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Introduction

Many–body physics is a branch of physics whose scope is to understand

physical phenomena where a number of interacting bodies is present. The

presence of the interaction is what makes the description of such systems

challenging but at the same time exciting. Interacting particles can give

birth to new physical process which cannot be simply described as the sum

of the behaviour of each single element. The superconducting phase at low

temperatures, plasmon peaks in the absorption spectrum, Mott transitions

are only a few examples. New physics emerge as a result of the coherent

behaviour of the many–body system.

The description of interacting particles requires sophisticated many–body

techniques and the exact mathematical solution to the problem is almost

never available: approximations are needed. To construct a practical ap-

proximation one need to have some clue as to which are the most relevant

phenomena, which are the physical aspects that can be discarded and which

can be treated in an approximate way as perturbations. Often even the ap-

proximate equation cannot be solved analytically, a computational approach

is needed. Computational Physics can be seen as an approach which stands

in the middle between Theoretical Physics and Experimental Physics. Some

of the results presented in the present work have been obtained through a

numerical approach.

In the present work we will describe some of these techniques with a
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focus on a specific phenomenon: the description of double excitations in the

absorption spectrum. Double excitations are a peculiar effect of interacting

systems which does not have a counterpart in non–interacting ones. The

optical absorption spectrum of a system is obtained by shining light on it.

At the microscopic level photons hit the electrons which sit in the ground

state and change their configuration. If the light source is not too intense

this can be described in linear response; that is only “one photon” processes

are involved, only one electron per time can be influenced. Here is where the

interaction comes in. The hit electron is linked to the others and so other

process take place, one of these is the appearance of multiple excitations.

These are, strictly speaking, virtual processes as the real time evolution of the

system is different from the one described. Nevertheless the physical effect

is there and can be measured as extra peaks in the absorption spectrum.

Double excitations is not the only subject of the present work and under-

standing is not the only scope of many–body physics. The same techniques

can be used to make accurate quantitative predictions of the behaviour of

a material. These allow us to control physical phenomena and possibly to

use them in technological applications. In the second part of the Thesis we

focus on the application of more standard techniques to the description of

carbon nanotubes (CNTs). In particular we focus on the effects of magnetic

fields on CNTs.

CNTs are quasi 1D-systems composed by carbon atoms which have been

discovered in 19521. They have the shape of a hollow cylinder with a nano-

metric diameter (10−9 m), a micrometric length (10−6 m) and the thickness

of a single atomic layer2. What makes such objects so interesting is that they

1A large percentage of academic and popular literature attributes their discovery to
Sumio Iijima of NEC in 1991 [1, 2], however already in 1952 L. V. Radushkevich and V.
M. Lukyanovich published clear images of 50 nanometer diameter tubes made of carbon
in the Soviet Journal of Physical Chemistry, the publication however was in Russian. For
a detailed review on the discovery of CNTs we address the reader to Ref. [3].

2Here we refer to single–walled CNTs. Multi–walled CNTs, which are composed by
concentric single–walled CNTs exist too.
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are mechanically very strong and stable. These properties makes them ideal

system both for many possible technological approaches and for testing the

physical behavior of electrons in 1D system as well as in cylindrical topolo-

gies. In this work we are in particular interested in the effect of magnetic

fields related to topology.

Under the effect of a magnetic field electrons delocalized on a cylindrical

surface display a peculiar behaviour, known as Aharonov–Bohm effect. The

Aharonov–Bohm is a pure quantum mechanical effect which does not have

any counterpart in classical physics. In CNTs the Aharonov–Bohm modify

the electronic gap and so can be used to tune the electronic properties.

Though a model able to account for such process is available in the literature,

in the present work we will describe the effect of magnetic fields “ab initio ”.

Ab initio is any approach which describes the physics starting from first

principles and without the use of any external parameter. As pointed out

in the first part of the introduction the exact solution to the many–body

problem is in practice never available and approximations are needed. In

the description of CNTs we will use standard approximations which are by

far much more accurate and general than any approximation introduced in

phenomenological descriptions based on model systems.

In part I the general many–body problem is introduced. In particular

Density–Functional Theory (DFT) and Many–Body Perturbation Theory

(MBPT) are described according to our needs for the forthcoming parts. In

part II the problem of double excitations is presented together with exper-

imental evidence and the state of the art. In this part we will propose a

new approximation which could be used in the standard approach for the

description of absorption spectra in both the MBPT and DFT framework.

This approximation is able to describe double excitations. Finally in part

III the general problem of CNTs in magnetic fields will be considered. After

a brief overview on the main experimental evidence of the Aharonov–Bohm

effect, the Zone Folding Approach (and the Tight Binding model) will be
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introduced. Then we will describe how magnetic field effect are included

in our ab initio approach and finally we will compare our results with the

predictions of the models.



Notation and conventions

This is a brief overview of the conventions used to express operators and

their related physical quantities. The same conventions are introduced in

Ch. 1. Atomic units are used in Part I of the thesis, while in Part II the

international system (SI) of units is used.

The one body operators are written in second quantization according to

the following expression:

Â =
∑

σ1,σ2

∫

d3x1d
3x2dt1dt2 Aσ1σ2

(x1t1,x2t2)ψ̂
†
σ1
(x1, t1)ψ̂σ2

(x2, t2).

Here σ is a spin variable, while x and t are space and time variables re-

spectively and Aσ1σ2
(x1t1,x2t2) is the kernel of the operator. A compact

notation is also often used

Â =

∫

d1d2 A(1, 2)ψ̂†(1)ψ̂(2) ,

Â =

∫

d1d2 A(1t1,2t2)ψ̂
†(1t1)ψ̂(2t2).

The compact notation will be preferred wherever it will not be source

of confusion. In this notation repeated primed variables are supposed to be
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integrated, i.e.

Σ⋆(1, 2) = iG(2′, 1)W (1, 2′)Γ⋆(2, 2′; 1′) ,

means

Σ⋆(1, 2) =

∫

d1′d2′ iG(2′, 1)W (1, 2′)Γ⋆(2, 2′; 1′).

The symbol
∫

d1′ stands for
∑′
σ

∫

dx′dt′. However, when only partial inte-

gration will be performed (i.e. only on space, time or spin variables), the

sums / integrals will be written explicitly. The notation G(1, 2+) will be

used for

lim
ǫ→0+

G(x1, t;x2, t+ ǫ),

and the notation 〈Â〉 for the expectation value on the ground state of an

operator:

〈Ψ0|Â|Ψ0〉. (1)

For the coulomb interaction we will use

w(1, 2) =
1

|x1 − x2|
δ(t2 − t1)δσ1σ2

;

for the one particle part of the Hamiltonian

Ĥ0 = −1

2
∇2 + VI(x).

A functional will be expressed with the following notation E[ρ] which

means that the energy E is a functional of the density ρ(x, t).

Finally we list here some (but not all) of the symbols used in the thesis:

• B is the magnetic field,

• A is the vector potential,

• Φ is the magnetic flux
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• H is the magnetic induction field,

• E is the electric field,

• D is the electric displacement field,

• P is the total polarization,

• M is the total magnetization,

• j is the current–density, with j(p) the paramagnetic and j(A) the dia-

magnetic component

• ρ is the density

• ǫ is the dielectric constant,

• α is the polarizability,

• χ is the response function, χ0 the independent–particle one, and χKS

the Kohn–Sham one,

• L is a four–point response function, while L̃ is four–point in space and

two–point in time,

• T is the time–ordering operator while,

• T̂ and T [ρ] are the kinetic energy operator and the kinetic energy of

the system respectively,

• Σ is the self–energy,

• ΣH = Σ + vH , that is the sum of the self–energy and the Hartree

potential (vH),

• Σ⋆ is the reduced self–energy,

• Σs is a static self–energy while Σd is a dynamical self–energy,
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• Π is the polarizability, which correspond to the density–density re-

sponse function3,

• Π⋆ is the reduced polarizability,

• Γ is the vertex function and Γ⋆ is the reduced vertex function;

• W is the screened coulomb interaction,

• g is the independent–particle Green’s function, gH the Hartree Green’s

function, and G the many–body Green’s function,

• Z is the renormalization factor,

• Exc is the exchange–correlation energy, vxc the exchange–correlation

potential and fxc the exchange–correlation kernel,

• Ξ is the kernel of the Bethe–Salpeter equation (BSE) while K the

kernel of a generalized equation (including the dynamical BSE) for the

four–point response function,

• µ is the magnetic susceptibility or the chemical potential, will be clear

from the context

• Ψ the many–body wave–function and Ψ0 the many–body ground state,

Ψs the Kohn–Sham ground state.

• Φ0 will be used for the non–interacting many–body ground state or for

the magnetic flux quantum Φ0 = h
e , with h the Planck’s constant and

e the electron charge,

• when explicitly specified ΨS will be the wave–function in the Schrödinger’s

picture, ΨH in the Heisenberg’s picture, and ΨI in the interaction pic-

ture,

3The two quantities differ only because Π is T–ordered, while χρρ is a retarded quantity
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• δA stands for a variation of the quantity A, while δ(1, 2) is the Dirac’s

delta function,
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Part I

Theoretical background





Chapter 1

Many–Body Systems

Any known many–body system is constituted of interacting particles and,

at least in principle, any physical aspect can be understood describing their

dynamics. Elementary particles are in general ruled by the equations of

quantum mechanics and special relativity (or general relativity) and four

possible kind of interactions are known to exist: the Electromagnetic inter-

action, the Nuclear Weak interaction, the Nuclear Strong interaction and

the Gravitational interaction. For this reason even the description of a sin-

gle atom, where in principle all forces have to be taken into account, appear

an almost impossible problem. Moreover any macroscopic body is consti-

tuted of an enormous number of interacting particles, for a reference the

Avogadro’s number; NA = 6.0221415 × 1023 [particles/moles]. So any

attempt to solve the many–body problems seems doomed to fail. Despite

this discouraging scenario there are two factors which in fact make possible

to tackle the many–body problem from a microscopic point of view. First

the majority of the processes which happen in everyday life involve a thin

energy window such that only the electromagnetic interaction plays a role

and, quite often, only the dynamics of the electrons needs to be described.



4 Many–Body Systems

Secondly the majority of the macroscopic objects are constituted by funda-

mental building blocks which almost completely determine their properties:

these are the molecules which constitutes the gases and the liquids and the

unitary cells which are repeated an infinite number of times in many solid

systems1.

A crucial role is, then, played by the equation which describes the dy-

namics of few interacting electrons immersed in the Coulomb potential of the

nuclei that, in a first approximation can be considered frozen in their instan-

taneous positions: the Scrödinger Equation (SE) in the Born-Oppenheimer

(BO) approximation. Possibly the electrons can interact with external fields

which can be used either to explore or to tune the properties of the materi-

als. The first part of this thesis will be dedicated to the description of light

absorption experiments where an external light source is used to investigate

the optical properties of a many–electrons system. The second part will be

focused on the study of magnetic field effect on Carbon Nano-Tubes (CNTs)

and how the external field can be used to tune the electronic properties of

the CNTs.

The SE can be obtained applying an Hamiltonian operator to the elec-

tronic wave–function. The operator can be divided into two terms Ĥint +

Ĥext. The first term describes the electrons–nuclei interaction, while the

second term is due to the presence if an external perturbation that, in this

work, is the electromagnetic field. The SE in atomic units reads:

(

i
∂

∂t
− V̂ ext

)

Ψ =
1

2

[

(

i∇− Âext
)2

+ B̂ext
σ + ŵ + V̂I

]

Ψ. (1.1)

V̂ ext and Âext accounts for the external potentials and the term Bext
σ

accounts for the interaction of the spin with a possible applied external

field. σ is a vector constituted by the Pauli matrices, Ψ is the electronic

1For gases and liquids only the properties related to the electronic dynamics can be
studied from a microscopic point of view. Other properties require a statistical description
of the system.
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wave–function; ŵ is the Coulomb interaction while V̂I accounts for the ionic

potential. Finally the ∇ operator takes into account the kinetic energy of

the electrons.

It is important to observe that some of the terms discarded in Eq. (1.1)

does not have in practice a role in the physical process we are interested

in. The reason is that the energy scales involved are so different that the

corresponding dynamics can be neglected. This is the case of the nuclear

forces and of the gravitational force. Some other terms instead are discarded

as they are usually very small although they could be needed for the descrip-

tion of some physical phenomena. This is the case of relativistic corrections2

which are needed in the description of materials composed of heavy nuclei;

the dynamics of the nuclei, which is neglected in the BO approximation,

is relevant for example for the description of the superconducting phase of

some materials. Many development of the state–of–the–art are devoted to

overcome such approximations.

On the other hand the idea of describing solid state devices as an infinite

repetition of the same fundamental building blocks can be applied to the de-

scription of specific kind of materials only. As predicted by Feynman times

ago, objects at the nanometric scale can display very peculiar properties

which are completely different from the case of molecules or of bulk systems.

In these direction the state-of-the-art tools need to be pushed beyond their

present limits. From one side the common approximations involved, which

are often based on physical intuition, cease to be valid and new approxima-

tions are needed. From the other side the lack of a repetitive structure calls

for the need of instruments able to describe systems with hundred, thousand

and even more interacting electron. Only thanks to the very recent increase

2The terms due to the presence of a magnetic field included in Eq. (1.1) are already

relativistic corrections to Ĥext. Here we consider these terms as in this thesis we are
interested in the description of the Aharonov–Bohm effect in CNTs. The relativistic
corrections to the Ĥint part of the Hamiltonian, that is the magnetic field generated by
the electronic current (and spin) and the magnetic field due to the nuclei (the spin orbit
interaction mainly) are neglected here.
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of computational power and, in the same time, to recent developments of

the techniques, it has become possible to tackle, at least in some cases, the

description of such system “ab-initio” and so to test the prediction of more

simple theoretical models.

1.1 Looking for the ground–state

The solution to Eq. (1.1) is the main goal of the many–body physics. The

first objective is to solve such equation with Ĥext = 0. That is to find out

the ground–state of the system.

An exact analytical solution can be obtained only in oversimplified sys-

tems such as the hydrogen atom. For any realistic system this is far beyond

our possibilities. A computational solution can be obtained at the price of a

computational time, that grows exponentially with the number of electrons,

only for very small systems. This is why approximations are needed. The

problematic part of the Hamiltonian is the interaction term w(|r1 − r2|)
for which different possible strategies are available. In this work we will

tackle the problem using Many–Body Perturbations Theory (MBPT) and

the Density–Functional Theory (DFT). Both methods start from the con-

sideration that the many–body wave–function contains much more informa-

tion than really needed. So instead of the exact wave–function, which is a

function of 3N variables, where N is the number of electrons, one can look

for simpler quantities which contains only the informations needed to give

a quantitative description of experiments. In quantum mechanics any mea-

surable quantity is related to an Hermitian operator. In particular one body

operators can be written in second quantization as:

Â =
∑

σ1,σ2

∫

d3x1d
3x2dt1dt2 Aσ1σ2

(x1t1,x2t2)ψ̂
†
σ1
(x1, t1)ψ̂σ2

(x2, t2), (1.2)

We introduce here the notations 1 = (1, t) = (x, t, σ) which will be used
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Figure 1.1: Total energy minimization: by looking at the minimum of the total
energy is possible to obtain the ground–state properties of the system. Here, as
an example, the total energy of Silicon Bulk as a function of the lattice parameter
is shown. From ref. [4].

from now on. So for example Eq. (1.2) can be written in the two forms:

Â =

∫

d1d2 A(1, 2)ψ̂†(1)ψ̂(2) , (1.3)

Â =

∫

d1d2 A(1t1,2t2)ψ̂
†(1t1)ψ̂(2t2). (1.4)

Within this notation we finally define 1+ = limǫ→0+(1, t1 + ǫ).

Eq. (1.2) defines a “one body operator”, that, in the jargon of the sec-

ond quantization, acts only on one particle states. The field operator ψ̂(2)

destroys a particle at the space-time coordinate 2 and his Hermitian coun-

terpart ψ̂†(1) creates a particle at 1. If we set x2 = x1, t2 = t1 or σ2 = σ1
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the operator is said to be local in space, time or spin respectively.

As observables are related to the expectation value 〈Â〉, it is then natural

to construct a theory which is able to evaluate, instead of the many–body

wave–function, the expectation value of any given one body operator. This

can be done introducing the one body Green’s function (GF)

G(1, 2) = −i〈Φ0|T
[

ψ̂(1)ψ̂†(2)
]

|Φ0〉. (1.5)

Φ0 is the interacting ground–state many–body wave–function of the system

and T is the time ordering operator3.

A particularly meaningful physical quantity is the total energy of the sys-

tem, as its knowledge enables to obtain many informations on the system.

An example is shown in Fig. (1.1), where the total energy is used to de-

termine the equilibrium lattice parameter of silicon bulk. Unfortunately the

total energy operators involves a two body operator, the coulomb interaction

w(1, 2) =
1

|x1 − x2|
δ(t2 − t1)δσ1σ2

(1.6)

whose average cannot be easily obtained in terms of the GFs. Nevertheless

the Galitiskii-Migdal equation [5] ensures that the total energy of any system

can be expressed in terms of the one particle GF. We do not give the proof

here but we just observe that, from the SE it’s possible to obtain the identity

〈i ∂
∂t
− Ĥ0〉 = 〈ŵ〉 (1.7)

where we have introduced Ĥ0(1) for the one particle part of the Hamiltonian.

All the operators on the right hand side of Eq. (1.7) are one particle operators

3The T operator order any couple of operators. T [Â(t1)B̂(t2)] = θ(t1−t2)Â(t1)B̂(t2)±

θ(t2 − t1)B̂(t2)Â(t1) where the sign is + or − according to whether the operators are
bosonic or fermionic.
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and so the average can be expressed in terms of the one particle GF:

〈ŵ〉 = − i
2

∑

σ

∫

d3x1 lim
2→1+

[

i
∂

∂t
−H0(1)

]

G(1, 2) . (1.8)

In the next chapter we will briefly review how the GF can be used in

practice to get approximate expressions for several observables.

1.2 Perturbing the ground–state

The solution of the many–body problem withHext = 0 provides informations

on the system such as its mechanical stability, the electric character (metal /

semiconductor / insulator), etc. As long as the external Hamiltonian is zero

the body will remain in is ground–state and will not do anything special:

a very boring condition. What is much more interesting, and at the same

time closer to what happens in an experimental situation, is to see how a

system react to an external perturbation. A system is never isolated and

always interact with the enviroment. Experimentalists have to probe with

an external field to see if a system is a conductor or an insulator, have

to shine light on it to see which frequency the system absorbs (roughly

speaking to see the color of the system) or they have to try to break it too

see how much it is mechanically resistant. As a first guess one could imagine

that knowing the ground–state we can understand how it will react to an

external perturbation, at list to first order. This is not always the case, the

interaction is still there and things are much more complicated (and much

more exciting!).

In this work we will only deal with electromagnetic external perturbations

that we will artificially distinguish in two classes: the static perturbations

and the time dependent ones. Static perturbations can be embodied in the

ground–state Hamiltonian and the same techniques we will describe for the

Hext = 0 case will apply. This is what we will to study on CNTs immersed
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Figure 1.2: Perturbing the ground–state: a schematic illustration of an external
electromagnetic field which perturbs the ground–state of a semi–conductor. Elec-
trons are excited to valence states. This is an independent particle representation.
From ref. [6].

in external magnetic fields. On the other hand time dependent perturba-

tions are more problematic to deal because, when the Hamiltonian is time

dependent, it’s not possible to speak of a ground–state of the system. New

techniques are needed to follow the time evolution of the system; anyway

often experimentalist just uses small external perturbations to probe the

system. In these situations linear response calculations give us all the in-

formation we need to describe the experiment. For this reason other key

quantities we will encounter are the response functions.

The equation of motion in the presence of an electromagnetic field can be

expressed in terms of the density, the magnetization density and the current
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density

ρ̂(x, t) =
∑

σ1,σ2

δσ1,σ2
ψ̂†(1)ψ̂(1+),

m̂(x, t) =
∑

σ1,σ2

σσ1,σ2
ψ̂†(1)ψ̂(1+),

ĵ(x, t) =
∑

σ1,σ2

δσ1,σ2
j(x, t)ψ̂†(1)ψ̂(1+),

(1.9)

where

j(x, t) =
i

2

∫

d3x′

(

δ(x− x′)
∂

∂x
+

∂

∂x
δ(x− x′)

)

+A(x, t). (1.10)

The expression of the external Hamiltonian is then

Ĥext(x, t) = V ext(x, t)ρ̂(x, t)−Aext(x, t)̂j(x, t) +Bext(x, t)m̂(x, t). (1.11)

Note that Eq. (1.11) defines a local one particle operator. Its effect on

the electronic wave–function can be highly non linear. This is the case, for

example, of multi-photon excitations where the one particle operator Ĥext

act n-times on the ground–state wave–function, thus inducing, at least, an

n-particles effect. In the linear regime however, only terms to first order in

Ĥext need to be considered; one could be tempted to say that, then, only

one particle process are involved. We will see that this is not the case due to

the effect of the particle–particle interactions which induce many–particles

process, such as double excitations. There is then an overlap between linear

and non linear processes. This happens because the electrons react to the

total electromagnetic field, that we have artificially divided into V ext and w

(and VI); even when V ext is small the changes induced in w could be big

enough to induce effects beyond the linear order. We will describe double

excitations more in details in the Part II of the present work.

As our perturbation couples to the density, the current and the spin it is
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convenient to look at their variation induced by weak external fields4:

δρ = χρρ δV
ext + χρj δA

ext + χρm δBext , (1.12)

δj = χjρ δV
ext + χjj δA

ext + χjm δBext , (1.13)

δm = χmρ δV
ext + χmj δA

ext + χmm δBext . (1.14)

δρ, δj and δm represent the variation of the density, the magnetization–

density and the current–density. For example δρ = 〈ρ̂(x, t)〉 − ρ0(x, t), how-
ever we drop the spatial and the time dependence in order to have a compact

notation and focus on the relation between the physical quantities and ex-

ternal perturbations. χρρ, χjj and χmm are respectively the density–density,

current–current and spin–spin response functions. Similarly χρj, χρm and

χjm are “mixed” response functions. δV , δA δB represents small external

perturbations. Eq. (1.12) can be seen as the non relativistic limit of the

general equation which couples the four potentials (V,A) to the four cur-

rent (ρ, j). The magnetization enter as a result of the reduction, in the non

relativistic limit, of the Dirac equation to the Schrödinger equation5.

In this thesis we will study the response to electric fields, neglecting

much smaller dynamic magnetic field. We will work in the coulomb gauge

to remove the coupling of the external potentials with the currents. We are

then reduced to consider only the density response function in presence of a

scalar potential.

δρ(1) = χ(1, 1′)δV (1′). (1.15)

Here repeated primed variables are integrated. From now on we will keep this

notation. The density response function is obtained by summing over the

4Here the expression δA = χA,BδB stands for δA(x, t) = χA,B(x, t;x′, t′)δB(x′, t′),
where primed variables are integrated.

5In the relativistic formulation the spin is naturally included in the four–current density.
In particular the spin is always related to a spatial current which, inserted in the Maxwell
equations, generates the magnetic field usually associated with a magnetic spin moment.
This magnetic field is very small and, consequently, it is generally neglected in the non–
reativistic limit.
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spin variables: δρ(x, t) =
∑

σ δρ(1); χρρ(x1, t1;x2, t2) =
∑

σ1σ2
χ(1, 2) and

δV ext(x, t) = 1/2
∑

σ V (1). The response function χ(1, 2) can be related

to the Green’s functions observing that it involves the expectation value of

four field operator, two coming from the density and two from the external

potential. In the next chapter we will derive this relation. As we can argue

from the number of operators the relation will involve a four point, that is

a two particle, GF.

1.3 The macroscopic and the microscopic world

While for the ground–state we have a receipt to directly obtain the expec-

tation value of any physical quantity, for the linear response regime there is

no a direct equation which relates the response function to any measurable

quantity.

For example in an absorption experiment, the macroscopic electromag-

netic fields are measured. Therefore we need relations between the micro-

scopic and macroscopic quantities. We star from the macroscopic Maxwell

equations

∇×E = −∂B
∂t

, ∇B = 0,

∇D = ρmac, ∇×H = jmac +
∂D

∂t
.

(1.16)

Eqs. (1.16) together with the relations

D = ǫ0E+P H = µ0(B+M) (1.17)

completely define the macroscopic fields acting in a medium. Here (E,B)

are the electric and magnetic field, (D,H) are the electric displacement

and magnetizing field, (P,M) are the polarization and magnetization of the

system. In our work we will only consider linear systems with µ ≃ µ0. This
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Figure 1.3: Polarization of a bulk system. An external charge placed in r0
perturbes the system throught an external potential. This induce a variation of
the density which creates an induced Electric field. From ref. [4].

means that:

P = χeE, E = ǫ−1D,

M = χmB, B = µ0H.
(1.18)

Finally we consider isotropic systems where both χe, χm and also ǫ−1 are

diagonal tensors and behave as simple costants.

D does not depend on the internal charges of the system and it can

be identified with the external electric field, D = ǫ0E
ext. On the other

hand E is the macroscopic total electric field, obtained as an average of the

microscopic field over a region of space V which is big enough to smooth the

strong oscillations of the atomic fields but small enough so that λ ≫ V 1/3,

where for periodic systems V correspond to the volume of the unit cell6.

6For absorption experiments typical energy range are around 1/20eV so that λ ranges
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The macroscopic field is then defined as a function of the position of the

unit–cell, let’s call it R, and if the unit cell is small enough we can consider

it a function of a continuous variable E(R) ≃ E(x).

In the long wave–length regime we can just take the microscopic version

of eq. (1.18) and average over the volume V . As the external field is slowly

varying over the volume we obtain

〈Emicro〉 = 〈ǫ−1
micro〉D/ǫ0 (1.19)

E = ǫ−1
M D/ǫ0 (1.20)

(1.21)

So all we need to simulate realistic experiments is to calculate a microscopic

dielectric function ǫ−1
micro which will be averaged over the volume V . To be

precise in absorption experiments the ratio between the total field and the

applied external field is measured, that is

ǫM =
D

E
=

1

〈ǫ−1
micro〉

. (1.22)

The quantity ǫ−1
M is instead measured in Electron Energy Loss Spectroscopy

(EELS) experiments [7] where the energy loss by a fast electron, approx-

imated as a classical particle, while traveling through a solid is measured.

The difference between the two experiments is related to the long range term

of the interaction as explained in App. A.2.

For linear isotropic materials the dielectric function is a number and,

therfore, it can be easely manipulated in the Maxwell equations as well as in

the equation for the electromagnetic potentials. In particular, in the coulomb

gauge E = −∇V , and the microspopic screening can be found relating the

external and the total potential: V tot = ǫ−1V ext. We will define ǫmicro

in the next chapter and we will see that it is related to response function

from 1µm to 50nm
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through the relation

ǫ−1
micro = 1 + wχ. (1.23)

In the case of isolated systems it is not possible to define a meaningful

and finite volume V . Strictly speaking V → ∞ and all averaged quantities

goes to zero. Consequently, instead of the dielectric function, we introduce

the polarizability α which relates the change of the dipole moment to the

external field D7.

δp = α
δD

ǫ0
(1.24)

Here the long wave–length limit appear as a dipole expansion for the

external applied field. As k = 2π
λ << 1 the external field and the external

potential can be written as:

Eext(x, t) = E0e
ikx−ωt ≃ E0e

−iωt, (1.25)

from which

V ext(x, t) ≃ −E0xe
−iωt (1.26)

Observing now that δp = −〈xδρ〉 we can construct the microscopic equiva-

lent of eq. (1.24) starting from equation δρ = χδV ext.

〈xδρ〉 = 〈xχx〉E0 (1.27)

with α = 〈xχx〉 the polarizability tensor. Although isolated systems are al-

most never isotropic, experimentally the absorption spectrum of molecules is

often obtained in the gas phase8. The gas by itself is isotropic and the exper-

7Microscopic fields do not appear in the macroscopic equations as their macroscopic
average goes to zero. However they are still present. Here for example microscopic fields
modify the dipole.

8Many measurements for molecules are in condensed phase, either in solution or in
molecular crystals. For these statistical analysis is carried out to relate molecular response
properties to macroscopic response properties. Solution and solid effects are more and
more frequently included in calculations of molecular absorption spectra.
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iment can be interpreted by using the spatial average of the polarizability:

Tr(α) = (αxx + αyy + αzz)/3.
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Chapter 2

Green’s Function approach

In the previous chapter we have introduced the one particle Green’s Function

(GF) G(1, 2) as the natural quantity to describe in order to evaluate the

ground state properties of the system. In contrast to the Many–Body wave–

function, which is an 3N + 1 variables function, with N the number of

electrons, G is a function of only two space-time coordinates, i.e. 8 variables.

