Quasiclassical methods for spin-charge
coupled dynamics
In low-dimensional systems

Cosimo Gorini

Lehrstuhl fir Theoretische Physik Il
Universitt Augsburg

Augsburg, April 2009



Supervisors

Priv.-Doz. Dr. Peter Schwab
Institut fur Physik
Universitat Augsburg

Prof. Roberto Raimondi
Dipartimento di Fisica
Universita degli Studi di Roma Tre

Prof. Dr. Ulrich Eckern

Institut fur Physik
Universitat Augsburg

Referees: Prof. Dr. Ulrich Eckern
Prof. Roberto Raimondi

Oral examination: 12/6/2009






Mi scusi, dei tre telefoni quad quello con il tarapiotapioco che avverto la
supercazzola? ...Deitre ...
Conte Mascetti
Mario Monicelli, Amici Miei, 1975

Gib Acht auf dich, wenn du durch Deutschland kommst,
die Wahrheit unter dem Rock.
Galileo Galilei
Bertolt Brecht, Leben des Galilei, 1943

God might have mercy, he won't!
Colonel Trautmann on John J. Rambo
Rambo Ill, 1988



Contents

1 Introduction 7
1.1 Spintronics . . . . . . . .. 7
1.2 Thetheoreticaltools . ... ... ... ... ... ........ 10
1.3 Outline . . .. .. . . 12
2 Enter the formalism 13
2.1 Green’s functions, contours and the Keldysh formutatio. . . . 13
2.1.1 Closed-time contour Green’s function and Wick's teeo 15
2.1.2 The Keldysh formulation . . . . .. ... ......... 18
2.2 FromDysontoEilenberger . . . . . .. .. ... ... ... ... 19
2.2.1 Vector potential and gauge invariance . . . ... ... .. 26
3  Quantum wells 31
3.1 2Dsystemsintherealworld . .. .. ............... 31
3.2 Thetheory: effective Hamiltonians . . . . . .. .. ... .... 34
4 Quasiclassics and spin-orbit coupling 43
4.1 The Eilenbergerequation . . . . .. .. ... ... ........ 43
4.1.1 Thecontinuity equation . . . ... ... ... ...... 46
4.2 ¢&-integrationvs. stationaryphase . . . ... ... 48
4.3 Particle-holesymmetry . . . . .. .. ... .. oL 56
5 Spin-charge coupled dynamics 57
5.1 ThespinHalleffect . . .. ... ... ... ... .. ....... 57
5.1.1 Experiments . . .. ... .. ... ... ... 58
5.1.2 Bulk dynamics: the direct spin Hall effect . . . . . . . .. 95

5



CONTENTS

5.1.3 Confinedgeometries . . . . ... ... ... ....... 68
5.1.4 \oltage induced spin polarizations and the spin Hedte
infinitesystems . . .. .. ... ... ... ....... 70
5.2 Spinrelaxationinnarrowwires . . . . . . . ... ... ... 79
6 Epilogue 85
A Time-evolution operators 89
B Equilibrium distribution 91
C On gauge invariant Green'’s functions 93
D The self energy 97
E Effective Hamiltonians 99
E.1 Thek-pexpansion . . .. ... ... . ... ... ... 99
E.2 Symmetries and matrixelements . . . . .. ... ... ...... 101
E.3 The Lowdintechnique . .. .. ... ... ... ......... 102
F The Green’s function ansatz 105
F.1 The stationary phase approximation . . ... ... ... ... 051

G Matrix form of the Eilenberger equation and boundary conditions 109

G.1 Thematrixform . . . . ... .. ... ... .. .. ... . ... . 109

G.2 Boundaryconditions . . . . ... ... ... o 114
Bibliography 116
Acknowledgements 129



Chapter 1

Introduction

1.1 Spintronics

The word “spintronics” refers to a new field of study concermath the manip-
ulation of the spin degrees of freedom in solid state sys{@ém4]. The realiza-
tion of a new generation of devices capable of making full oebesides the
charge, the electronic — and possibly nuclear — spin is oiits afain goals. Ide-
ally, such devices should consist of only semiconductingenedls, making for a
smooth transition from the preseglectronictechnology to the futurepintronic

one. More generally though metals, both normal and ferrovetg, are part of
the game.

Besides in its name, which was coined in the late ninetiesfiéid is “new”
mainly in the sense of its approach to the solid state problertackles, as it
tries to establish novel connections between the oldereddbfit consists of — e.g.
magnetism, superconductivity, the physics of semicoratacinformation theory,
optics, mesoscopic physics, electrical engineering.

Typical spintronics issues are

1. how to polarize a system, be it a single object or an enseoflvhany;

2. howto keep itin the desired spin configuration longer thartime required
by a device to make use of the information so encoded;

3. how to possibly transport such information across a eeaia, finally, ac-
curately read it.



1.1. Spintronics

The field is broad in scope and extremely lively. Without attgrapt at generality,
we now delve into some more specific problems and refer tleeasted reader to
the literature. The reviews [2, 4] could be a good startingio

When dealing with IlI-V (e.g. GaAs, InAs) and 1I-VI (e.g. Zesemiconduc-
tors optical methods have been successfully used bothdanjiction and detec-
tion of spin in the systems [5]. Basically, circularly pofad light is shone on a
sample and, via angular-momentum transfer controlled Inyesselection rules,
polarized electron-hole pairs with a certain spin dirattoe excited. These can
be used to produce spin-polarized currents. Vice versan §&-0], when pre-
viously polarized electrons (holes) recombine with unpa&d holes (electrons),
polarized light is emitted and detected — this is the prilechehind the so-called
spin light emitting diodes (spin LEDS).

All-electrical means of spin injection and detection wohtwlvever be prefer-
able for practical spintronic devices. Resorting to feragmetic contacts is quite
convenient, at least for metals. Roughly, the idea is to raareent first through
a ferromagnet, so that the carriers will be spin polarized, then into a normal
metal. Actually, relying on a cleverly designed non-localide based on the
scheme of Johnson and Silsbee [10], Valenzuela and Tinkhaiwere able to
inject a pure spin current — in contrast to a polarized chatgeent — into an Al
strip and, moreover, to use this for the observation of therse spin Hall effect.
Similar experiments followed [12-15].

In semiconducting systems things are complicated by thealed “mismatch
problem” one runs into as soon as a ferromagnetic metalesgrductor interface
shows up. As it turns out, the injection is efficient onlyif < o, whereor. is the
conductivity in the ferromagnetic metal andhat in the material it is in contact
with, which is not the case when this is a semiconductor [Ih, Workarounds
are subtle but possible, and revolve around the use of tloangers between the
ferromagnetic metal and the semiconducting material [&©fhe substitution of
the former with a magnetic semiconductor [6, 7, 18]. Wheredbe second case
results are limited to low temperatures, the first approachléd to efficient in-
jection even at room temperature [9]. Finally, a successftélectrical injection-
detection scheme in a semiconductor has been recently dératad [19].

On the other hand, the already mentioned spin Hall effectdcitself be a

IMore on this shortly and in Chapter 5.



Introduction

Figure 1.1: The direct spin Hall effect. The gray layer is a{tvmensional elec-
tron (hole) gas, abbreviated 2DEG (2DHG), to which an implalectric field is
applied. Because of spin-orbit interaction in the systgumn-sp and spin-down
fermions are deflected in opposite directions, creatinga gpin current in the di-
rection orthogonal to the driving field. Spin accumulatioth@ boundaries of the
sample is the quantity usually observed in experimentsakehtas a signature of
the effect.

method for generating pure spin currents without the neeféfoomagnetic con-
tacts. Perhaps even more importantly, it could allow forrtr@nipulation of the
spin degrees of freedom inside a device by means of elddietds only. Itis an
eminent example of what Awschalom calls a “coherent spmtrproperty” [4], as
opposed to the “non-coherent” ones on which older devicebased. Originally
proposed in 2003 for a two-dimensional hole gas by Murakanai.€20], and
soon after for a two-dimensional electron gas by Sinova. ¢24], it has attracted
much attention and is still being actively debated. Ratimaply, it is the appear-
ance of a pure spin current orthogonal to an applied eleigid, as shown in
Fig. 1.1, in the absence of any magnetic field. Its inversetmpart is, most ob-
viously, the generation of a charge current by a spin ondy thamting orthogonal

2For example, giant-magnetoresistance-based hard dRasghly, non-coherent devices are
able to distinguish between “blue” (spin up) and “red” (spown) electrons, but cannot deal with
“blue-red” mixtures, that is, coherences.



1.2. The theoretical tools

to each other — in [11], for example, the injected spin curpgaduced a measur-
able voltage drop in the direction transverse to its flow.yTdnre two of a group of

closely related and quite interesting phenomena whichided by spin-orbit cou-
pling, present themselves as potential electric field+odled handles on the spin
degrees of freedom of carriers. They will be discussed sxtely in Chapter 5,

and represent the main motivation behind our present work.

1.2 The theoretical tools

Out-of-equilibrium systems are ubiquitous in the physwaild. Examples could
be a body in contact with reservoirs at different tempegestyelectrons in a con-
ductor driven by an applied electric field or a stirred fluidtimbulent motion.
Indeed, the abstraction of an isolated system in perfedtilequm is more often
than not just that, an abstraction, and a convenient sggpimt for a quantitative
treatment of its physical properties. However, we do nohwasdiscuss in general
terms nonequilibrium statistical mechanics [22—-24]. Moredestly, we want to
focus on an approximate quantum-field theoretical fornathe quasiclassical
formalism [24—27], constructed to deal with nonequililbmisituations and which
has the virtues of

e having, by definition, a solid microscopic foundation;

e being perfectly suited for dealing with mesoscopic systeines systems
whose size, though much bigger than the microscopic Ferneleagth
Ar, can nevertheless be comparable to that over which quantenfigrence
effects extend [28, 29];

e bearing a resemblance to standard Boltzmann transpontyttieat makes
for physical transparency.

In particular, we will be dealing with disordered fermiomjases in the presence
of spin-orbit coupling.

The established language in which the quasiclassicalyhgexpressed is that
of the real-time formulation of the Keldysh technique [28;30,31]. The latter is
a powerful formalism which generalizes the standard plediive approach typi-
cal of equilibrium quantum field theory [24, 32—-34] to noniiuum problems

10



Introduction

and stems from Schwinger’s ideas [35]. Its range of apptinatgoes from parti-
cle physics to solid state and soft condensed matter.

Quasiclassics, on the other hand, was historically borretd @ith transport
phenomena in electron-phonon systems [27], and was olligiimamulated ac-
cording to the work of Kadanoff and Baym [36]. It was laterended, highly
successfully, to deal with superconductivityts main assumption is that all en-
ergy scales involved — external fields, interactions, disgrcall thisiw — be small
compared to the Fermi energy. Thanks to the diagrammatic formalism inher-
ited from the underlying Keldysh structure, a systematigagsion infiw /e is
possible. This way quantum corrections due to weak lod&bzaand electron-
electron interaction can also be included [26]. More gdhetiaough, the theory
is built so as to naturally take into account coherences,lasdthe great merit
of making Boltzmann-like kinetic equations available algspsystems in which
the standard definition of quasiparticles — i.e. excitaisharply defined in en-
ergy space thanks to a delta-like momentum-energy relatismot possible. Of
course, it has shortcomings too. A rather important onesiseitying on perfect
particle-hole symmetry. In other words, the quasiclassiqaations are obtained
neglecting any sort of dependence on the modulus of the miomeof the den-
sity of statesV and of the velocity, which are simply fixed at their values at the
Fermi surfaceNy andv . This turns out to be a problem whenever different folds
of the Fermi surface exist — e.g. when spin-orbit couplingassidered — across
which variations ofN andv are necessary in order to catch the physics of some
particular phenomena. Examples of these are a number ofetgutric effects
in two-dimensional fermionic systems very promising fotguuial applications
in the field of spintronics, like the voltage induced spinwaoalation and the
anomalous and spin Hall effects [20, 21, 37—-40]. It is suabnpimena that moti-
vated us to generalize the quasiclassical formalism tasans in which particle-
hole symmetry, at least in the sense now described, is broktare precisely,
to situations in which new physics arises because the clangespin degrees of
freedom of carriers are coupled due to spin-orbit intecacti

3For a more detailed overview see [25], where a number of iadditreferences can be found.
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1.3. Outline

1.3 Outline

Chapter 2 introduces the general formalism we rely on, tHdy&h technique and
the quasiclassical theory, and is complemented by the Appes A-D.

Chapter 3 is dedicated to the low-dimensional systems irchvtiie physics
we focus on takes place: their main characteristics, how éne realized, what
kind of Hamiltonians describe them. Additional materiagjigen in Appendix E.

In Chapter 4 we present original results regarding the gdization of the
guasiclassical equations to the case in which spin-orbipkxag is present. Some
additional technical details can be found in Appendix F.

Chapter 5 starts with a rather general discussion of the ldplheffect and
related phenomena, giving also a brief overview of the expantal scene, and
then moves on to treat some specific aspects of the mateer, lik

¢ the details of the direct intrinsic spin Hall effect in theohdimensional
electron gas, with focus on the Rashba model,

¢ theinfluence of different kinds of disorder — non-magnetity-range, mag-
netic short-range — on spin-charge coupled dynamics indiweensional
electron systems;

o the effects of boundaries and confined geometries on theratmtioned
phenomena and on the more general issue of spin relaxation.

Original results are presented. Additional technical mates given in Appendix G.
The closing Chapter 6 provides with a brief summary and amvosw of the
current work in progress and of possible future research.
Finally, if not otherwise specified, units of measure will ¢lgosen so that
h = kg = ¢ = 1 throughout the whole text.

12



Chapter 2

Enter the formalism

As its title suggests, this Chapter is mostly a technical drfee main objects of
the discussion are the Keldysh formulation of nonequilibriproblems and the
quasiclassical formalism. This presentation, though onitpductory, is supposed
to be self-contained. For details we refer the interestadeeto the fairly rich

literature [24-26, 30, 32, 35, 36, 41-44]. We will mainly reog&long the lines
of [25, 26]. A further reference for the basic backgroundis][

2.1 Green’s functions, contours and the Keldysh for-
mulation

The Green’s function, or propagator, lies at the core of guarfield theory. It
represents a powerful and convenient way of encoding irdtion about a given
system, and lets one calculate the expectation values aigaiybservables. For
a system in thermodynamical equilibrium described by a Hamian H the def-
inition of the one-particle propagator reads

G(1,1) = —i(T {¢H(1)¢g(1')}> (2.1)

where(...) indicates the grandcanonical ensemble averige, } the time-ordering
operator, andyy (1), @b}{(l’) are the field operators in the Heisenberg picture. We

LIn the following “1” will indicate the space-time poiritx;, ;). Additional degrees of free-
dom, for example pertaining to the spin, can also be included'generalized” space coordinate.

13



2.1. Green’s functions, contours and the Keldysh formaorati

write
H=Hy,+ H’, (2.2)

whereH, represents the diagonalizable partibfvhile H* contains the possibly
complicated interactions between particles, and move treHeisenberg to the
interaction picture. Thanks to Wick’s theorem [33, 45] itpgssible to obtain
a perturbative expansion @f(1,1’) in powers of H?, which can be pictorially
represented by connected Feynman diagrams. A crucial steépsi procedure
is the so-called adiabatic switching on, in the “far” pastdaff, in the “far”
future, of interactions, which assures that at +oo the system lies ithe same
eigenstate of the noninteractitg,.

One can go a little further, and in the case of an additionalkiand time-
dependent external perturbation being turned on at time,

H=H-+ H“t), H“(t)=0 for t<t,, H"'< H (2.3)

it is possible to calculate the response of the system tadioeder in H¢(¢),
since this is determined by its equilibrium properties dnly tackle real nonequi-
librium problemsG(1,1’) given above, Eq. (2.1), is however not enough. The
reason is the following. Let us assume that the externaligetion 7**(¢), not
necessarily small, is switched on and off not adiabaticatlyimest = ¢; and
t=t; >t

H(t) = (2.4)

H t € (—o0,t;) U (ts, +00)
H + He®'(t) t € [t ty] ’

where possiblyt;, — —oo andt; — +oo — indeed this is what will happen
in Sec. 2.1.2. If the system was lying in a given eigenstatthefunperturbed
Hamiltonian att < ¢;, nothing guarantees that aft&“**(¢) had driven it out of
equilibrium it will go back to the same initial state. Schgér suggested [35] to
avoid referring to the final state at> ¢;, and rather to stick to the initial one only,
i.e. to define a Green’s function on the closed time contosiown in Fig. 2.1
(since from now on the only reference time will be the “switahi’ time ¢;, we
will call this )

G(1,1) = =T { w1 (1) ). (2.5)

HereT, {...} is the contour time-ordering operator

2This statement corresponds to the fluctuation-dissipatiearem [32, 45].

14



Enter the formalism

A C A C’
to t; to t;
+—> >+

Figure 2.1: The closed-time contours(left) and ¢’ (right). The downward-
pointing branch of/, describing evolution in the imaginary time interyal —if3),
corresponds to the thermodynamical ensemble average.

(Dl (1)t >cty
Z|:¢7T1(1,)¢H(1) t1 <c ty,

where thet sign corresponds to bosons and fermions. The meaning ofthiecs
(...) is now that of a weighted average with respect to some deapiyatorp,
which to all effects plays the role of a boundary conditiopased onG(1, 1’) —
i.e. it doesnotinfluence the dynamics of the field operators. If one assuhas t
for t < ty the system lies in thermal equilibrium with a reservoir ahperature
T then (we use the grandcanonical ensemble, so energies aseirad from the
chemical potentigl)

T {wn (), (1) | = { (2.6)

e PH
p(H) = Trie- oA p= % (2.7)

To explicitly show how to manipulate Eg. (2.5) in order to ¢ke structure of
G(1,1'), and to obtain its perturbative expansion, we will assume (Eq) to
hold. We emphasize that such an assumption is by no meanssaggeas the
functional derivative method shows [36,41-44].

