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Abstract
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Section of Computer Science and Automation

Doctor of Philosophy in Computer Science and Automation

An innovative architecture for an intelligent building energy management system

by Fiorella LAURO

Due to the increasing urbanization one of the main focuses of the environmental policy
is constituted by the cities, where a better quality of life and lower energy consump-
tion will be made possible by digital technology and innovation. Buildings are one
of the main urban sectors involved in this challenge. The management systems of
Smart Buildings look beyond the general objective to fulfill the occupants’ comfort re-
quirements and reduce the energy consumption. Smart Buildings are connected and
responsive to the Smart Power Grid, and they interact with building operators and oc-
cupants to empower them with new monitoring levels and operational information on
building performance. This work proposes a modular and hierarchical system archi-
tecture for the building energy management that accounts for the building operating
conditions and the surrounding grid system. The research experiences described in
this work constitute modules of this system acting at different levels and with differ-
ent purposes. The first research experience is related to the regulation of the indoor
temperatures of a multi-zones building on the basis of the occupancy profiles through
an adaptive model predictive control law. Secondly a comprehensive fault detection
and diagnosis methodology of anomalous building energy consumptions through arti-
ficial intelligence and data mining techniques is presented. Finally the results obtained
by the application of this fault detection and diagnosis methodology to the electrical
consumptions of several actual buildings are described.
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Chapter 1

Buildings and energy: the current
scenario

1.1 Introduction

Cities represent the biggest environmental policy challenge as they are responsible for
about two-thirds of global energy consumption and about 80% of global carbon dioxide
(CO2) emissions [109]. Currently half the world’s population lives in cities but urbani-
sation is set to increase: in 2050 cities will house three-quarters of the global population
[1]. In order to deal with the urban growth new ways to manage cities and make them
more effective are needed.

The convergence between the world of information and communications technology
(ICT) and the world of energy (the Energy 3.0) is creating the conditions for new ser-
vices and new technologies, e.g. smart and interoperable meters, variable speed and
intensity controlled devices for the lighting appliances, management and control sys-
tems of the building energy consumptions [52]. In the same way that the ICT revolution
has been driven by people needs to produce information and customise their content,
so too the energy revolution will enable energy self-production and customisation of
energy usages and consumption.

Smart City and Energy 3.0 challenges will be made possible by technological aspects
strictly related to the concept of Internet of Things (IoT): more efficient and miniatur-
ized sensors that can register information about consumption and production of en-
ergy, weather and environmental conditions, traffic and people flows; networks that
interconnect all objects to one another, tracking and exchanging this information in
real time. Furthermore the use of open data will create new personalised services such
as better transport connections, accident risk warnings, home monitoring, new tariffs
offered by utilities, such as Time Of Use (TOU) pricing which will encourage end-users
to use energy in off-peak times when it is cheaper. The interconnection between the
several urban aspects and the possibility to offer urban services on demand allows to

1
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define a city "smart". This ongoing innovation is changing the way we use energy and
will lead both to a better quality of life and lower energy consumption.

This work focuses on a particular aspect of the Smart City, the Smart Building, with the
main purpose to propose an innovative architecture for the building energy manage-
ment that takes in account the operating conditions of the building and of the surround-
ing energy system that directly interacts with the building. This Introduction Chapter
highlights how today Smart Buildings operate in the world of Energy 3.0. The key role
that Smart Buildings play in their own energy management and in the energy balance
of the grid system is described. In Chapter 2 an overview on the control strategies for
the energy management in buildings and for the Demand Side Management context in
which buildings are involved is illustrated, and a modular and hierarchical building
management system is proposed. In this regard the research experiences carried out
and shown in Chapters 3, 4 and 5 constitute modules of this system acting at differ-
ent levels and with different purposes. In particular Chapter 3 proposes an adaptive
model predictive control (MPC) law based on the occupancy profiles for the regulation
of the indoor temperatures of a multi-zones building. For the results evaluation, dis-
tributed and decentralized MPC architectures are compared. Chapter 4 focuses on the
fault detection process of anomalous building energy consumption using actual data
through artificial intelligence and data mining techniques. The faults detected refer to
both single and consecutive (trend) anomalous consumption values. Chapter 5 rep-
resents a sort of completion of the previous Chapter, since it presents the application
and then the on-line implementation of a comprehensive fault detection and diagnosis
methodology of anomalous actual building electrical consumption. Finally, in Chapter
6 conclusions and possible future works are drawn.

1.2 Smart Buildings and Smart Grids

The major challenge that identifies buildings as “Smart Buildings" is the fulfillment
over the building lifecycle of the comfort and safety requirements while minimizing
energy cost and environmental impact, supporting the electrical grid [52]. Thus the
Smart Building concept takes on a local and global meaning, as discussed below.

1.2.1 A look inside the Smart Building

To reach the vision of "Smart Building" it is not enough for a building to simply con-
tain the systems that provide comfort and safety (Fig. 1.1a). Modern buildings are
complex concatenations of structures, mechanical devices, sophisticated control sys-
tems and technologies, developed and improved over time, that result in services for
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(A) Traditional design (B) Integrated systems

FIGURE 1.1: Multiple systems in a building

the occupants (e.g. illumination, thermal comfort, air quality, physical security, sanita-
tion). These systems may prove to be different data sources communicating through
their own proprietary protocols, thus enabling the information exchange only in some
directions. Multiple systems that operate simultaneously and individually can easily
lead to complex troubleshooting, higher capital and operational expenditures and ob-
stacles to achieving energy efficiency. Therefore it is necessary to connect the building
systems in an integrated, dynamic and functional way (Fig. 1.1b). The building inte-
grated systems have several advantages including:

• reduce the costs (both initial investments and ongoing operational expenses);

• increase the employee productivity;

• capitalize the on long-term financial value;

• create new revenue opportunities;

• enhance the building asset value;

• improve the customer experience.

The way to interoperable, connected devices and systems requires cooperation be-
tween different companies that often are historical business competitors. Anyway
in the last years the adoption by many companies of some open standards such as
BACnet, Modbus and LonWorks enabled the producers to make their contribution to a
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functional whole [52]. The connection between all these features implies adding intel-
ligence from the beginning of design phase through to the end of the building’s useful
life. Smart Buildings use ICT to connect all the equipment and systems so that they can
share information to optimize total building performance. Examples are the thermal
plant optimization process, that uses weather data and information about occupancy,
or the lighting and heating/cooling control systems that act on the basis of occupancy
data deriving from the building security system.

A Smart Building creates its management platform by connecting information of sys-
tems and components in an open format, allowing for the development of new applica-
tions that save time, energy and operating costs. People inside the Smart Building are a
crucial component of its intelligence because energy use and occupant comfort require
human involvement in the decision-making. A Smart Building provides intuitive tools
designed to improve and enhance the activity of the people according to their needs.
The facility managers can interact with these tools to do their jobs better, providing
more comfort and more safety with less money, less energy and less environmental
impact.

1.2.2 Beyond the walls of the Smart Building

The "Smart Grid" [8, 135, 52] is an emerging concept in recent years and consists of
controls, computers, automation, new technologies and equipment working together
with the electrical grid to respond digitally to the quickly changing electric demand.
The Smart Grid represents a great opportunity to move the energy industry into a new
era of reliability, availability and efficiency that will contribute to global economic and
environmental health. This opportunity is not just about utilities and technologies; it
is about giving consumers the information and tools they need to make choices about
their energy use. The energy sector is experiencing a growing number of consumers
producing their own energy, sharing it with one another and customising it for their
own personal use. The Smart Grid will enable an unprecedented level of consumer
participation, thus it is the ideal place for Smart Buildings to leverage the surrounding
knowledge. Electricity markets are evolving toward “real time”. In this scenario build-
ings can receive requests to reduce demand when wholesale prices are high or when
grid reliability is jeopardized. In addition dynamic electric rates are a growing trend,
then buildings more likely pay the actual cost of producing electricity at the instant
it is used instead of the average cost over long time periods. Technology will be the
key enabler, providing building operators with the tools and information they need to
make smart choices, in this way building operators are not required to directly monitor
markets and react to signals.
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From the grid point of view, buildings are considered as load elements of the energy
district ("micro-grid") in which they belong (see Fig. 1.2), operating in the overall grid
connection mode. A micro-grid generally includes:

• load elements (e.g. buildings or groups of buildings also with different charac-
teristics);

• Renewable Energy Source (RES) generation elements (e.g. solar panels, wind
turbines);

• storage elements (e.g. electric vehicles).

FIGURE 1.2: Smart Buildings and Smart Grid

Depending on the extent to which the load in the micro-grid can be controlled, the
demand can be grouped into three categories [51]:

• Critical load: corresponds to non controllable devices, with a demand that must
be supplied to avoid user’s dissatisfaction (e.g. lighting);

• Adjustable load: corresponds to controllable devices (e.g. air conditioning). If
necessary the consumption level of these devices can be remotely decreased for a
specified time period in order to avoid load management problems;

• Shiftable load: corresponds to devices with a shiftable demand through the con-
sidered horizon (e.g. electric vehicle demand under some constraints).
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The energy management of a micro-grid is based on an optimization model responsi-
ble for the overall coordination that changes depending on the adopted Demand Re-
sponse (DR) policy (see Paragraph 1.3.1). The goal of the micro-grid optimization is to
minimize the economic costs associated with the exchanged energy between the grid
and the micro-grid. For instance, in the case of the TOU DR policy, the optimization
model is based on three layers. The first layer optimization executes one-day-ahead
considering daily forecasts regarding e.g. weather (then RES generation), demand,
electric vehicles mobility (then storage) and energy price from the retail provider. The
result of this optimization process is an optimal schedule for all the components of the
micro-grid for the next 24 hours [51]. A further energy management layer minimizes
the deviation with respect to the one-day-ahead optimal program (mostly caused by
forecasts deviations) taking into account real measurements and short-term forecasts.
This level is also responsible of the interaction with the Commercial Aggregator (see
Section 1.3) through a flexibility forecaster tool [24]: this tool predicts the micro-grid’s
flexibility under a specific price incentive signal sent by the Aggregator on the basis of
the micro-grid predefined energy consumption (purchased power from the grid). Fi-
nally, a real time energy management layer ensures balance between generation and
demand against any unexpected issue (e.g. failures, unexpected loads, grid discon-
nection). These last two energy management layers have usually a control horizon of
minutes order.

The benefits offered by the Smart Grid are not temporary and extend beyond the the
entire lifetime of the Smart Building [52]. The electric grid becomes more robust and
reliable. The carbon footprint is minimized as RES provide power, balanced with the
information network that dinamically matches demand with variable supply. Electric
vehicles move people, serving also as batteries (storage elements). Businesses oper-
ate at a new level of efficiency by using data in new ways, leveraging the connection
between systems that until now have been entirely independent.

1.3 The Demand Side Management

Buildings are often characterized by a high simultaneous energy demand, that corre-
sponds to a considerable peak demand effort in the energy distribution grid. Peak
demand is a considerable issue for both suppliers and energy customers due to finan-
cial and capacity related aspects. Moreover, the profiles of users energy demand and
energy produced from renewable sources typically do not match: the non-simultaneity
between demand and supply causes imbalances in the electrical system, and the advan-
tages that users can obtain are followed by drawbacks in the distribution grid [108].To
overcome these problems current solutions are represented by energy accumulators
and storage elements. However, especially in the electric field, these technologies do
not allow for a proper balance of powers required by the the grid and they undermine
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the reliability of the whole system. For this reason, in recent years the concept of Smart
Grid (SG) was introduced, as an electrical system able to exchange not only energy
flows but also information between the various components of the grid. In this regard
it becomes possible to optimize energy consumptions with respect to energy availabil-
ity using algorithms for the control of the SG [38, 125].

The Demand Side Management (DSM) is an approach that actively manage energy de-
mand and supply in order to satisfy customers comfort requirements and in the mean-
while to achieve economics and consumptions savings from both the utility and the
customer point of view [69]. Active Demand Response (ADR) is a particular case of
DSM: the focus is on the short-term load handling. In particular, the goal is to follow a
daily short-term schedule (e.g. hourly) which is periodically adapted according to ex-
ternal conditions (e.g. users behavior, weather conditions, market energy price, energy
production available) such that the day-ahead load curve constraint is met. The DSM
is aimed at modulating the shape of the load consumptions curve through direct and
indirect operations affecting customers demand profile. Generally, the shape is modu-
lated such that loads are shifted, peaks shaved or demand curve is flattened. DSM is
an integrant part of SG and requires a proper ICT infrastructure (e.g. communication
system, sensors, actuators, advanced processors, etc.) in order to achieve a dynamic
control of the demand. The DSM, by promoting the interaction and responsiveness
of the customers, determines short-term impacts on the electricity markets, leading to
economic benefits for both customers and utility. Moreover, by improving the reliabil-
ity of the power plant and, in the long term, by lowering peak demand, this strategy
allows reduction of the overall plant, capital cost investments and postpones the need
of network upgrades.

Energy systems are generally divided into five main sectors: Generation, Distribu-
tion/Transmission, Trading, Retailing, Consumptions. Generation main actors con-
sist of power plants, providing energy through fossils or renewable sources. Distribu-
tion phase is based on Distribution System Operators (DSOs) and Transmission System
Operators (TSOs), which in some cases redistribute energy to retailers [7]. However,
wiring and retailing can be separated in some scenarios. Commercial Aggregators are
responsible of trading phase, they sell energy to final users on a retail or wholesale mar-
ket. Finally, the main actors of the consumption phase are customers, mostly related
to commercial and residential building sectors. In this scenario, DSM plays an impor-
tant role on retail phase: Commercial Aggregators trade energy according to dynamic
deregulated markets in order to influence the demand curve by regulating customers
behaviour through particular rates. Fig. 1.3 shows an example of scenario focused
on a specific DSM application on buildings: the forecasted load curve can be used for
adapting the daily buildings energy need in order to meet the required load hour by
hour.

The DSM approach could lead to several benefits involving many aspects:
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FIGURE 1.3: Example of an application scenario of DSM on residential
and tertiary buildings

• Reducing generation margin. The total capacity of installed generation is generally
larger than the system maximum demand in order to ensure the security of sup-
ply in case of exceptional events. It is estimated by Central Electricity Generating
Board that margins account to 25%. Strbac [128] investigated the magnitude of
shortages and their frequency in UK using a simplified generation model. Ac-
cording to his study, instead of dealing with such shortages by installing gener-
ation surplus systems that would be used very infrequently, it may be possible
to identify house-holds that would be willing (for a fee) to forgo consumption
relatively infrequently.

• Improving transmission system. Transmission infrastructures historically are de-
signed for supporting large scale generation technologies. Moreover, for avoiding
overloads due to circuit fails, they are based on a redundant network structure.
The DSM approach can overcome those failures through load curtailing, allowing
a proper design of the network.

• Improving renewable sources usefulness. The non-dispatchable and non completely
predictable nature of renewable sources as wind and solar power, has somehow
limited their penetration in energy markets and distribution supply. The DSM
can improve their usefulness, rescheduling load peaks during high renewable
supply and, on the other hand, decreasing demand during low renewable pro-
duction.

Despite those advantages, also some drawbacks arise [108]. The current market struc-
ture is centralized and homogeneous, thus does not suit properly the flexibility re-
quired by DSM. Moreover, since benefits of the DSM affect a considerable amount of
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different entities, it is challenging to identify a business model that justifies the in-
vestments [80]. Customers, especially in residential sector, do not always behave in
economically rational manner: a study of Thorsnes et al. [130] demonstrated that price
changes are not linearly related to consumptions changes, as the bill is not always the
first concern of the customers.

The following Paragraph explains how the DSM acts in the energy distribution systems
through the DR policies.

1.3.1 Demand Response policies

The DR indicates a specific tariff or program that allows end-use customers to change
their normal patterns in order to respond to changes in price or availability of electricity
on the markets [38]. End users can be directly or indirectly involved into the DR strat-
egy. In the former scenario, they can perform load curtailment (e.g. dimming lights
level, decreasing/increasing thermostat setpoints), consumption shifting (e.g. shifting
heating/cooling phases into lower price time windows) or storage utilization. In the
latter case, intermediary agents are involved, such as curtailment service providers,
Commercial Aggregators of retail customers or DR providers [22].

DR policies can be divided into non-dispatchable, whose policies are proactive based
and need to be properly scheduled, and dispatchable, namely reactive policies that
enable to provide energy when actually needed. Among these two categories, different
approaches were summarized in [125, 7].

Non-Dispatchable DR policies

The Dynamic Pricing is the main category, whose approach is to influence the demand
by driving customers behaviour according to global load requirements through a dy-
namic energy price. Prices can vary on an hourly, daily or even a monthly basis. Lower
fares during off-peaks periods encourage users to reschedule their activities. Most com-
mon dynamic pricing policies are:

• TOU: it is a very diffused tariff, generally daily changing with fixed blocks of
pricing rates;

• Critical Peak Pricing: employed for commercial and industrial customers, it is
an event-based tariff that triggers when critical peaks occur, and apply very high
energy rates;

• Real Time Pricing (RTP): the rates change very fast, generally with hourly basis,
depending to wholesale market prices.



10 Chapter 1. Buildings and energy: the current scenario

Dispatchable DR policies

• Incentive Based: such approach is event based. A reward is guaranteed to cus-
tomers for providing load reduction when particular events occur such as emer-
gency, ancillary services or even interruptions. In Direct Load Control, customers
allow a degree of control on their own equipment. Such approaches are very re-
liable, as the response of the users to events is fast and can overcome problems at
system level.

• Demand Reduction Bids: customers actively propose a bid of a remunerated load
reduction to the Commercial Aggregator.



Chapter 2

A modular and hierarchical
architecture for the building energy
management

2.1 Introduction

An efficient building energy management is essential for the reduction of power de-
mands and greenhouse gas emissions, as the buildings sector accounts for about 40%
of world total final energy consumption [26, 54].

The challenge of the last years concerning building control systems was to find a com-
promise between user comfort and energy consumption, building energy management
systems (BEMS) in fact are also known as energy and comfort management systems
(ECMS). These systems base their operations on intelligent control strategies, which
use ICT infrastructure [123]. They commonly require functions including indoor com-
fort parameters (e.g. thermal, humidity, indoor air quality and illumination levels),
occupant preferences and energy control [123].

The modern challenge for BEMSs is to actively interface with the grid energy manage-
ment system. The BEMSs of buildings belonging to an energy district can be poten-
tially involved in all the management levels and, depending on the size, complexity
and tipology of the district, the number and the type of tasks delegated to BEMS can
be different.

This Chapter presents an overview of the control strategies most used in recent years
for building energy management and DSM. Then a model of system architecture for
the building management on the basis of the energy current context described so far is
proposed.

11
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2.2 Control strategies for the energy management in buildings

The field of Smart Buildings encompasses an enormous variety of technologies, includ-
ing energy management systems and building controls. BEMSs (or ECMSs or building
energy and comfort management system, BECM) are control systems for individual
buildings or groups of buildings that use computers and distributed microprocessors
for monitoring, data storage and communication [98]. A BEMS consists of software
and hardware; the software program is usually configured in a hierarchical manner,
can be proprietary and can use Internet protocols and open standards.

The general objective of a BEMS is to fulfill the occupants’ requirements for comfort
while reducing energy consumption during building operations. In recent applications
the energy market price variation is also taken into account [123]. Heating, ventilation,
and air conditioning (HVAC) control, lighting control, hot water control and electricity
control are commonly seen as required functions for the BEMS. Other common func-
tions are the monitoring and control of fire systems and security systems. BEMSs pro-
vide the information and the tools that building managers need both to understand
the energy usage of their buildings and to control and improve their buildings’ energy
performance.

For decades, BEMSs were employed for providing just enough energy to meet comfort
standards. These energy efficiency measures contributed to sustainability goals, such
as tracking and reducing greenhouse gas emissions, but building data were trapped
within the BEMS and executive-level decision-makers could not measure and act on
them. The “middleware” software level introduced in BEMS in recent years gathers
data from all involved systems and merges it into a common platform for analytics and
reporting [52]. One result is the web-based dashboard displays that offer a visual snap-
shot of which facilities are experiencing e.g. high energy usage, abnormal maintenance
costs and many other situations that deserve prompt attention. When information is
quickly available and can be accessed anywhere, energy managers are able to make
better decisions that have an immediate impact on profitability. This feature results
particularly useful when many buildings or geographic locations are involved.

There are numerous ways in which BEMSs act to reduce building operating cost, most
of them involve optimized operation and increased efficiency [52]:

• optimized cooling and ventilation equipment: modeling loads dynamically al-
lows the system to spend the minimum amount of energy and money to provide
the comfort level desired;

• matching occupancy patterns to energy use: a Smart Building operates leaner
(and save money) when there are less people inside;
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• proactive maintenance of equipment: analysis algorithms detect problems in per-
formance before they cause expensive outages, maintaining optimum efficiency
along the way;

• dynamic power consumption: by taking signals from the electricity market and
altering usage in response, a Smart Building ensures the lowest possible energy
costs and often generates revenue by selling load reductions back to the grid.

