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Introduction

In recent years the study of electronic properties of low dimensional meso-

scopic systems has attracted considerable interest. One of the reasons for

this is the opportunity it gives of investigating a wide range of new ef-

fects related to ballistic transport and phase coherence. Another reason can

be found in the possibility it gives of fabricating nanostructures both for

microelectronics and for possible applications in quantum computing and

spintronics in general.

The two-dimensional electron gas (2DEG) is one of the most appealing

starting points for achieving low-dimensional systems, i.e. systems where the

motion of carriers is confined to two or less directions. Today a 2DEG can

be obtained easily by growing semiconductor heterostructures. As a matter

of fact, recent advancements in the deposition of high quality semiconduc-

tor heterostructures allows to confine carriers and obtain high-mobility two

dimensional electron gases. In addition the novel micro and nanofabrica-

tion techniques allow to build nanodevices, suitable for the investigation of

quantum transport.

In the field of quantum transport much attention has been focused on

effects related to spintronics, electron correlation and coherent cotunneling,

as well as the role of impurities and disorder in low carrier density systems,

single charging phenomena and spin phenomena such as the spin Hall effect.

To explain these effects it is necessary to go beyond the one-electron picture

which is able to account, for example, for the conductance quantization in

G0 = 2e2/h units, to be found in one dimensional ballistic conductors. In-

deed, many experiments with different kinds of devices (quantum point con-

tacts, single electron transistors, etc.), have revealed unexpected behaviours,

whose origins are still being debated. As an example, we mention the so-

called 0.7 anomaly in the AlGaAs/GaAs quantum point contacts, or the
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presence of Kondo effect in quantum dots.

These scenarios become more intriguing when Si-based nanostructures

are considered since, in this case, quantum transport properties become

more complex for the presence of valley degeneracy.

Recent advancements in the growth of lattice mismatched heterostruc-

tures allow to achieve high quality Si/SiGe 2DEGs. These have emerged

as promising alternative systems for basic research in the field of 2D elec-

tron physics, which was previously mainly restricted to AlGaAs/GaAs het-

erostructures. Si-based 2DEG is an interesting platform for spin physics

and quantum information, due to the weak spin-orbit coupling in Si and to

the presence of nuclear zero spin isotopes, which make electron spin coher-

ence time extremely long. However, silicon has a near degeneracy of orbital

states in the conduction band, arising from multiple valley minima, which

can enhance decoherence rates and make qubit operation in quantum com-

puting more complicated. In quantum wells, the valley degeneracy is lifted,

but if the splitting is smaller than or comparable to the spin splitting, the

problem of decoherence or interference still exists. It has been shown that

quantum confinement in nanostructures provides some amount of control

over the valley splitting. Indeed, recent measurements in a split-gate quan-

tum point contact (QPC) have shown that the valley splitting can reach a

value of the order of 0.5÷2 meV , being enhanced by the lateral confinement

of the electron wave-function exerted by electrostatic and magnetic means

[1].

In the past ten years, due to developments in the field of AlGaN/ GaN

heteostructures, research has focused also on GaN -based 2DEG. The latter

is in fact among the most promising materials for the study of properties

related to ballistic transport and it is interesting from a technological point

of view. This technological interest derives from the relevance that GaN

has assumed for applications in high-power and high-temperature micro-

electronic devices. The large band offset and the strong piezoelectric effect

in this material system have been shown to generate an intrinsic high sheet

density two-dimensional electron gas with enhanced electron mobility. In

addition, the relatively heavy mass of electrons makes GaN 2DEGs a con-

venient system for studying spin-polarized and electron-electron correlation

effects. In particular, a high value of the dimensionless parameter rs, gov-

erning the strength of the e-e interaction, can be obtained thanks to the
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low value of the relative dielectric constant, even at relatively high electron

concentrations, like ns ∼ 1013cm−2, which is the value found in our sample.

The strong spontaneous and piezoelectric polarization charge gives these

systems a strong asymmetric electric field at the interface, which can also

enhance the spin-orbit interaction, thus providing a spin-splitting energy of

the conduction band states at zero-external field.

In this dissertation we report the electron transport measurements of Si-

and GaN -based low-dimensional systems.

As for the Si structures, we have investigated quantum transport prop-

erties of strongly-confined Shottky-gated constrictions, made starting from

Si-based 2DEG and focusing on the conductance behaviour of nanostruc-

tures with various geometries. Measurements have been made as a function

of the gate voltage, the source-drain bias and the magnetic field. Our re-

sults reveal a complex framework due to the occurrence of deviations from

the ideal quantized conductance behaviour. For instance, these can be due

to backscattering from impurities or transmission resonance, produced by

multiple reflections, for the presence of an abrupt geometry of the confin-

ing potential. However our findings have revealed a zero-field energy valley

splitting in our etched-nanostructures, due to the strong confinement gen-

erated by physical etching of the 2DEG heterostructures. In practice, in

different devices we found a valley splitting energy of the order of ∼ 1meV

that is comparable to values reported in literature.

As for the GaN structures, we studied the electrical properties of an

AlGaN/GaN system, exploiting both classical and quantum Hall effect. In

the preliminary investigation of the 2DEG new interesting problems have

come out of the analysis of both Shubnikov-de Haas and low-field mea-

surements. For instance, the occupancy of a second energy level of the

2DEG or the occurrence of a zero-field spin-splitting due to spin orbit inter-

action. Electron quantum transport of mesoscopic devices on GaN -based

heterostructures was also investigated. For these systems we measured the

conductance as a function of the gate voltage and the magnetic field. In ad-

dition, we investigated the effect of deliberately introducing an asymmetry

in the conning potential. In this thesis work we reported the preliminary

interpretations of the electron transport measurements on GaN 2DEGs nan-
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odevices. For a complete understanding further investigation are required.

Organization of this Dissertation

Chapter 1 gives an introduction of the basic concepts of electronic transport

in quantum point contacts. Starting from the description of a 2DEG, the

main issues concerning quantum transport in low-dimensional systems are

discussed.

In Chapter 2 the main configurations of the measured devices are pre-

sented. The experimental set-up, including instruments, filtering and cryostats,

has been briefly described.

Chapter 3 presents the electrical characterization and analysis of results

of Si-based nanostructures.

Chapter 4 contains the main achievements obtained in the study of a

novel system such as GaN -based 2DEG.



Chapter 1

Basic concepts of electron

transport in Quantum Point

Contacts

In this introductory chapter we will give the basic concepts relevant for elec-

tron transport in Quantum Point Contacts (QPC). We will analyse various

aspects of electron quantum transport in nanostructures obtained by two-

dimensional electron gases (2DEGs). In particular, we will focus on real

systems and their problems indicating the non-ideality factors. We will il-

lustrate the outmost important aspects of the systems investigated showing

also the differences between the Si/SiGe and GaN/AlGaN two-dimensional

electron gases.

1.1 Introduction

The chance of tailoring an artificial potential landscape for electrons in semi-

conductor nanostructures offers the possibility to study quantum transport

in ballistic and quasi-ballistic regimes in low-dimensional systems. Indeed,

mesoscopic devices are characterized by a size, L, which can be made smaller

or comparable to both the electron coherence length, lφ, and the electron

mean free path, l. This means that electrons retain a definite phase and

momentum relations during mesoscopic transport, thus allowing coherent

processes and ballistic transport to occur. Indeed, lφ is strongly affected by

temperature - increasing as the temperature is decreased - and the use of
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high mobility two-dimensional electron gas devices allows to reach mean free

paths of the order of tens of nanometers or longer. Furthermore, electrons

can be easily confined in semiconductor thin film heterostructures since λF

is large (& 10 nm) in semiconductors. This makes the Fermi wavelength λF

another important length scale to be considered.

In order to measure low-dimensionality effects in mesoscopic devices, typical

sizes of the nanostructures must be less than or comparable to the Fermi

wavelength. A measure of the importance of interactions in an electron sys-

tem is the ratio between the typical Coulomb interaction energy and the

average kinetic energy of the electron at the Fermi level. This dimension-

less parameter rs is also the average inter-electron spacing in units of the

effective Bohr radius, aBohr,

rs =
EP
EK

=

(
e2

4πε · r

)(
r2m∗

~2

)
=

r

aBohr
. (1.1)

In eq.1.1 m∗ is the electron effective mass, ε is the dielectric constant specific

of the semiconductor used in units of ε0, whereas r is the inter-electron spac-

ing which can be written in terms of the electron sheet density r = n
−1/2
s .

Thus, the dimensionless parameter becomes rs = (a2
Bohrns)

−1/2.

For high density electron gases, the kinetic energy is large, and rs � 1,

therefore interactions are little important and can be treated as a pertur-

bation to the kinetic motion. On the other hand, at low carrier densities,

electrons have small kinetic energy, therefore rs � 1, and hence interactions

dominate in these systems. Midway between these two limits there is a range

of rs where interaction and kinetic energies are comparable. Such systems

manifest a number of surprising and complicated effects including Kondo

effect and the so called 0.7 anomaly [2, 3, 4, 5, 6, 7]. Devices investigated

in this thesis consist of 2DEGs with rs ∼ 1, i.e. they are suitable systems

to study electrons interactions.

The 2DEGs used for the successive production of devices are based on

Si/SiGe and GaN/AlGaN heterostructures. Each of these 2DEGs shows

some peculiar aspects. In the table below, we listed the most important

parameters of the two investigated systems along with the typical values of

a GaAs/AlGaAs-based 2DEG, for comparison.
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Si GaN GaAs Units

Effective Mass m∗ 0.19 0.22 0.067 me = 9.1 · 10−31 kg

Spin Degeneracy gs 2 2 2

Valley Degeneracy gv 2 1 1

Dielectric Constant ε 11.9 8.9 13.1 ε0 = 8.9 · 10−12 Fm−1

Density of States ρ(E) = gsgv
m∗

2π~2 1.59 0.92 0.28 1015 m−2meV −1

Sheet Density ns 0.92 10.57 0.2 1016 m−2

Fermi Wave vector kF =
√

4πns
gsgv

1.70 8.15 1.12 108 m−1

Fermi Velocity vF = ~kF /m∗ 0.10 0.43 0.19 106 m/s

Fermi Energy EF = (~kF )2/2m∗ 5.8 115.6 7.1 meV

Electron Mobility µe 1 2.02 102 m2/V s

Transport lifetime τt = m∗µe/e 1.08 2.5 39 ps

Diffusion Constant D = v2
F τt/2 0.006 0.23 0.71 m2/s

Resistivity ρ = 1/nseµe 680 29 31 Ω

Fermi Wavelength λF = 2π/kF 37 7.7 56 nm

Mean Free Path l = vF τt 0.112 1.08 7.4 µm

Thermal length lT =
√

~D/kBT 0.21 1.33 2.3 µm(T/K)−1/2

Cyclotron Radius lc = ~kF /eB 112 536 74 nm(B/T )−1

Magnetic Length lm =
√

~/eB 26 26 26 nm(B/T )−1/2

Landé factor g0 2 2 -0.44

Inter-electron spacing rs = 1√
a2
Bohr

ns
3.14 1.43 2.16

kF l 19 883 830

ωcτt 1 2 100 (B/T )

EF /~ωc 9.5 109 2 (B/T )−1

Table 1.1: Main electronic properties of the Si and GaN 2DEGs investigated in
this thesis work and of a typical GaAs 2DEG.
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The most evident difference between these materials is the heavy mass

of electrons both in Si and GaN compared to GaAs 2DEGs. This produces

lower mobilities compared to Gallium Arsenide gases. The typical mean

free path is not greater than few hundreds of nanometers, with the ordinary

values for the sheet carrier density in Si/SiGe 2DEGs. On the contrary,

GaN 2DEGs, having larger electronic densities, allow to obtain larger mean

free paths, comparable with those of high-mobility GaAs heterostructures.

As already mentioned, the dimensionless parameter is representitive of the

significance of electron interactions in the 2DEG. Regarding silicon, the low

electron density along with the heavy mass of electrons indicate that e-e

interactions are relevant in this system. However, it is possible to tune the

value of rs, and therefore the e-e interactions, also by changing material

system, i.e. by moving to a system with different dielectric constant and/or

effective mass or by controlling the electron density. Indeed, though the

large carrier density in GaN 2DEG would point to a non-interacting elec-

tron system, the large electron mass along with the lower dielectric constant

(ε = 8.9ε0) makes the dimensionless interaction strength comparable to that

of GaAs 2DEGs.

In the following section a brief review will be given on the formation of

a two-dimensional electron gas in Si/SiGe and GaN/AlGaN heterostruc-

tures.

1.2 Si/SiGe and GaN/AlGaN 2DEGs

The two-dimensional electron gases based on semiconductors heterojunction

are the basic structure for the fabrication of mesoscopic devices. The fabri-

cation processes of 2DEG in Si and in GaN include quite different steps as

well as diverse basic principles, so they will be discussed separately.

The Si QPCs described in this thesis are made from 2DEG which forms

at the interface of a Si/SiGe heterostructure. Details of the Si/SiGe het-

erostructure growth can be found in ref.[8, 9]. In order to produce the

confinement of the carriers within the silicon channel, a tensile Si film must

be grown on top of a relaxed Si1−xGex layer. The sequence of the structure

along with the thickness of each layer is reported in fig.1.1. Starting from
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Si (100)
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Si (100)
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Figure 1.1: Layer sequence utilized for the realization of Si QPC measured in this
thesis.

a bulk Si(100) substrate, an epitaxially grown film of Si was deposited to

improve the crystalline quality. The electrical performances of the structure

crucially depend on the crystalline quality of the relaxed Si1−xGex layer de-

posited hereafter. The best results were obtained by using a compositionally

graded SiGe buffer layer on the epitaxial Si surface followed by a thick SiGe

layer at a fixed composition (Si0.81Ge0.19). This structure is commonly re-

ferred to as a virtual substrate (VS). In this way, it is possible to confine the

dislocations within the graded layer and to obtain a dislocation density at

the sample surface lower than 106 cm−2. The active layers were obtained by

using Low Pressure Chemical Vapour Deposition (LPCVP), depositing on

the VS the following: (i) a tensile Si channel layer (thickness 11 nm), (ii) a

Si0.81Ge0.19 spacer layer (thickness 6 nm), and (iii) a n-doped Si0.81Ge0.19

(thickness 6 nm). The structure was completed by a second 35 nm thick

Si0.81Ge0.19 spacer layer followed by a Si cap layer.

Free carriers for the 2DEG are provided by the n-type dopants located

in the SiGe doped layer and transferred into the triangular potential well

formed in the Si channel. A typical band diagram of a similar heterostruc-

ture is shown in fig.1.2 (a). A triangular potential well is formed at the

interface between the Si channel and the SiGe spacer. At low temperature,

electrons are present only where the conduction band dips below the Fermi

energy. As a result, free electrons in the system are confined in the poten-



6 Basic concepts of electron transport in QPC

(a)

(b)

Figure 1.2: (a) Potential variation in an n-type Si/SiGe modulation doped struc-
ture on a relaxed Si0.75Ge0.25 buffer layer. Only the lowest subband Ψ0 in the
well is occupied at 0 K. From ref. [10]. (b) Schematics of the energy diagram in a
generic modulation doped heterostructure.
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(a) (b)

Figure 1.3: Valley structure, conduction band and valence band splitting of (a)
bulk silicon and (b) uniaxial tensile strained silicon grown on Si1−xGex virtual
substrate.

tial well close to the heterointerface. Thus, quantized energy levels form in

the potential well. At the typical electron densities for this 2DEG only the

first level is populated (see fig.1.2 (b)), localizing electrons in the z-direction

to few nanometers from the interface. By using a rough estimate and as-

suming a triangular well approximation [11], the second subband level lays

approximately 37 meV above the first in our Si 2DEG. Since this value is

much higher than the Fermi energy of our 2DEG, EF ≈ 5.8 meV (see table

1.1), than the measurement temperature (T < 1K ≈ 86µeV ) and than the

excitation bias (eVex ≈ 10µeV ), the second subband is unoccupied, and the

electron gas can be considered two-dimensional.

The amount of transferred charge and hence the electron sheet density

in the silicon channel depends both on the concentration of dopants and

on the transfer efficiency which is reduced for thick spacer layers. On the

other hand the spacer layer is necessary to reduce the Coulomb scattering of

the electrons from the ionized impurities of the doped layer. Therefore, the

thickness of the spacer layer has to be tailored to allow both the increase of

mobility and a significant charge transfer efficiency.
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One peculiar characteristic of the Si 2DEG, compared to GaAs or GaN -

based 2DEGs, is the presence of the valley-degeneracy in the conduction

band. Indeed cubic bulk (relaxed) silicon has six conduction band minima

along the ∆-direction, see fig.1.3 (a). However, due to the existence of about

4.2% lattice mismatch between Si and Ge, band structure of Si in a SiGe

heterostructure is modified under tensile strain. The strain split the conduc-

tion band minima so that ∆2 (twofold degenerate) is lower in energy than

∆4, see fig.1.3 (b). Therefore, in a Si channel under biaxial tensile strain, as

it is in the case of our 2DEG, the transport parallel to the heterostructure

interface involves only electrons with transverse effective mass (those from

the ∆2 minima of the conduction band, see fig.1.2 (a)), due to the partial

removal of the valley degeneracy [10].

The sequence of the heterostructure for the formation of the GaN -based

2DEG is reported schematically in fig.1.4. The formation mechanism of the

SiC

substate

AlN (nucleation layer)80 nm

GaN (buffer)1.8 µm

AlN (exclusion layer)2 nm

Al0.23Ga0.77N (barrier)23 nm

SiN (gate-insulator)50 nm

G
ro

w
th

 d
ir

ec
ti

o
n

Figure 1.4: Layer sequence utilized for the realization of GaN QPC measured in
this thesis.

2DEG in AlGaN/GaN heterostructures is profoundly different from those

described for Si/SiGe or AlGaAs/GaAs 2DEGs. In the following, we will

give a short description of the principles at the basis of the formation of a

two-dimensional electron gas.

The peculiar aspect of the 2DEG AlGaN/GaN heterostructures is that the

formation of the electron gas does not necessarily require the introduction
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of additional defects associated with doping. Indeed, free carriers can also

result from the spontaneous and piezoelectric polarization charge (this ef-

fect is typically referred to as a piezoelectric doping): thanks to the strong

piezoelectric and spontaneous polarization in III-nitrides, it is possible to

enhance the carrier concentration to values up to 2 · 1013 cm−2 [12].

The natural crystal structure of III-nitrides is wurtzite, a hexagonal

structure defined by the edge length a0 of a basal hexagon, the height c0

of the hexagonal prism, and an internal parameter u defined as the anion-

cation bond length along the c-axis, in units of c0. Wurtzite is the structure

with the highest symmetry compatible with the presence of spontaneous

polarization [13], and the piezoelectric tensor of wurtzite has three non-

vanishing independent components. Two of these components measure the

piezoelectric polarization PPE induced along the c-axis,

PPE = e33εz + e31(εx + εy), (1.2)

where εz = (c − c0)/c0 is the strain along the c-axis, the in-plane strain

εx = εy = (a−a0)/a0 is assumed to be isotropic, e33, e31 are the piezoelectric

coefficients, and a and c are the lattice constants of the strained layer. To

determine the amount of piezoelectric polarization in the direction of the c-

axis through the change in polarization induced by variations of the lattice

constants a and c only, we can consider the relation

c− c0

c0
= −2

C13

C33

a− a0

a0
. (1.3)

Thus, the piezoelectric tensor can be written as,

PPE = 2
a− a0

a0

(
e31 − e33

C13

C33

)
, (1.4)

where C13 and C33 are elastic constants [13]. From a microscopic point of

view, a strain parallel or perpendicular to the c-axis produces an internal

displacement of the metal sublattice with respect to the nitrogen ones, i.e. a

variation of the parameter u of the wurtzite structure. The measured piezo-

electric polarization is due to the effect of the change of the macroscopic

lattice constants and to the associated change in u. The piezoelectric polar-

ization increases with strain and, for crystals or epitaxial layers under the

same strain, in the direction from GaN to AlN . The value of spontaneous
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polarization is predicted to be very large and also increasing from GaN

to AlN , due to the more pronunced nonideality of the crystal structure (u

increases, c/a decreases moving far away from the ideal ratio c/a = 1.633

for a closed packed hexagonal structure). In the table 1.2 lattice constants,

spontaneous polarization and piezoelectric constants of AlN and GaN are

reported, taken from [13]. The spontaneous polarization of these group-III

AlN GaN

a0 (Å) 3.112 3.189

c0 (Å) 4.982 5.185

u 0.380 0.376

PSP (C/m2) -0.081 -0.029

e33 (C/m2) 1.46 0.73

e31 (C/m2) -0.60 -0.49

Table 1.2: Lattice constants, spontaneous polarization and piezoelectric constants
of AlN and GaN [13].

nitrides is negative. The orientation of the spontaneous and piezoelectric

polarization is defined assuming that the positive direction goes from the

metal (cation) to the nearest neighbor nitrogen atom (anion) along the c-

axis. Since (
e31 − e33

C13

C33

)
< 0 (1.5)

is always valid for any Al concentration it follows from eq.1.4 that the piezo-

electric polarization is negative for tensile (a > a0) and positive for compres-

sive (a < a0) strained AlGaN barriers, respectively. As a consequence, the

piezoelectric polarization is parallel to the spontaneous one in the case of

tensile strain, and antiparallel in the case of compressively strained AlGaN

layers. In our heterostructure (fig.1.4) an AlN exclusion layer is grown on a

GaN buffer layer and therefore under tensile strain. In this specific case the

piezoelectric and the spontaneous polarization point in the same direction

and the value of the total polarization is the sum of the piezoelectric and

spontaneous polarization

P = PPE + PSP . (1.6)
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Since both the values of the piezoelectric and spontaneous polarization in-

crease from GaN to AlN , the total polarization of a strained AlGaN layer is

larger than that of a relaxed GaN buffer layer (|P (AlGaN)| > |P (GaN)|).
As a consequence of this definition, the negative spontaneous polarization

of GaN and AlGaN , as well as the negative piezoelectric polarization of

an AlGaN layer under tensile strain, points from the nitrogen towards the

nearest neighbor Ga (or Al) atom along the c-axis. Therefore, the total

polarization of both layers is directed towards the substrate for the Ga-face

and towards the surface for the N -face polarity crystals (fig.1.5).

(a)

(b)

Figure 1.5: Crystal structure of pseudomorfic AlN/GaN heterostructure with
Ga(Al)-face or N -face polarity. (b) 2DEGs in GaN/AlGaN/GaN heterostructures
with Ga-face or N -face polarity. From ref. [12].

The gradient of polarization in space induces a polarization charge density.

In analogy, at an abrupt interface of a top/bottom layer heterostructure

(AlGaN/GaN or GaN/AlGaN), the polarization can decrease or increase

within a bilayer, causing a fixed polarization charge density defined by

σ(PPE + PSP ) = σ(PPE) + σ(PSP ). (1.7)

If the polarization induced charge density is positive (+σ), free electrons

will tend to compensate the polarization induced charge resulting in the for-
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mation of a 2DEG with a sheet carrier concentration ns, assuming that the

triangular quantum well at the AlGaN/GaN interface will drop below the

Fermi level EF . Analogously, a negative sheet charge density (−σ) causes

an accumulation of holes at the interface if the valence band edge of the

AlGaN/GaN heterostructure crosses the Fermi level. The polarization in-

duced sheet charge is found to be positive for AlGaN on top of GaN with

Ga(Al)-face polarity and for GaN on top of AlGaN with N -face polarity.

Therefore, the formation of 2DEGs is expected at the lower AlGaN/GaN

and upper GaN/AlGaN interfaces for Ga- and N -face GaN/AlGaN/GaN

heterostructures, respectively (fig.1.5 (b)).

Figure 1.6: AlGaN/GaN heterostructure and its band diagram. When theAlGaN
layer is under tensile strain, free carriers are accumulated at the heterointerface
owing to the piezoelectric effect caused by the strain and a spontaneous polarization
effect, taken from [14].

The total polarization charge in a AlGaN/GaN heterostructure as a func-

tion of Al content is given by

|σ(x)| = |PPE(AlxGa1−xN) + (PSP (AlxGa1−xN)− PPE(GaN)|. (1.8)

Free electrons tend to compensate the positive polarization induced charge

which is bound at the lower AlGaN/GaN interface. For undoped AlGaN/

GaN structures, the sheet concentration ns(x) can be calculated by using

the total bound sheet charge σ(x),

ns(x) =
σ(x)

e
−
(

ε0ε(x)

dAlGaNe2

)
[eΦb(x) + EF (x)−∆EC(x)] (1.9)

where ε(x) is the relative dielectric constant of AlxGa1−xN , dAlGaN is the

thickness of the barrier, eΦb(x) is the Schottky barrier of the gate contact,
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EF (x) is the Fermi level with respect to the GaN conduction band edge

energy and ∆EC(x) is the conduction band offset at the AlxGa1−xN/GaN

interface where a 2DEG forms. The conduction band offset can be calculated

from the energy gaps of GaN (x = 0) and AlxGa1−xN :

∆EC(x) = 0.7[Eg(x)− Eg(0)] (1.10)

where the band gap of AlxGa1−xN is

Eg(x) = xEg(AlN) + (1− x)Eg(GaN)− x(x− 1)1.0eV. (1.11)

AlN and GaN bad gaps are 6.13 and 3.42 eV , respectively.

In fig.1.7 the conduction band profiles of AlGaN/GaN and AlN/GaN het-

erostructures are reported along with the calculated electron wave-function.

It is apparent that the inclusion of a thin layer of AlN at the AlGaN/GaN
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Figure 1.7: Conduction band profile and electron wavefunction calculated for an
AlGaN/GaN (upper panel) and an AlN/GaN heterostructure (bottom panel).

interface has a crucial effect on mobility as it reduces the penetration of

the electronic wave-function, being the conduction band offset larger for

AlN/GaN junctions compared to AlGaN/GaN . Furthermore, as AlN is

binary, the presence of the AlN exclusion layer suppresses short range scat-

tering eliminating alloy disorder where electrons are localized.