2.1.1 Closed-time contour Green'’s function and Wick'’s thee
rem

Our goal is to write dowrG(1,1’) in a way that will let us use Wick’s theorem
to generate its perturbative expansion in bathand F¢*!(¢), exactly as done in

15



2.1. Green’s functions, contours and the Keldysh formaorati

ordinary equilibrium theory.
We start by considering the Hamiltonian

H(t) = H + H™'(t), H=Hy+H' H“(t)=0fort<t (2.8)
and the Green'’s function as defined in Eq. (2.5)
G(1,1) = (T wn(Dh (1) }), (2.9)
with, thanks to Eq. (2.7),

e PH .
(.y=Tr[p(H)..] = % (2.10)

For a given operato®(t) in the Heisenberg picture one has
O (t) = U (t, 1) O(to)U(t, to) (2.11)

wheret, is the reference time at which the Heisenberg and Schrédipigtures
coincide, and/{(t, t,) is the full time-evolution operatdr

Ut ty) =T {eXp (—i /t: dt’H(t’)) } , (2.12)

T{...} indicating the usual time ordering. This can be factorized a

Ut to) = Uo(t to)S(t, o)

= =S (1 10)S° (1, 1) (2.13)
where
t
S'(t,tg) = T{exp [—z/ dt’H};O(t')}}, (2.14)
to
t
St ty) = T{exp {—z/ dt’Hfﬁ(t’)]}. (2.15)
to

From Eq. (2.11), using tha'(¢,t') = S(¢', 1)

?/)H(t)?/);{(t,) = Ut to)(to)U(t, to)UT (', to) YT (to) Ut to)
= S(tht)wHo(t)S(tat/)w}{()(t/)s(tatO)- (2.16)

3For details regarding and its manipulations see Appendix A.
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Enter the formalism

The thermodynamical weight facter”? can be regarded as an evolution operator
in imaginary time frony, to t, — 73 and thus similarly decomposed
e PH = e P Si(ty —if3, 1y). (2.17)
This way the numerator of Eq. (2.9) reads
Tr [T {un(t)ul () }] =
Tr |e=#H0Si(ty — iB, o) T, {S(to, 1) n, ()S(E, )0k (1)S(E, to)}] -

Tr |0, {85 Setm, ()], (1) }] (2.18)
In the above we wrote’, (S¢**) for the time evolution operator generated by
H' (H*"'(t)) on the contour/(c) of Fig. 2.1, and we IeT., {...} take care of rear-
ranging the various terms in the correct time order.
To rewrite the denominator of Eq. (2.9) we exploit that aamyitime evolution
along the closed-time contouiis simply the identity

T. {88} =1 (2.19)
and thus obtain
Tre ] = Tre P8 (ty —iB,to)T. {S:S}]

= Tr[e T, {S,S . (2.20)
From Egs. (2.18) and (2.20) we end up with
(T SuSe oy (], () Pho

(Te{SL8e o

Tl {sism el 0]
- Tr [e=AHOT, { S/, Seat}] ' (2.21)
As anticipated, Eqg. (2.21) is formally identical to the eagsion one would ob-
tain in equilibrium. The only difference is the appearant¢he contours:, ¢,
which take the place of the more usual real-time &xiso, +0c0). Wick’s theo-
rem can now be applied, and perturbation theory formulatéerims of connected

Feynman diagrants The algebraic structure @f(1, 1) is however a little more
complicated than in an equilibrium situation. We deal witimithe next section.

G(1,1) = —i

4Looking at Eq. (2.21) one could think that the denominateesgponsible for the cancellation
of the non connected diagrams. Actually, in contrast to thélérium case, these are automati-
cally “canceled”, since the evolution operaon the closed-time contour is 1.

17



2.1. Green’s functions, contours and the Keldysh formaorati

Figure 2.2: The Keldysh contour in the compteglane.

2.1.2 The Keldysh formulation

To obtain the Keldysh contouty [31] shown in Fig. 2.2 we first neglect initial
correlationd and send, — —oo, then extend the right “tip” of to +oo by using
the unitarity of the time-evolution operator. The GreeniadtionG(1,1’), now
defined o, can be mapped onto a matrix in the so-called Keldysh space

Gep (1,1 = G = G Gz ) (2.22)
C121 G22

A matrix elementﬁij corresponds to € ¢;, t' € ¢;. Explicitly

Gu(11) = =T {enel)}), (2.23)
Gul1) = G0.1) =00V (2.24)
Ga(L1) = G7(L1) = =ifi()ul (1)), (2.25)
Caa(1,1) = =T {wn(V)e (1), }), (2.26)

whereT {...} is the anti-time-ordering operator. A convenient représion was
introduced by Larkin and Ovchinnikov [46]:

G = Lo3GL! (2.27)

5In our language this means neglecting the parf ektending front, to to — i3. In the func-
tional derivative method this corresponds to considersdaundary condition a noncorrelated
state.

18



Enter the formalism

with L = 1/v/2(0y — io,) ando;, i = 0,1, 2, 3, the Pauli matrices. This way the

Green’s function reads
R K
G = ( C; ZA ) . (2.28)

GT andG# are the usual retarded and advanced Green’s functions

GR(1L1) = =it = )({w(), v} () ], (2.29)
GALY) = 0t — O {en(D). () ), (2.30)

with {¢H(1),¢;(1f)} = P (1), (17) + L, (1) (1), while G, the Keldysh
component of, is

GR(1,1) = =i({un(1), ol 1) . (2.31)

G, G4 carry information about the spectrum of the syst&t, about its dis-
tribution. The equation of motion fa&”, the quantum-kinetic equation, can be
thought of as a generalization of the Boltzmann equationfadt, in the semi-
classical limit, and provided a quasiparticle picture isgible, it reduces to the
Boltzmann result. The representation given by Eq. (2.2®aisicularly conve-
nient since its triangular structure is preserved whenenerdeals with a string of
(triangular) operator®,, O,, ...O,, (standard matrix multiplication is assumed)

[ O O)E
0,05...0, = O = ( A ) (2.32)

Such a string is the kind of object Wick’s theorem producesother words, in
this representation the structure of the Feynman diagrathgisimplest possible.
We will not discuss this in detail (see [25] for more), andlwalther move on to
study the equation of motion @f in the quasiclassical approximation. From now
on spin4d /2 fermions will be considered.

2.2 From Dyson to Eilenberger

Thanks to, a full quantum-mechanical description of our system israally —
possible. In principle all one needs is the solution of thed@yequation, i.e. the

19



2.2. From Dyson to Eilenberger

equation of motion for the Green’s function. Its right- aeftthand expressions
in the general case read

[Go'(1,2) —2(1,2)] ® G(2,1) = 6(1 — 1), (2.33)
G(1,2)® [Go'(2,1) —2(2,1)] =8(1—1'), (2.34)

where the symbol®” indicates convolution in space-time and matrix multipkc
tion in Keldysh space

A(1,2)® B(2,1) = / d2 (’% ’jA ) (1,2) (BO ]ZA )(2,1’) (2.35)

and thed-function has to be interpreted as

o[ sa-1) 0
5(1—1) = ( 0 s1-19 ) : (2.36)

Gy is the inverse of the free Green’s functfon
Gyt (1,2) = [i0h, — Ho(1)]8(1 —2), (2.37)

while the self-energy contains the effects due to interactions (electron-phpnon
electron-electron and so on, but also disorder). Expjicfr electrons in the
presence of an electromagnetic fiedd ||, i« is the chemical potential)
1 :

Ho(1) = 5~ [=iVa, + eA(D)])* — ed(1) — p. (2.38)
The Dyson equation contains too much information for ouppses. What we
are looking for is a kinetic equation with as clear and sing@¢ructure as possible
— that is, some sort of compromise between physical traespgirand amount of
information retained. The model is that of the already cBettzmann equation,
which we aim at generalizing starting from the full micropanquantum picture
delivered by Egs. (2.33) and (2.34). While physical quagiare written in terms
of equal-time Green'’s functions, the Dyson equation cararad thus approxima-
tions are needed. With this in mind, we introduce the Wigmerdinates
:X1+X1/ T:tl_'_tl/

R
2 2 7

(2.39)

r =X; — Xy, t= tl — tll (240)

SExternal fields, like the electromagnetic one, can also bleiited. See below.
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Enter the formalism

and Fourier-transform with respect to the relative ones
G(1,1) 2L G(x,p) = / dre PG (X +2/2, X — 2/2). (2.41)
Here

X=(T,R), z=(tr), p=(¢Pp),
a)( = (_8T7 vR)u 8:B = (_867 Vr)

and the metric is such that
pr=—et+p-r, Ox0,=—0r0.+ Vgr- Vp. (2.42)

The coordinate$X, p) define the so-called mixed representation. Physical quan-
tities must be functions of the center-of-mass timenot of the relative time —
or, in other words, must be functions @, ¢ = 0).

A convolutionA(1,2) ® B(2,1") in Wigner space can be written as [47]

(A® B)(X,p) = /(O3 =009%)/2 A(X p)B(X, p), (2.43)

where the superscript on the partial derivative symboldatdis on which object it
operates. We now subtract Egs. (2.33) and (2.34) to obtain

[Go'(1,2) = £(1,2) § G(2,1)] =0, (2.44)

then move to Wigner space and use Eg. (2.43) to evaluate thelctions. If
A(X,p)andB(X, p) are slowly varying functions ok the exponential in Eq. (2.43)
can be expanded order by order in the small parandgtéy < 1, thus generating
from Eq. (2.44) an approximated equation. If possible, ththen integrated first
overe — i.e. written in terms of = 0 quantities — to produce the kinetic equa-
tion, then over the momentum to deliver at last the dynamics of the physical
observables.

To clarify the procedure we consider the simplest exampssibte: free elec-
trons in a perfect lattice (no disorder) and in the presem@nelectric field de-
scribed by a scalar potential

(_'L.VX1 )2

2m

Gyl(1,1) = |id,, — +e®(1) + pu| 5(1 —1"), £(1,1") = 0. (2.45)

"The presence of a vector potential will be handled in the Bextion.
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2.2. From Dyson to Eilenberger

We move to Wigner coordinates and Fourier-transfarm p, so that

2
G(jl:e—p—+e<1>(X)+,u. (2.46)

2m

Eq. (2.44) is then written expanding the convolution [Eq48)] to linear order
in the exponent,since we make the standard semiclassical assumptiom tiRat
varies slowly in space and time on the scale set k-, 1 /er

—i[Gy' 9G] ~ 0rG —edrPd.G — VypGy' - VRG + VRG, ' - VG
= 0pG — e0p®I.G + v - VRG +eVrP(R) - VG (2.47)

with G = G(X, p) andv = p/m. Atthis point we define the distribution function
f(X,p)

2 2m

which in equilibrium reduces to the Fermi function (see Ampgig B), and con-
sider the Keldysh component of Eq. (2.47). Integrated ex2r: it reads

FxXp) =1 <1+ / ﬁeﬂx,p)), (2.48)

(Or +v-Vr +eVrPR) - V) f(X,p) =0, (2.49)

that is, the collisionless Boltzmann equation. As knoweré¢hfollows the stan-
dard continuity equation

Irp(X) + Vi - §(X) =0, (2.50)

where the particle density and particle current are

dp
| Gt ep) = () 251)
dp X

WhenX(1,1’) # 0 care is needed. The procedure sketched above goes through
as shown only as long as the self-energy has a weddpendence. Otherwise
the term [E ® G} cannot be easily — if at all e-integrated®. Such a requirement

8The gradient approximation’ (X% —9,9%)/2 ~ 1 1 1 (0408 —i00%).
%Basically, if© has a weak-dependence the spectral weight — G4 has a delta-like profile
in e. This can be interpreted as defining quasiparticle exottati Details can be found in [25, 27].
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Enter the formalism

is avoided by the quasiclassical technique. Its idea isWwaf8 the integration
procedure

[osslsmn &) smmn] )]«

Here, & = p?/2m — u and N is the density of states at the Fermi surface per
spin and volume (for example in three dimensiofis = mpr/27%). The cru-
cial assumption of the quasiclassical approximation is tia all energy scales
involved in the problem be much smaller than the Fermi enefgis means that
the Green’s function, which in equilibrium is strongly pedkaround the Fermi
surface|p| = pr, will stay so even after the interactions have been turnedron
other words> will be a slowly varying function ofp| when compared t6/, and
it will be possible to easily integrate (ovgs|) the commutato{i ® G}

Let us then define the quasiclassical Green’s fungjias

(R p7t1,t2 / dfG R p7t1,t2) (254)

As manifest, the quasiclassical approximation does natinegal involve the time
coordinates. Sinc€ (R, p;t1,t,) falls off as1/¢ whené — oo the integral does
not converge, and high-energy contributions —i.e. far an@y the Fermi surface
— must be discarded. This can be achieved by introducing sigddly sensible
cutoff. The assumption that all energy scales be small cozalpa the Fermi en-
ergy ensures that only the low-energy region determinedyhamics of the sys-
tem. In other words, introducing a cutoff cures the divergeaf Eq. (2.54) and
at the same time tells us th@tR,, p; 1, t5) will carry the dynamical (nonequilib-
rium) information we are interested in. The discarded heglrgy contribution'§
can however be relevant: no matter what technical procaedumgolved — that is,
what kind of Boltzmann-like kinetic equation is obtained g E2.50) must in the
end hold.

Still assuming for a moment = 0, we go back to Eq. (2.47), take once again
the Keldysh component and integrate it according to

/(2(1:)3/%2% / /2m/ dg. (2.55)

OFar from the Fermi surface equilibrium sets in, so these quévalently called “equilibrium”
contributions.
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2.2. From Dyson to Eilenberger

After the&-integration we have
—i [aT +60T¢(X)ae +'UF15 : VR] gK(Xa € f)) = 07 (256)

the Eilenberger equation. The absence of a self-energylegsnus move to the
mixed representation in time and perform a gradient expansithout worries,
g(ti,t2) — g(T'€).

After comparing Eqg. (2.56) with the Boltzmann equation £3.4 couple of
comments are in order.

1. The force term originating from the V,G bit of Eq. (2.47) has been
neglected in Eqg. (2.56) because it is ordgker smaller than the others;
being a typical energy scale of the problem (for example @ate with
an external field or with disorder). The driving effect of gphed electric
field seems this way to be beyond the quasiclassical appetiim This is
not the case, as will be shown in the next section.

2. The velocity is fixed in modulus at the Fermi surface.

3. The second term on the I.h.s. of Eq. (2.56) does not appdzy.i(2.49). It
carries the information coming from the high-energy regidmch is not in-
cluded in the quasiclassical Green’s functipn as already pointed out, the
loss of such information has to do with the swapping procedtdg. (2.55),
which requires the introduction of a cutoff in the definiti@54).

The continuity equation is readily obtained from Eq. (2.86) leads to the
following relations between’ and the physical quantities

p(X :—2N0{/ /deXep)—e(I)(X)

i) = N [ £ [ Porpg(X.e.) 257)

WhenY # 0 Eq. (2.47) is modified, and a gradient expansion is first per-
formed in the space coordinates only. The self-energy teads

~i[290] &~ —i[SR,piti, 1) GRpstr, 1)) +
+% {Vp2 ¢ VRG] — % {VRrY ¢ -V,G}
—i [B(R,pit1,t2) $ G(R, ps th, t2)] (2.58)

Q
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where the symbob indicates convolution in time, and where only the leading
order term has been kept, while for the rest one has

—i[Ge' 9G] ~ —i[GyleG] + % {VRGy' ¢ -VpG} +
+5{VG5" ¢ Vall}. (2.59)

Both Eq. (2.58) and Eq. (2.59) can be integrated gvexploiting the peaked
nature ofG, since thanks to the quasiclassical assumption — \geddpendence
of the self-energy — one has

1 - .
—%/ d¢ [S(R,pity,ta) S G(R, psty, by)] ~
— [S®, p.priti, t2) S G(R, st 12)] - (2.60)

We now assume external perturbations and the self-energg sdowly varying
in time, so that in Egs. (2.58) and (2.59) the following geadiexpansion can be
performed

—i[A¢ B] =~ 0.A0rB — 0rAd.B. (2.61)

The Eilenberger equation therefore reads

[0r + €drd(X)0e + vpp - VR] (X, €, D) + i [S(X, €, D, pr), §(X, €, p)] = 0.
(2.62)
We note that since the inhomogeneous term on the r.h.s. ddyken equation
drops out of EqQ. (2.44), the quasiclassical Green'’s functudl be determined
only up to a multiplicative constant. This is determined hg nhormalization
condition

[gog](t,t)y=0d(t—1). (2.63)

Such a condition can be directly established in equilibramd thus be used as
a boundary condition for the solution of the kinetic equatiewhich far from the
perturbed region approaches its equilibrium form. For aitkd discussion see
[24]. When the self-energy describes elastic short-ramgéeying in the Born
approximation one has (see Appendix D)

. l

E<X7 67137pF> = _27_<g<X7 6713>>7 (264)
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2.2. From Dyson to Eilenberger

where(. . .) indicates the average over the momentum apgledr is the quasi-
particle lifetime. Then, taking the Keldysh component of £962) and exploiting
Eqg. (2.64) we finally obtaitt

[0 + e0rd(X)0: + vep - Vr| g5 (X, 6,P) = —— [gK(X,e,f)) — (gK(X,e,f)))} .

(2.65)
In the following Chapters we will start from an equation witlis same basic
structure and modify it to allow for the description of vargspin-related phe-
nomena.

2.2.1 \ector potential and gauge invariance

So far only the coupling to an external scalar potential reenlconsidered. We
now treat the more general case of both electromagnetiapale present, and
see how to deal with gauge invariance at the quasiclassieall bf accuracy. For
simplicity the self-energye is taken to be zero, though its presence would not
change the reasoning. Also for simplicity we assume to bevondimensions,
which means that Eq. (2.55) is modified according to

/ (20':) 2 / / i / de, (2.66)

with Ny = m/2m.
We start from the Dyson equation for the Hamiltonian (2.88)pse left-hand
version reads

[@8“ +ed(1) — ﬁ (p+eA(1)?+ u] ®G(1,2) = 6(1—2). (2.67)
We then follow the standard procedure, just as done in theqare Section:
1. take the left- and right-hand Dyson equations and sufitnadwo;
2. move to Wigner coordinates;

3. expand the convolution to gradient expansion accuracy.

we use that in a normal state with no spin-orbit coupljfigt, t') = —g?(¢,t') = 6(t — t').
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One obtains the equivalent of Eq. (2.47)

-i[Gy' 9G] — -Gt Gl

Q

orG + % [pz- + €AZ(X)] VRLG +
4 {—0T<I>(X) 4 % [pi + eAy(X)] 8TAZ-(X)} .G+
+ {eVRJ,(I)(X) - % P+ €A (X)] VR].AZ-(X)} v, G

= 0, 1,] =1T,Y, 2. (2.68)

Both here and below a sum over repeated indices is implied.

Before dealing with quasiclassics proper, itis instruetivtry and derive from
the above the Boltzmann equation. It is the easiest way taedhat the problem
of gauge invariance is rather delicate. A distribution timre f (X, p) is defined
asin Eqg. (2.48) and the Keldysh component of Eq. (2.68) egjiratted ovet /2.
The surface terms give no contribution

/ de(..)0.G* = (..)[GK(+0) — GF(~0)] = 0, (2.69)
therefore one ends up with

1
<3T + - [pi +eAi(X)] Vg, +

4 {eVRJ,(I)(X) L i+ eAi(X)] VR].AZ-(X)} vp].) F(X,p) = 0.

m
Such an expression is apparentigt gauge invariant. In particular we would
expect the term proportional &, f(X, p) to represent the Lorentz force, but
this is not the case. The point is that the distribution fiorcy (X, p) is itself not
gauge invariant. To obtain one that is — and to find its eqonatfomotion — it is
convenient to go one step back, to Eq. (2.68), and work dyrect the Green’s
function. We refer to Appendix C for additional details oe fiollowing.

