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Abstract

A numerical model based on the mild slope equation is applied to reproduce
the propagation of small amplitude transient waves over mildly sloped sea
bed. The model makes use of the Fourier transform to convert the time
dependent hyperbolic equation into a set of elliptic equations in the frequency
domain. Therefore the reproduction of the full frequency dispersion of waves
is achieved, since each frequency component is solved using a dedicated
elliptic equation.

The model results suitable to reproduce the tsunami far field propagation.
Tsunamis are traditionally considered extremely long, single waves able of
devastating the coast; however it has become well accepted that these kind of
waves is a wave packet, that in most cases may exhibit a frequency dispersive
behavior.

The results of available experimental studies on tsunami generated by
landslides are used to validate the model. In the present work the waves
generation is analyzed trough a wave-maker boundary condition, which
works as a wave paddle in the physical models, otherwise it is included in
the field equation. The mild slope equation is derived again taking into
account the movement of the sea bottom, thus in the equation appears
a forcing term which represents the effects of a tsunamogenic source.
Validation and discussion about the effects of the source term, for different
bottom movements, are presented. The comparison with other laboratory
experiments were used to gain insigth on tsunami generation and propagation
phenomena, and to test the model application in a tsunami early warning.

An important feature of the model, that in our opinion makes it suitable
to be used in early warning, is that can be applied in two stages: one is
extremely expensive from the computational point of view, the other is very
fast and can be applied in real-time. Therefore the idea, when setting up
an early warning system, is to define the scenarios and to perform the a
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priori computations, then the results can be used for the simulation in real
time, forecasting the properties of the waves at the desired points of the
computational domain at an acceptable costs.

An example application of tsunamis propagating around the Stromboli
island, in the south Tyrrhenian sea, Italy, is also presented to show the
applicability of the present approach to real life scenarios.



Sommario

Un modello numerico basato sulla risoluzione dell’equazione ‘mild slope
equation’ (MSE), è applicato per simulare la propagazione di onde di piccola
ampiezza su fondali a debole pendenza. La MSE è un’equazione integrata
sulla verticale e può essere scritta in termini di elevazione della superficie
libera o di potenziale di velocità. La MSE scritta nel dominio del tempo
è un’equazione iperbolica; nel presente modello l’equazione è risolta nel
dominio della frequenza: applicando la trasformata di Fourier si ottiene un
set di equazioni ellittiche, ciascuna delle quali risolve una componente in
frequenza dello spettro ondametrico. In tal modo il modello risulta in grado
di riprodurre la completa dispersione in frequenza delle onde.

Il modello è applicato per simulare la propagazione delle onde di
maremoto (tsunamis) nel campo lontano. Nonostante le onde di maremoto
siano considerate come onde estremamente lunghe, capaci di inondare
e devastare la costa, negli ultimi anni è stato dimostrato che tali
onde presentano un comportamento dispersivo in frequenza, tale per cui
l’approssimazione di acque basse può risultare limitativa.

Il modello è stato validato tramite i risultati di alcuni esperimenti di
laboratorio che riproducono onde di impulso generate dalla caduta di corpi
rigidi in acqua. Tali esperimenti e il presente modello numerico sono stati
implementati nell’ambito di una ricerca volta allo studio delle onde di
maremoto generate da frana. La modellazione numerica della generazione
delle onde è studiata attraverso una condizione al contorno, che impone
una determinata velocità o elevazione della superficie libera ad un contorno
del dominio di calcolo, oppure attraverso un termine sorgente inserito
nell’equazione di campo. Nel presente lavoro la MSE è derivata anche nella
condizione in cui si ammette una condizione al contorno sul fondale marino
che varia anche nel tempo, rappresentando cos̀ı il passaggio della frana o un
terremoto sottomarino.
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Il modello si presta adatto all’applicazione in un sistema di allerta
tsunami (Tsunami Early Warning System) in quanto si può risolvere in
due fasi. In una prima fase vengono riprodotti degli scenario di maremoto,
conoscendo le possibili aree di generazione e ipotizzando l’intensità della
causa di generazione. Questa prima fase richiede costi di calcolo elevati e
per questo motivo deve essere risolta a priori. La seconda fase avviene in
tempo reale, allorquando si verifica un evento di maremoto. Servendosi delle
simulazioni già svolte e di misure di rilevamento dello onda di maremoto in
tempo reale, il modello prevede le caratteristiche del maremoto nei punti di
interesse e in tempi utili per mandare l’allarme.

E’ inoltre mostrato un esempio di applicazione del modello nel sud del Mar
Tirreno, Italia. L’esempio riproduce un evento di maremoto causato dalla
caduta di una frana dall’isola di Stromboli. Quest’isola è un vulcano ancora
attivo e, ad eventi eruttivi più gravosi, possono essere associati dislocamenti
di terreno che, impattando sulla superficie del mare, possono generare onde
di maremoto, come è successo il 30 Dicembre del 2002.
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Chapter 1

Introduction

1.1 Tsunami

In the Coastal Engineering international scientific community, tsunamis are
long water waves triggered by a sudden disturbance of the sea/ocean floor or
the sea/ocean surface, which is usually caused by earthquakes, landslides or
volcanic eruptions. The word tsunamis comes from the Japanese, with the
meaning “harbor wave”, and is related to the excitation of seiches induced
into a harbor when the long tsunamis wave enters the closed basin. Both
energy and momentum can take tsunamis waves thousands of kilometers
across open ocean, carrying destruction on far shores hours after the impulse
generating event. In deep water conditions, tsunamis can travel at celerities
of 600-800 kilometers per hour, presenting wave heights of the order of some
centimeters, wavelengths of the order of hundreds of kilometers. As the wave
approaches shallow water near the coast, the wave celerity is reduced and the
wave height significantly increases, sometimes exceeding also the value of 20
meters, with wave periods up to 20/30 minutes. Tsunamis are able to produce
high wave runups which can flood the coastal areas and even destroy a city
in the coast, and they are so destructive and dangerous even because can
be rarely detected in open seas. Therefore it is very important the analysis
of this phenomenon, especially considering the safety aspects related to the
human activities along the coasts. Tsunamis waves have largely occurred
in the oceans and well known is the tragic event of Sumatra Island, in the
Indian Ocean, occurred the 26th of December 2004 which caused the loss
of about 300,000 human life; however very dangerous events have been also
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registered in the Mediterranean sea, such as that occurred the 21st of July, AD
365, at Alexandria, which caused 50,000 deaths, and that one occurred the
December 28th, 1908, at Messina, which caused 120,000 deaths. Regarding
the Mediterranean sea, it is worth to mention the event occurred at the
Stromboli volcano, on December 30, 2002, because is the case study of the
present work. No human lives were lost, but the wave damaged properties
along the shorelines of the Stromboli island and excited resonant modes of
harbors along the coasts of Calabria.

1.1.1 Tsunamis generated by landslides

Waves generated by submarine or subaerial landslides are a particular type
of tsunami waves. They can be triggered by landslides falling in artificial
reservoirs, as the event of the Vayont valley, Italy, 1963 (Panizzo et al., 2005)
or in natural lakes, or moreover in sea shorelines, as the event of Lituya
Bay, Alaska, 1958 (Miller, 1960; Fritz et al., 2001), or the one of Stromboli
volcano, Italy, 2002 (Tinti et al., 2005, 2006a, 2006b). Differently from
tsunami waves triggered by a submarine disturbance, the subaerial landslide
generated waves produce splashes and complex three dimensional water flows
in the vicinity of the impact area. Then the perturbation travels for long
distances, producing high water waves in the shallow water areas. In terms
of the tsunamis generation mechanisms, two main differences can be found
between tsunami waves triggered by landslides or by seismic disturbance
of the sea floor. The first difference is on the duration of the generation
process: a landslide takes more time to stop its movement, about the order
of several minutes longer comparing to sea floor seismic motion. The second
difference is in the source area involved in a seismic floor deformation which is
larger than that of a landslide movement. Hence, coseismic displacements or
vertical seafloor deformations, often generate tsunamis with long wavelength
and long period, and their wave height, relatively small, is related with
the earthquake magnitude. While tsunami generated by landslides are only
limited in height by the landslide vertical displacement, which may reach
several thousand meters.
Landslides falling into water represent one of the greatest tsunami hazards
for coastal population and infrastructures, because of their consequences of
flood and inundation, and because they offer little time for warning due to
their proximity to the shore. In the case of artificial reservoirs the most
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dramatic consequences are the dam overtopping, the flooding of the lake
shorelines, and the seiching waves of the basin. It is clear how is important
the understanding and the forecasting of landslide generated waves both for
the safety of people and properties which are close to the impact area, and
for the artificial reservoirs and dam management.
The generation of impulsive waves due to the impact of subaerial landslide
into water is a complex phenomenon, involving several physical aspects. A
first simplification can be done considering the whole phenomenon distinct in
four phases, as it was proposed by Huber and Hager (1997). As can be seen
from the sketch in Figure 1.1, in the first step the landslide starts moving,
accelerates and then falls into water. The study of this part of the process
lies in the scientific field of geology and soil mechanics. Step 2 sketches
the impact of the landslide into water. This part of the process is at the
base of wave generation, due to the energy exchange mechanism between
the landslide and the water. The principal landslide parameters, (i.e. its
volume, impact velocity, density, shape of the front, slope inclination angle)
influence the features of the subsequent water wave motion. In the third step
impulsive waves propagate into the reservoir or in the open sea, presenting
a wave energy dispersion which is both longitudinal and directional. During
the propagation wave features change as a function of the water depth, and
refraction, diffraction and shoaling may occur. Finally, step 4 is related to
the impulsive wave interaction with shorelines or structures. The impulsive
wave runup may cause the flood of coastal areas, and, in the case of artificial
reservoir, the dam can be overtopped thus flooding the downstream areas.

As far as the generated water waves are concerned, they may present very
different shapes and dispersive features. Prins (1958), Wiegel et al. (1970)
and Noda (1970) performed several physical experiments generating impulse
waves by the falling of a solid block in a two dimensional wave flume. They
concluded that, depending on the local water depth, the energy exchange
between the landslide and the water, and the landslide volume, impact
waves present different characteristics. Their experimental observation can
be summarized by Figure 1.2, which presents a map of different wave types
observed during impulse waves generation due to the vertical fall of a box (λ is
the box width, d is the local water depth, Fr = v/

√
gd is the dimensionless

box falling velocity). The typical time series of water surface elevation at
a given point are represented on the right part of Figure 1.2. Basically
four types of impact waves were observed by these authors: (A) leading
wave with oscillatory wave characteristics, (B–C) leading wave with solitary
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Figure 1.1: Principal phases in the phenomenon of subaerial landslide
generated waves.

wave characteristics, followed by a trough connecting it with the dispersive
wave pattern, (D–E) leading wave being a single wave with solitary wave
characteristics, separated by the dispersive wave pattern, (F) solitary wave
with complex form (bore in the first stage). As a general rule the generated
waves type vary from (A) to (F) gradually as the values of λ/d and Fr
increase. When the dimensions of the falling body are large in comparison to
water depth, solitary waves are to be expected, vice versa a train of dispersive
waves is likely to be generated in relatively deep water.

The tsunamis generation and propagation can be analyzed in the near

field (in the vicinity of the impact area) or in the far field (where propagation
takes place). The water wave field can be recognized to change from the near
field, where the water motion is complex and three dimensional, presenting
splashes and bores, to the far field, where the water motion is dominated by
propagating water waves. In the definition of near or far field, some further
considerations can be made. Considering the ratio between the volume of
the landslide and that of the water body, where impulsive flows take place,
three different cases can be recognized (see Figure 1.3): the first case (A),
is the case of a large landslide falling into a small reservoir, the third case
(C) contrary, is when a small landslide falls into a large reservoir or in the
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Figure 1.2: Different types of impulse waves defined as function of the
landslide volume, represented by the dimensionless parameter λ/d, and the
landslide velocity, represented by the Froud number Fr (picture taken from
Noda, 1970).

open sea, and the second panel (B) of Figure 1.3 shows an intermediate case.
The situation sketched in the panel A, is the limit of a case where the far
field does not exist, that one on the panel C, shows a case where the near
field is small compared to the far field, the intermediate situation (panel B)
consist of near field and far field of comparable extents. So it is important
to consider which could be the dominant aspects of the phenomenon before
modeling subaerial landslide generated waves.

1.2 Aims and structure of the present work

In the recent past the research interest on tsunamis has risen enormously, due
to the threat of the inundation consequences on coastal zone. Mathematical
theory and physical model experiments have been implemented in order to
get more insight about the physical processes and to plan defence strategies
aimed to mitigate the effects of these events. The present work aims
at developing a new numerical model and methodology to simulate the
generation and propagation of tsunamis. The model is based on the mild
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Figure 1.3: Three different main cases defined as a function of the ratio
between the volume of the landslide and that of the water body.

slope equation (MSE hereinafter), originally developed by Berkhoff (1972),
which is able to reproduce small amplitude transient waves, because is linear,
and to properly simulate the full frequency dispersion of the waves. The
numerical technique makes use of the Fourier Tranform (with respect to the
time) of the wave equation in order to obtain an elliptic equation for each
component of the wave spectrum, which are solved using a numerical finite
element method. Solving the mild slope equation in the frequency domain
potentially allows the solution of all the wave frequency components, which
can be then superimposed, due to the linerity of the equations, to obtain the
time domain solution.

The innovative feature of the model is in the computational procedure,
more than in the model equations, which makes it suitable for the use in
tsunami early warning system (TEWS). As it will be shown the model can be
applied in real time. This is possible because the computational procedure is
split into two parts. One is computationally expensive, and has to be carried
out when preparing the system; the other one is very fast, and can be carried
out in real time as the tsunami event takes place.

The present document is structured in 5 chapters. In the first one the
topics and the aims of the work are already outlined. Chapter 2 provides an
overview of the mathematical water wave theories, with particular attention
to those used to model tsunamis and to the recent works on this topic.
In Chapter 3 the model equations are derived and the numerical model
is described. Chapter 4 presents the model applications and shows the
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model’s validation for reproducing tsunamis generated by landslide. Chapter
5 presents a model application to the Tyrrhenian Sea, in the Mediterranean
Sea. There, at Stromboli island, as already mentioned, a tsunami event
occured in December 2002. Stromboli is a still active volcano, and sometimes
the most big eruptions are associated to landslides falling into the sea. The
last chapter gives the conclusions and the final discussions of the present
work.
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Chapter 2

Tsunami wave modelling

In fluid mechanics the fluid is considered as a continuum; this allows all fluid
properties to be described by mathematical functions that are continuous and
differentiable. Thus modelling the fluids kinematics and dynamics, means
applying the laws of conservation of mass and of momentum to a finite
volume of fluid. Depending on the assumptions made in order to simplify
the problem, different mathematical problem are obtained. The Navier-
Stokes equations, within the continuity equation, represent a complete set
of equations for fluid flows. Assuming that the fluid viscosity neglectable,
i.e. away from the boundary layers and turbulence, it means that the fluid
motion is irrotational (zero vorticity); in this case the Navier-Stokes equations
reduce to the Euler equations. In this chapter the main irrotational water
wave theories are outlined, and a literature review of the tsunami modelling
is given.

2.1 Irrotational water waves theories

In general for the description of the water wave motion a system of reference
as the one sketched in figure 2.1 is used, where x and y are the horizontal
coordinates and z is the vertical one pointing upward. The plane x, y for z =
0 represents the still water free surface and the distance between this plane
and the see bottom is defined by the water depth function h (x, y, t). The fluid
velocity and the fluid pressure inside the domain are defined respectively by
the vector v = {u, v, w} and the scalar p (x, y, z, t), while η (x, y, t) defines the
free water surface vertical displacement. Assuming an irrotational fluid, the
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velocity vector field can be represented by a velocity potential φ (x, y, z, t),
which is a scalar. The continuity equation for an incompressible fluid, in
terms of velocity potential becomes the Laplace equation

∇2
hφ+ φzz = 0 − h (x, y) < z < 0 (2.1)

where ∇h is the differential operator which means the divergence in the
horizontal coordinates (x, y)

Figure 2.1: Reference sketch for the description of wave motion

The vectorial momentum equation, for an inviscid fluid (Euler equation),
becomes the scalar Bernoulli equation in term of velocity potential

φt +
1

2

(
φ2
x + φ2

y + φ2
z

)
+

p

ρ
+ gz = c (t) − h (x, y) ≤ z ≤ 0 (2.2)

where c (t) is an arbitrary function in the generalized Bernoulli equation.
Hereinafter it is chosen to include c (t) in φt, thus the right hand side of
equation (2.2) can be put as zero. The kinematic boundary conditions allow
the fluid particles to remain on that boundary. At the impermeable sea
bottom z = −h this is equivalent to assuming that the fluid velocity is
parallel to the bottom at all points; at the free water surface z = η means
the fluid particles must follow the motion of the free surface

φz + ht +∇hφ · ∇hh = 0 z = −h (x, y) , (2.3)

φz − ηt −∇hφ · ∇hη = 0 z = η (x, y, t) (2.4)
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At the free water surface a dynamic condition express that the external
stresses on this boundary have to be balanced by equivalent internal stresses
inside the fluid. For inviscid fluid the external stress is the atmospheric
pressure acting on the boundary, which can be assumed to be zero, so the
dynamic free surface boundary condition comes from the Bernoulli equation
(2.2) imposing the pressure to be zero

φt +
1

2

(
φ2
x + φ2

y + φ2
z

)
+ gη = 0 z = η (x, y, t) (2.5)

The mathematical problem is rewritten here for the sake of clarity

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2
hφ+ φzz = 0 − h (x, y) < z < 0

φz + ht +∇hφ · ∇hh = 0 z = −h (x, y)

φz − ηt −∇hφ · ∇hη = 0 z = η (x, y, t)

φt +
1
2

(
φ2
x + φ2

y + φ2
z

)
+ gη = 0 z = η (x, y, t)

(2.6)

The problem defined as (2.6) can be formulated in an adimensional form,
in order to estimate the relative order of magnitude of each term of the
equation. The dimensionless problem, derived in details in the appendix A,
results to be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2
hφ+ 1

μ2φzz = 0 − h′ (x, y) < z < 0

1
μ2φz +

1
ε
ht +∇hφ · α = 0 z = −h′

1
μ2φz − ηt − ε∇hφ · ∇hη = 0 z = εη′

φt +
1
2
ε
(
φ2
x + φ2

y +
1
μ2φ

2
z

)
+ η = 0 z = εη′

(2.7)

Problem (2.7) shows the presence of three dimensionless parameters

• μ = h
L
, the wave length parameter

• ε = a
h
, the amplitude parameter

• α = ∇hh, the bottom slope
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The water waves models can be classified depending on which restrictions
are made on these dimensionless parameters; or, formulated in a different
way, it can be said that under different conditions, different theories can
be applied. With reference to the wave length parameter μ, the following
conditions are considered

• μ < 1
20
, shallow water or long waves conditions

• 1
20

< μ < 1
2
, intermediate water conditions

• μ > 1
2
, deep water or short waves conditions

while the amplitude parameter ε governs the linearity of the waves
equations

• small values of ε implies linear equations

• large values of ε implies nonlinear equations

The Stokes waves theory, first derived by Stokes (1847), emerges from the
dimensionless problem assuming to be in intermediate to deep water relative
to the characteristic horizontal scale L. This means assuming μ = O (1). The
Stokes wave theory is valid for small amplitude waves, i.e. small values of ε,
and is derived following a perturbation expansion approach: the solution for
the fluid velocity potential, φ, the free surface elevation, η and the pressure,
p are expanded in a power series of ε. Then they are inserted back into the
equations (2.7), which are solved at each order of the power series. The first
order of approximation is relative to the power zero of ε, and is the case
of linear Stokes waves equations. The mathematical problem becomes in
dimensional variables

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2
hφ+ φzz = 0 − h (x, y) < z < 0

φz + ht +∇hφ · ∇hh = 0 z = −h (x, y)

φz − ηt = 0 z = 0

φt + gη = 0 z = 0

(2.8)

Considering the next power of ε (i.e. larger values of the ratio a/h)
the theory becomes nonlinear. The most evident effect of the second
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order approximation is the asymmetry of the wave profile, which presents
longer and smaller trough and peaked crests. The solution of the linear
mathematical problem (2.8) gives the fluid velocity field φ (x, y, z, t) and the
water surface elevation η (x, y, t), and brings to the following relation, written
in dimensional variables

ω2 = gk tanh (kh) (2.9)

which is named dispersion relation and essentially specifies the correlation
between ω and k, which are respectively the angular frequency and the wave
number, defined as ω = 2π

T
and L = 2π

L
, where T and L are respectively

the wave period and the wave length. Since the wave celerity c is defined as
c = L/T = ω/k, equation (2.9) can be written as

c2 =
g

k
tanh (kh) (2.10)

which gives the values of the phase velocity c for a given water depth
and wave length. This relation inidcates that each wave travels with an
appropriate velocity depending on its frequency. In particular longer waves
travel faster than shorter ones, thus an irregular wave packet during its
propagation evolves in a wave train with the longest waves proceeding and a
tail of shorter waves following. This explains the name of dispersion relation,
in the meaning that waves are dispersive in frequency.