Nevertheless the GF of a fully interacting many–body system is as complicate

to calculate as the ground state wave–function. This can be easily seen

writing down the equation of motion for G, starting from the relation

∂Â(t)

∂t
= −i[Ĥ, Â(t)], (2.1)

where Â(t) is any operator. In the case of the field operators ψ̂(1), ψ̂†(1)

the Eq. (2.1) yields an equation of motion for the GF

[

i
∂

δt
−H0(1)

]

G(1, 2) = δ(1, 2)− iU(1, 3)G(1, 3; 2, 3+). (2.2)
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Eq. (2.2) shows that the one particle GF depends on the two particles GF.

In the same way the two particles GF introduces the three particles and so

on. This defines an hierarchy of equations that cannot be closed exactly.

Approximations are required.

There is an advantage in computing the GF instead of the many–body

wave–function: the GF is the minimal object needed to compute the expecta-

tion value of any one particle operator, while the many–body wave–function

contains much more informations which often are not needed1. In this chap-

ter we will introduce the techniques to evaluate G(1, 2) and we will illustrate

how the response function, the key quantity of linear response theory, can

be written in terms of the GF.

2.1 The time–evolution operator and the role

of the interaction

The GF approach allows, through the second quantization formalism, to

isolate the complicated part of the Hamiltonian, the interaction. This can

be done by writing the field operators in the “interaction picture”. In the

Schrödinger picture the SE reads:

i
∂

∂t
|ΨS(t)〉 = Ĥ|ΨS(t)〉. (2.3)

The wave–functions are the key quantities of the theory and it is possible to

define a time evolution operator U(t) = e−iĤt. In second quantization the

key quantities are the operators, so the idea of the Heisenberg picture is to

describe the system evolution in terms of the operators. The wave–functions

1Only for small molecules wave–function methods remain dominant as they give more
accurate answers than Green’s function methods. However for infinite system explicitly–
correlated wave–function methods are impractical.
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is imposed to be static:

|ΨH〉 = eiĤt|ΨS(t)〉, (2.4)

and accordingly the time evolution operator correspond to the identity. By

demanding that

〈ΨH |ÔH |ΨH〉 = 〈ΨS |Ô|ΨS〉, (2.5)

the time dependent operators are, then, constructed:

ÔH = eiĤtÔe−iĤt. (2.6)

The interaction picture is obtained in a similar way by moving only the

complicated part of the time evolution on the operators. So the Hamiltonian

is split in two parts:

Ĥ = Ĥ0 + Ĥ1, (2.7)

and the wave–function is defined as

|ΨI(t)〉 = eiĤ0t|ΨS(t)〉. (2.8)

As a consequence the wave–functions are solutions of the following Schrödinger

equation

i
∂

∂t
|ΨI(t)〉 = eiĤ0tĤ1e

−iĤ0t|ΨS(t)〉. (2.9)

Similarly operators are written as

ÔI = eiĤ0tÔe−iĤ0t. (2.10)



22 Green’s Function approach

In the interaction picture the time evolution of the wave–function can be

cast in a generalized time evolution operator

Û(t, t0) =

+∞
∑

n=0

(i)
n 1

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtn T [Ĥ1(t1)] . . . Ĥ1(tn)]

= T
[

e
−i

∫
t

t0
Ĥ1(t

′)dt′
]

(2.11)

defined in such a way that

|ΨI(t)〉 = UI(t, t0)|Ψ(t0)〉. (2.12)

2.2 Equilibrium properties

The one particle propagator

The interaction picture is a practical starting point thanks to the Gell-Mann

and Low theorem[5]. The Hamiltonian

Ĥǫ(t) = Ĥ0 + e−ǫ|t|Ĥ1 (2.13)

is considered By using Eq. (2.12) the time evolution of any eigenstate can

be written as

|ΨI(t)〉 =
Ûε(t, t0)|ΦǫI〉
〈ΦǫI |Ûε(t, t0)|ΦǫI〉

, (2.14)

where |ΦǫI〉 is the eigenstate at time t = t0. The Gell-Mann and Low Theorem

states that in the limit t0 → −∞ and ǫ → 0 2 ΦǫI reduce to an eigenstate

of Ĥ0 + Ĥ1. A relation among the eigenstates of H0 and the eigenstate

of Ĥ0 + Ĥ1 is then established. Finally assuming that the not interacting

ground state slowly evolves to the ground state of the interacting system we

2It is important to take the limit in this order in order to obtain a meaninful result.
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obtain [5] <<The most useful result of quantum field theory>> :

iG(1, 2) =

+∞
∑

n=0

(−i)n
n!

∫ +∞

−∞

dt1′ . . . dtn′

〈Φ0|T̂
[

Ĥ1(t1′) . . . Ĥ1(tn′)ψ̂†
I(1)ψ̂I(2)

]

|Φ0〉

〈Φ0|Ŝ|Φ0〉

=
〈Φ0|T̂

[

Ŝψ̂†
I(1)ψ̂I(2)

]

|Φ0〉

〈Φ0|Ŝ|Φ0〉
,

(2.15)

with

Ŝ =

+∞
∑

n=0

(−i)n
n!

∫ +∞

−∞

dt1′ . . . dtn′ T̂
[

Ĥ1(t1′) . . . Ĥ1(tn′)
]

. (2.16)

Eq. (2.15) is a perturbation expansion in the interaction which involve the

expectation values of many field operators. Any term of order n involves

n-times the interaction operator Ĥ1 = ŵ(1, 2). Thanks to the Wick theorem

[5] we can express each term in the series in terms of the not interacting GF

ig(1, 2) =
〈Φ0|T̂

[

ψ̂†
I(1)ψ̂I(2)

]

|Φ0〉
〈Φ0|Φ0〉

. (2.17)

Any term in the expansion starts contains a not interacting GF which start

from point 2, g( , 2), and a not interacting GF which ends up at point

1, g(1, ), while the presence of the interaction affect the propagation in

between. So the interacting GF can be expressed as

G(1, 2) = g(1, 2) + g(1, 1′)ΣH(1′, 2′)g(2′, 2), (2.18)

where we have introduced the ΣH(1, 2) self–energy function. This functions

includes terms which are repeated an infinite number of times. By introduc-
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ing a reduced self–energy Σ⋆H(1, 2) which satisfy the equation

ΣH(1, 2) = Σ⋆H(1, 2) + Σ⋆H(1, 1′)g(2′, 2′)ΣH(2′, 2), (2.19)

Eq. (2.18) then becomes

G(1, 2) = g(1, 2) + g(1, 1′)Σ⋆H(1′, 2′)G(2′, 2). (2.20)

Eq. (2.15) and Eq. (2.20) represent the starting point for the development

of approximations to the many–body problem. In particular Eq. (2.15) can

be approximated by truncating the series expansion to finite order. This is

a reasonable approximation for systems where correlations effects are less

important and the interaction can be treated as a small perturbation. For

more correlated system, and in general for solids, the expansion in the bare

interaction in not meaningful as screening effects are dominant. As discussed

in the next sections in this regime the electrons are screened and the interac-

tion is considerably weaker than in isolated systems. Eq. (2.20) can be used,

choosing approximations for the self-energy Σ⋆H , one of the most common

being the GW approximation, which is the first order term in a possible

expansion for the GF in powers of the screened interaction W .

Finally inserting Eq. (2.20) in Eq. (2.2) the EOM for the GF reads

[

i
∂

δt
− Ĥ0(1)

]

G(1, 2) = δ(1, 2) + Σ⋆H(1, 1′)G(1′, 2). (2.21)

The Hedin’s equations (I): bare interaction

To device useful approximations for the self–energy we follow the method

developed by Lars Hedin [8]. An expression for the self–energy can be ob-

tained by studying how the full GF react to a fictitious external potential

δϕ(1). This potential is then set to zero at the end of the derivation to

recover the ground state GF.
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In the following we include the interaction in the first part of the Hamil-

tonian Ĥ = Ĥ0 + ŵ(1, 2), while the potential Ĥ1(1) = ψ̂†(1)ψ̂(1)δϕ(1) is

included in the Ŝ operator:

iGϕ(1, 2) =
〈Ψ0|T

[

Ŝψ̂†(1)ψ̂(2)
]

|Ψ0〉

〈Ψ0|Ŝ|Ψ0〉
. (2.22)

The variation of the GF with respect to the potential δϕ reads

δGϕ(1, 2)

δϕ(3)
= −Gϕ(1, 3; 2, 3+) +Gϕ(1, 2)Gϕ(3, 3

+). (2.23)

Eq. (2.23) can be used in the Eq. (2.2), to express the two particle GF in

terms of G(1, 2):

[

i
δ

δt
− Ĥ0(1)

]

G(1, 2) + i w(1, 1′)G(1′, 1′+)G(1, 2)

− i w(1, 1′)δG(1, 2)
δϕ(1′)

= δ(1, 2). (2.24)

Using the equality

δG(1, 2)

δϕ(3)
= −G(1, 1′)δG

−1(1′, 2′)

δϕ(3)
G(2′, 2), (2.25)

we define the vertex function

Γ(1, 2; 3) = −δG
−1(1, 2)

δϕ(3)
. (2.26)

By using Eq. (2.21) and Eq. (2.26) we obtain the following expression for
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the self–energy:

Σ⋆H(1, 2) = −iδ(1, 2) w(1, 1′)G(1′, 1′+)+

− i w(1, 2′)G(1, 1′)δG
−1(1′, 2)

δϕ(3′)

= δ(1, 2)vH(1) + i w(1, 3′)G(1, 1′)Γ(1′, 2; 3′).

(2.27)

Using the Dyson equation for G(1, 2) to compute the functional derivative

of G−1 we get

G(1, 2) = gH(1, 2) + gH(1, 1′)Σ⋆(1′, 2′)G(2′, 2), (2.28)

Σ⋆(1, 2) = iG(2′, 1)w(1, 2′)Γ(2, 2′; 1′), (2.29)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3)+

δΣ⋆(1, 2)

δG(1′, 2′)
G(2′, 3′)G(4′, 1′)Γ(3′, 4′; 3). (2.30)

The Hartree potential is included in the definition of the bare GF

g−1
H (1, 2) = g−1(1, 2) + vH(1)δ(1, 2). (2.31)

The Hedin equations (II): screened interaction

Lars Hedin introduced a fundamental breakthrough by realizing that, instead

of the bare Coulomb interaction w(1, 2), one should consider a perturbative

expansion in the screened potentialW (1, 2). In many–body systems, indeed,

the interaction is always screened. Formally we introduce the potential

δV (1) = δϕ(1) + δvH(1) (2.32)

defined as the sum of the fictitious potential ϕ and its classical screening.

This is the classical screened potential because it is obtained by neglecting

the changes in the quantistic self-energy. Considering linear and isotropic
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systems the microscopic dielectric function can be defined as the relation

between the total potential ϕ and the external potential (see Ch. (1), Sec.

(1.3)):

ǫ−1(1, 2) =
δV (1)

δϕ(2)
= δ(1, 2) + w(1, 1′)Π(1′, 2), (2.33)

where Π(1, 2) is the response function

Π(1, 2) = −i δG(1, 1
+)

δϕ(2)
. (2.34)

The screened interaction is then

W (1, 2) = ǫ−1(1, 1′)w(1′, 2)

= w(1, 2) + w(1, 1′)Π(1′, 2′)w(2′, 2).
(2.35)

The polarization function can be interpreted as the self-energy of the screened

interaction W and, similarly to the case of Σ, it can be reduced

Π(1, 2) = − i δG(1, 1
+)

δV (2′)

δV (2′)

δϕ(2)

= Π⋆(1, 2) + Π⋆(1, 1′)w(1′, 2′)Π(2′, 2) ,

(2.36)

to obtain

W (1, 2) = w(1, 2) + w(1, 1′)Π⋆(1′, 2′)W (2′, 2) (2.37)

The equation for the reduced polarization can be obtained From Eq. (2.25)

Π⋆(1, 2) = −i G(1′, 1)G(1, 2′)Γ⋆(1′, 2′; 2). (2.38)
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= + Σ⋆

+ Π⋆

G(1, 2) g(1, 2) g(1, 1′) G(2′, 2)Σ⋆(1′, 2′)

Π⋆(1, 2) G(1′, 1)

G(1, 2′)

Γ⋆(1′, 2′; 2)

W (1, 2) w(1, 2) w(1, 1′) Π⋆(1, 1′) G(2′, 2)

Σ⋆(1, 2)
W (1, 2′)

G(2′, 1)

Γ⋆(2, 2′; 1′)= Γ⋆Σ⋆

Π⋆ =
Γ⋆

= +
Γ⋆

δΣ⋆

δG
Γ⋆(1, 2; 3)

δ(1, 2)δ(2, 3)

∂Σ⋆(1,2)
G(1′,2′)

G(2′, 3′)Γ⋆(3′, 4′; 3)

G(4′, 1′)

Figure 2.1: Diagrammatic representation of the Hedin Equations.

where we have defined a reduced vertex function

Γ⋆(1, 2; 3) =
G−1(1, 2)

δV (3)

= δ(1, 2)δ(1, 3) +
Σ⋆(1, 2)

δV (3)

= δ(1, 2)δ(1, 3)+

δΣ⋆(1, 2)

δG(1′, 2′)
G(1′, 3′)G(4′, 2′)Γ⋆(3′, 4′; 3).

(2.39)

The self-energy can be expressed in terms of the new quantities in order to

obtain a closed set of equations, the Hedin equations:
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Figure 2.2: The Hedin Pentagon and the GW approximation. From ref. [6].

G(1, 2) = gH(1, 2) + gH(1, 1′)Σ⋆(1′, 2′)G(2′, 2), (2.40)

W (1, 2) = w(1, 2) + w(1, 1′)Π⋆(1′, 2′)W (2′, 2), (2.41)

Π⋆(1, 2) = −i G(1, 1′)G(2′, 1)Γ⋆(1′, 2′; 2), (2.42)

Σ⋆(1, 2) = iG(2′, 1)W (1, 2′)Γ⋆(2, 2′; 1′), (2.43)

Γ⋆(1, 2; 3) = δ(1, 2)δ(1, 3)+

δΣ⋆(1, 2)

δG(1′, 2′)
G(2′, 3′)G(4′, 1′)Γ⋆(3′, 4′; 3). (2.44)

This set of equations is exact. Indeed their solution is not easier than the so-

lution of the many–body problem. Nevertheless the Hedin’s equation offer a

convenient starting point to develop approximations. One of the most com-

mon approximation to this set of equation is to set Γ⋆(1; 2, 3) = δ(1, 2)δ(1, 3),

that is to drop the complicate functional derivative δΣ⋆(2,3)
δG(6,7) . This approxi-

mation is known as GW approximation. The GW approximation is simply

the first order approximation in the expansion of the self–energy in powers

of the screened interaction[8] and goes one step beyond the Hartree and the

Hartree Fock approximations. The infinite order resummation of Feynman

diagrams is already included in Σ which is then iterated to construct the

GF. Indeed to Dyson equation are solved, one for w(1, 2) and another for
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G(1, 2).

2.3 The quasiparticle concept

Starting from Eq. (2.21) it is possible to introduce the quasiparticle (QP)

concept, which was first introduced by Landau in the description of Fermi

liquids[9]. First we Fourier transform eq. (2.21)

(ω −H0(1)− vH(1))G(1,2;ω)− Σ(1,1′;ω)G(1′,2;ω) = δ(1,2), (2.45)

then perform an analytic continuation of the frequency variable to the com-

plex plane, ω → z. A formal solution to the equation can be obtained by

using a biorthonormal representation of the GF

G(1,2; z) =
∑

λ

Ψλ(1, z)Ψ̃λ(2, z)

z − Eλ(z)
. (2.46)

The right and left wave–functions Ψλ(1, z) and Ψ̃λ(1, z) satisfy the equations

(H0(1) + vH(1))Ψλ(1, z) + Σ⋆(1,1′; z)Ψλ(1, z) = Eλ(z)Ψλ(1, z),

(H0(1) + vH(1)) Ψ̃λ(1, z) + Σ⋆†(1,1′; z)Ψ̃λ(1, z) = Eλ(z)Ψ̃λ(1, z).
(2.47)

The QP concept can be introduced assuming that the dominant contri-

bution to the GF comes from the fixed points of Eλ(z):

EQPi = Eλ(E
QP
i ). (2.48)

The QP equation is then defined as

(H0(1) + vH(1))Ψi(1) + Σ⋆(1,1′;EQPi )Ψi(1) = EQPi Ψi(1). (2.49)
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The renormalization factor

In practice the solution of eq. (2.49) is usually obtained as a first order

correction to some mean field theory, like the Hartree approximation, that

is eq. (2.49) with Σ = 0. The solution of Eq. (2.48) is the approximated by

EQPi ≃ ǫHj + 〈j|Σ(EQPi )|j〉. (2.50)

Eq. (2.50) is solved by linearizing the frequency dependence of the Self-

Energy around the Hartree poles ǫH

〈Σ(EQP )〉 ≃ 〈Σ(ǫH)〉+ 〈∂Σ(ω)
∂ω

∣

∣

∣

∣

ω=ǫ

〉(EQP − ǫH). (2.51)

Defining the renormalization factor

Z =

(

1− 〈∂Σ(ω)
∂ω

∣

∣

∣

∣

ω=ǫ

〉
)−1

, (2.52)

we obtain

EQPj ≃ ǫHj + Z〈Σ(EQPj )〉. (2.53)

In general the number of GF’s poles EQPi is larger then the number of

IP states. Indeed only if the self–energy frequency dependence is linearized

according to Eq. (2.51) the GF poles coincide with the QP states. Such an

approximation fails in the description of satellites, as the one shown in Fig.

(2.3), which appear as extra poles in the spectral function A(ω) defined as

〈A(ω)〉 = 1

π
sign(µ− ω)〈Img[G(ω)]〉

≃ 1

π

|Img[Σi(ω)]|
(ω − ǫi −Re[Σi(ω)])2 + (Im[Σi(ω)])2

.
(2.54)

In the second line the non diagonal part of the self–energy is neglected.
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Figure 2.3: Quasi Particle representation of the Green’s Function. The pole
of the not-interacting GF is shifted and broadened. QP are connected to the
coherent part of Σ. Additional peaks in the GF can appear due to the incoherent
contributions (plasmons, polarons, resonances,...). These additional peaks cannot
be interpreted in a IP theory. From ref. [6]

The extra poles, in the quantum chemistry language, can be described as

“multiple excitations”[10]. Eq. (2.50) is a good approximation only if the

starting wave–functions are closed enough to the QP wave–functions. This

is usually not the case for the Hartree theory and for this reason in practice

QP corrections are calculated on top of Density–Functional Theory (DFT)

calculations. We will introduce DFT in the next chapter.

We will find a similar distinction between QPs and satellites (extra-poles)

in the case of neutral-excitations. In Sec. (2.4) the Bethe Salpeter Equa-

tion (BSE), a Dyson–like equation to compute neutral excitations, will be

introduced. Like the self–energy, Σ, the kernel of the BSE, Ξ, will be able

to produce extra poles; however while Σ is usually almost diagonal, Ξ is not.
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Figure 2.4: Lehmann representation, on the left, compared with quasiparticle
representation, on the right. From ref. [11]

This means that IP poles of the GF are shifted to QP and all incoherent

peaks are easily identified as satellites, while in the BSE IP electrons-holes

transition are strongly mixed and the resulting spectrum is usually broaden,

making difficult to identify possible satellites. This argument will be subject

of the Part. II of the present thesis on double excitations.

The Lehmann representation

The biorthonormal representation of the GF in the complex plane is linked

to the Lehmann representation of the GF on the real frequencies axis. This

can be obtained using the full many–body wave–function and the identity

Î =
∑

J

|ΨJ 〉〈ΨJ |, (2.55)
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with ΨJ the exact many–body eigenstate. By inserting Eq. (2.55) in the

GF definition, the Fourier transform of G yields

G(1,2;ω) =
∑

J

〈Ψ0|ψ̂†(1)|ΨJ 〉〈ΨJ |ψ̂(2)|Ψ0〉
ω − ωJ + iη

+

− 〈Ψ0|ψ̂(2)|ΨJ 〉〈ΨJ |ψ̂†(1)|Ψ0〉
ω − ωJ − iη

. (2.56)

Eq. (2.56) defined the Lehmann representation. This is an exact representa-

tion expressed on the real axis instead of the complex plane. The Lehmann

and the biorthonormal representations are closely linked, as exemplified in

Fig. (2.4). The concept represented in the figure emerge if we consider the

thermodynamical limit of the Lehmann representation

G(1,2;ω) =
∑

J

fJ(1)f
∗
J (2)

ω − ωJ + iη
+− gJ(1)g

∗
J (2)

ω + ωJ − iη
(2.57)

≃
∫

dx
A(1,2|x)
ω − x (2.58)

where fJ(1) = 〈Ψ0|ψ̂†(1)|ΨJ 〉, gJ(1) = 〈Ψ0|ψ̂(2)|ΨJ 〉 and

A(x) =
∑

J

(

fJ(1)f
∗
J (2)θ(µ−EJ )+gJ (1)g∗J (2)θ(EJ−µ)

)

δ(EJ−x) (2.59)

is another expression for the spectral function previously defined. Eq. (2.57)

is an integral representation of the GF which can be analytically continued:

ω → z. In complex analysis a branch cut, here the series of poles in the

Lehmann representation of the GF in the thermodynamical limit, can be

expressed as the integral of a complex pole, here the poles of the spectral

function.

In this respect the QP concept well describes the power of MBPT. In-

deed the QP poles are not eigenstate of the Hamiltonian being formed by a
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macroscopically large number of almost degenerate eigenstates of Ĥ. QPs

have a finite lifetime.

An infinite series of closely lying poles which appear as a branch-cut in

the Lehmann representation is replaced with a single complex pole in the QP

picture. Nevertheless the QP representation fails to describe the continuous

part of the GF. For other details on the QP concept see App. B

2.4 Neutral excitations: the Bethe–Salpeter

equation

Once we have computed the one particle GF we can evaluate any physical

proprieties of the system at rest. Still we have no information about how

the system would react if disturbed by a time dependent external potential.

In principle it is possible to calculate the perturbed time dependent one

particle GF, but in the case of weak perturbations we can use the linear

response. In this approach the key quantity is the linear response function

which can be calculated in terms of the GF. This is the subject of the present

section. The Lehmann representation shows that the linear response function

describes the neutral excitations of the system where two or more particles

are involved. Therefore the two particle GF will naturally emerge as the

starting point to compute linear response properties.

We start from the wave–function evolution induced by a time dependent

perturbation

|ΨS(t)〉 = e−iĤt/h̄Û(t, t0)|Ψ(t0)〉

= e−iĤt/h̄|Ψ(t0)〉+ e−iĤt/h̄
∫ t

t0

dt′ δV̂ ext
Ĥ

(t′)|Ψ(t0)〉+ ....
(2.60)
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Then the expectation value of any operator can be written as

〈Ô(t)〉 = 〈Ψ(0)|ÔĤ(t)|Ψ(0)〉+
∫ t

t0

dt′〈Ψ(0)|[ÔĤ(t), δV̂ ext
Ĥ

(t′)|Ψ(0)〉+ ....

(2.61)

We consider perturbations of the form

δV̂ ext = δV ext(1)ρ̂(1) , (2.62)

and by using the density operator Eq. (2.61) becomes:

ρ(1) = ρ0(1) + Θ(t− t′)δV ext(1′)〈Ψ(0)| [ρ̂(1), ρ̂(1′)] |Ψ(0)〉. (2.63)

The retarded response function is thus defined as

iχR(1, 2) = 〈Ψ(0)| [ρ̂(1), ρ̂(2)] |Ψ(0)〉Θ(t1 − t2). (2.64)

Formally this is different from the polarization function Π that is a T -ordered

quantity while χ is a retarded quantity. However it can be proven through

the Lehmann representation that the two are equivalent a part from a small

shift of the poles along the imaginary axis. The T -ordered response function

is:

iΠ(1, 2) = 〈Ψ(0)|T [δρ̂(1)δρ̂(2)] |Ψ(0)〉 , (2.65)

where the operator δρ̂ = ρ̂ − 〈ρ̂〉0 is used to ensure that the terms which

involves the expectation value on the ground state are canceled, as for the

retarded function.

We have already evaluated Π by solving the Hedin equations. However

in contrast to the GF, the GW approximation, that is Γ = 1, is not a good

approximation for the response function. The reason is that we are looking

to different physical processes. In order to find a better approximation for
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Π we use the Hedin equation for the vertex

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +
δ

δG(1′, 2′)

[

δ(1, 2)vH(2) + Σ⋆(1, 2)
]

G(2′, 3′)G(4′, 1′)Γ(3′, 4′; 3), (2.66)

to obtain an equation for the Polarization

Π(1, 2) = −iG(1, 2)G(2, 1) +−iG(1, 1′)G(2′, 1)
δ

δG(3′, 4′)

[

δ(1′, 2′)vH(2′) + Σ⋆(1′, 2′)
]

G(4′, 5′)G(6′, 3′)Γ(5′, 6′; 2). (2.67)

Eq. (2.67) has the structure of a Dyson equation of the form,

Π = Π0 +Π0ΞΠ, (2.68)

with Π0 = −iGG. However the combination −iGGΓ factor appearing in

r.h.s of Eq. (2.67) is not a two point quantity. The reason is that the kernel,

Ξ(1, 2; 3, 4) = i
δ

δG(3, 4)

[

δ(1, 2)vH(2) + Σ⋆(1, 2)
]

, (2.69)

is a four point quantity. Eq. (2.68) can be closed using the extended space

of two–particles GFs, defined as

iL(1, 2; 3, 4) = −G2(1, 2; 3, 4) +G(1, 3)G(2, 4). (2.70)

The polarization is written in terms of L as

L(1, 2; 1, 2) = Π(1, 2), (2.71)
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Looking at the derivation of the Hedin equations we see that

iL(1, 2; 3, 4) =
δG(1, 3)

δϕ(4, 2)
(2.72)

and using Eq. (2.25) and the definition of the vertex function we finally

obtain

L(1, 2; 3, 4) = −iG(1, 4)G(2, 3)− iG(1, 1′)G(2′, 2)

i
δ
(

δ(1′, 2′)vH(1′) + Σ⋆(1′, 2′)
)

δG(3′, 4′)
(−i)δG(3

′, 3)

δϕ(4, 4′)

= L0(1, 2; 3, 4) + L0(1, 2; 1
′, 2′)Ξ(1′, 2′; 3′, 4′)L(3′, 4′; 3, 4).

(2.73)

Eq. (2.73) is the Bethe Salpeter Equation (BSE). It’s then possible to con-

struct approximations to the response function, via the kernel Ξ. The most

common approximation is derived from the GW approximation to the self–

energy, Σ = iGW , by neglecting terms second order in W . The kernel

reads:

Ξ(12, 34) = δ(1, 2)δ(3, 4)w(1, 3)− δ(1, 3)δ(2, 4)W (1, 2) (2.74)

The screened interaction appearing in Ξ is usually taken as static. In the

case of double excitations we will see that this static approximation cannot

describe multiple neutral excitations.



Chapter 3

Density–Functional

Theory

In the previous chapter we have introduced the MBPT formalism. The main

advantage of this approach, compared to the solution of the full many–body

Schrödinger equation, is that it makes possible to develop efficient approxi-

mations. The reason is that the electron–electron interaction, which consti-

tutes the complicated part of the many–body Hamiltonian, can be treated

in a perturbative manner. The solution of the MBPT equations is anyway

a demanding task and simpler approaches are desiderable. In this chapter

we will present the Density–Functional Theory (DFT). The key quantity of

this approach is the density of the system which is a considerably simpler

quantity than the GF. The density completely describes a system of classi-

cal interacting particles and is the only quantity needed within the Hartree

approximation. To get a more realistic description, terms approximating

the quantum mechanical effects need to be expressed as functional of the

density.

The first attempt in this direction goes back to the Thomas-Fermi (TF)
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model[12, 13] in the 1927 and its extension due to Dirac in 1928 [14]. However

Tomas-Fermi-Dirac theory remained rather inaccurate for most applications.

Only some time later, in 1964, the Hohenberg-Kohn (HK) theorem[15] put

the theory on a firm theoretical footing. The HK states that the ground–

state of a is an exact functional of the density. The proof of the existence

of an exact functional gave a boost in the developments of density–based

approach. However this was mainly thanks to the surprising success of the

Kohn-Sham (KS) scheme (1965)[16], within the Local–Density Approxima-

tion (LDA), that DFT became popular. In this chapter we will start from

the demonstration of the HK theorem and then we will introduce the KS

scheme and the LDA approximation. In particular we will show why the

LDA approximation, which had been initially designed for uniform systems,

has been found to be accurate even for strongly inhomogeneous systems such

as isolated atoms and molecules.