BEMS can base their operations on building control schemes that can roughly be cate-
gorized as [123]:

• Conventional controllers, such as on/off switching controllers i.e. thermostats,
Proportional (P), Proportional-Integral (PI), Proportional-Integral-Derivative (PID).
The on/off controllers have been primarily used for indoor temperature regula-
tion, however energy consumption and wastage are usually huge due to the sub-
stantial instabilities and frequent overshoot of the set points. Then they have been
employed in various applications and disturbed environmental conditions, and
have been poorly performing and generally have not been offered optimal con-
trol strategy. P, PI and PID controllers do not have any direct knowledge of the
system to be controlled. They provide poor control performance for noisy and
non-linear processes having large time delays when used alone. Thus, control
designers turned to optimal, predictive and adaptive techniques. Due to vari-
ous complications and implementation challenges, there has been no industrial
development followed with these schemes. Since these are model-based control
schemes, they require a model for building control strategy. These control strate-
gies did not consider the comfort factor but were only concerned with energy
consumption savings In addition they may not be user friendly, as the occupants
are not able to participate in the configuration scheme.

• Intelligent controllers, such as Learning methods (i.e. artificial intelligence, fuzzy
systems and neural networks), MPC methods and Agent based control methods.
Various learning controls have been developed and successfully applied to elec-
trical and mechanical systems, mostly in robotics, automation and manufacturing
areas. Learning methods reach system stability and high performances through
the unknown learning possibilities, which exist in system dynamics. These con-
trols are designed like artificial intelligence having fewer requirements of the de-
tailed models. In literature, the mainly employed control systems for BEMS are
MPC [123, 72]. MPC methods (see Chapter 3) have high computational require-
ments, in addition to the need of a huge amount of data, expert monitoring and
modelling. Although these issues have to be overcome, high energy saving can
be reached since MPC involves information of dynamic modeling and occupancy
predictions in contrast to rule-based control systems. Appreciable results in in-
door comfort fulfilment and energy saving are obtained by agent based control
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methods. Agents are generally virtual or physical entities that cooperate ratio-
nally. In control systems agents are usually arranged in multiple layers according
to their functionality. These methods separate huge complex problems in differ-
ent sub-problems to manage them as different physical or virtual agents. These
different agents may communicate and co-operate each other and with their en-
vironment as well.

The several building aspects to manage recently led BEMS to the adoption of computa-
tional optimization method [123]. Building management optimisation is the process of
minimizing an overall objective function that generally includes costs of building op-
eration, user discomfort and unsafety with the constraint of environmental condition.
The building management optimisation can be performed with respect to both design
and control variables [50]. Although various optimization techniques have been es-
tablished and reviewed, the genetic algorithm (GA) is the most recognized technique
in building performance analysis. Various other strategies have included the Multi-
objective Particle Swarm Optimization (MOPSO) in optimizing thermal, illumination
and air quality comfort and building energy consumption and have also provided the
opportunity for occupant preferences. Other strategies for optimization in the litera-
ture are the anytime optimization (AO), ordinal optimization (OO), femicon and meta-
analysis. These strategies generally are aimed at making a Pareto optimal representa-
tive subset from which an appropriate solution can be driven by the decision-makers
of the selected problem.

2.3 Control strategies for the Demand Side Management con-
text

Several optimization approaches have been recently proposed for the energy manage-
ment in the DSM context as described in [69], and some significant examples are pre-
sented below.

Faria et al. [36] used a simulation based analysis for minimizing the final users en-
ergy cost in a DR scenario. Simulator developed is based on Power System CAD for
the network modeling and on MATLAB for DR plan management and users behavior
modeling. Customers have been divided into five categories (domestic, small com-
merce, medium commerce, large commerce and industrial). Each one has its proper
tariff plans and demand curve characterization. The simulator has been used for the
fitness evaluation of a Particle Swarm based optimization.

Nguyen et al. [97] proposed a multi-objective optimization approach based on NSGA-
II (non-dominated sorting genetic algorithm). The authors tried to optimize a four ob-
jective functions problem: maximizing Available Transmission Capacity (ATC) while
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minimizing Expected Energy Not Supplied (EENS), Active Power Loss (APL) and DR
programs capacity. ATC is a measure of the transfer capability in the physical trans-
mission network for future commercial activities over already committed uses. Ade-
quate ATC is needed to ensure all economic transactions to be achieved. EENS index
evaluates composite system reliability for the power system [119]. APL provides an
evaluation on the idle-time of the slack node in a transmission system. Finally, DR pro-
grams capacity represents the total power capacity available through DR plans. For the
optimization phase, a binary coded parameterization has been used, since the problem
described is discretized.

Schibuola et al. [120] showed how control strategies aimed at DR management within
dynamic price-driven electricity markets may ensure good performances. A typical
apartment with HVAC system was simulated and actual prices and weather conditions
were considered. The HVAC consists of a heat pump coupled with a solar thermal plant
and a photovoltaic (PV) system. In particular three control strategies were applied,
whose action is based on the cost of electricity (absolute and relative to the following 12
h) and on the level of the local electricity generation from PV. The simulations showed
that through proper control strategies is possible to achieve relevant money savings
and high degrees of energy self-consumption.

Gelazanskas [38] proposed a MPC strategy aimed at keeping actual load curve as close
as possible to desired one, and based on a Neural Network model predicting future
price to be used for achieving desired load amount. Input variables are time, weather
conditions, desired and actual load.

Since most promising improvements on DR context can be achieved through fast chang-
ing dynamics such as RTP, the MPC approach can be suitable for such problems [108,
72] on the basis of the perfect knowledge of the system (i.e. the responsive appliances).
Moreover inputs constrained and known disturbances simplify its application. Sig-
nificant peak demand reduction were shown by several studies of model-based DR
control with a time-varying rate [79]. Economic MPC (EMPC) is gradually becoming
popular in reducing energy end demand costs for buildings subject to variable energy
prices, such as TOU prices or RTP. The energy prices are employed directly in the ob-
jective function of the EMPC problem. The model considers how energy prices can be
designed in order to achieve a specific objective, which often is the minimization of
peak energy demand. EMPC is a useful tool for managing building energy systems
(e.g. HVAC) and it is effective for both the operating systems based on a variable pric-
ing structure and the determination of the optimal variable prices for a given system
[25]. Using these techniques, in a closed loop control scheme is possible to exploit the
dynamic effects of the system to properly match the supply.

Night pre-cooling or pre-heating in buildings was an important way to shift energy de-
mand for decades. The EMPC technique was successfully used to reduce further more
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peak demand through a more accurate adjusting of temperature set-points in HVAC
systems, as described in [79]. In this work the authors propose a closed-loop control
system based on an EMPC technique to reduce energy and demand costs for HVAC
systems of commercial buildings considering real-time uncertainties and constraints.
The economic objective function in MPC accounts for the daily electricity costs and
the optimization problem aimed at minimizing them. It was shown by a weekly sim-
ulation that under the TOU electrical pricing structure, EMPC brings substantial cost
savings by automatically triggering pre-cooling effect and shifting the peak demand
away from on-peak hours.

Oldewurtel et al. [100] showed that in the building HVAC control the peak electricity
demand relative to a given reference load curve can effectively be reduced by incorpo-
rating an appropriate electricity RTP tariff directly into the cost function of a MPC strat-
egy. They proposed an hourly-based electricity tariff for end-consumers, designed to
reflect costs of electricity provision, based on spot market prices as well as on electricity
grid load levels. They used least-squares support vector machines for electricity tariff
price forecasting, and thus provide the MPC controller with the necessary estimated
time-varying costs for the whole prediction horizon. In the given context, the hourly
pricing provides an economic incentive for a building controller to react sensitively
with respect to high spot market electricity prices and high grid loading, respectively.
By simulations it was shown that a grid-friendly behavior was rewarded.

Zong et al. [145] presented an example of a MPC for electrical heaters control to maxi-
mize the use of local generation (e.g. solar power) in an intelligent building. The MPC
is based on dynamic power price and weather forecast, considering an optimization
objective such as minimum cost and minimum reference temperature error. The au-
thors demonstrated that this MPC strategy can realize load shifting in periods with
low prices and maximize the PV self-consumption in the residential sector. They ex-
pect that this demand side control study can considerably save energy, as the end users
can avoid high electricity price charge at peak time, and improve grid reliability, when
there is a high penetration of Renewable Energy Sources in the power system.

In [25] an EMPC problem is presented to determine optimal prices that minimize the
peak electricity demand. The system was a simulated community of 900 residential
homes where thermostat set-points could be automatically controlled. The key fea-
ture of this formulation considers a centralized problem (e.g., minimizing peak elec-
tricity demand) and implements it in a decentralized framework using pricing. For the
presented cluster of homes, the optimal pricing profiles were relatively low prices for
every hour except for the peak hour. This pricing structure was able to reduce peak de-
mand by 9.6% when implemented in a decentralized control considering the minimum
cost EMPC formulation, compared to the 10% peak reduction with the centralized con-
trol and minimum peak demand formulation.
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In their work, Mendoza-Serrano and Chmielewski [87] discussed the effect of thermal
energy storage in reducing operating costs related to HVAC systems for building tem-
perature control. In particular they used the EMPC in combination with thermal energy
storage to time-shift power consumption away from periods of high demand to periods
of low energy cost. Dynamic electricity pricing and weather condition forecasts were
incorporated within the methodology. The authors also considered the capital costs as-
sociated with thermal energy storage and proposed an optimization framework aimed
at providing the proper balance between equipment costs and operational savings.

The work of Ma et al. [78] presents an EMPC for the optimization of the set-points
in HVAC systems for load shifting and cost minimization under the TOU price policy.
In order to ensure the proper building operations, the economic objective function ac-
counted for: the combination of energy and demand costs with a TOU rate structure; a
dynamic thermal process and power model of the building thermal mass dynamics; a
set of constraints. The effectiveness of EMPC in energy cost savings was demonstrated
using simulation: the EMPC strategy was capable of shifting the peak demand in off-
peak hours and reducing energy costs compared to a baseline case for the building.

2.4 The proposed system architecture

A tertiary building that interacts with the energy market with a classic consumer profile
is considered. The goal is to define a BEMS model valid in this scenario and that in
future works can be extended for buildings involved in micro-grid context.

The proposed BEMS strategy is shown in Fig. 2.1. It is based on a system architecture
that is modular from the features point of view and hierarchical [19, 89] depending on
the control frequency and the objective.

The high level of the architecture is constituted by a predictive optimal control frame-
work that minimizes the economic cost of the building operation (thus the consump-
tion) while respecting the occupant comfort and safety. The optimization starts from
building and weather measured historical data and building situation assessment, and
considers weather and occupancy forecasts for the next e.g. 24 hours, together with
the energy price forecasts offered by the energy retailer. To this end, the framework
takes into account the price differences between the peak and off-peak periods of the
day. The final result is the optimal energy schedule (e.g. reference settings of room
thermostats) for the desired timestamp within the 24 hours optimization horizon.

The middle level consists in the “middleware” software level of BEMS described in Sec-
tion 2.2 and is aimed at offering a building Decision Support System (DSS) framework.
The DSS framework supports the energy manager and users in the decision-making ac-
tivities and facilitates the organizational processes through a valuable consulting tool.
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FIGURE 2.1: A system architecture for building energy management

This tool provides an immediate report about the building operating situation from
different points of view: energy, security, general management. Several software mod-
ules contribute to the building situation assessment starting from the actual building
measurements: energy consumption modeling, building energy profiling, Key Per-
formance Indicators (KPI), fault detection, fault diagnosis, interdependency models,
occupant behavior analysis, emergency/normal operation and risk assessment. The
building situation assessment contributes as input to the optimization process of the
high level. The DSS framework is also characterized by a reactive aspect based on
the building situation assessment and further actual conditions e.g. energy prices. In
this case the DSS acts on the low level control process and intervenes when emergen-
cies, breakdowns and wastefulness occur or when the one-day-ahead plan cannot be
followed because of unforecasted events, deciding whether some appliances have to
be switched on or off. The middle level applications run with a frequency of some
hours/minutes depending on the particular task.

Finally, the low level is in charge of following the one-day-ahead optimal schedule
by varying and adapting the building settings on the basis of the actual conditions
(weather, occupancy) and of the building DSS outcomes of the middle level. In order
to do this, classical (e.g. Proportional Integral Derivative) or intelligent (e.g. Model
Predictive) controllers are used, as described in Section 2.2. The control frequency in
this case is small (typically minutes,seconds) and acts taking into account the ongoing
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building operating conditions.

The next Chapters represent implementation and application examples of different
modules operating at different levels of the building management architecture so far
described. In Chapter 3 an adaptive MPC law adjusts the indoor temperatures of a
multi-zones simulated building on the basis of the current occupancy profiles of each
zone: thus this control strategy can be placed in the low level framework. Chapter 4
focuses on the fault detection process of anomalous building energy consumption us-
ing actual data through artificial intelligence and data mining techniques. Chapter 5
represents a sort of completion of the previous Chapter, since it presents the applica-
tion and the on-line implementation of a comprehensive fault detection and diagnosis
methodology of anomalous actual building electrical consumption. The fault detection
and diagnosis methodology carried out offers a valuable analysis tool of the operating
conditions of building and its appliances in the short and long term, then it constitutes
an important application to be hosted in the middle level of the DSS framework.





Chapter 3

Model predictive control for thermal
regulation in buildings

3.1 Introduction

More than 50% of the buildings sector energy consumption is due to heating, ventila-
tion and air conditioning (HVAC) systems [26, 54]. In recent years, many studies were
performed in order to optimize the energy efficiency of indoor heating systems, but the
controllers most commonly used are still PID and thermostats. Thus, the challenge for
HVAC system control is to find a compromise between the user thermal comfort and
the energy consumption. In this respect, two principal approaches were proposed in
literature: Artificial Intelligence (AI) [14, 73, 95] and MPC approaches.

The MPC [15] is able to predict the thermal system dynamics including disturbances
and to apply an appropriate control action, it also avoids large oscillations and easily
handles multi-input multi-output (MIMO) systems. On the other hand, the MPC relies
on the physically based mathematical model of the HVAC system and building dy-
namics, not always so simply to obtain. In MPC the control sequence is calculated by
solving an optimization problem, in particular, minimizing a cost function over a spec-
ified horizon. At every simulation step, only the first element of the control sequence
is applied to the system as, at the next instant, a new optimization is performed based
on current measurements.

For HVAC systems control, several formulations of cost functions, prediction models
and configurations were presented in literature to minimize the consumption and to
guarantee a desired comfort level. A centralized MPC based on the Predictive Mean
Vote comfort index for the thermal regulation of a building is given in [23]. In [114] a
MPC centralized controller for ventilation systems with reference to a non linear ther-
mal model is showed. Reference [105] shows the development of a SMPC (Stochastic
Model Predictive Control) that takes in account the forecasts of external temperature
and occupancy for a single – zone building. In [111] a dynamic programming of MPC

21
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cost function is proposed, with variable weighting coefficients depending on the occu-
pancy and in a distributed approach. A comparison between MPC centralized and dis-
tributed approaches is present in [90], where the building occupancy profile is known
in advance, thus in inoccupation periods there is no temperature set-point and only
consumption is minimized. Evolutions of [90] are described in [91, 93], where different
decompositions for the optimization problem are used, so as to ensure a greater effi-
ciency in the DMPC (distributed MPC) strategy. Interesting is also [92], that proposes
dynamic prediction horizons depending on the occupancy profile known in advance.
Reference [34] instead demonstrates how MPC can be applied to different elements of
an HVAC system, i. e. the fan speed.

This Chapter proposes two innovative MPC laws for the regulation of the indoor tem-
peratures of a three-zones building. In particular two adaptive MPC strategies are pro-
posed to achieve even higher performances ensuring temperature regulation on the
basis of occupancy and energy price profiles. The experimentation is carried out con-
sidering the thermal coupling between the zones, thus comparing two possible MPC
architectures (distributed and decentralized) in order to evaluate the best one in terms
of control results (consumed energy and comfort). The comfort requirements are de-
fined by operative air temperatures derived from more general temperature bands,
according to the international standards [133, 127].

3.2 Temperature regulation in a multi-zone office building on
the basis of the occupancy level

An adaptive MPC approach for thermal regulation in a multi-zone building is pre-
sented below [67]. The approach can be defined "adaptive" because at every simulation
step the information about the occupancy level of each zone is used for calculating the
proper control action with a prediction horizon of 10 minutes, resulting also in an en-
ergy consumption reduction. In particular, a dynamic temperature set-points strategy
is adopted. Initially the thermal coupling between the zones is considered, implement-
ing a distributed MPC architecture. Then a decentralized MPC architecture (without
considering the thermal coupling between the zones) is also analysed. The results are
evaluated in terms of energy consumption and comfort level defined by the indoor op-
erative temperatures. In the experimentation an entire working day with four different
time periods, correspondent to different occupancy levels for each zone, is considered.
For the results evaluation, two performance indices are adopted.

This paragraph is organized as follows. Section 3.2.1 introduces the building and
HVAC system models used for prediction and simulation. Section 3.2.2 compares the
investigated MPC strategies and Section 3.2.3 describes the improvements proposed for
an adaptive distributed MPC on the basis of four occupancy levels ranging between 0
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(A) (B)

FIGURE 3.1: The case-study building

and 1. The efficiency of the proposed control strategy is illustrated by a performances
comparison in Section 3.2.4.

3.2.1 Building and HVAC system models

The MPC is characterized by the use of a prediction model and the optimization of
an objective function based on that prediction. Several models can be used for the
prediction of the system evolution under certain disturbances. In this work the state
space model is used, obtained directly from the differential equations that describe the
thermal model of building and HVAC system.

The focus is on an office building consisting of three rooms of the same dimensions,
each room is occupied by an employee and constitutes a building "zone" (see Fig. 3.1).
Generalization for buildings with several zones can be easily achieved.

The HVAC system is constituted by three identical electrical fan-coils, one per zone,
operating in the "winter season" mode. Fan-coils have a maximum level of air mass
flow rate, Mdot, which is specified in Table 3.1, and a minimum level, which is 0, when
they are off.

The thermal coupling factor between rooms of the building is very important because it
affects the internal temperature. For the sake of simplicity, only the thermal influences
between rooms through internal walls are considered. Thus, the air temperature of
a zone i, Tr,i, is related to the heat flow from the heater, Qh, the heat losses to the
environment, Ql, and to the adjacent zones j, Qr,i,j , as described in Eq. 3.1:

Ṫr,i =
Q̇h

Mair · c
− Q̇l
Mair · c

+

∑n
j=1 Q̇r,i,j

Mair · c
(3.1)

where Mair is the mass of air inside the zone and c is the heat capacity of air at a
constant pressure (see Table 3.1).
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Parameter Zone Total building
Walkable area (m2) 25 75
Width (m) 5 5
Length (m) 5 15
Height (m) 3 3
Thickness of internal walls (m) 0.1 -
Thickness of external walls (m) 0.2 -
Thermal conductivity coefficient of internal walls
(W/mC)

0.36 -

Thermal conductivity coefficient of windows (W/mC) 0.078 -
Thermal conductivity coefficient of external walls
(W/mC)

0.038 -

Maximum air mass flow rate Mdot (kg/min) 9.18 -
Mass of air Mair (kg) 91.87 275.62
Heat capacity of air c (J/kgK) 1005.4 -
Fan-coil hot air temperature Th (°C) 40 -

TABLE 3.1: Building and heaters characteristics

A fan-coil i blows hot air at temperature Th (40 °C) at an air mass flow rate depending
on the MPC control signal uc,i variable between 0 and 1, as showed in Eq. 3.2:

Q̇h = (Th − Tr,i) · (Mdot · uc,i) · c (3.2)

The heat losses of the zone i to the external environment, characterized by the temper-
ature Tout, are expressed by Eq. 3.3:

Q̇l =
(Tr,i − Tout)

Req
(3.3)

where Req is the equivalent thermal resistance of the external walls. Equation 3.4 illus-
trates the heat losses of the zone i to the adjacent zones j:

Q̇r,i,j =
(Tr,j − Tr,i)
Rwallij

(3.4)

where Rwallij is the equivalent thermal resistance of the internal walls.

In order to identify the state space model of the “building and heaters” system de-
scribed above, some definition was made about the model: the states xi are the indoor
air temperatures of the three zones, Tr,i; the inputs ui are the control signals of the
fan-coils of the three zones calculated by the MPC controller, uc,i; the input ud is the
disturbance constituted by the external temperature, Tout; the outputs yi are the indoor
air temperatures of the three zones, Tr,i.
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The resulting three differential equations of the state space model are non-linear. Thus,
the main idea is to approximate this non-linear system by a linear one around an equi-
librium point, obtaining a model as showed in Eq. 3.5:

ẋ = A · x+Bc · uc +Bd · ud
y = C · x

(3.5)

where A, Bc, Bd and C are the corresponding matrices obtained by the linearization
process. The temperature used in the experimentation below as basic set-point temper-
ature (22 °C), is chosen as equilibrium point. In the experimentation, only variations of
a few degrees are considered, thus the linear and the non-linear approaches should not
lead to very different results.