In the mixed representation and to the gradient expansiomracy a gauge-
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2.2. From Dyson to Eilenberger

invariant Green'’s functiot:(p, X ) can be introduced
Glp, X) = /dxe‘imé(x,X)

~ / dreP=eANlG (2 X)
= Gle—eP(X),p—eA(X); X)
G(p, X) — e®(X)D.G — eA(X) - VG (2.70)

Q

Its equation of motion is easily obtained and reads
[0 +v - (Vi — eEd.) + F - V] G(e, p; X) = 0, (2.71)

where

E(X) = = (Vr®(X) + 0rA(X)),
B(X) = Vr A A(X),
F(X,p) = —¢ (E(X) +v AB(X)). (2.72)

<

P
m’

We now define the gauge invariant distribution function

2 T

fom =y (1- 5 [ acixn), @79

take the Keldysh component of Eq. (2.71) and perform oncetihae-integration
with the more satisfactory result

[Op+v-Vr+F V] f(X,p) =0. (2.74)

The procedure to obtain a gauge invariant Eilenberger aquét similar but a
little more delicate. We saw this already in the previoustiac to standard
guasiclassical accuracy terms that in the Dyson equat@praiportional tchG
get dropped after the-integration. However, it is precisely these terms thaivall
one to construct a gauge invariant equation, and they cdrendiscarded.
Knowing this, thet-integration of Eq. (2.71) leads to
Or +vrp - VR — evpE - PO, —|—6E ‘P + Flpr, ) LPQD 7% (e, 0; X) = 0.
Pr Pr
(2.75)
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Note that® is the scalar potential, while is the angle of the momenturp, =
(cosp,sing), ¢ = (—sing, cosp) . The last term in square brackets contains
the Lorentz force. We note that to leading order accuracetfeet of an applied
electric field is quasiclassicaly handled through the “mial substitution'Vg —
Vgr — eE0..

Integrating Eq. (2.75) over the energy and averaging oweatigle — taking
now into account the prefactors given by Egs. (2.66) and¥{j2-5nust lead to the
continuity equation. This reads

o [—Nm [ s ¢;X)>} Ve [—N0W< [ devrpi e, ) | =
Orp(X) + Vi -j(X) = 0. (2.76)

The observableg(X) andj(X) are thus conveniently expressed in terms of the
gauge-invarian§’. Moreover, since from Eq. (2.70) one has

sep) = = [ &Giep)
_ %/ deG (e — ed(X), p — eA(X))
_ % / de [G(e, p) — ed(X)D.G — eA - VG
= [1 —ed(X)0. + 6% (p— gb@@)} g(e,p), (2.77)
then d
o) = 20|31 [ Egeeix —ean)|  278)
and
00 = ~Nor( [ 3 Jorbe (e + (LELE) gy i)

(2.79)
The expression for the density is the same as in Section 2reas the one
for the current is modified by a sub-leading contribution dog¢he transverse
component of the vector potential.
A similar procedure can be followed in order to obtairb& (2)-covariant
formulation of quasiclassics. This could prove very uséulsystems in which
spin-orbit interaction is present, as the latter can ofeembroduced via &U (2)
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2.2. From Dyson to Eilenberger

gauge transformation, much in the same way as the electroetiadield has now
been introduced through thé(1) gauge. We will briefly comment on this in
Chapter 6.
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Chapter 3
Quantum wells

Since our main goal is the description of spin-electricafen low-dimensional
systems, it is time to spend a few words answering the follguguestions:

1. what are these “low-dimensional systems” we talk about?
2. how do we model and describe them?

Let us see.

3.1 2D systems in the real world

The engineering of low-dimensional semiconductor-based®ires is a vast and
nowadays well established field of solid state physics. Vier rthe interested
reader to [29,48-50] and limit ourselves to an extremelgst overview. Two-
dimensional, one-dimensional (quantum wires) and zemeedsional (quantum
dots) systems can be realized, the first — which we will ref@st“quantum wells”
— being the object of our interest. These are typically realiby growing layers
of materials with different band structures, whose prapsrtan then be fine-
tuned exploiting strains — that is, effects due to mismatdhttice parameters in
different layers —and doping, with the goal of creating aptial well for the con-
duction electrons (holes) of the desired characterisfitss is shown schemati-
cally in Fig. 3.1 for the typical example of a GaAs/GaAlAs mation-doped
heterostructure. More generally one speaks of IlI-V (e.@A&based) and II-
VI (e.g. CdTe-based) heterostructures. A typical quantweth mas a width in the
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‘L E E
GaAs 2DEG 1
e —— / \\ l
n-AlGaAs
GaAs/AlGaAs superlattice

GaAs substrate

Figure 3.1: Scheme of a modulation-doped heterostructasedon the experi-
mental setup from [51]. Of course, other types of structepdst, one popular
example being the symmetric sandwich AlGaAs/GaAs/AlGaAs.

range2 20 nm, and electron mobilities which can be as high@s: 103cm? /Vs

— that is, roughly4 orders of magnitude higher than high purity bulk GaAs — ,
which translate to mean free paths of more thétum [52,53]. Such high mo-
bilities are achieved thanks to modulation doping (see Big). This spatially
separates the conduction electrons from the donor impsnthence they come,
the latter being instead a source of scattering in standargupctions. Finally,
its energy depth is usually in the range + 0.5 eV, whereas the gap,, i.e. the
difference between the conduction band minimum and thefttieeoralence band
inside the well, isl — 3 eV.

For semiconductors, it is in low-dimensional systems of kivel now de-
scribed that the spin Hall effect and its related phenomesrationed in Chapter 1
have been observed, whereas experiments in metals haved&ssshon thin films
and nanowires with typical thicknessesdof 40 nm. We will come back to this
in Chapter 5.
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n—AlGaAs GaAs

Figure 3.2: Schematic representation of the effect of matthr doping on the
conduction band at an n-GaAlAs/GaAs interface. The Fermellen the n-

GaAlAs side is higher than on the GaAs one, the former havilbigger gap.

Matching the two sides means that the electrons releasdteljoinor impurities,
e.g. Si, move to the GaAs layer until equilibrium is reachad the Fermi lev-

els are aligned. The electrons are thus trapped at theangmh an asymmetric
guantum well, and at the same time separated from the dompurities.
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3.2 The theory: effective Hamiltonians

The motion of charge carriers in a quantum well is a ratherpimated matter.
The goal is to describe it in terms of an effective Hamiltonvahich, obtained
through various approximations, catches to leading orfi¢herelevant physics
one is interested in. In our case that means the effects dine tband structure
of the system, to disorder, to the external fields and, mopbitantly, to spin-
orbit coupling. This is achieved via the Luttinger-Kohn hnad [54], also called
k - p model, which will be now briefly outlined without a proper dission —
some additional details are given in Appendix E, but for ardlagh treatment
see [40,49,54-59]. We start with a couple of basic consiera

1. We are concerned with conduction band electrons in zemcld crystals,
e.g. llI-V and II-VI compounds. The zincblende structures in@ inversion
symmetry. Energy level degeneracies present in diamdedHaterials like
Ge and Si, which are due to the combined effect of time-ingarg and
space-inversiols symmetry, can be lifted in zincblende crystals by spin-
orbit interaction alone, that is, without the need for eémagnetic fields.
Indeed, given an energy level. (k), £ < spin up/down, one has

Ei(k) 5 Ex(—k) > By (k) = By (k) = Ex(K) (3.1)

only for inversion-symmetric materials. A similar deges®y-lifting effect
can be achieved in two-dimensional systems when the iressimmetry
along the growth direction, i.e. perpendicular to the systself, is broken
by the confining potential.

2. The carrier concentration in a two-dimensional systetgpgally 10'° +
10'/m?, that is, several orders of magnitude smaller than the numbe
available states in a given band [48]. Thus, only the stdts®do the band
minimum (or the maximum in the case of holes) will be occupied

3. We wish to treat the carriers as free particles with a reatized mass, i.e.
in the so-called effective mass approximation commonlylusesolid state
physics. This is of course sound in perfect crystals, angdgwado be so
as long as the spatial variations of the perturbing fields, tdumpurities,
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strains or external fields, are much slower than that of ttieéapotential,
and the energy of the carriers remains much smaller tharegheigergy,.

The single-particle Schrodinger equation for an elecinoa lattice described by
the potential/(x) and in the presence of spin-orbit coupling reads

HoW,x(x) = (_;#Y)+U(x)+ 7 W%CzVU(X)A(—ihV)-U U, (r)
= €I/k\III/k(X>7 (32)

wherev is the band indexy, the bare electron mass, and where we momentarily
reintroduced: andc to be explicit, though these will now be dropped once more.
According to Bloch’s theorem, the translational symmefrghe problem requires
the wave function to be of the form

U (x) = ™ u,(x) (3.3)

with u,, (x) a function with the periodicity of the lattice. In GaAs thettoon of
the conduction band — and the maximum of the valence oneg #ine a direct-
gap semiconductor — lies at thepointk = 0. Then (3.3) can be expanded in the
basis u,o(x) = (x|u,0)

ul,k(x) = Z Cl,,/kul,/o(X). (34)
In such a basis, and using ket notation, one obtains thexreéinents
[Ho]m/ = <UVO|H0|U1/0>
k2 1
= €0+ 57— 61/1/’ +—k- T, (35)
2m mo
wheree, is the energy offset of the bandlat= 0
(—iV)? 1 . B
2m0 + U+ 4—%VU /\( ’LV) g |u,,0) = 6,,0|U1,0> (36)
and
. 1
Ty = <ul,0|(—zV) + 4—TTl(]VU A O"u,/o>

~ <UV0|(—iV)|UV/0>. (37)

1The Luttinger-Kohn machinery can equally well deal withuaifons in which the band mini-
mum is atky # 0, or in which more minima are present — e.g. in Si. See [54].
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From Egs. (3.6) and (3.7) one sees that the spin-orbit cogijidi taken into ac-
count in the diagonal terms, only (see Appendix E). For the expansion (3.4) to
be of any real use, the basis,(x) has to be truncated, and only the bands closest
to the gap are considered. This leads to the so-called Kane model [56] when
two degenerate-wave conduction bands andpewave valence bands are taken
into account The latter are partially split by spin-orbit coupling inted groups,
the first made of four degenerate levels, the light and healy Ibands, and the
other of two so-called split-off levels. This is schematicahown in Fig. 3.3.
The simple8 x 8 model includes only three parameters, the gap and spléroff
ergies,IJ, andA, and the matrix element of the momentum operator between
andp-wave states. It loses however accuracy with growing gapygne,, and is
not sufficient for properly treating holes in the valencedsan

The inclusion of the effects due to perturbing potentialse— anything other
than the crystal potentiél — is done straightforwardly. Let us consider the Hamil-
tonian

(Ho+ V)9 = et (3.8)

with V' slowly varying as compared {@. One then assumes that the band structure
of the problem is not appreciably modified, so that the fuordiz, o can still be
used as a basis, and factorizes the high- (“fast”) and logle{”) energy modes

of the wavefunction). In ket notation

) = 6u(x)w0), (3.9)

where¢, (x) are envelopes varying on a scale much bigger than the |stiae-
ing, and which encode all information pertaining to the lavegy phenomena
introduced byV. Their equation of motion reads

Hyzx’¢1/ (X> = E(bzx(X)' (310)

To be explicit, considering the more general case of an epm@lectromagnetic
field and taking fol the total non-crystal potential — e.g. arising from impest
confinement, strains and, of course, the driving electrid fighe matrix elements

2|t is sometimes necessary to consider the coupling betwrger number of bands, leading
to higher-dimensional models.
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A
€y
conduction band
/4 Y
NP >
[ k
Eg
r6
A J/g}r\ heavy holes
R /{§7\ light holes
split-off band

Figure 3.3: Schematic band structure at thpoint for the8 x 8 Kane model.
Spin-orbit interaction splits the sixlike valence levels into the light and heavy
hole bands, with total angular momentum= 3/2, and the split-off band, with
J = 1/2. The circles identify the energy offsetg. Thel”s indicate the symme-
try properties of the levels (see Appendix E).
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H,,, become

Hw/’

k2 1 -
€0+ — + |4 5,,1,/ + —k- T | (311)
mo

2m

with k = —iV + eA. We remark that, in line with the factorization (3.9), the
offset energies, are not modified, and thus the leading spin-orbit couplimgnte
— actually the only such term retained — is left untouched.

As a final step in obtaining a lower-dimensional effectivertéonian describ-
ing the motion of electrons in the conduction band, the fdhhkiltonian (3.11) is
block-diagonalized using the Lowdin technidué0]. For clarity’s sake we stick
to the8 x 8 model and write in explicit matrix notation

H<¢c> _ ( [Ho]2c [Hcv]zxﬁ> <¢>
¢v [HJU]GXZ [Hv]6><6 ¢v
_
= ( N ) : (3.12)

with ¢, and ¢, respectively a two-dimensional and a six-dimensional @piar

the conduction and valence levels. If one assumes the esepgration between
these two sets —i.&t, ~ E, + A —to be the biggest energy scale of the problem,
or, in other words, that the two groups of states are far anay £ach other and
thus weakly coupledi..,, H!, < E, ~ H,, itis possible to write & x 2 equation

H(e)p = €, (3.13)
with
H(e) = H.+ H,, (e — H,) " HI, (3.14)

and¢ a renormalized conduction band spinor. When (3.14) is edg@arfor en-
ergies close to the band minimum and inserted back into E§3)3the effective
eigenvalue equation faris obtained. All effects of the coupling with the valence
bands are thus taken into account by a renormalization oéffeetive mass, the

3This is basically a reformulation of standard perturbatio@ory particularly well suited to
treating degenerate states. See Appendix E.
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g-factor, the spin-orbit coupling constant and the spinoExplicitly* [57]
{ [(=iV) + eA]?

2m*

“Bg*

+V - o-B+ Mo [(—iV)+eA]AVV s ¢ = o,
(3.15)
with p 5 the Bohr magnetonp* andg* the renormalized mass agefactor,B =
V A A the magnetic field and the spin-orbit coupling constant. All of these
quantities are explicitly written in terms of the matrix glents of the Hamiltonian
in Appendix E, Egs. (E.19)—(E.21). The quantitys of fundamental importance
for our purposes. The spin-orbit term in the above has thg seeme structure of
the Thomas term appearing in the Pauli equattorhere, however, this is only
a very small relativistic correction in which the vacuum stamt)\, appears. On
the contrary, in a solid can be as much as six orders of magnitude larger tpan

Moreover . .
A —= — ——7——- . 3.16
(Es (5, + A>2> (3.16)

This simple equation, together with Eq. (3.15), shows howv-gpbit coupling in
the band structure —i.e. in the diagonal offset energigwhereA appears — can
induce spin-orbit effects in conduction band electronas ®s these are subject
to some non-crystalline potential. One talks abougxtrinsiceffects when/ is
due to impurities, and abourntrinsic ones when it is due to an external poten-
tial like, say, the confining one in the case of a quantum witle Hamiltonian
appearing in Eq. (3.15) can be conveniently rewritten as

2
He X v_bK. o (3.17)
2m*
wherek = —iV+eA andb’(k) contains the contributions due to both the external

field (B) and thek-dependent internal (spin-orbit induced) one,
b’ (k) = by + b(k). (3.18)

For the case of a two-dimensional system realized via an @tric confining
potentiall’ = V'(z) the Rashba model is obtained

b(k)-o — bg(k) - o = a(k,0, — kyo,) =az Nk - o, (3.19)

“We are not interested in the physics of the Darwin tesmYU - (—iV)), SO we neglect it.
Also, the offset energy of the conduction band is set to zgpo+ 0.
SFormally, this is because both Eq. (3.15) and the Pauli émuate obtained using the same

kind of perturbative expansion. In the second case thersggrbint is thet x 4 Dirac Hamiltonian.

39



3.2. The theory: effective Hamiltonians

with « a function ofV(z), and as such tunable via the gates. Of course, since
the motion is two-dimensional, averaging over the growtleationz should be
performed, and is actually implied in the above definitionaof Since thez-
averag€(V') is a constant we set it to zero, and the complete Rashba Haaitt
reads 2

Sy brk) - o. (3.20)

It is important to remember that other mechanisms which gsesto similar
spin-orbit interaction terms are also possible, albeihm¢ontext of more elabo-
rate models. Indeed, in an extendeldx 14 Kane model for zincblende crystals
the following cubic-in-momentum term, called the cubic 8gelhaus term [61],
is obtained [55]

H =

bp(k) - o = Ck,(k — k)0, + cyclic permutations (3.21)

with C a crystal-dependent constant. Once again, if we consiéetrehs in a
two-dimensional quantum well, the averagé,) along the growth directioi

— which we assume parallel to th@)1] crystallographic direction — should be
taken. k. is quantized, with(k?) ~ (7/d)?, d being the width of the well. The
main bulk-inversion-asymmetry contribution is then

[bD(k)]Zd O = ﬁ(kxaac - kyay)7 (322)

with 3 ~ C(w/d)?. Even though both (3.19) and (3.22) can be written in the same
form, one should notice that in the second case the effesfiireorbit coupling
constant’ depends only on the crystal structure, whereas in the Rasblal«
is different from zero only in the presence of the additiomah-crystalline and
asymmetric potential. The Rashba and Dresselhaus spintttdractions can be
of comparable magnitudes, the dominance of one or the o#lreg bletermined by
the specific characteristics of the system, and both giegtoigin energy splitting
which is usually much smaller than the Fermi enértlyz|, |bp| < €.

With this we conclude the Chapter, and for more details aboitmaterial
treated we refer to the literature. In all of the rest a gdndeamiltonian of the

form )
H=2——b(p) o+ Vi (3.23)

2m

Swith typical densities in the rang®'® =- 101 m~2, one hagr ~ 10meV and|bg|, |bp| ~
10~ 'er. See for example [62—70].
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will be considered, withb| < ¢ andV;,,,, the random impurity potential, possi-
bly spin-dependent. The explicit form of bathandV/,,,, will be specified when-
ever needed. Also, to adjust back to the notation of Chaptere2usep, rather
thank, for the momentum. External fields will be introduced wheneassary via
the electromagnetic potentigl$, A).
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Chapter 4

Quasiclassics and spin-orbit
coupling

We present original material concerning the derivationhef Eilenberger equa-
tion for a two-dimensional fermionic system with spin-arboupling. Such a
generalized equation will be applied to some problems @frasdt in Chapter 5.
These results were published in [71] and [72], along whaseslwe will move:

Sections 4.1 and 4.1.1 are based on [71], Section 4.2 on [72].

