
i

i

“main” — 2010/2/23 — 1:37 — page i — #1
i

i

i

i

i

i

UNIVERSITÀ DEGLI STUDI

ROMA

TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Understanding and Detecting
BGP Instabilities

Luca Cittadini

i

i

“main” — 2010/2/23 — 1:37 — page ii — #2
i

i

i

i

i

i

i

i

“main” — 2010/2/23 — 1:37 — page iii — #3
i

i

i

i

i

i

Understanding and Detecting BGP Instabilities

A thesis presented by
Luca Cittadini

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Dept. of Informatics and Automation

March 2010

i

i

“main” — 2010/2/23 — 1:37 — page iv — #4
i

i

i

i

i

i

Committee:

Prof. Giuseppe Di Battista

Reviewers:

Prof. Lixin Gao
Prof. Olivier Bonaventure

i

i

“main” — 2010/2/23 — 1:37 — page v — #5
i

i

i

i

i

i

Acknowledgments

The first person I want to thank for literally dragging me this far is my
advisor Giuseppe Di Battista, to whom I owe probably everything I know about
computer networks. Besides being a great teacher and a helpful advisor, his
key contribution throughout my PhD training was enthusiasm for reasearch.

All the people at the Computer Networks Research Lab of Roma Tre Uni-
versity gave a crucial contribution to my PhD in some way. Fabrizio Frati and
Patrizio Angelini were so friendly to me that they even managed to have me
do some work in the research area of Graph Drawing. Tiziana Refice helped
me get started, both from an academic and from a professional point of view.
Bernardo Palazzi and Pier Francesco Cortese helped bringing fun in the lab and
making it an ideal workplace. Massimo Rimondini, known for his tremendous
typing speed and his unsurpassed technical skills, was a continuous spur to im-
prove myself. I owe to Maurizio Pizzonia and Maurizio “Titto” Patrignani a lot
of stimulating discussions, ranging from pure graph theory to applied computer
networks. I especially want to thank Stefano Vissicchio for his perseverance: I
owe him the intuition that gave us new fuel.

I want to thank the whole Intelligent Networks research group at Technische
Universität Berlin, and especially Anja Feldmann, for hosting me during my
visit and for making it so pleasant. I also need to thank all my other coauthors,
which made working together a pleasant and stimulating activity: Randy Bush,
Olaf Maennel, Wolfgang Mühlbauer, Steve Uhlig, and Jan Zorz.

A special thank goes to my mum and sister, who supported me when I was
overworked by deadlines. This list is surely missing a lot of people, but it is
impossible to thank everyone properly in this limited space. One final thank
goes to all the people that develop open source software. I used that software
extensively throughout my PhD, and it never betrayed my trust. Thank you
guys, you are the living proof that passion can be an alternative and even a
better reason for life than money.

v

i

i

“main” — 2010/2/23 — 1:37 — page vi — #6
i

i

i

i

i

i

Contents

Contents vi

Preamble 1

I Background 3

1 Internet Routing and BGP 5
1.1 Internet Architecture . 5
1.2 BGP: a Protocol for Interdomain Routing 6

II Formal Analysis of BGP Stability 11

2 Modeling BGP Policies and Dynamics 13
2.1 Introduction . 13
2.2 Modeling BGP Policies . 14
2.3 Modeling BGP Dynamics . 15
2.4 A Taxonomy of Related Work 18
2.5 Choosing a model . 20

3 Theoretical Literature on BGP Stability 25
3.1 Introduction . 25
3.2 Stable States and Guaranteed Convergence 26
3.3 Link Costs and Commercial Relationships 32
3.4 Guaranteed Convergence under Faulty Conditions 36
3.5 Compact Routing Policies and Convergence 41
3.6 Solving or Detecting Routing Oscillations 48

vi

i

i

“main” — 2010/2/23 — 1:37 — page vii — #7
i

i

i

i

i

i

Contents vii

4 Characterization of eBGP Safety Under Filtering 53

4.1 Introduction and Related Work 53

4.2 Wheel + Ring = Reel . 55

4.3 Safety Under Filtering implies no DR 59

4.4 No DR implies Safety Under Filtering 68

4.5 Safety Under Filtering and Robustness 70

4.6 Conclusions . 73

5 The Impact of Changing iBGP Attributes on Routing Sta-
bility 75

5.1 Introduction and Related Work 75

5.2 Background . 76

5.3 Why or Why Not? . 78

5.4 Changing iBGP Attributes in the Internet 81

5.5 More Flexibility implies More Instability 83

5.6 Profitable iBGP Attribute Modification 85

5.7 Conclusions . 90

III Detecting BGP Instabilities 91

6 Finding Potential Instabilities by Static Analysis 93

6.1 Introduction and Related Work 93

6.2 A Greedy Algorithm for SPVP Instances 95

6.3 From eBGP Networks to SPVP Instances 104

6.4 From iBGP Networks to SPVP Instances 109

6.5 Conclusions . 111

7 Collecting BGP Data to Support What-If Analysis 113

7.1 Introduction . 113

7.2 Requirements for a BGP Monitor 115

7.3 Related Work . 116

7.4 Proposed Architecture . 117

7.5 Evaluation . 123

7.6 Comparison with Related Work 130

7.7 Conclusions . 132

i

i

“main” — 2010/2/23 — 1:37 — page viii — #8
i

i

i

i

i

i

viii Contents

Conclusions and Bibliography 133

Conclusions and Open Problems 135

Other Research Activities 139

Publications 141

Bibliography 145

i

i

“main” — 2010/2/23 — 1:37 — page 1 — #9
i

i

i

i

i

i

Preamble

Communication networks have reached amazing size and complexity nowadays.
The Internet, which was born as an experimental network connecting a hand-
ful of volunteer research institutes, has grown to become a huge distributed
system interconnecting almost 700 millions of hosts at present [ISC09]. As
soon as it was clear that computer networks would have driven the information
revolution, the Internet drew a lot of interest both from academia and from
industry. Moreover, the demand for features that were not envisaged when
the Internet was designed grew alongside with the size and complexity of the
Internet itself. Routing, that is, finding a path in a network that interconnects
a given source to a given destination, also needed to evolve accordingly: as
soon as the Internet got into its commercial era, there was a strong demand
for routing protocols that supported policies.

Among the wide variety of routing protocols that can be found today in
the Internet, the Border Gateway Protocol (BGP) is responsible for connect-
ing large administrative domains (called Autonomous Systems, or ASes), each
administering its own network. BGP configuration languages allow network
administrators to define fine-grained policies to influence the selection and
the dissemination of routes over the network, and is therefore classified as
a policy-based interdomain routing protocol. BGP policies allow each AS to au-
tonomously configure its network in order, e.g., to minimize the cost of routing
traffic, or to optimize delay.

Ideally, BGP was designed to let each administrative domain choose the
best route (where “best” obviously has local significance) given the alterna-
tives proposed by neighboring ASes. Unfortunately, as it is often the case in
other branches of computer science, many agents that independently pursue a
local optimum do not always converge into a global optimum. In particular,
it has been shown that there exist sets of BGP policies that cannot be satis-
fied at the same time, and trap the protocol in infinite oscillations in which

1

i

i

“main” — 2010/2/23 — 1:37 — page 2 — #10
i

i

i

i

i

i

2 Contents

a stable routing choice is never reached. This fact spurred lots of research ef-
forts towards techniques to characterize, discover, mitigate and eliminate BGP
instabilities.

This thesis presents novel research contributions as well as related work
regarding the characterization and the detection of BGP instabilities under a
common framework. We cover both the necessary theoretical background, as
well as practical techniques and methodologies to analyze real BGP networks.
After having introduced BGP basic notions in Part I, we focus on BGP formal
analysis in Part II. First, we tackle the problem of finding a suitable model for
studying BGP oscillations. Chapter 2 shows that this is indeed a nontrivial
task, as many of the simplifying assumptions that have often been made to
ease the analysis provably make the model unable to capture certain kinds
of routing instabilities. Besides allowing us to pick the model that is best fit
to study oscillations, the insight provided by our study also makes us able to
review related work in Chapter 3 with a deeper understanding of the interplay
among many different models for BGP.

This thesis makes three main contributions. First, we show in Chapter 4 a
sufficient and necessary condition for BGP safety under filtering, that is, the
property of a BGP network to have guaranteed convergence under arbitrary
filtering of BGP routes. To the best of our knowledge, this is the first complete
characterization of safety under filtering. We exploit this finding to show a de-
bugging technique that is able to spot the potential trouble points of a network
by just analyzing two different routing states.

Second, we study the possibility of manipulating internal BGP (iBGP) at-
tributes. Chapter 5 shows that, while in general such a practice exacerbates
the BGP stability problem, adherence to simple guidelines ensures BGP sta-
bility while still providing some benefits in terms, e.g., of traffic engineering
capabilities.

Third, we devise and implement an algorithm which is able to tell whether
a given BGP network is stable. This algorithm is provably free from false
positives, and it is able to pinpoint the trouble points of a potentially unstable
network. We show in Chapter 6 that this algorithm, together with techniques to
perform some preprocessing on BGP networks, can be implemented efficiently
enough to deal with Internet scale BGP topologies as well as very large iBGP
networks. Finally, in Chapter 7 we propose a BGP monitoring system that
is able to collect BGP data in such a way to enable the analysis of what-if
scenarios by applying the same techniques devised in Chapter 6.

Conclusions are drawn in Part 7.7, where proposals for further research
efforts are also presented.

i

i

“main” — 2010/2/23 — 1:37 — page 3 — #11
i

i

i

i

i

i

Part I

Background

3

i

i

“main” — 2010/2/23 — 1:37 — page 4 — #12
i

i

i

i

i

i

i

i

“main” — 2010/2/23 — 1:37 — page 5 — #13
i

i

i

i

i

i

Chapter 1

Internet Routing and BGP

1.1 Internet Architecture

The huge Internet network has been created by the progressive and incremental
interconnection of a large number of smaller networks, each containing a very
large number of links, end systems, and intermediate systems. In order to man-
age the complexity caused by such a sheer size, the Internet is partitioned into
domains called Autonomous Systems (ASes), and each AS is under the control
of a single administrative entity. ASes join the Internet for a wide variety of
purposes. The vast majority of the ASes are merely interested in getting access
to the network, e.g., in order to access the content that is provided over the
Internet. These domains are called stub domains. A relatively small fraction of
the ASes, instead, makes business by providing access to the Internet, that is,
by ensuring that packets can traverse the network and reach their destination.
In a sense, such enterprises, called Internet Service Providers (ISPs), sell the
service of transiting packets across their own network infrastructure, and are
therefore called transit ASes: usually, when a stub AS connects to an ISP,
the stub AS purchases connectivity, e.g., by paying the ISP a fixed amount of
money for each bit of information that is sent across the network.

Even if some ISPs are very large and geographically distributed across the
world, in general a packet that travels over the Internet from a source to a des-
tination, e.g., to request a web page, transits across multiple ISP. Transit ASes
can interconnect their networks using a number of policies. In [Gao01], Gao
classified such policies in two major types: customer-provider relationships
and peer-to-peer relationships. In the customer-provider case, a customer

5

i

i

“main” — 2010/2/23 — 1:37 — page 6 — #14
i

i

i

i

i

i

6 CHAPTER 1. INTERNET ROUTING AND BGP

AS purchases transit service from a provider AS, as it happens when a stub AS
connects to a transit AS. In the peer-to-peer case, instead, the two ASes simply
exchange traffic free of charge. This kind of relationship is becoming increas-
ingly popular in the Internet, as more and more ASes realize that, when traffic
is approximately balanced between inbound and outbound flows, the costs in-
duced by an accurate billing system overcome the profits that could be made by
selling transit service. Also, the recent growth and pervasive presence of con-
tent providers in the Internet (e.g., YouTube, Google, Facebook, Wikipedia)
has made peer-to-peer connections more attractive because it helps keep the
latency low, in order to deliver a better experience to the end user.

The fact that some connections are customer-provider while some other are
peer-to-peer makes finding an optimal route from a source to a destination in
the Internet quite a challenging task, since each AS has its own point of view
about how an “optimal” route should look like. Since different constraints are
to be taken into account at each different AS, the process of finding a route
from a source to a destination in the Internet is divided into two hierarchical
sub-problems: routing within an AS (intradomain routing) and routing among
ASes (interdomain routing).

While intradomain routing must only deal with the network topology and
is usually solved by an Interior Gateway Protocol (IGP) that exploits a rela-
tively simple algorithm (e.g., shortest path algorithms), interdomain routing
needs a more complex protocol since it also has to deal with the policies that
each AS autonomously specifies. For example, an AS does not want to forward
traffic coming from a non-paying peer-to-peer link over a paid connection to
its provider. For this reason, the set of routes that are accessible from peer-
to-peer connections needs to be controlled via specific policies. The need to
support interdomain routing policies is what pushed the Border Gateway Pro-
tocol (BGP) [RLH06] to become the de facto standard interdomain routing
protocol since the early nineties.

1.2 BGP: a Protocol for Interdomain Routing

The first thing to understand about BGP is that not all the routers within
an AS need to be involved in the protocol: in fact, since BGP is designed for
interdomain routing, in principle only the routers that are connected to foreign
ASes (border routers) are required to speak BGP. A peering session between
two BGP speakers, called peers, is a TCP connection that is used to exchange
BGP messages.

i

i

“main” — 2010/2/23 — 1:37 — page 7 — #15
i

i

i

i

i

i

1.2. BGP: A PROTOCOL FOR INTERDOMAIN ROUTING 7

The task of BGP is essentially to disseminate information about the reach-
ability and the location of contiguous blocks of IP addresses known as prefixes.
The AS that owns a certain network announces the availability of the corre-
sponding prefix by sending a BGP message to the neighboring ASes. For this
reason, we call such AS the origin of the prefix. BGP then distributes the reach-
ability information while preserving the policy constraints defined at each AS
and embedded in the configuration of BGP speakers. BGP is a path-vector
protocol in the sense that each BGP speaker prepends its own AS number in
the BGP message before passing it to neighboring ASes. This way, each BGP
message carries the ordered list of traversed ASes (that is, the AS-path). The
presence of the AS-path makes loop detection extremely easy in BGP: each
BGP router simply discards the BGP message whenever the AS-path already
contains its own AS number. Traffic destined to a certain prefix is forwarded
to the origin AS by simply traveling along the AS-path in reverse order, that
is, traffic takes the same route as the BGP message itself, but in the opposite
direction.

BGP messages are distinguished into two types: announcements advertise
the reachability of a prefix, while withdrawals communicate that a prefix has be-
come unreachable. Each BGP message (both announcements and withdrawals)
contains a set of prefixes (at least one), and for each prefix a set of attributes
associated with it. An attribute can be classified along several dimensions:

• Well-known or optional. Well-known attributes are expected to be
supported by any implementation of BGP, while optional attributes may
be supported only by a specific subset of them. Since BGP speakers are
instructed to never tamper with an optional BGP attribute they do not
understand, optional attributes are guaranteed to be modified only by
BGP speakers that support them.

• Mandatory or discretionary. Mandatory attributes are required to be
present in every BGP message, while discretionary attributes are not.

• Transitive or non-transitive. Transitive attributes have a global scope
and must be included (possibly after manipulation) when propagating a
received BGP message to a BGP router in another AS. Non-transitive
attributes have only local significance, and must be dropped as soon as
the BGP messages needs to be sent to a BGP router in another AS.

RFC 4271 [RLH06] defines the following BGP attributes

i

i

“main” — 2010/2/23 — 1:37 — page 8 — #16
i

i

i

i

i

i

8 CHAPTER 1. INTERNET ROUTING AND BGP

• AS-path (well-known, mandatory, transitive): it is the sequence of ASes
along which the BGP message was forwarded. Because of the way BGP
operates, this is also the sequence of ASes traversed by traffic destined
to the prefix (remember that traffic flows in the opposite direction with
respect to BGP announcements).

• origin (well-known, mandatory, transitive): it signals whether the prefix
has been injected into BGP due to (i) a specific statement in the router
configuration, (ii) redistribution from an intradomain routing protocol,
or (iii) redistribution from the older EGP protocol. The third case is
almost never encountered in the Internet.

• next-hop (well known, mandatory, transitive): contains the IP address
of the router that should be used to forward traffic destined to the prefix.

• multi-exit-discriminator, also known as MED (optional, discretionary,
non-transitive): when present, it influences the choice among multiple
exit points belonging to the same AS.

• local-preference (well known, non-transitive): this attribute is manda-
tory for all BGP updates destined to peers in the same AS, while it is not
allowed in BGP updates destined to foreign ASes. The local-preference
attribute allows a BGP router to indicate the relative degree of preference
that is locally associated with the route contained in the BGP update.

• atomic aggregate (well-known, discretionary, transitive): when present,
it indicates that the route contained in the BGP update is the result of
aggregating multiple contiguous prefixes that share the same attributes.

• aggregator (optional, discretionary, transitive): when present, it indi-
cates the AS number and the IP address of the last BGP router that
aggregated the prefix.

• community (optional, discretionary, transitive): this attribute does not
have any defined semantics. It is just a way to associate a set of tags
(each tag consists of a pair of integer values) to a route. The common
way of using it is to group together sets of BGP announcements that
should be assigned a similar degree of preference, but many ISPs also
allow their customers to set specific community values to influence the
behavior of the provider, e.g., for traffic engineering purposes.

i

i

“main” — 2010/2/23 — 1:37 — page 9 — #17
i

i

i

i

i

i

1.2. BGP: A PROTOCOL FOR INTERDOMAIN ROUTING 9

Step Criterion
1 Discard routes having lower local-preference than the highest
2 Discard routes having longer AS-path length than the shortest
3 Discard routes having higher origin than the lowest
4 Among the routes received from the same AS neighbor, discard

those having higher MED than the lowest
5 Prefer routes learned via eBGP to those learned via iBGP
6 Prefer routes with lower IGP metric to the egress point
7 Prefer the route announced by the BGP router with the lowest

router-id (i.e., IP address)

Table 1.1: Steps in the BGP decision process.

Every BGP speaker collects routes from its peers and stores routing infor-
mation into a special table called Routing Information Base (RIB). The RIB
is managed as follows. Whenever a BGP message is received from a peer, the
route (that is, the prefix and all the associated attributes) is stored in a data
structure called Adj-RIB-In and is then processed according to a set of im-
port policies. Import policies might mandate deletion or attribute manipulation
when specific criteria are met. Loop detection, which is simply accomplished
by discarding any route carrying an AS-path attribute which already contains
the locally defined AS number, is also performed at this stage. For each prefix,
among all the entries in the Adj-RIB-In that have passed the import policy
application, a deterministic decision process is triggered in order to select the
best route, which will be the only one that is actually used to forward traffic
(i.e., it will be pushed to the router’s forwarding plane). Table 1.1 summarizes
the decision process of BGP.

The next-hop attribute of the best route is then used to update the Loc-
RIB data structure, which in turn is used to update the router’s forwarding
table. If, after the BGP decision process, the newly selected best route differs
from the one that was previously selected, then the BGP router applies export
policies to the best route. Similarly to import policies, export policies might
mandate deletion of the route or attribute manipulation. The router then stores
the modified routes in a data structure called Adj-RIB-Out, which collects the
BGP messages that are scheduled to be sent to the peers of the router. This
way, BGP supports export policies that are possibly different on a per-neighbor
basis. Figure 1.1 provides a visual description of the building blocks that make
up a BGP router.

i

i

“main” — 2010/2/23 — 1:37 — page 10 — #18
i

i

i

i

i

i

10 CHAPTER 1. INTERNET ROUTING AND BGP

Figure 1.1: Information flow among the building blocks of a generic BGP
router.

The behavior of a BGP router varies significantly depending on whether it
is exchanging routing information with peers belonging to a different AS or it
is talking to other BGP speakers in the same AS. These two “flavors” of BGP
are denoted as external BGP (eBGP) and internal BGP (iBGP) respectively.
The most interesting difference is the presence of the local-preference at-
tribute, which is included in iBGP messages while it is never present for eBGP
messages. Since import policies usually manipulate the local-preference

attribute in order to influence the decision process, this makes it easier to
disseminate routing information in iBGP together with degrees of preference,
enabling consistent AS-wide policy enforcing. Since deep knowledge of iBGP-
specific features is not necessary to understand most of the contents presented
in this thesis, we defer a more precise introduction to Chapter 5, which focuses
explicitly on iBGP-specific issues.

i

i

“main” — 2010/2/23 — 1:37 — page 11 — #19
i

i

i

i

i

i

Part II

Formal Analysis of BGP Stability

11

i

i

“main” — 2010/2/23 — 1:37 — page 12 — #20
i

i

i

i

i

i

i

i

“main” — 2010/2/23 — 1:37 — page 13 — #21
i

i

i

i

i

i

Chapter 2

Modeling BGP Policies and

Dynamics∗

2.1 Introduction

The first step towards understanding and developing a formal analysis for
a routing protocol is obviously finding a suitable model. In this thesis, we
are especially interested in models that are able to capture routing instabil-
ities. Several approaches have been proposed to model BGP and to study
its dynamic properties. A pioneering work on this subject is in [VGE00],
that proposed the return graph model and used it to show that there are
collections of routing policies that together can cause BGP to diverge. An-
other family of models, based on routing algebras, have been shown in, e.g.,
[kC06, GS05, Sob05]. In this thesis we adopt the Simple Path Vector Protocol
(SPVP) framework [GSW99], that is an abstraction that captures the under-
lying semantics of any policy-based path vector protocol such as BGP. This
model is particularly important as it is able to effectively represent the static
portion of BGP, i.e., routing policies, as well as its dynamic properties. For
this reason, SPVP is the reference point of most of the scientific contribu-

∗Part of the material presented in this chapter is based on the following publication

• L. Cittadini, G. Di Battista, M. Rimondini. How Stable is Stable in Interdomain
Routing: Efficiently Detectable Oscillation-Free Configurations. Technical Report
RT-DIA-132-2008, Dept. of Computer Science and Automation, Roma Tre University,
2008.

13

i

i

“main” — 2010/2/23 — 1:37 — page 14 — #22
i

i

i

i

i

i

14 CHAPTER 2. MODELING BGP POLICIES AND DYNAMICS

tions on BGP stability. The relationship between this formalism and algebraic
approaches is explored in [JR05, kCGG06].

Besides defining the notation that will be used throughout the thesis, in this
chapter we revisit a wide range of alternative models that have been used in
prior work. Our results prove that SPVP is the most general model for policy-
based path vector protocols: by applying any of the simplifications that have
been previously proposed in the literature, the resulting model is provably able
to capture only a strictly smaller subset of routing oscillations with respect to
the original version of SPVP. For this reason, in the rest of this thesis we will
only refer to the original version of SPVP whenever we need a formal model
for policy-based path vector protocols.

The rest of the chapter is organized as follows. Sections 2.2 and 2.3 define
the static and dynamic part of the SPVP model, respectively. Section 2.4
summarizes several variants of SPVP that have been proposed in the literature,
and classifies them in a taxonomy. Finally, in Section 2.5 we formally prove
that the original version of SPVP captures strictly more routing oscillations
than any of the simplifications that have been proposed in the literature.

2.2 Modeling BGP Policies

In this section, we define a formal model that captures the expressiveness of
BGP policy configuration. Formally, we model a set of BGP policies as an
SPVP instance.

Let G = (V,E) be an undirected graph, with vertex set V = {0, 1, . . . , n}
and edge set E. The graph G is used to represent the Internet topology at the
level of ASes. Vertices in V correspond to ASes, while edges in E correspond to
adjacency relationships between ASes (i.e., BGP peerings). Vertex 0 is special
in that it is the destination every other vertex tries to establish a path to. We
denote by peers(u) the set of neighbors of vertex u, that is, the set of vertices
v|(u, v) ∈ E.

Paths play an important role in this model. A path P in G is a sequence
of k + 1 vertices P = (vk vk−1 . . . v1 v0), vi ∈ V , such that (vi, vi−1) ∈ E
for i = 1, . . . , k. Vertex vk−1 is the next hop of vk in P . The empty path,
denoted by ǫ, represents unreachability of the destination. The concatenation
of two nonempty paths P = (vk vk−1 . . . vi), k ≥ i, and Q = (vi vi−1 . . . v0),
i ≥ 0, denoted as PQ, is the path (vk vk−1 . . . vi vi−1 . . . v0). We assume
that Pǫ = ǫP = ǫ, that is, the empty path can never extend or be extended by
other paths.

i

i

“main” — 2010/2/23 — 1:37 — page 15 — #23
i

i

i

i

i

i

2.3. MODELING BGP DYNAMICS 15

Since BGP manages each prefix independently, we can study the stability
separately for each destination. For this reason, in an SPVP instance each
vertex in V − {0} attempts to establish a path to a single vertex 0. Each
vertex u ∈ V is assigned a set of permitted paths Pu. All the paths in Pu are
simple (i.e., without repeated vertices), start from u and end in 0, and represent
the paths that u can use to reach 0. The empty path represents unreachability
of 0 and is permitted at each vertex u 6= 0. Let P0 = {(0)}, that is, vertex 0
can reach itself only directly. Let P =

⋃

u∈V Pu.
For each vertex u ∈ V , a ranking function λu : Pu → N determines the

relative level of preference λu(P) assigned by u to path P . If P1, P2 ∈ Pu and
λu(P2) < λu(P1), then P2 is preferred over P1. Let Λ = {λu|u ∈ V }. Ranking
functions in Λ are used to describe BGP routing preferences.

The following conditions hold on the paths, for each vertex u ∈ V − {0}:

(i) ǫ ∈ Pu (empty path is always permitted)

(ii) ∀P ∈ Pu, P 6= ǫ: λu(P) < λu(ǫ) (empty path is the last resort);

(iii) ∀P1, P2 ∈ Pu, P1 6= P2 : λu(P1) = λu(P2) ⇒ P1 = (u v)P ′
1, P2 = (u v)P ′

2,
(strict ranking is assumed on all the paths but those with the same next
hop).

An SPVP instance S is a triple S = (G,P,Λ). See an example in Fig. 2.1a.
The graphical convention adopted is the same as in [GSW02] and will be used
throughout the thesis. In this convention, each vertex u is equipped with a list
of paths representing Pu, sorted by increasing values of λu. The empty path
and P0 are omitted for brevity. For example, the list besides vertex 2 specifies
that 2 can use paths (2 1 0) and (2 0) to reach 0 (P2 consists of those two
paths) and prefers (2 1 0).

Since vertices and edges that are not used by any path in P cannot influence
the stability of the protocol, we assume that the size of S is the size of P.

2.3 Modeling BGP Dynamics

An SPVP instance is a simple static model for BGP policies. However, in
order to understand stability properties of the protocol, we also need a dynamic
model that deals with routing messages and routing table updates.

A path assignment π is a function that maps each vertex u ∈ V to a
permitted path π(u) ∈ Pu. This represents the fact that vertex u is using path
π(u) to reach 0. We have that π(0) = (0) and, if π(u) = ǫ, then u cannot reach

i

i

“main” — 2010/2/23 — 1:37 — page 16 — #24
i

i

i

i

i

i

16 CHAPTER 2. MODELING BGP POLICIES AND DYNAMICS

130

10

210

20

30
420

430

1 2

3 4

0

(a) Good-Gadget.

210

20

320

30

130

10

2 3

0

1

(b) Bad-Gadget.

10

120 210

201 2

0

(c) Disagree

130

10

3420

30

210

20 420

430

1 3

0

2 4

(d) Naughty-Gadget.

Figure 2.1: Good and bad SPVP instances. (a) an instance that has a unique
guaranteed stable state. (b) an instance that has no stable states. (c) an
instance that has two distinct stable states (Table 2.3) but still admits an
oscillation (Table 2.2). (d) an instance that has a stable state as well as a
permanent oscillation (Theorem 3.4).

vertex 0. A path assignment models a routing choice made at every vertex in
the network, and as such is also referred to as the state of the network.

In SPVP vertices asynchronously exchange messages (announcements) con-
taining paths to 0 by running the algorithm in Figure 2.2. An announcement
from vertex v which advertises ǫ models unreachability of 0 from v. We assume
that edges introduce a finite delay on message delivery. Each vertex u keeps in
a routing information base ribt(u) the path it adopts at time t to reach vertex 0.
If a vertex u receives from a neighbor w at time t an announcement containing
a path P , first of all u checks whether (u)P is permitted, namely if (u)P ∈ Pu.
If this is the case, u puts (u)P into a data structure called rib-int(u ⇐ w),
which is used to store the latest path received from neighbor w. Otherwise, if
(u)P is not permitted (i.e, (u)P 6∈ Pu), u puts ǫ in rib-int(u ⇐ w). At this
point, u checks whether the currently selected path, stored in ribt−1(u), is the
currently available best path. If this is not the case, u selects the best ranked

i

i

“main” — 2010/2/23 — 1:37 — page 17 — #25
i

i

i

i

i

i

2.3. MODELING BGP DYNAMICS 17

process spvp(v)

1: while receive P from u do
2: rib-int(v ⇐ u) := P
3: ribt(v) := bestt(v)
4: if ribt(v) 6= bestt−1(v) then
5: for all v ∈ peers(v) do
6: send ribt(v) to v
7: end for
8: end if
9: end while

Figure 2.2: A distributed asynchronous algorithm (SPVP) for modeling the
dynamic behavior of BGP.

path among those in all its rib-int data structures and stores it in ribt(u). We
refer to this path as bestt(u) = arg min

w|(u,w)∈E

λu(rib-int(u ⇐ w)). Afterwards, u

announces bestt(u) to all its neighbors v ∈ peers(u).
In a real network there are a lot of factors that affect the timing of routing

updates, e.g., link delays, router queues, etc. However, while modeling the
exact timing might be interesting to study protocol convergence time at a fine-
grained detail level, exact timings are largely irrelevant to study the behavior
of policy-based path vector protocols. Instead, what is needed is a simple
way to represent the order in which routing messages are processed, rather
than the exact time at which they are received. In SPVP, the order in which
vertices exchange messages is modeled by activation sequences. An activation
sequence [GW00] σ = (A1 . . . Ai . . .) is a (possibly infinite) sequence where
At is a set representing the announcements that are received by vertices at
time t. Set At contains an ordered pair (u, v)|(u, v) ∈ E for each vertex v
that processes a message from u at time t. We say that edge (u, v) is activated
at time t. An activation sequence is fair if any edge (u, v) ∈ E is eventually
activated after u has sent a message to its neighbors. We are only interested
in fair activation sequences, as we are assuming that links can only delay a
message by a finite amount of time. Given an SPVP instance S, we say that
an activation sequence σ on S leads to path assignment πt2 starting from path

assignment πt1 , denoted by πt1

σ
 πt2 , if, after activating edges according to σ,

S changes its state from πt1 to πt2 .
As an example, consider again Fig. 2.1a. Before SPVP starts working,

i

i

“main” — 2010/2/23 — 1:37 — page 18 — #26
i

i

i

i

i

i

18 CHAPTER 2. MODELING BGP POLICIES AND DYNAMICS

we assume bestt(u) = ǫ for all vertices but 0. A possible activation sequence
is σ = (A1 A2) with A1 = {(0, 1), (0, 2)}, and A2 = {(0, 3), (1, 2)}. Namely,
at time t = 1 vertices 1 and 2 simultaneously receive an announcement from
0, stating that vertex 0 is directly reachable. Hence, vertex 2 inserts into
its rib-in path (2 0), i.e., rib-in1(2 ⇐ 0) = (2 0). Similarly, for vertex 1
rib-in1(1 ⇐ 0) = (1 0). Since vertices 1 and 2 have no other alternatives,
they both select the direct path as the best route to 0, i.e., best1(1) = (1 0)
and best1(2) = (2 0). Because of A2, at time t = 2 vertex 3 also receives an
announcement from 0, sets rib-in2(3 ⇐ 0) = (3 0), and computes its best path
best2(3) = (3 0). At the same time, vertex 2 receives an announcement from
1, which advertises path (1 0). Hence, vertex 2 sets rib-in2(2 ⇐ 1) = (2 1 0),
and computes a new best path best2(1) = (2 1 0).

As SPVP operates within the network, the routing evolves through different
path assignments πt, where πt(u) = ribt(u), until a stable path assignment is
reached (in this case, we say that SPVP converges to that path assignment).
A path assignment πt is stable if, for each u ∈ V , πt(u) = bestt(u). Intuitively,
a stable path assignment satisfies all vertices in the network since none of
them can switch to an alternative path that is ranked better than the one it is
currently using. For this reason, once a stable path assignment is reached, no
further messages are generated in the network. For this reason, any activation
sequence that leads to a stable path assignment is forcedly finite.

2.4 A Taxonomy of Related Work

Besides SPVP, several variations have been proposed in the literature [GR00,
VGE00, BOR+02, CGM03, FJB07]. All these SPVP variants try to simplify
the original version of SPVP in order to reduce the complexity of the model. In
this section, we propose a taxonomy of existing approaches, which is concisely
summarized by the classification shown in Tab. 2.1.

Edge and Vertex Activation Sequences

As we said above, in the original version of SPVP an edge (u, v) is activated
when vertex v receives and processes a message from its neighbor u. A common
relaxation, used in [BOR+02, GSW99, GR00, FJB07], tries to abstract the
semantics of message passing that is encompassed in SPVP by only considering
aggregate steps where vertices (instead of edges) are activated. In this variant,
when a vertex u is activated to process, u collects all the selected routes from
its neighbors (namely, it collects paths ribt(v) for each neighbor v of u). Then,

i

i

“main” — 2010/2/23 — 1:37 — page 19 — #27
i

i

i

i

i

i

2.4. A TAXONOMY OF RELATED WORK 19

u selects the best path among the alternatives it collected and updates its data
structure ribt+1(u). Basically, u executes the algorithm in Fig. 2.2, assuming
that a message is simultaneously received from every vertex v in peers(u).

For the sake of completeness, it is quite natural to consider vertex activation
from the opposite perspective. We say that a vertex u is activated to send at
time t if u sends its current best path ribt(u) to all its neighbors, which are
supposed to receive ribt(u) simultaneously. Then, for every vertex v ∈ peers(u),
a recomputation of the best path is triggered (Steps 2, 3 of the algorithm shown
in Figure 2.2).

Observe that vertex activation sequences are special classes of edge activa-
tion sequences in which constraints are applied on the sequence of activated
edges. An activation sequence where vertices are activated to send can be
mapped to an edge activation sequence in which each vertex activation Ai = v
corresponds to a sequence of activations Aik

= (v, uk) for each uk ∈ peers(v).
A similar argument applies to an activation sequence where vertices are acti-
vated to process. In the latter case, pairs Aik

= (uk, v) are activated for each
vertex activation Ai = v.

Modeling Memory at Vertices

Another possible variant of the basic SPVP model is the one in which there
is no rib-int [VGE00, CGM03, FJB07]. In this case, each vertex v only stores
its current best path and computes its new best paths directly referring to the
best choices of its neighbors. Set choicest(v) would then be redefined in the
following way: choicest(v) = {(v, u)P ∈ Pv|P = bestt−1(u)}.

Consider that, if vertices are activated to process, there is no need to con-
sider a rib-int. In fact, every time a vertex v ∈ V is activated, it immediately
refreshes choicest(v), thus replacing any previously known path.

On the other hand, the absence of rib-int forces a vertex to query all its
neighbors for each computation of a new best path. This corresponds to ac-
tivating vertices to process. As an alternative, the absence of a rib-int can
be compensated by forcing vertices to continuously send update messages, for
example exploiting a timeout [CGM03].

Simultaneousness

The original version of SPVP allows activations to be simultaneous. As a
further degree of freedom, we distinguish between models that admit simulta-
neous activations (i.e., |Ai| ≥ 1) [BOR+02, GSW99, GR00, VGE00, CGM03]

i

i

“main” — 2010/2/23 — 1:37 — page 20 — #28
i

i

i

i

i

i

20 CHAPTER 2. MODELING BGP POLICIES AND DYNAMICS

Activations RIB Simult.
[GW00, GGR01, GSW02] Edges Yes Yes
[FJB07] Vertices, to process No No
[VGE00, CGM03] Edges No Yes
[BOR+02, GSW99, GR00] Vertices, to process Yes Yes

Table 2.1: A taxonomy of existing models for path vector protocols.

and models that only allow a single edge (or vertex) to be activated at a
time [FJB07] (i.e., |Ai| = 1).