In the region near the shore the water depth becomes so small that the
incident wind generated waves are much longer than the water depth. This
is the shallow water regions and these waves are termed as long waves.
Mathematically it means that the wave field equations are approximated
by assuming the wave length parameter to be small, μ << 1. The shallow
water theories describe the fluid motion for the long waves and are valid in
the limit of μ < 1/20. A consequence of imposing the limit of μ → 0 is
that all waves travel with the same celerity, which does not depend on the
frequency (i.e. the period). In this limit equation (2.10) provides c =

√
gh,

therefore the long waves are called non-dispersive because, each frequency
component travels at the same velocity thus do not evolve in a wave train
but maintain the same shape.

The long wave theory is derived again from the dimensionless problem
(2.7), and the solution φ is now assumed to be a power series of the small
parameter μ. This procedure provides one system of equations for each order
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of the power series. Shallow water theory is the approximation resulting from
truncating the process at the lowest order possible.

Three different theories arise by considering the relative magnitude of the
both small parameters ε and μ2

• ε << O (μ2)

• ε = O (μ2)

• ε >> O (μ2)

The first and the last cases are well described respectively by the linear
shallow water waves equations (LSWE) and the nonlinear shallow water
waves equations (NLSWE). When ε = O (μ2) nonlinear weakly dispersive
equations describe the wave motion. These equations lead to the so called
Boussinesq type equation (BTE).

For each theory, by substituting the series expansion of the potential in
the kinematic and dynamic free surface boundary conditions, respectively a
mass and a momentum equilibrium equations are achieved valid for a column
of water. Thus the original mathematical problem is simplified to a set of
two equations in the two dependent variables η and v, which in the case of
ε >> O (μ2) are

ηt +∇h [v (εη + h0)] = 0

vt + εv∇hv+ g∇hη = 0
(2.11)

by neglecting the ε order terms, i.e. ε << O (μ2) the linear shallow water
equations are achieved

ηt +∇h (vh0) = 0

vt + g∇hη = 0
(2.12)

The Boussinesq equations include the lowest order effects of frequency
dispersion and nonlinearity. They can thus account for the transfer of energy
between different frequency components, the shape of individual waves
changes, and the evolution of the wave group propagating in varying water
depth. Different BTE have been implemented in order to extend the range
of applicability to deeper water, by improving the dispersion characteristics
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of the equations. Nwogu (1993) derived a form of the BTE which uses the
velocity at an arbitrary distance from the still water level instead of the
commonly used depth-averaged velocity. His equations reduce to

ηt + h∇hv+ α1h
3∇2

h (∇hv) = 0

vt + g∇hη + αh2∇2
hvt = 0

(2.13)

where v is the velocity at the water depth z = zα, and α1 = α + 1
3
, with

α determined by

α =
zα
h

(
1

2

zα
h

+ 1
)
;

zα
h

= −0.530. (2.14)

The first order Stokes equations are widely used to reproduce wind
generated waves in deep water. As the waves approach the coast, the
assumption of ε << 1 is no more valid, the higher order Stokes equations
have to be used. Tsunamis are considered as extremely long, single waves
able of devastating the coast, thus the long wave theories result suitable in
the tsunami wave modeling. In the next section are shown some relevant
works on the mathematical modeling of tsunami.

2.2 Tsunami waves modeling. Literature

review

Tsunami are generally regarded as long waves in comparison with the wind
generated waves. Thus traditionally mathematical models based on the
Nonlinear Shallow Waters Equations (NLSWE) (2.11) were used to simulate
the wave field. Other research works reveal that linear shallow water theory
is also suitable to model tsunami propagation, in the regions where the
wave amplitude is much smaller than the water depth, i.e. the ocean zone
before the shoaling effects. However in the recent past it has become well
accepted that although tsunami are generated with a shape of solitary long
crested waves, when they propagate over a deep sea/ocean, evolve into a
train of waves, due to the frequency dispersion effects, thus the shallow water
approximation could not be able to reproduce this aspect.

Kulikov et al. (2005) have demonstrated, on the basis of satellite
recordings of the December 26, 2004 Indian Ocean tsunamis, that the waves
generated by such a huge earthquake were strongly frequency-dispersive.
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In the work of Tadepalli & Synolakis (1996) it also appears that some
important features of the tsunamis propagation, such as the fact that the
first wave has a trough traveling in front of the crest, can be predicted by
using model equations that take into account the frequency-dispersion. They
proposed a model which assumes that the solitary wave like tsunami have
the shape of leading-depression N-wave. In the far propagation field they
solve the Korteweg-de Vries equations, while in the near shore field they use
LSWE. Intensification of the height of tsunamis waves can also be induced
by frequency dispersion, as suggested by Mirchin & Pelinovsky (2001).

The NLSWE however, although able of taking into account amplitude-
dispersion (i.e. the nonlinear effects) of the waves, cannot reproduce
the frequency-dispersion, which as mentioned before may be of relevant
importance. When studying the propagation of these waves over large
geographical areas it is common that the height of tsunamis is several order of
magnitudes smaller than the water depth. The typical wave height of a large,
destructive tsunamis is of 1 m, while the water depth over which it propagates
may be of 100, 1000 m. The steepness of the waves is also extremely small,
since the length is of the order of the kilometers. This suggests that nonlinear
effects may be neglected or at least may be of secondary importance in
comparison to the proper reproduction of the frequency-dispersion. It is
worth to mention however that the above considerations mostly apply for
the far field and not in proximity of the coast (i.e. in very shallow waters),
where the nonlinear effects become important.

In the last decades the Boussinesq-type equations (Peregrine, 1967;
Madsen et al, 1991; Wei & Kirby, 1995; Nwogu, 1993) have therefore become
the most suitable model for the tsunamis simulation. These equations allow
the reproduction of wave nonlinearity, relevant in the coastal shallow areas,
but they take into account of a weakly frequency dispersion of water waves,
thus being able to simulate its propagation a bit further in the deep water
conditions. Several versions of this type of models are available. The
complexity of the model equations (and therefore the computational costs),
however grows with the increased ability of the models of reproducing the
nonlinear and the frequency-dispersive effects.

Watts and Grilli carried out research studies on tsunami generated by
landslides (Watts et al., 2003; Grilli et al., 2005). They build up GEOWAVE
which is a comprehensive tsunami simulation model formed by combining
the Tsunami Open and Progressive Initial Conditions Sytem (TOPICS),
for the wave maker and tsunami generation, with the FUNWAVE model
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for the tsunami propagation and inundation. TOPICS uses curve fits of
numerical results from a fully nonliner potential flow model to provide
approximate landslide tsunami sources for tsunami propagation models,
based on marine geology data and interpretations. While the simulation
of tsunami propagation and inundation is carried out with the long wave
propagation model FUNWAVE, which is based on fully nonlinear Boussinesq
equations, with an extended dispersion equation, in the sense that ist matches
the linear dispersion relationship for deep water waves. They incuded a
breaker model in FUNWAVE in order to simulate inundation of dry land. In
their work, Grilli et al. (2005) performed numerical and experimental models
of tsunami generated by landslide slumps and slides.

Not taking into account the wave frequency dispersion can be even worse
in the cases of landslide generated tsunamis, because the landslide, moving
further in deeper water, still generates waves, which are generally shorter
relatively to the water depth. Lynett & Liu (2002) developed a mathematical
model to describe the generation and propagation of submarine landslide
generated water waves. Their model consist of a depth integrated continuity
equation and momentum equations which include full nonlinear, but weakly
frequency dispersion effects. They pointed out two main differences between
the tsunami generation mechanism of a submarine landslide and a submarine
earthquake. First the duration of a landslide is much longer, indeed the time
history of the seafloor movement will affect the characteristic of the generated
wave, and can not be considered just as an initial impulsive condition.
Second, the typical wavelength of the tsunami generated by landslide is
shorter, therefore, the frequency dispersion could be important even in the
wave generation region. In their model equations the ground movement is
the forcing function, they have therefore developed a new version of the BTE,
starting from bottom boundary conditions that take into account the seafloor
deformations given by the landslide. They have obtained model equations
that naturally incorporate the effect of the moving bottom and are able to
satisfactorily reproduce the frequency dispersion of the waves. They also
suggest that the effects of the moving bottom on the surface waves depend
on the wave frequency.

Sammarco & Renzi (2008) developed an analytical two-horizontal
dimension model to analyze the different physical features of landslide-
induced tsunamis along a straight coast. Their model is based on the forced
linear long-wave equation of motion (LSWE). In particular they noticed that
after a short transient immediately following the landslide generation, the
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wave motion starts to be trapped at the shoreline and finally only transient
long-shore traveling edge waves are present. Longer waves travel faster and
are followed by a tail of shorter waves, while new crests are created. Unlike
transient waves generated and propagating in water of constant depth, for
landslide-induced tsunamis along a sloping beach the larger waves are not
in the front of the wave train, but are shifted toward the middle of it.
Experimental comparison shows the validity of the model in reproducing the
physical behavior of the system. Their close analysis on the trapped waves of
landslide tsunamis along a straight beach is in the following compared with
the model presented in this document.

The MSE has been originally developed by Berkhoff (1972) for purely
harmonic waves, and due to its elliptic nature it was able of providing the
steady-state wave field. The MSE is a depth integrated equation that,
whitin appropriate boundary conditions, describes the waves propagation
over mildly slope sea bottom. It is derived from the adimensional problem
(2.7) by assuming ε << 1 and α << 1, as it will be shown in section
3.1.1. Copeland (1985) starting from the elliptic MSE obtained an hyperbolic
time-dependent version of the equations, which however was used to achieve
the steady-state wave field induced by periodic waves (see also Madsen &
Larsen, 1987). Also Smith & Spring (1975) and Radder & Dingemans (1985)
developed hyperbolic time-dependent MSE. Kubo et al. (1992) and Kirby
et al. (1992) studied the applicability of the time-dependent equations to
random waves. However they concluded that only very narrow banded
frequency wave spectra are properly reproduced by the hyperbolic versions
of the MSE, since some coefficients of the equations are calculated using the
frequency of the carrier wave. Lee et al. (2006; 2003) have further enhanced
the ability of these models also including the effect of rapidly varying bottom.

None of the above mentioned models seems able of dealing with broad
banded spectrum wave field, such as that resulting for tsunamis. Kirby et
al. (1992) separated the whole wave spectrum into several narrow bands and
for each of these solved the time-dependent MSE.

It is worth to mention here few research studies on tsunami generation
and propagation carried out using physical models. Between the most recent
works it can be cited the one of Enet and Grilli (2007). They performed
large three dimensional laboratory experiments to study tsunamis generated
by rigid underwater landslides, with the main purpose of both gain insight
into landslide tsunami generation processes and provide data for subsequent
validation of a three dimensional numerical model. The experiments were
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carried out in a wave tank of the Ocean Engineering Department at the
University of Rhode Island, USA. In their model the landslide is reproduced
with a smooth and streamlined rigid body which slides down a plane slope,
starting from different underwater positions. They have carried out a detailed
study of the law of landslide motion and relative discussions about the
generated waves features.

With regard to the landslide generated tsunami, the works of Di Risio
et al. (2009a; 2009b) need to be mentioned even because were used in the
present work to validate the numerical model. The paper of Di Risio et al.
(2009a) describes three dimensional laboratory experiments carried out at the
Environmental and Maritime Hydraulic Laboratory (LIAM) of the University
of L’Aquila, Italy, and reproduce a rigid landslide body sliding on a plane
slope. The paper of Di Risio et al. (2009b) describes other three dimensional
experiments which simulate an equal landslide body sliding down the flank
of a conical island, builded in the middel of a large wave tank. This physical
model is built at the Research and Experimentation Laboratory for Coastal
Defence (LIC), of the Technical University of Bari, Italy. More details about
both physical models are given in sections 4.4 and 4.5 where their results are
used to validate the numerical model.
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Chapter 3

Description of the numerical
model

The numerical model here described is based on the linearized mild slope
equation (MSE) and is able of reproducing the full frequency-dispersion
of small amplitude tsunamis, which makes it an attractive tool for the
simulation of these waves in the far field. The main difference with BTE
models is not in the results, which for the typical properties of the tsunamis
may be of the same order of accuracy, but mostly in the computational
procedure that, as shown in the following, makes it suitable for the use in
tsunamis early warning systems. The model presented in this work directly
uses the Fourier Transform of the time-dependent MSE and solves the
resulting equations in the frequency domain. The problem therefore reduces
to the solution of the traditional elliptic MSE and the time series of the
surface elevation is then recovered by means of the Inverse Fourier Transform.
This procedure guarantees accurate reproduction of the frequency-dispersion,
since each component of the wave field is modeled using a dedicated elliptic
equation. The MSE is a depth integrated equation, thus solves the wave
field assuming that the kinematic (fluid velocities) and the dynamic (fluid
pressures) features vary along the water depth according to a predefined
function. The depth integrated models represent a good compromise between
accuracy of the results and computational costs.

The present chapter contains one section which derives the model
equations, i.e. the MSE and the boundary conditions, in the frequency
domain. Particular focus is given on how the waves are generated inside
the domain, which can be achieved by imposing a wave maker boundary
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condition or a forcing source term in the field equation. Different model
applications are described in section 3.2, which mostly depend on how the
waves are numerically generated and on which would be the purpose of the
modeling: gain insight on the tsunami propagation process or predict tsunami
wave height and time of arrival for a early warning system. In the last
section a further application of the model is presented, which makes use of
the solution of the parabolic approximation of the MSE, matched with its
elliptic version.

3.1 Model equations derivation

3.1.1 Field equation

As starting point the linearized (small amplitude) water wave equations for
an incompressible irrotational fluid on an uneven bottom are taken, i.e.
equations already derived in the mathematical problem (2.8)

∇2
hφ+ φzz = 0 − h (x, y) ≤ z ≤ 0 (3.1)

φt + gη = 0 z = 0 (3.2)

ηt − φz = 0 z = 0 (3.3)

φz +∇hφ · ∇hh = 0 z = −h (x, y) , (3.4)

where again, φ (x, y, z, t) is the velocity potential in the fluid, η (x, y, t)
is the instantaneous elevation of the free surface, h (x, y) is the water depth
and g is the gravity acceleration, while ∇h is the differential operator which
means the divergence in the horizontal coordinates (x, y). All these variables
are real and scalar.

The dynamic and kinematic boundary conditions at the free surface,
equations (3.2) and (3.3), can be incorporated in a single equation

φz +
1

g
φtt = 0 z = 0 (3.5)

The solution of the given problem is assumed to be of the form

φ (x, y, z, t) = ϕ (x, y, t) f (z) (3.6)
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where ϕ (x, y, t) is the velocity potential at the undisturbed free water
surface z = 0 and f (z) is a function that describes how the kinematic field
varies along the water depth. Note that ϕ can be complex and includes the
effects of reflected waves, while f can be chosen as that resulting from the
linear wave theory valid for harmonic waves propagating in constant depth,
which however still holds in the case of mildly sloping bottom, i.e.

f (z) =
cosh [k (h+ z)]

cosh (kh)
(3.7)

where k is the wave number.
From the assumption (3.6) it comes that

φz = ϕfz = kϕ
sinh [k (h+ z)]

cosh (kh)
(3.8)

and

φzz = k2ϕ
cosh [k (h+ z)]

cosh (kh)
= k2φ (3.9)

therefore the Laplace equation (3.1) can be written as

∇2
hφ+ k2φ = 0 (3.10)

The following considerations are made:

f (z) = 1 at z = 0 (3.11)

fz = 0 at z = −h; (3.12)

fz = ktanh (kh) =
ω2

g
at z = 0; (3.13)

In order to depth integrate the field equation (Laplace equation 3.1), here
it is made use of the Green’s Theorem, which states

∫ b

a

(
Φ1∇2Φ2 − Φ2∇2Φ1

)
dx = [Φ1∇Φ2 − Φ2∇Φ1]

b

a
(3.14)

where Φ1 and Φ2 are generic functions of x. For the present purposes it
is assumed x = z, Φ1 = f (z) and Φ2 = φ (x, y, z, t), therefore
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∫ 0

−h

(
f
∂2φ

∂z2
− φ

∂2f

∂z2

)
dz =

[
f
∂φ

∂z
− φ

∂f

∂z

]
0

−
[
f
∂φ

∂z
− φ

∂f

∂z

]
−h

(3.15)

Substituting the Laplace equation (3.1) in the first term at the left hand
side (LHS), and the boundary conditions at z = 0 and z = −h (3.5 and 3.4)
and using equations (3.13, 3.12), in the right hand side (RHS) terms, then,
after changing the sign, equation (3.15) becomes

∫ 0

−h

(
f∇2

hφ+ k2fφ
)
dz =

1

g
ϕtt + ϕ

ω2

g
− [f∇hh∇hφ]−h (3.16)

the LHS can be seen as the integration over the depth of the field equation.
Considering that

∇hφ = ∇h (ϕf) = f∇hϕ+ ϕ∇hf (3.17)

and

∇2
hφ = f∇2

hϕ+ 2∇hϕ∇hf + ϕ∇2
hf (3.18)

using the expression (3.17) for the last term of the RHS and expression
(3.18) for the first term of the LHS, equation (3.16) becomes

∫ 0
−h (f

2∇2
hϕ+ 2f∇hf∇hϕ+ fϕ∇2

hf + k2f 2ϕ)dz =
1
g
(ϕtt + ω2ϕ)− [f∇hh (f∇hϕ+ ϕ∇hf)]−h

(3.19)

Now the first two terms of the LHS of equation (3.19) can be written as

∇h

(
f 2∇hϕ

)
= f 2∇2

hϕ+ 2f∇hf∇hϕ (3.20)

Reordering equation (3.19) it comes that

∫ 0
−h∇h (f

2∇hϕ)dz + [∇hhf
2∇hϕ]−h + ϕk2

∫ 0
−h f

2dz =
− ∫ 0

−h ϕf∇2
hfdz − ϕ∇hh [f∇hf ]−h +

1
g
(ϕtt + ω2ϕ)

(3.21)

For the first two terms on the LHS it can be applied the Leibniz’s rule,
therefore the equation (3.21) can be written as

∇h

(∫ 0
−h f

2∇hϕdz
)
+ ϕk2

∫ 0
−h f

2dz − 1
g
(ϕtt + ω2ϕ) =

−ϕ ∫ 0
−h f∇2

hfdz − ϕ∇hh [f∇hf ]−h
(3.22)
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Knowing that

∫ 0

−h
f 2dz =

ccg
g

(3.23)

where c and cg are respectively the phase and group celerity. By
multiplying equation (3.44) for g it results

∇h (ccg∇hϕ) + ϕk2ccg − ϕtt − ω2ϕ =
−gϕ{∫ 0

−h f∇2
hfdz +∇hh [f∇hf ]−h}

(3.24)

the RHS terms can be shown to be O
(
(∇hh)

2 ,∇2
hh
)
. Therefore if the

mild-slope assumption is introduced,∇hh� kh corresponding to∇hhL/h�
1 it can be argued that the (∇hh)

2-terms � LHS terms. Similarly, ∇2
hh �

∇hh, which is a natural additional assumption because ∇2
hh = O (∇hh) can

only occur over short distances without changing O (∇hh). This means that
the RHS terms are � of all the others terms, we therefore get

ϕtt −∇h (ccg∇hϕ) +
(
ω2 − k2ccg

)
ϕ = 0 (3.25)

which is the hyperbolic version of the MSE in terms of fluid
velocity potential and is usually referred to as the ‘time-dependent mild-
slope equation’, allowing the simulation in the time-domain of the wave
propagation. To obtain the MSE in terms of the free surface elevation η,
equation (3.25) needs to be differentiated with respect to time.

