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Chapter 1

Introduction

1.1 Spintronics

The word “spintronics” refers to a new field of study concerned with the manip-

ulation of the spin degrees of freedom in solid state systems[1–4]. The realiza-

tion of a new generation of devices capable of making full useof, besides the

charge, the electronic – and possibly nuclear – spin is one ofits main goals. Ide-

ally, such devices should consist of only semiconducting materials, making for a

smooth transition from the presentelectronictechnology to the futurespintronic

one. More generally though metals, both normal and ferromagnetic, are part of

the game.

Besides in its name, which was coined in the late nineties, the field is “new”

mainly in the sense of its approach to the solid state problems it tackles, as it

tries to establish novel connections between the older subfields it consists of – e.g.

magnetism, superconductivity, the physics of semiconductors, information theory,

optics, mesoscopic physics, electrical engineering.

Typical spintronics issues are

1. how to polarize a system, be it a single object or an ensemble of many;

2. how to keep it in the desired spin configuration longer thanthe time required

by a device to make use of the information so encoded;

3. how to possibly transport such information across a device and, finally, ac-

curately read it.
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1.1. Spintronics

The field is broad in scope and extremely lively. Without any attempt at generality,

we now delve into some more specific problems and refer the interested reader to

the literature. The reviews [2,4] could be a good starting point.

When dealing with III-V (e.g. GaAs, InAs) and II-VI (e.g. ZnSe) semiconduc-

tors optical methods have been successfully used both for the injection and detec-

tion of spin in the systems [5]. Basically, circularly polarized light is shone on a

sample and, via angular-momentum transfer controlled by some selection rules,

polarized electron-hole pairs with a certain spin direction are excited. These can

be used to produce spin-polarized currents. Vice versa, as in [6–9], when pre-

viously polarized electrons (holes) recombine with unpolarized holes (electrons),

polarized light is emitted and detected – this is the principle behind the so-called

spin light emitting diodes (spin LEDs).

All-electrical means of spin injection and detection wouldhowever be prefer-

able for practical spintronic devices. Resorting to ferromagnetic contacts is quite

convenient, at least for metals. Roughly, the idea is to run acurrent first through

a ferromagnet, so that the carriers will be spin polarized, and then into a normal

metal. Actually, relying on a cleverly designed non-local device based on the

scheme of Johnson and Silsbee [10], Valenzuela and Tinkham [11] were able to

inject a pure spin current – in contrast to a polarized chargecurrent – into an Al

strip and, moreover, to use this for the observation of the inverse spin Hall effect.1

Similar experiments followed [12–15].

In semiconducting systems things are complicated by the so-called “mismatch

problem” one runs into as soon as a ferromagnetic metal-semiconductor interface

shows up. As it turns out, the injection is efficient only ifσF ≤ σ, whereσF is the

conductivity in the ferromagnetic metal andσ that in the material it is in contact

with, which is not the case when this is a semiconductor [16, 17]. Workarounds

are subtle but possible, and revolve around the use of tunnelbarriers between the

ferromagnetic metal and the semiconducting material [8,9], or the substitution of

the former with a magnetic semiconductor [6, 7, 18]. Whereasin the second case

results are limited to low temperatures, the first approach has led to efficient in-

jection even at room temperature [9]. Finally, a successfulall-electrical injection-

detection scheme in a semiconductor has been recently demonstrated [19].

On the other hand, the already mentioned spin Hall effect could itself be a

1More on this shortly and in Chapter 5.
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Introduction

E

Figure 1.1: The direct spin Hall effect. The gray layer is a two-dimensional elec-

tron (hole) gas, abbreviated 2DEG (2DHG), to which an in-plane electric field is

applied. Because of spin-orbit interaction in the system, spin-up and spin-down

fermions are deflected in opposite directions, creating a pure spin current in the di-

rection orthogonal to the driving field. Spin accumulation at the boundaries of the

sample is the quantity usually observed in experiments and taken as a signature of

the effect.

method for generating pure spin currents without the need for ferromagnetic con-

tacts. Perhaps even more importantly, it could allow for themanipulation of the

spin degrees of freedom inside a device by means of electrical fields only. It is an

eminent example of what Awschalom calls a “coherent spintronic property” [4], as

opposed to the “non-coherent” ones on which older devices are based.2 Originally

proposed in 2003 for a two-dimensional hole gas by Murakami et al. [20], and

soon after for a two-dimensional electron gas by Sinova et al. [21], it has attracted

much attention and is still being actively debated. Rather simply, it is the appear-

ance of a pure spin current orthogonal to an applied electricfield, as shown in

Fig. 1.1, in the absence of any magnetic field. Its inverse counterpart is, most ob-

viously, the generation of a charge current by a spin one, both flowing orthogonal

2For example, giant-magnetoresistance-based hard drives.Roughly, non-coherent devices are

able to distinguish between “blue” (spin up) and “red” (spindown) electrons, but cannot deal with

“blue-red” mixtures, that is, coherences.
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1.2. The theoretical tools

to each other – in [11], for example, the injected spin current produced a measur-

able voltage drop in the direction transverse to its flow. They are two of a group of

closely related and quite interesting phenomena which, induced by spin-orbit cou-

pling, present themselves as potential electric field-controlled handles on the spin

degrees of freedom of carriers. They will be discussed extensively in Chapter 5,

and represent the main motivation behind our present work.

1.2 The theoretical tools

Out-of-equilibrium systems are ubiquitous in the physicalworld. Examples could

be a body in contact with reservoirs at different temperatures, electrons in a con-

ductor driven by an applied electric field or a stirred fluid inturbulent motion.

Indeed, the abstraction of an isolated system in perfect equilibrium is more often

than not just that, an abstraction, and a convenient starting point for a quantitative

treatment of its physical properties. However, we do not wish to discuss in general

terms nonequilibrium statistical mechanics [22–24]. Moremodestly, we want to

focus on an approximate quantum-field theoretical formulation, the quasiclassical

formalism [24–27], constructed to deal with nonequilibrium situations and which

has the virtues of

• having, by definition, a solid microscopic foundation;

• being perfectly suited for dealing with mesoscopic systems, i.e. systems

whose size, though much bigger than the microscopic Fermi wavelength

λF , can nevertheless be comparable to that over which quantum interference

effects extend [28,29];

• bearing a resemblance to standard Boltzmann transport theory that makes

for physical transparency.

In particular, we will be dealing with disordered fermionicgases in the presence

of spin-orbit coupling.

The established language in which the quasiclassical theory is expressed is that

of the real-time formulation of the Keldysh technique [24–26,30,31]. The latter is

a powerful formalism which generalizes the standard perturbative approach typi-

cal of equilibrium quantum field theory [24, 32–34] to nonequilibrium problems
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Introduction

and stems from Schwinger’s ideas [35]. Its range of applications goes from parti-

cle physics to solid state and soft condensed matter.

Quasiclassics, on the other hand, was historically born to deal with transport

phenomena in electron-phonon systems [27], and was originally formulated ac-

cording to the work of Kadanoff and Baym [36]. It was later extended, highly

successfully, to deal with superconductivity.3 Its main assumption is that all en-

ergy scales involved – external fields, interactions, disorder, call this~ω – be small

compared to the Fermi energyǫF . Thanks to the diagrammatic formalism inher-

ited from the underlying Keldysh structure, a systematic expansion in~ω/ǫF is

possible. This way quantum corrections due to weak localization and electron-

electron interaction can also be included [26]. More generally though, the theory

is built so as to naturally take into account coherences, andhas the great merit

of making Boltzmann-like kinetic equations available alsofor systems in which

the standard definition of quasiparticles – i.e. excitations sharply defined in en-

ergy space thanks to a delta-like momentum-energy relation– is not possible. Of

course, it has shortcomings too. A rather important one is its relying on perfect

particle-hole symmetry. In other words, the quasiclassical equations are obtained

neglecting any sort of dependence on the modulus of the momentum of the den-

sity of statesN and of the velocityv, which are simply fixed at their values at the

Fermi surface,N0 andvF . This turns out to be a problem whenever different folds

of the Fermi surface exist – e.g. when spin-orbit coupling isconsidered – across

which variations ofN andv are necessary in order to catch the physics of some

particular phenomena. Examples of these are a number of spin-electric effects

in two-dimensional fermionic systems very promising for potential applications

in the field of spintronics, like the voltage induced spin accumulation and the

anomalous and spin Hall effects [20, 21, 37–40]. It is such phenomena that moti-

vated us to generalize the quasiclassical formalism to situations in which particle-

hole symmetry, at least in the sense now described, is broken. More precisely,

to situations in which new physics arises because the chargeand spin degrees of

freedom of carriers are coupled due to spin-orbit interaction.

3For a more detailed overview see [25], where a number of additional references can be found.
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1.3. Outline

1.3 Outline

Chapter 2 introduces the general formalism we rely on, the Keldysh technique and

the quasiclassical theory, and is complemented by the Appendices A–D.

Chapter 3 is dedicated to the low-dimensional systems in which the physics

we focus on takes place: their main characteristics, how they are realized, what

kind of Hamiltonians describe them. Additional material isgiven in Appendix E.

In Chapter 4 we present original results regarding the generalization of the

quasiclassical equations to the case in which spin-orbit coupling is present. Some

additional technical details can be found in Appendix F.

Chapter 5 starts with a rather general discussion of the spinHall effect and

related phenomena, giving also a brief overview of the experimental scene, and

then moves on to treat some specific aspects of the matter, like

• the details of the direct intrinsic spin Hall effect in the two-dimensional

electron gas, with focus on the Rashba model;

• the influence of different kinds of disorder – non-magnetic long-range, mag-

netic short-range – on spin-charge coupled dynamics in two-dimensional

electron systems;

• the effects of boundaries and confined geometries on the aforementioned

phenomena and on the more general issue of spin relaxation.

Original results are presented. Additional technical material is given in Appendix G.

The closing Chapter 6 provides with a brief summary and an overview of the

current work in progress and of possible future research.

Finally, if not otherwise specified, units of measure will bechosen so that

~ = kB = c = 1 throughout the whole text.
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Chapter 2

Enter the formalism

As its title suggests, this Chapter is mostly a technical one. The main objects of

the discussion are the Keldysh formulation of nonequilibrium problems and the

quasiclassical formalism. This presentation, though onlyintroductory, is supposed

to be self-contained. For details we refer the interested reader to the fairly rich

literature [24–26, 30, 32, 35, 36, 41–44]. We will mainly move along the lines

of [25,26]. A further reference for the basic background is [45].

2.1 Green’s functions, contours and the Keldysh for-

mulation

The Green’s function, or propagator, lies at the core of quantum field theory. It

represents a powerful and convenient way of encoding information about a given

system, and lets one calculate the expectation values of physical observables. For

a system in thermodynamical equilibrium described by a HamiltonianH the def-

inition of the one-particle propagator reads1

G(1, 1′) ≡ −i〈T
{

ψH(1)ψ†
H(1′)

}

〉 (2.1)

where〈...〉 indicates the grandcanonical ensemble average,T {...} the time-ordering

operator, andψH(1), ψ†
H(1′) are the field operators in the Heisenberg picture. We

1In the following “1” will indicate the space-time point(x1, t1). Additional degrees of free-

dom, for example pertaining to the spin, can also be includedin a “generalized” space coordinate.
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2.1. Green’s functions, contours and the Keldysh formulation

write

H = H0 +H i, (2.2)

whereH0 represents the diagonalizable part ofH whileH i contains the possibly

complicated interactions between particles, and move fromthe Heisenberg to the

interaction picture. Thanks to Wick’s theorem [33, 45] it ispossible to obtain

a perturbative expansion ofG(1, 1′) in powers ofH i, which can be pictorially

represented by connected Feynman diagrams. A crucial step in this procedure

is the so-called adiabatic switching on, in the “far” past, and off, in the “far”

future, of interactions, which assures that att → ±∞ the system lies inthe same

eigenstate of the noninteractingH0.

One can go a little further, and in the case of an additional weak and time-

dependent external perturbation being turned on at timet = t0

H = H +Hext(t), Hext(t) = 0 for t < t0, Hext ≪ H (2.3)

it is possible to calculate the response of the system to linear order inHext(t),

since this is determined by its equilibrium properties only.2 To tackle real nonequi-

librium problemsG(1, 1′) given above, Eq. (2.1), is however not enough. The

reason is the following. Let us assume that the external perturbationHext(t), not

necessarily small, is switched on and off not adiabaticallyat timest = ti and

t = tf > ti

H(t) =

{

H t ∈ (−∞, ti) ∪ (tf ,+∞)

H +Hext(t) t ∈ [ti, tf ]
, (2.4)

where possiblyti → −∞ and tf → +∞ – indeed this is what will happen

in Sec. 2.1.2. If the system was lying in a given eigenstate ofthe unperturbed

Hamiltonian att < ti, nothing guarantees that afterHext(t) had driven it out of

equilibrium it will go back to the same initial state. Schwinger suggested [35] to

avoid referring to the final state att > tf , and rather to stick to the initial one only,

i.e. to define a Green’s function on the closed time contourc shown in Fig. 2.1

(since from now on the only reference time will be the “switchon” time ti, we

will call this t0)

G(1, 1′) ≡ −i〈Tc

{

ψH(1)ψ†
H(1′)

}

〉. (2.5)

HereTc {...} is the contour time-ordering operator

2This statement corresponds to the fluctuation-dissipationtheorem [32,45].
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Enter the formalism

f0t t

c

0t ft

0t − iβ

c’

Figure 2.1: The closed-time contoursc (left) and c′ (right). The downward-

pointing branch ofc′, describing evolution in the imaginary time interval(0,−iβ),

corresponds to the thermodynamical ensemble average.

Tc

{

ψH(1)ψ†
H(1′)

}

=

{

ψH(1)ψ†
H(1′) t1 >c t1′

±ψ†
H(1′)ψH(1) t1 <c t1′ ,

(2.6)

where the± sign corresponds to bosons and fermions. The meaning of the symbol

〈...〉 is now that of a weighted average with respect to some densityoperatorρ,

which to all effects plays the role of a boundary condition imposed onG(1, 1′) –

i.e. it doesnot influence the dynamics of the field operators. If one assumes that

for t < t0 the system lies in thermal equilibrium with a reservoir at temperature

T then (we use the grandcanonical ensemble, so energies are measured from the

chemical potentialµ)

ρ(H) =
e−βH

Tr [e−βH ]
, β =

1

T
. (2.7)

To explicitly show how to manipulate Eq. (2.5) in order to seethe structure of

G(1, 1′), and to obtain its perturbative expansion, we will assume Eq. (2.7) to

hold. We emphasize that such an assumption is by no means necessary, as the

functional derivative method shows [36,41–44].

2.1.1 Closed-time contour Green’s function and Wick’s theo-

rem

Our goal is to write downG(1, 1′) in a way that will let us use Wick’s theorem

to generate its perturbative expansion in bothH i andHext(t), exactly as done in

15



2.1. Green’s functions, contours and the Keldysh formulation

ordinary equilibrium theory.

We start by considering the Hamiltonian

H(t) = H +Hext(t), H = H0 +H i, Hext(t) = 0 for t < t0 (2.8)

and the Green’s function as defined in Eq. (2.5)

G(1, 1′) ≡ 〈Tc

{

ψH(1)ψ†
H(1′)

}

〉, (2.9)

with, thanks to Eq. (2.7),

〈...〉 = Tr [ρ(H)...] =
Tr
[

e−βH ...
]

Tr [e−βH ]
. (2.10)

For a given operatorOH(t) in the Heisenberg picture one has

OH(t) = U †(t, t0)O(t0)U(t, t0) (2.11)

wheret0 is the reference time at which the Heisenberg and Schrödinger pictures

coincide, andU(t, t0) is the full time-evolution operator3

U(t, t0) ≡ T

{

exp

(

−i
∫ t

t0

dt′H(t′)

)}

, (2.12)

T{...} indicating the usual time ordering. This can be factorized as

U(t, t0) = U0(t, t0)S(t, t0)

= e−iH0(t−t0)Si(t, t0)Sext(t, t0) (2.13)

where

Si(t, t0) = T

{

exp

[

−i
∫ t

t0

dt′H i
H0

(t′)

]}

, (2.14)

Sext(t, t0) = T

{

exp

[

−i
∫ t

t0

dt′Hext
H0

(t′)

]}

. (2.15)

From Eq. (2.11), using thatS†(t, t′) = S(t′, t)

ψH(t)ψ†
H(t′) = U †(t, t0)ψ(t0)U(t, t0)U †(t′, t0)ψ

†(t0)U(t′, t0)

= S(t0, t)ψH0
(t)S(t, t′)ψ†

H0
(t′)S(t, t0). (2.16)

3For details regardingU and its manipulations see Appendix A.
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Enter the formalism

The thermodynamical weight factore−βH can be regarded as an evolution operator

in imaginary time fromt0 to t0 − iβ and thus similarly decomposed

e−βH = e−βH0Si(t0 − iβ, t0). (2.17)

This way the numerator of Eq. (2.9) reads

Tr
[

e−βHTc

{

ψH(t)ψ†
H(t′)

}]

=

Tr
[

e−βH0Si(t0 − iβ, t0)Tc

{

S(t0, t)ψH0
(t)S(t, t′)ψ†

H0
(t′)S(t, t0)

}]

=

Tr
[

e−βH0Tc

{

Si
c′Sext

c ψH0
(t)ψ†

H0
(t′)
}]

. (2.18)

In the above we wroteSi
c′ (Sext

c ) for the time evolution operator generated by

H i (Hext(t)) on the contourc′(c) of Fig. 2.1, and we letTc {...} take care of rear-

ranging the various terms in the correct time order.

To rewrite the denominator of Eq. (2.9) we exploit that a unitary time evolution

along the closed-time contourc is simply the identity

Tc

{

Si
cSext

c

}

= 1 (2.19)

and thus obtain

Tr
[

e−βH
]

= Tr
[

e−βH0Si(t0 − iβ, t0)Tc

{

Si
cSext

c

}]

= Tr
[

e−βH0Tc

{

Si
c′Sext

c

}]

. (2.20)

From Eqs. (2.18) and (2.20) we end up with

G(1, 1′) = −i
〈Tc

{

Si
c′Sext

c ψH0
(t)ψ†

H0
(t′)
}

〉0
〈Tc {Si

c′Sext
c }〉0

≡ −i
Tr
[

e−βH0Tc

{

Si
c′Sext

c ψH0
(t)ψ†

H0
(t′)
}]

Tr [e−βH0Tc {Si
c′Sext

c }] . (2.21)

As anticipated, Eq. (2.21) is formally identical to the expression one would ob-

tain in equilibrium. The only difference is the appearance of the contoursc, c′,

which take the place of the more usual real-time axis(−∞,+∞). Wick’s theo-

rem can now be applied, and perturbation theory formulated in terms of connected

Feynman diagrams.4 The algebraic structure ofG(1, 1′) is however a little more

complicated than in an equilibrium situation. We deal with it in the next section.
4Looking at Eq. (2.21) one could think that the denominator isresponsible for the cancellation

of the non connected diagrams. Actually, in contrast to the equilibrium case, these are automati-

cally “canceled”, since the evolution operatorS on the closed-time contour is 1.

17



2.1. Green’s functions, contours and the Keldysh formulation

ck

Figure 2.2: The Keldysh contour in the complext-plane.

2.1.2 The Keldysh formulation

To obtain the Keldysh contourcK [31] shown in Fig. 2.2 we first neglect initial

correlations5 and sendt0 → −∞, then extend the right “tip” ofc to +∞ by using

the unitarity of the time-evolution operator. The Green’s functionG(1, 1′), now

defined oncK , can be mapped onto a matrix in the so-called Keldysh space

GcK
(1, 1′) 7→ Ĝ ≡

(

Ĝ11 Ĝ12

Ĝ21 Ĝ22

)

. (2.22)

A matrix elementĜij corresponds tot ∈ ci, t
′ ∈ cj . Explicitly

Ĝ11(1, 1
′) = −i〈T

{

ψH(1)ψ†
H(1′)

}

〉, (2.23)

Ĝ12(1, 1
′) = G<(1, 1′) = ∓i〈ψ†

H(1′)ψH(1)〉, (2.24)

Ĝ21(1, 1
′) = G>(1, 1′) = −i〈ψH(1)ψ†

H(1′)〉, (2.25)

Ĝ22(1, 1
′) = −i〈T̃

{

ψH(1)ψ†
H(1′),

}

〉, (2.26)

whereT̃ {...} is the anti-time-ordering operator. A convenient representation was

introduced by Larkin and Ovchinnikov [46]:

Ǧ ≡ Lσ3ĜL
† (2.27)

5In our language this means neglecting the part ofc′ extending fromt0 to t0 − iβ. In the func-

tional derivative method this corresponds to considering as boundary condition a noncorrelated

state.
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Enter the formalism

with L = 1/
√

2(σ0 − iσ2) andσi, i = 0, 1, 2, 3, the Pauli matrices. This way the

Green’s function reads

Ǧ =

(

GR GK

0 GA

)

. (2.28)

GR andGA are the usual retarded and advanced Green’s functions

GR(1, 1′) = −iθ(t − t′)〈
{

ψH(1), ψ†
H(1′)

}

〉, (2.29)

GA(1, 1′) = iθ(t′ − t)〈
{

ψH(1), ψ†
H(1′)

}

〉, (2.30)

with
{

ψH(1), ψ†
H(1′)

}

= ψH(1)ψ†
H(1′) + ψ†

H(1′)ψH(1), whileGK , the Keldysh

component ofǦ, is

GK(1, 1′) = −i〈
{

ψH(1), ψ†
H(1′)

}

〉. (2.31)

GR, GA carry information about the spectrum of the system,GK about its dis-

tribution. The equation of motion forGK , the quantum-kinetic equation, can be

thought of as a generalization of the Boltzmann equation. Infact, in the semi-

classical limit, and provided a quasiparticle picture is possible, it reduces to the

Boltzmann result. The representation given by Eq. (2.28) isparticularly conve-

nient since its triangular structure is preserved wheneverone deals with a string of

(triangular) operatorsO1, O2, ...On (standard matrix multiplication is assumed)

O1O2...On = O′ =

(

(O′)R (O′)K

0 (O′)A

)

. (2.32)

Such a string is the kind of object Wick’s theorem produces. In other words, in

this representation the structure of the Feynman diagrams is the simplest possible.

