

Facoltà di Scienze M.F.N. Dipartimento di Scienze Geologiche

SCUOLA DOTTORALE IN GEOLOGIA DELL'AMBIENTE E DELLE RISORSE (SDIGAR)

XXII° Ciclo

Sezione Geologia delle Risorse

Il magmatismo peralluminoso nelle unità Sebtidi Inferiori (Rif, Marocco): contributi all'evoluzione della tettonica regionale nel Mediterraneo Occidentale

Candidato

Dr. Federico Lucci

Tutore

Prof. Domenico Cozzupoli (Università degli Studi "Roma Tre")

Cotutori

Dr. Federico Rossetti (Università degli Studi "Roma Tre") Dr. Andrea Dini (IGG – CNR "Area di Pisa")

Il Magmatismo peralluminoso nelle unità Sebtidi Inferiori (Rif, Marocco): contributi all'evoluzione della tettonica regionale nel Mediterraneo Occidentale

1. Introduzione

La definizione delle relazioni che intercorrono tra fenomeni di anatessi crustale ed eventi metamorfici in domini orogenici è un punto critico nella comprensione non soltanto dei processi coinvolti nella costruzione di catene montuose e dei modelli di crescita crostale, ma anche della localizzazione spazio-temporale degli eventi di fusione. Questi aspetti risultano di particolare rilevanza poi, quando i fenomeni orogenetici si sovraimpostano su domini orogenici più antichi, provocando trasformazioni strutturali e mineralogiche delle precedenti caratteristiche strutturali e tessiturali delle rocce.

Inoltre, particolare attenzione è richiesta dove i processi sin-orogenici di anatessi si sviluppano in aree di crosta continentale che hanno già avuto esperienza di metamorfismo di alto grado, anatessi e segregazione di fusi. In questi casi ci si aspetta che i domini crustali assumano un comportamento refrattario tale da renderli non idonei alla generazione di porzioni fertili per ulteriore magmatismo (i.e. White and Powell, 2002; Buick et al., 2008; Dienner et al., 2008); e i geocronometri isotopici, in questi terranes caratterizzati da polimetamorfismo di alto grado, possono produrre dati di controversa e ambigua interpretazione che possono quindi portare a concrete difficoltà nell'interpretazione delle strutture e delle composizioni delle rocce osservate, risultanti da una complessa (monofase o polifase?) evoluzione (Vernon, 1996; Vavra et al., 1999; Vernon, 2004; Harley et al, 2006).

In questo contesto le zone interne della catena Betica-Rif, il Dominio di Alboran (Fig. 1), risultano essere un'area interessante per studiare questi problemi aperti, a causa del riconoscimento di un evento tettono-termico a carattere regionale avvenuto nel Miocene inferiore (ca. 22Ma) che ha rielaborato e oscurato la storia del più antico basamento polimetamorfico (Soto et al., 1995; Platt et al., 2003; Michard et al., 2006).

Una diretta conseguenza di questo evento è la mancanza di una completa comprensione dei caratteri e della distribuzione degli eventi metamorfici Alpini e Pre-Alpini. Incertezze sulle età delle strutture relative al metamorfismo di alto grado (Michard et al., 1997, 2006; Zeck and Whitehouse, 1999; Montel et al, 2001; Platt et al., 2003a;b) e sullo scenario geodinamico in cui si realizza l'evento del Miocene inferiore, sono state oggetto di discussione e dibattito con la proposta di modelli associati a rimozione convettiva della litosfera subcontinentale (Platt et al., 2003a,b), rottura dello slab subdotto (Zeck, 1996), delaminazione litosferica (Van der Wal and Wissers, 1993; Tubia et al., 2004) o processi di subduzione attiva (Sanchez-Rodriguez and Gebauer, 2000).

Fig. 1 Carta geologica regionale del Mediterraneo Occidentale; Catena Betica e Rif

La causa principale di ambiguità nell'interpretazione dell'evoluzione tettonica di questo settore del Mediterraneo Occidentale risiede nell'interpretazione della storia metamorfica delle rocce in facies granulitica costituenti l'involucro delle peridotiti affioranti nel Dominio di Alboran: a Ronda in Spagna e a Beni Bousera in Marocco.

Il Dominio di Alboran nella catena del Rif è caratterizzato da unità di alto grado metamorfiche e da peridotiti (Fig. 2); le sezioni trasversali SSW-NNE (Fig. 2A) e N-S (Fig. 2B) costruite a partire da dati sismici profondi (citazioni in Chalouan e Michard, 2004), mostrano una possibile interpretazione della strutturazione del Rif con l'accavallamento delle Unità metamorfiche sulle Unità Esterne del Rif stesso. Inoltre considerando le analogie tra le Alpujarridi e le Sebtidi e valutando la presenza di gneiss a Sebta simili a gli Ojen gneiss presenti sotto le peridotiti di Ronda, Chalouan e Michard (2004) ipotizzano la presenza degli gneiss di Sebta anche sotto le peridotiti di Beni Bousera.

Fig. 2 Il Dominio di Alboran nella catena del Rif maghrebide; nel riquadro giallo il massiccio di Beni Bousera costituito dalle unità metamorfiche di alto grado e dalle peridotiti (modificato da Michard et al., 2006). Nelle due sezioni sono presentati profili strutturali attraverso il Rif. A) Sezione trasversale del Rif e del bacino di Alboran meridionale (modificato da Chalouan e Michard, 2004; Michard et al., 2006). B) Sezione longitudinale della Zona Interna del Rif, la presenza di rocce cristalline sotto le peridotiti di Beni Bousera è ipotizzata considerando gli Gneiss di Sebta e le rocce cristalline di Ojen sotto le peridotiti di Ronda (Spagna) (modificato da Chalouan e Michard, 2004).

Nell'area di Beni Bousera (Fig. 3), queste rocce in facies granulitica sono caratterizzate dalla presenza di numerosi corpi granitoidi leucocratici con diverso grado di deformazione ("Leptiniti" in Kornprobst, 1974), e nonostante la loro diffusa presenza poco è noto riguardo la/le età di messa in posto o riguardo le relazioni esistenti con il metamorfismo impostatosi sulle rocce dell'area (Michard et al., 2006).

Dati geocronologici sono disponibili solamente per gli sciami di dicchi granitici a carattere tardo-strutturale che hanno intruso le peridotiti e la loro copertura di alto-grado, ed evidenziano una età compatibile con il Miocene inferiore (Polvè, 1983). Questi corpi granitici risultano quindi un'importante tassello nella ricostruzione e nell'evoluzione del Dominio di Alboran, poiché costituiscono un marker vincolante per inquadrare in uno scenario Pressione-Temperatura-tempo le sue rocce in facies granulitica.

La maggior parte dei dati geocronologici e petrografici provengono da una serie di affioramenti lungo la traccia con direzione NE-SW della valle del fiume Oued Mter, nella parte meridionale del massiccio di Beni Bousera, dove una sezione completa del basamento cristallino è esposta (Fig. 3).