3.2.2 Model predictive control configurations

The state space model described in the previous section was the one used within MPC
to ensure a good prediction of system future evolutions. Table 3.2 shows the MPC
parameters values used in the experimentation.

Parameter Value
Sampling time (min) 1

Control action interval (min) 1
Prediction horizon Np (min) 10

Control horizon Nc (min) 4

TABLE 3.2: MPC parameters

In the following sections the decentralized and distributed MPC architectures, applied
to the case-study building, and for completeness the centralized one are illustrated, in
order to highlight benefits and drawbacks of each architecture.

Centralized model predictive control

In the centralized control structure, the entire multi-zone system is controlled by one
MPC law (see Fig. 3.2). The controller takes in account all the dynamics of the system,
all their interactions and the disturbances. The prediction model includes the thermal
coupling factors, thus the measured temperatures of each zone, for the computation of
the outputs prediction.

In the centralized MPC the control performances are good. However, the computa-
tional demand grows exponentially with the system size, in this case the number of the
zones in the building. This control strategy is very accurate but a failure of the central
controller could cause the failure of the entire building heating system.
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FIGURE 3.2: Centralized MPC

Decentralized model predictive control

The decentralized MPC approach is the simplest and therefore the most used multi-
zone building thermal control structure. As shown in Fig. 3.3, each zone temperature
is regulated by an independent controller that doesn’t account for what’s happening
in the other zones, since the thermal influences among the zones are considered as
external unknown perturbations. As the thermal coupling is ignored by the prediction
model, when these influences are important they will not be quickly rejected.

FIGURE 3.3: Decentralized MPC

With reference to the linearized state space model (Eq. 3.5), the dynamic matrix Ai of
the single controller has dimensions 1x1. It considers only the temperature variation of
the zone i as described in Eq. 3.6:

Ai = −
ūi ·Mdot,i

Mair,i
− 1

Mair,i · c ·Req,i
(3.6)

where ūi is the control input value in the equilibrium point.
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Also the input matrices are characterized by one single element and are defined by Eq.
3.7 and Eq. 3.8:

Bc,i = −
Th,i ·Mdot,i

Mair,i
−
x̄i ·Mdot,i

Mair,i
(3.7)

Bd,i = − 1

Mair,i · c ·Req,i
(3.8)

where x̄i is the state value in the equilibrium point.

Once the prediction model is defined, the vector of the future outputs is calculated as
described in Eq. 3.9:

Yi = Fi · xi(k) + Φi · Uc,i + Φd,i · Ud,i (3.9)

where Uc,i and Ud,i are respectively the Ncx1 vectors of the future control signal and
disturbances evaluated by the i-th MPC controller and the matrices F and Φ are defined
by Eq. 3.10 and Eq. 3.11 as follows:

F =

∣∣∣∣∣∣∣∣∣∣∣∣∣

CA

CA2

CA3

...
CANp

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.10)

Φ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0
...

...
...

...
...

CANp−1B CANp−2B CANp−3B · · · CANp−NcB

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.11)

This MPC configuration has the great advantages to divide the computational cost and
ensure a good fault tolerance, but generally it offers the worst control performances.

Distributed model predictive control

A distributed MPC approach [96] is the best solution for large-scale dynamically cou-
pled building systems. It is structured as a decentralized law, with a local controller for
each zone that exchanges information related to its future behavior (see Fig. 3.4). Each
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local controller uses the future output prediction of the neighbor zones for the predic-
tion of the future thermal exchanges, in order to calculate the most suitable current
control law.

FIGURE 3.4: Distributed MPC

As compared with the decentralized approach, the linearized state space model presents
additional terms in order to evaluate the effect of the thermal exchanges with the neigh-
bor zones on the temperature variation. Assuming that the i-th zone has n neighbor
zones, the following equations (Eq. 3.12, Eq. 3.13) highlight the differences with the
state space model of the previous paragraph:

Ai = −
ūi ·Mdot,i

Mair,i
− 1

Mair,i · c ·Req,i
−

n∑
j=1

1

Mair,i · c ·Rwallij
(3.12)

Bd,i =
∣∣∣ 1
Mair,i·c·Req,i

1
Mair,i·c·Rwalli1

· · · 1
Mair,i·c·Rwallin

∣∣∣ (3.13)

In this case the Bd,i matrix is a vector: the first term is related to the disturbance due
to external temperature Tout, the other terms to the disturbances due to the n neighbor
zones. Similarly the vector of disturbances Ud,i contains Nc(1 + n) elements.

The collaboration among the local control laws permits the improvement of global sys-
tem performance compared to decentralized structure. On the other hand, the compu-
tational demand is significantly reduced compared to the centralized case.

3.2.3 Adaptive model predictive control

The distributed MPC strategy described above allows the reduction of the errors with
respect to a given reference temperature. In this section an adaptive MPC strategy is
proposed in order to further lower consumption. The adaptive control is based on the
occupancy level of each zone of the building: the idea is to ensure the comfort only
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when actually needed from the users, thus reducing the energy consumption. A de-
velopment of works [90, 91, 93] is proposed, in which during the inoccupation periods
only consumption was minimized (corresponding to the absence of temperature set-
point). The innovative aspect of the proposed approach is the identification of several
occupancy levels between 0 and 1, in spite of the only two levels (1 for occupancy and
0 for inoccupation) proposed in previous literature. In fact, the momentary absence of
the employee from his office rarely results in a complete absence for the whole day (e.g.
lunch break). With an adaptive MPC based on the total absence/presence of the em-
ployee, when the employee is back the zone could be cold and reaching the reference
temperature may take a long time.

In the case-study building the occupancy data are recorded with a 10 minutes times-
tamp and are obtained from two different information sources:

• Badge data: indicate if each employee is in the building or not;

• Presence sensors: indicate if there is at least one person in the related monitored
zones.

Crossing these two measurements, four occupancy levels are defined for each zone of
the building, as shown in Table 3.3.

Occupation level Badge Presence sensor
1 Yes Yes

0.7 Yes No
0.3 No Yes
0 No No

TABLE 3.3: Occupation levels

An adaptive MPC strategy is built on the basis of these occupancy levels, as explained
in the following paragraph.

Dynamic temperature setpoints

When the occupancy level is not 1, the reference to an ideal temperature is useless and
expensive, thus a lower temperature setpoint is a good idea to decrease energy con-
sumptions. For a simple and immediate choice of the dynamic temperature setpoints,
the percentage pi of the ideal reference temperature is used for each occupancy level i
respectively, as shown in Table 3.4.

Hence, at the instant k the controller takes in account the reference temperature value
expressed by Eq. 3.14:

rif(k) = rifcomf · pi(k) (3.14)
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Occupation level pipipi Temperature setpoint (°C)
1 1 22

0.7 0.9 19.8
0.3 0.8 17.6
0 0.5 11

TABLE 3.4: Adaptive MPC, first test: dynamic temperature set-points

where rifcomf is the temperature setpoint that corresponds to the maximum comfort
for the occupants (22 °C). When the occupancy level is 0, the set-point temperature of
11 °Cinvolves the switching off of the heater, as can be observed also in the experimen-
tation carried out in Section 3.2.4.

3.2.4 Results discussion

The building and HVAC system model, used for the prediction phase in the previous
sections, is adopted also for the simulation step. All the results are obtained imple-
menting the MPC strategies, described in Sections 3.2.2 and 3.2.3, and such model in
Matlab and Simulink. The experimentation is carried out considering an entire work-
ing day with four different time slots correspondent to four occupancy levels for each
zone, as showed in Table 3.5.

ZONE
Time slot

7:30-12:10 12:10-14:00 14:00-19:45 19:45-20:30
1 1 0.7 1 0.3
2 0 0 0 0
3 0.7 0.7 1 0.7

TABLE 3.5: Adaptive MPC, first test: occupation levels during the ex-
perimentation day

The disturbance constituted by the external temperature during the experimentation
day ranges between 7 and 19 °C(see Fig. 3.5). At every simulation step, the external
temperature is taken as constant value during the whole prediction horizon.

For the results evaluation, two performance indices are adopted.

For the comfort, when the occupancy level is maximum, the average distance from
reference temperature in the whole building is used, as illustrated in Eq. 3.15:

MAETOT =

∑3
i=1MAE(i)

3
(3.15)
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FIGURE 3.5: External temperature

where MAE(i) is the average distance from reference temperature in the zone i, calcu-
lated as in Eq. 3.16:

MAE(i) =

∑n
j=1 |Tr,i − rifcomf,i|

n
,∀occupancyleveli(j) = 1 (3.16)

where n is the number of iterations.

The performance index for the consumption is the total air mass produced by fan-coil
units in the whole building, as showed in Eq. 3.17:

MTOT =
3∑
i=1

Mtot(i) (3.17)

where Mtot(i) is the total air mass produced by fan-coil unit in the zone i, as expressed
in Eq. 3.18:

Mtot(i) =
n∑
i=1

u(j) ·Mdot (3.18)

The MPC strategies just described are compared with two other correspondent MPC
approaches defined, for the sake of simplicity, "non-adaptive": in these cases the MPC
controllers consider only if the building zones are occupied or not, then the tempera-
ture set-point is 22 °Cwhen the zone is occupied (the occupancy level is greater than 0),
11 °Cotherwise (the occupancy level is equal to 0). Trough this comparison it is possible
to obtain a better evaluation of the results. Fig. 3.6 and Fig. 3.7 show the temperature
evolutions in each zone of the building during the experimentation day, resulting from
the application of adaptive and non-adaptive MPC strategies respectively.
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FIGURE 3.6: Adaptive MPC, first test: temperature behaviour for each
zone obtained with distributed and decentralized strategies

FIGURE 3.7: Non-adaptive MPC, first test: temperature behaviour for
each zone obtained with distributed and decentralized strategies

Both configurations follow very well the temperature set-point in each time slot of the
day. This is also evident from MAETOT results reported in Table 3.6: each configura-
tion reports very small temperature errors and, as expected, distributed MPC presents
smaller errors than decentralized one.

The control action evolutions in each zone of the building, resulting from the applica-
tion of adaptive and non-adaptive MPC strategies, are illustrated in Fig. 3.8 and in Fig.
3.9 respectively.

For a more realistic simulation, only five possible values between 0 and 1 with a step
of 0.25 were defined for the control signal (output of the MPC controller). It can be
noticed that the non-adaptive MPC signals present no peaks in their evolution, since
the temperature setpoints don’t change during the day. Looking at Table 3.6, the great
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Dynamic Temperature Setpoints
MAETOTMAETOTMAETOT [°C] Mtot[kg]Mtot[kg]Mtot[kg]

Distributed 0.084 3029
Decentralized 0.130 2954

Non-adaptive MPC
MAETOTMAETOTMAETOT [°C] Mtot[kg]Mtot[kg]Mtot[kg]

Distributed 0.073 4223
Decentralized 0.105 4117

TABLE 3.6: Adaptive MPC, first test: results comparison

FIGURE 3.8: Adaptive MPC, first test: control behaviour for each zone
obtained with distributed and decentralized strategies

advantage of using an adaptive MPC strategy is evident. Mtot results confirm that the
control effort, and then the energy consumption, of an adaptive MPC configuration is
much lower than that of a non-adaptive one.

It can also be observed that the central zone, characterized by occupancy 0 for the whole
day, reaches anyway temperatures of about 20 °Cdue to the thermal exchanges with
zone 1 and zone 3. These conditions represent the worst situation for the distributed
controls of zone 1 and zone 3 compared to decentralized ones from the consumption
point of view. Anyway, as Table 3.6 illustrates, the performances of the distributed
MPC strategies in terms of consumption are good.
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FIGURE 3.9: Non-adaptive MPC, first test: control behaviour for each
zone obtained with distributed and decentralized strategies

3.3 Temperature regulation in a multi-zone office building on
the basis of the occupancy level and the energy price

In this Section a development of the adaptive MPC approach for the thermal regulation
in a multi-zone building so far described is proposed. The main idea is the achieve-
ment of even higher performances ensuring temperature regulation on the basis of
occupancy and energy price profiles. According to Chapter 2, a reference scenario for
the MPC strategy here introduced may occurr when the energy prices are decided for
the next day involving all the actors of the energy market. From the buildings (users)
point of view, the next day the goal is to follow the day-ahead load curve based on e.g.
weather and occupancy forecasts and energy prices definitions. A possible application
consists in adapting the established daily schedule of the temperature set-points (based
on the the defined energy prices and resulting from the high level control process) ac-
cording to the actual occupancy data (low level control).

Then, at every simulation step, the information about the energy price and the occu-
pancy level of each zone is used for defining the correspondent temperature set-points
and so for calculating the proper control action. As in the previous experimentation,
the distributed and decentralized MPC architectures are compared and the results are
evaluated in terms of energy consumption and comfort level defined by the indoor op-
erative temperatures. The MPC parameters, the building and HVAC system models
used for prediction and simulation and the four occupancy levels ranging between 0
and 1 for each zone of the building (Table 3.3) are the same as the previous Section.
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3.3.1 Experimentation and results discussion

Even in this experimentation case an entire working day (750 min, i.e. 12 hours and
30 min) is considered, in particular consisting of different time slots with different oc-
cupancy levels for each zone, as showed in Table 3.7. The central zone (zone 2) is
occupied for most of the day, in this way compared to the previous experimentation
is possible to get a more comprehensive assessment of the performance of distributed
and decentralized MPC strategies.

Time slot
7:00-11:10 11:10-13:00 13:00-15:20 15:20-19:30

Occupancy level zone 1 1 0.7 1 0.3
7:00-17:00 17:00-19:30

Occupancy level zone 2 1 0
7:00-13:00 13:00-15:20 15:20-19:30

Occupancy level zone 3 0.7 1 0.7

TABLE 3.7: Adaptive MPC, second test: occupancy levels during the
experimentation day

Three energy price levels are considered possible: high, medium and low. During the
experimentation day, the following energy price profile is defined (Table 3.8):

Time slot
7:00-11:10 11:10-15:20 15:20-19:30

Price level HIGH LOW MEDIUM

TABLE 3.8: Adaptive MPC, second test: energy price profile during the
experimentation day

The temperature set-points change on the basis of the combination of occupancy level
of the specific zone and energy price. For high, medium, low energy price the tem-
perature set-points are showed in Tables 3.9, 3.10, 3.11 respectively. When the occu-
pation level of the zone is greater than 0 the temperature set-point can assume values
in the range 19 - 22 °C, when the zone is unoccupied the temperature set-point is 11
°Cinvolving the switching off of the heater.

Occupation level pipipi Temperature setpoint (°C)
1 0.9545 21

0.7 0.9091 20
0.3 0.8636 19
0 0.5 11

TABLE 3.9: Adaptive MPC, second test: dynamic temperature set-points
for high energy price
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Occupation level pipipi Temperature setpoint (°C)
1 1 22

0.7 0.9091 20
0.3 0.8636 19
0 0.5 11

TABLE 3.10: Adaptive MPC, second test: dynamic temperature set-
points for medium energy price

Occupation level pipipi Temperature setpoint (°C)
1 1 22

0.7 0.9545 21
0.3 0.9091 20
0 0.5 11

TABLE 3.11: Adaptive MPC, second test: dynamic temperature set-
points for low energy price

Figures 3.10 and 3.11 indicate the temperatures and the control signals of each zone of
the building obtained applying the MPC distributed and decentralized strategies so far
described.

FIGURE 3.10: Adaptive MPC on the basis of occupancy level and energy
price, second test: temperature behaviour for each zone obtained with

distributed and decentralized strategies

For the performance evaluation, the presented distributed and decentralized MPC ap-
proaches are compared with the non-adaptive ones and the adaptive ones based only
on the occupancy levels introduced in the previous Section. Figures 3.12 and 3.13
illustrate the temperatures and control signals evolutions of non-adaptive MPC ap-
proaches.

In the case of adaptive MPC strategies based on the occupancy level of each zone of the
building, the chosen temperature set-points are the same of the medium energy price
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FIGURE 3.11: Adaptive MPC on the basis of occupancy level and en-
ergy price, second test: control behaviour for each zone obtained with

distributed and decentralized strategies

case (see Table 3.10). The resulting temperature and control signal evolutions for each
zone of the building during the experimentation day are reported in Fig. 3.14 and 3.15
respectively.

For the results evaluation, the two performance indices of the previous Section are
adopted: for the comfort, when the occupancy level is maximum, the daily average
distance of actual indoor temperatures from the ideal temperature set-point (22 °C) in
the whole building,MAETOT ; for the consumption, the total air mass flow rate through
fan-coil units in the entire building, Mtot, evaluated for the whole experimentation day
and for the time slots correspondent to the variations of the energy price level in the
third MPC configuration. Table 3.12 summarizes the results of the experimentation
day.

Non-adaptive MPC

MAETOT[◦C] Mtot[kg]
Mtot[kg] Mtot[kg] Mtot[kg]
7:00-11:10 11:10-15:20 15:20-19:30

Distributed 0.1764 4881 2896 858 1127
Decentralized 0.09334 4992 2949 895 1148

Adaptive MPC: dynamic temperature setpoints according to occupancy levels

MAETOT[◦C] Mtot[kg]
Mtot[kg] Mtot[kg] Mtot[kg]
7:00-11:10 11:10-15:20 15:20-19:30

Distributed 0.1727 4090 2692 725.4 672.6
Decentralized 0.1109 4184 2745 757.4 681.6

Adaptive MPC: dynamic temperature setpoints according to occupancy and energy price levels

MAETOT[◦C] Mtot[kg]
Mtot[kg] Mtot[kg] Mtot[kg]
7:00-11:10 11:10-15:20 15:20-19:30

High price Low price Medium price
Distributed 0.3812 3936 2465 796.4 674.6

Decentralized 0.3155 4021 2511 833 677

TABLE 3.12: Adaptive MPC, second test: results comparison

The great advantage of using an adaptive MPC strategy is evident: the results related
toMtot confirm that the control effort, and then the energy consumption, of an adaptive
MPC configuration is much lower than non-adaptive strategy. Looking at Table 3.12, is
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FIGURE 3.12: Non-adaptive MPC, second test: temperature behaviour
for each zone obtained with distributed and decentralized strategies

also evident the advantage of using a distributed MPC strategy (that considers the ther-
mal coupling between the zones of the building) than a decentralized one (that doesn’t
consider the thermal coupling between the zones of the building): the consumptions
are lower in spite of little higher temperature errors.

The adaptive MPC with dynamic temperature set-points according to occupancy and
energy price levels is the MPC configuration that presents the lowest consumption
global index,Mtot. In particular, compared to MPC strategy with dynamic temperature
set-points according to occupancy levels, it is important to observe that the consump-
tion is lower in the time slot correspondent to the high energy price and is higher in the
time slot correspondent to the low energy price. From the other hand, the average tem-
perature error MAETOT in this MPC configuration is higher because, when the energy
price level is HIGH and the occupancy level is maximum, the temperature set-point is
21 °C, then the distance from the ideal indoor comfort temperature (22 °C) is higher as
well.
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FIGURE 3.13: Non-adaptive MPC, second test: control signal behaviour
for each zone obtained with distributed and decentralized strategies

FIGURE 3.14: Adaptive MPC on the basis of occupancy level, second
test: temperature behaviour for each zone obtained with distributed and

decentralized strategies
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FIGURE 3.15: Adaptive MPC on the basis of occupancy level, second
test: control behaviour for each zone obtained with distributed and de-

centralized strategies



Chapter 4

Fault detection analysis of building
consumptions

4.1 Introduction

Buildings are becoming more and more complex energy systems consisting of several
elements i.e. heating/cooling systems, ventilation systems, lighting and control sys-
tems etc. In addition, buildings have multifarious activities and the occupants may
have different demands from a building. Even though building ramification is grow-
ing, communication between the participants and the building elements during the
building life is poor [29]. The building energy system and the monitoring of its energy
and environmental performance has been the subject of great interest in recent years.
There is an increasing awareness that many buildings do not perform as intended by
their designers. Typical buildings consume 20% more energy than necessary due to
faults occurring at a different level of the building life cycle i.e. from construction to
operations [47, 137]. The BEMS collects and stores massive quantities of energy con-
sumption data. The general goal of BEMS (control of energy uses and costs, while
maintaining indoor environmental conditions to meet comfort and functional need)
can not be achieved without uncovering valuable information from the tremendous
amounts of available data and transform it into organized knowledge [29]. Hence sig-
nificant potential exists for better use of BEMS data through fault detection analysis
in order to improve operations and save energy. There is an increasing need for au-
tomated fault detection tools in buildings. The total energy request in buildings can
be significantly reduced by detecting abnormal consumption effectively. Numerous
models are used to tackle this problem but either they are very complex and mostly
applicable to components level, or they can not be adopted for different buildings and
equipment.