We will not discuss this in detail (see [25] for more), and will rather move on to

study the equation of motion of̌G in the quasiclassical approximation. From now

on spin-1/2 fermions will be considered.

2.2 From Dyson to Eilenberger

Thanks toǦ, a full quantum-mechanical description of our system is – formally –

possible. In principle all one needs is the solution of the Dyson equation, i.e. the
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2.2. From Dyson to Eilenberger

equation of motion for the Green’s function. Its right- and left-hand expressions

in the general case read
[

Ǧ−1
0 (1, 2) − Σ̌(1, 2)

]

⊗ Ǧ(2, 1′) = δ(1 − 1′), (2.33)

Ǧ(1, 2) ⊗
[

Ǧ−1
0 (2, 1′) − Σ̌(2, 1′)

]

= δ(1 − 1′), (2.34)

where the symbol “⊗” indicates convolution in space-time and matrix multiplica-

tion in Keldysh space

Ǎ(1, 2) ⊗ B̌(2, 1′) ≡
∫

d2

(

AR AK

0 AA

)

(1, 2)

(

BR BK

0 BA

)

(2, 1′) (2.35)

and theδ-function has to be interpreted as

δ(1 − 1′) =

(

δ(1 − 1′) 0

0 δ(1 − 1′)

)

. (2.36)

Ǧ−1
0 is the inverse of the free Green’s function6

Ǧ−1
0 (1, 2) ≡ [i∂t1 −H0(1)] δ(1 − 2), (2.37)

while the self-energy̌Σ contains the effects due to interactions (electron-phonon,

electron-electron and so on, but also disorder). Explicitly, for electrons in the

presence of an electromagnetic field (e = |e|, µ is the chemical potential)

H0(1) ≡ 1

2m
[−i∇x1

+ eA(1)]2 − eΦ(1) − µ. (2.38)

The Dyson equation contains too much information for our purposes. What we

are looking for is a kinetic equation with as clear and simplea structure as possible

– that is, some sort of compromise between physical transparency and amount of

information retained. The model is that of the already citedBoltzmann equation,

which we aim at generalizing starting from the full microscopic quantum picture

delivered by Eqs. (2.33) and (2.34). While physical quantities are written in terms

of equal-time Green’s functions, the Dyson equation cannot, and thus approxima-

tions are needed. With this in mind, we introduce the Wigner coordinates

R =
x1 + x1′

2
, T =

t1 + t1′

2
, (2.39)

r = x1 − x1′ , t = t1 − t1′ (2.40)
6External fields, like the electromagnetic one, can also be included. See below.

20



Enter the formalism

and Fourier-transform with respect to the relative ones

Ǧ(1, 1′)
FT−→ Ǧ(X, p) =

∫

dxe−ipxǦ (X + x/2, X − x/2) . (2.41)

Here

X = (T,R), x = (t, r), p = (ǫ,p),

∂X = (−∂T ,∇R), ∂x = (−∂ǫ,∇r)

and the metric is such that

px = −ǫt + p · r, ∂X∂p = −∂T∂ǫ + ∇R · ∇p. (2.42)

The coordinates(X, p) define the so-called mixed representation. Physical quan-

tities must be functions of the center-of-mass timeT , not of the relative timet –

or, in other words, must be functions of(T, t = 0).

A convolutionA(1, 2) ⊗B(2, 1′) in Wigner space can be written as [47]

(A⊗ B)(X, p) = ei(∂A
X

∂B
p −∂A

p ∂B
X)/2A(X, p)B(X, p), (2.43)

where the superscript on the partial derivative symbol indicates on which object it

operates. We now subtract Eqs. (2.33) and (2.34) to obtain
[

Ǧ−1
0 (1, 2) − Σ̌(1, 2) ⊗, Ǧ(2, 1′)

]

= 0, (2.44)

then move to Wigner space and use Eq. (2.43) to evaluate the convolutions. If

A(X, p) andB(X, p) are slowly varying functions ofX the exponential in Eq. (2.43)

can be expanded order by order in the small parameter∂X∂p ≪ 1, thus generating

from Eq. (2.44) an approximated equation. If possible, thisis then integrated first

over ǫ – i.e. written in terms oft = 0 quantities – to produce the kinetic equa-

tion, then over the momentump to deliver at last the dynamics of the physical

observables.

To clarify the procedure we consider the simplest example possible: free elec-

trons in a perfect lattice (no disorder) and in the presence of an electric field de-

scribed by a scalar potential7

Ǧ−1
0 (1, 1′) =

[

i∂t1 −
(−i∇x1

)2

2m
+ eΦ(1) + µ

]

δ(1 − 1′), Σ̌(1, 1′) = 0. (2.45)

7The presence of a vector potential will be handled in the nextSection.
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2.2. From Dyson to Eilenberger

We move to Wigner coordinates and Fourier-transformx→ p, so that

Ǧ−1
0 = ǫ− p2

2m
+ eΦ(X) + µ. (2.46)

Eq. (2.44) is then written expanding the convolution [Eq. (2.43)] to linear order

in the exponent,8 since we make the standard semiclassical assumption thatΦ(R)

varies slowly in space and time on the scale set by1/pF , 1/ǫF

−i
[

Ǧ−1
0

⊗, Ǧ
]

≈ ∂T Ǧ− e∂T Φ∂ǫG−∇pǦ
−1
0 · ∇RǦ+ ∇RǦ

−1
0 · ∇pǦ

= ∂T Ǧ− e∂T Φ∂ǫG+ v · ∇RǦ + e∇RΦ(R) · ∇pǦ (2.47)

with Ǧ = Ǧ(X, p) andv = p/m. At this point we define the distribution function

f(X,p)

f(X,p) ≡ 1

2

(

1 +

∫

dǫ
2πi

GK(X, p)

)

, (2.48)

which in equilibrium reduces to the Fermi function (see Appendix B), and con-

sider the Keldysh component of Eq. (2.47). Integrated overǫ/2πi it reads

(∂T + v · ∇R + e∇RΦ(R) · ∇p) f(X,p) = 0, (2.49)

that is, the collisionless Boltzmann equation. As known, there follows the stan-

dard continuity equation

∂Tρ(X) + ∇R · j(X) = 0, (2.50)

where the particle density and particle current are
∫

dp
(2π)3

f(X,p) = ρ(X) (2.51)
∫

dp
(2π)3

vf(X,p) = j(X). (2.52)

WhenΣ(1, 1′) 6= 0 care is needed. The procedure sketched above goes through

as shown only as long as the self-energy has a weakǫ dependence. Otherwise

the term
[

Σ̌ ⊗, Ǧ
]

cannot be easily – if at all –ǫ-integrated.9 Such a requirement

8The gradient approximation,ei(∂A
X∂B

p −∂A
p ∂B

X)/2 ≈ 1 + i
2

(

∂A
X∂

B
p − i∂A

p ∂
B
X

)

.
9Basically, ifΣ has a weakǫ-dependence the spectral weightGR −GA has a delta-like profile

in ǫ. This can be interpreted as defining quasiparticle excitations. Details can be found in [25,27].
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is avoided by the quasiclassical technique. Its idea is to “swap” the integration

procedure
∫

dp
(2π)3

∫

dǫ
2πi

≈ N0

∫

dp̂
4π

∫

dξ
∫

dǫ
2πi

→ N0

∫

dp̂
4π

∫

dǫ
2πi

∫

dξ.

(2.53)

Here,ξ ≡ p2/2m − µ andN0 is the density of states at the Fermi surface per

spin and volume (for example in three dimensionsN0 = mpF/2π
2). The cru-

cial assumption of the quasiclassical approximation is that the all energy scales

involved in the problem be much smaller than the Fermi energy. This means that

the Green’s function, which in equilibrium is strongly peaked around the Fermi

surface|p| = pF , will stay so even after the interactions have been turned on. In

other wordsΣ̌ will be a slowly varying function of|p| when compared tǒG, and

it will be possible to easily integrate (over|p|) the commutator
[

Σ̌ ⊗, Ǧ
]

.

Let us then define the quasiclassical Green’s functionǧ as

ǧ(R, p̂; t1, t2) ≡
i

π

∫

dξǦ(R,p; t1, t2). (2.54)

As manifest, the quasiclassical approximation does not in general involve the time

coordinates. SincěG(R,p; t1, t2) falls off as1/ξ whenξ → ∞ the integral does

not converge, and high-energy contributions – i.e. far awayfrom the Fermi surface

– must be discarded. This can be achieved by introducing a physically sensible

cutoff. The assumption that all energy scales be small compared to the Fermi en-

ergy ensures that only the low-energy region determines thedynamics of the sys-

tem. In other words, introducing a cutoff cures the divergence of Eq. (2.54) and

at the same time tells us thatǧ(R, p̂; t1, t2) will carry the dynamical (nonequilib-

rium) information we are interested in. The discarded high-energy contributions10

can however be relevant: no matter what technical procedureis involved – that is,

what kind of Boltzmann-like kinetic equation is obtained – Eq. (2.50) must in the

end hold.

Still assuming for a momenťΣ = 0, we go back to Eq. (2.47), take once again

the Keldysh component and integrate it according to
∫

dp
(2π)3

∫

dǫ
2πi

≈ N0

∫

dp̂
4π

∫

dǫ
2πi

∫

dξ. (2.55)

10Far from the Fermi surface equilibrium sets in, so these are equivalently called “equilibrium”

contributions.
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2.2. From Dyson to Eilenberger

After theξ-integration we have

−iπ [∂T + e∂Tφ(X)∂ǫ + vF p̂ · ∇R] gK(X, ǫ, p̂) = 0, (2.56)

the Eilenberger equation. The absence of a self-energy termlets us move to the

mixed representation in time and perform a gradient expansion without worries,

ǧ(t1, t2) → ǧ(T, ǫ).

After comparing Eq. (2.56) with the Boltzmann equation (2.49) a couple of

comments are in order.

1. The force term originating from the∼ ∇pǦ bit of Eq. (2.47) has been

neglected in Eq. (2.56) because it is orderω/ǫF smaller than the others,ω

being a typical energy scale of the problem (for example associated with

an external field or with disorder). The driving effect of an applied electric

field seems this way to be beyond the quasiclassical approximation. This is

not the case, as will be shown in the next section.

2. The velocity is fixed in modulus at the Fermi surface.

3. The second term on the l.h.s. of Eq. (2.56) does not appear in Eq. (2.49). It

carries the information coming from the high-energy regionwhich is not in-

cluded in the quasiclassical Green’s functionǧ – as already pointed out, the

loss of such information has to do with the swapping procedure, Eq. (2.55),

which requires the introduction of a cutoff in the definition(2.54).

The continuity equation is readily obtained from Eq. (2.56)and leads to the

following relations betweengK and the physical quantities

ρ(X) = −2N0

[

π

2

∫

dǫ
2π

∫

dp̂
4π
gK(X, ǫ, p̂) − eΦ(X)

]

,

j(X) = −N0π

∫

dǫ
2π

∫

dp̂
4π
vF p̂gK(X, ǫ, p̂). (2.57)

When Σ̌ 6= 0 Eq. (2.47) is modified, and a gradient expansion is first per-

formed in the space coordinates only. The self-energy term reads

−i
[

Σ̌ ⊗, Ǧ
]

≈ −i
[

Σ̌(R,p; t1, t2) ◦, Ǧ(R,p; t1, t2)
]

+

+
1

2

{

∇pΣ̌ ◦, ·∇RǦ
}

− 1

2

{

∇RΣ̌ ◦, ·∇pǦ
}

≈ −i
[

Σ̌(R,p; t1, t2) ◦, Ǧ(R,p; t1, t2)
]

, (2.58)
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where the symbol◦ indicates convolution in time, and where only the leading

order term has been kept, while for the rest one has

−i
[

G−1
0

⊗, Ǧ
]

≈ −i
[

G−1
0

◦, Ǧ
]

+
1

2

{

∇RG
−1
0

◦, ·∇pǦ
}

+

+
1

2

{

∇pG
−1
0

◦, ·∇RǦ
}

. (2.59)

Both Eq. (2.58) and Eq. (2.59) can be integrated overξ exploiting the peaked

nature ofǦ, since thanks to the quasiclassical assumption – weakξ-dependence

of the self-energy – one has

− i

π

∫

dξ
[

Σ̌(R,p; t1, t2) ◦, Ǧ(R,p; t1, t2)
]

≈

−
[

Σ̌(R, p̂, pF ; t1, t2) ◦, ǧ(R, p̂; t1, t2)
]

. (2.60)

We now assume external perturbations and the self-energy tobe slowly varying

in time, so that in Eqs. (2.58) and (2.59) the following gradient expansion can be

performed

−i [A ◦, B] ≈ ∂ǫA∂TB − ∂TA∂ǫB. (2.61)

The Eilenberger equation therefore reads

[∂T + e∂Tφ(X)∂ǫ + vF p̂ · ∇R] ǧ(X, ǫ, p̂) + i
[

Σ̌(X, ǫ, p̂, pF ), ǧ(X, ǫ, p̂)
]

= 0.

(2.62)

We note that since the inhomogeneous term on the r.h.s. of theDyson equation

drops out of Eq. (2.44), the quasiclassical Green’s function will be determined

only up to a multiplicative constant. This is determined by the normalization

condition

[ǧ ◦ ǧ](t, t′) = δ(t− t′). (2.63)

Such a condition can be directly established in equilibriumand thus be used as

a boundary condition for the solution of the kinetic equation, which far from the

perturbed region approaches its equilibrium form. For a detailed discussion see

[24]. When the self-energy describes elastic short-range scattering in the Born

approximation one has (see Appendix D)

Σ̌(X, ǫ, p̂, pF ) = − i

2τ
〈ǧ(X, ǫ, p̂)〉, (2.64)
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2.2. From Dyson to Eilenberger

where〈. . . 〉 indicates the average over the momentum anglep̂ andτ is the quasi-

particle lifetime. Then, taking the Keldysh component of Eq. (2.62) and exploiting

Eq. (2.64) we finally obtain11

[∂T + e∂Tφ(X)∂ǫ + vF p̂ · ∇R] gK(X, ǫ, p̂) = −1

τ

[

gK(X, ǫ, p̂) − 〈gK(X, ǫ, p̂)〉
]

.

(2.65)

In the following Chapters we will start from an equation withthis same basic

structure and modify it to allow for the description of various spin-related phe-

nomena.

2.2.1 Vector potential and gauge invariance

So far only the coupling to an external scalar potential has been considered. We

now treat the more general case of both electromagnetic potentials present, and

see how to deal with gauge invariance at the quasiclassical level of accuracy. For

simplicity the self-energy̌Σ is taken to be zero, though its presence would not

change the reasoning. Also for simplicity we assume to be in two dimensions,

which means that Eq. (2.55) is modified according to

∫

dp
(2π)2

∫

dǫ
2πi

≈ N0

∫

dp̂
2π

∫

dǫ
2πi

∫

dξ, (2.66)

with N0 = m/2π.

We start from the Dyson equation for the Hamiltonian (2.38),whose left-hand

version reads
[

i∂t1 + eΦ(1) − 1

2m
(p + eA(1))2 + µ

]

⊗G(1, 2) = δ(1 − 2). (2.67)

We then follow the standard procedure, just as done in the previous Section:

1. take the left- and right-hand Dyson equations and subtract the two;

2. move to Wigner coordinates;

3. expand the convolution to gradient expansion accuracy.

11We use that in a normal state with no spin-orbit couplinggR(t, t′) = −gA(t, t′) = δ(t− t′).
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One obtains the equivalent of Eq. (2.47)

−i
[

G−1
0

⊗, G
]

→ −i
[

G−1
0 , G

]

p

≈ ∂TG+
1

m
[pi + eAi(X)]∇Ri

G+

+

{

−∂T Φ(X) +
1

m
[pi + eAi(X)] ∂TAi(X)

}

∂ǫG+

+

{

e∇Rj
Φ(X) − 1

m
[pi + eAi(X)]∇Rj

Ai(X)

}

∇pj
G

= 0, i, j = x, y, z. (2.68)

Both here and below a sum over repeated indices is implied.

Before dealing with quasiclassics proper, it is instructive to try and derive from

the above the Boltzmann equation. It is the easiest way to realize that the problem

of gauge invariance is rather delicate. A distribution function f(X,p) is defined

as in Eq. (2.48) and the Keldysh component of Eq. (2.68) is integrated overǫ/2πi.

The surface terms give no contribution

∫

dǫ(...)∂ǫG
K = (...)[GK(+∞) −GK(−∞)] = 0, (2.69)

therefore one ends up with

(

∂T +
1

m
[pi + eAi(X)]∇Ri

+

+

{

e∇Rj
Φ(X) − 1

m
[pi + eAi(X)]∇Rj

Ai(X)

}

∇pj

)

f(X,p) = 0.

Such an expression is apparentlynot gauge invariant. In particular we would

expect the term proportional to∇pj
f(X,p) to represent the Lorentz force, but

this is not the case. The point is that the distribution function f(X,p) is itself not

gauge invariant. To obtain one that is – and to find its equation of motion – it is

convenient to go one step back, to Eq. (2.68), and work directly on the Green’s

function. We refer to Appendix C for additional details on the following.

In the mixed representation and to the gradient expansion accuracy a gauge-
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2.2. From Dyson to Eilenberger

invariant Green’s functioñG(p,X) can be introduced

G̃(p,X) =

∫

dxe−ipxG̃(x,X)

≈
∫

dxe−i[p−eA(X)]xG(x,X)

= G(ǫ− eΦ(X),p− eA(X);X)

≈ G(p,X) − eΦ(X)∂ǫG− eA(X) · ∇pG. (2.70)

Its equation of motion is easily obtained and reads

[∂T + v · (∇R − eE∂ǫ) + F · ∇p] G̃(ǫ,p;X) = 0, (2.71)

where

v =
p

m
,

E(X) = − (∇RΦ(X) + ∂T A(X)) ,

B(X) = ∇R ∧ A(X),

F(X, p) = −e (E(X) + v ∧ B(X)) . (2.72)

We now define the gauge invariant distribution function

f̃(X,p) ≡ 1

2

(

1 − i

2π

∫

dǫG̃(X, p)

)

, (2.73)

take the Keldysh component of Eq. (2.71) and perform once more theǫ-integration

with the more satisfactory result

[∂T + v · ∇R + F · ∇p] f̃(X,p) = 0. (2.74)

The procedure to obtain a gauge invariant Eilenberger equation is similar but a

little more delicate. We saw this already in the previous Section: to standard

quasiclassical accuracy terms that in the Dyson equation are proportional to∇pǦ

get dropped after theξ-integration. However, it is precisely these terms that allow

one to construct a gauge invariant equation, and they cannotbe discarded.

Knowing this, theξ-integration of Eq. (2.71) leads to
[

∂T + vF p̂ · ∇R − evFE · p̂∂ǫ + e
E · p̂
pF

+
F(pF , ϕ) · ϕ̂

pF

∂ϕ

]

g̃K(ǫ, ϕ;X) = 0.

(2.75)
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Note thatΦ is the scalar potential, whileϕ is the angle of the momentum,p̂ =

(cosϕ, sinϕ), ϕ̂ = (− sinϕ, cosϕ) . The last term in square brackets contains

the Lorentz force. We note that to leading order accuracy theeffect of an applied

electric field is quasiclassicaly handled through the “minimal substitution”∇R →
∇R − eE∂ǫ.

Integrating Eq. (2.75) over the energy and averaging over the angle – taking

now into account the prefactors given by Eqs. (2.66) and (2.54) – must lead to the

continuity equation. This reads

∂T

[

−N0π〈
∫

dǫg̃K(ǫ, ϕ;X)〉
]

+ ∇R ·
[

−N0π〈
∫

dǫvF p̂g̃K(ǫ, ϕ;X)〉
]

=

∂Tρ(X) + ∇R · j(X) = 0. (2.76)

The observablesρ(X) andj(X) are thus conveniently expressed in terms of the

gauge-invariant̃gK . Moreover, since from Eq. (2.70) one has

g̃(ǫ, p̂) =
i

π

∫

dξG̃(ǫ,p)

=
i

π

∫

dξG(ǫ− eΦ(X),p− eA(X))

=
i

π

∫

dξ [G(ǫ,p) − eΦ(X)∂ǫG− eA · ∇pG]

=

[

1 − eΦ(X)∂ǫ + e
A(X)

pF

(p̂ − ϕ̂∂ϕ)

]

g(ǫ,p), (2.77)

then

ρ(X) = −2N0

[

π

2
〈
∫

dǫ
2π
gK(ǫ, ϕ;X)〉 − eΦ(X)

]

(2.78)

and

j(X) = −N0π〈
∫

dǫ
2π

[

vF p̂gK(X, ǫ, p̂) +

(

eA(X) · ϕ̂
m

)

ϕ̂gK(ǫ, ϕ;X)

]

〉.
(2.79)

The expression for the density is the same as in Section 2.2, whereas the one

for the current is modified by a sub-leading contribution dueto the transverse

component of the vector potential.

A similar procedure can be followed in order to obtain aSU(2)-covariant

formulation of quasiclassics. This could prove very usefulfor systems in which

spin-orbit interaction is present, as the latter can often be introduced via aSU(2)
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gauge transformation, much in the same way as the electromagnetic field has now

been introduced through theU(1) gauge. We will briefly comment on this in

Chapter 6.
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Chapter 3

Quantum wells

Since our main goal is the description of spin-electric effects in low-dimensional

systems, it is time to spend a few words answering the following questions:

1. what are these “low-dimensional systems” we talk about?

2. how do we model and describe them?

Let us see.