ϕttt −∇h (ccg∇hϕt) +
(
ω2 − k2ccg

)
ϕt = 0 (3.26)

and then use the dynamic boundary condition at the free surface (3.2)

η = −1

g
ϕt (3.27)

from which we obtain that ϕt = −gη and ϕtt = −gηt, those expressions
can be substituted into equation (3.26) to get, after dividing by g

−ηtt +∇h (ccg∇hη)−
(
ω2 − k2ccg

)
η = 0 (3.28)

which is the hyperbolic version of the MSE in terms of free surface elevation.
As previously said the time dependent MSE is not able to reproduce broad

banded spectra sea state, due to the fact that equation (3.28) contains some
coefficients which have to be calculated by assuming a dominant frequency of

Università degli Studi di Roma Tre - DSIC 27



Numerical modeling of waves for a tsunami early warning system

the wave spectrum, thus the validity of the resulting equation would be only
for narrow frequency-spectra seas (see the recent work by Lee et al., 2006
and references therein). By employing the spectral approach, the model can
on the contrary cover a broad spectrum wave field, typical of tsunamis, since
for each wave frequency a dedicated elliptical equation is solved.

The elliptic version of the MSE can be obtained by taking the Fourier
Transform of equation (3.28), then it comes

∇h (ccg∇hN) + k2ccgN = 0 (3.29)

where N (x, y, ω) is the Fourier Transform of η (x, y, t). Alternatively by
assuming a time harmonic wave motion, thus the water free surface elevation
assumes the form of

η (x, y, t) = a (x, y) · eiωt (3.30)

and obtaining the same equation of (3.29)

∇h (ccg∇ha) + k2ccga = 0 (3.31)

Equation (3.29) (or (3.31)) is the elliptic MSE as derived by Berkhoff
(1972). It is commonly used for the reproduction of harmonic waves, and it
represents a formidable tool for studying the propagation of small amplitude
waves into harbors and over coastal areas (Zhao et al., 2001). However it
is to be kept in mind that several (potentially infinite) values of ω are to
be considered and therefore many equations like (3.29) need to be solved to
obtain the final result in the frequency domain. Once the equations (3.29)
are solved with the appropriate boundary conditions (discussed later) for
each frequency ω, the result in the time domain can be achieved by taking
the Inverse Fourier Transform of N (x, y, ω) to obtain η (x, y, t).

3.1.2 Boundary conditions

Boundary conditions used in this model are the fully reflective conditions at
solid boundaries, the radiation condition, which allows the waves to freely
exit the domain, and the wave-maker boundary condition.

The full-reflection boundary condition can be expressed by imposing the
fluid velocity in the direction orthogonal to the boundary to be zero. By
using the kinematic free surface boundary equation (3.3) it follows that the
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derivative of the Fourier Transform of the free surface elevation η along the
normal to the reflective boundary should be zero (see Mei, 1983):

Nn = 0. (3.32)

The radiation boundary condition can be obtained by using a
mathematical formulation that allows the waves that propagate toward the
open boundaries to freely exit the computational domain. This condition
can be easily formulated for progressive outgoing waves (Sommerfeld, 1964;
Van Dongeren & Svendsen, 1997)

ηt +
c

cos (θn)
ηn = 0 (3.33)

where θn is the angle the wave direction forms with the outgoing normal to
the considered boundary.

The Fourier Transform of equation (3.33) provides the radiation condition
in the frequency domain (see Beltrami et al., 2001; Steward & Panchang,
2000)

Nn + ikcos (θn)N = 0. (3.34)

Please note that the equation (3.34) is nonlinear in the sense that θn is not
known a priori and depends on the solution itself. Iterative techniques can
therefore be applied or a reasonable estimate of this parameter can be used
to solve the indeterminacy.

The waves generation in the numerical domain can be modeled with two
different approaches: by means of a wave-maker boundary condition or by
means of a source term included in the field equation. The latter approach
is discussed in the next section 3.1.3. A wave-maker boundary condition can
be seen as a wave paddle used in physical models (although here evanescent
modes are not reproduced) and can be applied when the wave generation
mechanism occurs close to a boundary of the numerical domain. The wave-
maker boundary can be ‘open’ in the sense that generates the waves inside
the domain and even allows the waves to exit the domain through it, i.e.
the vertical section of an harbor opening, modeling the wave field inside the
harbor. Otherwise the wave-maker boundary can be ‘closed’ thus reflects
the incoming waves. The latter is the case of the wave field generated by an
aerial landslide entering into the sea water when it is known the point of the
impact.
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The wave-maker boundary condition is conveniently formulated in terms
of the velocity potential at z = 0 as follows

ϕn = uI , z = 0, (3.35)

where uI is the velocity at z = 0 of the desired wave field orthogonal to the
wave-maker boundary.

In order to obtain a mathematical expression involving η and consequently
N we make use of the dynamic boundary condition at the free surface (3.2)
which if transformed in the frequency domain results as follows

iωΦ = −gN, (3.36)

providing the usual relationship between Φ and N :

Φ = − g

iω
N (3.37)

which allows rewriting of the wave-maker condition as

Nn = − iω

g
U I (3.38)

being U I the Fourier Transform of the desired time series of velocity at
z = 0. It is worth to remind that the proposed wave-maker condition is
used to specify the fluid velocity at z = 0, and that the velocity field for
−h < z < 0 is assumed to vary as the function f . Evanescent modes are
therefore not included in this formulation.

3.1.3 Waves generation

When the numerical domain entirely includes the wave generation area, this
can be modeled by adding a source term in the field equation. In that case
the right hand side of equation (3.29) is different from zero.

Here it is demonstrated how the MSE is modified in order to incorporate
the effects of the movements of the bottom, such those occurring during
earthquakes and submerged landslides. It is assumed that the water depth
function h (x, y, t) varies also with the time. Thus the kinematic boundary
condition at the bottom results to be

φz + ht +∇hφ · ∇hh = 0 z = −h (3.39)

Università degli Studi di Roma Tre - DSIC 30



Numerical modeling of waves for a tsunami early warning system

The Laplace equation within the free surface boundary conditions and
the so modified bottom boundary condition, represent a problem as that
formulated in the section 3.1.1. If the same procedure of depth integration
is followed, it will appear an extra term. From the Green Theorem it results

∫ 0

−h

(
f
∂2φ

∂z2
− φ

∂2f

∂z2

)
dz =

[
f
∂φ

∂z
− φ

∂f

∂z

]
0

−
[
f
∂φ

∂z
− φ

∂f

∂z

]
−h

(3.40)

which, using the modified boundary conditions, now becomes

∫ 0

−h

(
f∇2

hφ+ k2fφ
)
dz =

1

g
ϕtt + ϕ

ω2

g
− [fht]−h − [f∇hh∇hφ]−h (3.41)

Operating the same step used to achieve equation (3.19) in this case it
results

∫ 0
−h (f

2∇2
hϕ+ 2f∇hf∇hϕ+ fϕ∇2

hf + k2f 2ϕ)dz =
1
g
(ϕtt + ω2ϕ)− 1

cosh(kh)
ht − [f∇hh (f∇hϕ+ ϕ∇hf)]−h

(3.42)

Now incorporating the first two terms of the LHS of equation (3.42)
follows

∫ 0
−h∇h (f

2∇hϕ)dz + [∇hhf
2∇hϕ]−h + ϕk2

∫ 0
−h f

2dz =
− ∫ 0

−h ϕf∇2
hfdz − 1

cosh(kh)
ht − ϕ∇hh [f∇hf ]−h +

1
g
(ϕtt + ω2ϕ)

(3.43)

Applying the Leibniz’s rule for the first two terms on the LHS and
knowing that ∫ 0

−h
f 2dz =

ccg
g

(3.44)

it results

∇h (ccg∇hϕ) + ϕk2ccg − ϕtt − ω2ϕ =
−ht

g
cosh(kh)

− gϕ{∫ 0
−h f∇2

hfdz +∇hh [f∇hf ]−h} (3.45)

for the same assumptions of being on mild slope sea bottom (∇hh =
α << 1), the following MSE is achieved
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ϕtt −∇h (ccg∇hϕ) +
(
ω2 − k2ccg

)
ϕ = − g

cosh (kh)
ht (3.46)

which again in terms of water free surface becomes

−ηtt +∇h (ccg∇hη)−
(
ω2 − k2ccg

)
η = − 1

cosh (kh)
htt (3.47)

and in the frequency domain becomes

∇h (ccg∇hN) + k2ccgN = − 1

cosh (kh)
fft (htt) (3.48)

Equation (3.48) is an elliptic equation, written in terms of the free surface
elevation in the frequency domain, with a forcing term which accounts for
the movements of the sea floor.

3.2 Model applications

The model applications depend on how the waves are numerically generated.
Two alternative approaches have been already discussed. The first approach
makes use of the wave-maker boundary conditions, the second one is based
on the source term in the model equation. Both these approaches can be used
following a ‘direct’ or an ‘indirect’ procedure. The ‘direct’ one is applicable
when the movement of the bottom is known, or when the properties of the
waves to be generated are known at the wave-maker boundary. In this case
from the proper time series of h (x, y, t), and its time derivatives, it can be
easily calculated by means of the discrete Fourier Transform, the transformed
variable fft (htt) to be used into the equation (3.48). Equivalently if the fluid
velocity at z = 0 is known at the wave-maker it can be directly used into
equation (3.38).

The ‘indirect’ procedure is convenient when the surface elevation time
series is known at some points of the computational domain and the position
of the area (or of the boundary) where the waves are generated is known.
In this case it is possible to find the source terms appearing into equations
(3.48) or (3.38) by an inversion technique as follows. The first step is to solve
the model equations using a unit value of the source term. The result of such
preliminary computation is referred to as N ′ (x, y, ω). In view of the linearity
of the problem the true solution in the frequency domain N (x, y, ω) can be
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obtained by multiplying N ′ for the Fourier Transform of the unknown source
term, indicated as S(ω):

N (x, y, ω) = S(ω)N ′ (x, y, ω) . (3.49)

Let assume that at one point P of the computational domain the elevation
of the surface ηP is available, i.e. the free water surface registration. Then at
that point the transformed variable NP can be easily calculated. Equation
(3.49) can be inverted to obtain the source term S(ω):

S(ω) =
NP (ω)

N ′

P (ω)
(3.50)

where N ′

P is the result of the unit source term computations at the point
P. Of course this procedure is easy to apply using only the surface elevation at
one point and when an identical source term, which in principle is a complex
number, applies to all the generation areas/boundaries. This implies for
example that the waves are generated with the same height and phase.

If the records at more than one point are available, two alternative uses
can be made of the data. On the one hand it can be assumed that the source
term is identical for all the generation areas/boundaries, and an optimization
procedure can be used to find the value that best fits the data. On the other
hand it can be assumed that each of the generation area/boundary has its
own value of the source term and it is possible to write a linear system to
be solved for these unknown source terms. Alternatively an over-determined
system (the number of records available is greater than the number of source
terms to be found) can be solved by means of an optimization procedure.

A further practical point of interest is that the discrete Fourier Transform
is used and a finite set of equations is obtained, representing a finite time
interval in the frequency domain. The integral transform of the data used
to generate the waves (time series of ηP , h, u

I) is carried out using the Fast
Fourier Transform. Each of the resulting field equations in the frequency
domain (3.29) or (3.48) is solved using an available mild slope equation solver
based on the finite element method (for details see Beltrami et al., 2001;
Bellotti et al., 2003). The inverse transform of N is finally carried out using
the Inverse Fast Fourier Transform.

As far as the length of the time interval to be considered is concerned
it should be kept in mind that when solving partial differential equations
using the discrete Fourier Transform the solution is obtained for a finite time
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interval; it is assumed that the solution is periodical over that time interval
and that it repeats identically over the following and the preceding time.
Therefore the selected time interval should be long enough to allow all the
wave energy to exit the computational domain trough the open boundaries
before the time interval ends. Otherwise interference between wave energy
coming from different time intervals is obtained. If all the wave energy has
left the domain at the end of the computation, the following one has zero
initial conditions everywhere, as desired.

To save computational time the elliptic equation (3.29) or (3.48) can be
solved only for those wave frequencies for which the Fourier Transform of
the source terms used to generate the waves is significantly greater than
zero. Some wave components (especially the high frequency ones) receiving
negligible energy should not been considered and the corresponding equation
(3.29) or (3.48) not solved.

The model here presented has some features that make it suitable to be
used in early warning systems for the tsunamis. Firstly it can be applied
in two stages: one is extremely expensive from the computational point of
view, the other is very fast and can be applied in real-time. The idea is
first to define the computational domain and the areas/boundaries where
the waves are generated and to solve the elliptic equations using a unit value
of the source term. This part of the procedure may be computationally
expensive since the solution of hundreds of elliptic equations may require
hours or days. However after these computations have been performed and
the results at the points of interest have been saved, the actual computation
of the wave propagation is very fast. Once the time series of the waves to
be generated (‘direct’ approach) or the time series of the waves recorded at
some point of the domain by tidal gauges (‘indirect’ approach, as it would
be for early warning systems) are available, the source term can be quickly
calculated and the results at each point obtained by means of the inverse
Fourier transform. As known these computations, for the amount of data
commonly used for the problems studied here, take few seconds also on very
slow computers. Therefore when setting up an early warning system the big
part of the work is to define the scenarios (generation areas/boundaries),
and to perform the unit source terms computations. Then the results can
be used for the simulation in real time, forecasting the properties of the
waves at the desired points of the computational domain at an acceptable
computational cost. In the section 5.3 is presented an application of the
model which shows an example of tsunami forecasting in real time: after
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the a priori heavy computations with a unitary source term are solved, it
is shown how the model predicts in few seconds the water surface elevation
at one target point, as the data become available at a point close to the
generation area.

3.3 Application of the parabolic

approximation of the MSE

The MSE of elliptic type defines a problem which is in general properly
posed only if boundary conditions are specified along the boundaries of
the computational domain. In order to obtain a numerical solution over
a large area in the horizontal plane, a great amount of computing time
and storage is required, because the elliptic equation needs simultaneous
solution over the whole area. Therefore there was a natural incentive for
developing an approximation of the MSE which bypasses these numerical
difficulties. The parabolic equation method served that objective. It consists
in approximating the elliptic wave equation to a parabolic equation, which is
easier to solve numerically because allows a solution scheme which proceed
along the predefined wave direction. The standard parabolic wave equation
has the disadvantage that the direction of waves must be substantially similar
to the predefined one. As the waves refract and diffract, they change
direction and the accuracy of the approximation decrease with increasing
angle between waves and the initial predefined direction.

An application of the model implemented in this work regards a matching
between the elliptic MSE, solved in a closed domain where diffraction and
reflection are important, and the parabolic MSE, solved in a larger domain
where waves propagate undisturbed. The idea behind this matching is to
reduce the computational costs using a faster numerical technique when
solving the waves propagation over large oceanic areas, so that the model
can be more efficient and results of practical use.

A further point of interest is that the tsunamogenic source can be typically
viewed as a small region with respect to the full domain where the tsunamis
can propagate, this is specially true in the case of landslide generated
tsunamis. It is therefore clear that the waves will travel radially away from
the source and thus the use of cylindrical coordinates apperas to be very
appropriate. In the following the parabolic MSE is derived in a cartesian
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coordinates system of references, while in the appendix B.3 it is derived the
transformation of coordinates by adopting a cylindrical system of reference.

3.3.1 Derivation of the parabolic MSE

The first derivation for surface water waves of the parabolic type mild slope
equation was given by Radder (1979). He demonstrated a method based on
the use of a splitting-matrix, which divides the wave field into transmitted
and reflected components. The result is a pair of coupled equations for
the transmitted and the reflected fields. By assuming that the reflected is
negligible, i.e. no backscattering, a parabolic equation is obtained for the
transmitted field.

Further Liu & Tsay (1983) have described a method for obtaining the
back-scattered wave by an iterative procedure, using coupled equations
similar to those obtained by Radder (1979). An advantage of his approach
is that it emphasizes explicitly that the parabolic approximation correspond
to neglecting the reflected part of the waves.

Liu & Mei (1976), derived the parabolic equation by employing the
WKBJ-approximation (see afterward) for the velocity potential, and they
studied wave shoaling on a plane beach and interacting with breakwaters,
while Mei & Tuck (1980) studied waves diffracted by slender obstacles in
water of constant depth.

Kirby & Dalrymple (1988, 1984, 1983) obtained the same the parabolic
mild slope equation for weakly non linear waves, using the multiple-scale
perturbation expansion of Yue & Mei (1980) but allowing slow variations of
the water depth.

Here the parabolic approximation of the MSE is briefly derived, starting
from the elliptic MSE in term of free water surface elevation

∇h (ccg∇hN) + k2ccgN = 0 (3.51)

The mild slope assumption yields that the horizontal length scale (Λ)
over which the water depth varies considerably is much larger than the wave
length scale (λ). Because of that many waves are present in the region of
variable depth. Thus such problems are called short-waves asymptotic, in
the sense that the wave length is short compared to the dimension of the
region where it propagates. Short-waves asymptotic method are also known
as WKBJ methods after Wentzel, Kramer, Brillouin and Jeffreys developed
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these methods for use in quantum mechanics in the 1920ies. The essence of
the WKBJ expansion method is to suppose that the amplitude function varies
much more slowly than the phase function in the horizontal space. Thus the
WKBJ approximated solution of the MSE is taken, with the restriction of
considering waves propagating only in x direction:

N (x, y) = A (x, y) e−i
∫

kdx + c.c. (3.52)

Since the wave motion is primary in the x-direction, the variation of the
amplitude in the y direction is an order of magnitude slower than in the
x direction. This can be expressed formally by introducing other variables
named X and Y and given by

X = ε2x
Y = εy

(3.53)

where ε is a small parameter. The changed variables implies that the
horizontal space derivatives become

∂A
∂x

= ∂A
∂X

∂X
∂x

= ε2 ∂A
∂X

; ∂2A
∂x2 = ε4 ∂2A

∂X2

∂A
∂y

= ∂A
∂Y

∂Y
∂y

= ε ∂A
∂Y

; ∂2A
∂y2

= ε2 ∂2A
∂Y 2

(3.54)

The first term of the MSE (3.51) can be expanded, yielding to

ccgηxx + (ccg)x ηx + ccgηyy + (ccg)y ηy + k2ccgη = 0 (3.55)

Then substituting equation (3.52) into equation (3.55) and using the new
variables (X and Y ) it yields to

ccg [ε
4AXX + 2ε2AXik + ε2ikX − k2A] + ε2 (ccg)X [ε2AX + ikA] +

ε2 (ccgAY )Y + k2ccgA = 0
(3.56)

if the terms of order O (ε4) are neglected, the equation (3.56), after some
simplifications, at the order O (ε2) becomes

2ikccgAX + i (ccgk)X A+ (ccgAY )Y = 0 (3.57)

Equation (3.57) is the parabolic approximation of the MSE, its solution
provides the slowly varying amplitude A (x, y), which multiplyed by
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the exponential function e−i
∫

kdx, gives the water surface elevation for
monochromatic waves.

Equation (3.57) can be viewd as a convection-diffusion equation, except
that instead of solving the time marching of the heat, the wave spatial (x-
direction) advancing is sought for. For the solution of the parabolic MSE
a Crank-Nicolson finite difference numerical tecnique is implemented, which
uses the central difference for the x-space derivative at the position xi+1/2

and the second order central difference for the y-space second derivative at
position yj and . Thus equation (3.57) written in finite differences becomes

2ikccg
Ai+1

j −Ai
j

Δx
+ iA

(ccgk)
i+1

j −(ccgk)
i
j

Δx
+

(ccg)
i+1

j+1
−(ccg)

i+1

j−1

2Δy

Ai+1

j+1
−Ai+1

j−1

2Δy
+

ccg
2

[
Ai+1

j+1
−2Ai+1

j +Ai+1

j−1

Δy2
+

Ai
j+1
−2Ai

j+Ai
j−1

Δy2

]
= 0

(3.58)

Writing equation (3.58) by expliciting the unknown term Ai+1 as function
of the known ones Ai a system with a tridiagonal matrix is achieved. The
solution of a tridiagonal system is computed by means of the Thomas
algorithm, which strongly reduces the computational costs and it is a
simplified form of a Gaussian elimination (see Appendix C).