Fig. 3 (sx) il massiccio di Beni Bousera, nel rettangolo giallo l'area di Mter (modificato da Michard et al., 2006); (centro) relazione strutturale tra i vari corpi magmatici e le unità metamorfiche delle Sebtidi Inferiori; (dx) la sezione del Oued Mter vista dal fianco meridionale.

In questo lavoro sono presentati, sia per i corpi leptinitici sia per gli sciami granitoidi, i dati strutturali, mineralogico-petrografici e geochimici ed età U-Pb (con metodologia LA-ICPMS) eseguite su zircone e monazite, ed età Ar-Ar su muscoviti e biotiti opportunamente separate. L'insieme dei dati ottenuti attesta chiaramente che la messa in posto dei corpi granitoidi è avvenuta in due fasi maggiori: Varisica e Alpina in età (300Ma e 20Ma rispettivamente). L'integrazione di questi risultati con il quadro geologico regionale dimostra che il metamorfismo di alto grado (in facies anfibolitica-granulitica) precede l'intrusione dei graniti varisici, mentre

l'evento del Miocene inferiore è la conseguenza di un impulso termico tardivo che ha interessato una già strutturata (Ercinica e Alpina) pila di nappe orogeniche.

Questi risultati, quindi, evidenziano l'importanza dell'evento tettono-termico del Miocene inferiore aggiungendo vincoli fondamentali per la produzione di un possibile modello tettonometamorfico relativo alle fasi finali dell'orogenesi Alpina nel Mediterraneo Occidentale.

2. Metodologie di Analisi

Durante tre campagne di rilevamento sono stati prelevati oltre 60 campioni di roccia nell'area di Mter e presso le sezioni esposte di Bou Ahmed e Playa Smeila (Fig. 5). L'obiettivo principale di questo lavoro è stato caratterizzare le rocce granitoidi riconosciute e valutare la loro connessione con le rocce in facies granulitica di Beni Bousera.

Tabella 1 - Lista dei campioni presentati in questa tesi				
Campione	Litotipo	Host rock	Analisi svolte *	Coordinate del campionamento
13BA	dicco pegmatitico	Beni Bousera peridotite	M.C., W.R.G.	# 36, 45, 66, 18 (56, 16 22).
MA 09/6	dicco a cordierite	Beni Bousera kinzigite	W.R.G.	N 35° 19' 27"; W 004° 56' 04"
MT9	dicco	Contatto B.B.kinzigite-F.gneiss	M.C., W.R.G., Sr-Nd	N 35° 13' 51"; W 004° 48' 45"
23MT (MA 07/18)	dicco pegmatitico	Beni Bousera kinzigite (base)	M.C., W.R.G., Ar-Ar su Ms	N 35° 13' 09"; W 004° 48' 40"
MA 09/22	dicco	Beni Bousera peridotite	W.R.G.	N 35° 12' 25"; W 004° 50' 20"
26MT (MA 07/20)	dicco	Beni Bousera peridotite	M.C., W.R.G., Ar-Ar su Ms, Sr-Nd	N 35° 12' 18"; W 004° 50' 20"
27MT (MA 07/21)	dicco	Beni Bousera kinzigite	M.C., W.R.G.	N 35° 12' 03"; W 004° 50' 26"
28MT (MA 07/22)	dicco	Beni Bousera kinzigite	M.C., W.R.G., U-Pb su Mnz, Ar-Ar su Bt, Sr-Nd	N 35° 12' 03"; W 004° 50' 26"
MA 09/23	dicco	Beni Bousera kinzigite	W.R.G.	N 35° 12' 03"; W 004° 50' 26"
3MTE (MA 07/26)	dicco	Filali gneiss	M.C., W.R.G., U-Pb su Zrn e Mnz, Ar-Ar su Bt, Sr-Nd	N 35° 13' 28"; W 004° 47' 56"
4MTE	dicco pegmatitico	Filali gneiss	M.C., Ar-Ar su Ms	N 35° 13' 25"; W 004° 48' 08"
FR	dicco pegmatitico	Filali gneiss	M.C., Ar-Ar su Ms	N 35° 14' 04"; W 004° 47' 51"
BA1	leptinite	Filali gneiss (base)	M.C., W.R.G., in situ U-Pb su Zrn e Mnz, Sr-Nd	N 35° 18' 23"; W 004° 57' 23"
MA 09/4	leptinite	Filali gneiss (base)	M.C., W.R.G.	N 35° 18' 20"; W 004° 57' 16"
L1 (MA 07/14)	leptinite	Filali gneiss (tetto)	M.C., W.R.G., U-Pb su Zrn	N 35° 14' 19"; W 004° 48' 14"
MT7 (MA 09/25)	leptinite	Beni Bousera kinzigite (tetto)	M.C., W.R.G., U-Pb su Zrn, Sr-Nd	N 35° 13' 50"; W 004° 48' 15"
MT8	livello leucosoma migm.	Beni Bousera kinzigite (tetto)	M.C.,	N 35° 13' 50"; W 004° 48' 15"
19MT (MA 07/19)	leptinite	Beni Bousera kinzigite (base)	W.R.G.	N 35° 13' 09"; W 004° 48' 41"
MA 09/13	livello leucosoma	Beni Bousera kinzigite (base)	W.R.G.	N 35° 13' 09"; W 004° 48' 41"
MA 07/11	leptinite	Beni Bousera kinzigite (base)	W.R.G.	N 35° 19' 20"; W 004° 50' 51"
MA 09/16	livello leucosoma	Beni Bousera kinzigite (base)	W.R.G.	N 35° 13' 09"; W 004° 48' 41"
18BA	leptinite	Beni Bousera kinzigite (base)	W.R.G.	N 35° 18' 05"; W 004° 54' 23"
MA 09/20	leptinite	Filali gneiss (tetto)	W.R.G.	N 35° 13' 47"; W 004° 47' 49"
MA 07/29	leptinite	Filali gneiss (tetto)	W.R.G.	N 35° 13' 25"; W 004° 48' 08"
MT 10	leptinite	Filali gneiss	M.C., W.R.G., U-Pb su Zrn, Sr-Nd	N 35° 14' 23"; W 004° 48' 38"
MT 11	leptinite	Filali gneiss	M.C., W.R.G.	N 35° 14' 02"; W 004° 48' 14"
MT 12	leptinite	Filali gneiss	M.C.	N 35° 14' 02"; W 004° 48' 14"
MA 09/15	livello restite	Beni Bousera kinzigite (base)	W.R.G.	N 35° 13' 09"; W 004° 48' 41"
MA 07/28	gneiss migmatitico	Filali gneiss (base)	W.R.G.	N 35° 13' 19"; W 004° 48' 20"
MA 09/28M	restite	Beni Bousera kinzigite (base)	W.R.G.	N 35° 19' 20"; W 004° 50' 51"
K1 (MA 07/13)	kinzigite "acida"	Beni Bousera kinzigite (base)	M.C., W.R.G., U-Pb su Zrn	N 35° 19' 20"; W 004° 50' 51"
K3	restite	Beni Bousera kinzigite (base)	M.C., W.R.G.	N 35° 19' 20"; W 004° 50' 51"

* M.C. Mineral Chemistry; W.R.G. Whole Rock Geochemistry

I campioni granitoidi sono stati scelti in modo da descrivere in modo più ampio possibile le composizioni mineralogiche e le relazioni strutturali con gli incassanti. I campioni per la geochimica su roccia totale e la geocronologia sono stati selezionati dopo accurate investigazioni petrografiche supportate da studi composizionali delle fasi minerali.