3.1 2D systems in the real world

The engineering of low-dimensional semiconductor-based structures is a vast and

nowadays well established field of solid state physics. We refer the interested

reader to [29,48–50] and limit ourselves to an extremely succinct overview. Two-

dimensional, one-dimensional (quantum wires) and zero-dimensional (quantum

dots) systems can be realized, the first – which we will refer to as “quantum wells”

– being the object of our interest. These are typically realized by growing layers

of materials with different band structures, whose properties can then be fine-

tuned exploiting strains – that is, effects due to mismatched lattice parameters in

different layers – and doping, with the goal of creating a potential well for the con-

duction electrons (holes) of the desired characteristics.This is shown schemati-

cally in Fig. 3.1 for the typical example of a GaAs/GaAlAs modulation-doped

heterostructure. More generally one speaks of III-V (e.g. GaAs-based) and II-

VI (e.g. CdTe-based) heterostructures. A typical quantum well has a width in the
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3.1. 2D systems in the real world

EF Ec

n−AlGaAs

2DEGGaAs

GaAs substrate

GaAs/AlGaAs superlattice

z

Figure 3.1: Scheme of a modulation-doped heterostructure based on the experi-

mental setup from [51]. Of course, other types of structuresexist, one popular

example being the symmetric sandwich AlGaAs/GaAs/AlGaAs.

range2÷20 nm, and electron mobilities which can be as high as106÷108cm2/Vs

– that is, roughly4 orders of magnitude higher than high purity bulk GaAs – ,

which translate to mean free paths of more than100µm [52, 53]. Such high mo-

bilities are achieved thanks to modulation doping (see Fig.3.2). This spatially

separates the conduction electrons from the donor impurities whence they come,

the latter being instead a source of scattering in standard p-n junctions. Finally,

its energy depth is usually in the range0.2 ÷ 0.5 eV, whereas the gapEg, i.e. the

difference between the conduction band minimum and the top of the valence band

inside the well, is1 ÷ 3 eV.

For semiconductors, it is in low-dimensional systems of thekind now de-

scribed that the spin Hall effect and its related phenomena mentioned in Chapter 1

have been observed, whereas experiments in metals have beenbased on thin films

and nanowires with typical thicknesses of4 ÷ 40 nm. We will come back to this

in Chapter 5.
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n−AlGaAs GaAs

E c,1

E F,1 E c,2

E F,2

z

n−AlGaAs GaAs

2DEG

E c,1

E F

E c,2

z

Figure 3.2: Schematic representation of the effect of modulation doping on the

conduction band at an n-GaAlAs/GaAs interface. The Fermi level on the n-

GaAlAs side is higher than on the GaAs one, the former having abigger gap.

Matching the two sides means that the electrons released by the donor impurities,

e.g. Si, move to the GaAs layer until equilibrium is reached and the Fermi lev-

els are aligned. The electrons are thus trapped at the interface in an asymmetric

quantum well, and at the same time separated from the donor impurities.
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3.2. The theory: effective Hamiltonians

3.2 The theory: effective Hamiltonians

The motion of charge carriers in a quantum well is a rather complicated matter.

The goal is to describe it in terms of an effective Hamiltonian which, obtained

through various approximations, catches to leading order all the relevant physics

one is interested in. In our case that means the effects due tothe band structure

of the system, to disorder, to the external fields and, most importantly, to spin-

orbit coupling. This is achieved via the Luttinger-Kohn method [54], also called

k · p model, which will be now briefly outlined without a proper discussion –

some additional details are given in Appendix E, but for a thorough treatment

see [40,49,54–59]. We start with a couple of basic considerations.

1. We are concerned with conduction band electrons in zincblende crystals,

e.g. III-V and II-VI compounds. The zincblende structure has no inversion

symmetry. Energy level degeneracies present in diamond-like materials like

Ge and Si, which are due to the combined effect of time-inversion T and

space-inversionS symmetry, can be lifted in zincblende crystals by spin-

orbit interaction alone, that is, without the need for external magnetic fields.

Indeed, given an energy levelE±(k), ± ↔ spin up/down, one has

E±(k)
T→ E∓(−k)

S→ E∓(k) ⇒ E±(k) = E∓(k) (3.1)

only for inversion-symmetric materials. A similar degeneracy-lifting effect

can be achieved in two-dimensional systems when the inversion symmetry

along the growth direction, i.e. perpendicular to the system itself, is broken

by the confining potential.

2. The carrier concentration in a two-dimensional system istypically 1015 ÷
1016/m2, that is, several orders of magnitude smaller than the number of

available states in a given band [48]. Thus, only the states close to the band

minimum (or the maximum in the case of holes) will be occupied.

3. We wish to treat the carriers as free particles with a renormalized mass, i.e.

in the so-called effective mass approximation commonly used in solid state

physics. This is of course sound in perfect crystals, and proves to be so

as long as the spatial variations of the perturbing fields, due to impurities,
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strains or external fields, are much slower than that of the lattice potential,

and the energy of the carriers remains much smaller than the gap energyEg.

The single-particle Schrödinger equation for an electronin a lattice described by

the potentialU(x) and in the presence of spin-orbit coupling reads

H0Ψνk(x) =

[

(−i~∇)2

2m0
+ U(x) +

~

4m2
0c

2
∇U(x) ∧ (−i~∇) · σ

]

Ψνk(r)

= ǫνkΨνk(x), (3.2)

whereν is the band index,m0 the bare electron mass, and where we momentarily

reintroduced~ andc to be explicit, though these will now be dropped once more.

According to Bloch’s theorem, the translational symmetry of the problem requires

the wave function to be of the form

Ψνk(x) = eik·xuνk(x) (3.3)

with uνk(x) a function with the periodicity of the lattice. In GaAs the bottom of

the conduction band – and the maximum of the valence one, since it is a direct-

gap semiconductor – lies at theΓ pointk = 0. Then (3.3) can be expanded in the

basis1 uν0(x) = 〈x|uν0〉

uνk(x) =
∑

ν′

cνν′kuν′0(x). (3.4)

In such a basis, and using ket notation, one obtains the matrix elements

[H0]νν′ = 〈uν0|H0|uν′0〉

=

(

ǫν0 +
k2

2m

)

δνν′ +
1

m0
k · πνν′ , (3.5)

whereǫν0 is the energy offset of the band atk = 0
[

(−i∇)2

2m0
+ U +

1

4m0
∇U ∧ (−i∇) · σ

]

|uν0〉 = ǫν0|uν0〉 (3.6)

and

πνν′ = 〈uν0|(−i∇) +
1

4m0
∇U ∧ σ|uν′0〉

≈ 〈uν0|(−i∇)|uν′0〉. (3.7)

1The Luttinger-Kohn machinery can equally well deal with situations in which the band mini-

mum is atk0 6= 0, or in which more minima are present – e.g. in Si. See [54].
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From Eqs. (3.6) and (3.7) one sees that the spin-orbit coupling is taken into ac-

count in the diagonal termsǫν0 only (see Appendix E). For the expansion (3.4) to

be of any real use, the basisuν0(x) has to be truncated, and only the bands closest

to the gap are considered. This leads to the so-called8×8 Kane model [56] when

two degenerates-wave conduction bands and 6p-wave valence bands are taken

into account.2 The latter are partially split by spin-orbit coupling into two groups,

the first made of four degenerate levels, the light and heavy hole bands, and the

other of two so-called split-off levels. This is schematically shown in Fig. 3.3.

The simple8 × 8 model includes only three parameters, the gap and split-offen-

ergies,Eg and∆, and the matrix element of the momentum operator betweens-

andp-wave states. It loses however accuracy with growing gap energyEg, and is

not sufficient for properly treating holes in the valence bands.

The inclusion of the effects due to perturbing potentials – i.e. anything other

than the crystal potentialU – is done straightforwardly. Let us consider the Hamil-

tonian

(H0 + V )ψ = ǫψ, (3.8)

with V slowly varying as compared toU . One then assumes that the band structure

of the problem is not appreciably modified, so that the functionsuν0 can still be

used as a basis, and factorizes the high- (“fast”) and low- (“slow”) energy modes

of the wavefunctionψ. In ket notation

|ψ〉 =
∑

ν

φν(x)|uν0〉, (3.9)

whereφν(x) are envelopes varying on a scale much bigger than the latticespac-

ing, and which encode all information pertaining to the low energy phenomena

introduced byV . Their equation of motion reads

Hνν′φν′(x) = ǫφν(x). (3.10)

To be explicit, considering the more general case of an applied electromagnetic

field and taking forV the total non-crystal potential – e.g. arising from impurities,

confinement, strains and, of course, the driving electric field – the matrix elements

2It is sometimes necessary to consider the coupling between alarger number of bands, leading

to higher-dimensional models.
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Eg
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Γ8

Γ6

k
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∆

k

 heavy holes

light holes

conduction band

split−off  band

Figure 3.3: Schematic band structure at theΓ-point for the8 × 8 Kane model.

Spin-orbit interaction splits the sixp-like valence levels into the light and heavy

hole bands, with total angular momentumJ = 3/2, and the split-off band, with

J = 1/2. The circles identify the energy offsetsǫν0. TheΓ’s indicate the symme-

try properties of the levels (see Appendix E).
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Hνν′ become

Hνν′ =

[(

ǫν0 +
k̃2

2m
+ V

)

δνν′ +
1

m0
k̃ · πνν′

]

, (3.11)

with k̃ = −i∇ + eA. We remark that, in line with the factorization (3.9), the

offset energiesǫν0 are not modified, and thus the leading spin-orbit coupling term

– actually the only such term retained – is left untouched.

As a final step in obtaining a lower-dimensional effective Hamiltonian describ-

ing the motion of electrons in the conduction band, the full Hamiltonian (3.11) is

block-diagonalized using the Löwdin technique3 [60]. For clarity’s sake we stick

to the8 × 8 model and write in explicit matrix notation

H

(

φc

φv

)

=

(

[Hc]2×2 [Hcv]2×6

[H†
cv]6×2 [Hv]6×6

)(

φc

φv

)

= ǫ

(

φc

φv

)

, (3.12)

with φc andφv respectively a two-dimensional and a six-dimensional spinor for

the conduction and valence levels. If one assumes the energyseparation between

these two sets – i.e.Eg ÷Eg + ∆ – to be the biggest energy scale of the problem,

or, in other words, that the two groups of states are far away from each other and

thus weakly coupled,Hcv, H
†
cv ≪ Eg ∼ Hv, it is possible to write a2×2 equation

H(ǫ)φ̄ = ǫφ̄, (3.13)

with

H(ǫ) = Hc +Hcv (ǫ−Hv)
−1H†

cv (3.14)

and φ̄ a renormalized conduction band spinor. When (3.14) is expanded for en-

ergies close to the band minimum and inserted back into Eq. (3.13), the effective

eigenvalue equation for̄φ is obtained. All effects of the coupling with the valence

bands are thus taken into account by a renormalization of theeffective mass, the

3This is basically a reformulation of standard perturbationtheory particularly well suited to

treating degenerate states. See Appendix E.
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g-factor, the spin-orbit coupling constant and the spinorφ. Explicitly4 [57]
{

[(−i∇) + eA]2

2m∗ + V − µBg
∗

2
σ · B + λσ · [(−i∇) + eA] ∧∇V

}

φ̄ = ǫφ̄,

(3.15)

with µB the Bohr magneton,m∗ andg∗ the renormalized mass andg-factor,B =

∇ ∧ A the magnetic field andλ the spin-orbit coupling constant. All of these

quantities are explicitly written in terms of the matrix elements of the Hamiltonian

in Appendix E, Eqs. (E.19)–(E.21). The quantityλ is of fundamental importance

for our purposes. The spin-orbit term in the above has the very same structure of

the Thomas term appearing in the Pauli equation,5 where, however, this is only

a very small relativistic correction in which the vacuum constantλ0 appears. On

the contrary, in a solidλ can be as much as six orders of magnitude larger thanλ0.

Moreover

λ ∼
(

1

E2
g

− 1

(Eg + ∆)2

)

. (3.16)

This simple equation, together with Eq. (3.15), shows how spin-orbit coupling in

the band structure – i.e. in the diagonal offset energiesǫν0 where∆ appears – can

induce spin-orbit effects in conduction band electrons as soon as these are subject

to some non-crystalline potentialV . One talks aboutextrinsiceffects whenV is

due to impurities, and aboutintrinsic ones when it is due to an external poten-

tial like, say, the confining one in the case of a quantum well.The Hamiltonian

appearing in Eq. (3.15) can be conveniently rewritten as

H =
k2

2m∗ + V − b′(k) · σ, (3.17)

wherek = −i∇+eA andb′(k) contains the contributions due to both the external

field (B) and thek-dependent internal (spin-orbit induced) one,

b′(k) = bext + b(k). (3.18)

For the case of a two-dimensional system realized via an asymmetric confining

potentialV = V (z) the Rashba model is obtained

b(k) · σ → bR(k) · σ = α(kxσy − kyσx) = αẑ ∧ k · σ, (3.19)

4We are not interested in the physics of the Darwin term (∼ ∇U · (−i∇)), so we neglect it.

Also, the offset energy of the conduction band is set to zero,ǫc0 = 0.
5Formally, this is because both Eq. (3.15) and the Pauli equation are obtained using the same

kind of perturbative expansion. In the second case the starting point is the4×4 Dirac Hamiltonian.
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3.2. The theory: effective Hamiltonians

with α a function ofV (z), and as such tunable via the gates. Of course, since

the motion is two-dimensional, averaging over the growth direction ẑ should be

performed, and is actually implied in the above definition ofα. Since thez-

average〈V 〉 is a constant we set it to zero, and the complete Rashba Hamiltonian

reads

H =
k2

2m∗ − bR(k) · σ. (3.20)

It is important to remember that other mechanisms which giverise to similar

spin-orbit interaction terms are also possible, albeit in the context of more elabo-

rate models. Indeed, in an extended14 × 14 Kane model for zincblende crystals

the following cubic-in-momentum term, called the cubic Dresselhaus term [61],

is obtained [55]

bD(k) · σ = Ckx(k
2
z − k2

y)σx + cyclic permutations, (3.21)

with C a crystal-dependent constant. Once again, if we consider electrons in a

two-dimensional quantum well, the average〈HD〉 along the growth direction̂z

– which we assume parallel to the[001] crystallographic direction – should be

taken. kz is quantized, with〈k2
z〉 ∼ (π/d)2, d being the width of the well. The

main bulk-inversion-asymmetry contribution is then

[bD(k)]2d · σ = β(kxσx − kyσy), (3.22)

with β ≈ C(π/d)2. Even though both (3.19) and (3.22) can be written in the same

form, one should notice that in the second case the effectivespin-orbit coupling

constantβ depends only on the crystal structure, whereas in the Rashbamodelα

is different from zero only in the presence of the additionalnon-crystalline and

asymmetric potential. The Rashba and Dresselhaus spin-orbit interactions can be

of comparable magnitudes, the dominance of one or the other being determined by

the specific characteristics of the system, and both give rise to an energy splitting

which is usually much smaller than the Fermi energy,6 |bR|, |bD| ≪ ǫF .

With this we conclude the Chapter, and for more details aboutthe material

treated we refer to the literature. In all of the rest a general Hamiltonian of the

form

H =
p2

2m
− b(p) · σ + Vimp (3.23)

6With typical densities in the range1015 ÷ 1016 m−2, one hasǫF ∼ 10 meV and|bR|, |bD| ∼
10−1ǫF . See for example [62–70].
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will be considered, with|b| ≪ ǫF andVimp the random impurity potential, possi-

bly spin-dependent. The explicit form of bothb andVimp will be specified when-

ever needed. Also, to adjust back to the notation of Chapter 2, we usep, rather

thank, for the momentum. External fields will be introduced when necessary via

the electromagnetic potentials(Φ,A).

41



3.2. The theory: effective Hamiltonians

42



Chapter 4

Quasiclassics and spin-orbit

coupling

We present original material concerning the derivation of the Eilenberger equa-

tion for a two-dimensional fermionic system with spin-orbit coupling. Such a

generalized equation will be applied to some problems of interest in Chapter 5.

These results were published in [71] and [72], along whose lines we will move:

Sections 4.1 and 4.1.1 are based on [71], Section 4.2 on [72].

4.1 The Eilenberger equation

We start from the Hamiltonian

H =
p2

2m
− b(p) · σ, (4.1)

whereb is the internal effective magnetic field due to spin-orbit coupling andσ

is the vector of Pauli matrices. We are describing motion in atwo-dimensional

system, i.e.p = (px, py), andẑ will from now on define the direction orthogonal

to the plane. In the Rashba model for exampleb = αẑ∧p. For a spin-1/2 particle

one can write the spectral decomposition of the Hamiltonianin the form

H = ǫ+ |+〉〈+| + ǫ− |−〉〈−|, (4.2)

whereǫ± = p2/2m± |b| are the eigenenergies corresponding to the projectors

|±〉〈±| =
1

2

(

1 ∓ b̂ · σ
)

, (4.3)

43



4.1. The Eilenberger equation

b̂ being the unit vector in theb direction. As explained in Chapter 2, to obtain the

quasiclassical kinetic equation one has to sooner or later perform aξ-integration.

With this purpose we make for the Green’s function the ansatz

Ǧ =

(

GR GK

0 GA

)

=
1

2

{(

GR
0 0

0 −GA
0

)

,

(

g̃R g̃K

0 g̃A

)}

, (4.4)

where the curly brackets denote the anticommutator,Ǧ = Ǧt1,t2(p,R) and ˇ̃g =

g̃t1,t2(p̂,R). GR,A
0 are the retarded and advanced Green’s functions in the absence

of external perturbations,

G
R(A)
0 =

1

ǫ+ µ− p2/2m+ b · σ − ΣR(A)
, (4.5)

andΣR(A) are the retarded and advanced self-energies which will be specified

below. The physical meaning of such an ansatz will become clear in the next

Section. For now it suffices to see that it is such that in equilibrium ˇ̃g takes the

form

ˇ̃g =

(

1 2 tanh(ǫ/2T )

0 −1

)

. (4.6)

The main assumption for the following is that we can determine ˇ̃g such that it

does not depend on the modulus of the momentump but only on the direction̂p.

Under this conditioň̃g is directly related to theξ-integrated Green’s functioňg, as

defined in Eq. (2.54)

ǧ =
i

π

∫

dξ Ǧ, ξ = p2/2m− µ. (4.7)

For convenience we suppressed in the equations above spin and time arguments

of the Green’s function,̌g = ǧt1s1,t2s2
(p̂,R). In some cases Wigner coordinates

for the time arguments are more convenient,ǧ → ǧs1s2
(p̂, ǫ;R, T ).

We evaluate theξ-integral explicitly in the limit where|b| is small compared

to the Fermi energy. Since the main contributions to theξ-integral are from the

region near zero, it is justified to expandb for smallξ, b ≈ b0 + ξ∂ξb0, with the

final result

ǧ ≈ 1

2

{

1 + ∂ξb0 · σ, ˇ̃g
}

, (4.8)

ˇ̃g ≈ 1

2
{1 − ∂ξb0 · σ, ǧ} . (4.9)
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In the equation of motion we will also have to evaluate integrals of a function of

p and a Green’s function. Assuming again that|b| ≪ ǫF we find

i

π

∫

dξ f(p) Ǧ ≈ f(p+)ǧ+ + f(p−)ǧ− , (4.10)

wherep± is the Fermi momentum in the±-subband including corrections due to

the internal field,|p±| ≈ pF ∓ |b|/vF , and

ǧ± =
1

2

{

1

2
∓ 1

2
b̂0 · σ, ǧ

}

, ǧ = ǧ+ + ǧ− . (4.11)

Following the procedure presented in Chapter 2 one can derive the equation of

motion forǧ. From the Dyson equation and after a gradient expansion one obtains

for the Green’s functioňG

∂T Ǧ+
1

2

{ p

m
−∇p(b · σ),∇RǦ

}

− i
[

b · σ, Ǧ
]

= −i[Σ̌, Ǧ]. (4.12)

Theξ-integration of Eq. (4.12), retaining terms up to first orderin |b|/ǫF , leads to

an Eilenberger equation of the form

∑

ν=±

(

∂T ǧν +
1

2

{pν

m
−∇p(bν · σ),∇Rǧν

}

− i[bν ·σ, ǧν ]
)

= −i
[

Σ̌, ǧ
]

. (4.13)

The self-energy depends on the kind of disorder considered,and is discussed in

some detail in Appendix D. If not otherwise specified we will consider as a refer-

ence the simplest case, i.e. non-magnetic, elastic and short-range scatterers (δ-like

impurities) in the Born approximation. In this case one hasΣ̌ = −i〈ǧ〉/2τ , 〈. . . 〉
denoting the angular average overp̂.

To check the consistency of the equation we study at first its retarded compo-

nent in order to verify that̃gR = 1 solves the generalized Eilenberger equation.

From Eq. (4.8) we find that

gR = 1 + ∂ξ(b0 · σ), (4.14)

and using (4.11) we arrive at

gR
± = (1 ∓ ∂ξb)

(

1

2
∓ 1

2
b̂∓ · σ

)

. (4.15)

Both commutators, on the left and on the right hand side of theEilenberger equa-

tion, are zero, at least to first order in the small parameter∂ξb0, e.g.α/vF in the
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4.1. The Eilenberger equation

case of the Rashba model. Analogous results hold for the advanced component

gA = −gR, and similar arguments may also be used to verify that the equilibrium

Keldysh component of the Green’s function,gK = tanh(ǫ/2T )(gR − gA), solves

the equation of motion. Additionally, Eq. (4.14) shows how the normalization

condition, Eq. (2.63), changes in the presence of spin-orbit coupling

ǧ2 = 1̌ → ǧ2 =
(

1 + 2∂ξb0 · σ + O
[

(∂ξb0)
2]) 1̌, (4.16)

where1̌ denotes the identity matrix in Keldysh space.

It is worthwhile to remark that the validity of Eq. (4.13) extends from the

diffusive to the ballistic regime. These are defined by the relative strength of the

disorder broadening1/τ compared to the spin-orbit energy|b0|

|b0|τ ≫ 1 ⇒ weak disorder, “clean” system, (4.17)

|b0|τ ≪ 1 ⇒ strong disorder, “dirty” system. (4.18)

Indeed, the quasiclassical technique does not fix the relation between|b0| and

1/τ .

4.1.1 The continuity equation

In a system such as the one we are considering the spin is not conserved, so care

is needed when talking about spin currents. We define these as

ji
sk

=
1

2
{vi, sk} , (4.19)

wheresk, k = x, y, z is the spin-polarization,i = x, y, z is the direction of the

flow andv = −i [x, H ]. Besides being the most used in the literature [21,73–76],

such a definition has a clear physical meaning. Moreover, it agrees with what

one would obtain starting from anSU(2)-covariant formulation of the Hamilto-

nian (4.1) [77]. However, it defines a non-conserved current, and therefore in the

continuity equation for the spin there will appear source terms. When taking the

angular average of the Eilenberger equation (4.13), the r.h.s. vanishes and we are

left with a set of continuity equations for the charge and spin components of the
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Green’s function. Witȟgss′ = ǧ0δss′ + ǧ · σss′ these read

∂t〈ǧ0〉 + ∂x · J̌c = 0, (4.20)

∂t〈ǧx〉 + ∂x · J̌sx
= −2

∑

ν=±
〈bν ∧ ǧν〉sx

, (4.21)

∂t〈ǧy〉 + ∂x · J̌sy
= −2

∑

ν=±
〈bν ∧ ǧν〉sy

, (4.22)

∂t〈ǧz〉 + ∂x · J̌sz
= −2

∑

ν=±
〈bν ∧ ǧν〉sz

, (4.23)

with

J̌c,s =
∑

ν=±

〈

1

2

{

pν

m
− ∂

∂p
(bν · σ), ǧν

}〉

c,s

. (4.24)

As known from Chapter 2, the densities and currents are related to the Keldysh

components of〈ǧ〉 and ofJ̌c,s integrated overǫ. Explicitly the particle and spin

current densities are given by

jc(x, t) = −πN0

∫

dǫ

2π
JK

c (ǫ;x, t), (4.25)

jsk
(x, t) = −1

2
πN0

∫

dǫ

2π
JK

sk
(ǫ;x, t), (4.26)

whereN0 = m/2π is the density of states of the two-dimensional electron gas.