Fault detection is the determination that the operation of a building is incorrect or un-
acceptable from the expected behavior [46]. The pattern recognition-based methods,
which belong to the history-based methods category [57], are advantageous for fault
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detection since they do not require a deep understanding of physics of the concerned
system(s) and can be applied to different levels. Seem [121] proposed a pattern recogni-
tion algorithm for automatically determining the days of the week with similar energy
consumption profiles. Seem [122] also presented a method for converting the energy
consumption data into information and accounted for weekly variation in energy con-
sumption by grouping the days of week with similar power consumption. Liu, Chen,
Mori, & Kida [76] classified the building lighting power data considering the number
of people and then implemented a robust statistical algorithm to detect the outliers.
Fontugne et al. [37] used the Strip, Bind and Search (SBS) method to build sensor
traces in order to identify abnormal device usage in buildings.

In the recent years the application of artificial intelligence [101, 106] became one of the
most important topics in fault detection. Chen, Wang, & van Zuylen [20] described
the density based local outlier approach and compared it with two further algorithms,
the statistics-based approach and the distance-based approach, for detecting and an-
alyzing the outliers in traffic data sets for an application to intelligent transportation
systems. The experimental results reveal that this method of outlier mining is feasible
and more valid then the other two methods presented to detect outliers. Cao et al. [16]
proposed a density-similarity-neighbor-based outlier mining algorithm for the data
preprocess of data mining technique. They performed the experiments on synthetic
and real datasets to evaluate the effectiveness and the performance of the proposed
algorithm; the results verified that the proposed algorithm has a higher quality of out-
lier mining and do not increase the algorithm complexity. Chen, Miao, & Zhang [21]
introduced a neighborhood-based outlier detection algorithm that integrates rough-
set-granular technique with the outlier detecting. The experimental results show that
neighborhood-based metric is able to measure the local information for outlier detec-
tion. The detected accuracies based on the neighborhood outlier detection are superior
to the k-nearest neighbor for mixed dataset, and a little better than recurrent neural
network for discrete dataset. Alan, & Catal [2] proposed an outlier detection approach
using both approaches software metrics thresholds and class labels to identify class
outliers. The experiments revealed that their novel outlier detection method improved
the performance of robust software fault prediction models based on Naive Bayes and
Random Forests machine learning algorithms. Razavi-Far et al. [113] focused on the
development of a pre-processing module to generate the latent residuals for sensor
fault diagnosis in a doubly fed induction generator of a wind turbine. The inputs of
the pre-processing module were batches of residuals generated by a combined set of
robust observers to operate point changes. The outputs of the pre-processing mod-
ule were the latent residuals progressively fed into the decision module, a dynamic
weighting ensemble of fault classifiers that incrementally learned the residuals-faults
relationships and dynamically classified the faults including multiple new classes. The
results of simulations confirmed the effectiveness of the approach, even in the incom-
plete scenarios due to sensor failures.
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Many theoretical studies in the application research of artificial intelligence are focused
on Artificial Neural Networks (ANNs) [126, 61] and a large number of papers on the
application of ANNs for fault detection have been published. For instance, Rossi et
al. [118] proposed an effective modeling technique for determining baseline energy
consumption of a CHP plant subjected to a retrofit. The study aimed to recreate the
post-retrofit energy consumption and production of the system in case it would be
operating in its past configuration (before retrofit). Two different modeling method-
ologies were applied to the CHP plant: thermodynamic modeling and artificial neural
networks. A high level of robustness was observed for neural networks against uncer-
tainty affecting measured values of variables used as input in the models. The study
demonstrated the great potential of neural networks for assessing the baseline con-
sumption in energy intensive industry and for overcoming the limited availability of
on-shelf thermodynamic software for modeling all specific typologies of existing in-
dustrial processes. Dodier, & Kreider [30] created a whole-building energy software
for detecting energy use problems. The software uses ANNs models as energy end-use
predictors to evaluate the expected energy end-use in relation to the measured one,
considering weather, time of the day and other features of building energy use that are
time- and day-dependent. The software generates detection messages as "lower than
normal" and "higher than normal" energy ratio. Mavromatidis et al. [85] developed a
diagnostic tool for a supermarket using the ANN models. This tool evaluates, on the
basis of suitable explanatory variables, the energy consumption of each supermarket
subsystem to provide the energy baseline, and then performs the fault detection anal-
ysis. The actual energy consumption is compared to the predicted consumption and
the performance is labeled as Bad/Average/Good. If five or more consecutive points
greater than the upper or lower prediction bound occur, the likelihood of a fault occur-
rence is high.

As demonstrated above, few papers are focused on artificial intelligence and data min-
ing techniques applied to the specific sector of building energy consumption fault de-
tection. The present Chapter is devoted to the problem of fault detection using actual
building energy consumption data through simplified robust algorithms. Section 4.2
provides a description of the of eight adjacent buildings (hereafter referred as cluster
of buildings) whose monitored data are used for the experimentation. In Section 4.3
recorded data with a 15 minutes timestamp of active electrical power for lighting and
total active electrical power of the mentioned buildings are analyzed. The proposed
methodology [17], starting from the previous experience of [59], uses statistical pat-
tern recognition techniques and ANN ensembles coupled with two different outliers
detection methods for fault detection. A comparison of results obtained through these
methods is carried out to minimize the number of false outliers and to improve the
robustness of the fault detection analysis. In addition, in Section 4.4 an analysis of the
thermal energy data of a building of the cluster in the winter season is performed. The
objective is the automatic definition of the shape and the size of the building thermal
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energy daily profile for detecting possible anomalies in the energy demand time trend.

4.2 Cluster of buildings and data description

The cluster of buildings under investigation is located within the Italian National Agency
for New technologies, Energy and Sustainable Economic Development (ENEA) Casac-
cia Research Center and includes buildings F66 - F67 - F68 - F69 - F70 - F71 - F72 - F73,
positioned in two different blocks. A first block, consisting of three contiguous build-
ings is oriented along the axis NW-SE, while the second block consists of 5 buildings
and its main orientation is NE-SW as shown in Fig. 4.1.

FIGURE 4.1: The cluster of buildings

The eight buildings have similar characteristics both from a structural and HVAC point
of view. Moreover all the buildings are offices and hence serve the same purpose. They
consist of a single floor except building F67, which also includes a basement. The build-
ings are composed of a concrete external wall with a thickness of 30 cm, and an internal
paneling of insulating material of about 5 cm. The windows are sliding with an alu-
minum frame. The control of solar radiation in the offices is obtained through external
venetian blinds. All the buildings are served by a centralized heating and cooling plant
located in a technical room in which the carrier fluids are produced. At the building
level is located a technician room in which the heating / cooling sub system and the
air handling unit are placed. At the level of the individual building, the electrical panel
includes a counter-general of the total electricity supplied to the building, plus a break-
down of artificial lighting, plug load and overall conditioning system electrical lines.

Each building is equipped with an advanced monitoring system aimed at collecting
energy consumption (electrical and thermal) and the environmental conditions. Ac-
tive electrical power for lighting and total active electrical power consumption of each
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building with 15 minutes timestamp is analyzed in this experimentation. Furthermore
number of occupants, global solar radiation, average indoor and outdoor temperatures,
time, date and day of the week (Sun-Sat = 1-7), are recorded and considered as inde-
pendent variables. The monitoring and actuation system developed is structured in
five logical layers:

• fieldbus layer, directly interface to sensor network through a BEMS;

• sensor and actuator layer, containing applications that interface database of data
warehouse layer with BEMS;

• application layer, containing diagnostics and control logics applications;

• presentation layer, that is a web interface to users.

4.3 Fault detection analysis

One of the effective ways of analyzing large data is to identify recurring patterns in
the raw data. Clustering and classification are two common techniques used for find-
ing hidden patterns in data sets. Discovering the patterns in data before applying the
outliers detection algorithm is very useful to find anomalies in the building energy
consumption. Outliers are cases that have data values very different from the data
values for the majority of cases in the data set. Statistical-based [139], distance-based
[112], deviation-based [4] and density-based [35] outliers detection methods are mainly
discussed in recent times.

4.3.1 Pattern recognition techniques and outliers detection methods

The pattern recognition techniques and outliers detection methods employed for fault
detection are briefly explained below. As shown in Fig. 4.2 and fully explained in the
next paragraph, first, a classification and clustering of 15 minutes timestamp recorded
data using CART (Classification And Regression Tree), K-Means and DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithms are respectively car-
ried out. With CART and K-Means methods, the detection of evident outliers in each
class and cluster respectively is performed using generalized extreme studentized de-
viate (GESD) algorithm. In the DBSCAN method the outliers are directly detected
analyzing a particular cluster (cluster-0), in which they are isolated. Second, the ANN
Ensemble (ANNE) approaches are introduced and their capability for energy fault de-
tection is demonstrated. The fault detection is performed analyzing the magnitude of
the residual generated by ANNE using an algorithm capable to detect peaks in a data
set and the GESD method. Finally, the results obtained by each method are compared
to improve the fault detection analysis.
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FIGURE 4.2: The fault detection methodology

Classification and regression tree

The CART algorithm is based on classification and regression trees. A CART is a bi-
nary decision tree that is constructed by splitting a parent node into two child nodes
repeatedly, beginning with the root node that contains the whole learning sample. The
CART method can easily handle both numerical and categorical variables and is useful
in robust detection of outliers. The proposed method is aimed at the identification of
decision trees from which it is possible to identify rules based on the values assumed
by the independent variables for the classification of data and the subsequent and ef-
fective identification of anomalies. Therefore it is particularly suitable for conducting
analysis of fault detection in real time. CART methodology generally consists of three
parts:

• construction of maximum tree;

• choice of the right size tree;

• classification of new data.

The detailed approach is described in “Classification and Regression Trees (CART) The-
ory and Applications” [131].

Clustering

Clustering is concerned with grouping together objects that are similar to each other
and dissimilar to the objects belonging to other clusters. It is useful for extracting
information from unlabeled data. The selected algorithms can be classified into two
categories: (i) partitioning methods and (ii) density-based methods. These methods
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require the definition of a metric to compute distances between objects in the dataset.
In this case study, distances between objects are measured by means of the Euclidean
distance computed on normalized data.

K-Means is selected for this study, which belongs to partitioning methods category. It
requires as input parameter, k, the number of partitions in which the dataset should
be divided. It represents each cluster with the mean value of the objects it aggregates,
called centroid. The algorithm is based on an iterative procedure, preceded by a set-
up phase, where k objects of the dataset are randomly chosen as the initial centroids.
Each iteration performs two steps: in the first step, each object is assigned to the cluster
whose centroid is the nearest to that object; in the second step, centroids are relocated,
by computing the mean of the objects within each cluster. Iterations continue until the
k centroids do not change [55].

DBSCAN [35] is the density-based method considered in this study. The method re-
quires two input parameters: a real number, r, and an integer number, minPts, used
to define a density threshold in the data space. A high density area in the data space
is an n-dimensional sphere with radius r which contains at least minPts objects. DB-
SCAN is an iterative algorithm which iterates over the objects in the dataset, analyzing
their neighborhood. If there are more than minPts objects whose distance from the
considered object is less than r, then the object and its neighborhood originate a new
cluster. DBSCAN is effective at finding clusters with arbitrary shape, and it is capable
of identifying outliers as a low density area in the data space. The effectiveness of the
algorithm is strongly affected by the setting of parameters r and minPts.

Artificial neural networks and basic ensemble method

ANNs [126, 3] are data modeling and decision making tools which can be used to
model complex relationships between inputs and outputs or to find patterns in data.
ANNs are referred also as black-box or data-driven models and they are mainly used
when analytical or transparent models can not be applied. ANNs essentially contain
masses of parallel, interconnecting information processing units, technically known as
“neurons”, which interact with one another and can be located in multi-layers. For ex-
ample, a typical structure consists of an input layer, an output layer and one or more in-
termediate layers, where the hidden neurons are located. The neurons can be combined
in various ways to form different types of interconnecting structures: the connections
between units define the network topology or architecture. The feedforward structures
are mainly featured in FDD research papers. In feedforward ANN the data process-
ing can extend over multiple (layers of) units, but no feedback connections are present,
i.e., connections extending from outputs of units to inputs of units in the same layer or
previous layers. These models are also known as Multi-Layer Perceptrons (MLP) [117],
since the basic structure is the perceptron [116].
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The term "ensemble" describes a group of learning machines working together on the
same task: the goal is to obtain better performances than those which could be obtained
from any of the constituent models. In the last years, several ensemble methods have
been carried out [62, 77, 12]. The non-generative ensemble method seeks to combine
the outputs of the machines in the best way. In the case of ANNs, they are trained on
the same data, they run together and their outputs are combined in a single one. Basic
Ensemble Method (BEM) [107, 11] is the simplest way to combine a group of neural
networks as an arithmetic mean of their outputs. This method can improve the global
performance, although it does not take into account that some models can be more
accurate than others, and it has the advantage to be very easy to apply.

Outliers’ detection methods

An outlier is an observation (or subset of observations) which appears to be incon-
sistent with the remainder of that set of data. Outliers arise because of human error,
instrument error, changes in behavior of systems or faults in systems. In this study
GESD and Peak Detection methods are used to detect abnormal consumption. Both
methods allow to find multiple outliers in a data set.

Generalized extreme studentized deviate many-outlier method

In order to perform the GESD method, two parameters need to be set:

• the probability α of incorrectly declaring one or more false outliers;

• an upper limit nu of the expected number of potential outliers.

On the basis of the indications of [18], the expected number of potential outliers is
evaluated finding the largest integer that satisfies the inequality (Eq. 4.1):

n < 0, 5 · (n− 1) (4.1)

where n is the number of observations in the data set X : x1, x2, x3, ..., xn, and for the
probability α values between 5% and 10% are chosen.

The method allows detecting the outlier values in a data set through the calculation
and comparison of the two following important parameters:

• the i− th extreme studentized deviate Ri, determined from (Eq. 4.2):

Ri =
|xe,i − x̄|

s
(4.2)

where xe,i is the extreme element in set X that is furthest from the average x̄ of
elements in set X and s is the standard deviation of elements in set X ;
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• the i− th critical value λi, determined from (Eq. 4.3):

λi =
tn−i−1,p(n− i)√

(n− i− 1 + t2n−i−1,p)(n− i+ 1)
(4.3)

where tn−i−1,p is the student’s t-distribution with (n− i− 1) degrees of freedom,
and the tail area probability p is determined from (Eq. 4.4):

p = 1− α

2 · (n− i+ 1)
(4.4)

Peak Detection Method

Identifying and analyzing peaks in a given time-series is important in many appli-
cations such as building energy consumptions. In order to avoid subjectivity and to
devise algorithms for the automatic detection of peaks in any given time-series, it is
important to define the notion of the peak. A peak is defined as an observation that is
inconsistent with the majority of the observations of a data set. Not all local peaks are
true: a local peak is true if it is a reasonably large value even in the global context.

The implemented method, Peak Detection, is based on the use of a peak function, which
associates a score (S value) with every element of the given time-series [102]. The
mean m′ and the standard deviation s′ of all positive values of the peak function are
computed. A given point xi in the time-series is a peak if its score Si is positive and
satisfies the condition (Eq. 4.5):

Si −m′ > h · s′ (4.5)

where h is a user-specified constant, tipically 1 <= h <= 3 according to [102]. Particu-
larly, the peak function computes the average of the maximum among the signed dis-
tances of a given point xi in a time-series X from its k left neighbors and the maximum
among the signed distances from its k right neighbors, as expressed by Eq. 4.6:

Si =
max{xi − xi−1, xi − xi−2, ..., xi − xi−k}+max{xi − xi+1, xi − xi+2, ..., xi − xi+k}

2
(4.6)

The score S is an index that allows to quantify the severity of the outliers and then
provides information about the priorities for actions to be associated with each outlier.

In addition to the outliers’ detection methods and once the outliers are detected, an-
other synthetic index, modified z-score (Mzscore, zm), is used to quantify how far and
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which direction an outlier is from the mean value of typical observations. zm is defined
as (Eq. 4.7):

zm =
xoutlier − x̄robust

srobust
(4.7)

where xoutlier is a raw value of an outlier, x̄robust is the mean value of non-outliers in
the data set X and srobust is the standard deviation of non-outliers in the data set X .

4.3.2 Methodology

The proposed approach, illustrated in Fig. 4.2, is applied to each building of the cluster
for both winter and summer data. This Paragraph contains the application of each
method described in Paragraph 4.3.1.

For all the simulations performed, the values of the active electrical power for light-
ing and the total active electrical power of each building are considered as dependent
variables. The independent variables considered are: date, day of the week, time of the
day, average indoor temperature, average outdoor temperature, number of occupants
and global solar radiation. The selection of the appropriate independent variables to
consider was conducted on the basis of a sensitivity analysis and on the basis of the
experience on this issue. The results are obtained for both time periods (Jan-Feb and
May-Jun). The choice of time periods has also allowed to assess the types of fault found
in the periods in which weather conditions relating solar irradiance are different. The
selected time periods, in fact, presenting different availability of natural light, were
used to verify potential fault associated with the behaviour of the occupants in the
management of artificial lighting.

The first analysis of fault detection is carried out by applying the GESD algorithm to
each class identified by the CART method. The major steps adopted for CART analysis
used for fault detection are summarized below:

• sensitivity analysis on monitoring data in order to identify the independent vari-
ables of greater importance on the variation of the dependent variables (active
electrical power for lighting/total active electrical power);

• classification of data using the CART method and applying pruning methods
(cross validation and number of samples in both parent and child nodes);

• application of GESD many outliers detection algorithm to each class;

• Use of dimensionless statistical indicator (Mzscore) to show the degree of impor-
tance or severity of each outlier identified in each class.
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With regard to the analysis of clustering (KMeans and DBSCAN), in order to overcome
the limitations of the algorithms that do not allow to consider time and day as inde-
pendent variables, data sets are divided into the working period (from 07:30 to 17:30),
the non-working period and the weekends. The approach adopted for the splitting of
the data is the experience gained from some previous work [60] for which the partition
of the data set in the daytime, nighttime and weekend proved not to be particularly
effective for the nature of the fault in the type of buildings under investigation. It did
not allow to evaluate the effectiveness of the outliers occurring in the early hours of the
morning and at the end of the working hours. Before performing the clustering anal-
ysis, the recorded real data are normalized by means of the standard score (z − score)
method. The analysis of fault detection was carried out by applying the GESD algo-
rithm to each cluster found by K-Means. With DBSCAN method, in all discovered
clusters, the cluster label zero contains all points identified as outliers or noise. To set
the input parameters (r, minPts), different tests were carried out for all data (active
electrical power for lighting and total active electrical power) by changing the values
of these parameters. The results show that by keeping the value of one parameter con-
stant and changing the value of other parameter the discovered clusters are different.
For example, if the value ofminPts is kept constant and the value of radius r decreases,
then the number of clusters and outliers increases. The results obtained from these tests
are analyzed and the similarities within the clusters are investigated in order to select
the appropriate values of both input parameters. The results show that DBSCAN is
able to identify clusters with the same density and with very similar data. In any pro-
cess, it was noted that if the value minPts is kept constant and the value r grows then
the number of outliers tends to decrease as the number of clusters can be identified. In
addition, by setting the values minPts > 3 the process is stable and the number of the
formed clusters is always equal to two, that’s why it was not considered necessary to
proceed with further sensitivity analysis on the parameters of clusterization.

Regarding the second part of the experimentation, the ANN ensemble was built ac-
cording to BEM and combining 10 ANN models. The considered ANN features are:

• feed-forward MLP;

• 1 hidden layer consisting of 15 neurons;

• hyperbolic tangent as activation function for the hidden neurons;

• linear activation function for the output neurons.

For the ANN modeling, a single 15-minute consumption constitutes an output record
as well as each single 15-minute independent variable constitutes an input record. Two
different ANN BEM were built, trained and tested for each building of the cluster, ac-
cording to the two different time periods considered (Jan-Feb and May-Jun) and to the
availability of monitored data. Considering a timestamp of 15 minutes and a 2-months
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period, the dataset related to each ANN BEM consists of about 5000 data records, of
which 60% for the training data set, 10% for the validating data set and 30% for the
testing data set. Many experiments were carried out with different number of hidden
layers and neurons: finally, the selected ANN architecture was the one with the lower
errors (according to the mean absolute error, MAE, and the maximum absolute error,
MAX).Training was performed with MATLAB through the Levenberg-Marquardt al-
gorithm stopping after 1000 iterations.The residuals were calculated by the difference
between the real consumption and the consumption estimated by the ANN BEMs in
the testing period for the fault detection analysis of each building.

4.3.3 Results and discussion

The results obtained from the analysis of fault detection conducted separately for each
building, for the two dependent variables and for the two time periods are summarized
and presented in this Paragraph.