While MBPT offers a direct recipe to evaluate all ground–state properties

starting from the Green function, DFT gives only the total density and the

total energy. As stated in the introduction of the present thesis, by using

the total energy many properties of the system can be obtained but others,

as for example the electronic gap, are not directly accessible. Anyway it

is common practice to interpret the KS band gap and to look at the KS

wave–functions to obtain more informations on the system. In practice DFT

provides a “zero–order Hamiltonian” for a first understanding of the physical

properties of the system and also for MBPT calculations.

3.1 The Hohenberg–Kohn theorem

The HK theorem states that: [HK1] for any system constituted by inter-

acting particles, for a fixed the interaction, there exists a bijective relation

among the external potential (up to an arbitrary additive constant), the

ground–state many–body wave–function and the ground–state density of
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the system,

V̂ ext ⇐⇒ Ψ0 ⇐⇒ ρ0 ;

[HK2] the ground–state energy and density can be determined by minimiz-

ing a functional of the charge–density. As a consequence of the HK theorem

the knowledge of the ground–state wave–function gives access to all physi-

cal observables. Moreover the external potential fixes the Hamiltonian and

knowing the Hamiltonian we can in principle access the excited states of

the system[17]. It is surprising that given the ground–state density we can

access all this physical information. However DFT is in practice used only

for ground–state properties, as there is no practical scheme able to describe

excited stated starting from the ground–state density. Excited state proper-

ties can be obtained from the extension to the time domain of DFT: this is

Time–Dependent DFT (TDDFT).

The proof of the [HK1] theorem is straightforward. First we show that

given a ground–state wave–function there exists a unique external potential

which determines it. The relation in the opposite direction is trivial, at

least for systems which does not present a degenerate ground–state, as the

Schrödinger equation has a unique solution. The second step is to show

that given a ground–state density there exists a unique wave–function which

determines such a density. Again the reverse relation is trivial as the density

is an observable of the system and any observable can be obtained from the

wave–function:

ρ0 = 〈Ψ0|ρ̂|Ψ0〉. (3.1)

Step one. Let’s suppose that there exist two different external potentials

which have the same ground–state wave–function:

(T̂ + ŵ + V̂ ext)|Ψ0〉 = E0|Ψ0〉
(T̂ + ŵ + V̂ ′ext)|Ψ0〉 = E′

0|Ψ0〉. (3.2)
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If we subtract the two equations assuming that the wave–functions are dif-

ferent from zero only in a subspace of null measure we obtain

V ext(x)− V ′ext(x) = (E0 − E′
0). (3.3)

This means that the two potentials can differ only up to a constant which

anyway is irrelevant as the total energy of a system is always determinated

up to an additive constant.

Step two. Suppose that Ψ0 and Ψ′
0 are the ground–state wave–function

of two different Hamiltonians H and H ′. From the definition of ground–state

it follows that

E0 = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′
0|Ĥ|Ψ′

0〉. (3.4)

The r.h.s. of Eq. (3.4) can be written as

〈Ψ′
0|Ĥ ′ − V̂ ′ext + V̂ ext|Ψ′

0〉 = E′
0 +

∫

d3r ρ′(r)
[

V ext(r)− V ′ext(r)
]

, (3.5)

which means

E0 < E′
0 +

∫

d3r ρ′(r)
[

V ext(r)− V ′ext(r)
]

. (3.6)

By following the same procedure but inverting the roles of Ψ0 and Ψ′
0 we

obtain

E0 < E′
0 +

∫

d3r ρ′(r)
[

V ext(r)− V ′ext(r)
]

. (3.7)

If we assume ρ0 = ρ′0, summing up Eq. (3.6) and (3.7) we obtain

E0 + E′
0 < E0 + E′

0. (3.8)

This is clearly impossible and so the assumption ρ0 = ρ′0 is wrong.

Once [HK1] has been proven1 the functional of the [HK2] part of the

1The proof of HK1 assumes v–representability of the density: i.e. that given a “reason-
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theorem can be written as:

E[ρ] = 〈Ψ[ρ]|Ĥ |Ψ[ρ]〉. (3.9)

This functional has a minimum when ρ = ρ0 is the ground state density of

the system. Moreover it can be written as E[ρ] = F [ρ] +
∫

d3xρ(x)V ext(x),

where F [ρ] = 〈Ψ[ρ]|T̂ + ŵ|Ψ[ρ]〉 is an universal functional for any many–

electrons system.

The basic assumption in the proof of the theorem is that the coupling

of the system with the environment is given by a term of the form V extρ.

This is not always the case. If an external magnetic field is present then the

terms Aj or Bσ or both must be included. In this case the modified HK

theorem leads to Spin Density–Functional Theory (SDFT) for density and

magnetization [17], Current–Density–Functional Theory (CDFT) for density

and current [18, 19] and to SCDFT when density, magnetization and current

are considered.

3.2 The Kohn–Sham scheme

The HK theorem states that the density determines the ground–state of

an interacting system. Still, it does not provide any recipe to use it. The

prescription is introduced by the KS scheme. The idea is to use the HK

theorem for an auxiliary system of non-interacting particles whose ground–

state density is assumed to be the same as that of the interacting system:

ρs = ρ0. Then we look for the external potential vs[ρ] and for the non-

interacting wave–function Ψs[ρ] related to such density by the HK theorem.

ably well behaved” non negative function ρ(r) one can always find a local external potential

V ext(r), so that ρ(r) is the ground state density of the Hamiltonian Ĥ = T̂ + ŵ + V̂ ext.
Unfortunately this is not always the case, for a detailed discussion see Ref. [17].
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We start from the energy functional of the real system

E[ρ] = 〈Ψ[ρ]|T̂ + V̂ ext + ŵ|Ψ[ρ]〉 = T [ρ] + Uext[ρ] + Uw[ρ], (3.10)

then we rewrite it, by using the relation ρ ⇐⇒ Ψs, starting from the non

interacting many–body wave–function

Es[ρ] =〈Ψs[ρ]|T̂ + V̂ ext|Ψs[ρ]〉+
1

2

∫ ∫

ρ(r)ρ(r′)

|r− r′| d
3r d3r′ + Exc[ρ]

=Ts[ρ] + Uext[ρ] + EH [ρ] + Exc[ρ].

(3.11)

The non-interacting wave–function enters the kinetic energy term, while the

external potential energy is the same as that of the interacting system. We

have also introduced a term which describes the energy of an interacting

system of classical particle EH [ρ] and a last term Exc[ρ] so that E[ρ] = Es[ρ].

This means that

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Ew[ρ]− EH [ρ]) . (3.12)

Exc[ρ] is the xc–energy. Now we look for the ground–state by minimizing the

functional Es[ρ]. In a non-interacting system Ψs = Πi|ψi|2 and ρ =
∑

i |ψi|2
so that we can minimize the energy functional with respect to ψi. This is

a constrained minimization as we want the ψi to be orthonormal. That is,

using the theory of Lagrangian multiplier, we have to minimize the functional

E[ρ(ψ1, ..., ψn)] +
∑

h,k

(

δh,k − λh,k
∫

ψh(r)ψk(r)d
3r

)

. (3.13)

Using the relation
δ

δψ∗
i

=
δρ

δψ∗
i

δ

δρ
= ψi

δ

δρ
(3.14)

2Here the notation Πi| ∗i | means one have to perform an “antisymmetrized” product
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we find
δ

δψ∗
i

Ts + ψi
δ

δρ

(

EH + Uext + Exc
)

= λiψi, (3.15)

that leads to
(

t̂+ v̂H [ρ] + v̂ext + v̂xc[ρ]
)

ψi = λiψi. (3.16)

Eq. (3.16) is the KS equation, vxc[ρ] = δExc[ρ]/δρ is the unknown xc–

potential3 which encloses all the difficulties of the interacting many body

system beyond the classical Hartree potential. Though Eq. (3.16) has to be

solved self–consistently with respect to the density, the scheme offers a very

appealing starting point as the xc–potential appears in the equations in the

form of a local multiplicative operator. If compared to the exchange term of

the HF approach or to the Self-Energy of the MBPT, which are non local

operators, the advantage is evident. Unfortunately no hint to approximate

the xc–potential or the xc–energy functionals is given.

3.3 The local–density approximation

One of the reasons beyond the success of DFT, despite its simplicity, is that

the simplest approximation proposed for Exc, the Local–Density Approx-

imation (LDA) successfully describes both extended and isolated systems.

Such an approximation was designed to work for systems where the den-

sity is almost spatially uniform or slowly varying. The idea is to compute

the exchange correlation energy of the uniform electron gas as a function of

the constant density, ρ0, E
hom
x c(ρ0) and then to express the general energy

functional of the density as

Exc[ρ] ≃
∫

d3r ρ(r)ǫhomxc (ρ(r)), (3.17)

3Here we assumed that the functional derivative exists; however this must be verified
for any given energy functional.
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where

ǫhomxc (ρ) =
Ehomxc (ρ)

V ρ
(3.18)

is the energy per electron.

The total energy of the homogeneous electron gas can be obtained accu-

rately from Quantum Monte-Carlo calculations.

The success of the local–density approximation

To explain the success of the LDA we need to introduce the exchange–

correlation hole–density which is linked to the success of the LDA approxi-

mation.

First we introduce the expectation value of the pair correlation function

g[ρ](r, r′) =
〈ρ̂(r)ρ̂(r′)〉
ρ(r)ρ(r′)

− δ(r− r′)

ρ(r)
, (3.19)

which can be used to write the energy correlation due to the interaction 〈ŵ〉
as

Ew[ρ] =
1

2

∫

d3r

∫

d3r′
ρ(r)ρ(r′)

|r− r′| g[ρ](r, r
′). (3.20)

Than we make use of the adiabatic connection and of the HK theorems. We

define a group of Hamiltonians Ĥλ such that

Ĥλ = T̂ +
∑

σ

∫

d3r vλ(r)ψ̂
†
σ(r)ψ̂σ(r)

+
λ

2

∑

σσ′

∫ ∫

d3rd3r′ w(r, r′)ψ̂†
σ(r)ψ̂

†
σ′(r

′)ψ̂σ(r)ψ̂σ′(r′), (3.21)

with vλ such that ρλ = ρ1 for each λ. For λ = 0 we have the KS system.
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(a) Exchange–correlation hole

(b) Spherical average of the Exchange–correlation hole

Figure 3.1: Exchange-correlation hole and its spherical average within LDA are
compared with the exact solution at two different densities r/a0 = 0.09 and r/a0 =
0.4. From ref. [20].
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Now we compute, using the Hellmann-Feynman theorem

dE(λ)

dλ
=

〈

Ψ0
λ

∣

∣

∣

∣

∂Ĥλ

∂λ

∣

∣

∣

∣

Ψ0
λ

〉

=
1

2

∫

d3r

∫

d3r′
ρ(r)ρ(r′)

|r− r′| gλ[ρ](r, r
′) +

∂

∂λ

∫

d3r vλ(r)ρ(r).

(3.22)

where gλ[ρ](r, r
′) is the pair correlation function for the Hamiltonian Ĥλ and

Ψ0
λ its ground–state. Finally we express the total energy for λ = 1 as

E(1) = E(0) +

∫ 1

0

dλ
dE(λ)

dλ

= Ts[ρ] + Eext[ρ] + EH [ρ]

+
1

2

∫ ∫

d3rd3r′ w(r, r′)ρ(r)ρ(r′)

∫ 1

0

dλ (gλ[ρ](r, r
′)− 1) ,

(3.23)

where, in the last line, we have subtracted the Hartree energy from the

expression for 〈ŵ〉λ. This last term is clearly the exchange correlation energy.

Defining the exchange–correlation hole–density

̺xc(r, r
′) = ρ(r′)

[∫ 1

0

dλ (gλ[ρ](r, r
′)− 1)

]

, (3.24)

we can therefore study the behavior of the ̺xc to check the LDA performance.

In particular Fig. (3.1) shows how ̺xc behaves for the neon atom. The exact

solution is compared with the LDA one. In the two upper frames, (a), ̺xc is

plotted for a fixed r coordinate, as a function of r′ along a direction parallel

to r. In the two bottom panels (b) its spherical average is plotted. We see

that compared to the exact xc-hole the LDA performs quite badly, while the

̺xc spherical average is well described. For an interaction which depends
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only on the modulus of distance among the particle Exc[ρ] depends only on

the spherical average and this is one of the reasons why LDA well performs

even for not homogeneous systems. Another reason is that the LDA xc-hole

satisfy the sum rule
∫

d3r′̺xc(r, r
′) = −1, (3.25)

which helps to guarantee error cancellations.

Spin dependent local–density approximation

For spin polarized systems, that is systems whose ground–state present a

magnetization mz 6= 0, the DFT approach could be ideally used. However

in these approach the magnetization would be an unknown functional of

the density and the LDA approximation is not guaranteed to work. For

these reason it is preferable to work within the SDFT formalism where the

magnetization can be obtained directly from the KS wave–functions and its

possible to design the Spin LDA (SLDA) as a direct extension of the LDA.

To this end the quantity

ξ =
ρ↑ − ρ↓
ρ↑ + ρ↓

, (3.26)

which measures the polarization of the system, is defined. Then the approx-

imation

ǫxc(ρ, ξ) = ǫxc(ρ, ξ = 0) + (ǫxc(ρ, ξ = 1)− ǫxc(ρ, ξ = 0)) g(ξ) (3.27)

is used, where ǫxc(ρ, ξ = 0) = ǫLDAxc (ρ), ǫxc(ρ, ξ = 1) can be compute from

the energy of the homogeneous electron gas in the configuration ξ = 1 and

g(ξ) is an interpolation function, which is usually chosen as

g(ξ) =
(1 + ξ)4/3 + (1− ξ)4/3 − 2

2 (21/3 − 1)
. (3.28)
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3.4 Time–dependent density–functional theory

DFT is a convenient theory to obtain the ground–state of a system through

minimization of the energy as a functional of the density. However within

DFT it is not possible to describe the evolution of a system perturbed by

an external time dependent potential. The extension of DFT to the time

domain, the Time Dependent DFT (TDDFT) relies on a formal extension of

the HK theorem given by Runge and Gross (RG). In 1984 RG [21] showed

that, given an initial time t0 where the system is in a state Ψ0, is possible

to establish a bijective correspondence between the time dependent external

potential, the evolution of the density and the evolution of the wave–function.

On the basis of this theorem they derived three schemes to calculate the time

dependent density, one of which, a stationary action principle, can be seen as

the extension of the second HK theorem4. The theory provides a formalism

where, at least in principle, it is possible to describe the evolution of a system

even in the presence of strong perturbations. In this work we are interested in

small perturbations and so we can restrict the analysis to the linear regime.

The response function within TDDFT can be obtained through a single

particle Schrödinger Equation, or Time–Dependent KS (TDKS) equation

(that is the third scheme proposed in RG paper), by observing

δρ(1) = χKS(1, 1
′)δvKS(1

′) (3.29)

where χKS(1, 2) is the response function of the KS non interacting system,

while δvKS(1) is the variation of the TDKS potential needed to follow the

evolution of the density when an external potential δV ext(1) is applied. From

the previous section we know vKS(1) = V ext(1) + vh[ρ](1) + vxc[ρ](1). As-

suming that the TDKS potential is identical to the potential of the static

4The RG action functional has been found out to be wrong. A corrected functional
has been provided some years later by Van Leeuwen [22].
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theory. Its variation is, to linear order in the density,

δvKS(1) = δV ext(1) +
δvh[ρ](1)

δρ(1′)
δρ(1′) +

δvxc[ρ](1)

δρ(1′)
δρ(1′). (3.30)

If we Compute the variation of the Hartree potential, defining the exchange

correlation kernel fxc(1, 2) = δvxc[ρ](1)/δρ(2) and remembering that δρ(1) =

χ(1, 1′)δV ext(1′) we obtain a Dyson equation for the response function:

χR(1, 2) = χKS(1, 2) + χKS(1, 1
′)fHxc(1

′, 2′)χR(2′, 2). (3.31)

Here fHxc(1, 2) is the sum of the Hartree plus the xc kernel. The most

common approximations adopted for vxc and so for fxc are the adiabatic

extensions of the ground–state approximations. However within TDDFT

excited states, that can have different spin configurations, are described.

For this reason it is convenient to derive the approximation from the SDFT

energy functionals:

fxcσ1σ2
[ρ, ξ](x1t1,x2t2) =

δvxcσ1
[ρ, ξ](x1, t1)

δρσ2
(x2, t2)

≃ δ(t1 − t2)
δvxc,Aσ1

[ρt1 , ξt1 ](x1)

δρt1σ2
(x2)

;

(3.32)

the variable ξ is eventually set to zero after the derivatives have been com-

puted, for spin unpolarized systems to have a functionals of only the density.

As for the ground–state, in the case of spin polarized systems TD-Spin-DFT

(TDSDFT) can be used used, that is ξ is not set to zero. In particular start-

ing from the LSDA we have the Adiabatic LDA/LSDA (ALDA/ALSDA)

approximation

fALDAxc (1, 2) = δ(x1,x2)δ(t1, t2)

(

∂ǫhomxc (ρ, ξ)

∂ρσ1

+

∂ǫhomxc (ρ, ξ)

∂ρσ2

+ ρ
∂2ǫhomxc (ρ, ξ)

∂ρσ1
∂ρσ2

)

. (3.33)
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Figure 3.2: Dealing with the interaction. Form ref. [6].

Similarly to the case of DFT, TDDFT must be formally extended to TD-

Current-DFT and/or TDSDFT if external magnetic fields are considered.

However practical calculations indicate that this makes little difference in

practice.

3.5 The electron–electron interaction

The electron–electron interaction is the main ingredient of Many Body sys-

tems. Both DFT and MBPT offer a practical approach to deal with it. In

DFT, and in particular in the KS scheme, the starting point is a system

of not-interacting particles where the effect of the interaction is included

through an external potential. In MBPT the classical part of the interac-

tion, the Hartree potential only, is a local potential. Correlation is included
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in the self-energy Σ which is an highly non local frequency dependent and,

in the quasi particle picture, complex function. Compared to KS electrons

QP can be seen as weakly interacting dressed electrons characterized by a

finite lifetime.

The main advantage of DFT compared to MBPT is that it’s much less

demanding from a computational point of view. This is the reason why nowa-

days the majority of codes solve the MBPT equations starting from DFT

calculations. Still the main drawback of DFT is that it does not offer a recipe

to construct systematic approximations. For this reason attempts to improve

the LDA are not always satisfactory. For example the Generalized Gradi-

ent Approximation (GGA) does not always improve upon LDA in lattice

constants and can even predict less accurate results [23, 24]. Improvements

to the LDA are also derived from other approaches such as hybrid func-

tionals defined from the Hartree Fock (HF) approximation. Within these

approaches DFT can include more physics at the price of loosing, at least in

part, its main advantage. As a matter of fact the more physics is included

beyond the LDA the more complicated are the functionals constructed. Fol-

lowing this path, though many important results have been obtained, DFT

is bound to become at a certain point more expensive than other competing

approaches.

In the present thesis we prefer to focus on MBPT in the first part where

we will look for development of new approximations, in particular for the

description of double excitations, and to look at LDA/DFT as the zero–order

approach. For this same reason we will use DFT in the second part where

we will explore the predictions of ab-initio calculations on carbon nanotubes

in a magnetic field.
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Part II

Double Excitations





Chapter 4

Introduction to the

problem

To observe an object with our eyes we need to shine light on it. An absorp-

tion experiment is nothing but a detailed study of what happen when the

light hit the object. In this thesis we focus on the theoretical description of

spectra in the visible energy range: the goal of theoretical spectroscopy is to

give an accurate description of the microscopic process involved. The theory

which describes the evolution of the many body electronic wave–function

interacting with the electromagnetic field is the quantum electrodynamics.

Unfortunately it is not possible to solve the exact equations and, as we have

explained in the first part of the present work, approximations need to be

introduced. Besides mathematical rigour, physical intuition can give essen-

tial guidelines in the development of approximations. Relying on concepts

emerging in the macroscopic world, obtained as the classical limit of quan-

tum mechanics, it is often possible to give an intuitive interpretation of the

microscopic world. As an example we can consider the idea of quasiparticles,

which can capture many of the features observed in the absorption exper-
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iments describing the main peaks as excitons. Similarly we have the idea

of collective excitations, which is used to explain other possible features as

plasmons. It is somehow surprising that, using these concepts, one gets an

accurate description of the complicated microscopic time evolution described

by the equations of quantum mechanics and quantum electrodynamics.

However some of these simplified pictures fail in some situations. For

example the description of the satellites discussed in Fig. (2.3) requires a

more elaborate representation then the single–particle picture.

The existence of double excitations (DEs) is, in this sense, another situ-

ation where an intuitive picture, like the one of quasiparticle or the one of

collective phenomena of the many body problem is problematic. It is still

possible to describe the process as a result of the interaction among elec-

trons: the light source hits an electron which is excited to an unoccupied

state leaving a hole in the system. Due to the presence of both the hole and

the extra electron the system can react by adjusting its configuration and ex-

citing a second electron to an unoccupied state. This description is, however,

not completely correct as it does not describe correctly the real evolution

of the system. The alternative mathematical view is pictured in Fig. (4.1).

The frequency–dependent kernel describes the correction to an independent

particle picture due to correlation effects. The structure is very close to the

one described in Fig. (2.3). The frequency dependence of the kernel reflects

the fictitious time evolution used in MBPT to make the system evolve from

a nn–interacting to an interacting eigenstate. DEs are then virtual processes

needed to describe some features of absorption experiments.

It is important to observe, however, that Fig. (4.1) describes a different

process from the one of Fig. (2.3). In Fig. (2.3) we are moving from an

independent particle picture to a QP picture with a finite lifetime which,

in the sense shown in Fig. (2.4), contains more physics than the simple

representation in terms of real poles. The common concept, however, is the

failure of the static approximation which does not give the correct number
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Figure 4.1: The frequency–dependent kernel of the Dyson equation for the re-
sponse function splits the nn–interacting pole ωq in two poles ωa and ωb. The pole
ω̄ is obtained using a static kernel. From Ref. [25].

of solutions. This happens when the kernel of the Dyson equation has a pole

at an energy close to an independent particle solution.

The most common and widely used approach to the problem of DEs

is given by post–HF methods based on the HF starting point which do

not include correlation1. However, while this is often reasonable for small

molecules, in long 1D molecular chains the effects of correlation are cru-

cial [26]. On the other hand the currently used approximations to electron

correlation in the state–of–the–art approaches to the description of optical

excitations, TDDFT and MBPT, fail to capture the physics of DEs [27, 28].

As post HF methods are designed to work in a small correlation regime,

1Correlation is due to the effects of the interaction in a quantum many–particles sys-
tem. In the present thesis I use the following “language”: if it’s possible to save the HF
interpretation as a first order approximation the correlation is considered small, if not the
correlation is considered big. When DEs are important, the interpretation in terms of
single particles (or HF orbitals) starts to break but not completely and indeed diagrams
one order beyond the HF (or TDHF) are enough to include this effect.
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their extension to realistic nano–structured materials is very demanding,

if not practically impossible and solutions within the TDDFT and MBPT

framework are needed.

In the TDDFT approach, the excitation energies of a system are obtained

from the nn–interacting Kohn-Sham (KS) eigenenergies solving Eq. (3.31)

where the xc–effects are cast in the unknown xc–kernel fxc[ρ](r, r
′, t − t′).

Most of the success of the scheme is due to the success of the ALDA, which,

despite being extremely simple, is surprisingly accurate in the case of many

isolated systems. Nevertheless the ALDA suffers from some deficiencies that

cause TDDFT to fail in some cases, such as in the description of excited

states with multiple–excitation character. The source of this failure has

been traced back in the literature to the adiabatic approximation [27, 25],

which neglects the frequency dependence of the true xc kernel: it turns out

that it is precisely this frequency dependence of the kernel that takes into

account all the many–electron excitation effects.

In MBPT the neutral excitations of the system are obtained by solv-

ing Eq. (2.73). Similarly to TDDFT, xc effects in the BSE are cast in the

four-point kernel Ξ(1, 2; 3, 4), which, unlike in TDDFT, can be written as

a perturbative expansion. In the most common and widely used approxi-

mation to this kernel, introduced in Eq. (2.74), the xc effects in the BSE

are described by the screened Coulomb interaction W , which is considered

static, thus ruling out the possibility of describing DEs.

In the TDDFT literature several solutions to the double-excitation prob-

lem have been proposed [25, 27, 29, 30, 31]. Wang and Zeigler used a non

collinear representation of the xc kernel [30], which could be used to describe

double-excitations, but only starting from the appropriate reference excited

states, some of the weaknesses of this method are discussed in Ref. [31].

Casida proposed a xc kernel which goes beyond the adiabatic approximation

constructed from a superoperator formalism [27] that contains as a special

case the “dressed-TDDFT” recipe derived by Maitra et al. [25]. The dressed-
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TDDFT approach however is not predictive since the existence of DEs must

be defined “a priori”; only very recently Huix–Rotllant and Casida [32] pro-

posed an extension of the dressed TDDFT method, which clarifies the rela-

tion between Polarization Propagator (PP) approaches and the BSE meth-

ods and is presently being tested on an extensive set of molecules [32].

The most commonly used state–of–the–art approaches suffer, hence, from

different types of pathologies. On one side, post-HF methods, based on the

uncorrelated HF scheme, are in general designed to describe isolated systems

with the idea that the interactions among particles can be treated perturba-

tively. In these, approximations are obtained by truncating the perturbative

expansion to some finite order but always respecting key principles of quan-

tum mechanics such as quantum statistics and Pauli exclusion principle. On

the other side, in the BSE and TDDFT approaches correlation is treated to

all orders of perturbation theory, but a well established method to include

DEs does not exists yet.

In the present chapter we provide a detailed description of the phenom-

ena where DEs play a role and we illustrate which direction can be followed

to include DEs in TDDFT and BSE. In particular we write the equations of

both approaches in a common formalism (see Eq. (4.4)) and we show that

DEs are not described in the standard approximations because, in both, the

kernel of Eq. (4.4) is taken static. We focus on the BSE scheme, because

within the MBPT it is more straightforward to look for practical approxima-

tions, in order to introduce a frequency–dependent kernel. First we solve the

mathematical problems which arise trying to construct the dynamical ver-

sion, i.e. with a dynamical kernel, of Eq. (4.4) and then we show that indeed

the frequency–dependent kernel obtained relaxing the static approximation

in the standard BSE scheme capture, at least in part, the effects of DEs. The

inclusion of this result within TDDFT is obtained thanks to the common

language established, following an alternative, but similar, procedure to the

one of Ref. [33].
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Only in the following chapter, we will finally construct a fully consistent

approximation to the problem of DEs within the BSE scheme. The explicit

connection with TDDFT is not explored anymore in Ch. 5; the extension

of the results obtained to TDDFT, following the method illustrated in the

present chapter, could be a possible development.

4.1 Double excitations in quantum chemistry

The concept of DEs is well known in the quantum chemistry literature.

The absorption spectrum of a system is described with methods that, in

contrast to DFT and MBPT, are based on the many body wave–function.

The starting point is usually the Hartree-Fock (HF) approach, where the

many body ground state is approximated with a single Slater determinant

of one particles wave–functions:

ΨHF0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(x1) ψ1(x2) ... ψ1(xn)

ψ2(x1) ψ2(x2) ... ψ2(xn)
...

...
...

ψn(x1) ψn(x2) ... ψn(xn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.1)

The excited state wave–functions can be expressed as a linear combination

of Slater determinants, each of which is related to the HF ground-state

through some excitation operator. For example, considering only single-

particle excitatins one can write:

ΨI ≃
∑

ij

cIij â
†
i âjΨ

HF
0 , (4.2)

which we refer here as ΨHFI , with I labeling a particular excited–state. In

the language of MBPT the HF approximation is equivalent to approximating

the self–energy to its first order in the bare interaction. The approximation
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introduced by Eq. (4.2), instead, is equivalent, in the linear response regime,

to approximating the BSE kernel to first order in the bare interaction within

the Tamm–Dancoff Approximation (TDA) which neglects the coupling of the

excitation space with the de–excitations one. The scheme obtained relaxing

the TDA is known as Time Dependent HF (TDHF).