In the the absence of spin-orbit coupling (b = 0) one recovers the well known

expressions

jc(x, t) = −1

2
N0

∫

dǫ〈vF g
K
0 〉, (4.27)

jsk
(x, t) = −1

4
N0

∫

dǫ〈vF g
K
k 〉. (4.28)

In the presence of the fieldb things are in general more complex. For the Rashba

model, for example, the particle current is given by

jc(x, t) = −1

2
N0

∫

dǫ[vF 〈p̂gK
0 〉

+α(ẑ ∧ 〈gK〉 − 〈p̂(p̂ · ẑ ∧ gK〉)]. (4.29)

In Chapter 5 we will make extensive use of Eqs. (4.21), (4.22)and (4.23) in spe-

cific cases.
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Figure 4.1: The idea behind the momentum integration. (1) Use the peak of

G(p,R) to end up on the Fermi surfaceǫ(p) = µ. (2) Exploit the quick os-

cillations ofeipF ·r to limit the integral to the stationary point region.

4.2 ξ-integration vs. stationary phase

Up to now we have rather mechanically relied on theξ-integration procedure,

as introduced in Chapter 2, to obtain quasiclassical expressions starting from the

microscopic ones. To shed some light on the general physicalmeaning of such a

procedure, and in particular on that of the ansatz used in Section 4.1, Eq. (4.4), we

follow Shelankov’s idea [78], which we aim at generalizing for spin-orbit coupled

systems.

The idea itself can be stated as follows. The information carried by the Green’s

function pertaining to real space scales of the order of or smaller than the inverse

Fermi momentump−1
F is quasicassicaly not accessible. These “fast” – in the sense

of high-momentum – components of the Green’s function and its “slow” ones

should then be factorized, with the goal of ending up with thekinetics of the latter

only. The point is how to use the quasiclassical assumptionspF ≫ |q|, ǫF ≫ ω,

with q, ω the relevant momentum and energy scales of our problem, e.g.due to

the presence of an external field, to obtain such a factorization. Indeed, as they

imply thatG(p,R) is peaked at the Fermi surface even when out of equilibrium,
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Quasiclassics and spin-orbit coupling

they also suggest to handle the Wigner space momentum integration

G(r,R) =

∫

dp

(2π)2
eip·rG(p,R) (4.30)

as shown in Fig. 4.1:
∫

dp/(2π)2 is first rewritten as an integral over the energy

calculated from the Fermi level,ǫ(p) − µ, and over the constant-energy surfaces

S
∫

dp

(2π)2
=

∫∫

d[ǫ(p) − µ]dS
(2π)2|∇pǫ(p)| . (4.31)

Then the fast modes ofG(p,R), which carry the information about its peak, en-

sure that the dominant contribution to thed[ǫ(p) − µ] integration comes from the

Fermi surface. When moving around it the exponentialeip·r ≈ eipF ·r oscillates

quickly – the quasiclassical condition impliespF r ≫ 1 – and as a consequence

the surface integraldSF can be evaluated in the stationary phase approximation.

The steps outlined here are theleitmotivof the Section and need now be made

explicit. For a number of details we refer to [78] and to Appendix F.

For clarity’s sake we will first go through some calculationsregarding the

retarded component of the Green’s function. Let us start by considering its space

dependence in the case of free electrons in the absence of spin-orbit coupling

GR(x1,x2) =
∑

p

eip·r

ω − ξ + i0+
, r = x1 − x2. (4.32)

The stationary point of the exponential is given by the condition ∂pǫ(p) ∝ r, i.e.

the velocity has to be parallel or antiparallel to the line connecting the two space

arguments. In the case of the retarded Green’s function, theimportant region is

that with velocity parallel tor. Because of the spherical symmetry of the problem

polar coordinates are the natural choice, withϕ the angle betweenp andr. We

then get

GR(x1,x2) =

∫

dξN(ξ)dϕ

2π

eipr

ω − ξ + i0+

= −iei(pF +ω/vF )rN0

∫

dϕe−iϕ2(pF r)/2

= −
√

2πi

pF r
N0e

i(pF +ω/vF )r, (4.33)

49



4.2.ξ-integration vs. stationary phase

where the integration over the angleϕ plays the role of that over the Fermi surface

in the present case. One sees how the Green’s function is factorized in a rapidly

varying term∼ eipF r/
√
pF r, and a slow one,ei(ω/vF )r. This suggests to write

quite generally – now in Wigner coordinates

GR(r,R) = −
√

2πi

pF r
N0e

ipF rγR(r,R)

= GR
0 (r, ω = 0)γR(r,R) (4.34)

whereGR
0 indicates the free Green’s function andγR(r,R) is slowly varying.

We will now see how the latter is related to the quasiclassical Green’s function

gR(p̂,R). We first go back to Eq. (4.34) and write

GR(r,R) =

∫

dp

(2π)2
eip·rGR(p,R)

=

∫

dp

(2π)2
eip·r

∫

dp′

(2π)2
GR

0,ω=0(p− p′)γR(p′,R). (4.35)

By construction, such an ansatz lets one exploit the arguments of Fig. 4.1, since

1. GR
0 is peaked at the Fermi surface, having a pole at|p− p′| = pF ;

2. γR is smooth in real space, i.e. peaked around zero in momentum space,

which, together with the previous point, means thatGR(p,R) is peaked at

p ≈ pF .

One therefore obtains

GR(r,R) ≈
∫∫

dϕ

2π
dξN(ξ)eip(ξ)·rGR(ξ, ϕ;R)

= N0

∫

dϕ

2π
eipF (ϕ)·r

∫

dξei[p(ξ,ϕ)−pF (ϕ)]·rGR(ξ, ϕ;R)

≈ N0

∫

dϕ

2π
eipF (ϕ)·r|s

∫

dξei[p(ξ,s)−pF (s)]·rGR(ξ, s;R),(4.36)

where in the first line we rewrote the momentum integration according to Eq. (4.31)

– polar coordinates as in Eq. (4.33) are chosen – , in the second we exploited the

peak ofGR(ξ, ϕ,R) at ξ = 0 and setN → N0, and in the third we fixed all quan-

tities at the stationary points, i.e. for p̂ = r̂ or equivalentlyϕ = 0. Calculating

the Gaussian integral arounds one obtains

GR(r,R) ≈ GR
0,ω=0

i

2π

∫

dξei(p−pF )rGR(p,R) |p̂=r̂ , (4.37)
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and by comparison with Eq. (4.34)

γR(r,R) =
i

2π

∫

dξei(p−pF )rGR(p,R) |p̂=r̂ . (4.38)

As Shelankov shows [78], the quasiclassical Green’s function gR(p̂,R) can be

constructed by taking the limitr → 0 of the ansatz functionγR(r,R), and is in

the end given by the symmetrized expression

gR(p̂;x) = lim
r→0

[

γR(r,R) |p̂=r̂ +γR(r,R) |p̂=−r̂

]

= lim
r→0

i

π

∫

dξ cos

(

ξr

vF

)

GR(p,R). (4.39)

For the advanced Green’s function one can go through the samesteps with

the difference that the integral is dominated by the extremum corresponding to a

velocity antiparallel tor, i.e. the stationary point is now given bŷp = −r̂. The

Keldysh component, on the other hand, has poles on both sidesof the real axis,

and as a consequence it “sees” both stationary pointsp̂ = ±r̂. With

GA
0 (r, ω = 0) =

√

2πi

pF r
e−ipF r (4.40)

the complete Green’s function can then be written as

Ǧ(r,R) ≈ GR
0,ω=0γ̌(r,R) |p̂=r̂ +GA

0,ω=0γ̌(r,R) |p̂=−r̂

= GR
0,ω=0

i

2π

∫

dξei(p−pF )rǦ(p,R) |p̂=r̂ +

+GA
0,ω=0

i

2π

∫

dξe−i(p−pF )rǦ(p,R) |p̂=−r̂ , (4.41)

with

γ̌(r,R) |p̂=±r̂=
i

2π

∫

dξe±i(p−pF )rǦ(p,R) |p̂=±r̂ (4.42)

and

ǧ(p̂;R) = lim
r→0

[γ̌(r,R) |p̂=r̂ +γ̌(r,R) |p̂=−r̂]

= lim
r→0

i

π

∫

dξ cos

(

ξr

vF

)

Ǧ(p,R). (4.43)
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4.2.ξ-integration vs. stationary phase

Eq. (4.43) is not just a trivial extension of Eq. (4.39), as itrests on thea priori not

obvious result valid for the Keldysh component [78]

lim
r→0

γK(r,R) |p̂=r̂= lim
r→0

γK(r,R) |p̂=−r̂ . (4.44)

When spin-orbit coupling is present the Green’s function becomes a matrix in

spin space and the Fermi surface splits into two branches

ǫ±(p) =
p2

2m
± |b|. (4.45)

As remarked in Section 4.1, we always take this splitting to be small compared to

the Fermi energy, i.e.|b|/ǫF ≪ 1, and moreover assume that the Fermi surface

be smooth – that is, almost spherical. This statement is madequantitative in Ap-

pendix F. We recall that the Fermi momenta and density of states are now such

that

p± = pF ∓ |b0|
vF

= pF ∓ δp, (4.46)

N± = N0

(

1 ∓ |b0|
2ǫF

)

= N0(1 ∓ ∂ξ|b0|), (4.47)

all equalities being valid to first order in|b|/ǫF .

The Green’s function has now two peaks, one for each branch ofthe Fermi

surface, and we want an ansatz capable of catching this feature. Starting again

from the retarded component, we write

GR(p,R) =
∑

ν=±
GR

ν (p,R) (4.48)

where each of the two termsGR
ν (p,R) is peaked at the respectiveν = ± fold of

the Fermi surface defined by

ξν = ξ + ν |b| = 0. (4.49)

By using this property we can once more appeal to the stationary phase argument

for each branch: the momentum integration,
∫

dp/(2π)2, is divided in an integral

over ξν and one over the constant energy surfacesξν = const.; the peaks of

GR
ν (p,R) ensure that the dominant ones areξν = 0; when moving along these two

– the standard quasiclassical assumptionpνr ≫ 1 holds – the relevant region is the
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Quasiclassics and spin-orbit coupling

one around the stationary points of the exponentialeipν ·r. These need not be given

by the condition̂p = r̂, since now Eq. (4.49) does not in general define spherical

constant energy surfaces. For simplicity we however make such an assumption,

and refer to Appendix F for a discussion of the more general case.

By going through the above steps we can write

GR(r,R) =
∑

ν=±

∫

dp

(2π)2
eip·rGR

ν (p,R)

≈
∑

ν=±

[

GR
0,ν(r)

N0

Nν

]

γR
ν (r,R), (4.50)

with

GR
0,ν(r) = −

√

2πi

pνr
Nνe

ipνr (4.51)

and having defined

γR
ν (r,R) ≡ i

2π

∫

dξ ei(p−pν)rGR
ν (p,R) |p̂=r̂ . (4.52)

The result (4.41) can then be generalized to

Ǧ(r,R) ≈
∑

ν=±

([

GR
0,ν

N0

Nν

]

γ̌ν(r,R) |p̂=r̂ +

[

GA
0,ν

N0

Nν

]

γ̌ν(r,R) |p̂=−r̂

)

=
∑

ν=±

([

GR
0,ν

N0

Nν

]

i

2π

∫

dξei(p−pν)rǦν(p,R) |p̂=r̂ +

+

[

GA
0,ν

N0

Nν

]

i

2π

∫

dξe−i(p−pν)rǦν(p,R) |p̂=−r̂

)

. (4.53)

To establish a connection with the Eilenberger equation obtained in Section 4.1,

Eq. (4.13), we further specify our ansatz function by saying1

γ̌ν(r,R) |p̂=±r̂≡
1

2
{|ν〉〈ν|0, γ̌(r,R) |p̂=±r̂} , (4.54)

with the projectors|ν〉〈ν| [see Eq. (4.3)] evaluated at the Fermi surface in the

absence of spin orbit. This is sensible in the spirit of our approximation, i.e. as

long as|b|/ǫF ≪ 1, and since
∑

ν=±
|ν〉〈ν|0 = 1, (4.55)

1Note that in the followingν = ± stands for the band index, whereas an explicit “±” in the

formulas is used to specify the stationary pointp̂ = ±r̂.
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one has

∑

ν=±
γ̌ν(r,R) |p̂=±r̂ =

1

2

∑

ν

{|ν〉〈ν|0, γ̌(r,R) |p̂=±r̂}

= γ̌(r,R) |p̂=±r̂ . (4.56)

In the limit r → 0 the functionγ̌(r,R) |p̂=±r̂ will be connected tǒg(p̂,R) just

as in Eq. (4.43). This can already be guessed, since in the limit δpr ≪ 1 –

which is reached when sendingr → 0 – from the general definition of̌γν given in

Eq. (4.53) there follows

lim
δpr≪1

∑

ν=±
γ̌ν(r,R) |p̂=±r̂ = lim

δpr≪1

∑

ν=±

i

2π

∫

dξ e±i(p−pν)rǦν(p,R) |p̂=±r̂

=
i

2π

∫

dξ e±i(p−pF )r
∑

ν=±
Ǧν(p,R) |p̂=±r̂

=
i

2π

∫

dξ e±i(p−pF )rǦ(p,R) |p̂=±r̂

= γ̌(r,R) |p̂=±r̂ (4.57)

and the last two lines show thatγ̌(r,R) has the familiar expression (4.42).

To obtain the equation of motion fořγ one needs to

1. substitute Eq. (4.53) into the “left-right subtracted” Dyson equation (2.44).

Since the right-going (̂p = r̂) and left-going (̂p = −r̂) modes are indepen-

dent, this yields two equations, one forγ̌ |p=r̂ and one fořγ |p=−r̂, both

with identical structure;

2. move to Wigner coordinates and perform a gradient expansion, justified by

the slowly varying character of̌γν(r,R). This means at most gradient terms

∝ ∇Rγ̌ν(r,R) are kept;

3. take the limitδpr ≪ 1.
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In formulas, picking for definiteness thêp = r̂ stationary point2

1.⇒
[(

i∂t1 −
(−i∇x1

)2

2m
+ b(−i∇x1

) · σ + µ

)

δ(1 − 2)+

+Σ̌(1, 2) ⊗,
∑

ν=±

[

GR
0,ν(r)

N0

Nν

]

γ̌ν(1, 2)

]

= 0; (4.58)

2.⇒
∑

ν=±

(

GR
0,ν

N0

Nν

)(

∂T γ̌ν +
1

2

{pν

m
−∇p(bν · σ),∇Rγ̌ν

}

+

−i [bν · σ, γ̌ν ]
)

= −i
∑

ν=±

(

GR
0,ν

N0

Nν

)

[

Σ̌, γ̌ν

]

; (4.59)

3.⇒
(

GR
0,ν

N0

Nν

)

→ −
√

2πi

pF r
eipF rN0. (4.60)

Eqs. (4.60) implies that – in theδpr ≪ 1 limit – the prefactors drop from Eq. (4.59)

and one is left with

∑

ν=±

(

∂T γ̌ν +
1

2

{pν

m
−∇p(bν · σ),∇Rγ̌ν

}

− i [bν · σ, γ̌ν]

)

= −i
[

Σ̌, γ̌
]

, (4.61)

which is the Eilenberger equation previously obtained, Eq.(4.13). It follows that

limr→0 γ̌ |p̂=±r̂ differs from the quasiclassical Green’s function only up toa mul-

tiplicative constant, which is given by the normalization condition. This is fixed

to the result of Section 4.1 [Eqs. (4.14), (4.16)] by taking the symmetrized expres-

sion, Eq. (4.43) – in other words, the linear combination ofγ̌’s in Eq. (4.43) is a

solution of Eq. (4.61) with the normalization given by Eq. (4.16).

It should by now be clear that there is some freedom in the choice of an ansatz

for the Green’s functioňG, since its fast and slow modes can be factorized in

terms of different fast and slow functions. Indeed, the momentum space ansatz

used in Section 4.1, Eq. (4.4), corresponds to the followingchoice – compare

with Eqs. (4.54)-(4.56)

γ̌(r,R) =
∑

ν=±

Nν

2N0

{

|ν〉〈ν|ν, ˇ̃γ(r,R)
}

, (4.62)

2Taking the other one,̂p = −r̂, requires only the substitutionGR
0,ν → GA

0,ν . The final result is

however identical.
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whereγ̌ and ˇ̃γ coincide in the absence of spin-orbit coupling, since in that case

Nν = N0.

4.3 Particle-hole symmetry

In Chapter 2 we have seen that in standard quasiclassics the Eilenberger equation

reads

[∂T + vF p̂ · (∇R − eE∂ǫ)] ǧ
K(ǫ, ϕ;X) + i

[

Σ̌(X, ǫ, p̂, pF ), ǧ(X, ǫ, p̂)
]

= 0,

(4.63)

having considered a self-energy with a slowǫ-dependence. Such a result has been

obtained by the integration procedure defined in Eq. (2.55).This in fact relies

on the assumption of perfect particle-hole symmetry, sincethe density of states

is fixed at the Fermi surface,N(ξ) → N0. Formally, the generalized Eilenberger

equation (4.13) requires one to take into account some of theξ dependence of

N(ξ). Indeed, the difference betweenN+ andN− is necessary if one is to “see”

the spin-orbit physics that couples the charge and spin degrees of freedom. In

this sense particle-hole symmetry is broken. It is a point which requires further

study, and might very well prove to be fundamental for the understanding of many

spin-orbit-related effects. We shall briefly return to it inSection 5.1.1.
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Chapter 5

Spin-charge coupled dynamics

We now discuss some applications of the formalism developedin Chapter 4. Orig-

inal results from [71,79–81] are presented.

5.1 The spin Hall effect

As briefly mentioned in Chapter 1, the spin Hall effect describes the flow of a spin

current in the direction orthogonal to an applied electric field, in the absenceof

magnetic fields (see Fig.1.1). Belonging to the same category of physical phe-

nomena are the so-called inverse spin Hall effect, in which an electric current is

induced by a spin one – and both are flowing perpendicular to each other –, the

anomalous Hall effect, which is a Hall effect proportional to the magnetization but

not due to the magnetic field that the latter produces, and thevoltage (or current)

induced spin polarization, whose name is self-explanatory.1 They are usually clas-

sified asintrinsicorextrinsic, depending on whether they arise because of intrinsic

properties of the system, i.e. the band structure, or extrinsic ones, i.e. impurities.

All are due to spin-orbit coupling, and appear as potential electric field-controlled

handles on the spin degrees of freedom of carriers.

As an officially-named phenomenon the spin Hall effect was born very re-

cently, since Murakami et al. proposed it for the two-dimensional hole gas (2DHG)

in 2003 [20], while a little later came Sinova and collaborators’ proposal for

1Lately effects due to topologically protected edge states have started to draw attention, but

they are beyond the scope of this work. See [82–84] for more.
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the two-dimensional electron gas (2DEG) [21]. The physics behind this and

the other closely related phenomena is however older, sometimes quite older

[37, 38, 85–87]. A quantity of central importance in its treatment, both in the

theory and in experiments, is the spin Hall conductivity tensorσij
sH relating the

i-component of the spin current to the electric field in the orthogonalj-direction

ji
sk

= σij
sHE j, i, j, k = x, y, z. (5.1)

By using the definition of the spin current (4.19), the spin Hall conductivity has

the dimensions of a conductivity divided by a charge,σsH ∼ σ/e. This is simply

a convention, the dominant one among theorists and the one weemploy.2

There exists an already vast amount of theoretical literature on the subject, as

well as a modest but growing experimental one, concerning both semiconducting

and metallic systems. Our focus will now be on the former ones, though the

formalism of the preceding Chapters is independent of this choice. An excellent

review of the field is given in [40], where most further references can be found.

5.1.1 Experiments

For semiconductors, it is in two-dimensional and quasi-two-dimensional systems

of the kind described in Chapter 3 that the spin Hall effect and its related phenom-

ena were observed. All experiments were based on optical methods. In [88, 89]

Kerr microscopy was used to observe, in the second case even at room tempera-

ture, the extrinsic spin Hall effect in thin layers (1 ÷ 2µm thick) of n-GaAs and

n-ZnSe. An extrinsic effect was also reported in a 2DEG [90].The intrinsic spin

Hall effect was instead seen in a 2DHG [51]. Also, the first time-resolved experi-

ment has been recently performed by the Awschalom group [91].

In metals, thin films and nanowires with typical thicknessesof 4 ÷ 40 nm are

the systems considered, and observations relied on electrical rather than optical

methods. The inverse spin Hall effect was detected in Al strips [11, 12], and its

direct counterpart in Pt wires [13]. Finally, both effects,direct and inverse, were

reported in Pt [14] and Au [15]. It is not yet very clear if the phenomena in met-

als are extrinsic in nature, as suggested in [14, 15], or intrinsic, as Guo et al. put

2Experimentalists find it often more convenient to introducea factore into the definition of the

spin current to make the electrical and spin Hall conductivities have the same dimensions.
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forward in a recent theoretical analysis concerning Pt systems [92]. Whatever

the case, they appear to be quite relevant, as spin Hall conductivities of the order

of 104/eΩm, i.e. four orders of magnitude larger than in semiconductors, were

reported. On the other hand Duckheim and Loss noted that the mesoscopic fluc-

tuations of spin-electric phenomena in a 2DEG are much larger than the macro-

scopic average [93], suggesting it might be possible to achieve sizeable effects

in semiconductors too. The physics behind this is still relatively unclear. In our

present understanding the smallness of spin-electric effects in degenerate systems

is related to the almost exact particle-hole symmetry, i.e.the fact that the density

of states and the velocity of quasiparticles are almost energy independent close to

the Fermi surface. Degenerate bands near the Fermi energy, as in Pt, or disorder

– which causes mesoscopic fluctuations of the density of states and the diffusion

constant – break this symmetry so that large spin-electric effects are possible.