In questo lavoro sono presentati elementi maggiori, minori, traccia e REE; i campioni da sottoporre ad analisi su roccia totale, dopo accurata pulizia e granulazione, sono state polverizzati

in mortaio d'agata precontaminato e sono statie analizzati presso l'Activation Laboratory (Ontario Canada) con metodologie ICP-OES a ICP-MS (codice di analisi WRA+TRACE 4Lithoresearch).

Le fasi minerali sono state analizzate con tecniche combinate WDS-EDS su microsonda elettronica CAMECA SX50 presso il "Centro Studi per il Quaternario e l'evoluzione ambientale" (CNR-IGAG, Sezione di Roma) e CAMECA SX100 presso "Institut fur Mineralogie und Kristllhemie" (Università di Stoccarda). Tutte le analisi sono state fittate con il software ZAF4/FLS by Link Analytical.

Le mappe chemiografiche dei granati sono state ottenute sempre attraverso la microsonda elettronica CAMECA SX100 presso l'Università di Stoccarda.

Le analisi isotopiche di Sr e Nd sono state eseguite sulle stesse polveri utilizzate per la geochimica di roccia-totale; le analisi sono state condotte usando uno Spettrometro di massa multicollettore FINNIGAN MAT262V (in dotazione al CNR-IGG, Area di Pisa) dopo procedure convenzionali di scambio ionico per separare Sr e Nd dalla matrice. Durante il periodo di misurazioni i valori di Sr total blank e di Nd total blank sono stati rispettivamente migliori di 2ng e inferiori di 1ng. I valori misurati del rapporto ⁸⁷Sr/⁸⁶Sr sono stati normalizzati a ⁸⁶Sr/⁸⁸Sr=0.1194 ed i valori di ¹⁴³Nd/¹⁴⁴Nd al valore ¹⁴⁶Nd/¹⁴⁴Nd=0.7219. Durante le fasi di raccolta isotopica la qualità delle misure è stata controllata attraverso l'uso di standards SRM987 (⁸⁷Sr/⁸⁶Sr = 0.710232±9 (2 σ mean)) e LaJolla (¹⁴³Nd/¹⁴⁴Nd = 0.511851±5 (2 σ mean)).

I cristalli di zircone e monazite sono stati separati e raccolti presso il Laboratorio di Separazione Minerali e Preparazione Rocce Totali (CNR-IGG, Area di Pisa) e presso l'Institut fur Geologie (Ruhr University of Bochum) attraverso tecniche standard di separazione (arricchimento da rocce finemente granulate, uso di liquidi pesanti quali il politungstato di sodio, picking manuale sotto microscopia stereoscopica) e poi preparati come mounts lucidati per analisi in BSE e CL. Spot selezionati di 20-30 μm in diametro sono poi stati analizzati per valutare la composizione isotopica in U, Th e Pb attraverso metodologia Laser Ablation ICP-MS (presso la Goethe University, Frankfurt). Calcolo delle età radiometriche e grafici sono stati ottenuti attraverso l'applicazione Excel "ISOPLOT 3.7" (Ludwig, 1995).

Le età U/Pb di zirconi e monaziti eseguite sui dicchi granitoidi a carattere tardo-strutturale sono state implementate con studi geocronologici ⁴⁰Ar/³⁹Ar su Biotiti e Muscoviti separate. Tali separati provengono da due dicchi che intrudono sia l'Unità di Beni Bousera sia gli gneiss di Filali. I cristalli di biotite e muscovite sono stati preparati presso il Laboratorio di Separazione Minerali e Preparazione Rocce Totali (CNR-IGG, Area di Pisa) e presso il Laboratorio di Petrografia (Dip. Scienze Geologiche, Università di RomaTRE): partendo da roccia granulata finemente, attraverso l'uso di separatore magnetico Frantz, e tavola a scosse a secco, i fillosilicati raccolti sono stati esaminati in microscopia stereoscopica al fine di ottenere un separato otticamente puro, per ogni campione di 10-15mg.

Le analisi Ar/Ar sono state eseguite alla University of Melbourne, seguendo le procedure descritte da Reid et al. (2005) e da Phillips et al. (2007); i dati delle età apparenti ottenuti, sono stati plottati attraverso ISOPLOT v3 (Ludwig, 2003).

Uno studio del rapporto Fe₂O₃/FeO nelle Miche Chiare (Muscoviti) è stato sviluppato attraverso Spettroscopia ⁵⁷Fe Mossbauer presso il Dipartimento di Scienze della Terra dell'Università "La Sapienza" (Roma). I cristalli lamellari di muscovite sono stati delicatamente macinati in un mortaio di agata con acetone e mescolati e polverizzati con una resina acrilica per evitare (o minimizzare) orientazioni preferenziali dei foglietti fillosilicatici.

Sono stati preparati circa 100mg di mica per ciascun campione, con il contenuto di FeOt compreso nell'intervallo 0.7-10% con un valore medio del 3% - in questo modo l'assorbitore presenta caratteristiche corrette entro i limiti degli assorbitori sottili descritti da Long et al. (1983).

I dati sono stati raccolti a temperatura ambiente, utilizzando uno spettrometro convenzionale, operante in modalità di constante accelerazione con sorgente al ⁵⁷Co di intensità nominale di 50mCi, in una matrice di rhodio e registrati attraverso un analizzatore multicanale con 512 canali per intervallo di velocità di -4mm/s 4mm/s. Dopo una calibrazione delle velocità attraverso il confronto con uno spettro di un foglio (spesso 25micrometri) di ferro-alpha ad alta purezza, i dati grezzi sono stati salvati in 256 canali. Lo spettro di ciascun campione è stato analizzato e fittato con il software RECOIL 1.4 FITTING PROGRAM (Lagarec e Rancourt, 1988). In accordo con Lalonde et al. (1998) e Dyar (2002), la comune pratica di analizzare lo spettro di miche con il metodo Lorentziano (Lorentzian-line doublet method) è stata ritenuta non adatta. I due autori suggeriscono metodi di interpretazione basati sul metodo Quadrupole Splitting Distribution (QSD) sotto l'analisi di tipo Voigh based fitting (VBF). Questa tecnica tiene conto delle complessità chimiche e strutturali locali e a lungo-raggio relative alla distribuzione del Fe nelle miche. Gli spettri Mossbauer di muscoviti sono solitamente dominati da[6]Fe³⁺ con il contributo minore di [6]Fe²⁺; il primo viene incorporate nella struttura della muscovite attraverso l'assunzione di una semplice sostituzione 1:1 di [6]Al con [6]Fe³⁺ (Goodman, 1976; Ferrow, 1998), mentre il secondo viene incorporato da una sostituzione [6]Al con [6]Fe²⁺ accoppiata ad una sostituzione di [4]Al con Si (Ferrow, 1998; Shabani et al., 1998)); esistono comunque spettri di muscoviti ricche in Fe dominate da [6]Fe²⁺ presentanti una singola stretta linea spettrale, queste muscoviti sono comunemente conosciute come muscoviti fengitiche (Ferrow, 1998).