The validation of the solution of the parabolic MSE and its matching
with the solution of the elliptic MSE is shown in the section 4.6 by means
of some numerical experiments. For the validation experiment the parabolic
MSE is solved in cylindrical coordinates (r and θ).
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Chapter 4

Model validation

This chapter describes the model validation, carried out by comparing the
model results with those obtained from different experiments, physical or
numerical, choosen as reference solution. All the physical models described
and used for comparison were performed in the same framework of research
projects aimed at studying landslide waves.

Sections 4.1 and 4.2 show the first comparisons carried out between the
numerical simulations anf two physical model measurements. The physical
models have been carried out at the Environmental and Maritime Hydraulic
Laboratory (LIAM) of the University of L’Aquila, Italy. Both models aim
at studying the propagation of water waves generated by landslide, where
a simplified reproduction of the generation mechanism is carried out, as it
will be explained. The first model is performed in a wave channel, while
the second one in a wave tank, allowing the study of the three dimensional
phenomeno. These experiments are used to validate the indirect procedure
to generate waves at a boundary of the numerical domain. A further point
of interest addressed in these 2 sections is the comparison with two long
wave models (based on the LSWE and on the linearized BTE), in order
to show the importance of a proper reproduction of frequency-dispersion.
Section 4.3 describes some numerical 3-D experiments implemented in order
to validate the inclusion of the source term in the MSE (equation 3.48). They
consist in a comparison between the present depth integrated model with
a 3-D numerical model, which solves the Laplace equation and reproduces
the landslide movement in the bottom boundary condition. As it will be
explained, the 3-D code is taken as the reference solution to validate the
correct inclusion of the wave generation term in the MSE. Further validation
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is carried out by comparison with other physical experiments (see section 4.4),
which intend to reproduce the landslide generated waves using a realistic
model of the landslide, and a wave tank large enough to study the wave
propagation in the far field. The physical model was build at the LIAM
laboratory of L’Aquila University, Italy.

Section 4.5 describes other experiments carried out at the Research and
Experimentation Laboratory for Coastal Defence (LIC), of the Technical
University of Bari, Italy. These experiments reproduce the particular case of
a landslide falling at the flank of a conical island and allow the analysis of
the generated wave field close to the island and in the far propagation field.
The physical experiments are reproduced with the numerical model which
provides results in good agreement with the laboratory measurements. The
numerical model is tested both with the ‘indirect’ and the ‘direct’ procedure,
in order to validate its application to work in a early warnùıing system and
to gain more insight on generation and propagation of tsunamis for this
particular bathymetric configuration.

In the end, section 4.6 presents a test case to validate the model
application to large geographical areas, by means of matching the solution
of the elliptic MSE with its parabolic approximation.

4.1 The Scott–Russel’s wave generator

The physical model reproduces the so called Scott-Russel’s wave generator
(see the sketch on figure 4.1 and the picture on figure 4.2), i.e. a box falling
vertically into the water (Monaghan & Kos, 2000). The wave flume is made
up of steel and PVC, and is 12.00 m long, 0.30 m wide and 0.45 m high; the
box (0.10 m x 0.10 m x 0.30 m) is made of PVC. The wave generator was
placed at one end of the flume while at the other end absorbing material was
used to reduce the wave reflection.

The water level oscillations were measured by means of five resistive wave
gauges placed along the flume, respectively at 0.40, 0.85, 1.30, 1.75 and 2.20
m from the left boundary of the flume. The gauges were characterized by
an instrumental noise lower than 0.1%. The data were collected using a
16 channels National Instruments analog-to-digital conversion board. The
recorded water level data cover a period of 20 s with a 1000 Hz sampling
frequency. The experiments were carried out for four different water depths
(0.06 m, 0.10 m, 0.18 m and 0.23 m), and for each of these the box was
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released with the bottom placed at −0.03 m, 0.00 m and 0.03 m from the
still water surface; for further details refer to Di Risio (2005) and Panizzo et
al. (2002).

Figure 4.1: Sketch of the experimental layout of the Scott Russell’s Wave
generator experiment.

Figure 4.2: Instantaneous picture of the reproduction of a Scott Russell’s
Wave generator experiment.

The numerical simulations are performed using a one-dimensional
domain. The left boundary of the numerical domain falls at the point where
the right-bottom corner of the box impacts the water surface. At that point
the wave-maker boundary condition (3.38) is imposed, while at the right
boundary the radiation condition (3.34) is used, although in the physical
model the absorption of the outgoing waves was not perfect. The numerical
domain has a total length of 4 m and here the MSE expressed by equation
(3.29) is solved. The time series reproduced in the numerical model is of 10
s, using a Δt of 0.001 s. This results in a total of 10, 000 time steps, which in
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the frequency domain correspond to the same number of angular frequencies
ω, ranging between 2π10−1 rad/s and 2π103 rad/s. By taking advantage of
the fact that the results in the positive semi-axis of the frequency are complex
conjugates of those along the negative semi-axis, only half of the solution is
sought for.

The ‘indirect’ procedure is applied to calculate the source term to be
used in the wave-maker boundary condition (left boundary), being known
the elevation of the free surface at the points where the gauges are located.
The experimental results at the gauge 1 are used to estimate the source term,
while the results at gauges 2, 3, 4 and 5 are compared with the numerical
model results. The first step is to solve the field equation (3.29) together with
the boundary conditions described in section 3.1.2, where a unit source term
is imposed at the wave-maker boundary condition (3.38). Consequently the
unit solution N ′ (x, ω) is obtained in the computational domain; the value
of this variable at the point corresponding to the gauge 1 is referred to as
N ′

1(ω). The records obtained at the gauge 1 are then used to calculate the
variable N1 (ω) as the Fourier Transform of the experimental time series of
the surface elevation. Since during the experiments, part of the generated
waves were reflected at the right boundary, the records obtained at the gauge
1 suffer of reflected and re-reflected (at the left boundary) waves. However it
was easy to estimate the time at which the reflected waves had affected the
records and to smoothly set the signal to zero, in order to avoid generation
of spurious waves in the numerical test. The source term S (ω) to be used in
the boundary condition is then calculated by an equation equivalent to the
(3.50). The results in the whole computational domain are given by

N (x, ω) = S (ω)N ′ (x, ω) . (4.1)

The water surface elevation η(x, t) is obtained using the Inverse Fast
Fourier Transform with respect to the time, for each computational point of
interest, such as those at the position of the wave gauges.

The results of one representative test are presented. The water depth
used in the experiment is of 0.23 m and the box released with the bottom
placed at the still water level. Figure 4.3 shows the surface elevation, η (t),
measured by the five gauges (dashed red lines) and those resulting from the
numerical simulations with the present model (solid black lines).

The waves typically present first a crest, then a trough; this is due to the
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Figure 4.3: Surface elevation at gauges 1, 2, 3, 4, 5 (from top to bottom).
Solid black lines represent results from the present model, dashed red lines
are experimental values.

generation device, which acts like a piston that generates firstly a positive
wave. The waves appear to lengthen as they propagate away from the
generation area (i.e. their period increases). The wave height decreases,
mainly due to the frequency dispersion, which makes the wave train to
become longer, and therefore the wave energy to be less concentrated in
space.

Figure 4.4 presents the surface elevations for the same test case,
comparing the physical model measurements (dashed red lines) with the
results of the present model used with the approximation of the long wave
theory, i.e. without frequency dispersion, (dashed black line), and the results
of the solution of the linearized version of the BTE of Nwogu (1993) (thin
solid line). Please note that the numerics used to solve the equation is
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Figure 4.4: Surface elevation at gauges 1, 2, 3, 4, 5 (from top to bottom). The
dashed red lines again represent the experimental values. The dashed black
lines are the present model results solved with the long wave approximation.
The thin black line represents the model based on the BTE (Nwogu, 1993).
Please note that the dashed black line is truncated after the first two waves,
to make the results more readable.

identical for the models.

The results of the present numerical model, as seen in figure 4.3, appear
to compare satisfactorily with the experimental data. Important properties
of the waves at hand, such as the arrival time of the crest, the wave height
and the wave period are reproduced with high accuracy. The elevation of
the first wave crest at the gauge 5 is evaluated with an underestimation of
about 12%. The solution of the BTE (figure 4.4), as expected, also results to
be in perfect agreement with the experiments. On the contrary the LSWE
reproduce waves that propagate with a frozen shape along the domain. The
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first crest arrives earlier than that measured in the experiments, and the
waves are higher than those expected. Of course the non proper reproduction
of the frequency dispersion leaves all the wave components to propagate
together. As the distance from the generation area grows these errors become
unacceptable.
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Figure 4.5: Amplitude spectrum of the surface elevation at gauge 1 for the
experiment with water depth sets at 0.23 m and the box released from the
still water level. The dashed line indicates the highest frequency component
reproduced in the model.

It is worth to briefly discuss how the energy of these considered transient
waves is distributed in the frequency domain. The modulus of the Fourier
Transforms coefficients of the measured water level oscillations at gauge 1 is
reported in the figure 4.5 against the angular frequency. The figure is cut
at the angular frequency of 80 rad/s, because it is considered not advisable
to show the wave spectra until the 2π · 103 angular frequency, and it can
be noted that very high frequency components, as expected, receive minor
energy. The accurate reproduction of these waves may therefore be avoided in
order to save computational time. For the present experiments it has believed
sufficient to solve the equation (3.29) up to frequencies corresponding to
kh = 92.6 (0.1Hz < f < 10Hz). This limit is shown in the Figure 4.5 by the
vertical dashed line. The higher frequency component corresponds to a wave
length (for the considered water depth) of 0.0156 m, thus an appropriate
finite element grid (the maximum distance from the computational nodes) of
0.0015 m has been used since a resolution of about 10 nodes per wave length
is required; the resulting number of Degrees of Freedom (DOF) is 42,600.
The solution of the elliptic equation has been carried out, using always the
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same, very fine grid, for 100 discrete frequencies. The total computational
time is of the order of 8 minutes on an AMD Opteron 246 2GHz computer
equipped with 4GB of RAM.
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Figure 4.6: Upper panel: amplitude spectra of the surface elevation
equal to that described in caption of Figure 4.5 versus the wave length
parameter. Lower panel: distribution of the wave celerities over the wave
length parameter; the three vertical solid lines represent the frequencies
corresponding to h/L = 1/20 (blue), h/L = 1/4 (green) and h/L = 1/2
(red).

The figure 4.6 looks in more detail how the wave energy is distributed
in frequency. In the upper panel the same amplitude spectra of the water
level oscillation at gauge 1 is reported now versus the wave length parameter
written as kh. The figure is zoomed only for those frequencies where there
is the major wave energy content. In the lower panel are reported the wave
celerity functions against the same wave length parameter: the solid line
represents the wave celerity in the shallow water approximation (csw =

√
gh),

while the dash-dot line and the dashed line represent respectively the phase

Università degli Studi di Roma Tre - DSIC 46



Numerical modeling of waves for a tsunami early warning system

and group celerity obtained from the wave dispersion relation. Three vertical
solid lines, in both panels, show the frequencies corresponding to h/L =
1/20, h/L = 1/4 and h/L = 1/2 (blue, green and red respectively). These
values correspond roughly to the limit of applicability respectively of the long
waves theory, of the traditional BTE by Peregrine (1967), and to the deep-
water waves limit. It is clear that much of the wave energy belongs to wave
components hardly reproducible with traditional, non dispersive long waves
models. Many tests (up to 50) have been reproduced in order to further
validate the model, always obtaining similar results. However, as the water
depth used in the experiments decreases (and the generation mechanism
remains the same), the waves tend to become longer with respect to h. In
those conditions the differences between the frequency dispersive and the
non dispersive one are reduced. Furthermore, for very small water depths
(i.e. h = 0.06 m), the ratio between the amplitude of the waves and h
becomes such that the nonlinear effects (i.e. the amplitude dispersion) appear
to dominate the propagation. Under those conditions the present model,
which is based on linearized equations, becomes unapplicable and may lead
to unrealistic results, such as the fact that the waves propagate much slowly
than those in nature. A limit to respect is that the amplitude of the waves
should not be larger than 1/4 of the water depth.

4.2 Axial-symmetric landslide generated

waves

The experiments described in this section are similar to those of the Scott-
Russel wave generator, but they occur in a wave tank instead of a wave
channel. The physical model reproduces a quarter of a cylinder falling
vertically in the corner of a wave tank, as depicted in the sketch reported
on the left panel of Figure 4.7 and in the picture of Figure 4.8. The tank is
built in bricks; dimensions in plan are of 10.8 m and 5.4 m; the maximum
water depth is of 0.8 m. A system of five resistive wave gauges, placed along
a line as indicated in the Figure 4.7, measures the water level oscillations.
The gauges used are identical to those described in the previous section and
their distance from the corner where the waves are generated is of 0.63, 1.33,
2.04, 2.75 and 3.45 m. The experiments were carried out using four different
values of the water depth, respectively 0.09, 0.16, 0.28 and 0.36 m; the body
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was released from several levels above and below the still water surface. Two
cylinders, one with a height of 0.157 m and a radius 0.157 m, the other one
with a height and a radius of respectively 0.157 m and 0.215 m have been
used.

Figure 4.7: Layout of the axial-symmetric experiment (left panel) and sketch
of the computational domain (right panel).

The selected numerical computational domain is a quarter of a circle
(radius of 5.0 m) as shown on the right panel of Figure 4.7. At the corner a
small quarter of a circle whose radius is identical to that of the cylinder,
is used to specify a wave maker boundary condition. Along the curved
boundary absorption of the outgoing waves is achieved by means of the
radiation boundary condition. It is to be stressed that in the physical model
experiment the waves were almost perfectly reflected at the walls, and this
introduces a possible source of discrepancy between experimental data and
numerical computations, that will be discussed later.

The time series reproduced by the numerical model is 20 s long, and
a Δt=0.001 s has been used, resulting in a total of 20, 000 time steps and
a corresponding number of ω to be considered in the frequency domain.
The Fourier Transform of the surface elevation at the gauge 1 has been
preliminary used to evaluate those frequencies for which it was worth to
solve the field equation (3.29). It was concluded that 40 frequencies had to
be considered for the solution of the equation (3.29), for the range 0.05Hz <
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Figure 4.8: Picture of the experiment.

f < 2 Hz. The higher frequency component, for the considered water depth,
has a wave length of 0.39 m and consequently the maximum length of the
finite element of the computational grid is of 0.04 m (DOF = 26,400). The
total computational time for the solution of the 40 elliptic equation is, on
the same computer described before, of 12 minutes.

Here again the results of one representative test are illustrated. It has
been carried out using a water depth of 0.36 m and the cylinder (radius of
0.215 m) released with the bottom placed at the still water surface. The
recorded time series of the water surface elevation is reported in Figure 4.9
(dashed red lines). On the same Figure, as for the previous validation test,
the results of the present model are reproduced using a solid thick lines,
while the thin dashed black lines represent the results of the LSWE. The
source term used at the wave-maker boundary has been calculated using the
experimental results at the gauge 1. However, since these records are affected
by the waves reflected at the side walls, only the first part of the signal has
been used when applying the equation (3.50), setting smoothly the rest of
the time series to zero.

Careful comparison of the records at the 5 gauges allows estimation of
the time at which the reflected waves contaminate the records of the first
wave packet, radiating from the generation area. At the gauge 1 it appears
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that the radiating wave packet is recorded for 2 < t < 6 s, while the reflected
waves reach this gauge for t > 9 s. For the subsequent gauges the reflected
waves arrive earlier and the radiating waves arrive later than for the gauge 1.
The first packet of radiating waves measured at the gauge 1, 2 and 3 appears
to be not strongly affected by the reflected ones. On the contrary the records
at the gauges 4 and 5 are likely to be completely affected by the reflected
waves and therefore these results should be used with care.
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Figure 4.9: Axial-symmetric experiment. Surface elevation at gauges 1, 2, 3,
4, 5 (from top to bottom). Solid thick line represents results from the present
model, dashed red lines are experimental values and the dashed black lines
are the results of the present model with wave celerity from the long wave
approximation.

Similarly to the experimental results presented in the previous section, the
waves appear to undergo frequency dispersion as they propagate away from
the generation area, i.e. their period appears to increase and the wave packet

Università degli Studi di Roma Tre - DSIC 50



Numerical modeling of waves for a tsunami early warning system

becomes less concentrated in space and time. This also makes the height of
the waves to become smaller. Here however, the waves also undergo the so
called circumferential dispersion, i.e. the height of the waves decreases in
view of the fact that the wave front becomes longer as they propagate. The
numerical model is able of carefully reproducing the experimental results.
This is especially true for the first gauges (1, 2, 3 and 4). The results are
not good for the gauge 5, where the height of the predicted waves is smaller
than that measured. This is probably due to the effect of the reflected waves,
which were not modeled numerically. Results of the same order of accuracy
would be obtained using the BTE of Nwogu (1993), that are not presented
here for sake of clarity of the figure.

The LSWE appear to provide a wave field different from that observed
in the experiment. The wave packet predicted by these equations remains
very similar during the propagation, although the circumferential dispersion
(properly taken into account by the model) induces a decrease of the wave
height, as expected. However the arrival time of the highest waves appears
to be predicted with large errors.

4.3 Inclusion of waves generation term -

Numerical experiments

This section describes some numerical experiments which reproduce the
water waves generated by the deformation of the bottom due to the movement
of a submerged landslide. The idea is to validate how the effects of the bottom
movement are reproduced in the depth integrated model using equation
(3.48). Here the model is applied with a ‘direct’ procedure, meaning that
the deformation of the sea floor is known, and its effects on the free water
surface are simulated.

These experiments compare the results of the depth integrated model with
those of a three dimensional one, which can be regarded as the reference (i.e.
the true) solutions. The three dimensional model solves the Laplace equation
within the linearized boundary conditions. It uses the same numerical scheme
of the depth integrated model, thus the equations are solved in the frequency
domain and are formulated as follows

∇2
hΦ + Φzz = 0 (4.2)
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Φz − ω2

g
Φ = 0 (4.3)

Φn = fft (ht) (4.4)

Φn + ikcos (θn) Φ = 0 (4.5)

where Φ (x, y, z, ω) is the Fourier transform of φ (x, y, z, t). Equation
(4.2) is the Laplace equation, equation (4.3) is the free surface dynamic and
kinematic boundary condition, equation (4.4) represents the moving bottom
boundary condition and equation (4.5) is the radiation condition.

In order to further investigate on the source term included in the mild
slope equation, some consideration can be made. When the extension of
the seismic source is very large in comparison with the water depth a well
accepted method for incorporating the effect of the moving seafloor into
the depth integrated equations is to assume that the bottom movements
instantaneously transfer to the surface elevation. A source term calculated
as the time derivative of the water depth is added to the continuity equation
(right hand side)

ηt +� · (vh) = −ht (4.6)

where as usual η, v and h represent respectively the instantaneous
elevation of the free surface, the depth integrated horizontal velocity of the
fluid and the water depth. Since the movements induced by earthquakes
are very fast in comparison with the waves celerity, these are alternatively
represented as initial conditions for the wave model.

The problem becomes much more complicated for tsunamis generated
by landslides. These can still be regarded as seafloor deformations, but the
spatial extent of the source is usually not much larger than the water depth.
Furthermore the time scale of the landslide movements is comparable to
that of the waves propagation. Three dimensional numerical models are
therefore applied to get detailed descriptions of the flow field, see for example
Grilli et al. (2002). Depth integrated models are able also in this case to
properly simulate the wave propagation in the far field, but cannot give a
detailed description of the flow in the generation area. In these cases it is
well accepted that the movements of the bottom do not transfer as they are
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to the free surface; Tinti et al. (2006b), have therefore proposed to express
the continuity equation as follows

ηt +∇ · (vh) = −ht
1

cosh (ksh)
. (4.7)

Their method makes use of the time derivative of the water depth as a
source term in the continuity equation, multiplied by a filter function which
depends on the water depth (and therefore may vary in space) and on the
length of the landslide. In equation (4.7) ks = 2π

Ls
is the wave number of

the landslide, being Ls its length, while the water depth is calculated as
the sum of the fixed bottom depth and the landslide elevation h (x, t) =
hbottom (x)− hlandslide (x, t).