It is then natural to relax the introduced approximations to include single

and higher order excitations in both the ground state and the excited state

wave–function. This is the so called configuration interaction (CI) expansion:

ΨCI0 =ΨHF0 +
∑

ij

c0ij â
†
i âjΨ

HF
0 +

∑

ijhk

d0ijhkâ
†
i â

†
j âhâkΨ

HF
0 + ...

ΨCII =ΨHFI +
∑

ijhk

dIijhkâ
†
i â

†
j âhâkΨ

HF
0 + ... .

(4.3)

In practice the full CI approach can be hardly used for a number of elec-

trons larger than 102, because the exponents grown at the number terms

needed. However CI offers a clear mathematical description of multiple ex-

citations, including DEs.

In the next chapter we will present an alternative Post-HF method, called

second Random Phase Approximation (sRPA) which we will use to investi-

gate more in detail the connection between the MBPT and the DEs concept.

Here we want to start by using the CI scheme to understand how DEs are

identified. We will also present two examples where the DEs have been iden-

tified to play an important role using CI calculations. The first example is

constituted by small molecules, like the H2 molecule considered here, for

which DEs are known to be important in the description of molecular disso-

ciation; the second is constituted by polyenic carbon chains saturated with

hydrogen atoms.

H2 is a very simple molecule and DEs play a crucial role already for such

2CI in the “singles and doubles” approximation (CISD) has recentrly been performed
for systems up to almost 100 electrons, though under some approximations[35].
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(a) states with Σu symmetry (b) states with Σg symmetry

Figure 4.2: The lowest energies excitations energies of the H2 molecule as a
function of the distance among the nuclei. Solid lines are CI results, while dotted
and dashed lines are TDDFT calculation with two different functionals which does
not include DEs. The excited state 2Σ+

g mainly composed by a DE is marked with
dots. From Ref. [34].

a small system. In Fig. (4.2) we can see that during the dissociation pro-

cess even the qualitative behavior of the excitation energies is wrong within

TDDFT, if compared with a virtually exact full CI approach. In particular

for the states with g symmetry, panel b, we see that within TDDFT we have

one excited state less than within CI. The double excited CI solution start at

high energy at the equilibrium distance but then decrease in energy during

the dissociation process becoming the lowest energy solution.

For polyenes, on the other hand, the description of DEs is known to be

important already at the equilibrium geometry. The structure of the chains

is represented in Fig. (4.3), together with a plot of the contribution of DEs

to the ground state and the first three excited states energies as a function

of the chain length. The contribution to the ground state increases with the

dimension of the chain from less then 10% to around 25% while for two of the
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(a) polyenes structure (b) Double excitations

Figure 4.3: Structure of a polyene chain, (a). The fundamental element of a
chain is represented between brackets. At each vertex a carbon atom saturated
with hydorgen is present. The weight of doubly excited determinants in the wave–
functions of the electronic ground state 11A−

g and the energetically lowest three
excited states 11A−

g , 1
1A−

g and 11A−

g are given in percent. From Ref. [36].

three excited states is above 50% (reaching the 75%) even for the shortest

chains.

Theoretically, DEs are predicted to be important for any open-shell

molecule and in general for any system where the energy of a DE can be

degenerate, or almost degenerate, with the energy of a single excitation, as

shown in Fig. (4.1). For open shell systems, in particular, the inclusion of

DEs is imposed by spin symmetry requirements which forces single excited

configuration to mix with double excited ones. This is shown in Fig. (4.4) for

a very simple three electrons system. The four single excited configuration

represented must be mixed among themselves to obtain an eigenstate of the

total spin operator Ŝ2. However such operator contains a term of the form

â†i↑â
†
j↓âj↑âi↓ which flips the spin of two particles. Applying these terms to

the configurations ψ3 = â†k↑âi↑ψ0 or ψ4 = â†k↓âi↓ψ0 a doubly excited config-

uration ψ5 = â†k↑â
†
j↓âj↑âi↓ψ0 is obtained. This is needed to construct the

excited state wave–function with the correct spin symmetry [37, 27].
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Figure 4.4: Excited states in a spin polarized model with three electrons and
three levels. The ground state configuration is plotted on the top, while the doubly
excited configuration is highlighted with respect to the others. From Ref. [27]

Satellites in the absorption spectrum

We have already drawn a connection between the concept of satellites in the

photoemission spectrum, illustrated in Ch. 2 and the mathematical defini-

tion of DEs. In fact DEs can be seen as satellites in the absorption spectra:

satellites in photoemission spectra are generated by the frequency depen-

dence of the self–energy, whereas DEs by that of the BSE kernel. However,

as opposed to photoemission spectra, the concept of satellites (due to pure

many body effects) is not used for absorption spectra in the visible/UV

range. The main reason being probably related to the different structure of

the self–energy and of of the BSE kernel. The Self Energy is in fact usu-

ally almost diagonal and as a result the independent particle peaks are only

shifted without involving a mixing of the independent particle transitions.
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(a) Theory: TDDFT and LDA+U (b) Experiment: NIXS

Figure 4.5: Non-Resonant Inelastic Xray Spectrum (NIXS) of NiO solving a series
of tightly bound Frenkel excitons. The experimental spectrum [38] shows more
peaks than theoretically predicted [39]. In the work on Lee et al. [39] a frequency–
dependent kernel is proposed as a possible solution to describe the experimental
peaks (indicated with three arrows in (a)). Within the adiabatic description only
two peaks are obtained.

On the other hand the kernel of the BSE is strongly non–diagonal and an

exciton is composed by different independent particle transitions. As a con-

sequence, usually3, in the QP spectrum it is easy to isolate a peak which

is not related to any independent–particle (IP) transition and so to trace it

back to a satellite. On the other hand in the absorption spectrum many IP

transitions usually mix in different ways to give well–defined excitonic peaks

together with other less intense and dark peaks. Many features are already

present in the spectrum. The inclusion of DEs can shift the excitonic peaks

and increase the richness of the spectrum, however it is difficult to isolate a

DE satellite without a CI–like analysis of the peak composition.

3In strongly correlated materials the QP peak can be difficult to isolate as well.
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NiO has been shown to be a good candidate system where DEs can be

found in the absorption spectrum. In two recent works the Non-Resonant

Inelastic Xray Spectrum (NIXS) of NiO has been investigated both theoreti-

cally and experimentally [39, 38]. At low energy NiO presents tightly bound

Frenkel excitons (see Fig. (4.5)). However the theoretical description within

adiabatic TDDFT is not able to reproduce the detailed structure of the spec-

trum (the theory reproduces only 2 of the 3 peaks observed experimentally).

In their work, Lee et al. [39] indicate the need to go beyond the adiabatic

approximation for a correct description of the spectrum: <<...to allow any

fine (“multi–plets”) structure in strongly interacting systems, a non-adiabatic

kernel is absolutely necessary (...). Obviously, this is one key aspect that al-

most all the existing approximate functionals lack and presents an essential

and necessary step toward a proper description of local excitations in strongly

interacting systems, within all the existing theoretical frameworks. >> 4.

Double excitations, in which basis set?

Previously in this chapter we have defined DEs from the CI expansion in

terms of the HF wave–functions. However some of the experimental evidence

we have illustrated has been compared against TDDFT calculations. It is

then legitimate to question if we can use the same definition of DEs using

the KS wave–functions, which, unlike the HF ones, do not have necessarily

any physical meaning5.

As we stated in the introduction, when a feature of the spectrum need

to be described in terms of DEs, the single particle description is breaks

down. Then the HF wave–functions lose their physical meaning and have to

4However alternative explanations to the extra peak observed in NiO, which do not
make use of the concept of DEs, already exist in the literature [40].

5There are several articles indicating that KS orbitals are typically good approxima-
tions to Dyson orbitals [41, 42, 43]. However this is not true for any system. In corre-
lated materials the overlap between KS wave–function and QP wave–function has been
proven [11].
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be regarded only as a basis-set for the expansion of the Many-Body wave–

function, and the same holds for KS wave–functions. The open question is

if a double excitation in a basis set can be described as a single excitation

in another basis set. In fact the single particle transitions, either KS or HF,

do not form a complete basis–set in the space of the many–body excitation

operators. Indeed the two span two different spaces.

As a partial answer it is possible to consider the number of excited states:

the inclusion of DEs gives more solutions than the number of single particle

excitations initially considered. However the space of single particle transi-

tions is infinite and so it is the number of solutions.

4.2 Double excitations in the many body ap-

proach

Both TDDFT and the BSE provides exact equations for the description

of absorption spectra, therefore they can, in principle, describe DEs. In

practice, however, approximations to the many–body effects of the system

are needed, and the currently used ones, namely ALDA for TDDFT and the

statically screened interaction within BSE, fail to reproduce DEs. This is

why in this work we go beyond the standard approximations and we derive

a new kernel for BSE and TDDFT that can properly take into account DEs.

In the following we will introduce the single–particle transition space and

we will show why a static kernel cannot describe DEs. By relaxing the static

approximation to the kernel one can get DEs. We will illustrate this using

the BSE, where the kernel has a clear physical meaning and includes, in a

natural way, the many–electron excitations of the system. From the BSE

kernel one can then obtain the TDDFT kernel using the technique of Ref.

[11].
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The Dyson equations in the transition space

The main advantage of writing the equations for the response function in

the space of single–particle transitions is that it offers a clear interpretation

in terms of the single–particle wave–function. In the present work we will

assume that the differences among the QP and the KS wave–functions are

small and we will project the TDDFT and BS equations in the KS basis set.

This assumption is usually done in the implementation of the BSE scheme

within many ab–initio codes and it is justified in many materials though

exceptions have been found [11]. In particular the starting point is usually a

DFT–LDA calculation with self–energy effects introduced according to the

scheme outlined in Ch. 2. Then the excitonic spectra can be computed

within TDDFT starting from the ψKSi and ǫLDAi or from the MBPT-GW

approach where the BSE is solved starting from ψKSi and ǫGWi .

We start from a Dyson equation for a generalized four–points response

function in the frequency domain

L̃(1,2;3,4|ω) = L̃0(1,2;3,4|ω)+
L̃0(1,2;1

′,2′|ω)K(1′,2′;3′,4′|0)L̃(3′,4′;3,4|ω), (4.4)

where we have already introduced the static approximation for the kernel

K. Eq. (4.4) can be obtained from Eq. (2.73) by using

L̃(1,2;3,4|ω) =
∫

d(t2 − t1)e−iω(t2−t1)L(1t1,2t1;3t2,4t2),

L̃0(1,2;3,4|ω) =
∫

d(t2 − t1)e−iω(t2−t1)L0(1t1,2t1;3t2,4t2),

K(1,2;3,4|0) =
∫

d(t2 − t1)e−iω(t2−t1)
(

δ(1, 2)δ(3, 4)w(1, 3)

− δ(1, 3)δ(2, 4)W (1t1,2t2)δ(t2 − t1)
)

;
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we have introduced L̃ to be distinguished from L. L̃ is a function of four

space variables as L but two time variables only. An equation of the form

of Eq. (4.4) can be obtained from Eq. (3.31) using

L̃(1,2;3,4|ω) =
∫

dωe−iω(t2−t1)χ(1t1;3t2)δ(1, 2)δ(3, 4),

L̃0(1,2;3,4|ω) =
∫

dωe−iω(t2−t1)χKS(1t1;3t2)δ(1, 2)δ(3, 4),

K(1,2;3,4|0) =
∫

dωe−iω(t2−t1)
(

w(1,3) +
δvAxc[ρt1 ](1)

δρt1(3)

)

δ(1, 2)δ(3, 4).

Notice that not only the kernel is different, but also the four–points functions

L̃ and L̃0 differ in the two cases. In the space of single particle wave–functions

the equation for L̃ reads 6:

L̃ij,hk(ω) = L̃0
ij,hk(ω) + L̃0

ij,i′j′(ω)Ki′j′,h′k′(0)L̃h′k′,hk(ω), (4.5)

where we used the following change of basis

L̃ij,hk(ω) =

∫

d3x1...d
3x4 ψi(x1)ψ

∗
j (x2)L̃(1,2;3,4|ω)ψ∗

h(x1)ψk(x1)

= 〈ij| L̃(1,2;3,4|ω) |hk〉.
(4.6)

Here i is a generalized index for the KS wave–function containing all quan-

tum numbers, spin included. Within this basis–set the generalized response

function L̃0 is diagonal

L̃0
ij,hk =

δi,kδj,h(fj − fi)
ω − (ǫi − ǫj)

. (4.7)

6In the TDDFT formalism, in order to obtain simpler equations, when moving to the
single–particle wave–functions space, the delta functions are discarded in the definition of
L̃0 which is constructed from LKS(1, 2; 3, 4) = G(1, 3)G(4, 2). Only in this way L̃0.
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We have dropped the iη factors in order to avoid having two different expres-

sions for the retarded and the time–ordered response function. If needed one

can restore them remembering that we deal with retarded quantities within

TDDFT and with time–ordered quantities within MBPT 7. Moreover we

have introduced the occupation factors8, fi = 1 if i is occupied and fi = 0

otherwise, to have a compact expression for L̃0. Using Eq. (4.7) and writing

the matrix equation in the form L̃−1 = L̃−1
0 −K one can find the zeros of

L̃−1 solving an eigenvalue problem:

H2pAI = ωIAI , (4.8)

with Hij,hk = (ǫi− ǫj)δi,kδj,h+
√

fj − fi Kij,hk

√
fh − fk. Taking explicitly

into account the occupation factors the eigenvalue problem can be recast in

the electron–hole (eh) and hole–electron (he) transitions (see [44] for TDDFT

and [45] for BSE):

(

Hres Hcoup

H∗
coup H∗

res

)(

XI

YI

)

= ωI

(

1 0

0 −1

)(

XI

YI

)

. (4.9)

We defined the resonant termHres = Heh,e′h′ and the coupling termHcoup =

Heh,h′e′ and we have assumed that K(1,2;3,4|ω) is real. Let us call S the

matrix defining the metric of the system:

S =

(

1 0

0 −1

)

(4.10)

The block form of Eq. (4.9) allows us to have a clear interpretation of the

7One have to take care of this difference if a connection among the two theories need to
be established. The difficulties which can arise trying to combine theories with different
time ordering can be overcome thanks to the Keldish contour techniques.

8The occupation factors can be used as Fermi distribution functions to introduce a
numerical smearing to get a faster convergence. The same Fermi functions are sometimes
used to introduce a temperature dependence in the equations.
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physics involved. In particular the resonant part of the Hamiltonian de-

scribes the neutral excitations of the system. In terms of a linear composition

of single eh transitions. This can be directly compared with ΨHFI defined in

Eq. (4.2). The term H∗
res is the anti–resonant part of the Hamiltonian and

describes the de–excitations. Finally H∗
coup describes the coupling among

the eh and the he space. When these are different from zero the many–body

excitations contains terms involving single–particle de–excitations. These

latter processes are clearly forbidden if one consider the HF ground state

and for this reason the coupling terms are said to describe ground state

correlation [46].

While the eigenvalues of the problem gives the excitations energies the

eigenvector can be used to construct excitation operators. Since we are

working within the DFT basis set, it is tempting to describe the excited

state wave–function directly applying the excitations operator to the ground

state, in analogy to HF–based methids. However one has to keep in mind

that the TDDFT and MBPT linear response equations have been derived

starting from a variation of the density with no assumption on the wave–

function. For this reason the excitation operator should be applied not to the

DFT wave–function but to the correlated Many-Body wave–function. Only

the TDA, which assumes that de–excitations do not need to be considered,

is consistent with the approximation of the ground state as a single slater

determinant. Within this approximation excited states wave–functions can

be constructed from the KS ground state and interpreted, as it is often done

for KS the ground–state, as approximations to the real many body wave–

function. However only within the TDHF scheme and starting from the HF

ground–state the approximation is formally correct.

Moreover, with the exact kernel, Eq. (4.9) would give the exact excita-

tions energies, but not the full excitation operators, since only the single–

particle part is accessible by construction. This means that multi–particle

transitions must be hidden in the kernel of the equation. It becomes now
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clear why the eigenvalue problem (4.9) cannot give DEs, unless the kernel

is frequency–dependent. In the next chapter we will clarify these points

exploring the Second–RPA method where an equivalent eigenvalue problem

will be derived exactly from the projection on the space of single particle

transition of an exact equation for the excitation operators.

Eq. (4.9) is equivalent to a Dyson equation for the generalized response

function. From its solution we can construct the response function χ(1,2|ω) =
L̃(1,1;2,2|ω). As explained in Ch. 1 we can use χ to define the dielectric

function 〈ǫ−1(ω)〉 = 〈1 +wχ〉 and the polarizability 〈α〉 = 〈xχx〉. As an ex-

ample we write here the esplicit connection of the macroscopic measurable

quantity α(ω) with the Eq. (4.9).

The expression for the generalized response function in terms of the eigen-

values and the eigenvectors of Eq. (4.9) is

L̃ij,hk(ω) =
∑

I,J

AIijSI,JA
J
jk

(ω − ωI)
. (4.11)

Using Eq. (4.11) the polarizability can be written as

αxaxb
(ω) =

∑

ij,hk

〈xaijL̃ij,hk(ω)xbhk〉

=
∑

ij,hk

〈i|xa|j〉
∑

I,J

AIijSI,JA
J
jk

(ω − ωI)
〈k|xb|h〉

(4.12)

The direct expression for the dielectric function in the space of transitions,

instead, can be used to describe the concept of local fields effect if the basis–

set of the block wave–functions is used. This is done in App. A.
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4.3 The dynamical Bethe–Salpeter equation

(step I)

In order to explore the effects of a dynamical kernel on the description of DEs

as start we simply relax the static approximation to the screened interaction

in the BSE 9. However we immediately realize that, by using a frequency–

dependent interaction W (ω), Eq. (4.5) cannot be written any more as a

simple matrix equation, as it involves a convolution in the frequency space.

To analyze the problem we rewrite the exact BSE for L̃(ω) obtained by using

a frequency–dependent kernel:

L̃ij,hk(ω) = L̃0
ij,hk(ω) +

1

4π2

∫

dω′dω′′L0
ij,i′j′(ω, ω

′)

Ξi′j′,h′k′(ω, ω
′, ω′′)Lh′k′,hk(ω, ω

′′), (4.13)

The kernel Ξ depends on four time variables making it impossible to contract

the variables in the last term of the r.h.s. of Eq. (4.13) for L and L0, as

shown in Fig. (4.6) in order to obtain a closed equation for L̃. This problem

does not appear within TDDFT where we have only two point (and so two

times) quantities. For the Fourier transform we have adopted the following

conventions [47, 33]:

L(ω, ω′, ω′′) =

∫

dτdτ ′dτ ′′eiωτeiω
′τ ′

eiω
′′τ ′′

L(t1, t
′
1, t2, t

′
2) (4.14)

with τ = (t1 + t′1)/2− (t2 + t′2)/2, τ
′ = t1 − t′1 and τ ′ = t2 − t′2.

Commonly the BSE kernel follows from the GW approach to the self–

energy and it reads

Ξij,hk(ω
′′ − ω′) = wij,hk −Wij,hk(ω

′′ − ω′), (4.15)

9We choose BSE as starting point because within TDDFT we do not have a straight-
forward way to insert a frequency–dependency in the fxc kernel
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Figure 4.6: The BSE with a static kernel (upper diagrams) is compared with the
BSE with an exact kernel (lower diagrams). The contraction of time variables to
obtain L → L̃ is represented with small dashed lines. The static approximation
for the kernel is represented as a collapse of the time dependency to a single point
highlighted in the figure. When using the exact kernel there is no time contraction
and it is not possible to do the contraction L → L̃ on the last term of the r.h.s. .
The BSE does not reduce to a closed equation for L̃.

where we considered the full frequency dependence in the screened interac-

tion. To obtain a Dyson equation we insert the identities L0L
−1
0 and LL−1

on the left and of the right of the second term on the l.h.s. of Eq. (4.13) and

define a new kernel

(

Ξd2
)

ij,hk
(ω) ≃ wij,hk − L0

ij,ij
−1(ω)

∫

dω′dω′′

L0
ij,ij(ω, ω

′)Wij,hk(ω
′′ − ω′)L0

hk,hk(ω, ω
′′)L0

hk,hk
−1(ω). (4.16)

Here we have approximated L ≃ L0 (linearization) in the kernel expression

and we have used the fact that L0 is diagonal in configuration space. In this

way we have a closed equation, the dynamical BSE (DBSE), that we can

project in the transition space in order to obtain an eigenvalue problem:

L̃ij,hk(ω) = L̃0
ij,hk(ω) + L̃0

ij,i′j′(ω)K̃i′j′,h′k′(ω)L̃h′k′,hk(ω), (4.17)

which is formally identical to SBSE except for the presence of a frequency–

dependent kernel K̃(ω) = Ξd2(ω). Note that the if a static kernel is used the

DBSE reduces exactly to the usual Static BSE (SBSE).
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From Eq. (4.17) we can construct an eigenvalue equation with frequency–

dependent excitonic Hamiltonian

H2p(ω)AI(ω) = ωI(ω)AI(ω). (4.18)

Note that Eq. (4.18) is similar to the frequency–dependent eigenvalue equa-

tion obtained by Strinati in Ref. [47].

A first analysis of the kernel

The frequency integrals in the definition of K̃(ω) can be performed analyti-

cally as we know the frequency dependence of both L0(ω) and W (ω). As for

the static screening, we have here the problem that the kernel of the equation

should, in principle, depend on the solution of the equation itself. However,

in the SBSE the exact position of the poles in the construction of the kernel

is not important and LDA eigenvalues are used to construct the screening

instead of the exact poles of the response function or of the QP energies.

QP eigenenergies are not chosen in order to prevent the larger QP gap to

underestimate the screening10. Indeed LDA gap is often comparable with

the optical gap due to partial cancellation of self-energy and kernel effects;

see Fig. (4.7). However we will show in Ch. (5) that the DBSE solutions

are very sensitive to the exact position of the poles (see also Fig. (4.1) ).

Therefore a KS screening might not be accurate anymore. To overcome this

problem one can use RPA or static BSE energies. From now on we will use

the RPA energies Ων , with eigenvectors Rν , which are solutions of Eq. (4.9)

with K(1,2,3,4|0) = δ(1, 2)δ(3, 4)w(1,3). With this choice we can write

10In a recent work [48] the use of QP energies in the construction of the kernel has been
proven to give better results for some materials. Other work on this point can be found
in [49, 50]
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Figure 4.7: Self–energy corrections open the LDA gap due to a better description
of the (screened) exchange effect which tends to push particles away. However the
(screened) attraction between the electron and the hole gives a binding energy
which partially compensates the self–energy effects and so the value of the optical
gap is often closer to the LDA gap rather than to the QP one. From Ref. [51]

the frequency–dependent kernel within TDA as

(

Ξd2
)

ij,hk
(ω) = wij,hk + 2

∑

ν

∑

(nq)(n′q′)

v(jk)(nq)
Rν(nq)R

ν ∗
(n′q′)

ω − (Ων +∆ǫ)
v(n′q′)(ih),

(4.19)

where the indexes (nq) run over the possible eh couples only and where the

factor 2 is obtained using Rν(nq) = R−ν
(qn) which holds within TDA.

A frequency–dependent kernel imposes to solve Eq. (4.9) self-consistently

with respect to the frequency. In practice we need the solution of the equa-

tion EI(ω) = ω with EI(ω) the eigenenergies of a DBSE at a given frequency.

This assumption resembles the QP concept as it relies on the assumption
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that

L̃ij,hk(ω) =
∑

I,J

AIij(ω)SI,JA
J
jk(ω)

(ω − ωI(ω))

≃
∑

I,J

AIij(EI)SI,JA
J
jk(EJ )

(ω − EI)
.

(4.20)

For further details on this idea see App. B

Connection with time dependent density functional the-

ory

In sec. 4.2, Eq. (4.5) has established a common language between the SBSE

and TDDFT. The DBSE, Eq. (4.17), is also the generalization of Eq. (4.5)

to the frequency–dependent case. Indeed, with the choice K̃(ω) = fHxc(ω)

in Eq. (4.17), the TDDFT formalism is recovered.

A kernel for the TDDFT can be derived taking advantage of this common

language. Under the assumption that the differences between the QP and

the KS wave–functions can be neglected we obtain

fHxc(ω) = χ−1
KS(ω)− χ−1

0 (ω) + Ξ̃d2(ω) , (4.21)

where the term χ−1
KS(ω) − χ−1

0 (ω) takes into account for the difference be-

tween the QP and the KS starting point. The term Ξ̃d2(ω) is the space

contracted version of Ξd2(ω), obtained changing the four points L0 with the

two points χ0 in the definition of the latter. Indeed, choosing the static ap-

proximation for the screened interaction in the definition of Ξ̃d2(ω), we obtain

the so called Nanoquanta kernel [11].

From now on we will work in the BSE framework, focusing our attention

on the problem of DEs. However, under the assumptions of this section, a

TDDFT kernel can be derived using Eq. (4.21) and using a modified DBSE
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kernel (here Ξ̃d2(ω) ) which can be derived as long as the spatial contraction

L0 → χ0 is possible. This will be the case for the kernel proposed in the

next chapter11. For a further study of the problem of the construction of

a TDDFT kernel from a many–body formalism we address the reader to

the references [32, 11]. In particular the spatial contraction (or localization)

is extensively discussed in [32]. As pointed out there however, it is not

necessary if the only goal is to obtain excitations energy, since one can do a

DFT based BSE calculation. This simply because χ and L have the same

poles; on the other hand if one is interested in intrinsic TDDFT quantities,

as for example the time evolution of the density, the localization process can

be crucial [32].

Some preliminary tests on a model system

The performance of the DBSE can be tested in a two electrons and two levels

model, that is the simplest possible system where a DE can appear. We will

work here within the Tamm-Dancoff approximation to keep the equations

as simple as possible. We look for the solution of the eigenvalue problem

solving the equation det(H2p(ω)− 1ω) = 0. For our model we obtain:

(

∆ǫ+ V − W̃ (ω)− ω
)2

− V 2 = 0, (4.22)

where we defined V = wvc,vc , W̃ (ω) =
(

Ξd2
)

vc,vc
(ω) , ∆ǫ = ǫc − ǫv and we

used the fact that W̃ (ω) is diagonal in the spin space. The RPA solutions

Ω1,2 needed to construct the W̃ (ω) term have eigenvectors R1 = 1/
√
2 (1 1)t

and R2 = 1/
√
2 (1 − 1)t, thus we get

W̃ (ω) = A+
B

ω − Ω1 −∆ǫ
(4.23)

11However to define the contracted kernel the substitution Ls → χs instead of L0 → χ0

will have to be considered. Ls will be defined in Ch. 5
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where with A = wvv,cc and B = 2Re[wccvcwvcvv]. Eq. (4.22) has four solu-

tions, although one expects only three for this system, i.e., a singlet single

excitation, a triplet single excitation, and a singlet DE. One of the four

is an unphysical state. We argue that the occurrence of this extra pole is

related to the self-screening interaction that the GW approximation to the

self-energy suffers from. This is related to the fact that W̃ is the test charge–

test charge screening, whereas the charges to be screened are fermions, not

classical charges. This can be cured by introducing a vertex correction to the

self-energy. Indeed, if one considers only one electron in this model system,

then Eq. (4.18) produces two poles, one corresponding to a single excitation

and the other one, unphysical, corresponding to a DE. In this case, there

are no dynamical self-energy effects involved, and the extra pole arises, in-

deed, from the fact that the electron screens itself. We can recognize the

spurious solution by solving Eq. (4.22) independently of the dynamical struc-

ture of W̃ . We then obtain two groups of solutions: one for singlet states,

ω = ∆ǫ+ 2V − W̃ , and one for triplet states, ω = ∆ǫ+ 2V − W̃ . Since the

excited state involving a DE is a singlet, the correct double-excitation energy

is the one coming from the singlet-group solutions. The four solutions (ω1,2

the singlet solutions, and ω3,4 the triplet solutions) are

ω1,2 =
2∆ǫ+Ω1 −A∓

√

(Ω1 − 2V +A)2 − 4B

2

ω3,4 =
2∆ǫ+Ω1 −A∓

√

(Ω1 +A)2 − 4B

2

. (4.24)

The energy ω4 (the solution with the sign +) is a spurious pole. In the next

chapter we will understand better the origin of spurious excitation energies

and we will show how to derive an approximation to the DBSE kernel which

does not suffer of this problem.
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Chapter 5

A new approach

As we have shown in Ch. 4, DEs are essential for the description of the

optically excited states in open-shell molecules [27]; however they can play

an important role also in closed-shell systems, such as in polyenes, where

the lowest-lying singlet state is known to have a HOMO2-LUMO2 double-

excitation character [28]. The theoretical description of Double Excitations

(DE) in conjugated polymers constitutes an important challenge for the

state-of-the-art approaches used in physics and physical chemistry.