Classification and clustering

With CART analysis, it was found that for all buildings, considering both the depen-
dent variables active electrical power for lighting and the total active electrical power,
the most influential variables are the number of occupants and the solar irradiance.
During the summer, the independent variable outdoor temperature is particularly im-
portant too for the classification process. Furthermore, the number of classes identified
for each examined case are between 5 and 10. In the Fig. 4.3, 4.4, 4.5, 4.6 the sequence
graphs of both active electrical power for lighting and total active electrical power con-
sumption and Mzscore graphs for the selected classes with outliers are shown.

It is clear that the outliers in individual class are mostly peak values and can be easily
located, while in sequence data the same is not possible. Each outlier identified by
the GESD method is labeled with the time of the day, the day of the week and the
date. It was verified that for all the simulations performed the indexMzscore assumed
extreme absolute values proving to be an excellent diagnostic marker for the analysis
of fault detection. Moreover, for each building examined (relative to the total electrical
active power for lighting) and for the selected classes with the method CART, in the
Fig. 4.3 and 4.4 outliers identified that are common to both clustering methods applied
are also highlighted. This type of analysis is particularly important because it allowed
to verify the correctness of the data classification based on the outliers identified in
the selected class and also identified through the clustering methods, K-Means and
DBSCAN.

The following Tables (Tab. 4.1 and 4.2) show in detail the outliers identified by the
methods K-Means and DBSCAN; the common outliers are highlighted for both active
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FIGURE 4.3: Segment of active electrical power for lighting sequence and
Mzscore of a class data (CART) with evidence of major outliers identified

with GESD (Building F66-winter data) [17]

electrical power for lighting and total active electrical power considering different pe-
riods of the day. It was observed that for buildings F69 and F72 (Jan-Feb) the outliers
are common only for the active electrical power for lighting while for buildings F68,
F71, F72 and F73 (May-Jun) outliers are common for both active electrical power for
lighting and total active electrical power.

Further conducted analysis and reported in the Tables 4.3 and 4.4 relate to the identifi-
cation of the outliers observed for the total active electrical power which are common
to all three methods of data mining techniques. From these Tables it is observed that
most common outliers are identified in the early morning.In general outliers are iden-
tified in three different periods of the day. The first period is early morning between
06:30 and 07:30. In the early morning both electrical power for lighting and total elec-
trical power have the peaks at a very low presence of occupants. The second period in
which many outliers are identified is between 12:30 and 13:30 during the lunch break.
The third period is related to the end of working hours between 17:00 and 17:30, where
it is observed that a decrease in the number of occupants of the building does not cor-
respond to a decrease in power consumption for lighting and total power (which takes
into account the plug load and air conditioning).
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FIGURE 4.4: Segment of active electrical power for lighting sequence
and Mzscores of a class data (CART) with evidence of major outliers

identified with GESD (Building F69-summer data) [17]

Artificial neural network ensemble

The fault detection analysis conducted on the basis of the residuals obtained by the
ANN BEMs consumptions modeling is described in this Paragraph. For the sake of
simplicity, in the following only the results for the building F68 in summer season
(May 2013 – June 2013) are shown.

A residual analysis on lighting active electrical power and total active electrical power
was performed and for both cases the testing residuals with a timestamp of fifteen
minutes are shown in Figure 4.7(a) and (b) respectively.

Then, the peak detection and the GESD methods were applied to active electrical power
for lighting residuals: the detected faults are reported in Table 4.5. The testing period
for building F68 is from 10/06/2013 to 20/06/2013.

The identified residual peaks include potential early morning faults for which very
high power demand is observed with few people in the buildings (see Table 4.5). These
situations correspond to "systematic" anomalies: the high consumption in the early
morning is due to the cleaning staff that is not part of presence data. Table 4.5 shows



Chapter 4. Fault detection analysis of building consumptions 55

FIGURE 4.5: Segment of total active electrical power sequence and Mzs-
cores of a class data (CART) with evidence of major outliers identified

with GESD (Building F66-winter data) [17]

also that the Peak Detection Method performs better than the GESD method since it is
able to detect a greater number of "not false positives" faults: it should be noticed that
this conclusion is not general but it is specific to this particular type of fault detection
application and strongly dependent on the dataset used. In Figure 4.8 an example of
fault detected by the Peak Detection Method and not by the GESD method applied to
building F68 residuals is shown: this situation correspond to a "real" anomaly because
the lighting power consumption is high (1.28 kW) with respect to the time of the day
and only one presence in the building.

The results confirm that the analysis of residuals generated through the ANN BEM
and the application of the Peak Detection Method represents a useful and powerful
technique for the peak building lighting fault detection.

The Peak Detection Method is also directly applied to the sequences lighting active
power demand data. In Figure 4.9 is shown an example of outlier (5.17 kW) detected in
the early morning for building F68 with the values of Mzscore and S function indices.

However the data analysis showed that lighting power consumption is related to sev-
eral variables i.e. people, solar radiation, day and time, so it can be inferred that in
this specific application the extreme values are not always definite faults. Therefore
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FIGURE 4.6: Segment of total active electrical power sequence and Mzs-
cores of a class data (CART) with evidence of major outliers identified

with GESD (Building F70-summer data) [17]

some false positives can be found when an “univaried” outlier detection method is
applied without taking into account the effect of the independent variables. For this
reason, a FDD process performed through a residual ANN BEM analysis is always
recommended to avoid the occurrence of false positive faults.

Identification of common outliers

Following the various comparative analyses of the results obtained using the statistical
pattern recognition techniques and the residuals analysis described in Paragraph 4.3.1,
this Paragraph summarizes the anomalies identified through all proposed methods
for some selected buildings belonging to cluster of buildings in the period May-Jun.
The objective of this analysis is to improve the fault detection by minimizing the false
anomalies and to identify the type of faults. Figure 4.10 shows the Mzscore graph of a
class (CART) with evidence of common outliers detected by CART and K-Means with
GESD, DBSCAN and Peak Detection Method applied to ANN BEM residuals.

In Figure 4.11 the Mzscores of a class (CART) with evidence of common major outliers
identified by ANN BEM residuals (GESD) and CART (GESD) are shown.
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Date Id
Day Time

Electric
active

Power [W]

Total
electric
active

power [W]

Indoor
tem-
pera-
ture
[°C]

People
pres-
ence

Outdoor
tempera-

ture
[°C]

Global
solar

radiation
[W/m2]

Color legend

05/12/2012 4 7.30.00 2430.00 6311.39 16.15 1 6.20 141
06/12/2012 5 6.45.00 300.00 2535.39 18.69 0 4.60 339 DBSCAN -Lighting Power
06/12/2012 5 7.00.00 175.00 1958.19 18.83 0 5.20 381 DBSCAN-Total Power
06/12/2012 5 7.15.00 135.00 2001.40 18.90 1 5.60 292 Common-DBSCAN&K-means
06/12/2012 5 7.30.00 450.00 2616.60 18.95 1 5.80 360
07/12/2012 6 7.30.00 2615.00 5211.00 16.35 1 3.70 107
13/12/2012 5 7.15.00 2515.00 4729.20 17.69 0 4.90 311
13/12/2012 5 7.30.00 4855.20 7655.79 16.47 0 5.20 369
14/12/2012 6 7.30.00 920.00 3181.10 19.51 1 9.70 512
17/12/2012 2 7.15.00 585.00 2807.89 18.83 1 12.70 67
17/12/2012 2 7.30.00 970.00 3406.19 19.02 1 13.10 466
20/12/2012 5 7.30.00 845.00 3322.19 16.99 1 8.00 248
08/01/2013 3 7.00.00 1470.00 3450.00 16.00 0 10.00 185
08/01/2013 3 7.15.00 2640.00 4722.70 15.76 1 9.90 100
08/01/2013 3 7.30.00 3065.00 5405.79 15.69 1 9.80 111
16/01/2013 4 7.30.00 3510.00 6110.60 16.60 2 3.70 0
24/01/2013 5 7.30.00 2655.00 6253.29 16.02 2 5.50 0
30/01/2013 4 7.30.00 3590.00 6100.20 16.26 2 5.20 7
07/02/2013 5 7.30.00 2885.00 5980.00 18.93 0 3.70 0
11/02/2013 2 7.30.00 4445.20 6852.39 15.09 0 3.20 0
13/02/2013 4 7.30.00 3185.00 7012.70 16.72 3 3.80 11

TABLE 4.1: Outliers detected with KMeans (GESD) and DBSCAN meth-
ods for total electrical active power and active electrical power for light-

ing (Building F66-winter data)

Date Id
Day Time

Electric
active

Power [W]

Total
electric
active

power [W]

Indoor
tem-
pera-
ture
[°C]

People
pres-
ence

Outdoor
tempara-

ture
[°C]

Global
solar

radiation
[W/m2]

Color legend

17/05/2013 6 07:00:00 3235.00 4342.39 21.91 0 15.30 63
23/05/2013 5 06:45:00 5165.20 6191.29 21.64 0 13.10 23 DBSCAN-total power
27/05/2013 2 06:45:00 4530.00 5791.39 20.07 0 9.40 28 Common-DBSCAN&K-means
27/05/2013 2 07:00:00 4785.20 5826.20 20.12 0 9.50 35
27/05/2013 2 07:15:00 3840.00 4860.00 20.10 0 9.90 83
29/05/2013 4 07:15:00 4160.00 5200.60 21.28 0 14.00 160
04/06/2013 3 07:00:00 5015.20 6462.20 21.85 0 14.20 26
10/06/2013 2 06:45:00 3640.00 4515.60 24.09 0 16.30 105
10/06/2013 2 07:00:00 4140.00 5202.79 24.09 0 16.40 90
10/06/2013 2 07:15:00 2910.00 4194.89 24.07 1 16.50 102

TABLE 4.2: Outliers detected with KMeans (GESD) and DBSCAN meth-
ods for total electrical active power and active electrical power for light-

ing (Building F68-summer data)

These Figures confirm that most real abnormal consumption occurs during the early
morning period. Furthermore, the outliers detected by the application of all proposed
methods among the buildings are analyzed. It was observed that in all buildings the
abnormal values detected are mainly of an identical nature. Most outliers are present
during the same time periods and with a fewer number of people presence (see Table
4.6).

Figure 4.12 shows the active electrical power for lighting and the total active electrical
power consumption against the number of people presence (9 and more) for the cluster
of buildings (winter data and summer data).

The energy consumption of outliers shown in Table 4.6 is as high as peak operating
hours and equals to the consumption of high number of people presence. Usually off-
peak electric use in many buildings is 30-70% of peak use. From these results it can be
concluded that outliers identified by all methods more likely correspond to values of
real abnormal consumption, hence minimizing the number of false positives. Through
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Date Id
Day Time

Total electric
active power

[W]

Indoor
temperature

[°C]

People
presence

Outdoor
temparature

[°C]

Global solar radiation
[W/m2]

02/12/2012 1 07:45:00 2517.00 22.75 0 8.80 0
02/12/2012 1 20:00:00 2588.50 21.90 0 6.20 0
14/12/2012 6 06:30:00 5514.50 18.94 0 8.50 91
14/12/2012 6 06:45:00 4492.10 18.30 0 8.60 103
17/12/2012 2 07:30:00 4815.60 19.67 1 13.10 466
14/01/2013 2 07:30:00 4498.20 19.40 0 9.00 0
19/01/2013 7 02:30:00 2529.89 20.09 0 0.40 0
19/01/2013 7 02:45:00 2403.50 20.06 0 0.20 0
19/01/2013 7 08:15:00 2606.89 19.83 0 2.60 12
19/01/2013 7 14:45:00 2699.10 21.31 0 4.50 51
20/01/2013 1 03:15:00 2628.19 20.04 0 9.20 0
22/01/2013 3 07:15:00 4694.20 18.76 0 4.00 0
05/02/2013 3 07:15:00 6533.60 19.19 0 5.90 0
05/02/2013 3 07:30:00 6010.50 19.03 0 5.90 0
07/02/2013 5 07:30:00 4765.60 20.93 1 3.70 0
13/02/2013 4 07:30:00 4558.00 21.64 1 3.80 11

TABLE 4.3: Common outliers identified with CART (GESD), KMeans
(GESD) and DBSCAN for total electrical active power (Building F72-

winter data)

Date Id
Day Time

Total electric
active power

[W]

Indoor
temperature

[°C]

People
presence

Outdoor
temparature

[°C]

Global solar radiation
[W/m2]

14/05/2013 3 07:30:00 3169.00 18.87 2 12.40 26
23/05/2013 5 06:45:00 4066.60 21.79 0 13.10 23
23/05/2013 5 07:00:00 4238.70 21.15 0 13.20 32
31/05/2013 6 06:45:00 3205.30 20.42 0 9.00 26
31/05/2013 6 07:00:00 4292.00 20.59 0 9.30 51
31/05/2013 6 07:15:00 4433.10 20.23 0 9.80 74
31/05/2013 6 07:30:00 4124.50 19.50 2 10.40 127
11/06/2013 3 07:15:00 3361.19 23.35 1 16.10 33
13/06/2013 4 07:15:00 3561.69 23.89 0 19.40 42
21/06/2013 6 07:30:00 3633.19 24.45 1 20.40 60
21/06/2013 6 15:15:00 918.40 25.64 6 29.30 747
27/06/2013 5 07:30:00 3271.80 20.01 2 17.10 35

TABLE 4.4: Common outliers identified with CART (GESD), KMeans
(GESD) and DBSCAN for total electrical active power (Building F71-

summer data)

the proposed approach, this abnormal consumption is avoidable resulting a signifi-
cant amount of saved energy. Thus, once the ANN models are trained and the pattern
recognition models are defined, all the simulations can be performed in minute order
time. The proposed methodology allows to perform a fault detection analysis in "near"
real time and can be easily implemented in BEMS as demonstrated in the next Chapter.
Moreover, it should be recognized that the whole building data modeling approach
is useful for indications of probable cause and additional field measurements are re-
quired to confirm the probable cause of anomalous consumption, as again confirmed
in Chapter 5.

The results show the the effectiveness and usefulness of this data analysis approaches
in automatic fault detection of anomalous energy consumption values. In particular
the neural ensemble method has always proven to be more robust than the single neu-
ral model. The analysis of residuals (ANN BEM) coupled with the peak detection
method has also allowed to identify outliers in relation to the boundary conditions
of the buildings (occupants, indoor/outdoor temperatures, solar radiation, time and
day). As a consequence the method is able to detect the outliers that much more likely
reflect real anomalous consumption compared to outlier identified by statistical meth-
ods simply applied only to actual consumption data (univariate analysis). Since the
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FIGURE 4.7: Testing residuals of building F68 [17]: (a) active electrical
power for lighting; (b) total active electrical power

Date Time Power residual value [W] S function
value Mzscore

Peak detection method
10/06/2013 06:45 3088.68 2911.39 5.82
10/06/2013 07:00 3539.88 3362.59 6.85
12/06/2013 06:30 1670.47 1591.85 2.61
12/06/2013 20:00 1296.86 943.99 1.76
18/06/2013 06:45 1948.57 1648.96 3.24
21/06/2013 07:00 1414.58 936.35 2.03

Date Time Power residual value [W] Mzscore
GESD method

10/06/2013 06:45 3088.68 5.76
10/06/2013 07:00 3539.88 6.77

TABLE 4.5: Residual analysis and fault detection with ANN BEM for
building F68

ANNs training set is characterized by a "fault free" hypothesis, the ANNs testing out-
put allow the estimation of the normal consumption related to the input conditions and
an high value of testing residuals represents rightly an anomalous consumption. The
CART method algorithm coupled with GESD outliers detection algorithm is particu-
larly robust and accurate in finding the outliers of active electrical power for lighting
and total active electrical power. The method allows to determine more correctly if the
energy consumption is significantly different from previous consumption with the sim-
ilar boundary conditions. In the experimental results using K-Means approach some
of the identified clusters are impure and outliers are often scattered and difficult to
identify (the anomalous energy consumption values are disseminated). The DBSCAN
method proved to be particularly suitable for grouping data into clusters characterized
by the same density and with similar values. In addition, the method is effective in
bringing together all the outliers in a one cluster (cluster-0). In general , it was found
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FIGURE 4.8: Example of fault detection through residual analysis of
building F68 [17]

FIGURE 4.9: Example of fault detection through Peak Detection Method
application to consumption data of building F68 [17]

that for clustering analysis a suitable splitting of data allows to overcome the inherent
limitation of the algorithms (the time can not be considered as input variable in this
algorithm). Since weather conditions change considerably on the basis of the period of
the year and strongly influence electrical energy consumptions, all the described mod-
els have to be suitably built and trained for each season taking in account the different
building operation conditions.

4.4 Building energy profiling and trend detection analysis

The fault detection analysis so far conducted in the cluster of buildings of ENEA Casac-
cia Research Centre included the development of robust methods for the automatic
detection of anomalous singular values of electric consumption, taking account of the
boundary conditions that determine them. This Section is instead focused on the de-
velopment of a methodology and algorithms for the detection of anomalous thermal
energy trend for the cluster of buildings. The development of processes that auto-
matically identify anomalies connected to the energy demand time trend is important
because it is linked to the possibility of obtaining significant energy savings. These
methodologies constitute strategic and innovative applications in the fault detection
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FIGURE 4.10: Mzscores of a class (CART) with evidence of common ma-
jor outliers detected by CART and K-Means with GESD, DBSCAN and

Peak Detection Method (Building F66) [17]

Date Id
Day Time

Electric active
power for

lighting [W]

Total electric
active power

[W]

People
presence

Outdoor
temparature

[°C]

Global solar radiation
[W/m2]

16/05/2013 5 07:30:00 4200.00 5950.29 1 13.40 39
16/05/2013 5 07:45:00 4695.20 7493.10 3 13.90 44
22/05/2013 4 07:30:00 4165.20 7422.79 2 13.90 65
22/05/2013 4 07:45:00 4615.20 6718.20 2 14.00 97
31/05/2013 6 07:30:00 1690.00 4124.50 2 10.40 127
11/06/2013 3 07:15:00 1145.00 3361.19 1 16.10 33
21/06/2013 6 07:30:00 750.00 3633.19 1 20.40 60
27/06/2013 5 07:30:00 815.00 3271.80 2 17.10 35
28/06/2013 6 07:45:00 645.00 4215.39 1 17.00 74
29/05/2013 4 07:30:00 1885.00 6035.79 1 14.10 76

TABLE 4.6: Some common outliers detected by all methods among the
cluster of buildings

research area: the anomalous trends of energy consumption are some of the main fac-
tors to detect since they could represent symptoms of failure or bad management and
then causes of energy waste. In the following Paragraphs the conceptual framework
for the methodology development is first described, then an application case of the de-
veloped procedure to the thermal energy required for the environmental heating of a
building of the cluster (building F66) is presented.

4.4.1 Methodology framework

The first part of the process developed (Phase 1 and Phase 2 illustrated in Fig. 4.13)
had the goal of identifying the typical and fault-free daily consumption profiles. These
profiles are used as reference or benchmark trends in order to identify the condition of
"anomalous" for the testing energy demand time trend. The data set was processed in
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FIGURE 4.11: Mzscores of a class (CART) with evidence of common
major outliers identified by ANN residuals (GESD) and CART (GESD)

(Building F68) [17]

order to obtain hourly average thermal power values. For this purpose a "data prepa-
ration" analysis (data cleaning, missing data covering and outlier detection) was ini-
tially conducted on the data set. Then a descriptive statistical analysis was carried
out in order to identify correlations between the variables, variation range, occurrence
frequencies and a visualisation analysis of the hourly average thermal power values
was also realized through box plots and scatter plot representations. Basing on the re-
sults obtained from these previous steps, the data set was partitioned in three different
sub-data sets. The K-Means clustering algorithm (already presented in Section 4.3.1)
was applied to each sub-data set, considering for each day the hourly average thermal
power as the only variable. This step allowed to identify, for each sub-data set, homo-
geneous groups of thermal power profiles that could be labeled through a categorical
variable relative to the reference cluster. Successively some dimensionless factors ca-
pable of synthetically representing the shape of a daily profile of hourly average power
were identified. These factors are based on the ratio between typical power or energy
of the profile under observation. Therefore, for each sub-data set and for each cluster,
the "shape" factors for each hourly average thermal power daily profile were calculated.
For each sub-data set a classification tree through the CART algorithm (also introduced
in Section 4.3.1) was then developed, using as predictors the shape factors and as target
(or variable to classify) the reference cluster. In other words, on the basis of the shape
factors values corresponding to the profile under observation the classifier is able to
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FIGURE 4.12: Scatter plots showing active electrical power for lighting
and total active electrical power vs number of people [17]

associate it to one or more reference cluster. The calculation of the median profile of
the thermal power hourly profiles within each end node of each classification tree led
to the determination of the benchmark profiles. Within each end node the confidence
interval with a probability of 95% was also calculated, resulting in the determination
of an upper and lower profile for the benchmark profile representing its uncertainty.