Among all scattering mechanisms, the short range scatterings are those that

mostly affects mobility. The electron mobility is µ = eτt/m
∗, where τt is

the transport lifetime. This is the time an electron travels before changing

its momentum. It is known [15] that the transport scattering rate is re-
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lated to the scattering angle by the relation, 1
τt

=
∫
P (θ)(1− cosθ)dΩ where

P (θ) is the scattering probability at an angle θ. From this relation it is

clear that large angle (short range) scattering is efficient in reducing τt, and

hence the mobility. At low temperature, the most influent scattering mech-

anisms are interfacial roughness and dislocations. The former is relevant

for high density gases since the electrons move closer to the heterojunction.

Nevertheless, in our case, the inclusion of the AlN layer lowers the wave-

function penetration thus diminishing also interfacial roughness scattering.

Regarding dislocations, these emerge from the lattice mismatch between

GaN and substrate. The two most commonly used substrates for GaN epi-

taxial growth are sapphire and silicon carbide. The problem is that GaN

is poorly lattice matched to both sapphire and silicon carbide resulting in

defects which degrade electronic device performance. Though the employ-

ment of SiC substrates allows to reduce the dislocation density of at least

two order of magnitude compared to sapphire, being the difference between

lattice parameters smaller, the use of Si as an alternative substrate is having

considerable success as it holds much promise for electronic device develop-

ment [16].

Alloy scattering is a further short range scattering mechanism and it is due

to the non uniform distribution of constituents of the ternary alloy. Since

the scattering probability depends on the Al concentration x, with the form

P ∝ x(x− 1), it is completely suppressed in presence of the exclusion layer

AlN (x = 1) [17, 18].

When there is no intentional doping in AlGaN/GaN heterostructures, the

ionized impurity scattering is not due to remote donor impurities inducing

the free electron gas, usually present in modulation doped heterostructures.

As for our heterostructure, the charge transfer involves the formation of po-

larization charges that can be considered as a scattering source equivalent

to the δ-doping layer in GaAs/AlGaAs systems.

A preliminary electrical characterization of the 2DEGs investigated was

carried out by using classical low-field magnetoresistance. Transport prop-

erties of the 2DEGs were studied by means of four-terminal resistivity and

classical Hall measurements in a cryogenic system equipped with a low mag-

netic field (0.7 T ) at temperatures between 10 and 300 K. For this purpose,

standard Hall bars were fabricated by optical lithography. By measuring
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the longitudinal (ρxx) and the transverse (ρxy) resistivity, the conductivity

and the carrier density were derived:

σ =
1

ρxx
(1.12)

n2D =
B

|e|ρxy
. (1.13)

Thus, we calculated the mobility at low field from the relation, µ = σ/|e|n2D.

The most promising of these 2DEGs were investigated also in the range of

Quantum Hall Effect (high magnetic field). In next chapters, we report

further descriptions of the measurements carried out.

1.3 Quantum point contacts

The knowledge of the 2DEGs properties described in the previous section

is of extremum importance for the study of mesoscopic physics. Indeed,

thanks to lithographic processes, it is possible to further reduce the dimen-

sionality of a 2DEG system, achieving mesoscopic devices. The quantum

point contact (QPC) is one of the most studied low-dimensional device con-

figurations.

QPCs are short one-dimensional constrictions connected adiabatically to

large source and drain reservoirs with a width of the same order of magni-

tude as the Fermi wavelength and length shorter than the elastic mean free

path of electrons [19, 20, 21]. There is more than one way of obtaining a

QPC starting from a 2DEG, the different approaches will be described in the

next chapter. As for this chapter, we will refer to a QPC as a constriction

defined electrostatically by means of a couple of split-gates (see figure 1.8).

In a split-gate quantum point contact the width of the channel is controlled

by the gate voltage and can be made comparable to the Fermi wavelength.

Van Wees et al. [22] and Wharam et al. [23] independently discovered a

sequence of steps of magnitude 2e2

h in the conductance trace of such a point

contact as its width was varied by means of the voltage applied to the split-

gates (fig.1.9). This resulted from the contribution to the conductance of

g ·e2/h provided by each 1D subband in the constrictions, being g the overall

degeneracy of the electronic states.

If the potential which describes the transition from the wide 2DEG re-
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n-AlGaAs

split-gatedepleted 
region

confined 2DEG

Cross-section

Top-view

(a)

Top-view

2DEG 2DEG

(b)

Figure 1.8: (a) Top-view and cross-section of a GaAs/AlGaAs heterostructure
with two metal split-gates which, negatively biased, deplete electrons underneath.
(b) Top-view of a QPC: the two wide 2DEG regions act as reservoirs, emitting
electrons through the QPC with energies up to their electrochemical potentials µ1

and µ2.

Figure 1.9: (a) Quantized conductance of a QPC at 0.6 K. The conductance
was obtained from the measured resistance after subtraction of a constant series
resistance of 400 Ω [22].
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gions to the narrowest point in the constriction varies sufficiently smoothly

(adiabatically), the potential variation in the x- and y-directions may be

decoupled. The narrowest point of the constriction forms the bottleneck

of the QPC device and it completely determines the transport properties.

Thus the quantization of conductance through a QPC can be calculated by

using a simple model with the Hamiltonian

H =
p2
x

2m∗
+

p2
y

2m∗
+ eV (x, y), (1.14)

where V (x, y) = V (x) + V (y) is the electrostatic potential; V (y) is the con-

fining potential in the transverse direction, while V (x) defines the potential

along the direction of the current. For the confinement in the y-direction a

parabolic potential V (y) = 1
2m
∗ωyy

2 can be chosen [24]. This V (y) confine-

ment gives the quantization of the lateral motion with wave-functions of the

harmonic oscillator. The 1D electron motion in the x-direction is described

by 1D subbands the energy eigenvalues of which are

En(kx) =

(
n− 1

2

)
~ωy +

~2k2
x

2m∗
+ eV0, (n = 1, 2, . . .) (1.15)

including the sum of quantized energy due to the lateral confinement (n

being the index of the 1D subbands), the kinetic energy of free electrons

along the x-axis, and the electrostatic energy eV0 in the QPC. Figure 1.10

shows the occupied electron states at two different gate voltages. It is known

kx

kx

E(!"y) E(!"y)

Figure 1.10: Occupied electron states in the channel at two different gate voltages
in the case of an applied voltage difference across the QPC, eV = µR − µL.

[25] that the effect of gate voltage is twofold: a more negative gate voltage

increases both the confinement ~ωy and the electrostatic potential V0 in the

QPC. Both these effects contribute to reduce the number of occupied sub-
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bands.

In order to evaluate the conductance G, we assume that in the source and

drain reservoirs the electrons fill up states of the Fermi sea up to the respec-

tive chemical potential µR and µL. At T = 0, according to fig.1.10, electron

states with positive (negative) velocity vn = (1/~)[dEn(kx)/dkx] are occu-

pied up to µL (µR). When a small voltage is applied between source and

drain (eVsd = µR − µL), the net current of electrons through the QPC is

carried by the uncompensated states in the energy interval µR−µL. At zero

temperature, the resulting current, I, is

I = e

N∑
n=1

∫ µL

µR

1

2
eNn(E)vn(E)Tn(E)dE (1.16)

where Nn(E) is the 1D density of states and Tn(E) is the transmission prob-

ability of the nth subband. Using the near equilibrium approximation (small

Vsd) the following statement can be done, Tn(E) ≈ Tn(EF ). Furthermore,

let us assume that the channel is long enough to prevent the contribution

of evanescent waves to the conductance. Then, all the occupied subbands

counted in the sum over n must satisfy the condition for the last occupied

level, EN (kx = 0) < EF . At this point it should be noticed that the prod-

uct of the group velocity vn = (1/~)[dEn(kx)/dkx] and the 1D density of

states (including both spin orientations) Nn(E) = 2/π[dEn(kx)/dkx]−1 is

energy independent and equal to 4/h. This takes to the expression for the

conductance (G = I/Vsd = eI/(µR − µL)),

G =
2e2

h

N∑
n=1

Tn(EF ). (1.17)

The result of equation 1.17 is known as the two-terminal Landauer formula.

Moreover, in the limit that no reflection occurs at both ends of the channel

(Tn = 1), one has
∑N

n=1 Tn = N where the number of occupied level at the

Fermi energy is N = int
[
EF−eV0

~ωy + 1
2

]
. Therefore the Landauer conductance

can be simplified as,

G =
2e2

h
N (1.18)

that is a very important and straightforward achievement since it states

that the conductance of a QPC is given by the conductance quantum 2e2

h
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times the number of occupied subbands, where the factor 2 is due to the

spin degeneracy of the electron states. The quantization (1.18) is a general

result for any shape of the confining potential. The reason is simply that

the fundamental cancellation of the group velocity and the 1D density of

states holds regardless of the form of the dispersion relation En(k).

In real systems there are deviations from ideal conductance quantiza-

tion. A short review of the main causes of non ideality in the conductance

behavior including the annihilation of the quantized plateaus will be given

below.

Upon increasing temperature it is found that the plateaus acquire a finite

slope. At high temperature some electron states of the next subband become

occupied, and not all electron states of the low-lying subbands are fully oc-

cupied anymore. The consequent thermal smeared Fermi-Dirac distribution

takes the conductance (1.17) to the form

G =
2e2

h

N∑
n=1

∫ ∞
0

[
df(En − EF , T )

dEF

]
Tn(E)dE =

=
2e2

h

N∑
n=1

f(En − EF , T ) (1.19)

in which f(En−EF , T ) is the Fermi-Dirac distribution function. The width

of the thermal smearing function df/dEF is about 4kBT , therefore the con-

ductance steps should disappear for T > ∆E/4kB (where ∆E is the subband

spacing at the Fermi level). The effect of energy averaging on the quantized

plateaus can be appreciated in figure 1.11 where the curves are acquired

with increasing temperature. In conclusion, it should be noticed that higher

index plateaus are more affected by thermal smearing effect since, as already

mentioned, the subband spacing gradually decreases as the gate voltage is

swept toward less negative values.

On the opposite temperature limit (at very low temperatures) an oscil-

latory structure may be superimposed on the conductance plateaus. This

phenomenon can have different origins. In general the degree of flatness and

the sharpness of the conductance steps depend crucially on the actual shape

of the electrostatic potential. As a result, irregularities in the gate geome-
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Figure 1.11: Vertically shifted conductance curve at different increasing tempera-
ture, from ref.[25].

try, variations in the pinning of the Fermi level at the free surface or at the

interface with the gate metal, doping inhomogeneities or charge trapping in

deep levels in the gate oxide are some of the uncontrolled parameters that

can significantly affect the actual shape of the electrostatic potential [19].

From a quantum mechanical point of view the crucial point which we will

focus on is the matching of electron wave function and its derivative at the

entrance and the exit of the constriction, i.e. where the narrow point contact

widens to the adjacent 2DEG wide regions. Gradual, adiabatic, transitions

must be distinguished from abrupt transitions [26]. The case of adiabatic

constriction has been studied by Büttiker [27]. If the constriction width W

changes sufficiently gradually, the transport through the constriction is adi-

abatic, which means that there is no intersubband scattering, and quantiza-

tion is preserved. Büttiker expands the electrostatic potential near the bot-

tleneck as a quadratic saddle potential, V (x, y) = V0− 1
2m
∗ωxx

2 + 1
2m
∗ωyy

2,

where x is the direction of the current whereas y is the direction of the

transverse potential. Quantum mechanical transmission and reflection at

the saddle allows for channels which are neither completely open nor com-

pletely closed, with a transmission probability Tmn (n and m are the incident
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and outgoing channel indexes). The transmission probability has been cal-

culated in [28, 29],

Tmn = δmn
1

1 + e−πεn
(1.20)

where εn = 2[E − ~ωy(n + 1
2) − V0]/~ωx. Because of the quadratic form of

the potential there is no channel mixing, moreover equation 1.20 predicts a

transmission probability nearly zero for εn � 0 since Tnn ≈ eπεn . Conversely,

the transmission probability is close to one, Tnn ≈ 1−e−πεn for εn � 0. From

ref.[27] it is also argued that well-pronunced steps occur if ωy > ωx, that is if

the transition region for the opening of a quantum channel is small compared

to the channel energy separation. The criterion for adiabatic transport has

been written also as dW/dx . 1/N(x), being N(x) ≈ kFW/π the local

number of subbands [19] and W the width of the channel. Ferry et al.[30]

found a similar expression for the transmission coefficient (1.20) pointing

out that an ‘abrupt’ QPC (large value of ωx) can result in a smearing of the

quantized steps exactly like that produced by finite temperature.

On the other hand, a sudden widening of the channel, or change in

electrostatic potential, at both ends of the channel will induce a partial

reflection of the electron waves. In a one-dimensional model the reflection

probability of a potential step [11] is given by

R =

∣∣∣∣kx,1 − kx,2kx,1 + kx,2

∣∣∣∣2 (1.21)

where kx,1 and kx,2 are the longitudinal wave numbers inside and outside

the channel. The threshold for transmission of the nth subband is EF =

eV0 + (n − 1
2)~ωy. Slightly above the threshold, the internal wave vector

kx,1 = {2m∗[EF − eV0 − (n− 1
2)~ωy]/~2}−1/2 is very small, so the reflection

probability R of eq.1.21 is close to unit; this means that the nth subband

does not yet contribute to the conductance. When the Fermi level is raised

respect to the subband edge with increasing the gate voltage, kx,1 is also

increased and R gradually drops to zero, thus the conductance reaches its

quantized value. If multiple reflections occur at both ends of the channel, it is

expected to observe also transmission resonances. Assuming equal reflection

probabilities at both ends of the channel [25], the conductance of a QPC
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can be written as

G =
2e2

h

[
N +

(1−R)2

1− 2Rcos(2kx,1L) +R2

]
(1.22)

where L is the length of the channel. This equation describes the conduc-

tance G as being due to N low-lying subbands and the resonant transmis-

sion of the upper highest occupied subband. The equation 1.22 preserves

quantization of conductance (provided that 2kx,1L = integer × 2π) though

predicts transmission resonances in the transition regions between quantized

plateaus. Nevertheless it is seen that an adiabatic constriction improves the

(a) (b)

Figure 1.12: Temperature effect on QPC conductance transmission resonances: (a)
theoretical results for a QPC with abrupt (rectangular) shape, from [31]. In figure
T0 = 0.02EF /kB ≈ 2.8K. (b) Energy averaging effect on the second quantized
plateau of an experimental conductance curve, taken from [25], for temperature
ranging from 0.125 K (top curve) to 0.975 K (bottom curve).

accuracy of the quantization but it is not strictly required to observe the

effect. Indeed, well-defined conductance plateaus have been found to persist

even for abrupt constriction, especially if they are neither too short nor too

long. In [19] it is accepted that there exists and optimum length for the

observation of a clear quantization, Lopt ≈ 0.4(WλF )1/2. Indeed for shorter

constrictions the plateaus acquire a finite slope due to the transmission of

evanescent modes. Instead, in long constrictions transmission resonances

could destroy the quantization of conductance.

Oscillations of conductance such as those reported in fig.1.12 can also be
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produced by quantum interference processes involving impurity scattering

near the constriction due to inhomogeneities in the 2DEG system or in gen-

eral to random fluctuations of the potential [30],[32]. In practice it is difficult

to distinguish geometrical from impurity effects because transmission reso-

nances depend strongly on the shape of the lateral confinement and on the

presence of a potential barrier in the constriction.

1.3.1 Magnetotransport in QPCs

In this section the effect of the application of an external magnetic field B

on a narrow constriction has been considered. At first the case of a general

direction of the vector B is treated, thereafter, we will discuss the three

main orientations of the field with respect to the geometry of the device.

We will see that regardless of the electrical or magnetic origin of the trans-

verse modes, the zero-field conductance quantization still persits showing a

smooth transition from the zero-field 1D subbands to the magnetoelectric

subbands.

Magnetic field acts on the constriction modifying states and dispersion law.

In the limit of infinite length, thus neglecting the potential along the x-

axis, the Hamiltonian of an electron in a 1D constriction, confined in the

z-direction of growth can be written as

H =
(p− eA)2

2m∗
+ V (y, z). (1.23)

In the simplest case, we consider the magnetic field parallel to the direction

of motion of conduction electrons, i.e. the x-direction, B = (B, 0, 0). Thus,

using the gauge A = (0, 0, By), the Hamiltonian becomes

H =
p2
x

2m∗
+

p2
y

2m∗
+

(pz + eBy)2

2m∗
+ V (y, z)± 1

2
gsµBB. (1.24)

where ±1
2gsµBB term takes into account the effect of interaction of the

electron spin with the magnetic field. Assuming that the z-dependence in

the Hamiltonian gives the quantized levels originating the 2DEG [33], the

eigenvalues from eq.1.24 are:

En(kx) =

(
n− 1

2

)
~ωy +

~2k2
x

2m∗
+ eV0 ±

1

2
gµBB (1.25)



24 Basic concepts of electron transport in QPC

where the last term is the Zeeman term. Therefore, the main effect of a

parallel magnetic field on the electron transport in a 1D constriction is to

lift the spin degeneracy of electrons, thus producing G0
2 = e2

h equally spaced

steps in the conductance.

The second case regards the magnetic field in the z-direction, i.e. perpen-

dicular to the 2DEG plane. Thus, we use the gauge A = (−By, 0, 0). In this

case, since there is a component of the Lorentz force in the plane of motion

of electrons, the field competes with the elctrostatic confinement potential

and forms hybrid magnetoelectric subbands:

En(kx) =

(
n− 1

2

)
~ω +

~2k2
x

2m
+ eV0 ±

1

2
gµBB, (1.26)

with m = m∗ω2/ω2
y , ω =

√
ω2
y + ω2

c and ωc = eB/m∗. The 1D nature of the

subbands is still present, though the dispersion laws are strongly affected by

the field. The effective mass appears to be heavier, nonetheless the subbands

are parabolic with a energy spacing linearly dependent on the magnetic

field (~ω). As a result, as ~ω becomes greater, the energy of the higher-

excited subbands exceeds the Fermi level leading to the so-called magnetic

depopulation. To understand the way in which the 1D nature of the system

is preserved, it should be stressed that the cancellation of the 1D density of

states and the group velocity still holds, provided that the number of states

N in the constriction becomes, Nc = int
[
EF−eV0

~ω + 1
2

]
. Previous equation

states that at high fields the number of subbands is determined by the

combination of the potential barrier V0 and ωc, being proportional to 1/B.

Figure 1.13 (a) represents the number of occupied subbands Nc as a function

of 1/B for several values of the gate-voltage, i.e. the lateral confinement.

Figure 1.13 (b) presents experimental results of the perpendicular magnetic

field effect on electron transport. It can be noticed that quantization of

conductance is preserved though the width of plateaus is widened as the

field is made stronger and stronger. This reflects the increase of subband

spacing with the increasing of the field. At higher values of the field, the

spin degeneracy is lifted in agreement with the Zeeman term of Hamiltonian

(eq.1.26), making half-integer plateaus become apparent.

At very high magnetic field values the electronic transport can be explored

in the quantum Hall regime. In that case the two-terminal conductance [35]
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(a) (b)

Figure 1.13: (a) Number of occupied subbands as a function of inverse magnetic
field obtained at several fixed values of the gate voltage. (b) Quantization of con-
ductance observed at several fixed values of the magnetic field at 0.6 K. Curves
have been offset for clarity and taken from [34].

is given by

G = Nc ·
2e2

h
, (1.27)

whereas the four-terminal conductance, obtained considering the potential

drop across the constriction (µL and µR in fig.1.14 (a)), can be expressed as

G4 =
NcNwide

Nwide −Nc
· 2e2

h
, (1.28)

where Nc is the number of 1D-channels in the constriction and Nwide is the

number of edge states in the wide 2DEG. Therefore a regular quantization in

multiple of 2e2/h is predicted from both eq.1.27 and 1.28 at low fields (large

Nwide). However, since Nwide decreases linearly with 1/B, as the magnetic

field increases, the four-terminal conductance 1.28 is governed by the number

of edge states, i.e. Landau levels, in the 2DEG regions. Therefore G4 ≈
Nwide2e

2/h at very high field (and low Nwide). Indeed, it can be shown

that, for sufficiently large magnetic field that Landau levels are formed, well

defined edge states develop near the boundary of a 2DEG system. These

edge channels, whose width is of the order of the magnetic length, are 1D
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states. There are as many edge states as there are filled Landau levels in the

bulk (the central 2D area) of the 2DEG. Figure 1.14 illustrates in a pictorial

µL µR

µS µD

(a)

y

x

y

x

(b)

Figure 1.14: (a) Four-terminal geometry device with a a saddle-shaped potential
formed by a split-gate (shaded), from ref.[36]. (b) A pictorial view of the edge
states in a 2DEG subject to a large magnetic field. The topmost figure shows the
system in the energy space while in the lower panel the states are represented in
the real space. Note the relation between Landau levels and edge states near the
boundary.

way the most important characteristic of the edge states both in the energy

space and in real space, showing the relation between the edge states and

the Landau levels from which these are formed. This picture also shows that

electrons residing in the Landau level states in the center of the system, with

their center-of-orbit being stationary, will not contribute to the current.

Lastly, it is considered the case of an in-plane magnetic field, perpendicular

to the direction of current, A = (0,−Bz, 0). It has been demonstrated
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in ref.[33] that the magnetic field produces a dramatic evolution of the 1D

subbands due to the interplay of the field with the vertical confinement

potential given by the heterojunction (along the z-direction). In this case

the Hamiltonian is:

H =
(px − eBz)2 + p2

y + p2
z

2m∗
+ V (y, z). (1.29)

The eigenvalues E` for the quantized levels of the quantum well depend on

the wave vector along the direction of current kx. In this situation we do

not expect a parabolic dispersion, it is found instead

E`,n(kx) = E` + ~ωy
(
n+

1

2

)
+

(~kx − eBz`)2

2m∗
+ eV0 (1.30)

which describes a shifted parabola whose minimum depends on the magnetic

field and z`, that is the coordinate of the electron wave-function maximum

in the z-direction, (see fig.1.15).

kx kx

B=0 B!0

Figure 1.15: Dispersion relation a 1D constriction in absence (left hand panel) and
in presence (right hand panel) of an in-plane magnetic field perpendicular to the
current. The degeneracies of the crossing parabolas gives gaps in the dispersion law
at higher order of the perturbation, leading to the suppression of the conductance
quantization, from [33].

So far it has been discussed the effect of high magnetic field on the

electron transport of a QPC. In the following the case of lower field intensities

will be discussed showing how the magnetic field is crucial in reducing the

different scattering mechanisms that suppress the electron mobility.



28 Basic concepts of electron transport in QPC

1.3.2 Suppression of backscattering

In the ballistic regime the existence of a nonzero resistance in a QPC has

to be ascribed to the fact that not all the electrons injected in the 2DEG

from the source current are transmitted through the constriction, but a

fraction is backscattered into the source contact. It can be demonstrated

that a relatively weak magnetic field leads to a suppression of the geomet-

rical backscattering caused by the finite width of point contact and that is

responsible for the observed negative magnetoresistance at small fields, as

reported in fig.1.16. Figure 1.16 shows that the reduction of geometrical

Figure 1.16: Four-terminal longitudinal magnetoresistance, R4t of a constriction
for a series of gate-voltages. The inset shows schematically the device geometry,
with the two voltage probes used to measure R4t. Taken from [35].

backscattering manifest itself as a negative magnetoresistance in a four-

terminal measurement, R4t(B)−R4t(0) < 0. However the voltage probes in

the experiment have to be positioned on the 2DEG regions, far away from

the constriction. The reason is that it is necessary that electrons establish a

local equilibrium near the voltage probes so that the measured four-terminal

resistance does not depend on the properties of the probes. The negative

magnetoresistance is observed in weak magnetic fields once the narrow con-

striction is defined (for Vg < −0.3V in fig.1.16). At stronger magnetic fields

a crossover is observed to a positive magnetoresistance. Until now we have

considered the two-terminal resistance, i.e. the inverse of the conductance
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G (eq.1.18). As a result, as long as the leads of the voltage probes are suf-

ficiently far from the constriction, at zero magnetic field, the two quantities

(R2t and R4t) differ just for the ohmic contact resistance Rc. This picture

changes in presence of a weak but finite magnetic field. In a small magnetic

field, R2t given by,

R2t =
h

2e2

1

Nmin
, (1.31)

has a weak dependence on B since Nmin also does. Indeed Nmin is the num-

ber of occupied subbands in the constriction which remains approximately

constant as long as the cyclotron diameters exceeds the width of the channel,

2lc > W . To understand the origin of the negative magnetoresistance due to

suppression of geometrical backscattering, we can consider a constriction like

that depicted in the cartoon of fig.1.17. Indeed the effect we are taking into

account does not concern backscattering caused by the potential barrier, as

that described in section 1.3. In a magnetic field the left- and right-moving

(a) (b)

Figure 1.17: Magnetic field reduction of backscattering in a weak (a) and strong
(b) field, [19].

electrons are spatially separated by the Lorentz force at opposite sides of the

constriction. In fig.1.17 (b) skipping orbits correspond to edge states, thus

backscattering of electrons from these states would require scattering across

the width of the constriction that is less probable as the cyclotron radius

lc is reduced becoming smaller than the width. In this sense magnetic field

suppresses geometrical constriction resistance in the ballistic regime.