On one side there are the Post–HF methods that descibes DEs in a

natural way, but at the price of a very demanding description of correlation

effects; on the other side there are methods as TDDFT and BSE, which

treat better the correlation, but within the standard approxmiations cannot

capture the physics of DEs. The limitation of the latter approaches lies in

the adiabatic approximation to the exchange–correlation effects.

In Ch. 4 we showed that simply relaxing this approximatin, DEs are in

fact described; however, together with the desired excitations, non-physical

excitations also appear. Spurious excitations have been interpreted as due

to the self-screening error embodied in the GW self-energy [33, 52].
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In this chapter we investigate more in details this problem showing that

uncontrolled effects, such as unphysical excitations, can appear as the quan-

tum statistics and Pauli exclusion principle are easely broken in simple ap-

proximations, like the one we introduced. For this reason here we propose

a novel approach to describe DEs in correlated materials by embodying the

mathematical properties of post-HF methods (here we will use as reference

the second–RPA) in a coherent Many-Body framework. In order to achieve

this we first define the conditions for a Number Conserving (NC) approach,

which avoids the appearance of spurious excitations; we then embody the

NC condition in an extension to the BSE that describes DEs in a consistent

manner.

5.1 The second random phase approximation

A number–conserving approach

The second–RPA (sRPA) is a particular appealing starting point because the

scheme is directly derived approximating the many body excitation operators

to DEs [53]:

Ôν ≃
∑

ij

[

X
(1)
ij (ων)â

†
i âj − Y

(1)
ij (ων)â

†
j âi

]

+

∑

ijmn

[

X
(2)
ijmn(ων)â

†
i â

†
mâj ân − Y

(2)
ijmn(ων)â

†
j â

†
nâiâm

]

, (5.1)

where â†i / âi are creator / annichilation operators in a single particle wave–

function basis set, the HF wave–functions are used in the original derivation

of the sRPA equations, and ωI are the excitation energies. The scheme can

be constructed inserting Eq. (5.1) in a double commutator equation which
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is satisfied by the operator Ôν [53]:

〈HF |
[

R̂,
[

Ĥ, Ô†
ν

]]

|HF 〉 = ων 〈HF |
[

R̂, Ô†
ν

]

|HF 〉. (5.2)

Here |HF 〉 is the HF ground state, Ĥ is the many body Hamiltonian and R̂

is an operator in the same space of the excitation operators Ôν . The result

can be written in the form of an eigenvalue equation:

(

A B
−B∗ −A∗

)(

X (ων)
Y(ων)

)

= ων

(

X (ων)
Y(ων)

)

, (5.3)

where

A =

(

Aij,hk Aij,hkpq

Aijmn,hk Aijmn,hkpq

)

B =

(

Aij,hk Aij,hkpq

Aijmn,hk Aijmn,hkpq

)

(5.4)

and

X =

(

X
(1)
ij

X
(2)
ijmn

)

Y =

(

Y
(1)
ij

Y
(2)
ijmn

)

(5.5)

The elements of A are obtained from Eq. (5.2) using Eq. (5.1), for example

Aij,hkpq = 〈HF |
[

â†j âi,
[

Ĥ, â†hâ
†
pâkâq

]]

|HF 〉, (5.6)

and similarly for the other components. The elements of B have a similar

form as the elements of A, the only differences being: (i) in the operators

on the right of the Hamiltonian particle-hole indexes are inverted, (ii) there

is a minus sign.

Eq. (5.3) has the same formal properties of the RPA-TDHF equations and

this guarantees that spectral sum–rules are respected1. Moreover measurable

quantities can be constructed from the solution of the problem using the

1While the spectral sum rules are respected, the excitation energies are well described
but, often, the oscillator strengths are not [32].
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same equation of the RPA method [53].

Second random phase approximation and the folding

The Hamiltonian associated to the sRPA equation of motion can then be

written [53, 54] in the Fock space of single and DEs

(

S C

C† D

)(

e1

e2

)

= ωI

(

e1

e2

)

. (5.7)

Here S and D represent, respectively, the Hamiltonian in the space of sin-

gle excitations (dimension Ns × Ns) and of DEs (dimension Nd × Nd). C
represents the coupling between single and DEs. The number of eigenvalues

of Eq. (5.7) is, thus, Ns +Nd. e1 and e2 are the sRPA excitation operator

components [53, 54] in the singles and doubles subspaces, respectively.

The question now is how to obtain these Nd poles working only in the

space of single excitations, without introducing explicitly the doubles sub-

space. This step is crucial to create a link between the sRPA, Eq. (4.12),

and the BSE, which is strictly defined only in the singles subspace. To create

this link we fold the total Hamiltonian matrix in the RNs subspace [53, 54].

This is done by expressing e2 in terms of e1, and then solving the equation

for e1:

(S + Ξ(ω)) e1 = ωIe1, (5.8)

with Ξ(ω) = C(ωI − D)−1C†. Eq. (5.7) and Eq. (5.8), then, have the

same Ns + Nd eigenvalues but Eq. (5.8) is solved in the single-excitation

subspace, and the frequency-dependent kernel Ξ(ω) takes into account the

down–folding of the double-excitation space to the single-excitation space.

The correct structure of the Ξ kernel is thus crucial to get the correct number

of solutions. In particular, if D can be diagonalized, then Eq. (5.8) can be
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written in terms of the diagonal matrix D′ = U †DU :



S +

Nd
∑

ξ=1

K(ξ)

(ωI −D′
ξξ)



 e1 = ωIe1, (5.9)

with K = C ′C ′† and C ′ = CU .

The explicit expression for the Ξ kernel of sRPA can be obtained [53, 54],

within the TDA, starting from Eq. (5.2) and Eq. (5.1) and constructing all

the matrix elements A and B:

Ξ(ij),(hk)(ω) =
∑

(nq)(mp)

C(ij),(nm)(pq)C
†
(nm)(pq),(hk)

ω − (ǫn − ǫm + ǫp − ǫq)
, (5.10)

with

C(ij),(nm)(pq) =
1

2

(

v(in),(pq)δj,m + v(jm),(pq)δi,n

− {n↔ p} − {m↔ q}+ {(nm)↔ (pq)}
)

. (5.11)

Here, in the space of DEs, the matrix elements of the interaction term in the

hamiltonin has been neglected; ǫi are the poles of the HF one particle GF,

GHF , whereas

v(ij),(hk) =

∫

dxdx′φ∗j (x)φi(x)v(xx
′)φk(x

′)φ∗h(x
′), (5.12)

are the projections of the Coulomb interaction in the space of single–particle

wave–functions. The structure of Eq. (5.10) is the same of the kernel in

Eq. (5.9). A key property of the Ξ kernel is that it is unchanged under−{n↔
p}, −{m ↔ q} (Pauli exclusion principle) and {(nm) ↔ (pq)} (particle

indistinguishably) transformations due to the symmetry of the C(ij),(nm)(pq)

factors.
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Therefore the algebraic structure of Eq. (5.10) ensures the respect of the

particle indistinguishability and of the Pauli exclusion principle which con-

stitute necessary conditions for a number–conserving (NC) theory of DEs.

This can be shown in detail by solving the characteristic equation of the

eigenvalue problem Eq. (5.8), i.e. det(ω − S − Ξ(ω)) = 0. Using the non

linearity of the determinant operator,

det(
K(ξ)

ω −D′
ξξ

) =
det(K(ξ))

(ω −D′
ξξ)

Ns
, (5.13)

where Ns is the dimension of the matrix K, and ξ stands for the set of

indexes {(nm)(pq)}, and exploiting the relation [55]

det(A+B) =
∑

PR,PC

minor(A) minor(B), (5.14)

with PR and PC partitions of the rows and the columns of A and B 2, the

eigenvalue equation can then be rewritten as

det(ω − S − Ξ(ω)) =
∑

PR,PC

minor(ω − S) minor(Ξ(ω))

= det(ω − S) +
Nd
∑

ξ=1

det(K(ξ))

(ω −D′
ξξ)

Ns
+ ....

(5.15)

In the second line of Eq. (5.15) we considered the two terms in the minor ex-

pansion that have the maximum and the minimum degree in ω, respectively

Ns and −Ns. Thus, assuming a completely general structure for the K(ξ)

terms, Eq. (5.15) is a polynomial equation of degree Ns + NdNs. Conse-

quently the introduction of a frequency-dependent kernel yields, in general,

more solutions then the single electron transitions (Ns), although larger then

2We recall that a minor of a matrix A is the determinant of a submatrix M obtained
from erasing a fixed number n of columns and rows. The terms n = 0, i.e. the determinant
of the matrix M = A, is considered too.
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the correct number of poles, Ns +Nd. However, in our case, the particular

structure of the matrices K
(ξ)
ij,hk = Cij,ξC

∗
hk,ξ ensures that the determinant of

any but the one-dimensional sub-block of K(i) is zero. This means that the

second term on the r.h.s. of Eq. (5.15) is zero and in the minor expansion

only Nd terms of degree −1 survives, from which it follows that the total

degree of the polynomial expression det(ω − S − Ξ(ω)) is Ns +Nd.

In the notation of Eq. (4.12) e1 = Aλ,eh. By plugging the eigenvectors

and eigenvalues of Eq. (5.8) in Eq. (4.12) we see immediately that the Nd

DEs will appear as poles of ←→α (ω).

Feynman diagrams reteined in the second random phase

approximation

In order to create a common language between the sRPA and the DBSE ap-

proaches we start by noticing that, within TDA, the kernel of sRPA contains

all Feynman diagrams up to second order. The 16 second order diagrams

included are represented in Fig. (5.1).

To understand why DEs are described within this approximation we focus

on diagram (a) of Fig. (5.1), drawn for a specific time ordering. The diagram

describes a physical process where the electron-hole pair created at time t

emits a photon that generates another electron-hole pair at time t1. The

second e-h pair is annihilated at time t2. Therefore this Feynman diagram

is describing the coupling between a single– and a double–excitation.

Second random phase approximation, correlation, and

TDA: a closed end

In extended systems the dressing up of bare particles induced by correla-

tion effects is mediated by collective charge oscillations, i.e. by plasmons.

Therefore a coherent approach to DEs in correlated materials should also

describe the interaction with plasmons. The key problem in the description
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(a)

t

t1

t2

t
′

(a) bubble diagrams

(b) e–h exchange diagrams

(c) one particle exchange diagrams

Figure 5.1: Basic Feynman diagrams included in the second–RPA approach [53,
54] beyond the standard TDHF. The time flows from left to right respecting the
Tamm–Dancoff approximation. The sRPA approach, when the TDA is relaxed,
includes other 16 basic diagrams obtained by inverting the direction of all GF. The
complete set of diagrams is obtained by iterating the Dyson equation.

of plasmons is the possible breakdown of the TDA, as it occurs, for exam-

ple, in nano–structures [56]. Indeed, within the TDA neutral excitations are

described as packets of electron-hole pairs propagating only forward in time,

and, therefore, charge oscillations (plasmons) cannot be captured.
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(a) kernel diagrams

(b) self-energy diagrams

Figure 5.2: Second order Feynman diagrams relevant to the description of col-
lective excitations. Time flows from left to right. While kernel diagrams (a) are
included in the sRPA, trough the iteration of the Dyson equation, self-energy ones
(b) are not. This inconsistency prevent the sRPA to work in a correlated regime.

sRPA can, in principle, describe plasmons by going beyond the TDA.

However, as a matter of fact, the complexity of the method imposes to

retain only a few terms beyond TDA. Indeed, the sRPA, given by Eq. (5.8), is

equivalent to a Dyson equation for the response function that can be analysed

by using the diagrammatic technique. It results that while kernel diagrams

(see Fig. (5.2), panel (a)) are included in the sRPA, self-energy diagrams (see

Fig. (5.2), panel (b)) are not. It has been shown that, starting from the HF

approach, including only the kernel diagrams yields an incorrect description

of the excitation energies [57]. In a recent paper by Gambacurta et al. [46],

studying the spectrum of Sodium clusters, this problem is discussed and

identified as lack of ground state correlation. The same problem is identified

by Huix-Rotllant and Casida [32].

This is one of the major reasons why the sRPA approach is not very
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popular in the condensed matter field. Approaches like the Algebraic Dia-

grammatic Construction (ADC) are preferred [36, 58]. However in the ADC

approach kernel and self-energy diagrams beyond TDA are included only

up to finite orders3. While this is a reasonable approach for small systems,

it is expected to fail in extended correlated ones. In extended system any

order diagram in the bare interaction is relevant and kernel and self-energy

diagrams must be included up to an infinite order.

5.2 The dynamical Bethe–Salpeter equation

(step II)

It is now clear that a well defined approach to the description of DEs must

be NC, i.e., it must not introduce spurious non-physical solutions. At the

same time it must include diagrams up to infinite order and beyond the

TDA in order to describe screening effect and collective excitations. The

BSE approach is an alternative scheme which includes the infinite series of

both kernel and self-energy diagrams, thus providing a suitable approach to

achieve both goals in a coherent manner.

However in the DBSE presented in Ch. 4 the kernel Ξd2(ω) includes

the frequency dependency of kernel diagrams only, whereas the static self–

energy effects are included as a rigid shift of the QP eigen–energies. It

has been already shown that, at linear order, dynamical effects have to be

included in both the kernel and the self–energy [59]. Following this in-

put, in order to construct a consistent dynamical approximation, we im-

prove the DBSE including dynamical self–energy effects in a term Ξd1(ω)

to be added to the kernel Ξd2(ω). This extra term originates from the

3Another limit of the ADC scheme, from our point of view, is that this explicitely
includes all diagrams related by particle exchange and Pauli exclusion principle. For
double excitations this forces to perform a matrix diagonalization in the space of 2p −
2h, when the electron hole interaction among virtal particles is considered (ADC(2)–x
approximation [36])
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L̃0(ω) = −i
∫

dω′/(2π)G(ω′+ω/2)G(ω′−ω/2) as described in the following.

We use the Dyson equation for the GF written in the form:

G−1 = g−1 − Σs − Σd(ω) = G−1
s − Σd(ω) (5.16)

where we separated the Self–Energy in its static Σs and dynamic Σd parts,

and we defined G−1
s = g−1 − Σs. In this way we can write:

L̃0(ω) = L̃s(ω)

− i
∫

dω′

2π
Gs(ω

′ + ω/2)Gs(ω
′ − ω/2)Σd(ω′ − ω/2)G(ω′ − ω/2)

− i
∫

dω′

2π
Gs(ω

′ + ω/2)Σd(ω
′ + ω/2)G(ω′ + ω/2)Gs(ω

′ − ω/2)

− i
∫

dω′

2π
Gs(ω

′ + ω/2)Σd(ω
′ + ω/2)G(ω′ + ω/2)

Gs(ω
′ − ω/2)Σd(ω′ − ω/2)G(ω′ − ω/2), (5.17)

where L̃s = −iGsGs. Using the same trick adopted for the kernel, we mul-

tiply the second, third, and fourth term on the right-hand side of Eq. (5.17)

by L̃sL̃
−1
s from the left and by L̃−1

0 L̃0 from the right, and we obtain

L̃0(ω) = L̃s(ω) + L̃s(ω)Ξ
d
1(ω)L̃0(ω) (5.18)

with

Ξd1(ω) = −iL̃−1
s (ω)

∫

dω′

2π
[

Gs(ω
′ + ω/2)Gs(ω

′ − ω/2)Σd(ω′ − ω/2)G(ω′ − ω/2)
+Gs(ω

′ + ω/2)Σd(ω
′ + ω/2)G(ω′ + ω/2)Gs(ω

′ − ω/2)
+Gs(ω

′ + ω/2)Σd(ω
′ + ω/2)G(ω′ + ω/2)

Gs(ω
′ − ω/2)Σd(ω′ − ω/2)G(ω′ − ω/2)

]

L̃−1
0 (ω).
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For the description of DEs we set to zero the last term on the right-hand

side of Eq. (5.17) as it describes a process where six Green-function lines

appear in the same moment, so a triple excitation. We thus obtain a total

kernel Ξd(ω) = Ξd1(ω) + Ξd2(ω) to be inserted in Eq. (4.17), which we write

here again for clarity

L̃ij,hk(ω) = L̃sij,hk(ω) + L̃sij,i′j′(ω)K̃i′j′,h′k′(ω)L̃h′k′,hk(ω). (5.19)

The zero order term is now called Ls(ω) to underline that it includes only

the static effects of the self energy.

Ξd1(ω) = −iL̃−1
s (ω)

∫

dω′

2π

[

Gs(ω
′+ω/2)Gs(ω

′−ω/2)Σd(ω′−ω/2)G(ω′−ω/2)

+Gs(ω
′ + ω/2)Σd(ω

′ + ω/2)G(ω′ + ω/2)Gs(ω
′ − ω/2), (5.20)

Ξd2(ω) = L̃−1
0 (ω)

1

(2π)3

∫

dω′dω′′dω′′′L0(ω, ω
′, ω′′)

Ξ(ω, ω′, ω′′′)L(ω, ω′′′, ω′′)L̃−1(ω). (5.21)

The complexity of the original Eq. (4.13) is thus transferred in the structure

of the DBSE kernel Ξd(ω). We can, however, simplify the dependence on

G and L in Ξd(ω) by starting from its linear limit where G(ω) ≃ Gs(ω) in

Eq. (5.20) and L(ω, ω′, ω′′) ≃ L0(ω, ω
′, ω′′) ≃ Ls(ω, ω

′, ω′′) in Eq. (5.21).

This limit is fully justified in the DBSE by the fact that it accounts for

the simultaneous evolution of two e-h pairs, which represent the dominant

channel in the description of DEs. Accordingly it is crucial that the static

part of the self-energy is treated in a separate way. In contrast to Σd in fact,

the static part of the self energy Σs cannot be treated through a linearized

kernel, as this would lead to numerical instabilities [60].
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We need now to approximate the unknown quantities Σs, Σd(ω) and

Ξ(ω, ω′, ω′′). One can verify that the DBSE is equivalent to sRPA if one

chooses Σs = ΣHF , Σd = Σ2(ω), thus including all second order Feynman

diagrams of sRPA, and Ξ(ω, ω′, ω′′) = ∂(Σs+Σd(ω))
∂G . Starting from this obser-

vation in the next section we derive a diagrammatic number conserving rule

which we then use to construct an approximation able to properly describe

correlated system. To do this we will consider the GW approximation to

the Self–Energy evaluated at the QwP eigen–energies and we will derive the

dynamical part Σd and the kernel Ξ(ω, ω′, ω′′) starting from the screened

Coulomb interaction, in order to include the static GW-BSE scheme in the

ω → 0 limit. The derivation will be carried on within TDA in order to keep

the discussion as simple as possible.

5.3 A number–conserving kernel for correlated

systems

The DBSE equation provides a powerful starting point to tackle the double-

excitation problem, as the diagrammatic approach makes possible to intro-

duce different levels of approximation that overcome the limits of the sRPA.

We achieve this by following two essential steps: i) we use the sRPA to

create a close link between the diagrams introduced in the DBSE kernel,

the particle indistinguishability and the Pauli exclusion principle; ii) we use

this link to define a number–conserving correlated kernel starting from the

standard GW approximation.

The diagrammatic number conserving rule

By taking into account the 16 diagrams of Fig. (5.1) the DBSE (and conse-

quently the sRPA) correctly describes particle indistinguishability and Pauli

exclusion principle. Here we illustrate how this can be deduced from the
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(c) Half diagrams recombination

Figure 5.3: The DNCR in practice. We take as reference the two time orderings
of the kernel bubble diagram, corresponding to the two first diagrams of Fig. (5.1).
The general procedure to get a NC kernel is to split each initial diagram in two
half–diagrams. Then these half diagrams must be connected by exchanging in all
possible ways all e–h pairs and all single particles. This produces a new group
of diagrams that must be processed using the same procedure. When no new
diagrams appear the resulting kernel is NC.

inspection of the Feynman diagrams. The 16 diagrams describe processes

in which a DE appears from a photon emitted either from the electron or

from the hole and then absorbed back (these two possibilities are the first

two terms in the definition of C(ij),(nq)(mp), see Eq. (5.11) ). Therefore each

double-excitation process can start and end in two ways so that there are

4 possible processes, which are the four bubble diagrams of Fig. (5.1). The

other 12 diagrams reflect the particles indistinguishability that imposes the

electron lines, as well as the hole lines, to be interchangeable among them-

selves.
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Following Fig. (5.3) we can derive a graphical rule that any approxima-

tion has to respect in order to be NC, this is the proposed Diagrammatic

Number Conserving Rule (DNCR). First we consider an initial group of

diagrams, chosen in such a way to describe the relevant physics we want to

introduce in the theory (like plasmons and excitons). Then we split each dia-

gram in two parts that, connected in all possible ways obtained by imposing

particles exchange, lead to a new group of diagrams. When the same pro-

cedure applied to the resulting diagrams does not lead to any new diagram,

then the approximation is, by definition, NC. As an illustration, the DNCR

can be applied to the sRPA diagrams, shown in Fig. (5.1). It can be shown

that all sRPA diagrams can be obtained from the first two by applying the

proposed DNCR.
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Figure 5.4: Basic RPA diagram used as a starting point for the correlated kernel.
All other diagrams are obtained by applying the DNCR, as discussed in the text.

The diagrammatic number conserving rule applied to the

Bethe-Salpeter equation

A crucial consequence of the DNCR is that, as exemplified in Fig. (5.3), a

NC kernel must include all kind of diagrams. Therefore, whatever initial

approximation is chosen the repeated application of the DNCR will create a

balanced mixture of diagrams in order to respect particle indistinguishability.

If the DNCR is not respected by selecting only a class of diagrams, then

spurious solutions are expected to appear. This is the case of the kernel

proposed in Ch. 4 that was obtained from the standard Ξ ≃W (ω) by simply

relaxing the static approximation for W . This kernel introduces an infinite

series of RPA diagrams only in the interaction W , neglecting all consequent

diagrams imposed by the DNCR. As a consequence spurious poles in the

polarizability are found as predicted by the DNCR.

Nevertheless the kernel proposed in the previous chapter describes the

interaction with plasmons, which is a desirable property which we want to

retain, at the same time forcing the kernel to be NC. However, before ap-

plying the DNCR, we have to note that the W (ω) propagator describes the

evolution of charge oscillations, composed by renormalized packets of e–h
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ν1

ν3 ν4

ν2

ν1 ν2

ν2 ν1

Figure 5.5: Build up of correlated Feynman diagrams connecting two Feynman
diagrams. The effect of exchange among two RPA excitations is shown using dotted
lines.

pairs. This clearly makes a distinction between the e-h pairs embodied in

W (ω) and the real e–h pairs created by the scattering process leading to

the breakdown of the particle indistinguishability. A better starting point

is instead the basic diagram showed in Fig. 5.4, where all e–h pairs are cor-

rectly renormalized. In this diagram the filled bubble and the filled rectangle

represent the RPA response function χRPA (ω). By introducing the Lehman

representation for χRPA in the same notation of the previous chapter we can

write

χRPAeh,e′h′(ω) =
∑

ν

Rν,ehR
∗
ν,e′h′

ω − Ων
.. (5.22)

We will call the poles of χRPA RPA excitations. Note that these capture

the physics of the plasmonic oscillations.

The DNCR imposes to consider all possible diagrams obtained from

Fig. 5.4 by exchanging the basic excitation propagators. The key point

here is to rotate from the independent e–h pairs to the RPA basis, where
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e–h pairs are replaced by the RPA excitations. Therefore we proceed by

splitting the RPA propagators, using Eq. (5.22), as sketched in Fig. (5.5).

Then we consider all diagrams where the RPA excitations are exchanged.

Mathematically the procedure sketched in Fig. (5.5) corresponds to rotate

in the RPA excitation space the residuals and poles of Eq. (5.10). Each

term in the rotated counterpart of Eq. (5.11) will correspond to a possible

connection induced by the DNCR:

CRPAij,ν1ν2 =
1

2

∑

nq,mp

(

(vin,mpδj,q + vmp,jqδi,n)Rν1,npRν2,mq + {ν1 ↔ ν2}
)

..

(5.23)

As a consequence the correlated version of Eq. (5.10) will look like

(

ΞdRPA
)

(ij),(hk)
=
∑

ν1 6=ν2

CRPAij,ν1ν2

[

CRPAhk,ν1ν2

]∗

ω − (Eν1 + Eν2 + 2iη)
. (5.24)

The symbol {ν1 ↔ ν2} in Eq. (5.23) imposes the invariance of the correlated

kernel under exchange of RPA excitations. Consequently the kernel ΞdRPA
is by definition invariant under exchange of two RPA excitations. However

RPA excitations are bosons so that Pauli exclusion principle is not taken

into account and the obtained kernel is not fully NC. To fix this problem it

is sufficient to impose the condition ν1 6= ν2 in Eq. (5.24).

The DBSE obtained by using the ΞdRPA kernel includes all self–energy

terms obtained from Σd = GW and Ξ(ω, ω′, ω′′) = δ(ω−ω′)W (ω′ −ω′′). In

addition extra terms appear in order to fulfil the NC condition. Interest-

ingly ΞdRPA, within TDA, also embodies the full frequency dependent term

G δW/δG(ω) which is usually neglected in the standard BSE approach. In

the present case these second order diagrams in W are indeed needed to

correctly account for the particle indistinguishability. The resulting kernel,

whose diagrammatic expression is sketched in Fig. (5.6), does have the right

mathematical structure by construction, so that no spurious solutions are
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Figure 5.6: The final correlated DBSE kernel. The filled regions represent the
propagation of RPA excitations.

present.
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5.4 Numerical results on model molecular sys-

tems

In the following we will illustrate various conceptual and technical aspects

of our approach using two benchmark model systems, based on the C8H2

and the C4H6 molecules. These unsaturated hydrocarbon chains are often

chosen as benchmark systems to test theoretical methods aimed to describe

double excitations. By calculating the polarizability of these systems we

will show: i) the role played by subgroups of diagrams in the description

of double excitations; ii) the fact that the number conserving rule not only

applies to the total number of poles, but also to the number of optically

active poles; iii) the absence of spurious double excitation peaks that appear

that appear in approaches [33] that violate the NC rule.

The calculations have been performed using the YAMBO code [61], where

we implemented sRPA for closed–shell systems, within the TDA. Further-

more we approximate both QP and HF wave–functions with KS–LDA wave–

functions.

sRPA produces results similar to the GW–BSE approach or to the DBSE

when only “bubble diagrams” (first row of Fig. 5.1) or bubble diagrams and

“eh exchange diagrams” (second row of Fig. 5.1), respectively, are selected.

Therefore this implementation allows us to explore the performances of the

various approaches by selecting specific subgroups of diagrams.

We first performed a ground-state calculation with the ABINIT code [62],

within DFT/LDA, with an energy plane–wave cut-off of 20 Hartree and a

super–cell of 25 × 25 × 40 Bohr for the C8H2 (a linear molecule ≈ 21 Bohr

long) and a smaller super–cell of 25 × 25 × 15 Bohr for the C4H6 (the

molecule extends for ≈ 10 Bohr both in the x and y directions). Then we

performed excited-state calculations in the basis–set of KS–states, consider-

ing only the states from HOMO-3 to LUMO+3. In this way our systems can

be mapped into an eight level model with 16 single and 240 double excita-
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Figure 5.7: Second Random Phase Approximation spectra. For both model sys-
tems the frequency–dependent kernel produces extra peaks (red line) which cannot
be described by a static kernel. The black thin dashed line is the Independent–
Particle spectrum. The inset is present here as reference to detect spurious peaks
in the insets of Fig. 5.8 and 5.9. Alla spectra in this and in the following figures
include an artificial broadening due to the use o an imaginary factor iη = 0.05eV
in the Green’s function denominator.

tions. All the C8H2 eigenvalues are doubly degenerate due to the symmetry

of the molecule.

In the description of double excitations the kernel frequency dependence

becomes crucial when one or more poles fall in the absorption spectrum

energy range. In this case the static approximation fails, and extra peaks

appear. In order to artificially simulate this situation in our systems we use

HF eigenvalues to construct L0, while the kernel is built with KS–LDA ones.

This choice gives us the possibility to investigate more physical situations
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which could arise for correlated materials.

The results of these calculations are plotted in Fig. 5.7. For both systems

at the HF Independent–Particle (IP) level there is a clear peak, which falls

close to 9 eV for the C8H2, and close to 12 eV for C4H6. As expected

the kernel constructed with KS–LDA eigenvalues has poles in these energy

ranges, so that extra peaks appear in the spectrum. The effect is visible in

both model systems: in C8H2 the main peak is essentially split in two (see

Fig. 5.7 panel (a)); for C4H6 several extra peaks appear as shown in the

inset of Fig. 5.7 panel (b).