The effect of the wave frequency on the filter function between the seafloor
movements and the surface waves has been addressed by Kervella et al.
(2007). They have solved the linearized problem of the wave generation
by seafloor movements over an horizontal bottom, using integral transforms.
They have found that in the source term the time derivative of the bottom
has to be multiplied by a filter function which has the form of that used
by Tinti et al. (2006b), but it contains the wave number of the wave (k)
instead of that of the landslide (ks). Of course this appears natural if the
solution is sought for in the wave frequency field, as Kervella et al. (2007)
do, because the wave number k can be calculated for each value of the wave
frequency. This is not obvious when solving time-depending model equations
as the NLSWE using time-marching numerical schemes.

In order to improve the technique proposed by Tinti et al. (2006b), which
is very simple and useful for pratical purposes, and following the idea of
Kervella et al. (2007), their considerations are applied to the present model,
therefore the MSE was derived considering a moving bottom boundary
condition. As already demonstrated in section 3.1.3, including the sea-floor
generation mechanism into the field equation brings to equation (3.48), here
reported for clarity

∇h (ccg∇hN) + k2ccgN = − 1

cosh (kh)
fft (htt) (4.8)

In the present subsection the effect of different landslides, moving on
different water depths, is analyzed trough the right hand side of equation
(4.8). The model’s equations are solved also with the linear long wave
approximation, in order to highlight the importance of reproducing or not the
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wave frequency dispersion. The resulting wave fields are sometimes presented
also in terms of amplitude spectra.

Many computations, varying the water depth, the landslide length and
kinematic have been performed. Here however for the sake of brevity, results
of few experiments are shown, which can be considered as representative of
the majority of simulations. Two sets of sample results reproducing the wave
field generated by submerged landslides in a constant depth domain, and in
a slope are presented.

4.3.1 Constant depth experiments

The numerical experiments presented in this section are carried out using a
constant water depth of 1m. The landslide is modeled as a semi-ellipse which
at a certain instant suddenly starts to move along the bottom at a velocity of
1 m/s for 2 s, for a total displacement of 2 m. We have tested two landslides
with different lengths of 2 m (short landslide) and 4 m (long landslide), both
with the same height (thickness) of 0.1 m. In the sketch of figure 4.10 the
numerical domain, which is 10 m long, is represented. The results presented
in the following refer to the two points depicted in the sketch: Point A at
1 m at the right of the crest of the landslide before it starts moving; Point
B is at 6 m from the initial position of the landslide.

Figure 4.10: Sketch of the computational domain with the two different
landslides lengths.

The present frequency-dispersive model is applied in a 1D domain 10 m
long; the right hand side term used in the governing equation (4.8) is zero
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everywhere except in the area where the semi-elliptic landslide moves. At
the boundaries (x = 0 and x = 10 m) the waves are allowed to exit the
domain by imposing the radiation condition specified by the equation (3.34).
The simulations here presented reproduce a time series of 100 s, using a Δt
of 0.1 s. This results in a total of 1000 time steps, that in the frequency
domain corresponds to the same number of angular frequencies ω, in the
range between 2π · 10−2 and 2π · 10. In the practice the MSE (4.8) is solved
just for the frequencies in the range of 2π · 10−2 ≤ ω ≤ 2π · 2, where there is
a significant content of wave energy. The higher frequency component has,
for the considered water depth, a wave length of 0.4 m, thus the maximum
distance between the computational nodes is of 0.04 m, since a resolution of
about 10 nodes per wave length is required. The resulting number of Degrees
of Freedom (DOF) is 201, and the elliptic equations for the 200 frequencies
are solved on a 2 GHz CPU computer equipped with 4 GB of RAM (as all
the other simulations presented here), with a total computational time of
about 7 s.

In the simulations carried out with the three dimensional model, the
Laplace equation (4.2) is solved in a two dimensional domain, again 10m long
and 1 m high (as the water depth). At the bottom boundary the condition
of wave generation (4.4) is imposed, by letting the landslide to move along
the bottom for 2 s. In order to compare the results with those of the depth
integrated model, the same angular frequencies ω are solved (2π ·10−2 ≤ ω ≤
2π · 2). The finite element grid is composed of linear triangular elements,
with the maximum distances between the nodes of 0.04 m, as for the depth
integrated model. The number of DOF for these simulations is 8725 and the
computational time is about 53 s.

In figure 4.11 the results of the numerical simulations with the two models
are shown, in terms of the free surface elevation in time at the points
A (left panel) and B (right panel) of figure 4.10. The landslide for the
presented simulation is 4 m long and moves between t = 10 s and t = 12 s.
When the landslide starts moving, going in the direction of increasing x
values, it generates a first crest-trough wave propagating in front of it,
and a first trough-crest wave at its back. The results computed with the
depth integrated model (solid black line) almost perfectly superimpose to
the ones obtained from the three dimensional one (dashed red line). The
good agreement is both in the generation (left panel) and in the propagation
areas (right panel).

Simulations with the depth integrated model have been carried out also
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Figure 4.11: Comparison of the free surface elevation obtained from the
three dimensional model (dashed red line) and that obtained from the depth
integrated model (solid black line). The presented results are relative to the
points A (left panel) and B (right panel) of figure 4.10.

by applying the filter function proposed by Tinti et al. (2006b) to the present
model equation as follows

∇h (ccg∇hN) + k2ccgN = − 1

cosh (ksh)
fft (htt) (4.9)

In figure 4.12 the thin black line represents the surface elevation computed
when applying equation (4.9), while the thick black line refers to the results
of the proposed model (equation (4.8)). As in the previous figure, the left
panel and the right panel show respectively the results at the point A and
B. The comparison reveals that equation (4.9) provides a good reproduction
of the first wave, but then presents a tail of spurious high frequency waves.
This short wave packet does not appear in the simulations using equation
(3.48), which attenuates the high frequency wave components. As stated
by Kervella et al. (2007) ‘...the water column has an effect of a low pass
filter, thus if the initial deformation contains high frequencies, they will be
attenuated...’.

The results discussed so far are presented in terms of amplitude spectra
in the frequency domain in the figure 4.13.

In this figure, the left panels (a, c and e) refer to a simulation with
the short landslide (2 m long), while the right panels (b, d and f) to the
same simulation with the long landslide (4 m). The top panels (a and
b) reproduce the amplitude spectra at point A resulting from the three
dimensional simulations (thin black lines), and those obtained with the depth
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Figure 4.12: Comparison of the free surface elevation obtained from the depth
integrated model with the frequency filter function (thick black line) and that
obtained from the same model with the landslide filter function (thin black
line). The presented results are relative to the points A (left panel) and B
(right panel) of figure 4.10.

integrated model without applying any filter function to the source term
(thick black lines) i.e. solving equation

∇h (ccg∇hN) + k2ccgN = −fft (htt) (4.10)

The middle panels (c and d) represent the filter functions applied to the
source term: the wave frequency filter, applied in the equation (4.8) (solid
black lines), and the landslide filter applied in the equation (4.9) (dashed red
lines). These functions are both constant in space since the water depth is
constant all over the computational domain. When these filters are applied to
the source term in the depth integrated simulations, the resulting amplitude
spectra are those presented in the bottom panels (e and f): the solid black
lines are those obtained solving equation (4.8), while the dashed red lines
are those obtained solving equation (4.9). It is evident that without the
application of any filter function the wave field contains much energy in the
high frequencies, which do not result in the reference solution given by the
three dimensional model. The landslide filter function has the same effect
for all the wave frequencies, it changes only for different values of the ratio
h
Ls
. The wave frequency filter function on the contrary, depending on the

wave number, reproduces the low-pass filtering effect of the water column
above the landslide, thus attenuates the high frequency wave components.
As seen in the previous figure, this filter allows to obtain results in very good
agreement with the reference solution.
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Figure 4.13: Panels a and b: absolute values of the Fourier transform
coefficients of the water surface elevations at point A, computed with the
three dimensional model (thin black line) and with the depth integrated
model, without any filter function (thick black line); panels c and d:
frequency filter (continuous black lines) and landslide filter (dashed red lines);
panels e and f : absolute values of the Fourier transform coefficients of the
water surface elevations at point A, computed with the depth integrated
model, with the frequency filter (continuous black lines) and with the
landslide filter function (dashed red line).

It is however clear that the presence of very high frequency waves is
easily detectable when using a frequency-dispersive model. These waves
would not appear so clearly when employing non-dispersive models. In
order to show this, simulations with the depth integrated model based on
the LSWE have been carried out, which lets each component to propagate at
the same celerity. In particular the same experiments were simulated soving
the following equations

∇h (gh∇hN) + ω2N = − 1

cosh (kh)
fft (htt) (4.11)
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∇h (gh∇hN) + ω2N = − 1

cosh (ksh)
fft (htt) (4.12)

and the model results are compared with the reference solutions of the
three dimensional model.
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Figure 4.14: Comparison of the free surface elevation obtained from the three
dimensional model (dashed red line) and from the long wave depth integrated
model respectively using the frequency filter function (thick black line) and
the landslide filter function (thin black line).The presented results are relative
to the points A (left panels) and B (right panels) of figure 4.10.

Figure 4.14 shows the water surface elevation at point A and B (left
and right panels respectively); the top panels refer to the long landslide
simulation, while the bottom panel to the short landslide one. With the
red dashed lines the three dimensional results are represented, the black
lines are relative to the solution of equation (4.11) (thick lines) and equation
(4.12) (thin lines). The comparison shows that a smaller extension of the
generation area involves, for the landslide filter, a stronger cut in all the
frequencies of the wave amplitude. As it can be seen by the thin lines in the
bottom panels, these ones do not produce reliable results. The application
of the wave frequency filter function better estimates the first crest-trough
wave. However some differences arise in the comparison with the three
dimensional solutions. These are due to the long wave approximation of the
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depth integrated model, which provides a correct reproduction of landslide
generated waves, only when the ratio h

Ls
is small.

4.3.2 Experiments on a plane slope

Another set of numerical experiments is carried out reproducing the
movement of a submerged landslide on a plane beach. In the sketch of figure
4.15 the numerical domain is represented, which is 10 m long and with a 1 : 3
slope; the landslide is also here a semi-ellipse, 4.21 m long and 0.1 m thick.
The landslide suddenly starts to move after 10 s with a velocity of 1 m/s for
2 s and a total displacement of 2 m, as in the previous experiments.

Figure 4.15: Sketch of the computational domain.

Numerical simulations were run with both the depth integrated model
and the three dimensional one. The depth integrated model is applied in a
one-dimensional domain, representative of the free water surface. At the left
boundary (x = 0 m) a reflecting boundary condition is imposed, by using a
very small water depth (0.0001 m). At the right boundary, the water depth is
equal to 3.3001 m and the waves are allowed to exit the domain, by applying
the radiation condition (3.34). The numerical simulations reproduce a time
series of 100 s, using a Δt of 0.1 s, as in the previous experiments. The
field equation is solved for same 200 angular frequencies, in the range of
2π · 10−2 ≤ ω ≤ 2π · 2. The maximum distance between the computational
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nodes is again of 0.04 m, therefore the same DOF as in the constant depth
simulations are solved.

The three dimensional model, based on the Laplace equation (4.2) is
solved in a two dimensional domain which covers the fluid field represented
in the sketch of figure 4.15. The imposed boundary conditions are: a fully
reflecting condition at the left boundary (x = 0), where a small water depth
is imposed as for the depth integrated model; a radiation condition along
the right boundary (x = 10 m); then at the free surface the equation (4.3)
is applied, which combines the dynamic and kinematic conditions, while at
the bottom boundary the wave generation condition (4.4) is imposed. The
same component of the wave spectrum of the depth integrated model are
solved. The finite element grid is composed of triangular elements, with the
maximum distances between the nodes of 0.04 m, as for the depth integrated
model. Here the DOF= 15135 and the computational time for the solution
of the 200 frequencies is about 130 s.
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Figure 4.16: Comparison of the free surface elevation obtained from the
three dimensional model (dashed red line) and that obtained from the depth
integrated model with the frequency filter function (continuous black line).
The presented results are relative to the points A (left panel) and B (right
panel) of figure 4.15.

The figure 4.16 presents the results of the numerical simulations in terms
of surface elevation obtained with the depth integrated model (continuous
black line) and the three dimensional one (dashed red line). The left and the
right panels refer to the results at point A and B, where the water depth is
about 1.6 m and 3.3 m respectively. Also in this case the results of the two
models appear to be in very good agreement. It is confirmed that the source
term which reproduces the seafloor movements effects at the free surface has
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to be function of the wave frequency.
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Figure 4.17: Panels a and b: absolute values of the Fourier transform
coefficients of the water surface elevations, computed with the three
dimensional model (thin black line) and with the depth integrated model,
without any filter function (thick black line); panels c and d: absolute values
of the Fourier transform coefficients of the water surface elevations, computed
with the depth integrated model, with the frequency filter (continuous black
lines) and with the landslide filter function (dashed red line).

These considerations can be supported also in this case by the analysis in
the frequency domain. Figure 4.17 is similar to figure 4.13, but all the panels
are representative of the same simulation with the long landslide. Here the
left panels (a and c) refer to results picked up at the point A (water depth
≈ 1.6m), while the right panels (b and d) refer to the results at point B (water
depth ≈ 3.3m). In the top panels (a and b), the thin black lines represent the
reference amplitude spectra achieved with the three dimensional model, and
the thick lines those obtained without using any filter in the depth integrated
model. The bottom panels (c and d) show the amplitude spectra obtained
applying the MSE with the source term filtered by the wave frequency filter
(solid black lines) andthe landslide filter (dashed red lines). It is evident
that the landslide filter predicts smaller long wave components and larger
short waves than the desired ones, while the wave frequency filter is able of
predicting the expected attenuation for each component of the wave field.
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4.4 Landslide generated waves along a

straigth beach

This section describes the results of numerical and physical experiments,
which reproduce tsunami generated by landslide partially submerged, which
falls down a sloping straight beach. The analysis of the generated wave
field is given with particular attention to the propagation close to the shore.
Three dimensional physical experiments, performed at the LIAM laboratory
of L’Aquila University, Italy, are described in details in the paper of Di Risio
et al. (2009a). The wave tank has dimensions in plan of 10.8 m in the
long-shore direction and 5.4 m in the cross-shore one, while has a maximum
water depth of 0.8 m. The landslide model is a rigid body, with the shape of
an half of the ellipsoid described by the equation x2/a2 + y2/b2 + z2/c2 = 1,
where a = 0.2 m, b = 0.4 m and c = 0.05 m, for a total volume V = 0.0084
m3. In figure 4.19 is reported a sketch of the landslide model in the plan
view and two transverse sections. The landslide is constrained to slide down
the inclined surface by means of rails. The slope of the coast is of 1/3 (1
vertical, 3 horizontal). The generated water waves are free of propagating
both offshore and alongshore, since the plan dimensions of the used wave tank
are of at least one order of magnitude larger than the width of the landslide,
which can be considered to be a length scale of the waves propagating
alongshore. The experimental study has been carried out reproducing both
subaerial and partially submerged landslides. The wave generation process
is studied by means of video records of the near field and measurements of
the landslide movement; the properties of the waves propagating along the
coast are derived on the basis of runup and water surface level gauges.

A capacitive accelerometer (Metra-Mess CB41) is placed inside the
landslide. The measurement of the acceleration of this body can then be
used to reconstruct, by time integration, its velocity and position in time.
A video camera frames the area where the landslide enters into the water.
A regular grid has been drawn on the slope in order to analyze the image
sequences. The water surface elevation has been measured in the wave tank
by means of traditional resistive wave gauges (resolution of 0.1 mm, noise of
0.3 mm); however the focus of the research is mostly on the run-up along
the coast. In order to measure the instantaneous movements of the shoreline
special wave gauges have been built by the technicians employing two steel
bars (square section of 4 mm x 4 mm) directly embedded into the PVC of
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Figure 4.18: Picture of the physical model at the LIAM laboratory, L’Aquila,
Italy.

Figure 4.19: Sketch of the landslide used in the experiments.

the slope.
In the present section just one experiment, performed with a initially

partially submerged landslide, is reported. Given that the problem is
symmetric with respect to the cross-shore axis that passes along the centre
of the landslide, only one half of the domain is reproduced numerically, in
order to reduce computational costs. The computational domain used for the
numerical model is 3 m in the x-direction and 5 m in the y-direction, which
corresponds to a total length of the coast of 10 m. In figure 4.20 is presented
a sketch of the numerical wave tank, only the left side of the landslide and
of the generated waves field is modeled, and the free surface elevation results
are analyzed at the gauges position points: gauge R1 (y = 3.10 m, x = 0)
and gauge R2 (y = 4.07 m, x = 0).
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Figure 4.20: Sketch of the experimental layout of the landslide generated
waves over a plane beach experiments.

The shoreline (x = 0) and the boundary of simmetry (y = 0) are simulated
as a fully reflective wall, while along the external boundaries (x = 3 m, and
y = 5 m) a radiation contidion is imposed.

The numerical model simulates a time series of 60 s, with a Δt of 0.001 s,
resulting in 60,000 time steps and an equal number of frequency components
to be solved. For the present application the model is solved following a
‘direct’ procedure. The landslide is modeled with a gaussian shape, instead
of an half ellipsoide, and its law of motion is determined by a constant sliding
speed on 1 m/s. By knowing the shape, the dimensions and the landslide’s
motion law, it has been possible to generate the function h (x, y, t), which
represents the variation of the sea floor, due to the landslide movements.
The second derivative in time of the function htt (x, y, t) is carried out using
a numerical approximation and its Fourier transform is applied, in order to
insert it into the field equation (3.48).

In figure 4.21 are presented the vertical free surface elevation (left panels)
and the wave energy spectra (right panels) at the shore gauges R1 (top
panels) and R2 (bottom panels). The red dashed lines represent the physical
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model results and black solid lines those of the numerical model. An overall
agreement is achieved in terms of wave height and wave period. From the
free surface elevation comparison it can be recognized a first wave train,
that in the numerical simulation is longer (until the 13rd and 16th second)
followed by irregular waves (bigger for the physical experiments) which are
due to wave reflection. The first wave crest is slightly underestimated by
the numerical model, this could be due by having approximated a gaussian
landslide model, which enters into the water more smoothly.
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Figure 4.21: Comparison of the experimental data (red dashed line) and the
numerical one (black solid line)

From the wave energy spectra (right panels) it can be noted that the peak
frequency is about 0.5-0.6 Hz, corresponding to a peak period of about 1.5-2
s, and that the most part of the wave energy content is distributed along
frequencies smaller than 3 Hz. Thus the numerical model was run just for
frequencies up to 3 Hz.

The same results of the numerical model are now compared with the
results of the analytical model of Sammarco & Renzi, (2008). In their model
the landslide shape and kinematics is equal to the numerical one, but the
wave propagation is approximated with the shallow water theory. The figure
4.22 shows the free surface elevation estimated with the analytical model
(thin black lines) and with the numerical one (thick black lines).
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Figure 4.22: Comparison of the numerical data (thick black line) and the
analytical solution one (black thin line)

The general properties of the wave field are predicted with satisfactory
accuracy by both mathematical models. Quantities of fundamental
engineering insterest such as the maximum elevation are very well
reproduced. The biggest difference in the comparison of figure 4.22 appears
in the first incoming wave, which is overestimated in the analytical model
based on shallow water equations.