The two terminal resistance is the sum of the four-terminal longitudinal re-

sistance R4t and the Hall resistance RH = (h/2e2)N−1
wide due to the wide

2DEG regions (Nwide is the number of occupied Landau levels in the 2DEG
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regions). Thus we can write:

R4t =
h

2e2

(
1

Nmin
− 1

Nwide

)
. (1.32)

We assume for simplicity that the wide regions are not affected by the

presence of constriction. Thus, at small fields Nmin is approximately con-

stant, while Nwide ≈ EF /~ωc decreases linearly with the field. There-

fore equation 1.32 does predict a negative magnetoresistance in this regime

(B . Bcrit = 2~kF /eW ). In the strong-field regime (B > Bcrit) the number

of occupied subband in the constriction, Nmin ≈ (EF −∆Ec)/~ωc, starts to

decrease with the field, so that a positive magnetoresistance is restored,

R4t ≈
h

2e2

(
~ωc

EF −∆Ec
− ~ωc
EF

)
. (1.33)

In this discussion on the effects of the magnetic field on the electron

transport, two further effects should be mentioned which become relevant

in the diffusive and quasi-ballistic regime (l . L). These are classical size

effects due to the boundaries of the channel and weak localization that is a

quantum mechanical effect in the diffusive transport. Both mechanisms will

be discussed for 2D systems though the effect of reduction of dimensionality

will be take into account.

The ‘classical size effects’ concern the reflection of electrons on the bound-

aries or the walls of a channel. This reflection can be of two types depending

on the boundaries. Either electrons can be scattered and reflected isotrop-

ically (diffusive boundaries), or the particles are specularly reflected at the

wall (specular boundaries). In the latter case, since parallel component of

the momentum is conserved and the energy does not change (perpendic-

ular component of the momentum changes only its sign), the mobility is

not affected by the scattering. The criterion to have specular boundaries is

that the roughness size has to be smaller compared to the Fermi wavelength

λF . It is clear that this requirement can be easily fulfilled in semiconductor

2DEGs whose λF varies on the scale of tens of nanometers.

While it is easy to get that specular boundaries scattering does not affect

Drude conductivity (σ0 = nse
2τ/m∗), diffusive walls act as another scatter-

ing source. To evaluate the effect more quantitatively, we consider a second
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wall at a distance W . The effective length of the mean free path of electrons

will be
1

leff
≈ 1

l
+

1

W
, (1.34)

yielding an effective scattering time, τeff = leff/vF , that reduces the Drude

conductivity approximately to

σ =
nse

2

m∗
leff
vF

=
nse

2l

m∗vF
· W

l +W
= σ0 ·

W

l +W
. (1.35)

A more accurate expression can be found in ref.[19], nevertheless two limits

can be distinguished. If the width is much smaller than the mean free path,

W � l, then σ ≈ σ0 ·W/l, in the opposite limit, W � l, there is a weak

dependence on the width, σ ≈ σ0 · (1− l/W ).

In order to appreciate the influence of magnetic field on the channel bound-

ary scattering let us consider the figure 1.18 that illustrates schematically

what happens in the specular and diffusive boundary scattering. In fig.1.18

W2

W1

T1
T2

T3

I I

vc-vd

vc+vd 

(a)

I

W2

W1

T1

T2
T3

II

(b)

Figure 1.18: (a) Electrons moving in a magnetic field between two specularly
reflecting walls W1 and W2. (b) Electron trajectories for three different values of
the magnetic field between diffusively scattering walls.

(a), the combined effect of the walls induces a zero net effect on the magne-

toresistance. Indeed, assuming for example that the distance W is greater

than the cyclotron diameter 2lc, then trajectory T1 will not feel the wall.

Instead trajectory T2, being a skipping orbit, has a velocity component vd

determined by the Fermi velocity that increases (vd + vc) due to the specu-

lar reflection and the circular motion produced by the magnetic field. The

result is an increase of the transported current along this wall. On the

contrary, trajectory T3 on the opposite wall W2 experiments a decreased

velocity vd − vc. The overall effect is that the local increase of the current

along wall W1 is exactly cancelled by local decrease along wall W2. This
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framework can be clearly extended to the narrow channel limit. It can be

demonstrated that magnetotransport of a narrow system is not affected by

specular reflection at the walls.

Considering now the case of diffusive boundary scattering, trajectories in

fig.1.18 (b) represent three characteristic paths, taken at different values of

the magnetic field B. Trajectory T1, at zero magnetic field, demonstrates

the effective decrease of the mean free path, as in equation 1.34. Increasing

the magnetic field, such that lc ∼ W (trajectory T2 in fig.1.18 (b)), will

enhance the probability of scattering with the wall, thus causing a decrease

of the conductivity respect to the zero-field case. Nonetheless, a further

increase of the field (lc �W ) will reduce the cyclotron diameter to a value

below the channel width. This imply that majority of the orbits will not

experience the walls anymore (trajectory T3). Thus it is no longer possible

to discriminate between specular and diffusive scattering, and only the bulk

properties of the channel determine the conductance [19].

So far a classical diffusive effect on the electron transport has been dis-

cussed (λF , l, lφ � L). We focus now on the opposite limit, λF , l � L, lφ,

and consider how quantum interference affects the electron transport. Basi-

cally the phenomenon of weak localization results from the quantum induced

enhanced probability for electrons experiencing several elastic scatterings to

return to their initial position. This leads to some kind of electron localiza-

tion resulting in a reduction of the conductance of the system. The quantum

probability of an electron to leave from a position r and to return back to

the same position r, is given by the sum all over the possible paths probabili-

ties, including both randomly chosen paths and complementary trajectories

(fig.1.19). As a matter of fact the probability for an electron to make a

closed path from the position denoted with 0 in fig.1.19 to the same point,

considering two time-reversed trajectories (clockwise t+ {0,1,2,4,3,5,0} and

anticlockwise t− {0,5,3,4,2,1,0}) is

Pt(0→ 0) = A2
t+ +A2

t− +At+At−cos(φt+ − φt−) +At−At+cos(φt− − φt+) =

= 4A2
t . (1.36)

In the previous expression At± and φt± are the probability amplitude and

the acquired phase-difference for the path t±, respectively. As a result the

amplitude probabilities of the two time-reversed trajectories are not inde-
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Figure 1.19: Solid line shows randomly chosen electron paths leading from 0 and
returning to the same position. The dashed line is the time-reversed path of the
{0,1,2,4,3,5,0}.

pendent. In particular, the identical length of the two paths implies that

the phase-differences acquired during the travel will be exactly the same.

In addition the symmetry of the elastic scattering events dictates that also

the amplitude of the two partial waves will be the same (At+ = At− = At).

Summing the contributions of all paths gives,

Ptotal(0→ 0) =
∑
t

Pt(0→ 0) = 4
∑
t

A2
t (1.37)

where a factor 2 is due to the summation of the two paths for each t, t+

and t−, the remaining factor of 2 is a direct consequences of the coherent,

in-phase addition of time-reversed paths. In conclusion the phase coherent

summation of the time-reversed trajectories in a diffusive medium leads to

an increased probability for electrons to return to their initial position. It

implies that electrons tend to remain at their initial site thus increasing the

resistance. The interpretation of the magnetic field effect is twofold. From

a classical point of view, it makes the time-reversed trajectories to become

increasingly dissimilar for increasing field strength, as the Lorentz force in-

duced curvature will be different for the two time-reversed paths. Quantum

mechanically the magnetic field leads to time-reversal symmetry breaking,

indeed it can be demonstrated that weak localization will start to become

suppressed whenever the phase difference is ∆φ = 2π
Φ0
π
(
lφ
2π

)2
Bc

1. From

this observation a characteristic field Bc can be defined where the suppres-

1Quantum mechanically the magnetic field affects the momentum ~k via the vector
potential ~A defined as ~B = ~∇ × ~A, using the minimal substitution ~k = ~k0 − e/~ ~A. The
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sion starts to become effective Bc ∼ Φ0

l2φ
= h

el2φ
. Concluding, weak localiza-

tion can be suppressed by applying magnetic field such that the zero-field

time-reversed trajectories become dissimilar in acquired phase due to time

reversal symmetry breaking. These considerations are valid for the 2D case,

however the effects strongly increase in systems of reduced dimensionality,

being the largest in 1D.

1.3.3 Nonlinear conductance in quantum point contact

Non linear transport is achieved when a finite dc bias Vsd is applied across

the source and drain contact of a QPC [37, 38, 39]. In this circumstance it is

expected that the voltage results in a net imbalance between the chemical po-

tential (µs and µd) of the 2DEG regions respect to the 1D subband bottoms.

Assuming a symmetric drop between the two contacts, µs = EF + 1
2eVsd

and µd = EF − 1
2eVsd, half plateaus appear at conductance values approxi-

mately midway between the integer plateaus [40]. This occurs for Vsd values

such that the number of conduction subbands in the forward and back-

ward direction of current differs by 1. Indeed, it has been demonstrated

[38] that at finite (intermediate values of) Vsd the quantization is given by

G = 2e2

h

(
n+ 1

2

)
. At higher values of Vsd integer plateaus are restored as a

consequence of the fact that the number of forward and backward subbands

differ by 2. Patel et al. [38] presented the first evidence of the half plateaus

in the differential conductance with an applied Vsd. They reported both the

evolution of the differential conductance as a function of Vg for a fixed dc Vsd,

and the differential conductance taken at constant gate voltage sweeping the

dc bias Vsd. Plateaus of conductance of G(Vg) curves appear as convergence

of different G(Vsd) traces. An example of non linear differential conductance

is reported in figure 1.20, taken from ref.[39], where integer plateaus at zero

electron traveling at the Fermi energy from position 1 to 2 along the path ~l acquires
a phase ∆φ1→2 =

∫ 2

1
~k · d~l =

∫ 2

1
~kF · d~l − e

~
∫ 2

1
~A · d~l. Consider now the time-reversed

of the trajectory ~l: the resulting closed trajectory implies that the integral should be
interpreted as a loop integral enclosing the area S, for the phase it yields ∆φ1→2 =
~kF · L − 2π e

h

∮
~A · d~l = ~kF · L − 2π e

h

∫∫
~B · d~S = ~kFL − 2π e

h
Φ, where Φ is the magnetic

flux through the area S. The quantity h/e is the flux quantum, Φ0 = h/e. Thus the

clockwise acquired phase results ∆φcl = ~kFL− 2π Φ
Φ0

, instead the counterclockwise phase

is ∆φccl = ~kFL + 2π Φ
Φ0

. It clearly results that the difference in phase acquired traveling

clockwise and counterclockwise along the time-reversed paths is ∆φ(B) = 4π Φ
Φ0

= 4πBS
Φ0

.
Note that the magnetic field enforces the two time-reversed trajectories to have a different
phase difference.
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(a) (b)

Figure 1.20: (a) Non linear conductance G(Vsd) as a function of Vsd for several
gate-voltage values, from ref.[39].(b) Schematic transconductance of a QPC, [41].
Coloured squared lateral panels are the energy diagrams of situations indicated
with circles in panel (a) and panel (b).

source-drain bias are followed by half-integer plateaus at finite Vsd. From

the non linear conductance measurement the energy spacing between dif-

ferent subband bottoms can be estimated. As a matter of fact, from the

numerical transconductance, that is the derivative of conductance as a func-

tion of gate-voltage (dG/dVg = ∂2Isd/∂Vsd∂Vg), the peculiar diamond shape

plot is obtained. A schematic view of a typical transconductance plot is il-

lustrated in the line drawing of fig.1.20 (b) [41]. The diamonds in fig.1.20

(b) represent the zeros of transconductance, corresponding to plateaus in

non linear conductance, the black lines represent the maxima of transcon-

ductance corresponding to transition between plateaus in the conductance

spectra. In the line drawing the different situations marked by colored dots

are illustrated in the energy diagrams lateral panels. Each crossing point of

the transconductance maxima (like red dot in fig.1.20 (b)) occurs at a gate-

voltage value where a new 1D level (εn) is exactly aligned with the source

and drain chemical potentials µs and µd. This situation corresponds to the

onset of each plateau in the linear G(Vg) (red panel of fig.1.20 (b)). Each

centered diamond represents a quantized plateau, where µs and µd both lie

between the same two energy bands (green panel in fig.1.20 (b) and green

dot in panel (a) of the same figure). Lines which run diagonally upwards

from left to right in the transconductance plot indicate that a level is exactly

aligned with µd (cyan and orange panels). On the contrary those running
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downwards from left to right have a band alligned with µs (yellow panel).

Note that the position (in Vsd) denoted with the orange circle gives a direct

measure of the subband spacing between first and second energy level in this

particular case, e∆Vsd = ε2 − ε1 (see orange squared panel in fig.1.20 (b)).



Chapter 2

Experiment

In this chapter we describe the fabrication processes of the devices along

with the low-temperature measurement techniques used for the investigation

of the transport properties.

2.1 Devices

In this work, two main physical systems are studied: the 2DEGs formed in

Si/SiGe and GaN/AlGAN heterostructures were introduced in the previ-

ous chapter. The 2DEGs samples were characterized by low magnetic field

measurements in standard Hall bars at low-temperature. Further informa-

tions about the type of characterization of the 2DEGs will be given in the

next chapters related to each system.

In order to fabricate nanostructures and/or to selectively deplete the elec-

tron gas in spatially defined regions, it is necessary to transfer a pattern on

the two-dimensional system. For this purpose two different techniques have

been used for Si and GaN 2DEGs.

Regarding Si-based nanostructures, these are obtained by carving the

2DEG in a double bend-like geometry by using electron-beam lithography

(EBL) and reactive ion etching (RIE) using fluorinated gases. The het-

erostructures were etched to a depth of 100 nm from the surface. In panels

(a), (b) and (c) of fig.2.1 we report, respectively, a schematic of a QPC geom-

etry prior to gate deposition, a side-view schematic of the gated QPC and,

finally, a scanning electron micrograph of a complete device. The QPC is
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(a) (b)

500 nm

(c)

Figure 2.1: (a) Top-view schematics of a QPC geometry (prior to gate deposition).
The QPC arises in the narrow conducting channel given by the overlap of the S and
D sections. (b) Sideview schematics of the etched QPC with the Schottky gate. (c)
Scanning electron micrograph of a QPC device at the end of the fabrication process.

formed by the narrow conducting channel (width W ≈ 160 nm for the QPC

reported in fig.2.1) which originates at the junction between two sections

(labeled S and D in fig.2.1 (a)) protruding from the outer mesa structure.

The S and D sections, 400 nm wide and 200 nm long, act as source and

drain leads for the QPC. Due to sidewall depletion caused by the surface

states generated by the fabrication process, the constrictions can have an

effective width significantly smaller than the lithographic one. A 5/30 nm

thick titanium/gold gate was patterned by EBL and lift off in the shape

of a 100 nm wide finger gate crossing the etched double bend. The gate

was carefully aligned to within 20 nm with the central constriction. The

metal folds along the etched semiconductor surface actually forming a triple

Schottky gate for the conducting channel (see fig.2.1 (b)) [42]. We have

fabricated several widths and slightly different geometry QPCs by using the

same approach. As an example, a straight and narrow quantum wire (QW)

is reported in fig.2.2.

500 nm

500 nm

500 nm

Figure 2.2: Scanning electron micrograph of a QW device consisting of a very
narrow channel with a straight metallic strip gate deposited on top.

Etched constrictions have strong lateral confining potentials. In addi-
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tion, the surface states completely screen the electric field due to the gate

on the lateral walls. As a consequence, acting on the gate voltage, we can

vary the carrier concentration without affecting the width of the quantum

point contact. Therefore, in our devices we can follow the effect of depleting

the 1D channel at a fixed mode energy separation.

As for the GaN nanostructures, a split-gate induced lateral confinement

has been chosen. Mesoscopic devices were achieved by using both optical

and electron beam lithography. First step is the lithographic definition of

ohmic contacts, then a Ti/Al/Ni/Au deposition and annealing at 850°C
by rapid thermal annealing (RTA) follow. Mesa insulation is performed by

ionic implantation and then the surface is passivated by plasma enhanced

chemical vapor deposition (PECVD) of a 70 nm thick SiN layer. The SiN

layer serves both for protection of the heterostructures and as gate dielectric.

Patterned split gates are obtained by depositing the gate metal (Ti/Au) di-

rectly on top of the SiN passivation layer in order to get a metal-insulator-

semiconductor (MIS) junction. The conductance modulation of the QPC

(a)
G1

G2

GP

G3

G1 G2
(b)

G1

G2

GP

G3

G1 G2

(c)

Figure 2.3: (a) Picture representing a split-gate QPC where yellow regions are
the metallic gate and blue region is the two-dimentional sheet of electrons. (b) and
(c) two schematics of the geometry of devices measured, a QPC formed by wedge-
shaped split-gates and SET-type device formed by two QPC barriers, labelled as
G1 −G2 and G1 −G3.
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can be obtained by negatively biasing the split gates to deplete the 2DEG

underneath (see fig.2.3 (a)). By increasing the negative voltage beyond the

depletion threshold it is possible to extend laterally the depleted regions and

to squeeze the 1D channel until the pinch-off condition. The most appealing

feature of this confinement technique is that the channel width and electron

density can be varied continuously (however not independently) by increas-

ing the negative gate voltage. An additional feature is that by using this

configuration also the spacing of modes is gate-dependent.

In figure 2.3 (b) and (c) two schematic representations of the split-gate de-

vices realized on GaN 2DEG are reported. The first is properly a constric-

tion of variable width (W ) formed by two facing wedge-shaped split-gates

(labelled as G1 and G2). The other is defined by the couple of gate elec-

trodes labelled as G1 −G2 or G1 −G3 having G1 in common, providing an

electrically defined island for single electron measurements. The third gate

(GP ) allows the control of the island potential, capacitively coupling with it.

In this thesis we have characterized the single barriers of the devices with

geometry like that illustrated in fig.2.3 (c).

A four-terminal layout allowed us to get rid of series resistance due to ohmic

contacts and to the portions of two-dimensional electron gas outside the

constriction.

All devices measured in this thesis have been fabricated using facilities

of the clean room located at the CNR-IFN institute.

2.2 Cryogenic systems

In order to observe quantum-mechanical phenomena related to ballistic

transport in low dimensional systems it is necessary to perform experiments

at cryogenic temperature. We made use of a standard Heliox refrigerator

by Oxford Instruments with a base temperature of 0.38 K (see fig.2.4 (b)).

This 3He cryostat operating principle is illustrated in fig.2.4 (a). It is based

on the condensation of 3He. A pre-cooling stage (1K pot) is the main 4He

bath which is vacuum pumped until reaching a temperature of about 1.3 K.

This absorbs the latent heat of condensation of incoming 3He which thus

condensates on the cold surfaces of the thin-walled pumping tube leading to

the 3He pot. The pot starts to cool down and to collect liquid 3He. Once

all 3He is condensed in the pot, a charcoal pump begins to operate lowering
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Figure 2.4: (a) Operating principle of an 3He cryostat. (b) Perspective view of
an Oxford Instruments Heliox.

further 3He temperature to ∼0.3 K. In this system the 3He and the 4He

are separated circulation.

In detail, the insert of fig.2.4 (b) is lowered into a 4He dewar, a small

amount of exchange gas is put into the Inner Vacuum Chamber (IVC) in

order to speed up thermal exchange until the cryogenic pump has reached

the temperature of about 12 K. Then exchange gas is evacuated and the

cryo-pump is heated up to 45 K to make all 3He to be released. A this

point the independent 4He stage has to be activated: liquid 4He enters the

1K pot through a needle valve and is vacuum pumped to decrease it tem-

perature down to about 1.3 K. The 3He, cryo-pumped by the sorb, is free

to condense in the 1 K plate region of the central tube and runs down to

cool the 3He pot. After approximately 20 minutes most of the gas has been

condensed and the 3He pot is nearly full of liquid 3He at approximately 1.3

K (see left hand side of fig.2.4 (a)). Subsequently, the heater on the sorb is

switched off so that this is cooled to below 10 K and begins to reduce the

vapour pressure above the liquid 3He. The temperature lowers to its base

temperature in the 3He pot (right hand side of fig.2.4 (a)). A temperature

controller allows to check thermometers temperature located on the sorb, on

the 1K pot and closed to the 3He pot which is in contact with the sample.

Using the cryostat system located at the IFN CNR institute a single cryo-

genic cycle lasts several hours. Then a recycle is necessary to re-condensate
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3He that in the meantime has been pumped back into the sorb. A part of

the measurement, especially those involving the use of a magnetic field, has

been held in collaboration with the group of Prof. F. Beltram in the NEST

laboratory of Scuola Normale Superiore di Pisa. The cryogenic system used

there is an advanced model of that just described. In that case it allows a

continuous cycle of about 48 hours. The cryogenic temperature is slightly

lower being 0.25 K.

2.2.1 Sample mounting in the cryostat

The samples with the QPC devices are split into small pieces and glued into

a chip-carrier using conductive silver paint. The pads of no more than two

samples are bonded to the 16 pins chip-carrier which has a copper ground

base to favor thermal contact with the sample. The chip-carrier itself is

mounted on a copper holder of the cryostat. In order to improve thermal

conduction between the carrier and the holder a grease suitable for low-

temperature is utilized. Then the holder is screwed on the lower part of the
3He pot. The overall part is closed with a cylindrical shield and covered

with aluminum foils in order to shield high frequency noise and increase

reflectivity to reduce heat input. Great care must be paid not to put in

contact the aluminum foils with the inside of the IVC. This is indeed the

last brass shield whose metallic cones are greased with vacuum grease to

ensure seal vacuum.

2.2.2 Electrical connections

Electrical wirings connect the sample pads at low temperature to a room

temperature metallic box for the connection with external instrumentation.

In order to shield the sample from noise sources at low temperature, different

stages of filtering must be installed anchored to fixed temperature. There-

fore, CRC filters with a cutoff frequency of 10 MHz have been mounted

inside the box containing the connections at 300 K, while resistances of 200

Ω are connected in series to the wires anchored to the 1K pot temperature.

In the latest close to the sample, thermocoax cables are used. In addition

other 200 Ω resistances are soldered beneath the chip-carrier.

With the aim of lowering the measurement temperature down to 20 mK
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a part of my research time has been devoted to the installation, mounting

and wiring assembly of a brand new dilution refrigerator (DR) at IFN-CNR.

The cryostat is the model Microkelvin 50-100 of the Leiden Cryogenics BV.

It is a 50 mm insertable dilution refrigerator unit with a cooling power of

100 µW inside the mixing chamber at ∼ 100 mK. The development of the

cryostat has requested great care in filtering line and hence the invention of

a chip-carrier able to accommodate low-temperature filters.

In the following section a brief description of the operating principle of

a dilution fridge will be given, whereas for the instructions of use of this

particular model we remand to the manual of the refrigerator1. In addition

attempts done for the operation of the DR in terms of noise filtering and

housing of samples will be mentioned.

2.2.3 Principle of operation and installation of a Dilution

Fridge

In contrast to helium refrigerators discussed in section 2.2 where the latent

heat of evaporation is used for cooling, in a dilution fridge the heat of mixing

of the two helium isotopes is used to obtain low temperatures [43, 44] When

a mixture of the two stable isotopes of helium is cooled below a critical tem-

perature (∼ 0.87 K) the liquid will eventually separates into two phases,

one rich in 3He, the ‘concentrated phase’, and the other rich in 4He, the

‘dilute phase’. Because of the lower density, the 3He-rich liquid floats on

top of the heavier 4He-rich liquid. The concentration of 3He in each phase

is temperature-dependent, fig.2.5. Since the enthalpy of 3He in the two

phases is different, the transfer of 3He from the concentrated phase into

the dilute phase may provide highly effective cooling (Q = ṅ∆H). As the

concentrated phase of the mixture is pretty much liquid 3He and the dilute

phase is effectively 3He gas, while 4He composing the bulk of the dilute

phase is inert and noninteracting, this process can viewed as a ‘evaporation’

from the ‘liquid’ phase to the ‘gas’ phase.

When the refrigerator begins operation the 1K pot is used to condense the
3He/4He mixture in the dilution unit at a temperature ∼ 1.2 K. This is

not sufficient for the mixture to form the phase boundary, that occurs only

once the temperature falls below the tri-critical point at 0.86 K [43]. This

1MCK-50-100/400 on the web site:
http://www.leidencryogenics.com/index.asp?PAGE ID=21



44 Experiment

T
e

m
p

e
ra

tu
re

 T
 [

K
]

3He concentration x

Phase-separation lin
e

Two-phase region

Normal 3He/4He

Superfluid 
3He/4He

Lam
bda line

0 0.25 0.50 0.75 1.00
0

0.50

1.0

1.5

2.0

Figure 2.5: Phase diagram of liquid 3He-4He mixture at saturated vapor pressure.

cooling is provided by the still; incoming 3He is cooled by the still before it

enters the heat exchangers and mixing chamber [45]. Gradually, the rest of

the dilution unit cools to the point where phase separation occurs. In order

to reach the base temperature it is important that the 3He concentration

and volume of the mixture are chosen so that the phase boundary occurs

inside the mixing chamber and the liquid surface lies in the still (see fig.2.6),

otherwise the dilution fridge will not cool to base temperature.

During continuous operation, the 3He must be extracted from the dilute

phase (to prevent saturation) and resupplied to the concentrated phase.

The 3He is pumped away from the liquid surface in the still, where at ∼ 0.6

K 3He evaporates preferentially (1000 times faster than 4He). 3He leaving

the mixing chamber is used to cool the returning flow of concentrated 3He in

a series of heat exchangers. A room temperature vacuum pumping system is

used to remove3He from the still and compress it before passing it through

cold traps (at 77 K) and returning it to the cryostat. The inflowing mixture

is pre-cooled by the main helium bath and condensed on the 1K pot. A flow

impedance (in the form of a capillary tube) is used to maintain a sufficiently

high pressure in the 1K pot region for the gas to condense. The sample is

mounted in the mixing chamber (MC) to ensure adequate thermal contact.