2.5 Choosing a model

Although modeling is a necessary step to study BGP stability, there is little
understanding about how the differences between models map on the ability
to study BGP stability. Throughout the thesis, we will consider the original
version of SPVP in which edges are activated, a local rib-int is maintained by
each vertex, and simultaneous activations are allowed.

In the following, we motivate such a choice by showing that the original
version of SPVP cannot be simplified along any dimension without impacting
the ability of the model to capture routing oscillations.

For the sake of clarity, in the following we will specify activation sequences
using a tabular notation as in Tab. 2.2, where each row corresponds to an acti-
vation, the first column specifies activated vertices or edges, and the remaining
columns represent the current rib-int at each vertex, with the currently se-
lected best path highlighted using italic face. The initial state is assumed to
be π0(v) = ǫ ∀v ∈ V − {0}.

Let SPVP-ns be the variation of SPVP that does not allow simultaneous
activations. The following theorem shows that relaxing SPVP by not consid-
ering simultaneous activations impacts the capability of the model to capture
oscillations.

Property 2.1 SPVP captures any oscillation captured by SPVP-ns. The
converse does not hold.

Proof: Trivially, non-simultaneous activation sequences can always be mapped
to simultaneous edge activation sequences. On the other hand, Disagree

(Fig. 2.1c) provides an example in which simultaneuosness is needed to trigger

i

i

“main” — 2010/2/23 — 1:37 — page 21 — #29
i

i

i

i

i

i

2.5. CHOOSING A MODEL 21

t At 1 2
1 {(0, 1), (0, 2)} (1 0) (2 0)

2 {(1, 2), (2, 1)}
(1 2 0)
(1 0)

(2 1 0)
(2 0)

3 {(1, 2), (2, 1)} (1 0) (2 0)

Table 2.2: An oscillating fair edge activation sequence for Disagree (Fig. 2.1c).
The columns of the table are the time instants, the set of activated edges, and
the rib-int of each vertex, with the currently selected best path highlighted in
italic face.

vertex 0 1 2
stable state 1 (0) (1 0) (2 1 0)
stable state 2 (0) (1 2 0) (2 0)

Table 2.3: Two distinct stable states for Disagree (Fig. 2.1c).

2430

240

210

230

3210

30

430

4230

40

10

1240

2 3

4

1 0

Figure 2.3: Bleedin-Edge: An instance of Spvp for which a fair oscillation
exists only in the edge activation model.

i

i

“main” — 2010/2/23 — 1:37 — page 22 — #30
i

i

i

i

i

i

22 CHAPTER 2. MODELING BGP POLICIES AND DYNAMICS

t At 1 2 3 4
1 {(0, 1), (0, 3), (0, 4)} (1 0) ǫ (3 0) (4 0)
2 {(3, 2)} (1 0) (2 3 0) (3 0) (4 0)

3 {(2, 4), (4, 2)} (1 0)
(2 4 0)
(2 3 0)

(3 0)
(4 2 3 0)
(4 0)

4 {(1, 2), (2, 1)}
(1 2 4 0)
(1 0)

(2 4 0)
(2 1 0)
(2 3 0)

(3 0)
(4 2 3 0)
(4 0)

5 {(4, 2)}
(1 2 4 0)
(1 0)

(2 1 0)
(2 3 0)

(3 0)
(4 2 3 0)
(4 0)

6 {(2, 3)}
(1 2 4 0)
(1 0)

(2 1 0)
(2 3 0)

(3 2 1 0)
(3 0)

(4 2 3 0)
(4 0)

7 {(3, 4), (4, 3)}
(1 2 4 0)
(1 0)

(2 1 0)
(2 3 0)

(3 2 1 0)
(3 0)

(4 2 3 0)
(4 0)

8 {(1, 2), (3, 2), (4, 2)}
(1 2 4 0)
(1 0)

ǫ
(3 2 1 0)
(3 0)

(4 2 3 0)
(4 0)

9 {(2, 1), (2, 3), (2, 4)} (1 0) ǫ (3 0) (4 0)

Table 2.4: An oscillating fair edge activation sequence for Bleedin-Edge

(Fig. 2.5).

an oscillation. Let e ∈ {(1, 2), (2, 1)} be the first edge that is activated, at
time t, between vertices 1 and 2. Note that the activation of edge e = (u, v)
can only be triggered by a previous activation of edge (0, u). This, in turn,
implies that path (u 0) ∈ choicest(u). Hence, after activating e, (v u 0) enters
choicest(v), that forces bestt(v) = (v u 0). Since this leads to any one of the
two stable states described in Tab. 2.3, any further activation has no effect. By
contrast, Tab. 2.2 shows that Disagree admits a fair oscillation if simultaneous
activations are allowed. �

We already observed in Section 2.4 that edge activation sequences are more
general than vertex activation sequences, regardless of the semantic of the acti-
vation of a vertex. Theorem 2.1 shows that relaxing SPVP by not considering
the activation of single edges impacts the capability of the model to capture
oscillations. To prove the theorem we need the following preliminary lemmas
that exploit the instance Bleedin-Edge in Fig. 2.5.

Let SPVP-vp (SPVP-vs) be the variant of SPVP in which vertices are
activated to process (to send).

Lemma 2.1 Consider the SPVP instance Bleedin-Edge. Independently on
the activation sequence, if path (1 0) enters choicest′(1) at time t′, then (1 0) ∈
choicest(1) ∀t ≥ t′. The same also holds for paths (4 0) and (3 0).

i

i

“main” — 2010/2/23 — 1:37 — page 23 — #31
i

i

i

i

i

i

2.5. CHOOSING A MODEL 23

Proof: The statement follows from P0 = {(0)}. �

Lemma 2.2 Consider the SPVP instance Bleedin-Edge. If vertices are
activated to send, no vertex activation sequence and no time t exist such that
πt(4) = (4 2 3 0).

Proof: For vertex 4 to select (4 2 3 0) it is required that 2 selects (2 3 0) first,
which in turn requires vertex 3 to be activated at least once. Now, once 3 is
activated, vertex 4 can immediately select its best path (4 3 0), and will be
unable to select (4 2 3 0) in further steps. Even if we assume that there exists
a time instant t such that the rib-int at vertex 4 already contains (4 2 3 0), we
need 3 to withdraw (3 0), which is preferred at 4. Since, by Lemma 2.1, vertex 3
cannot withdraw (3 0) by announcing ǫ, then 3 must announce (3 2 1 0), which
can only happen if 2 picks (2 1 0) as its best and is activated beforehand, thus
actually removing (4 2 3 0) from the rib-int of vertex 4. �

Lemma 2.3 Consider the SPVP instance Bleedin-Edge. If vertices are
activated to process, no vertex activation sequence allows vertex 4 to select
(4 2 3 0) at any time t.

Proof: We prove the assertion by contradiction. Let t be the first time at which
vertex 4 selects (4 2 3 0). This implies πt−1(2) = (2 3 0) and πt−1(3) = (3 2 1 0).
In fact, by Lemma 2.1, vertex 3 can never announce ǫ after its first activation,
and πt−1(2) = (2 3 0) implies that 3 was already activated before time t − 1.
Let t′ < t and t′′ < t be the instants of the last activation, before t, of vertices 2
and 3, respectively. If t′ < t′′, vertex 3 would be unable to select path (3 2 1 0),
contradicting πt−1(3) = (3 2 1 0). On the other hand, if t′′ < t′, vertex 2 would
be unable to select path (2 3 0). Then it must be t′ = t′′, i.e., vertices 2 and
3 were activated simultaneously. This, in turn, implies πt′−1(2) = (2 1 0),
πt′−1(1) = (1 2 4 0) and πt′−1(3) = (3 0). Note that, by Lemma 2.1, it cannot
be πt′−1(1) = ǫ, as πt′−1(2) = (2 1 0). Moreover, since activating vertex 2
at t′ will result in πt′(2) = (2 3 0), we must have πt′−1(4) 6= (4 3 0) and
πt′−1(4) 6= (4 0). This means that πt′−1(4) can be either ǫ or (4 2 3 0). The
former case contradicts Lemma 2.1, since πt′−1(1) = (1 2 4 0) implies that 4
was activated before t′−1. The latter one contradicts the hypothesis of t being
the first time at which 4 selects (4 2 3 0). �

Theorem 2.1 SPVP captures any oscillation captured by SPVP-vs and by
SPVP-vp. The converse does not hold.

i

i

“main” — 2010/2/23 — 1:37 — page 24 — #32
i

i

i

i

i

i

24 CHAPTER 2. MODELING BGP POLICIES AND DYNAMICS

Proof: We already noted that edge activation sequences are at least as powerful
as vertex activation sequences. Bleedin-Edge proves the strictness. In fact,
Tab. 2.4 shows an edge activation sequence that triggers a fair oscillation on
that instance. Observe that the states at instants t = 1 and t = 9 coincide and
each edge is activated at least once in that time interval (fairness). We now
prove that vertex activation sequences always converge on Bleedin-Edge.
Lemma 2.2 and Lemma 2.3 ensure that ∀t πt(4) 6= (4 2 3 0), regardless of the
semantic of vertex activation. Moreover, Lemma 2.1 implies that there exists a
time t0 such that ∀t > t0 πt(4) 6= ǫ. Hence, ∀t > t0, πt(4) must be either (4 0)
or (4 3 0). Observe that both these paths are extended by vertex 2. Hence,
there exists a time instant t1 such that, for any t > t1: πt(2) = (2 4 3 0)
or πt(2) = (2 4 0). In particular, we have πt(2) 6= (2 1 0) which, in turn,
implies the existence of a t2 > t1 such that πt(3) = (3 0) for any t > t2. As
a consequence, there will be a time t3 > t2 such that πt(4) = (4 3 0) for any
t > t3. This prevents 2 from selecting path (2 4 0) and therefore ultimately
stabilizes 1 on πt(1) = (1 0) for any t > t4 > t3. �

We complete our discussion on the ability of SPVP variants to capture
oscillations with the following theorem, that puts in evidence the importance
of considering rib-int. Let SPVP-nr be the variant of SPVP that does not
equip vertices with a rib-int.

Theorem 2.2 SPVP captures any oscillation captured by SPVP-nr. The
converse does not hold.

Proof: As we already remarked in Section 2.4, the absence of rib-int forces
a vertex to query all its neighbors for each computation of a new best path.
This corresponds to activating vertices to process, hence the statement can be
proved in a way similar to Theorem 2.1. �

i

i

“main” — 2010/2/23 — 1:37 — page 25 — #33
i

i

i

i

i

i

Chapter 3

Theoretical Literature on BGP

Stability∗

3.1 Introduction

Plenty of research efforts have focused on BGP stability in the last decade. In
this chapter we survey the state of the art on this topic. Our goal is to present
existing literature with a systematic and coherent approach, relating different
pieces of work by means of a common framework.

First, we introduce a number of convergence properties that relate to BGP
stability, and then classify significant network configurations according to these
properties. Second, we discuss the relationships between the classical models
for stability and other variants that accommodate link costs or account for
the existence of commercial relationships in the routing system. Third, we
study the relationship between the succinctness of the representation of routing
policies and the computational complexity of the stability problem. Fourth, we
discuss the stability of iBGP [RLH06], the intra-AS version of BGP. Finally,
we present proposed solutions that modify BGP in such a way to guarantee
stability.

Section 3.2 formalizes a set of foundational problems related to BGP sta-

∗Part of the material presented in this chapter is based on the following publication

• L. Cittadini, G. Di Battista, M. Rimondini. (Un)-Stable Routing in the Internet:
A Survey from the Algorithmic Perspective. In Proc. International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2008), Springer, 2008.

25

i

i

“main” — 2010/2/23 — 1:37 — page 26 — #34
i

i

i

i

i

i

26 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

bility that will be referenced throughout the thesis. Section 3.3 shows the
interplay between stability and real world constraints. In Section 3.4 we study
the stability problem on networks where topology changes can happen due to
either hardware or software faults, and configuration changes can happen due
to policy changes. Section 3.5 discusses how the compactness of the represen-
tation of policy configurations can impact the computational complexity of the
stability problem. Finally, we review some of the proposed modifications to
BGP in Section 3.6.

The vast majority of the results presented in this chapter comes from ex-
isting literature and are given proper credit using citations in the statements.
Other results, though never previously presented, can be easily inferred from
the literature, and are indicated by citing the papers they are derived from. We
also present some original contributions which allow us to better relate prior
work.

3.2 Stable States and Guaranteed Convergence

Obviously, the existence of a stable path assignment is a crucial requirement
for a network running BGP. For example, instance Good-Gadget (Fig. 2.1a)
admits a stable path assignment. In fact, it is easy to check that the path
assignment π(1) = (1 3 0), π(2) = (2 0), π(3) = (3 0), π(4) = (4 2 0) is stable.
On the other hand, instance Bad-Gadget (Fig. 2.1b) does not admit any
stable path assignment. In fact, in any stable path assignment π there must be
at least one vertex among 1, 2, and 3 that picks the direct path to 0. Assume
that π(2) = (2 0). For π to be stable, we must have π(3) = (3 2 0), which in
turn implies π(1) = (1 0). Note that now (2 0) is not the best available path at
vertex 2, hence no path assignment can have π(2) = (2 0). The same argument
applies symmetrically to the other vertices.

Unfortunately, deciding whether a given instance of SPVP admits a stable
path assignment is a NP-complete problem [GSW02].

Problem 3.1 (Stable Paths Problem) Given an instance S of SPVP, does
S admit a stable path assignment?

Theorem 3.1 The Stable Paths Problem is NP-complete [GSW02].

Since we have seen that there are SPVP instances admitting one or no
solutions, one natural question is whether there are SPVP instances that admit
more than one solution. Let Unique be the class of SPVP instances that have

i

i

“main” — 2010/2/23 — 1:37 — page 27 — #35
i

i

i

i

i

i

3.2. STABLE STATES AND GUARANTEED CONVERGENCE 27

0 v
1,2

v
1,1

v1,1v1,2 0

v1,10

v1,2 v1,10

v1,2 0

v
2,2

v
2,1

v2,1v1,2 0

v2,1v2,2 v1,2 0

v2,2 v2,1

v2,2

v1,2

v1,2

0

0

v
k,2

v
k,1

vk,2 ...v2,2 v1,2 0

vk,2 vk,1...v2,2 v1,2 0

vk,1 ...v2,2 v1,2 0

vk,1 vk,2...v2,2 v1,2 0

Figure 3.1: An instance of SPVP with k + 1 solutions.

exactly one solution. We have that Good-Gadget belongs to Unique. In fact,
it is easy to see that any stable path assignment π for Good-Gadget must
be such that π(3) = (3 0). For π to be stable, this also implies π(1) = (1 3 0),
which in turn forces π(2) = (2 0), and, ultimately, π(4) = (4 2 0).

The following theorem shows that the inclusion between Solvable and Unique

is proper.

Theorem 3.2 Unique ⊂ Solvable [GW99].

Proof: Instance Disagree (Fig. 2.1c) has two solutions. It is easy to see that
both π(1) = (1 0), π(2) = (2 1 0) and π′(1) = (1 2 0), π′(2) = (2 0) are stable
path assignments. �

Another interesting question is whether the number of possible solutions
in an SPVP instance is bounded by a polynomial function in the input size.
Property 3.1 shows that SPVP instances can be constructed in such a way to
admit an exponential number of distinct stable path assignments. Moreover,
Property 3.2 proves that, given any integer k, it is possible to build an instance
of SPVP admitting exactly k distinct stable states.

Property 3.1 There are instances of SPVP with an exponential number of
solutions.

Proof: An instance that contains n distinct and independent Disagree struc-
tures has 2n solutions. �

Property 3.2 For each non-negative integer k there exists an instance of
SPVP with k solutions.

i

i

“main” — 2010/2/23 — 1:37 — page 28 — #36
i

i

i

i

i

i

28 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

Proof: This is clearly true for k = 0 and k = 1. In fact, Bad-Gadget

and Good-Gadget are examples of instances with no solutions and with a
unique solution, respectively. Fig. 3.1 shows the structure of a generic SPVP

instance with k + 1 solutions. The idea is to stack several Disagree gadgets,
each of which adds a new stable path assignment to the SPVP instance. In
particular, each triple of vertices (vi,1, vi,2, vi−1,2), with i > 0 and v0,2 = 0,
forms a Disagree. Each vertex vi,j can reach 0 by using a direct path
(vi−1,2 vi−2,2 . . . 0). However, vi,1 prefers the path via vi,2, and vi,2 prefers the
path via vi,1. With this construction, if a Disagree (vi,1, vi,2, vi−1,2) stabilizes
on πt(vi,1) = (vi,1 vi−1,2 vi−2,2 . . . 0) and πt(vi,2) = (vi,2 vi,1)πt(vi,1) at time t,
then there exists a time t′ > t after which the vertices of any other Disagree

(vj,1, vj,2, vj−1,2), j > i (but vi,2) permanently select the empty path ǫ. On
the other hand, if a Disagree stabilizes on πt(vi,1) = (vi,1 vi,2)πt(vi,2) and
πt(vi,2) = (vi,2 vi−1,2 . . . 0), then the next Disagree (vi+1,1, vi+1,2, vi,2) (if
any) has two stable path assignments, and a similar argument can be applied.

In this way, every Disagree acts as a switch that can enable or disable
the subsequent Disagree in the stack. The last Disagree (vk,1, vk,2, vk−1,2)
can arbitrarily reach one of its two stable states without influencing further
gadgets. It is easy to check that this SPVP instance has exactly k + 1 stable
states. �

Even if an instance has a stable state, it can still have oscillations [GSW99].
For example, some message orderings might lead to a stable path assignment,
while others might lead to a persistent oscillation. This is especially dangerous
from the point of view of a network operator: rather than knowing whether a
stable path assignment exists, he is much more interested in knowing whether a
given BGP configuration is guaranteed to converge to a stable state, regardless
of any possible message orderings. Guaranteed convergence can be formalized
in terms of fair activation sequences. In particular, one can ask whether all the
fair activation sequences of an SPVP instance are finite. If this is the case, the
instance is said to be safe. More formally, the Safety problem [GSW99, GR00]
is defined as follows:

Problem 3.2 (Safety) Given an SPVP instance S, does S admit only finite
fair activation sequences?

Let Safe be the class of SPVP instances admitting only finite fair activation
sequences. Unfortunately, there exist instances which are not in Safe, despite
the existence of a stable state.

i

i

“main” — 2010/2/23 — 1:37 — page 29 — #37
i

i

i

i

i

i

3.2. STABLE STATES AND GUARANTEED CONVERGENCE 29

Theorem 3.3 Safe ⊂ Solvable [GW99].

Proof: Disagree (Fig. 2.1c) is Solvable but not Safe. An infinite fair activation
sequence σ = (A0 . . . Ai . . .) can be constructed as shown in Table 2.2. �

The following result determines the relationship between Safe and Unique.

Theorem 3.4 Safe ⊂ Unique [SSZ09, GSW02].

Proof: Part 1 (⊆): [SSZ09] prove the statement by analyzing the state-transition
graph of an SPVP instance.

Part 2 (⊂): instance Naughty-Gadget (Fig. 2.1d) has a unique stable
state but a persistent oscillation. The unique solution is the same as in Good-

Gadget, while the persistent oscillation works in a similar way as in Bad-

Gadget (see [GSW02]). �

The safety of SPVP has also been studied from a game theoretic perspec-
tive and [FSS07] is a good introduction to the application of game theoretical
techniques to interdomain routing problems.

[FP08] provides a model for the safety problem in the so called convergence
game. In this game, all the vertices of the graph but 0 are players. When
allowed to play, a vertex selects one of its neighbors in order to route traffic
towards 0. The set of all choices defines a directed sub-graph Gs of G where
each vertex has out-degree one. The payoff of vertex u is λu(P) if a path P =
(u . . . 0) exists in Gs, or λu(ǫ) otherwise. The game has infinite rounds. SPVP

safety translates to the convergence of best-reply dynamics in the convergence
game. In this framework the following result has been proved:

Theorem 3.5 The safety problem is PSPACE-complete [FP08].

However, interpreting Theorem 3.5 from the SPVP point of view requires
some care. First, [FP08] only considers activation sequences where vertices are
activated one after the other. We have shown in Section 2.5 that such a model
does not capture any possible routing oscillation. Hence, the computational
complexity of the safety problem in the general SPVP framework is still open.

Most of the sufficient conditions [JR06, FJB07, JR04, GSW02, GSW99,
RS06] to ensure safety are based on the so called dispute wheels. A dis-

pute wheel [GSW99] Πk = (~U , ~Q, ~R) of size k is a sequence of vertices ~U =

(u0 u1 . . . uk−1) and sequences of nonempty paths ~Q = (Q0 Q1 . . . Qk−1) and
~R = (R0 R1 . . . Rk−1) such that:

i

i

“main” — 2010/2/23 — 1:37 — page 30 — #38
i

i

i

i

i

i

30 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

130

10

3420

30

210

20

40

420

430

1 3

2

0

4

(e)

Figure 3.2: Bad-Backup: an SPVP instance that has a dispute wheel, yet
is safe. Observe that this instance becomes Bad-Gadget (Figure 2.1b) if the
link between vertices 4 and 0 is removed.

(i) Ri is a path from ui to ui+1

(ii) Qi ∈ Pui

(iii) RiQi+1 ∈ Pui

(iv) λui(Qi) ≥ λui(RiQi+1)

To simplify the notation we shall omit specifying the size of the dispute
wheels when it is unknown or immediately inferrable from the context.

We define No-Dispute-Wheel as the set of SPVP instances that do not have
a dispute wheel. The following theorem shows that instances without a dispute
wheel are safe.

Theorem 3.6 No-Dispute-Wheel ⊂ Safe [GSW02].

Proof: Part 1 (⊆): If an SPVP instance has no dispute wheels, then it is
safe [GSW02].

Part 2 (⊂): As shown in [GSW99], instance Bad-Backup (Fig. 3.2) has a

dispute wheel Π3 = (~U , ~Q, ~R), where ~U = (1 3 2), ~Q = ((1 0) (3 0) (2 0)), and
~R = ((1 3) (3 4 2) (2 1))). However, it is easy to see that it is safe. In fact, any
fair activation sequence must be such that path (0) is eventually advertised to
vertex 4, which selects it as the best path. Since path (0) comes directly from
the origin, it will never be withdrawn, hence vertex 4 will never fall back on
alternative paths: in particular, it will never select path (4 2 0). This causes
vertex 3 to eventually stabilize on path (3 0) which, in turn, implies that vertex

i

i

“main” — 2010/2/23 — 1:37 — page 31 — #39
i

i

i

i

i

i

3.2. STABLE STATES AND GUARANTEED CONVERGENCE 31

Figure 3.3: Relationships between the classes of SPVP instances. Black dots
with letters represent instances from Figs. 2.1, and 3.4.

1 will permanently select its preferred path (1 3 0). As a consequence, vertex 2
will eventually stabilize on path (2 0), yielding a stable path assignment. Since
we did not make any assumptions on the nature of the fair activation sequence,
we conclude that Bad-Backup is safe. �

The absence of dispute wheels is interesting from both a theoretical and
a more pragmatic point of view because it is a sufficient condition for safety
that does not involve evaluation of the dynamics of the protocol. That is, it is
a “static” condition. Such a condition allows us to prove stability properties
without having to cope with the details of dynamic evaluation.

The relationships between the classes that we introduced so far are illus-
trated in Fig. 3.3, which can be effectively used as a guideline for reading the
whole chapter.

i

i

“main” — 2010/2/23 — 1:37 — page 32 — #40
i

i

i

i

i

i

32 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

3.3 Link Costs and Commercial Relationships

In this section we relate the stability of SPVP instances to several real-life
constraints on routing policies that stem either from operational best practices
and/or from economic reasons (see again Fig. 3.3 to follow the section). First,
we discuss the effect of policies that rank paths according to a generalized
shortest path. Second, we show perhaps the most interesting insight of this
section, proved in [GR00]: it is possible to achieve provably safe path vector
interdomain routing without the need to enforce constraints globally, if all
ASes independently behave according to basic economic rules. This result can
be viewed as one of the reasons why routing instabilities are not so frequently
observed in the Internet. Although, as put in evidence in [FBR04], practical
configuration can significantly deviate from such economic rules for legitimate
purposes.

Cost-Consistent Instances

In computer networks quite often links are associated with a cost, e.g., related
to bandwidth, latency, traffic, etc. Hence, it is natural to rank the paths
according to their cost. Consider an SPVP instance (G,P,Λ) and suppose
that the edges of G have a cost. Let the cost function c : E → Z be such
that no cycle exists with a non-positive cost and suppose that the paths are
ranked by functions in Λ according to their cost. We say that (G,P,Λ) is cost-
consistent with c. We define set Cost-Consistent as the set of SPVP instances
that are cost-consistent with at least one cost function [GSW99]. The following
theorem relates cost-consistent instances to the concept of dispute wheel.

Theorem 3.7 Cost-Consistent ⊂ No-Dispute-Wheel [GSW99].

Proof: Part 1 (⊆): The absence of dispute wheels in cost-consistent instances
is proved in [GSW99].

Part 2 (⊂): Incoherent (Fig. 3.4f), a simplification of an instance pre-
sented in [GSW99], is an example of instance that has no dispute wheel and is
not cost-consistent with any cost function. Assign variables to edges according
to Fig. 3.4f. Since path (3 2 1 0) is preferred over (3 2 0), the cost function
must be such that a + b + d < a + c. Also, since (2 0) is preferred over (2 1 0)
we have c < b + d, yielding a contradiction. �

An interesting consequence of Theorem 3.7 is that the class of instances
that are provably safe is strictly larger than cost-consistent instances. That

i

i

“main” — 2010/2/23 — 1:37 — page 33 — #41
i

i

i

i

i

i

3.3. LINK COSTS AND COMMERCIAL RELATIONSHIPS 33

f

c

e

b

a

d

10

1230

430

4310

30

310

230

1

3

4 0

2

(f) Incoherent.

420

430

30

210

20 130

10

0

4

3

2

1

(g) Layered Good-Gadget.

20

210

3210

320

10

0

2

3

1

(h) Layered Incoherent.

1

50100

10

10

1

10

130

210

2430

2130

430

4210

4310

30

310

0

21

3 4

(i) Costomer.

1

50100

10

10

1

20

210

3210

320

10

60

650

760

7850

7650

850

8760

8560

50

560

0

2

3

1

76

5 8

(j) Nocust-Nolowest-omer.

Figure 3.4: SPVP instances and real world constraints.

i

i

“main” — 2010/2/23 — 1:37 — page 34 — #42
i

i

i

i

i

i

34 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

is, we can achieve stability even without being consistent with a global cost
function. This disproves a guess of [VGE00], hypothesizing that only shortest
path route selection can be provably safe.

Modeling Commercial Relationships

From the economic perspective, relationships between ASes can be roughly
classified as customer-provider or peer-peer. In order to implement these agree-
ments, routing policies must obey several constraints. In [GR00] it has been
observed that an SPVP instance (G,P,Λ) satisfying these constraints must
be as follows.

The neighbors of each vertex of G can be partitioned into three sets: cus-
tomers, providers, and peers, such that:

(i) Each path of P is valley-free: provider-customer and peer-peer edges can
only be followed by provider-customer edges. A valley is considered an
anomaly because it corresponds to an AS providing transit to either its
peers or its providers without revenues.

(ii) Functions in Λ are such that, at each vertex in G, paths through cus-
tomers are ranked better than paths through peers that, in turn, are
ranked better than paths through providers (prefer-customer ranking).
This corresponds to preferring routes with lower cost.

(iii) The customer-provider digraph G is acyclic. The vertices of G are the
ASes in G, while the edges represent a customer-provider relationship
between two ASes, and are directed from the customer AS to the provider
AS. Cycles would correspond to unclear customer-provider roles.

Good-Gadget (Fig. 2.1a) and Incoherent (Fig. 3.4f) are examples of
instances that admit an assignment of commercial relationships satisfying Con-
ditions (i), (ii), and (iii) above. Two such assignments are shown in Figs. 3.4g
and 3.4h, where edges go from customers to providers. The layering emphasizes
the customer-provider hierarchy.

In [DEH+07] it is shown that Condition (i) can be tested efficiently:

Theorem 3.8 Given an SPVP instance, it takes polynomial time to test
whether the neighbors of each vertex of G can be partitioned into three sets: cus-
tomers, providers, and peers, such that each permitted path is valley-free [DEH+07].

i

i

“main” — 2010/2/23 — 1:37 — page 35 — #43
i

i

i

i

i

i

3.3. LINK COSTS AND COMMERCIAL RELATIONSHIPS 35

Other work on the computational complexity of checking Conditions (i)
and (iii) is presented in [KMT06]. An interesting open problem in this respect
is whether it is possible to check in polynomial time if an SPVP instance
satisfies Conditions (i), (ii), and (iii).

The following two Theorems show that there exist cost-consistent instances
that do not belong to Customer-Provider, and vice versa.

Theorem 3.9 Customer-Provider ∩ Cost-Consistent 6= Cost-Consistent.

Proof: We have already shown in the proof of Theorem 3.7 that Incoherent

(Fig. 3.4f) is not cost-consistent with any cost function. On the other hand, the
policies in Incoherent are compatible with the customer-provider hierarchy
depicted in Fig. 3.4h. �

Theorem 3.10 Customer-Provider ∩ Cost-Consistent 6= Customer-Provider.

Proof: It is easy to check that Costomer (Fig. 3.4i) is cost-consistent with
the edge cost function which is presented in the figure. We now show that
Costomer is not compatible with any customer-provider hierarchy. Consider
edge (1, 2). We have three possibilities:

(i) 1 is a provider of 2. Since λ2((2 1 3 0)) < λ2((2 4 3 0)) < λ2((2 1 0)), 4
must be a provider of 2 as well. Then path (4 2 1 0) contains a valley.

(ii) 1 is a peer of 2. As above, 4 is also a peer of 2, and path (4 2 1 0) contains
two consecutive peer-peer edges.

(iii) 1 is a customer of 2. Applying the same argument as above, we conclude
that 2 is a provider of 4. By looking at the path rankings at 4, we have
that λ4((4 2 1 0)) < λ4((4 3 1 0)) implies that 3 is also a provider of 4.
Then path (2 4 3 0) forms a valley.

�

The following two Theorems complete the taxonomy of the Cost-Consistent

and Customer-Provider classes, with respect to the other classes of instances
presented so far.

Theorem 3.11 Customer-Provider ⊂ No-Dispute-Wheel (derived from [GGR01]).

Proof: Part 1 (⊆): Customer-provider instances cannot have a dispute wheel [GGR01].

i

i

“main” — 2010/2/23 — 1:37 — page 36 — #44
i

i

i

i

i

i

36 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

Part 2 (⊂): Costomer (Fig. 3.4i) has no dispute wheel, since it is cost-
consistent with an edge cost function. On the other hand, from the proof of
Theorem 3.10 we have that Costomer 6∈ Customer-Provider. �

Theorem 3.12 Customer-Provider ∪ Cost-Consistent ⊂ No-Dispute-Wheel.

Proof: It is possible to merge Costomer and Incoherent together, obtain-
ing Nocust-Nolowest-omer (Fig. 3.4j). Since the building blocks are com-
pletely independent and do not form a dispute wheel, then Nocust-Nolowest-omer ∈
No-Dispute-Wheel. On the other hand, the proofs of Theorems 3.7 and 3.11 en-
sure that the instance is neither in Cost-Consistent nor in Customer-Provider.

�

3.4 Guaranteed Convergence under Faulty Conditions

Observe that the problems we defined so far assume that both the network
topology and the policies at each vertex are fixed. In a real network, topology
changes can happen due to either hardware or software faults, and configuration
changes can happen due to policy changes. Hence, it makes sense to study the
extent to which stability properties are safe even under topology or policy
changes.

Robust Instances

The most common type of topology change in a computer network is the failure
of a vertex or link. From a network operator’s perspective, it is interesting to
determine whether a given policy configuration is safe even under arbitrary
combinations of link or vertex failures (the latter being a special case of the
former). More formally, we define the robustness problem as follows:

Problem 3.3 (Robustness) Given an SPVP instance S = ((V,E),P,Λ), is
instance S′ = ((V,E′),P,Λ) safe for any E′ ⊆ E?

We define set Robust as the set of robust SPVP instances.

Property 3.3 Robust ⊂ Safe [GSW02].

Proof: Part 1 (⊆): By definition, safety is a necessary condition for robustness.
Part 2 (⊂): Bad-Backup, Fig. 3.2, proves the strictness. From the proof

of Theorem 3.6, we know that Bad-Backup is safe. However, by removing

i

i

“main” — 2010/2/23 — 1:37 — page 37 — #45
i

i

i

i

i

i

3.4. GUARANTEED CONVERGENCE UNDER FAULTY CONDITIONS37

edge (4, 0) the instance becomes similar to Bad-Gadget (Fig. 2.1b). Since
there exists a combination of link and vertex failures which leads to an instance
that is not safe, Bad-Backup is not robust. �

Interestingly, the absence of a dispute wheel, which is a sufficient condition
for safety, is also a sufficient condition for robustness. In a sense, this shows
how the absence of dispute wheels is far from being necessary for safety.

Theorem 3.13 No-Dispute-Wheel ⊂ Robust (derived from [GSW02]).

Proof: Part 1 (⊆) [GSW02]: If an instance S on graph (V,E) has no dispute
wheel, then, by Theorem 3.6, the instance is safe. As removing vertices or links
cannot result in creating a dispute wheel, any instance S′ on graph (V,E′) such
that E′ ⊆ E is also safe.

Part 2 (⊂): Consider instance Ro-DW-ust in Fig. 3.5a. It is easy to

see that Ro-DW-ust contains only one dispute wheel Π = (~U , ~Q, ~R) where
~U = (1 2), ~Q = ((1 3 0) (2 3 4 0)), and ~R = ((1 2) (2 1)). We now prove that
the instance is robust. Observe that Ro-DW-ust is safe. In fact, vertex 4 will
eventually learn about its direct route to 0, causing vertex 3 to permanently
select its preferred route (3 4 0). In turn, 1 and 2 will eventually have no other
options but to select paths (1 2 3 4 0) and (2 3 4 0) respectively, thus leading
to a stable path assignment. Moreover, it is easy to check that removing links
or vertices from Ro-DW-ust destroys Π. Hence, by Theorem 3.6, S′ must be
safe. �

Safe under Filtering Instances

Another network event that prevents some ASes from receiving the announce-
ment of paths is the insertion of route filters. Hence, it is interesting to study
whether the safety of a given routing configuration is guaranteed to survive
even if arbitrary filtering is applied by the ASes. More formally, the safety
under filtering problem is defined as follows:

Problem 3.4 (Safety Under Filtering) Given an SPVP instance S = (G,P,Λ),
is instance S′ = (G,P ′,Λ) safe for any P ′ ⊆ P?

We define SUF as the set of SPVP instances which are safe under filtering.

Property 3.4 SUF ⊆ Robust [FJB07].

i

i

“main” — 2010/2/23 — 1:37 — page 38 — #46
i

i

i

i

i

i

38 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

30

340

130

12340 2130

2340

40

1 2

3 4

0

(a) Ro-DW-ust.

10

120

20

230

340

30

410

40

1 2

0

34

(b) Disagree-RING.

32a0

3a02a0

21a0

13a0

1a0

a0

32

1

a

0

(c) Bad-NO-RING.

13a0

1a0

342a0

3a0

21a0

2a0

43a0

42a0

a0

1 3

2 4

0

a

(d) Naughty-NO-RING.

13a0

1a0

4a0

43a0

42a0

342a0

3a0

2a0

21a0

a0

1

4

3

2

0

a

(e) Bad-Backup-NO-RING.

Figure 3.5: Instances that prove strict inclusions for the No-Dispute-Ring, No-

Dispute-Wheel, Robust, and SUF classes.

i

i

“main” — 2010/2/23 — 1:37 — page 39 — #47
i

i

i

i

i

i

3.4. GUARANTEED CONVERGENCE UNDER FAULTY CONDITIONS39

Proof: The failure of edge e = (u, v) makes all the paths in P which contain
e unavailable. On the other hand, the failure of vertex v is equivalent to the
removal of all edges (v, u) that are incident on v. Therefore, if an SPVP

instance is safe under removal of any path (i.e., safe under filtering), it is also
robust. �

An argument similar to the one in Theorem 3.13 can be used to show the
following.