4.1 The Eilenberger equation

We start from the Hamiltonian

H = p_2 —b(p) - o, 4.1)

2m
whereb is the internal effective magnetic field due to spin-orbitigiing ando
is the vector of Pauli matrices. We are describing motion twadimensional
system, i.ep = (p,, p,), andz will from now on define the direction orthogonal
to the plane. In the Rashba model for exaniplte oz Ap. For a spint /2 particle
one can write the spectral decomposition of the Hamiltomahe form

H=e W +e D, (4.2)
wheree.. = p?/2m + |b| are the eigenenergies corresponding to the projectors
1 .

)¢ =5 (1%b-0), (4.3)
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4.1. The Eilenberger equation

b being the unit vector in thb direction. As explained in Chapter 2, to obtain the
guasiclassical kinetic equation one has to sooner or |l&don a-integration.
With this purpose we make for the Green’s function the ansatz

Lo (cer e 1f(aE o it g
(T E)HT ) (VR e

where the curly brackets denote the anticommutatos G, ,,(p,R) andj =
g1, 1,(D, R). G4 are the retarded and advanced Green’s functions in the absen
of external perturbations,

NS

1
G = 4.5
0 €+ pu—p?/2m+b-o— LEA’ (4.5)

and X4 are the retarded and advanced self-energies which will beifsgd
below. The physical meaning of such an ansatz will becomar étethe next
Section. For now it suffices to see that it is such that in dopitim § takes the

form
_ ( 1 2tanh(e/27) ) . (4.6)

Qu

0 -1

The main assumption for the following is that we can deteemirsuch that it
does not depend on the modulus of the momenguont only on the directiorp.

Under this conditiory is directly related to thé-integrated Green’s functiop as
defined in EqQ. (2.54)

?

§= / A, €= pPf2m—pu @.7)

™

For convenience we suppressed in the equations above gpitmaa arguments
of the Green'’s functiony = §:,s, 1,5, (P, R). In some cases Wigner coordinates
for the time arguments are more convenignt; gs,,,(p, e; R, T).

We evaluate thé-integral explicitly in the limit whereb| is small compared
to the Fermi energy. Since the main contributions toghetegral are from the
region near zero, it is justified to expabdor small{, b ~ by + £0:by, with the
final result

1 .
5{1+agl:)0-a,§}, (4.8)

NaYi
%

1
3 {1—0cby 0,7} . 4.9)

Qi
X
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Quasiclassics and spin-orbit coupling

In the equation of motion we will also have to evaluate ind¢gof a function of
p and a Green'’s function. Assuming again tigt< ¢ we find

1 .

2 [ ae s )G~ o)+ £ (4.10)
wherep.. is the Fermi momentum in th&-subband including corrections due to
the internal field|p.| ~ pr F |b|/vr, and

. 1 (1 1~ B S .
gi—§{§:F§bo‘0'>g}a g=0++3g-. (4-11)

Following the procedure presented in Chapter 2 one canalé/equation of
motion forg. From the Dyson equation and after a gradient expansion lotaéns
for the Green’s functioid;

0rCt + % {% ~Vp(b-0),VrG} —i[b-0,G] = ~i5,C.  (4.12)

The¢-integration of Eq. (4.12), retaining terms up to first orielb| /e, leads to
an Eilenberger equation of the form

> (orant AP Vb 0), Vaa, ) il 0.0.) = ~i (5,4 (413)
The self-energy depends on the kind of disorder considerdl js discussed in
some detail in Appendix D. If not otherwise specified we wihsider as a refer-
ence the simplest case, i.e. non-magnetic, elastic anthisinge scatterers{ike
impurities) in the Born approximation. In this case one Ras —i(g) /27, {...)
denoting the angular average oyer

To check the consistency of the equation we study at firsetewded compo-
nent in order to verify tha§® = 1 solves the generalized Eilenberger equation.
From Eq. (4.8) we find that

gt =14 08(by o), (4.14)
and using (4.11) we arrive at
R 11
9y = (1 F 0cb) B + §b1 "o (4.15)

Both commutators, on the left and on the right hand side oEilenberger equa-
tion, are zero, at least to first order in the small paramedes, e.g. a/vp in the
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4.1. The Eilenberger equation

case of the Rashba model. Analogous results hold for thenaddacomponent
g4 = —¢, and similar arguments may also be used to verify that théilequm
Keldysh component of the Green’s functigif, = tanh(e/27)(g" — g*), solves
the equation of motion. Additionally, Eqg. (4.14) shows hdve hormalization
condition, Eq. (2.63), changes in the presence of spint-oduipling

P =1—-5"=(1+20by o+0[(0by)*]) 1, (4.16)

wherel denotes the identity matrix in Keldysh space.

It is worthwhile to remark that the validity of Eq. (4.13) exids from the
diffusive to the ballistic regime. These are defined by thatiree strength of the
disorder broadening)/ compared to the spin-orbit energdy|

|bo|7 >1 = weak disorder, “clean” system (4.17)
|bo|7 <1 = strong disorder, “dirty” system (4.18)

Indeed, the quasiclassical technique does not fix the oeldtetweenb,| and
/7.

4.1.1 The continuity equation

In a system such as the one we are considering the spin is ns¢ie@d, So care
is needed when talking about spin currents. We define these as

L1
jsk = 5 {Vi7 Sk} ) (419)

wheres,, k = x,y, z is the spin-polarization, = z,y, z is the direction of the
flow andv = —i [x, H]. Besides being the most used in the literature [21, 73—76],
such a definition has a clear physical meaning. Moreovegriees with what
one would obtain starting from asil/ (2)-covariant formulation of the Hamilto-
nian (4.1) [77]. However, it defines a non-conserved cuyr@md therefore in the
continuity equation for the spin there will appear sourcente When taking the
angular average of the Eilenberger equation (4.13), the mManishes and we are
left with a set of continuity equations for the charge andhsgimponents of the
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Quasiclassics and spin-orbit coupling

Green'’s function. Withy,, = god.s + & - o these read

O (Go) + Oy - J. = 0, (4.20)

0(Gs) + Ox - Joy = =2 (by AB)a,, (4.21)
v==+

0(Gy) +0x - Jsy = =2 (b, AE)s,. (4.22)
v==+

0i(g=) + 0x - Jo. = =2 (b, A, (4.23)
v==

with . 5
% Py y
Jes = —<¢———(b,-0), g : 4.24
CIGUme ey, e
As known from Chapter 2, the densities and currents arescbtatthe Keldysh
components ofg) and ofJ,, integrated ovee. Explicitly the particle and spin
current densities are given by

d
jixt) = —mVo [ S (ex), (4.25)
. 1 de
julxt) = —5nNo [ SE3K(@x) (4.26)

where N, = m/2x is the density of states of the two-dimensional electron gas
In the the absence of spin-orbit coupling & 0) one recovers the well known
expressions

je(x,t) = —%No/de(VFgé{% (4.27)
julxt) = —3No [ detvrg). (4.28)

In the presence of the fielol things are in general more complex. For the Rashba
model, for example, the particle current is given by

R
ta(z A (g") - (p(D -2/ g"))] (4.29)

In Chapter 5 we will make extensive use of Eqgs. (4.21), (4a2) (4.23) in spe-
cific cases.
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4.2.¢-integration vs. stationary phase

(1) (2)

stat. pt.

S |

e(p)=H e(p)=

Figure 4.1. The idea behind the momentum integration. (19 the peak of
G(p,R) to end up on the Fermi surfaecgép) = p. (2) Exploit the quick os-
cillations ofe’P7 T to limit the integral to the stationary point region.

4.2 £-integration vs. stationary phase

Up to now we have rather mechanically relied on thmtegration procedure,
as introduced in Chapter 2, to obtain quasiclassical ezpmes starting from the
microscopic ones. To shed some light on the general physieahing of such a
procedure, and in particular on that of the ansatz used itiddet. 1, Eq. (4.4), we
follow Shelankov’s idea [78], which we aim at generaliziog $pin-orbit coupled
systems.

The idea itself can be stated as follows. The informationedby the Green’s
function pertaining to real space scales of the order of @llemthan the inverse
Fermi momentunp;.' is quasicassicaly not accessible. These “fast” — in theesens
of high-momentum — components of the Green’s function asdsitow” ones
should then be factorized, with the goal of ending up withkinetics of the latter
only. The point is how to use the quasiclassical assumptigns- |q|, er > w,
with q, w the relevant momentum and energy scales of our problem deigto
the presence of an external field, to obtain such a factwizaindeed, as they
imply thatG(p, R) is peaked at the Fermi surface even when out of equilibrium,
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Quasiclassics and spin-orbit coupling

they also suggest to handle the Wigner space momentum atiagr

dp 4.
= [ —_ P 4.
Gir.R) = [ B PG R) (4.30
as shown in Fig. 4.1] dp/(2m)? is first rewritten as an integral over the energy
calculated from the Fermi level(p) — 1, and over the constant-energy surfaces

Ao _ ([ dle(p) = pldS
| = ] Sopmor s

Then the fast modes @f(p, R), which carry the information about its peak, en-
sure that the dominant contribution to thl(p) — | integration comes from the
Fermi surface. When moving around it the exponentif ~ ¢Pr* oscillates
quickly — the quasiclassical condition impligsr > 1 — and as a consequence
the surface integralSr can be evaluated in the stationary phase approximation.

The steps outlined here are tlegmotivof the Section and need now be made
explicit. For a number of details we refer to [78] and to Apgiert.

For clarity’s sake we will first go through some calculatiaegarding the
retarded component of the Green'’s function. Let us stardmgiclering its space
dependence in the case of free electrons in the absenceneddpi coupling

6ip-r
GR(X1’X2) = Z m, r =X; — Xo. (432)

P

The stationary point of the exponential is given by the cbodio,e(p) o r, i.e.

the velocity has to be parallel or antiparallel to the linemecting the two space
arguments. In the case of the retarded Green’s functionipthertant region is
that with velocity parallel tar. Because of the spherical symmetry of the problem
polar coordinates are the natural choice, witthe angle betweep andr. We
then get

 [AEN(de e
G x, %) = / 2 w—E&41i0t

— _iei(pF+w/vF)TN0/dgoe—wQ(pFr)/?

omi
S Z%Noel(““’/w)”, (4.33)
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4.2.¢-integration vs. stationary phase

where the integration over the angielays the role of that over the Fermi surface
in the present case. One sees how the Green’s function aitaedd in a rapidly
varying term~ e’r"/, /ppr, and a slow oneg“/vr)r. This suggests to write
quite generally — now in Wigner coordinates

2mi 4
GR(r,R) = —1/£Noe’pF’”7R(r,R)

= G¥(r,w=0)~"(r,R) (4.34)

where Gf indicates the free Green’s function ané(r, R) is slowly varying.
We will now see how the latter is related to the quasiclasgicaen’s function
g%(p,R). We first go back to Eq. (4.34) and write

'R = [ SEeripR)

(2r)?
- [ | i, 6

By construction, such an ansatz lets one exploit the argtswéiirig. 4.1, since

1. Gl is peaked at the Fermi surface, having a polpat p'| = pr;

2. ~* is smooth in real space, i.e. peaked around zero in momergages
which, together with the previous point, means 4t p, R) is peaked at
p=pF.

One therefore obtains
GHeR) ~ [[ SEAN©POTGR iR
Y

= No/ gﬁeipF(w)~r/dgei[p(ﬁ,sa)—pF(sO)krGR(&80;R)
™

~ NO/(;_QpeipF(sams /dé‘ei[p(fvs)_pF(s)]'rGR(é"S;R)7(4_36)
Y

where in the first line we rewrote the momentum integratiaoeding to Eq. (4.31)
— polar coordinates as in Eq. (4.33) are chosen —, in the dewerexploited the
peak of GT(¢, p, R) até = 0 and setV — N,, and in the third we fixed all quan-
tities at the stationary poin, i.e. forp = r or equivalentlyp = 0. Calculating
the Gaussian integral arounane obtains

GEr,R) ~ GE _ / dee’PPrrGR(p R) |ps , (4.37)

0,w=0 %

50



Quasiclassics and spin-orbit coupling

and by comparison with Eq. (4.34)
i o,
vE(r,R) = %/ d¢e!P—rr) G%(p,R) lp=t - (4.38)

As Shelankov shows [78], the quasiclassical Green’s fangif*(p, R) can be
constructed by taking the limit — 0 of the ansatz function’(r, R), and is in
the end given by the symmetrized expression

g (Bix) = lim [V*(r,R) [p= +77(r,R) |p——:]

— lim > d¢ cos (g) G®(p,R). (4.39)

r—0 77 Vr

For the advanced Green’s function one can go through the staps with
the difference that the integral is dominated by the extmancorresponding to a
velocity antiparallel tar, i.e. the stationary point is now given lpy= —r. The
Keldysh component, on the other hand, has poles on both sfdbs real axis,
and as a consequence it “sees” both stationary pgiatstr. With

omi
GA(r,w = 0) = | Lemivrr (4.40)
PrT

the complete Green’s function can then be written as

G(I‘, R’) ~ G(})%,wZO;Y(Iy R) |f>=f‘ +Géw:0;y<r7 R) |f’:—f'

1 . y
~ Gy [ A€TTIGDR) o+
+G§,WZO% / dée P PGP, R) [pep,  (4.41)
with »
- ? i(p—pp)r
R fposim o [ AEETTODR) s (442)
and

gB:;R) = lm[y(r,R) |p= +7(r; R) [p=—+]

) G(p,R). (4.43)

— lim< d§cos<

&r

r—0 7 o

51



4.2.¢-integration vs. stationary phase

Eq. (4.43) is not just a trivial extension of Eq. (4.39), aggts on the priori not
obvious result valid for the Keldysh component [78]

lim " (r, R) |p=s= lim 7" (r, R) [p——¢ - (4.44)

When spin-orbit coupling is present the Green'’s functiocdnees a matrix in
spin space and the Fermi surface splits into two branches

2
b
e«(p) = o + |b|. (4.45)

As remarked in Section 4.1, we always take this splittingg@imall compared to
the Fermi energy, i.elb|/er < 1, and moreover assume that the Fermi surface
be smooth — that is, almost spherical. This statement is madetitative in Ap-
pendix F. We recall that the Fermi momenta and density oéstate now such
that

b
P+ =pr¥F % = pr T 0p, (4.46)
b
Ve = 8o (17 52) = N1 0 fba (4.47)

all equalities being valid to first order jb| /.

The Green’s function has now two peaks, one for each brantheoFermi
surface, and we want an ansatz capable of catching thisréeaBtarting again
from the retarded component, we write

G"(p,R) =) Gf(p.R) (4.48)
v=+

where each of the two ternts’(p, R) is peaked at the respective= =+ fold of
the Fermi surface defined by

& =& +vibl=0. (4.49)

By using this property we can once more appeal to the staii@temse argument
for each branch: the momentum integratigndp/(2)?, is divided in an integral
over ¢, and one over the constant energy surfages= const.; the peaks of
G (p, R) ensure that the dominant ones &re= 0; when moving along these two
—the standard quasiclassical assumption> 1 holds — the relevant region is the
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Quasiclassics and spin-orbit coupling

one around the stationary points of the exponentfal*. These need not be given
by the conditionp = r, since now Eq. (4.49) does not in general define spherical
constant energy surfaces. For simplicity we however maké sm assumption,
and refer to Appendix F for a discussion of the more genes#.ca

By going through the above steps we can write

dp 5
GR(r,R) = 5 e’ *GE(p,R
wR) = X [ Gre e

~ ¥ [atmye] e m), (450
v==% v
with
GE (1) = — [ 2ZL N, el (4.51)
' DT
and having defined
e R) = o [ AT G R) o (4.52)
T

The result (4.41) can then be generalized to

. Nyl . No| .
cr) = Y (62| R o+ |62 e R )

v=-=%
Nl i . )
> ([G&ﬂ 3 [ AT Cp R o +
v==+ v
a Noj i —i(p—pu)r
Gy | 3. | e G,(p,R) [p=—i | - (4.53)

To establish a connection with the Eilenberger equatioainbtl in Section 4.1,
Eqg. (4.13), we further specify our ansatz function by saying

. 1 .

Wt R) [p=s= 5 {[1)(W]o, (1, R) p=ss}, (4.54)

with the projectordv)(v| [see Eq. (4.3)] evaluated at the Fermi surface in the
absence of spin orbit. This is sensible in the spirit of oyragimation, i.e. as
long as|b|/ep < 1, and since

> vl =1, (4.55)
v=+

Note that in the following = =+ stands for the band index, whereas an expligit fn the
formulas is used to specify the stationary pgint +r.
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4.2.¢-integration vs. stationary phase

one has

Z%(RR) lp=t¢ = —Z{| Y(Vo, ¥(r, R) |p=ss }
v=+
= (1"7R) |p=ss - (4.56)

In the limit » — 0 the functiony(r, R) |s—++ Will be connected tgi(p, R) just
as in Eq. (4.43). This can already be guessed, since in thedpn <« 1 —
which is reached when sending— 0 — from the general definition af, given in
Eq. (4.53) there follows

: < : i t(p—pu)T
lim Z Fu(r,R) [pees = lim Z %/ d¢ eF PP G (p, R) |pess

Spr<l 5pr<<1
v=+

— +i(
= - [ deetrr ZG (P R) [p=ss

= 5 / dg e PP G(p, R) [poss
2
= ’?(I‘,R) |f)::|:f (457)

and the last two lines show thatr, R) has the familiar expression (4.42).

To obtain the equation of motion fgrone needs to

1. substitute Eq. (4.53) into the “left-right subtractedydon equation (2.44).
Since the right-goingg{ = r) and left-going p = —r) modes are indepen-
dent, this yields two equations, one for|,_; and one fory |,—_;, both
with identical structure;

2. move to Wigner coordinates and perform a gradient expangistified by
the slowly varying character &f,(r, R). This means at most gradient terms
x Vr7¥,(r,R) are kept;

3. take the limitypr < 1.
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In formulas, picking for definiteness tife= 1 stationary poirtt

1.=> Kz’@tl —thb(—ivxl)-a%—,u) 5(1—2)+

2m
+5(1,2)§ ) |GF (r)% %,(1,2)| =0; (4.58)
) ) —~ 0,1/ N,/ 14 ) )
N, 1
r Y0 s 4 - [P : :
2. = Vz:j:: <GO,V Nu) <8T7V + 5 { m vp(bl/ 0')7 VR’VV} +
—i[b, - o, 7,)] ) =—iy (GF No (2, 9] ; (4.59)
) — 071/ Ny ) )
3. = (Ggi,%) B L (4.60)
’ NI/ PFT

Egs. (4.60) implies that —in thigr < 1 limit—the prefactors drop from Eq. (4.59)
and one is left with

S (o + 5 {2 - Valby ), ¥} ~ il 0.3 )

v==+ 2
= —i [3,4], (4.61)

which is the Eilenberger equation previously obtained, (Bd.3). It follows that
lim, ¥ |p=++ differs from the quasiclassical Green’s function only ugtmul-
tiplicative constant, which is given by the normalizatiandition. This is fixed
to the result of Section 4.1 [Egs. (4.14), (4.16)] by taking $ymmetrized expres-
sion, Eq. (4.43) — in other words, the linear combinatiory'sfin Eq. (4.43) is a
solution of Eq. (4.61) with the normalization given by Eqg.1@).