In figure 2.7 a picture of the MCK50-100 dilution refrigerator utilized is

reported: in panel (a) is illustrated the 50 mm stainless tube of the insert,
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Figure 2.6: Operating principle of a dilution refrigerator.
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in panel (b) the unit composed by the 1K pot, the still, the heat exchanger

body and the mixing chamber. Finally in panel (c) the head of the insert

gone down into the dewar.

The dilution refrigerator has been designed with a two-part external gas

(a)

(b)

(c)

Figure 2.7: Insert (a), unit (b) and head of the insert (c) of the MCK50-100
dilution refrigerator.

handling system (GHS). One part (the circulation system) serves for to the

circulation and handling of the mixture, and the other (the auxiliary sys-

tem) to auxiliary pumping operations. Both systems are connected to their

relevant components on the cryostat and dilution fridge insert by flexible
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pumping lines. The gas handling system consists of a stainless steel cabinet

made of hollow squares tubes welded so as to make two leak-tight reservoirs

(fig.2.7 (b) and (c)). The upper one is used for storing 3He. It has a vol-

ume of 20 liters. The lower one is used for the 4He-rich mixture and has

a volume of 70 liters. The MaxiGauge vacuum gauge controller placed be-

(c) (d)

Figure 2.8: (a) Operating principle of an 3He cryostat. (b) Picture of an Oxford
Instruments Heliox.

low the control panel (fig.2.8 (a)) is fitted to measure the still pumping line

pressure and the IVC pressure. A resistance bridge (AVS47) allows the tem-

perature reading and control. The Triple Current Source (TCS) has three

independent low-noise outputs for heating the sorb-pump, the still and the

MC. Inside the GHS (fig.2.8 (b)) a turbo pump and a rotary pump for the

circulation of 3He mixture and an open rotary pump for the auxiliary gas

handling system. This pump vents to air, and so should never be opened to

areas containing mixture; it is used primarily to pump the 1K pot (pulling
4He gas from the main bath).

When electrical measurements are performed using a dilution refrigera-

tor, filtering electrical lines connecting a room-temperature apparatus to a

cryo-electronic device is of prime importance. Anchoring the lines to elec-
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trical heat sinks can help in reducing the noise generated by themselves

however it does not prevent the electromagnetic noise from parts at higher

temperature from propagating along them. The effective thermalization of

the device at a given temperature requires the noise to be sufficiently at-

tenuated by filters. The filtering system must be effective over a wide band

spectrum and must be properly thermalized. The main issue is to choose

the anchoring temperatures of the filters, taking into account the available

space and cooling power at each stage of the refrigerator, together with the

noise generated by the filters themselves. The noise of a filter has to be suffi-

ciently attenuated by those of the filters placed closer to the device (at lower

temperature) [46, 47]. Because of lack of available space to install filters at

anchored temperatures, we placed them at room temperature and at the

lowest temperature, i.e. in the mixing chamber. Emi π-filters with a cutoff

frequency of 10 MHz and an attenuation of 20 dB have been installed in a

metallic box at room temperature where all wires are collected from the DR.

Twenty twisted shielded pairs of wires enter the mixing chamber through

the bottom part of the unit ending in a connector ring with 40 pins. The

mixing chamber consists of a 30 mm diameter conical plug that allows for

sample up to 24 mm diameter inside, directly immersed into the mixture.

The filtering installation at low temperature has been a quite ingenious deal:

a double level chip-carrier with a circular geometry has been designed and

realized to house a 24 pins 11×13 mm2 sample and RC filters directly inside

the MC. In figure 2.9 a scheme of an electrical line carrying the signal from

!-filters
T=300K

refrigerator 
wire

R ! 25 "

C !150 pF

R = 1 k"

C =2.2 nF
RT

Figure 2.9: Simple scheme of a wire connecting instrumentation at room temper-
ature to the sample at low temperature.

room temperature to the sample RT at the lowest temperature has been

shown. The installed filters are reported in figure.
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2.3 Measurement set-up

For the differential conductance measurements, a four-terminal voltage bias

configuration has been used. A typical device layout is reported in the SEM

picture of figure 2.10: ohmic contacts are labelled as D, S, V + and V −.

These are the drain and source contacts for the application of the excitation

(V ex = VAC + VDC in fig.2.10) and the measurement of the current, and

the two voltage probes for the measurement of the voltage drop across the

device, ∆V = V + − V −, indicated as Vsd in the following chapters. G1 and

G2 in fig.2.10 are the gate contacts. The most commonly used measurement

setup is that depicted in the figure below. The oscillator output voltage

IAC

IDC

D S

V+ V-
G1

G2

Cryostat

!

VAC

VDC

VAC

VDC

I/V

VG

Figure 2.10: Simple sketch of the measurement setup.

VAC of a SR830 lock-in amplifier is divided by 104 and then added to a DC

voltage VDC generated by a DS360 waveform generator, divided by a factor

103. This signal is applied to the drain contact. It is adjusted so that the

excitation bias is kept eV ex < kBT . In our experiment VAC ≈ 10µV at a

frequency of 17 Hz. The source ohmic contact is connected to a current

pre-amplifier (×109 V/I), providing a virtual ground to the sample, which

feeds into the lock-in (SR830) to measure the AC component of the current

and into an HP multimeter for the DC component. The gate electrodes

are polarized by using a voltage generator, Keithley SCS4200, able to gen-

erate bias up to ±200V with an accuracy of 5mV . Indeed quite high and

low-noise signals are necessary in the measurements of GaN -based QPCs,
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due to the high pinch-off voltages. Gates are biased relative to the source

contact. The additional voltage probes allows for the measurement of the

the voltage drop across the device, Vsd = ∆V . A second lock-in (SR530)

frequency locked to the first and another DC voltmeter collect the amplified

(×102) signal, ∆V = V mis
DC + V mis

AC (see fig.2.10). Thus, this is the device

conductance, Gdev = IAC/V
mis
AC .

To achieve a good signal quality especially at low temperatures, great care

has to be taken with filtering of electrical signals. As already mentioned, all

signal lines enter the cryostat only through π filters located at room tem-

perature stage (with a cut off frequency of about 10MHz). The voltage

dividers have to be mounted closed to these filters. Additional RC filters

have been applied to the extremely noise sensitive lines connecting the gate

electrodes. These RC filters have a cut-off frequency of ∼ 8Hz. In fig.2.11

a scheme of the filtering box and the AC+DC adder-divider box used are

reported. To prevent eddy current, the ground of the box containing BNC

1
0
 !

100 k!

5 k!
5 k!

100 nF

VDC IN

VAC INVOUT

VFILTEREDV IN

1.2 M! 1.2 M!

100 nF

(a)

1
0

 !

100 k!

5 k!
5 k!

100 nF

VDC IN

VAC INVOUT

VFILTEREDV IN

1.2 M! 1.2 M!

100 nF

(b)

Figure 2.11: (a) Low-pass filtering box used for gate lines, the cutoff frequency is
∼ 8Hz. (b) AC+DC adder-divider box: the voltage output is VOUT = VAC

104 + VDC

103 .
The DC component is filtered (fcut ∼ 2kHz).

plugs must be in electrical contact with the cryostat itself and with the rack

of instruments. In addition, in order to shield rf-noise a metallic web sur-

rounding both the cryostat and the L − He dewar is used. Lastly battery

powered amplifier and plastic o-ring connecting the rotary pumps to the

cryostat are implemented to avoid the 50Hz signal. About filtering in the

cryostat at base temperature refer to previous sections.

Before the measurements at 0.3 K, a number of measurement tests have

to be done at 300 K and then at 4.2 K. A rapid check of the ohmic contacts

and of the gate leakage current is carried out at room temperature. At 4.2
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K two- and four-terminals DC IV characteristics of the device are obtained.

The gate leakage current is measured in the whole interval of operation of

the gates. If all these tests pass, a preliminary AC differential conductance

measurement is done.

During the cool down of devices from room temperature, grounding cups

are put on the ohmic and gates contacts.





Chapter 3

Conductance in Si -based

etched quantum point

contacts

In this chapter we report results and discussion of the electrical characteriza-

tion carried out on several etched-Si-based nanostructures. The conductance

behaviour has been analyzed as a function of the source and drain bias volt-

age, Vsd, as well as of the gate voltage, Vg, and the external magnetic field,

B. We report the investigation of the transport properties of the 2DEG for

one of the samples studied. Both classical and quantum Hall effect at low

temperature were exploited.

3.1 Introduction

Silicon nanostructures are excellent systems to develop semiconducting nan-

odevices [48, 49, 50, 51, 52, 53] extremely important for quantum computing

applications due to several aspects [54]. Firstly, scalability and controllabil-

ity of Si devices made silicon the most relevant electronic material. More-

over, silicon is a very attractive object of study for quantum dot realization

thanks to the longer intrinsic spin coherence time compared to gallium ar-

senide. In addition the availability of the zero-spin Si isotope allows the

suppression of decoherence caused by the coupling of electrons with nuclear

spin [55, 56, 1].
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Nevertheless, the presence of multiple valleys in silicon conduction band is

the major source of decoherence for defined spin-states in Si-quantum dots

[57]. The Si/SiGe two-dimensional electron gas (2DEG) differs from the

AlGaAs/GaAs one by the presence of multiple valley minima. Indeed, in a

Si channel grown on a cubic SiGe under biaxial strain, there are two equiv-

alent minima of the conduction band. As a consequence in an independent

electron picture and double valley degeneracy, conductance quantization in

units of 4e2/h is expected. Indeed, 4e2/h quantization was reported in early

investigations [58, 59, 60].

In this chapter Si-based 2DEGs and devices are studied. Firstly, we

will report low-field measurement results, giving the relevant parameters of

the 2DEGs, and the measurements at high magnetic fields. Then, we will

report transport characterization of devices with different geometries and

sizes through the measure of the differential conductance. Afterwards we

will focus on the behaviour of the conductance of a quantum point contact

in the low-G regime (G < 4e2/h) and of a straight nanowire. We will

report measurements of the linear and non linear differential conductance

in presence of a perpendicular and parallel magnetic field at temperature of

∼ 260 mK.

3.2 Samples

Table 3.1 reports the results of the electrical characterization of the 2DEGs

used in terms of mobility and sheet density as obtained from classical Hall

effect measurements at T = 15 K. Low-field analysis has been performed in

the (15÷300) K temperature range. However, it is expected that the carrier

density remains approximately constant below about 25 K (see fig.4.1) while

the mobility increases of about 30-40% lowering the temperature down to

300 mK.

To compare classical Hall effect with quantum Hall effect carried out at

low temperature (∼ 260 mK), we report a measurement of the longitudinal

ρxx and transverse ρxy resistivity performed on Sample A (fig.3.2). From the

analysis of the period of Shubnikov de Haas oscillations as a function of 1/B

a value of 9.4 · 1011 cm−2 has been found, in agreement with low field mea-

surement [61]. In correspondence of the minima of longitudinal resistivity

ρxx, Hall resistivity ρxy exhibits some inflections that correspond to h/νe2
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n2D µ

(cm−2) (cm2/V s)

Sample A 9.4 · 1011 1.5 · 104

Sample B 9.2 · 1011 1.0 · 104

Sample C 9.8 · 1011 2.7 · 104

Table 3.1: Parameters extracted from classical Hall effect measurements at
T = 15 K.

(a) (b)

Figure 3.1: (a) Mobility µ and (b) carrier density n2D as a function of temperature
for Sample A and Sample B, respectively.

(a)

Figure 3.2: (a) Longitudinal and transverse resistivity as a function of magnetic
field. Analysis of the period of SdH oscillations gives a value of 9.4 · 1011 cm−2 for
the electron density. (b) Longitudinal conductivity against filling factor ν.
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values of the resistance, where ν is the Landau level number. Quantum life-

time τq can also be estimated from oscillation amplitude dependence versus

magnetic field at a given temperature [62]. Since theory predicts for the am-

plitude of the SdH oscillations the relation ∆ρxx/ρ0 = 4χ(T )exp(−π/ωCτq),
the plot in logarithmic scale of the quantity ∆ρxx/4χ(T )ρ0 against 1/B

should give a straight line whose slope is related to the single particle life-

time, τq, and whose intercept at 1/B = 0 is expected to be zero. Extracting

the relative amplitude of oscillations of ρxx as a function of the inverse mag-

netic field 1/B (Dingle plot) a linear dependence has been found (fig.3.3).

From the linear fit slope we calculated the quantum scattering time τq to be

0.91 ps.

Figure 3.3: Dingle plot: relative oscillations amplitude as a function of 1/B. Linear
fit gives a quantum scattering time of 0.91 ps.

The ratio of transport scattering time (τt) and quantum scattering time

(τq) has been used in the study of semiconductor transport to discriminate

among various scattering mechanisms. This ratio gives the measure of what

kind of scattering mechanism is predominant: large or small angle scatter-

ing. Indeed, if P (θ) is the probability density that an electron is scattered

through an angle θ, being

1

τt
=

∫
P (θ)(1− cosθ)dθ, (3.1)

the presence of the angular weighting factor (1− cosθ) enhances the contri-

bution of large angle scattering events over small angle scattering [63]. On
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the other hand, quantum scattering rate is

1

τq
=

∫
P (θ)dθ. (3.2)

As the weighting factor is not included, all the scattering angles are counted

equally [64]. The ratio τt/τq is larger than unity in systems where small

angle scattering dominates whereas it is nearly unity in systems where the

scattering is isotropic. Thus, for high-quality 2DEG, ratio of τt/τq can reach

100 compared to that found in lower mobility samples in which the ratio is

observed to approach unity. In our 2DEG, we have extracted τt from low

field mobility, τt = µm∗/e, to be about 1.6 ps. It follows that the ratio

τt/τq is 1.8, suggesting that large angle scattering is a relevant mechanism

in limiting mobility.

3.2.1 Nanostructures

Several etched-Si nanostructures were investigated during the thesis work

consisting in straight narrow wires and point contacts. The ones that will

be considered in details here are a ∼ 40 nm-wide straight quantum wire

on sample A, namely QW, reported in the SEM picture of fig.3.4 (a) and

two QPCs resulting from the narrow conducting channel that originates at

the square-shaped 2DEG mesa protrusions, namely QPC1 on sample B and

QPC2 on sample C, shown in fig3.4 (b) and (c), respectively.

500 nm

500 nm

500 nm

QPC1

QPC2

QW

QPC1

(a)

500 nm

500 nm

500 nm

QPC1

QPC2

QW

QPC1

(b)

500 nm

500 nm

500 nm

QPC1

QPC2

QW

QPC1

(c)

Figure 3.4: (a) Quantum wire (QW) 450 nm long and ∼ 40 nm-wide with a ∼200
nm wide metallic gate realized on sample A. SEM pictures of the two constrictions
(b) QPC1 and (c) QPC2 resulting from the geometrical overlap of two square shaped
2DEG regions, realized on sample B and sample C, respectively. The lithographical
width of the metallic gate strip is (b) ∼180 nm and (c) ∼100 nm.
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3.3 Quantum transport is Si -based nanostructures

In the present section we report main results obtained from the study of

mesoscopic transport of devices in fig.3.4. We will show that a standard

quantization of conductance manifests in the quantum wire (QW) of fig.3.4

(a) at a temperature of 4.1 K, whereas upon lowering the temperature, ef-

fects going beyond the model of non interacting electrons in a 1D system

appear. Then, we will deepen the investigation of the low conductance re-

gion of the other two devices (i.e. below the value G ≈ 4e2/h), focusing on

the reproducible behaviors and their origins.

In fig.3.5 the linear conductance of the QW as a function of Vg is pre-

sented at three different temperatures, i.e. T = 0.26, 2 and 4.1 K, from right

to left. In this device we were able to span a large interval of conductance,

up to G = 4 · G0 (G0 = 2e2

h ). The curve at the highest temperature shows

Figure 3.5: Linear conductance QW taken at different temperatures. Curves are
horizontally shifted.

two prominent conductance plateaus at values G = G4 and G = 2 · G4,

where G4 = 4e2/h. Indeed a quantization of conductance in units of G4

is expected for a 1D system in a silicon 2DEG due to the twofold valley

degeneracy present in the conduction band [65, 66]. Upon lowering the tem-

perature a fine structure emerges in the linear conductance. As a matter of

fact in the 2 K curve a quantization in units of G0 = 2e2/h is found: two

clear conductance plateaus develop at 1 · G0 and 2 · G0. Third plateau is

missing, while a large rounded plateau is present at 4 ·G0. At T = 0.26 K

peak-like and dip-like structures largely affect the linear conductance curve,
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superimposing to the conductance spectra taken at T = 2 K. These fea-

tures, thoroughly investigated in the following sections, are attributed to

transmission resonances or interferences due to multiple reflections occur-

ring at both ends of the channel due to the abrupt interface between the

1D-2D transition regions of the confining potential (discussed in the first

chapter) or caused by multiple scattering from impurities. Despite the pres-

ence of peaks and dips in the G trace, the formation of a G0 plateau in the

lowest temperature (T = 2 and 0.26 K) conductance curves is apparent. As

we will demonstrate in the following section, we interpret these structures

as a manifestation of conductance quantization in units of G0 = 2e2/h and

ascribe these findings to a complete removal of valley degeneracy.

In figure 3.6 we report linear conductance spectra for two quantum point

contacts shown in fig.3.4 (b) and (c) versus gate voltage for various temper-

atures increasing from from right to left: T = 0.4, 0.6, 0.9, 1.4 and 1.6 K in

panel (a) of fig.3.6 and T = 0.26, 0.5, 0.9, 1.5 and 4.1 K in panel (b). All

(a) (b)

Figure 3.6: Linear conductance of QPC1 (a), QPC2 (b) taken at different tem-
peratures. All curves are horizontally shifted.

curves reported in fig.3.6 are horizontally shifted and show G values lower

than 4e2/h, i.e. below the conductance quantum expected for a quantum

device realized in a tensile Si channel. However none of these exhibit a

clear quantization in units of G4 (G4 = 4e2/h). Beyond the unexpected

behaviour, it is noteworthy the presence of broad peaks in the G traces

of fig.3.6. This behaviour is evident especially at low temperatures as the

characteristic peak-like structures are energy averaged by increasing temper-

ature [25, 67, 68]. Similarly to the case of the measure reported in fig.3.5,

the appearance of these structures has to be attributed to transmission res-
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onances caused by multiple reflection occurring at the entrance and exit of

the channel. In detail fig.3.6 (a) shows two structures at about Vg = 0.1 V

and Vg = 0.35 V (lower temperature curves have been shifted) that have

been interpreted as interferences due to electrons geometrical backscatter-

ing on the basis of magnetic field measurements discussed later on; both

structures belong to the first quantized conductance plateau (see T = 1.4 K

and T = 1.6 K curves). Regarding linear conductance of QPC2 (fig.3.6 (b))

as temperature is raised the resonance structures are smeared out and the

formation of a G0 plateau is evident. Following steps are less conspicuous.

It is worth noting that all acquired curves in different cooldowns have some

characteristic reproducible features which are imputed to intrinsic mecha-

nisms, like the geometrical backscattering due to the confining potential.

On the other hand there is a fine structure which varies among different

cooldown. This is contingent on the peculiar charge distribution under the

gate electrode, indeed it depends on the actual potential profile due to the

presence of trapped charge under the gate or to a pinning of the Fermi

energy due to the presence of accidental impurities.

In the following we will focus on the conductance behaviour of two par-

ticular devices, the QPC1 and the QW. Measurements of linear and non

linear conductance and their evolution with an applied magnetic field will

be illustrated.

3.3.1 Conductance of Quantum Point Contacts

Linear and non linear conductance

The main features of conductance of QPC1 shown in fig.3.4 (a) has been

reported in fig.3.7 (a) and (b) for G < 2 · G0 (G0 = 2e2/h), where the

typical curves of linear G versus Vg and non linear G versus Vsd taken at

0.3 K are shown. We have already mentioned the reproducibility of the

key characteristics of the G traces on several cooldowns: plateau-like and

peak-like structures manifested at conductance values that changed slightly

in different thermal cycles. Now we focus on the reproducibility of curves

from run to run of the same thermal cycle.

In fig.3.7 (a) two sets of linear conductance data are reported as a function

of the gate bias Vg. The curves were acquired in the same thermal cycle:

the ‘sweep-up’ traces by sweeping the gate voltage from pinch-off toward



3.3 Quantum transport is Si-based nanostructures 61

(a) (b)

Figure 3.7: (a) Linear conductance curves as a function of the gate voltage. The
measurements were acquired in the same thermal cycle by sweeping the gate volt-
age towards positive values from pinch-off (sweep-up) or in the opposite direction
(sweep-down). (b) Non linear conductance versus source-drain bias and gate volt-
age. The gate voltage has been swept from negative towards positive values (sweep
up). Coloured line curves correspond to values of Vg defined in the text.

positive values and the ‘sweep-down’ curves by sweeping the gate in the

reverse direction. For clarity all the sweep-down curves are shifted horizon-

tally toward positive gate voltage. Inspection of the curves show that the

main features are quite reproducible, while details change from run to run.

Notice, however, the variation of the relative height of the first two steps as

compared to a different cooldown shown in fig.3.6 (a). Persistent features

are represented by several step-like structures, on which peak-like fine struc-

tures are superimposed that somewhat change from run to run. Moreover,

shape and conductance values of the peculiar features markedly depend on

the sweeping direction. For sweep-up acquisition the curves present well de-

veloped structures at about 0.65, 1.1, 1.5 and 1.8 G0 conductance values; in

the sweep-down curves the 0.65 G0 and 1.5 G0 structures are still well visi-

ble while the structure around 1.1 G0 conductance is smoother. Regardless

the sweeping direction in all the G curves a shoulder at 0.15 G0 is present,

which is smoother in the sweep down traces. All the G measurements re-

ported afterward were acquired by varying the gate voltage always in the

sweep up direction.

A further noteworthy finding is the appearance of a zero bias anomaly

(ZBA) in the differential conductance G as a function of source-drain voltage
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Vsd, as shown in fig.3.7 (b) for values of the gate bias ranging from -0.04 V

to 1.105 V . It is seen that in the central region a fine structure is present, a

ZBA whose lineshape varies strongly upon changing Vg. The behavior as a

function of Vg can be summarized as follows. In the Vg range corresponding

to the the development of the first prominent step in the sweep-up conduc-

tance curves of fig.3.7 (a), the differential conductance evolves exhibiting

first two narrow peaks positioned almost symmetrically around Vsd = 0

(Vg = 0.16 V pink line curve), then a narrow peak, centered at Vsd ∼ −0.1

mV (Vg = 0.3 V orange line curve). Then, for Vg values corresponding to

the minimum between the first and second step of fig.3.7 (a), red and blue

line curves, the central peak tends to disappear. Concomitantly with the

development of the second step in fig.3.7 (a) the peak centered at Vsd ∼ −0.1

mV increases again becoming a prominent one and shifting towards -0.07

mV . A the same time the curve acquires a symmetric lineshape. The peak

weakens again for Vg values corresponding to the end of the second step in

fig.3.7 (a).

Deviations of the experimental conductance from canonical quantized

values [69, 70, 71], the presence of additional structures in the G curves

[25, 72], the missing of plateaus [73] and ZBA [7, 74] have been observed

and reported in the GaAs systems. Some effects appear intrinsic to meso-

scopic devices, as for example the additional plateau below G0, the so-called

0.7 anomaly [72, 75, 76], whose microscopic origin is still being debated al-

though a general consensus is forming in favour of explanations in terms of

many-body effects. Other features, instead, have been related to extrinsic

mechanisms such as an asymmetric distribution of the electron density in

the two sides of the QPC [73] or scattering events [25]. Indeed scattering

or partial reflection of electron waves, due to defects or irregularity in the

potential or reflection at both ends of the conducting channel, produce both

transmission resonances in the G curve and a lowering of the conductance.

It is well known that the application of an external magnetic field can give

precious information on the scattering mechanisms affecting the conduc-

tance and on the origin of the structures present in the G curves. To that

end, magneto-transport data in presence of both perpendicular and parallel

magnetic field were acquired and presented in the following.
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Perpendicular magnetic field

In fig.3.8 the linear conductance is reported as a function of the gate volt-

age in the Vg interval corresponding to the first two prominent structures in

fig.3.7 (a), for perpendicular magnetic field varying in the (0÷8.8) T range,

panel (a), and (0 ÷ 2) T range, in the particular of panel (b). Following

(a) (b)

Figure 3.8: Linear conductance as a function of the gate voltage acquired in
perpendicular magnetic field. (a) Conductance curves for magnetic field ranging
from 0 to 8.8 T with steps of 0.1 T , from bottom curve to upper curve. Curves are
vertically shifted for clarity. Blue line curves correspond to magnetic field intensities
of 0, 1, 2, 3, 4, 5, 6, 7 and 8 T . (b) The reported curves are relative to magnetic
field equal to 0 (red line), 0.5, 1, 1.5 and 2 T (blue line).

procedure used in ref.[58] four-terminal conductance curves were corrected

for a suitable series resistance in order to take into account the influence

of edge states propagating along the 2D regions [19]. A magnetic field de-

pendent, gate voltage independent background resistance has been chosen

to obtain the expression for the quantization of conductance. From ref.[19],

R4t = h
2e2

(
1

Nmin
− 1

Nwide

)
, where Nmin is the number of occupied magneto-

electric subbands in the constriction and Nwide is the number of occupied

Landau levels in the 2DEG wide regions. Since we have previously mea-

sured the carrier density n2d, we were able to determine, for each value of

explored magnetic field, the number Nwide of the occupied Landau levels
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(from an interpolation of the function Nwide = h
4e
n2d
B ) and hence the value

of the background resistance Rb = h
2e2

1
Nwide

to be added to R4 in order to

obtain the quantized resistance R2 = h
2e2

1
Nmin

.

From fig.3.8 (b) it is evident that, upon increasing the magnetic field, a

filling and a consequent flattening of the conductance curves takes place.