We will now explore the role played by the various subgroups of diagrams,

namely (a) the “bubble diagrams” (first row of Fig. 5.8); (b) the “eh exchange

diagrams” (second row of Fig. 5.8), which are obtained from the bubble

diagrams via eh exchange; (c) the “particle exchange diagrams” (third and

fourth row of Fig. 5.8), which are obtained from the bubble diagrams via

single–particle exchange.

Fig. 5.8 shows the spectra obtained taking into account, beyond the

TDHF scheme, only selected families of diagrams. By selecting only dia-

grams of type (b) or (c) the spectra are not positive defined. This unphys-

ical property can be understood by noticing that the frequency–dependent

kernel constructed from diagrams (b) and (c) does not have the mathemat-

ical structure of Eq. (5.10). On the contrary the kernel constructed from

the bubble diagrams (a) is positive, though particle indistinguishability and

Pauli exclusion principle are not respected as illustrated in previous sections.

Indeed the spectra constructed from bubble diagrams is positive defined,

though spurious peaks appear: in C8H2 (Fig. 5.8 panel (a)) one has three

peaks at around 12 eV, and in the C4H6 many peaks appear (see Fig. 5.8

panel (b), the left inset) which are not present in the full sRPA spectra.

Fig. 5.9 shows the spectra constructed taking into account both subsets

of diagrams (a) and (b) or (a) and (c) together. The spectra are positive

defined. However, only the former combination gives the right number of
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Figure 5.8: The spectra obtained selecting only specific subgroup of diagrams.
By selecting only “eh exchange” (green dashed line) or “one particle exchange”
(blue dots) an unphysical (negative) polarizability is observed. Only the spectra
obtained with the kernel constructed using the “bubble diagrams” (red line) is
positive defined. However when only “bubble diagrams” are used, as proposed by
Romaniello et. al [33], spurious peaks appear. These peaks do not appear in the
spectra obtained from the full sRPA kernel (see Fig. 5.7).

peaks (i.e. the same number of the full sRPA spectrum) whereas the latter

produces spurious poles.

In this perspective it is interesting to compare the two cases. In the

C8H2 model the subset of diagrams (a) and (b) (green dashed line) gives

a spectrum which is very close to the full sRPA spectrum of Fig. 5.7 (red

line) both in the structure and number of poles. Diagrams of kind (c) are,

instead, negligible.

In the C4H6 model, on the contrary, diagrams of kind (c) play an im-
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Figure 5.9: Spectra obtained with the kernel constructed using the “bubble+eh
exchange” diagrams (green dashed line) and the “bubble+eh exchange” diagrams
(blue line). Both spectra are positive defined but only the combination “bubbles
+ eh exchange” gives the same number of poles of the full sRPA spectra (see
Fig. 5.7). On the contrary the combination ”bubbles + one particle exchange”
gives spurious solutions.

portant role: they shift the peak of the “bubbles” polarizability towards the

results obtained with the sRPA kernel. Diagrams of kind (b), instead, in

this case have a negligible effect on the position of the peaks. However the

choice (a) + (c) gives several spurious poles (see Fig. 5.9 panel (b), blue line

in the right inset) and, as for C8H2, only the combination (a) and (b) yields

the correct number of poles (see Fig. 5.9 panel (b), green dashed line in the

left).

The sum of diagrams (a) and (b) describes eh pairs as indistinguishable
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bosons, whereas the sum of diagrams (a) and (c) does not correspond to any

defined statistic. We can then conclude that diagrams of kind (c) are mean-

ingful only if added to the other two classes of diagrams in order to describe

particle indistinguishability. However, the spectrum obtained combining the

diagrams (a) and (b) has indeed the same number of peaks of the spectrum

obtained using the complete kernel, thus supporting our recipe to construct

a correlated kernel discarding the subset of diagrams (c)4. Another conclu-

sion we draw from these results is that our approach, by respecting the NC

rule, ensures that the theory produces not only the correct total number of

poles, but also the correct total number of optically active (and optically not

active) poles.

4The subset of diagrams (c) could be included in a correlated kernel only at the price
of a direct diagonalization in the space 2p− 2h as in the ADC(2)–x scheme
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5.5 Conclusions

In this part of the thesis we presented a method to include double excitations

in a consistent manner within the GW+BSE approach. The main idea has

been to correct the standard BSE kernel in order to go beyond the static

approximation fulfilling the Number Conserving (NC) condition. The result-

ing scheme keeps all the advantages of the Many Body approach, that is the

ability to describe extended and correlated materials in a consistent man-

ner, without producing spurious excitations, provided the cndition ν1 6= ν2

in Eq. (5.24) is imposed. This is not an exact condition of the kernel but is

sufficient to give the correct numbering of poles.

The NC condition results from an inspection of the similarities and the

differences between the BSE scheme, designed for solids, and the sRPA ap-

proach, designed for isolated systems. The main character in the first is the

screening, while in the second it is the role of exchange. As pointed out in

the very recent work by Huix-Rotllant and Casida [32], there is a great in-

terest in this direction in order to develop approximations at the nanoscale

interface between molecules and solids. As opposed to other works, how-

ever, we do not directly consider all exchange diagrams related to the RPA

screening re–summation, because we believe that such an approach would be

impractical, especially for nanostructured materials. Instead, our method is

aimed to capture the main feature related to the exchange principle without

requiring matrix diagonalizztion in the space of double excitations.



Part III

Carbon nanotubes in

magnetic fields





Chapter 6

The Aharonov Bohm

effect in carbon nanotubes

The Aharonov–Bohm (AB) effect [63] is a purely quantum mechanical effect

which does not have a counterpart in classical mechanics. A magnetic field B

confined in a closed region of space alter the kinematics of charged classical

particles only if they move inside this region. Electron dynamics, instead,

governed by the Schrödinger equation, is influenced even if the particles

move on paths that enclose the region where the magnetic field is confined,

where the Lorentz force is strictly zero. If this closed region is the inner

part of a nano–tube, electrons traveling around the cylinder are expected

to manifest a shift of their phase. The mathematical interpretation of this

effect is connected with the definition of the vector potential, which, in the

case of confined magnetic fields, cannot be nullified everywhere.

This extraordinary effect, first predicted by Aharonov and Bohm [63] (AB)

in 1960, was interpreted as a proof of the reality of the electromagnetic poten-

tials. The idea that electrons could be affected by electromagnetic potentials

without being in contact with the fields was skeptically received by the sci-



112 The Aharonov Bohm effect in carbon nanotubes

entific community. At the same time the AB paper spawned a flourishing of

experiments and extension of the original idea. The first experiment aimed

at proving (or disproving) the AB effect revealed a perfect agreement with

the theoretical predictions [64]. Nevertheless only some years later, in 1986,

the experiment which can be considered as a definitive proof of the correct

interpretation of the AB effect was realized. Tonomura et al. [65], using

superconducting niobium cladding, were in fact able to completely exclude

the possibility of stray fields as alternative explanation of the predicted and

observed AB oscillations.

Nowadays the AB effect can be used in a wide range of experiments, from

the investigation of the properties of mesoscopic normal conductors to the

experiments designed to reveal the structure of flux lines in superconductors.

Growing interest is emerging in the field of nanostructured materials. One

of the most well–known case is given by Carbon NanoTubes (CNTs) that, if

immersed in a uniform magnetic field aligned with the tube axis, have been

predicted to show peculiar oscillations of the electronic gap. These oscilla-

tions are characterized by a period given by the magnetic flux quantum h/e

and are commonly interpreted as caused by the change in the wave functions

of the electrons localized on the tube surface induced by the Aharonov-Bohm

effect.

The first experiment carried on CNTs, in 1999, described the oscillations

in the electronic conductivity [66], but with period of h/2e. This devia-

tion from the predicted AB oscillation period has been explained in terms

of the weak localization effect [67] induced by defects and dislocation by

Al’tshuter, Aronov, Spivak [68] (AAS effect). Only in 2004 a clear proof

of the existence of AB oscillations with an h/e period have been given by

Coskun et coll. [69] by measuring the conductance oscillations in quantum

dots. The dots were built using concentric Multi–Wall (MW) CNTs of dif-

ferent radii, short enough to prevent the appearance of weak localization.

In the same year Zaric et al. [70] observed modulation in the optical gap of



6.1 What is the Aharanov–Bohm effect? 113

(a) AB picture (b) AB experiment

Figure 6.1: Representation of the AB effect. In the left panel, panel (a), in
green the vector potential generated from a solenoid in the region B = 0 in the
symmetric gauge. From Ref. [71]. On the the right the ideal experimental setup
of the AB effect. From Ref. [63].

pure Single Wall (SW) CNTs with oscillations of h/e period.

6.1 What is the Aharanov–Bohm effect?

The AB effect was introduced in [63] by considering the interference exper-

iment described in Fig. (6.1.b). An (ideally infinite) solenoid generates a

magnetic field only inside the solenoid itself. In contrast to the magnetic

field, the vector potential A, which satisfy the condition ∇×A = B0 inside

the solenoid, will not be zero outside. Indeed in the symmetric gauge the

total vector potential written in cylindrical coordinates, A = (0, 0, Aφ) is

Aφ =
1

2
B0r for r < r0,

Aφ =
1

2
B0

r20
r

for r > r0,

(6.1)
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where r0 is the radius of the solenoid. In Fig. (6.1.a), the vector poten-

tial around the solenoid is represented by the green circumferences. In real

experiments, as the solenoid is not infinite, the return magnetic field must

properly set–up in order to avoid the regions where the electrons are per-

mitted. Electrons are injected in the experiment from a point outside and

far from the solenoid (see Fig. 6.1.b)

If electrons were classical particles their equation of motion would be

completely determined by the magnetic field only and in the experiment

of Fig. (6.1.a) they would not be affected at all by the presence of the

solenoid. Electrons, instead, are quantum particles and are governed by

the Schrödinger equation, where the potentials do enter. In [63] Aharonov

and Bohm demonstrated that the electrons feel the presence of the solenoid

by acquiring a phase shift between the two paths of Fig. (6.1.a). This phase

can be measured as change in the interference pattern on the screen. The

phase shift, S(x), between the two paths can be expressed in terms of the

vector potential as

S(x) = − e
h

∫

γ(x)

A(x′)dx′ (6.2)

and, computing the integral along the closed line obtained from the path of

the two wave–packets, we obtain S(x) = e/h Φ with Φ the magnetic flux.

The electronic wave–function which describes the image on the screen is then

Ψ′ = Ψ0 e
−iΦ/Φ0 , with Ψ0 the wave–function when the experiment is carried

out without the solenoid and Φ0 = h/e the flux quantum.

A static version of the AB effect also exists. If we consider a free electron

on a ring which encloses a solenoid we can compute its eigenvalues as [72]

El =
h̄2

2mr2

(

lz −
Φ

Φ0

)2

, (6.3)

where lz is the canonical angular momentum of the electron, r is the radius of

the ring and Φ the magnetic flux through the ring. We see that the presence
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of a magnetic flux modifies the eigenvalues splitting their ±lz degeneracy.

The quantum mechanical nature of the AB effect is clearly shown by its

proportionality to the magnetic flux Φ0, which goes to zero in the classical

limit.

Interpretation of the Aharonov–Bohm effect

When they first proposed the existence of the effect, Aharonov and Bohm

claimed that it was a proof of the reality of the electromagnetic potentials.

Their paper generated an intense debate in the scientific community which

is not yet terminated. Here we offer some considerations which are inspired

by the review by Peshkin and Tonomura [72] on the AB and in particular

on the “central role of the quantized angular momentum”.

Consider the static AB effect previously described. We will show in

the following that, if the AB effect did not exist, than we would obtain,

as a result, that the eigenstate of the system depend on the history of the

system. This is in sharp contrast with the foundations of quantum mechanics

which states that the Hamiltonian of a system is, at any time, a well defined

operator with unique eigenvalues and eigenvectors.

The hypothesis that the AB does not exist means that and we can com-

pute the electronic eigenstates in a (multi-connected) region of space from

the sole knowledge of the magnetic field in that region. This means, in our

static example, on the ring and nearby it where the electronic wave–function

is different from zero.

Suppose that at an initial time t = t0 there is no current flowing through

the solenoid and one electron is in a steady state of the ring, El =
h̄2

2mr2 l
2
z ,

with total kinetic angular momentum in the z-direction Kz = h̄lz. Then

we turn on the current and, during the transient, a time dependent electro-

magnetic field is generated by the solenoid. This field will generate a torque

on the electron ∆Kz = h̄ (eΦ/h) (details of the calculation can be found

in [72]) so that the total angular momentum of the electron, which must
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then be conserved, becomes Kz = h̄(lz − eΦ/h).
Let’s now consider a second possibility, where the electron on the ring

originates from an eh pair created long after the electromagnetic wave has

been dissipated. In this case the electromagnetic field is zero on the ring and

nearby. Then the steady states on the ring, accordingly to our hypothesis

that the AB effect does not exist, have eigenvalues El =
h̄2

2mr2 l
2
z indepen-

dently of the presence of the solenoid.

The natural conclusion would, then, be that the electronic eigenstates

depend on the history which is clearly in contradiction with the principles of

quantum mechanics. As a consequence the AB effect must exist in order to

ensure that the eigenstate in presence of a magnetic field, possesses angular

momentum Kz = h̄(lz − eΦ/h). Thus we can interpret the AB effect as

a witness of the previous switching on of the solenoid, which modified the

space around itself.

Persistent Currents

The existence of the AB effect is strongly related to the quantization of the

angular momentum in quantum mechanics [72]; to be precise, in the Hamil-

tonian formalism the canonical angular momentum L = r× p is quantized.

When a vector potential A exists, the mechanical angular momentum of

the electron is K = r × (p−A) which is, in general, non quantized. This

observation has an important consequence: the existence of Persistent Cur-

rents (PCs) in quantum mechanics generated when elecrons move in some

particular topologies, like rings or cylindrical shaped objects.

In classical mechanics if we move a metallic ring in a region of space where

a magnetic field is present the change in the magnetic flux induces a transient

voltage and a current, that will eventually disappear due to the existence of

dissipation mechanisms. The appearance of an angular current proportional

to the vector potential j(A) = +e2/m2 A|Ψ|2 is in fact counterbalanced by

an opposite current j(p) = −e/m Re[Ψ∗ p Ψ] that relaxes the system to the
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Figure 6.2: Schematic representation of a PC in a mesoscopic metal ring threaded
by a magnetic flux quantum, Φ. For rings ∼ 1µm in size and at a temperature
T ∼ 1K, the flux quantum induces a PC due to the AB effect. From Ref. [73]

lower energy configuration with j = 0. The current flowing in the angular

direction is proportional to the angular momentum divided by the radius of

the ring. However the term r× p can assume only integer values and the

total current can be nullified only when r×A is an integer, while for any

other value PCs exist. If we consider a constant magnetic field then, in the

symmetric gauge,

j
(A)
φ =

e2

m2
|Ψ|2Aφ ≃

h̄eρ

m2Rring

Φ

Φ0
(6.4)

can be nullified only when Φ/Φ0 is an integer. Here ρ is the electronic density

andRring the radius of the ring where electrons are trapped. The existence of

a periodic lattice partially breaks the quantization of the anguar momentum,

however in mesoscopic rings (or cylinders) the quantization is almost exact

and even at the nanoscale the argument is correct in first approximation.
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The possibility of observing PCs in non superconducting mesoscopic

metallic rings was first proposed by Büttiker et al. in 1983 [74], while ex-

perimental confirmation was reported in 1990 by a research group at Bell

Laboratories [75]. Fig. (6.2) provides a schematic representation of PCs in a

mesoscopic ring. PCs have been predicted to exist in nanostructured mate-

rials, like carbon nanotubes [76]. However PCs have been measured only in

2009 in gold and aluminum rings [77, 78]. PCs in fact are easily destroyed

increasing the temperature of the system by the smearing on the electronic

occupations. In particular if the smearing is greater than the difference in

energy between states with opposite angular momentum the currents vanish;

for this reason PCs do not exist in macroscopic objects.

PCs have never been measured in CNTs. We will discuss this subject

more in details in the next chapter.

The Al’tshuler, Aronov and Spikav effect

In the next section we will describe how the AB effect influences the elec-

tronic properties of CNTs. We will provide some experimental evidences,

like the resistivity oscillations observed in MW–CNTs with a period which

is half the AB period. To understand this result we need to introduce here

the concept of Weak Localization (WL), which was first proposed in the

1979 [67]. WL is often seen as a precursor of strong localization in dis-

ordered materials and the detailed derivation of the phenomena is rather

intricate while its phenomenological interpretation is quite intuitive.

In the classical theory of transport phenomena the total probability for

a particle to transfer from point P to point Q (Fig. (6.3) ) is the sum of

probabilities of such a transfer over all possible trajectories. In quantum

mechanics this result corresponds to neglect the interference of scattered

electrons propagating along different paths and having approximately ran-

dom phases under the quasi–classical condition λ << l, with l the length of

the propagation path and λ the De Broglie wave–lenght of the wave–packet.
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Figure 6.3: Different types of quasi–classical particle trajectories connecting P
and Q. Point O is a self–crossing point of two possible trajectory. From Ref. [79]

There is, however, a specific class of trajectories, namely, self–crossing tra-

jectories (trajectory 2 in Fig. (6.3) ) for which the wave interference turns

out to be essential. Indeed two waves propagating along such trajectories in

two opposite directions (conjugated waves) accumulate the same phase dif-

ference. Therefore the contribution of these trajectories to the probability

of coming to the same point (point O in Fig. (6.3)) will be

|A1 +A2|2 = |A1|2 + |A2|2 + 2Re[A∗
1A2] (6.5)

which is twice the sum of the squared amplitude moduli. A higher probability

of returning back to point O means a lower probability of transfer from point

P to point Q. Thus (weak) localization is favourite and, hence, results in an

increase of the resistivity.

If the sample is placed in a magnetic field then the probability amplitudes

of completing the loop on contour 2 of Fig. (6.3) acquire an additional phase

A1 → A1e
2iπ Φ

Φ0 A2 → A2e
−2iπ Φ

Φ0 (6.6)
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Figure 6.4: Rolling a Plane of graphene to obtain (n,0) and (n,n) CNTs. From
Ref. [80]

and then the phase difference will be ∆ϕ/(2π) = 2Φ/Φ0. Indeed the com-

bined WL and AB effects predict the existence of resistivity oscillations with

a period of Φ0/2 and is known as AAS effect from the names of Al’tshuler,

Aronov and Spikav who first proposed its existence in 1980 [68].

6.2 An introduction to carbon nanotubes

A CNT is a honeycomb lattice rolled into a hollow cylinder with nano–metric

diameter and µm length. CNTs were discovered and first characterized in

1991 by Iijima from NEC laboratories (Japan) [1]. The first CNTs discovered

were made of several concentric cylindrical–like shells regularly spaced by an

amount of about 3.4 A as in conventional graphite materials. These Multi–

Wall CNTs (MWCNTs) were first synthesized with diameters ranging from a

few nanometers to several hundred nanometers for the inner and outer shells,

respectively. As for the length, MWCNTs extending over several microns are

currently synthesized. Shortly after the discovery of MWCNTs, Single–Wall

CNTs (SWCNTs) were synthesized in abundance using arc–discharge meth-

ods with transition–metal catalysts [81, 82]. These tubes have quite small

and uniform diameter, on the order of 1nm = 10−9m. This unprecedent-
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edly small diameter, combined with the crystalline perfection of the atomic

network, explains why these objects were quickly considered as the ultimate

carbon–based 1D systems. Crystalline ropes or bundles of SWNTs, with

each rope containing tens to hundreds of tubes of similar diameter, closely

packed in a hexagonal configuration, have also been synthesized using a laser

vaporization method [83] and other methods.

Depending on the community, specific interests, and targeted applica-

tions, nanotubes are regarded as either single molecules or quasi-one-dimensional

crystals with translational periodicity along the tube axis. As there are an

infinite number of ways of rolling a sheet into a cylinder (two of them are

represented in Fig. (6.4) ) the large variety of possible helical geometries,

defining the tube chirality, provides a family of CNTs with different diam-

eters and microscopic structures. Some properties of these nanotubes, such

as the elastic ones, can be explained within a macroscopic model of a ho-

mogeneous cylinder. Others depend crucially on the atomic configuration.

For instance, the electronic and transport properties, are certainly among

the most significant physical properties of CNTs, and crucially depend on

the diameter and chirality. This dependence on the atomic configuration is

quite unique in solid-state physics.

CNTs can be either semi–metallic or semi–conducting, with a band gap

varying from zero to a few tenths of an eV , depending on their diameter and

chirality. Further, the band gap of semi–conducting tubes, or the energy

difference between the peaks in the electronic density of states, the so–called

Van Hove singularities, can be shown to first order to be simply related to

the tube diameter. Such remarkable results can be obtained from a variety

of considerations, starting from the so-called Zone Folding Approach (ZFA),

based on knowledge of the electronic properties of the graphene (a single

sheet of graphite), to the direct study of nanotubes using semi–empirical

Tight–Binding (TB) approaches. The comparison with more sophisticated

Ab–initio calculations, and with available experimental results, permits to
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Figure 6.5: The Zone Folding Approximation. On the left panel the section
of graphene which describes the (3, 5) CNT within the ZFA. Periodic boundary
conditions are imposed on the dotted lines. On the right panel the Brillouin Zone
of graphene with the k–points lines which respect the the rolling condition of a
(5, 5) CNT. From Ref. [2].

find the limits of these simple approaches.

The Zone Folding Approach

In the ZFA the wave–functions Ψn,kx,kz (x) = ei(kxx+kzz)un,kx,kz (x) of the

graphene sheet are used to describe electrons in CNTs assuming that the cur-

vature of the sheet gives negligible effects if the tube radius is large enough.

Then the only difference the electrons feel, with respect to graphene, is the

quantization of the angular momentum lz = kxR (we are assuming here

that the tube direction is the z-axis). Accordingly only the wave–functions

ei(lz/Rφ+kzz)un,lz/R,ky (x) are considered in the model.

In Fig. (6.5), on the left (a) panel, a CNT is represented as a stripe in the

plane of graphene. In the ZFA each CNT can be identified by two numbers,

which represent the circumference vector in the basis of the direct lattice
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vectors a1,a2 of graphene. Boundary conditions are then imposed which

results in selecting specific k–points in the reciprocal space. In Fig. (6.5), on

the right top panel, the Brillouin Zone (BZ) of graphene is represented and

the lines correspond to the k points which respects the boundary conditions

of a (5, 5) CNT. The right bottom panel, instead, shows the energy surface

of the π−π∗ bands of graphene, cut by the allowed k–points lines which can

be used to construct the CNT band structure.

The predictions of the ZFA give a good description of the properties

of CNTs but some corrections have to be considered both for SWCNTs,

to include the curvature of the tubes, and for MWCNTS, to include the

effect of the interaction among different tubes. For example the position

of the so called Dirac points (see the next subsection for the definition of

the Dirac points) has to be shifted in the Brillouine Zone due to curvature

effects. Finally the ZFA results depend on the method used to compute the

band structure of graphene. The energy surfaces in the Fig. (6.5) have been

calculated within the TB model, for example.

The Tight Binding Model for graphene

The graphene plane is an hexagonal lattice with two atoms per unit cell

(A and B) and a basis defined by the vectors (a1, a2), as in Fig. 6.5. The

condition ai · bj = 2δi,j allows one to obtain the reciprocal lattice vectors

(b1, b2). Every carbon atom possesses four valence electrons (two 2s and

two 2p electrons). When the atoms are placed onto the graphene hexagonal

lattice the electronic wave functions from different atoms overlap. However,

such an overlap between the pz orbitals and the s or px and py electrons

is strictly zero by symmetry. Consequently, the pz electrons, which form

the π bonds in graphene, can be treated independently of other valence

electrons. Within this π-band approximation, the A atom (/ B atom) is

uniquely defined by one orbital per atom site pz(r − rA) [/ pz(r − rB)]. To

derive the electronic spectrum of the total Hamiltonian, the corresponding
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Figure 6.6: Band structure of graphene evaluated with the tight binding model
compared with the result of ab–initio calculations. From Ref. [2].

Schrödinger equation has to be solved, and by applying the Bloch theorem,

the wave functions can be written as follows

Ψk(r) = cA(r)p̃
A
z,k(r) + cB(r)p̃

B
z,k(r), (6.7)

where

p̃Jz,k(r) =
1√
N

∑

l

eiklpz(r− rJ − l) J = A,B . (6.8)

k is the crystal momentum, N is the number of unit cells in the graphene

sheet, and l is the cell position index.

The spectrum is derived by solving the Scrödinger equation which reduces

to the diagonalization of a 2× 2 matrix

(

HAA − E HAB

HBA HBB − E

)

, (6.9)
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in the space defined by the |J〉 = p̃Jz,k(r) wave–functions. Neglecting the

overlap 〈A|B〉, restricting interactions to nearest neighbors only and setting

HAA = HBB = 0 as energy reference the dispersion relation are then:

E±(k) = ±γ0
√

3 + 2cos(ka1) + 2cos(ka2) + 2cos(k[a2 − a1]). (6.10)

These are the π and the π∗ bands in the TB model. One of the two bands,

which represent the valence and the conduction bands, is completely filled

and the other completely empty. Moreover they intersect only in two points,

known as Dirac points, in the BZ, as shown in Fig. (6.5). For this reason

graphene is a semi–metal with a one–dimensional Fermi surface. For the

same reason CNTs are predicted to be either metallic or semi–conducting

according to whether or not the Dirac points belong to the set of k–points

allowed in the ZFA.

The predictions of the TB model are partially confirmed by Ab–initio

calculations even if some differences appear. For example the DFT band

structure of graphene is not symmetric with respect to the chemical poten-

tial, as the TB one (Fig. (6.6) ). In the rest of this chapter we will work in

the ZFA using as starting point the TB band structure. Ab–initio corrections

will be discussed later.

Within the TB+ZFA scheme, it can be show that for example all (n, n)

and (3n, 0) CNTs are metallic, with n any integer, while all the remaining

(n, 0) tubes are semi–conducting. CNTs of different kinds, (n,m) CNTs, are

said to be chiral and can be either metallic or semi–conducting. The general

rule is that a CNT is metallic if n −m is a multiple of 3 [2]. In Fig. (6.7)

the bands structures for the (5, 5), the (9, 0), the (10, 0) and the (8, 2) CNTs

are shown.
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(a) (5, 5) CNT (b) (9, 0) CNT

(c) (8, 2) CNT (d) (10, 0) CNT

Figure 6.7: Band structures and DOS of several CNTs calculated within the
ZFA. From Ref. [2].

6.3 Theoretical predictions and experimental

results

The Zone Folding Approach

The state–of–the–art theoretical approach to the AB oscillations in CNTs is

based on the ZFA.

The ZFA is introduced by observing that the Hamiltonian of a CNT can
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Figure 6.8: Aharonov–Bohm effect within the Zone Folding Approach. From
Ref. [2].

be expressed in cylindrical coordinates as

H = − h̄2

2m

[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(

i
∂

∂ϕ
− Φ

Φ0

)

+
∂2

∂z2

]

+ V (r, ϕ, z). (6.11)

Then in the ZFA the following map is applied

φ→ x/RCNT , (6.12)

r → y , (6.13)

z → z , (6.14)

where (x, y, z) are cartesian coordinates with the graphene sheet oriented in

the xz–plane. The ZFA Hamiltonian, when a magnetic field is present, is

then

H = − h̄2

2m

[

∂2

∂y2
+

(

i
∂

∂x
− Φ

Φ0RCNT

)2

+
∂2

∂z2

]

+ V (x, y, z). (6.15)
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Figure 6.9: Aharonov–Bohm gap oscillations in carbon nanotubes according to
the zone folding approach.

As the ZFA approximates the CNT with a planar graphene sheet in Eq.

(6.15) the 2nd term of Eq. (6.11) is set to zero and r ≈ RCNT . Apply-

ing the resulting Hamiltonian to the block wave–function Ψkx,kz (x, y, z) =

ei(kxx+kzz)ukx,kz (x) and defining

k′x = kx −
Φ

Φ0RCNT
(6.16)

we obtain, for the periodic part of the wave–function, an Hamiltonian iden-

tical to the case without magnetic field a part from a shift of kx.