5.1.2 Bulk dynamics: the direct spin Hall effect

Unless explicitly pointed out, we focus on the direct spin Hall effect in the Rashba

model following mainly Refs. [72,94].

When a static and homogeneous electric fieldE = E x̂ is applied to a Rashba

2DEG the spin current polarized out of plane, i.e. alongẑ, and flowing alonĝy is

given by3

jy
sz

= σyx
sHEx, (5.2)

whereσyx
sH is the spin Hall conductivity and the object of our study. In the original

paper by Sinova et al. [21] it was proposed that in the bulk of aclean system, that

is in the absence of impurities of sort, the universal equation

σyx
sH =

e

8π
(5.3)

should hold. After a short but rather intense debate it was however found howany

kind of non-magnetic elastic disorder, no matter its strength or specific nature,

would actually lead to the equally universal and substantially less spectacular re-

sult

σyx
sH = 0. (5.4)

3This arbitrary geometrical choice is made for definiteness only.
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More precisely, it is now well established that Eq. (5.4) is valid in general for

linear-in-momentum spin-orbit couplings likebR(p),bD(p) [73–76]. This can be

understood by looking at the peculiar form of the continuityequation for the spin,

which we take from Chapter 4 in the caseb(p) = bR(p) as given in Eq. (3.19).

From Eqs. (4.21) and (4.22) one has

∂tsx + ∇ · jsx
= −2mαjx

sz
, (5.5)

∂tsy + ∇ · jsy
= −2mαjy

sz
. (5.6)

Under stationary conditions in a homogeneous bulk the l.h.s. of both equations

vanishes, and so must the spin current4

jsz
= 0. (5.7)

In order to have a finite effect time dependent or inhomogeneous conditions are

needed, or the continuity equation has to be modified. In the following we start

by discussing a specific time dependent situation, and see how to draw from it

some general conclusions which give additional insights into the universal result

(5.3). Later we will go back to considering steady state conditions and will discuss

possible modifications of the continuity equation.

Spin Hall currents in collisionless systems

Following [71], we study the linear response of a clean 2DEG to a spatially ho-

mogeneous but time dependent electric field. For a realisticsystem with at least

weak disorder this study still gives reliable results on short time scales,t ≪ τ .

The Eilenberger equation is solved in the limitτ → ∞, and the electric field in-

cluded via the substitution∇ → −|e|E∂ǫ. We do not limit our discussion to the

Rashba model, but consider a generic fieldb(p) = bext + b(p)int. The Keldysh

component of the linearized Eilenberger equation becomes

∑

ν=±

(

∂tg
K
ν − |e|

m
E · pν∂ǫg

K,eq
ν (5.8)

+
|e|
2

{

(E · ∂p)(bν · σ), ∂ǫg
K,eq
ν

}

− i[bν · σ, gK
ν ]
)

= 0.

4The same result can be obtained looking at the operator form of the equation of motion for

the spin [95–97]. Moreover, it also holds whenb(p) = bR(p) + bD(p) [71].
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Spin-charge coupled dynamics

We focus on the spin components of the equation. Explicitly one has

∂tg
K
x = −2by,0g

K
z

−|e|E ·
[

Pb̂x,0 − vF∂ξbx,0 + ∂pbx,0

]

Fǫ , (5.9)

∂tg
K
y = 2bx,0g

K
z

−|e|E ·
[

Pb̂y,0 − vF∂ξby,0 + ∂pby,0

]

Fǫ , (5.10)

∂tg
K
z = 2(by,0g

K
x − bx,0g

K
y )

+2(bx,0∂ξby,0 − by,0∂ξbx,0)g0. (5.11)

where for the sake of brevityP =
∑

ν νpν/2m andFǫ = 2∂ǫ tanh(ǫ/2T ). For

thegK
z component one obtains

d2gK
z

dt2
+ 4b20g

K
z = 2Fǫ|e| [bx,0(E · ∂p)by,0 − by,0(E · ∂p)bx,0] . (5.12)

Notice that only the second of the two terms involving the electric field in Eq.(5.8)

remains in the equation for thegK
z component. The solution of this differential

equation is the sum of an oscillating and a time independent term. Due to the

(undamped) oscillations it is clear that a stationary solution is never reached so

the arguments leading to a vanishing spin Hall current do notapply. We will come

back to this in Section 5.1.4 (see Fig. 5.7). The time independent solution of the

differential equation is related to a zero-frequency spin current given by

jsz
= −|e|

4π
〈pF (E · ∂p)Ψ〉, tanΨ = by,0/bx,0. (5.13)

Notice that the spin current does not depend on the magnitudeof the fieldb, but

only on the variation of its direction when going around the Fermi surface. An

even more explicit result is obtained when the spin Hall conductivity tensor is

antisymmetric

σsH =
1

2
(σyx

sH − σxy
sH) (5.14)

= −|e|
8π

〈(pFy∂px
− pFx∂py

)Ψ〉 (5.15)

=
|e|
8π

∮

dp

2π
· ∂pΨ, (5.16)

i.e. the spin Hall conductivity is the universal number|e|/8π times the wind-

ing number of the internal fieldb when going once around the Fermi surface.
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5.1. The spin Hall effect

We notice that Eq. (5.13) is consistent with [98–100] where the spin-Hall con-

ductivity ignoring disorder was calculated using the Kubo formula for a Rashba-

Dresselhaus system in the presence of an in-plane magnetic field. Eq. (5.16),

which relates the spin-Hall conductivity with a winding number – i.e. the Berry

phase in momentum space – generalizes the equivalent resultof [101], where it

was assumed that the modulus ofb is constant on the Fermi surface. As an exam-

ple, if b(p) = bR(p) + bD(p) one has [99]

σsH =































|e|/8π, bR(p) > bD(p)

0, bR(p) = bD(p)

−|e|/8π, bR(p) < bD(p)

, (5.17)

of which the result (5.3) is seen to be a subcase.

Bulk dynamics in the presence of magnetic couplings

We now go back to a steady state situation in the Rashba model and consider two

ways of modifying the continuity equation (5.6): the introduction of magnetic

impurities or of an applied in-plane magnetic field [72, 79, 94]. This translates

into the two Hamiltonians

H1 =
p2

2m
− bR · σ + Vnm(x) + Vm(x), (5.18)

H2 =
p2

2m
− bR · σ − ωsx̂ + Vnm(x), (5.19)

whereVnm(x) andVm(x) describe respectively angle-dependent (long-range) non-

magnetic scattering ands-wave (short-range) magnetic disorder, whereasbext =

(gµB/2)Bext = ωsx̂. The impurity average leads to the self-energiesΣnm andΣm

given in Appendix D.

From (5.18) and (5.19) the following continuity equations for thesy spin com-

ponent are obtained

H1 : ∂tsy + ∇ · jsy
= −2mαjy

sz
− 4

3τsf
sy, (5.20)

H2 : ∂tsy + ∇ · jsy
= −2mαjy

sz
+ 2ωssz. (5.21)
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Spin-charge coupled dynamics

The second term on the r.h.s. of Eq. (5.20) is due to magnetic impurities,τsf
being the spin-flip time which stems from the potentialVm(x). Under stationary

and uniform conditions the above imply

jy
sz

= − 2

3mατsf
sy, (5.22)

jy
sz

=
ωs

mα
sz. (5.23)

The spin current is seen to be directly related to the spin polarizationssy, sz. These

are in their own right interesting objects. First, an in-plane electric field induces

non-vanishing polarizationssx, sy. Second, these are non-trivially influenced by

the nature ofVnm – s-wave or angle-dependent – so that an additional in-plane

magnetic field will tilt them out of plane and produce ansz polarization, though

only if the disorder scattering is long-range. To get a better understanding of

these phenomena we use simple physical arguments to explainhow an in-plane

polarization can be generated by an applied voltage [37,79,102]. Since the Fermi

surface is shifted by an amount proportional to the applied electric field (say along

thex-direction), as shown in Figs. 5.1 (a) and (b), there will be more occupied

states with spin up – alongy – than with spin down. In the case of short-range

disorder, the total in-plane polarization can be estimatedto be proportional to the

density of states times the shift in momentum,sy ∼ Nδp ∼ N |e|Eτ . Since in

the present situation we are dealing with the two Fermi surfaces corresponding to

the two helicity bandsǫ± = p2/2m± αp, obtained from the Hamiltonian (5.18),

one expectssy ∼ (N+ −N−)δp, where, for the Rashba interaction, one hasN± =

N0(1 ∓ α/vF ), N0 = m/2π. Explicit calculations agree with this simple picture

and lead to the result due to Edelstein [37],sy = −N0α|e|Eτ . When long-range

disorder is considered, a reasonable guess could be to substitute forτ the transport

timeτtr

τ → τtr,
1

τtr
=

∫

dθW (θ)(1 − cos(θ)), (5.24)

W (θ) being the angle-dependent scattering probability, so thatsy = −N0α|e|Eτtr.
This was proposed in [103], however the picture is too simplistic, and therefore

the guess is wrong. As discussed in [94] – see also Appendix D for details – , the

propersy polarization is given bysy = −N0α|e|E τ̃tr, with

τ → τ̃tr,
1

τ̃tr
=

∫

dθW (θ)(1 − cos(2θ)). (5.25)
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Figure 5.1: (a), (b) – The Fermi surface shift,δp = |e|Eτ , due to an applied elec-

tric field along thex-direction. The white arrows show the direction of the internal

field b. (c), (d) Shifted bands and spin polarization in stationaryconditions. (c)

Asymmetric shift of the two bands when angle dependent scattering is present.

The long dark (blue) arrows show the contributions to the spin polarization aris-

ing from a sector dϕ of phase space. (d) When magnetic disorder is turned on,

additional contributions orthogonal to the internal fieldb appear, here shown by

the short inward and outward pointing (blue) arrows. Out-of-plane contributions

are also present, but for the sake of simplicity not shown.
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Spin-charge coupled dynamics

This particular timẽτtr arises from the asymmetric shift of the two Fermi sur-

faces, as depicted in Fig. 5.1 (c), due to different transport times in the two bands.

It shows that contributions from both forward (θ = 0) and backward (θ = π) scat-

tering are suppressed. The next step is to consider what happens when magnetic

impurities are included. Relying once again on the simple picture of the shifted

Fermi surface, one could argue that these have a rather smallimpact on the spin

polarization, since the spin-flip scattering time usually makes a small contribution

to the total transport time. However, even when this is the case, magnetic disorder

does not simply modify the total transport time, but has an additional non-trivial

effect. In its presence the spins do not align themselves along the internalb field,

since they acquire non-vanishing components in the plane orthogonal to it – see

Fig. 5.1 (d). It is these components who give rise to a finite spin Hall conductiv-

ity. In this respect, magnetic disorder has an effect similar to that of an in-plane

magnetic field: it affects the spin quantization axis and tilts the spins out of their

expected stationary direction. We now make these argumentsquantitative.

The starting point is the Keldysh component of the Eilenberger equation (4.13)

for a homogeneous Rashba 2DEG in linear response to a homogeneous and time

dependent applied electric field (introduced via the quasiclassical minimal substi-

tution∇ → −|e|E∂ǫ)

∂tg
K = vF · E |e|∂ǫg

K
eq +

1

2

{

1

pF

∂ϕb · σ, ϕ̂ · E |e|∂ǫg
K
eq

}

−i
[

b · σ, gK
]

− i
[

Σ̌, ǧ
]K
, (5.26)

whereΣ = Σnm + Σm, and the “K” superscript will from now on be implicitly

assumed and thus omitted. The angleϕ is defined by the direction of the momen-

tum, p̂ = (cosϕ, sinϕ), ϕ̂ = (− sinϕ, cosϕ). In order to solve Eq. (5.26), it is

convenient to writeg as a4-vector

g = g0σ0 + g · σ, (gµ) = (g0, g) (5.27)

and turn it into matrix form. Details are shown in Appendix G.Taking the electric

field to be alonĝx, the expressions for the spin currentjy
sz

, the spin polarization

sy and the frequency dependent spin Hall conductivityσyx
sH(ω) are obtained. They

read

jy
sz

=

[

−
4

3τsf
− iω

2mα

]

sy, (5.28)
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5.1. The spin Hall effect

i.e. the continuity equation result, Eq. (5.20), under homogeneous conditions,

sy = −N0α|e|E
[

2(αpF )2
]

×
[(

1

τtr
− iω

)(

1

τ̃tr
− iω

)(

4

3τsf
− iω

)

+

+ 2(αpF )2

(

1

τ̃tr
+

4

3τsf
− 2iω

)]−1

, (5.29)

and as a consequence

σsH(ω) =
|e|
4π

(

4

3τsf
− iω

)

[

2(αpF )2
]

×
[(

1

τtr
− iω

)(

1

τ̃tr
− iω

)(

4

3τsf
− iω

)

+

+ 2(αpF )2

(

1

τ̃tr
+

4

3τsf
− 2iω

)]−1

. (5.30)

Besides1/τsf , there appear in the above two other different time scales

1

τtr
≡ 1

τ
(1 −K1) +

1

τsf
,

1

τ̃tr
≡ 1

τ
(1 −K2) +

1

τsf
. (5.31)

The first, τtr, is the total transport time. The second,τ̃tr, is the generalization

of the characteristic time related to thesy spin polarization introduced in (5.25).

K1 andK2 are the coefficients of the first and second harmonics of the scattering

kernelK(ϕ− ϕ′) from Appendix D.

The real part of the spin Hall conductivity is displayed in Fig. 5.2 for dif-

ferent values of the disorder parameter5 αpF τ . In the limitω → 0, its magnitude

depends on the value ofαpF τ as well as on the ratioτ/τsf . In the absence of mag-

netic impurities one has the known resultσsH = 0. As spin flip scattering grows,

the conductivity reaches values of the order of the “universal” |e|/8π. This was

noted in [104], where, however, angle dependent scatteringwas not considered.6

Large values ofαpF τ can be achieved both in III-V and II-VI semiconducting

5See Eqs. (4.17) and (4.18).
6In addition, a discrepancy in the expression of the static spin Hall conductivity arises, which

in the limit of weak magnetic scattering does not agree with the continuity equation (5.20). In

the opposite limit there is on the other hand agreement with the results from [105], where only

magnetic impurities were considered.
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Figure 5.2: Real part of the frequency dependent spin Hall conductivity in units of

the universal value|e|/8π for αpF τ = 1 (top) andαpF τ = 5 (bottom). The differ-

ent curves correspond to different values of the ratioτ/τsf = 0, 0.1, 0.2, 0.3, 0.4

(from top to bottom at the maximum of ReσsH).
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5.1. The spin Hall effect

materials. Doping the latter with Mn allows to control the spin-flip time τsf while

only weakly affecting the electrons mobility [106–108], even though it is not per-

fectly clear whether these can appropriately be described in terms of the linear

Rashba model.7 Additionally, for certain frequencies one can see crossingpoints

[ωτ ≈ 0.5 andωτ ≈ 2 in Fig. 5.2 (top)] at which magnetic disorder has no effect

on the spin Hall response. Such points are well defined only whenαpF τ ≈ 1. For

clean (αpF τ ≫ 1) or dirty (αpF τ ≪ 1) samples the different curves cross each

other over a progressively wider range of frequencies.

In the case of the Hamiltonian (5.19) similar calculations let one obtain the

expressions forsz andσyx
sH(ω = 0) to leading order in the magnetic field [94]

sz = −1

2
|e|E ωs

αpF

N0

pF

τtr − τ̃tr
τtr

(5.32)

σyx
sH = −|e|

4π

(

ωs

αpF

)2
τtr − τ̃tr
τtr

. (5.33)

From the above it is apparent that the out-of-plane polarization sz, and thus the

spin Hall conductivity, will be non-vanishing only if bothτtr and τ̃tr are consid-

ered.

5.1.3 Confined geometries

Up to now only bulk phenomena have been studied. As already mentioned (see

Fig. 1.1) the usual experimental signature of the direct spin Hall effect, at least in

semiconductors, is the measure of spin accumulation at the boundaries of a 2DEG

sample caused by the spin current flowing in its bulk [51, 88–90]. Hence, the un-

derstanding of the spin Hall physics involves the description of boundaries. More-

over, these become relevant if one is to study relaxation processes in mesoscopic

systems, which in time are of fundamental importance for thetypical spintronic

device. For these reasons we now specialize to samples of finite size with the

geometry shown in Fig. 5.3. Our main references will be [71,80,81].

The derivation of the boundary conditions for the quasiclassical Green’s func-

tion is a delicate matter, since typically the boundary potential Ub(x) varies on

7More precisely, the Rashba Hamiltonian is appropriate for narrow quantum wells (width.

6 nm), but most likely not for wider structures, in which the so-called inverted-band structure

manifests itself.
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in

out

E

L

Figure 5.3: Geometry under consideration. The 2DEG is a narrow wire of finite

width L alongŷ. Along x̂, which is the direction parallel to the applied electric

field, it can either be infinite or smoothly contacted to reservoirs. Scattering at the

boundaries is assumed elastic, though not necessarily spin-conserving.

the microscopic scale of the Fermi wavelengthλF , that is, beyond the quasiclas-

sical resolutionlqc ≫ λF . Following Ref. [109], in general one has that the linear

matching conditions for the wavefunctions on the opposite sides ofUb(x) become

nonlinear relations between the quasiclassical amplitudes. In the case of a per-

fectly reflecting barrier – i.e. if no transmission across the boundary is possible

– and when an ingoing trajectory is scattered into one outgoing direction, things

simplify considerably and the boundary condition reads

g(p̂out) = Sg(p̂in)S
†. (5.34)

A general treatment which takes into account beam splitting– i.e. inter-band

transitions – at the barrier is still lacking and currently being pursued. HereS

is the unitary2 × 2 surface scattering matrix. Using the decomposition (5.27),

Eq. (5.34) can be rewritten as

gout
0 = gin

0 , gout = Rgin, (5.35)

with the orthogonal matrixR that rotates the spin at the barrier, and whereg(p̂in,out) ≡
gin,out. Charge conservation implies that no current flows through the boundary

〈n · vF g0〉 ∝ n · jc = 0, (5.36)
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5.1. The spin Hall effect

wheren is a vector normal to the boundary. For a spin conserving boundary

(R = 1) all componentsα of the spin current perpendicular to the surface are zero

too,

〈n · vF gα〉 ∝ n · jsα
= 0. (5.37)

For the general case,R 6= 1, Eq. (5.37) is not valid.

5.1.4 Voltage induced spin polarizations and the spin Hall ef-

fect in finite systems

Numerical results concerning voltage induced spin polarizations and the spin Hall

effect in finite systems are now shown and discussed. We focuson the Rashba

model,b(p) = bR(p). The geometry of Fig. 5.3 is further specified by consid-

ering a sample finite alonĝx and in contact with two reservoirs atx = 0 and

x = Lx. These are kept in thermal equilibrium and assumed to be madeof the

same material as the two-dimensional sample – that is, thereis no Fermi surface

mismatch. For directionŝp = p̂in pointing from the reservoirs into the system the

quasiclassical Green’s function reads (we briefly reintroduce the Keldysh super-

script “K”)

(gK)in|x=0,Lx
= (gK)in

eq|x in the reservoir

= tanh

(

ǫ± |e|V/2
2T

)

(gR − gA), (5.38)

with V the gate voltage.

We assume the scattering at the boundaries to be adiabatic, i.e. an incoming

wave in an eigenstate|pin ±〉 of the Hamiltonianp2/2m− b · σ is scattered into

the same band,

|pin ±〉 → e±iϑ|pout ±〉, (5.39)

as it is expected for a smooth confining potential [110–112].Such a scattering

does not generate inter-band transitions and Eq. (5.34) canbe used. TheS matrix

reads

S =

(

e2iϕ cos θ − sin ϑ

sinϑ cosϑ

)

, (5.40)

whereϕ is as usual the momentum angle, while the relative phase shift θ is as-

sumed negligible, i.e.ϑ = 0. This describes an in-plane spin rotation of2ϕ. In

70



Spin-charge coupled dynamics

the Pauli matrices space defined by the decomposition (5.27), this is represented

by the4 × 4 matrixR

R =











1 0 0 0

0 cos(2ϕ) sin(2ϕ) 0

0 − sin(2ϕ) cos(2ϕ) 0

0 0 0 1











. (5.41)

In the language of Eq. (5.35) the3 × 3 orthogonal matrix is

R =







cos(2ϕ) sin(2ϕ) 0

− sin(2ϕ) cos(2ϕ) 0

0 0 1






. (5.42)

To integrate the equation of motion numerically we have to discretize the space

coordinatex and the Fermi surface. In dirty systemsg(p̂) is nearly isotropic, so it

is clear that a few discrete pointŝpi on the Fermi surface are sufficient. In clean

systems this is nota priorievident, but numerical tests show that even in this case

convergence is reached quickly. Typically we describe the Fermi surface with a

set of twenty to fortŷpi.

First we show numerical results for the spin polarization inthe stationary limit.

Fig. 5.4 depicts the voltage induced spin polarization forLx = 20l, Ly = 10l and

αpF τ = 2; due to the linearity of the underlying equations, all our results are

linear in the applied voltage. In the bulk, only thesy component is nonzero, and

given by the Edelstein results0 = −N0α|e|Eτ [37]. A spin Hall effect induced

spin polarization is found in the corners, as it is expected in [74]. It is however

not purely in thez-direction, havingx-components too.