For magnetic field intensities higher than about 1 T a single conductance

plateau at G = G0 is present and remains constant up to B = 3.5 T (see

fig.3.8 (a)). After that value of magnetic field, a shoulder in the conduc-

tance curve below the first G0 plateau occurs evolving in a 0.5G0 plateau as

the magnetic field is increased. Negative magnetoresistance and recovery of

flat quantized conductance plateaus in perpendicular magnetic field are the

signatures of a backscattering reduction occurring in the QPC [19], whose

cause can be inferred comparing the cyclotron radius with the device size. In

our case at B = 1.1 T the diameter of the electron classical orbit (cyclotron

radius ∼ 110 nm/B) is equal to the size of the 200 nm-wide square-shaped

2DEG protrusions that connect the constriction with the source and drain

contacts: therefore for this magnetic field the geometrical backscattering

taking place with the boundary of the etched protrusions begins to be sig-

nificantly reduced. For larger fields, i.e. for cyclotron radius smaller than

the size of the 2DEG protrusions, backscattering from the boundaries of the

etched area is inhibited by skipping orbits.

In fig.3.9 the numerically derivative dG/dVg of data of fig.3.8 (a) is reported

in a colour map plot as a function of Vg and B up to 8 T . In the map

blue regions correspond to lower values of dG/dVg whereas orange regions

are transconductance peaks. A plot of this type can be used to identify the

transition edges between plateaus. The separation between peaks, ∆Vg, is

linear in the external magnetic field (see dashed blue lines in fig.3.9). We

will further discuss about this energy splitting in the following section com-

paring perpendicular with parallel magnetic field data.

Data showing the effect of the perpendicular magnetic field on the non-

linear conductance and on the ZBA in the same range of parameters Vg and

Vsd for B = 0 and B = 3 T are reported in fig.3.10. Nonlinear conductance

measurements acquired at B = 0 and 3 T for gate bias ranging from -0.04

to 0.9 V are reported in fig.3.10 (a) and (b). Traces of fig.3.10 (a) are some

selected curves of fig.3.7 (b). In panels (c) and (d) the color maps of dG/dVg

curves, obtained numerically from G traces of panels (a) and (b), are plot-
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Figure 3.9: Calculated dG/dVg of data of fig.3.8. Blue regions correspond to lower
values whereas orange regions are higher values of dG/dVg.

ted as a function of gate and source-drain bias. Blue regions correspond to

lower dG/dVg values while yellow regions correspond to higher ones. As can

be seen from fig.3.10 (a) and (c) the curves acquired at B = 0 T are char-

acterized by the presence of a fine structure in a narrow region around zero

bias. Indeed for Vg larger than ∼ 0.2 V a narrow peak at Vsd ∼ 0 becomes

prominent: its lineshape varies strongly upon changing Vg. This behaviour

resembles that of the zero-bias anomaly (ZBA) reported in ref. [77]. This

fine structure is seen to disappear at B = 3 T , as shown in panel (b): the

conductance at zero bias increases monotonically towards the G0 plateau in

correspondence of which several G traces merge. Concomitantly for large

Vsd the conductance evolves towards nearly half G0. The transconductance

map clearly shows the characteristic diamond shape present when conduc-

tion in the QPC is trough non interacting 1D energy mode [39]. Following

considerations of ref. [37] the energy separation between 1D subbands can

be obtained from the intersections between the white lines marking in the

Vg − Vsd plane the transition edges between plateaus. We have estimated a

value of about 1.3 meV for the distance between the first and the second

level. The energy conversion factor η converting the gate voltage to the en-

ergy, ∆E = η∆Vg, has been derived using Zeeman splitting energy discussed

later on.

A conductance quantum equal to G0 instead of 2 · G0 requires a par-

tial removal of degeneracy in the Si conduction band minima. The overall

data taken in our device point to a conductance quantization in G0 = 2e2/h
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(a) (b)

(c) (d)

Figure 3.10: Non linear conductances vs dc source-drain bias for fixed gate voltage
at (a) B = 0 and (b) B = 3 T . Gate voltages were in the (−0.04 ÷ 0.9) V range.
(c) and (d) Maps of the transconductance obtained numerically from the curves of
panels (a) and (b). In both transconductance maps the blue regions correspond to
lower values whereas yellow regions are higher values of dG/dVg. The description
of the white lines is in the text.
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units due to lifting of the twofold degeneracy of the z-valley in Si. From

the diamond in the trasconductance map reported in fig.3.10 (d) we found

an energy separation of the first two 1D modes equal to ∼ 1.3 meV , that

we identify with the valley splitting at B = 3 T . The reason is that this

energy separation can be ascribed neither to Zeeman spin-splitting of valley-

degenerated modes nor to the energy spacing of magnetoelectric subbands.

We demonstrate our result as follows. A single non degenerate subband can

be characterized by three quantum numbers: the transverse mode number

n, the spin quantum number s and the valley quantum number v (where s

and v can be ±1) [78].

En,s,v =

(
n− 1

2

)√
(~ωc)2 + (~ω0)2 +

1

2
sgµBB+

1

2
v∆n(Vg, B)+eV0 +

~2k2

2m∗
,

(3.3)

where ∆n is the valley splitting. ~ω0 is the energy spacing between modes in

absence of magnetic field, ~ωc is the contribution from magnetic confinement

equal to ~eB/m∗. eV0 is the minimum of the confining potential, gµBB is

the Zeeman energy and ~2k2/2m∗ is the contribution of electron motion

along the channel. In ref. [1] a phenomenological model has been proposed

in which the valley splitting depends on both the external electrostatic and

magnetic confinement,

∆n(Vg, B) =
√

∆2
ext + (∆BB)2. (3.4)

Indeed from eq.3.4 a zero-field valley splitting enhanced by electrostatic

confinement of the electronic wave function is expected. In addition the

external field B provides magnetic confinement of the wave function within

the magnetic length, lm =
√
~/eB. However, in principle, the dependence

of valley splitting energy on magnetic field is not relevant, therefore in the

following we will not consider it. In fig.3.11 a schematic drawing of levels

alignment is reported for B = 0, panel (a) and B 6= 0, panel (b). For B = 0,

the energy separation between modes is ~ω0; if a valley splitting exists, each

orbital level n splits in two valley-non degenerate states separated by ∆n,

see fig.3.11 (a), in the hypothesis that ~ω0 > ∆n. As for the case B 6= 0,

the energy separation ~ω increases with magnetic field according to eq.3.3.

In addition, each valley-split level in turn separates in two spin-split states,

eq.3.3 (see fig.3.11 (b)). For a magnetic field of 3 T and for g∗ = 2 a spin-
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Figure 3.11: Schematics of the levels alignment: (a) For B = 0 the energy sep-
aration between modes is ~ω0, ∆n is the energy valley splitting of the nth level.
(b) For B 6= 0 the energy separation between modes is ~ω, ∆n is the energy valley
splitting of the nth level and g∗µBB is the energy spin splitting of each valley-non
degenearate state.

splitting of only 0.3 meV is expected. Therefore, Zeeman spin splitting can

not take into account the energy separation of 1.3 meV observed in the data

reported in fig.3.10 (a) and (b). Moreover at the same value of magnetic

field, B = 3 T , ~ωc has been calculated to be 1.8 meV , leading to an energy

separation between orbital modes ~ω > 1.8 meV i.e. a value larger than the

measured energy spacing in our QPC.

Parallel magnetic field

Conductance evolution in presence of a parallel magnetic field was also in-

vestigated. In fig.3.12 we report the linear G curves as a function of the gate

voltage for parallel magnetic field in the (0 ÷ 7.9) T range. The curves are

acquired with a step of 0.1 T and vertically shifted for clarity. Peak-like and

plateau-like structures are present in the G traces in the whole investigated

range of magnetic field. The two main prominent structures in the conduc-

tance trace already described in fig.3.7 (a) show a complex evolution at low

field; for B larger than 1.5 T the G traces are characterized by two clear

plateau-like structures whose Vg positions shift linearly with the strenght

of the magnetic field while the corresponding conductance evolves towards

0.5 G0 and 1G0 values. Concerning the shoulder at 0.15 G0, it evolves in a
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Figure 3.12: Linear conductance as a function of the gate voltage Vg acquired in a
parallel magnetic field increasing from 0 (bottom curve) to 7.9 T (top curve). Traces
are vertically shifted. Blue line curves correspond to magnetic field intensities of 0,
1, 2, 3, 4, 5, 6 and 7 T
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more detectable peak whose conductance maximum raises toward 0.25 G0

for magnetic field above 5 T . Linear conductance data in parallel magnetic

field shown in fig.3.12 confirm our picture: even if conductance is affected

by backscattering, at large field G traces are characterized by two promi-

nent plateau-like structures at 0.5 G0 and 1 G0 values whose positions shift

almost linearly with magnetic field as expected for Zeeman effect.

Analogously to fig.3.9 for perpendicular magnetic field, we reported dG/dVg

relative to conductance curve of fig.3.12 in a colour map plot as a function

of Vg and B, fig.3.13. Dashed blue line in fig.3.13 are lined up for the same

Figure 3.13: Calculated dG/dVg of data of fig.3.12. Blue regions correspond to
lower values whereas orange regions are higher values of dG/dVg.

values of Vg and B as those of fig.3.9, reflecting the fact that the measured

energy separation between transconductance peaks at B = 8 T is exactly

the same for fig.3.9 and fig.3.13. It is worth noting that marked dashed blue

line in fig.3.9 correspond to transitions from conductance G = 0 to G = e2/h

and from G = e2/h to G = 2e2/h, corresponding to the occupation of the

first spin-resolved level and then of the second spin-resolved level. In conclu-

sion, we attribute the measured splitting of transition edges ∆Vg of fig.3.13

to the Zeeman energy spin-splitting between non-degenerate levels. From

the found Zeeman spin-splitting, we can determine the conversion factor η

between gate voltage and energy using the relationship η∆Vg = g∗µBB.

Concerning the valley splitting revealed by conductance measurements,

we have measured a value equal to ∼ 1.3 meV at 3 T . Valley splitting in

Si-based mesoscopic structures is topic of great interest because it is related

directly with spin coherence time and, consequently, with the possible use
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of Si in spintronics [79, 80, 81, 82]. In the case of Si quantum wells with

perfectly flat (100) interfaces a theoretical work elaborated in a framework

of non interacting electrons predicts a valley splitting of the order of 1 meV

[55]. In many experiments the measured valley splitting value was found to

be smaller than the calculated ones [83, 84]. One possible explanation for

the discrepancy between theoretical predictions and experimental findings

is discussed in ref. [85] where it is proposed that atomic steps present at a

quantum well interface suppress the valley splitting compared to ideally flat

interfaces. Indeed while theoretically the valley splitting has an oscillatory

behaviour as a function of the well width [55, 86], steps at real interfaces can

suppress the splitting through an average on the well thickness. As reported

by Goswami et al.[1] in Si based split gate QPC, electrostatic and magnetic

confinement can contribute to reduce the number of monoatomic steps seen

by the wavefunction obtaining an increase of valley splitting up to 1.5 meV .

As for our investigated QPC, the physical removal of the region in which

electrons are present provides a strong lateral confinement which plays a fun-

damental role in determining the observed valley splitting. Indeed it is an

efficient method to enhance the valley splitting reducing its suppression op-

erated by steps at heterostructure interfaces. Indeed the investigated QPCs

were fabricated by using an hybrid approach in which confinement generated

by physical etching of the 2DEG is combined with a Schottky gate for the

elettrostatic control of the potential in the constriction [87]. Furthermore in

this kind of devices, and in general in nanostructures defined by physically

etching a 2DEG, we expect that the enhancement of valley splitting can

be controlled by engineering the device geometry and size, independently of

the electrostatic action of the gate electrode. With regard to magnetic field

dependence of valley splitting, in fig.3.8 (b) we have found a filling up of the

G0 plateau corresponding to the first valley-split level with perpendicular

magnetic field. However transition edges between valley-split plateau are

not seen to shift with the application of the external field (see fig.3.8). As a

consequence, we make a further assumption (compare with ref.[1]) claiming

the occurrence of a zero-field valley splitting along with a field-independent

valley splitting, ∆n, in the investigated range of parameters (Vg and B).

In the following section we will report the conductance characterization

of the nanowire device (QW), showing results very similar to those of the
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QPC regardless of the different geometry of the confining potential.

3.3.2 Quantum transport of a Si Quantum Wire

In this section we present the main results obtained in the investigation of

electronic transport in the quantum wire (QW) reported in fig.3.4 (a). The

aim of this section is to show how similar behaviours manifest in devices

with different geometries realized on different samples but using the same

fabrication approach. In particular, we refer to valley-splitting occurrence in

Si-etched based nanostructures. Therefore, we will describe linear and non

linear conductance spectra emphasizing common aspects with the previous

presentation of experimental data with and without the external magnetic

field. Lastly, we will give an estimation of valley splitting in this QW using

a different experimental approach for the calculation.

Linear conductance of this device has been already shown in fig.3.6 (c).

In fig.3.14 we report a detail of the linear conductance below 2 ·G0 acquired

at a temperature of 260 mK (black line curve) and 1.5 K (red line curve).

The trace at lower temperature presents a series of characteristic peak-like

Figure 3.14: Detail of linear conductance curves as a function of the gate voltage.
Measurement temperature were 260 mK (black line curve) and 1.5 K (red line
curve).

structures resembling transmission resonances that occur at the 1D-2D tran-

sition regions of the confining potential [25]. These structures are energy

averaged as soon as the temperature is increased or a voltage bias between

source and drain is applied. Both curves present two prominent plateaus

whose amplitude is evidently affected by transmission coefficients below the
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unity. By correcting linear conductance curves of fig.3.14 for a constant

transmission coefficient equal to 0.83, exact quantization of conductance in

units of G0 = 2e2/h is restored (fig.3.15). We apply this correction to all

Figure 3.15: Linear conductance curve of fig.3.14 corrected for a constant trans-
mission coefficient equal to 0.83 for both curves.

the data on the QW reported in the following.

In fig.3.16 non linear conductance traces G(Vsd) are reported as a func-

tion of Vsd for fixed values of Vg in the swept range of measure of fig.3.14,

(0.3÷ 1.05) V , at a temperature of 0.26 K, panel (a), and 1.5 K, panel (b).

Curves in panel (b) have been acquired for positive Vsd only. The presence

(a) (b)

Figure 3.16: Non linear conductance traces G(Vsd) of the quantum wire (QW) as
a function of Vsd, sweeping the gate voltage Vg from 0.3 to 1.05 V , at a temperature
of 0.26 K, and 1.5 K, panel (b). Curves in panel (b) have been acquired for positive
Vsd only.

of peaks in the linear conductance curve of fig.3.15 reflects in the G(Vsd)

traces of fig.3.16 (a) as an overlapping of some curves near G = 2e2/h and
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G = 2 · 2e2/h. As already noticed, with increasing temperature these struc-

tures are smeared out: at T = 1.5 K and Vsd ∼ 0, G(Vsd) curves gradually

merge toward values of G = 2e2/h and G = 2 · 2e2/h (fig.3.16 (b)). For

finite Vsd curves tend to converge toward half integer plateaus however an

exact determination of the spacing between energy level is not possible.

Magnetic field conductance behaviour

Linear conductance of the quantum wire has been investigated in presence

of a perpendicular magnetic field. The intensity of the field has been varied

from 0 to 8 T with steps of 0.1 T . In fig.3.17 acquired curves are reported

Figure 3.17: Linear conductance G(Vg) acquired for increasing perpendicular mag-
netic field from 0 (top curve) to 8 T (bottom curve). Curves are vertically shifted.
Blue line curve correspond to magnetic field of 0, 1, 2, 3, 4, 5, 6, 7 and 8 T . Vertical
bar on the left represents unity of 2e2/h.

as a function of Vg and increasing the magnetic field from 0 (top curve) to

8 T (bottom curve). All traces have been vertically shifted so that blue

line curves (corresponding to integer multiples of B = 1 T ) are vertically

shifted of a quantity equal to 2e2/h. Four-terminal curves of fig.3.17 have

been corrected performing the same procedure as that used for curves of
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fig.3.8. The gate voltage in fig.3.17 covers a wide range of G, sweeping con-

ductance at B = 0 from G = 0 to G = 4 · 2e2

h (shown up to G = 3 · 2e2

h ).

The zero-field curve can be perfectly superimposed to that of fig.3.14. In

this case, differently from fig.3.8 (b), a field as low as 2 T is not sufficient

to restore a clear quantization. As a matter of fact, since the lateral width

of the QW is about 40 nm, geometrical reduction of backscattering occur

for B around 7 T (second blue line curve from bottom), being the cyclotron

diameter dc ≈ 45 nm at B = 7 T . Due to the presence of peaks and dips and

hence to the lack of a clear quantization in the linear conductance curves

up to about B = 7 T , Zeeman spin splitting is distinctly resolvable only in

the few bottom curves. In fig.3.18 we report the B = 0 and the B = 8 T

linear conductance for comparison. In the orange line curve of fig.3.18 the

Figure 3.18: Linear conductance trace at zero-field (blue line curve) and 8 T
(orange line curve).

formation of a fine plateau at G = 0.5 ·G0 is incontrovertible and ascribed

to the Zeeman splitting of spin degenerate 1D subbands. The found energy

spacing η∆Vg is in quantitative agreement with that found in fig.3.9 and

fig.3.13. The amplitude reduction of plateaus with increasing magnetic field

(appreciable both in fig.3.17 and in fig.3.18) is ascribed to the depopulation

of magnetosubbands as B is varied [34] (discussed in the following). It is

worth focusing on a detail of fig.3.18 which will be useful in the following

discussion: note that the distance in energy (Vg) between the onsets of the

G ≈ 0.5G0 and the G ≈ 1G0 plateaus in the B = 8 T (orange line) curve

is approximately identical to that between the G ≈ 1G0 and the G ≈ 2G0

plateaus in the zero-field (blue line) curve.

A further key feature of the 1D nature of the system and a clear man-
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ifestation of the existence of magneto electric subbands are the oscillations

in the two terminal resistance of the narrow channel as a function of the

magnetic field [88], reported in fig.3.19 (blue line curve). In the same fig-

ure, the Shubnikov-de Haas oscillations measured on a Hall bar of the same

sample (already shown in fig.3.2) has been reported as a red line curve.

Similarly to magnetic depopulation of Landau levels, in a finite-size system

Figure 3.19: Two terminal magnetoresistance of the narrow channel (blue line
curve) and of the 2DEG (red line curve) on the same sample.

the magnetic depopulation of subbands gives rise to oscillations in the mag-

netoresistance akin to the Shubnikov de Haas ones. Indeed, as the field is

increased, a flattening of the subband dispersions occur until, eventually,

the initial parabolic subband dispersions turn into practically dispersionless

Landau levels, similarly to the 2D case. Differently from the 2D case, in

which the number of occupied states n depends linearly on 1/B, the effect

of boundaries of the narrow channel makes n versus 1/B to be no longer

linear. In figure 3.20 the minima of magnetoresistance oscillations corre-

sponding to magnetic depopulation of subbands are reported as a function

of the inverse magnetic field. In the high field region n exhibit a roughly

linear dependence as a function of 1/B. Departure from linear behaviour

points to the lateral confinement effect on the quantized levels [88, 89]. In-

deed the n(B) presents a more complicated relation and it is no longer linear

[88].

It should be noted that the linear dependence of n as a function of 1/B

follows that of the 2D Shubnikov-de Haas oscillations minima (red squares

in fig.3.19) suggesting a similar carrier density at high fields. However note

the presence of double minima close to those depicted by arrows, indicating
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Figure 3.20: Sublevel index n versus inverse magnetic field B−1. Blue circles refer
to minima of the QW measured magnetoresistance reported as the blue line curve
of fig.3.19. Red squares refer to the 2DEG Shubnikov de Haas oscillations minima
of the red line curve of fig.3.19.

a splitting of energy levels (∆ε) close to each subband. Considering that a

minimum of the resistivity is obtained each time the Fermi level lines up to

an energy level of the system,

EF = ~ωc
(
n+

1

2

)
± 1

2
∆ε, (3.5)

then the following relations can be written for the two split-energy levels,

where ∆ε is a general energy splitting between levels:

EF =
~eB+

m∗

(
n+

1

2

)
+

1

2
∆ε

EF =
~eB−
m∗

(
n+

1

2

)
− 1

2
∆ε. (3.6)

B+ and B− are the magnetic field positions of the minima of oscillations

(indicated in fig.3.21 by symbols • , N and � for n = 3, n = 2 and n = 1,

respectively). From eq.3.6 the energy splitting between levels can be derived,

∆ε =
~e
m∗

(
n+

1

2

)
(B− −B+). (3.7)

This quantity has been calculated for n = 3, n = 2 and n = 1 levels and

results are reported in the table 3.2. In the same table a rough estimation

of the Zeeman splitting energy is given for magnetic fields (indicated in the

fourth column) close to the found splitting. From the numerical evaluation of
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Figure 3.21: Two terminal magnetoresistance of the narrow channel, symbols
indicate magnetic field positions relative to the alignment of the Fermi level with
split levels. Symbols • , N and � refer to Landau level n = 3, n = 2 and n = 1,
respectively.

∆ε ∆Zeeman B∗

n (from eq.3.7) = g∗µBB
∗ (T )

3 0.97 meV 0.39 meV 3.4

2 0.89 meV 0.54 meV 4.7

1 0.88 meV 0.79 meV 6.9

Table 3.2: Calculated ∆ε and Zeeman energy splitting ∆Zeeman for the first
three Landau levels.



3.3 Quantum transport is Si-based nanostructures 79

the energy splitting ∆ε and the Zeeman energy splitting ∆Zeeman it becomes

evident that the two quantity largely differ (at least for n = 3 and n = 2),

therefore it is not possible to ascribe the found energy splitting to a spin-

splitting of Landau levels due to the Zeeman effect. On the other hand,

we believe that ∆ε could account for the valley splitting of each level n

inside the quantum wire [90]. The quantitative evaluation of the valley

splitting energy, roughly ∆n ≈ 0.9 meV , agrees with results reported in

literature [1]. Comparing results reported in the previous table, we have

found that the valley splitting energy is approximately B-independent and

that ∆n and ∆Zeeman become similar at B ≈ 7.6 T . As a matter of fact we

have shown in fig.3.18 that the distance ∆Vg between the onsets of the two

plateaus corresponding to the valley-split states of the first 1D level in the

B = 0 curve is equal to the distance between the onsets of the two plateaus

corresponding to the spin-split states. Considerations done for the QPC

confinement potential of section 3.3 still hold for this device. As a matter

of fact the strong lateral confinement reached by the physical removal of

2DEG portions produces a confinement of the electron wave-function that

in principle could enhance valley-splitting energy, erasing the suppression

of ∆n operated by steps at heterostructures interfaces [1, 55]. The value

of the valley splitting energy found for the QW investigated in this section,

∆n ≈ 0.9 meV , is in agreement with the result reported for the QPC1,

∆n ≈ 1.3 meV , within the confidence that we can attribute to the two

distinct methods. Indeed, we have performed two different experiments

in order to obtain a quantitative estimate of the valley splitting energy.

Furthermore, it is noteworthy the fact that the investigated systems exhibit

dissimilar geometries though the used approach is the same. Therefore the

slight difference that we obtained is somehow resonable.

Low field measurements

A measure of the magnetoresistance at low magnetic fields can give an es-

timation of the phase coherence time τφ and the phase coherence length lφ.

We report the four-terminal resistance across the quantum wire for different

values of the gate-voltage (from Vg = 1.6 V , violet dotted curve to Vg = 1.1

V , black dotted curve). In fig.3.22 it is evident a magnetic field reduction of

the zero-field resistance of the quantum wire. The magnetic field positions of

resistance minima seem not to depend significantly on the gate voltage. The
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Figure 3.22: Low-field magnetoresistance of the QW of fig.3.4 (a) as a function of
perpendicular magnetic field for gate voltage values equal to 1.6 V (violet dotted
curve), 1.5, 1.4, 1.3, 1.2, 1.1 V (black dotted curve).

found behaviour can not be explained as the magnetic suppression of geo-

metrical backscattering, as the critical field at which backscattering should

be reduced is B ≈ 8 T (from the condition 2lc ≈ W ). On the contrary, the

found negative magnetoresistance is interpreted as the suppression of weak

localization by a magnetic field in a 1D system [19]. Therefore we estimated

τφ and lφ by evaluating the critical field at which a minimum in the magneto

resistance occurs. From the magnetoresistance curves of fig.3.22 we found

Bc ≈ 0.29 T . In a 1D system in the pure metal limit (W � l where W is

the wire width and l is the mean free path) and weak field limit (l2m �Wl,

where lm is the magnetic length), Bc is related to the phase coherence time

by the relation Bc = ~
eW

(
9.5

WvF τφ

)1/2
[19], so that we extracted τφ = 5.1 ps

and, from lφ =
√
Dτφ, lφ = 304 nm.

3.4 Conclusions

In this chapter we have investigated Si/SiGe nanostructures realized from

modulation doped 2DEGs. The starting 2DEGs manifested similar char-

acteristics in terms of mobility and carrier density. Results obtained from

classical Hall effects have been reported. In addition high magnetic field

characterization of 2DEG has been a useful tool: it has allowed us to ex-

tract the sheet carrier density ns in a different range of magnetic field and

the total scattering rate τq.



3.4 Conclusions 81

Devices of different geometries and sizes have been measured using low-

frequency differential conductance measuremets.

In Si/SiGe-based 1D narrow conducting channels an independent elec-

tron picture for the carrier transport predicts a conductance quantization in

integer multiples of 2 ·G0 = 4e2/h in presence of both spin and valley valley

degeneracies. As a result, we have reported linear conductance quantization

of the QW exhibiting plateaus in units of 4e2/h at 4.1 K. On the other

hand, by increasing experimental resolution upon lowering the temperature,

our findings differ from these predictions.