Theorem 3.14 No-Dispute-Wheel ⊂ SUF (derived from [FJB07]).

Proof: Part 1 (⊆): Removing paths cannot create a dispute wheel in an in-
stance that does not contain dispute wheels. Therefore, filtering paths from
any instance without dispute wheels forcedly results in a safe instance.

Part 2 (⊂): Instance Ro-DW-ust (Fig. 3.5a) is safe but has the dispute wheel

Π = (~U , ~Q, ~R) where ~U = (1 2), ~Q = ((1 3 0) (2 3 4 0)), and ~R = ((1 2) (2 1)).
Now, the removal of any path from Ro-DW-ust breaks at least one path of Π,
yielding a safe instance. �

Bad-Backup is also an example of a safe instance which is not in SUF.
So far, we have focused on sufficient conditions (e.g., the no dispute wheel

condition guarantees robustness). An interesting result from [FJB05, FJB07] is
a necessary condition for safety under filtering, which is based on a specialized
class of dispute wheels which the authors call dispute rings. A dispute ring is
a dispute wheel Πk = (~U , ~Q, ~R) such that k ≥ 3 and ∀v 6= 0 and v /∈ ~U , v
appears in at most one path Qi or Ri. Essentially, a dispute ring can be drawn
as a “wheel”, where paths in ~Q form the spokes of the wheel and share only
vertex 0. Paths in ~R, on the other hand, form the rim of the wheel, and each
path Ri has only vertex ui in common with Qi. We define set No-Dispute-Ring

as the set of instances which do not have any dispute ring.

Theorem 3.15 SUF ⊂ No-Dispute-Ring [FJB07].

Proof: Part 1 (⊆): Consider an instance S which has a dispute ring Π =

(~U , ~Q, ~R), and remove all paths P such that ∄i, A,B | Qi = APB∨Ri = APB,
that is, keep only those paths which build up the dispute ring. As explained
in [FJB07], the resulting instance can oscillate by first propagating messages

along the spoke paths and then over the rim paths so that vertices in ~U are
updated in reverse order.

Part 2 (⊂): It can be easily checked that instance Disagree in Fig. 2.1c
does not have any dispute ring and, as pointed out in the proof of Theorem 3.3,
is not safe, hence is not in SUF. �

i

i

“main” — 2010/2/23 — 1:37 — page 40 — #48
i

i

i

i

i

i

40 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

We now show how No-Dispute-Ring and Robust relate to the classes we have
introduced so far.

Relating No-Dispute-Ring to other Classes

As shown in Theorem 3.15, the absence of dispute rings is a necessary condition
for safety under filtering. Investigating the relationships between No-Dispute-

Ring and the other classes is useful for perceiving the distance between this
necessary condition and safety under filtering.

We observe that, starting from an instance S that has a dispute ring and
belongs to Solvable−Unique (see Fig. 3.3), we can easily create a new instance S′

without dispute rings and still belonging to Solvable−Unique. We now show how
to build S′ = (G′ = (V ′, E′),P ′,Λ′) starting from S = (G = (V,E),P,Λ). Let
V ′ = V ∪{a}, with P ′a = {(a 0), ǫ}, E′ = E −{(u, 0) ∈ E}∪{(a, 0)}∪{(u, a) |
(u, 0) ∈ E} and, for each path P ∈ P, replace (0) with (a 0). That is, we
replace vertex 0 with a vertex a that has a single path to 0 and all the paths
are updated to pass through a before reaching 0. It is easy to see that any
dispute ring in S disappears in S′ since vertex a is repeated in all paths. In
this way, we can easily prove the following:

— Solvable ∩ No-Dispute-Ring 6= No-Dispute-Ring (see instance Bad-NO-

RING in Fig. 3.5c). That is, there exist unsolvable instances yet without any
dispute rings.

— No-Dispute-Ring∩Unique * Safe (see instance Naughty-NO-RING in
Fig. 3.5d). That is, there exist instances that have a unique solution and no
dispute rings, but are not safe.

On the other hand, we observe that instances Disagree and Di-Safe-gree

do not have dispute rings just because they violate the condition of having at
least 3 vertices participating in the dispute. We can easily alter them to have a
dispute ring, thus proving that there exists at least one instance that is solvable,
not unique (hence not safe), and has a dispute ring (see instance Disagree-

RING in Fig. 3.5b). Solvable ∩ No-Dispute-Ring − (Safe ∪ Unique) 6= Solvable

Relating Robust to other Classes

A fundamental problem which remains still open is to capture the difference
between SUF and Robust, the two classes that have been introduced to study
guaranteed convergence under faulty conditions. We know from Property 3.4

i

i

“main” — 2010/2/23 — 1:37 — page 41 — #49
i

i

i

i

i

i

3.5. COMPACT ROUTING POLICIES AND CONVERGENCE 41

1

3

0

2

G

aut-num: AS1

import: from AS2 action pref=50;

accept ANY

export: to AS2 announce ANY

import: from AS3 action pref=100;

accept ANY

export: to AS3 announce ANY

Figure 3.6: Example of compact description of routing policies that affect an
exponential number of paths.

that robustness can be viewed as a special case of safety under filtering. In
Chapter 4 we shed some light on the relationship between these two classes.

3.5 Compact Routing Policies and Convergence

As we have seen throughout this chapter, routing policies are modeled in an
SPVP instance (G,P,Λ) by sets P and Λ. Namely, Pv represents all the routes
accepted by vertex v, while λv captures the relative preference assigned to the
accepted routes. [FJB07] stressed the different role of these two components,
distinguishing between the filtering and ranking component, respectively.

We built all the proofs and examples showed up to this point using filtering
and ranking components of constant size with respect to the number of ver-
tices in the graph. This allowed us to explicitly represent filters and rankings
as ordered lists of paths. However, an SPVP instance can have an exponential
number of paths with respect to the number of vertices in the graph, which
makes an explicit representation of the routing policies unfeasible. We are
therefore interested in considering instances that admit a compact description
of both the filtering and the ranking components. Indeed, router configuration
languages are designed to support a compact specification of routing policies,

i

i

“main” — 2010/2/23 — 1:37 — page 42 — #50
i

i

i

i

i

i

42 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

so that network operators can make use of concise commands to perform ac-
tions on a number of entities (e.g., paths, network destinations, etc.) that is
exponential in the network size. Consider, for example, the SPVP instance
in Fig. 3.6. In this instance, vertices 2 and 3 are connected to a graph G
whose density may be, in general, very high. The two vertices may therefore
learn an exponential number of paths to 0. Assume vertex 1 wants to rank
the paths received through 2 better than those received through 3. With an
explicit representation of the routing policies, this would require enumerat-
ing all the possible paths through 2 and 3 and sorting them so that paths
through 2 come before paths through 3. Instead of this verbose and com-
putationally intractable representation, the more succinct policies in Fig. 3.6
can be adopted. The polices are described using the Routing Policy Specifica-
tion Language [AVG+99], a vendor-independent formalism to describe router
configurations. The policies apply different preference values (pref=) to the
announcements on a per-neighbor basis. That is, all the paths that 1 receives
from neighbor AS2 are assigned preference 50 (higher), while all the paths that
1 receives from neighbor AS3 are assigned preference 100 (lower). Most routing
configuration languages adopt a syntax that is functionally similar to the one
of [AVG+99].

In order to study succinct routing policies in an analytical manner, we
now formally define compactly representable routing policies. Let χP be the
characteristic function of set P, defined as

χP(P) =

{

1 if P ∈ P,

0 otherwise.

Given an SPVP instance S = ((V,E),P,Λ), we say that the filtering (rank-
ing) component has a compact representation if χP (respectively, λv) is rep-
resented in polynomial space in |V |. By extension, we say that S itself is
compact if both components have a compact representation. This section deals
with policies that, although compactly representable, allow a number of paths
in P that can be exponential in the size of the network.

Instances without Routing Filters

We say that an SPVP instance (G = (V,E),P,Λ) is unfiltered if, for all v ∈ V −
{0}, Pv consists of all simple paths on G connecting v to 0. In the following we
omit specifying P for unfiltered instances. Observe that the filtering component
of an unfiltered instance has a (trivial) compact representation. Therefore, for

i

i

“main” — 2010/2/23 — 1:37 — page 43 — #51
i

i

i

i

i

i

3.5. COMPACT ROUTING POLICIES AND CONVERGENCE 43

an unfiltered instance to be compact, even the ranking component must have
a compact representation.

Fig. 3.6 shows a compact representation of the routing policies of a fragment
of an unfiltered instance. In the figure, route filters at vertex 1 are such as to
accept (accept ANY) and propagate (announce ANY) every path from/to the
neighbors 2 and 3. The following theorem shows that finding a stable path
assignment on unfiltered instances is not easier than solving Problem 3.1 on a
generic SPVP instance.

Theorem 3.16 The Stable Paths Problem (Problem 3.1) is NP-complete even
for unfiltered instances having arbitrary rankings.

We prove the statement by modifying the gadget presented in [GSW02] in
order to account for routing policies which lack the filtering component. In the
modified gadget, shown in Fig. 3.7, all the paths on the graph are permitted
and a ranking is imposed only on the paths that explicitly appear in the figure,
while sets irru (standing for “irrelevant”) abbreviate all the other paths at
vertex u. Therefore, the instance has exponential size with respect to the
number of vertices. However, since the gadget is unfiltered and the paths in
irru can be ranked arbitrarily after the constant number of paths that appear
explicitly in the figure, the resulting instance has a compact representation and
can be constructed in polynomial time with respect to the size of the original
3-SAT instance.

In order to prove the theorem, we first need the results of the following
lemmas.

Lemma 3.1 Every stable path assignment π for the instance in Fig. 3.7 is
such that π(u) /∈ irru for every vertex u.

Proof: Assume by contradiction that there exists a stable state π, reached at
time t̄, such that π(u) ∈ irru for some vertex u. We have the following cases:

(i) u is either one of the Xi vertices or B0. However, since π(0) = (0) by
definition, there exists a time t′ > t̄ such that (u 0) ∈ rib-int(u) for
any t > t′. This, together with the fact that λu((u 0)) < λu(P) for all
P ∈ irru, contradicts the assumption that π is stable.

(ii) u is one of the vertices Bi, i = 1, 2, 3. By the previous argument we
have that π(B0) = (B0 0) which, in turn, implies the existence of a
time t′′ > t̄ such that (Bi B0 0) ∈ rib-int(Bi) for any t > t′′. The fact

i

i

“main” — 2010/2/23 — 1:37 — page 44 — #52
i

i

i

i

i

i

44 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

C

0

C X̄5 0
C X3 0
C X7 0

irrC

C B1 B2 B0 0

C B1 B0 0

B1

B2

B0

B3

irrB3

B3 B1 B0 0

B3 B0 0

irrB2

B2 B3 B0 0

B2 B0 0

B0 0

irrB0

X5 X̄5 0

irrX5

X5 0

X̄5 X5 0

irrX̄5

X̄5 0

B1 C X3 0
B1 C X̄5 0

B1 C X7 0

irrB1

B1 B2 B0 0

B1 B0 0

X5 X̄3X3X̄7X7X̄5

Figure 3.7: An SPVP gadget used to reduce 3-SAT to an unfiltered SPVP

instance. Vertex C (with thicker stroke) models a single 3-SAT clause C =
x3 ∨ x̄5 ∨ x7. Vertices Xi and X̄i compose a Disagree gadget for each literal
appearing in the clause. A Bad-Gadget is built using nodes Bi, i = 0, 1, 2, 3.
For each vertex u a ranking is imposed only on explicitly represented paths,
while set irru abbreviates all the other paths. Path rankings at X3, X̄3, X7, X̄7

are omitted for brevity.

that λBi((Bi B0 0)) < λBi(P) for all P ∈ irrBi
again contradicts the

assumption that π is stable.

(iii) u = C. If this is the case, we show that either π(B1) = (B1 B2 B0 0)
or π(B1) = (B1 B0 0). In fact, by the previous argument we know that
π(B1) /∈ irrB1

. Moreover, the only paths passing through C that B1 can
select in state π are those in irrB1

: doing otherwise would imply π(C) 6∈
irrC . Hence, there exists a time instant t′′′ > t̄ such that P ∈ rib-int(C)
for any t > t′′′, where P ∈ {(C B1 B2 B0 0), (C B1 B0 0)}. Since
λC(P) < λC(Q) for all Q ∈ irrC , π cannot be a stable path assignment,
once more yielding a contradiction.

i

i

“main” — 2010/2/23 — 1:37 — page 45 — #53
i

i

i

i

i

i

3.5. COMPACT ROUTING POLICIES AND CONVERGENCE 45

�

Lemma 3.2 The instance in Fig. 3.7 has no stable path assignments π such
that π(C) = (C B1 B2 B0 0) or π(C) = (C B1 B0 0).

Proof: Assume by contradiction that a stable state π exists such that π(C) =
(C B1)P , P ∈ {(B1 B2 B0 0), (B1 B0 0)}, which implies that π(B1) = P . Due
to the Bad-Gadget built up by vertices B0, B1, B2, B3, state π cannot be
stable for at least one of the Bi vertices. �

We are now able to prove Theorem 3.16.
Proof of Theorem 3.16. Because of Lemmas 3.1 and 3.2, the gadget in

Fig. 3.7 admits a stable state if and only if the corresponding 3-SAT clause is
satisfied. The gadget is indeed equivalent to the one used in [GSW02], in the
sense that it admits the very same solutions, although it does not require route
filtering. It is therefore possible to use the same construction as in [GSW02]
to prove the NP-completeness of the Stable Paths Problem for unfiltered in-
stances.

Instances with Next-hop Based Rankings

The great majority of ASes usually configure their policies based solely on the
first hop in the route. Therefore, a straightforward example of a ranking func-
tion which has a practical interest is next-hop based ranking. More formally,
an instance S = ((V,E),P,Λ) of SPVP is said to have next-hop based rankings
if, for all distinct vertices u, v, and w, we have

λu((u v)Pv) < λu((u w)Pw) ⇒ λu((u v)P ′
v) < λu((u w)P ′

w)

for all Pv, P ′
v ∈ Pv and Pw, P ′

w ∈ Pw. That is, the ranking function λu is based
on the next hop of each path in Pu. For example, it is easy to check that
vertices 7 and 8 in Costomer (Fig. 3.4i) do not. In fact, considering vertex
7, the ranking is such that λ7((7 6 0)) < λ7((7 8 5 0)) < λ7((7 6 5 0)), and a
similar argument applies to vertex 8.

Observe that algorithm SPVP ensures that two paths from the same neigh-
bor of vertex v are never compared by v. Hence, in this case, ranking the paths
that traverse the same neighbor does not make sense, and they can all be con-
sidered as having the same value of λv. As a consequence, next-hop based
rankings always admit a compact representation consisting of a total order of
the neighbors of each vertex. Fig. 3.6 shows an example of compact representa-
tion of next-hop based rankings. Vertex 1 prefers all the paths through 2 over

i

i

“main” — 2010/2/23 — 1:37 — page 46 — #54
i

i

i

i

i

i

46 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

all the paths through 3, and this is specified by assigning a higher preference
value to all the announcements received from 2 without distinction. The state-
ment from AS2 indicates that the preference applies to all the paths announced
by vertex 2, while the statement accept ANY specifies that these paths are all
assigned the same preference. A similar argument applies to vertex 3.

Similarly, a filtering component is next-hop based if

(u v)Pv ∈ Pu ⇒ ∀P ′
v ∈ Pv : (u v)P ′

v ∈ Pu

That is, the filtering component only considers the next hop in each path.
As it happens for next-hop based rankings, also next-hop based filters al-

ways admit a compact representation, simply consisting of the list of (un)filtered
neighbors for each vertex.

Theorem 3.17 Every unfiltered instance S = ((V,E),Λ) with next-hop based
rankings admits a stable state π. Moreover, π can be computed in polynomial
time (derived from [FSS06]).

Proof: Let G′ = (V,E′ = {(u, v), (v, u) | (u, v) ∈ E}) be a directed graph
and let δ be a weighing function δ : E′ → N such that δ(u, v) = k if v is the
kth vertex when sorting u’s neighbors by decreasing values of λu. We consider
a maximum-weight directed spanning tree (MDST) on G′ rooted at vertex 0.
Such a tree has exactly one path from 0 to every other vertex v ∈ V , and
is therefore also called a maximum-weight spanning 0-arborescence. We first
prove that an MDST on G′ corresponds to a stable state of S. Let T ⊆ E′

be a MDST on G′ and let π be the path assignment induced by T , that is,
∀(u, v) ∈ E′ : π(v) = (v u)π(u) and π(0) = (0). Suppose by contradiction
that π, reached at some time t, is not stable. Hence, there exists at least a
vertex v for which π(v) 6= bestt(v). Let u1, . . . , um and w be the successors
and the predecessor of v in T , respectively, i.e., (w, v) ∈ T and (v, ui) ∈ T , i =
1, . . . ,m. Observe that path bestt(v) cannot have ui as next hop, since π(ui) =
(ui v w)π(w), or can have w as next hop, since π(v) 6= bestt(v). Therefore, we
conclude that ∃x ∈ V : (v x)π(x) = bestt(v), where x 6∈ {u1, . . . , um, w} and
δ(x, v) > δ(w, v). Hence T ′ = (T ∪ {(x, v)}) − {(w, v)} is a spanning tree that
has a strictly higher weight than T , contradicting the hypothesis of T being a
MDST. The statement follows by noting that an MDST always exists and is
computable in polynomial time [FSS06]. �

Observe that the practical relevance of this result is impaired by the fact
that, while next-hop based rankings are very common, routing configurations
that do not make use of filters are really unlikely.

i

i

“main” — 2010/2/23 — 1:37 — page 47 — #55
i

i

i

i

i

i

3.5. COMPACT ROUTING POLICIES AND CONVERGENCE 47

We now show that, despite the fact that a stable state is guaranteed to
exist when next-hop based rankings are in place, the same does not hold for
next-hop based filters.

Theorem 3.18 Consider an SPVP instance S having next-hop based filters
and arbitrary rankings. S is not guaranteed to have a stable state. Moreover,
deciding whether S admits a stable state is NP-hard (derived from [GSW02]).

Proof: Consider again the gadget in Fig. 3.7 unmodified. In this gadget it
is trivially true that every vertex that accepts a path from a neighbor v also
accepts any other path from v. That is, the filtering components in the gadget
in Fig. 3.7 are next-hop based. Therefore, provided that the explicitly described
rankings are adopted, the same argument used in the proof of Theorem 3.16
applies. �

Theorem 3.19 Consider an SPVP instance S having next-hop based rankings
and arbitrary filters. S is not guaranteed to have a stable state. Moreover,
deciding whether S admits a stable state is NP-hard (derived from [GSW02]).

Proof: The same arguments as in the proof of Theorem 3.18 can be applied.
�

Table 3.1 summarizes the computational complexity of the Stable Paths
Problem under different assumptions on the ranking and filtering components.
Observe that determining the complexity for the case in which both the ranking
and the filtering components are next-hop based is still an open problem.

A natural generalization of next-hop based preferences are class based rout-
ing policies [JR04]. The ranking (filtering) component of a routing policy is
class based if function λv (respectively, χv

P) at vertex v ranks (filters) paths
according to a total order defined on a partition of v’s neighbors into classes.
That is, vertex v prefers paths announced by neighbors in class Cj to paths
announced by neighbors in class Ck, k > j, and does not accept paths from
neighbors in specific classes. The set of available classes is a network-wide
constant. Observe that customer-provider instances are a special case of class
based instances where each vertex partitions its neighbors into 3 classes: cus-
tomers, peers, and providers. In [JR04] a polynomial time algorithm is shown
that decides whether an SPVP instance having a dispute wheel can be built
given an input specification of class based routing policies.

i

i

“main” — 2010/2/23 — 1:37 — page 48 — #56
i

i

i

i

i

i

48 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

Rankings

Arbitrary Next-hop based

F
il
t
e
r
s Arbitrary NP-complete (Theorem 3.1) NP-hard (Theorem 3.19)

Unfiltered NP-complete (Theorem 3.16) constant (Theorem 3.17)
Next-hop based NP-hard (Theorem 3.18) ?

Table 3.1: Computational complexity of the Stable Paths Problem for different
classes of routing policies. The question mark represents an open problem.

3.6 Solving or Detecting Routing Oscillations

Immediately after the existence of intrinsically unstable BGP configurations
had been proved, lots of research efforts started focusing on modifications to
the BGP protocol that guarantee the absence of routing oscillations. Unfor-
tunately, the widespread use of BGP, together with the large basis of legacy
equipment, make deploying changes to the protocol an extremely hard task.
Hence, none of the proposed modifications to BGP has ever seen substantial
deployment out of network research labs. In this section, we briefly present
several solutions that have been proposed in the literature, and highlight the
trade-offs between advantages and costs.

SPVP-3

We have shown in Section 2.3 that SPVP is an abstract representation of BGP.
In [GW00], extensions to the basic SPVP protocol are proposed in order to de-
tect (SPVP-2) and automatically solve (SPVP-3) possible policy-based proto-
col oscillations. The idea behind SPVP-2 is the following: every time a vertex
v is about to advertise a path P , it adds to the announcement some information
regarding the sequence of events that led v to select P . The SPVP protocol
is therefore extended with a new piece of information in each announcement.
More formally, we define a path change event to be a pair e = (s, P) where
s ∈ {+,−} is the sign of e, and P is a path. The path change event e = (+, P),
where P = (u . . . 0), indicates that vertex u has switched to path P because it
received an announcement advertising path P , and u ranks P better than its
previous best path. On the other hand, e = (−, P) indicates that u was forced
to select P because the previously selected best path was made unavailable. A
path history h is either the empty history ♦, or a sequence h = (ek ek−1 . . . e1)
of path change events ei, where event ei is subsequent to event ei−1. A history

i

i

“main” — 2010/2/23 — 1:37 — page 49 — #57
i

i

i

i

i

i

3.6. SOLVING OR DETECTING ROUTING OSCILLATIONS 49

h is said to contain a cycle if there exist two distinct events ei and ej that
contain the same path, i.e., ei = (si, P) and ej = (sj , P).

SPVP-2 is simply an extension of SPVP which is able to dynamically
compute and store histories in a distributed manner. Each message of the
protocol consists of a pair (P, h) where P is a path and h is an history. Upon
receiving a message (P, h) from neighbor v, vertex u performs the same actions
as in SPVP (see Section 2.3). Additionally, if the currently selected path is no
longer the best path, then u builds a new history by prepending a new path
change event e = (s, P) to h. Then, u propagates a message (Q, h′) to its
neighbors, where Q is the new best path, and h′ is the concatenation of event
e and the old history h.

Intuitively, each time there is a policy-based oscillation in SPVP-2, there
will be a cycle in the history h. We can formalize this intuition by the following
theorems. The first one shows that SPVP-2 is correct, while the second proves
the completeness.

Theorem 3.20 The detection of a cycle in a path history means that a policy-
based oscillation has been dynamically realized. Furthermore, the paths involved
in the cycle describe the policy conflicts that generate the oscillation [GW00].

Theorem 3.21 If a policy-based protocol oscillation persists, then all oscillat-
ing nodes will eventually detect cycles in path histories [GW00].

So far, it is clear that SPVP-2 is only able to detect the persistent oscil-
lations – it does not provide mechanisms to solve them. However, it is pretty
straightforward to devise a further extension of the protocol that suppresses the
paths involved in a cycle in some path history. More precisely, SPVP-3 is an
extension of SPVP-2 with a simple additional step: after computing the new
best path P and the new path history h, vertex u checks whether h contains
a cycle. If not, the execution proceeds as in SPVP-2. Otherwise, path P is
removed from Pu, and a new computation of the best path is triggered. This
modification forces the first vertex which detects a cycle to permanently filter
the path causing the cycle, hence fixing the resulting oscillation. Theorem 3.22
proves that SPVP-3 is free from oscillations. However, we argue that, since
SPVP-3 is allowed to modify P, this does not correspond to solving Prob-
lem 3.1 on the original instance S = (G,P,Λ) of SPVP: instead, the filtering
step of SPVP-3 builds a new instance S′ = (G,P ′,Λ) on which it computes a
stable path assignment.

i

i

“main” — 2010/2/23 — 1:37 — page 50 — #58
i

i

i

i

i

i

50 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

Theorem 3.22 Given an SPVP instance S = (G,P,Λ), SPVP-3 builds a
new instance S′ = (G,P ′,Λ) with P ′ ⊆ P such that S′ always converges to a
stable path assignment [GW00].

Global Precedence

The major drawback of SPVP-3 is that routing histories tend to be large in
size, thus causing lots of overhead in protocol communication. [ERC+07] try
to tackle this drawback by proposing an extension of SPVP which only carries
additional information of limited size, that can be represented by a natural
number). This additional attribute is referred to as the global precedence met-
ric. The distributed algorithm is modified so that the best path is computed
considering only those announcements that have a minimal precedence value.
More precisely, a message m = (P, α) consists of a path P and a precedence
α. Define prt(u, α) as the set of announcements in rib-int(u ⇐ w), for all
the neighbors w of u, that have exactly α as the precedence metric. Let α1

be the smallest precedence value such that prt(u, α1) is not empty. Finally,
let usablet(u) = prt(u, α1). The selection step is then redefined such that
bestt(u) = arg minλu(usablet(u)). Upon receiving a message (P, α), vertex u
performs the usual steps of SPVP, though with the modified selection step
introduced above. After selecting the new best path Q, u computes the local
precedence of Q, lpu(Q), as follows: first, u builds the set of received announce-
ments A =

⋃

w rib-int(u ⇐ w), for all w neighbors of u; then, lpu(Q) is given
by the position of Q in A, sorted by increasing values of λu. Finally, u propa-
gates the message (Q, α+lpu(Q)) to every neighbor. Intuitively, u is using the
precedence metric to inform its neighbors about the ranking u assigns to the
announced path Q.

It is interesting to observe that this mechanism forces a route that is most
preferred at all ASes along its path to be tagged with global precedence 0 at all
its hops. Under these circumstances, the protocol behaves exactly like standard
SPVP. Conversely, whenever a message (P, α) is received and α > 0, there
must exist some node along path P which is not selecting its most preferred
route. It is possible to prove that, given a dispute wheel Π = (~U , ~Q, ~R), the
global precedence metric will eventually force one vertex ui to advertise path Qi

with a non-zero precedence value. The dispute wheel Π will then be prevented
from oscillating as path Ri−1Qi will have a higher precedence than path Qi−1.
Hence, no dispute wheel will be able to generate a persistent oscillation, yielding
the following results:

i

i

“main” — 2010/2/23 — 1:37 — page 51 — #59
i

i

i

i

i

i

3.6. SOLVING OR DETECTING ROUTING OSCILLATIONS 51

Theorem 3.23 Enforcement of the global precedence metric prevents oscilla-
tions in SPVP [ERC+07].

Theorem 3.24 If a policy-based protocol oscillation persists, then some SPVP

updates will forcedly advertise a non-zero precedence value [ERC+07].

The Cost of Guaranteed Convergence

The two modifications to SPVP we discussed in this section work by either re-
moving (SPVP-3) or re-ranking (global precedence) some specific paths. This
corresponds to sacrificing strict enforcement of the locally defined routing pol-
icy for the sake of guaranteed convergence. In other words, some ASes will
lose part of the autonomy that allowed them to independently specify their
own routing policies. Quantifying such a loss of autonomy is intrinsically a
hard task. However, both solutions adopt a lazy approach: the fix is auto-
matically applied only when an oscillation is actually detected. Under normal
circumstances, no restrictions are applied and the standard SPVP protocol is
used.

The possibility of influencing the choice at a neighboring AS by forging a
crafted BGP message allows misbehaving ASes to maliciously affect the selec-
tion of particular paths at a victim AS. To some extent, this scenario is partially
already realizable in SPVP by advertising spoofed paths. However, since ASes
can autonomously rank paths according to their own needs, the possibility of
announcing forged paths does not directly cause a loss of autonomy. Unfor-
tunately, both SPVP-3 and global precedence exacerbate this problem: the
protocol has no way to prevent misbehavior, and a misbehaving AS can force a
neighbor to filter (SPVP-3) or rerank (global precedence) a route. Moreover,
detecting misbehaving ASes is, in general, a very hard task. This is one of
the major reasons driving the study and experimentation of BGP variants that
aim at adding some degree of security to the protocol [KLMS00].

One important difference between the two solutions is the way transient os-
cillations are dealt with. Recall that SPVP-3 filters a path as soon as it detects
a cycle in the corresponding path history. This implies that even transient os-
cillations, i.e. oscillations that are dependent on particular message timings and
thus have extremely small probability of lasting, will be fixed by automatically
installing permanent filters at some ASes. In comparison, the global precedence
approach allows much more flexibility: transient oscillations will be handled by
forcing a local reranking via the global precedence attribute, however, in the
steady state, the global precedence value will influence rankings only if there ex-

i

i

“main” — 2010/2/23 — 1:37 — page 52 — #60
i

i

i

i

i

i

52 CHAPTER 3. THEORETICAL LITERATURE ON BGP STABILITY

SPVP-3 Global Precedence
message overhead large small
loss of autonomy automatic filters automatic rankings

transient oscillations permanent filtering temporary reranking

misbehavior
no prevention, no prevention,
no detection limited detection 1

Table 3.2: A qualitative comparison between two oscillation-free SPVP vari-
ants.

ists a persistent oscillation which is being prevented (Theorem 3.24). Table 3.2
summarizes the comparison between the two SPVP variants we introduced in
this section.

Proposing variations of BGP that are guaranteed to converge is continu-
ously attracting the attention of researchers. General guidelines for the design
of policy-based path vector protocols are given in [GJR03]. A variation of
BGP that allows a router to customize the route selection on behalf of each
neighbor has been presented in [WSR09]. Modifications to iBGP are proposed
in [CGM03, MC04a, KCM04].

In [HW08] is described a variant of the SPVP model where vertices assign
fractional weights to paths instead of simply selecting them. [HW08] shows
that every instance of this model admits a solution, and [Kin08] describes a
distributed protocol to compute a stable solution where rankings are within a
factor ǫ from the optimum.

Many other contributions have been proposed in the literature to modify
BGP in such a way to improve its convergence properties [AKS06, BBAS03,
LXHL02, PZW+02, ZAL04]. However, a detailed discussion of those approaches
is out of the scope of this thesis.

1The detection process involves further modifications to the protocol, and only works for
special kinds of misbehavior.

i

i

“main” — 2010/2/23 — 1:37 — page 53 — #61
i

i

i

i

i

i

Chapter 4

Characterization of eBGP Safety

Under Filtering∗

4.1 Introduction and Related Work

BGP provides Autonomous Systems (ASes) with the autonomy to set routing
policies independent of each other, and with the expressiveness to specify ex-
tremely complex configurations. However, autonomy and expressiveness come
at the expense of guaranteed convergence. In particular, a BGP configuration
could never reach a stable routing, either because a stable state for that con-
figuration does not exist at all, or because the protocol gets “trapped” into
bad event timings. This is highly undesirable, since it has been observed that
interdomain routing changes can cause performance degradation and packet
loss [WMW+06], and continuously changing routing can severely affect the
availability of services [KKK07]. The need to avoid such disadvantages has
spurred significant research efforts on BGP stability.

Varadhan et al. [VGE00] showed that autonomy in configuring routing poli-
cies can lead to persistent routing oscillations, and proposed constraints to be
applied to routing policies in order to achieve safety, i.e., stability under any
timings of routing events. A number of fundamental contributions on this topic

∗Part of the material presented in this chapter is based on the following publication

• L. Cittadini, G. Di Battista, M. Rimondini, S. Vissicchio. Wheel + Ring = Reel: the
Impact of Route Filtering on the Stability of Policy Routing. In Proc. International
Conference on Network Protocols (ICNP 2009), IEEE, 2009.

53

i

i

“main” — 2010/2/23 — 1:37 — page 54 — #62
i

i

i

i

i

i

54
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

are due to Griffin et al. [GW99, GW00, GSW99, GSW02]. Among the results
they presented, those works showed how the dynamic behavior of BGP can
be related to characteristics of the BGP configuration that can be statically
analyzed. In particular, in [GSW02] it is shown that the absence of a dispute
wheel (DW), a cyclic pattern of routing preferences, is sufficient to guarantee
safety.

The “no DW” condition is a cornerstone in the literature on BGP stabil-
ity. As an example, Gao et al. [GR00, GGR01] used the absence of DWs to
prove that, if routing policies are specified consistently with the commercial
relationships between ASes, safety is guaranteed.

In [kC06] Chau took into account the general case in which non-strict path
rankings can be expressed. Even in this case, the absence of DWs is funda-
mental to guarantee safety.

Feamster et al. [FJB07] explored the impact of autonomy and expressive-
ness on the stability of the BGP protocol by distinguishing the roles of the
ranking and filtering components of routing policies. Ranking allows an AS
to specify preferences over multiple candidate routes to the same destination,
while filtering allows an AS to selectively advertise specific routes to specific
neighbors. A crucial question is posed in [FJB07]: “provided that each AS re-
tains complete autonomy and complete filtering expressiveness, how expressive
can rankings be while guaranteeing stable routing?”. This question is formal-
ized by the concept of safety under filtering (Problem 3.4). A configuration is
safe under filtering if it is safe under any combination of route filters. A neces-
sary condition for safety under filtering is the absence of a particular subclass
of DWs, called dispute rings [FJB07].

In this chapter, we make three main contributions. First, we show a nec-
essary and sufficient condition for safety under filtering, filling the large gap
between previously known necessary and sufficient conditions. To the best of
our knowledge, this is the first characterization of stability in policy routing
under realistic assumptions about the autonomy of ASes. Our result is based
on the presence of a structure called dispute reel (DR), which is both a special
case of a DW and a generalization of a dispute ring. Dispute reels inherit from
DWs the interesting property of depending on routing policies alone. Hence,
checking for the presence of a DR does not require to delve into the details of
BGP dynamics.

Second, we show that, in a network admitting multiple stable routing states,
safety under filtering is provably compromised. In particular, whenever the
existence of multiple stable states is detected, we provide a way for network
operators to pinpoint the portions of the BGP configuration which define a

i

i

“main” — 2010/2/23 — 1:37 — page 55 — #63
i

i

i

i

i

i

4.2. WHEEL + RING = REEL 55

DR (thus making the configuration not safe under filtering). Observe that this
implies that the so called BGP wedgies [TG05] are an hallmark for unsafety
under filtering.

Third, we show that robustness (Problem 3.3) does not necessarily imply
safety under filtering. Robustness is the property of a configuration to be safe
under any combination of link/node failures [GSW02]. It is known that safety
under filtering implies robustness (see Property 3.4). We explore the relation-
ship between those two properties by showing that the opposite does not hold.
In a sense, this proves that the autonomy of adding (possibly misconfigured)
filters can do more harm than network faults.

The popularity of DWs in the literature on the stability of policy-based
protocols is mostly due to the fact that the “no DW” condition implies the
existence of a unique stable routing state [GSW02], safety [GSW02], robust-
ness [GSW02], and safety under filtering [FJB07]. As a side effect of our work,
we show that DRs can replace DWs, giving raise to less constraining sufficient
conditions for all those properties.

The chapter is structured as follows. Section 4.2 defines the concept of
dispute reel. Section 4.3 (4.4) proves that the absence of a dispute reel is a
necessary (sufficient) condition for safety under filtering. In Section 4.5 we
discuss the relationship between safety under filtering and robustness. Conclu-
sions are drawn in Section 4.6.

4.2 Wheel + Ring = Reel

It is shown in [FJB07] that safety under filtering can be studied by analyz-
ing structural properties of the policy configuration, without the need to deal
with the details of dynamic evaluation. The main known structural properties
that are related to safety under filtering are based on the absence of cyclic
dependencies among routing preferences, which are called dispute wheels and
dispute rings. We briefly define these two concepts using the SPVP model (see
Chapter 2).

As we discussed in Section 3.2, a dispute wheel (DW) [GSW02] Π = (~U , ~Q, ~R)

is a triple consisting of a sequence of nodes ~U = (u0 u1 . . . uk−1) and two se-

quences of nonempty paths ~Q = (Q0 Q1 . . . Qk−1) and ~R = (R0 R1 . . . Rk−1)
such that for each i = 0, . . . , k − 1 we have:

(i) Ri is a path from ui to ui+1

(ii) Qi ∈ Pui

i

i

“main” — 2010/2/23 — 1:37 — page 56 — #64
i

i

i

i

i

i

56
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

SUF

NO dispute ring

HAS A

STATE

STABLE
NO DW SAFE

Figure 4.1: The absence of a dispute ring (wheel) is a necessary (sufficient)
condition for safety under filtering [FJB07].