It should by now be clear that there is some freedom in thecehafi an ansatz
for the Green’s functiorG, since its fast and slow modes can be factorized in
terms of different fast and slow functions. Indeed, the miotme space ansatz
used in Section 4.1, Eq. (4.4), corresponds to the follovahgice — compare
with Egs. (4.54)-(4.56)

Jr,R) =D 2]JVVVO {lv){v],,3(r,R)}, (4.62)

2Taking the other ong) = —+, requires only the substituti(ﬁi{f,j — Ga‘{y. The final result is
however identical.
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4.3. Particle-hole symmetry

where¥ and# coincide in the absence of spin-orbit coupling, since irt tase
N, = Njg.

4.3 Particle-hole symmetry

In Chapter 2 we have seen that in standard quasiclassicslémbé&rger equation
reads

[Or +vep - (Ve — D) 5" (¢, 03 X) +i [S(X, €, pr), §(X, €, )] =0,
(4.63)
having considered a self-energy with a sledependence. Such a result has been
obtained by the integration procedure defined in Eq. (2.99)is in fact relies
on the assumption of perfect particle-hole symmetry, stheedensity of states
is fixed at the Fermi surfaceéy(¢) — N,. Formally, the generalized Eilenberger
equation (4.13) requires one to take into account some of tthependence of
N(&). Indeed, the difference betweén. andV_ is necessary if one is to “see”
the spin-orbit physics that couples the charge and spinegsgof freedom. In
this sense particle-hole symmetry is broken. It is a poinictvinequires further
study, and might very well prove to be fundamental for thearathnding of many
spin-orbit-related effects. We shall briefly return to itSection 5.1.1.
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Chapter 5
Spin-charge coupled dynamics

We now discuss some applications of the formalism developEtapter 4. Orig-
inal results from [71, 79-81] are presented.

5.1 The spin Hall effect

As briefly mentioned in Chapter 1, the spin Hall effect ddsesithe flow of a spin
current in the direction orthogonal to an applied electetdfiin the absencef
magnetic fields (see Fig.1.1). Belonging to the same cayegfophysical phe-
nomena are the so-called inverse spin Hall effect, in whiclklactric current is
induced by a spin one — and both are flowing perpendicularc¢h ether —, the
anomalous Hall effect, which is a Hall effect proportiorattie magnetization but
not due to the magnetic field that the latter produces, angdhage (or current)
induced spin polarization, whose name is self-explandtdityey are usually clas-
sified agntrinsic or extrinsic depending on whether they arise because of intrinsic
properties of the system, i.e. the band structure, or esitriones, i.e. impurities.
All are due to spin-orbit coupling, and appear as potentgitdc field-controlled
handles on the spin degrees of freedom of carriers.

As an officially-named phenomenon the spin Hall effect washbe@ry re-
cently, since Murakami et al. proposed it for the two-dinienal hole gas (2DHG)
in 2003 [20], while a little later came Sinova and collaborat proposal for

ILately effects due to topologically protected edge statgtstarted to draw attention, but
they are beyond the scope of this work. See [82—84] for more.
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5.1. The spin Hall effect

the two-dimensional electron gas (2DEG) [21]. The physiekitd this and
the other closely related phenomena is however older, soregtquite older
[37, 38, 85-87]. A quantity of central importance in its treant, both in the
theory and in experiments, is the spin Hall conductivitystermi@l relating the
1-component of the spin current to the electric field in théogobnalj-direction

jék = ai@é’j, 1,5, k=9, 2. (5.1)

By using the definition of the spin current (4.19), the spidl ldanductivity has
the dimensions of a conductivity divided by a chargg; ~ o/e. This is simply
a convention, the dominant one among theorists and the orenptoy?

There exists an already vast amount of theoretical litegadu the subject, as
well as a modest but growing experimental one, concernitig $emiconducting
and metallic systems. Our focus will now be on the former prlesugh the
formalism of the preceding Chapters is independent of thisae. An excellent
review of the field is given in [40], where most further refeces can be found.

5.1.1 Experiments

For semiconductors, it is in two-dimensional and quasi-tiaensional systems
of the kind described in Chapter 3 that the spin Hall effectiggrelated phenom-
ena were observed. All experiments were based on opticdiadst In [88, 89]
Kerr microscopy was used to observe, in the second case eveoma tempera-
ture, the extrinsic spin Hall effect in thin layers € 2 um thick) of n-GaAs and
n-ZnSe. An extrinsic effect was also reported in a 2DEG [90le intrinsic spin
Hall effect was instead seen in a 2DHG [51]. Also, the firsitiresolved experi-
ment has been recently performed by the Awschalom group [91]

In metals, thin films and nanowires with typical thicknesses$ = 40 nm are
the systems considered, and observations relied on elctather than optical
methods. The inverse spin Hall effect was detected in Apstiil, 12], and its
direct counterpart in Pt wires [13]. Finally, both effeadgect and inverse, were
reported in Pt [14] and Au [15]. It is not yet very clear if thegmomena in met-
als are extrinsic in nature, as suggested in [14, 15], oinsitr, as Guo et al. put

2Experimentalists find it often more convenient to introdadactore into the definition of the
spin current to make the electrical and spin Hall conduitisihave the same dimensions.
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Spin-charge coupled dynamics

forward in a recent theoretical analysis concerning Ptesgst[92]. Whatever
the case, they appear to be quite relevant, as spin Hall ctiniies of the order
of 10*/eQ2m, i.e. four orders of magnitude larger than in semicondscteere
reported. On the other hand Duckheim and Loss noted that ésescopic fluc-
tuations of spin-electric phenomena in a 2DEG are much fdlge the macro-
scopic average [93], suggesting it might be possible toeaehsizeable effects
in semiconductors too. The physics behind this is stilltreddy unclear. In our
present understanding the smallness of spin-electrictsffe degenerate systems
is related to the almost exact particle-hole symmetrythe.fact that the density
of states and the velocity of quasiparticles are almosiggriadependent close to
the Fermi surface. Degenerate bands near the Fermi energyPa, or disorder
— which causes mesoscopic fluctuations of the density cstaid the diffusion
constant — break this symmetry so that large spin-eledfiects are possible.

5.1.2 Bulk dynamics: the direct spin Hall effect

Unless explicitly pointed out, we focus on the direct spiril idfiect in the Rashba
model following mainly Refs. [72,94].

When a static and homogeneous electric f&leé- £x is applied to a Rashba
2DEG the spin current polarized out of plane, i.e. alapgnd flowing alongy is
given by?

Jl = atEr, (5.2)

wherec?}; is the spin Hall conductivity and the object of our study.he original
paper by Sinova et al. [21] it was proposed that in the bulk@éan system, that
is in the absence of impurities of sort, the universal eguati

o — & (5.3)

SH_87T

should hold. After a short but rather intense debate it wagelier found hovany
kind of non-magnetic elastic disorder, no matter its sttleray specific nature,
would actually lead to the equally universal and substiniiess spectacular re-
sult

o¥ = 0. (5.4)

3This arbitrary geometrical choice is made for definitenesg.o
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5.1. The spin Hall effect

More precisely, it is now well established that Eq. (5.4) adid in general for
linear-in-momentum spin-orbit couplings like;(p), bp(p) [73—76]. This can be
understood by looking at the peculiar form of the contineityation for the spin,
which we take from Chapter 4 in the casép) = bgr(p) as given in Eq. (3.19).
From Egs. (4.21) and (4.22) one has

Opsy +V -js, = —2majy, (5.5)
Oisy +V-js, = —2maj?. (5.6)

Under stationary conditions in a homogeneous bulk the. lL.bf$oth equations
vanishes, and so must the spin curfent

js. = 0. (5.7)

In order to have a finite effect time dependent or inhomogeseonditions are
needed, or the continuity equation has to be modified. Indhewing we start
by discussing a specific time dependent situation, and seetdvadraw from it
some general conclusions which give additional insightts fhe universal result
(5.3). Later we will go back to considering steady state dovts and will discuss
possible modifications of the continuity equation.

Spin Hall currents in collisionless systems

Following [71], we study the linear response of a clean 2DB@ spatially ho-
mogeneous but time dependent electric field. For a reabggtem with at least
weak disorder this study still gives reliable results onrshime scalest < 7.
The Eilenberger equation is solved in the limit— oo, and the electric field in-
cluded via the substitutiok' — —|e|E0.. We do not limit our discussion to the
Rashba model, but consider a generic fielgh) = b..; + b(p):n:- The Keldysh
component of the linearized Eilenberger equation becomes

> (Ol - g pd.g, (5.8)

m

v==
e .
% {(€-8,)(b, - 0),0.9)} ~ilb, - &, g)]) = 0.

4The same result can be obtained looking at the operator fétmecequation of motion for
the spin [95-97]. Moreover, it also holds whbfp) = br(p) + bp(p) [71].
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Spin-charge coupled dynamics

We focus on the spin components of the equation. Explicitky bas

Bigy = —2by09:"

—le|€ - [sz,o — VpOeby o + 8pbgc,o] Fe, (5.9
atgé{ - 2bx,09£{

—|6|£ : |:P[A)y70 — VFagbyp + 0pby70} F’6 s (510)
0z = 2(byo9s — buogy)

+2(bm708§by,0 - by7085bm70)g(]. (511)

where for the sake of brevit}® = ) vp,/2m andF, = 20, tanh(e/2T). For
the g’ component one obtains

d?g:f

ez
Notice that only the second of the two terms involving thetle field in Eq.(5.8)
remains in the equation for thg® component. The solution of this differential
equation is the sum of an oscillating and a time independsnt.t Due to the
(undamped) oscillations it is clear that a stationary sofuts never reached so
the arguments leading to a vanishing spin Hall current dappty. We will come
back to this in Section 5.1.4 (see Fig. 5.7). The time inddpahsolution of the
differential equation is related to a zero-frequency spirment given by

+ 4b2gX = 2F.|e| [b20(E - Op)byo — byo(E - Op)ba)] - (5.12)

. €

Js. = —%(pF(f) -O0p)WU), tanW =by, /b, p. (5.13)
Notice that the spin current does not depend on the magnitiithe fieldb, but
only on the variation of its direction when going around theerfi surface. An
even more explicit result is obtained when the spin Hall cantigity tensor is
antisymmetric

— %(o—g;f,—ajg) (5.14)
(&
= oty — et ) (5.15)
e d
- g %-ap\p, (5.16)

i.e. the spin Hall conductivity is the universal numbej/8= times the wind-
ing number of the internal fielth when going once around the Fermi surface.
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5.1. The spin Hall effect

We notice that Eq. (5.13) is consistent with [98—100] whére $pin-Hall con-
ductivity ignoring disorder was calculated using the Kuborfula for a Rashba-
Dresselhaus system in the presence of an in-plane magredtic fEq. (5.16),
which relates the spin-Hall conductivity with a winding nben — i.e. the Berry
phase in momentum space — generalizes the equivalent of4@ld1], where it
was assumed that the modulushaf constant on the Fermi surface. As an exam-
ple, if b(p) = br(p) + bp(p) one has [99]

le]/8m,  br(p) > bp(p)

OsH — 0, bR(p) = bD(p) s (517)

—le[/87, br(p) <bp(p)

of which the result (5.3) is seen to be a subcase.

Bulk dynamics in the presence of magnetic couplings

We now go back to a steady state situation in the Rashba mod&amsider two
ways of modifying the continuity equation (5.6): the intumtion of magnetic
impurities or of an applied in-plane magnetic field [72, 74}, 9This translates
into the two Hamiltonians

2

H = —2pm — b+ Vim(x) + Vin(%), (5.18)
p2

Hy = — —br -0 —wx+ Vin(x), (5.19)
2m

whereV,,, (x) andV,, (x) describe respectively angle-dependent (long-range) non-
magnetic scattering andwave (short-range) magnetic disorder, whefegs =
(91B/2)B.s = wsx. The impurity average leads to the self-energigs and>,,,
given in Appendix D.

From (5.18) and (5.19) the following continuity equatioasthes, spin com-
ponent are obtained

4
Hy 1 Osy+V-js, = —2maj? — —s,, (5.20)
‘ B 3Tsf
Hy 1 Osy +V-js, = —2maj? + 2wss.. (5.21)
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Spin-charge coupled dynamics

The second term on the r.h.s. of Eq. (5.20) is due to magnefpuiities, 7,
being the spin-flip time which stems from the potentigl(x). Under stationary
and uniform conditions the above imply

ji=:—3man%, (5.22)
Ly Ws
A — (5.23)

The spin current is seen to be directly related to the spiarfaitionss,;, s.. These
are in their own right interesting objects. First, an inf@aelectric field induces
non-vanishing polarizations,, s,. Second, these are non-trivially influenced by
the nature ofl/,,,, — s-wave or angle-dependent — so that an additional in-plane
magnetic field will tilt them out of plane and produce anpolarization, though
only if the disorder scattering is long-range. To get a battederstanding of
these phenomena we use simple physical arguments to exyairan in-plane
polarization can be generated by an applied voltage [3104, Since the Fermi
surface is shifted by an amount proportional to the appliectec field (say along
the z-direction), as shown in Figs. 5.1 (a) and (b), there will berenoccupied
states with spin up — along — than with spin down. In the case of short-range
disorder, the total in-plane polarization can be estimétdtke proportional to the
density of states times the shift in momentwn,~ Nop ~ Nle|E7. Since in
the present situation we are dealing with the two Fermi sedaorresponding to
the two helicity bands. = p?/2m + ap, obtained from the Hamiltonian (5.18),
one expects, ~ (N, — N_)dop, where, for the Rashba interaction, one has=
No(1 F a/vr), Ny = m/27. Explicit calculations agree with this simple picture
and lead to the result due to Edelstein [34],= —Nyale|E7. When long-range
disorder is considered, a reasonable guess could be tatstéo&ir r the transport
time 7,

T — Ti, Titr = /dGW(G)(l — cos(6)), (5.24)

W (0) being the angle-dependent scattering probability, sosthat — Noa|e|E7,..
This was proposed in [103], however the picture is too sistigli and therefore
the guess is wrong. As discussed in [94] — see also Appendor Deftails — , the
propers, polarization is given by, = —Nya|e|E7,., with
Tem,i:/wW@uﬂm%» (5.25)

Ter
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5.1. The spin Hall effect
(b) | by
P
(d) y
R
Figure 5.1: (a), (b) — The Fermi surface shift,= |e|E7, due to an applied elec-
tric field along ther-direction. The white arrows show the direction of the intdr
field b. (c), (d) Shifted bands and spin polarization in statior@gditions. (c)
Asymmetric shift of the two bands when angle dependentestadt is present.
The long dark (blue) arrows show the contributions to the gilarization aris-
ing from a sector @ of phase space. (d) When magnetic disorder is turned on,
additional contributions orthogonal to the internal fildppear, here shown by

the short inward and outward pointing (blue) arrows. Ouplaine contributions
are also present, but for the sake of simplicity not shown.

<O
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This particular timer,, arises from the asymmetric shift of the two Fermi sur-
faces, as depicted in Fig. 5.1 (c), due to different trangjpoes in the two bands.
It shows that contributions from both forwar@ € 0) and backward{ = ) scat-
tering are suppressed. The next step is to consider whathapphen magnetic
impurities are included. Relying once again on the simpbtupe of the shifted
Fermi surface, one could argue that these have a rather snpaltt on the spin
polarization, since the spin-flip scattering time usualbkes a small contribution
to the total transport time. However, even when this is tlse canagnetic disorder
does not simply modify the total transport time, but has aitamhal non-trivial
effect. In its presence the spins do not align themselvesyalwe internab field,
since they acquire non-vanishing components in the plat@gonal to it — see
Fig. 5.1 (d). It is these components who give rise to a finiia sfall conductiv-
ity. In this respect, magnetic disorder has an effect smwdahat of an in-plane
magnetic field: it affects the spin quantization axis ang tthe spins out of their
expected stationary direction. We now make these argumeatstitative.

The starting point is the Keldysh component of the Eilenbeegjuation (4.13)
for a homogeneous Rashba 2DEG in linear response to a hoemgeand time
dependent applied electric field (introduced via the gu@assical minimal substi-
tutionV — —|e|€0.)

1 1
9" = vi-eldok+ L Lo oo ellads)
2 \pr
o] - 1[50, (529

whereX = X, + X, and the K™ superscript will from now on be implicitly
assumed and thus omitted. The anglis defined by the direction of the momen-
tum, p = (cosp,sinp), ¢ = (—sinp, cosy). In order to solve Eq. (5.26), it is
convenient to writgy as a4-vector

9=9000+8 0, (9.) = (90,8) (5.27)

and turn it into matrix form. Details are shown in Appendixtéking the electric
field to be alongk, the expressions for the spin currgtit, the spin polarization
s, and the frequency dependent spin Hall conductiwity(w) are obtained. They
read

. 3;“# — W
]gz = s —— Sy, (5'28)
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i.e. the continuity equation result, Eq. (5.20), under hgereous conditions,

sy, = —Noale|€ [2(app)2]
Go) ) (5 )
X — —w — —w —w | +
Tir Tir ?)Tsf
(1 4 A\
+2(apr)* | — + — 2iw : (5.29)
Tir STsf

and as a consequence

oun(w) = %( - —z‘w) 2(apr)?]

37'5f
) G e) ()
X — — W — —wWw —w | +
Ter Ter 3Tsf
(1 4 A\
+2(apr)* | — + — 2iw . (5.30)
Ttr 3Tsf

1 1 1 1
E—(l—K1)+—, = E—(l—K2)+—. (531)
T T T,

The first, 7, is the total transport time. The second,, is the generalization
of the characteristic time related to thgspin polarization introduced in (5.25).
K, and K, are the coefficients of the first and second harmonics of thiestng
kernel K (¢ — ') from Appendix D.

The real part of the spin Hall conductivity is displayed irgFb.2 for dif-
ferent values of the disorder parameétepy7. In the limitw — 0, its magnitude
depends on the value ap 7 as well as on the ratio/ ;. In the absence of mag-
netic impurities one has the known resal; = 0. As spin flip scattering grows,
the conductivity reaches values of the order of the “unialér|/87. This was
noted in [104], where, however, angle dependent scattevamynot consideretl.
Large values ofwpr7 can be achieved both in 1llI-V and 1I-VI semiconducting

5See Egs. (4.17) and (4.18).