FIGURE 4.13: Logic framework of the trend detection process

In order to activate the trend detection process, the procedure requires that the testing
profile through the classifier is associated, and then compared, to one of the previously
identified benchmark profiles. Once the benchmark profile with its relative uncertainty
is decided, the trend detection analysis is based on the evaluation of two different in-
dicators that define and quantify the potential anomaly of the trend (Phase 3 in Fig.
4.13). The first indicator involves calculating the norm of residuals and indicates the
deviation of the thermal power absolute values of the testing profile. The second indi-
cator instead is based on the evaluation of the incidence angle for each hour between
the testing profile and the benchmark profile. The possibility that for every hour the
benchmark profile and testing profile present or opposing trends (for example, one
descending and the other ascending) or diverging trends (same sign of the angular
coefficients of the profiles but different values) occurs through this second indicator.
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4.4.2 Experimentation and results discussion

The details of the phases of the trend detection methodology briefly described above
are provided below also through an application case study. In particular, the heating
power required during some months of the winter season 2014-2015 was analyzed.
Building F66 belonging to the cluster of buildings of ENEA Casaccia (see Section 4.2)
was used as reference.

Identification of similar consumption profiles through clustering analysis

The data set was first object of a data preparation procedure. In particular, in order
to obtain a data set without outliers and, finally, fault free benchmark profiles, all the
outliers that make a thermal power profile an anomalous profile were eliminated, i.e.
infrequent values or values affected by measurement errors. This procedure was car-
ried out through the use of statistical techniques (outlier detection methods).

Once obtained a robust data set, a clustering analysis using the k-Means algorithm was
applied with the purpose of identifying groups of similar days with reference to the
hourly average daily profile of thermal power required for environmental heating. The
data set was previously divided into three distinct sub-data sets: the first related to the
working hours (from 8:00 to 17:00) of the working days (Monday-Friday), the second
related to the non-working hours (from 17:00 to 8:00) of the working days, the third
related to weekend and public holiday days. This subdivision was made by observing
the power profiles that showed significantly different characteristics throughout the
three periods. After a sensitivity analysis regarding the variables which influence the
heating energy consumption, the nature of the available data revealed that the more
correct clustering operation could base on the only variable constituted by the hourly
average thermal power. The analysis of the available data is in fact resulted in a weak
relationship between the thermal power required for heating and the other monitored
variables (internal temperature, external temperature, solar radiation, occupancy). The
k-Means algorithm proved particularly effective in identifying homogeneous clusters
of typical profiles for each sub-data set analyzed. The number of identified clusters
is 3 for data set relative to working weekdays during working hours, 3 for working
weekdays during non-working hours and to 2 for public holidays and weekends.

Figures 4.14, 4.15 and 4.16 present the heating power similar profiles grouped into one
of the identified clusters for each of the sub-data sets, and in particular for working
weekdays during working hours, working weekdays during non-working hours and
public holidays and weekends respectively. Considering these Figures it’s evident that
the cluster algorithm is highly effective in grouping similar days in terms of power
profiles for each sub-data set.
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FIGURE 4.14: Hourly average thermal power profiles belonging to a ref-
erence cluster (working weekdays during working hours)

FIGURE 4.15: Hourly average thermal power profiles belonging to a ref-
erence cluster (working weekdays during non-working hours)

The clustering algorithm’s effectiveness is also demonstrated by the SVD (Singular
Value Decomposition) values, shown in Figures 4.17 and 4.18 for working weekdays
during working hours and working weekdays during non-working hours respectively.
It is possible to observe that objects within each cluster are characterized by high sim-
ilarity, while they are different between a cluster and another. The identification of the
reference clusters for each sub data set was a preliminary and fundamental operation
for the construction of a classification tree. In fact labeling the similar profiles with the
corresponding reference cluster allowed to use this categorical variable in the classifi-
cation tree.
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FIGURE 4.16: Hourly average thermal power profiles belonging to a ref-
erence cluster (public holidays and weekends)

Shape factors evaluation

In order to identify the variables useful for leading the supervised classification pro-
cess, several factors capable of concisely representing the shape of the hourly average
power profiles for each sub-data set were defined on the basis of a sensitivity analysis.
The defined shape factors are presented in Tables 4.7, 4.8 and 4.9 with respect to the
three analyzed sub-data sets. The shape factors are dimensionless indicators ranging
from 0 to 1 characterized by the ratio between hourly average power or energy of the
daily profile.

Factor Definition Acquisition period
Daily Pavg/Pmax f1 = Pavg,day,w/Pmax,day,w Working hours (10 h, 8:00-18:00)
Daily Pmin/Pmax f2 = Pmin,day,w/Pmax,day,w Working hours (10 h, 8:00-18:00)
Daily Pmin/Pavg f3 = Pmin,day,w/Pavg,day,w Working hours (10 h, 8:00-18:00)
Work Impact f4 = 10/24 · Pavg,work/Pavg,day 1 day (working hours 10 h, 8:00-18:00)
Lunch Impact f5 = 2/24 · Pavg,lunch/Pavg,day 1 day (lunch hours 2 h, 12:00-14:00)

TABLE 4.7: Shape factors for working weekdays during working hours

Factor Definition Acquisition period
Daily Pavg/Pmax f1 = Pavg,day,nw/Pmax,day,nw Non-working hours (14 h, 18:00-8:00)
Daily Pmin/Pmax f2 = Pmin,day,nw/Pmax,day,nw Non-working hours (14 h, 18:00-8:00)
Daily Pmin/Pavg f3 = Pmin,day,nw/Pavg,day,nw Non-working hours (14 h, 18:00-8:00)
Night Impact f4′ = 14/24 · Pavg,night/Pavg,day 1 day (non-working hours 14 h, 18:00-8:00)

TABLE 4.8: Shape factors for working weekdays during non-working
hours

In particular f1 factor is defined as the ratio between the average and the maximum
daily powers, f2 factor as the ratio between the minimum and the maximum daily
powers and f3 factor as the ratio between the minimum and the average daily powers.
f4 and f5 factors instead describe the thermal power impact of working period and
lunch period respectively on the daily profile: f4 factor is defined as the product of
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FIGURE 4.17: Objects representation within an identified cluster (work-
ing weekdays during working hours)

Factor Definition Acquisition period
Daily Pavg/Pmax f1 = Pavg,day/Pmax,day 1 day
Daily Pmin/Pmax f2 = Pmin,day/Pmax,day 1 day
Daily Pmin/Pavg f3 = Pmin,day/Pavg,day 1 day

TABLE 4.9: Shape factors for public holidays and weekends

the ratio of the average power during the working hours and the daily average power,
and the ratio between the number of working hours and the number of hours in a
day, while the f5 factor as the product of the ratio of the average power during the
lunch hours and the daily average power, and the ratio between the number of lunch
hours and the number of hours in a day. The number of working and lunch hours
was obtained through the direct analysis of the available data set. Finally the f4′ factor
(night impact) is defined as the product of the ratio of the average power during the
non-working hours and the daily average power, and the ratio between the number of
non-working hours and the number of hours in a day.

Through testing analysis, the dimensionless factors described above proved excellent
descriptors of the shape of the thermal power daily profiles. The shape factors were
calculated hour by hour for each thermal power profile relatively to each sub-data set
considered and then used as variables (predictors) to classify the profiles in relation
to the identified clusters. The construction of the classifier is illustrated in the next
Section.
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FIGURE 4.18: Objects representation within an identified cluster (work-
ing weekdays during non-working hours)

Construction of the classification trees

In order to automate the trend detection process, the next step was to develop a classi-
fier that, on the basis of representative and explanatory variables (predictors), allows to
identify one or more clusters of similar power profiles previously characterized. In this
phase for each sub-data set a CART classification tree was built. The classification trees
allow to estimate the categorical variable linked to the cluster ("Cluster No.") on the
basis of the values of the shape factors introduced above. In other words, on the basis
of the shape factors each CART classifier identify the homogeneous group of similar
profiles belonging to one or more clusters. Simple decision rules to guide the classifi-
cation process were found out and are listed in Tables 4.10, 4.11 and 4.12 for the three
sub-data set analyzed.

The end nodes represent sets of profiles with homogeneous characteristics that can
also come from different clusters. Once grouped the profiles belonging to each end
node, the benchmark profile was identified by calculating for each hour the median of
the average power values of these profiles. In this way a median benchmark profile
corresponds to each end node. In order to consider the dispersion of the hourly power
values within each end node, a confidence interval was also evaluated representative of
the uncertainty band and defined by an upper profile and a lower profile surrounding
the benchmark one. The following figures illustrate the benchmark profiles and the
relative uncertainty bands for each end node and for each sub-data set. In particular
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Rule Definition Profile
1 f4 > 0.4444 and f3 > 0.8404 1
2 f4 > 0.4444 and f3 > 0.8404 and f5 > 0.0988 2
3 f4 <= 0.4444 and f4 > 0.4302 3
4 f4 <= 0.4302 and f2 > 0.7517 4
5 f4 <= 0.4302 and f2 <= 0.7517 and f4 <= 0.4115 5
6 f4 <= 0.4444 and f3 <= 0.8404 and f5 <= 0.0988 6
7 f4 <= 0.4302 and f2 <= 0.7517 and f4 > 0.4115 and f5 <= 0.0867 7
8 f4 <= 0.4302 and f2 <= 0.7517 and f4 > 0.4115 and f5 > 0.0867 8

TABLE 4.10: Classification rules: working weekdays during working
hours

Rule Definition Profile
1 f2 <= 0.5920 1
2 f2 > 0.5920 and f1 > 0.9125 2
3 f2 > 0.5920 and f1 <= 0.9125 and f3 <= 0.7747 3
4 f2 > 0.5920 and f1 <= 0.9125 and f3 <= 0.8204 and f3 > 0.7747 4
5 f2 > 0.5920 and f1 <= 0.9125 and f3 > 0.8204 and f2 <= 0.7422 5
6 f2 > 0.5920 and f1 <= 0.9125 and f3 > 0.8204 and f2 > 0.7422 6

TABLE 4.11: Classification rules: working weekdays during non-
working hours

these benchmark profiles were identified: 8 benchmark profiles for the sub-data set
related to weekdays and working hours (Fig. 4.19, 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26);
6 benchmark profiles for the sub-data set related to weekdays and non-working hours
(Fig. 4.27, 4.28, 4.29, 4.30, 4.31, 4.32); 4 benchmark profiles for the sub-data set related
to public holidays and weekends (Fig. 4.33, 4.34, 4.35, 4.36). Furthermore, in order to
verify the trend detection procedure, some testing power profiles, analyzed in the next
Section, were identified. For the testing profiles the shape factors were evaluated and
on the basis of the classification rules they were associated to the respective benchmark
profile. The introduced testing profiles are represented in Fig. 4.20, 4.24, 4.26, 4.29, 4.31,
4.32, 4.33, 4.34, 4.35 with the benchmark profiles to which they have to be compared
and to which they were associated through the classifier. In these cases the residuals
profile was also calculated as the difference between the power of the testing profile
and that relative to the benchmark profile for each hour.

Anomalous trend detection procedure

Once identified the benchmark profiles and the relative uncertainty bands, the trend
detection process of a hourly thermal power profile includes two phases:

• the current profile is first associated with a benchmark one through the classifier;



70 Chapter 4. Fault detection analysis of building consumptions

Rule Definition Profile
1 f3 <= 0.7788 1
2 f3 > 0.7788 and f1 > 0.8957 2
3 f3 > 0.7788 and f1 <= 0.8957 and f2 <= 0.7517 3
4 f3 <= 0.7788 and f1 <= 0.8957 and f2 > 0.7517 4

TABLE 4.12: Classification rules: public holidays and weekends

FIGURE 4.19: Hourly average power benchmark profile 1 and uncer-
tainty band (working weekdays and working hours)

• subsequently the profile under observation is compared with the benchmark one
to determine the possible "anomaly".

In particular, the comparison between the two profiles is based on the evaluation of two
different indicators through which it is possible to define and quantify the potential
trend anomaly.

The first indicator (Distance Index, DI) includes the calculation of the residuals norm
(square root of the residuals squared sum between benchmark profile and current pro-
file) and provides information on the deviation of the absolute values of thermal power
assumed by the testing profile (Eq. 4.8).

DI =

√√√√ n∑
i=1

(yi,bench − yi,test)2 (4.8)

In Eq. 4.8 n are the considered hourly average values of thermal power, yi,bench is the
i-th value of the benchmark profile and yi,test is the i-th value of the testing profile.

The second indicator (Similarity Index, SI) consists in the evaluation of the similarity
measure between two trends as described in [27, 83, 84]. This measure is the weighted
average of the similarity matches Si between the primitives of the two trends on the
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FIGURE 4.20: Hourly average power benchmark profile 2, uncertainty
band and testing profile (working weekdays and working hours)

FIGURE 4.21: Hourly average power benchmark profile 3 and uncer-
tainty band (working weekdays and working hours)

different intervals Dti of the time period in which the similarity measure has to be
calculated (Eq. 4.9).

SI =

∑n
i=1 Si ·Dti∑n
i=1Dti

(4.9)

In this case study the intervals Dti always correspond to 1 time unit (1 hour), con-
sequently the similarity measure SI is simply given by the arithmetic average of the
similarity matches Si. It was decided to base the calculation of the similarity matches
Si on the evaluation of the cosine of the incidence angle for each hour between the test-
ing profile ytest and the benchmark profile ybench. The incidence angle α can be derived
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FIGURE 4.22: Hourly average power benchmark profile 4 and uncer-
tainty band (working weekdays and working hours)

FIGURE 4.23: Hourly average power benchmark profile 5 and uncer-
tainty band (working weekdays and working hours)

through the following relation (Eq. 4.10):

α = arctan

(
mtest −mbench

1 +mtest ·mbench

)
(4.10)

where mtest and mbench indicate the angular coefficients of the aforesaid profiles re-
spectively. More precisely, the similarity matches Si are calculated as in the following
equation (Eq. 4.11):

Si =

0, if mtest and mbench have opposite signs

cosα, otherwise
(4.11)
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FIGURE 4.24: Hourly average power benchmark profile 6, uncertainty
band and testing profile (working weekdays and working hours)

FIGURE 4.25: Hourly average power benchmark profile 7 and uncer-
tainty band (working weekdays and working hours)

Therefore if during an hour opposite trends between benchmark profile and testing
profile occur (i.e. a profile increasing and the other decreasing) the corresponding sim-
ilarity match Si takes value 0, in all other cases the value given by the incidence angle
cosine between the two profiles variable between 0 (when only one of the profiles is
constant) and 1 (in the case of profiles with the same trend defined by the angular coef-
ficients). In this way the Similarity Index SI , ranging from 0 to 1, considers altogether
if for each hour occur or opposite trends between the benchmark profile and the testing
profile or diverging trends (same sign of the angular coefficients of the profiles but dif-
ferent values) and it allows to briefly express how much the trends of the two profiles
are similar.
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FIGURE 4.26: Hourly average power benchmark profile 8, uncertainty
band and testing profile (working weekdays and working hours)

FIGURE 4.27: Hourly average power benchmark profile 1 and uncer-
tainty band (working weekdays and non-working hours)

Once described the indices, the procedure that allows to define and quantify the po-
tential trend anomaly can be fixed. A trend of hourly thermal power is anomalous
if:

• the Distance Index of the testing profile is anomalous, i.e. it is greater than the
maximum Distance Index of the upper and lower uncertainty profiles. In this
case the trend anomaly is a direct and evident finding because the values of the
testing trend differ greatly from those of the benchmark one and therefore it is
not necessary to assess the Similarity Index. Anyway the Similarity Index can
provide indications on the likeness of the profiles trends;

or
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FIGURE 4.28: Hourly average power benchmark profile 2 and uncer-
tainty band (working weekdays and non-working hours)

FIGURE 4.29: Hourly average power benchmark profile 3, uncertainty
band and testing profile (working weekdays and non-working hours)

• the Distance Index of the testing profile is not anomalous but the Similarity Index
is anomalous, i.e. it is lower than a threshold value set at 0.5.

The methodology described above was applied to the testing profiles introduced in
the previous Section in order to verify its validity. In Table 4.13 are shown the values
of Distance and Similarity Indices of each testing profile and the consequent outcome
of the trend detection analysis obtained by the comparison with the corresponding
benchmark profile and the related uncertainties.

As also verifiable from the direct observation of the profiles, the profiles 6 (Working
Weekdays Working Hours Fig. 4.24), 5 (Working Weekdays Non-Working Hours Fig.
4.31), 1 and 3 (Public Holidays and Weekends Fig. 4.33 and 4.35) are anomalous since
the Distance Indices report a significant deviation from the benchmark profiles. In the
Profile 5 case also the Similarity Index indicates an anomalous testing trend compared
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FIGURE 4.30: Hourly average power benchmark profile 4 and uncer-
tainty band (working weekdays and non-working hours)

FIGURE 4.31: Hourly average power benchmark profile 5, uncertainty
band and testing profile (working weekdays and non-working hours)

to the benchmark one.
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FIGURE 4.32: Hourly average power benchmark profile 6, uncertainty
band and testing profile (working weekdays and non-working hours)

FIGURE 4.33: Hourly average power benchmark profile 1, uncertainty
band and testing profile (weekends and public holidays)

FIGURE 4.34: Hourly average power benchmark profile 2, uncertainty
band and testing profile (weekends and public holidays)
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FIGURE 4.35: Hourly average power benchmark profile 3, uncertainty
band and testing profile (weekends and public holidays)

FIGURE 4.36: Hourly average power benchmark profile 4 and uncer-
tainty band (weekends and public holidays)

Distance Index Similarity Index Anomalous Profile

WORKING WEEKDAYS
WORKING HOURS

PROFILE 2 0.76 0.76
NOUPPER UNCERTAINTY 3.83 -

LOWER UNCERTAINTY 3.83 -
PROFILE 6 4.99 0.83

YESUPPER UNCERTAINTY 1.46 -
LOWER UNCERTAINTY 1.46 -

PROFILE 8 2.31 0.54
NOUPPER UNCERTAINTY 3.29 -

LOWER UNCERTAINTY 3.29 -

WORKING WEEKDAYS
NON-WORKING HOURS

PROFILE 3 1.57 0.65
NOUPPER UNCERTAINTY 1.85 -

LOWER UNCERTAINTY 1.85 -
PROFILE 5 5.61 0.29

YESUPPER UNCERTAINTY 0.96 -
LOWER UNCERTAINTY 0.96 -

PROFILE 6 0.62 0.61
NOUPPER UNCERTAINTY 0.91 -

LOWER UNCERTAINTY 0.91 -

WEEKENDS AND PUBLIC
HOLIDAYS

PROFILE 1 4.15 0.62
YESUPPER UNCERTAINTY 2.81 -

LOWER UNCERTAINTY 2.81 -
PROFILE 2 0.50 0.56

NOUPPER UNCERTAINTY 1.36 -
LOWER UNCERTAINTY 1.36 -

PROFILE 3 6.87 0.54
YESUPPER UNCERTAINTY 1.67 -

LOWER UNCERTAINTY 1.67 -

TABLE 4.13: Trend detection analysis of the testing profiles



Chapter 5

Experimentation of fault detection
and diagnosis analysis of building
electrical consumptions

5.1 Introduction

Energy and economic efficiency are the main targets of BEMS, therefore looking for a
valid method for fault detection and diagnosis (FDD) to instruct operation and main-
tenance is a main mission. At present FDD is mainly based on collecting signals whose
analysis and interpretation is left to human experts. Unfortunately, the number of sig-
nals is often very high and the relations among them highly non-linear. Thus, human
operators are often not capable to detect in time a fault. This is a very critical point,
because the early detection of a fault may prevent the building from serious problems.

In the energy optimization field, the evaluation of building actual energy consumptions
is a demandable and emerging area of building energy analysis. Therefore, develop-
ing automatic, accurate and reliable FDD methods is necessary in order to ensure the
optimal operations of systems and to save energy. Research on fault detection and
isolation in automated processes has been active over several decades. Different in-
telligent methods have been used to obtain useful information from building energy
consumption data for FDD analysis. A number of methodologies and procedures for
optimizing real-time performance, automated fault detection and fault isolation were
developed in the IEA ECBCS Annex 25 [75]. Many of these diagnosis methods are later
demonstrated in real buildings in the IEA ECBCS Annex 34 [53], which focused on
computer-aided fault detection and diagnosis. Annex 40 [134] encompasses commis-
sioning process, building control system, component level models, simulation models
at the building level for commissioning. The Executive Committee for the same im-
plementing agreement published Annex 47-report 4 [88] on the use of flow charts and
data models in the practice and research of initial commissioning of advanced and low
energy building systems in order to improve their operating performance.