4.5 Landslide generated waves around a

conical island

Further physical experiments which aims at studying the tsunami wave field
generated by landslide have been carried out in a large wave tank at the
Research and Experimentation Laboratory for Coastal Defence (LIC) of the
Technical University of Bari, Italy, in cooperation with the Environmental
and Maritime Hydraulics Laboratory Umberto Messina (LIAM) of the
University of L’Aquila, Italy. They simulate landslide body falling on the
flank of a conical island. The conical island was built in order to approximatly

Università degli Studi di Roma Tre - DSIC 67



Numerical modeling of waves for a tsunami early warning system

reproduce in scale 1:1000 Stromboli island, south Tyrrhenian Sea, Italy (Tinti
et al., 2006b). As mentioned in the Introduction Stromboli is a volcanic
island, that was interested by landslide dislocations which falling into the
sea, provocates tsunami waves, dangerous especially for the island shoreline.
Most of the tsunamis studies pose attention to the wave propagation and
the inundations of the coasts ahead the landslide/earthquake which generate
it. The case when the tsunami is generated close to a small island needs of
detailed analysis for the wave field entrapped close to the shoreline. Two
different wave pattern are generated when aerial or partially submerged
landslides impact the sea water surface: one which propagates toward the
direction of the landslide motion and has circular fronts, the other which is
entrapped close to the shoreline, i.e. around the island.

The physical model results have been used to validate the numerical
model, in terms of results reliability and application’s methods, and to further
comprend and characterize the phenomena.

Figure 4.23: Sketch of the layout of the conical island experiments.
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More details about the experiments can be found in the paper of Di
Risio et al. (2009b). The physical model consist in a wave tank, 30.00 m
wide, 50.00 m long and 3.00 m deep; at the center of the tank is placed
a conical island, built using PVC sheets (thickness 0.01 m) and sustained
by a steel frame, with a radius of 4.47 m at the tank bottom level. The
slope of the flanks of the island is 1/3 (1 vertical, 3 horizontal). By varying
the water depth it has been possible to study the waves propagation around
islands with different shoreline curvature radius: three radius of the circular
shoreline, 2.07 m, 2.20 m and 2.60 m, have been used, corresponding to three
values of water depth, 0.80 m, 0.76 m and 0.62 m respectively.

The figure 4.23 shows a plan and side view of the physical model. While
figure 4.24, taken from the paper of Di Risio et al. (2009b), shows three
pictures of the island and landslide model on the top, and the island during
its construction and an overall view of the water tank in the bottom pictures.

Figure 4.24: Pictures of the conical island experiments. Figure taken from
the paper of Di Risio et al. (2009b)

The landslide model is the same of that used for the plane beach
experiments performed at LIAM laboratory and described in the previous
section (see figure 4.19). The landslide falls along the flank of the island and
is constrained to move on rails placed along the slope; it therefore moves
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exactly along a specified line. The landslide motion was measured as in the
experiments of the sloping plane beach, previously described.

The instantaneous displacements of the shoreline have been measured by
means of 20 special wave gauges that have been built employing two steel
bars (square section of 4 mm x 4 mm) directly embedded into the PVC
of the slope, as in Di Risio et al. (2009b). Traditional resistive gauges
were employed to register the instantaneous vertical displacement of the free
surface. All the signals have been acquired simultaneously at a frequency of
1000 Hz. The exact position of all the gauges can be found in the figure 4.25
and in the tables 4.2 and 4.1.

Figure 4.25: Layout of sea-level and run-up gauges position

The numerical computations have been carried out on a two-dimensional
domain, sketched in figure 4.26. The numerical simulations here presented
reproduces just one experimental case, defined by the off-shore constant
water depth of 0.80 m, and the consequently shoreline radius of 2.07 m, and
characterized by a landslide falling distance from the undisturbed shoreline
of ζ = 0.30 m. In order to save computational costs, not all the wave tank
was numerically reproduced: the domain is circular around the island up to
8.00 m from the island center; only half of the circular domain is reproduced
given the simmetry of the problem (see figure 4.26).

At the internal circular border (the undisturbed shoreline) the reflection
condition is imposed with equation (3.32). Along the external circular
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Gauge Angular position Radial position
name θ (◦) r (m)
15S -0.1 4.44
24S 0.6 6.62
12S 11.8 2.49
20S 13.5 2.80
7S 13.7 3.76
22S 13.7 6.78
11S -19.5 2.27
10S -20.5 3.64
19S -20.9 5.42
16S -21.0 6.78
6S 181.3 2.27
13S 180.8 2.65
9S 180.9 3.72

Table 4.1: Radial and Angular position of Sea Level gauges

Gauge Angular position Gauge Angular position
name θ (deg) name θ (deg)
1R 14.5 11R 138.6
2R 20.6 13R 164.6
3R 34.3 14R 176.8
4R 47.6 15R -176.9
5R 60.2 16R -85.7
6R 72.9 17R -46.5
7R 86.3 19R -20.9
8R 98.7 20R -12.8
10R 125.2

Table 4.2: Angular position of Runup gauges

boundary the waves are allowed to freely exit the computational domain
by imposing equation (3.34). The landslide falls down in the direction of the
right-bottom border, in figure 4.26. At that boundary the fully reflection
condition (3.32) is imposed in order to take into account of the symmetric
half of the domain not simulated. On the contrary at the opposite boundary
a radiation condition (3.34) was used, even if as well this boundary falls
in the axis of symmetry of the problem. More words need to be spent for
this condition, applied in order to avoid numerical errors due to the waves
entrapments. Indeed it should be kept in mind that, when solving partial
differential equations using the discrete Fourier Transform, the solution is
obtained for a finite time interval, and it is assumed that the solution is
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Figure 4.26: Numerical domain of the frequency-dispersive model. The
numbers 2.07, 4.47 and 8.00 express the radii in meters of the undisturbed
shoreline of the island base at the tank bottom and of the external circular
boundary respectively

periodical over that time interval and it repeats identically over the following
and the preceding time. Therefore the selected time interval should be long
enough to allow all the waves to exit the computational domain trough
the open boundaries before the time interval ends. Otherwise interference
between wave energy coming from different time intervals is obtained. In the
laboratory experiments the edge waves remain partially trapped around the
conical island (Renzi & Sammarco, 2010) and they slowly radiate toward
offshore. Furthermore in the numerical simulations there is no energy
dissipation, thus even using a very long simulation time some waves still
would remain trapped around the island. Thus a radiation condition is
imposed at that boundary to allow all the wave energy to leave the domain
at the end of the computation, and thus provide to the following one zero
initial conditions everywhere, as desired. Of course this induces the loss
of the effect of the waves that from the non reproduced half of the island
would have propagate in the clock-wise direction. Regarding the numerical
reproduction of the generation process, here reference is made of both the
procedure described in section 3.2. In the following two subsetions are shown
the results obtained when simulating the wave generation by means of a wave-
maker boundary condition (‘indirect’ procedure) and by means of an added
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source term in the MSE (‘direct’ procedure).

4.5.1 Waves generation with the ‘indirect’ procedure

Here is presented the numerical model applied following the ‘indirect’
procedure to estimate the waves source term. The idea is to see how the
model calculates the tsunami, when a registration is available to determine
the waves source. As it will be discussed, the tsunami forecast depends on
the position of the wave registration available. In particular the laboratory
measurements at two different gauges are tested as they would be the real
registration of a tsunami wave. These two gauges are respectively the 12S
and the 15S, one located close to the generation area, the other far away of it.
The different tsunami fields calculated are discussed in the following. When
building a tsunami early warning system is important to determine a priori
where to locate the monitoring instruments, because the measurements are
a key input parameter for the forecasting model. This implies the knowledge
of the tsunamogenic source position, that in most of the cases is easy to
hypothesize realistically. Knowing the landslide width and its motion from
the physical experiments, it is possible to define the arc of the shoreline
where the landslide impacts the water. Therefore a wave maker condition
(3.38), which moves that boundary with a generic velocity is here imposed
and the problem is solved for all the wave frequencies. The solution of the
water surface elevation, N ′ (x, y, ω), in the frequency domain is saved at
the positions of all the wave gauges. The apices means that the solution is
obtained for a unitary source term. In order to estimate the wave field due to
the landslide movement, use is made of the physical registration of the water
surface elevation time series at one point, i.e. gauge position. The simulation
reproduces a time series of 50 s, using a Δt of 0.01 s, thus corresponding to
5,000 time steps and equal number of wave frequencies to solve. In order
to save computational costs, it is verified that the wave energy is mostly
concentrated in the range of frequencies of 0.02 ≤ f ≤ 2 Hz, thus just 100
frequencies are solved. The numerical simulation has been carried out using
triangular linear elements. The maximum elements size is set as 0.05 m, as
one tenth of the shortest wave length simulated, since a resolution of 10 nodes
per wave length is required. The resulting Degrees of Freedom are 80,970 for
a computational time of about 20 s on a AMD Opteron 246 2GHz computer
equipped with 4GB of RAM. Since the elliptic MSE is solved in the present
simulation for 100 wave frequencies, the total computational time is about
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half an hour.
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Figure 4.27: Comparison of the free surface elevations at the near field gauges
position, measured (red dashed line) and obtained from the numerical model
(black solid line). The numerical results are achieved by using the registration
of the free surface elevation at the gauge 15S to estimate the wave source
term.

The first comparison results (figures 4.27, 4.28 and 4.29) refer to the
numerical computations obtained by using the registration at the sea level
gauge 15S to ‘indirectly’ estimate the source term and consequently solve the
wave field. In particular the figures refer only to the water surface elevation
time series at the 13 sea level gauges (see table 4.1). A distinction is made
between 5 gauges (12S, 20S, 7S, 11S and 10S) which are located in front of
the landslide movement and close to the island; 5 other gauges (15S, 22S,
24S, 19S and 16S) placed far from the island, all in the off-shore region, i.e.
water depth of 0.80 m; and the last 3 gauges (6S, 13S and 9S) located at the
rear side of the island with respect to the landslide movement. The figures
4.27, 4.28 and 4.29 refer respectively to these three groups of sea level gauges.
In all the following figures the red dashed lines represent the experimental
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Figure 4.28: Comparison of the free surface elevations at the far field gauges
position, measured (red dashed line) and obtained from the numerical model
(black solid line). The numerical results are achieved by using the registration
of the free surface elevation at the gauge 15S to estimate the wave source
term.

measurements, while the black solid lines the numerical model solutions. In
figure 4.27 it can be noted an overall good agreement in the comparison,
but, specially for the comparison at the gauges 12S, 20S and 11S, the
numerical model seems not able to reproduce exactly the experiments. This
can be explained by the fact that those gauges are the ones located closer to
the landslide impact and in shallower waters where the waves are generally
complex and nonlinear. At these gauges it appears a wave pattern at high
frequency component which are not modelled numerically (see after figure
4.30 of wave energy spectra).

Looking at the figures 4.28 and 4.29, an overall good agreement is
achieved, specially in the comparisons at the gauges located in the far field
(figure 4.28). About these first simulations it can be said that, when using
a far field registration in order to estimate the waves source term, the wave
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Figure 4.29: Comparison of the free surface elevations at the back field gauges
position, measured (red dashed line) and obtained from the numerical model
(black solid line). The numerical results are achieved by using the registration
of the free surface elevation at the gauge 15S to estimate the wave source
term.
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Figure 4.30: Comparison of the wave energy spectra at gauges 12S (left
panel) and 15S (right panel), measured (red dashed line) and obtained from
the numerical model (black solid line). The numerical results are achieved
by using the registration of the free surface elevation at the gauge 15S to
estimate the wave source term.

field produced is not able to take into account of the near field waves features.
In fact the landslide motion generates two pattern of waves, one which
propagates toward the direction of the landslide and has circular fronts, the
other which is entrapped close to the shoreline, i.e. around the island in this
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case. Thus the far field sea level gauges reproduce the more regular waves,
radiating offshore, and the near field gauges measure a more complex wave
field, composed by irregular and nonlinear waves.
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Figure 4.31: Comparison of the free surface elevations at the near field gauges
position, measured (red dashed line) and obtained from the numerical model
(black solid line). The numerical results are achieved by using the registration
of the free surface elevation at the gauge 12S to estimate the wave source
term.

Figure 4.30 shows the wave energy spectra for the same simulation at
gauge 12S and 15S. The dashed red lines again represent the energy
spectra measured experimentally and the solid black one the energy spectra
calculated by the numerical model. It is shown only the wave energy spectra
at two gauges, choosen as representative of the wave field near and far
from the generation/shallower area. From the figure it can be noted that
the wave gauge 12S register a wave energy spectrum which presents two
maxima, the higher frequency one is not simulated by the numerical model
implemented as described before. As already said, only the frequencies up to
2 Hz are solved numerically, thus, as can be view by the figure 4.30, even the
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experimental results are cut at that frequency in order to compare the same
range of frequency. Now similar considerations can be made, when a near
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Figure 4.32: Comparison of the free surface elevations at the far field gauges
position, measured (red dashed line) and obtained from the numerical model
(black solid line). The numerical results are achieved by using the registration
of the free surface elevation at the gauge 12S to estimate the wave source
term.

field sea level gauge is used to determine the source term and the wave field
is calculated at all the other gauges by means of the inversion technique. The
laboratory registration of the free water surface elevation at the gauge 12S
is taken as the available measurement to correct the pre-calculated unitary
simulations. In the following figures, as for the previous one, the red dashed
lines refer to the physical model results and the solid black lines to those of
the numerical model. In figure 4.31 the comparison of the free water surface
elevation is shown at the near shore gauges. The comparison at the gauge
12S is perfect because mathematically imposed; at the gauges 7S and 10S
the numerical model reproduces a high frequency wave packet which does not
compare in the physical model. Looking at the figure 4.32 this discrepancy
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is even more accentuated: it is easy to distinguish a first wave train, which
almost perfectly superimpose the laboratory measurement, and a second one
which appears only in the numerical model results.
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Figure 4.33: Comparison of the free surface elevations at the back field gauges
position, measured (red dashed line) and obtained from the numerical model
(black solid line). The numerical results are achieved by using the registration
of the free surface elevation at the gauge 12S to estimate the wave source
term.
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Figure 4.34: Comparison of the wave energy spectra at gauges 12S (left
panel) and 15S (right panel), measured (red dashed line) and obtained from
the numerical model (black solid line). The numerical results are achieved
by using the registration of the free surface elevation at the gauge 12S to
estimate the wave source term.
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Comparing the model results at the gauges located in the rear side of the
island (figure 4.33) it can be noted that this error is here attenuated.
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Figure 4.35: Comparison of the free surface elevations at the first 10 run up
gauges position, measured (red dashed line) and obtained from the numerical
model (black solid line). The numerical results are achieved by using the
registration of the free surface elevation at the first run up gauge 1R to
estimate the wave source term.

Again use is made of the wave spectra in order to analyze how the wave
energy is distributed in frequency. In figure 4.34 only the results at gauges
12S and 15S are presented. Assuming that the wave energy spectra at gauge
12S as to be equal to that measured in the laboratory, and using this identity
to estimate the wave generation term, bring to an overestimation of the wave
energy in high frequency, as can be seen from the wave spectra at gauge
15S reproduced numerically. Therefore, using a near field measurement to
estimate the correct source term for the wave field calculation, generates an
error specially in the far field forecasting, because the source term will be
wrongly affected by the high frequency component which are typical just of
the near field close to the tsunamogenic source.
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Figure 4.36: Comparison of the free surface elevations at the second 10 run up
gauges position, measured (red dashed line) and obtained from the numerical
model (black solid line). The numerical results are achieved by using the
registration of the free surface elevation at the first run up gauge 1R to
estimate the wave source term.

With regard to the shore inundation, the results at the run-up gauges are
analyzed. The shoreline in the numerical model is simulated as a reflecting
wall with a water depth of 0.0001 m, which for numerical reasons can not
be equal to zero. Using the sea level registration at gauges 12S and 15S in
order to estimate the run-up on the island does not produce reliable results,
specially when using gauge 15S. The shore inundation forecasting has to
be carried out using water level measurements at the shoreline, or close to
it. In figures 4.35 and 4.36 are shown the comparison results at the run-
up gauges. Again the red dashed lines refer to the physical results and the
solid black one to the numerical results. The results at the gauges R9, R12
and R18 are not presented, because the instruments didn’t work during the
laboratory experiments. At the first run-up gauge R1 the perfect agreement
of the models results is imposed in order to estimate the source term from this
identity. The numerical model seems to correctly predict the wave heigths
and periods of the bigger main waves. As can be seen in the figures for
all the gauge comparison, the numerical model reproduces spurios waves in
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high frequency. At these gauges locations waves are relatively high compared
to the water depth, therefore could not be properly reproduced using linear
equations. It is worth to mention here that the numerical model does not
reproduce energy disspiation due to friction at the interface of water and
island flanks. This explains why in the laboratory registrations the waves are
attenuated. However the model provides satisfactory results for engineering
applications, where the intrest is orientated to the order of magnitude of the
relevant wave features.

4.5.2 Waves generation with the ‘direct’ procedure

Hereinafter are described and discussed the results of the numerical model
applied using the ‘direct’ procedure to generate waves. Therefore the effect
of the landslide movement is inserted as a forcing term into the MSE. The
water depth function h (x, y, t), which takes into account of the sea floor
motion, due to the landslide, is determined by knowing the landslide shape
and movement. The second derivative in time of the function, htt (x, y, t),
is carried out using a numerical approximation and its Fourier transform is
applied, in order to insert it into the field equation (3.48).

The domain and the boundary conditions are equal to those used for the
previous simulations, except for the wave-maker boundary condition that
here is not imposed anywhere. Inside the computational domain (see figure
4.26) the area where it passes the landslide, is defined as a subdomain where
the MSE with the forcing term (4.8) is solved, else where the MSE (3.29) is
solved. The numerical simulation has been carried out using triangular linear
elements, which maximum size is 0.05 m. The resulting Degrees of Freedom
and the computational costs are similar to those of the simulations described
in the previous subsection. Figures 4.37, 4.38 and 4.39 show the comparison
results between the laboratory measurement of the water surface elevation
(red dashed lines) and numerical simulations (solid black lines). Figure 4.37
refer to the sea level gauges close to the generation area, figure 4.38 to the ones
in the off-shore region and figure 4.39 to the ones in the rear side of the island
with respect to the landslide. As it can be seen from the figures the model
gives reliable results, this can be said expecially for the gauges located in
the off-shore area (figure 4.38). The comparison shows that the model is not
able to correctly reproduce the water level oscillations close to the shoreline,
see the numerical results at gauges S12, S11 and S6 (table 4.1 shows their
distance from the island center). This behaviour can be explained by the
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Figure 4.37: Comparison of the free surface elevations at the near field gauges
position, measured (red dashed line) and obtained from the numerical model
(black solid line). The numerical results are achieved imposing a forcing
source term in the MSE.

fact that the numerical model equations are valid for submerged landslides,
beacuse reproduce the effect of the moving seafloor on the water surface. No
reproduction of the landslide entering phase is made, which, as seen in the
laboratory experiment, has a piston-like effect (especially if it has a steep
front), which induces a deformation of the shoreline. Another point to be
considered is that the numerical model does not reproduce any dissipation
at the interface between water waves and the island.
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Figure 4.38: Comparison of the free surface elevations at the far field gauges
position, measured (red dashed line) and obtained from the numerical model
(black solid line). The numerical results are achieved imposing a forcing
source term in the MSE.
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Figure 4.39: Comparison of the free surface elevations at the back field gauges
position, measured (red dashed line) and obtained from the numerical model
(black solid line). The numerical results are achieved imposing a forcing
source term in the MSE.

4.6 Matching of elliptic and parabolic MSE -

Numerical experiments

As already introduced the solution of the fully elliptic mild-slope equation
for a large number of wave frequencies, is computationally very expensive,
and until now has limited the application of the model over relatively
small geographical areas, typically of the order of 100 km2 (Bellotti et al.,
2008). Thus the further reduction of the computational costs and the model
application extension to larger geographical areas (thousand of km2) can be
achieved by solving the parabolic approximation of the MSE. It is here shown
a simple numerical experiment which aims at validating the numerical model
when it solves the elliptic MSE over a restricted domain and the parabolic
MSE over a bounding larger domain. The experiment consists on choosing an
hypotethical tsunami scenario domain, which covers the generation area and
a large propagation field, and split the domain in two parts, one close to the
source (near field), the other far from it (far field). In the near field is solved
the elliptic MSE (equation 3.29 or 3.48), at the boundary of matching with
the far field domain the solution is saved and it is given as input condition to
the model which solves the parabolic MSE (3.57) in the far field. Since here
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a validation test is shown, the elliptict MSE is solved in the whole domain
(near and far filed), thus its solution is taken as the reference one.