L'area dei picchi corrisponde, in ciascun doppietto Mossbauer, approssimativamentee all'ammontare del Ferro presente in quel sito, questa è infatti la normale assunzione ma con qualche avvertimento. Il primo è l'effetto di differenti effetti di rinculo dovuti ad atomi di Fe in differenti siti. E' noto che l'area del doppietto Mossbauer, una coppia di picchi, è funzione dell'ampiezza del picco Γ , della saturazione del campione G(x) e del fattore f che descrive l'effetto di rinculo della frazione libera al Mossbauer (recoil free fraction) (Dyar, 2002).

In questo lavoro, questi tre problemi sono stati scavalcati, per valutare la miglior corrispondenza tra area del picco e contenuto reale in Fe, assumendo che:

- Le ampiezze lineari (linewidhts) dei picchi di Fe²⁺ e Fe³⁺ sono le stesse (Dyar, 2002);
- Correzioni per la saturazione G(x) non sono state necessarie grazie ad una corretta preparazione dei campioni come assorbitori sottili (Rancourt, 1993; Rancourt et al., 1994a);
- L'ammontare del fattore f del rinculo della frazione libera è assunta uguale sia per Fe²⁺ che per Fe³⁺ in questi siti (Dyar, 2002).

Al momento, bisogna aggiungere però, non esiste reale consenso sull'appropriato valore f da usare per le mica (e soprattutto per le muscoviti); infatti questo parametro è talmente dipendente dalla composizione che dovrebbe essere calcolato per ciascun campione per ottenere risultati molto precisi (Dyar, 2002).

Infine, durante le varie procedure di separazione per zirconi, monaziti e fillosilicati, dai dicchi sono stati raccolti e separati cristalli appartenenti a fasi minerali pesanti. Preparate opportunamente su mount grafitizzati, queste fasi sono state investigate presso il laboratorio L.I.M.E. dell'Università di RomaTRE, con Microscopio a Scansione Elettronica PHILIPS XL30 Analytical equipaggiato di collettori BSD, SE, SC e CL ed i risultati sono stati fittati e quantificati attraverso software con modelli ZAF e PhiRhoZ. Tale Microscopio Elettronico a Scansione è equipaggiato con un sistema a spettrometria dispersiva della EDAX (EDX4, 134eV(MnKa)).

3. Inquadramento Geologico Regionale

Il sistema montuoso dell'Arco Betico-Rifano costituisce la terminazione occidentale del sistema orogenico alpino perimediterraneo (Fig. 1). Questo settore orogenico è parte della catena montuosa prodottasi lungo il margine attivo della zona di subduzione nel Mediterraneo Occidentale durante la convergenza Meso-Cenozoica tra la placca Africana e quella Eurasiatica (Faccenna et al., 2004). Il nucleo metamorfico di questo settore orogenico è attualmente frammentanto in affioramenti discontinui nei domini interni dei fronti orogenici, dove la tettonica estensionale del Neogene si è impostata sopra il precedente evento di ispessimento crustale (e.g. Dewey et al., 1989; Zeck, 1996; Platt et al., 2003,a,b; Faccenna et al., 2004; Platt et al., 2007).

Il nucleo del sistema orogenico Betiche-Rif è costituito da unità metamorfiche a precursore continentale: dal basso verso l'alto, i complessi delle Sebtidi e delle Ghomaridi, associati ai sovrastanti calcari della Unità della Dorsale. (Fig.2, Fig.3) Questi complessi metamorfici corrispondo approssimativamente alle falde superiori e medie delle Betiche (Alpujarridi e Malaguidi, rispettivamente) dove il complesso inferiore eclogitico delle Nevado-Filabridi delle Betiche non è esposto in Marocco (Michard et al., 2006). Da varie metodologie isotopiche, i dati geocronologici disponibili per l'insieme Sebtidi-Alpujarridi mostrano un significativo gruppo di età mioceniche inferiori variabili nell'intervallo 25 Ma - 18 Ma; mentre il complesso Ghomaridi-Malaguidi al contrario mostra solamente una storia metamorfica pre-Alpina (Zeck et al., 1992; Moniè et al., 1994; Platt et al., 1998; Platt and Whitehouse, 1999; Sanchez-Rodriguez and Gebauer, 2000; Platt et al., 2003, a, b; Michard et al., 2006).

Il Complesso delle Sebtidi, nel Rif marocchino, è diviso nelle Sebtidi Inferiori (Unità di Filali e Unità di Beni Bousera) e Sebtidi Superiori (Unità di Federico) con caratteristiche distintive di metamorfismo Barroviano e metamorfismo Alpino/da Subduzione rispettivamente (Kornprobst, 1974; Michard et al., 1997; Bouybaouene et al., 1998; El Maz e Guiraud., 2001). L'Unità di Filali è costituita dalla serie superiore degli gneiss inferiori e dai micascisti superiori. Sebbene il contatto tra questi due membri sia rielaborato tettonicamente, la foliazione nelle due litologie (scisti e gneiss) rimane concordante (Chalouan and Michard, 2004; Negro et al., 2006). Il grado metamorfico aumenta scendendo nella sezione, da andalusite subsolidus (ben sviluppata nella foliazione ed in vene di quarzo concordanti con la foliazione) a zona a cianite, con eventi di fusione coincidenti con l'isograda sillimanite + alcali-feldspati nella porzione più bassa della sezione degli gneiss (El Maz and Guiraud, 2001). Presso la terminazione meridionale della catena, nell'area di Mter, l'Unità di Filali si sovrappone all'Unità di Beni Bousera costituita dalle rocce ultramafiche del massiccio peridotitico di Beni Bousera, e dalla loro copertura metamorfica di alto grado ("kinzigiti") con climax di equilibrio all'interno della facie granulitica di HP (Bouybaouene et al., 1998; Michard et al., 2006).

Le strutture delle Unità di Federico e di Filali sono caratterizzate da un fabric tettonico S-L Alpino, con un taglio top to the NNW non-coassiale dominante, sin-cinematico ad un evento metamorfico in facies scisti verdi-anfibolitica (Michard et al., 2006). Questo fabric Alpino è via via meno pervasivo muovendo verso l'Unità di Beni Bousera.