(iii) RiQi+1 ∈ Pui

(iv) λui(RiQi+1) ≤ λui(Qi)

We call vertices ui pivot vertices, paths Qi spoke paths, and paths Ri rim
paths. Throughout the chapter, we intend subscripts of vertices and paths in
a dispute wheel to be interpreted modulo k where k = |~U|. The absence of a
dispute wheel implies safety under filtering (see Theorem 3.14).

Feamster et al. show in [FJB07] that the absence of a particular class of
dispute wheels, called dispute rings, is a necessary condition for safety under
filtering. A dispute ring is a dispute wheel having at least three pivot vertices,
and such that each vertex appears only once in the wheel We refer to Section 3.4
for a more formal definition of dispute ring. Figure 4.1 shows how the “no
dispute wheel” and “no dispute ring” conditions relate to the properties of an
SPVP instance. We stress that there is a large gap between the two conditions,
as the absence of a dispute ring does not guarantee safety, and does not even
imply that the SPVP instance admits a stable path assignment.

We now define a dispute reel as a special case of dispute wheel. Intuitively,
a reel is a dispute wheel such that the spoke paths form a tree T and each rim
path Ri contains no vertex in T except ui and ui+1. In order to formally define
the dispute reel, we use the notation P [v] to denote the sub-path of P starting
at vertex v, that is, P = (u . . . v)P [v]. This implies P [0] = (0) for any P .

Definition 4.1 A dispute reel (DR) is a dispute wheel which satisfies the fol-
lowing conditions:

(i) (Pivot vertices appear in exactly three paths) – for each ui ∈ ~U , ui only
appears in paths Qi, Ri and Ri−1.

i

i

“main” — 2010/2/23 — 1:37 — page 57 — #65
i

i

i

i

i

i

4.2. WHEEL + RING = REEL 57

20

210

2130

30

320

3210

10

130

1320

0

31

2

Figure 4.2: An SPVP instance, showed in [FJB07], which is safe under filtering
but contains DWs. However, none of these DWs is a DR.

(ii) (Spoke and rim paths do not intersect) – for each u 6∈ ~U , if u ∈ Qi for
some i, then no j exists such that u ∈ Rj.

(iii) (Spoke paths form a tree) – for each distinct Qi, Qj ∈ ~Q, if v ∈ Qi ∩Qj,
then Qi[v] = Qj [v].

We stress that the existence of a DR does not depend at all on the protocol
dynamics, i.e., it is a structural property of the policy configuration that can
be statically checked. It is easy to check that Disagree (Figure 2.1c) is an
example of a DR. Conversely, the instance in Figure 4.2, first used in [FJB07]
to show that the presence of a DW does not prevent an instance from being
safe under filtering, does not contain any DRs. As an example, a DW Π
exists in Figure 4.2 where pivot vertices are ~U = (1 2 3), spoke paths are
~Q = ((1 0) (2 0) (3 0)), and rim paths are ~R = ((1 3 2) (2 1 3) (3 2 1)).
However, pivot vertex 1 appears in all rim paths, thus violating Condition (i)
of Definition 4.1. On the other hand, the instance in Figure 4.2 also contains
the DW Π′ where pivot vertices are u0 = 1 and u1 = 2, spoke paths are
Q0 = (1 3 0) and Q1 = (2 0), and rim paths are R0 = (1 3 2) and R1 = (2 1).
Π′ too is not a DR because Condition (ii) is not satisfied, as vertex 3 appears
both in Q0 and in R0. Similar arguments can be applied to the other DWs in
the instance in Figure 4.2.

An even simpler dispute wheel is the dispute duo.

Definition 4.2 A dispute duo is a dispute reel such that |~U| = 2 and R0∩R1 =
{u0, u1}.

i

i

“main” — 2010/2/23 — 1:37 — page 58 — #66
i

i

i

i

i

i

58
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

Qi+1

Qi

ui

ui+1

Q0

u0

R0

Q1

u1

Ri

(a) All-spoke path assignment π̄.

Qi+1

Qi

ui

ui+1

Q0

u0

R0

Q1

u1

Ri

(b) One-rim path assignment π̄i.

Figure 4.3: Two special path assignments of a dispute reel. The selected paths
are highlighted using solid stroke. Note that in π̄i, ui is the only vertex in Qi

which is not selecting a sub-path of Qi.

The simple structure of DRs allows us to identify two classes of activation
sequences leading to two “natural” classes of path assignments. Given an
SPVP instance S containing a DW Π, the supporting instance S[Π] of Π is
the minimal SPVP instance which contains the vertices, edges and paths of Π.
Intuitively, S[Π] can be obtained from S by filtering all paths but those used
in the DW. Observe that, if Π is a DR, then in S[Π] pivot vertices have exactly
two permitted paths, and vertices along the spoke paths (except pivots) have
exactly one permitted path.

Let S be an SPVP instance containing a DR Π and let S[Π] be the sup-
porting instance of Π. The all-spoke path assignment (see Figure 4.3a) is a
path assignment π̄ such that π̄(u) = Qi[u] if u ∈ Qi, π̄(u) = ǫ otherwise.
Since spoke paths form a tree, by activating the edges of each spoke path Qi

in reverse order (starting from 0) it is easy to construct an activation sequence
σspoke leading to an all-spoke path assignment.

Similarly, we define the one-rim path assignment for pivot ui (see Fig-

i

i

“main” — 2010/2/23 — 1:37 — page 59 — #67
i

i

i

i

i

i

4.3. SAFETY UNDER FILTERING IMPLIES NO DR 59

ure 4.3b) as a path assignment π̄i such that:

π̄i(u) =











Qj [u] if u ∈ Qj , u 6= ui

Ri[u]Qi+1 if u ∈ Ri

ǫ otherwise.

In order to build an activation sequence that leads to π̄i, we can extend
σspoke by activating the edges of Ri in reverse order (starting from ui+1). This
is always possible because rim paths never intersect spoke paths and for each
non-pivot vertex along Ri, π̄(v) = ǫ.

4.3 Safety Under Filtering implies no DR

In this section we show that the absence of DRs is a necessary condition for
safety under filtering. We do this by showing that the presence of a DR in
an SPVP instance S makes S not safe under filtering. The proof consists
of three parts. First, we show that if S contains a dispute duo, then S is
not SUF (Lemma 4.1). Second, we generalize this result by stating that if S
contains a DR consisting of two pivot vertices, then S is not SUF (Lemma 4.2).
Last, we show that if an instance S contains a DR Π, then an oscillation can
always be constructed, either by cycling through one-rim path assignments on
Π (Lemma 4.3), or by exploiting a different DR consisting of two pivot vertices
(Lemma 4.4). Thus, S is not safe under filtering.

Dispute Reels with 2 Pivots

We start by showing that the presence of a dispute reel having 2 pivot vertices
makes an SPVP instance not safe under filtering. First, we generalize the
routing oscillation showed in Table 2.2 for Disagree to the broader class of
dispute duos.

Lemma 4.1 An SPVP instance that contains a dispute duo is not safe under
filtering.

Proof: Let S be an SPVP instance containing a dispute duo Π = (~U , ~Q, ~R)
and consider S[Π]. We now construct a fair activation sequence that induces an
oscillation on S[Π]. The main idea is that vertices u0 and u1 can simultaneously
select paths π(u0) = R0Q1 and π(u1) = R1Q0. Path assignment π is clearly
not stable as u0 and u1 are both convinced that the other vertex is offering a

i

i

“main” — 2010/2/23 — 1:37 — page 60 — #68
i

i

i

i

i

i

60
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

feasible path to 0. For this reason, the two pivot vertices will eventually fall
back on their spoke paths Q0 and Q1. By iterating this argument, we are able
to show an infinite fair activation sequence.

First of all, since Π is a DR, we can construct on S[Π] an activation sequence
that leads to the all-spoke path assignment πt1 at some time t1. We now
propagate the announcement of path Q1 (respectively, Q0) by activating the
edges along R0 (R1) in reverse order. Since R0 and R1 have no shared vertices
other than u0 and u1, the two announcements cannot interfere with each other.
We halt one hop before the announcement of Q1 (Q0) reaches u0 (u1). Formally,
let R0 = (v0 v1 . . . vk), where v0 = u0 and vk = u1. We activate edges in R0 in
reverse order until we hit v1, that is,

σR0
= ({(vk, vk−1)} {(vk−1, vk−2)} . . . {(v2, v1)}).

Symmetrically, let R1 = (w0 w1 . . . wj), and consider the sequence

σR1
= ({(wj , wj−1)} {(wj−1, wj−2)} . . . {(w2, w1)}).

We activate edges according to σR0
, and then according to σR1

. Then, we
simultaneously activate edges (v1, v0) and (w1, w0). Observe that the simulta-
neous activation of edges (v1, v0) and (w1, w0) makes path R0Q1 available at
u0, and path R1Q0 available at u1. It is easy to check that these activations
lead to a path assignment πt2 such that, for i ∈ {0, 1}:

πt2(u) =

{

Qi[u] if u ∈ Qi, u 6= ui

Ri[u]Qi+1 if u ∈ Ri

We now activate edges in R0 (R1) in reverse order, again halting at v1 (w1),
and then we simultaneously activate edges (v1, v0) and (w1, w0). By doing so,
vertex u0 (u1) withdraws the availability of path Q0 (Q1). Since R0 and R1

do not have vertices in common other than u0 and u1, the withdrawal will
eventually reach vertex u1 (u0). Vertex u1 (u0) will then fall back on path
Q1 (Q0). Observe that we have now reached the all-spoke path assignment
πt3 , which implies πt3(u) = πt1(u) for every vertex u. Since we can iterate this
argument, it is clear that there exists an infinite activation sequence. Moreover,
no announcement is delayed indefinitely, i.e., the activation sequence is also fair
on S[Π]. The proof is completed by noting that S[Π] can be obtained by S
through path filtering, hence we conclude that S is not SUF. �

Lemma 4.1 can be generalized, as DRs having two pivot vertices always
imply the existence of a dispute duo. As an example, consider the instance in

i

i

“main” — 2010/2/23 — 1:37 — page 61 — #69
i

i

i

i

i

i

4.3. SAFETY UNDER FILTERING IMPLIES NO DR 61

10

1XYZ20

XYZ20

X10 2ZXY10

20

ZXY10

Z20Y10

YZ20

0

1 X 2Y Z

Figure 4.4: An SPVP instance containing a DR consisting of two pivot vertices
(1 and 2) and whose rim paths intersect at vertices X, Y , and Z.

Figure 4.4. Clearly, this instance contains a DR having u0 = 1 and u1 = 2 as
pivot vertices, Q0 = (1 0) and Q1 = (2 0) as spoke paths, and R0 = (1 X Y Z 2)
and R1 = (2 Z X Y 1) as rim paths. Notice that both rim paths traverse
vertices X, Y , and Z. We now search for a dispute duo. Walk along R1 and
stop at the last vertex which is in R1 ∩ R0, that is, Y . By analyzing λY , it
is easy to see that there exists another DR having Y and 2 as pivot vertices,
(Y 1 0) and (2 0) as spoke paths, and (Y Z 2) and (2 Z X Y) as rim paths.
Note that the rim paths of this DR do not intersect at vertex X. We now
repeat the process on the new DR, considering vertex Z. It is easy to see that
there exists a dispute duo having Z and Y as pivot vertices. The following
lemma generalizes the approach we just showed to any DR having two pivot
vertices.

Lemma 4.2 An SPVP instance that contains a dispute reel having exactly 2
pivot vertices is not safe under filtering.

Proof: Let S be an SPVP instance containing a dispute reel Π = (~U , ~Q, ~R),

with |~U| = 2. First, we show that the presence of Π implies that S contains a
dispute duo Π′, then we use Lemma 4.1 to argue that S is not SUF.

If R0 and R1 do not share any vertices except u0 and u1, then Π is a
dispute duo and the statement directly follows from Lemma 4.1. Otherwise,
let {v1, . . . vk} be the vertices in R0 ∩ R1 − {u0, u1}, in the same order as
they appear in R0. That is, R0 = (u0 . . . v1 . . . vk . . . u1), where ∀i vi ∈ R1.
Let vj be the “rightmost” vertex in R1 among vertices {v1, . . . , vk}, and let
P = R1[vj]. More formally, vj is such that vi 6∈ P ∀i 6= j. We now show that
either there exists a dispute duo Π′ having u0 and vj as pivot vertices, or there
exists a DR Π′′ consisting of two pivot vertices vj and u1 and having strictly
less intersections between its rim paths than Π.

i

i

“main” — 2010/2/23 — 1:37 — page 62 — #70
i

i

i

i

i

i

62
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

u1

0

P

A

Q

Q0 Q1

R

vi vj vku0

Figure 4.5: A dispute reel having 2 pivot vertices. Rim paths R0 = RQ and
R1 = AP are split as explained in the proof of Lemma 4.2. Different paths are
represented using different strokes. In particular, spoke paths Q0 and Q1 are
in thicker stroke.

Refer to Figure 4.5. Split R1 and R2 such that R1 = A(vj)P and R0 =
R(vj)Q.

Since we are considering S[Π] and vj ∈ R0 ∩ R1, Pvj = {PQ0, QQ1}.
Depending on the ranking at vertex vj and since (by construction) we cannot
have λvj (PQ0) = λvj (QQ1), we have two possible cases.

(i) λvj (PQ0) < λvj (QQ1). We now show that Π′ = ((u0 vj), (Q0 QQ1), (R P))
is a dispute duo. By construction, Π′ has only two pivot vertices, and
P ∩R = {u0, vj}. Observe that u0 appears only in Q0, R and P , while vj

appears only in QQ1, R, and P . Therefore, Condition (i) of Definition 4.1
is satisfied. Condition (ii) is also satisfied, since Q0∩R = Q0∩P = {u0}
and Q1 ∩ R = Q1 ∩ P = ⊘ are guaranteed by the fact that Π is a DR.
Moreover, by construction, Q∩R = Q∩P = {vj}. Finally, Condition (iii)
holds for paths Q0 and Q1 since Π is a DR, and Q ∩ Q0 = ⊘.

(ii) λvj (PQ0) > λvj (QQ1). We now show that Π′′ = ((vj u1), (PQ0 Q1), (Q A))
is a dispute reel. Since vj 6= u0 by construction, Π′′ has strictly less in-
tersections between rim paths than Π. Observe that vj appears only in
PQ0, Q, and A, while u1 appears only in Q1, Q, and A. Hence, Condi-
tion (i) of Definition 4.1 is satisfied. Condition (ii) is also satisfied, since
Q0 ∩ Q = Q0 ∩ A = ⊘ and Q1 ∩ Q = Q1 ∩ A = {u1} are guaranteed by
the fact that Π is a dispute reel. By construction, P ∩Q = P ∩A = {vj}.

i

i

“main” — 2010/2/23 — 1:37 — page 63 — #71
i

i

i

i

i

i

4.3. SAFETY UNDER FILTERING IMPLIES NO DR 63

Finally, Condition (iii) holds for paths Q0 and Q1 since Π is a DR, and
P ∩ Q1 = ⊘.

Hence, in the first case we find a dispute duo Π′. In the second case, we find
another dispute reel Π′′ having two pivot vertices and having strictly less inter-
sections between rim paths than Π. By iterating this argument, we eventually
end up finding a dispute duo. We then use the result from Lemma 4.1 to prove
that an instance containing a DR with two pivot vertices is not safe under
filtering. �

Dispute Reels with more than 2 Pivots

The next step is to show that the presence of a dispute reel having more than
two pivot vertices makes an SPVP instance not safe under filtering. We prove
that in two parts. First, we introduce the concept of a “rim-by-rim” dispute
reel, that is, a DR for which it is easy to construct a routing oscillation. Second,
we show that the presence of a dispute reel which is not rim-by-rim implies the
existence of a dispute reel having only two pivot vertices.

Given a DR Π = (~U , ~Q, ~R), with |~U| = k > 2, we say that Π is rim-by-
rim if ∀i ∈ {0, . . . , k − 1} there exists an activation sequence σi on S[Π] such

that π̄i σi
 π̄i+1. That is, starting from the one-rim path assignment for any

pivot ui, σi leads to the one-rim path assignment for pivot ui+1. The following
property is a straightforward consequence of the definition of rim-by-rim DR.

Property 4.1 σi activates all the edges in Ri+1 at least once.

Observe that the well known instance Bad-Gadget in Figure 2.1b is a trivial
rim-by-rim DR. More generally, any dispute ring can be viewed as a special
case of rim-by-rim DR. Feamster et al. show in [FJB07] that it is particularly
easy to find an oscillation on a dispute ring. We are now able to generalize
that result to the broader class of rim-by-rim DRs.

Lemma 4.3 An SPVP instance containing a rim-by-rim dispute reel is not
safe under filtering.

Proof: Let S be an SPVP instance containing a rim-by-rim dispute reel Π.
Using the fact that Π is rim-by-rim, we build an infinite fair activation sequence
in the supporting instance S[Π] that cycles indefinitely among one-rim path
assignments.

i

i

“main” — 2010/2/23 — 1:37 — page 64 — #72
i

i

i

i

i

i

64
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

As we have already seen, since Π is a dispute reel there exists an activation
sequence on S[Π] that induces a one-rim path assignment π̄i for an arbitrary
pivot ui.

Since Π is rim-by-rim, there exist activation sequences σj such that π̄i σi

π̄i+1 σi+1

 · · ·
σi−1

 π̄i. Note that the initial and final path assignments are the
same, thus we can iterate the same set of activations in order to create an
infinite activation sequence σ on S[Π]. By Property 4.1, edges traversed by
rim paths are activated at least once per iteration. To ensure fairness, at the
end of each iteration we activate edges according to σspoke without altering
the current path assignment. This implies that there exists an infinite fair
activation sequence on S[Π], hence S is not safe under filtering. �

Now consider the instance in Figure 4.6. Clearly, this instance contains a
DR Π where pivot vertices are u0 = 1, u1 = 2, and u2 = 3; spoke paths are Q0 =
(1 0), Q1 = (2 0), and Q2 = (3 0); and rim paths are R0 = (1 X Y W Z 2),
R1 = (2 Z W X Y 3), and R2 = (3 1). Π is not rim-by-rim: in particular,
no activation sequence exists that, starting from the one-rim path assignment
for pivot u0 (π̄0), makes path R1Q2 available at vertex 2. In fact, assume that
the instance is in state π̄0, that is, vertices 2 and 3 select their spoke paths,
while vertices on R0 select a sub-path of R0Q1. In particular, vertex 1 selects
path (1 X Y W Z 2 0). We now explore how far the announcement of path
(3 0) can be propagated along rim path R1. Suppose that vertex 3 announces
path (3 0) to Y . Since path (Y 3 0) is preferred, Y selects the new path and
propagates the announcement to X. Observe that, even if X does not prefer
path (X Y 3 0), Y ’s announcement withdraws the availability of the previously
selected path (X Y W Z 2 0). Hence, X propagates the announcement further
to W . Now, W does not change its choice, since path (W X Y 3 0) is less
preferred. It is easy to see that there is no way to propagate the announcement
further than vertex W . Nevertheless, the rankings at vertex W are such that
there exists a DR having W and 2 as pivot vertices. The following lemma
shows that the presence of a DR having two pivot vertices is actually a general
property of any DR which is not rim-by-rim. By using Lemma 4.2, we are then
able to show an oscillation even on DRs that are not rim-by-rim.

Lemma 4.4 An SPVP instance containing a dispute reel which is not rim-
by-rim is not safe under filtering.

Proof: Let S be an SPVP instance containing a dispute reel Π = (~U , ~Q, ~R)

which is not rim-by-rim. If |~U| = 2, the statement follows from Lemma 4.2.
Otherwise, consider S[Π]. Since Π is not rim-by-rim by hypothesis, there are at

i

i

“main” — 2010/2/23 — 1:37 — page 65 — #73
i

i

i

i

i

i

4.3. SAFETY UNDER FILTERING IMPLIES NO DR 65

10

1XYWZ20 2ZWXY30

20

XY30

XYWZ20

YWZ20

Y30 WZ20

WXY30

Z20

ZWXY30

30

310
1 2

X Y W Z

3

Figure 4.6: A DR which is not rim-by-rim. Vertex 0 is omitted for brevity.

R0

R1

Q0

Q2

Q1

u0 vj

u2

u1

0

vi
vk−1

Figure 4.7: A portion of a dispute reel which is not rim-by-rim, used in the
proof of Lemma 4.4. Different paths are represented using different strokes.
Spoke paths Q0, Q1, and Q2 are in thicker stroke.

least π̄i and π̄i+1 such that ∄σ : π̄i σ
 π̄i+1. Assume, without loss of generality,

that i = 0.
Let {v1, . . . vk} be the vertices of R0 ∩R1, in the same order as they appear

in R0, that is, R0 = (u0 . . . v1 . . . vk), where vk = u1, as showed in Figure 4.7.
Let Σ be the set of all the activation sequences that, starting from the one-

rim path assignment π̄0, make path Q2 available in the set of choices of some
vertex vm. More formally, ∀σ ∈ Σ, π̄0 σ

 πt, where R1[vm]Q2 ∈ choicest(vm)
for some m and t. Note that Σ contains at least the activation sequence ob-
tained by activating the edges of R1 in reverse order, which would lead to
R1[vj]Q2 ∈ choicest(vj), where vj is the common vertex that is the “right-
most” in R1, that is, ∀i 6= j, vi 6∈ R1[vj]. Consider the activation sequence
σ′ ∈ Σ such that vm has the highest index. We now show that, if the an-
nouncement of path Q2 reaches vertex u1, then we have a contradiction. In

i

i

“main” — 2010/2/23 — 1:37 — page 66 — #74
i

i

i

i

i

i

66
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

fact, if vm = u1, we would have π̄0 σ′

 πt, where πt(u1) = R1Q2. This enable
us to activate the edges in R0 in reverse order, withdrawing the availability of
path Q1 on all the vertices along R0, and eventually reaching state π̄1. This
contradicts the hypothesis that ∄σ : π̄0 σ

 π̄1.
Hence, vm 6= u1. We now prove that, if the announcement of path Q2

cannot be propagated further than vm, then we have a dispute reel having two
pivot vertices. Consider the path ranking at vertex vm. We have two cases:

(i) λvm(R1[vm]Q2) ≤ λvm(R0[vm]Q1). We now show that there exists an
activation sequence σ̄ ∈ Σ that makes path Q2 available in the set of
choices of vm′ , with m′ > m, hence a contradiction. Intuitively, vm can
announce path R1[vm]Q2 to withdraw the availability of path R0[vm]Q1

to the vertices on R0. This allows the announcement of path Q2 to be
propagated beyond vertex vm. Observe that, since path R1[vm]Q2 is in
choicest(vm) and it is preferred, we must have πt(vm) = R1[vm]Q2 after
activation sequence σ′. Let σ1 consist of the activations of all the edges
in R0 in reverse order, starting from vm. Let πt1 be the path assignment

after σ1, that is, πt
σ1
 πt1 . Note that πt1 is such that path R0[vh]Q1 has

been withdrawn at each vh, h < m. We now construct σ2 by activating
the edges along R1 in reverse order. In this way, vm propagates the
announcement of path R1[vm]Q2. Clearly, if a vertex vh, h < m, receives
the announcement, it will select path R1[vh]Q2, since the set of choices
at vh is currently empty. Hence, the announcement will be propagated
further. This implies that the message will eventually reach vertex vm′ ,
m′ > m.

(ii) λvm(R1[vm]Q2) > λvm(R0[vm]Q1). We now show that there exists a
dispute reel having vm and u1 as pivot vertices. Let R̄ be the sub-path
of R1 from u1 to vm, that is, R1 = R̄R1[vm]. Now consider the dispute
wheel Π′ = ((vm u1), (R1[vm]Q2 Q1), (R0[vm] R̄)). We now show that
Π′ is a DR. Being Π a DR, Condition (i) of Definition 4.1 holds since
vm 6∈ Q1 and u1 6∈ R1[vm]Q2. Condition (ii) is trivially satisfied by
vertices on paths Q1 and Q2, because both are spoke paths in Π. By
definition, R̄ ∩ R1[vm] = {vm}. Moreover, R1[vm] ∩ R0[vm] = {vm},
since, by definition of vm, vj 6∈ R1[vm] if j > m, and vj 6∈ R0[vm] if
j < m. Again, being Π a DR, Condition (iii) holds for paths Q1 and Q2,
and we have R1[vm] ∩ Q1 = ⊘.

We then conclude that if Π is not rim-by-rim, then it contains a dispute
reel having two pivot vertices. By Lemma 4.2, instance S is not safe under

i

i

“main” — 2010/2/23 — 1:37 — page 67 — #75
i

i

i

i

i

i

4.3. SAFETY UNDER FILTERING IMPLIES NO DR 67

filtering. �

By combining Lemmas 4.2, 4.3, and 4.4, we can state the following theorem.

Theorem 4.1 An SPVP instance containing a dispute reel is not safe under
filtering.

Multiple Solutions and Safety Under Filtering

We now exploit Theorem 4.1 to show that networks admitting multiple sta-
ble states are not safe under filtering. Since multiple stable states happen in
practice (see, e.g., BGP wedgies [TG05]), this is especially interesting from an
operational perspective.

Theorem 4.2 If an SPVP instance S admits two stable states, then S is not
safe under filtering.

Proof: Theorem V.4 in [GSW02] proves that S must contain a dispute wheel Π.
Π is derived by merging two stable path assignments π1 and π2. Let T1 and T2

be the routing trees induced by π1 and π2, and let T = T1∩T2. Each spoke path
in Π is composed by a path along T plus a final edge which does not connect two
vertices in T . Hence, spoke paths form a tree (Condition (iii) of Definition 4.1).
Rim paths are built up by vertices which are not in the intersection of π1 and
π2, thus Condition (ii) is also satisfied. Each pivot vertex ui can only appear
in Qi, Ri, and Ri−1 (Condition (i)), since the dispute wheel is built using only
π1(ui) and π2(ui). Therefore, Π is a dispute reel. By Theorem 4.1, the presence
of a dispute reel in S is enough to conclude that S is not SUF. �

An important consequence of Theorem 4.2 is that observing multiple dif-
ferent stable routing states in a network indicates that its stability may be
definitively compromised by the application of route filters. Therefore, the ex-
istence of multiple stable states in a network constitutes an important alert
to consider for a network operator. As a final remark, we stress that the con-
struction presented in Theorem V.4 of [GSW02] can be exploited to identify a
portion of the network which can potentially lead to oscillations under filtering.
Moreover, given a set of stable routing states, implementing that construction
is straightforward and can be done efficiently. Network operators can use the
technique in [GSW02] to disclose a policy dispute in the routing configuration.
Our results prove that the presence of such a policy dispute makes the network
not SUF.

i

i

“main” — 2010/2/23 — 1:37 — page 68 — #76
i

i

i

i

i

i

68
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

4.4 No DR implies Safety Under Filtering

We now show that the absence of a dispute reel is a sufficient condition for
safety under filtering. Combined with the result from the previous section, we
can conclude that the presence of a DR characterizes safety under filtering.
We prove the sufficient condition by showing that if an SPVP instance is not
SUF, then it contains a DR. First, we use the same technique as in [GSW02]
to show that a routing oscillation implies the existence of a particular kind of
dispute wheel, which satisfies a slightly different set of conditions than those
in Definition 4.1. Then, we show that the presence of such a dispute wheel
implies the existence of a dispute reel.

Lemma 4.5 Consider an SPVP instance S. If S is not safe under filtering,
then there exists a dispute wheel Π which satisfies the following conditions:

(i) Conditions (ii) and (iii) of Definition 4.1.

(ii) For all ui ∈ ~U , ui cannot appear in Qj, j 6= i.

(iii) If ui ∈ Rj, then Rj [ui]Qj+1 is preferred to Qi.

Proof: Since S is not SUF, there exists a combination of filters inducing an
instance S′ such that S′ is not safe. We can then apply the technique described
in Theorem V.9 of [GSW02] to show that S′ contains a dispute wheel Π satis-
fying the above conditions. The statement follows by noting that Π must also
be present in S. �

Observe that the dispute wheel of Lemma 4.5 is not a DR. In particular,
it could be the case that a pivot vertex ui appears in a rim path Rm with
m 6∈ {i−1, i}. The following lemma shows that such a DW implies the existence
of a DR.

Lemma 4.6 Given an instance S, suppose it contains a dispute wheel Π =
(~U , ~Q, ~R) satisfying the conditions in the statement of Lemma 4.5. Then, S
contains a dispute reel.

Proof: If Π is already a DR, the statement trivially holds. Otherwise, for Π
not to be a reel, there must exist at least a pivot vertex ui such that ui ∈ Rm

with m 6∈ {i − 1, i}. Let Ri1 , . . . , Rik
be the rim paths traversing ui, where

ij 6∈ {i−1, i}. Without loss of generality, assume that ik < i is the closest index

to i in the order induced by ~U , see Figure 4.8. Condition (iii) of Lemma 4.5

i

i

“main” — 2010/2/23 — 1:37 — page 69 — #77
i

i

i

i

i

i

4.4. NO DR IMPLIES SAFETY UNDER FILTERING 69

Rik Rij

ui

ui−1 ui+1

uik+1

uik

uij

uij+1

Qi

RiQi+1

. . .

. . .

Figure 4.8: A dispute wheel where pivot vertex ui appears in rim paths other
than Ri and Ri−1. By Lemma 4.6, another dispute wheel can be constructed
such that ui appears in exactly 3 paths.

ensures that ui prefers path Rik
[ui]Qik+1 to Qi. Now consider the dispute wheel

Π′ = (~U ′, ~Q′, ~R′), where ~U ′ = (ui uik+1 . . . ui−1), ~Q′ = (Qi Qik+1 . . . Qi−1),

and ~R′ = (Rik
[ui] Rik+1 . . . Ri−1). Intuitively, Π′ is obtained by “chopping”

Π, using path Rik
[ui] as the new rim path associated with vertex ui. Observe

that every spoke path in Π′ is a also spoke path in Π. Moreover, every rim path
in Π′ except Rik

[ui] is also a rim path in Π, and Rik
[ui] is a sub-path of Rik

.
Therefore, Π′ trivially satisfies all the conditions of Lemma 4.5. Moreover, by
the definition of index ik, we know that Π′ is such that ui only appears in Qi,
Rik

[ui] and Ri−1. By applying this construction, we force one pivot vertex at a
time to satisfy Condition (i) of Definition 4.1, even if Rik

contains other pivot

vertices than ui. Hence, after iterating the construction at most |~U| times, we
eventually end up with a dispute reel. �

We stress that Condition (iii) of Lemma 4.5 is strictly necessary to apply the
construction in Lemma 4.6. As a counterexample, consider again the instance
in Figure 4.2. In this instance, a DW Π = (~U , ~Q, ~R) exists where ~U = (1 2 3),
~Q = ((1 0) (2 0) (3 0)), and ~R = ((1 3 2) (2 1 3) (3 2 1)). Observe that Π only
violates Condition (iii) of Lemma 4.5. In fact, rim path (1 3 2) traverses pivot

i

i

“main” — 2010/2/23 — 1:37 — page 70 — #78
i

i

i

i

i

i

70
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

vertex 3, but λ3((3 2 0)) > λ3((3 0)). It is easy to check that, in this case, no
DR can be constructed starting from the DW.

Theorem 4.3 If an SPVP instance S is not safe under filtering, then it con-
tains a dispute reel.

Proof: Lemma 4.5 ensures that S contains a dispute wheel satisfying some
particular constraints. We can then apply Lemma 4.6 to find a dispute reel in
S. �

By combining Theorems 4.1 and 4.3, we conclude that the absence of a
dispute reel is a sufficient and necessary condition for safety under
filtering.

Researchers have deemed the dispute wheel concept important because it
only depends on the routing policies. As such, it allows us to prove funda-
mental properties of the SPVP protocol using just static analysis, i.e., without
having to cope with the details of routing dynamics. In fact, the absence of a
dispute wheel implies that an SPVP instance is safe under filtering (Corollary
1 of [FJB07]) and has a unique stable state (Theorem V.4 of [GSW02]). Obvi-
ously, as safety and robustness can be viewed as special cases of safety under
filtering, the absence of a dispute wheel also implies that an SPVP instance is
safe and robust. Figure 4.1 is a Venn diagram that effectively displays those
implications.

As a side effect of our findings, we show that a “no DR” condition can
replace the well known “no DW” one in all the above results: in fact, “no
DR” is a strictly less constraining condition to show that an SPVP instance
is safe, robust, SUF, and has a unique stable state. Moreover, this condition
still depends only on the structure of routing policies.

Corollary 4.1 The absence of a DR in an SPVP instance S implies that S
has a unique stable state, is safe, and is robust.

Proof: Theorem 4.2 proves that S has a unique stable state. Since safety and
robustness are special cases of safety under filtering, Theorem 4.3 proves the
rest of the statement. �

4.5 Safety Under Filtering and Robustness

Safety under filtering is an extremely useful concept to study the impact of
route filters on routing stability. An interesting related problem is the impact

i

i

“main” — 2010/2/23 — 1:37 — page 71 — #79
i

i

i

i

i

i

4.5. SAFETY UNDER FILTERING AND ROBUSTNESS 71

XY20

X40

Y230

Y20

YZ10 230

20

3ZX40

30Z10

ZX40

10

1XY20

4YZ10

40

X Y 2

3Z1

4

Figure 4.9: Filthy-Gadget: an instance which is robust but not safe under
filtering. Vertex 0 is omitted for brevity.

of link and/or router failures on the safety of BGP. The property of being safe
after removing any subset of the vertices or edges from an SPVP instance
is referred to as robustness (Problem 3.3). Without loss of generality, in the
following we only consider link failures.

As pointed out in Property 3.4, an instance that is SUF is also robust.
Following the findings of Section 4.4, we now show that the class of robust
SPVP instances is strictly larger than the class of instances that are SUF.
Consider the instance Filthy-Gadget in Figure 4.9. This instance is clearly
not SUF since it contains a DR Π̄ = (Ū , Q̄, R̄), where Ū = (1 2 3 4), Q̄ =
((1 0) (2 0) (3 0) (4 0)), and R̄ = ((1 X Y 2) (2 3) (3 Z X 4) (4 Y Z 1)). Yet,
Filthy-Gadget is robust. We prove the latter statement in two parts: first,
we show that Filthy-Gadget is safe; second, we show that any combination
of link failures produces a safe instance.

To prove the first part, we need the following definition. A vertex v is said
to be prevented from selecting path P if, for every fair activation sequence, there
exists a time t′ such that v does not select P (i.e., πt(v) 6= P) for any t > t′.

Lemma 4.7 Instance Filthy-Gadget is safe.

Proof: Let σ be any fair activation sequence. Given that πt(0) = (0) for all
t, by the fairness of σ each neighbor of 0 is prevented from selecting path ǫ.
In particular, after some time vertex 2 can only use paths (2 3 0) or (2 0).

i

i

“main” — 2010/2/23 — 1:37 — page 72 — #80
i

i

i

i

i

i

72
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

Since Y accepts both paths from vertex 2, Y is prevented from selecting path
(Y Z 1 0), which is less preferred. Vertex 4 is therefore prevented from se-
lecting path (4 Y Z 1 0). Since 4 is a neighbor of 0, it is also prevented from
selecting ǫ. Hence, by the fairness of σ, vertex 4 will end up selecting path (4 0)
permanently, in turn forcing vertex X to permanently choose path (X 4 0).
Since path (X Y 2 0) will not be advertised by X, vertex 1 is prevented from
selecting path (1 X Y 2 0). Also, being 1 a neighbor of 0, it will end up
selecting path (1 0) permanently. Vertex Z, in turn, will be forced to select
path (Z 1 0), preventing vertex 3 from selecting (3 Z X 4 0). By applying the
same argument as above, we conclude that vertex 3 will permanently select
path (3 0). Hence, vertex 2 will select path (2 3 0), in turn forcing vertex
Y to select (Y 2 3 0). It is easy to check that the path assignment induced
by σ is stable. Since we did not make any hypothesis on σ, we conclude that
Filthy-Gadget is guaranteed to reach this stable path assignment for any
fair activation sequences, that is, Filthy-Gadget is safe. �

Lemma 4.8 Instance Filthy-Gadget is robust.