79
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Many FDD tools are based on combinations of predicted building performance mod-
els and a knowledge-based system. They compare the performances of all or part of
the building over a period of time to what is expected, in this way incorrect operation
or unsatisfactory performances can be detected. The expected performances can be
assumed, desired and model-based [29]. Lai, Magoules, & Lherminier [64], for exam-
ple, introduce the use of Support Vector Machine (SVM) as a data mining tool applied
to buildings energy consumption data from a measurement campaign for the predic-
tion of the electrical consumption of a residential building. Early attempts at display-
ing energy consumption data for the energy optimization involved the use of graphs
to inform the user on the trends within their building systems [13, 41, 42, 40, 110].
The graphical indices can be used to analyze building energy consumption data and
to check for errors, but they are usually laborious. Katipamula & Brambley [57, 58]
classified the FDD methods for building energy systems and highlighted the strength
and weakness of each approach. Most of the research related to FDD focused on the
component-level faults [32, 44, 136, 143], and few researchers [141, 30, 48, 71] discussed
the FDD strategy for whole building lighting and HVAC systems energy consumption.

A number of papers on the application of artificial intelligence for FDD have been pub-
lished [70, 140, 94]. Liang, & Due [74] propose an approach that combines the model-
based FDD method and the Support Vector Machine (SVM) method for the detection
and classification of faults in the HVAC systems.

In the previous Chapter some examples of ANN application for fault detection anal-
ysis were presented [30, 85, 118]. In literature many other works of ANNs applied
to the entire FDD process can be found. Arseniev et al. [5] provide an approach for
building a FDD system based on the ANNs and an automatic training method for such
systems. The paper shows that even the usage of the simplest model of ANN such
as Rosenblatt’s perceptron could provide good results and compliance with rule-based
FDD system. Shang et al. [124] introduced an automatic fault detection method for au-
tomobile transmission and a fault diagnosis expert system for newly assembled trans-
mission. The order spectrum analysis method was used to analyze vibratory signals of
the automobile transmission. Selected feature vector sets were inputted into the neural
network for fault identification and classification of the newly assembled automobile
transmission. A large number of data was collected and analyzed from an industrial
site and the proposed algorithm was verified to be effective and exact. In Kalogirou et
al. [56] a fault diagnosis system of an automatic solar water heater was developed. This
system consists of a prediction module, a residual calculator and a diagnosis module.
In the prediction module an ANN is used to predict the fault-free temperatures that the
residual calculator compares with the measurement data, then in the diagnosis module
the residuals are compared against three constant threshold values. So, four categories
are defined (normal, low probability of failure, high probability of failure, and failure)
and three types of faults can be predicted. Other applications of ANNs for building
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FDD analysis can be found in [28, 57, 81].

Also fuzzy techniques [61, 144] are very useful for FDD analysis as they allow the
integration of human operator knowledge into the fault diagnosis process. The formu-
lation of the decisions is done in a human understandable way such as linguistic rules
[104]. In the energy application field these techniques are mainly used in FDD of energy
production systems [99, 10, 132] and very few studies are carried out on the building
energy consumption. Du, Er, & Rutkowski [31] developed a FDD strategy based on
an efficient adaptive Fuzzy Neural Network to assist building automation systems for
sensor heath monitoring and fault diagnosis of an Air-Handling Unit (AHU). Pan [103]
carried out a hybrid approach employing fuzzy sets and possibility theory: an example
of beam failure demonstrates the capability of the model that can help safety operators
to effectively assess fault possibilities and better evaluate building performance.

In this Chapter a fault detection analysis based on different neural ensemble and sta-
tistical approaches and a fault diagnosis analysis based on fuzzy sets and fuzzy logic
are presented. In the first part of the Chapter (Section 5.2) a brief theoretical descrip-
tion of the methods analyzed is presented. Then the proposed methodology is tested
on two months monitoring data sets for the lighting energy consumption of an actual
office building located at ENEA Casaccia Research Centre. The application of the FDD
analysis is shown with the aim to compare the capability of proposed approaches in de-
tecting and diagnosing two artificial faults created in the testing period. On the basis of
the proposed methodology, a FDD analysis algorithm was implemented and included
in the ICT platform of ENEA Casaccia Research Centre for an on-line and near real-
time application to the lighting and fan-coil electrical consumptions, as described in
Section 5.3. Experimentation is still ongoing and involves nine actual office buildings
of the Centre. The results of the experimentation of a one year time period for these
nine buildings are finally shown.

5.2 A methodology for the fault detection and diagnosis anal-
ysis: an application example

As shown in Figure 5.1, a soft computing approach in automatic detection and diagno-
sis of anomalous building lighting consumption is proposed. The capability of differ-
ent ANNE for artificial lighting fault detection of a real office building is demonstrated.
The fault detection is performed first analyzing the magnitude of the residuals gener-
ated by ANN BEM through two severity indices related to the peaks detected in the
data set. Furthermore a majority voting ensemble method (MVEM) is performed to
ensemble the results of different ANN classifiers. Then an innovative fault diagnosis
system based on fuzzy sets and fuzzy logic in order to find the cause related to the
detected faults is proposed. The method is based on a fuzzyfication of low level signals
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(severity indices, percentage of active rooms, hour of the day, etc.) and a fuzzy sets
composition producing a single diagnostic index ranging in the lattice [0,1], where 0
and 1 mean respectively the total absence or the maximum faulty alarm for the cause
under examination.

FIGURE 5.1: The proposed fault detection & diagnosis approach

Some theoretical hints on ANNs, ANN BEMs, Peak Detection method and related
severity indices were already given in the previous Chapter, ANN MVEM classifica-
tion approach and fuzzy logic are presented below.

5.2.1 Theoretical description of the proposed methods

Artificial neural network classifier and majority voting ensemble method

Pattern recognition is the study of how machines can observe the environment, learn
to distinguish patterns of interest from their background and make decisions about the
categories of the patterns [9]. Pattern recognition systems usually learn from a training
set and the recognition problem is a classification task: in particular, in the supervised
classification the classes are defined by the system designer. The four best known ap-
proaches for pattern recognition are template matching, statistical classification, syn-
tactic or structural matching and ANNs. The most commonly used ANN family for
pattern classification tasks is the feed-forward networks [129, 49, 43], which includes
MLP and Radial-Basis Function (RBF) networks. The increasing popularity of ANNs to
solve pattern recognition problems has been primarily due to their low dependence on
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domain-specific knowledge and due to the availability of efficient learning algorithms
to use [9]. ANN models allow to define nonlinear algorithms for feature extraction and
classification. The aim of the training is to ensure that the machine learns to extract
relevant information from the training set of possible inputs and corresponding targets
(classifications) in order to classify future input patterns.

Combining the decision of several classifiers can lead to improved recognition results:
the basic idea is to run not a single network but an ensemble of networks (each of
which have been trained on the same data), in order to classify a given input pattern
by obtaining a classification from each network and then using a combination scheme
to decide the collective classification [45]. Among all the combination methods, the
MVEM is by far the simplest one for implementation, and it is as effective as the other
more complicated schemes (Bayesian, logistic regression, fuzzy integral, etc.) in im-
proving the recognition rate for the used dataset [65]. By combining the decisions of
m experts, the majority vote assign the sample to the class for which at least v (see
Equation 5.1) of the experts agree on the identity, where:

v =

m
2 + 1, if m is even
m+1
2 , if m is odd

(5.1)

In this study a MVEM is performed to ensemble the results of different ANN classifiers
for fault detection analysis. An anomalous consumption detected by ANN MVEM can
be also defined "outlier".

Fuzzyfication and fuzzy sets composition

Mathematical developments of the fuzzy set theory advanced in a variety of ways and
in many disciplines [142]. Applications of this theory can be found, for example, in
artificial intelligence, computer science, medicine, control engineering, decision theory,
expert systems, logic, management science, operations research, pattern recognition
and robotics [63, 86, 115].

Most of traditional tools for formal modeling, reasoning and computing are determin-
istic and precise [144], implying that the parameters of the model representing exactly
the real system are definitely known. However, these assumptions are not always jus-
tified if a good reality description and very detailed data are needed for modeling.
To this purpose, fuzzy set theory provides a strict mathematical framework in which
vague conceptual phenomena can be precisely and rigorously studied. The axiomatic
bases of fuzzy set theory are various, Zimmermann [144] and Gottwald [39] offer a
good review.
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If J is a collection of objects denoted generically by j, then a fuzzy set A in J is a set of
ordered pairs (see Equation 5.2):

A = {(j, µA(j)|j ∈ J)} (5.2)

where µA(j) is the membership function which maps J to the membership space M .
Its range is the subset of non negative real numbers whose supremum is finite. If
sup(µA(j)) = 1 the fuzzy set is normalized. In fuzzy sets the definition of the member-
ship function (fuzzyfication) is a very important task. This can be any kind of analytical
function whose parameters have to be properly tuned according to the meaning of the
fuzzy set itself.

A fuzzy set operation is an operation on fuzzy sets. The most widely used operations
are called standard fuzzy set operations. There are three standard fuzzy set operations:
fuzzy complements, fuzzy intersections and fuzzy unions. The membership function
of the intersection (logical and) of two fuzzy sets A and B is defined as (see Equation
5.3):

µA
⋂
B(j) = min(µA(j), µB(j)), ∀j ∈ J (5.3)

The intersection operation in fuzzy set theory is the equivalent of the AND operation
in Boolean algebra.

The membership function of the union (exclusive or) is defined as (see Equation 5.4):

µA
⋃
B(j) = max(µA(j), µB(j)),∀j ∈ J (5.4)

The union operation in fuzzy set theory is the equivalent of the OR operation in Boolean
algebra.

The membership function of the complement (negation) is defined as (see Equation
5.5):

µ−A(j) = 1− µA(j),∀j ∈ J (5.5)

The complement operation in fuzzy set theory is the equivalent of the NOT operation
in Boolean algebra.

These definitions have also been extended. The ‘logical and’ (intersection) can also be
modeled as a t-norm [33] and the ‘inclusive or’ (union) as a t-conorm [6]. Both types
are monotonic, commutative and associative. Finally, a class of ‘averaging operators’
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[138] were defined, which do not have the mathematical properties of the t-norms and
t-conorms.

5.2.2 Case study and data set description

An actual office building (building F40) located at ENEA Casaccia Research Centre
(Rome, Italy) was considered as a case study (see Fig. 5.2). The building is composed of
three floors and a basement connected through the larger side with a second building.
The building is equipped with an advanced monitoring system aimed at collecting
energy consumption (electrical and thermal) and the environmental conditions.

FIGURE 5.2: The case study building for the application example of the
fault detection & diagnosis analysis

Artificial lighting energy consumption and maximum power of the building first floor
were analyzed and considered in this experimentation with an hourly timestamp. Fur-
thermore people presence, number of active rooms (a room is considered active if at
least one person is present), global solar radiation, time, date and day of the week,
were recorded with an hourly time step and considered as independent variables. A
dataset of about two months (December 2012 - January 2013) was considered for the
analysis. In order to verify the reliability and the effectiveness of the proposed FDD
approach, two artificial faults were created in the last week of the dataset (on Thursday
24th and Friday 25th of January). In those days, at the end of the working time with a
low people presence (between 17:30 and 18:00), all the offices artificial lights of the first
floor were switched on creating an anomalous peak of energy demand. In the floor
there are 13 offices of different size with a floor area ranging from 14 to 36 m2 and 2
CED rooms each of about 20 m2. Different number of fluorescent lamps (each 55 W)
ranging from 4 to 8 are installed in each office/room. In the 2 CED rooms 12 lamps,
each 55 W, are installed.
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5.2.3 Framework of the fault detection analysis and development of the
models

In order to build the ANN ensemble models, the monitored variables to be used as
inputs and outputs were selected (see Table 5.1). Two ANN ensembles were built ac-
cording to BEM and MVEM methods respectively. The methods were tested on the
week “Testing Set 2” (see Figure 5.3) for the fault detection analysis.

ANN BEM ANN MVEM
Input Output Input Output

Day of the week (1-7) Lighting active
electrical energy Day of the week (1-7) Flag fault (0-1)

Time (hour) Lighting maximum
active electrical power Time (hour)

People presence (floor
level)

People presence (floor
level)

“Active” rooms (floor
level)

“Active” rooms (floor
level)

Global solar radiation Global solar radiation
Lighting active

electrical energy
Lighting maximum

active electrical power

TABLE 5.1: Inputs and outputs of ANN BEM and ANN MVEM models

FIGURE 5.3: Data-set splitting

First, in order to estimate a normal pattern for the artificial lighting, the training of the
ANN BEM was performed considering a 2 weeks "fault free" data-set ("Training Set 1"):
the “fault free” hypothesis was based on the pattern observations of the electrical en-
ergy consumption for lighting and energy manager experience. In this case ANNs were
used as consumption estimators, not as consumption predictors: the neural model in-
puts are only the building operating conditions without dynamics (the consumption
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data). The “fault free” hypothesis of the training set is fundamental in order to guaran-
tee that high differences between the consumption estimated by the neural model and
the real consumption in the testing set effectively correspond to an anomalous con-
sumption in relation to the building operating conditions. Combining the outputs of
several ANNs through BEM is very simple (the estimation of BEM is the mean of the
estimations of all the ANNs) and allows to obtain better results than those which could
be obtained from any of the constituent neural models. Starting from a good estima-
tion of normal operation, a robust fault detection through BEM was carried out with a
residual analysis.

Furthermore in order to develop an ANN ensemble for classification of operational
data, the ANNs were trained using two weeks data that are representatives of normal
as well as faulty operating conditions (“Training Set 2”). The output of the training
data set (“Training Set 2”), indeed, was characterized by faults detected applying the
Peak Detection Method on the residual set: the residuals were calculated by the dif-
ference between the real consumption in the same period (“Testing Set 1”) and the
consumption estimated by an ANN BEM, as shown in Figure 5.3. It should be noticed
that Lighting active electrical energy and Lighting maximum electrical active power,
used as inputs of ANN MVEM, are real consumption measurements. The aim of the
training is to ensure that the neural model learns to identify "normal" and "anomalous"
operating situations of the building in order to classify future input patterns. Combin-
ing the decision of several ANN classifiers through MVEM is very simple and effective
(the decision of MVEM is the decision of at least half of all the classifiers) and can lead
to improved recognition rate than the individual neural models. Once the ANNs were
trained, the fault detection through MVEM becomes a pattern recognition task. The
ANN MVEM was used as a further fault detection method in order to assure a better
robustness of the whole methodology.

The considered ANN features were feed-forward MLP, with 1 hidden layer consisting
of 15 neurons, hyperbolic tangent as activation function for the hidden neurons and
linear for the output. Training was performed with MATLAB through the Levenberg-
Marquardt algorithm stopping after 1000 iterations.

5.2.4 Results: application of estimation and classification models for the
fault detection analysis

As described above, an ANN BEM model was built. The results related to “Training
Set 1” and “Testing Set 1” are reported in Table 5.2. In particular the performances of
the models have been evaluated according to the MAE (Eq. 5.6) and the MAX (Eq.
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5.7) errors:

MAE =
1

n

n∑
i=1

|yi − ŷBEM,i| (5.6)

MAX = max{|yi − ŷBEM,i|}ni=1 (5.7)

TRAINING SET 1 TESTING SET 1
ANN BEM ANN BEM

Active Energy MAE (kWh) 0.18 (±0.02) 0.15 0.73 (±0.02) 0.71
MAX (kWh) 1.45 1.11 5.02 3.81

Maximum Active Power MAE (kW) 0.20 (±0.03) 0.16 0.87 (±0.01) 0.84
MAX (kW) 1.80 1.40 5.71 5.47

TABLE 5.2: ANN BEM results (Training Set 1 and Testing Set 1)

where yi is the real output, ŷBEM,i is the estimated output and n is the size of the real
data set. The reported results were averaged over 10 different runs (standard deviation
in brackets) and the ensemble was built by the same 10 models. As shown in Table
5.2, the results obtained with ANN BEM perform always better than those obtained
with individual networks. Training and testing trends are shown in Figure 5.4 and
Figure 5.5 for lighting active energy and maximum active power demand respectively.
The estimated energy and maximum power follow quite well the real ones, except for
some “anomalous” real consumption values in the testing period.

FIGURE 5.4: ANN BEM (Training Set 1) – Active Energy (a) and Maxi-
mum Active Power (b)

A residual analysis on maximum active power was conducted: Figure 5.6 shows the
Testing Set 1 residuals both for energy and maximum power. Then, the Peak Detection
Method was applied to maximum active power residuals: the detected faults, reported
in Table 5.3, were used to build the Classifier Training Set (Training Set 2).
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FIGURE 5.5: ANN BEM (Testing Set 1) – Active Energy (a) and Maxi-
mum Active Power (b)

FIGURE 5.6: Testing set 1 residuals - Active Energy (a) and Maximum
Active Power (b)

The inputs of the ANN MVEM (see Table 5.1) are a set of features that define the output
of the network, i.e. the operating state of the system as “normal” or “anomalous”. The
output data associated were chosen to enable the ANN to perform pattern recognition.
Thus, by codifying the output data using a unique numerical pattern, the condition
‘normal operation’ was defined. In order to codify output data, the numerical values
0 (normal operation) and 1 (faulty operation) were used to develop a totally single
numerical pattern. The ensemble technique used is the MVEM. The neural classifier
was built in the training period (Training Set 2, see Figure 5.7) and it was applied using
hourly data in the testing period (Testing Set 2, see Figure 5.8).

As shown in Figure 5.8, using the MVEM to combine the results of ANN classifiers, the
two artificial faults and some other actual anomalous power consumption values were
detected. These actual faults correspond to very high power demand observed with
few people presence usually out of the working hour (especially in the early morning
when only the cleaning staff is present in the building). Table 5.4 shows all the faults
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Outlier
Data

Outlier
Hour

Maximum Power
Residual Value [kW]

S Function
Value

MZScore
Value

07/01/2013 18:00 1,66 1,62 1,65
08/01/2013 7:00 3,10 3,07 4,17
11/01/2013 17:00 2,56 1,58 3,23
14/01/2013 6:00 5,47 4,94 8,29
14/01/2013 8:00 3,61 3,15 5,04
14/01/2013 18:00 1,91 1,54 2,09
15/01/2013 6:00 3,96 3,45 5,65
15/01/2013 8:00 2,41 2,09 2,96
16/01/2013 6:00 4,82 4,34 7,16
16/01/2013 8:00 2,52 2,12 3,16
17/01/2013 6:00 4,59 4,43 6,75
17/01/2013 8:00 2,00 1,84 2,24
18/01/2013 6:00 4,19 3,90 6,06

TABLE 5.3: Residual analysis and fault detection on Testing Set 1 with
ANN BEM

FIGURE 5.7: ANN majority voting ensemble classifier (training)

detected. In Table 5.5 the classification error (defined as the percentage relative magni-
tude of classification error) in the training period is reported. It can be observed that
an ANN MVEM performs slightly better than using a single network.

Then, the ANN BEM trained with the Training Set 1 (see Figure 5.4) was applied to
Testing Set 2 (see Figure 5.9): the results obtained are reported in Table 5.6. Even in
this case, the ANN BEM always outperforms the single ANN. The lighting energy and
power demand was estimated with an high accuracy through the ANN BEM in the
training period. In the testing period the estimated energy and power follow quite
well the monitored ones, with the exception of the 2 artificial faults and some other
evident abnormal values.

The magnitude of the difference over the time between the actual and estimated power
demand (see Figure 5.10) was analyzed for detecting faulty operation or anomalous
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FIGURE 5.8: ANN majority voting ensemble classifier (testing). The two
artificial faults are in bold

Outlier Data Outlier Hour Maximum Active Power [kW]
21/01/2013 06:00 4,17
21/01/2013 08:00 5,23
21/01/2013 18:00 3,84
22/01/2013 06:00 5,26
23/01/2013 07:00 5,2
24/01/2013 08:00 5,19
24/01/2013 17:00 5,86

25/01/2013 06:00 5,34
25/01/2013 17:00 5,55

TABLE 5.4: Fault detection on Testing Set 2 with ANN MVEM

values through the peak detection method. Since maximum active power is more rep-
resentative of variations than active energy, only the analysis performed on the maxi-
mum power for lighting is presented.

To this purpose the Peak Detection Method was applied to the residuals data set in the
testing period. In Figure 5.11 the trend of residuals over the time is shown and the
common detected faults with ANN MVEM are circled.

As well as for the MVEM, the identified residual peaks include the “early morning
faults” and the two artificial faults (see Table 5.7). Even in this case, the “early morning
faults” are actual “systematic” faults due to an high power demand observed in the
early morning, when usually many lights are on and only the cleaning staff is present
in the building. However both proposed methods are able to detect also faults related
to other anomalous use of artificial lighting considering, for example, the available
natural lighting. The results confirm that the analysis of residual generated through
the ANN BEM and the application of the Peak Detection Method represents a useful
and powerful technique for the peak building lighting fault detection.
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Training Percentage Error
Best ANN 0,38

Worst ANN 2,29
ANN Average 0,95

Classifier 0,38

TABLE 5.5: Classification error percentage (training)

FIGURE 5.9: ANN BEM (Testing Set 2) – Active Energy (a) and Maxi-
mum Active Power (b)

The Peak Detection Method was also directly applied to the sequence maximum power
demand data. In Figure 5.12 the outliers detected for testing period (Testing Set 2) are
shown with the trends ofMzscore and Sfunction indices. Circled faults (the 2 artificial
faults) are the common faults with the two previous methods.