Figure 4.40: Layout of the numerical experiment aimed at validating the
matching between the solution of the elliptic and parabolic MSE

The layout of the chosen numerical domain is shown in Figure 4.40. The
upper sketch reproduce a planimetric view of the circular domain, where
the dashed circumference is the boundary of matching between the so called
near and far field. In the lower sketch a vertical section of the domain (not
in scale) can be viewed and the domain dimensions are explicitly written.
The generation mechanism is supposed to occur at the coast of a conical
island, posed in the center of the numerical domain, as if it would represent
a landslide sliding on a flank of the island and impacting the water surface.
However no particular interest is given to the generation mechanism since the
aim of the present experiment is to test the far field tsunami propagation.
The boundary matching is posed at a distance from the generation area which
is far enough to allows the generated waves (with a specified frequency) cross
it everywhere perpendicularly. In the far field the parabolic MSE is solved
in cylindrical coordinates (see equation B.36 in the appendix B.3). A system
of reference centered in the middle of the island and covering the domain
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for 360◦ is used to solve the MSEs in cylindrical coordinates. The reference
origin r = 0 falls in the middle of the island, while θ = 0 is in corrispondence
with the center of the wave maker boundary and points toward the direction
of the radiated waves.

In order to save computational time, given the model symmetry, only
the upper half of the circular domain was reproduced. The elliptic MSEs
are solved with the finite element method, as for the previously described
experiments, and the linear elements have a maximum size of 0.5 m. The
simulation which solves the elliptic MSE in the half circle of maximum radius
of 150m have around 605 kDOF and took about one minute to reproduce one
wave frequency component on a AMD opteron 246 2GHz computer equipped
with 4GB of RAM.
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Figure 4.41: Comparison between the elliptic (black lines) and the parabolic
MSE (red lines) solved for the frequency T = 3 s. The upper panels show
the wave amplitudes, in the middle and lower panels the amplitude absolute
values and phase are shown respectively. The left and right panels refer to
the distance along the directions θ = 0◦ and θ = 180◦
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The circular shoreline around the conical island has a radius of 1m, here a
reflection boundary condition is imposed everywhere, except that in the arc
of π/2 posed between θ = −π/4 and θ = π/4. In this arc of circumpherence
a wave maker condition is imposed, which introduces a unit source term into
the numerical domain. In the external semi-circumpherence (radius of 150m)
a radiation boundary condition is imposed.

The solution of the parabolic MSE is obtained using a Crank-Nicolson
finite difference numerical scheme, which proceeds marching towards
increasing values of the ray r. The numerical code is written with MatLab
and runs in about 5/10 s on the same computer.
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Figure 4.42: Comparison between the elliptic (black lines) and the parabolic
MSE (red lines) solved for the frequency T = 6 s. For the notation refer to
the caption of figure 4.41

The figures 4.41 and 4.42 show the results of the comparison between the
solution of the MSE and its parabolic approximation for two different wave
frequencies, respectively T = 3 s and T = 6 s. More frequency components
and different water depths are tested and very similar comparison results were
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obtained, which confirm the feasibility of the matching method. The figures
show the results in terms of wave amplitude (upper panels), its absolute
values (middle panels) and phase values (lower panels). The results are
shown in the direction of θ = 0◦ (left panels) and θ = 180◦ (right panles),
and are relative to the far field (80 ≤ r ≤ 150) where both elliptic and
parabolie MSE are solved.
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Chapter 5

Large scale model application
to the Tyrrhenian Sea

5.1 Stromboli island

The Aeolian Islands are located in the south Tyrrhenian Sea to the west
of Calabria and to the North of Sicily and constitute a volcanic islands
arc, as it can be see in figure 5.1; Stromboli is the island located at north
east of the archipelago and it is one of the most active volcanoes in the
Mediterranean Sea (Tinti et al., 2003). The volcanic edifice of Stromboli
is a broadly regular cone, with very steep slope: around 15 ◦ in the less
steep submarine portion of the edifice. The volcano is characterized by a
persistent activity with moderate rhythmic explosions (every 15 minutes)
that are named “strombolian” by volcanologists, and by occasional more
energetic paroxysmic phases also with lava effusion and fountains; pyroclastic
flows occur at intervals of several years or decades. Volcanic eruptions of huge
dimensions happened with a return period of thousands of years. The last
episode is dated to less than 5,000 years ago, and caused the partial collapse
of the edifice, creating a scar, named Sciara del Fuoco, on the north-west
flank. This flank is characterized by very steep slope (38 ◦ in the subaerial
island’s portion) and thus represented a preferential lane for the lava and
landslide fall, as it can be seen from the picture in figure 5.2.

The most relevant volcanic activities have been accompanied by local
tsunamis. In some case the tsunamis generation is directly caused by the
pyroclastic flows entering into the sea, in some others it can be caused
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Figure 5.1: Sketch of Italy and the Aeolian islands

Figure 5.2: Picture of Stromboli island, Tyrrhenian Sea, Italy. (right picture
from NE)

indirectly by the failure of aerial or underwater landslides. Accounts on
tsunamis generated at Stromboli island are documented only since the last
century and are associated with the largest eruptions. The most destructive
tsunamis events of the last century are reviewed by Maramai et al. (2005) and
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were those of 1919, 1930 1944, 1954. The generation of tsunami waves was
due to submarine landslides or hot avalanches and caused several damages in
the Stromboli coastal zone: inundation depth of the order of hundred meters,
boats carried inland and building damages. The most recent tsunami event
occurred on the 30th December 2002, when two tsunamis attacked the coast
of the island of Stromboli, as already introduced in the Introduction. These
waves were generated by landslides that took place on the Sciara del Fuoco
and caused a runup around Stromboli of the order of ten meters; for details
refer to Tinti et al. (2005; 2006a).

Figure 5.3 collects 4 pictures taken the 26th of February 2007, when a
vulcanic eruption provocates the dislocation of a landslide, which fortunately
did not generate a tsunami.

Figure 5.3: Pictures of a landslide events of 26th February 2007 at the Sciara
del Fuoco, Stromboli island.

It has been noted that tsunamis produced by the largest explosions of
Stromboli, damaged the area close to the source (island’s coast), but not the
far field, where these waves arrive in form of small sea level perturbations.
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However it is well recognized that Stromboli has also the potential to produce
large catastrophic tsunami (return period of thousands of years), which can
be the consequence of the lateral collapse of the volcanic cone. Numerical
simulations of a possible catastrophic tsunamis were carried out by Tinti
et al. (2003). In their work they have reproduced the collapsing of the
lateral flank of Stromboli, which creates the Sciara del Fuoco slope, using a
numerical model based on a lagrangian approach, and the associated tsunami
generation and propagation. Assuming a landslide of about 1 km3, the
tsunami generated presents a maximum wave height in front of the Sciara
del Fuoco of about 60 m, with a period of 100 s.

In the following sections some model simulations of possible tsunami
scenario in the South Tyrrhenian Sea, generated at Stromboli island are
presented. No detailed reproduction of the wave generation mechanism
is given, because the focus of the present application is mostly on the
propagation processes. Use is therefore made of the results of Tinti et
al. (2003; 2006b), which on the contrary carefully modeled the landslide
kinematic and its effects on the waves. The first section describes a simulation
of a tsunami scenario, as the one reproduced by Tinti et al. (2003), where
a wave 60 m high is supposed to occur in front of the Sciara del Fuoco, and
that involves the Aeolian islands. The other section is aimed at reproducing
a smaller tsunamis event, as that of 30th December 2002, and testing the
model as if it would work in real time.

5.2 Numerical model application to the

Tyrrhenian Sea

In this research we have applied our model to simulate a Tyrrhenian tsunamis
scenario caused by a landslide fall from the flank of Stromboli island. The
focus of the present application is mostly on the propagation processes.

The computational domain is that enclosed into the dashed rectangle
in figure 5.4. The modeled time series is 20,000 s long, with a Δt equal
to 5 s, leading to 4,000 time steps, which correspond to the same number
of frequencies to be solved. By inspection of the Fourier Transform of
the reproduced wave field, the frequencies at which the energy content
is significantly larger than zero and that consequently are worth to be
reproduced are identified as those in the interval 0.00005 < f < 0.04Hz,
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Figure 5.4: Sketch of the South Tyrrhenian Sea (Italy) and of the Aeolian
islands archipelago. In the left panel with a dashed rectangle the numerical
computation domain is shown, in the right panel the islands are presented
in more detail together with the 5 points at which the computations results
are presented.

resulting in 800 components of the spectrum. Thus 800 equations like (3.29)
are solved, one for each frequency component. The computational time is
in total 4 hours and 30 minutes in a AMD Opteron 246 2 GHz computer
equipped with 4 GB of RAM. At the boundary of Stromboli island along the
coast of the Sciara del Fuoco, a wave-maker condition as equation (3.38) is
imposed, which generates a N-shaped wave with period of 100 s and height of
60 m. The boundaries of the islands are modeled as impermeable and fully-
reflecting, using equation (3.32), while in the rectangular outer boundary
a fully-absorbing condition (3.34) is imposed to allow the outgoing waves
radiation.

The results, in term of water surface elevations in the time domain, are
shown at five points in front of the five islands (see figure 5.4, right panel),
all the points are located at a water depth of about 100 m.

In figure 5.5 the thick red lines represent the results of the present model,
while thin black lines refer to the results of the same model solving the
SWE as field equation. The comparison once again highlights the effects of
reproducing or not the waves frequency dispersion. As it can be seen from the
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Figure 5.5: Free surface elevation calculated at the five points, sketched in
figure 5.4, in front of each island. The thick red lines represent the results
of the proposed frequency-dispersive model, while the thin black lines the
results of the same model with the shallow water approximation.

free surface elevations, the first waves, simulated with both models, are not
the highest ones. It can be noted that the two models simulate differently
the wave propagation: the SWE predicts a larger surface elevation and a
faster wave celerity, resulting in a earlier arrival of the highest wave. A
good comparison with the results of Tinti et al. (2003) cannot be properly
obtained, because the points where the results are shown are not exactly
the same, and because the wave generation mechanism is different. From
the plots it can be noted a strong reduction of the maximum wave height
registered in front of Panarea, Salina, Lipari and Vulcano islands. Note that
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the vertical scale of the plots varies. This is mainly due to the fact that the
wave energy is spread into circular wave fronts as it moves away from the
source.

The times of arrival of the first waves, from Stromboli to the other islands,
are in good agreement with those obtained by Tinti et al. (2003). The wave
which firstly reaches the island of Panarea (the closest one) arrives after about
380 s, while it takes about 430, 550 and 570 s to reach the other islands,
respectively Salina, Lipari and Vulcano. Please note that the horizontal scale
of the plot of Stromboli is different from the others.
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Figure 5.6: Ratio between the first wave crest height calculated with the
shallow water approximation and with the frequency dispersive model versus
the wave period.

Parametric computations are also carried out varying the period of the
N-wave. In figure 5.6 there are highlighted the differences between the
two models varying the period of the reproduced waves. The differences
are expressed in term of the ratio between the maximum elevation of the
first wave calculated with the non-dispersive model and that given by
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the dispersive one. As expected, as the simulated waves become longer
(increasing the period), this ratio assumes values close to one, while for waves
with a smaller period (100− 200s) it assume values between two and four,
increasing as the waves propagate far away from Stromboli. It means that
the SWE model gives a first wave overestimated in comparison with that
from the full frequency dispersive model.

5.3 Example of Tsunami Early Warning

System at Stromboli island

In this section are presented other simulations which have a closer look to
the wave field generated in Stromboli and propagated offshore until it reach
the closets coastline. The idea is to simulate the feasability of the model in
a real time application, as if it would be used in a tsunami early warning
system.

Here again the focus is just on the wave propagation and the model does
not exactly reproduce one specific event, but simulates a possible tsunami
scenario by using reasonable wave parameters. After careful evaluation of
the conclusions of Tinti et al. (2006b) a N-wave with period of 1 min and
height of 30 m is used to estimate a possible source term.

The model for this application is run using the ‘indirect’ procedure: first
the elliptic MSE is solved for each frequency component using a unit source
term at the wave-maker boundary, and the simulation results are saved in the
point of interest, secondly a N-wave 1 min long and 30 m high is supposed
to occur in front of Stromboli island triggered by a landslide and the source
term which generates that wave is calculated by the inverse technique.

Figure 5.7 shows the computational domain used, which encloses the
islands of Stromboli, Panarea and Basiluzzo. A wave-maker condition,
as that expressed by equation (3.38), is imposed at the boundary of the
Stromboli island along the coast of the ‘Sciara del fuoco’. The boundaries of
the islands are modeled as impermeable and fully-reflecting using equation
(3.32), while in the circular outer boundary a fully-absorbing condition is
imposed to allow the outgoing waves radiation (3.34). The modeled time
series is 4,000 s long, Δt = 4 s, leading to 1, 000 time steps and frequencies
to be solved. By inspection of the Fourier Transform of the considered N-
wave, the frequencies at which the energy content is significantly greater
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Figure 5.7: Computational domain of the Stromboli-Panarea tsunami
simulations.

than zero and that consequently are worth to be reproduced are identified
as those in the interval 0.00025 < f < 0.1Hz, resulting in 400 components of
the spectrum.

The computational domain is divided into three regions on the basis of
the water depth; in each region a different finite element mesh is used. A
coarser mesh covers the regions with water depth above 1,000 m where the
maximum distance between the nodes is 350 m. In the regions with a water
depth below 1,000 m a finer mesh was adopted (maximum elements length
300 m). The finest mesh (maximum elements length 100 m) covers the area
with a water depth below 500 m around Panarea, Basiluzzo and Stromboli
islands. With the above described computational mesh, the higher frequency
component considered may be poorly reproduced in the shallower areas of
the computational domain. However after careful inspection of the results
it has been concluded that this had a minor effect. The total number
of DOF is 416,000 and the total computational time for the solution of
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the 400 elliptic equations is 4 hours, using the same computer described
before. The numerical results of the overall propagation process appear in
good qualitative agreement with the conclusions of Tinti et al. (2006b).
The tsunami triggered by the subaerial landslide, propagates seawards with
almost circular fronts. The fronts travel more slowly near the Stromboli
coastline. About 4 minutes since the trigger of the tsunami, the entire
Stromboli coast is under the attack of the waves, while the leading wave
is about to hit the northern coast of Panarea (about 20 km South-West of
the Stromboli island). The results of the computations are presented for 4
points of interest (see sketch on Figure 5.7). Point 1 is just at the wave-maker
boundary. Point 2 is South-West of the generation area, in proximity of the
Ginostra village, along the coast. Point 3 is about at the South corner of
the island, in proximity of Punta Lena. Finally the results in proximity of
Basiluzzo, 14 km away from the island are presented at point 4.

Figure 5.8 presents the numerical results in terms of water surface
elevation at the four points introduced above. The fully frequency dispersive
model (thick line) is compared with the linear long waves model (thin line).
At the point 1 appear the sequence of crest-trough of the N-waves imposed
at this point. As the distance from the ‘Sciara del Fuoco’ source grows, the
height of the first positive wave reduces, and it appears other waves following.
It can be noted at the other points 3 and 4, that the first incoming wave is
not the highest. In particular at the point 4, in front of Basiluzzo Island
(the most distant point from the generation area considered here) the first
wave arrives for both models after about 240 s, which is consistent with the
shallow water wave celerity in a constant water depth equal to the mean water
depth between Stromboli and Basiluzzo (about 600m). Here the results show
significant differences between the two models: in the linear long wave theory
the energy appears to be concentrated at the first incoming waves, while in
the frequency dispersive model results the more dangerous waves are not the
first ones.

The same simulation is now presented in a real time application, in
order to show how the model would work inside an early warning system.
As already introduced the model can be applied in two stages. In the
first computations a tsunami scenario is reproduced assuming to known the
area/boundaries of generation and here imposing a unit source term; in the
second stages the water surface elevation has to be known, i.e. measured,
at some point, in order to calculate the real source term and estimate the
produced wave field. After the a priori tsunami simulations (i.e. unit source
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Figure 5.8: Numerical results of the Stromboli-Panarea tsunamis
computations. Thick line: the present model results. Thin line: the shallow
water waves model.

term computations) have been carried out, the results at the points of interest
have to be obtained also for very unrealistic/noised input time series. This is
important because when applying the model in real time the system should
work also using truncated input time series: when a tsunami is detected
by the tidal gauges, the tsunamis early warning system immediately has to
forecast the wave properties at the target points. It is unrealistic, given the
limited time available for spreading the warning, to wait until the tsunamis
have been completely measured. It is therefore clear that as the tsunamis
are measured, the available time series is to be used as input data.

The Stromboli tsunami simulation presented is here used to show the
ability of the model to predict the water surface elevation at target points
(i.e. points 2, 3 and 4), as the data become available at a gauge close to
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Figure 5.9: Example of application of the model using truncated input time
series. Upper panels of each subplot: time series in front of Sciara del Fuoco
(thick red lines represent the input data); lower panels: results in front of
Panarea island (thick red lines). In each subplot the whole numerical water
surface elevation time series is shown with thin black line).

the generation area (point 1). Several computations have been performed,
assuming that the input time series is available up to a given time (tknown):

ηinput (t) = η1 (t) , t ≤ tknown (5.1)

ηinput (t) = 0, t > tknown. (5.2)

The results depend therefore on the value of tknown. Few sample results are
reported in Figure 5.9, where the time series at the point 4 (named Panarea)
are presented for tknown = 484, 496, 512 and 556 s. On the upper panel of
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each subplot the input time series (η at point 1, in front of Stromboli) is
represented using a thick red line, while on the lower panels it is shown the
predicted η at point 4, in front of Panarea island.
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Figure 5.10: Example of application of the model using truncated input time
series; maximum surface elevation in front of Panarea island (at the point 4
of figure 5.7) as the time series at Stromboli (point 1) becomes available

It is interesting to note that the use of a truncated input time series
introduces very high frequency components, that are revealed by spurious
short waves in the results. For tknown=496 s the crest of the first (highest)
wave is used in the input time series and the prediction at Panarea appears
to be already comparable to the final one. For tknown= 512 s, 3/4 of the
first wave in front of Stromboli is used with very good results at Panarea.
Then the results tend to those that would be obtained using the whole time
series. The most important parameter predicted by the model is certainly
the maximum elevation at the point 4 (Panarea), referred to as ηmax. As the
tknown increases the prediction tends to the final one, as shown in the figure
5.10. The vertical line in the figure represents the time at which the crest
of the first wave is measured at point 1 (around t = 500 s). The horizontal
line indicates the final value of ηmax. It is interesting to note that due to
spurious high frequency components, induced by the truncation of the input
time series, for some values of the tknown, η

max may be larger than the final
one. However it can be concluded that the model is able of dynamically
provide estimates of the desired parameter without suffering of instabilities.
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It is certainly desirable to carry out further research in the future in order
to better understand if this good behavior of the model can be considered to
apply under more general conditions.