Proof: By the previous lemma, we know that Filthy-Gadget is safe. We now
show that any instance S′ obtained by removing one or more links from Filthy-

Gadget contains no DR, hence it is safe. Recall that Filthy-Gadget con-
tains the DR Π̄ we described above. It is easy to see that its supporting instance
S[Π̄] is built on the same graph as Filthy-Gadget. Hence, removing one or
more links forcedly creates an instance where Π̄ does not exist anymore. In
order to complete the proof, we need to demonstrate that Π̄ is the only DR in
Filthy-Gadget. Observe that this is trivially true if vertices X, Y and Z are
not pivot vertices. We now show that no DR Π′ = (~U ′, ~Q′, ~R′) exists having
X, Y , or Z as a pivot vertex.

(i) Assume that X is a pivot vertex of Π′. Without loss of generality, we
say X = u′

0. Then Q′
0 = (X Y 2 0) and R′

0 = (X 4), which implies
u′

1 = 4. Since (Z 1 0) is the best ranked path at vertex Z, we have either
u′

2 = Y or u′
2 = 1. The former case results in a dispute wheel where

spoke path Q′
0 contains a pivot node u′

2 = Y . The latter case results in
a DW where spoke path Q′

0 shares vertex Y with rim path R′
1. In both

cases, Π′ cannot be a DR.

(ii) We can apply a symmetric argument to vertex Z. Assume that Z is a
pivot vertex of Π′, Z = u′

0. Then Q′
0 = (Z X 4 0) and R′

0 = (Z 1), which

i

i

“main” — 2010/2/23 — 1:37 — page 73 — #81
i

i

i

i

i

i

4.6. CONCLUSIONS 73

implies u′
1 = 1. As above, if u′

2 = X or u′
2 = 2, we find that Π′ cannot be

a DR. The only other possibility is u′
2 = Y , i.e., Y is also a pivot vertex.

This case is discussed in the following.

(iii) Assume that Y is a pivot vertex of Π′. Without loss of generality, we say
Y = u′

i. We have two cases, namely Q′
i = (Y Z 1 0) or Q′

i = (Y 2 0).

• if Q′
i = (Y Z 1 0), then u′

i−1 = 4. We now have either u′
i−2 = X or

u′
i−2 = 3. The former case implies that Q′

i−2 contains pivot vertex
Y . The latter case implies that R′

i−2 intersects Q′
i at vertex Z.

Hence, Π′ cannot be a DR.

• if Q′
i = (Y 2 0), then u′

i−1 = 1. We now have either u′
i−2 = Z or

u′
i−2 = 4. The former case implies that Q′

i−2 and R′
i−1 share vertex

X. The latter case implies that pivot vertex Y also appears in R′
i−2.

In both cases, Π′ cannot be a DR.

We conclude that Π̄ is the only DR in Filthy-Gadget, hence the instance is
robust. �

4.6 Conclusions

Under the realistic assumption that ASes are allowed to filter routes arbitrarily,
the safety of policy-based routing is intrinsically incompatible with unrestricted
route rankings. This chapter characterizes safety under filtering, determining
the amount of autonomy that rankings must sacrifice in order to guarantee
stable policy routing. The significance of this result is twofold: on one hand,
we fill the large gap that separates currently known necessary and sufficient
conditions; on the other hand, we bind safety under filtering to the presence of
a particular structure of routing preferences, called dispute reel, which can be
statically detected.

An interesting consequence of our results is that a network admitting multi-
ple stable routing states (e.g., BGP wedgies [TG05]) is not safe under filtering.
In this case, we can also pinpoint the problematic portions of the policy con-
figuration, even in the case where we do not know the policies of all ASes: in
fact, the technique only takes the stable routing states as its inputs.

We finally show that a robust instance may not be safe under filtering. In a
sense, this proves that the autonomy of adding (possibly misconfigured) filters
can be more harmful than network faults. Finally, as a side effect of our work,

i

i

“main” — 2010/2/23 — 1:37 — page 74 — #82
i

i

i

i

i

i

74
CHAPTER 4. CHARACTERIZATION OF EBGP SAFETY UNDER

FILTERING

we show that the less constraining “no dispute reel” condition can replace the
“no dispute wheel” one in a lot of results in the field of policy routing stability.

i

i

“main” — 2010/2/23 — 1:37 — page 75 — #83
i

i

i

i

i

i

Chapter 5

The Impact of Changing iBGP

Attributes on Routing Stability∗

5.1 Introduction and Related Work

BGP configuration languages allow border routers to change iBGP attributes
that are relevant to the route selection process. However, both theoretical [GW02a]
and practical [FRBS08] research contributions neglected this peculiar feature
of iBGP, assuming that those iBGP attributes which are relevant to the BGP
decision process (e.g., the local-preference attribute) are not changed as the
BGP message is passed to iBGP peers.

In this chapter we investigate the possibility of changing iBGP attributes,
trying to answer the following questions:

(i) What are the pros and cons of changing iBGP attributes? Why should
an ISP (not) configure its routers to modify iBGP data en route?

(ii) Do ISPs actually change iBGP attributes?

(iii) How does this possibility relate to iBGP stability?

∗Part of the material presented in this chapter is based on the following publication

• L. Cittadini, G. Di Battista, S. Vissicchio. Doing Don’ts: Modifying BGP Attributes
within an Autonomous System. In Proc. IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS 2010), IEEE, 2010.

75

i

i

“main” — 2010/2/23 — 1:37 — page 76 — #84
i

i

i

i

i

i

76
CHAPTER 5. THE IMPACT OF CHANGING IBGP ATTRIBUTES ON

ROUTING STABILITY

(iv) Can we profitably change some attributes in iBGP to enforce traffic en-
gineering policies while preserving iBGP stability?

First, we discuss possible advantages of changing iBGP attributes and re-
lated caveats. Second, by analyzing BGP update traces collected at multiple
vantage points in the Internet, we estimate the number of ISPs that are actu-
ally changing iBGP attributes: our data show that this practice is adopted by
few ISPs. Third, we revisit a well-known theoretical model to analyze iBGP
stability [GW02a], extending it to support iBGP attributes that change within
an ISP. We use this extended model to prove that changing iBGP attributes
makes iBGP prone to new types of oscillations. Fourth, given that state-of-
the-art algorithms to detect oscillations [FRBS08] assume that iBGP messages
are left untouched, we show a technique that does not rely on this assump-
tion. We exploit this technique to build a tool that is able to statically check
an iBGP configuration for stability. Results with a prototype implementation
show promising performance, hence we conclude that changing iBGP attributes
does not intrinsically prevent a network operator from debugging its routing
policies using advanced configuration analyses. Finally, we state configuration
guidelines to change iBGP attributes in a rational and systematic way. Our
guidelines are easy to configure on routers, guarantee iBGP stability even un-
der faulty conditions, and ensure that reasonable traffic engineering policies
are enforced, regardless of the behavior of other ISPs.

The rest of the chapter is organized as follows. Section 5.2 covers back-
ground notions about iBGP. We outline the main pros and cons of changing
iBGP attributes within an AS in Section 5.3, and we estimate the extent to
which iBGP attributes are actually changed by ISPs in Section 5.4. Section 5.5
analyzes the impact of changing iBGP attributes on routing stability. In Sec-
tion 5.6, we devise guidelines to modify iBGP attributes while preserving sta-
bility. Conclusions are drawn in Section 5.7.

5.2 Background

BGP configuration languages allow operators to modify the attributes carried
by a message in order to influence the best route selection process (see Ta-
ble 1.1) and therefore control outbound traffic. Some commands can even
force a BGP speaker to skip some steps of the BGP decision process (see, e.g.,
Cisco bgp bestpath AS-path ignore command).

Internal BGP (iBGP) is used by an ISP in an Autonomous System (AS)
to distribute the routes that are learned from external ASes among its border

i

i

“main” — 2010/2/23 — 1:37 — page 77 — #85
i

i

i

i

i

i

5.2. BACKGROUND 77

Route learned from Distribute to
clients

Distribute to
non-clients

eBGP neighbor yes yes
client yes yes

non-client yes no

Table 5.1: Route propagation rules for an iBGP speaker.

routers. We refer to the manipulation of an attribute in an iBGP message
as iBGP attribute changing (IAC). Observe that IAC implicitly takes into ac-
count the possibility to skip some BGP decision steps. As an example, skipping
Step 2 has the same effect of overwriting each AS-path with a constant string.

The original design of BGP mandated a full mesh of iBGP peerings within
an AS in order to distribute the routes received from external ASes. However,
the scaling issues of such a solution spurred the search for alternatives. The
most common and widespread alternative to fully meshed iBGP is route re-
flection [BCC06]. Route reflection organizes BGP routers within an AS in a
hierarchy of clusters. The iBGP neighbors of each router are split into two sets:
clients and non-clients. In a fully meshed iBGP network, all iBGP routers are
non-clients. A router that has one or more clients acts as a route reflector,
i.e., it relays routing information to its clients. An iBGP speaker propagates
its best route according to the rules depicted in Table 5.1: if the best route is
learned from a non-client iBGP peer, then it is relayed only to clients, other-
wise it is propagated to all iBGP neighbors. Each cluster has (at least) one
route reflector. In order to ensure that routes are correctly distributed within
the AS, there must be a full mesh of iBGP peerings at the top of the route
reflection hierarchy.

We now define the concept of valid signaling path, which models route dis-
semination across the route reflection hierarchy. This concept is needed to
define iBGP topology connectivity. Intuitively, the rules in Table 5.1 ensure
that iBGP route distribution follows the topology of the route reflection hierar-
chy. Formally, let G = (V,E) be the topology of the route reflection hierarchy.
Namely, each node u ∈ V represents an iBGP router, and each edge e ∈ E
represents an iBGP peering. The set of edges is partitioned into two sets over
and up-down. An edge (u, v) ∈ over represents the fact that v is a non-client
of u and u is a non-client of v. Hence, an over edge indicates a vanilla iBGP
peering between routers u and v. An edge (u, v) ∈ up-down represents the fact
that either v is a non-client of u while u is a client of v, or vice versa. Hence,

i

i

“main” — 2010/2/23 — 1:37 — page 78 — #86
i

i

i

i

i

i

78
CHAPTER 5. THE IMPACT OF CHANGING IBGP ATTRIBUTES ON

ROUTING STABILITY

an up-down edge (u, v) indicates an iBGP peering between routers u and v
where v (u) acts as a route reflector for u (v). We say that an up-down edge is
up when it is traversed from the client to its route reflector, down otherwise.
A valid signaling path is any path on G that can be used to disseminate a route
within the AS, according to the rules in Table 5.1. Any valid signaling path
P consists of: (i) a (possibly empty) sequence of up edges, followed by (ii) a
(possibly missing) over edge, followed by (iii) a (possibly empty) sequence of
down edges [GW02a].

An iBGP topology is connected if there exists a valid signaling path between
every pair of iBGP speakers. Intuitively, a connected iBGP topology ensures
that routing information can be propagated by any iBGP speaker to any other.
Throughout the thesis, we only consider connected iBGP topologies.

5.3 Why or Why Not?

This section presents the possibilities opened by changing iBGP attributes and
the drawbacks this practice can incur. We will assume the viewpoint of a single
ISP managing its AS.

The main reason why a network operator might think about modifying
iBGP attributes within his AS is the extended flexibility this practice allows.
Operators can exploit this flexibility for implementing policies which are oth-
erwise impossible to enforce. Figure 5.1a provides a simple example where AS
X spans over North America and Europe, and has public peerings at Internet
exchange points (IXPs) in Palo Alto (PAIX) and Amsterdam (AMS-IX). Con-
figurations described in figures are expressed in an intuitive vendor-independent
pseudo-language and are trivial to translate to any vendor-specific language.
Since AS X has multiple border routers in geographically distributed locations,
it employs route reflectors in order to scale its iBGP configuration. For the
purpose of this example, we assume that AS X has, among others, a route
reflector somewhere in the US and another one in Europe, and that route re-
flectors are connected in a full-mesh of iBGP peerings. Being a large ISP, X is
likely to exhibit high route diversity [MFM+06], that is, multiple routes for the
same destination prefix p are likely available at multiple border routers. Sup-
pose that X receives two BGP routes for prefix p: (i) a BGP route advertising
path ABCD from a peer at PAIX, and (ii) another BGP route advertising
path Y ZD from a peer at AMS-IX.

Assuming that X assigns local-preference values according to business
relationships [GR00, CR05], the received routes are assigned the same value

i

i

“main” — 2010/2/23 — 1:37 — page 79 — #87
i

i

i

i

i

i

5.3. WHY OR WHY NOT? 79

AS X

Route

Reflector (US)

AMS-IX
PAIX

Route

Reflector (EU)

ABCD
YZD

AS-path:
AS-path:

BR1
BR2

default local-pref 100

(a)

AS X

Route

Reflector (US)

AMS-IXPAIX

Route

Reflector (EU)

ABCD
YZD

AS-path:
AS-path:

BR1 BR2

default local-pref 100

if msg from BR2:

 set local-pref 120

default local-pref 100

if msg from BR1:

 set local-pref 120

(b)

Figure 5.1: (a) Default BGP configuration causes sub-optimal traffic forwarding
in AS X: outbound traffic is routed through AMS-IX, due to the length of
the AS-path attribute. (b) By changing iBGP attributes, AS X is able to
exploit both AMS-IX and PAIX as traffic egress points, achieving better load
balancing.

i

i

“main” — 2010/2/23 — 1:37 — page 80 — #88
i

i

i

i

i

i

80
CHAPTER 5. THE IMPACT OF CHANGING IBGP ATTRIBUTES ON

ROUTING STABILITY

since they both come from a peer. For this reason, the two routes are equally
ranked from the first step of the BGP decision process. The next step of the
process evaluates the length of the AS-path attribute: since the path received at
AMS-IX is shorter than the path received at PAIX, every BGP router will prefer
the former, which implies that all the traffic directed to p will be forwarded to
Amsterdam.

Observe that AS X does not get any revenue from traffic transiting over
IXPs, so its best strategy would be to minimize the cost of traffic forwarding.
Since routers in the US must forward traffic towards Europe while they could
simply send traffic to Palo Alto, the high-level business objective of minimizing
costs seems to be not well implemented by the BGP configuration described
above. Such an objective would be better accomplished if X was able to send
traffic from US out of Palo Alto and from Europe out of Amsterdam, reducing
the usage of cables connecting US and Europe.

Unfortunately, this simple requirement cannot be implemented (within the
standard BGP decision process) unless X splits its network into multiple AS
domains. On the other hand, if X performs IAC , it is fairly simple to force the
route reflector in America to prefer American routes, and the route reflector in
Europe to prefer European routes, as shown in Figure 5.1b. By conditionally
changing the value of the local-preference attribute (e.g., via route-maps),
this configuration enforces the high-level objective regardless of what AS-paths
are announced by X’s neighbors.

We analyzed the BGP updates received from the border routers of a medium-
sized Italian ISP and we inferred that more than 135 thousands IP prefixes (al-
most half routing table) were load-balanced across exit points just because of
equal AS-path lengths. Should the AS-path length vary on one of the available
routes (e.g., because of new connectivity or because the AS that originates the
prefix is performing inbound traffic engineering activities via AS-path prepend-
ing), the traffic balance would be immediately compromised. People that op-
erate that ISP were not aware that at least 20% of their traffic is actually load
balanced this way.

To better understand how a traffic shift would look like, recall the example
in Figure 5.1a, and now suppose that the European peer of AS X started
advertising an AS-path of length 5 or more. As soon as this new route is
propagated within AS X, the American route is preferred, and traffic destined
to prefix p is completely forwarded via Palo Alto.

After showing that there exist benefits in manipulating iBGP attributes,
we turn to study the drawbacks and caveats of IAC . It is a common practice
not to touch iBGP attributes (see Section 5.4), to keep the configuration as

i

i

“main” — 2010/2/23 — 1:37 — page 81 — #89
i

i

i

i

i

i

5.4. CHANGING IBGP ATTRIBUTES IN THE INTERNET 81

simple and easy to understand as possible. Typically, a policy is only applied
when a BGP route enters or exits the AS and iBGP is just used to distribute
routes within the AS. This ensures consistent AS-wide BGP decisions, and
significantly simplifies the task of translating business objectives into BGP
configurations.

Another important drawback of changing iBGP attributes is that it exac-
erbates the iBGP stability problem, as the added flexibility can translate into
the ability to create routing oscillations which would be impossible otherwise.
Due to its impact, this disadvantage is discussed in depth in Section 5.5.

5.4 Changing iBGP Attributes in the Internet

Given that changing iBGP attributes provides some advantages to ISPs, as
we described in the previous section, one might ask whether this practice is
common in the Internet, and to what extent. Unfortunately, an exact answer
to this question would require access to router configuration files, which most
ISPs refuse to grant as they do not want to disclose their routing policies.
However, in this section, we give a method to roughly estimate the popularity
of IAC using public data.

In [FR07] it is shown that applying policies only to routes announced by
eBGP peers implies that only routes that are equally good up through the
first three steps of the BGP decision process (see Table 1.1) can be selected by
iBGP speakers as best routes in the steady state. The main intuition behind
our measurement approach is then to search for two BGP routers in the same
AS that are selecting distinct routes which are not equally good up through
to the first three decision steps. In such a case, assuming a connected iBGP
topology, we conclude that IAC is performed within the AS.

Figure 5.2 shows a real-world example of the list of BGP routes available for
destination prefix 189.90.12.0/24 in the Global Crossing network (AS 3549), as
reported by a publicly available route server on August, 31st 2009, at 14 : 36
UTC. Each entry in the list (delimited by a box in the figure) represents a
BGP route. The first line of each entry represents the AS-path attribute, then
other attributes follow, e.g., local-preference, origin, etc. Note that all
routes were received from iBGP peers, as they include iBGP-only attributes
like cluster-list. This implies that each route was selected as best by the
corresponding iBGP peer. Observe that the first and the third entries have
different AS-path lengths (see the highlighted text in Figure 5.2), so they are
not equally good up through Step 3 of the BGP decision process. Since the

i

i

“main” — 2010/2/23 — 1:37 — page 82 — #90
i

i

i

i

i

i

82
CHAPTER 5. THE IMPACT OF CHANGING IBGP ATTRIBUTES ON

ROUTING STABILITY

ROUTE-SERVER.PHX1>SH IP BGP 189.90.12.0/24

BGP ROUTING TABLE ENTRY FOR 189.90.12.0/24

PATHS: (4 AVAILABLE, BEST #1)

 NOT ADVERTISED TO ANY PEER

 13878 15180 28189

 67.17.64.89 FROM 67.17.80.210 (67.17.80.210)

 ORIGIN IGP, METRIC 0, LOCALPREF 300, BEST

 COMMUNITY: 3549:4471 3549:30840

 ORIGINATOR: 67.17.81.221,

 CLUSTER LIST: 0.0.0.92

 13878 15180 28189

 67.17.64.89 FROM 67.17.82.130 (67.17.82.130)

 ORIGIN IGP, METRIC 0, LOCALPREF 300

 COMMUNITY: 3549:4471 3549:30840

 ORIGINATOR: 67.17.81.221,

 CLUSTER LIST: 0.0.0.92

 28189 28189 28189 28189 28189 28189 28189

 67.17.64.89 FROM 67.17.82.40 (67.17.82.40)

 ORIGIN IGP, METRIC 0, LOCALPREF 300

 COMMUNITY: 3549:4950 3549:34076

 ORIGINATOR: 200.186.0.67,

 CLUSTER LIST: 0.0.2.109, 0.0.5.2

 28189 28189 28189 28189 28189 28189 28189

 67.17.64.89 FROM 67.17.82.41 (67.17.82.41)

 ORIGIN IGP, METRIC 0, LOCALPREF 300

 COMMUNITY: 3549:4950 3549:34076

 ORIGINATOR: 200.186.0.67,

 CLUSTER LIST: 0.0.2.109, 0.0.5.2

Entry

1

Entry

2

Entry

4

Entry

3

Figure 5.2: A set of BGP routes that are simultaneously active within AS 3549.

i

i

“main” — 2010/2/23 — 1:37 — page 83 — #91
i

i

i

i

i

i

5.5. MORE FLEXIBILITY IMPLIES MORE INSTABILITY 83

routes are simultaneously active at two distinct iBGP routers, we conclude
that the ISP performs IAC . Of course, another possible explanation is that the
iBGP topology of the ISP is not connected. However, this sharply contrasts
with the objective iBGP is designed for.

For a quantitative analysis of how many ASes show this behavior in the
Internet, we used the technique described in [DRCD09] for computing the sets
of BGP routes for the same destination prefix which are simultaneously active
in the same AS, taking as input BGP routing tables and update traces provided
by RIS [RIP] and Routeviews [Ore] through May 2009. Then, when we found
routes having different AS-path length among those that are simultaneously
active at AS A, we inferred that AS A was changing iBGP attributes within
its network. Our analysis estimated that 1, 838 ASes out of 32, 066 (0.17%)
change iBGP attributes.

Note that our estimate is actually a lower bound with respect to the real
number of ASes that change iBGP attributes in the Internet. First of all,
since we only have some hundreds of publicly available BGP monitors, our
data do not reliably represent the full route diversity that is available in the
Internet. Secondly, we only focused on the AS-path length, disregarding other
attributes that are involved in later steps of the BGP decision process. Nev-
ertheless, our estimate confirms that the majority of ASes apply policies only
to eBGP sessions and then rely on the iBGP topology just to distribute rout-
ing information within the network. However, adopting the classification of
the ASes given in [DD08], we found that many of the 1, 838 ASes are transit
providers. This could be explained by the fact that provider ASes have traffic
engineering needs that are more complex to fulfill than those of customers.

5.5 More Flexibility implies More Instability

Policy-based path vector protocols such as BGP are renowned to be prone to
oscillations [GSW02] and, unfortunately, iBGP makes no exception [GW02a].
In this section, we use the SPVP model (see Chapter 2) to study how IAC
can improve or degrade the stability of the protocol. For the sake of simplicity,
we exclude from our analysis the MED attribute. In fact, our analysis is easy to
extend to deal with MED adopting techniques similar to those in [GW02b].

We now show how to construct an instance S(X, t, p) of SPVP which mod-
els a given iBGP configuration for AS X at time t, with respect to a given
destination prefix p, assuming that iBGP attributes can be changed within the
AS. The set of nodes consists of node 0 and one node for each iBGP speaker

i

i

“main” — 2010/2/23 — 1:37 — page 84 — #92
i

i

i

i

i

i

84
CHAPTER 5. THE IMPACT OF CHANGING IBGP ATTRIBUTES ON

ROUTING STABILITY

AS X

default local-pref 100

if msg from b :

 set local-pref 120

default local-pref 100

if msg from b :

 set local-pref 120

b
1

b 2

2

1

(a)

ǫ
b2 0
b2 b1 0

ǫ
b1 0

b1 b2 0

0

b1 b2

0

(b)

Figure 5.3: (a) Configuration of two border routers that modify iBGP at-
tributes. (b) The corresponding translation to SPVP.

in X. Observe that some of these iBGP speakers are border routers while
some others are route reflectors. There is an edge (u, v) for each iBGP peer-
ing between iBGP speakers u and v. Moreover, there exists an edge (u, 0) for
each border router u that has an eBGP path to prefix p at time t. At node
u 6= 0, the set of permitted paths consists of the empty path ǫ and all paths
(u . . . v 0) where (v, 0) is an edge and (u . . . v) is a valid signaling path (see
Section 5.2) from u to v. If border router u has multiple eBGP paths to prefix
p at time t, permitted path (u 0) represents the best among them, according
to the standard BGP decision process. Permitted paths at node u are ranked
according to the iBGP configuration of router u and the BGP decision process.
Since Step 6 of the BGP decision process evaluates IGP metrics, we assume
that these metrics are known.

Observe that our construction is more general than the one proposed in
Section 5.1 of [GW02a], where rankings are determined by only relying on IGP
metrics, since iBGP attributes are supposed to be the same at every node.

Figure 5.3a depicts a simple iBGP configuration, while Figure 5.3b shows
the corresponding translation to SPVP, where each node u is equipped with
a list of paths representing Pu, sorted according to λu (better paths are posi-
tioned higher in the list). For example, the list besides node b1 specifies that b1

can use paths (b1 b2 0) and (b1 0) to reach 0, and prefers (b1 b2 0). The opposite
happens at vertex b2. The following theorem shows that IAC exacerbates the
iBGP routing stability problem.

i

i

“main” — 2010/2/23 — 1:37 — page 85 — #93
i

i

i

i

i

i

5.6. PROFITABLE IBGP ATTRIBUTE MODIFICATION 85

Theorem 5.1 BGP configurations that allow iBGP attribute changing can
generate a larger set of oscillations than BGP configurations where iBGP at-
tributes are not modified.

Proof: Trivially, the former family of BGP configurations strictly includes the
latter, and as such it can generate at least the same set of routing oscillations.
We now show that the iBGP topology in Figure 5.3a cannot oscillate if iBGP
attributes are not allowed to be changed within the AS. Let Pi be the best
eBGP route received by bi. We now walk through the BGP decision process
at routers b1 and b2, examining all possible cases.

• P1 and P2 have different local-preference values. In this case, the one
with the highest value is eventually selected at both routers.

• P1 and P2 have different AS-path lengths. Assuming a tie in the first
decision step (otherwise, we fall in the previous case), the route with the
shortest length is eventually selected at both routers.

• P1 and P2 have different origin values. Again, assuming a tie in the
previous decision steps, the route with the lowest origin is eventually
selected at both routers.

• P1 and P2 have the same origin value. In this case, Step 5 of the BGP
decision process implies that router bi eventually selects Pi, i ∈ {1, 2}.

In every case, no oscillations can be generated. On the other hand, consider
the iBGP configuration of Figure 5.3a. The corresponding SPVP instance in
Figure 5.3b is the well known Disagree gadget (compare with Figure 2.1c),
which is renowned to possibly exhibit oscillations if messages are exchanged
simultaneously between routers b1 and b2 (see Table 2.2). �

5.6 Profitable iBGP Attribute Modification

Sections 5.3 and 5.5 suggest that an ISP willing to change iBGP attributes
within its own network essentially faces a trade-off between flexibility and sta-
bility. In this section, we define policy configuration guidelines that safely
exploit the flexibility of modifying iBGP attributes. The main concern here
is to obtain benefits in terms of traffic load balancing (see, e.g., Figure 5.1b),
while ensuring routing stability and keeping the complexity of BGP configura-
tion manageable.

i

i

“main” — 2010/2/23 — 1:37 — page 86 — #94
i

i

i

i

i

i

86
CHAPTER 5. THE IMPACT OF CHANGING IBGP ATTRIBUTES ON

ROUTING STABILITY

Our guidelines are meant to fulfill two main high level requirements: (i) Routes
should be ranked according to revenues and costs; and (ii) Internal transit cost,
i.e., the cost of forwarding traffic within the ISP network, should be minimized.

We assume that the neighbors of an ISP can be broadly classified, ac-
cording to commercial relationships among ISPs, into customers, peers, and
providers [GR00]. Selecting a route announced by a customer means forward-
ing traffic to that customer, which pays for it. Similarly, selecting a route
announced by a peer implies that traffic is exchanged free of charge between
the two ISPs. Selecting a route announced by a provider, instead, involves pay-
ing a cost. We then implement requirement (i) by mandating that customer
routes have an higher local-preference than peer routes that, in turn, have
an higher local-preference than provider routes. Moreover, to avoid offer-
ing transit service for free, routes learned from a peer or a provider are not
exported to other peers or providers. This is one of the most typical way of
expressing routing policies in BGP [CR05] and it provides the additional ben-
efit of ensuring global interdomain routing stability [GR00]. Requirement (ii)
is implemented by forcing each route reflector to prefer routes learned from
its own clients, assuming that the cost of sending traffic from a route reflector
to a client is less than the one of sending traffic to a non-client. This is very
frequently the case, as route reflection topology design should be congruent
with the network topology [BCC06].

Guideline A Every iBGP speaker assigns a local preference value LPcust to
the routes announced by customer ASes, LPpeer to the routes announced by
peer ASes, and LPprov to the routes announced by provider ASes, in such a
way that LPcust > LPpeer > LPprov.

Guideline B Route reflectors modify the local preference value with LPmod

when receiving a route R from one of their clients, in such a way that

• if R is from a customer AS, LPmod > LPcust

• if R is from a peer AS, LPcust > LPmod > LPpeer

• if R is from a provider AS, LPpeer > LPmod > LPprov

Figure 5.4 shows a simple implementation of our guidelines. First, the
community attribute is used to tag routes according to our requirements. Then,
the local-preference attribute is modified according to the tags. Since a
very similar technique is commonly used by ISPs to manage traffic from eBGP

i

i

“main” — 2010/2/23 — 1:37 — page 87 — #95
i

i

i

i

i

i

5.6. PROFITABLE IBGP ATTRIBUTE MODIFICATION 87

Configuration for Border Routers

(i) Tag routes according to commercial relationships
if msg from customer

add community comm_cust

if msg from peer

add community comm_peer

if msg from provider

add community comm_prov

(ii) Prefer customers to peers, and peers to providers
if comm_cust in community

set local-pref 200

if comm_peer in community

set local-pref 100

if comm_prov in community

set local-pref 50

Configuration for Route Reflectors

(i) Tag routes announced by clients
del community comm_client

if msg from client

add community comm_client

(ii) Prefer customers to peers, and peers to providers
Prefer clients to non-clients

if comm_cust in community

set local-pref 200

if comm_cust and comm_client in community

set local-pref 220

if comm_peer in community

set local-pref 100

if comm_peer and comm_client in community

set local-pref 120

if comm_prov in community

set local-pref 50

if comm_prov and comm_client in community

set local-pref 70

Figure 5.4: A simple configuration complying with Guidelines A and B.

i

i

“main” — 2010/2/23 — 1:37 — page 88 — #96
i

i

i

i

i

i

88
CHAPTER 5. THE IMPACT OF CHANGING IBGP ATTRIBUTES ON

ROUTING STABILITY

neighboring ASes [CR05], we argue that our guidelines do not add significant
configuration complexity.

We now prove that our guidelines guarantee iBGP stability.

Lemma 5.1 If the configurations of all iBGP speakers of an AS comply with
Guidelines A and B, then eventually either: (i) all iBGP speakers select routes
learned from customer ASes, (ii) all iBGP speakers select routes learned from
peer ASes, or (iii) all iBGP speakers select routes learned from provider ASes.

Proof: Consider an AS in the steady state, and let W be the set of BGP
routes to a given destination prefix that are selected as best by at least one
iBGP speaker. Let C1 be the set (class) of customer ASes, C2 be the class of
peer ASes, and C3 be the class of provider ASes.

The statement is trivially true if |W | = 1 or if all routes in W are learned
from neighboring ASes belonging to the same class. Then, assume by contra-
diction that there exist at least two routes r1 and r2 in W such that r1 (r2)
is learned from a neighboring AS belonging to class Ci (Cj 6= Ci). Without
loss of generality, let i < j. Since each iBGP speaker only propagates its best
route, there must exist a border router u which selects r1 and a border router
v which selects r2.

Let P be a valid signaling path between u and v (P must exist, see Sec-
tion 5.2). Because of the iBGP propagation rules in Table 5.1, there must exist
two speakers x and y in P such that x selects r1, y selects r2, and there is an
iBGP peering between x and y. We have the following cases:

• x acts as a route reflector for y (or vice versa). Then, according to iBGP
route propagation rules in Table 5.1, x eventually announces r1 to y.

• x and y are peers. In this case, we have that x learned route r1 either
from an eBGP neighbor or from a client. In both cases, iBGP route
propagation rules in Table 5.1 ensure that x eventually announces r1 to
y.

Hence, y is aware of r1 in the steady state. Guidelines A and B imply that
y eventually selects route r1 because it has a higher local-preference than
r2 (a contradiction). �

Theorem 5.2 If every router configuration complies with Guidelines A and B,
then the resulting iBGP configuration is free from routing oscillations under
arbitrary link failures.

i

i

“main” — 2010/2/23 — 1:37 — page 89 — #97
i

i

i

i

i

i

5.6. PROFITABLE IBGP ATTRIBUTE MODIFICATION 89

Proof: Consider the translation to an SPVP instance S computed as described
in Section 5.5. By Lemma 5.1, we know that we can restrict our attention to
routes announced by the same class of neighboring ASes. We now direct some of
the edges in S and then show that the resulting instance satisfies the sufficient
conditions for robustness (i.e., stability under arbitrary link failures) described
in [GR00]. We refer to Section 3.3 for an accurate description of how these
conditions relate to eBGP stability.

Take each edge in S and direct it from a client to its route reflector. Namely,
if router u is a client of v, then we have edge (u, v). We say that v is a parent
of u, and, similarly, u is a child of v. Under this convention, edges are oriented
from a child to its parent. According to the conditions in [GR00], a partially
oriented instance is free from routing oscillations if all the following conditions
hold.

valley-free Permitted paths can be written as an “uphill” part, i.e., a (possibly
empty) sequence of child-to-parent edges, optionally followed by a “step”,
i.e., an undirected edge, and terminated by a “downhill” part, i.e., a
(possibly empty) sequence of parent-to-child edges.

prefer-child Each node prefers routes announced by its children to the routes
announced by other neighbors.

no-directed-cycle There are no directed cycles in the graph.

The valley-free condition holds since the set of permitted paths Pu at each
node u consists only of valid signaling paths, according to the translation to
SPVP described in Section 5.5. Recall from Section 5.2 that any valid sig-
naling path can be written as a (possibly empty) sequence of up edges, an
optional over edge, and a (possibly empty) sequence of down edges, and that
we oriented each edge from a client to its route reflector. The prefer-child con-
dition is ensured by Guideline B. The no-directed-cycle condition follows from
the fact that route reflectors are organized in a hierarchy (Section 5.2), hence
the orientation we defined cannot result in a directed cycle.

The statement hence follows by Theorem 5.1 of [GR00]. �

Observe that Guidelines A and B act on the local-preference attribute.
Since this attribute is evaluated at the first step in the decision process, the
ISP’s policy takes the highest precedence and the selected routes are guaran-
teed to be compliant with the policy no matter what the value of other BGP
attributes. In particular, attributes like AS-path and origin, which can be
manipulated by external ASes for their own traffic engineering purposes, are

i

i

“main” — 2010/2/23 — 1:37 — page 90 — #98
i

i

i

i

i

i

90
CHAPTER 5. THE IMPACT OF CHANGING IBGP ATTRIBUTES ON

ROUTING STABILITY

only considered as tie breakers. As a side effect, the forwarding plane is no
longer affected by changes to the AS-path or origin attribute, which makes
BGP-induced traffic shifts across the network much less likely to occur.

5.7 Conclusions

BGP configuration languages offer the possibility to change iBGP attributes
en route, but there is little understanding on the extent to which routing could
be affected. This chapter discusses the potential benefits and drawbacks, and
proposes a systematic way to mitigate the risks of this practice. We stress that
our results should not be taken as an argument supporting (nor discouraging)
modification of iBGP attributes.

We show a simple scenario where changing iBGP attributes yields better
traffic engineering, however we also prove that changing iBGP attributes can
result in creating routing oscillations that would not be possible otherwise.

By analyzing BGP update traces collected at multiple vantage points, we
estimate that at least 1, 800 ASes in the Internet exhibit a set of selected routes
which cannot be explained if iBGP attributes are left untouched.

Since neither known theoretical models [GW02a] nor practical techniques
for oscillation detection [FRBS08] allow iBGP attributes to be changed, we
define a way to translate an iBGP configuration to an instance of a well-known
model for policy-based path vector protocols like BGP. We use this translation
to formally prove stability properties.

Finally, we propose configuration guidelines to change iBGP attributes in a
profitable way. Compliance to our guidelines guarantees stability under faulty
conditions and enforces reasonable traffic engineering policies, not depending
on BGP attributes that could be modified by other ASes.