This means that the eigen–functions of the Hamiltonian with B 6= 0 can

be written in term of the eigen–function of the Hamiltonian with B = 0:

ΨB
n,kx,kz (x, y, z) = ei(kxx+kzz)uBn,kx,kz (x) (6.17)

= ei(k
′

xx+kzz)uB=0
n,k′x,kz

(x)ei(Φ/Φ0)(x/R). (6.18)

Consequently we can obtain the eigen–functions and the corresponding shift

of the energies of the allowed k-point grid as shown in Fig. (6.8). This means

that, increasing the magnetic field, all the electronic properties of the CNTs
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(a) Experimental setup (b) Resistivity oscillations

Figure 6.10: Description of the experimental setup and results of the experiment
carried out in [66]. In the right panel resistivity oscillations with a period Φ0/2
can be observed.

will oscillate with period Φ0 as, each times Φ = nΦ0 the allowed k–points will

coincide with the ones at B = 0. In particular the electronic gap is predicted

to oscillate because periodically k′x match a Dirac point. For (n, 0) or (n, n)

CNTs, two kinds of oscillations can exist according to whether the CNT is

metallic or semi–conducting as shown in Fig. (6.9)

The experimental evidences

The first experimental evidences of the AB effect in CNTs is reported in Fig.

(6.10). In their work A. Bachtold et al. [66] showed that the resistivity of

a MWCNTs oscillates when an increasing magnetic field is applied. They
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measured oscillations with a period of h/2e in agreement with the prediction

of the AAS theory. Assuming that the current carriers where localized, in

the radial direction, on a single shell, they estimated their average radius

from the relation πr2B = Φ0/2 = h/2e, valid after a complete oscillation.

Knowing the external magnetic field they obtained an average radius for the

current carriers of r = 8.6 ± 0.1 nm, in excellent agreement with Atomic

Force Microscopy measurements of the most external tube in the MWCNT:

r = 8 ± 0.8 nm. That is, assuming that the carriers were mainly localized

on the external tube, the AAS oscillations were confirmed.

The results obtained by A. Bachtold et al. [66] however where not an

experimental evidence of the gap oscillations existence in CNTs under the

effect of an increasing magnetic field. Indeed the AAS effect is independent

on the electronic gap and AAS oscillations can be measured in mesoscopic

metallic rings too, contrary to pure AB gap oscillations which are a peculiar

characteristic of CNTs.

The first experiments able to test the predictions of the ZFA for the

gap oscillations were performed in 2004. Coskum et al. [69] prepared an

experimental setup (see Fig. (6.11.a)) similar to the one of Ref. [66] but

using MWCNTs shorter than the dephasing length to probe a qualitatively

different phenomenon, namely, the electronic energy spectrum modulation

by a coaxial magnetic field. In particular they measured the differential

conductance at finite bias on a single–electron tunneling transistor formed

by a MWCNT acting as coherent Coulomb island. In this way they were able

to observe the interconversion of semi–conducting and metallic nanotubes.

The results are shown in Fig. (6.11.b), where the differential conductance

is plotted in units of e2/h. Oscillations of the conductance with the correct

AB period, Φ0 = h/e are clearly shown in the figure. Moreover they were

able to observe the splitting due to the interaction of the external field with

the electron spin B · σ.
Zaric et al. instead [70] measured the photoluminescencie spectrum of a
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SWCNT immersed in a magnetic field. They showed that the lowest energy

excitonic peak (peak #1 in Fig. (6.11.c)) moves to lower energy when the

magnetic field increase. This result is in agreement with the prediction of

the ZFA and in particular the gap closing in semi–conducting CNTs which,

at low magnetic fluxes, is predicted to follow the rule Eg = E0(1− 3Φ/Φ0).
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(a) Experimental setup (b) Conductance

(c) Photoluminescencie spectrum of a SW–CNT

Figure 6.11: Top panels: description of the experimental setup and results of the
experiment carried out in [69]. In panel (b) the differential conductance oscillates
with the imposed magnetic field in a standard circuit with an applied bias poten-
tial at two different values of the gate potential. Low panel: photoluminescencie
spectrum of a SW–CNT immersed in a static magnetic field from Ref. [70]. The
beginning of a gap oscillation is displayed by the behavior of peak #1



Chapter 7

Numerical results

7.1 Details of the implementation

In order to describe magnetic field effects “ab–inito” we used the Yambo [61]

code. Yambo starts from a previous SCF computation of the ground state

of the system at zero magnetic field, taking as input the KS (LDA) wave–

functions ψi and energies ǫi. Then it constructs a new Hamiltonian, H =

HDFT + Hmagn, where HDFT is the DFT Hamiltonian with no external

fields, and Hmagn = Aext · j 1. The total Hamiltonian is constructed in the

space of the KS wave–functions as

Hij = δi,jǫi + V Hij [δρ] +
(

V xc,newij [ρ]− V xc,oldij [ρ0]
)

+Hmagn
ij , (7.1)

with ρ0 the density at B = 0, ρ the self–consistent density and δρ = ρ− ρ0.
At a first step ρ = ρ0, then the Hamiltonian is diagonalized and a new set

of wave–functions is obtained, together with a new ρ. A new Hamiltonian

is then constructed from the new density and projected in the space of the

1Other considerations on the Hamiltonian in presence of a magnetic field can be found
in Appendix D.
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new set of wave–functions. The process is carried on until the convergence is

reached. A convergence threshold for both the density end the eigen–energies

is defined within the code.

The implementation is done assuming that a small number of wave–

functions in the KS basis–set are needed to have a good description of the

system. Otherwise this implementation would be highly impractical as the

code needs to store all the wave–functions of the basis set in memory and

to compute all integrals numerically. Indeed, as long as the perturbation is

small, the density of the system is not expected to change much and so a

small basis–set is required.

Among other reasons, our motivation to investigate ab–initio the effects

of magnetic fields in CNTs is to test the correctness of the assumptions

embodied in the ZFA. In the previous chapter, indeed, we have shown that

the pure AB effect has to be measured with an experimental setup where

a confined magnetic field is present and electrons move in a region where

the magnetic field is strictly zero. Indeed the prediction of the AB effect

had a strong impact on the scientific community because it introduced the

possibility of an effect which is non local in the magnetic field. However the

experimental setup in which CNTs are always studied is in sharp contrast

with this assumption, since CNTs are fully immersed in a constant magnetic

field.

We have designed the code to simulate this two different geometries.

First, we simulate the pure AB effect, where electrons travel in a space

where B=0. Second, we use a uniform field. We will refer to the first imple-

mentation as confined geometry, because the magnetic field is confined inside

the CNT and null outside. This setup will be compared with the standard

experimental setup where the magnetic field is uniformly distributed (we will

refer to this case as extended geometry).
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7.2 Gap oscillations

We consider five CNTs: two metallic, the (5, 5) and the (8, 8), two semi–

conductive, the (8, 0) and the (14, 0) and one Multi–Walled, the (5, 5)@(10, 10).

CNTs ground state have first been computed with the Abinit [62] code us-

ing a super–cell with dimensions (10 Å+2RCNT )× (10 Å+2RCNT )× hCNT
and an angle of 120◦ between the vectors defining the super–cell in the xy

plane in order to maximaze the distance between CNTs in the periodic ar-

ray of super–cells. Here RCNT is the radius of the CNT while hCNT is the

dimension of the supercell in the periodic direction, z. hCNT = 2.46 for

metallic (n, n) CNTs where we used a reciprocal space grid of 20k–points

in the Brillouin zone, and hCNT = 4.26 for semi–conducting (n, 0) CNTs

where we used a grid of 10k–points. However finer grids and bigger cells in

the xy directions have been tested when needed. Self Consistent calculations

have then been performed with the Yambo code using a basis–set of about

40 states per k–point, above the last occupied state.

Metallic single wall carbon nanotubes

First we consider two metallic CNTs: a (5,5) tube with radius 3.39 Å and a

(8,8) tube with radius 5.41 Å. In Fig. (7.1) we compare the gap dependence

on the applied magnetic flux in the two geometries with the result of the

ZFA. In the case of the smaller (5,5) tube we immediately see a first impor-

tant difference between the extended geometry and the confined geometry.

The extended geometry, which represents the standard experimental setup,

overestimates by ∼7% the elementary flux Φ0 which defines the periodicity

of the gap oscillations.

To explain the different gap dependence obtained in the two geometries

we introduce, in a formal manner, the Hamiltonian which governs the AB
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Figure 7.1: Gap oscillations in the metallic (5,5) and (8,8) CNTs. Two different ge-
ometries are considered. In the extended geometry the magnetic field is applied uniformly
in all the space (blue boxes). In the confined geometry, instead, the magnetic field is
confined inside the CNT (red spheres). We compare the ab–initio calculations with the
ZFA results (black line). We see that in the extended geometry, which represents the
standard experimental setup, the Lorentz correction (see text) induces an overestimation
of the elementary magnetic flux Φ0.

effect in the specific case of a CNT:

H = − h̄2

2m

[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(

i
∂

∂ϕ
− er

h̄
A (r)

)2

+
∂2

∂z2

]

+ V (r, ϕ, z).

(7.2)

Eq. (7.2) describes the electronic dynamics under the action of a static mag-

netic field, written in cylindrical coordinates centred in the center of the

CNT. A (r) is the vector potential which, in the symmetric gauge, describes

a static magnetic field along the z direction and V (r, ϕ, z) is the local DFT

potential, which includes the ionic potential plus the Hartree and exchange–

correlation terms.

The only term of Eq. (7.2) which reflects the different geometry (extended

or confined) is A (r). In the extended geometry

AExtended (r) =
1

2
B0r, (7.3)
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Figure 7.2: Two dimensional plot of the last occupied and the first unoccupied band
wave–function at the Γ point for the (8, 0) CNT. The π orbitals, deformed by the cur-
vature of the CNT, have a larger amplitude in the outer part of the CNT surface. As a
consequence we have a finite difference between the Hamiltonians corresponding to the
extended geometry compared to the confined geometry.

with B0 = |B|. In the confined geometry, instead, we have 2

AConfined (r) =
1

2

Φ

πr
, (7.4)

with Φ = πB0R
2
CNT and RCNT the CNT radius. From Eqs. (7.3) and (7.4)

we see that AExtended (RCNT ) = AConfined (RCNT ), which implies that, if

the electrons would exactlymove on the tube surface the extended geometry

and the confined geometry would lead to the same gap oscillations. The

different gap dependence observed in Fig. (7.1), is then due to the different

correction induced in the total Hamiltonian by AExtended and AConfined.

If we plug the two different expressions for A (r) into Eq. (7.2) we get two

2The potential in Eq. (7.4) is not defined at r = 0. However this problem can be
easily overcome in the implementation, setting the magnetic potential A = 1/2(Φ/r2

0
)r

for r < r0 with r0 a tunable parameter. If r0 is small enough then the vector potential is
different from the AB potential only in a small region where the wave–function is almost
zero and so the results are independent of r0. In our calculation we checked r0 = 0.5Bohr
is enough.
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different Hamiltonians, Hconfined and Hextended, whose difference is

∆H = Hextended −Hconfined = −eh̄B0

4m

(

2i
∂

∂ϕ
− Φ

Φ0

)(

1− R2
CNT

r2

)

,

(7.5)

with Φ0 = h/e. This term is zero when r = RCNT , while near the tube

surface behaves like ∼ B0

(

1− R2
CNT

r2

)

. Now, as shown in Fig. (7.2), the

electrons are localized near, but not exactly on the tube surface. Conse-

quently 1− 〈R2
CNT /r

2〉 6= 0 and, 〈Hextended −Hconfined〉 6= 0.

We will refer to the correction defined by Eq. (7.5) as Lorentz Correc-

tion (LC) as it introduces a magnetic term which depends on the electronic

trajectory (through the term rAextendedφ ). The LC appears in the extended

geometry as an effective different radius of the electronic orbitals, as the cor-

rection would be zero defining the flux with respect to the effective radius

which satisfy the equation 1− 〈R2
eff/r

2〉 = 0. In the confined geometry this

correction is zero by definition; physically this is related to the fact that the

AB effect does not depend on the specific electronic trajectory.

The LC goes to zero in the limit of SW–CNTs with infinitely large radius.

Nevertheless, even in large CNTs, impurities or defects can alter the elec-

tronic trajectory creating deviations from a perfect circle of radius RCNT . In

all this cases we predict the LC to induce deviations from the AB oscillations

when uniform B field is applied.

From Fig. (7.1) we see that the ZFA matches the ab–initio simulation

of the pure AB effect corresponding to the confined geometry setup. This

agreement is due to the fact that in the ZFA the LC is strictly zero as the

electrons are assumed to move exactly on the graphite sheet, i.e. on the

CNT surface. Consequently, in the ZFA the electronic gap is function of the

flux only.
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Figure 7.3: Gap oscillations in a semiconducting CNTs: (8,0) and (14,0). In
contrast to the metallic case the curvature effects induce more evident differences
betweem confined and the extended geometries. The same conventions of Fig. 7.1
are used here.

Semi–conducting single wall carbon nanotubes

We now consider two semi-conducting CNTs: the (8,0) and the (14,0). The

flux dependent electronic gap is shown in Fig. (7.3). Similarly to the metallic

case, LC makes the extended geometry to oscillate with a period greater than

h/e. In contrast to the metallic case, the gap vanishes at two values of Φ,

which the ZFA predicts to be at Φ0/3 and 2Φ0/3, when the Dirac points

become allowed k points [2]. Noticeably both points are renormalized in

the ab–initio simulation by curvature effects. It is well known, indeed, that,

compared to graphene, curvature effects shift the Dirac points [2] K (see

also Fig. (7.8)) at a position |K| < 2π/3a, with 2π/3a being the Dirac point

position in graphene. Accordingly a lower magnetic field is needed to bring

the Dirac point in coincidence with the set of the allowed k–points, and

semi–conducting CNTs become metallic at Φ < Φ0/3. Being the oscillations

symmetric, the second metalization point is reached at Φ > 2Φ0/3.

The deformation of the oscillations in the (n, 0) CNTs is smaller in big-

ger tubes. However it goes to zero slowly, because both the shift and the
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magnetic period depend on the size of the tube. For this reason the effect is

still not negligible in the large (14, 0) tube, as shown in Fig. (7.3).

From Fig. (7.3) we see that the (8, 0) gap oscillations strongly deviate

from the ZFA that does not reproduce, even qualitatively, the full ab–initio

results. The reason for this large discrepancy traces back to the presence of

a metallic–like band located near the Fermi surface.

This band is shown in Fig. (7.4) together with the π/π∗ bands closest to

the Fermi level. When the B field is increased we see that, in contrast to the

π/π∗ bands, the metallic–like band does not shift, but moves inside the gap

produced by the π/π∗ states. Consequently by changing the flux intensity

the gap is defined by transitions between the π/π∗ states or between the π

and the metallic–like band. This explains the anomalous dependence of Eg

by Φ in Fig. (7.3).

Multi wall carbon nanotubes

Although SW–CNTs are routinely syntetized, MW–CNTs still constitute

the majority of cases used in the experiments. In Fig. (7.5) we consider

the case of a (5, 5)@(10, 10) CNT with radii 3.39 and 6.78 Å. In this case

the confined geometry is implemented considering a flux Φ = πB0R
2
(10,10).

This flux is roughly the same experienced, in the extended geometry, by the

electrons of the (10, 10) CNT. In the case of MWCNT the ZFA is used only

by considering two different Hamiltonians, one for the (5, 5) and one for the

(10, 10) and by neglecting the tube–tube interaction. Our ab–initio results,

instead, reveal a quite different picture.

The gap calculated in the extended geometry follows the ZFA prediction

except in the very low field regime and near the first inversion point (Φ ≈
Φ0). While the LC causes the shift of the inversion point, the metallic

regime observed for Φ < Φ0/10 is not described at all by the ZFA. It is,

indeed, a consequence of the different chemical potential felt by the electrons

moving on the (5, 5) and the (10, 10) surfaces. Here, moreover the LC is
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Figure 7.4: Metallic–like (in red) and π / π∗ (in blue) bands of the (8, 0) CNT.
In presence of a magnetic field electrons spinning clockwise around the CNT have
a different energy with respect to electrons spinning counter–clockwise. On the
left panel Φ = 0, while on the right Φ > 0. We notice that the upper metallic–
like band lays in the gap without acquiring a splitting due to the breaking of the
time reversal symmetry, i.e. the energy of electrons spinning around the tube in
opposite direction is different when a magnetic field is present.

enhanced because the presence of the inner CNT tends to attract electrons

and accordingly to modify the effective radius defined by the LC. Indeed the

flux renormalization is ≈ 4% here, where R(10,10) = 6.78 Å, while in the SW

configuration the renormalization is ≈ 7% and ≈ 1% for the (5, 5) and (8, 8),

where R(5,5) = 3.39 and R(8,8) = 5.42 Å.

The ab–initio calculations show that there is a ≈ 0.09eV shift between

the two chemical potentials, as shown in Fig. (7.6). Here the band structure

of the double walled CNT is plotted at Φ = 0, on the left, and at small flux on

the right. At zero magnetic flux there are two pairs of crossing bands which
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Figure 7.5: Gap oscillations in a Multi–Walled CNT: (5,5)@(10,10). In contrast
to the SW–CNTs here the confined and the extended geometry display a qualitative
different behavior. In the inset a complete period of oscillation according to the
ZFA which describes the MW–CNT as two not interacting SW–CNTs. The same
convention of Fig. 7.1 is used here.

can be identified as the π − π∗ bands of the (5, 5) and the (10, 10) CNTs

respectively. The two crossing points however are not aligned in energy so

that when a small magnetic flux is present two small direct gap opens but

the CNT remains metallic as long as the tip of the π∗ band of the (5, 5) is

lower in energy than the one of the π band of the (10, 10) CNT. Even when

a gap opens the system remains an indirect gap semiconductor for certain

range of values of the applied magnetic flux.

In the confined geometry the gap dependence is deeply modified. In the

low Φ regime a metallic region appear for the same reason outlined above.

At difference with the extended geometry case, however, the gap increases
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Figure 7.6: Band structure of the metallic (5, 5)@(10, 10) CNT at zero magnetic
flux (left panel) and at low magnetic flux, extended geometry (right panel). In the
left panel in blue the bands, near the Fermi level, occupied from electrons on the
inner shell, while in red the ones occupied from electrons on the outer shell. When
the magnetic field is present it is not possible anymore to distinguish to which shell
belongs each band. Due to the shift in energy between the point where the π–π∗

bands of the two CNTs cross, at low flux, though two small direct gaps open, the
system remains metallic until an indirect gap opens (right panel). Only at higher
fluxes the system becomes again direct gap semi–conductor.

with increasing Φ with a much larger slope, dominated by the (10, 10) CNT.

The slower slope of the extended geometry, instead, is dictated by the gap

of the (5, 5) CNT.

Another drastic difference with the extended geometry case is a second

metallic phase near Φ ≈ Φ0. This phase is due to the fact that, in the

confined geometry, the electrons on the two CNTs feel the same magnetic

flux. As a consequence the gaps of the two CNTs move coherently as Φ ap-

proaches Φ0 and the same situation of Φ ≈ 0 occurs. The coherent variation
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of the gaps of the (5, 5) and the (10, 10) tube result, for the gap oscillations,

in a period which is 1/4 the period of the extended geometry.

Numerical instabilities: a “gauge fixing” solution

The results from the previous section have been obtained with an “improved

implementation” which takes advantage of the gauge freedom (see Appendix

C) to describe a magnetic field.

We observe that the AB effect can be described (as we did in the confined

geometry) by a vector potential

Aψ =
h̄

er

Φ

Φ0
(7.6)

which is a pure gauge field when Φ = nΦ0 with n any integer. A potential

is pure gauge if a function Λ(r, ψ, z) exist, which plugged in Eqs. (C.1)

nullifies it everywhere3. In this situation we need a function which satisfies

the relation 1/r ∂Λ/∂φ = −Aφ(r) with Aφ defined by Eq. (7.6).

Indeed such function can be constructed for any value of the magnetic

flux Φ:

Λ(r, φ, z) = − h̄
e

Φ

Φ0
φ. (7.7)

However in quantummechanics a gauge transformation in the electro–magnetic

potentials has always to be realized together with the corresponding trans-

formation of the wave–function. The new wave–function obtained using Eqs.

(7.7) is well defined only if Φ = nΦ0, while for any other value of Φ it is a

multi–valued wave–function. For this reason any effect induced by the AB

effect is periodic with period Φ0.

When a vector potential defined by Eq. (7.6) with Φ = nΦ0 is applied,

all the physical quantities of the system have to remain unchanged, while all

3The scalar potential V must be zero. This condition is automatically satisfied in the
static case, as a time independent gauge generating function can be used.
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wave–functions acquire a phase factor. However the KS basis–set is not a

convenient choice to describe this change in the phase of the wave–functions.

This can be understood if we try to construct the wave–functions at

Φ = Φ0 as a linear combination of the KS wave–functions at Φ = 0. The

wave function of any single particle state must be expressed as

ψΦ=Φ0

n,kz,lz
= ψΦ=0

n,kz,lze
iφ =

∑

n,lz

cn,kzψ
Φ=0
n,kz,lz . (7.8)

If few elements of the basis–set are used to build ψΦ=0
n,kz,lz

eiφ using a basis set

which contains ψΦ=0
n,kz,lz

and few other orthogonal wave–functions orthogonal,

this leads to severe numerical instabilities that we first encountered when we

tryed to compute the CNTs gap oscillations.

The metallic CNTs were not returning metallic when Φ = Φ0. Moreover

for the semiconducting CNTs we found that using a small basis–set the gap

oscillations, as well as other physical quantities, were not periodic in the

flux.

To solve this problem we observed that at Φ = nΦ0 it is possible to impose

a phase–matching solution. That is, instead of projecting the Hamiltonian,

at Φ = nΦ0, on the starting KS basis–set we can project it in a basis–

set modified adding the needed phase factor. In this new basis–set the

Hamiltonian will be diagonal. Then for intermediate values of the magnetic

flux we can select the most appropriate basis–set according to which integer

values of the flux we are closer. This numerical procedure avoids the self–

consistent cycle to remain trapped in the initial gauge.

In Fig. (7.7) the gap oscillations of the (14, 0) CNT with and without the

phase fixing implementation are shown. Without fixing the gauge the gap

oscillations seem to converge towards the gauge fixing solution increasing the

number of bands. However the convergence is very slow as very few wave–

function from the basis–set can be used for computational limits. Indeed if

in the plane–wave basis–set thousands of states are needed to reproduce the
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Figure 7.7: The gap oscillations of the (14,0) CNT (the left panel) and of the
(5,5) CNT (right panel). The results of the gauge–fixing implementation are com-
pared with the results obtained with the standard implementation. Increasing the
number of KS wave–function in the basis–set the two methods converge to the
same result.

KS wave–functions, we expect that thousands of states would be needed to

correctly reproduce a phase factor.

The same is true for metallic CNTs. For these the convergence problem

in the standard implementation appears for field values corresponding to the

metallic phase, as shown in Fig. (7.7).

7.3 The band structure

The electronic gap of a CNT depends only on the behaviour of the last

occupied and the first unoccupied band. In particular the gap depend of
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Figure 7.8: Band structure of the (5,5) CNT at zero magnetic field near the
Fermi level. The Dirac point, according to the prediction of the ZF model, should
be placed where the two red lines cross. Due to curvature effects, not included in
the ZF model, the Dirac point, i.e. the point where the π and the π∗ bands cross,
is shifted in the DFT approach.

their behaviour near a specific k–point, that is near the Dirac point (see

Sec. 6.2).

We have already seen how some deviation of the gap oscillations from

the ZF predictions, can be understood in terms of the bands structure, as in

the case of the (8,0) CNT or of the multi–walled (5, 5)@(10, 10) CNT.

In this section we will explore more in details the effects of the magnetic

field on the bands structure CNTs. As a reference we will use the prediction

of the ZF model. In Fig. (7.8) for example we see that the band structure

of the (5,5) CNT computed with Yambo is similar to the prediction of the

ZF model (see Fig. (6.7(a)) but with the shift of the Dirac K point. This is

a result known from the literature.
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Figure 7.9: Band structure of the (5,5) CNT near the fermi level at increasing
values (black–pink–blue–violet–red–orange dots) of the magnetic field. Here the
magnetic flux increase from Φ = 0 (black dots) to Φ = Φ0/2 (orange dots).

When a magnetic field is present, then the band structure follow, in

first approximation, the predictions of the ZF model (see Fig. (7.9) ) and

the deviation are the one we have already explored in the previous section

describing the gap oscillations of different CNTs.

In this section we will show (i) the role of the non–local part of the

pseudo–potential for a correct description of the more bounds valence elec-

trons and (ii) the effect of a not perfect alignment of the magnetic field with

the CNT on the band structure.

The non local part of the pseudo–potential

When the term Hmagn = A · j is included in the Hamiltonian the non–local

part of the pseudo potential must be changed accordingly (see App. D). In
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Figure 7.10: KS eigenvalues at the Dirac point for the (8,8) CNT as a function
of the magnetic flux. The results obtained using the standard pseudo–potential
V A=0

NL (r, r′) (black squares) and the corrected pseudo–potential V A

NL(r, r
′) (blue

squares) are compared. Near the Fermi level (left panel) there are not appreciable
differences, while for the more bound states (right panel) there is a difference of
about 20%.

the present work we followed the strategy of Ref. [84] where the non local

pseudo–potential reads:

V A
NL(r, r

′) =
∑

R

V A=0
NL (r, r′)ei/c

∫
r→R→r′

A·dl. (7.9)

In order to explore the effect of the expression appearing in Eq. 7.9

we considered the behaviour of the KS eigenvalue at the Dirac point, not

only for the last occupied and the first unoccupied band, but for all the

eigenvalues. As for the electronic gap, all eigenvalues must be periodic with

period Φ = Φ0 and the oscillation symmetric with respect to Φ = Φ0/2.



150 Numerical results

In Fig. (7.10) we can see the different behaviour of the KS eigenvalues

induced by the correction to the non local part of the pseudo–potential,

Eq. (7.9). In particular for the deeper valence states the change of the gauge

at Φ = Φ0 (see Sec. 7.2, subsection on the gauge–fixing solution) induces

a discontinuity of the derivative when V A=0
NL (r, r′) only is used. This is an

indication that the KS eigenvalues are wrong in this case. The corrected

pseudo–poential fixes the problem.

The effect of a magnetic field not aligned to the tube axis

Yambo [61] is a plane–waves based code, devised to treat periodic systems.

The applied uniform magnetic field is described with a vector potential of

the form Aφ = B0r (with r the radius in cylindrical coordinates) in the

symmetric gauge. However such a vector potential is not periodic in the xy

plane and numerically it is replaced by a saw–like dependence, which induces

jumps at the super–cell borders in order to keep the potential periodic.

CNTs are isolated systems in the xy plane and the electronic wave–function

is almost zero on the borders, consequently the Aφ jumps do not affect the

results.

However, if the CNT is not perfectly aligned with the magnetic field, i.e.

in the z direction a saw–like vector potential cannot be used. To overcome

this problem it is possible to use an asymmetric gauge. Suppose for example

that the CNT axis lays on the yz plane, then the vector potential

Ay = B0x (7.10)

in the y-asymmetric gauge can be used. The generating function needed to

switch from the symmetric to the y–asymmetric (/ x–asymmetric) gauge is

Λ = ±1/2 B0xy . We have used this possibility in order to verify the effects

of a possibly not perfect alignment between the magnetic field and the CNT

in the experimental setup. First we checked that the different gauges gave
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Figure 7.11: Convergence checks. Three different gauges describing the same
magnetic field with no appreciable differences. The test are performed on the
(5, 5) CNT at low magnetic field in order to avoid wave–function phases problems.

the same results on a CNT in the z direction, Fig. (7.11)). As expected

there are not appreciable differences between the three gauges.

Then we considered a setup with a small misalignment between the mag-

netic field and the CNT (θ = 15◦), Fig. (7.12). In this configuration the

small component of the magnetic field perpendicular to the axis of the tube

has, in general, a negligible effect on the properties of the CNT. The band

structure of the systems and the gap oscillations are dominated by the com-

ponent of the magnetic field aligned with the CNT, that breaks the time–

reversal symmetry and give the usual gap oscillation. However the perpen-

dicular component is not always negligible, when two degenerate bands are

present it breaks the accidental degeneracies in the band structure as shown

in Fig. (7.12).
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Figure 7.12: Low magnetic flux. A CNT perfectly aligned with the magnetic
field in the left panel and the same CNT oriented with an angle of 15◦ at higher
magnetic field on the right. The component of the magnetic field perpendicular
to the CNT breaks the accidental degeneracies in the band structure. Here as
example we show the effect on the last occupied bands.