Età radiometriche contrastanti sono disponibili per questa serie di Unità, indicanti sia età Alpine (età K/Ar e Ar/Ar, Michard et al., 2006; età U/Pb su zirconi nelle granuliti, Platt et al., 2003; età Sm/Nd e Lu/Hf su granato da coppie granato-clinopirosseno dalle peridotiti (Blichert-Toft et al., 1999; Pearson and Nowell, 2004) ed età Erciniche (datazioni U/Pb su monazite dalle granuliti, Montel et al., 2001).

La presenza di rocce granitoidi peralluminose è riportata sia per il massiccio di Ronda (Cuevas et al., 2006) sia per quello di Beni Bousera (Kornprobst, 1974; Polvè, 1983). Per quanto concerne il Rif, non esiste uno studio sistematico di questi corpi granitoidi, le uniche informazioni disponibili sono relative a dati geocronologici, per i dicchi granitoidi (a carattere microgranulareaplitico) tardo-strutturali ad andalusite/cordierite, indicanti età mioceniche inferiori (Rb/Sr su roccia totale, Polvè, 1983).

3.1 Il Massiccio di Beni Bousera

Il massiccio di Beni Bousera (Fig.3), lungo il suo margine mediterraneo nord-orientale è troncato da faglie normali e include strutture imbricate del Mesozoico inferiore sul suo margine occidentale (Michard et al., 2006). I livelli superiori dei micascisti di Filali sono costituiti da scisti a clorite – muscovite – biotite – cianite che gradano verso il basso a scisti a granato – biotite – staurolite – cianite ed infine a scisti a granato – biotite – sillimanite alla transizione con gli gneiss di Filali come identificato dalla sezione esposta da Targà a Bou Ahmed e come descritto nel lavoro di Michard et al. (2006). L'andalusite è ubiquitaria nell'intera sequenza ed è caratterizzata da cristallizzazione sia sin-cinematica sia post-cinematica.

La presenza di tutti e tre i polimorfi dell'Al₂SiO₅, e in alcuni casi (come nell'affioramento presso la località di Bou Ahmed) la coesistenza delle tre fasi, è indicativa di una complessa storia tettono-termica. Osservazioni petrografiche e studio delle relazioni tra le fasi minerali,

confermano la formazione della cianite prima dei due polimorfi di più alta termalità (Sillimanite e Andalusite). Attraverso le relazioni mineralogico-composizionali è stata proposta, secondo termobarometri classici (Bouybaouene et al., 1998; Michard et al., 2006) una stima delle condizioni P-T di picco (Bouybaouene et al., 2003; El Maz et al., 2003; Michard et al., 2006): 0.7 GPa a 580°C per gli scisti a granato - staurolite – cianite; 0.8 GPa a 680°C per gli scisti a biotite – sillimanite; 0.8 GPa a 780°C per gli gneiss. Tutte le condizioni descritte sono seguite poi da evoluzioni isotermiche con successivo raffreddamento in decompressione (Michard et al., 2006) (Fig.4).

Un importante gap P-T è riconosciuto tra gli gneiss di Filali e la sottostante Unità di Beni Bousera, la quale include le granuliti (kinzigiti) e la parte superiore del massiccio peridotitico. Le kinzigiti (gneiss migmatitici in facies granulitica) presentano una associazione mineralogica a granato – sillimanite – cianite – grafite che identifica condizioni P-T di 0.9-1.3 GPa a 800-850°C (Kornprobst, 1974; El Maz and Guiraud, 2001; Michard et al., 2006). Inoltre le kinzigiti esposte nella località di Ichendirene (nella parte nord-occidentale del massiccio di Beni Bousera) includono lenti di granuliti mafiche. L'associazione primaria di granato ricco in piropo, clinopirosseno (giadeitico), cianite, rutilo, plagioclasio e quarzo indica condizioni P-T di picco a 1.6-2.0 GPa a 760-820°C (Bouybaouene et al., 1998); per queste rocce in facies granulitica viene proposta un'esumazione fino a 1 GPa a 700°C (Michard et al., 2006) per la presenza di simplectiti a saffirinaplagioclasio su cianite e di simplectiti clinopirosseno – ortopirosseno – anfibolo – plagioclasio su granato e giadeite (Michard et al., 2006). Al di sotto di un importante layer serpentinitco a carattere pervasivo, l'Unità di Beni Bousera è caratterizzata dalle rocce ultramafiche; la parte superiore del massiccio peridotitico presenta livelli lentiformi discontinui di peridotiti a granato e spinello (riconosciuti anche in questo lavoro negli affioramenti di Playa Smeila presso Bou Ahmed, ed in una valle laterale presso la sezione di Mter). La sequenza prosegue verso il basso con Harzburgiti a spinello e Lherzoliti a spinello bandate (Michard et al., 2006). Le condizioni P-T stimate per le peridotiti a granato indicano valori di 1.8-2.0 GPa a 850-900°C (Michard et al., 2006).

4. Dati Strutturali

L'area di studio (Fig. 5) è rappresentata da una sezione SW-NE nella parte meridionale del massiccio di Beni Bousera; tale sezione è esposta lungo la valle fluviale del Oued Mter. In quest'area affiorano in modo continuo le unità di alto grado dalle peridotiti di Beni Bousera fino ai micascisti superiori dell'unità di Filali (Fig. 3, Fig. 5, Fig. 6).

Fig. 5 Localizzazione dell'area di studio sulla carta di sintesi modificata da Michard et al. (2006): nel rettangolo tratteggiato i giallo la sezione presso Mter, con la stella gialla è indicata la località di Bou Ahmed, con la stella verde la località di Playa Smeila; in grande la cartografia prodotta in questo lavoro per la sezione lungo il Oued Mter; in basso le proiezioni stereografiche di faglie, fratture e del campo filoniano tardivo (le faglie sono state ulteriormente suddivise secondo la loro cinematica) (reticolo di Schmidt, proiezione equiarea emisfero inferiore).

Tale sezione è stata oggetto di un rilevamento accurato atto a riconoscere i rapporti strutturali tra le varie unità metamorfiche costituenti il Dominio di Alboran, la distribuzione dei corpi granitoidi all'interno degli incassanti metamorfici di alto grado e delle peridotiti e le loro relazioni con gli incassanti stessi, la descrizione degli elementi deformativi fragili (faglie e fratture) presenti (Fig. 5). In Fig. 6 sono rappresentati schematicamente i rapporti strutturali tra le varie unità metamorfiche e granitoidi riconosciuti nello studio della sezione.

Fig. 6 Sketch della sezione esposta lungo la traccia del Oued Mter.