A natural question that arises is how hard it is to translate complex traffic
engineering requirements into BGP configurations with iBGP attribute chang-
ing. This chapter gives a preliminary answer for the case where policies follow
the customer-provider pattern. However, this is far from a complete method-
ology tackling this issue.

i

i

“main” — 2010/2/23 — 1:37 — page 91 — #99
i

i

i

i

i

i

Part III

Detecting BGP Instabilities

91

i

i

“main” — 2010/2/23 — 1:37 — page 92 — #100
i

i

i

i

i

i

i

i

“main” — 2010/2/23 — 1:37 — page 93 — #101
i

i

i

i

i

i

Chapter 6

Finding Potential Instabilities by

Static Analysis∗

6.1 Introduction and Related Work

Despite the literature provides many important theoretical contributions on
the stability of policy-based path vector protocols, in practice network opera-
tors have a limited set of weapons to fight BGP oscillations. Since theoretical
problems about stability seem to have untractable complexity [GSW02, FP08],
network administrators must rely on configuration guidelines that prevent rout-
ing oscillations. A number of such guidelines have been proposed to tackle both
eBGP [GR00, GGR01] and iBGP [GW02a, GW02b, RS06] routing instabili-
ties. Unfortunately, while guidelines can be useful in building from scratch a
network which is oscillation-free by design, they do not help an operator in

∗Part of the material presented in this chapter is based on the following publications

• L. Cittadini, G. Di Battista, S. Vissicchio. Doing Don’ts: Modifying BGP Attributes
within an Autonomous System. In Proc. IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS 2010), IEEE, 2010.

• L. Cittadini, M. Rimondini, M. Corea, G. Di Battista. On the Feasibility of Static
Analysis for BGP Convergence. In Proc. International Symposium on Integrated
Network Management (IM 2009), IEEE, 2009.

• L. Cittadini, G. Di Battista, M. Rimondini. How Stable is Stable in Interdomain
Routing: Efficiently Detectable Oscillation-Free Configurations. Technical Report
RT-DIA-132-2008, Dept. of Computer Science and Automation, Roma Tre University,
2008.

93

i

i

“main” — 2010/2/23 — 1:37 — page 94 — #102
i

i

i

i

i

i

94
CHAPTER 6. FINDING POTENTIAL INSTABILITIES BY STATIC

ANALYSIS

deciding whether his running configuration is stable or not.
On the other hand, modifications have been proposed to both eBGP [GW00,

ERC+07] and iBGP [CGM03, KCM04, MC04b, MC04a, FR09] that ensure
convergence of the protocol to a stable routing choice for each router. However,
given the deployment constraints, none of these modified versions of BGP has
ever seen substantial deployment.

In this chapter, we tackle the problem of BGP stability from the perspective
of a network operator that wants to know whether an already deployed BGP
configuration is stable or not. First, we describe a heuristic algorithm that
statically detects potential oscillations in an SPVP instance. SPVP is an
abstract model for BGP (see Chapter 2 for a detailed description of SPVP).
We prove that our algorithm has several highly desirable properties: (i) it
exceeds state of the art algorithms in that it is able to correctly report more
configurations as stable, (ii) it can be implemented efficiently enough to enable
static analysis of Internet scale eBGP configurations, (iii) it is free from false
negatives, meaning that configurations are only reported as stable if there are
no potential oscillations, and (iv) it can help in spotting the troublesome points
in a detected oscillation.

Then, we describe a technique to translate BGP configurations to SPVP

instances. We show smart optimizations that allow us to efficiently translate
large iBGP configurations into SPVP instances.

We also describe and evaluate the architecture of a modular tool that ex-
ploits our algorithms to process native router configurations and return infor-
mation about the potential presence of oscillations. Our approach is comple-
mentary to other existing BGP configuration checkers such as [QN04, FB05]
and other existing policy checkers in that we explicitly focus on convergence,
which requires analyzing configuration semantics rather than executing syntac-
tic checks and batch tests. We also overleap simulators [QU05], in that we are
able to point out the converging portion of networks that could permanently
oscillate. For these reasons, we believe such a tool can effectively integrate ex-
isting checkers to further assist operators in verifying configurations. Our ap-
proach is also more general than [FRBS08] because we support arbitrarily com-
plex route reflection hierarchies, as well as iBGP attributes that are changed
en route (see Chapter 5). We validate the architecture using a prototype im-
plementation and show that both the translation of policies to SPVP and the
convergence check algorithm itself can be implemented efficiently enough to
statically analyze BGP configurations in practice.

The rest of the chapter is organized as follows. Our algorithm to check
for convergence is presented in Section 6.2, together with a formal proof of

i

i

“main” — 2010/2/23 — 1:37 — page 95 — #103
i

i

i

i

i

i

6.2. A GREEDY ALGORITHM FOR SPVP INSTANCES 95

correctness. However, since our algorithm works on an abstract model of BGP
(see Chapter 2), we also need to translate a real network to an instance of
such a model to apply the algorithm in practice. While the translation takes
exponential time in the worst case, our experimental results show that smart
optimizations allow us to handle both eBGP (Section 6.3) and iBGP (Sec-
tion 6.4) networks with a reasonable amount of resources. We then conclude
in Section 6.5

6.2 A Greedy Algorithm for SPVP Instances

In this section we first briefly recall a greedy algorithm (we call it Greedy) that
has been proposed in [GSW02] to find a stable path assignment (see Section 2.3)
in an SPVP instance. Second, we propose a new greedy algorithm, called
Greedy+. Finally, we compare Greedy and Greedy+.

Algorithm Greedy attempts to grow a solution by iteratively building a
stable path assignment. If the algorithm terminates successfully, the output is
the only stable path assignment admitted by the input SPVP instance. Oth-
erwise, the greedy algorithm is only able to identify a stable path assignment
for a subset of the vertices.

The algorithm maintains a stable set of vertices for which convergence is
guaranteed. The stable set at iteration i of the algorithm is denoted by Vi.
Vertex 0 is always in the stable set, therefore we set V0 = {0}. As the stable
set grows, a path assignment π defined on the vertices in Vi is iteratively built.

We say that a path P is compatible with a path assignment π if P =
P ′(u v)π(v), where P ′ does not contain vertices in Vi, (u, v) ∈ E, and v ∈ Vi.

Algorithm Greedy is as follows. At iteration i, let Pv be the path with
minimum λv(P) among the paths at v compatible with π. If such a path does
not exist, let Pv = ǫ. If there exists a vertex v /∈ Vi−1 such that Pv has a next
hop in Vi−1, then construct Vi by adding v to Vi−1 and set π(v) = Pv. If such
a vertex v does not exist, then stop.

Intuitively, at each iteration, vertex v is stabilized because its best com-
patible path directly reaches an already stabilized vertex. Observe that the
algorithm terminates after at most |V | iterations. A solution to the SPVP

instance exists if, after k iterations, Greedy ends with Vk = V . The solution
is given by the stable path assignment π.

Note that the description of Greedy we propose here slightly differs from
the one in [GSW02], in that we require that only a single vertex enters the stable
set at each iteration. We will explain in the following that this modified version

i

i

“main” — 2010/2/23 — 1:37 — page 96 — #104
i

i

i

i

i

i

96
CHAPTER 6. FINDING POTENTIAL INSTABILITIES BY STATIC

ANALYSIS

230

210

20

320

30

102

3

1

0

Figure 6.1: Di-safe-gree: An SPVP instance for which algorithm Greedy

fails to find a solution.

is indeed equivalent to the original algorithm. We choose to describe Greedy

with this slight modification in order to better introduce the improvements
that allow us to overcome some shortcomings of the original algorithm.

Greedy can fail to find a solution even if the SPVP instance has guar-
anteed convergence. Consider, for example, the instance Di-safe-gree in
Fig. 6.1. It can be easily verified that any fair activation sequence of Spvp on
this instance is finite. In fact, any fair activation sequence is such that vertices
1, 2, and 3 learn about the direct path to 0. After that, pair (1, 2) is eventually
activated, and 2 learns about (2 1 0). Henceforth, vertex 2 will permanently
be unable to select (2 0), in turn preventing vertex 3 from choosing (3 2 0).
Finally, after pair (3, 2) is activated, 2 switches to its best path (2 3 0) and
Spvp terminates, as no other message is further generated. Therefore any fair
activation sequence is forcedly finite, and this implies that Di-safe-gree is
safe.

We will now walk through the execution of Greedy on Di-safe-gree.
At the first iteration, vertex 1 enters the stable set V1, and π(1) = (1 0). At
the second iteration, the algorithm forcedly stops. In fact, path (2 3 0) is
compatible with π because 2, 3 /∈ V1, 0 ∈ V1, and (3 0) ∈ E. However, even
if (2 3 0) is the best compatible path at vertex 2, its next hop is not in V1.
A similar argument applies to path (3 2 0). Therefore, no new vertex can be
added to the stable set and the algorithm stops without finding a solution,
since V1 6= V .

We now describe a variant of this algorithm, which we call Greedy+. This
variant is able to solve Di-safe-gree.

We say that a path P belonging to a set S of paths is consistent with S if
either P = ǫ, P = (0), or P = (v u)P ′ where (v, u) ∈ E and P ′ is consistent
with S. For example, let S = {(0), (1 0), (2 1 3 0)}: it is easy to check that (0)

i

i

“main” — 2010/2/23 — 1:37 — page 97 — #105
i

i

i

i

i

i

6.2. A GREEDY ALGORITHM FOR SPVP INSTANCES 97

and (1 0) are consistent with S, while (2 1 3 0) is not. Further, for each vertex
v we define a set P̄v of paths called useful set. The useful set P̄v is initialized
with the paths in Pv that are consistent with P. Let P̄ =

⋃

v∈V P̄v.
Greedy+ differs from Greedy in that it exploits the useful set in order

to prune paths that, starting from a certain iteration, become permanently
unavailable. Hence, Greedy+ needs to keep the useful set up to date at each
iteration.

What follows is a description of Greedy+. Let V0 = {0}. At iteration i,
Greedy+ performs the following steps:

(i) Exploit the current stable set in order to prune all those paths that cannot
be selected because of the presence of a better ranked path offered by a
neighbor in the stable set. For each vertex v ∈ V − Vi−1 such that v
has a neighbor u ∈ Vi−1 and there exists a path P = (v u)P ′ such that
{P ′} = P̄u, remove from P̄v all the paths Q such that λv(Q) > λv(P).
Intuitively, this step is performed because P will be always available at
v.

(ii) Enforce consistency on all the paths. For each vertex v /∈ Vi−1, remove
from P̄v all the paths that are not consistent with P̄.

(iii) Grow the stable set, or stop. Let Ci ⊂ V − Vi−1 be the set of candidate
vertices v such that the path P ∈ P̄v with minimum λv(P) either has
a next hop in Vi−1, or P = ǫ. If Ci = ⊘, then set Vi = Vi−1 and stop.
Otherwise, if Ci 6= ⊘, then pick a vertex u ∈ Ci, construct Vi by adding
u to Vi−1, and set P̄u = {P}.

If Greedy+ stops after k iterations, its output consists of a stable set Vk

and sets P̄v ∀v ∈ V , with |P̄v| = 1 ∀v ∈ Vk. If Vk = V , Greedy+ computes a
stable path assignment π for the input instance such that P̄v = {π(v)} ∀v ∈ V .

An example of a successful execution of Greedy+ on Di-safe-gree is
shown in Table 6.1. Note that at iteration 1 path (2 0) is evicted from P̄2

because (2 1 0) is preferred and permanently available (Step (i)). This action
puts in evidence the difference between Greedy+ and Greedy: as we have
seen, Greedy forcedly stops at iteration 1. Step (ii) then removes (3 2 0) from
P̄3 since it is inconsistent with P̄. This allows vertex 3 to enter the stable set.

Theorem 6.1 Let n be the size of an SPVP instance S. Greedy+ can be
implemented to terminate on S in time that is polynomial in n.

i

i

“main” — 2010/2/23 — 1:37 — page 98 — #106
i

i

i

i

i

i

98
CHAPTER 6. FINDING POTENTIAL INSTABILITIES BY STATIC

ANALYSIS

i Vi Ci P̄1 P̄2 P̄3

0 {0} {1} (1 0)
(2 3 0)
(2 1 0)
(2 0)

(3 2 0)
(3 0)

1 {0, 1} {3} (1 0)
(2 3 0)
(2 1 0)

(3 0)

2 {0, 1, 3} {2} (1 0) (2 3 0) (3 0)
3 V ⊘ (1 0) (2 3 0) (3 0)

Table 6.1: A successful execution of Greedy+ on Di-safe-gree (Fig. 6.1).
The table shows sets Vi, Ci, P̄

v at iteration i of Greedy+.

Proof: A trivial bound follows.
Step (i) of Greedy+ applies to those vertices v which extend a path P

offered by some neighbor u in the stable set. This step can be implemented
by evaluating λv for all the paths in each P̄v and comparing its value with
λv((v u)P). This takes O(n3) time, since the length of a path is O(n).

Step (ii) of Greedy+ enforces consistency. This can be accomplished by
comparing each path in P̄ with all the others, which takes O(n3).

Finally, at Step (iii) of Greedy+ candidate vertices can be found in O(n3)
time.

Since Greedy+ executes at most |V | iterations and an instance of Spvp

can have O(n) vertices, Greedy+ can be implemented to run in O(n4). �

The following properties and Lemma 6.1 show that Greedy+ is deter-
ministic in the sense that, at any time where multiple choices are possible,
performing any of them does not alter the output.

Property 6.1 If Greedy+ terminates after k iterations, its output is com-
pletely defined by sets Vk and P̄v ∀v ∈ Vk.

Proof: The missing portion of the output, P̄v ∀v ∈ V − Vk, can be uniquely
constructed starting from Vk and P̄v ∀v ∈ Vk. Consider a new SPVP instance
S′ = (G′,P ′,Λ′) with G′ = G, Λ′ = Λ, and, for any v ∈ V :

P ′v =

{

P̄v if v ∈ Vk

Pv if v /∈ Vk
.

Now, initialize the stable set V0 to Vk and execute Steps (i) and (ii) of Greedy+

on S′. We now show that, after doing so, P̄ ′v = P̄v, ∀v ∈ V . This is trivially

i

i

“main” — 2010/2/23 — 1:37 — page 99 — #107
i

i

i

i

i

i

6.2. A GREEDY ALGORITHM FOR SPVP INSTANCES 99

true for vertices u ∈ Vk, as no path is ever removed from P̄ ′u. Observe that the
outcome of Step (i) of Greedy+ only depends on the topology of the graph
G′, the ranking functions Λ′, and the sets of useful paths P̄ ′v, with v ∈ Vk.
Because of the way S′ has been defined, we know that, at Step (i), a path is
removed from P̄v iff it is removed from P̄ ′v. Hence, any possible difference
must be due to Step (ii).

We prove by contradiction that the output coincides also for vertices in
V − Vk. Suppose that this is not the case, i.e., there exists some vertex v ∈
V − Vk such that P̄ ′v 6= P̄v. Then, there exists a path P such that either
P /∈ P̄ ′v ∧ P ∈ P̄v or P ∈ P̄ ′v ∧ P /∈ P̄v. In the first case, the execution of
Step (ii) on S′ has removed from P̄ ′v a path that the execution of Greedy+

on S regarded as consistent. But this is impossible, since ∀v ∈ V , P̄v ⊆ P ′v,
so there can be no path that is consistent with P̄ and is not consistent with
P ′. In the second case, the execution on S has removed from P̄v a path P that
the execution on S′ considered as consistent. Since it cannot be P /∈ Pv, then
for P to be inconsistent with P̄, it may only be the case that P = (v . . . u)Pu,
where Pu /∈ P̄u and Pu ∈ P̄ ′u. In turn, this is only possible if there exists
a path Pw such that Pu = (u . . . w)Pw, with Pw /∈ P̄w and Pw ∈ P̄ ′w. By
proceeding this way, we must eventually end up on a vertex x in Vk, possibly 0.
By recalling that P̄ ′v = P̄v ∀v ∈ Vk by construction, we have a contradiction
in that it should be Px /∈ P̄x and Px ∈ P̄ ′x. �

Property 6.2 Consider a path P that is inconsistent with P̄ at iteration i of
Greedy+. Then, P is inconsistent at any iteration j > i.

Proof: The property follows by observing that Greedy+ never adds new paths
to P̄. �

Property 6.3 At any iteration i of Greedy+, Ci ∩ Vi = Vi − Vi−1.

Proof: By construction, Ci ∩ Vi−1 = ⊘. Now, at iteration i a vertex is picked
from Ci and added to Vi−1 to construct Vi. Therefore, the property follows. �

The following property states the fact that, once a vertex enters the candi-
date set, it stays there until it is eventually moved to the stable set.

Property 6.4 Consider an arbitrary iteration i of Greedy+ and a vertex
v ∈ Ci. Then there exists an iteration j > i such that v ∈ Ch for all i ≤ h ≤ j
and v ∈ Vk for all k ≥ j.

i

i

“main” — 2010/2/23 — 1:37 — page 100 — #108
i

i

i

i

i

i

100
CHAPTER 6. FINDING POTENTIAL INSTABILITIES BY STATIC

ANALYSIS

Proof: Let v ∈ Ci be a vertex such that the path P ∈ P̄v with minimum
λv(P) at iteration i either has a next hop in Vi−1, or P = ǫ. Since no better
path can enter P̄v during the execution of Greedy+ (Property 6.2) and P
has the minimum value of λv among the paths in P̄v that are consistent with
P̄, P can never be removed from P̄v at Step (i) of Greedy+. Moreover,
if P = ǫ, by definition P is a consistent path. Otherwise, if P = (v u)Q,
u ∈ Vi−1, {Q} = P̄u, then P will remain consistent with P̄ because its next
hop is u ∈ Vi−1, so P̄u will not be updated after iteration i. Thus, P cannot
be removed from P̄v at Step (ii). Overall, starting from iteration i, path P
will always be available in P̄v and will always have the minimum value of λv.
In other words, v satisfies the conditions of Step (iii) at any iteration k ≥ i,
i.e., v ∈ Ck ∪ Vk.

Since ∀k ≥ i v ∈ Ck∪Vk, and Greedy+ only terminates when the candidate
set is empty, by Property 6.3 there must be an iteration j at which v is picked
from Cj and added to Vj−1 to construct Vj . The statement follows by recalling
that vertices are never removed from the stable set. �

We now show that, if multiple candidates exist at Step (iii), the output of
Greedy+ is not affected by the vertex that actually enters the stable set.

Lemma 6.1 Consider an arbitrary iteration j of Greedy+ and a set Cj

of vertices satisfying the criteria of Step (iii) at iteration j. The output of
Greedy+ does not change, regardless of the choice of vertex v ∈ Cj performed
at iteration j.

Proof: Assume that Greedy+ terminates at iteration k. First of all consider
that, by Property 6.1, it is sufficient to prove the assertion for sets Vk and P̄v

with v ∈ Vk. Consider an arbitrary vertex u ∈ Cj . By Property 6.4, we know
that u ∈ Ch for any iteration h ≥ j, until u eventually enters the stable set.
Also, as shown in the proof of Property 6.4, the best path (u v)P , v ∈ Vh

is always in P̄u. Therefore, regardless of the iteration at which u is actually
selected, the set P̄u is always updated with path (u v)P . Moreover, the set of
paths that become inconsistent with P̄ after setting P̄u = {(u v)P} does not
depend on the iteration either.

Thus, a vertex u ∈ Ch can be picked by Step (iii) at any iteration h of
Greedy+ without affecting neither Vk nor P̄v ∀v ∈ Vk. Since this is true for
any vertex u ∈ Ch, Greedy+ can select an arbitrary candidate vertex at each
iteration h without affecting the output. �

Note that algorithm Greedy+ essentially differs from Greedy because of
the presence of Step (i). In fact, if we skip Step (i), at each iteration i both the

i

i

“main” — 2010/2/23 — 1:37 — page 101 — #109
i

i

i

i

i

i

6.2. A GREEDY ALGORITHM FOR SPVP INSTANCES 101

algorithms select the best path among the consistent ones having a next hop
in Vi. This can be easily verified by observing that, when Step (i) is removed,
the set P̄ is only used to filter out inconsistent paths.

Therefore, it is easy to check that the validity of Lemma 6.1 can be extended
to Greedy by considering the path assignment π as its output and skipping
any consideration about Step (i) in the proof of the lemma. This further
confirms that the description of Greedy given in this section and the original
description given in [GSW02] are indeed equivalent.

We now show that Greedy+ is more powerful than Greedy in that it is
able to compute a guaranteed stable state for a strictly larger set of SPVP

instances.

Lemma 6.2 Let S be an SPVP instance. If Greedy terminates on S finding
a path assignment π∗, then Greedy+ also terminates on S finding π∗.

Proof: By Lemma 6.1 we know that, when multiple vertices can enter the stable
set at a given iteration, the solution computed by Greedy+ is independent
on the order in which these vertices are considered. Therefore, we prove the
assertion by showing that Greedy+ can find π∗ by selecting vertices to put in
the stable set in the very same order as Greedy does. We show it by mapping
each iteration of Greedy to one iteration of Greedy+. In the following, we
will refer to Greedy’s stable set as Vj , and to Greedy+’s stable set as V +

j ,
and we will indicate with π the path assignment defined by Greedy at a given
iteration. The proof proceeds by induction on the iteration j. It is trivially
true that, at j = 0, Vj = V +

j = {0}. Assume that Vj−1 = V +
j−1 and, without

loss of generality, that the stable sets have been constructed by adding vertices
in the very same order by the two algorithms. Consider vertex u that Greedy

selects at iteration j. This implies that (u v)π(v) is the path with minimum
λu among those compatible with π, for some v ∈ Vj−1. By the induction
hypothesis, P̄v = {π(v)}, therefore path (u v)π(v) is consistent with P̄. We
show that path (u v)π(v) must still be in P̄u at iteration j. Property 6.2
ensures that Step (ii) did not remove path (u v)π(v) from P̄u. That is, since
path (u v)π(v) is consistent with P̄ at iteration j, it was always consistent
during the previous iterations.

By the induction hypothesis, ∀w ∈ Vj−1 P̄w = {π(w)}, therefore all the
paths that are regarded as consistent by Greedy+ are necessarily compatible
with π. Hence, since (u v)π(v) is a consistent with P̄ and has minimum λu

among the paths compatible with π, it must also have minimum λu among
the paths consistent with P̄. Therefore path (u v)π(v) cannot be deleted at

i

i

“main” — 2010/2/23 — 1:37 — page 102 — #110
i

i

i

i

i

i

102
CHAPTER 6. FINDING POTENTIAL INSTABILITIES BY STATIC

ANALYSIS

Step (i) of Greedy+. Thus, vertex u is a candidate to be inserted in the stable
set by Greedy+.

Since, by Lemma 6.1, the output of Greedy+ is unaffected by the order
in which vertices enter the stable set, we can assume without loss of generality
that Greedy+ too selects vertex u at iteration j. This in turn implies that
Greedy+ finds the same path assignment π∗. �

Theorem 6.2 The set of instances that Greedy+ can successfully solve is
strictly larger than the set of instances that Greedy is able to solve.

Proof: Lemma 6.2 proves the inclusion. The strictness is supported by Di-

safe-gree, since, as we discussed above, Greedy is not able to find a stable
path assignment, while Greedy+ is (see Table 6.1). �

We now formally prove that, if Greedy+ terminates successfully on an
SPVP instance S, then S is safe.

Theorem 6.3 Consider an SPVP instance S and run Greedy+ on S. Let
P ∈ Pv be a path that Greedy+ deletes at iteration j. Then, for any fair
activation sequence σ of SPVP on S, there exists a time t′ such that ∀t > t′,
πt(v) 6= P .

Proof: The statement asserts that Greedy+ deletes only those paths that
will be discarded by any fair activation sequence of SPVP. The proof is by
induction on the iteration j of Greedy+. At iteration j = 1, since P̄u = Pu

for all u ∈ V , Greedy+ deletes a path P from P̄v at either Step (i) or Step (ii)
according to the following conditions.

Deletion at Step (i): Since V0 = {0}, the deletion takes place if λv((v 0)) <
λv(P). By the fairness of σ, there must exist a time t′ such that (v, 0) is
activated at t′: this prevents v from selecting P after t′.

Deletion at Step (ii): It takes place if P is inconsistent with P, i.e., P =
Q(w)R and R 6∈ Pw. In this case, the statement trivially follows since πt(w) 6=
R ∀t.

Assume, by induction, that the assertion holds for a given iteration j − 1
of Greedy+. We now prove that the same property is true for the paths that
are deleted during iteration j. Again, during iteration j, Greedy+ deletes a
path P from P̄v at either Step (i) or Step (ii).

Deletion at Step (i): It takes place if there exists u ∈ Vj−1 such that (v, u) ∈
E and λv((v u)P ′) < λv(P), where {P ′} = P̄u. Observe that the induction
hypothesis assures that previously deleted paths are eventually discarded after

i

i

“main” — 2010/2/23 — 1:37 — page 103 — #111
i

i

i

i

i

i

6.2. A GREEDY ALGORITHM FOR SPVP INSTANCES 103

time t′. Then, by the fairness of σ, there must exist a time t′′ > t′ such that
(u, v) is activated at t′′ and (v u)P ′ is made available at v ∀t > t′′. This
prevents v from selecting path P , i.e., πt(v) 6= P ∀t > t′′.

Deletion at Step (ii): It takes place if P is inconsistent, i.e., P = Q(w)R
and R 6∈ P̄w. By the induction hypothesis, there exists t′ such that ∀t > t′

πt(w) 6= R. Then, by the fairness of σ, v must receive a message that withdraws
the availability of R at a time t′′ > t′. Therefore, πt(v) 6= P ∀t > t′′. �

Corollary 6.1 If Greedy+ terminates successfully after k iterations on an
SPVP instance S, then S is safe and has πk as its unique stable path assign-
ment.

Observe that Corollary 6.1 actually states that Greedy+ can be used as
a static, centralized, and deterministic algorithm to efficiently emulate the
behavior of the SPVP protocol in the long term, thus dealing with the non-
determinism that SPVP features. In our opinion, this property can be effec-
tively exploited, e.g., by a network administrator that wants to analyze how
BGP will behave in his/her own network.

We would like to stress the fact that Greedy+ is able to verify the safety
even of instances for which known sufficient conditions for safety do not hold
(e.g., Bad Backup, shown in Figure 3.2, which contains a dispute reel but is
safe).

Using Greedy+ also brings another important advantage to network op-
erators. The following theorem shows that, when Greedy+ terminates with
Vk 6= V , it actually pinpoints a dispute reel in the network. Intuitively, this
means that, even when Greedy+ is unable to prove the safety of a given SPVP

instance, it can help pinpoint the trouble points of the network.

Theorem 6.4 Consider an SPVP instance S and run Greedy+ on S. If,
after k iterations, Greedy+ terminates with Vk 6= V , then S contains a dispute
reel.

Proof: Let u0 be any node in V − Vk such that (u0 v0)πk(v0) ∈ P̄u, and let
Q0 = (u0 v0)πk(v0). Since Greedy+ prunes out inconsistent paths, u0 must
exist. Also, since u0 6∈ Vk, there must be a path P0 ∈ P̄u which has higher
rank than Q0, that is, λu(P0) < λu(Q0). Since P0 must be consistent with
Vk, it has the form P0 = R0(u1 v1)πk(v1), where R0 is a path from u0 to u1

in V − Vk, v1 ∈ Vk, and (u1, v1) ∈ E. Let Q1 = (u1 v1)πk(v1). Note that we
can repeat the same argument with u1. If we continue in this manner we will
eventually form a dispute wheel Π = (~U , ~Q, ~R).

i

i

“main” — 2010/2/23 — 1:37 — page 104 — #112
i

i

i

i

i

i

104
CHAPTER 6. FINDING POTENTIAL INSTABILITIES BY STATIC

ANALYSIS

Π clearly satisfies Conditions (iii) and (ii) of Definition 4.1, since each spoke
path Qi has the form Qi = (ui vi)πk(vi) and, by the way Greedy+ operates,
each vertex in Vk only has a single consistent path, so that spoke paths form a
tree and no intersections with other paths are possible. For the same reason,
for all ui ∈ ~U , ui cannot appear in Qj if j 6= i. Moreover, since path Qi is
always available at ui, any path having a lower rank than Qi has been pruned
out by the deletion step of Greedy+, which means that, if ui ∈ Rj , then
Rj [ui]Qj+1 is preferred to Qi. This allows us to conclude that Π satisfies all
the conditions of Lemma 4.5, hence, by Lemma 4.6, S contains a dispute reel.

�

6.3 From eBGP Networks to SPVP Instances

As we have seen in the previous section, Greedy+ exhibits interesting proper-
ties, most notably it is efficient, free from false positives, and provides partial
results even when it cannot determine the stability of the input SPVP in-
stance. However, before being able to analyze a real BGP network, we must
first model it as an SPVP instance. We perform this in three separate steps:

topology we translate the network topology to a graph G,

dissemination we enumerate all possible BGP paths from the origin AS to
every other AS, building a set of paths Pu for each vertex u, and

ranking we run the standard BGP decision process at every vertex u and
extract the ranking λu.

Observe that, while the first step is trivial, the remaining two steps separate
the generation of routing paths from the actual best route selection operated
by BGP, similarly to [FB05].

For the dissemination phase, we essentially simulate the behavior of BGP
as if it had no best path selection. Namely, we represent a BGP announce-
ment with a pair (P,A), where P is a path and A is a set of BGP attributes.
Before a received announcement is processed by a router u, an import filter
Fu⇐v((P,A)) is applied to the announcement; similarly, before a router sends
an announcement, an export filter Fu⇒v((P,A)) is applied. The specification
of a filter contains a predicate and a sequence of actions. The predicate is a
boolean condition which can match BGP announcements based on the path and
the other attributes they carry. If the predicate evaluates to true, the actions

i

i

“main” — 2010/2/23 — 1:37 — page 105 — #113
i

i

i

i

i

i

6.3. FROM EBGP NETWORKS TO SPVP INSTANCES 105

process dissemination(v)

1: while receive (P,A) from w do
2: (P ′,A′) = Fv⇐w((P,A))
3: if (P ′,A′) 6= (ǫ,⊘) then
4: rib-int(v ⇐ w) := rib-int−1(v ⇐ w) ∪ {(P ′,A′)}
5: if rib-int(v ⇐ w) 6= rib-int−1(u ⇐ w) then
6: for all u | (u, v) ∈ E do
7: send Fv⇒u(((v)P ′,A′)) to u
8: end for
9: end if

10: end if
11: end while

Figure 6.2: Modified version of SPVP used to disseminate routing paths.

are undertaken. Possible actions include further propagating the announce-
ment or dropping it, as well as altering, adding, or dropping the attributes
carried by the announcement itself. The application of a filter returns a BGP
announcement with the pertinent attribute modifications applied, or (ǫ,⊘) if
the BGP announcement is discarded.

We run on G the modified version of SPVP described in Fig. 6.2. In this
algorithm, vertex 0 first starts announcing ((0),⊘). Vertices of G exchange
routing messages containing the full set of attributes (including, e.g., as path,
next hop, community, etc.) and apply all the configured filters, but no decision
process is performed on the received messages. Instead, every time a new, not
previously observed announcement is received by a vertex v, it is propagated
over to v’s neighbors. The purpose of this step is to enumerate all possible
paths that comply with the import and export filters. We recall that an explicit
representation of the paths is required by the SPVP model. It is easy to verify
that the algorithm in Fig. 6.2 terminates, as it is not affected by the stability
problems of SPVP. A set of permitted paths Pv for each v ∈ V can then be
constructed starting from the rib-in sets.

To perform the ranking phase, for each v ∈ V we apply the BGP decision
process to the announcements that v has collected in its rib-in during the
dissemination, and we define the ranking functions λv.

i

i

“main” — 2010/2/23 — 1:37 — page 106 — #114
i

i

i

i

i

i

106
CHAPTER 6. FINDING POTENTIAL INSTABILITIES BY STATIC

ANALYSIS

Optimizing for Scalability

In principle, mapping vendor specific configurations to a set of explicitly per-
mitted paths is a step that requires exponential time. On the other hand,
hardcoding filter applications in the path generation process allows us to avoid
generating a large number of paths.

We performed several dissemination experiments using as input the AS-level
topologies from CAIDA [CAI]. While CAIDA datasets are unavoidably biased
by the underlying inference algorithms by which they have been computed,
we believe they are still a valuable data source of large scale policy labeled
interdomain topologies, which is exactly what we need to verify the scalabil-
ity of our approach. We extracted from the CAIDA dataset collected on Nov
19th, 2007 a set of smaller topologies by pruning vertices with degree lower
than a threshold. We picked the thresholds in the following set of values (the
corresponding number of vertices and edges is reported between parentheses):
1000 (7, 21), 500 (14, 70), 250 (33, 319), 100 (85, 1030), 50 (181, 1981), 35
(279, 2815), 25 (379, 3564), 10 (1150, 7887), 5 (2575, 13498), 4 (3591, 16776),
2 (16617, 44056), 1 (26540, 53979), the latter corresponding to the complete
topology. All the generated graphs were connected. CAIDA datasets are anno-
tated with information about the commercial relationships established between
the ASes [Gao01]. In order to compare with state-of-the-art tools, we imple-
mented these relationships with BGP policies using the same approach that is
hardwired in the C-BGP simulator [QU05]. In order to understand how the
location of the originating AS affects the size of the SPVP instance, i.e., the
number of paths that need to be enumerated, in our experiments we assumed to
originate a prefix from a given AS picked from a significant sample of ASes be-
longing to different tiers of the Internet customer-provider hierarchy. Namely,
we chose the following set of originating ASes (the corresponding degree is re-
ported between parentheses): AS 701 (2643), AS 7018 (2066), AS 8001 (230),
AS 10026 (227), AS 74731 (100), AS 27064 (100), AS 6746 (73), AS 721 (50),
AS 3741 (50).

Unfortunately, our experiments show that enumerating paths in a naive
way is not feasible. Figure 6.3 shows the number of paths that had to be
enumerated (y-axis) for the topologies we generated as described above (x-
axis). In order not to get biased from the location of the originating AS, we
plot the median number of generated paths across the ten ASes we picked as
originators. Using a commodity PC with 4GB of RAM, we were only able
to generate SPVP instances from very small topologies. Namely, the naive
enumeration algorithm ran out of memory with the topology pruned at degree

i

i

“main” — 2010/2/23 — 1:37 — page 107 — #115
i

i

i

i

i

i

6.3. FROM EBGP NETWORKS TO SPVP INSTANCES 107

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

 1 2 4 5 10 25 35 50 100 250 500 1000

g
e

n
e

ra
te

d
 p

a
th

s

degree threshold

naive, median
greedy, median

greedy+

Figure 6.3: Median number of generated paths, computed on all the origin
ASes. The plots show the values without optimizations (naive), with early
stabilization (Greedy) and with both early stabilization and early suppression
(Greedy+). The latter plot includes the minimum and maximum values. The
x-axis shows the degree threshold we used to prune CAIDA topologies.

100. In Figure 6.3, we associate an arbitrary value of 4M paths to each path
generation task that went out of memory.

Clearly, we cannot enumerate paths in the naive way to translate an eBGP
network to a SPVP instance. A possible way of reducing the number of paths
that need to be generated is trying to run Greedy during the dissemination
phase process. The main idea is that, for each stable node that is found during
the generation process, only a single path needs to be enumerated. To this
end, vertex 0 marks the path announcements it sends as reliable. If a vertex
v receives a reliable announcement (P,A) from a neighbor u, v applies the
import filter Fv⇐u((P,A)) and compares the resulting (P ′,A′) with the best
announcement that it could ever receive from its neighbors. If, and only if, v
considers (P ′,A′) as most preferred, v applies the export filter Fv⇒w((P ′,A′)),
marks the announcement as reliable, and further propagates it to each neighbor
w 6= u (early stabilization). Observe that this step corresponds to precomputing
a subset of the stable vertices computed by Greedy. Based on Theorem 6.3,

i

i

“main” — 2010/2/23 — 1:37 — page 108 — #116
i

i

i

i

i

i

108
CHAPTER 6. FINDING POTENTIAL INSTABILITIES BY STATIC

ANALYSIS

a vertex v marking an announcement (P,A) as reliable is guaranteed to select
the corresponding path P . This allows us to only generate a single as path

for each stabilized vertex. In order to maximize the number of early stabilized
vertices, we evaluate preferences based on the local pref and on the as path

length.
Our experiments showed that early stabilization is not enough to make In-

ternet scale configurations tractable: as reported in Figure 6.3, early stabiliza-
tion provides only very limited benefits over the naive approach. We therefore
apply an additional optimization step while generating the SPVP instance:
vertex v does not propagate any announcement that it considers worse than a
received reliable announcement (P,A) (early suppression). In fact, since paths
from reliable announcements are always available, v will be unable to select
an alternative path ranked worse than (P,A). This basically corresponds to
performing some of the path deletions found in Greedy+ during the dissem-
ination phase. As shown in Figure 6.3, this technique allows us to reduce the
number of paths in the SPVP instance by one or two order of magnitude. In
particular, starting from degree threshold 35, in most cases the SPVP instance
can only be generated using the optimizations enabled by Greedy+.