81n addition, a discrepancy in the expression of the staiit Bjall conductivity arises, which
in the limit of weak magnetic scattering does not agree with ¢ontinuity equation (5.20). In
the opposite limit there is on the other hand agreement \ughrésults from [105], where only
magnetic impurities were considered.
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Figure 5.2: Real part of the frequency dependent spin Halllaotivity in units of
the universal valug:| /87 for aprT = 1 (top) andaprr = 5 (bottom). The differ-
ent curves correspond to different values of the rafio,; = 0,0.1,0.2,0.3,0.4
(from top to bottom at the maximum of Rey).
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5.1. The spin Hall effect

materials. Doping the latter with Mn allows to control thénsflip time 7, while
only weakly affecting the electrons mobility [106—108]eemhough it is not per-
fectly clear whether these can appropriately be describddrims of the linear
Rashba model.Additionally, for certain frequencies one can see crospuigts
[wr ~ 0.5 andwT =~ 2 in Fig. 5.2 (top)] at which magnetic disorder has no effect
on the spin Hall response. Such points are well defined ongnwilp -7 ~ 1. For
clean qpp7m > 1) or dirty (apr7 < 1) samples the different curves cross each
other over a progressively wider range of frequencies.

In the case of the Hamiltonian (5.19) similar calculatioetsdne obtain the
expressions fos, ando?;; (w = 0) to leading order in the magnetic field [94]

1 S N T T
5, = —|e[e L 0T T T (5.32)
2 apr Pr Ttr
2 ~
yr _M Ws Ttr — Ttr 5.33
st 4 <app) Ter (5.33)

From the above it is apparent that the out-of-plane poladaa., and thus the
spin Hall conductivity, will be non-vanishing only if both, and7;,. are consid-
ered.

5.1.3 Confined geometries

Up to now only bulk phenomena have been studied. As alreadytiomed (see
Fig. 1.1) the usual experimental signature of the direat bjall effect, at least in
semiconductors, is the measure of spin accumulation atathedaries of a 2DEG
sample caused by the spin current flowing in its bulk [51, 8—Blence, the un-
derstanding of the spin Hall physics involves the desaiptif boundaries. More-
over, these become relevant if one is to study relaxationga®es in mesoscopic
systems, which in time are of fundamental importance fortyipécal spintronic
device. For these reasons we now specialize to samples @& §ize with the
geometry shown in Fig. 5.3. Our main references will be [D188].

The derivation of the boundary conditions for the quasgitad Green’s func-
tion is a delicate matter, since typically the boundary ptigd U,(x) varies on

"More precisely, the Rashba Hamiltonian is appropriate faraw quantum wells (widthg
6 nm), but most likely not for wider structures, in which the salled inverted-band structure
manifests itself.
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Figure 5.3: Geometry under consideration. The 2DEG is sonawire of finite
width L alongy. Along x, which is the direction parallel to the applied electric
field, it can either be infinite or smoothly contacted to resgs. Scattering at the
boundaries is assumed elastic, though not necessaricepserving.

the microscopic scale of the Fermi wavelength that is, beyond the quasiclas-
sical resolutiorl,. > Ar. Following Ref. [109], in general one has that the linear
matching conditions for the wavefunctions on the oppositessofU, (x) become
nonlinear relations between the quasiclassical ampktudie the case of a per-
fectly reflecting barrier — i.e. if no transmission across boundary is possible
— and when an ingoing trajectory is scattered into one oatgdirection, things
simplify considerably and the boundary condition reads

g(f’out) = Sg(ISm)SJr (534)

A general treatment which takes into account beam splittinge. inter-band
transitions — at the barrier is still lacking and currentBirlg pursued. Her¢&

Is the unitary2 x 2 surface scattering matrix. Using the decomposition (5.27)
Eq. (5.34) can be rewritten as

out

9" =gy, g™ = Rg™, (5.35)

with the orthogonal matri¥ that rotates the spin at the barrier, and whg®,, ou:) =
g™°ut, Charge conservation implies that no current flows throbghobundary

(n-vrgo) xn-j.=0, (5.36)
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5.1. The spin Hall effect

wheren is a vector normal to the boundary. For a spin conserving tamyn
(R = 1) all components: of the spin current perpendicular to the surface are zero
too,

(n-vpge) xn-js, =0. (5.37)

For the general cas® # 1, Eq. (5.37) is not valid.

5.1.4 \Voltage induced spin polarizations and the spin Hallfe
fect in finite systems

Numerical results concerning voltage induced spin paddgions and the spin Hall
effect in finite systems are now shown and discussed. We focubke Rashba
model,b(p) = bg(p). The geometry of Fig. 5.3 is further specified by consid-
ering a sample finite along and in contact with two reservoirs at= 0 and

x = L,. These are kept in thermal equilibrium and assumed to be oitte
same material as the two-dimensional sample — that is, teem@ Fermi surface
mismatch. For directiong = p;, pointing from the reservoirs into the system the
quasiclassical Green'’s function reads (we briefly reinicedthe Keldysh super-
script “K™)

K)i

n
eq | X in the reservoir

(9%) om0, = (g

= tanh <w> (g" — g, (5.38)

with V' the gate voltage.

We assume the scattering at the boundaries to be adiabati@n incoming
wave in an eigenstate;, =) of the Hamiltoniarp? /2m — b - o is scattered into
the same band,

Pin ) — € [Pow 1), (5.39)

as it is expected for a smooth confining potential [110-11R]ch a scattering
does not generate inter-band transitions and Eq. (5.34)eaised. Th& matrix

reads
2ip oo
g_ < e“*? cos sin ¢ ) | (5.40)

sin ¢ cos v

whereyp is as usual the momentum angle, while the relative phasekltsfas-
sumed negligible, i.ed = 0. This describes an in-plane spin rotation2gf. In
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the Pauli matrices space defined by the decomposition (5/#8)is represented
by the4 x 4 matrixR

1 0 0 0
R — 0 00{5(2@) sin(2¢) 0 (5.41)
0 —sin(2p) cos(2¢) 0
0 0 0 1
In the language of Eq. (5.35) tl3ex 3 orthogonal matrix is
cos(2¢) sin(2¢) 0
R=1 —sin(2¢) cos(2¢) 0 |- (5.42)
0 0 1

To integrate the equation of motion numerically we have soiditize the space
coordinatex and the Fermi surface. In dirty systeg(®) is nearly isotropic, so it
is clear that a few discrete poinfs on the Fermi surface are sufficient. In clean
systems this is na priorievident, but numerical tests show that even in this case
convergence is reached quickly. Typically we describe ten surface with a
set of twenty to fortyp;.

First we show numerical results for the spin polarizatiothmstationary limit.
Fig. 5.4 depicts the voltage induced spin polarization/fpr= 20{, L, = 10/ and
aprT = 2; due to the linearity of the underlying equations, all owsulés are
linear in the applied voltage. In the bulk, only thecomponent is nonzero, and
given by the Edelstein result = —Nya|e|E7 [37]. A spin Hall effect induced
spin polarization is found in the corners, as it is expecteff4]. It is however
not purely in thez-direction, havinge-components too.

Fig. 5.5 shows,(z,y = L, /2) for various disorder stregths. In the diffusive
limit and assuming the spin polarization to be vanishindhatibterface with the
leads, it was predicted that [74]

B cosh[(z — L,/2)/ L]
sy(x) = So (1 " cosh(L./2L) ) : (5.43)

where L, is the spin relaxation length. With our choice of boundargditon a
spin polarization still exists near= 0, L, in particular in the clean limit. Some
mean free paths away from the interface on the other handataecdn be well
fitted with an exponential increase or decrease, both inlgencand dirty limit.
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Figure 5.4: Spin polarization in the presence of an eleatcarrent flowing in
x-direction for a strip of lengtlL, = 20/ and L, = 10I. The spin-orbit coupling
strength iso. = 10730 and the elastic scattering ratelisr = apr/2. The spin
polarization is given in units of the bulk Edelstein valsg= —Nya|e|ET.
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Figure 5.5:s, in units of sy as a function of for L, = 200/, L, = 100/ and
aprT = 0.005,0.01,0.02,0.05,0.1, 1 (from bottom to top).
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Figure 5.6: Spin relaxation length, in units of/ as a function of disorder, ob-
tained by fitting the spatial dependence of the electric freddiced spin polariza-
tion (shown in Fig. 5.5) using, = a + blexp(—z/L;) + exp(—(L, — z)/Ls)].
The diffusive limit expression is shown as a dashed line.
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5.1. The spin Hall effect

As a result we obtain the spin relaxation length as a funatiosisorder, shown
in Fig. 5.6. In the dirty limit,aprr < 1, our numerical result agrees with what is
expected from the diffusion equatiob, = /D7, = [/2apr7. In the clean limit,
for which we are not aware of any quantitative predictiohg $pin relaxation
length is of the order of the mean free path,~ 1.271.

We will now consider a non-static situation and study theetiewolution of
the spin polarization and current. The system starts imibaeequilibrium, then
a voltage is switched on and the relaxation of the systemiiststationary non-
equilibrium state is observed. It is a nontrivial problemdescribe such a sit-
uation theoretically. One might be tempted to allow a timpefalent voltage
in the boundary condition, Eqg. (5.38), and then to follow thme evolution.
In this case the charge density becomes time dependent Anthageneous.
This procedure makes sense for non-interacting electnm$or interacting ones
where the long range Coulomb interaction enforces chargeaigy. In principle
the interaction can be included into the quasiclassicahédism explicitly, see
e.g. [26]. This is beyond our scope. Instead, we assume ifotlmeving that
a voltage difference across the leads instantly resultsharaogeneous electric
field in the sample. One has thus to solve Eq. (4.13) with titelircondition
g(p,ex,t = 0) = tanh(e/27T)(g" — ¢*) and taking into account the electric
field via the usual substitutio — V — |e|€0.. In the numerics it is however
more convenient to work in a scalar gauge, since then thédjsaectric field
disappears from the equation of motion and is present inrialiand bound-
ary conditions only. In the end we have to solve Eq. (4.13hlie boundary
condition (5.38) and the initial condition

g% (p,e;x,t = 0) = tanh <w> (g" — g, (5.44)

whereg(z) interpolates linearly between the two leadéy) = V(L. /2 —z)/L,.
In Fig. (5.7) we show the spin currep} as a function of time in the bulk

and at the interface with the leads of a rather clean systamp( = 2). On
short time scales the bulk current agrees with what is fogndring disorder (see
Section 5.1.2): the spin current oscillates as a functiotinoé with frequency

2apr, and the time average is given by the universal spin Hall gotidty. In the
bulk, for the weakly disordered system we are considering,time dependent
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Figure 5.7: Time evolution of the spin Hall current at thesnfiace with the leads
and in the bulk. In the bulk we compare our numerical reswdtggoints) with

the analytical result (full line) of Eq. (5.45). Near thedsaonly numerical data
are available (dashed curvey, is evaluated ay = L, /2, x = 0 (boundary) and
x = L, /2 (bulk) for L, = 20!, L, = 10l andappT = 2.

spin current is given by

E
jY = % [e71/2T — 7347 cos(2aprt)], (5.45)
7r

which can be obtained from the frequency dependent spirddaductivity (5.30)
when onlys-wave non-magnetic scatterers are present. On the time stéhe
spin relaxation time, here given by the scattering timehe bulk spin current
becomes exponentially suppressed and goes to zero in tienatg limit. Near
the leads, on the other hand, the situation is somewhateiliffesince a finite spin
current remains in the stationary limit. An important qu&sis whether the spin
current polarizes the electron system at the edges. In FBgw8 show the spin
polarization in the:-direction across the systemaat= L, /2 as a function of time.
Since in the early time evolution a spin current flows in thikbspins accumulate
near the edges. When the spin current disappears the poilanizanishes too.
The spin polarization at the edges is seen to oscillate ascéaqgb with frequency
2apr. In the cleaner systems oscillations are of course fastemdgrkably, the
maximum oscillation amplitude relative to the bulk valudasger in the dirty
system gpr7 = 0.25 ), where it is almost of the order of one. This can be
understood as follows: a rough estimate of the spin poltwizaat the edge is
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Figure 5.8: Spin Hall effect induced spin polarizatignn units of s, as a function
of yandt atz = L,/2 for L, = 20l, L, = 10l andappr = 0.25,2,5 (from

bottom to top).
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s, ~ Tsj¥. /Ls. With

7, ~ 7/(appT)? (5.46)
gy~ e (appT)? (5.47)
Ly ~ 1/(aprT) (5.48)

the result is indeed, ~ sy = —Nyale|E7. In the clean limit, on the other hand,
the typical time and length scales ate~ 7 and L, ~ [, from which we estimate
s, ~ so/(appT), In agreement with the numerical findings.

It is worthwhile bringing the attention to one additionaliqto In a diffusive
sample,aprT < 1, the Eilenberger equation (4.13) leads to the followinghspi
diffusion equations

1

(8, — DV?) s, = s + 20V s, (5.49)
1

(8, — DV?)s, = - (8 — 50) +20V,s, (5.50)
1

(0, — DV?) s, = ——s. — 20 (Ve + Vys,), (5.51)

whereD = v%7/2is the diffusion constant,/7, = (2apr7)?/(27) the Dyakonov-
Perel spin relaxation raté; = vrappr andsy, = —Nya|e|ET is the usual Edel-
stein result. As shown in Appendix G, adiabatic scatteringha boundaries,
Eq. (5.39), translates into the following boundary cormuais for thes, ands,
spin components

s, =0, s, = 5p. (5.52)

Egs. (5.50) and (5.52) tell an interesting story: in the flla diffusive system
the time scale of the spin dynamics is set by the spin reloamaimer,, whereas

at the edges of the sample the boundary condition plays ther made. While

in clean systemsapr7 > 1) 7, is comparable to, ideally identical in the limit
aprT — 00, it becomes progressively larger than the latter in inénegyg dirtier
ones (pr7 < 1). In the second case, assuming adiabatic (spin active)dsoun
aries, this implies that the, spin polarization approaches the stationary value
so = —Nyarle|ET on a much faster time scale thaywhen close to the boundary.
This is shown in Fig. 5.9. Very recently such a phenomenonimdeed observed

in a GaAs-based channel [91].
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Figure 5.9: Voltage induced spin polarization as a functibpandt atz = L, /2

on a strip of lengthL,, = 20 and widthL, = 10!. The upper figures are obtained
for aprT = 1, which impliest, =~ 7, whereas in the lower figuresprm = 0.1
and thusr;, > 7. As a consequence in the second cgseeaches;, on a much
shorter time scale at the boundaries than in the bulk.
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Spin-charge coupled dynamics

5.2 Spin relaxation in narrow wires

In this Section we concentrate on the specific problem of ibe dependence
of the spin relaxation rate in narrow samples. Concernirgrttatter, the recent
experimental observations of Ref. [113] imanGaAs wire provided the moti-
vation for the present analysis. Indeed, they produced amrpetted result. The
relaxation time showed first an increase with decreasingkamidth, in accor-
dance with a number of previous theoretical works [114—1484 then an abrupt
decrease at the smallest wire widths. Such nonmonotoniavi@lr set in as
L ~ L,, with L, = /D, the spin relaxation length, when the relaxation time
reached its maximum and then sharply dropped. We will novhseespin-active
boundaries g # 1), not considered in the above theoretical referencescaigli
change the size dependence of the spin relaxation time foower samples and
provide a useful point of view as far as the interpretationh&f experiment is
concerned. The geometry is the usual one (see Fig. 5.3).

The starting point are the bulk spin diffusion equationss.H§.49)—(5.51).
Since we are interested in the spin dynamics only, the sadingO («/vr) Spin-
charge coupling terms are neglected — this means the Edelgterm is dropped

1

(0, — DV?) s, = ——8:+20V,s., (5.53)
1

(8, — DV?)s, = ——sy + 2CV,5. (5.54)
1

(0, — DV?) s, = ——s. = 20 (Vysz + Vys,) . (5.55)

Alternatively, one could have dropped %« /v ) terms directly from Eq. (4.13)
and considered the diffusive limit of the simplified equatio
1

——(9—{9)). (5.56)
In standard charge diffusion the longest living mode is hgemzous. Due to the
coupling between the various spin components this is nahang the cas@.

Let us consider two types of boundaries (see Appendix G foresdetails).
First a spin-conserving one, where

|Pin $) = |Pout S), (5.57)

8See [80] for more. As a noteworthy example, whes: b + bp with o = 3 there exists an
infinite living mode with wavevectay = 4ma [119].

Og+vp-Vg—ib-o,g] =
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5.2. Spin relaxation in narrow wires

0 50 100 150 200
y/t

Figure 5.10: Time evolution of the spin polarization in a widhannel [, =
2001 =~ 40 L4, appT = 0.1) with conserving (left) and adiabatic (right) boundary
conditions. The curves from top to bottom correspond toedfit times, with
At = 507 ~ 7,. The polarizations change sign at various positions wheteep
drop of|s.|, |s,| is visible in the figure.

such thats andR are identity matrices. Then the adiabatic boundary of EG9%
with the matricess andR given by Egs. (5.40) and (5.41), respectively.

In the first case — for the Rashba model — using the expressidhd charge
and spin current in the diffusive limit, one gets (see alsdb[120])

~DV,s,—Cs.=n-j, = 0, (5.58)
—DV,s,=n-j, = 0, (5.59)
—DV,s,+Cs, =n-j, = 0, (5.60)

wheren is in they-direction. For adiabatic boundary conditions, in corttras
s, =0, s, =0, (5.61)

while the z-component of the spin is still conserved and therefore &&0) re-
mains valid. Fig. 5.10 shows the time evolution of the spuwfife for a long wire

of width L = 2001/, wherel = wvp7 is the elastic mean free path. In the left
panel the spin is initially homogeneously polarized in thdirection and con-
serving boundary conditions are assumed; 1. The results were obtained from
the Eilenberger equation withpr7 = 0.1. Inside the wire one observes a ho-
mogeneous decay of the spin polarization, with the time teonis; /2. At the
boundaries long living modes show up which dominate the gpofile in the long

80



Spin-charge coupled dynamics

0.8 |-
. 06
e
04k

0.2}

0 | | | 0 | | |
0 5 10 15 20 0 5 10 15 20
L/L, L/L,

Figure 5.11: Lowest eigenvalues of the spin-diffusion epar for the Rashba
model with conserving (left) and adiabatic (right) boundeonditions. On the
left there appear modes with< 7/167,. These have a complex wave vector and
can therefore exist only at the edges of the wire. The dasiree m the left panel
isy7, = (L/L,)?/12 obtained in Ref. [115] for very narrow wires. On the right
this long-living mode is absent.

time limit. For further investigation of these modes we wiihe spin diffusion
equations, Egs. (5.53)—(5.55),@s + 4s = 0, and determine the eigenvalues and
eigenmodes of the operatpr The eigenmodes are superpositions of plane waves.
The low frequency spectrum éfis shown in Fig. 5.11 as a function of the wire
width. Recall that the smallest eigenvalue for a bulk system = 7/167, [80].