Il contatto tra le peridotiti e le rocce cristalline metamorfiche dell'area presenta direzione N160E ed immersione 45°-NE. Le rocce metamorfiche sono rappresentate principalmente da metapeliti migmatitiche in facies granulitica incassanti boudin (cm-to-dm in dimensioni) e lenti di granuliti mafiche (Bouybaouene et al., 1998). Le migmatiti mostrano una struttura gneis sica caratterizzata da una paragenesi principale a biotite – plagioclasio – K-feldspato – cianite – quarzo – granato con presenza discontinua di cordierite – rutilo/ilmenite – spinello.

I livelli di leucosoma sono caratterizzati dalla costante presenza di granato e cianite coesistenti con K-feldspato, plagioclasio e quarzo. Le strutture migmatitiche primarie sono progressivamente deformate nelle zone di alta deformazione (high-strain zones) fino a produrre un fabric pervasivo planare piano-parallelo concordante con la foliazione, con direzione N150E e immersione 30°-NE.

La transizione con i sovrastanti gneiss di Filali è pressochè concordante con il fabric granulitico, con la foliazione negli gneiss presentante direzione N120E ed immersione 20°-NE.

Il principale break strutturale è stato osservato alla base dei micascisti di Filali, in concomitanza con la localizzazione di una zona con deformazione progressiva da duttile a fragile con taglio top-to-the-NNE. Come precedentemente riportato l'associazione biotite – staurolite – sillimanite definisce il fabric S-L di questi scisti (Chalouan and Michard, 2004; Negro et al., 2006).

Nell'area di Mter, differenti generazioni di corpi granitoidi sono stati riconosciute sia nell'Unità di Beni Bousera sia negli Gneiss di Filali. Sono stati distinti due gruppi principali di corpi plutonici diversi per composizione mineralogica, caratteristiche strutturali e relazioni geometricodeformative osservate in campagna.

Fig. 7 I corpi granitoidi riconosciuti lungo la sezione di Mter; A) e B)le Leptiniti e la loro relazione con l'incassante. A) granito planare tipo filone strato (MT7) intruso con carattere paraconcordante/discordante con la foliazione granulitica delle kinzigiti di Beni Bousera; B) Leptinite deformata al tetto degli gneiss (senso di taglio evidenziato in figura), lo stereoplot mostra il fabric legato alla deformazione duttile al tetto degli gneiss (reticolo di Schmidt, proiezione equalarea emisfero inferiore). C) e D) Dicchi tardivi granitici: corpi filoniani subverticali a carattere leucocratico e discordanti con l'incassante; E) lo stereoplot mostra l'assetto dei dicchi nell'area rilevata (reticolo di schmidt, proiezione equalarea emisfero inferiore).

Il primo gruppo, definito qui ed in seguito come "Leptiniti" per le analogie con i prodotti descritti nel lavoro di Kornprobst (1974), consiste in stock più o meno deformati e filoni strato (sheet) intrusi lungo la foliazione granulitica. Questo gruppo di rocce granitoidi è stato riconosciuto presente in tutta la sezione di Mter e nelle località di Bou Ahmed e di Playa Smeila (Fig. 7), con distribuzione nelle Kinzigiti (o gneiss migmatitici in facies granulitica) di Beni bousera e negli Gneiss di Filali.

Il secondo gruppo comprende sciami di filoni subverticali che intrudono in maniera discordante l'Unità di Beni Bousera (peridotiti e Kinzigiti migmatitiche) e gli Gneiss di Filali. Questo

secondo set di rocce granitoidi è stato riconosciuto presente, in questo lavoro, presso la sezione di Mter, presso la località di Playa Smeila, ma non presso la località di Bou Ahmed.

Entrambi i gruppi di rocce granitoidi sono assenti all'interno dei Micascisti di Filali.

4.1. Migmatiti in facies granulitica

Al fine di identificare vincoli cronologici, composizionali e petrografici per gli eventi anatettici granitoidi riconosciuti, sono stati analizzati livelli di leucosoma e restite delle migmatiti in facies granulitica. I leucosomi sono stati campionati presso la sezione di Mter (MT8: segregazione di fuso intrafoliare di 2cm di spessore e 10 cm di lunghezza (Fig. 8), prelevata dall'immediato incassante della leptinite MT7; MA09/13: livello di leucosoma all'interfaccia kinzigiti/peridotiti) e presso la località di Playa Smeila (K1 + B, MA07/11: livelli di leucosoma nelle kinzigiti inferiori). La paragenesi principale di questi leucosomi è costituita da K-feldspato, plagioclasio (fino ad An₅₇), quarzo, cianite, granato, biotite, ilmenite, rutilo e zircone (Fig.9). La crescita di un'associazione secondaria di biotite e muscovite costituisce corone intorno ai granati e mineralizzazioni lungo vene tardive e bande di taglio.

Fig. 8 Intrusione leptinitica nelle kinzigiti con evidenziato nel particolare (Fig. 8B) il carattere discordante tra la leptinite e la foliazione granulitica con indicato il livello di leucosoma migmatitico(MT8)

Fig. 9 Nelle foto (a-b-c-d) sono riportate le fasi minori presenti nei leucosomi granulitici: rutilo, ilmenite, cianite, spinello hercynite e grafite; è possibile notare lo sviluppo di strutture simplectitiche intorno ai granati.

Le Restiti sono state campionate a Playa Smeila (K3 e MA09/28M) e ad Mter (MA09/15) e sono caratterizzate da una associazione mineralogica principale a plagioclasio, sillimanite, biotite, granato, ilmenite, rutilo, grafite ed hercynite. Importante in questi campioni è la presenza di strutture simplectitiche (Fig. 10) composte da crescite di biotite, hercynite, e ilmenite. Le simplectiti si presentano come lobi proiettati verso l'esterno a costituire bordi intorno ai granati (principalmente) e alla cianite. La presenza di queste strutture simplectitiche ben sviluppate è un'evidenza della loro generazione in condizioni di debole deformazione (low-strain) (Hanmer, 1982); infatti in ambienti ad alto grado deformativo (high-strain environments) le simplectiti vengono distorte, deformate e ricristallizate in aggregati granulari (Vernon, 2004). Il motivo per cui si generano queste strutture piuttosto che fasi minerali separate, è probabilmente connesso alle basse velocità di nucleazione (almeno per uno dei minerali coinvolti) e tassi di diffusione molto bassi, in relazione ai tassi di crescita, tali da rendere più favorevoli condizioni di cristallizzazione dendritica allungata piuttosto che grani con forma geometrica (Vernon, 2004). La forma vermicolare granofirica quindi può essere interpretata come l'impossibilità di ciascun minerale di imporre la propria forma cristallina sulle altre fasi, associata alla proiezione di crescita a partire da uno stesso nucleo; molte simplectiti si formano durante i cambi di pressione, e soprattutto per diminuzione di pressione (Vernon, 2004).