Spotting Potential Oscillations

For each topology and originator AS that we were able to translate to an SPVP

instance, we checked the stability using an implementation of the Greedy+

algorithm. Each convergence check took between a fraction of a second and 67
seconds to complete, on a dual Xeon 2.66 GHz platform. We finally looked at
the percentage of vertices of the input topology that our algorithm reported as
safe. According to the results in [GGR01], if the commercial relationships are
configured using a the well-known customer-provider routing policies, conver-
gence is always guaranteed. Interestingly, depending on the originator AS, our
checker reported up to 15% of vertices as potentially unstable. We further in-
vestigated into this issue by separately running the C-BGP simulator on some
of the affected topology-originator pairs, and found that C-BGP was actually
unable to converge on them (we halted the simulation after 15 hours, while on
average C-BGP terminates in a few seconds). We ascribe this behavior to the
fact that CAIDA topologies include sibling relationships, which are not envis-
aged in the sufficient conditions for safety [GGR01]. To further confirm this, in
a separate experiment our prototype was also able to spot a triple of vertices
that generated a Disagree (see Figure 2.1c) structure. The triple actually
involved a sibling relationship and prevented C-BGP from converging.

i

i

“main” — 2010/2/23 — 1:37 — page 109 — #117
i

i

i

i

i

i

6.4. FROM IBGP NETWORKS TO SPVP INSTANCES 109

Figure 6.4: Architecture of the stability checker tool.

6.4 From iBGP Networks to SPVP Instances

Translating an iBGP network to an SPVP instance is, in principle, similar to
the eBGP case. Namely, we first parse BGP configuration files to extract the
iBGP peering topology and encode this topology in a graph G (see Section 5.2).
Then we disseminate BGP routes in order to compute the set Pu of permitted
paths at each node u. To do that, we need to know the eBGP routes injected
by border routers and to enumerate all valid signaling paths. Hence, we first
extract eBGP routes from the BGP Routing Information Base (RIB) of each
border router. Second, we simulate the propagation of each route through
G. Observe that, during the simulation, iBGP attributes of a route might be
changed by traversed routers according to their BGP configuration. At the end
of the dissemination phase, we end up with a set of BGP routes at each router
u, which are used to compute the set of permitted paths Pu. As a final step, we
need to define the ranking function λu at each node u (ranking phase). To this
end, we run the full BGP decision process at each node u, in order to obtain
a sorted list of the BGP routes that were collected during the dissemination
phase. The corresponding ranking is used to define function λu. Notice that,
as the BGP decision process uses the IGP metric as a tie breaker, we need to
know the underlying IGP topology.

Figure 6.4 summarizes the architecture of our tool. It takes BGP configu-
ration files, RIBs and a map of IGP weights as inputs, performs dissemination

i

i

“main” — 2010/2/23 — 1:37 — page 110 — #118
i

i

i

i

i

i

110
CHAPTER 6. FINDING POTENTIAL INSTABILITIES BY STATIC

ANALYSIS

and ranking, and produces an SPVP instance S which is then passed to the
Greedy+ algorithm.

Our tool has a core Java component which performs the dissemination
phase, computes rankings, creates an SPVP instance, and runs Greedy+ on
it. Besides that component, our prototype currently features:

(i) a minimal parser for Cisco configuration files, which is able to parse the
most common BGP statements, based on some code from BGP2CBGP [Tan06];

(ii) an MRT [BKL09] parser for RIBs; and

(iii) an SNMP-based OSPF link weight parser, which computes the all-pairs
shortest distance matrix.

We tested our prototype both on in vitro and on real world iBGP config-
urations. Namely, in order to evaluate how much our approach can scale to
large networks, we analyzed synthetic iBGP topologies consisting of up to 1100
iBGP speakers and route reflection hierarchies having at least three levels. As
in the case of eBGP networks, the most time-consuming activity is the dissem-
ination phase. In this case, the processing time to perform the dissemination
phase depends on the number of eBGP routes that need to be propagated, or,
equivalently, on the number of feasible egress points for a single destination
prefix. Since this number has been found to be quite low (lower than 20 in the
worst case) even for very large networks [FRBS08], we injected 20 eBGP routes
for each prefix as a worst-case analysis. Unfortunately, we cannot exploit the
optimizations that we used in Section 6.3, as in iBGP the local pref value
travels within the announcement, rather than being set at the receiving BGP
speaker. In other words, contrary to the eBGP case described above, it is not
possible to compare a set of BGP announcements without enumerating them
all. We then resort to a different technique to reduce the number of paths that
need to be enumerated: when analyzing a given prefix p, we disregard all the
iBGP routers that are neither route reflectors nor egress points for p.

Figure 6.5 shows the processing time needed to run a worst-case analysis
on three-levels hierarchies and a varying number of iBGP speakers.

We ran our experiments on a entry-level server equipped with two 2.6 GHz
quad-core CPUs and 16 GB RAM. Observe that checking the stability for a
single prefix in a large network (e.g., 600 iBGP speakers) takes 0.3 seconds
in the worst case. Running the analysis for the whole Internet routing table
would take several hours. However, the stability check could be run only for
the prefixes that experienced some change in a given time frame, e.g., 15-
30 minutes. Moreover, performance can still be improved if prefixes can be

i

i

“main” — 2010/2/23 — 1:37 — page 111 — #119
i

i

i

i

i

i

6.5. CONCLUSIONS 111

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000 1200

e
la

p
s
e

d
 t

im
e

 (
s
e

c
)

number of iBGP speakers

Figure 6.5: Processing time to check the stability of three-levels iBGP config-
urations with 20 injected eBGP routes.

grouped in equivalence classes, which is frequently the case, since BGP policies
are seldom specified on a per-prefix basis. The number of equivalence classes
is usually one or two orders of magnitude lower than the number of prefixes
(see, e.g., [FRBS08]).

Further, in order to test all the components of the prototype, we checked
the iBGP configuration of a medium-sized Italian ISP, consisting of almost 40
iBGP speakers and two route reflectors. We ran a test for every prefix in the
full Internet routing table (≈ 300, 000 prefixes) and found the configuration
stable in all cases. The full test took only a few minutes.

6.5 Conclusions

Configuring routers in a way that enforces safety is a hard task, as hardly pre-
dictable interactions can give raise to routing oscillations. While considerable
research efforts have focused on the theory of routing stability and on ways to
design routing policies such that stability is guaranteed, the interest in testing
router configurations for stability is relatively recent.

i

i

“main” — 2010/2/23 — 1:37 — page 112 — #120
i

i

i

i

i

i

112
CHAPTER 6. FINDING POTENTIAL INSTABILITIES BY STATIC

ANALYSIS

In this chapter we show that an automated check for BGP convergence is
feasible even for large scale eBGP and iBGP networks. We describe a determin-
istic algorithm that is provably free from false positives and is able to compute
a (possibly partial) stable routing tree. We prove that the algorithm is correct,
that is, it never misreports a BGP network as safe if it is not. Moreover, even
when the algorithm cannot prove the safety of the input BGP network, its
output can be used to locate the trouble points in the network.

We exploit such algorithm in a convergence-checking tool, whose prototype
implementation is efficient enough to process Internet scale eBGP topologies
as well as very large iBGP networks. It should be noted that the general
problem still has exponential complexity as, in the worst case, it takes expo-
nential time to translate a real BGP network into an abstract instance that
our algorithm can process. However, our results show that, on Internet-like
network topologies, the complexity is still manageable. This confirms the find-
ings in [FRBS08], with the remarkable difference that our technique supports
iBGP attributes that are changed en route (see Chapter 5) as well as multiple
layers of route reflection.

i

i

“main” — 2010/2/23 — 1:37 — page 113 — #121
i

i

i

i

i

i

Chapter 7

Collecting BGP Data to Support

What-If Analysis

7.1 Introduction

As we showed in Chapter 6, collecting BGP data is of primary importance
if one wants to detect instabilities in eBGP or check iBGP configurations for
guaranteed convergence. In the eBGP case, BGP data are needed in order
to build a realistic topology and set up reasonable interdomain policies. In
the iBGP case, instead, BGP data from border routers are a necessary input
to translate configurations to an SPVP instance, and, ultimately, to run the
stability checking algorithm (see Section 6.4).

Even though in this thesis we focused especially on BGP instabilities, mon-
itoring BGP routes enables ISPs to perform many other business-critical ac-
tivities like anomaly detection [MYC08, RGM+04], business/market intelli-
gence [Gao01], traffic engineering [BL08], root cause analysis [CCD+08, FMM+04],
routing table analysis [Hus01] and agreement compliance verification [FMR04].

Despite such a rich set of potential applications, current BGP monitoring
practices are quite limited: very often, they employ open source BGP daemon
implementations to establish extra BGP peerings with production routers. The
daemon acts as a route collector, in the sense that it collects information re-
ceived via those extra peerings, dumps it in some format, and stores it for future
analysis. For example, this is the approach adopted by RouteViews [Ore] to
collect BGP data for the Internet community. Such a practice has two major
drawbacks: (i) it is only able to collect those routes that have been selected

113

i

i

“main” — 2010/2/23 — 1:37 — page 114 — #122
i

i

i

i

i

i

114
CHAPTER 7. COLLECTING BGP DATA TO SUPPORT WHAT-IF

ANALYSIS

as best by the routers that peer with the collector; and (ii) it is only able to
collect BGP messages after ingress policy application, which can modify the
messages themselves.

Unfortunately, these drawbacks prevent exploiting the monitoring system
for interesting applications like, for example, fine tuning of ingress policies
(e.g., for traffic engineering purposes) or verifying Service Level Agreements
(SLAs) that involve BGP updates received by the other party. Even worse,
these drawbacks prevent us from using the techniques described in Chapter 6
in order to analyze BGP stability in what-if scenarios (e.g., what if an upstream
provider goes down? what if I decide to filter out a particular route?).

Recently, the BGP Monitoring Protocol [SFS] was proposed to overcome
those limitations, but unfortunately it is still not deployed widely enough, as
it requires firmware support on the routers. Moreover, it does not mandate
real-time monitoring of BGP messages.

In this chapter we define a set of requirements that a BGP monitoring
system should satisfy so that an ISP can take the biggest possible advantage
from its deployment. We present a novel approach enabling real-time, non-
invasive and scalable collection of all updates received by production-level BGP
routers. For this purpose, we exploit a usually overlooked feature that allows a
router to selectively clone IP packets and send them to a remote collector. We
make use of such a feature to copy every incoming TCP segment belonging to
BGP sessions and send it to a collector. After possibly reordering out-of-order
segments, our collector parses the BGP messages and stores the information in
the standard MRT format [BKL09].

By means of experimental evaluation on one of the cheapest commercial
routers targeted to ISPs, we show that deploying our solution negligibly affects
the performance of border routers with respect to traffic forwarding through-
put and CPU usage. We show that our prototype implementation can monitor
hundreds of BGP routers on commodity hardware. We also check the accuracy
of the collected data. Finally, by comparing our approach to existing solu-
tions for BGP data collection, we show that none of the previously proposed
monitoring systems is able to fulfill all the requirements we considered.

The rest of this chapter is organized as follows. In Section 7.2, we define
the requirements we mandate for an ideal BGP monitoring system. Section 7.3
surveys existing BGP monitoring solutions. In Section 7.4, we describe our
proposal for a BGP monitoring system, outlining its architecture and discussing
the most relevant components. Then, based on the requirements defined in
Section 7.2, we evaluate our solution (Section 7.5) and we compare it with
existing solutions (Section 7.6). We conclude in Section 7.7.

i

i

“main” — 2010/2/23 — 1:37 — page 115 — #123
i

i

i

i

i

i

7.2. REQUIREMENTS FOR A BGP MONITOR 115

7.2 Requirements for a BGP Monitor

In this section, we describe a set of requirements that a BGP monitoring system
should ideally fulfill.

Collection of non-best routes updates. Due to the way BGP is designed,
BGP routers select a single best route among a set of feasible routes to
a given destination, and forward traffic accordingly. Although updates
related to routes not selected as best have no impact on where packets
are forwarded, collecting them allows an ISP to better perform business
intelligence activities like monitoring the quality of the service offered by
its upstream provider at the BGP level. Another interesting application
of non-best route collection is simulating what-if scenarios, answering
questions like “What happens to paying traffic if I set a lower local-
preference on this route?”.

Accurate BGP update collection. Collected BGP data should reproduce
the BGP updates received by other ISPs to the highest possible level
of accuracy. This implies at least the ability to reconstruct all the BGP
attributes that are involved in the best route selection process. We expect
an ideal collection system to reconstruct the original BGP messages as
sent by neighboring ISPs. Peculiar applications, e.g. scientific research,
might also need accurate reproduction of BGP update timings. Also,
collected data should not be affected by a change in the ISP’s routing
policies.

Real-time data collection. A BGP monitoring system should be able to
collect data in real-time, or at least in near real-time. That is, a BGP
update should be available for analysis within few seconds. This is a
crucial requirement for troubleshooting and network diagnosing applica-
tions: network administrators want to know what is going on while it is
going on, not hours later.

Low impact on router resources. A common constraint on management
infrastructures is to have a small impact in terms of extra resource con-
sumption at network devices. This is especially true for BGP monitoring,
given that BGP border routers typically have to forward huge amounts of
traffic between two ISPs. Hence, the operation of the monitoring system
should not alter the performance of BGP routers, e.g. in terms of traffic
forwarding capabilities or CPU usage.

i

i

“main” — 2010/2/23 — 1:37 — page 116 — #124
i

i

i

i

i

i

116
CHAPTER 7. COLLECTING BGP DATA TO SUPPORT WHAT-IF

ANALYSIS

Figure 7.1: Typical architecture of BGP monitoring solutions employing BGP
route collectors.

Scalability. An efficient monitoring system should be cheap in terms of net-
work resource consumption (e.g., hardware needs, bandwidth overhead).
To be realistically deployable in large scale networks, the monitoring sys-
tem should be able to handle hundreds of border routers employing a
handful of machines equipped with commodity hardware.

Low management overhead. A monitoring system cannot require the exist-
ing network structure to be modified. Also, deployment and management
overhead, e.g., the amount of extra configuration needed to set up and
maintain the system, should be as low as possible.

7.3 Related Work

In this section we describe existing solutions for BGP monitoring. We refer to
Section 7.6 for a comparative analysis of prior work which shows that no exist-
ing solution satisfies all the requirements defined in Section 7.2, thus motivating
new contributions in this area.

Existing solutions can be broadly classified in two categories: those em-
ploying some kind of route collectors that are pushed BGP messages by border
routers, and those adopting separate protocols to pull BGP information from
the routers.

The typical architecture of a BGP monitoring system belonging to the first
category is depicted in Figure 7.1. A route collector is deployed inside the

i

i

“main” — 2010/2/23 — 1:37 — page 117 — #125
i

i

i

i

i

i

7.4. PROPOSED ARCHITECTURE 117

network and iBGP peerings are set up with every border router. Quagga [Ish]
and OpenBGPd [BJ] are probably the most famous and widespread tools to
set up a route collector. Essentially, they act as a real router, but they support
dumping BGP messages in MRT [BKL09] format. The Python Routing Toolkit
(PyRT) [Mor], on the other hand, only implements a minimal feature set, and
is lightweight enough to allow a single route collector to be deployed in a large
ISP network.

BGP monitoring systems based on separate management protocols are de-
signed to pull information from the devices. The main advantage of such an
approach is that it typically does not need any extra configuration at the border
routers: support for the management protocol suffices. SNMP has a number of
MIB objects that are dedicated to BGP monitoring activities [HH06]. Often,
operators pull information by screen scraping, i.e., using software that connects
to the device, e.g., via Telnet or SSH, issues a specific command, e.g., show ip

bgp, and collects the output.
Recently, a new ad-hoc protocol has been proposed in the IETF (the BGP

Monitoring Protocol, or BMP) [SFS]. The idea is to send received BGP mes-
sages via a TCP connection with a monitoring station. Unfortunately, both
standardization and router support are still in early stages, hence BMP is not
yet a readily deployable solution in a production environment.

7.4 Proposed Architecture

In this section we propose an architecture for a BGP monitoring system. The
main idea is to mandate border routers to capture all the incoming TCP seg-
ments belonging to BGP sessions with eBGP peers and forward them to a
remote route collector. The route collector is responsible for reassembling the
TCP segments, decoding BGP messages and storing them in the standard
MRT format [BKL09]. In the following, we show that this technique can be
implemented using common features available on routers together with ad-hoc
software employed on the route collector side.

Figure 7.2 depicts the architecture of our solution in a typical deployment
scenario. In this example, ISP A configures its border routers BR1 and BR2
to clone BGP packets and send copies to a remote Route Collector. Since
packet cloning is performed before applying local policies, the route collector
will receive BGP messages exactly as they are sent by eBGP peers. This feature
allows ISP A to monitor what routes are announced by its peers B, C, and
D. Of course, this approach supports private peerings between ISPs as well as

i

i

“main” — 2010/2/23 — 1:37 — page 118 — #126
i

i

i

i

i

i

118
CHAPTER 7. COLLECTING BGP DATA TO SUPPORT WHAT-IF

ANALYSIS

Figure 7.2: A deployment scenario of the proposed BGP monitoring system.

peerings at public Internet exchange points (IXPs).
It is easy to see in Figure 7.2 that our solution requires cooperation between

two main architectural components: the border router (BR) and the route
collector (RC). We now provide details regarding each component.

Border Routers: Cloning BGP Traffic

Most commercial routers provide the feature to clone IP packets and send
copies to a remote machine. This is mostly used for copying traffic to Intrusion
Detection Systems [cis06]. Leading vendors also provide filtering capabilities
that allow operators to specify which packets must be cloned. Since such a
feature is usually implemented in hardware, filters can usually be expressed
based on IP source and destination addresses, and TCP source and destination
ports only. However, for the purpose of cloning TCP segments belonging to
BGP sessions, such simple filters suffice. To maintain a vendor-independent
terminology, throughout the chapter we will refer to this feature as Selective
Packet Cloning (SPC).

A BR configured to perform SPC copies packets received from user-specified
source interfaces and matching an optional filter that selects which packets

i

i

“main” — 2010/2/23 — 1:37 — page 119 — #127
i

i

i

i

i

i

7.4. PROPOSED ARCHITECTURE 119

should be cloned. Cloned traffic is forwarded via a destination interface.
Depending on the capabilities of the device, a destination interface can be

either a physical interface (e.g., an Ethernet interface), a VLAN interface (via
802.1q encapsulation), or even a tunnel interface (e.g., IP-in-IP encapsulation
or Generic Routing Encapsulation). Observe that forwarding cloned packets
to a physical destination interface forces the ISP to place the RC so that it is
directly connected to the BR, and is therefore unpractical.

In the following, we briefly describe the SPC feature as implemented in
Cisco and Juniper devices.

The cheapest Cisco devices targeted to ISPs (e.g., Cisco 7200 and 7300
routers) provide the Router IP Traffic Export (RITE) feature [cis06]. A RITE-
enabled router can select packets received on certain interfaces applying IP- and
TCP-based filters, and forward cloned packets over a VLAN interface. More
expensive Cisco routers (i.e., 7600 series or greater) support the Encapsulated
Remote SPAN (ERSPAN) feature [cis], which provides a superset of the func-
tionalities offered by RITE, e.g., the possibility to forward cloned traffic over a
tunnel. Both RITE and ERSPAN can be used to implement the SPC feature
on Cisco devices.

Juniper’s SPC support is called Port Mirroring [jun]. Traffic received via
user-specified ingress interfaces is cloned and forwarded over a VLAN or a
tunnel (IP-in-IP or GRE) interface. On M7i devices and greater, cloning on a
VLAN interface is performed in hardware, while tunnel interfaces are handled
in software unless ad-hoc hardware (i.e., Tunnel Services PIC [JN]) is plugged
into the router.

Depending on the SPC implementation, the TTL value might be decreased
before cloning a packet. This is true both for Juniper’s Port Mirroring and
Cisco’s RITE features. We cannot exclude that other SPC implementations
behave the same. Unfortunately, this means that packets received with a TTL
value equal to one cannot be cloned.

Since the default value of the TTL in eBGP is one, we must provide
workarounds that make SPC usable within our context. For Cisco RITE,
using a standard access control list, i.e., a filter that only matches fields in
the IP header, solves the problem. Observe that this approach is reasonable
because TCP traffic exchanged between border routers can be assumed to be
mostly BGP traffic. Unfortunately, this workaround seems to be Cisco-specific.
A more general workaround is to request peers to set up BGP session using
a TTL greater than one. The recommended use of Generalized TTL Secu-
rity Mechanism satisfies our needs since it forces the TTL to be set to the
maximum value in order to protect BGP peerings from CPU-utilization based

i

i

“main” — 2010/2/23 — 1:37 — page 120 — #128
i

i

i

i

i

i

120
CHAPTER 7. COLLECTING BGP DATA TO SUPPORT WHAT-IF

ANALYSIS

RITE Configuration Steps

Step (i) - Define a filter to select BGP traffic
7201(config)#access-list 100 permit any any

Step (ii) - Define a destination interface
7201(config)#ip traffic-export profile myPr

7201(config-rite)#interface vlan1

7201(config-rite)#incoming access-list 100

mac-address <addr>

Step (iii) - Select one or more source interfaces
7201(config)#interface ge0/0

7201(config-if)#ip traffic-export apply myPr

Figure 7.3: Steps for configuring Selective Packet Cloning on Cisco routers.

attacks [GHM+07]. From the management point of view, our approach requires
a small amount of extra configuration on the SPC-enabled border router. Fig-
ures 7.3 and 7.4 show the amount of extra configuration that is needed to
enable the SPC feature on Cisco and Juniper routers, respectively. Steps (i)
and (ii) only need to be performed once, while Step (iii) has to be repeated
for each of the BR’s interfaces that are used for BGP peerings.

Route Collector: Receiving, Reconstructing, and Storing
BGP messages

Cloned TCP segments are sent to the RC which provides BGP messages to
applications for further analysis. The RC performs the following activities, as
summarized in Fig. 7.5.

Packet reception. The RC receives cloned packets from one of its network
interfaces, and buffers them for further elaboration.

TCP stream reconstruction. Since the RC does not establish a TCP ses-
sion with the BR, cloned TCP segments might arrive out of sequence.
Therefore, for each eBGP peering the RC needs to reorder packets in or-
der to extract the TCP stream. Duplicated segments are discarded. To
keep resource consumption at the BR as low as possible, the RC silently
ignores lost cloned TCP segments, if any.

i

i

“main” — 2010/2/23 — 1:37 — page 121 — #129
i

i

i

i

i

i

7.4. PROPOSED ARCHITECTURE 121

Port Mirroring Configuration Steps

Step (i) - Define a filter to select BGP traffic
firewall {

family inet {

filter myPr {

term bgp_mirror {

from {port 179;}

then {

port-mirror;

accept;

}}

term accept_all {then accept;}

}}}

Step (ii) - Define a destination interface
forwarding-options {

port-mirroring {

family inet {

input {rate 1;}

output {

interface <vlan1> {

next-hop A.B.C.D;

}}}}}

Step (iii) - Select one or more source interfaces
fe-1/3/1 {

unit 0 {

family inet {

filter {

input myPr;

}

...

}}}

Figure 7.4: Steps for configuring Selective Packet Cloning on Juniper routers.

i

i

“main” — 2010/2/23 — 1:37 — page 122 — #130
i

i

i

i

i

i

122
CHAPTER 7. COLLECTING BGP DATA TO SUPPORT WHAT-IF

ANALYSIS

BGP message decoding. The reconstructed TCP stream is analyzed to de-
code BGP messages and infer BGP session state changes.

BGP message storing. BGP messages and inferred state changes are stored
in the standard MRT format [BKL09] or, optionally, inserted into a
database ready to be analyzed by an application.

Our prototype RC implementation is based on the standard tcpdump utility
for receiving cloned packets. We use nice to schedule the receiving process
with high priority, and then send the received packets to a Perl script that is
able to perform TCP stream reconstruction in pipeline. Finally, another Perl
script takes the reconstructed stream in input and writes BGP messages in
MRT format on a file. In the following, we discuss the main factors that affect
the scalability of our implementation. Section 7.5 presents an experimental
performance study.

Receiving speed. To avoid dropping some TCP segments, the RC must be
able to receive packets at the speed they are sent on the network. Note
that cloned TCP segments are received by the RC at approximately the
same time when the BR received the original segments, the only difference
being the cloning delay introduced by the BR and the network latency
from the BR to the RC. The throughput of the TCP session between the
BR and its BGP peer is limited by the TCP flow control mechanism, and
it is roughly determined by the performance of the BGP software process
running on the BR. The BGP software process, in turn, is bounded to the
CPU speed of the BR. Given the current prices for commodity hardware,
we can safely assume that the CPU speed of the RC exceeds, or is at
least comparable with, the CPU speed of the BR. Moreover, the receiving
process on RC just needs to buffer packets, a much less CPU-intensive
task compared to what the BGP daemon on the BR needs to do. Hence,
as long as the receiving process on the RC is scheduled with a sufficiently
high priority, the receiving speed is not a problem.

Processing and storing speed. TCP stream reconstruction, BGP message
decoding and data storage should be fast enough to sustain the average
BGP traffic rate. Peak traffic rates are easy to accommodate by buffering
received packets at the input of TCP stream reconstruction. All these
activities take a constant amount of time for each BGP message, and
the most critical with respect to processing time is the storage. A key
feature of those three activities is that they are trivial to parallelize across

i

i

“main” — 2010/2/23 — 1:37 — page 123 — #131
i

i

i

i

i

i

7.5. EVALUATION 123

Figure 7.5: Main activities performed by the route collector software. Receiving
a stream of cloned TCP segments as input, it reconstructs the TCP sessions
and decodes BGP messages from them. Then, it stores BGP messages and
state changes in MRT format.

multiple CPUs, allowing us to achieve good scalability by simply adding
more processing resources to the RC. The possibility to improve write
throughput of disks adopting RAID 0 is bounded only by the cost of
additional disks.

7.5 Evaluation

In this section, we evaluate the extent to which our proposed architecture meets
the requirements we defined in Section 7.2. We used a Cisco 7201 router (re-
ferred to device-under-test in the following) for measuring the performance of
our solution. The router is equipped with four Gigabit Ethernet ports, 1 Giga-
byte of RAM, and a 1.67 GHz Motorola Freescale 7448 processor. The vendor’s
datasheet states that this router is able to route a maximum of 2 million pack-
ets per second. We chose the Cisco 7201 because it is considered to be one
of the cheapest router equipment targeted to ISPs. We aim at understanding
how the SPC feature impacts the performance of the router under stress. In
particular, we are interested in studying how SPC affects forwarding of regular
traffic and in measuring the accuracy of BGP session reconstruction at the RC.
We do not report any CPU usage measurements, since during all our exper-
iments we were never able to appreciate any difference between SPC-enabled
and SPC-disabled working mode. This can be easily explained by considering
that the device-under-test implements the SPC feature entirely in hardware.

i

i

“main” — 2010/2/23 — 1:37 — page 124 — #132
i

i

i

i

i

i

124
CHAPTER 7. COLLECTING BGP DATA TO SUPPORT WHAT-IF

ANALYSIS

Baseline Measurement

First, we measured the performance of the device without any special configu-
ration. In Section 7.5 and 7.5, we use the results of this experiment as a baseline
for evaluating the impact of enabling the SPC feature on the device-under-test.

Figure 7.6 illustrates the baseline test topology. Our traffic generator (a
SmartBits 600B) only has two interfaces and we connected both of them to the
router. Note that a unidirectional traffic flow on a full-duplex Gigabit Ethernet
link can generate a maximum of 1, 488, 095 packets per second [KP02], which
would not be enough to measure the maximum throughput of the router. For
this reason, we configured our traffic generator to send bidirectional traffic,
that is, traffic was sent from interface 1 to interface 2 and vice versa at the
same time, as shown in Figure 7.6.

To make the router work properly in this setting, we configured it with
20 static routes, 10 for each interface connected to the traffic generator. We
programmed the traffic generator to generate 100 unidirectional IP flows (i.e.,
source-destination pairs) by randomly picking a source address in each of the 10
prefixes configured on interface ge0/0 and a destination address in each of the
10 prefixes configured on interface ge0/1. The same was done in the opposite
direction (from ge0/1 to ge0/0), for a total of 200 simulated IP flows. Traffic
was sent at a fixed packet rate, evenly distributed among all flows (i.e., each
flow got 1/200 of the traffic). Each packet was 64 bytes long, the minimum
size allowed on Ethernet.

We measured packet loss at various packet transmission rates. Results are
summarized in Figure 7.8, where we also show the results presented in the
next section for comparison. The x-axis represents packet rate, expressed as
the percentage with respect to maximum packet rate for full duplex Gigabit
Ethernet. The y-axis represents frame loss, expressed as the ratio between lost
frames and sent frames.

In our setting, the Cisco 7201 router can handle circa 1, 845, 000 packets
per second (62% of the maximum packet rate). The router was not able to
handle the two million packets per second that the vendor’s datasheet claims
(vertical dashed line in Figure 7.8) without dropping frames. This is possibly
a side effect of using only two interfaces or it might be due to our flows setting.
Nevertheless, this fact does not affect the validity of this measure as a baseline
for the following experiments.

i

i

“main” — 2010/2/23 — 1:37 — page 125 — #133
i

i

i

i

i

i

7.5. EVALUATION 125

Figure 7.6: Baseline test topology. The device-under-test (Cisco 7201) is con-
nected to the SmartBits 600B traffic generator with two cables. The traffic
generator sends two flows in opposite directions.

Single Peering Scenario

After having performed the baseline measurement described in the previous
section, we evaluated the router performance in a single BGP peering scenario.
We set up a testbed using the topology depicted in Figure 7.7. The device-
under-test was connected to the traffic generator as in the baseline experiment.
Also, the device-under-test was configured in the same way and the same 200
IP flows were sent by the traffic generator to the router. On a third interface of
the router we set up a BGP peering with a medium sized ISP. From this BGP
peering, the router received the full routing table, containing 287, 000 prefixes,
and a continuous stream of real world BGP updates. We configured SPC such
that incoming traffic belonging to the BGP peering was cloned on the fourth
interface of the router over a VLAN. A packet sniffer was attached to the same
VLAN and acted as a RC, capturing the cloned packets.

We performed the same experiment described in Section 7.5, the only dif-
ference being the size of the routing table, which, in this case, was increased by
the full Internet routing table received over the BGP peering. We performed
the test both with the SPC feature activated (test “BGP-updates-mirror”) and
not activated (test “BGP-updates-no-mirror”). Results are presented in Fig-
ure 7.8. For convenience, we also report the baseline measurement results (test
“baseline”) on the same diagram. It is easy to see that activating the SPC
feature has no impact on the throughput achieved by the device-under-test.
Moreover, we found that the presence of a single BGP peering does not cause
more packets to be dropped. This can be explained by noting that, since the

i

i

“main” — 2010/2/23 — 1:37 — page 126 — #134
i

i

i

i

i

i

126
CHAPTER 7. COLLECTING BGP DATA TO SUPPORT WHAT-IF

ANALYSIS

Figure 7.7: SPC test topology, an enriched version of the baseline test topology.
Device-under-test is configured with a BGP peering on which real world up-
dates are received, and SPC is enabled to clone BGP traffic toward the Route
Collector.

synthetic traffic is routed using static entries, the portion of the FIB that is
accessed never changes, making BGP-induced FIB changes irrelevant to the
test traffic.

We repeated the experiment increasing the number of BGP peerings estab-
lished by the device-under-test (up to five peerings), and found very similar
results. Finally, we checked the correctness of cloned traffic by comparing the
packet traces captured at the ISP’s BGP router with the cloned packets re-
ceived by the collector. We found that no cloned packets were dropped and
BGP messages were correctly reconstructed and stored on disk. Since this
check was successful in all our experiments, even when some regular traffic was
dropped, we will not stress it again in the following.

Update Bursts with Multiple Peerings

We set up a second experiment to evaluate how SPC affects the performance
of production BRs under heavy BGP update bursts. The topology of the
testbed is similar to the one we described in the previous experiment (see
Figure 7.7), except for the fact that the we interposed five BGP daemons (i.e.,
five Quagga [Ish] processes) between the BR and the device-under-test. Each

i

i

“main” — 2010/2/23 — 1:37 — page 127 — #135
i

i

i

i

i

i

7.5. EVALUATION 127

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 60 70 80 90 100

F
ra

m
e
 l
o
s
s
 (

%
)

Packet rate (% of maximum packet rate)

baseline
BGP-updates-no-mirror

BGP-updates-mirror

Figure 7.8: Frame loss (ratio between lost packets and sent packets) versus
packet rate (percentage of the maximum packet rate obtainable on full-duplex
Ethernet). The vertical dashed line represents the packet rate which should be
handled without loss according to the vendor’s datasheet. Frame loss increases
roughly linearly with packet rate, and activating SPC does not impact the
performance of the device.

BGP daemon had a peering session with the ISP and one iBGP peering session
with the device-under-test. This way, whenever a BGP update was sent by the
ISP’s BGP router, each BGP daemon sent an update to the device-under-test,
hence the update rate received at the device-under-test was multiplied by five.
By tearing down the BGP sessions with the ISP’s BGP router, we were then
able to produce a huge amount of route withdrawals: in fact, the entire Internet
full routing table was withdrawn by each of the five BGP daemons, and the
device-under-test received almost 1.5 million route withdrawals. Conversely,
as soon as the BGP sessions were restored, the ISP’s BGP router advertised
the full routing table to all BGP daemons, and the device-under-test received

i

i

“main” — 2010/2/23 — 1:37 — page 128 — #136
i

i

i

i

i

i

128
CHAPTER 7. COLLECTING BGP DATA TO SUPPORT WHAT-IF

ANALYSIS

almost 1.5 million route announcements.
We want to understand the impact of the SPC feature on packet loss when

the BR is under extreme stress. For this purpose, we configured our traffic
generator to send a critical amount of traffic, namely slightly more than 60%
of the maximum packet rate obtainable on a full-duplex Gigabit Ethernet.
At regular intervals, we alternately tore down and restored the BGP sessions
with the ISP’s BGP router, hence producing huge peaks of route withdrawals
and announcements, respectively. We stress that such a scenario is extremely
unrealistic, since routers of an ISP should not be (and typically are not) so
overloaded by regular traffic in the real world, and do not receive such huge
amounts of BGP updates. We run the experiment both with SPC disabled (test
“reset-no-mirror”) and enabled (test “reset-mirror”). Figure 7.9 summarizes
our results: the x-axis represents time, while the y-axis represents frame loss as
measured by our traffic generator. We found that the device-under-test lost a
small fraction of traffic, about 0.005%, even when working with SPC disabled,
as shown by the blue dotted line in Figure 7.9. As predictable, packet loss spikes
correspond to the reception of BGP update bursts. The spikes are higher when
the SPC feature is activated on the router, but the performance of the router
is affected to a very small extent, as it is evident by observing that packet
loss never reached 0.04%. Moreover, since we are very near to the maximum
throughput that can be achieved by the device, packet loss is likely due to the
BGP traffic itself rather than to the elaboration of FIB/RIB changes.

Performance of the Collector Software

To assess the amount of resources required on the RC side, we captured five
BGP sessions during the initial full table transfer (nearly 1.5 million prefix
updates, 37,157 TCP segments, most of them of the maximum length). We
separately measured the processing time needed for receiving the packets, re-
constructing the TCP stream, decoding BGP messages and storing them in
MRT format on commodity hardware (a laptop equipped with a dual-core 2.6
GHz CPU and 4G of RAM). We stress that summing the measures we obtained
in this experiment provides an upper bound on the performance that can be
achieved by a RC, since processing times can be greatly enhanced by enabling
pipelining and parallel processing, as all the activities are trivial to parallelize
across multiple processors.