The modes with smaller decay rate have a complex wave vectbase thus lo-
calized near the edges of the wire. For a wide system we finchancmm of
eigenvalues above,, and two localized modes at~ 0.382/7.

For a narrow wire most strikingly one eigenvalue goes to yetio decreasing

width, asymptotically as
1 ([ L\

This corresponds to the suppression of spin-relaxatiomiallssystems reported
earlier by other authors [114-118]. This effect can be tidzack to the specific
form of the spin-orbit field in the Rashba Hamiltonian — beimgportional to the
velocity [116]. Here we formulate the argument for a systaoiuding both the
Rashba and the linear Dresselhaus term — Egs. (3.19) arft) (3vidthin the spin
diffusion equation approach. For a spin profile that is hoemegpus along the
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5.2. Spin relaxation in narrow wires

angular averaged Eilenberger equation, Eg. (5.56), yields

Oise +Vyj¥ = —2maj; —2mpBj¥ , (5.63)
sy +Vyjs, = —2majl —2mpj; (5.64)
s + Vil = 2maljs, +32) +2mB(Y, + J5,)- (5.65)

In the diffusive limit the spin current densities are given b
J5. = =Dssa + 27 (vp(b X 8)a), (5.66)

which allows to reproduce the spin diffusion equation, H§s53)—(5.55). In
narrow systems the slow modes have a smooth density prafie tbat to leading
order in the system size the current can be considered cdnstapace. For a
guantum dot, i.e. a system that is confined in all spatiaktivas, the vanishing
of the spin current through the boundaries then immediatghjies thato,s = 0.
For a narrow wire the situation becomes slightly more cooagpéid since only
currents flowing into the boundary are zero, which after salgebra leads to

L1 a? ap 0 Sy
@S = - Oéﬁ 62 0 Sy . (567)
Ts
0 0 o*+3 S,

In the absence of the Dresselhaus tefin< 0) this means thad,s, = 0, and
Sy = —84/Ts, Ops, = —$,/Ts, Which in time implies that the long-living mode
in Fig. 5.11 is polarized in thg-direction. In the presence of both a Rashba and
a Dresselhaus term, the spin is still conserved for onetitireehich depends on
the relative strength of the two terms: perpendicular tdthendary when the first
one dominates, parallel when the latter is larger, and sdraenin between (but
always in-plane) when the two are comparable in size.

The above results change considerably when different baoyrwbnditions are
applied, and agree with what experimentally observed iB8].1The right panel of
Fig. 5.10 shows the time evolution of a spin polarizatiomgsidiabatic boundary
conditions, EqQ. (5.61). Here the spin has been preparedein-thirection, i.e.
perpendicular to the boundary. In this case the boundaryen®ébsent, and
the asymptotic decay of the spin polarization is ruled byrdiromogeneous but
extended mode. The boundary condition implies that thenengeles are, , o<
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sin(gx), s, o cos(qz) with ¢ = nm/L; the eigenvalues are given by

1
3 V14 16L2¢2. (5.68)
2T, 27,

+

v(q) = Dg* +

By inserting the allowed-values the spectrum shown in the right panel of Fig. 5.11
is reproduced. In contrast to the previous case of a spisezgimg boundary, here

all the diffusion modes, , show an increasing spin relaxation rate at the smallest
wire widths, and in particular a non monotonous behavioua asction of the
wire width with a minimum at./ L, = (47/+/15) n =~ 3 n, wheren is the mode
index. WhenL < L, they all relax fast. On the other hand one should note the
different behaviour of the, modes — for which, for example, a homogeneous
mode withy7, = 1 exists. This is not surprising. Indeed, as already pointed o
the adiabatic boundary conserves thespin component, in contrast to tke,
ones.
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Chapter 6
Epilogue

Understanding spin-charge coupled dynamics in low dinoeraisystems is of
paramount importance to one of the main goals of spintrotiiesmanipulation of
the spin degrees of freedom of carriers by purely electrieedns. Quasiclassical
equations are a powerful and versatile tool in this sense, meich at ease in
the realm of mesoscopic physics. In Chapter 4 we have showrtdhgeneralize
them so as to handle systems with spin-orbit coupling, wasene Chapter 5 we
have applied the theory to some particular problems of@steNamely, we have
extensively discussed the direct spin Hall effect in vagisituations, e.g.

¢ inthe bulk of a clean system, where it is possible to relateatBerry phase
in momentum space;

¢ in both non-magnetically and magnetically disordered dampossibly in
the presence of an external magnetic field,;

e in steady state as well as under time dependent conditions;
¢ in confined geometries.

We have also investigated the relation between spin Halleots and voltage

induced spin polarizations, and additionally spent sorf@te$tudying the latter

in their own right. Finally, motivated by a recent experirjeme have focused

on the problem of spin relaxation in narrow two-dimensiasteps and have seen
how this is heavily influenced by the choice of boundary ctods.
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As for the open questions in the field, their number is ratheyd, and ranges
from the fundamental to the more practical kind. In the cdspmtronics proper,
most are nicely summarized in the review from Awschalom Y4 here recall a
few others, some of which were mentioned at various pointeeércourse of the
previous Chapters.

1. Effects due to topologically protected edge states dracéing attention —
the so-called quantum spin Hall effect, with a first roundnefdretical and
experimental results available.

2. The magnitude of the spin-electric effects considereggarently directly
related to the energy dependence of the density of statethangklocity
near the Fermi surface. In a certain sense, to the breakipgrtitle-hole
symmetry. How general is such a statement? And can it be fateduimore
precisely?

3. Mesoscopic fluctuations could definitely prove to play gameole in all
of the phenomena analyzed. However, up to now almost notiasgeen
done in this direction.

4. In general terms, quantum corrections can be relevamwrdimensional
disordered systems such as the ones considered. Once lagaght this
point has been mainly overlooked, the only reference we wereaof be-
ing [97].

5. A complete generalization of the boundary conditiongterquasiclassical
Green’s function in the presence of spin-orbit couplingilsraissing.

6. How exactly do intrinsic and extrinsic effects influenoe@nother? Is there
a clear physical picture? This is actually an old probleml]a&hich has
more recently received new attention [122, 123] — thoughlaaranswer
has been given.

7. It there a way to formulate quasiclassics if&(2)-covariant form? This
would let one treat all linear-in-momentum spin-orbit cliogs, possibly
due to both intrinsic and extrinsic mechanisms, in a unifiey.windeed,
these can be introduced in the Hamiltoniéin= p?/2m through aSU (2)
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Epilogue

gauge transformation [77,124], much in the same way as #wremag-
netic field is introduced via th&(1) gauge. It then becomes a matter of
generalizing the procedure of Section 2.2.1 from the sirbiglie algebra to
the more complex non-commutirij/(2) one.

The last three points have been the subject of recent worlkhwiowever has not
yet been finalized.

87



88



Appendix A

Time-evolution operators

We discuss in some detail the structure of the unitary tinwtgion operator
U(t,to) generated by the Hamiltonidti(¢)

H(t) = H+ H*'(t), H=Hy+H', H“'(t)=0fort <ty (Al)

Ultt) =T {exp <—¢ /t y dt’H(t’)) } | (A.2)

with 7" {...} the time-ordering operator. The time-ordered exponeittidefined
by [45]

t
T{exp (—i/f dt’H(t’))} = lim e Tta)e=Hlta)  =eHlt)o—eH(to)
t

M—o0

with e = “—1 andt, = t; + ne. In this limit, i.e. M — co,e — 0, Me finite,
the exponential of operators decompose as thatmfmbers. Indeed, for any two

noncommuting operatord, B, according to the Baker-Hausdorff formula

6e(A-l—B) — 66.4653 + 0(62). (A3)

We will use Eq. (A.3) shortly. For convenience we renatpe= ¢,t; = ¢, and
decomposé/(t, ;)

Ut to) = Uo(t 0)S(t,t0)
eT =10 S (¢ ). (A.4)
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We use Eqg. (A.

OU(t, to)

4) in the equation of motion f@(¢, t,)

= H&U(, to)

= Holho(t,t0)S(t, to) + [H' + H (t)] Up(t, t0)S(t, to)

= i0; [Up(t,t0)S(t, t0)]

= Holdo(t, t0)S(t, to) + Un(t, to)iB:S(t, to) (A.5)

so that, thanks to Eq. (A.3)

S(t,ty) =

{exp —z /t: dt'ut (¢ to) (H' +H“t(t’))u(t’7to)]}
T{exp ' / dt’ (Hi, (t >+Hif‘;t<t’>)H
{exp / o i, (¢ }} {exp{ / o HE (1 }}

S'(t, t0) S (¢, ty). (A.6)
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Appendix B

Equilibrium distribution

Denoting by(. . .) the grand-canonical ensemble average, in thermal equitibr
at the temperaturé = 1/ the Kubo-Martin-Schwinger boundary condition

(W, )0 (x,1)) = (D(x, )N 1 +i0)) (B.1)
can be reformulated as a boundary condition for the Green'stion
G§(17 1/>|t1=0 = :l:e_ﬁuGguv 1/)‘t1=—i57 (BZ)

with 1 the chemical potential. This is done simply by using the dtafim of
G=~ and the cyclic property of the trace. THesign corresponds to bosons or
fermions. We will now consider fermions.

An equilibrium state is invariant under time translatiodssuming it to be
translationally invariant in space too, Eq. (B.2) may berigan in Fourier space

as[p = (¢, p)]

Gip) = —e MG (p)
— e GG (), (B.3)

where in the second line the energy has been rescaled to hmedhfrom the
chemical potential. According to Section 2.1.2 one has

GR(1,1) =G~ (1,1) + G<(1,1) (B.4)
GE(1,1) - G4(1,1) =G~ (1,1) — G=<(1,1)). (B.5)
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In equilibrium Egs. (B.3), (B.4) and (B.5) imply

GE = [GF — GA) tanh (%) | (B.6)
For Gyt = ¢ — % + u, as given in Section 2.2, if the spectral weight has a
delta-like profile,GF — G4 = —2imd(e — £), then for the distribution function
introduced in EqQ. (2.48)
1 de
s =g (14 [ greon) B7)
in equilibrium one has
1 de
Sy B o]
= E [1 — tanh <&)} , (B.8)
2 2

that is, the Fermi distribution.
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Appendix C

On gauge Iinvariant Green’s
functions

For our calculations we rely on the following definitions arhventions.

1. Wigner coordinates and metric, as well as the Fouriersttam, are as de-
fined in Section 2.2, see Egs. (2.39)—(2.42).

2. ThelU(1) gauge transformations for the field operatomnd the connection
Aread

(1) = (1),
eA'(1) = eA(1) — 91 x(1), with A(1) = (®(1), A(1)), e = |e|.
From this it follows that’ transforms according to
G'(1,2) = XN G(1,2)e X3, (C.1)

An exactly gauge invariant Green’s function can thus be ddfin

G(X +2/2,X —x/2).

(C.2)
In the gradient approximation one assumg’) to vary slowly on the scale of
|x1| ~ 1/pp,t; ~ 1/ep, i.€. to be roughly constant betwe&ntz /2 and X —z/2,
so that Eq. (C.2) becomes

X+x/2

< X—z/2
G(X +x/2,X —x/2) =exp [—ie/ di’A(1")

G(X +2/2, X — 2/2) ~ exp [ieA(X)z] G(X + 2/2, X —2/2).  (C.3)
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Fourier-transforming to the mixed representation oneiobta

G(X,p) = /dxe‘imé(X,x)
~ /dxe‘i[p_EA(X”xG(X,x)

G(X,p—eA(X)). (C.4)

Q

We emphasize that Eq. (C.4) is valid only to linear order, i.e

G(X,p) = G(X,p) — eB(X)D.G — eA(X) - VG (C.5)
Note that formally, sincé(X,p) andG(X,p) are related by a simple variable
shift, the following holds
oxG(x.p)| = [oxGxp)] +
p p

+ [8)( (") L [81,*(3()(, p*)} N (C.6)
with p* = p + eA(X), and
[apé(X, p)]X - [81,*(:}()(, p*)}x. (C.7)

Obviously, wherea&!(X,p) = G(X,p — eA(X)) is a gauge invariant quantity,
G(X,p*)is not, asi(X, p*) = G(X, p).

The above concept of a shjit— p* was first used in [125], and it is safe to
rely on it for the present — Abelian — case. It must howeverdga kn mind that
the nature of the manipulations behind it is actually défgrand has to do with
the geometrical structure of a given gauge symmetry, aliatttecomes manifest
only when dealing with non-Abelian gauges. This is a topiomjoing research
we will not comment further on.

The equation of motion fof?(X, p) is readily obtained following the standard
procedure:

1. take the Dyson equation f6#, (2.67), and its adjoint;
2. subtract the two;

3. move to the mixed representation and use Eq. (2.43) tomperh gradient
expansion;
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On gauge invariant Green'’s functions

4. use Egs. (C.5)—(C.7).

The result reads

[0r+v - (Vg — eEd.) + F-V,]G(e,p; X) = 0, (C.8)
where
v=2
B(X) =~ (Vrd(X) + 0rA(X)),
B(X) = Vr A A(X),

F(X,p)=—e(E(X)+vAB(X)). (C.9)

The¢-integrations leads to Eq. (2.75)

Or +vpp - VR — evrpE - pO. + ¢ p+ (pr, ¢) SOQD g ((—: 0; X) =0,

PFr PF
(C.10)

where we have used the following

Indeed, explicitly

%/dgF(g,@.vpéK = /dgF [ €)A8§+—<f084 GK

p(§)
. ) A@ F(S,QO) 40 K
= [ em et Do B | 6

— B pl [ deapec s L [ et e D2y gn

Pr Pr
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Integrating Eq.(C.10) over the energy and averaging oweatigle must lead to
the continuity equation. One has

e%dE@ﬂ+vRQ/mwmﬂ—mmdk&%mwﬂ+

/m ([ aElpre) @y oy g,
PFr

The third term is easily seen to be zero, sincecfer +oo % assumes its equi-
librium form, which does not depend amn The two terms on the second line
/ d pF?é) 908 ~K>

partially cancel out
/ de
PFr

F

~K /de sz_ /deE Pg

/m g“|Iim = 0, (C.12)

of f et ®
/de

where in the last line we have used tiét(e, 0; X) = §% (e, 2m; X). Therefore
we are left with

o / A" (e, 1 X)) + Vi - { / devrpi®(e.p; X)) = 0, (C.13)

i.e. the continuity equation, Eq. (2.76). Finally, from EG.5) one sees that

A(X)
PF

§ep) = [1 —en(x)a, + 2 (5 - saa@)} g(e.p), (C.14)

which then implies, using the same technique as above,

p(X) = —2N, {g< [ S —e<1><X>] (.15)
and
00 = =Nor [ 5 [orbg (e + (“CELE) gy
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Appendix D

The self energy

We consider two kinds of disorder self energy
1. ¥..., due to non-magnetic and angle-dependent (or long-racgépsing
2. ¥, arising from magnetis-wave (or short-range) scattering.

Such scattering mechanisms are modelled by the randomtjadsén,,, (x)
x)=Y Ux-Ry (D.1)

andVy, (x)
=> B-oi(x-Ry), (D.2)

which must be averaged over the impurities’ positions. Bipisration, which we
denote by a bar, is performed according to the standard itpoh{34]

Vim(x) = Vi ( ) =0, (D.3)
Vi (X) Vo () = nnmz U (q)[?ei =) (D.4)
. B2

Vi (x) Vi (X') = nmgé(x —x'), (D.5)

wheren,,, andn,, denote the concentrations of non-magnetic and magnetic im-
purities, respectively.

INon-magnetic-wave (or short-range) scattering is a subcase of this.
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Y.m and Y, are evaluated in the Born approximation, i.e. diagrams with
crossing impurity lines are not considered. They read

Som(P) = 1am Y |U(P — P)PG(P) (D-6)

P

and
3

B? .
Ym = nm? ; ; UIG(p)Ul' (D7)
In the first case we expand the non-magnetic scattering kerrspherical har-
monics of the scattering angle and neglect its dependent¢leomodulus ofp
andp’
1
Nam|U|? = SN (1+ 2K, cos(p — @)+
2K5 cos(2¢ — 2¢") + ...)

27rN07'(1 + K(p—¢)) (D.8)

with 7 the non-magnetic elastic lifetime ad, = m /2= the density of states of
two-dimensional electron gas. This way one has

- )

an - -
27

where(...) = [ g—j‘j. In the second instance instead we write the magnetic scat-
tering kernel in terms of the spin-flip time;

(1+K)g) (D.9)

1
.B? = D.10
" 2w NoTsf ( )
so that ,
- 7
Y= — G)o;. D.11
m 67-sf ; ] <g>0'l ( )

Given the self energy, the collision integral of the Eilergse equation;-i [2, g} :
can be computed. Its Keldysh component in particular reads
]K - (ERgK . ngA + EKgR . gAEK)
= —i{ZF ¢"} +i{ZF ¢"}, (D.12)

where we have used that = —g# and thato? = (£4)” = —¥4. Substituting
Eq. (D.9) or Eq. (D.11) — or the sum of the two — into the abowegihe collision
integral in its explicit form.

—i[%, g
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Appendix E

Effective Hamiltonians

Some details regarding the material of Chapter 3 are disdu$®r an exhaustive
treatment see the literature references given in the text.