Fig. 5.5 showssy(x, y =Ly/2) for various disorder stregths. In the diffusive

limit and assuming the spin polarization to be vanishing at the interface with the

leads, it was predicted that [74]

sy(x) = s0

(

1 − cosh[(x− Lx/2)/Ls]

cosh(Lx/2Ls)

)

, (5.43)

whereLs is the spin relaxation length. With our choice of boundary condition a

spin polarization still exists nearx = 0, Lx, in particular in the clean limit. Some

mean free paths away from the interface on the other hand the data can be well

fitted with an exponential increase or decrease, both in the clean and dirty limit.
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Figure 5.4: Spin polarization in the presence of an electrical current flowing in

x-direction for a strip of lengthLx = 20l andLy = 10l. The spin-orbit coupling

strength isα = 10−3vF and the elastic scattering rate is1/τ = αpF/2. The spin

polarization is given in units of the bulk Edelstein value,s0 = −N0α|e|Eτ .
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Figure 5.5:sy in units of s0 as a function ofx for Lx = 200l, Ly = 100l and

αpF τ = 0.005, 0.01, 0.02, 0.05, 0.1, 1 (from bottom to top).
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Figure 5.6: Spin relaxation lengthLs in units of l as a function of disorder, ob-

tained by fitting the spatial dependence of the electric fieldinduced spin polariza-

tion (shown in Fig. 5.5) usingsy = a + b[exp(−x/Ls) + exp(−(Lx − x)/Ls)].

The diffusive limit expression is shown as a dashed line.
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As a result we obtain the spin relaxation length as a functionof disorder, shown

in Fig. 5.6. In the dirty limit,αpF τ ≪ 1, our numerical result agrees with what is

expected from the diffusion equation,Ls =
√
Dτs = l/2αpF τ . In the clean limit,

for which we are not aware of any quantitative predictions, the spin relaxation

length is of the order of the mean free path,Ls ≈ 1.27l.

We will now consider a non-static situation and study the time evolution of

the spin polarization and current. The system starts in thermal equilibrium, then

a voltage is switched on and the relaxation of the system intoits stationary non-

equilibrium state is observed. It is a nontrivial problem todescribe such a sit-

uation theoretically. One might be tempted to allow a time dependent voltage

in the boundary condition, Eq. (5.38), and then to follow thetime evolution.

In this case the charge density becomes time dependent and inhomogeneous.

This procedure makes sense for non-interacting electrons,not for interacting ones

where the long range Coulomb interaction enforces charge neutrality. In principle

the interaction can be included into the quasiclassical formalism explicitly, see

e.g. [26]. This is beyond our scope. Instead, we assume in thefollowing that

a voltage difference across the leads instantly results in ahomogeneous electric

field in the sample. One has thus to solve Eq. (4.13) with the initial condition

g(p, ǫ;x, t = 0) = tanh(ǫ/2T )(gR − gA) and taking into account the electric

field via the usual substitution∇ → ∇ − |e|E∂ǫ. In the numerics it is however

more convenient to work in a scalar gauge, since then the (static) electric field

disappears from the equation of motion and is present in the initial and bound-

ary conditions only. In the end we have to solve Eq. (4.13) with the boundary

condition (5.38) and the initial condition

gK(p̂, ǫ;x, t = 0) = tanh

(

ǫ+ |e|φ(x)

2T

)

(gR − gA), (5.44)

whereφ(x) interpolates linearly between the two leads,φ(x) = V (Lx/2−x)/Lx.

In Fig. (5.7) we show the spin currentjy
sz

as a function of time in the bulk

and at the interface with the leads of a rather clean system (αpF τ = 2). On

short time scales the bulk current agrees with what is found ignoring disorder (see

Section 5.1.2): the spin current oscillates as a function oftime with frequency

2αpF , and the time average is given by the universal spin Hall conductivity. In the

bulk, for the weakly disordered system we are considering, the time dependent
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Figure 5.7: Time evolution of the spin Hall current at the interface with the leads

and in the bulk. In the bulk we compare our numerical result (data points) with

the analytical result (full line) of Eq. (5.45). Near the leads, only numerical data

are available (dashed curve).jy
sz

is evaluated aty = Ly/2, x = 0 (boundary) and

x = Lx/2 (bulk) forLx = 20l, Ly = 10l andαpF τ = 2.

spin current is given by

jy
sz

=
|e|E
8π

[

e−t/2τ − e−3t/4τ cos(2αpF t)
]

, (5.45)

which can be obtained from the frequency dependent spin Hallconductivity (5.30)

when onlys-wave non-magnetic scatterers are present. On the time scale of the

spin relaxation time, here given by the scattering timeτ , the bulk spin current

becomes exponentially suppressed and goes to zero in the stationary limit. Near

the leads, on the other hand, the situation is somewhat different, since a finite spin

current remains in the stationary limit. An important question is whether the spin

current polarizes the electron system at the edges. In Fig. 5.8 we show the spin

polarization in thez-direction across the system atx = Lx/2 as a function of time.

Since in the early time evolution a spin current flows in the bulk, spins accumulate

near the edges. When the spin current disappears the polarization vanishes too.

The spin polarization at the edges is seen to oscillate as expected with frequency

2αpF . In the cleaner systems oscillations are of course faster. Remarkably, the

maximum oscillation amplitude relative to the bulk value islarger in the dirty

system (αpF τ = 0.25 ), where it is almost of the order of one. This can be

understood as follows: a rough estimate of the spin polarization at the edge is
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Figure 5.8: Spin Hall effect induced spin polarizationsz in units ofs0 as a function

of y and t at x = Lx/2 for Lx = 20l, Ly = 10l andαpF τ = 0.25, 2, 5 (from

bottom to top).
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sz ∼ τsj
y
sz
/Ls. With

τs ∼ τ/(αpF τ)
2 (5.46)

jy
sz

∼ eE(αpF τ)
2 (5.47)

Ls ∼ l/(αpF τ) (5.48)

the result is indeedsz ∼ s0 = −N0α|e|Eτ . In the clean limit, on the other hand,

the typical time and length scales areτs ∼ τ andLs ∼ l, from which we estimate

sz ∼ s0/(αpF τ), in agreement with the numerical findings.

It is worthwhile bringing the attention to one additional point. In a diffusive

sample,αpF τ ≪ 1, the Eilenberger equation (4.13) leads to the following spin

diffusion equations

(

∂t −D∇2
)

sx = − 1

τs
sx + 2C∇xsz (5.49)

(

∂t −D∇2
)

sy = − 1

τs
(sy − s0) + 2C∇ysz (5.50)

(

∂t −D∇2
)

sz = − 1

τs
sz − 2C (∇xsx + ∇ysy) , (5.51)

whereD = v2
F τ/2 is the diffusion constant,1/τs = (2αpF τ)

2/(2τ) the Dyakonov-

Perel spin relaxation rate,C = vFαpF τ ands0 = −N0α|e|Eτ is the usual Edel-

stein result. As shown in Appendix G, adiabatic scattering at the boundaries,

Eq. (5.39), translates into the following boundary conditions for thesx and sy

spin components

sx = 0, sy = s0. (5.52)

Eqs. (5.50) and (5.52) tell an interesting story: in the bulkof a diffusive system

the time scale of the spin dynamics is set by the spin relaxation timeτs, whereas

at the edges of the sample the boundary condition plays the major role. While

in clean systems (αpF τ ≫ 1) τs is comparable toτ , ideally identical in the limit

αpF τ → ∞, it becomes progressively larger than the latter in increasingly dirtier

ones (αpF τ ≪ 1). In the second case, assuming adiabatic (spin active) bound-

aries, this implies that thesy spin polarization approaches the stationary value

s0 = −N0α|e|Eτ on a much faster time scale thanτs when close to the boundary.

This is shown in Fig. 5.9. Very recently such a phenomenon wasindeed observed

in a GaAs-based channel [91].
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Figure 5.9: Voltage induced spin polarization as a functionof y andt atx = Lx/2

on a strip of lengthLx = 20 l and widthLy = 10 l. The upper figures are obtained

for αpF τ = 1, which impliesτs ≈ τ , whereas in the lower figuresαpF τ = 0.1

and thusτs ≫ τ . As a consequence in the second casesy reachess0 on a much

shorter time scale at the boundaries than in the bulk.
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5.2 Spin relaxation in narrow wires

In this Section we concentrate on the specific problem of the size dependence

of the spin relaxation rate in narrow samples. Concerning this matter, the recent

experimental observations of Ref. [113] in an-InGaAs wire provided the moti-

vation for the present analysis. Indeed, they produced an unexpected result. The

relaxation time showed first an increase with decreasing sample width, in accor-

dance with a number of previous theoretical works [114–118], and then an abrupt

decrease at the smallest wire widths. Such nonmonotonic behaviour set in as

L ≈ Ls, with Ls =
√
Dτs the spin relaxation length, when the relaxation time

reached its maximum and then sharply dropped. We will now seehow spin-active

boundaries (R 6= 1), not considered in the above theoretical references, radically

change the size dependence of the spin relaxation time for narrower samples and

provide a useful point of view as far as the interpretation ofthe experiment is

concerned. The geometry is the usual one (see Fig. 5.3).

The starting point are the bulk spin diffusion equations, Eqs. (5.49)–(5.51).

Since we are interested in the spin dynamics only, the sub-leadingO (α/vF ) spin-

charge coupling terms are neglected – this means the Edelstein s0 term is dropped
(

∂t −D∇2
)

sx = − 1

τs
sx + 2C∇xsz , (5.53)

(

∂t −D∇2
)

sy = − 1

τs
sy + 2C∇ysz , (5.54)

(

∂t −D∇2
)

sz = − 1

τs
sz − 2C (∇xsx + ∇ysy) . (5.55)

Alternatively, one could have dropped theO(α/vF ) terms directly from Eq. (4.13)

and considered the diffusive limit of the simplified equation

∂tg + vF · ∇g − i[b · σ, g] = −1

τ
(g − 〈g〉) . (5.56)

In standard charge diffusion the longest living mode is homogeneous. Due to the

coupling between the various spin components this is not anymore the case.8

Let us consider two types of boundaries (see Appendix G for some details).

First a spin-conserving one, where

|pin s〉 → |pout s〉, (5.57)

8See [80] for more. As a noteworthy example, whenb = bR +bD with α = β there exists an

infinite living mode with wavevectorq = 4mα [119].
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Figure 5.10: Time evolution of the spin polarization in a wide channel (L =

200 l ≈ 40Ls, αpF τ = 0.1) with conserving (left) and adiabatic (right) boundary

conditions. The curves from top to bottom correspond to different times, with

∆t = 50τ ≈ τs. The polarizations change sign at various positions where asteep

drop of|sz|, |sy| is visible in the figure.

such thatS andR are identity matrices. Then the adiabatic boundary of Eq. (5.39),

with the matricesS andR given by Eqs. (5.40) and (5.41), respectively.

In the first case – for the Rashba model – using the expression for the charge

and spin current in the diffusive limit, one gets (see also [115,120])

−D∇ysy − Csz = n · jy = 0, (5.58)

−D∇ysx = n · jx = 0, (5.59)

−D∇xsz + Csx = n · jz = 0, (5.60)

wheren is in they-direction. For adiabatic boundary conditions, in contrast

sx = 0, sy = 0, (5.61)

while thez-component of the spin is still conserved and therefore Eq. (5.60) re-

mains valid. Fig. 5.10 shows the time evolution of the spin profile for a long wire

of width L = 200 l, wherel = vF τ is the elastic mean free path. In the left

panel the spin is initially homogeneously polarized in thez-direction and con-

serving boundary conditions are assumed,S = 1. The results were obtained from

the Eilenberger equation withαpF τ = 0.1. Inside the wire one observes a ho-

mogeneous decay of the spin polarization, with the time constant τs/2. At the

boundaries long living modes show up which dominate the spinprofile in the long
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Figure 5.11: Lowest eigenvalues of the spin-diffusion operator for the Rashba

model with conserving (left) and adiabatic (right) boundary conditions. On the

left there appear modes withγ < 7/16τs. These have a complex wave vector and

can therefore exist only at the edges of the wire. The dashed curve in the left panel

is γτs = (L/Ls)
2/12 obtained in Ref. [115] for very narrow wires. On the right

this long-living mode is absent.

time limit. For further investigation of these modes we write the spin diffusion

equations, Eqs. (5.53)–(5.55), as∂ts+ γ̂s = 0, and determine the eigenvalues and

eigenmodes of the operatorγ̂. The eigenmodes are superpositions of plane waves.

The low frequency spectrum of̂γ is shown in Fig. 5.11 as a function of the wire

width. Recall that the smallest eigenvalue for a bulk systemis γ0 = 7/16τs [80].

The modes with smaller decay rate have a complex wave vector and are thus lo-

calized near the edges of the wire. For a wide system we find a continuum of

eigenvalues aboveγ0, and two localized modes atγ ≈ 0.382/τs.

For a narrow wire most strikingly one eigenvalue goes to zerowith decreasing

width, asymptotically as

γτs ≃
1

12

(

L

Ls

)2

. (5.62)

This corresponds to the suppression of spin-relaxation in small systems reported

earlier by other authors [114–118]. This effect can be traced back to the specific

form of the spin-orbit field in the Rashba Hamiltonian – beingproportional to the

velocity [116]. Here we formulate the argument for a system including both the

Rashba and the linear Dresselhaus term – Eqs. (3.19) and (3.22) – within the spin

diffusion equation approach. For a spin profile that is homogeneous alonĝx the
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5.2. Spin relaxation in narrow wires

angular averaged Eilenberger equation, Eq. (5.56), yields

∂tsx + ∇yj
y
sx

= −2mαjx
sz
− 2mβjy

sz
, (5.63)

∂tsy + ∇yj
y
sy

= −2mαjy
sz
− 2mβjx

sz
, (5.64)

∂tsz + ∇yj
y
sz

= 2mα(jx
sx

+ jy
sy

) + 2mβ(jy
sx

+ jx
sy

). (5.65)

In the diffusive limit the spin current densities are given by

jβ
sα

= −D∂βsα + 2τ〈vβ
F (b × s)α〉, (5.66)

which allows to reproduce the spin diffusion equation, Eqs.(5.53)–(5.55). In

narrow systems the slow modes have a smooth density profile, such that to leading

order in the system size the current can be considered constant in space. For a

quantum dot, i.e. a system that is confined in all spatial directions, the vanishing

of the spin current through the boundaries then immediatelyimplies that∂ts = 0.

For a narrow wire the situation becomes slightly more complicated since only

currents flowing into the boundary are zero, which after somealgebra leads to

∂ts = − 1

τs

1

α2







α2 αβ 0

αβ β2 0

0 0 α2 + β2













sx

sy

sz






. (5.67)

In the absence of the Dresselhaus term (β = 0) this means that∂tsy = 0, and

∂tsx = −sx/τs, ∂tsz = −sz/τs, which in time implies that the long-living mode

in Fig. 5.11 is polarized in they-direction. In the presence of both a Rashba and

a Dresselhaus term, the spin is still conserved for one direction which depends on

the relative strength of the two terms: perpendicular to theboundary when the first

one dominates, parallel when the latter is larger, and somewhere in between (but

always in-plane) when the two are comparable in size.

The above results change considerably when different boundary conditions are

applied, and agree with what experimentally observed in [113]. The right panel of

Fig. 5.10 shows the time evolution of a spin polarization using adiabatic boundary

conditions, Eq. (5.61). Here the spin has been prepared in the y-direction, i.e.

perpendicular to the boundary. In this case the boundary mode is absent, and

the asymptotic decay of the spin polarization is ruled by an inhomogeneous but

extended mode. The boundary condition implies that the eigenmodes aresx,y ∝
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sin(qx), sz ∝ cos(qx) with q = nπ/L; the eigenvalues are given by

γ(q) = Dq2 +
3

2τs
± 1

2τs

√

1 + 16L2
sq

2. (5.68)

By inserting the allowedq-values the spectrum shown in the right panel of Fig. 5.11

is reproduced. In contrast to the previous case of a spin-conserving boundary, here

all the diffusion modessx,y show an increasing spin relaxation rate at the smallest

wire widths, and in particular a non monotonous behaviour asa function of the

wire width with a minimum atL/Ls = (4π/
√

15) n ≈ 3 n, wheren is the mode

index. WhenL < Ls they all relax fast. On the other hand one should note the

different behaviour of thesz modes – for which, for example, a homogeneous

mode withγτs = 1 exists. This is not surprising. Indeed, as already pointed out,

the adiabatic boundary conserves thesz spin component, in contrast to thesx,y

ones.
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Chapter 6

Epilogue

Understanding spin-charge coupled dynamics in low dimensional systems is of

paramount importance to one of the main goals of spintronics: the manipulation of

the spin degrees of freedom of carriers by purely electricalmeans. Quasiclassical

equations are a powerful and versatile tool in this sense, very much at ease in

the realm of mesoscopic physics. In Chapter 4 we have shown how to generalize

them so as to handle systems with spin-orbit coupling, whereas in Chapter 5 we

have applied the theory to some particular problems of interest. Namely, we have

extensively discussed the direct spin Hall effect in various situations, e.g.

• in the bulk of a clean system, where it is possible to relate itto a Berry phase

in momentum space;

• in both non-magnetically and magnetically disordered samples, possibly in

the presence of an external magnetic field;

• in steady state as well as under time dependent conditions;

• in confined geometries.

We have also investigated the relation between spin Hall currents and voltage

induced spin polarizations, and additionally spent some effort studying the latter

in their own right. Finally, motivated by a recent experiment, we have focused

on the problem of spin relaxation in narrow two-dimensionalstrips and have seen

how this is heavily influenced by the choice of boundary conditions.
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As for the open questions in the field, their number is rather large, and ranges

from the fundamental to the more practical kind. In the case of spintronics proper,

most are nicely summarized in the review from Awschalom [4].We here recall a

few others, some of which were mentioned at various points inthe course of the

previous Chapters.

1. Effects due to topologically protected edge states are attracting attention –

the so-called quantum spin Hall effect, with a first round of theoretical and

experimental results available.

2. The magnitude of the spin-electric effects considered isapparently directly

related to the energy dependence of the density of states andthe velocity

near the Fermi surface. In a certain sense, to the breaking ofparticle-hole

symmetry. How general is such a statement? And can it be formulated more

precisely?

3. Mesoscopic fluctuations could definitely prove to play a major role in all

of the phenomena analyzed. However, up to now almost nothinghas been

done in this direction.

4. In general terms, quantum corrections can be relevant in low-dimensional

disordered systems such as the ones considered. Once again though, this

point has been mainly overlooked, the only reference we are aware of be-

ing [97].

5. A complete generalization of the boundary conditions forthe quasiclassical

Green’s function in the presence of spin-orbit coupling is still missing.

6. How exactly do intrinsic and extrinsic effects influence one another? Is there

a clear physical picture? This is actually an old problem [121] which has

more recently received new attention [122, 123] – though no clear answer

has been given.

7. It there a way to formulate quasiclassics in aSU(2)-covariant form? This

would let one treat all linear-in-momentum spin-orbit couplings, possibly

due to both intrinsic and extrinsic mechanisms, in a unified way. Indeed,

these can be introduced in the HamiltonianH = p2/2m through aSU(2)
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Epilogue

gauge transformation [77, 124], much in the same way as the electromag-

netic field is introduced via theU(1) gauge. It then becomes a matter of

generalizing the procedure of Section 2.2.1 from the simpleU(1) algebra to

the more complex non-commutingSU(2) one.

The last three points have been the subject of recent work, which however has not

yet been finalized.
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Appendix A

Time-evolution operators

We discuss in some detail the structure of the unitary time-evolution operator

U(t, t0) generated by the HamiltonianH(t)

H(t) = H +Hext(t), H = H0 +H i, Hext(t) = 0 for t < t0, (A.1)

U(t, t0) ≡ T

{

exp

(

−i
∫ tf

ti

dt′H(t′)

)}

, (A.2)

with T {...} the time-ordering operator. The time-ordered exponentialis defined

by [45]

T

{

exp

(

−i
∫ tf

ti

dt′H(t′)

)}

≡ lim
M→∞

e−ǫH(tM )e−ǫH(tM−1)...e−ǫH(t1)e−ǫH(t0),

with ǫ =
tf−ti

M
andtn = ti + nǫ. In this limit, i.e. M → ∞, ǫ → 0,Mǫ finite,

the exponential of operators decompose as that ofc-numbers. Indeed, for any two

noncommuting operatorsA,B, according to the Baker-Hausdorff formula

eǫ(A+B) = eǫAeǫB +O(ǫ2). (A.3)

We will use Eq. (A.3) shortly. For convenience we renametf = t, ti = t0 and

decomposeU(t, t0)

U(t, t0) = U0(t, t0)S(t, t0)

= e−iH0(t−t0)S(t, t0). (A.4)
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We use Eq. (A.4) in the equation of motion forU(t, t0)

i∂tU(t, t0) = H(t)U(t, t0)

= H0U0(t, t0)S(t, t0) +
[

H i +Hext(t)
]

U0(t, t0)S(t, t0)

= i∂t [U0(t, t0)S(t, t0)]

= H0U0(t, t0)S(t, t0) + U0(t, t0)i∂tS(t, t0) (A.5)

so that, thanks to Eq. (A.3)

S(t, t0) = T

{

exp

[

−i
∫ t

t0

dt′U †(t′, t0)
(

H i +Hext(t′)
)

U(t′, t0)

]}

= T

{

exp

[

−i
∫ t

t0

dt′
(

H i
H0

(t′) +Hext
H0

(t′)
)

]}

= T

{

exp

[

−i
∫ t

t0

dt′H i
H0

(t′)

]}

T

{

exp

[

−i
∫ t

t0

dt′Hext
H0

(t′)

]}

= Si(t, t0)Sext(t, t0). (A.6)
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Appendix B

Equilibrium distribution

Denoting by〈. . . 〉 the grand-canonical ensemble average, in thermal equilibrium

at the temperatureT = 1/β the Kubo-Martin-Schwinger boundary condition

〈ψ†(x′, t′)ψ(x, t)〉 = 〈ψ(x, t)ψ†(x′, t′ + iβ)〉 (B.1)

can be reformulated as a boundary condition for the Green’s function

G<
0 (1, 1′)|t1=0 = ±e−βµG>

0 (1, 1′)|t1=−iβ, (B.2)

with µ the chemical potential. This is done simply by using the definition of

G<,> and the cyclic property of the trace. The± sign corresponds to bosons or

fermions. We will now consider fermions.