Università degli Studi di Roma Tre - DSIC 104



Chapter 6

Conclusions

This thesis has presented a numerical model able to reproduce small
amplitude transient waves. The most important feature of the model is that
it is able of properly simulating the full-frequency dispersion of the waves,
as other available wave theories such as the BTE. The numerical technique
makes use of the Fourier Transform (with respect to the time) of the wave
equation in order to obtain an elliptic equation for each component of the
wave spectrum, which is solved using a numerical model based on the Finite
Element Method. It is important to discuss in conclusion the role of the
frequency dispersion: it is clear that the wave celerity is strongly influenced
by this factor. The ability of predicting with good accuracy the celerity is
of the utmost importance when estimating the arrival time of the tsunamis.
However the frequency dispersion has also a further very important effect on
the transient waves: it induces a decrease of the wave height, especially
for the first waves of a wave packet. This is very clear in all the tests
presented in this work, where the comparison of the results of the present
model with those obtained using the linearized version of the NLSWE has
allowed to highlight this effect. It has resulted that only due to this, the wave
height predicted by the NLSWE can overestimate the actual height, for the
experiments presented here, also by a factor of 2. On one hand it could be
stated that the wave conditions predicted by the NLSWE are more severe
than the real ones, so that safety is guaranteed. However, on the other hand,
predicting tsunamis which is much more severe than the true ones, in the
context of a tsunami early warning system, may lead to false alarms, which
may induce the people not to trust the system, with possible catastrophic
consequences.
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Different validation tests have shown the capability of the model of
accurately reproduce the results of laboratory experiments on tsunamis. Two
methodologies are presented to generate waves inside the numerical domain:
with a wave-maker boundary condition or inside the field equation. The
model equation (MSE) has been derived with a source term which allows the
reproduction of the seafloor movements. The source term is calculated as the
time derivative of the water depth multiplied by a transfer function which
depends on the generated wave frequencies. It differs from other techniques
such that of Tinti et al. (2006b), who employ a transfer function based on
the landslide length. Since the model equations are solved in the frequency
domain, the inclusion of a frequency filter function in the source term appears
natural. Anyway it is important to notice that the same approach can be
easily applied to numerical models which work in the time domain, as those
based on the NLSWE or the BTE. The procedure in these cases requires
a previous filtering in the frequency domain of the source term, then anti-
transformation in the time domain in order to provide the source term for
the equations. From a physical point of view, the transfer function has
the effect of a low-pass filter between the movements of the bottom and
the movements of the free surface. Translating the bottom deformations
directly to the free surface or by using a filter that has the same effect for
all the frequencies, introduces a large amount of spurious energy in the high
frequencies range, leading to unrealistic/wrong results. This effect is less
evident if non dispersive equations, NLSWE, are used to reproduce the wave
field, because the wave components propagate at the same celerity which
is not function of the wave frequency. It is worth to remember that the
technique used by Tinti et al. (2006b), although it does not consider the
wave frequency dependence, has always provided good results, because it
has been applied, since now, to models that do not reproduce the frequency
dispersion.

It is finally worth to remember that the inclusion of a source term in the
MSE has been here considered for submerged landslides. The extension of
the technique discussed to subaerial landslides is to be done carefully. When
a landslide enters the water it has a piston-like effect (especially if it has a
steep front), which induces a deformation of the shoreline not considered by
the source term used in the computations presented in this work.

A further important feature of the model is that it is suitable to be used
in early warning systems for tsunamis. It has been shown that the model
can be applied in two stages, in order to solve the heaviest computations in a
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first stage, before the tsunami event, and to be able to solve in real time the
forecasting calculations. This second part can be computed only if a tsunami
wave detection is available and can be used to correct the pre-calculations of
the a priori stage. It has been discussed the importance of where the tsunami
is detected, i.e. where to locate tidal gauges or pressure sensors. The best
solution would be to have nearshore measurements to forecast the near wave
field, and even offshore measurements in order to register wave features of
tsunami propagating in deep water, since the wave field generated nearshore
presents a wave energy spectrum different from that of offshore wave field.
Furthermore the model is suitable to be applied in real time because is very
robust. After the unit source term computations have been carried out, the
results at the point of interest are obtained also for very unrealistic/noised
input time series. This is what happens in real time when the tsunami is
deteced by tidal gauges: before the signal of the whole tsunami is measured,
the model must have already forecasted the inundation field. The ability
of the model to predict the water surface elevation at one target point, as
the data become available at a gauge close to the generation area, has been
tested in section 5.3.

In the present thesis a model application was highlighted, which is
more suitable to reproduce large geographycal scale tsunami scenarios. It
make use of the matching between the elliptic MSE and its parabolic
approximation, which requires less computations. The elliptic MSE has the
advantage of being able to reproduce diffraction and reflection, but needs
heavier computations; the parabolic MSE has the advantage of being solved
with lower computational costs, but is able to correctly reproduce just the
undisturbed waves propagation. It appeared natural to perform a model
which takes the advantages of using both equation solution, in order to be
accurate and efficient. A simple numerical experiment to test this model
application has been shown. When performing a similar application in a
geographical domain more attention needs to be given. A few examples: the
numerical solution of the parabolic MSE has to take into account when waves
reach a shoreline and stop their propagation; a parabolic approximation
should be solved which allows a wider wave propagation with respect to
the predefined wave motion direction (see the paper of Dalrymple and Kirby,
1988).

All the numerical implementations of the model described here refer
to tsunamis generated by aerial or submerged landslides; however it is
important to keep in mind that the present model can be applied even to
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earthquakes generated tsunamis. In those cases attention needs to be paid to
a different reproduction of the generation mechanism. Normally underwater
earthquakes involve the seafloor movement of a larger area, therefore a
division of the seismic fault into more segments can be suggested. Since
the model equations are linear, the resulting wave field can be calculated by
superimposing the solutions of each scenario generated by the movement of
a single segment. In view of the implementation of tsunami early warning
system, pre-calculated scenarios can be constructed with the tsunamogenic
source along all the faults of the sea/ocean of interest. Thus when a tsunami
event occurs, its detection in more than one point, with further seismic
information, can be used to determine the position of the source and its
energy tranferred to the water.
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Appendix A

Adimensional analysis

The goal of the adimensional analysis is to determine the relative order of
magnitude of each term in the equations of the problem (2.6). This can
be done by introducing a system of dimensionless variables based on the
characteristic scales for the fluid motion. The independent dimensionless
variables (denoted by ′) are

(x, y) = L (x′, y′) ; (z, h) = h0 (z
′, h′) ; t =

L

c0
t′ (A.1)

where the scales used are

• L, a characteristic length scale

• h0, a characteristic depth

• c0, a characteristic velocity (typically the phase velocity for the waves)

This implies that differentiation with respect to these variables can be
written as

∇h =
1

L
∇′h;

∂

∂z
=

1

h0

∂

∂z′
;

∂

∂t
=

c0
L

∂

∂t′
(A.2)

The linear theory is used to express the variable η and φ as the product
of a dimensionless quantity and a dimensional factor

η = a · cos (kx− ωt) ; (A.3)
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and

φ =
ag

ω

cosh [k (h+ z)]

cosh (kh)
· sin (kx− ωt) (A.4)

for the water surface elevation the dimensional factor can be chosen as the
wave amplitude, while for the fluid velocity potential as the absolute value
of the velocity potential in the shallow water condition, thus

η = aη′ (A.5)

and

φ =
agL

c0
φ′ (A.6)

The mathematical problem, which describes the water motion and already
defined as in (2.6), is rewritten here

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2
hφ+ φzz = 0 − h (x, y) < z < 0

φz + ht +∇hφ · ∇hh = 0 z = −h

φz − ηt −∇hφ · ∇hη = 0 z = η

φt +
1
2

(
φ2
x + φ2

y + φ2
z

)
+ gη = 0 z = η

(A.7)

Substuituiting into this set of eqautions (A.7) the dimensionless variables
and differentiation, the adimensional problem is achieved

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
L2∇′2

h φ
′ + 1

h2
0

φ′zz = 0 − h′ (x, y) < z < 0

L2

h2
0

φ′z +
h0

a
h′t +∇′hφ′ · ∇′hh′ = 0 z = −h′

L2

h2
0

φ′z − η′t − a
h0
∇′hφ′ · ∇′hη′ = 0 z = a

h0
η′

φ′t +
1
2

a
h0

(
φ
′2
x + φ

′2
y + L2

h2
0

φ
′2
z

)
+ η′ = 0 z = a

h0
η′

(A.8)
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From the dimensionless analysis three independent dimensionless
parameters can be formed

• ε = a
h
, the amplitude parameter

• μ = h
L
, the wave length parameter

• α = ∇hh, the bottom slope

Thus the problem can be rewritten as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2
hφ+ 1

μ2φzz = 0 − h′ (x, y) < z < 0

1
μ2φz +

1
ε
ht +∇hφ · α = 0 z = −h′

1
μ2φz − ηt − ε∇hφ · ∇hη = 0 z = εη′

φt +
1
2
ε
(
φ2
x + φ2

y +
1
μ2φ

2
z

)
+ η = 0 z = εη′

(A.9)

where in order to simplify the equations the ′ that indicates the
dimensionaless variables is omitted.
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Appendix B

Parabolic MSE in cylindrical
coordinate systems

B.1 MSE in conformal coordinate systems

Now it is considered the mappings of the MSE from Cartesian space (x,y) into
an alternate space (u,v), where the mapping may or not may be conformal.
Lets take

(
x
y

)
=

(
x (u, v)
y (u, v)

)
,

(
u
v

)
=

(
u (x, y)
v (x, y)

)
(B.1)

The mapping is presumed to be one-to-one in the domain of relevant fluid
motion, and on boundaries of that domain. The first of equation (B.1) will
typically be used below. From the chain of rule, the partial derivatives can
be written in the following way

∂·
∂x

=
∂·
∂u

∂u

∂x
+

∂·
∂v

∂v

∂x
(B.2)

∂·
∂y

=
∂·
∂u

∂u

∂y
+

∂·
∂v

∂v

∂y
(B.3)

Herein for the sake of simplicity, the partial derivative is written with the
subscription. The goal is that of writing the MSE (3.31) in the new system of
coordinates (u,v). Here it is reminded the MSE in the cartesian coordinate
system:
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∇h (ccg∇ha) + k2ccga = 0 (B.4)

which comes from the assumption made on the free surface elevation of
being time harmonic, as follows

η (x, y, t) = a (x, y) · eiωt (B.5)

the first term of equation (B.4) can be expanded so that it yields to

(ccg)x ax + ccgaxx + (ccg)y ay + ccgayy + k2ccga = 0 (B.6)

The derivatives of the first order which compare in equation (B.6) become

ax = auux + avvx
ay = auuy + avvy
(ccg)x = (ccg)u ux + (ccg)v vx
(ccg)y = (ccg)u uy + (ccg)v vy

(B.7)

For the derivatives of the second order it become

axx = (ax)x = (ax)u ux + (ax)v vx =
= (auux + avvx)u ux + (auux + avvx)v vx =
= [auuux + au (ux)u + auvvx + av (vx)u] ux+
[auvux + au (ux)v + avvvx + av (vx)v] vx =
= auuu

2
x + auux (ux)u + auvvxux + avux (vx)u +

auvuxvx + auvx (ux)v + avvv
2
x + avvx (vx)v =

= auuu
2
x + avvv

2
x + 2auvvxux + au (ux)x + av (vx)x

(B.8)

and similarly for the second derivative in y:

ayy = (ay)y = (ay)u uy + (ay)v vy =

= (auuy + avvy)u uy + (auuy + avvy)v vy =

=
[
auuuy + au (uy)u + auvvy + av (vy)u

]
uy+[

auvuy + au (uy)v + avvvy + av (vy)v

]
vy =

= auuu
2
y + auuy (uy)u + auvvyuy + avuy (vy)u +

auvuyvy + auvy (uy)v + avvv
2
y + avvy (vy)v =

= auuu
2
y + avvv

2
y + 2auvvyuy + au (uy)y + av (vy)y

(B.9)

finally the first and third terms of equation (B.6) becomes
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(ccg)x ax =
[
(ccg)u ux + (ccg)v vx

]
[auux + avvx] =

= u2
x (ccga)u + (ccg)u uxvxav + (ccg)v uxvxau + v2x (ccga)v =

= au
[
u2
x (ccg)u + uxvx (ccg)v

]
+ av

[
v2x (ccg)v + uxvx (ccg)u

] (B.10)

and

(ccg)y ay =
[
(ccg)u uy + (ccg)v vy

]
[auuy + avvy] =

= u2
y (ccga)u + (ccg)u uyvyav + (ccg)v uyvyau + v2y (ccga)v =

= au
[
u2
y (ccg)u + uyvy (ccg)v

]
+ av

[
v2y (ccg)v + uyvy (ccg)u

] (B.11)

Now we are ready to write equation (B.6)

ccg [auuu
2
x + avvv

2
x + 2auvuxvx + au (ux)x + av (vx)x] +

+ccg
[
auuu

2
y + avvv

2
y + 2auvuyvy + au (uy)y + av (vy)y + k2a

]
+

+au
[
u2
x (ccg)u + uxvx (ccg)v

]
+ av

[
v2x (ccg)v + uxvx (ccg)u

]
+

+au
[
u2
y (ccg)u + uyvy (ccg)v

]
+ av

[
v2y (ccg)v + uyvy (ccg)u

]
= 0

(B.12)

which can be rewritten as follows:

ccgauu
(
u2
x + u2

y

)
+ ccgavv

(
v2x + v2y

)
+ 2ccgauv (uxvx + uyvy)+

+ccg (au∇2u+ av∇2v) + ccgk
2a+

+au (ccg)u

(
u2
x + u2

y

)
+ au (ccg)v (uxvx + uyvy)+

+av (ccg)v

(
v2x + v2y

)
+ av (ccg)u (uxvx + uyvy) = 0

(B.13)

the first and the sixth terms of equation (B.13) can be assembled as the
second and the seventh, yielding to

(
u2
x + u2

y

)
(ccgau)u +

(
v2x + v2y

)
(ccgav)v + ccgk

2a+

(uxvx + uyvy)
[
au (ccg)v + av (ccg)u + 2ccgauv

]
+ ccg (au∇2u+ av∇2v) = 0

(B.14)
while the derivatives of a above are taken with respect to the mapped

coordinates (u, v), the coefficients of the derivatives still involve the
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derivatives of u and v with respect to x and y. To change this, the chain rule
derivative operator for x to the elemental lengths dx and dy is applied,

xuux + xvvx = 1
yuux + yvvx = 0

(B.15)

this set of linear equations is easily solved for ux and vx

ux = 1
J
yv

vx = − 1
J
yu

(B.16)

Where J = xuyv − xvyu is the Jacobian of the transformation. Using the
y derivative operator aplied to dx and dy results in

uy = − 1
J
xv

vy =
1
J
xu

(B.17)

Thus in equation (B.14) some terms can be replaced as follows

u2
x + u2

y =
1
J2 (x

2
v + y2v) ; v2x + v2y = 1

J2 (x
2
u + y2u) ;

uxvx + uyvy =
1
J2 (−yuyv) + 1

J2 (−xuxv) = − 1
J2 (xuxvyuyv)

(B.18)

thus equation (B.14) becomes

(x2
v + y2v) (ccgau)u + (x2

u + y2u) (ccgav)v +

− (xuxv + yuyv)
[
au (ccg)v + av (ccg)u + 2ccgauv

]
+

J2 [k2ccga+ ccg (au∇2u+ av∇2v)] = 0

(B.19)

By calling

x2
v + y2v = α;

x2
u + y2u = β;

xuxv + yuyv = γ;
(B.20)

equation (B.19) can be rewritten in a more compact way

α (ccgau)u + β (ccgav)v − γ
[
au (ccg)v + av (ccg)u + 2ccgauv

]
+

J2 [k2ccga+ ccg (au∇2u+ av∇2v)] = 0
(B.21)

Now ∇2u and ∇2v do not depend on x and y, ∇2u = uxx + uyy and

∇2v = vxx + vyy change and depend on J , ∂
∂u
, ∂

∂v
, ∂2

∂u2 and ∂2

∂v2
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For special case of conformal transformation, it can be make use of the
Cauchy-Riemann conditions:

xu = yv
xv = −yu (B.22)

To obtain

∇2u = ∇2v = γ = 0 (B.23)

and

α = β = J (u, v) (B.24)

Equation (B.21) then reduces to

(ccgau)u + (ccgav)v + Jk2ccga = 0 (B.25)

Equation (B.25) represents the elliptic version of the MSE for a general
coordiante system conformal to the Cartesian one. It can be noted that looks
similar to equation (B.4) expect for the Jacobin in the last term.

B.2 Parabolization of equation (B.25)

If it is assumed that the wave propagates in the x−direction, the water
surface displacement can be written as

a (u, v) = Re
{
A (u, v) ei

∫
KJ1/2du

}
(B.26)

where the factor KJ1/2 in the phase accounts for the proper accumulation
of physical distance as the wave propagates. Since K (u, v) and J (u, v) still
vary with v, it is convenient to define a reference phase function based on
K (u, v0) = K0 (u) and J (u, v0) = J0 (u); i.e., the phase function for one

particular line v = v0. Then K0J
1/2
0 will be substitute in equation (B.26) in

place of KJ1/2. For this case, substituting the assumed form for a (equation
B.26) into equation (B.25) produces the following equation

ccgAuu + 2ccgiAuK0J
1/2
0 − ccgAK

2
0J0 + ccgiA

(
K0J

1/2
0

)
u
+ (ccg)uAu+

+(ccg)u AiK0J
1/2
0 + ccgAvv + (ccg)v Av + JK2ccgA = 0

(B.27)

Università degli Studi di Roma Tre - DSIC 117



Numerical modeling of waves for a tsunami early warning system

Then after neglecting the smaller order term (the first and the fifth)
ccgAuu and (ccg)u Au it yields to the parabolic approximation of the MSE

2ccgiAuK0J
1/2
0 +

(
ccgK0J

1/2
0

)
u
iA+ (ccgAv)v +

(K2J −K2
0J)Accg = 0

(B.28)

Verification of validity of MSE in conformal mapping coordinate system
is done by imposing x=u and y=v, calculating J, that comes equal to 1,
estimating the x and y derivatives, it yields to the parabolic MSE in cartesian
coordinate system as equation (see the paper of Kirby & Dalrymple, 1994).

B.3 Parabolic MSE in polar coordinate

system

The polar transformation results to be a useful choice of a coordinate system
from a physical point of view.

(
x
y

)
= r

(
cos θ
sin θ

)
,

(
r
θ

)
=

(
(x2 + y2)

1/2

tan−1 (y/x)

)
(B.29)

which relates (r, θ) to a Cartesian reference frame with a common origin.
However a more appropriate choice of coordinates, which represents a true
conformal map, is

(
x
y

)
= r0e

u

(
cos v
sin v

)
,

(
u
v

)
=

(
ln (r/r0)

θ

)
(B.30)

with the domain (r0 ≤ r ≤ ∞). The first representation can also be
written as z = r0e

w. The Jacobian of this transformation results to be

J = xuyv − xvyu = r20e
2u (B.31)

since
xu = r0e

u cos v; xv = −r0eu sin v
yu = r0e

u sin v; yv = r0e
u cos v

(B.32)

By inserting the Jacobian (B.31) into the parabolic MSE (B.28)

2ccgiK0r0e
uAu + (ccgK0r0e

u)u iA+ (ccgAv)v +
(K2r20e

2u −K2
0r

2
0e

2u)Accg = 0
(B.33)
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to find the polar representation, we then use the change of variables

r = r0e
u θ = v (B.34)

∂

∂u
= r

∂

∂r

∂

∂v
=

∂

∂θ
(B.35)

yields to

2ccgiK0r
2Ar + (ccgK0r)r riA+ (ccgAθ)θ +

r2 (K2 −K2
0)Accg = 0

(B.36)
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Appendix C

Thomas algorithm

A tridiagonal system of equations is characterzied by a matrix which has
non zero elements only in the central diagonal and in its upper and lower
diagonal, an example of such a system is as follows

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0 ... ... ... 0
a2 b2 c2 0 ... ... 0
0 a3 b3 c3 0 ... 0
... ... ... ... ... ... ...
0 ... ... 0 an−1 bn−1 cn−1
0 ... ... ... 0 an bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1
d2
d3
...

dn−1
dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.1)

where ai, bi and ci are the elements of the lower central and upper
diagonals of the matrix respectively; xi are the unknowns and di are the
elements of the vector known. The Gaussian elimination is an algorithm
which solves a system of linear equation finding the rank of a matrix and
calculating the inverse of an invertible square matrix. The simplified case
of tridiagonal system can be solved by means of the Thomas algorithm.
The solution of a system of n equations in n unknowns is obtained in O (n)
operations by using the Thomas algorithm instead of O (n3).

The algorithm first eliminates the ai elements of the matrix by modifying
the coefficients as follows, denoting the modified coefficients with primes

c′i =

⎧⎨
⎩

c1
b1

; i = 1
ci

bi−c′i−1
ai

; i = 2, 3, ..., n− 1 (C.2)

and
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d′i =

⎧⎨
⎩

d1
b1

; i = 1
di−d

′

i−1
ai

bi−c′i−1
ai

; i = 2, 3, ..., n
(C.3)

Then the solution is obtained by a backward substitution as follows

xn = d′n
xi = d′i − c′ixi+1 ; i = n− 1, n− 2, ..., 1

(C.4)
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