Fig. 10 Granati nei livelli restitici. In queste immagini è documentata la presenza di cianite cristallina (b,c,d) e inclusa nel granato (e,f); di rutilo (c,f), ilmenite (c,g,h,i,l), di spinello hercynite (c), di biotite (f,l), di K-feldspato (c,d), di plagioclasio anortitico (c,e), di apatite (e), di limonite (h) e di grafite distribuite sia nei livelli restitici sia nelle inclusioni del granato. (c,d) strutture simplectitiche ben sviluppate intorno a granato e cianite.

Per meglio evidenziare il volume di fuso prodotto dall'evento anatettico nelle kinzigiti (migmatiti in facies granulitica) in Fig. 11 è mostrata una rielaborazione grafica di un particolare di un affioramento delle kinzigiti presso Playa Smeila: in bianco sono rappresentati i livelli di leucosoma e in nero i livelli restitici. Mediante procedure di analisi di immagine sono state stimate le percentuali relative di leucosoma e restite costituenti le migmatiti: rispettivamente il 35% ed il 65% in volume.

Fig. 11 Migmatiti granulitiche a Playa Smeila: A), B) e C) particolari dell'affioramento. D) elaborazione grafica delle 3 esposizioni A, B e C. E) Analisi di immagine, in bianco (35%) livelli di leucosoma, in nero (65%) livelli restitici.

4.2. Leptiniti

Fig. 12 Le leptiniti presso la sezione di Mter. A) leptinite indeformata (MT7) all'interno delle kinzigiti granulitiche; B) particolare ingrandito di (A) che mostra il carattere magmatico del contatto lobato leptinite-incassante; C) carattere discordante della leptinite rispetto alla foliazione granulitica; D) vene tardive e fratture che tagliano il contatto leptinite-incassante granulitico presso il sito di campionamento MT7. Visibili inoltre gli intensi aloni di alterazione adiacenti alle fratture, indicanti una intensa circolazione di fluidi controllata dalle fratture; E) gneiss di Filali esposti lungo il fianco meridionale della valle del Oued Mter, con indicazione dei corpi leptinitei principali (corpi leucocratici). La foliazione principale ha direzione NW-SE con immersione 30°NE; F) Relazione Leptinite-incassante alla base degli gneiss (leptinite MT10); G) Leptinite (L1 o MA07/14) di 20m di spessore circa negli gneiss; H) Pieghe isoclinali e budinaggio nelle leptiniti nella porzione superiore degli gneiss di Filali; I) Leptiniti deformate al tetto degli gneiss di Filali con senso di taglio sinistro, top to the NW.

4.2.1. Dati Strutturali

Questo set di rocce granitoidi è stato osservato nella sezione, dal basso verso l'alto, delle kinzigiti di Beni Bousera (la copertura in facies granulitica delle peridotiti) e degli gneiss di Filali (Fig. 12, 13). Nelle Kinzigiti, le leptiniti mostrano localmente rapporti intrusivi, da paraconcordanti a discordanti), chiaramente preservati con le rocce migmatitiche incassanti. Procedendo nella sezione dal basso verso l'alto è possibile osservare:

- Intrusioni strato (sheet-like) all'interno della foliazione kinzigitica (Campione MT7 nelle Kinzigiti) (Fig. 12 A,B,C,D); il contatto lobato con l'incassante evidenzia il carattere intrusivo di tale corpo magmatico; ed è anche evidente la discordanza tra lo stesso e i livelli di leucosoma dell'incassante migmatitico (Fig. 8). Il contatto intrusivo primario è stato osservato fino all'entrata negli Gneiss di Filali (Fig. 12 F);
- Muovendo verso l'alto nella sezione, il contatto primario intrusivo è progressivamento deformato e trasposto; questa progressione nella deformazione è identificata dalla crenulazione e piegatura isoclinale degli originali contatti leptinite incassante; progressione deformativa che risulta in una quasi completa trasposizione dell'originale contatto intrusivo in parallelismo con la principale foliazione di taglio quando si raggiunge il limite al top degli gneiss con i micascisti di Filali. Qui le leptiniti si presentano come corpi altamente deformati con senso di taglio principale top-to-NW. (Fig. 12 G,H,I).

Fig. 13 Stereoplot che mostrano le relazioni leptiniti (in verde) e incassante (gneiss e kinzigiti, in viola); nella colonna di sinistra i cerchi massimi e nella colonna di destra aree di ugual concentrazione di poli (reticolo di Schmidt, proiezione equalarea, emisfero inferiore.

4.2.2 Microfabric e Petrografia

La composizione mineralogica modale delle Leptiniti è costituita principalmente da quarzo (20-50%), K-feldspato (Or₈₆Ab₁₄) + alcali-feldspato (Or₇Ab₈₇) (composizioni valide per i cristalli non pertitici) (30-35%) e plagioclasio (An₂₁₋₅₇) (10-35%), più fasi accessorie (<10%) quali Cianite, granato, biotite, tormalina, zircone, rutilo, minor mica chiara, spinello-hercynite e Fe-Ti-ossidi. Tale assemblaggio mineralogico consente di classificare le leptiniti studiate attraverso mineralogia modale in leucogranodioriti, leucomonzograniti e leucosienograniti con una composizione mineralogica peralluminosa. Da notare la presenza di biotite e mica chiara sia in aggregati policristallini sia in individui singoli. Il granato si presenta sia subarrotondato sia in abito euedrale con importanti inclusioni di biotite, cianite, rutilo e grafite ed in alcuni casi con inclusioni di cristalli euedrali di corindone. La cianite esprime un abito prismatico ben sviluppato in equilibrio con i feldspati, il granato e la biotite: a dimostrazione dell'origine peritettica di queste fasi durante la generazione e la successiva cristallizzazione del fuso leptinitico. In molti campioni è stata osservata sillimanite fibrolitica, all'equilibrio con la biotite e la cianite: dense masse fibrolitiche e nidi sviluppatisi sulla biotite (Fig. 14 A,B) e sulla cianite (Fig. 14 C,D).

Fig. 14 Sillimanite di tipo fibrolite. A e B) Sillimanite secondaria in masse fibrolitiche sviluppatasi su biotite ed intorno ai granati (A-solo polarizzatore, B- Nicols X); C e D) Sillimanite fibrosa sviluppatasi a spese di cristalli di cianite, nelle foto è possibile notare anche la zonazione delle tormaline (C – solo polarizzatore, D – Nicols X).

Il microfrabric leptinitico nelle Kinzigiti è caratterizzato da una dimensione cristallina compresa nell'intervallo 0.5-1 mm, con struttura ignea ben preservata dominante sulle evidenze minori di deformazioni allo stato solido. Lo studio delle sezioni sottili ha mostrato la preservazione di feldspati (plagioclasio e K-feldpsato) con facce cristalline a contatto in equilibrio con quarzo non deformato (strain-free) (Fig.15).

Fig. 15 Microstruttura magmatica preservata all'interno delle leptiniti, nelle due foto è possibile riconoscere contatti lineari magmatici tra i feldspati e con quarzo non deformato.