An equilibrium state is invariant under time translations.Assuming it to be

translationally invariant in space too, Eq. (B.2) may be rewritten in Fourier space

as[p = (ǫ,p)]

G<
0 (p) = −e−β(ǫ−µ)G>

0 (p)

→ −e−βǫG>
0 (p), (B.3)

where in the second line the energy has been rescaled to be evaluated from the

chemical potential. According to Section 2.1.2 one has

GK(1, 1′) = G>(1, 1′) +G<(1, 1′) (B.4)

GR(1, 1′) −GA(1, 1′) = G>(1, 1′) −G<(1, 1′). (B.5)
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In equilibrium Eqs. (B.3), (B.4) and (B.5) imply

GK
0 =

[

GR
0 −GA

0

]

tanh

(

βǫ

2

)

. (B.6)

For G−1
0 = ǫ − p2

2m
+ µ, as given in Section 2.2, if the spectral weight has a

delta-like profile,GR
0 − GA

0 = −2iπδ(ǫ − ξ), then for the distribution function

introduced in Eq. (2.48)

f(X,p) ≡ 1

2

(

1 +

∫

dǫ
2πi

GK(X, p)

)

(B.7)

in equilibrium one has

f0(X,p) =
1

2

[

1 +

∫

dǫ
2πi

GK
0 (X, p)

]

=
1

2

[

1 − tanh

(

βǫ

2

)]

, (B.8)

that is, the Fermi distribution.
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Appendix C

On gauge invariant Green’s

functions

For our calculations we rely on the following definitions andconventions.

1. Wigner coordinates and metric, as well as the Fourier-transform, are as de-

fined in Section 2.2, see Eqs. (2.39)–(2.42).

2. TheU(1) gauge transformations for the field operatorsψ̂ and the connection

A read

ψ̂′(1) = eiχ(1)ψ̂(1),

eA′(1) = eA(1) − ∂1χ(1), withA(1) = (Φ(1),A(1)), e = |e|.

From this it follows thatǦ transforms according to

Ǧ′(1, 2) = eiχ(1)Ǧ(1, 2)e−iχ(2). (C.1)

An exactly gauge invariant Green’s function can thus be defined

ˇ̃G(X + x/2, X − x/2) ≡ exp

[

−ie
∫ X−x/2

X+x/2

d1′A(1′)

]

Ǧ(X + x/2, X − x/2).

(C.2)

In the gradient approximation one assumesA(1′) to vary slowly on the scale of

|x1| ∼ 1/pF , t1 ∼ 1/ǫF , i.e. to be roughly constant betweenX+x/2 andX−x/2,

so that Eq. (C.2) becomes

ˇ̃G(X + x/2, X − x/2) ≈ exp [ieA(X)x] Ǧ(X + x/2, X − x/2). (C.3)
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Fourier-transforming to the mixed representation one obtains

ˇ̃G(X, p) =

∫

dxe−ipx ˇ̃G(X, x)

≈
∫

dxe−i[p−eA(X)]xǦ(X, x)

≈ Ǧ(X, p− eA(X)). (C.4)

We emphasize that Eq. (C.4) is valid only to linear order, i.e.

ˇ̃G(X, p) = Ǧ(X, p) − eΦ(X)∂ǫǦ− eA(X) · ∇pǦ. (C.5)

Note that formally, sincě̃G(X, p) and Ǧ(X, p) are related by a simple variable

shift, the following holds
[

∂XǦ(X, p)
]

p
=

[

∂X
ˇ̃G(X, p∗)

]

p∗
+

+
[

∂X (p∗)
]

p

[

∂p∗
ˇ̃G(X, p∗)

]

X
, (C.6)

with p∗ = p+ eA(X), and
[

∂pǦ(X, p)
]

X
=
[

∂p∗
ˇ̃G(X, p∗)

]

X
. (C.7)

Obviously, whereas̃G(X, p) = G(X, p − eA(X)) is a gauge invariant quantity,

G̃(X, p∗) is not, asG̃(X, p∗) = G(X, p).

The above concept of a shiftp → p∗ was first used in [125], and it is safe to

rely on it for the present – Abelian – case. It must however be kept in mind that

the nature of the manipulations behind it is actually different and has to do with

the geometrical structure of a given gauge symmetry, a fact that becomes manifest

only when dealing with non-Abelian gauges. This is a topic ofongoing research

we will not comment further on.

The equation of motion foř̃G(X, p) is readily obtained following the standard

procedure:

1. take the Dyson equation fořG, (2.67), and its adjoint;

2. subtract the two;

3. move to the mixed representation and use Eq. (2.43) to perform a gradient

expansion;
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On gauge invariant Green’s functions

4. use Eqs. (C.5)–(C.7).

The result reads

[∂T + v · (∇R − eE∂ǫ) + F · ∇p] G̃(ǫ,p;X) = 0, (C.8)

where

v =
p

m
,

E(X) = − (∇RΦ(X) + ∂T A(X)) ,

B(X) = ∇R ∧ A(X),

F(X, p) = −e (E(X) + v ∧B(X)) . (C.9)

Theξ-integrations leads to Eq. (2.75)

[

∂T + vF p̂ · ∇R − evFE · p̂∂ǫ + e
E · p̂
pF

+
F(pF , ϕ) · ϕ̂

pF
∂ϕ

]

g̃K(ǫ, ϕ;X) = 0,

(C.10)

where we have used the following

F(ξ, ϕ) = −eE − e
p(ξ)

m
p̂ ∧B ,

∇p =
p(ξ)

m
p̂∂ξ +

1

p(ξ)
φ̂∂φ ,

1

m
∂ξp(ξ) =

1

p(ξ)
,

p̂(ϕ) ⊥ ϕ̂(ϕ), ∂ϕϕ̂ = −p̂.

Indeed, explicitly

i

π

∫

dξF(ξ, ϕ) · ∇pG̃
K =

i

π

∫

dξF(ξ, ϕ) ·
[

p(ξ)

m
p̂∂ξ +

1

p(ξ)
ϕ̂∂ϕ

]

G̃K

=
i

π

∫

dξ

[

−eE · p̂p(ξ)
m

∂ξ +
F(ξ, ϕ) · ϕ̂

p(ξ)
∂ϕ

]

G̃K

= eE · p̂ i
π

∫

dξ
1

m
∂ξp(ξ)G̃

K +
i

π

∫

dξ
F(ξ, ϕ) · ϕ̂

p(ξ)
∂ϕG̃

K

=

[

e
E · p̂
pF

+
F(pF , ϕ) · ϕ̂

pF

∂ϕ

]

g̃K(ǫ, ϕ;X). (C.11)
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Integrating Eq.(C.10) over the energy and averaging over the angle must lead to

the continuity equation. One has

∂T 〈
∫

dǫg̃K〉 + ∇R · 〈
∫

dǫvF p̂g̃K〉 − evF 〈
∫

dǫE · p̂∂ǫg̃
K〉+

+e〈
∫

dǫ
E · p̂
pF

g̃K〉 + 〈
∫

dǫ
F(pF , ϕ) · ϕ̂

pF
∂ϕg̃

K〉 = 0.

The third term is easily seen to be zero, since forǫ → ±∞ g̃K assumes its equi-

librium form, which does not depend onϕ. The two terms on the second line

partially cancel out

e〈
∫

dǫ
E · p̂
pF

g̃K〉 + 〈
∫

dǫ
F(pF , φ) · ϕ̂

pF

∂ϕg̃
K〉 =

e〈
∫

dǫ
E · p̂
pF

g̃K〉 +

∫

dǫ

[

F · ϕ̂
pF

g̃K |2π
0 −

∫

dϕ
2π
∂ϕ

F · ϕ̂
pF

g̃K

]

=

e〈
∫

dǫ
E · p̂
pF

g̃K〉 +

∫

dǫ
F · ϕ̂
pF

g̃K |2π
0 − e〈

∫

dǫ
E · p̂
pF

g̃K〉 =
∫

dǫ
F · ϕ̂
pF

g̃K |2π
0 = 0, (C.12)

where in the last line we have used thatg̃K(ǫ, 0;X) = g̃K(ǫ, 2π;X). Therefore

we are left with

∂T 〈
∫

dǫg̃K(ǫ, ϕ;X)〉 + ∇R · 〈
∫

dǫvF p̂g̃K(ǫ, ϕ;X)〉 = 0, (C.13)

i.e. the continuity equation, Eq. (2.76). Finally, from Eq.(C.5) one sees that

g̃(ǫ, p̂) =

[

1 − eΦ(X)∂ǫ + e
A(X)

pF
(p̂− ϕ̂∂ϕ)

]

g(ǫ,p), (C.14)

which then implies, using the same technique as above,

ρ(X) = −2N0

[

π

2
〈
∫

dǫ
2π
gK(ǫ, ϕ;X)〉 − eΦ(X)

]

(C.15)

and

j(X) = −N0π〈
∫

dǫ
2π

[

vF p̂gK(X, ǫ, p̂) +

(

eA(X) · ϕ̂
m

)

ϕ̂gK(ǫ, ϕ;X)

]

〉.
(C.16)
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Appendix D

The self energy

We consider two kinds of disorder self energy

1. Σ̌nm, due to non-magnetic and angle-dependent (or long-range) scattering;1

2. Σ̌m, arising from magnetics-wave (or short-range) scattering.

Such scattering mechanisms are modelled by the random potentialsVnm(x)

Vnm(x) =
∑

i

U(x − Ri) (D.1)

andVm(x)

Vm(x) =
∑

i

B · σδ(x −Ri), (D.2)

which must be averaged over the impurities’ positions. Thisoperation, which we

denote by a bar, is performed according to the standard technique [34]

Vnm(x) = Vm(x) = 0, (D.3)

Vnm(x)Vnm(x′) = nnm

∑

q

|U(q)|2eiq·(r−r′), (D.4)

Vm(x)Vm(x′) = nm
B2

3
δ(x − x′), (D.5)

wherennm andnm denote the concentrations of non-magnetic and magnetic im-

purities, respectively.

1Non-magnetics-wave (or short-range) scattering is a subcase of this.
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Σ̌nm and Σ̌m are evaluated in the Born approximation, i.e. diagrams with

crossing impurity lines are not considered. They read

Σ̌nm(p) = nnm

∑

p′

|U(p− p′)|2Ǧ(p′) (D.6)

and

Σ̌m = nm
B2

3

3
∑

l=1

∑

p

σlǦ(p)σl. (D.7)

In the first case we expand the non-magnetic scattering kernel in spherical har-

monics of the scattering angle and neglect its dependence onthe modulus ofp

andp′

nnm|U |2 =
1

2πN0τ
(1 + 2K1 cos(ϕ− ϕ′)+

2K2 cos(2ϕ− 2ϕ′) + ...)

≡ 1

2πN0τ
(1 +K(ϕ− ϕ′)) (D.8)

with τ the non-magnetic elastic lifetime andN0 = m/2π the density of states of

two-dimensional electron gas. This way one has

Σ̌nm = − i

2τ
〈(1 +K)ǧ〉 (D.9)

where〈. . . 〉 =
∫

dϕ
2π

. In the second instance instead we write the magnetic scat-

tering kernel in terms of the spin-flip timeτsf

nmB
2 =

1

2πN0τsf
, (D.10)

so that

Σ̌m = − i

6τsf

3
∑

l=1

σl〈ǧ〉σl. (D.11)

Given the self energy, the collision integral of the Eilenberger equation,−i
[

Σ̌, ǧ
]

,

can be computed. Its Keldysh component in particular reads

−i
[

Σ̌, ǧ
]K

= −i
(

ΣRgK − gkΣA + ΣKgR − gAΣK
)

= −i
{

ΣR, gK
}

+ i
{

ΣK , gR
}

, (D.12)

where we have used thatgR = −gA and thatΣR =
(

ΣA
)∗

= −ΣA. Substituting

Eq. (D.9) or Eq. (D.11) – or the sum of the two – into the above gives the collision

integral in its explicit form.
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Appendix E

Effective Hamiltonians

Some details regarding the material of Chapter 3 are discussed. For an exhaustive

treatment see the literature references given in the text.

E.1 Thek · p expansion

We start from the Schrödinger equation (3.2) with~ = c = 1

H0Ψνk(x) =

[

(−i∇)2

2m0
+ U(x) +

~

4m2
0

∇U(x) ∧ (−i∇) · σ
]

Ψνk(r)

= ǫνkΨνk(x) (E.1)

and consider the expansion (3.4)

uνk(x) =
∑

ν′

cνν′kuν0(x) (E.2)

for the lattice-periodic part ofΨνk(x)

Ψνk(x) = eik·xuνk(x). (E.3)

In ket notation

|Ψνk〉 =
∑

ν′

eik·xcνν′k|uν′0〉, 〈x|Ψνk〉 = Ψνk(x). (E.4)
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E.1. Thek · p expansion

Substitution into Eq. (E.1) and projection onto the state〈uν0| gives

〈uν0|
{[

p2

2m0
+ U +

1

4m2
0

σ ∧∇U · p
]

+
k

m0
·
[

p +
1

4m0
σ ∧ ∇V

]

−
[

ǫνk − k2

2m0

]}

|Ψνk(r)〉 =

eik·x
∑

ν′

〈uν0|
{

ǫν0 +
k

m0

·
[

p +
1

4m0

σ ∧∇U
]

+

−
[

ǫνk − k2

2m0

]}

|uν′0〉cνν′k =

eik·x
∑

ν′

{[

ǫν0 − ǫνk +
k2

2m0

]

δνν′ +
1

m0
k · πνν′

}

cνν′k = 0

(E.5)

with
[

(−i∇)2

2m0

+ U +
1

4m0

∇U ∧ (−i∇) · σ
]

uν0(x) = ǫν0uν0(x), (E.6)

that is
[

p2

2m0

+ U +
1

4m2
0

∇U ∧ p · σ
]

|uν0〉 = ǫν0|uν0〉, (E.7)

and

πνν′ = 〈uν0|
[

p +
1

4m0
∇U ∧ σ

]

|uν′0〉. (E.8)

Each matrix element has to be intended as an integral over theunit cell

〈uν0|Ô|uν′0〉 =

∫

cell

dx u∗ν0(x)Ouν′0(x), (E.9)

with Ô a given hermitian operator.1 ǫν0 is the energy offset of theν-th band at

k = 0, since Eq. (E.6) is formally given byH0(k = 0)uν0 = ǫν0uν0. It is seen

thatp denotes the atomic momentum, i.e. the fast momentum tied to the quickly

oscillating lattice functionuν0, whereask represents the slow crystal momentum

of the electrons at the bottom of the band. Because of this oneapproximates

πνν′ ≈ 〈uν0|p|uν′0〉, (E.10)

1More precisely,〈a|Ô|b〉 =
∫ ∫

dxdx′ ψ∗

a(x)O(x,x′)ψb(x
′). WhenÔ is a function of the

position operator or a power of the momentum one things simplify and Eq. (E.9) holds [126].
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Effective Hamiltonians

which amounts to neglecting the term

1

4m2
0

k · ∇U ∧ σ ∼ kp, ∇V ∼ p (E.11)

as compared to the diagonal one

1

4m2
0

p · ∇U ∧ σ ∼ p2. (E.12)

When an additional non-crystalline and slowly varying potential V (x) is present,

the envelope ansatz (3.9) is made

|ψ〉 =
∑

ν

φν(x)|uν0〉 (E.13)

and the procedure goes through as before, with the momentumk ≪ p now related

toφν(x) andV (x). That is,k ∼ ∇φν(x),∇V (x). Then, for the very same reason

as before, the two additional spin-orbit terms due toV

1

4m2
0

k · ∇V ∧ σ ∼ k2 , (E.14)

1

4m2
0

p · ∇V ∧ σ ∼ kp, (E.15)

are neglected.

E.2 Symmetries and matrix elements

The matrix elements (3.11) are given by the selection rules determined by the

symmetries of the system, whose general theory can be found in [127]. Basically,

some convenient linear combinationsũi of the differentuν0 are used as a basis,

so that these will share some particular symmetries with H – for example, the to-

tal angular momentumJ = L + S. The ũi will transform according to a certain

irreducible representation of the symmetry group of H, callthis Γi, and so will a

general operator̂O, sayΓO. The matrix element〈ũi|Ô|ũj〉 will transform accord-

ing to the direct-product representationΓi×ΓO ×Γj , and it will be non-vanishing

only if such a product contains the unity representation.

Concretely, when the|J,mJ〉 basis is chosen (see Table E.1) the8 × 8 Kane

Hamiltonian

H8×8 =

(

[Hc]2×2 [Hcv]2×6

[H†
cv]6×2 [Hv]6×6

)

(E.16)
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E.3. The Löwdin technique

reads [57]

[Hc]2×2 =

(

V 0

0 V

)

,

[Hcv]2×6 =





−1√
2
Pk+

√

2
3
Pkz

1√
6
Pk− 0 −1√

3
Pkz

−1√
2
Pk−

0 −1√
6
Pk+

2√
3
Pkz

1√
2
Pk−

−1√
3
Pk+

1√
3
Pkz



 ,

[Hv]6×6 =

(

[V −Eg]1̂4×4 0̂4×2

0̂2×4 (V − Eg − ∆)1̂2×2

)

,

where

P = −i 1

m0
〈S|px|X〉 = −i 1

m0
〈S|py|Y 〉 = −i 1

m0
〈S|pz|Z〉, (E.17)

∆ =
3

4m2
0

〈X| [∂yU∂x − ∂xU∂y] |Y 〉

=
3

4m2
0

× 〈any cyclic permutation〉, (E.18)

k± = kx ± iky, and the zero of the energy has been set to the conduction band

minimun, ǫc0 = 0. Also, U is the crystal potential andV the perturbing one.

In terms of the above, the renormalized mass andg-factor,m∗ andg∗, and the

spin-orbit coupling constantλ that appear in Eq. (3.15) read

1

2m∗ =

(

1

Eg + ∆
+

2

Eg

)

, (E.19)

g∗ =
2e

µB

P 2

3

(

1

Eg
− 1

Eg + ∆

)

, (E.20)

λ =
P 2

3

(

1

E2
g

− 1

(Eg + ∆)2

)

, (E.21)

with µB the Bohr magneton.

E.3 The Löwdin technique

Consider theN ×N problem

(H −E)ψ = 0 (E.22)

ψ =

N
∑

n=1

cnχn (E.23)
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Effective Hamiltonians

ũi Γ |J,mJ〉 uJ,mJ

ũ1 Γ6 |1
2
,+1

2
〉 i|S〉| + 1

2
〉

ũ2 Γ6 |1
2
,−1

2
〉 i|S〉| − 1

2
〉

ũ3 Γ8 |3
2
,+3

2
〉 − 1√

2
(|X〉 + i|Y 〉)| + 1

2
〉

ũ4 Γ8 |3
2
,+1

2
〉 − 1√

6
(|X〉 + i|Y 〉)| − 1

2
〉 +

√

2
3
|Z〉| + 1

2
〉

ũ5 Γ8 |3
2
,−1

2
〉 + 1√

6
(|X〉 − i|Y 〉)| + 1

2
〉 +

√

2
3
|Z〉| − 1

2
〉

ũ6 Γ8 |3
2
,−3

2
〉 + 1√

2
(|X〉 − i|Y 〉)| − 1

2
〉

ũ7 Γ7 |1
2
,+1

2
〉 − 1√

3
(|X〉 + i|Y 〉)| − 1

2
〉 − 1√

3
|Z〉| + 1

2
〉

ũ8 Γ7 |1
2
,−1

2
〉 − 1√

3
(|X〉 − i|Y 〉)| + 1

2
〉 + 1√

3
|Z〉| − 1

2
〉

Table E.1: Basis of the8 × 8 Kane model. |S〉 denotes ans-like orbital,

|X〉, |Y 〉, |Z〉 threep-like ones.|± 1
2
〉 is the spinor corresponding to spin up/down

along the axis of quantization.Γ indicates the irreducible representation of the

symmetry group of the zincblende crystal according to whicheach basis function

transforms.

and suppose the basis{χn}n∈N can be divided into two (not-overlapping) sets

A = {χn}n∈A , B = {χn}n∈B such that functions belonging to different sets are

weakly coupled. In other words such that in the equation

[(

HA HAB

H†
AB HB

)

−E

](

ψA

ψB

)

= 0 (E.24)

the off-diagonal termsHAB, H
†
AB are “small”, that is

HAB, H
†
AB ≪ |HA −HB|. (E.25)

One then looks for an effective equation inA-space

[H(E) − E]ψA = 0 (E.26)

which can be turned into a proper eigenvalue equation forψA onceH(E) is ex-

panded in powers ofE/(dominant energy scale). Obviously, such dominant en-

ergy scale is the one set by|HA −HB|. Explicitly the originalN ×N problem is
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E.3. The Löwdin technique

rewritten as

∑

n∈A

(

UA
mn − Eδmn

)

cn = 0, m ∈ A, (E.27)

cm =
∑

n∈A

UA
mn

E −Hmm
cn, m ∈ B, (E.28)

where

UA
mn = Hmn +

∑

α∈B

H ′
mαH

′
αn

E −Hαα

+
∑

α,β∈B

H ′
mαH

′
αβH

′
βn

(E −Hαα)(E −Hββ)
+

+ . . . , (E.29)

H ′
mn = Hmn(1 − δmn), i.e.H ′ =off-diagonal terms of H. (E.30)

Note that the series in Eq. (E.29) converges only ifH ′/(E − HB) ≪ 1. For

E = HA + δE, with δE a small correction, this is nothing but a rephrasing of the

requirement (E.25). When the setA is a single state one obtains the expressions

of standard perturbation theory, whereas ifA represents a group of degenerate

states, the Löwding technique treats the problem by first tackling the effects of the

perturbation, Eq. (E.29), and then removing the degeneracyin A, Eq. (E.27). For

the8 × 8 Kane model the two degenerates-like levels play the role of the setA,

and the sixp-like states that ofB. The dominant energy scale is|HA − HB| ∼
Eg, Eg + ∆.
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Appendix F

The Green’s function ansatz

In Section 4.2 we looked for an ansatz for the Green’s function capable

1. of factorizing its fast and slow components;

2. when spin-orbit coupling appears, of distinguishing between the two poles,

each belonging to a fold of the spin-split Fermi surface;

3. of making possible a connection with the quasiclassicalǧ(p̂,R).

The results are summarized by Eqs. (4.53)-(4.57), and were obtained assuming

that both branches of the Fermi surface,

ξ± = ξ ± |b|, (F.1)

were spherical. It was mentioned that it is possible to somewhat relax this require-

ment. Let us now see how and to what extent.