All of the devices showed conductance curves affected by peak-like struc-

tures ascribed to both extrinsic and intrinsic causes, like presence of impu-

rities, geometrical backscattering due to the confining potential or to the

potential steps occurring at the entrance and the exit of the channel. These

structures are seen to smear out or to disappear when increasing the tem-

perature or the perpendicular magnetic field, depending on the origin of the

structures. In any case none of the presented low-temperature curves exhib-

ited conductance quantization in unit of G4 = 4e2/h. The application of a

perpendicular magnetic field is seen to suppress geometrical backscattering

occurring in the QPC1 and to restore a clear quantization in unit 2e2/h.

From the analysis of the transconductance plot we estimated a valley split-

ting of 1.3 meV at a magnetic field of 3 T . Moreover non linear conductance

measurements reveal the presence of a zero-bias feature.

For the narrow quantum wire, the channel width is too small and high

magnetic field is necessary to suppress geometrical backscattering. In fact

in this device suppression of geometrical backscattering occurs for fields as

high as 7 T . This prevents a clear observation of the Zeeman spin splitting

at lower fields. The investigation of the magnetoresistance oscillations in the

quantum wire revealed an energy splitting of states in the channel. From

quantitative considerations on the possible energy splittings we believe that

the found splitting is the valley splitting between orbital levels.

In conclusion, we presented different etched Si-based devices: all de-

vices manifested conductance behaviour compatible with the removal of the

twofold valley degeneracy of conduction band present in a Si channel under

tensile strain. We were able to give a quantitative estimation of the energy

splittings of the order of ∼ 1 mV using different measurements suitable for
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each device. Results found for valley splitting are in quantitative agreement

with those reported in literature.



Chapter 4

Transport Phenomena in

AlGaN/AlN/GaN

heterostructures

In this chapter we report experimental results of magnetotransport measure-

ments of GaN -based nanostructures. The electrical characterization of the

two-dimensional electron gas (2DEG) formed at AlN/GaN interface has

been carried out by low- ( Classical Hall effect) and high- ( Shubnikov-de

Haas effect) magnetic field measurements in different regimes of temperature

(from 300 K to 0.25 K). In addition, quantum transport of low dimensional

systems has been investigated at low temperature (0.25 K) and in presence

of external magnetic field.

4.1 2DEG characterization

The electrical characterization of the AlGaN/AlN/GaN heterostructure has

been carried out by using both low- and high-field magnetotransport in the

(300÷0.25) K temperature range; variable temperature Hall effect measure-

ments were performed by using standard Hall bars between 300 and 16 K

at a magnetic field of 0.7 T : dc-bias I − V measurements were carried out

in order to investigate carrier density, mobility and resistivity behaviours as

a function of the temperature. Moreover, Shubnikov-de Haas (SdH) mea-

surements were performed in order to test the quality of the 2DEG in these
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samples. High-field characterization of the 2DEG has been carried out on

mesa bars onto which nanostructured gates were patterned in order to study

magnetotransport.

4.1.1 Classical Hall effect

Figure 4.1 shows the mobility µ and the carrier concentration n2D as a

function of temperature T . The found dependence of µ and n2D is that

expected for a two-dimensional electron gas [91]. Indeed, in 2DEGs realized

in AlGaN/GaN heterostructures, it is seen that these quantities are quite

insensitive to temperature below about 80 K [16]. It should be noted the

absence of a rapid increase of the carrier density at high temperature which

indicates that no parallel parasitic conduction channel is present. From

low field magnetotransport measurements, a carrier density of 1.1 · 1013

cm−2 and a mobility of 2 · 104cm2/V s have been determined at 16 K. It is

(a)
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Figure 4.1: Mobility (a) and carrier density (b) as a function of temperature.

worth noting that this AlGaN/AlN/GaN heterostructure exhibited record

low temperature mobility compared to samples having the same value of

the carrier concentration (∼ 1.1 · 1013 cm−2) ever reported in literature

[92, 93, 94, 95, 96, 97, 98, 99, 16, 100, 64, 101, 102, 103, 104, 17, 18, 106,

107, 108, 109, 110, 111, 112]. This gain in mobility is likely due to the in-

sertion of an AlN layer which has twofold advantage: being AlN binary,

it eliminates alloy scattering in the region where the 2DEG resides. More-

over, the higher conduction band offset of AlN respect to AlGaN produces

a lower penetration in the barrier and a larger confinement of electron wave

function [102]. From zero-field mobility we have estimated a value of 2.5 ps
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for the transport scattering time, τt = m∗µ/e, assuming m∗ = 0.22me for

the effective mass of electrons [17].

In order to further investigate the properties of the 2DEG we exploited

Shubnikov-de Haas effect (SdH) in the range of high magnetic field (0÷ 12)

T at a temperature of 0.25 K.

4.1.2 Shubnikov de Haas analysis

In figure 4.2 we report the magnetoresistivity measurement up to magnetic

field intensities of 12 T , performed on a mesa bar upon which SET-geometry

gates were deposited (see next section). Magnetoresistivity exhibits well de-

Figure 4.2: Measured magnetoresistivity as a function of magnetic field at a tem-
perature of 0.25 K. Inset: filtered resistivity reported versus 1/B.

fined oscillations as the field is swept from about 4 to 12 T . Since SdH

oscillatory magnetoresistance is periodic with the inverse field (1/B) we

truncated the oscillations magnetoresistance (from 3 to 12 T ) and removed

both the low and high frequency components filtering the signal ρxx versus

1/B (band pass filter between 100 and 300 T ), shown in the inset of fig.4.2.

Then, an inverse-field interpolation of the curve has been carried out to have

equally spaced points in 1/B and to perform a fast Fourier transformation

(FFT). The FFT has been run by using a welch window and the result is

reported in figure 4.3.

In figure 4.4 we report again the SdH magnetoresistivity measurement

for magnetic field ranging from 1 to 12 T performed on a mesa bar of the

same sample where gate electrodes forming a QPC were patterned. The
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Figure 4.3: Calculated FFT of the curve reported in the inset of fig.4.2.

Figure 4.4: SdH oscillations: resistivity as a function of magnetic field ranging
from 1 to 12 T . Inset : filtered resistivity against 1/B.
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quality of the magnetoresistivity measurement of fig.4.4 as a function of

magnetic field is worse than that of fig.4.2: magnetoresistivity oscillations

are not well defined and a monotonic increasing background is present. The

FFT of the filtered resistivity (between frequencies corresponding to 200 and

300 T ) produces a Lorentzian peak at a frequency of about 243 T , see fig.4.5.

Figure 4.5: Calculated FFT of the curve reported in the inset of fig.4.4.

Measurements of the oscillation period of resistivity as a function of the

inverse magnetic field 1/B are commonly used to determine the surface car-

rier density n2D. It is known [113] that each discrete Landau level has a

degeneracy g = eB/π~ per unit area, including spin degeneracy. With in-

creasing magnetic field intensity, the electrons are redistributed among a

decreasing number of levels. The number of occupied levels at zero tem-

perature is n = n2D/g, where n2D is the two-dimensional carrier concen-

tration: n changes by one whenever the inverse of the field changes by

∆(1/B) = e/n2Dπ~. When electrons of the 2DEG occupy the a single sub-

band, n2D = k2
F /2π and the above period gives the semiclassical expression

for the period of the magneto-oscillations. Thus, by simply calculating the

Fast Fourier Transform of the signal, it is possible to estimate the oscillation

frequency f = hn2D
2e , and hence n2D.

Alternatively, one can state that minima of resistivity occur at those values

of 1/Bn for which EF is aligned to the nth Landau level, EF = (n+ 1
2)~ωc,

where ωc = eB/m∗. Therefore, a second way to estimate the carrier density

is to determine the slope from the linear dependence of n as a function of
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the inverse magnetic field,

n =
π~n2D

e

1

Bn
− 1

2
. (4.1)

By exploiting the properties of the oscillation period of the magnetore-

sistivity, we determined the frequency from the FFT (fig.4.3 and fig.4.5).

Figure 4.3 indicates that well-defined frequency components are predomi-

nant in the resistivity reported in fig.4.2. In detail, from the measurement

reported in fig.4.2 it can be noted that the resistivity has oscillations periodic

in 1/B and a beat around B ' 5 T (1/B ' 0.20 T ) that produces the double

peak in the amplitude of FFT (fig.4.3). The frequencies of the two peaks are

about 215.2 T and 222.3 T , corresponding to carrier density of 1.040 · 1013

cm−2 and 1.075 · 1013 cm−2, respectively, assuming spin degenerate levels.

Alternatively, assuming spin-non degenerate levels, we get 0.520 · 1013 cm−2

and 0.537 ·1013 cm−2. The two possibilities will be discussed in the following

section.

Concerning the data of fig.4.4, the quality of the measurement does not

allow an analysis as accurate as that of fig.4.2: the oscillatory magnetore-

sistivity does not manifest any beating pattern therefore a unique frequency

merges from the FFT, corresponding to a carrier density of 1.1·1013 cm−2, in

agreement with classical Hall measurement reported in section 4.1.1. How-

ever the monotonic increasing background in the magnetoresistivity may

indicate the presence of a low mobility parallel channel whose origin is still

unknown.

Beating pattern analysis

In the Shubnikov de Haas oscillations reported in fig.4.2 we have observed a

beating pattern resulting in a double-peak structure in the 1/B Fast Fourier

Transformation of fig.4.3. Only a single node is resolved in the beat. In prin-

ciple, there can be different origins for this beating pattern. The presence

of inhomogeneities in the carrier density [114], the occurrence of magneto-

intersubbands-scattering (MIS) supported by the occupancy of a second 2D

level [99, 115, 116] or a zero-field spin splitting resulting from spin-orbit

coupling [106, 117, 108] are possible causes producing a beat in the magne-

oresistivity of fig.4.2. We will consider the three hypothesis giving reasons

of plausibility for each though, for a definite answer concerning the origin
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of the observed behaviour, further measurements are required.

Although our sample is highly uniform, a spatially inhomogeneous car-

rier distribution can be present due to a pinning of the Fermi level in some

regions, such as those where the metallic gate electrodes cover some areas

above the heterostructure. This would result in slightly different electron

concentrations in the 2DEG, producing a beating pattern in the Shubnikov

de Haas oscillations and contributing to the FFT with the measured sheet

carrier densities of 1.040 · 1013 cm−2 and 1.075 · 1013 cm−2.

The second considered hypothesis is that magneto intersubband scatter-

ing might produce a similar beating pattern in the oscillatory magnetoresis-

tance [107, 115, 118, 116]. In recent years it has been discovered that the

oscillatory magnetoresistance of a high mobility 2DEG with two populated

subbands contains at least three components [119]: the SdH oscillations

of the two subbands and an oscillation due to elastic scattering between

the subbands. This third component was termed the magnetointersubband

scattering. According to Coleridge [62], in the limit of low fields and low

temperature, the MIS correction to the resistivity takes the form

∆ρMIS ∝ exp
[
− π

ωc

(
1

τ1
+

1

τ2

)]
cos

[
2π(E2 − E1)

~ωc

]
, (4.2)

where E1 (E2) and τ1 (τ2) are the energy and quantum scattering time,

respectively, of the first (second) occupied 2D subbands. Conversely, the

oscillatory part of resistivity due to the SdH oscillations has a temperature

damping factor χ(T ) = (2π2kBT/~ωc)
sinh(2π2kBT/~ωc)

,

∆ρSdHj ∝ χ(T )exp

(
− π

ωcτj

)
cos

[
2π(EF − Ej)

~ωc
+ π

]
. (4.3)

This MIS effect is due to increased elastic-intersubband scattering at sub-

band Landau-level crossover. The MIS correction to the resistivity varies

periodically in 1/B, leading to an oscillation similar to the Shubnikov-de

Haas oscillation [118]. The second of the two above equations (eq.4.3) is

the typical SdH term: in presence of two subbands, j = 1, 2, it predicts two

SdH frequencies [99], fj = ∆Ejm
∗/~e = hnj/2e, (since ∆Ej = π~2nj/m

∗)

relative to the two occupied subbands. The first equation (from eq.4.2)

is the MIS term. It does not contain the thermal damping factor χ(T )

and its oscillation frequency is proportional to the subband spacing, E12,
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fMIS = (E1 − E2)m∗/~e = f1 − f2. Assuming, in our case, that the two

frequencies of the double peak in the FFT of fig.4.3 correspond to f1 = 222.3

T and fMIS = 215.2 T , the following values for the carrier densities of the

two subbands are obtained, provided that f2 = f1 − fMIS : n1 = 1.07 · 1013

cm−2 and n2 = 3.4 · 1011 cm−2. These two values would give a total car-

rier density of 1.1 · 1013 cm−2 which is in agreement with the result found

at low magnetic field (Hall effect). The energy separation between the two

levels would be ∆E12 = E2 − E1 = fMISe~/m∗ = 112.7 meV , assuming

m∗ = 0.22me and that the Fermi energy is 116.4 meV above the first con-

duction band minimum (∆E1 = EF − E1). The hypothesis of MIS has to

be supported by the occupation of a second subband in the sample. As a

matter of fact the occupation of higher subbands has been predicted in [120]

and observed in a number of works with high electron concentration, [95],

[96], [104]. Zheng et al. have reported that the occupation of the first two

subbands in a two-dimensional electron gas with a triangular quantum well

took place when the 2DEG sheet carrier concentration reached 7.2 · 1012

cm−2 [121]. If the observed beating pattern is caused by the MIS effect in

our sample, the peak position of the second subband SdH oscillations in the

FFT spectra should be f2 = f1−fMIS = 7.1 T . The peak of the oscillations

is probably screened by the influence of low frequency components in the

resistivity. Since the MIS correction to the resistivity (eq.4.2) does not con-

tain temperature-damping factor as the oscillatory SdH resistivity, the MIS

term may become dominant with increasing temperature [115]. Therefore

in order to unequivocally identify the MIS component further investigations

at different temperatures are required.

The third hypothesis is that of a spin-orbit coupling in the 2DEG, largely

investigated in this kind of AlxGa1−xN/GaN heterostructures, which man-

ifests predominantly with a beating pattern in the magnetoresistivity [117,

108, 122, 106, 107, 123]. This spin-orbit interaction (SOI) gives rise to a zero-

field spin splitting ∆so at the Fermi energy. In AlxGa1−xN/GaN 2DEGs

realized on wurtzite structure crystals zero-field spin splitting can originate

from two mechanisms. Firstly, it can be due to a macroscopic electric field

in an asymmetric quantum well containing the 2DEG (interface Rasbha ef-

fect). Secondly, the lack of inversion symmetry of the wurtzite type lattice

can result in a zero-field spin splitting as well (bulk Rasbha effect). In con-

trast to zinc-blend-type lattices, here the effective electric field is oriented
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along the (0001) direction and thus parallel to the macroscopic electric field

in the quantum well [114]. Concerning the first mechanism, the sources of

asymmetry of the quantum well include asymmetric doping profile, differ-

ing chemical or alloy compositions of the confining materials on either side

of the well, electric fields applied via front or back gates, and the barrier

height difference associated with the inequivalence of the two interfaces of

quantum well [124]. In our heterostructure there is no intentional doping

thus both piezoelectric effect and spontaneous electric polarization generate

free carrier in the quantum well. These induce a large electric field at the

AlN/GaN heterojunction and a strongly asymmetric well. The structure

inversion asymmetry of the wurtzite type lattice gives rise to a spin-orbit

splitting in the conduction band states linear in k which appears in the

Hamiltonian as an additional ‘Rashba term’ [125, 126],

H ′ = αso~σ · [ẑ × ~k], (4.4)

where ~σ are the Pauli matrices. αso is the spin-orbit coupling stregth related

to the spin-orbit energy ∆so = 2αsokF which is the splitting energy at the

Fermi surface. This term can be interpreted as the interaction of the electron

spin with an effective magnetic field, ~Bso = (2αso/gµB) · [ẑ × ~k], which is

referred to as the Rashba field. Thus the Rashba term H ′ = gµB~σ · ~Bso,
analogously to the Zeeman term, has the effect of removing the twofold

spin degeneracy of the subband at the Fermi energy along the direction of

the effective field [124]. This will produce an energy splitting for the two

different spin populations n↓ and n↑ at the Fermi energy EF = ~2πn2D/m
∗,

closely linking the spin direction to the electron wave-vector, ~Bso ∼ [ẑ × ~k].

Therefore, if we assume that the found carrier concentrations correspond

to the different spin populations, then n↓ = 0.520 · 1013 cm−2 and n↑ =

0.537 · 1013 cm−2. The obtained spin-resolved concentrations allow us to

determine the spin orbit coupling parameter [117],

αso =
∆n~2

m∗

√
π

2(n2D −∆n)
. (4.5)

Here, ∆n is the difference between spin up and spin down electron concen-

tration. We obtained αso = 2.28 · 10−12 eV · m which is the same order

of magnitude as those found in other Rashba-like GaN -based heterostruc-
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tures [106, 108, 127, 128, 129]. In addition we have estimated the spin-

splitting energy ∆so at zero magnetic field to be 3.71 meV . In our analysis

we have ignored the Zeeman splitting g∗µBB because its contribution at

low fields is negligible compared to ∆so (at B = 2 T Zeeman energy is

about an order of magnitude smaller than the spin-orbit energy produced

by Rashba term). The found value for ∆so is in excellent agreement with the

total zero-field spin-splitting energy calculated by the frequency difference

E↑ − E↓ =
2π~2(n↑−n↓)

m∗ = 3.69 meV . Calculated parameters are listed in

table 4.1.

n↓ (cm−2) 0.520 · 1013

n↑ (cm−2) 0.537 · 1013

αso (eV ·m) 2.28 · 10−12

2αsokF (meV ) 3.71

E↑ − E↓ (meV ) 3.69

Table 4.1: Calculated parameters relative to measurement reported in
fig.4.2.

In figure 4.6 we report a comparison between our data of the spin-orbit cou-

pling parameter αso (depicted as a blue star) and results found in literature

on similar systems. The figure has been created starting from data collected

Figure 4.6: Collection of data reported from different authors on the spin-orbit
coupling parameter. ◦ ref.[130], 4 ref.[131], N ref.[106], � ref.[129], H ref.[127], �
ref.[108], � ref.[109], O ref.[114], ♦ ref.[132], • [128]; blue star is our data.

in reference [128]. From fig.4.6 it is evident that our result is in qualitative
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agreement with literature.

Up to now we have discussed three possible origins for the observed

beating pattern. We showed that the found behaviour can be attributed to

inhomogeneities of the carrier density of the 2DEG, to magneto intersub-

band scattering occurring if two subband of the electron gas are occupied

or, lastly, to spin-orbit coupling due to structural inversion asymmetry of

the quantum well. Spin-orbit coupling in a 2DEG can be also studied by

analyzing quantum correction to the conductivity, i.e. weak antilocalization

(WAL). In the following paragraph we will show results obtained from WAL

experiments.

Weak Anti Localization

A valid tool for the investigation of the SOI in GaN -based heterostructure

is low-field magnetotransport. Indeed the signature of SOI is an increase of

magnetoresistance with increasing of magnetic field in the range of ∼ mT ,

called positive magnetoresistance, due to weak antilocalization [133]: in pres-

ence of SOI, spin-relaxation due to spin-orbit coupling and impurity scatter-

ing produces a positive contribution to the conductivity (antilocalization).

Magnetic field suppresses this antilocalization [117, 134]. The effect of lo-

calization in weakly disordered semiconductors systems has been described

in chapter 1 and can be viewed as the quantum interference between two

waves propagating by multiple scattering along the same path but in oppo-

site directions. When a magnetic field is applied, the phase picked up along

the two paths have opposite sign, and as a consequence, a negative magne-

toresistance is observed (see chapter 1). This effect is commonly known as

weak localization. In system with strong spin-orbit interaction, the magne-

toresistance reverses its sign, which is in contrast to the above, known as

weak anti-localization [134]. In figure 4.7 (a) and (b) we report the low-field

magnetoconductvity and magnetoresistivity measured on the same Hall bar

of measure of fig.4.4. Here a peak at B = 0 is found in the magnetocon-

ductivity (panel (a)) that can be attributed to WAL, whereas the increase

for |B| > 3.5 mT can be assigned to WL being the dominant contribution

at larger magnetic field. Indeed a crossover from negative magneto conduc-

tivity to positive magneto conductivity is expected for B ≈ Bso [109, 114].

It is worth noting that the percentage variation of the resistivity ρ(B)/ρ(0)



94 Transport Phenomena in AlGaN/AlN/GaN heterostructures

(a) (b)

Figure 4.7: Weak antilocalization peak of low field magnetoconductivity (a) and
positive magnetoresistivity (b).

is very small, though the difference of conductivity respect to the zero-field

value, σ(B) − σ(0), is of the same order of magnitude as those reported in

literature (see fig.4.8) [109, 134].

From the magnetic field scale Bso the spin-orbit coupling value can be

Figure 4.8: Weak antilocalization peak of low field magnetoconductivity from
[109].

extracted since Bso = (m∗αso)
2/e~3 [109]. In this case we have calculated

αso = 0.8 ·10−12 eV ·m, taking to a spin-orbit splitting energy of ∆so = 1.33

meV . This result shows that αso extracted from the beating pattern (mea-

sure of fig.4.2) is not consistent with αso determined from the WAL analysis

(fig.4.4). However a general disagreement is found in literature between

SdH and WAL analysis in evaluating the zero-field spin splitting [128]. In

particular, our discrepancy between results obtained from the two differ-

ent measurement approaches reproduces quite well the disagreement that
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merges reviewing literature results. In ref.[128] data of ∆so from several

experimental works have been collected and compared in the plot reported

in fig.4.9. Figure 4.9 shows ∆so = 2αk as a function of the carrier density

extracted from the two different analysis; filled symbols correspond to values

calculated from SdH measurements whereas empty symbols are from WAL

measurements. In the plot of fig.4.9 we have added our results from SdH

Figure 4.9: ∆so = 2αk term as a function of electron density. The graph has
been modified from that taken from [128]. Filled and empty symbols correspond to
results obtained from SdH and WAL analysis, respectively. Data reported in the
plot refer to • [128], ◦ [130], 4 [131], N [106], � [129], H [127], � [108], � [109], O
[114], ♦ [132]. The filled and empty blues stars are our results calculated from SdH
and WAL measurements, respectively.

and WAL analysis as a filled and an empty blue stars, respectively.

In conclusion, our findings do not allow us to give a definite and un-

equivocal interpretation of gathered data. Indeed in a 2DEG the occurrence

of WAL is an unambiguous sign of the presence of spin-orbit coupling. In

contrast, a beating pattern in the Shubnikov de Haas oscillations can have

other origins, e.g. an inhomogeneous carrier distribution, or magneto inter-

subband scattering [114]. On the other hand, in ref.[128] it is argued that

SdH analysis seems to be more valid for sample with a carrier density above

6× 1012 cm−2. Therefore, in our 2DEG, since the electron concentration is

of the order of ∼ 1013 cm−2, results obtained from SdH analysis are more

confident compared to WAL analysis.



96 Transport Phenomena in AlGaN/AlN/GaN heterostructures

Dingle Plot

A linear Dingle plot is reported in fig.4.10, showing in logarithmic scale

the oscillation amplitude of the Shubnikov de Haas resistivity of fig.4.2

∆ρ/4χ(T )ρ0 against the inverse magnetic field 1/B. From the slope of the

Figure 4.10: The Dingle plot gives a value of 0.4 ps for the quantum scattering
time, τs.

linear fit we derived τq ≈ 0.4 ps which is in agreement with values found in

literature [135, 136, 97]. However, it should be noticed that in our Dingle

plot the shoulder at B−1 ≈ 0.2T−1, pointing to the presence of a beating,

does not allow an exact determination of this value. In [63] it is argued that

poor Dingle plots can be attributed to inhomogeneities in the sample, i.e.

two or three regions with different densities giving rise to beats. However

in the paper it is not considered the possible occurrence of a zero-field spin

splitting which also gives beats (see previous paragraph). In fig.4.10 the

intercept 1/B = 0 of the Dingle plot is lower than zero. This can indi-

cate the presence of a parallel path: nevertheless absence of strong parallel

conduction is further supported by comparing the densities obtained from

the classical Hall measurement (1.1 · 10−13 cm−2 at 16 K ) with those from

the SdH effect (1.06 · 10−13 cm−2 at 0.25 K). The slight difference between

the two densities has to be addressed to the different measure tempera-

ture. Thus, we conclude that the smaller value of the intercept has to be

attributed to other reasons than parallel conduction channel but the origin

has not been understood yet.

In order to derive the ratio τt/τq in our 2DEG, the transport scattering time

τt has been calculated to be 2.5 ps assuming µ = 20200 cm2/V s for the zero-

field mobility at 0.25K and m∗ = 0.22 ·me for the effective mass. The value
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of 6.3 estimated for the ratio τt/τq indicates that large angle scattering is

still the dominant mechanism of scattering [103]. Nonetheless it should be

mentioned that this AlN/GaN structure exhibited record low temperature

mobility for samples with comparable density. This improvement is thought

to be due to the AlN interlayer. Indeed we outline that the presence of

the binary AlN has the effect of eliminating alloy scattering in the region

where 2DEG resides and it reduces the penetration of the electron wave

function into the barrier thus reducing the interfacial roughness (IR) scat-

tering contributions. In addition to the increased mobility value obtained

with the improved AlN/GaN junction, also the value of 0.4 ps for τq is long

compared to typical AlxGa1−xN/GaN heterostructures. This points to an

overall reduction of both small and large angle scattering in this structure

although the ratio τt/τq is not high. Due to the relative small ratio τt/τq

found, we conclude that the main scattering mechanism is dominated by

short range interfacial roughness scattering [64, 98].