It can be observed that the method allows to detect the two artificial faults and some
other real faults in early morning. In this situations the relative severity indices cor-
rectly assume higher value (see Figure 5.12). However, the data analysis showed that
power is related to other variables i.e. people, solar radiation, day and active rooms,
so it can be inferred that the extreme values are not always definite faults. Therefore
some false positives can be found when an “univaried” outlier detection method is ap-
plied without taking into account the effect of the independent variables on the pattern
recognition. For this reason, an FDD process performed through a residual ANN BEM
analysis is always recommended to avoid the occurrence of false positive faults.

5.2.5 Diagnostic process with a fuzzy analysis

Finally, the experimentation concerned the application of the Fault Diagnosis method
on the selected testing week is proposed. The Fault Diagnosis system is based on fuzzy
sets and fuzzy logic. A fuzzyfication of low level signals and a fuzzy sets composition
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TRAINING SET 1 TESTING SET 2
ANN BEM ANN BEM

Active Energy MAE (kWh) 0.20 (±0.03) 0.17 0.84 (±0.06) 0.77
MAX (kWh) 1.70 1.24 4.08 3.81

Maximum Active Power MAE (kW) 0.21 (±0.03) 0.17 1.01 (±0.06) 0.92
MAX (kW) 2.15 1.44 4.75 4.59

TABLE 5.6: ANN BEM results (Training Set 1 and Testing Set 2)

FIGURE 5.10: Testing 2 residuals - Active Energy (a) and Maximum Ac-
tive Power (b)

providing a real value, in the lattice [0,1], were conducted. This value is capable of
indicating the seriousness or the alarm degree (1 maximum alarm degree, 0 no alarm
degree) of the detected fault with the cause under examination.

Thus, in order to characterize the diagnostic index which represents the alarm degree
of the detected faults for the cause:

“An anomalous lighting energy demand out of the working hours”

the main criterion and the process variables were defined. The main criterion is: “IF
a fault in lighting energy consumption occurs AND people presence in the building
is low AND NOT in working hours THEN the diagnostic index is high”. In terms of
fuzzy sets, the diagnostic index that corresponds to the cause under examination can
be translated in one of the two ways (Eq. 5.8 and Eq. 5.9):

C1 = min(S1, S2) (5.8)

C2 = w · S1 + (1− w) · S2 (5.9)

where w is a real number in [0,1] (in the experimentation w = 0.7). S1 and S2 are the
situations:
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FIGURE 5.11: Testing Set 2 residuals (maximum active power) and de-
tected peaks

Outlier Data Outlier Hour Maximum Power Residual
Value [kW] S Function Value MZScore Value

21/01/2013 06:00 3,70 3,11 4,34
22/01/2013 06:00 4,56 4,36 5,62
24/01/2013 07:00 3,63 3,56 4,24
24/01/2013 17:00 3,71 3,66 4,35

25/01/2013 06:00 4,59 4,44 5,66
25/01/2013 08:00 3,07 2,92 3,39
25/01/2013 17:00 3,79 3,51 4,47

TABLE 5.7: Residual analysis and fault detection on Testing Set 2 with
ANN BEM (the 2 artificial faults are in bold)

S1 = “A fault in lighting energy consumption occurs”

S2 = “People presence in the building is low AND NOT in working hours”

which are defined as expressed in Eq. 5.10 and Eq. 5.11 (see Table 5.8).

S1 = (F1)AND(F2) (5.10)

S2 = NOT (F3)AND(F4) (5.11)

Fuzzy set Linguistic value Membership function µFi(ji) Parameters

F1
Neural classifier fault detection is

positive yF = ŷMV EM

F2 Sfunction value is high Sigmoid c = 0,10; t =
0,08

F3 Working hours Gaussian q = 12; r = 4
F4 Active rooms yF = 1 - p

TABLE 5.8: Fuzzy sets, linguistic values, membership functions and pa-
rameters
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FIGURE 5.12: Maximum active power (Testing Set 2), Sfunction and
Mzscore values and detected peaks (common peaks are circled)

The fuzzy sets F1, F2, F3 and F4 are derived from the membership functions reported
in Table 5.8 and consist of values ranging from 0 to 1 obtained from variables which
represent measured evidences (preprocessing). In particular, ŷMVEM is the MVEM
output (which is by itself a value in the lattice [0,1]), p is the percentage of the rooms
given by the monitoring system where at least one person is present (active rooms),
Sigmoid and Gaussian functions are defined by Eq. 5.12 and Eq. 5.13 respectively
where for the Sigmoid function j is the S function value and for the Gaussian function
j is the hour of the day.

Sigmoid =
1

1 + e
c−j
t

(5.12)

Gaussian = e

(
−(j−q)2

2r2

)
(5.13)

The presented fault detection and diagnosis approach is therefore an analysis consist-
ing of the three conceptual steps: preprocessing, situation assessment and diagnosis of
the cause. In the following (Table 5.9), the results of the fuzzy diagnostic process on a
testing day where some faults occurred are reported in bold. Table 5.9 shows that the
index C2 (Eq. 5.9) performs much better than C1 (Eq. 5.8) because it assumes higher
values in the situations where power is too high with respect to the hour of the day and
the percentage of active rooms. In Figure 5.13 the FDD diagnostic index behavior (red
dashed line) with respect to the normalized power consumption (blue line) over four
days of the testing week is reported.
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Time Power
[kW]

Active
rooms (%) F1F1F1 F2F2F2 F3F3F3 F4F4F4 S1S1S1 S2S2S2 C1C1C1 C2C2C2

5:00 1,07 0,00% 0 0,00 0,78 1,00 0,00 0,78 0,00 0,24
6:00 4,20 0,00% 1 1,00 0,68 1,00 1,00 0,68 0,68 0,90
7:00 5,20 6,12% 1 1,00 0,54 0,94 1,00 0,54 0,54 0,86
8:00 5,19 17,35% 1 1,00 0,39 0,83 1,00 0,39 0,39 0,82
9:00 3,39 21,43% 0 0,06 0,25 0,79 0,00 0,25 0,00 0,07

10:00 2,97 27,55% 0 0,09 0,12 0,72 0,00 0,12 0,00 0,04
11:00 3,31 28,57% 0 0,99 0,03 0,71 0,00 0,03 0,00 0,01
12:00 3,27 29,59% 0 0,98 0,00 0,70 0,00 0,00 0,00 0,00
13:00 2,86 28,57% 0 0,43 0,03 0,71 0,00 0,03 0,00 0,01
14:00 2,65 27,55% 0 0,10 0,12 0,72 0,00 0,12 0,00 0,04
15:00 3,00 27,55% 0 0,91 0,25 0,72 0,00 0,25 0,00 0,07
16:00 2,72 26,53% 0 1,00 0,39 0,73 0,00 0,39 0,00 0,12
17:00 5,86 20,41% 1 1,00 0,54 0,80 1,00 0,54 0,54 0,86
18:00 3,08 14,29% 0 1,00 0,68 0,86 0,00 0,68 0,00 0,20

TABLE 5.9: Fault Diagnosis results on a testing day

FIGURE 5.13: FDD index behavior with respect to the normalized power
consumption

5.3 On-line experimentation of fault detection and diagnosis
analysis

5.3.1 The ENEA Smart Village project

The "Smart Village" is a research project carried out by ENEA Casaccia Research Cen-
ter, where the project is also realized, in partnership with Politecnico di Torino, Roma
Tre University and Università Politecnica delle Marche. The experimental project is
aimed to develop a Smart City reference model for real urban districts, based on the
three pillars Smart Building, Smart Lighting and Smart Mobility. In the "Smart Village"
different technologies are integrated, in particular monitoring, data elaboration and
data storage, actuation systems, with the main purpose to offer services on demand to
users. This results in a more efficient resource management and in an improved user
comfort and social participation. The activities related to the different aspects of the
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FIGURE 5.14: The Control Room of the ENEA Smart Village

project are centrally coordinated: in the Control Room (see Fig. 5.14), located in one
of the buildings involved in the project, the monitored data of the "Smart Village" are
stored and then elaborated by the several applications hosted on the "Smart Village"
ICT Platform.

Regarding to the Smart Building aspect of the experimentation, several buildings of
the ENEA R. C. are involved in the "Smart Village" project as shown in Fig. 5.15. In
these buildings BEMSs by different companies are installed aimed to monitor electrical
and thermal consumptions and environmental conditions and to define the desired
optimized control logics. In particular the F40 building (presented in Paragraph 5.2.2)
is equipped with sensors and actuators at room level, while the F64 building and the
cluster of buildings (presented in Section 4.2) are equipped with sensors and actuators
at building level: in this way it will be possible to compare the long term results of the
two energy management strategies. So far in the F40 building the lighting and fan-coil
electrical devices are controlled at room level on the basis of the hour of the day, the
day of the week and the employee presence. The objective is to apply this control logic
for the lighting and fan-coil electrical devices at building level to F64 building and to
the cluster of buildings. From the thermal point of view the main idea to realize is to
control the valves of the thermal plants that serve the buildings on the basis of the hour
of the day, the day of the week, the external temperature and the employee presence.
Furthermore, in the near future, the cluster of building will be equipped with RES
generation and energy storage elements in order to realize a complete energy micro
district in the Centre.

5.3.2 Experimentation results

Starting from the findings experience of Section 5.2 and works [59, 66, 82, 68], an appli-
cation tool was implemented and included in the ICT platform of the "Smart Village"
project aimed to obtain the on-line and near real-time FDD analysis of the lighting and
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FIGURE 5.15: Smart Buildings of the ENEA Smart Village

fan-coil anomalous electrical consumptions of the buildings involved in the project. In
particular the considered anomalies are caused by the improper use of the employees
and are below indicate as "lights on in absence of people" and "fan-coils on in absence
of people".

Figures 5.16, 5.17, 5.18 and 5.19 provide some implementation step on the "smart-
towndb" database in the ICT platform, according to the three-steps procedure Prepro-
cessing (Fig. 5.16, 5.17, 5.18), Situation Assessment, Causes (Fig. 5.19) presented in
Paragraph 5.2.5.

FIGURE 5.16: processmethods_parameters Table in smarttowndb DB

The testing phase of the diagnostic models was carried out. The period of experimen-
tation starts from January 26, 2013 for the F40 building and from April 1, 2013 for the
cluster of buildings (dates when the data acquisition periods start, respectively) and is
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FIGURE 5.17: Part of preprocessing Table in smarttowndb DB

still continuing. In F40 building, however, some problems in the acquisition of electri-
cal measurements were encountered and fixed in July 2014, then the values of lighting
and fan coil consumption are reliable only from that period.

For each building the analysis of anomalies consisted in their distribution by year, by
month, by time slots and by severity. Only the anomalies with a diagnostic index value
greater or equal to 0.5 are considered.

Figures 5.20, 5.21, 5.22 and 5.23 show the results obtained in the case of distribution by
time slots of the anomalies "fan-coils on in absence of people" and "lights on in absence
of people" for the cluster of buildings (Figure 5.20 and Figure 5.22) and the F40 build-
ing (Figure 5.21 and Figure 5.23) in the year June 2014 (July 2014 for the F40 building)
- June 2015. The anomalies related to the lights in the building F40 (Figure 5.23) are
almost absent during the night as in this building is applied an adaptive control of the
lights based on the people presence. A similar situation occurs for the fan-coils on/off
during the heating and cooling periods of the F40 building: the control is carried out
by setting the temperature set-point for each room on the basis of the corresponding
employee presence and ensuring the fan-coils on during the early morning and the
lunch time. According to this, the fan-coils anomalies in the building F40, illustrated
in Figure 5.21, are characterized by a clear decrease in the night hours. The distribu-
tion of the anomalies changes considerably in the cluster buildings, where no electrical
and thermal utilities control is applied: the anomalies related to the fan coils (Figure
5.20) and lights (Figure5.22) occur even at night and increase in correspondence of the
entrance and the exit of the employees from the buildings.

Figures 5.24, 5.25, 5.26 and 5.27show the distribution of anomalies for diagnostic index
value. The number of anomalies with high diagnostic index value (index> = 0.8) is
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FIGURE 5.18: Part of fuzzyset Table in smarttowndb DB

generally lower than the number of anomalies with low diagnostic index value (index
between 0.5 and 0.7).

In Figures 5.28, 5.29, and 5.30 the fan-coils anomalies distributions by month and by
year for F40 building are illustrated. The results are affected by problems in consump-
tion data acquisition.

Figures 5.31, 5.32 and 5.33 show the lighting anomalies distributions by month and by
year for F40 building. As in the previous case, the results are affected by problems in
consumption data acquisition.

In Figures 5.34 and 5.35 the number of anomalies related to fan-coils and to light for
each building of the cluster and for each year during the period April 2013 - June 2015
is shown respectively. The F68 building is characterized by the greatest number of
fan-coils anomalies (1930 total), while the F72 building is the most virtuous (626 Total
anomalies). The F71 building shows the greatest number of lighting anomalies (978
total), the building F70 the lowest number (77 total).
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FIGURE 5.19: Part of historianc Table in smarttowndb DB

FIGURE 5.20: Cluster of buildings, fan-coils on in absence of people:
time slots when anomalies occur per building in the year June 2014 -

June 2015
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FIGURE 5.21: Building F40, fan-coils on in absence of people: time slots
when anomalies occur per floor and in the whole building in the period

July 2014 – June 2015

FIGURE 5.22: Cluster of buildings, lights on in absence of people: time
slots when anomalies occur per building in the year June 2014 - June

2015
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FIGURE 5.23: Building F40, lights on in absence of people: time slots
when anomalies occur per floor and in the whole building in the period

July 2014 – June 2015

FIGURE 5.24: Cluster of buildings, fan-coils on in absence of people:
diagnostic index of the anomalies per building in the year June 2014 -

June 2015
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FIGURE 5.25: Building F40, fan-coils on in absence of people: diagnostic
index of the anomalies per floor and in the whole building in the period

July 2014 – June 2015

FIGURE 5.26: Cluster of buildings, lights on in absence of people: diag-
nostic index of the anomalies per building in the year June 2014 - June

2015
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FIGURE 5.27: Building F40, lights on in absence of people: diagnostic
index of the anomalies per floor and in the whole building in the period

July 2014 – June 2015

FIGURE 5.28: Building F40, fan-coils on in absence of people: monthly
distribution of the anomalies per floor in the period July 2014 – June 2015

FIGURE 5.29: Building F40, fan-coils on in absence of people: monthly
distribution of total anomalies in the period July 2014 – June 2015
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FIGURE 5.30: Building F40, fan-coils on in absence of people: yearly
number of anomalies per floor and in the whole building in the period

July 2014 – June 2015

FIGURE 5.31: Building F40, lights on in absence of people: monthly dis-
tribution of the anomalies per floor in the period July 2014 – June 2015

FIGURE 5.32: Building F40, lights on in absence of people: monthly dis-
tribution of total anomalies in the period July 2014 – June 2015
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FIGURE 5.33: Building F40, lights on in absence of people: yearly num-
ber of anomalies per floor and in the whole building in the period July

2014 – June 2015

FIGURE 5.34: Cluster of buildings, fan-coils on in absence of people:
yearly number of anomalies per building in the period April 2013 – June

2015
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FIGURE 5.35: Cluster of buildings, lights on in absence of people: yearly
number of anomalies per building in the period April 2013 – June 2015



Chapter 6

Conclusions

Smart Buildings go beyond energy savings and contributions to sustainability goals.
They impact the management, security and safety of all resources, enable innovation
by creating a platform for accessible information, and turn buildings into virtual power
generators by allowing operators to reduce the electric load and sell the energy into
the market. Smart Buildings are a key component of the future where information
technology and energy sector combine to produce a robust and low-carbon economy.

This dissertation proposes a BEMS model for a Smart Building of the tertiary sector that
interacts with the energy market with a classic consumer profile. In future works the
suggested BEMS model can be extended to the cases of micro-grids (districts) where
buildings and other consumers (classic and flexible), generation and storage elements,
thus prosumers, are present. In this last cases BEMSs can take into account informa-
tion from the rest of the district, thus contributing to the micro-grid management in a
distributed way. This perspective assumes a rethinking of the concept of building, that
deals with its management and at the same time is active element of a district context.

The proposed BEMS architecture is modular from the features point of view and hier-
archical depending on the control frequency and the specific objective. The research
experiences carried out in this work represent implementation and application exam-
ples of different modules operating at different levels.

In particular, two innovative and adaptive MPC strategies for multi-zone building tem-
perature regulation using electrical heaters were proposed in Chapter 3. In order to re-
duce the energy consumption, at every simulation step the information about the occu-
pancy level of each zone and the energy price profile were used. The experimentation
was carried out considering the thermal coupling between the zones, thus comparing
two possible MPC architectures (distributed and decentralized) in order to evaluate the
best one in terms of control results (consumed energy and comfort). The distributed
MPC with dynamic temperature set-points according to occupancy and energy price
levels was proved to be the best MPC configuration in terms of consumed energy. This
positive aspect corresponds to a slight disadvantage in discomfort terms (distance from
the ideal indoor comfort temperature). Future work will focus on the analysis of the
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asymptotic stability of the system and on the non-linear MPC implementation for the
results comparison with the linear version presented in this work.

The research carried out in Chapter 4 was aimed at testing the potential of using data
mining, artificial intelligence and statistical techniques for automated fault detection of
both singular values and trends of anomalous consumption for a cluster of buildings.
The methods proposed and implemented in the first part of the Chapter have proven
adequate for the detection of anomalous values of lighting consumption with differ-
ent potentials and limitations. In the context of Smart Buildings, the common detected
outliers in the cluster of buildings demonstrate that the management of a Smart Dis-
trict can be operated with the whole cluster of buildings approach. The second part
of the Chapter focused on the detection of anomalous trends of heating thermal power
considering daily profiles with a hourly average timestamp. The application of the pro-
posed approaches can improve fault detection processes in building context by reduc-
ing the number of false anomalies. The study will help BEMS by tracking and detecting
anomalous energy consumption in building overall energy system. The methodology
can be easily integrated with the BEMS to perform fault detection in “near” real time
and can be applied to the buildings with similar end-uses. The developed method-
ology is already partially implemented and will be completed in the informatics in-
frastructure in ENEA Casaccia to supervise the building electrical and thermal energy
consumptions of the cluster of buildings.

Chapter 5 starts demonstrating the effectiveness and usefulness of several techniques
(ANN Estimator, BEM, Residual Analysis, Peak Detection, ANN Classifier, MVEM,
Fuzzy Logic) for the FDD analysis of lighting energy consumption of an office building
considering its operating conditions. The results show that ANN BEM always outper-
forms individual networks in artificial lighting power demand estimation. The fault
detection, performed trough the analysis of the magnitude of residuals using a peak de-
tection method, allowed to detect two artificial faults and some other actual anomalous
power values in the testing data set. An ANN ensemble for classification of operational
data has been also developed, considering as output of the network the operating state
of the system as “normal” or “anomalous”. A very high accuracy of the developed
classifier was verified in detecting anomalous artificial lighting power values using a
MVEM. Finally, a diagnostic index ranging from 0 to 1 indicates the severity degree
of an anomalous energy consumption associated to a particular cause. This index was
implemented using fuzzy sets, which provide a transparent model easy to be inter-
preted, where several process variables like hour of the day, active rooms percentage
and power consumption are combined. The lighting energy consumption profile of the
building is strictly dependent on the external lighting conditions that were considered
through the global solar radiation data. The global solar radiation changes consider-
ably on the basis of the season. The proposed methodology is really transferable to the
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building operation in other months because it’s possible to build (train) the neural mod-
els for every season of the year and apply (test) them in the corresponding season. In
particular the diagnosis process (identification of the cause) was related to anomalous
lighting energy values out of the working hours. In further studies the methodologies
here proposed can be effectively used also for the diagnosis of anomalous trends (and
not only of peaks) of building consumptions (e. g. "after a work day some users have
forgotten to turn off their lights") since the residual analysis and the pattern recognition
methods proposed are able to detect consecutive anomalous values and consequently
begin the diagnostic process. In the second part of the Chapter a FDD analysis algo-
rithm based on the proposed methodology was implemented and included in the ICT
platform of the "Smart Village" project of the ENEA Casaccia Research Centre. The aim
was to obtain for the buildings involved in the project an on-line and near real-time
application tool for the FDD analysis of the lighting and fan-coil anomalous electrical
consumptions caused by the improper use of the employees. The one year experi-
mentation results demonstrate the effectiveness of the implemented application as a
powerful tool for the Energy Manager: in fact it proves to be useful for the short-term
diagnosis of anomalous consumption related to the occupant bad behavior, and indi-
rectly in the medium/long period it provides feedback on possible device failures and
on the proper application of the building control strategies.
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