F.1 The stationary phase approximation

After the general change of variables
∫

dp

(2π)2
=

∫∫

d[ǫ(p) − µ]dS
(2π)2|∇pǫ(p)| (F.2)

the constant energy surfacesSǫ need to be parameterized. We do this in terms of

the angleϕ betweenp andr, which is the natural choice for spherical surfaces,
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F.1. The stationary phase approximation

p
y

p
x

Sε

Figure F.1: A generic constant energy surfaceSǫ parameterized by the angleϕ,

Sǫ = pǫ(ϕ).

and still a good one as long as the deviations from the spherically symmetric

case are small. The general problem is how to determine the stationary point of

exp{ipr cos(ϕ)} with respect toϕ at constant energy. The parameterization for

p = p(ϕ) [see Fig. (F.1)] is simply the one defining the profile ofS. The stationary

condition then reads

∂ϕ [pr cos(ϕ)] = (∂ϕp(ϕ)) r cos(ϕ) − p(ϕ)r sin(ϕ) = 0 (F.3)

⇐⇒ tan(ϕ) =
p′

p
. (F.4)

We consider two specific cases.

1. Spherical Fermi surface:

=⇒ p doesn’t depend onϕ

=⇒ tan(ϕ) = 0 ⇐⇒ sin(ϕ) = 0 ⇐⇒ ϕ = 0, π. (F.5)

This ends the problem.
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The Green’s function ansatz

(a)
p

y

x
p

0

2 = 2mp ε

p
y

p
x

p2

0
ε= 2m

(b)

Figure F.2: Qualitative examples of an “almost spherical” Fermi surface (a) and

of a non-spherical one (b). Only case (a) is tractable in our approximation.

2. “Almost spherical” Fermi surface, by which we mean a surface such that

|p0 − p(ϕ)|
p0

≪ 1 (F.6)

and
|p′(ϕ)|
p0

≪ 1, (F.7)

wherep0 refers to the spherical Fermi surface, i.e.p2
0 = 2mǫ [see Fig. (F.2)].

This will anyway be defined more properly a little later. Fromnow on we

deal with this case.

The energy dispersion is taken from Eq. (4.1)

ǫ(p, ϕ) = ǫ0(p) + b(p, ϕ) =
p2

2m
+ b(p, ϕ),

b

ǫF
≪ 1, (F.8)

and the constraint reads
p2

2m
+ b(p, ϕ) = ǫF . (F.9)

From this we want to obtain an expression forp(ϕ, ǫF ). To first order inb/ǫF it

reads

p = p0

[

1 − b(p0, ϕ)

2ǫF

]

(F.10)
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F.1. The stationary phase approximation

and in turn we get

∂ϕp = − p0

2ǫF
∂ϕb(p0, ϕ)

= −∂ϕb(p0, ϕ)

vF
. (F.11)

If we make (F.6) and (F.7) more precise by assuming

|∂ϕb(p, ϕ)| . b,

we have
|p′|
p0

.
b

ǫF
≪ 1 (F.12)

or, for the stationary condition:

tan(ϕ) =
p′

p
≈ p′

p0

.
b

ǫF
. (F.13)

In order to conclude we need one final consideration, based onthe following as-

sumptions

p± = p0 ∓ δp,
δp

p
∼ b

ǫF
,

∆pr & 1,

δpr ≪ 1,

where∆p describes the limit of resolution when relying on the stationary phase

approximation. From the above we getδp/∆p ≪ 1, that is, it is not possible to

“see” small deviations in the stationary angle:

tan(ϕ) ∼ b

ǫF
≪ ∆p

p0

⇒ tan(ϕ) = 0. (F.14)

As long as the Fermi surface is almost spherical, in the sensespecified, the sta-

tionary angle is the same we would have for an exactly spherical one. This means

that the angle appearing in the ansatz for the quasiclassical Green’s function is the

same in both bands, and as a consequence Eqs. (4.53)–(4.57) can still be used.
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Appendix G

Matrix form of the Eilenberger

equation and boundary conditions

Some useful manipulations of the Eilenberger equation, Eq.(4.13), are discussed.

Its matrix form is obtained, first in the simple case ofs-wave non-magnetic dis-

order – in order to keep the focus on the general procedure – and then under the

more specific assumptions of Section 5.1.2 that lead to Eqs. (5.28)–(5.30). It is

also shown how to work with the boundary conditions, Eqs. (5.39), (5.57), in the

diffusive regime.

G.1 The matrix form

We start from the Keldysh component of Eq. (4.13) and take traces with respect

to the various Pauli matrices. By using the decomposition (5.27)

g = g0σ0 + g · σ, (gµ) = (g0, g) (G.1)

the matrix form of the Eilenberger equation is obtained. Explicitly, with the s-

wave self-energyΣ = −i〈g〉/2τ , one has

(M0 + M1)g = (N0 + N1)〈g〉 (G.2)
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G.1. The matrix form

where

M0g = g + τ∂tg + vF τ p̂ · ∂xg

− iτ [b0 · σ, g] , (G.3)

M1g =
1

2
τ

{

(b0 · σ)p̂

pF
− ∂p(b0 · σ), ∂xg

}

−1

2
iτ [∂ξ(b0 · σ), {b0 · σ, g}]

+
1

2
{〈∂ξb0 · σ〉, g} , (G.4)

N0〈g〉 = 〈g〉, (G.5)

N1〈g〉 =
1

2
{∂ξb0 · σ, 〈g〉} . (G.6)

HereM1 andN1 are small in the expansion parameter|b|/ǫF . The Eilenberger

equation is then rewritten as

g = (M0 + M1)
−1(N0 + N1)〈g〉, (G.7)

i.e. to first order in|b|/ǫF

g =
(

M−1
0 + M−1

0 N1 −M−1
0 M1M

−1
0

)

〈g〉, (G.8)

from which the equation for thes-wave component of the Green function becomes

(

1 − 〈M−1
0 〉 − 〈M−1

0 N1〉 + 〈M−1
0 M1M

−1
0 〉
)

〈g〉 = 0. (G.9)

In the low frequency, long wavelength limit this is the generalized spin-charge

coupled diffusion equation whose explicit form is obtainedby evaluating the an-

gular average of the operator productM−1N.

In the Rashba model for instance, whereb = αẑ ∧ p, one finds

M0 =











L 0 0 0

0 L 0 ap̂x

0 0 L ap̂y

0 −ap̂x −ap̂y L











, (G.10)

M1 =











0 Qy −Qx 0

Qy 0 0 0

−Qx 0 0 0

0 0 0 0











(G.11)
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Matrix form of the Eilenberger equation and boundary conditions

with

L = 1 + τ∂t + vF τ p̂ · ∂x , (G.12)

a = 2αpF τ , (G.13)

Qx,y = ατ(∂x,y − (p̂ · ∂x)p̂x,y) (G.14)

and

N0 + N1 =











1 −αp̂y/vF αp̂x/vF 0

−αp̂y/vF 1 0 0

αp̂x/vF 0 1 0

0 0 0 1











. (G.15)

Therefore in the diffusive limit,a≪ 1, Eq. (G.9) becomes











∂t −D∂2
x −2B∂y 2B∂x 0

−2B∂y ∂t −D∂2
x + τ−1

s 0 −2C∂x

2B∂x 0 ∂t −D∂2
x + τ−1

s −2C∂y

0 2C∂x 2C∂y ∂t −D∂2
x + 2τ−1

s





















〈g0〉
〈gx〉
〈gy〉
〈gz〉











= 0

(G.16)

whereD = 1
2
v2

F τ is the diffusion constant and

B =
αa2

4
, C =

vFa

2
= vFαpF τ,

1

τs
=
a2

2τ
. (G.17)

In a time independent situation and in the presence of an homogeneous electric

field parallel tox̂, Eqs. (5.49)–(5.51) are obtained – or Eqs. (5.53)–(5.55) ifthe

spin-charge coupling terms are neglected.

We now consider the more complicated self-energy

Σ = Σm + Σnm

= − i

6τsf

3
∑

l=1

σl〈g〉σl −
i

2τ
〈(1 +K)g〉 (G.18)

arising froms-wave magnetic disorder and angle dependent non-magnetic scat-

tering (see Appendix D), and specialize the treatment to Eq.(5.26). The Keldysh

component is as usually implied. Rather than using the standard(σx, σy, σz) basis,

we choose to rotate to(σ‖, σ⊥, σz), the subscripts‖ and⊥ indicating respectively
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G.1. The matrix form

the directions parallel and perpendicular to the internal fieldb. Defining the rota-

tion matrixR̃(ϕ) – not to be confused with the boundary matrixR from Eq. (5.41)

– by











σ0

σx

σy

σz











=











1 0 0 0

0 sinϕ cosϕ 0

0 − cosϕ sinϕ 0

0 0 0 1





















σ0

σ‖

σ⊥

σz











, (G.19)

one has

g′µ =

3
∑

µ′=0

R̃−1
µµ′(ϕ)gµ′, (g′µ) = (g0, g‖, g⊥, gz), (G.20)

Kµν(ϕ, ϕ
′) =

3
∑

µ′=0

R̃−1
µµ′(ϕ)K(ϕ− ϕ′)R̃µ′ν(ϕ

′). (G.21)

Expanding in harmonics – we also drop the four-vector indices

K(ϕ, ϕ′) = K(a) + cos(ϕ− ϕ′)K(b) + sin(ϕ− ϕ′)K(c) + . . . . (G.22)

In the above we have defined

K(a) =











0 0 0 0

0 K1 0 0

0 0 K1 0

0 0 0 0











, K(b) =











2K1 0 0 0

0 K2 0 0

0 0 K2 0

0 0 0 2K1











(G.23)

and

K(c) =











0 0 0 0

0 0 −K2 0

0 K2 0 0

0 0 0 0











. (G.24)

For the purpose of calculating polarizations and spin currents, which is our aim in

Section 5.1.2, the higher harmonics play no role and are thusignored.

By using thatgR
eq = −gA

eq = 1 + ∂ξb · σ and performing a rotation to the new

spin basis, one can write Eq. (5.26) as

∂tg
′ =

1

τ ∗
[−Mg′ + (N0 + N1)〈g′〉 + (N2 + N3)〈Kg′〉] + SE . (G.25)
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The matrices appearing in Eq. (G.25) read

M =













1 − τ∗

τ
α
vF
K1 0 0

− τ∗

τ
α
vF
K1 1 0 0

0 0 1 2αpF τ
∗

0 0 −2αpF τ
∗ 1













, (G.26)

N0 =













1 0 0 0

0 1 − 4τ∗

3τsf
0 0

0 0 1 − 4τ∗

3τsf
0

0 0 0 1 − 4τ∗

3τsf













, (G.27)

N1 =
α

vF













0 −(1 − 4τ∗

3τsf
) 0 0

−1 0 0 0

0 0 0 0

0 0 0 0













, (G.28)

N2 =
τ ∗

τ

α

vF











0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0











, N3 =
τ ∗

τ











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











(G.29)

whereτ ∗ is the elastic quasi-particle life time, defined as

1

τ ∗
≡ 1

τ
+

1

τsf
, (G.30)

which we now use for convenience of notation but which in the final result is

incorporated into the proper transport time [see Eq. (5.31)]. Finally, SE is the

source term due to the electric field. As before, we take this to be along thex-

direction, so that

SE ≡ |e|vFE∂ǫ(2 tanh(ǫ/2T ))













cosϕ

− cosϕ α
vF

− sinϕ α
vF

0













. (G.31)

Solving for thesz spin current flowing alongy Eq. (5.28) is obtained. The

expression for thesy spin polarization, Eq. (5.29), is similarly calculated, and

that for the the frequency dependent spin Hall conductivity, Eq. (5.30), follows at

once.
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G.2 Boundary conditions

The goal is to translate the boundary conditions for the quasiclassical Green’s

function – i.e. Eq. (5.39) for spin-active boundaries and Eq. (5.57) for spin-

conserving ones – into those for the spin polarizations and currents. We consider

s-wave non-magnetic disorder in the Rashba model and assume to be in the dif-

fusive regime. This means that Eqs. (5.49)–(5.51) hold. Thegeometry is as usual

that determined by Fig. 5.3. The spin relaxation lengthLs =
√
Dτs sets the scale

of the spatial variation of〈g〉, i.e. the angular average of the spin components of

g. Since this is much bigger than the mean free pathl, Ls ≫ l, the idea is to solve

the Eilenberger equation exploiting the slow variation of〈g〉 overO(l) distances.

We first rewrite Eq. (G.2)

(M̃0 + M̃1)g = −1

τ
[g − (1 + N1)〈g〉], (G.32)

with M̃0 = (M0 − 1)/τ , M̃1 = M1/τ . As the dominant energy scale is set by

1/τ , the bulk expression forg reads

g(0) = (1 + N1)〈g〉 + O
[

(α/vF )2
]

,

g(1) = −(M̃0 + M̃1 + M̃0N1)〈g〉 + O
[

(α/vF )2
]

⇒ g = (1 − M̃0 + N1 − M̃1 − M̃0N1)〈g〉 + O
[

(α/vF )2
]

. (G.33)

At the boundary the completeg is a superposition of the incoming (gin) and out-

going (gout = Rgin) one

g

at the boundary

↓
= (1 + R)gin. (G.34)

Therefore

〈g〉 =

∫

ϕin

dϕin

2π
(1+R)(1−M̃0 +N1−M̃1−M̃0N1)〈g〉, ϕin ∈ [0, π). (G.35)

We focus on the spin components in the stationary limit. In the case of spin-

active boundary conditionsR is given in Eq. (5.41), and the angular average in

Eq. (G.35) yields

sx = 0, sy = s0, −D∂ysz + Csx = 0, (G.36)
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that is, the result (5.52). All results are intended to leading order inl/Ls and first

order inα/vF . Notice that if spin-charge coupling is neglected, as in Section 5.1.3,

Eq. (G.35) simplifies to

〈g〉 =

∫

ϕin

dϕin

2π
(1 + R)(1 − M̃0)〈g〉, ϕin ∈ [0, π) (G.37)

and the boundary condition forsy reads simplysy = 0 [see Eq. (5.61)]. In Sec-

tion 5.1.3 spin-conserving boundaries are considered too.In this caseR is just

the identity, and from Eq. (G.37) the expressions (5.58)–(5.60) are obtained.
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[4] D. D. Awschalom and M. E. Flatté. Challenges for semiconductor spin-

tronics.Nature Physics, 3:153, 2007.

[5] B. van Wees. Spins go their own way.Nature Physics, 3:147, 2007.

[6] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukara, H. Ohno,and D. D.

Awschalom. Electrical spin injection in a ferromagnetic semiconductor

heterostructure.Nature, 402:790, 1999.

[7] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and

L. W. Molenkamp. Injection and detection of a spin-polarized current in a

light-emitting diode.Nature, 402:787, 1999.

[8] V. F. Motsnyi, J. De Boeck, J. Das, W. Van Roy, G. Borghs, E.Goovaerts,

and V. I. Safarov. Electrical spin injection in a ferromagnet/tunnel bar-

rier/semiconductor heterostructure.Appl. Phys. Lett., 81:265, 2002.

[9] X. Jiang, R. Wang, R. M Shelby, R. M. Macfarlane, S. R. Bank, J. S. Har-

ris, and S. S. P. Parkin. Highly spin-polarized room-temperature tunnel

injector for semiconductor spintronics using MgO(100).Phys. Rev. Lett.,

94:056601, 2005.

117



BIBLIOGRAPHY

[10] M. Johnson and R. H. Silsbee. Interfacial charge-spin coupling: injection

and detection of spin magnetization in metals.Phys. Rev. Lett., 55:1790,

1985.

[11] S. O. Valenzuela and M. Tinkham. Direct electronic measurement of the

spin Hall effect.Nature, 442:176, 2006.

[12] S. O. Valenzuela and M. Tinkham. Electrical detection of spin currents: the

spin-current induced Hall effect.J. Appl. Phys., 101:09B103, 2007.

[13] L. Vila, T. Kimura, and Y. Otani. Evolution of the spin Hall effect in Pt

nanowires: size and temperature effects.Phys. Rev. Lett., 99:226604, 2007.

[14] T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa. Room-

temperature reversible spin Hall effect.Phys. Rev. Lett., 98:156601, 2007.

[15] T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa,

J. Nitta, and K. Takanashi. Giant spin Hall effect in perpendicularly spin-

polarized FePt/Au devices.Nature Materials, 7:125, 2008.

[16] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, andB. G. van

Wees. Fundamental obstacle for electrical spin injection from a ferromag-

netic metal into a diffusive semiconductor.Phys. Rev. B, 62:R4790, 2000.

[17] A. T. Filip, B. H. Hoving, B. G. van Wees, B. Dutta, and S. Borghs. Ex-

perimental search for the electrical spin injection in a semiconductor.Phys.

Rev. B, 62:9996, 2000.

[18] B. T. Jonker, Y. D. Park, B. R. Bennet, H. D. Cheong, G. Kioseoglou,

and A. Petrou. Robust electrical spin injection into a semiconductor het-

erostructure.Phys. Rev. B, 62:8180, 2000.

[19] X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M.

Reddy, S. D. Flexner, C. J. Palmstrom, and P. A. Crowell. Electrical detec-

tion of spin transport in lateral ferromagnet-semiconductor devices.Nature

Physics, 3:197, 2007.

[20] S. Murakami, N. Nagaosa, and S. C. Zhang. Dissipationless quantum spin

current at room temperature.Science, 301:1348, 2003.

118



BIBLIOGRAPHY

[21] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. Mac-

Donald. Universal intrinsic spin Hall effect.Phys. Rev. Lett., 92:126603,

2004.

[22] R. Kubo, M. Toda, and N. Hashitsume.Statistical Physics II - Nonequilib-

rium Statistical Mechanics (Second Edition). Spinger, 1995.

[23] G. F. Mazenko.Nonequilibrium Statistical Mechanics. Wiley, 2006.

[24] J. Rammer.Quantum Field Theory of Non-equilibrium States. Cambridge

University Press, 2007.

[25] J. Rammer and H. Smith. Quantum field-theoretical methods in transport

theory of metals.Rev. Mod. Phys., 58:323, 1986.

[26] P. Schwab and R. Raimondi. Quasiclassical theory of charge transport in

disordered interacting electron systems.Ann. Phys., 12:471, 2003.

[27] R. E. Prange and L. P. Kadanoff. Transport theory for electron-phonon

interactions in metals.Phys. Rev., 134:A566, 1964.

[28] B. L. Altshuler, P. A. Lee, and R. A. Webb.Mesoscopic Phenomena in

Solids. North-Holland, 1991.

[29] S. Datta.Electronic Transport in Mesoscopic Systems. Cambridge Univer-

sity Press, 1995.

[30] A. Kamenev. Keldysh technique and nonlinearσ-model: basic principles

and applications.arXiv:cond-mat/0901.3586, 2009.

[31] L. V. Keldysh. Diagram technique for nonequilibrium processes.JETP,

20:1018, 1965.

[32] J. Rammer.Quantum Transport Theory. Perseus Books, 1998.

[33] A. L. Fetter and J. D. Walecka.Quantum Theory of Many-Particle Systems.

Dover Publications, 2003.

[34] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski.Methods of Quan-

tum Field Theory in Statistical Physics. Dover Publications, 1975.

119



BIBLIOGRAPHY

[35] J. Schwinger. Brownian motion of a quantum particle.J. Math. Phys.,

2:407, 1961.

[36] L. P. Kadanoff and G. Baym.Green’s Function Methods in Equilibrium

and Nonequilibrium Problems. Addison-Wesley Publishing Co., 1962.

[37] V. M. Edelstein. Spin polarization of conduction electrons induced by elec-

tric current in two-dimensional asymmetric electron systems. Solid State

Commun., 73:233, 1990.

[38] R. Karplus and J. M. Luttinger. Hall effect in ferromagnetics. Phys. Rev.,

95:1154, 1954.

[39] M. I. Dyakonov. Magnetoresistance due to edge spin accumulation. Phys.

Rev. Lett., 99:126601, 2007.

[40] H. A. Engel, E. I. Rashba, and B. I. Halperin.Handbook of Magnetism and

Advanced Magnetic Materials, pages 2858–2877. Wiley, 2007.

[41] F. Cooper, S. Habib, Y. Kluger, E. Mottola, J. P. Paz, andP. R. Anderson.

Nonequilibrium quantum fields in the large-n expansion.Phys. Rev. D,

50:2848, 1994.

[42] E. Calzetta and B. I. Hu. Closed-time-path functional formalism in curved

spacetime: application to cosmological back-reaction problems.Phys. Rev.

D, 35:495, 1987.

[43] A. J. Niemi and G. W. Semenoff. Finite-temperature quantum field theory

in minkowski space.Ann. Phys., 152:105, 1984.

[44] F. Cooper. Nonequilibrium problems in quantum field theory and

schwinger’s closed time path formalism.arXiv:hep-th/9504073, 1995.

[45] J. W. Negele and H. Orland.Quantum Many-Particle Systems. Addison-

Wesley Publishing Co., 1988.

[46] A. I. Larkin and Yu. N. Ovchinnnikov. Nonlinear conductivity of supercon-

ductors in the mixed state.JETP, 41:960, 1975.

120



BIBLIOGRAPHY

[47] U. Eckern and A. Schmid. Quasiclassical green’s function in the bcs pairing

theory.J. Low Temp. Phys., 45:137, 1981.

[48] M. I. Dyakonov.Spin Physics in Semiconductors. Springer, 2008.

[49] J. H. Davies.The Physics of Low-dimensional Semiconductors. Cambridge

University Press, 2006.

[50] M. J. Kelly. Low-dimensional Semiconductors. Oxford Science Publica-

tions, 1995.

[51] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth. Experimental

observation of the spin-Hall effect in a two-dimensional spin-orbit coupled

semiconductor system.Phys. Rev. Lett., 94:047204, 2005.

[52] S. Schmult, M. J. Manfra, A. M. Sergent, A. Punnoose, H. T. Chou,

D. Goldhaber-Gordon, and R. J. Molnar. Quantum transport inhigh mo-

bility AlGaN/GaN 2DEGs and nanostructures.Physica Status Solidi B,

243:1706, 2006.

[53] V. Umansky, R. De Picciotto, and M. Heiblum. Extremely high mobility

two dimensional electron gas: evaluation of scattering mechanisms.Appl.

Phys. Lett., 71:683, 1997.

[54] J. M. Luttinger and W. Kohn. Motion of electrons and holes in perturbed

periodic fields.Phys. Rev., 97:869, 1955.

[55] R. Winkler. Spin-orbit Coupling Effects in Two-dimensional Electron and

Hole Systems. Springer, 2003.

[56] E. O. Kane. Band structure of indium antimonide.J. Phys. Chem. Solids,

1:249, 1957.
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