The quantum scattering time is a measure of the collision broadening of

the Landau levels and is related to the half-width of the broadened Landau

level through Γ = ~/2τq which in our case has been estimated to be 0.82

meV . Thus a relatively strong disorder leading to the Landau level broad-

ening, ~/2τq � g∗µBB, can suppress the net electron spin polarization and

therefore prevent the observation of spin split SdH oscillations. This effect is

supposed to affect the oscillations of resistivity reported in fig.4.2 and fig.4.4.

The introduced results shows the importance of SdH measurements as

they provide much more informations than what is typically obtained through

classical Hall effect studies alone.
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4.2 Mesoscopic transport in low-dimensional sys-

tems

In this section we present transport measurements on different geometry de-

vices. These have two typologies of split gate configurations: two of them are

constrictions with approximately adiabatic transverse confinement potential

of various widths (140 nm device A in fig.4.11 (a) and 250 nm device B in

fig.4.11 (b)); the last one is a constriction which results by negatively biasing

two opposite gates (G1 and G3 whose distance is 225 nm) constituting one

of the two barriers of a Single Electron Transistor (device C in fig.4.11 (c)).

Mesoscopic devices investigated in this section were fabricated on the same

sample whose 2DEG transport properties were discussed in section 4.1. We

remind that this 2DEG has a low temperature (0.25 K) mobility of 20000

cm2/V s and a carrier density of about 1.05 · 1013 cm−2.

140 nm

250 nm

device A

device B

(a)

140 nm

250 nm

device A

device B

(b)

225 nm

G1

G2

G3

GP

device C

(c)

Figure 4.11: (a) and (b) SEM picture of two QPCs whose channel width is 140
nm (device A) and 250 nm (device B), respectively. (c) SEM picture of a SET
geometry device. The investigated QPC is that formed by the split-gates denoted
with G1 and G3 in panel (c) whose separation is 220 nm (device C).

In figure 4.12 linear conductance curves acquired on devices of fig.4.11

are presented. Figure 4.12 (a) shows a single linear conductance trace of

QPC reported in fig.4.11 (a). In order to determine unambiguously the

conductance values of each step, the derivative, (dG/dVg)
−1, has been nu-

merically evaluated and reported in the right hand side of the figure. In

fig.4.12 (b) and (c) the conductance curves reproducibility in the same and

in different thermal cycling has been investigated for device B and C of

fig.4.11 (b) and (c), respectively. Groups of curves of different colours refer

to different cooldown from room temperature to base temperature.
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(a)

(b) (c)

Figure 4.12: (a) Linear conductance of device A taken at 0.38 K. In the right hand
side the derivative (dG/dVg)−1 of conductance is reported. (b) Linear conductance
curves of device B: different colours line curves refer to different cooldown from 300
K to base temperature (0.38 K for blue line curves, 0.25 K for grey line curves and
red one). (c) Linear conductance curves of device C: different thermal cycle from
300 K to 0.38 K, blue line curve, and to 0.25 K, black line curves.
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Though the fine structure of conductance traces evolves differently depend-

ing on the peculiar device or on the specific cooldown, conductance step-like

behaviour is found in all constrictions as an overall behaviour. Regarding

reproducibility of the conductance curves upon different cooldown, it has

been observed that thermal cycling between room temperature and base

temperature (0.3 K) resulted in a gradual deterioration of the quality of

the quantization. As a matter of fact, in some cases reproducible and well-

defined steps are found in the conductance, whereas in other cases, the con-

ductance curve is affected by peak-like and dip-like structures resembling

those found in the linear conductance curves of Si-based QPCs. A further

behaviour found in the measured conductance is the shifting of the pinch-off

voltage toward less negative bias voltages in successive thermal cycling (see

fig.4.12 (b) and (c)). We have mentioned in the previous chapter that the

pinch-off voltage VP.O. depends on the actual potential generated by defects

and impurities; in the specific case of AlGaN/GaN -based devices, it is de-

pendent on both the barrier layer AlGaN and the quality of the dielectric

layer (SiN). During different thermal cycling, the charge configuration of

defects and impurities states varies in a non trivial way, producing an in-

homogeneous and non reproducible variation of the potential. Given this

non-reproducibility of the actual potential, only reproducible structures in

the conductance measurements upon different cooldown can be considered

intrinsic and caused by the 1D nature of the potential. Therefore differences

in the colour curves reported in fig.4.12 (b) and (c) are attributed to differ-

ent impurities potential distributions. As for the reproducibility of curves

from run to run upon the same thermal cycling, only few changes are found

in the conductance curves.

The overall picture denotes the following characteristic features: missing

or ill-defined plateaus, amplitude reduction of plateaus, resonance structures

affecting the conductance curves. In the following all these findings will

be discussed. From fig.4.12 (a), neglecting the small satellite peaks, which

point to the presence of a fine structure requiring further experimental veri-

fication, two features are noteworthy: the presence of quantized plateaus at

values slightly lower than the expected integer multiples of G0 = 2e2/h and

the suppression of the third and fifth plateaus. In principle, a 2 ·G0 jump in

the conductance trace can be caused by the presence of a double conduction

channel for the electron transport having two 1D energy modes accidentally
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degenerate. The double conduction channel can be formed by spatially sep-

arated tunnel coupled [33, 137] or spatially coincident [138, 139] 1D electron

systems. In each case the presence of a second conduction channel gives

rise to a second subladders of discrete 1D energy levels which contribute to

the total conductance. Thus, if two transverse modes accidentally line up

or are closer in energy than the experimental broadening, as soon as Fermi

level crosses them the conductance shows 2 ·G0 jumps or ill-defined plateaus

[33]. In spatially separated 1D channels missing plateaus are found if the

phase coherence length exceeds the channel separation. Indeed in ref. [137]

Smith et al. reported of the conductance of two parallel QPCs separated by

a certain distance, while Roddaro et al. [33] studied the electronic trans-

port of two 1D electron systems separated by a “soft” barrier originating

from Coulomb interactions. On the other hand, in spatially coincident 1D

electron channels originating from a quasi-2D electron gas the alignment

of two particular transverse modes energies depends on the width of the

QPCs [138]. However Fischer at al. observed a relative shift of the 1D

subladders in the same QPC tuning the confining potential by purely elec-

trostatic means, i.e. by cooling the sample from room temperature to low

temperatures applying or not a positive gate bias. As for our case, a second

transport channel could originate from the occupancy of the second energy

level in the 2DEG, as it has been discussed in the previous section, since

the Fermi energy is of the order of 115 meV in this 2DEG. However, as we

concluded in the previous section, we can not be completely confident of the

occupancy of the second level, therefore, at this stage, it is not possible to

find the origin of missing plateaus. Moreover, since the lack of plateaus in

the linear conductance curve manifests only in this device, the causes likely

producing the observed behaviour must be valid locally. Therefore the hy-

pothesis of a double occupancy of the 2DEG appears less plausible if it is

not corroborated by other measurements.

Regarding the quantized plateaus found at conductance values smaller than

the expected integer values (fig.4.12 (a) and (b)), these are likely imputed

to a transmission coefficient lower than unity, due to scattering from im-

purities [140] or from an irregular geometry of the confining potential. In

blue line curves of fig.4.12 (b) amplitude reduction has been observed only for

even index plateaus (vertical bars indicates amplitude of first four plateaus),

whereas odd plateau amplitudes are nearly G0. A possible explanation of
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these observations can be attributed to the presence of an accidental im-

purity placed off-axis respect to the center of the conduction channel. As

a matter of fact, since odd index (even parity) electron wavefunctions |Ψ|2

have their maxima on the axis of the QPC, while even index (odd parity)

wavefunctions maxima are off-axis respect to the center of the channel, an

impurity placed off-axis would scatter electrons from the second and the

fourth modes without affecting electron from the first one [141]. This would

reduce the spacing between the first and the second plateau and between

the third and the fourth plateau without affecting the height of the first and

the third. At higher conductance values broadened plateaus or ill-defined

steps are observed in the blue line traces of fig.4.12 (b). High index missing

or ill-defined plateaus are probably affected by the non-adiabaticity of the

confining potential as the number of occupied modes increases [30]. Red

line curve of fig.4.12 (b) presents a series of peaks and dips whose possible

origins have been largely discussed in the previous chapter.

Concerning linear conductance curves of fig.4.12 (c), measured on device re-

ported in fig.4.11 (c), these show rather regular steps of conductance with a

quite good reproducibility from run to run and in different thermal cycling.

The blue line curve manifest two well-developed and flat steps correspond-

ing to conductance values of 1 and 2 G0 and two less prominent plateaus of

smaller amplitudes developing at higher conductances.

4.2.1 Deliberately asymmetric confining potential in QPCs

In order to understand the origins of the structures found in the linear con-

ductance curves reported in fig.4.12, we performed an experiment in which

we have deliberately introduced an asymmetry in the confining potential by

means of a finite bias applied between the two split-gates. The method of

differentially biasing the two halves split gates has been used for different

purposes. Firstly, it allows to move the channel: scanning the confining

potential it is possible to probe the presence of impurities or the formation

of a quasi-bound state in the channel [142, 143]. Secondly, these studies are

also a suitable tool to investigate the effect of variation of the transverse

confining potential in terms of the shape of the parabolic well [144]. In-

deed, by introducing the asymmetry, the number of modes contributing to

the conduction varies and the well becomes shallower and shallower as the
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asymmetry is increased.

In order to investigate the effect of the asymmetry of the transverse

confining potential on the electronic transport, we have performed linear

conductance measurements by differentially biasing both gates by ∆Vg,

Vg1 = Vg+∆Vg/2 and Vg2 = Vg−∆Vg/2. In the following we will present all

data acquired on the devices of fig.4.11 (b) and (c) relative to the linear con-

ductance G(Vg) as a function of Vg and ∆Vg. Several ways of visualization

of data are shown in order to give a complete picture of the conductance

behaviour. Figure 4.13 shows the conductance characteristics of device B as

a function of Vg, upon varying the gate voltage difference, ∆Vg = Vg1−Vg2,

from −20 V (green line in fig.4.13 (a)) to zero (blue line), up to +20 V (red

line in fig.4.13 (b)). The increment of ∆Vg between curves is 0.4 V . In order

(a)

(b)

Figure 4.13: Linear conductance traces of device B as a function of Vg, sweeping
∆Vg from -20 V (green line in panel (a)) to zero (blue line in both panels) until
+20 V (red line in panel (b)). Curves are horizontally shifted of a quantity equal
to 0.144 V .

to better visualize the evolution of the conductance structures reported in

fig.4.13, we also performed the numerical derivative dG/dVg. In the colour
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maps of fig.4.14 dG/dVg is reported for two runs of the same measurement

carried out in different cooldowns from liquid helium temperature to 0.25

K. In the colour map the orange regions are peaks whereas the green ones

(a)

(b)

Figure 4.14: (a) and (b) Colour map of transconductance, dG/dVg, as a func-
tion gate voltage difference, ∆Vg, and average gate voltage, Vg for two different
thermal cycling. Data of panel (a) are relative to conductance curves of fig.4.13.
Conductance data relative to transconductance of panel (b) are not shown.

are zeros of the transconductance traces. The former indicate transition

edges between plateaus, the latter correspond to flat plateaus. The deriva-

tive dVg/dG is an additional useful tool to follow the amplitude evolution

of the conductance plateaus as a function of ∆Vg. In the colour map of

fig.4.15 (dVg/dG) yellow regions indicate where plateaus of the G(Vg) traces

are positioned in the G−∆Vg plane.

In figure 4.16 we report results obtained from a similar measurement on
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Figure 4.15: Colour map plot of dVg/dG as a function of ∆Vg and G. Yellow parts
are regions where the conductance is flat, that is where a plateau is located in the
plane ∆Vg −G.

device C. In panels (a) and (b) of fig.4.16 the conductance traces G(Vg) are

reported for ∆Vg ranging from -20 V (green line curve) to zero (blue line

curve) and from +20 V (red line curve) to zero (blue line curve). Each curve

has been taken for a ∆Vg value increasing with steps of 0.5 V . Traces are

horizontally shifted of 0.175 V . The colour maps of panel (c) and (d) of the

same figure represent the transconductance dG/dVg as a function of ∆Vg

and Vg and the derivative dVg/dG as a function of ∆Vg and G.

The measurements reported and carried out by introducing an asymme-

try in the transverse potential (fig.4.13, 4.14, 4.15 and 4.16) reveal a complex

behaviour of the conductance. Nevertheless, the presence of similar features

in different devices suggests that the observed evolution arises from intrin-

sic effects rather than from a random impurities distribution. Though a

confident and complete interpretation of these findings has not been found

yet, a detailed description of the reproducible features will be given in the

following, focusing on the possible explanations for the results obtained.

The linear conductance curves of fig.4.13 and fig.4.16 show an overall quan-

tized conductance with step-like structures changing their amplitude (G

value) and moving in energy (onset Vg position) in a non trivial way as ∆Vg

is swept. The mentioned characteristics produce peculiar patterns in the

transconductance plot of figure 4.14 and fig.4.16 (c) and in the derivative

dVg/dG of fig.4.15 and fig.4.16 (d). As for the transconductance data re-

ported in fig.4.14 and fig.4.16 (c) for device B and C, we point out the follow-
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(a)

(b)

(c)

(d)

Figure 4.16: (a) and (b) G(Vg) traces for device C as ∆Vg is varied from -20 V
(green line), to zero (blue line) until +20 V (red line). Curves are horizontally
shifted of 0.175 V . (c) Colour map of transconductance, dG/dVg, as a function of
∆Vg and Vg. (d) Colour map of the dVg/dG as a function of ∆Vg and G.
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ing features: as the asymmetry between gates (∆Vg) is swept, the pinch-off

voltages vary almost linearly with the absolute value of ∆Vg. However the

minimum value of the conductance onset does not occur for ∆Vg = 0 but

for |∆Vg| ≈ 5 V (both in fig.4.14 and in fig.4.16 (c)), indicating that the

condition ∆Vg = 0 does not strictly correspond to a symmetric confining

potential profile. Moreover the quantized conductance plateaus do not run

parallel to ∆Vg axis, evolving linearly as this quantity is varied.

To explain the non trivial evolution of the pinch-off voltages as a function

of ∆Vg, we consider the energy diagram reported in fig.4.17 which simply

describes the effect of introducing an asymmetry in the confining transverse

potential applying ∆Vg between the two gates. Indeed, as long as a negative

bias is applied to both fingers of a split-gate QPC (like those of fig.4.11),

the confining potential is transversely symmetric (see fig.4.17 (a), (b) and

(c)). Consider V ∗ to be the gate voltage for which the chemical potentials of

the metallic gate electrodes are lined up to the Fermi energy of the 2DEG,

i.e. the electrons gas is completely depleted underneath the gates. When

|Vg| & V ∗, a constriction for electrons starts to form in the y-direction and

quantization of conductance is expected as a manifestation of quantized en-

ergy levels due to the transverse confinement. As a matter of fact, we have

measured quantized plateaus whose conductance values have been shown to

be slightly suppressed by transmission coefficients below the unity in some

cases (fig.4.12). As soon as an imbalance ∆Vg is applied between the two

gates, the parabolic transverse potential becomes asymmetric (see fig.4.17

(d) and (e)). Starting from a fixed value of Vg, for instance Vg = V 0
P.O. in

panel (c) of fig.4.17, applying ∆Vg (fig.4.17 (e)) has the effect of raising the

energy level relative to Vg1 and lowering the one relative to Vg2 respect to

the energy level identified with an orange dashed line, V 0
P.O., in fig.4.17 (e).

The orange dashed line in fig.4.17 (e) corresponds to the energy levels of the

two gates when |Vg1| = |Vg2| = V 0
P.O. (see panel (c) of fig.4.17). In panel (e)

the potential profile for the case |Vg1| = |Vg2| = V 0
P.O. (of panel (c)) has been

reported too as a dashed line. Furthermore, ∆Vg acts laterally, depleting

the 2DEG less near Vg2 and more near Vg1, for the case of fig.4.17 (e)). This

has twofold effect: firstly it lowers the bottom of the asymmetric confin-

ing potential, defining a ‘new’ pinch-off voltage, V
∆Vg
P.O. = VP.O. + α(|∆Vg|);

secondly it transversely shifts the conducting channel. Indeed as ∆Vg is

increased the minimum of the confining potential is spatially varied of a
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Figure 4.17: Energy diagram of the transversal confining potential for different
values of the gate voltage: (a) |Vg| < V ∗, (b) |Vg| = V ∗, (c) |Vg| ≈ V 0

P.O., (d)
|Vg1| = Vg + 1

2∆Vg and |Vg2| = Vg − 1
2∆Vg for gate G1 and G2, respectively, (e)

|Vg| ≈ V 0
P.O. + 1

2∆Vg and |Vg| ≈ V 0
P.O. − 1

2∆Vg for gate G1 and G2, respectively.
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quantity y = η(Vg1 − Vg2)/(Vg1 + Vg2) where η is a positive constant [145].

This explains the suppression of the resonant-like features in the ∆Vg ≈ 0

linear conductance curves in fig4.13 with increasing ∆Vg. Indeed, electron

scattering due to some accidental impurity in the channel can be reduced

shifting the confining potential laterally so that electrons are not scattered

anymore.

Upon decreasing the negative gate voltages on both gates (from panel (e) to

(d) of fig.4.17), a new configuration of confining potential and distribution

of transverse modes is found compared to the case of panel (b). Being the

shape of the confining potential shallower, due to the less negative electrode,

energy spacing between modes decreases. Furthermore, a smaller number of

quantized levels can form in the well. Note, indeed, that as the imbalance

between Vg1 and Vg2 is such that one branch of the potential profile drops

below EF (Vg1 or Vg2 < V ∗), the electrode is no more effective in depleting

the 2DEG underneath (see fig.4.17 (d)), and, as a consequence, the con-

fining potential become shallow at a less negative voltage bias. Under this

conditions, less and less 1D quantized levels form in the well before the 1D

electron system switches into a 2D system [27]. As a consequence, the G(Vg)

traces of both device B and C show that the experimental Vg sweep range

decreases as |∆Vg| is increased, manifesting a rapid divergence of conduc-

tance for a large imbalance between the gates (see green and blue line curves

of fig.4.13 and fig.4.16 (a) and (b)). This behaviour is clearly caused by the

decrease of the number of transverse modes which form as the asymmetry

is made stronger and stronger.

In the following we will focus on a detailed description of fig.4.13 identify-

ing some ∆Vg regions for the different typologies of conductance behaviour,

starting from the experimental symmetric condition, i.e. ∆Vg = 5 V . In

fig.4.18 we report two particulars of data in fig.4.13: in panel (a) and (b)

five conductance curves are shown for ∆Vg ranging in the interval reported

inside the graphs. A feature is noteworthy: note the lack of the first quan-

tized plateau at G ≈ G0 in the ∆Vg ≈ 5 V curves showing a G ≈ 2G0 step,

indicated by a red arrow in both panels. These structures evolve towards

multiple integers of G0, indicated by blue arrows. As mentioned in the pre-

vious section, this behaviour is likely a manifestation of the degeneracy of

two energy levels belonging to two different subladders originating from the

occupancy of the second excited level of the quantum well.
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(a) (b)

Figure 4.18: (a) and (b) Some of the G(Vg) traces of fig.4.13: (a) ∆Vg = (4÷ 5.2)
V , curves are horizontally shifted of 0.375 V . (b) ∆Vg = (6.8÷ 4.8) V , curves are
horizontally shifted of 0.25 V .

The description of the curves which follows is separated into two ∆Vg inter-

vals respect to the ∆Vg ≈ 5 V condition. The intervals of each panel has

been chosen symmetrically respect to that condition. Coloured dashed lines

are a guide for the eye. Starting from ∆Vg = −9.2 V toward ∆Vg = −4.8

V , in panel (a) of fig.4.19, the presence of a step-like plateau at about 0.6

G0 evolving toward 0.5 G0, as |∆Vg| is changed, is apparent. The structure

at ∼ 1G0 remains nearly at the same conductance value for a small ∆Vg

interval and then splits into two at about 0.7 and 1.5 G0. A plateau like

structure at G ≈ 2G0 is always present in this ∆Vg range. In panel (b) of

(a) (b)

Figure 4.19: (a) and (b) Some of the G(Vg) traces of fig.4.13: (a) ∆Vg = (−9.2÷
−4.8) V , curves are horizontally shifted of 0.23 V . (b) ∆Vg = (−4.8 ÷ −2) V ,
curves are horizontally shifted of 0.24 V .

fig.4.19 the 0.7 G0 structure, whose amplitude slightly decrease to 0.65 G0,
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is approximately unchanged as |∆Vg| is lowered from ∆Vg = −4.8 to −2 V

becoming a prominent flat step. Further decreasing |∆Vg| from ∆Vg = −2

to 0.8 V , in fig.4.20 (a), the flat plateau at 0.7 G0 starts to decrease toward

a less prominent structure at 0.3 G0, while the shoulder at about 1.5 G0

lowers to 1 G0. In fig.4.20 (b), from ∆Vg = 0.8V to ∆Vg = 4V , the 1 G0

(a) (b)

Figure 4.20: (a) and (b) Some of the G(Vg) traces of fig.4.13: (a) ∆Vg = (−2÷0.8)
V , curves are horizontally shifted of 0.26 V . (b) ∆Vg = (0.8 ÷ 4) V , curves are
horizontally shifted of 0.19 V .

plateau first begins to increase, then comes back to the 1 G0 shoulder indi-

cated by a blue arrow in fig.4.18 (a). Contemporarily, a lower structure at

0.3 G0 emerges from the splitting of the 1 G0 plateau of the ∆Vg = 0.8 V

curve.

Going on symmetrically in the other ∆Vg interval, a 0.5 G0 step in the

∆Vg = 20 V curve of fig.4.21 (a) moves toward 1.1 G0 plateau-like in the

∆Vg = 15.6 V curve; concomitantly, a nearly 2 G0 structure develops as

∆Vg is decreased. Note, indeed, that in the ∆Vg = 20 V curve only a step is

present in the conductance curve, indicating that just one quantized energy

level forms in the constriction. As already mentioned, this occurs when a

branch of the parabolic transverse potential drops below the Fermi energy

and the electrons are no more confined in that direction. On the other hand,

by further decreasing ∆Vg (fig.4.21 (b)), the 1.1 G0 plateau lowers while a

shoulder at about 0.3 G0 develops. In the same ∆Vg interval it is evident

the formation of a 1.5 G0 plateau which remains approximately constant

upon changing ∆Vg. This structure persists in fig.4.22 (a) and (b), up to

∆Vg ≈ 10V , then moves and disappear (in the G interval reported in figure).

The structure just below 1 G0 fig.4.22 (a) evolves toward the 0.5 G0 ones,
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(a) (b)

Figure 4.21: (a) and (b) Some of the G(Vg) traces of fig.4.13: (a) ∆Vg = (20÷15.6)
V , curves are horizontally shifted of 0.23 V . (b) ∆Vg = (15.6÷ 12.8) V , curves are
horizontally shifted of 0.24 V .

(a) (b)

Figure 4.22: (a) and (b) Some of the G(Vg) traces of fig.4.13: (a) ∆Vg = (12.8÷10)
V , curves are horizontally shifted of 0.26 V . (b) ∆Vg = (10 ÷ 6.8) V , curves are
horizontally shifted of 0.19 V .
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whereas the shoulder at about 0.3 G0 is constant for a small ∆Vg range,

afterwards it lowers and disappears. Lastly, in fig.4.22 (b) the formation of

the 1 G0 plateau depicted by a blue arrow in fig.4.18 (b) is evident.

The overall framework of plateau evolution with the applied ∆Vg is

rather complex. As stated previously, the experiment has been performed to

check the presence of impurities: by shifting the minimum of the potential

profile away from the centre of the channel, the peaks, affecting the linear

conductance curve for ∆Vg = 0, disappear. However we have shown that the

applied ∆Vg has the further effect of changing the potential profile giving

rise to new configurations of the 1D energy modes inside the constriction.

Summarizing the found behaviour, we have observed that in the physical

symmetric potential condition (occurring for ∆Vg ≈ 5 V ), the 1 G0 plateau

does not manifest, suggesting the possibility of two modes degeneracy. As

|∆Vg| is varied a gradual evolution of the plateau structures occurs: first the

formation of the G0 plateau and then the occurrence of structures at about

0.5 G0. This complicated framework is compatible with the occupancy of the

second energy level of the 2DEG (to be confirmed by further investigations

on the 2DEG). The application of ∆Vg, by modifying the confining potential

profile, contributes to change the relative alignment of the two subladders,

which forms in the channel as a result of the quantum confinement. As a

consequence, under certain conditions, the 1D modes belonging to the two

2D energy levels of the 2DEG misalign and the 1 ·G0 plateau forms.

Concerning the appearance of a 0.5 G0 plateau in different ∆Vg intervals,

this finding points to the occurrence of a zero-field spin polarization. With

regard to this finding, it is worth citing ref.[144]. The authors proposed an

experiment where the side gates of a InAs QPC were differentially biased

with a dc voltage in order to get an asymmetric transverse confinement po-

tential. They measured a robust zero-field 0.5 G0 plateau at finite ∆Vg and a

regular quantization at ∆Vg = 0. The interpretation proposed for the zero-

field spin polarization was in terms of a lateral spin-orbit coupling (LSOC).

Indeed, similarly to the Rashba SOC (eq.4.4), the gradient of the confining

potential of a QPC, produced by differentially biasing the two gates, gener-

ates a transverse electric field resulting in a lateral spin-orbit coupling. The

LSOC interaction term can be written as HSO = αso~σ · [~∇U(y)×~kx], where

αso is the intrinsic spin orbit parameter (eq.4.5). It induces an effective

magnetic field ~BSO = αso[~∇U(y) × ~kx] where kx is the propagation vector
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along x-direction and ~∇U(y) is the spatial gradient of the confining poten-

tial along the y-direction. The effective magnetic field along the z-axis has

exactly the same magnitude but opposite direction at the transverse edges

of the QPC, see fig.4.23 (a), for the case of symmetric side-gate voltage.

