. Pottinger and A. Halevy. MiniCon: A Scalable Algorithm for Answering
Queries using Views. VLDB J., 10:182–198, 2001.

[72] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A. Hernández. Clip: a
Visual Language for Explicit Schema Mappings. In Proc. of ICDE, pages
30–39, 2008.

[73] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. VLDB J., 10:334–350, 2001.

[74] V. Savenkov and R. Pichler. Towards practical feasibility of core compu-
tation in data exchange. In Proc. of LPAR, pages 62–78, 2008.

i

i

“phdThesis-finalVersion” — 2010/2/23 — 0:03 — page 137 — #149
i

i

i

i

i

i

BIBLIOGRAPHY 137

[75] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y. Lum.
Express: a data extraction, processing, and restructuring system. ACM
Trans. Database Syst., 2(2):134–174, 1977.

[76] P. Shvaiko and J. Euzenat. A Survey of Schema Based Matching Ap-
proaches. J. of Data Semantics, IV - LNCS 3730:146–171, 2005.

[77] W. Su, J. Wang, and F. Lochovsky. Holistic Schema Matching for Web
Query Interfaces. In Proc. of EDBT, pages 77–94, 2006.

[78] B. ten Cate, L. Chiticariu, P. Kolaitis, and W. C. Tan. Laconic Schema
Mappings: Computing Core Universal Solutions by Means of SQL Queries.
Proc. of the VLDB Endowment, 2(1):1006–1017, 2009.

[79] D.C. Tsichritzis and F.H. Lochovsky. Data Models. Prentice Hall Profes-
sional Technical Reference, 1982.

[80] J.D. Ullman. Information integration using logical views. Theor. Comput.
Sci., 239(2):189–210, 2000.

[81] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data Driven Under-
standing and Refinement of Schema Mappings. In Proc. of ACM SIGMOD,
pages 485–496, 2001.