7.4 Persistent currents

In the previous chapter we have introduced the concept of PCs induces by

the AB effect. These currents have never been measured experimentally in

SWCNTs because they are too small. However PC have been measured in

mesoscopic rings [75, 77, 78] and have been predicted to be measurable in

toroidal shaped CNTs [85] within the TB model.

We have compared the predictions of our ab–initio approach against TB

results in order to estimate the reliability of the TB methods. Our scheme

in fact has the advantage of including many–body effects and to describe the

σ states which are not in the TB model.
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To compute PCs we’ve implemented two different schemes: we evaluated

the expectation value of the current–density operator ĵ in order to construct

the angular current Iφ and we also computed the angular current as the

derivative of the total energy with respect to the applied magnetic flux. The

second scheme includes many–body effect, that is the contribution due to

the Hartree and the xc energies. The first scheme, instead, has been used to

validate the method as the average on the KS wave–functions of the current

operator can be compared with the contribution from the bands–energy, i.e.

the sum of the KS eigenvalues.

We will proceed as follow: (i) we will show how the total energy, and

the different contributions to the energy, depend on applied the magnetic

flux and how the limitations of our approach appear around Φ = Φ0/2. (ii)

We will then show the results obtained for the total current using the two

approaches. The preliminary results shown here are for the metallic (8,8)

CNT.

The energy of the system

The total energy of the system within DFT is expressed as [17]

Etot[ρ] = Ebands − EH [ρ]− 〈Vxc[ρ]〉+ Exc[ρ], (7.11)

where Ebands =
∑

ik ǫ
KS
i (k)fi(k)w(k) with ǫ

KS
i (k) the KS eigenvalues, fi(k)

the occupation factors and w(k) the weights of the k–points in the BZ.

The Hartree energy, EH [ρ], is double–counted in the Ebands term and is

subtracted while the xc energy is incorrectly described by the Vxc[ρ] term

which is subtracted.

The different components of Etot[ρ] are shown in Fig. 7.13, that shows

how the total energy (and also all other components of the energy) goes

quadratically with Φ and present a derivative discontinuity at Φ = Φ0/2.

The quadratic behaviour can be understood, in first approximation, from
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Figure 7.13: Energy components of the (8,8) CNT as a function of the applied
flux in the confined geometry. From the top to the bottom: the total energy (black
line), the Hartree energy (red line), the xc energy (green line), the sum of the KS
eigenvalues (blue line), the expectation value of the xc potential (orange line).

the structure of the Hamiltonian

Hmagn = A · j = B · L+ qρA2. (7.12)

At low magnetic fields the contribution from the term B · L is almost

zero because all the contribution +Lz and −Lz cancel almost exactly4 while

the quadratic term grows. This behaviour, which is exact at low magnetic

flux within the DFT scheme [19], should be modified at higher magnetic

fields. However in our approach the high fluxes correction to the quadratic

behaviour is not correctly described, as witnessed by the discontinuity at

4The wave–functions are not exact eigenstates of L̂z because the rotation invariance is
broken by the presence of the carbon atoms.
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Figure 7.14: Current components of the (8,8) CNT as a function of the applied
flux in the confined geometry. The expectation value of the ĵ operator on the
KS wavefunctions is compared against j = ∂Ebands/∂Φ (left panel). The different
components of the current are then computing deriving the different contributions
to the total energy (right panel), cfr. Fig. 7.13.

Φ = Φ0/2. As a consequence the gauge–fixing solution induces a unphysical

jump in the current in order to restore the correct periodicity.

The current

The quadratic behaviour of the energy is reflected in the linear behaviour of

the persistent current as a function of the magnetic flux (see Fig. 7.14 and

the main components of the total current are the bands contribution and

the Hartree contribution. First we can see that the two methods gives the

same results for the bands term of the current5.

The result obtained both for the bands current and for the total current

are much bigger than the prediction within the TB model [85, 76]. In par-

ticular the self–induced flux, which within the TB scheme is around 10−3Φ,

is here close to 0.15Φ. This strong discrepancy can be due to many factors:

in the TB scheme the many–body effect are not included and only the π

states are used to describe the total current. On the contrary in our scheme

5Here it is plotted the total current in the unit–cell, that is the current for a length of
2.46 Åof the infinite CNT.
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the many–body effect are, at least in part, included and the sigma states

are fully described, though we do not have an accurate description of the

current in the region near Φ0/2. We are presently working on an improved

implementation able to describe the current in the whole range of applied

fluxes.

7.5 Conclusions

In this part of the thesis we have studied the effects of a magnetic field on the

electronic properties of Carbon Nano–Tubes (CNTs) aligned with the field.

In particular we focused our attention on the oscillations in the electronic

gap induced by the Aharonov–Bohm (AB) effect. By using parameter–free

approach we made a direct comparison between the pure AB interpretation

(confined geometry) and the common experimental setup (extended geome-

try).

In the extended geometry we confirmed the general behaviour of the

pure AB interpretation for ideally perfect Single Wall (SW) CNTs. However

we revealed the existence of corrections due to a trajectory dependent term

(the Lorentz Correction (LC)). This effect decreases increasing the dimension

of the CNT in ideally defect–free CNTs, but it is likely to be enhanced if

vacancies or impurities, which can alter the electronic trajectory, are present.

In the literature the pure AB interpretation is usually used to describe

magnetic field effects within the Zone Folding Approach (ZFA). It is known,

however, that the ZFA does not take into account curvature effects that can

modify the band structure of CNTs. We revealed these effects as corrections

to the behaviour of the gap oscillations, both in the extended and in the

confined geometry. The shift in the position of the metallization points in

semi–conducting CNTs or the completely different shape of the gap oscilla-

tions in the (8, 0) CNT are examples of curvature effects.

We also discussed how the interaction among different shells in a Multi
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Wall (MW) CNT can alter the gap oscillations obtained in the SW con-

figuration. Indeed in the MW configuration there is a drastic difference

between the extended and the confined geometry. The AB interpretation in

the extended geometry can be recovered only at the price of describing the

MWCNT as two not interacting SW–CNTs. This is the standard approach

used in the literature and again our approach has revealed important cor-

rections like the existence of a metallic phase at low magnetic flux followed

by an indirect gap phase.

In the last two sections we have shown some preliminary results regarding

the case of a not perfect aligned magnetic field and the existence of persistent

currents in CNTs. Further work is planned in this direction in the near

future.

In conclusion we have described, for the first time at our knowledge,

the AB effect in CNTs with a first principles approach. We showed how

curvature effects modify the properties of CNTs under the effect of a mag-

netic field. Our results are grounded to well–known facts in the ab–initio

community. For example the shift of the metalization points we observed

in semi–conducting CNTs can be related to the shift of the Dirac points in

the band structure of small metallic CNTs. In the same way the peculiar

behavior of gap oscillations we observed in the (8, 0) CNT is related to the

existence of a metallic–like valence band, not predicted by the ZFA.

On the other hand the existence of LCs, which can effect the electronic

properties of CNTs is a completely new effect, which to our knowledge

has never been addressed in the literature. Moreover in the case of the

(5, 5)@(10, 10) CNT we pointed out how the pure AB interpretation of mag-

netic field effects in MWCNTs is not free of ambiguities. Indeed the pure

AB interpretation gives different predictions with respect to what is mea-

sured experimentally in the extended geometry. The pure AB effect can be

recovered, as a first order approximation, only under the assumption that

electrons can be distinguished according to weather they orbit on the inner
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or on the outer shell of the MWCNT.
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Conclusions

When I started to work on the subjects of the present thesis, more than

three years ago, my idea was to carry on a project which would have been

concluded at the end of the PhD. Now I realize that a research project, often,

opens more question than the number of answers and solutions it founds.

The work presented in this thesis is the result of a long learning process that

is far from being closed.

The initial plan of the thesis was to developed a new method able to

describe double excitations, within a many body approach. This purpose

required a deep study of the different approaches available in the literature:

from the Bethe–Salpeter Equation and the time dependent density functional

theory for extended systems, to the Hartree–Fock and Post Hartree–Fock ap-

proaches to isolated systems. From the Configuration Interaction expansion

and other wave–functions based approaches adopted in quantum chemistry

to the random phase approximation and second random phase approxima-

tion used to describe nuclear systems.

Our resulting idea has been to merge some aspects of techniques used for

extended systems with the key ingredients used in quantum chemistry and

in nuclear physics. Indeed the two relevant aspects we focused on are the

idea of screening and the mathematical properties imposed by exchange ef-

fects. Following both physical intuition and mathematical rigor we proposed

the resulting scheme as a possible choice to describe double excitations in
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correlated materials.

An interesting result is that the inclusion of double (and even higher

order) excited configurations naturally emerge as a frequency dependent

Bethe–Salpeter equation kernel in the space of single particle transition.

This result is similar to the one obtained in other works [11] were the fre-

quency dependency, i.e. temporal non locality, appears from the contraction

of an higher to a lower dimensional space. This projection implies that the

system cannot be regarded anymore as closed, and so its evolution depends

from its past history.

The time–dependent density–functional theory and the Bethe–Salpeter

equation kernels are frequency dependent because these schemes, instead of

the many body wave–function, are based on the time dependent density and

on the two particles Green’s function respectively. Here we rediscovered the

frequency dependence of the kernel as a consequence of the projection of the

excited states operator in the space of single particles transitions. “There is

a pleasure in recognizing old things from a new point of view. Also there are

problems for which the new point of view offers a distinct advantage” [86].

Only systematic tests on realistic materials will reveal if the proposed

approximation will work on realistic systems. This is an open question which

will likely need much more time then the one available for a PhD thesis to find

a definitive answer. When we arrived to formulate our final expression for

the kernel of the Bethe–Salpeter equation we felt we had reached a satisfying

point of our investigation.

In the second part of the present thesis we tackled the description of

magnetic field effects in carbon nanotubes aligned in the field direction,

within a first principles approach.

The state–of–the–art on the subject describes these effects in terms of the

Aharonov–Bohm effect within the zone–folding Approach. Many of the prop-

erties are obtained starting from a tight binding calculation on a graphene

sheet, which can be performed analytically. We have shown how the first
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principles description confirms the qualitative results of model. However

corrections need to be considered. The first–principles approach includes, in

a consistent manner, many effects beyond the zone–folding approach, such

as the curvature of the graphene sheet in the carbon nanotubes or the cor-

rection (Lorentz correction) to the pure Aharonov–Bohm description of the

magnetic field.

In this part of the thesis the strategy adopted is, for certain aspects,

opposite to the one adopted in the first part. Instead of mathematical rigor

(the approximations used are, sometimes, not fully justified from a theoret-

ical point of view) the key aspect here have been to focus on the physical

behavior of the system. The description of a physical system often involves

many different aspects and it is crucial to find out which of these are the

most important.

Moreover mathematical inspection has been used a posteriori to check

and improve the approximation involved. This is the example of the “gauge

fixing” solution which we have developed to overcome numerical instabilities,

observing that the Aharonov–Bohm effect has to be a pure gauge effect for

some values of the vector potential.

The resulting approach enabled us to give a much accurate description

of the system compared to what can be obtained using models such as the

the zone–folding approach.

This second part of the work has been an occasion to study a new subject

and learn a different approach to a research project. The concept of double

excitations had a clear mathematical definition though at the beginning we

had no clue on how to incorporate them in a many body approach.

On the other hand we had a clear idea of the experimental setup used

to simulate carbon nanotubes immersed in a magnetic field, but it took

some time to understand how the concept of the Aharonov–Bohm effect can

be used to describe such setup. Indeed according to Aharonov and Bohm

the Aharonov–Bohm effect arise because “there exist effects of potentials
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on charged particles, even in the region where all the fields (and therefore

the forces on the particles) vanish” [63]. However the experimental setup

considered for carbon nanotubes is in sharp contrast with the situation sug-

gested by Aharonov and Bohm themselves, since the carbon nanotubes are

fully immersed in the magnetic field. Only understanding this difference we

have been able to address specific questions and recognize, for example, the

renormalization of the gap oscillations due to the Lorentz correction effect.

Indeed when, at first, we decided to work on the description of magnetic

field effects in carbon nanotubes our idea was to tackle the description of

either magneto–optical spectra, and the “dark to bright transition” of the

lowest energy exciton [87] due to the Aharonov–Bohm effect, or the resistiv-

ity oscillations, related to the combined effect of Aharonov–Bohm and weak

localization [68, 66]. However, the description of the Aharonov–Bohm effect

within a full ab–initio approach turned out to be an almost unexplored field,

and we were forced to first address the many open questions which in the

end became the core of the present work.

As I stated at the beginning of this conclusions, many questions have

been opened. I hope that the present thesis will be used as a starting point

by someone, maybe myself, to look for new answers. Many possible paths

have been highlighted, which could possibly inspire new projects. Started

from the results presented in part II of the thesis a project apply the ap-

proach proposed to describe double excitations on realistic materials. From

part III, on the other hand, it could be interesting to look for experimental

configurations where the Lorentz correction is more pronounced than in ide-

ally perfect carbon nanotubes. Similarly a new project could improve the

ab–initio description of persistent currents, in order to say the last word on

their real intensity and on the role played by many–body effects.
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Appendix A

Connection to the

experiments: extended

systems

A.1 The Dielectric constant

In Ch. 1 we draw the connection between the microscopic quantities and

the observable measured in an absorption experiment, that is the dielectric

constant ǫ(ω) for extended systems and the polarizability α(ω) for isolated

systems. Then in Ch. 4 we specialized the description to isolated systems and

we wrote the expression of the polarizability in the space of single–particle

wave–functions starting from the solution of Eq. (4.8). In sec. 5.4 we used

this result to describe the spectra of two molecules (C8H2 and C4H6) and

to test different aspects of the kernel proposed in Ch. 5.

However the kernel we propose, including the concept of screening, could

in principle be used to describe extended systems too. For this reason we
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introduce here the direct expression for the dielectric function obtained from

the solution Eq. (4.8). It is convenient for this purpose to work in the space

of the Block wave–functions:

Ψnk(x) = unk(x)e
kx = 1/

√
V
∑

G

cn(k+G)e(k+G)x. (A.1)

With this choice the structure k+G is introduced in the reciprocal space,

and the four point response function can be expressed as

L̃G1,G2,G3,G4
(k1,k2,k3,k4|ω) =

∑

nm,st

cn(k1 +G1)c
∗
m(k2 +G2)×

L̃nm,st(k1,k2,k3,k4|ω)cs(k3 +G3)c
∗
t (k4 +G4). (A.2)

Thanks to translation invariance we then reduce the dependence to three

momenta k = (k2 − k1), k′ = (k4 − k3) and q = 1/2 [(k1 + k2) −
(k4 + k3)]. The contraction in real space to obtain the response func-

tion χ(1, 2) = L(1, 1; 2, 2) is equivalent to set (k1,G1) = (k2,G2) and

(k3,G3) = (k4,G4). So we obtain the function

χG1,G2
(q, ω) = LG1,G1,G2,G2

(q, ω). (A.3)

We recall that the macroscopic dielectric function (see Ch. 1) is obtained

by averaging over the unit–cell, that is, in this notation, taking the the

component (G1 = G2 = 0) of the microscopic dielectric function. By using

the expression

ci(k1 +G1) =

∫

d3xei(k1+G1)Ψik1
(x), (A.4)

and rewriting the interaction in the space (k+G), wG,G′(q) = δG,G′ 4π/|k+G|2
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we obtain

ǫ−1
0,0(q, ω) = 1 + w0(q)χ0,0(q, ω)

= 1 +
w0(q)

V

∑

nm,st

〈n|eiqx|m〉
∑

I,J

AInm(q)SI,JA
J
st(q)

(ω − ωI(q))
〈t|e−iqx|s〉.

(A.5)

The absorption spectrum is described by the q → 0 limit of Eq. (A.5).

This is because the photon, at the range of energy of few eV , has negligible

momentum pf = E/c ≃ 10−27 [kg m/s], if compared to the momentum of

the electron at the same energy pe =
√

(2meE) ≃ 5 · 10−25 [kg m/s], that

is pf/pe ≃ 2 · 10−3.

A.2 Electron energy loss spectroscopy and ab-

sorption

Once we computed the macroscopic dielectric function in extended systems

electron energy loss spectroscopy (EELS) experiments can be described. In

contrast to absorption experiments where the quantity Img[ǫ] is measured,

EELS experiments measure the quantity Img[ǫ−1] [7]. Here we show that

this difference is related to how the long range term of the Coulomb in-

teraction w enters in the equation to construct the macroscopic dielectric

function. Indeed, using the microscopic relations ǫ−1 = 1 + wχ, Eq. (2.33),

and ǫ−1
M = 〈ǫ−1〉, Eq. (1.19), we will derive for EELS

ǫ−1
M (q, ω) = 1 + w0(q)χ00(q, ω) , (A.6)

as opposite to the equation

ǫM (q, ω) = 1− w0(q)χ̄00(q, ω), (A.7)
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which holds for absorption experiments.

Here χ̄ is the response function obtained from the Dyson equation χ̄ =

χ0 +χ0(w̄+ fxc)χ̄ where, with respect to Eq. (3.31), the G = 0 term of the

interaction is not included in the Hartree part of the kernel, i.e. w̄0(q) = 0.

The derivation is a mathematical exercise, but the result has an intuitive

physical interpretation. While in absorption experiments the photons probe

the system locally, so they do not feel the effect of the long range contribution

of the interaction, in EELS experiments the electrons travel through the

medium for long distances and the system reacts in a different manner. This

difference disappear when isolated system are considered, as long as the

dimension of the system is smaller than the wave–length of the photons (i.e.

around 102 − 103nm).

From Eq. (A.6) it is possible to understand why, sometimes, independent

particle spectra are referred to as RPA spectra in the literature. At the RPA

level fxc = 0, the term w of the kernel can then be divided in two parts: the

long range contribution w0(q), which account for the long range part of the

electron–electron interaction, and the other terms wG(q) with G 6= 0, the so

called Local Fields (LFs), whose average on the unit cell is zero. If the LFs

effects, which in extended system can be negligible, are not considered then

χ̄ = χ0 at the RPA level. For this reason the IP approximation is sometimes

referred to as RPA without LFs effects.

Mathematical Derivation

In order to obtain Eq. (A.7) we observe that the microscopic dielectric func-

tion can be obtained inverting Eq. (2.33):

ǫ(1, 2) =
δϕ(1)

δV (2)
= δ(1, 2)− w(1, 1′)Π⋆(1′, 2). (A.8)
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We use here χ̃, the retarded version of the T–ordered Π⋆, to write in recip-

rocal space

ǫG,G′ = δG,G′ − wGχ̃G,G′ . (A.9)

We use now the general rule for a matrix of dimension N ×N

M =

(

m C1

C2 A

)

, (A.10)

where m =M1,1, A is a matrix of dimension (N − 1)× (N − 1) and C1 and

C2 are matrix of dimension 1× (N − 1) and (N − 1)× 1 respectively,

M−1 =
1

m− C1A−1C2

(

1 −C1A
−1

A−1C2 A−1

)

, (A.11)

to express ǫM = 1/ǫ−1
0,0 starting from Eq. (A.9):

ǫM = 1− w0χ̃0,0 −
∑

G,G′ 6=0

w0χ̃0,G ǫ−1
G,G′ wG′ χ̃G′,0. (A.12)

Finally we recognize that

χ̃0,0 +
∑

G,G′ 6=0

χ̃0,G ǫ−1
G,G′ wG′ χ̃G′,0 (A.13)

is the zero component of a modified Dyson–like equation where the G = 0

component of the kernel is zero. Using the relation ǫ−1 = (1−wχ̃)−1 in fact

we can define

χ̄ = χ̃+ χ̃w̄χ̄, (A.14)

and so express the macroscopic dielectric function as

ǫM = 1− w0χ̄0,0. (A.15)
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Appendix B

On the quasiparticle

concept

To clarify the quasiparticle (QP) concept here we consider the poles of the

one–particle Green’s function (GF), that represent the description of photo–

emission excitations.

The QP concept introduced by Landau derives from the physical intuition

that some excited states of an interacting many–electron system reassemble a

one particle resonance in experiments carried out in accelerators. The main

difference is that real particles do not interact with the background (the

vacuum) while in the interacting systems QP excitations have a (long) finite

life–time due to the interaction with the many–electrons sea. This means

that QPs are not exact eigenstates of the Hamiltonian, but are “quasi–

eigenstates”.

In the GF formalism the finite lifetime is described by the imaginary part

of the self–energy which, evaluated at a QP pole, is not real. This concept

is strongly related to the existence of a continuum of poles in an infinite

system, that is a branch cut in the complex plane.
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First we give the mathematical construction which connects the Lehmann

representation to the QP representation of a GF. Most of the concepts are

in Ref. [45].

Consider the function (here x is in the complex plane)

fik(x) =
ai(k)

x− ǫi(k) + iη
, (B.1)

which has a pole on the real axis at x = ǫi(k) (the small iη off-set is there,

as usual, for mathematical convenience). Now let’s take the related function

g(x) =
∑

i,k

ai(k)

x− ǫi(k) + iη
, (B.2)

which has a series of poles on the real axis. Suppose that, in some limit

(the thermodynamic limit in a physical system), the variable k becomes a

continuum variable and the sum over k becomes an integral1. Supposing

for simplicity ǫi(k) = k δi,1 and that ai(k) = (1/π)(1/[(k − E1)
2 + E2

2 ], the

integrand has a branch cut in the lower complex plane for k = x − iη and

a simple complex pole at k = E1 + iE2. We can perform a contour integral

in the upper plane (avoiding the branch cut) and using the residue theorem

we obtain

g(x) =
2πi

π

1

ω − (E1 + iE2)
, (B.3)

where I let the η to go to zero as we do not need it any more here.

The poles of g(x) can be either the branch cut, i.e. the poles of the

Lehmann representation (Eq. (B.2)), or the complex pole, i.e. the QP pole

(Eq. (B.3)). This connects the Lehmann representation with the QP picture.

We have a connection with the definition I gave in my thesis with E1 =

ǫi + Re[Σii(E1 + iE2)] and E2 = Img[Σii(E1 + iE2)]. This last connection

1In calculations on realistic system we have a discrete grid of k points but we think
this as an approximation to the whole Brillouin–zone
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can be obtained writing the analytic continuation of

Gii(k, ω) =
1

ω − (ǫi(k) + Σii(k, ω))
(B.4)

The GF has a QP pole when Img(Σii(k, ω)) is small (we need the QP to be

almost an eigen–state of the Hamiltonian according to the request that we

have a quasi–eigen–state).

In the analytic continuation we find the complex poles and not the branch

cuts on the real axis because the GF is defined on the Riemann surface where

the branch cuts are the connections of two sheets.

When we do not have a continuum of states, then all this procedure makes

no sense and we remain with the simple poles on the real axis. Physically

this is related to the fact that there is not a macroscopic number of states

which can interact and make the QP poles to have a finite life–time.

The definition of QP as “dressed” one particle excitations, which never

consider satellites as QP, is not exactly the same as the idea of a quasi–

eigenstate of the Hamiltonian. If a satellite is a clear and well definite peak

in the spectrum, then it can be considered a QP. On the other hand if the

satellite appear, for example, as a shoulder of a QP peak in the spectrum it

cannot be considered a QP.

However when, in practice, we do GW calculations we assume that the

QP wave–functions are well described by the KS wave–functions. This means

that we do not have the QP wave–function which describes the satellite.

Maybe in this sense just “dressed” one particle excitations are QPs.

The procedure I’ve described in this section is usually not carried on

in the BSE scheme where instead the Lehmann representation is used2. It

could be interesting to keep in mind this possibility, especially once one goes

beyond the static approximation for the kernel of the BSE and so can think

to an analytic continuation and to a kernel which can be non-real.

2Only in some works the imaginary–part of the self–energy is used to evaluate the
life–time of neutral excitations
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Appendix C

Gauge transformations

In quantum mechanics a transformation is a gauge transformation if it leaves

unchanged all physical predictable quantities. The most well known kind of

gauge transformation are those related to the electromagnetic potentials (or

more in general to gauge potentials). The Schrödinger equation, for example,

is invariant under the transformations

A → A+∇Λ , (C.1)

V → V − ∂Λ

∂t
, (C.2)

Ψ → Ψe
ih̄
e
Λ . (C.3)

V and A are the scalar and the vector electro–magnetic potential respec-

tively, Ψ is the wave–function of the system, and Λ is a generic function.

In Ch. 7, for example, we used this freedom to fix numerical instabilities

in the solution of the self–consistent problem. The concept of AB effect

itself is deeply related to the concept of gauge transformation. Indeed the

existence of the AB effect is due to the fact that, in quantum mechanics,

the vector potential outside a solenoid can be nullified only at integer values
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of the magnetic flux trapped by the solenoid, and accordingly is not a pure

gauge potential for non–integer values of the flux.

The many–body Hamiltonian introduced in Ch. 1 is written approxi-

mating the Hint term in the non-relativistic limit, i.e. neglecting terms

proportional to 1/c (with c the speed of the light). The retained term, w, is

the interaction in the “Coulomb gauge” or transverse gauge obtained setting

∇ ·A = 0 and it is instantaneous.

Other possible gauge transformations exist. The response function intro-

duced in Ch. 1 in the dipole approximation is proportional to the expectation

value 〈x̂〉 of the position operator. However the relation [Ĥ, x̂] = p̂ between

the position operator to the momentum operator can be used to write the

response function in terms of either the position (lenght gauge) or the mo-

mentum (velocity gauge).



Appendix D

DFT and magnetic fields

In Ch. 7 we have shown ab–initio results of the effect of a static magnetic field

on CNTs. The implementation in the code has been done adding the term

Hmagn = Aext · j. While this term enters in the many–body Hamiltonian,

it is not the only term which enters be used in the DFT Hamiltonian. Our

implementation is then approximated.

DFT vs CDFT

When the coupling term A · j is considered the HK theorem does not hold

anymore and CDFT have to be used, as we stated in Ch. 3, where an ex-

tension of the HK theorem can be proved [19, 18]. Within (non relativistic)

CDFT the total energy is a functional of the density and the paramagnetic

current E[ρ, j(p)]. DFT can be seen as an approximation to CDFT with

E[ρ, j(p) = 0]; accordingly Vxc[ρ, j
(p)] ≈ V DFTxc and Axc ≈ 0. This approxi-

mation is used in the ZF model and in the present thesis too.
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Diamagnetic screening

Beyond the xc vector potential, the magnetic current generates a diamag-

netic screening potential, that is the equivalent of the Hartree term which

originates from the density:

Adiam(r) =
µ0

4π

∫

d3r′
j(r′)

|r− r′| (D.1)

The diamagnetic screening term is usually negligible as the “diamagnetic

field” is usually much smaller then the external applied field. In CNTs too

is small, however, due to its cylindrical geometry it could be measurable.

Indeed the “diamagnetic field” is, in first approximation, proportional to the

radius of the electronic orbits. In simple geometries electrons spin around

the atoms at a radius close to 1 Bohr. In CNTs and in mesoscopic rings

however the radius is much bigger. Indeed in mesoscopic rings the field can

be strong enough to have stationary states with self–sustaining currents1.

In the present work we neglected this term as a first approximation,

though the description of persistent currents in the ground state could be

used to estimate the value of it.

Non–local term of the pseudo–potential

When a vector potential is considered, the non local part of the pseudo–

potential has to be modified. This can be understood observing that a

non local operator Vnl(r, r
′) can be expressed as Vnl(r,p) [88, 84]. Then

when a vector potential is present the substitution p→ (p− eA) has to be

performed in order to ensure that 〈Vnl(r,p)〉 is gauge invariant and so that

the total energy of the system is gauge invariant.

1When the radius of the cylinder becomes very large and the classical limit is ap-
proached the diamagnetic current must be balanced by the paramagnetic current and the
total effect is not always diamagnetic.
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We explored the effect of the non–local term of the pseudo–potential in

Sec. 7.3.

The non–local term in the pseudo–potential enters even in the definition

of the current operator. Indeed the current is proportional to the velocity

and so to the commutator of the Hamiltonian with the position operator

j = q [H, r] , (D.2)

= q (p− eA+ [Vnl, r]). (D.3)

In the present work, when we compute the PCs we considered the effect due

to the presence of the non–local term on the pseudo–potential. However we

verified that this term is negligible with respect to the paramagnetic and the

diamagnetic term of the total current.
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nique, Palaiseau.

http://theory.polytechnique.fr/people/bruneval/bruneval these.pdf .

[5] A.L. Fetter and J.D. Walecka,

Quantum Theory of Many-Particles Systems,

Dover edition, New York (2003).

[6] Francesco Sottile, PhD thesis, Response functions of semiconductors

and insulators: from the Bethe–Salpeter equation to time-dependent

density functional theory, defended on 29th September 2003, École
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