Moving electrons with opposite spin experience opposite SOC forces that

(a) (b)

Figure 4.23: (a) Schematic representation of the confining potential energy of a
QPC along y direction when symmetric side-gate voltages are applied; (b) same for
asymmetric side-gate voltages, from [144].

lead to an accumulation of opposite spins at the opposite transverse edges.

In this case there is an equilibrium between the number of spin-up and

spin-down at the opposite sides of the QPC. Instead a net spin polarization

occurs when the asymmetric gate voltage is applied so that a net imbalance

between spin-up and spin-down at the opposite QPC edges results, fig.4.23

(b).

Although large similarity to our results is found in the cited work, the

most intriguing features of our measurements are found in the magnetic field

behaviour.

In the following section we present the conductance behaviour as a func-

tion of the external magnetic field, for different configurations of the confin-

ing potential profile. Firstly, we illustrate the conductance curves evolution

by varying the field in the case of ∆Vg = 0 for both devices B and C, and

then we present different ∆Vg situations in presence of external magnetic

field for devices B.
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4.2.2 Magnetic field measurements

In the following figures linear conductance spectra taken at increasing per-

pendicular magnetic field from zero (blue line) to 12 T (green line) with

step of 0.1 T are reported for device C, fig.4.24, and B, fig.4.25. In fig.4.26

linear conductance data are reported with increasing parallel magnetic field

from zero (blue line) to 12 T (green line) with step of 0.1 T for device B.

In fig.4.24 (a) G(Vg) traces are horizontally shifted of 0.05 V for clarity. In

panels (b) and (c) transconductance, dG/dVg as a function of both magnetic

field, B, and Vg along with dVg/dG as a function of magnetic field, B, and

conductance, G, are shown, respectively. Figure 4.24 reports the evolution

of the first quantized conductance plateau in presence of the external field.

Clearly in fig.4.24 (a) and (c) the 1 G0 plateau splits into two structures

at about 0.5 and 1.5 G0. We interpret these findings as the energy split-

ting of the two spin-degenerate subbands due to the Zeeman effect. From

the observed energy splitting of the spin-non degenerate levels, fig.4.24 (b),

an energy conversion factor can be calculated from gate voltage to energy,

∆E = η ·∆Vg. Since for B = 12 T , ∆E = g∗µBB = 1.3 meV (for g∗ = 2),

we obtain a conversion factor η ≈ 2 meV/V . This gives roughly an estimate

of the change in energy once the gate is being swept, suggesting that typical

energy spacing between modes is of the order of 2.2 meV (comparison with

fig.4.12 (c)).

On the contrary, we were not able to measure Zeeman spin splitting in

device B neither in perpendicular magnetic field (fig.4.25), nor in parallel

magnetic field (fig.4.26), up to intensity of 12 T . Linear conductance data of

fig.4.25 and fig.4.26 show again two well-defined structures at 1 and about

2 G0 whose Vg positions are almost unchanged (a slight shift of the tran-

sition edge of the 1G0 plateau is seen in fig.4.26). Therefore, there is no

evidence of half-integer plateaus arising from spin-split levels in an applied

magnetic field in device B. The results differ from prior reports which point

to a strong polarization at fields well below 12 T , clear manifestation of

Zeeman effect [7, 146]. To date a similar behaviour has not been found

yet. Actually, suppression of spin-splitting in presence of magnetic field

has been reported by Timothy E. Day et al. [147]. However the authors

performed their experiment using an hybrid magnetic QPC with Co lateral

gates in a AlGaAs/GaAs 2DEG. They claimed that the lack of spin-split

plateaus could be due to a suppression of the electron-electron interactions



116 Transport Phenomena in AlGaN/AlN/GaN heterostructures

(a)

(b)

(c)

Figure 4.24: Linear conductance G(Vg) for perpendicular magnetic field ranging
from 0 to 12 V . (a) G(Vg) curves are horizontally shifted of 0.05 V , magnetic field
ranges from zero (blue line) to 12 T (green line), with step of 0.1 T. (b) Transcon-
ductance dG/dVg in the B−Vg plane. (c) Inverse transconductance dVg/dG in the
B −G plane.
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(a)

(b)

(c)

Figure 4.25: Linear conductance G(Vg) for perpendicular magnetic field ranging
from 0 to 12 V . (a) G(Vg) curves are horizontally shifted of 0.05 V , magnetic field
ranges from zero (blue line) to 12 T (green line), with step of 0.1 T. (b) Transcon-
ductance dG/dVg in the B−Vg plane. (c) Inverse transconductance dVg/dG in the
B −G plane.
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(a)

(b)

(c)

Figure 4.26: Linear conductance G(Vg) for parallel magnetic field ranging from 0
to 12 V . (a) G(Vg) curves are horizontally shifted of 0.05 V , magnetic field ranges
from zero (blue line) to 12 T (green line), with step of 0.1 T. (b) Transconductance
dG/dVg in the B − Vg plane. (c) Inverse transconductance dVg/dG in the B − G
plane.
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in the QPC, which limits the enhancement of the electron g-factor. As for

our device, there are no magnetic gates able to shield the external applied

magnetic field. One reason for the anomalous behaviour can be that the

energy interval swept with the gate is much greater than the spin splitting

energy at B = 12 T for device B. However this would imply that also the

energy spacing between 1D modes is much greater than few meV (being

∆E = g∗µBB = 1.3 meV at B = 12 T ). This appears unlikely since we

have obtained through a rough estimate a value of few meV for the energy

spacing between 1D modes for the case of device C. In our opinion the ori-

gins of the singularities in our device should be searched to a large extent

into the elevated value of the sheet carrier density n2D ∼ 1013 cm−2. In

fact, to date, the only experimental works on mesoscopic devices realized

on these systems (GaN -based 2DEG) report samples with well lower elec-

tron densities (n ≈ 1 × 1012 cm−2 in ref.[148] and n ≈ 0.8 × 1012 cm−2

in ref.[149]). Indeed, the high electron density and the low mobility (com-

pared to those obtained in III − V semiconductors heterostructures) can

make motion inside the channel quasi-ballistic: we have shown in chapter

1 that if the Fermi wave-length, λF , is comparable with the roughness size

of the boundaries, these are supposed to behave as diffusive boundaries and

effectively act as a scattering source. As a matter of fact, for our device

λF ≈ 7.7 nm which is the same order of magnitude of typical roughness size

of metallic gates.

In the following the effect of an external magnetic field has been studied

for some of the experimental situations described in section 4.2.1.

In fig.4.27 linear conductance trace for ∆Vg = −4 V (see fig.4.19 (b)) has

been investigated for an increasing parallel magnetic field in the (0÷ 10) T

range. Each curve in fig.4.27, from 0 (blue line curve) to 10 T (green line

curve), has been horizontally shifted of 0.275. In fig.4.28 the G(Vg) char-

acteristics have been investigated for a fixed value of the external parallel

magnetic field equal to 5 T , varying ∆Vg from -25 to 15 V . Increments of

∆Vg are of 0.2 V each. Moreover, curves are horizontally shifted of 0.063

V for clarity. As for the data presented in fig.4.27, linear conductance mea-

surements reveal the presence of a 0.7 G0 plateau which remains almost

constant in energy and amplitude though a small shoulder develops at 0.5

G0 for B = 10 T (green line curve). Similarly a plateau at 1.5 G0 is found
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Figure 4.27: Differential conductance data G(Vg) gathered for ∆Vg = −4 V with
increasing the external parallel magnetic field from zero (blue line) to 10 T (green
line). Curves are horizontally shifted of 0.275 V

which remains unchanged upon varying the field. These features suggest

that spin-split plateaus form in the G(Vg) curves under certain conditions

of the potential profile (∆Vg) in zero-magnetic field. As a matter of fact,

as reported in ref.[144], a parallel magnetic field should have hardly any

influence on the spin-polarized plateaus, indicating fully polarized state.

Concerning the measurements reported in fig.4.28, it is not possible to com-

pare singularly these curves with those reported in fig.4.13 since the various

confining potential configurations, corresponding to a point in the plane

∆Vg, Vg, giving rise to the peculiar evolution of the conductance traces, oc-

cur for different values respect to those of measurement of fig.4.13, i.e. a

different couple of the values (∆Vg;Vg) due to the observed hysteresis in

the gate voltage. Compare, for instance, fig.4.14 with fig.4.28 (c). For this

reason a qualitative discussion is only possible. The transconductance pat-

tern found in presence of a parallel magnetic field, reported in fig.4.28 (c),

strongly resembles that of fig.4.14: the linear evolution of the pinch-off volt-

ages with increasing ∆Vg and the minimum value of the pinch-off voltage

occurring for ∆Vg 6= 0 are the same already shown in absence of mag-

netic field, though the numerical values differ from those previous reported

in fig.4.14. The G(Vg) spectra of fig.4.28 (a) and (b) reveal the presence of

steps in the curves moving toward half integers of G0. The overall framework

of the evolution of steps in conductance is similar to the same measurement

in zero-field however the development from integers to half-integers of G0

and vice versa is more clearly visible in presence of the external magnetic
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(a)

(b)

(c)

(d)

Figure 4.28: (a) and (b) G(Vg) traces for device B as a function of ∆Vg for a
fixed parallel magnetic field B = 5 T . (a) ∆Vg = (−25 ÷ −5) V , from green line
to blue line curve. (b) ∆Vg = (−5 ÷ 15) V , from blue line to red line curve. ∆Vg
increases of 0.2 V . Curves are horizontally shifted of 0.063 V . (c) Colour map of
transconductance, dG/dVg, as a function of ∆Vg and Vg. (d) Colour map of the
dVg/dG as a function of ∆Vg and G.
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field (see fig.4.28 (c)). By further investigating the conductance spectra with

finite ∆Vg, we have again the same behaviour of the conductance, without

any apparent spin-splitting of the G0 integers plateaus.

However if both hypothesis, the presence of a double subladder of en-

ergy levels and the possibility of a fully spin-polarized state as due to the

asymmetry of the confining potential [144], are confirmed, the occurrence

of a 1 G0 step (without the 0.5 G0 plateau) is not surprising. In this case,

indeed, the G0-integers plateaus would result from the alignment of two

spin-polarized states belonging to two different levels of the 2DEG.

In fig.4.29 three groups of curves of fig.4.28 have been reported in detail

showing the formation of a 0.5 G0 plateau (panels (a) and (c)) and of a 1

G0 plateau (panel (b)) due to the applied asymmetry.

(a) (b)

(c)

Figure 4.29: Some of the G(Vg) traces of fig.4.28: (a) ∆Vg = (12.2 ÷ 13.6) V ,
curves are horizontally shifted of 0.23 V . (b) ∆Vg = (−13.4÷−11.6) V , curves are
horizontally shifted of 0.05 V . (b) ∆Vg = (−17.6÷−16.4) V , curves are horizontally
shifted of 0.25 V .
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Similarly to our study, several experimental works have been carried out

in which the dependence of the confining potential on the electronic trans-

port has been investigated by using different methods [150, 151, 152, 73, 144].

In all these work e-e interaction effects were supposed to play a fundamental

role, and in particular, in ref. [150, 151, 152] and [73], the utmost important

parameter of the investigation was the electron sheet density.

Thomas et al. [150] studied the electron transport of a 1D channel where

the carrier density was parametrically varied by means of a top metallic gate

(fig.4.30 (a)). It has been concluded that a complete spin-polarization was

promoted at low densities, when the e-e interactions are supposed to be

stronger. In addition their measurements confirm that the presence of dis-

order is crucial in the formation of a spin-polarized state since they claim

that the spontaneous polarization is induced by weak disorder.

The possibility of a spontaneous spin polarization of electrons in a 1D chan-

nel has been debated for a long time. While Lieb and Mattis theorem [153]

asserts the ground state of a 1D system of electron to be unmagnetized,

theoretical [152] and experimental [150] works confirm that this is not true

for a real 1D wire. Andreev and Kamenev demonstrate that for d ≤ 2 a

disordered system may exhibit a finite temperature partial spin polarization

even if its clean analog is paramagnetic [154].

Still, Pyshkin and coauthors [151] reported of a 0.7 structure evolving into a

fully polarized state as the electron density is lowered by means of a top gate

(fig.4.30 (b)). The model proposed for the experimental evidences ascribes

the evolution of the 0.7 structure into the 0.5 plateau to a breaking of the

spin degeneracy driven by exchange interactions. At the same time they

found a 0.5 structure in the conductance trace at the highest density value

of the explored range whose origin however was not clear (fig.4.30 (b)).

On the contrary in ref.[152] a 0.5 spin-polarized plateau was found at high

density in ultra low-disorder long quantum wires (fig.4.30 (c)).

While we are confident that even in our experiment a finite difference be-

tween the split gates bias affects the confining potential reducing the electron

density as ∆Vg is raised, in the cited experimental works a radically differ-

ent evolution of plateaus was found. The equilibrium linear conductance

quantization was preserved: integer plateaus remained at their values as

the electron density was varied, while the number of plateaus was reduced

lowering n2D, fig.4.30. In spite of this, the conductance characteristics pre-
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sented in this thesis show a continuous evolution of plateau-like structures

with modulation of ∆Vg and the integer values quantization is not preserved

in our case.

(a) (b)

(c)

Figure 4.30: Linear conductance traces G(Vg) varying parametrically the electron
density by means of a top gate, Vmid in panel (a), from [150], VTG in panel (b),
from [151], VT in panel (c), from [152]. In all the three cases the density was raised
from left to right.

It is worth mentioning the experimental work reported by Shailos et al. [73].

Their aim was to perturb the potential profile of a split gate QPC by apply-

ing a finite bias to a finger gate located between two split gates forming the

constriction. According to the performed potential profile simulations they

claimed to be able to deliberately break the symmetry of the QPC structure

using the finger gate which also allowed the variation of the electron density

in the constriction. However their most important assumption is that the

significative changes in density correspond to a variation of the Fermi energy

by an amount of the order of the typical energy spacing of the lower few

subbands in split-gate QPCs. In other words they state that, with some im-

portant differences, the influence of the finger gate is somewhat analogous

to applying a large bias voltage across the QPC, between the source and

drain contacts.
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Similarly, we could assert that a change in the QPC density induced by the

application of a finite gate bias difference ∆Vg would be equivalent to the

application of a bias between the source and drain contacts of the QPC.

Therefore we could explain our evolution of plateaus as ∆Vg varies. Indeed

a variation of ∆Vg would result in the formation of 0.5 G0 plateaus. As a

matter of fact additional structures, called half plateaus, are expected to

develop as a dc bias is applied between source and drain at conductance

values approximately midway between the original integer values.

Figure 4.31: Differential conductance G(Vg) at various source-drain voltages. The
successive plots, taken as Vsd was incremented in steps of 0.5 mV, have been hori-
zontally offset from each other by 0.2 V from left (Vsd = 0) to right (Vsd = 6mV ),
from [39].

While the explanation provided by ref.[73] could clarify the origin of the

plateaus evolution as a finite ∆Vg is applied, in our device the broken sym-

metry takes place transversely respect to the direction of electrons motion.

So it is still unclear if the supplied model could fit in our case once the confin-

ing potential has become transversely asymmetric. Moreover the magnetic

field results suggest (with some still misunderstood aspects) that the occur-

rence of half-integer plateaus is to be ascribed to spin-polarized levels at

zero-field (see fig.4.27). Therefore all these findings support the occurrence

of an asymmetry-dependent spin polarization as reported by ref.[144].

4.3 Conclusions

This chapter presents a series of experiments performed on a GaN based

2DEG and on a selection of the nanostructures realized upon gating the

heterostructure. Our 2DEG manifested a surprising high electron mobility

(µ ∼ 20000 cm2/V s) with respect to GaN two-dimensional systems with
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comparable sheet carrier density (∼ 1.1 ·1013 cm−2), though still much lower

compared to high-mobility GaAs 2DEGs. The improved GaN 2DEG mo-

bility is thought to be due to the insertion of an AlN exclusion layer at the

heterojunction which eliminates alloy scattering. High-field magnetoresis-

tance exhibited well-defined Shubnikov de Haas oscillations with a beating

at B ≈ 5 T whose origin is not obvious at this stage. One possible explana-

tion is the effect of inhomogeneity of the electron density due to the presence

of the metallic gate covering some areas of the sample. A second possible

hypothesis is the presence of magneto intersubband scattering supported

by the occupancy of a second level of the 2DEG. An additional possibility

is that the beating of the SdH oscillations is due to spin-orbit interaction

giving rise to a zero-field spin-splitting at the Fermi energy. Numerical

values calculated from the SdH measurements for the spin-orbit coupling

parameter (αso = 2.28 · 10−12 eV ·m) are in agreement with literature [128].

Low-field magnetoconductivity manifested a zero-field weak anti-localization

peak characteristic of spin-orbit coupling. However the numerical value of

αso, derived from low-field measurement, differs from previous estimate ob-

tained by SdH analysis. Data reported in literature show a discrepancy in

results obtained by using the two different types of measurements similar to

that found in our work.

Using split-gate quantum point contacts, we have demonstrated ballistic

transport on two-dimensional GaN systems with a sheet carrier density as

large as 1.1 ∼ 1013 cm−2. We have showed well-defined flat plateaus in the

linear conductance of quantum point contacts. We have studied the repro-

ducibility of conductance curve upon sweeping the gate voltage in different or

in the same cooldown. The overall picture denotes various characteristic fea-

tures present in the conductance curves, i.e. ill-defined plateau, amplitude

reduction of conductance steps or resonance-like structures such us peaks

and dips in conductance spectra. We have performed different experiments

studying the effect of varying the confining potential: we deliberately intro-

duced an asymmetry in confining potential exerted by the gates. The result-

ing spectra show a non trivial evolution of the conductance plateaus as the

asymmetry is varied. The experimental finding were reproducible upon dif-

ferent thermal cycle and in different devices. Therefore an impurity-induced

behaviour can be excluded as the cause of the observed data. Magnetic field

measurements have shown Zeeman splitting of the quantized plateaus in one
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of the reported cases. From the magnetic field splitting of the transconduc-

tance peaks we determined the energy conversion factor giving an energy

spacing between transverse modes of the order of 2.2 meV , evaluated from

the distance between two transconductance peaks relative to G = 1 · 2e2h and

2 · 2e2

h .





Conclusions

The focus of this thesis work has been the experimental study of electron

transport in quantum point contacts carried out on different heterostruc-

tures. Different approaches were used to obtain the quantum confinement.

The systems under investigation were two-dimensional electron gases (2DEG)

obtained by the heteroepitaxial growth of Si/SiGe and AlGaN/GaN het-

erostructures. Progresses in the semiconductor growth techniques allowed

to obtain relatively high mobilities. These provide mean free paths that

are similar or longer than the device sizes that can be obtained with present

technology. This enabled us to study mesoscopic physics effects in devices of

the size of hundreds of nanometers or more. Both the Si and the GaN -based

2DEGs, have shown to be very intriguing systems for their complexity, due

to the presence of multiple valley minima, in the Si and, a large spin-orbit

coupling and/or the large value of the electron density, in relation to the

GaN . Complicated scenarios emerge in these systems which points to ef-

fects going beyond the independent-electrons picture.

As for the Si-based modulation doping 2DEG, the low temperature elec-

trical characterization has demonstrated a good quality electron gas, with

well-defined Shubnikov-de Haas oscillations, for magnetic field intensities

lower than 1 T . SdH analyses have confirmed the results obtained from the

classical low-field Hall effect, giving also further information on the relevant

scattering mechanisms. Concerning the nanostructures developed starting

from Si-2DEGs, these were build by using a hybrid approach in which the

confinement is generated by physical etching of the 2DEG heterostructures

and by a Shocktty gate employed for the electrostatic control of the poten-

tial. Devices having confining potentials of different shape were investigated.

These were two quantum point contacts (QPC) obtained from the in-plane
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shifting of the two square-shaped 2DEG areas and also an etched narrow

straight wire (QW). A variegated framework emerged from the conductance

behaviour at low temperature. The measure of the linear conductance of the

QW at 4 K has shown an apparent quantization in units of G = 4e2/h, as

expected in a Si-based 1D narrow conducting channel in presence of both the

spin and the valley degeneracy. However, upon lowering temperature, it be-

came possible to appreciate a quantization of conductance in units of 2e2/h.

The same results emerged in devices of different geometry investigated at

low temperature (QPCs). We showed that almost all the measured conduc-

tance curves in etched Si nanostructures manifest, common characteristics

at low temperature. These can be ascribed to resonance-like structures or

to suppression of plateau amplitude due either to multiple reflections at

the 2D-1D potential interface or to backscattering occurring at the bound-

aries of the confining potential or to backscattering from impurities. These

structures are clearly seen to smear out and eventually disappear when the

temperature is increased or when applying a perpendicular magnetic field,

depending on the origin of the structures. As a matter of fact, upon in-

creasing the perpendicular magnetic field up to 1.1 T on QPC1, the broad

peaks, present in the zero-field conductance curve are seen to disappear and

a fine plateau forms at 2e2/h. Simultaneously, at B = 3 T , the non linear

conductance curves exhibit the characteristic diamond plot in the transcon-

ductance, from which we measured a valley splitting energy of about 1.3

meV . On the other hand, in the narrow QW, the effect of suppression of

the geometrical backscattering by the magnetic field is hardly visible since

the cyclotron diameter is larger than the QW width for B & 7.8 T . Nev-

ertheless, through the measure of the magnetoresistance oscillations in the

QW, we measured an energy splitting between states that we interpreted as

the valley splitting between orbital levels in this device. Comparing the be-

haviours of devices with different geometries by using various measurements

we claimed an energy valley splitting of the order of ∼ 1 meV . In conclu-

sion, we speculate that a strong confining potential is required in order to

obtain valley degeneracy removal.

Chapter 4 contains the main achievements of the study of a new sys-

tem such as GaN -based 2DEG. As already mentioned, GaN based het-

erostructures are a novel system where an intrinsic 2DEG, with high sheet

carrier densities, is generated by the presence of high electric fields, caused
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by piezoelectric and spontaneous polarization. The investigation of GaN

2DEG systems is a recent and growing field, whereas the study of the meso-

scopic transport on GaN based nanostructures is still an almost unexplored

field. It is worth while mentioning that, to our knowledge, only two papers

have appeared on GaN nanodevices, ref.[148] and ref.[149]. The investigated

sample has a sheet carrier density of ∼ 1.1 · 1013 cm−2, with a mobility of

µ ∼ 20000 cm2/V s at low temperatures, which makes this 2DEG quite a

good sample compared to GaN 2DEGs, with identical density reported in

literature. As a matter of fact the Shubnikov de Haas analysis has evi-

denced the good quality of the gas showing well-defined oscillations. A beat

in the magneto resistance was found, and its origin is still being debated. At

this preliminary stage, further measurements are required. However we pro-

pose two possible hypotheses. The most probable are magneto intersubband

scattering with the occupation of a second 2DEG level or manifestation of

a spin-orbit interaction.

We demonstrated the ballistic transport in one-dimensional quantum

point contacts in GaN -based 2DEGs with the manifestation of a clear con-

ductance quantization. The linear conductance curves are affected by a se-

ries of extrinsic effects ascribed to impurity backscattering, present in these

systems and already reported in literature [148]. A preliminary experiment

was performed with the aim of deliberately introducing an asymmetry in the

confining potential. The asymmetry was obtained by differentially biasing

two opposite split-gates (∆Vg). We found a non-trivial evolution of plateau-

like structures as a function of ∆Vg. The observed behaviour is compatible

with the presence of a double occupancy of the level of the 2DEG with a

symmetric configuration of potential. The formation of a 0.5 G0 plateau as

soon as ∆Vg is varied, points to the presence of a zero-field spin splitting, as

already reported in a similar experiment [144], and attributed to a lateral

spin-orbit interaction. The splitting of the conductance plateaus found upon

increasing the magnetic field, gives a rough estimate of the energy spacing

between 1D modes to be in the order of ∼ 2.2 meV .

Results obtained from the study of the GaN system are preliminary.

However the investigation of the interesting and rich framework, revealed

by the transport measurements on these nanostructures, is not likely to end

with the work of this thesis and requires further investigations.
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Some of the results obtained in this Dissertation have been presented in

the following Conferences:

- Electronic transport and conductance quantization in Si/SiGe nanos-

tructures L. Di Gaspare, A. Notargiacomo, G. Scappucci, G. Frucci,

E. Giovine, R. Leoni, and F. Evangelisti

E-MRS, May 29 - June 2, 2006, Nice, France.

- Kondo-like behavior in SiGe quantum point contacts A. Notargiacomo,

L. Di Gaspare, E. Giovine, G. Frucci, V. Piazza, F. Beltram, and F.

Evangelisti

5th International Conference on Silicon Epitaxy and Heterostructures,

May 20 - 2, 2007, Marseille, France.

- Integer-spin Kondo-like behavior in SiGe quantum point contacts A.

Notargiacomo, L. Di Gaspare, E. Giovine, G. Frucci, V. Piazza, F.

Beltram, and F. Evangelisti

Electronic Properties of Two-dimensional Systems and Modulated Semi-

conductor Structures, July 15 - 20, 2007, Genoa, Italy.

- Conductance Anomalies in Quantum Point Contacts G. Frucci, A. Di

Gaspare, L. Di Gaspare, A. Notargiacomo, E. Giovine, D. Spirito, and

F. Evangelisti

Proceedings of the 9th International Conference on Nanotechnology,

July 26 - 30, 2009, Genoa, Italy.

The following papers are at a final stage of preparation:

- Valley splitting in Si-based etched quantum point contact

- Conductance anomalies in GaN -based quantum point contacts

- Investigation of a AlN/GaN 2DEG with large electron density
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