We re-played the capture file with tcpreplay using the topspeed option on
a 100Mbit ethernet link connected to our prototypical RC. Actual throughput
is about 80Mbit/sec, much higher than the throughput of regular BGP sessions.

i

i

“main” — 2010/2/23 — 1:37 — page 129 — #137
i

i

i

i

i

i

7.5. EVALUATION 129

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 10 20 30 40 50 60 70 80

fr
a
m

e
 l
o
s
s
 (

%
)

time

reset-mirror
reset-no-mirror

Figure 7.9: Frame loss during bursts of BGP updates with device load near to
the maximum throughput. The bursts of updates are generated by announc-
ing and withdrawing five entire BGP routing tables on five distinct peerings.
Observe that the SPC feature affects performance only to a very small extent
which is probably due to the BGP traffic itself.

Re-playing the capture file with tcpreplay took 3.38 seconds, while originally
the BGP sessions lasted more than 2 minutes. A regular BGP session can
reach such a high speed just sporadically. Even in this extreme experiment,
we were able to capture all packets with tcpdump and store them to an output
file. TCP stream reconstruction from the output file took 2.6 seconds, while
BGP session decoding and storage in MRT format took 1.7 seconds. Overall,
a single prefix update was processed in less than 5.23 µseconds on average.
Given that real world BGP sessions exhibit an average of less than 100 prefix
updates in a second, our prototype implementation can handle hundreds of
BRs on commodity hardware.

i

i

“main” — 2010/2/23 — 1:37 — page 130 — #138
i

i

i

i

i

i

130
CHAPTER 7. COLLECTING BGP DATA TO SUPPORT WHAT-IF

ANALYSIS

Quagga
Open-
BGPd

PyRT SNMP
Screen
scraping

BMP SPC

non-best routes no no yes yes yes
accuracy bad bad bad good perfect
real-time
collection

no (see
text)

no (see
text)

no almost
(see
text)

yes

impact on router
resources

low low heavy low very
low

scalable
deployment

no yes yes yes yes

management
overhead

low low none requires
support
from
routers

low

Table 7.1: Comparison between our solution and related work with respect to
the requirements defined in Section 7.2.

7.6 Comparison with Related Work

We now compare our proposal with the existing solutions that we listed in Sec-
tion 7.3, assessing the extent to which the requirements defined in Section 7.2
are satisfied by each solution. A summary of the comparison is presented in
Table 7.1. In the following, we discuss the comparison results displayed in the
table.

Collection of Non-Best Routes Since Quagga, OpenBGPd, and PyRT are
based on an iBGP peering, updates for routes that the BR does not select
as best routes will never be collected at the RC. Non-best routes can be
collected by screen scraping (e.g., via show ip bgp queries), and there
exist SNMP managed objects for every route received by a BGP peer.
BMP and the solution we present in this chapter are currently the only
way to continuously monitor non-best routes.

Accuracy of BGP Session Reconstruction Quagga, OpenBGPd, and PyRT
can only monitor routes selected as best, and they are forced to collect
BGP messages after ingress policy application. Polling-based mechanisms

i

i

“main” — 2010/2/23 — 1:37 — page 131 — #139
i

i

i

i

i

i

7.6. COMPARISON WITH RELATED WORK 131

such as SNMP and screen scraping are restricted to periodic snapshots
of the received routes. For these reasons, the BGP session cannot be
accurately reconstructed using those tools. BMP provides a more ac-
curate view of the BGP session, however multiple BGP updates could
be collapsed into a single one, and the timings of the messages could be
altered. Moreover, BMP does not collect BGP control messages such as
keepalives. Our solution, instead, clones each packet belonging to the
BGP session as soon as it arrives to the BR, and provides a very good
approximation of the time when the BGP message was received, the only
delay being the network latency from the BR to the RC.

Real-Time Collection Solutions that employ additional iBGP peerings, such
as Quagga, OpenBGPd and PyRT, are, in principle, capable of collecting
BGP messages in real time. However, two issues should be considered.
(i) The BR should send updates as soon as possible, which is the default
behavior in iBGP; and (ii) if messages are dumped periodically, addi-
tional delay is introduced before data are available for an application to
analyze. For example, Quagga can dump BGP data not faster than one
file per minute. Real-time is of course unfeasible with SNMP and other
polling-based mechanisms. The current BMP specification asserts that
BMP messages “are not real time replicated messages received from a
peer” [SFS].

Impact on Router Resources Handling an iBGP peering is a lightweight
task for a BR, hence solutions based on Quagga, OpenBGPd, or PyRT
do not put stress on routers. On the other hand, polling-based solutions
employing SNMP or screen scraping heavily affect the performance at
the BR, since it must process the whole BGP table and send a snapshot
to the monitoring station. Since the SPC feature is performed in hard-
ware, our approach affects the performance of the BR only minimally, see
Section 7.5. Since BMP uses a TCP connection, it is not clear what the
router resource consumption would be under extreme circumstances, e.g.,
when the RC tries to slow down the BR by shrinking the TCP window.

Scalability Since Quagga and OpenBGPd emulate a real router, CPU cycles
and memory are wasted at the route collector for activities that are useless
to a BGP monitoring system, e.g., performing the best route selection
process. This makes them unable to handle a large number of peers
providing a full Internet routing table, in turn making the deployment
of a BGP monitoring system harder since multiple collectors must be

i

i

“main” — 2010/2/23 — 1:37 — page 132 — #140
i

i

i

i

i

i

132
CHAPTER 7. COLLECTING BGP DATA TO SUPPORT WHAT-IF

ANALYSIS

installed. PyRT is not affected by this problem since it only implements
a minimal feature set, disregarding activities that are not relevant to the
monitoring system. Since SNMP and screen scraping have no real-time
constraint, a single monitor could be able to handle hundreds of BRs.
The performance study in Section 7.5 ensures that a single RC is able
to handle cloned BGP messages (and, with slight modifications, BMP
messages as well) coming from hundreds of BRs.

Management Overhead Quagga, OpenBGPd and PyRT incur little man-
agement overhead, since all that is needed is to configure iBGP peerings
between the BRs and the RC(s). SNMP and screen scraping virtually
incur no management overhead, since they are commonly already used
for other purposes in most ISP networks. The management overhead
for our approach consists of extra router configuration as discussed in
Section 7.4, plus the setup of a VLAN or tunnel from the BR to the
RC. Deploying BMP, on the other hand, requires non-negligible firmware
and/or hardware upgrade efforts: only JunOS versions later than 9.5
currently support BMP.

7.7 Conclusions

Once an algorithm for detecting BGP instabilities is available, perhaps its most
interesting application is analyzing what-if scenarios, for example, to test a new
configuration before it gets deployed.

To support the above scenario, as well as better troubleshooting and other
business intelligence analyses, we propose an innovative technique for real-time
collection of all BGP messages sent by BGP peers.

Through experiments, we show that our approach accurately records the
BGP updates received, it is easy to configure on current routers, it is scalable,
and it has a negligible impact on the performance of the monitored border
routers.

We believe that our approach based on selective packet cloning could turn
out to be useful also for monitoring other routing protocols.

i

i

“main” — 2010/2/23 — 1:37 — page 133 — #141
i

i

i

i

i

i

Conclusions and Bibliography

133

i

i

“main” — 2010/2/23 — 1:37 — page 134 — #142
i

i

i

i

i

i

i

i

“main” — 2010/2/23 — 1:37 — page 135 — #143
i

i

i

i

i

i

Conclusions and Open Problems

Routing is a much harder problem than it seems at a first glance, and this is
especially true for interdomain routing protocols, where the need to account
for routing policies prevents us from simply representing a network as a graph
and trying to optimize a single metric network-wide. Instead, with BGP we
have a huge network of independent ASes, each trying to fulfill its own purpose
while cooperating with its neighbors to disseminate reachability information.

Unfortunately, unrestricted local policies are incompatible with guaranteed
convergence. Thanks to our characterization of BGP safety under filtering, we
are now able to define exactly the amount of expressiveness that needs to be
sacrificed in BGP to preserve complete filtering autonomy while still ensuring
global stability. A similar relation exists between expressiveness and stability
when we focus on the internal version of BGP, iBGP. In particular, we study
the impact of iBGP attribute manipulation and, once again, we find that with
more expressiveness comes an increased risk for routing oscillations.

Interestingly, we find that the foundational properties that characterize
BGP stability can be found just in a static description of the network, without
the need to deal with the complexity of the dynamic, message-oriented nature
of BGP. This insight suggested us that it is possible to infer the stability of a
BGP network by just looking at its configuration. We then devised an algo-
rithm that is able to tell whether a given policy configuration is stable. Our
algorithm takes as input an abstract representation of BGP routing policies,
and computes a (possibly partial) stable routing state. If the output is a com-
plete routing state, the network provably converges to it. Otherwise, if the
output is a partial routing state, then the network is potentially unstable, and
the trouble points must be searched among those portions of the network that
are not included in the output. We show that the algorithm as well as the
translation steps from BGP topologies or iBGP configuration files can be im-
plemented efficiently enough to analyze large scale BGP and iBGP networks.

135

i

i

“main” — 2010/2/23 — 1:37 — page 136 — #144
i

i

i

i

i

i

136 CONCLUSIONS AND OPEN PROBLEMS

Finally, we observe that our techniques could be applied to analyze what-if
scenarios, allowing us to test a BGP configuration for stability before it gets
deployed. In order to perform this kind of analysis, however, BGP data ob-
tained through standard collection systems do not suffice, since they are not
able to provide those routes that are not selected as best and they are unavoid-
ably biased by ingress policy application. Hence, we propose a scalable and
efficient BGP data collection system which is able to overcome such limitations.

Another contribution of this thesis is the comparison between different vari-
ants of BGP models that have been extensively used in the literature. We pro-
vide a taxonomy of the proposed BGP models, and we mathematically prove
that variations can impact the ability of the model to capture special kinds of
routing oscillations.

Yet, as pointed out in our review of related work, there is plenty of room
for further research activities. In particular, it is still not clear how hard it is
to decide whether a given BGP network is safe under filtering or not. While
we have provided a formal tool, namely the dispute reel, to statically analyze
safety under filtering, the computational complexity of finding such a structure
in a given policy configuration is still unknown.

Another important theoretical problem is how hard it is to decide whether
a given BGP network has a stable state when the policy configuration is ex-
pressed using a compact language, as it is the case today. While we show some
preliminary results for the special case where the ranking component is next-
hop based or where no route filters are allowed, the general problem remains
open.

In our opinion, the existence of incompatible sets of policies leading to rout-
ing oscillations and the fact that most of the interesting problems are known
(or conjectured) to be computationally intractable indicate that the Internet
community should have investigated BGP theory before its wide deployment,
rather than after. Unfortunately, the demand for features resulted in having
the BGP code long before we had a reliable BGP model. As it often happens
in computer science, inferring a model from running code is a much harder task
than writing the code that implements a running model. As a result, none of
the currently existing models for BGP can claim to realistically represent the
real functioning of a router. Hence, bridging the gap between the model and
the implementation becomes a crucial and challenging task.

From a more general point of view, perhaps the most important problem of
the current interdomain routing infrastructure is the fact that it is overworked.
In order to accommodate the growing complexity of the Internet, BGP is now
much more than a routing protocol: besides disseminating reachability infor-

i

i

“main” — 2010/2/23 — 1:37 — page 137 — #145
i

i

i

i

i

i

137

mation, it is used as a mean to do load balancing, traffic engineering, failover,
content distribution, etc. All these features push the demand for expressive
routing policies, while we showed that there is a clear limit to the expressive-
ness that can be supported if one requires guaranteed convergence. In the light
of the new research efforts trying to redesign the Internet architecture from
scratch, we believe that a next generation interdomain routing protocol should
promote a clean separation between the routing functionality and the traffic
engineering mechanisms.

i

i

“main” — 2010/2/23 — 1:37 — page 138 — #146
i

i

i

i

i

i

i

i

“main” — 2010/2/23 — 1:37 — page 139 — #147
i

i

i

i

i

i

Other Research Activities

This thesis was originally spurred by a research interest on BGP instabilities.
From time to time, the general interest in understanding and improving BGP
led us to tackle a number of side research issues by exploring related research
areas. Since those side research activities do not perfectly fit the scope of this
thesis, they are briefly summarized in this chapter.

• Clean Slate Design. While it seems that the Internet, or at least the vast
majority of it, is able to reach a stable routing with BGP, the number of
BGP updates that are exchanged in the network steadily increases. The
current size of the Internet poses a trade-off if BGP is used to dissemi-
nate routing information for the whole network, as every additional BGP
message has the potential to trigger a new routing table computation,
slowing down the routers. In this context, we designed HAIR, a rout-
ing architecture that splits the Internet into a hierarchy and keeps BGP
updates as localized within the same hierarchical component as possible.

• Root Cause Analysis. BGP is an incremental protocol, designed to gen-
erate messages only in response to network events (e.g., a link fault, or
a router reset). Yet, BGP update rates in the Internet are so high that
it is extremely hard to tell whether they are caused by BGP instabilities
or they are part of the “normal” functioning of the network. Root Cause
Analysis is a research field that aims at identifying and locating the root
cause of BGP messages, mostly for debugging and troubleshooting pur-
poses. In this context, we proposed a methodology which is based on the
number of prefixes routed on each interdomain link. The methodology
is partially supported by a graphical tool that aids the analysis of a big
collection of BGP messages.

139

i

i

“main” — 2010/2/23 — 1:37 — page 140 — #148
i

i

i

i

i

i

140 OTHER RESEARCH ACTIVITIES

• IPv4 Address Space Deaggregation. Currently, the most effective way
that an AS has at its disposal to control how traffic enters is prefix deag-
gregation, that is, using BGP to advertise several more specific prefixes
alongside with the aggregate. There is widespread belief in a high and
recently growing number of ASes that inject deaggregated prefixes, e.g.,
for due to multihoming or for the purpose of traffic engineering. In this
context, we show that the there is no trend towards more aggressive prefix
deaggregation or traffic engineering over time. With respect to BGP dy-
namics, we observe that deaggregated prefixes do not, generally, generate
the disproportionate amount of BGP updates they are believed to.

i

i

“main” — 2010/2/23 — 1:37 — page 141 — #149
i

i

i

i

i

i

Publications

Conference Publications

1. L. Cittadini, G. Di Battista, S. Vissicchio. Doing Don’ts: Modifying
BGP Attributes within an Autonomous System. In Proc. IEEE/IFIP
Network Operations and Management Symposium (NOMS 2010), IEEE,
2010.

2. A. Feldmann, L. Cittadini, W. Mühlbauer, R. Bush, O. Maennel. HAIR:
Hierarchical Architecture for Internet Routing. In Proc. ReArch 2009,
ACM, 2009.

3. L. Cittadini, G. Di Battista, M. Rimondini, S. Vissicchio. Wheel + Ring
= Reel: the Impact of Route Filtering on the Stability of Policy Routing.
In Proc. International Conference on Network Protocols (ICNP 2009),
IEEE, 2009.

4. P. Angelini, L. Cittadini, G. Di Battista, W. Didimo, F. Frati, M. Kauf-
mann, A. Symvonis. On the Perspectives Opened by Right Angle Cross-
ing Drawings. In Proc. International Symposium on Graph Drawing (GD
2009), Springer, 2009.

5. L. Cittadini, M. Rimondini, M. Corea, G. Di Battista. On the Feasi-
bility of Static Analysis for BGP Convergence. In Proc. International
Symposium on Integrated Network Management (IM 2009), IEEE, 2009.

6. A. Di Menna, T. Refice, L. Cittadini, G. Di Battista. Measuring Route
Diversity in the Internet from Remote Vantage Points. In Proc. Inter-
national Conference on Networks (ICN 2009), IEEE, 2009.

141

i

i

“main” — 2010/2/23 — 1:37 — page 142 — #150
i

i

i

i

i

i

142 PUBLICATIONS

7. L. Cittadini, G. Di Battista, M. Rimondini. (Un)-Stable Routing in the
Internet: A Survey from the Algorithmic Perspective. In Proc. Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2008), Springer, 2008.

8. L. Cittadini, T. Refice, A. Campisano, G. Di Battista, C. Sasso. Policy-
aware Visualization of Internet Dynamics. In Proc. International Sym-
posium on Graph Drawing (GD 2008), Springer-Verlag, 2008.

9. A. Campisano, L. Cittadini, G. Di Battista, T. Refice, C. Sasso. Tracking
Back the Root Cause of a Path Change in Interdomain Routing. In Proc.
IEEE/IFIP Network Operations and Management Symposium (NOMS
2008), IEEE, 2008.

10. L. Cittadini, T. Refice, A. Campisano, G. Di Battista, C. Sasso. Mea-
suring and Visualizing Interdomain Routing Dynamics with BGPath.
In Proc. IEEE Symposium on Computers and Communications (ISCC
2008), IEEE, 2008.

Internet-Drafts

1. G. Bajko, S. M. Bellovin, R. Bush, L. Cittadini, A. Durand, O. Mannel,
T. Savolainen, J. Zorz. The A+P Approach to the IPv4 Address Short-
age. Internet draft draft-ymbk-aplusp-05.txt, work in progress, Internet
Engineering Task Force, 2009.

Technical Reports

1. A. Feldmann, R. Bush, L. Cittadini, O. Maennel, W. Mühlbauer. HAIR:
Hierarchical Architecture for Internet Routing. Technical Report 2008-
14, Technische Universitaet Berlin, 2008.

2. O. Maennel, R. Bush, L. Cittadini, S. M. Bellovin. A Better Approach
than Carrier-Grade-NAT. Technical Report CUCS-041-08, Dept. of Com-
puter Science, Columbia University, 2008.

3. L. Cittadini, G. Di Battista, M. Rimondini. How Stable is Stable in
Interdomain Routing: Efficiently Detectable Oscillation-Free Configura-
tions. Technical Report RT-DIA-132-2008, Dept. of Computer Science
and Automation, Roma Tre University, 2008.

i

i

“main” — 2010/2/23 — 1:37 — page 143 — #151
i

i

i

i

i

i

143

4. A. Antony, L. Cittadini, D. Karrenberg, R. Kisteleki, T. Refice, T. Vest,
R. Wilhelm. Mediterranean Fiber Cable Cut (January-February 2008)
Analysis of Network Dynamics. Technical Report RT-DIA-124-2008,
Dept. of Computer Science and Automation, University of Roma Tre,
2008.

5. A. Campisano, L. Cittadini, G. Di Battista, T. Refice, C. Sasso. Update-
Driven Root Cause Analysis in Interdomain Routing. Technical Report
RT-DIA-117-2007, Dept. of Computer Science and Automation, Univer-
sity of Roma Tre, 2007.

i

i

“main” — 2010/2/23 — 1:37 — page 144 — #152
i

i

i

i

i

i

i

i

“main” — 2010/2/23 — 1:37 — page 145 — #153
i

i

i

i

i

i

Bibliography

[AKS06] Ehoud Ahronovitz, Jean-Claude Konig, and Clément Saad. A
distributed method for dynamic resolution of BGP oscillations.
In Proc. IPDPS 2006, Apr 2006.

[AVG+99] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer,
T. Bates, D. Karrenberg, and M. Terpstra. Routing Policy Spec-
ification Language (RPSL). RFC 2622, 1999.

[BBAS03] Anat Bremler-Barr, Yehuda Afek, and Shemer Schwarz. Improved
BGP convergence via ghost flushing. In Proc. INFOCOM 2003,
volume 2, pages 927–937, 2003.

[BCC06] T. Bates, E. Chen, and R. Chandra. BGP Route Reflection: An
Alternative to Full Mesh Internal BGP (IBGP). RFC 4456, 2006.

[BJ] H. Brauer and C. Jeker. OpenBGPd. www.openbgpd.org.

[BKL09] L. Blunk, M. Karir, and C. Labovitz. MRT routing information
export format. Internet-Draft, draft-ietf-grow-mrt-10.txt, 2009.

[BL08] Simon Balon and Guy Leduc. Combined intra- and inter-domain
traffic engineering using hot-potato aware link weights optimiza-
tion. In Proc. SIGMETRICS, 2008.

[BOR+02] Anindya Basu, Chih-Hao Luke Ong, April Rasala, F. Bruce Shep-
herd, and Gordon Wilfong. Route oscillations in i-bgp with route
reflection. In Proc. SIGCOMM, 2002.

145

i

i

“main” — 2010/2/23 — 1:37 — page 146 — #154
i

i

i

i

i

i

146 BIBLIOGRAPHY

[CAI] CAIDA. AS topologies annotated with AS relationships.
http://www.caida.org/data/active/as-relationships/index.xml.

[CCD+08] Alessio Campisano, Luca Cittadini, Giuseppe Di Battista, Tiziana
Refice, and Claudio Sasso. Tracking back the root cause of a path
change in interdomain routing. In Proc. NOMS, 2008.

[CGM03] Jorge Arturo Cobb, Mohamed G. Gouda, and Ravi Musunuri.
A stabilizing solution to the stable path problem. In Proc. Self-
Stabilizing Systems, pages 169–183, 2003.

[cis] Configuring local span, remote span (rspan), and encapsulated
rspan (erspan). Cisco Systems, Inc. Official Cisco ERSPAN doc-
umentation.

[cis06] Router ip traffic export packet capture enhancements. Cisco Sys-
tems, Inc., 2006. Official Cisco RITE documentation.

[CR05] Matthew Caesar and Jennifer Rexford. Bgp routing policies in isp
networks. IEEE Network, 19(6):5–11, 2005.

[DD08] Amogh Dhamdhere and Constantine Dovrolis. Ten Years in the
Evolution of the Internet Ecosystem. In Proc IMC, 2008.

[DEH+07] Giuseppe Di Battista, Thomas Erlebach, Alexander Hall, Maur-
izio Patrignani, Maurizio Pizzonia, and Thomas Schank. Comput-
ing the types of the relationships between autonomous systems.
IEEE/ACM Trans. on Networking, 15(2):267–280, 2007.

[DRCD09] Andrea Di Menna, Tiziana Refice, Luca Cittadini, and Giuseppe
Di Battista. Measuring Route Diversity in the Internet from Re-
mote Vantage Points. In Proc. ICN, 2009.

[ERC+07] Cheng Tien Ee, Vijay Ramachandran, Byung-Gon Chun, Kaushik
Lakshminarayanan, and Scott Shenker. Resolving inter-domain
policy disputes. Technical Report UCB/EECS-2007-27, EECS
Department, University of California, Berkeley, Feb 2007.

[FB05] Nick Feamster and Hari Balakrishnan. Detecting BGP configura-
tion faults with static analysis. In Proc. NSDI, 2005.

i

i

“main” — 2010/2/23 — 1:37 — page 147 — #155
i

i

i

i

i

i

147

[FBR04] Nick Feamster, Hari Balakrishnan, and Jennifer Rexford. Some
Foundational Problems in Interdomain Routing. In 3rd ACM
SIGCOMM Workshop on Hot Topics in Networks (HotNets), San
Diego, CA, November 2004.

[FJB05] Nick Feamster, Ramesh Johari, and Hari Balakrishnan. Stable
policy routing with provider independence. Technical Report
MIT-LCS-TR-981, MIT, 2005.

[FJB07] Nick Feamster, Ramesh Johari, and Hari Balakrishnan. Im-
plications of autonomy for the expressiveness of policy routing.
IEEE/ACM Trans. on Networking, 15(6):1266–1279, Dec 2007.

[FMM+04] Anja Feldmann, Olaf Maennel, Z. Morley Mao, Arthur Berger,
and Bruce Maggs. Locating Internet Routing Instabilities. In
Proc. SIGCOMM, 2004.

[FMR04] Nick Feamster, Zhuoqing Morley Mao, and Jennifer Rexford. Bor-
derGuard: detecting cold potatoes from peers. In Proc. IMC,
2004.

[FP08] Alex Fabrikant and Christos Papadimitriou. The complexity of
game dynamics: BGP oscillations, sink equilibria, and beyond. In
Proc. SODA, pages 844–853, 2008.

[FR07] Nick Feamster and Jennifer Rexford. Network-wide prediction of
BGP routes. IEEE/ACM Trans. Netw., 15(2):253–266, 2007.

[FR09] Ashley Flavel and Matthew Roughan. Stable and flexible ibgp. In
SIGCOMM ’09: Proceedings of the ACM SIGCOMM 2009 con-
ference on Data communication, 2009.

[FRBS08] Ashley Flavel, Matthew Roughan, Nigel Bean, and Aman Shaikh.
Where’s Waldo? Practical Searches for Stability in iBGP. In Proc.
ICNP, 2008.

[FSS06] Joan Feigenbaum, Rahul Sami, and Scott Shenker. Mechanism
design for policy routing. Distributed Computing, pages 293–305,
2006.

[FSS07] Joan Feigenbaum, Michael Schapira, and Scott Shenker. Algorith-
mic game theory. In Distributed Algorithmic Mechanism Design,

i

i

“main” — 2010/2/23 — 1:37 — page 148 — #156
i

i

i

i

i

i

148 BIBLIOGRAPHY

pages 363–384, New York, NY, USA, 2007. Cambridge University
Press.

[Gao01] Lixin Gao. On inferring autonomous system relationships in the
internet. IEEE/ACM Trans. on Networking, 9(6):733–745, 2001.

[GGR01] Lixin Gao, Timothy Griffin, and Jennifer Rexford. Inherently
safe backup routing with BGP. In Proc. INFOCOM 2001, pages
547–556, 2001.

[GHM+07] V. Gill, J. Heasley, D. Meyer, P. Savola, and C. Pignataro. The
generalized ttl security mechanism (GTSM). RFC 5082, 2007.

[GJR03] Timothy G. Griffin, Aaron D. Jaggard, and Vijay Ramachandran.
Design principles of policy languages for path vector protocols. In
Proc. SIGCOMM 2003, pages 61–72, New York, NY, USA, 2003.
ACM Press.

[GR00] Lixin Gao and Jennifer Rexford. Stable Internet routing without
global coordination. In Proc. SIGMETRICS 2000, pages 307–317,
2000.

[GS05] Timothy G. Griffin and Joao Lúıs Sobrinho. Metarouting. In
Proc. SIGCOMM 2005, pages 1–12, 2005.

[GSW99] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong.
Policy disputes in path-vector protocols. In Proc. ICNP 1999,
pages 21–30, 1999.

[GSW02] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong.
The stable paths problem and interdomain routing. IEEE/ACM
Trans. on Networking, 10(2):232–243, 2002.

[GW99] Timothy G. Griffin and Gordon Wilfong. An analysis of BGP
convergence properties. Proc. SIGCOMM 1999, 29(4):277–288,
1999.

[GW00] Timothy G. Griffin and Gordon T. Wilfong. A safe path vector
protocol. In Proc. INFOCOM 2000, pages 490–499, 2000.

[GW02a] Timothy G. Griffin and Gordon Wilfong. On the correctness of
IBGP configuration. Proc. SIGCOMM 2002, 32(4):17–29, 2002.

i

i

“main” — 2010/2/23 — 1:37 — page 149 — #157
i

i

i

i

i

i

149

[GW02b] Timothy G. Griffin and Gordon T. Wilfong. Analysis of the MED
oscillation problem in BGP. In Proc. ICNP 2002, pages 90–99,
2002.

[HH06] J. Haas and S. Hares. Definitions of managed objects for BGP-4.
RFC 4273, 2006.

[Hus01] Geoff Huston. Analyzing the internet’s BGP routing table. The
Internet Protocol Journal, 4(1), 2001.

[HW08] P. E. Haxell and G. T. Wilfong. A fractional model of the border
gateway protocol (BGP). In Proc. SODA ’08, 2008.

[ISC09] Internet Systems Consortium ISC. ISC domain survey.
http://www.isc.org/solutions/survey, 2009.

[Ish] K. Ishiguro, et al. Quagga routing suite. www.quagga.net.

[JN] Inc. Juniper Networks. Tunnel service pic datasheet. Datasheet.

[JR04] Aaron D. Jaggard and Vijay Ramachandran. Robustness of class-
based path-vector systems. In Proc. ICNP 2004, pages 84–93, Oct
2004.

[JR05] Aaron D. Jaggard and Vijay Ramachandran. Relating two formal
models of path-vector routing. In Proc. INFOCOM 2005, pages
619–630, Mar 2005.

[JR06] Aaron D. Jaggard and Vijay Ramachandran. Robust path-vector
routing despite inconsistent route preferences. In Proc. ICNP
2006, pages 270–279, 2006.

[jun] Configuring port mirroring. Juniper Networks, Inc. Official Ju-
niper Port Mirroring Documentation.

[kC06] Chi kin Chau. Policy-based routing with non-strict preferences.
In Proc. SIGCOMM 2006, pages 387–398, 2006.

[kCGG06] Chi kin Chau, Richard Gibbens, and Timothy G. Griffin. Towards
a unified theory of policy-based routing. In Proc. INFOCOM
2006, pages 1–12, Apr 2006.

i

i

“main” — 2010/2/23 — 1:37 — page 150 — #158
i

i

i

i

i

i

150 BIBLIOGRAPHY

[KCM04] Tomas Klockar and Lenka Carr-Motyčková. Preventing oscilla-
tions in route reflector-based I-BGP. In Proc. ICCCN 2004, pages
53–58, 2004.

[Kin08] Shiva Kintali. A distributed protocol for fractional stable paths
problem. In Proc. DIMACS/DyDAn Workshop on Secure Internet
Routing, 2008.

[KKK07] Nate Kushman, Srikanth Kandula, and Dina Katabi. Can you
hear me now?! It must be BGP. In Computer Communication
Review, 2007.

[KLMS00] Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo.
Secure border gateway protocol (S-BGP). IEEE Journal on Se-
lected Areas in Communications, 18:103–116, 2000.

[KMT06] Sven Kosub, Moritz G. Maaß, and Hanjo Täubig. Acyclic type-
of-relationship problems on the Internet. In In Proceedings of
the 3rd Workshop on Combinatorial and Algorithmic Aspects of
Networking (CAAN 06), pages 98–111. Springer-Verlag, 2006.

[KP02] Scott Karlin and Larry Peterson. Maximum packet rates for full-
duplex ethernet. Technical Report TR64502, Department of Com-
puter Science Princeton University, 2002.

[LXHL02] Jiazeng Luo, Junqing Xie, Ruibing Hao, and Xing Li. An ap-
proach to accelerate convergence for path vector protocol. In Proc.
GLOBECOM 2002, volume 3, pages 2390–2394, 2002.

[MC04a] Ravi Musunuri and Jorge Arturo Cobb. A complete solution for
IBGP stability. In Proc. IEEE International Conference on Com-
munications (ICC 2004), volume 2, pages 1177–1181, Jun 2004.

[MC04b] Ravi Musunuri and Jorge Arturo Cobb. Enforcing ibgp conver-
gence. In Proc. of the 12th IEEE International Conference on
Networks, pages 511–517, 2004.

[MFM+06] Wolfgang Mühlbauer, Anja Feldmann, Olaf Maennel, Matthew
Roughan, and Steve Uhlig. Building an AS-Topology Model that
Captures Route Diversity. In Proc. SIGCOMM, 2006.

[Mor] Richard Mortier. PyRT. research.sprintlabs.com/pyrt/.

i

i

“main” — 2010/2/23 — 1:37 — page 151 — #159
i

i

i

i

i

i

151

[MYC08] Jianning Mai, Lihua Yuan, and Chen-Nee Chuah. Detecting BGP
anomalies with wavelet. In Proc. NOMS, 2008.

[Ore] Oregon RouteViews Project. http://www.routeviews.org.

[PZW+02] Dan Pei, Xiaoliang Zhao, Lan Wang, Daniel Massey, Allison
Mankin, S. Felix Wu, and Lixia Zhang. Improving BGP conver-
gence through consistency assertions. In Proc. INFOCOM 2002,
volume 2, pages 902–911, 2002.

[QN04] Xiaohu Qie and Sanjai Narain. Using service grammar to diagnose
BGP configuration errors. Science of Computer Programming,
53(2):125–141, 2004.

[QU05] Bruno Quoitin and Steve Uhlig. Modeling the routing of an au-
tonomous system with C-BGP. IEEE Network, 19(6), 2005.

[RGM+04] Matthew Roughan, Tim Griffin, Z. Morley Mao, Albert Green-
berg, and Brian Freeman. IP forwarding anomalies and improving
their detection using multiple data sources. In Proc. SIGCOMM
workshop on Network troubleshooting, 2004.

[RIP] RIPE Routing Information Service (RIS).
http://www.ripe.net/ris.

[RLH06] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4
(BGP-4). RFC 4271 (Draft Standard), January 2006.

[RS06] Anuj Rawat and Mark A. Shayman. Preventing persistent os-
cillations and loops in IBGP configuration with route reflection.
Computer Networks, 50(18):3642–3665, Dec 2006.

[SFS] J. Scudder, R. Fernando, and S. Stuart. BGP monitoring protocol.
Internet-Draft, draft-ietf-grow-bmp-02.txt, 2009.

[Sob05] Joao Lúıs Sobrinho. An algebraic theory of dynamic network rout-
ing. IEEE/ACM Trans. on Networking, 13(5):1160–1173, 2005.

[SSZ09] Rahul Sami, Michael Schapira, and Aviv Zohar. Searching for
stability in interdomain routing. In Proc. INFOCOM 2009, 2009.

[Tan06] Sebastien Tandel. BGP Converter - AS-wide conversion for C-
BGP. http://alumni.info.ucl.ac.be/standel/bgp-converter/, 2006.

i

i

“main” — 2010/2/23 — 1:37 — page 152 — #160
i

i

i

i

i

i

152 BIBLIOGRAPHY

[TG05] T. Griffin and G. Huston. BGP Wedgies. RFC 4264, Nov 2005.

[VGE00] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Per-
sistent route oscillations in inter-domain routing. Computer Net-
works, 32(1):1–16, Jan 2000.

[WMW+06] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and
Randy Bush. A measurement study on the impact of routing
events on end-to-end Internet performance. In Proc. SIGCOMM,
2006.

[WSR09] Yi Wang, Michael Schapira, and Jennifer Rexford. Neighbor-
Specific BGP: More flexible routing policies while improving
global stability. In Proc. SIGMETRICS 2009, 2009. To appear.

[ZAL04] Hongwei Zhang, Anish Arora, and Zhijun Liu. A stability-oriented
approach to improving BGP convergence. In Proc. IEEE Intl.
Symposium on Reliable Distributed Systems 2004, pages 90–99,
2004.

	Contents
	Preamble
	Background
	Internet Routing and BGP
	Internet Architecture
	BGP: a Protocol for Interdomain Routing

	Formal Analysis of BGP Stability
	Modeling BGP Policies and Dynamics
	Introduction
	Modeling BGP Policies
	Modeling BGP Dynamics
	A Taxonomy of Related Work
	Choosing a model

	Theoretical Literature on BGP Stability
	Introduction
	Stable States and Guaranteed Convergence
	Link Costs and Commercial Relationships
	Guaranteed Convergence under Faulty Conditions
	Compact Routing Policies and Convergence
	Solving or Detecting Routing Oscillations

	Characterization of eBGP Safety Under Filtering
	Introduction and Related Work
	Wheel + Ring = Reel
	Safety Under Filtering implies no DR
	No DR implies Safety Under Filtering
	Safety Under Filtering and Robustness
	Conclusions

	The Impact of Changing iBGP Attributes on Routing Stability
	Introduction and Related Work
	Background
	Why or Why Not?
	Changing iBGP Attributes in the Internet
	More Flexibility implies More Instability
	Profitable iBGP Attribute Modification
	Conclusions

	Detecting BGP Instabilities
	Finding Potential Instabilities by Static Analysis
	Introduction and Related Work
	A Greedy Algorithm for SPVP Instances
	From eBGP Networks to SPVP Instances
	From iBGP Networks to SPVP Instances
	Conclusions

	Collecting BGP Data to Support What-If Analysis
	Introduction
	Requirements for a BGP Monitor
	Related Work
	Proposed Architecture
	Evaluation
	Comparison with Related Work
	Conclusions

	Conclusions and Bibliography
	Conclusions and Open Problems
	Other Research Activities
	Publications
	Bibliography