E.1 Thek - p expansion

We start from the Schrodinger equation (3.2) with- ¢ = 1

HoWp(x) = [(_iv)Q+U(x)+iVU(X)/\(—z’V)~a Uon(r)

2my 4m
= Eyk\I]lxk(X) (El)

and consider the expansion (3.4)

uuk(x) - Z Cuu’kuVO(X) (E2)

for the lattice-periodic part o¥ ,, (x)
\Iluk(x> = eik'xuyk(x)' (E3)
In ket notation

W) = Y e enlun),  (XITu) = Vo(x). (E-4)

l//
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E.1. Thek - p expansion

Substitution into Eq. (E.1) and projection onto the statg| gives

2 1 k 1
<uVo|{[p——l-U+—20'/\VU-p} + — [p—l——a/\VV}

2mp 4mg mo 4my

- [euk—j—ﬂ;]}mk(r» -

, k 1
zk~x§
v v : + — A CU +
c (o {6 0 mg {p 4m00 ]

/{32
— |fl/k — 2—%:| } |ul//0>cl/l//k —

, k? 1
ekx Z { |:€1/O — €+ %} Opur + Ek : 771/1/’} cwx = 0
0

v 0

I/,

(E.5)
with
—iVV)2 1 i
{( V) + U+ —VUA(=iV) - 0| u,0(X) = €,0u,0(x), (E.6)
2m0 4m0 ]
that is .
P oLusLvua - E.7)
2—7’110_'_ +4—mg p‘o-_ ‘uu0> —EVO‘UV0>7 ( '
and .
o = (i) {p + Lvua a} ). (E.8)
4m0
Each matrix element has to be intended as an integral ovemnibeell
(u0lOluy) = | dxuufy(x)Oun(x), (E.9)

cell

with O a given hermitian operatdr.c,, is the energy offset of the-th band at

k = 0, since Eq. (E.6) is formally given b¥fy(k = 0)u,o = €, ou,0. Itis seen
thatp denotes the atomic momentum, i.e. the fast momentum tidaetquickly
oscillating lattice function,,, whereas represents the slow crystal momentum
of the electrons at the bottom of the band. Because of thisppeximates

Ty N <ul/0|p|ul/’0>7 (ElO)

More precisely,(a|O[b) = [ [ dxdx’ ¢} (x)O(x,x' )¢, (x'). WhenO is a function of the
position operator or a power of the momentum one things siyruhd Eq. (E.9) holds [126].
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Effective Hamiltonians

which amounts to neglecting the term
1

—k-VUANo ~kp, VV ~p (E.11)

4mg
as compared to the diagonal one

1
P VU Ao ~ p?. (E.12)
0

When an additional non-crystalline and slowly varying pied V' (x) is present,
the envelope ansatz (3.9) is made

) = 6,(x)us0) (E.13)

and the procedure goes through as before, with the momeatanp now related
to ¢, (x) andV (x). Thatis,k ~ V¢,(x), VV(x). Then, for the very same reason
as before, the two additional spin-orbit terms du&’to

1
Tk VVAG ~ k2, (E.14)
0
1
=P VV Ao~ kp, (E.15)
0

are neglected.

E.2 Symmetries and matrix elements

The matrix elements (3.11) are given by the selection ruktsrchined by the
symmetries of the system, whose general theory can be fold@7]. Basically,
some convenient linear combinatiofasof the differentu,, are used as a basis,
so that these will share some particular symmetries with br-ekample, the to-
tal angular momenturd = L + S. Theu; will transform according to a certain
irreducible representation of the symmetry group of H, ta I';, and so will a
general operatad, sayl'o. The matrix elementii;|O|a;) will transform accord-
ing to the direct-product representatibnx I'p x I';, and it will be non-vanishing
only if such a product contains the unity representation.
Concretely, when the/, m ;) basis is chosen (see Table E.1) the 8 Kane

Hamiltonian
Hc Hcv >
Hos— | | T]M [Flclaxe (E.16)
[Hcv]ﬁx2 [HU]GXG
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E.3. The Léwdin technique

Hoos = (K 3)

-1 1 -1 -1
. ]M( Pk, \[Pk LPk. 0 Pk, \/iPk:>’

reads [57]

-1 2 1 -1 1
0 APk ZPk. 5Pk APk %Pk
[H ]6X6 _ [V _AEg]j-4X4 64X2 )
02><4 (V - Eg - A)]-2><2 ’
where
P = i (S|pulX) = —i—(SIp,|V) = —i—(S|p.Z), (A7)
= Zmo Dz = Zm(] Py - Zmo b= ’ !
3
A = —(X|[0,Ud, —0,U09,] |Y)
4m3 Y Y
= iz x (any cyclic permutation (E.18)
4mg

ky = k, £ ik,, and the zero of the energy has been set to the conduction band
minimun, e, = 0. Also, U is the crystal potential antl’ the perturbing one.

In terms of the above, the renormalized mass aifidctor, m* and ¢g*, and the
spin-orbit coupling constanit that appear in Eq. (3.15) read

1 1 9
e f) 7 E19)
26 P2/ 1
. - E.20
g MB 3 (Eg B, A) ( )
P 1
A (= = E.21
. ( A ) (E.21)

with 1.5 the Bohr magneton.

E.3 The Lowdin technique

Consider theV x N problem

(H—E)y) =0 (E.22)
N
n=1



Effective Hamiltonians

U; r |J,my) UJm,

o Ly |3 +3) iIS) + 3)

il Ly 13 —3) i19)] = 3)

iis Ty 13, +3) —7(X) +iY)] +3)

I L+~ ) -5+ A2+ D)
is I 3o 40—+ b+ A2 - b
i I’ 3,-3) +5(1%) —dY))| - 1)

iy I 1+3) ~H(IX) +iY) = 3) = H12)] +3)
g I'7 2, -1 7(|X>—Z|Y>)|+%>+%\Z>|_%>

Table E.1: Basis of the& x 8 Kane model. |S) denotes ars-like orbital,
|X),1Y),|Z) threep-like ones.| + 1) is the spinor corresponding to spin up/down
along the axis of quantization indicates the irreducible representation of the
symmetry group of the zincblende crystal according to wigiabh basis function
transforms.

and suppose the basfg,}, . can be divided into two (not-overlapping) sets
A = {Xn}nea B = {Xn},ep such that functions belonging to different sets are
weakly coupled. In other words such that in the equation

Pa
= E.24
()0 €20

the off-diagonal term&f , 5, H', , are “small”, that is

Hap, H\y < |Ha — Hp|. (E.25)
One then looks for an effective equationdrspace
[H(E) — Elva =0 (E.26)

which can be turned into a proper eigenvalue equation/foonce’H(E) is ex-
panded in powers of'/(dominant energy scale Obviously, such dominant en-
ergy scale is the one set b§f 4 — H|. Explicitly the original N x N problem is
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E.3. The Léwdin technique

rewritten as

where

mn

/
Hm n

> (U, — Edn) e =0, m€ A, (E.27)
neA

uA
Cn = % mcn, m € B, (E.28)

HrlnozHécﬁHén

H' H’
Hmn mo an
YR et L - Hy

a€EB a,BEB

) (E.29)

Hpn(1 = 6,n), i.e. H' =off-diagonal terms of H. (E.30)

Note that the series in Eq. (E.29) converges only/if (F — Hg) < 1. For

E = H,+ dE, with 0 E'a small correction, this is nothing but a rephrasing of the
requirement (E.25). When the sétis a single state one obtains the expressions

of standard perturbation theory, whereaslifepresents a group of degenerate
states, the Lowding technique treats the problem by ficklitag the effects of the
perturbation, Eq. (E.29), and then removing the degenerady Eq. (E.27). For
the8 x 8 Kane model the two degeneratdike levels play the role of the set,
and the sixp-like states that oB. The dominant energy scale|§, — Hp| ~

E,, E, + A.
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Appendix F

The Green’s function ansatz

In Section 4.2 we looked for an ansatz for the Green'’s funatapable
1. of factorizing its fast and slow components;

2. when spin-orbit coupling appears, of distinguishingnsstn the two poles,
each belonging to a fold of the spin-split Fermi surface;

3. of making possible a connection with the quasiclasgiga R).

The results are summarized by Eqgs. (4.53)-(4.57), and wataned assuming
that both branches of the Fermi surface,

§+ =&+ b, (F.1)

were spherical. It was mentioned that it is possible to sonagwelax this require-
ment. Let us now see how and to what extent.

F.1 The stationary phase approximation

After the general change of variables

dp // dle(p) — pJdS
— F.2
| @ ] T (2)
the constant energy surfac8sneed to be parameterized. We do this in terms of
the anglep betweenp andr, which is the natural choice for spherical surfaces,
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F.1. The stationary phase approximation

xO¥

Figure F.1: A generic constant energy surféearameterized by the angle
Se = pﬁ(ap).

and still a good one as long as the deviations from the spigrisymmetric
case are small. The general problem is how to determine #iiersary point of
exp{ipr cos(y)} with respect tap at constant energy. The parameterization for
p = p(p) [see Fig. (F.1)] is simply the one defining the profileofThe stationary
condition then reads

9, [pr cos(p)] = (9,p(¢p)) 1 cos(p) — p(p)rsin(p) =0 (F.3)

/

<  tan(p) = % (F.4)

We consider two specific cases.
1. Spherical Fermi surface:
—> p doesn’tdepend op
— tan(p) =0 <= sin(p) =0 <= ¢ =0,7. (F.5)
This ends the problem.
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The Green’s function ansatz

(@) (b)

Oy
O

p’=2me p’=2me

Figure F.2: Qualitative examples of an “almost sphericair surface (a) and
of a non-spherical one (b). Only case (a) is tractable in ppr@imation.

2. “Almost spherical” Fermi surface, by which we mean a stefauch that

Do
and /
Pl )
Do

wherep, refers to the spherical Fermi surface, pg= 2me [see Fig. (F.2)].
This will anyway be defined more properly a little later. Fromw on we
deal with this case.

The energy dispersion is taken from Eq. (4.1)

2
b
€(p, @) = eo(p) +b(p, @) = 2& +b(p, ), — <1, (F.8)
m €
and the constraint reads ,
T blp. ) = er. (F.9)
m

From this we want to obtain an expression fop, ex). To first order inb/ef it

reads
P = Do {1 - M} (F.10)

2€F
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F.1. The stationary phase approximation

and in turn we get

DPo
Opp = _Eacpb(pm ©)
b
_ %), (F.11)
VR
If we make (F.6) and (F.7) more precise by assuming
|0,b(p, ¢)| < b,
we have . )
M S —x1 (F.12)
Do €r
or, for the stationary condition:
/ / b
tan(p) =L ~ L < 2 (F.13)
p Po €r

In order to conclude we need one final consideration, basdbeofollowing as-
sumptions

op b
P+ :pO:F(Spv - ~
p €F
Apr 2 1,
opr < 1,

where Ap describes the limit of resolution when relying on the stadiy phase
approximation. From the above we get/ Ap < 1, that is, it is not possible to
“see” small deviations in the stationary angle:

b A
tan(p) ~ ; < p—f = tan(p) = 0. (F.14)

As long as the Fermi surface is almost spherical, in the sepseified, the sta-
tionary angle is the same we would have for an exactly spdlesite. This means
that the angle appearing in the ansatz for the quasicla$siean’s function is the
same in both bands, and as a consequence Egs. (4.53)—(@bst)Icbe used.
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Appendix G

Matrix form of the Eilenberger
equation and boundary conditions

Some useful manipulations of the Eilenberger equation(£43), are discussed.
Its matrix form is obtained, first in the simple casesefvave non-magnetic dis-
order — in order to keep the focus on the general procedure them under the
more specific assumptions of Section 5.1.2 that lead to B@3)Y—(5.30). Itis
also shown how to work with the boundary conditions, EqQL9p.(5.57), in the
diffusive regime.

G.1 The matrix form

We start from the Keldysh component of Eq. (4.13) and takeewavith respect
to the various Pauli matrices. By using the decompositio271b

9=0g000+¢g- o, (g.) = (90,8) (G.1)

the matrix form of the Eilenberger equation is obtained. IExfy, with the s-
wave self-energy. = —i(g)/27, one has

(Mo + M;)g = (No + N1)(g) (G.2)
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G.1. The matrix form

where

Myg = g+ 709 +vpTD - Oxg

— ir[bg-o,9], (G.3)
Mlg = %Z{(bop%)p - ap(bO : U)vaxg}
—517 [0¢(bg - &), {bo - 0, 9}]
+5 {30 o), 0} (G4
No(g) = (9). (G.5)
Nilg) = 5 {0bo- o (9)}. (G.6)

HereM,; andN; are small in the expansion paramefle}/c». The Eilenberger
eqguation is then rewritten as

9= (Mo + M)~ (N + Ni)(g), (G.7)
i.e. to first order inb|/ex
g=(Mg'+M;'N; — My'™™M; Mg ) (g), (G.8)
from which the equation for thewave component of the Green function becomes
(1= (M) — (M5'Ny) + (Mg ' MM ™)) (g) = 0. (G.9)

In the low frequency, long wavelength limit this is the gealeed spin-charge
coupled diffusion equation whose explicit form is obtairgdevaluating the an-
gular average of the operator prodddt ' N.

In the Rashba model for instance, wheére- az A p, one finds

L 0 0 0

0 L 0 D
M, = el (G.10)
0 0 L ap,
0 —ap, —ap, L
0 Qy _Q:c 0
M, = | @ 0 00 (G.11)
—Q, O 0 0
0 0 0 0
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Matrix form of the Eilenberger equation and boundary candg

with
L = 1470+ vprp- Ok, (G.12)
a = 2appT, (G.13)
Qoy = a7(Ory — (P Ox)Pry) (G.14)
and
1 —apy/vp  apy/vp 0
—ap 1
Ny + N, = | ~OP/vr 00 (G.15)
apx/UF 0 1 0
0 0 0 1

Therefore in the diffusive limitg < 1, Eq. (G.9) becomes

O — D2 —2B0, 2B0, 0 (g0)
—2Bd, 0,— D&+ 71! 0 —2C0, (92) | _ 0

2B0, 0 O, — DO+ 7,1 —2C0, (gy)

0 2C0, 200, Oy — D2 + 277! (g.)
(G.16)

whereD = Zv%7 is the diffusion constant and
2 2

B = %, C = % = VpQPFT, 7_% = ;—7_. (G.17)

In a time independent situation and in the presence of an genmemus electric
field parallel tox, Egs. (5.49)—(5.51) are obtained — or Eqgs. (5.53)—(5.58)af
spin-charge coupling terms are neglected.

We now consider the more complicated self-energy

Y = Yn+Xm

. 3 .
7

= Tony & M 5 ) (6.18)

arising froms-wave magnetic disorder and angle dependent non-magmetic s
tering (see Appendix D), and specialize the treatment tq®486). The Keldysh
component is as usually implied. Rather than using the ataitd,, 0,, 0,) basis,
we choose to rotate 1@, 0, , 0.), the subscript§ and_L indicating respectively
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G.1. The matrix form

the directions parallel and perpendicular to the intermddi#h. Defining the rota-
tion matrixR.(p) — not to be confused with the boundary maiRxrom Eq. (5.41)
— by

09 1 0 0 0 00
Oz _ 0 sine C'OSQO 0 o 7 (G.19)
o 0 —cosp sing 0 oy
o, 0 0 0 1 o,
one has
3 ~
gp=> R L(@)gw. (9)= (90,9191, 9:), (G.20)
=0
3 ~ ~
K, (¢, ¢) Z R (o )Ry (). (G.21)
Expanding in harmonics — we also drop the four-vector inglice
K(p,¢) = K9 4+ cos(p — oYK +sin(p — KO +.... (G.22)
In the above we have defined
0 0 0 0 2Ky 0 0 0
K@ — 0 Ky 0 O CK® = 0 Ky 0 0 (G.23)
0 0 K; 0 0 0 Ky, 0
0 0 0 O 0O 0 0 2K
and
0 0 0 0
—K.
ko | Y 2 0 (G.24)
0 Ky 0 0
0 0 0 0

For the purpose of calculating polarizations and spin custevhich is our aim in
Section 5.1.2, the higher harmonics play no role and areiginosed.

By using thatgff] = —g;j}I = 1+ 0¢b - o and performing a rotation to the new
spin basis, one can write EqQ. (5.26) as

O — 1[ Mg + (No+ N1 (o) + (Na + No) (K] + 5. (G.25)
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Matrix form of the Eilenberger equation and boundary candg

The matrices appearing in Eq. (G.25) read

1 —TAK 0 0
o 1
M = Top 0 0 (G.26)
0 0 1 20ppT*
0 0 —2appT” 1
1 0 0 0
N 0 1-5 ’ G.27
“lo 0o 1-& 0 ’ (G.27)
o 47*
0 0 0 1—%
- AT
0 (1 3Tsf) 00
N, = 2| 0 00 (G.28)
UR 0 0 0 0
0 0 00
0 -1 00 1 0 00
* —1 * 1
N2:T_g 0 00 ,N3:T— 0 0 0 (G.29)
T Up 0O 0 00 710010
0 0 00 0 001
wheret* is the elastic quasi-particle life time, defined as
1 1 1
— =4 (G.30)
T* T  Tsf

which we now use for convenience of notation but which in timalfresult is
incorporated into the proper transport time [see Eq. ($.3E)nally, S¢ is the
source term due to the electric field. As before, we take thiset along ther-
direction, so that

cos

— COS go%

Se = |e|vp€0.(2 tanh(e/2T)) (G.31)

— sin @%
0
Solving for thes, spin current flowing along Eq. (5.28) is obtained. The
expression for the, spin polarization, Eq. (5.29), is similarly calculateddan

that for the the frequency dependent spin Hall conductitty (5.30), follows at
once.
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G.2. Boundary conditions

G.2 Boundary conditions

The goal is to translate the boundary conditions for the iglessical Green’s
function — i.e. EQq. (5.39) for spin-active boundaries and §&g57) for spin-
conserving ones — into those for the spin polarizations ancénts. We consider
s-wave non-magnetic disorder in the Rashba model and assubein the dif-
fusive regime. This means that Eqgs. (5.49)—(5.51) hold. gdmmetry is as usual
that determined by Fig. 5.3. The spin relaxation length= /D, sets the scale

of the spatial variation ofg), i.e. the angular average of the spin components of
g. Since this is much bigger than the mean free path > [, the idea is to solve
the Eilenberger equation exploiting the slow variatiofgf over O([) distances.
We first rewrite Eq. (G.2)

(NI + N3)g = ——[g — (1 + Ny){g)], (6.32)

with My = (M, — 1)/7, M; = M, /7. As the dominant energy scale is set by
1/7, the bulk expression fay reads

9@ =(1+Ni){g) + O [(afvp)?],
g = —(Mo + M; + MoNy){(g) + O [(or/vF)?]
= g = (1 — MQ -+ N1 — Ml — M0N1)<g) + O [((X/UF)2:| . (633)

At the boundary the completgeis a superposition of the incoming'f) and out-
going (¢°** = Rg™) one

at the boundary
! .
g = (I+R)g™. (G.34)

Therefore

) = / d;;n<1+R)(1_M0+N1_M1—M0N1)<9>, om € [0,7). (G.35)

We focus on the spin components in the stationary limit. k& ¢hse of spin-
active boundary conditionR is given in Eq. (5.41), and the angular average in
Eqg. (G.35) yields

5, =0, s,=35), —D0ys,+ Cs, =0, (G.36)
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Matrix form of the Eilenberger equation and boundary candg

that is, the result (5.52). All results are intended to lagdirder inl/ L, and first
order ina/vr. Notice that if spin-charge coupling is neglected, as irtisaé.1.3,
Eq. (G.35) simplifies to

0= FE0HR0-M) pue ) (63)

and the boundary condition fay, reads simplys, = 0 [see Eq. (5.61)]. In Sec-

tion 5.1.3 spin-conserving boundaries are considered ltoohis caseR is just
the identity, and from Eq. (G.37) the expressions (5.58pd)pare obtained.
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G.2. Boundary conditions
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