Le microstrutture ignee preservate delle leptiniti intruse nelle kinzigiti (MT7) e al passaggio kinzigiti/gneiss (i.e. MT10) sono state osservate anche in volumi leptinitici su cui invece è sviluppata una rielaborazione connessa alle fratture tardive: contatti con margine lobato di grani di quarzo in condizione di strain-free con e all'interno di cristalli di K-feldpsato.

Nelle leptiniti presenti negli gneiss sono stati osservati aggregati di cianite prismatica euedrale all'interno di cristalli subedrali di K-feldspato – quarzo – plagioclasio costituenti la componente felsica di queste rocce granitoidi (Fig. 16); anche qui è possibile riconoscere il contatto magmatico all'equilibrio preservato tra il quarzo, i feldspati e la fase di HP dell'Al₂SiO₅.

Fig. 16 Aggregati di cianite prismatica all'interno dell'associazione quarzo-felsica; cianite e quarzofelsici mostrano preservato una condizione di equilibrio peritettico magmatico. Sulla cianite si iniziano a sviluppare nidi di sillimanite fibrosa secondaria.

In tutti i corpi leptinitici è stata osservata una cristallizzazione tardiva di muscovite – biotite – sillimanite; questa associazione caratterizza l'incipiente foliazione (accompagnata da significativi processi di idratazione necessari per lo sviluppo dei fillosilicati). Approssimandosi al limite inferiore dei micascisti di Filali, la trasposizione dell'originale contatto intrusivo con l'incassante in condizioni di parallelismo con la foliazione principale dovuta alla deformazione di taglio, alla scala della sezione è ben definita dal crescente sviluppo (dalle kinzigiti agli gneiss superiori) di bande di taglio di tipo C caratterizzate da muscovite – biotite – sillimanite (fibrolite) (Fig. 17) e quarzo ricristallizzato che letteralmente avvolgono i porfiroblasti di granato e tormalina (Fig. 14 A,B). Quest'ultima fase, già dallo studio in microscopia ottica ha mostrato importanti zonature nucleobordo (Fig. 14 C,D), probabilmente strettamente connesse a variazioni nella sua composizione chimica.

Fig. 17 Cristallizzazione tardiva di muscovite-biotite-sillimanite metamorfiche impostatesi sopra la precedente associazione ignea. Questo porcesso di cristallizzazione tardiva si sviluppa lungo bande di taglio (top to the NW).

4.3 Sciami di Dicchi granitici tardivi

Fig. 18 Dicchi granitici tardivi. A e B) Filoni granitici leucocratici intrusi nelle peridotiti di Beni Bousera. Evidente l'estesa alterazione dell'incassante adiacente ai dicchi; C- D) Dicchi subverticali (corpi bianchi indicati dalle frecce) intrusi nelle kinzigiti granulitiche, nella foto (D) un particolare ingrandito del contatto discordante; E - F - G - H) Dicchi subverticali intrusi all'interno degli gneiss di Filali. In basso: stereoplot della relazione tra campo di fratturazione (in rosso) e dei filoni (in blu) per gli affioramenti presentati in foto, cerchi massimi e aree di ugual distribuzione di poli presentate (reticolo di Schmidt, proiezione equiarea, emisfero inferiore.

4.3.1 Dati Strutturali

Questo secondo gruppo di rocce granitoidi corrisponde ad una serie di sciami filoniani planari a giacitura sub-verticale (Fig. 18) che in maniera discordante intrudono l'Unità di Beni Bousera (peridotiti e kinzigiti)(Fig. 18, A,B,C,D) e gli gneiss di Filali (Fig. 18 E,F,G,H). Tutti i dicchi presentano contatto con l'incassante con formazione di chilled margins e hanno geometria sub-parallela al sistema di fratture che interessa le rocce cristalline dell'area, secondo due direzioni principali NE-SW (N60,75) e NW-SE (N124,79) rispettivamente (Fig. 18 stereoplot). Il contatto con l'incassante si presenta intensamente alterato da circolazioni di fluidi tardivi o marcato da aloni (spessore centimetrico) di alterazione (Fig. 18 A,B).

Queste due evidenze, chiaramente controllate dall'evoluzione della fratturazione, suggeriscono e supportano un'origine e messa in posto tardiva di questo secondo gruppo di rocce granitoidi.

4.3.2 Microfabric e Petrografia

La composizione mineralogica modale di queste rocce è costituita dai due feldspati alcalini K-feldspato (Ab₅) e albite (fino a Ab₉₇) (composizioni per cristalli non pertitici) (20-50%), quarzo (20-30%), plagioclasio albitico-andesinico (An₆₋₃₆) (5-35%), più fasi accessorie (<15%) quali biotite e muscovite, zircone, apatite, monazite, Fe-Ti-ossidi, Fe-X-solfuri, andalusite e rari cristalli di tormalina e cordierite. La fase alluminosilicatica è invariabilmente Andalusite e presenta un chiaro abito prismatico all'equilibrio con le altre fasi felsiche di origine magmatica.

Questa composizione modale permette di definire i dicchi come rocce leucogranitoidi (da granodioriti a graniti a feldspati alcalini) con una composizione mineralogica peralluminosa. Sia strutture microgranulari (Faneritica Olocristallina Microgranulare) sia strutture macrogranulari (Faneritica Olocristallina da Macrogranulare (Fig. 19C) a Pegmatitica(Fig. 19D)) sono state osservate alla mesoscala e alla microscala.

Fig. 19 Dicchi granitici tardivi. A - B - C - D) struttura e composizione mineralogica descritta per i dicchi granitici tardivi. E' possibile riconoscere cristalli euedrali di plagioclasio (A-B-C) all'equilibrio con k-feldspato e quarzo. Assenza di deformazione interna ai cristalli di quarzo e di feldspato, con contatti linerai ad alta energia ben evidenti. Nelle foto (C) e (D) sono mostrate rispettivamente: struttura eteromicrogranulare indeformata con feldspati idiomorfi, quarzo e biotite e muscovite ultime cristallizzanti; struttura pegmatitoide con condizioni di equilibrio tra minerali quarzo-felsici, grandi ventagli di muscovite e cristalli di tormalina. E-F) Condizioni tardomagmatiche-idrotermali indicate dalla crescita di Vermiculite a spese dei fillosilicati presenti (E), e sericitizzazione dei feldspati indeformati già pertitizzati (F).

Le strutture magmatiche sono ben definite dalla mancanza di deformazione nel quarzo (strain-free) e dai contatti ad alto equilibrio energetico tra i feldspati (Fig. 19). Strutture e fabric di tipo tardo-magmatico, pegmatitoide e idrotermale sono evidenziate da: i) strutture all'equilibrio tra grandi "ventagli" di muscovite, cristalli di tormalina e aggregati quarzo-feldspatici(Fig.19D); ii)

la presenza di essoluzioni pertitiche subsolvus non deformate nei feldspati (Fig.19F) e la crescita di vermiculite (Fig.19E) su biotite e muscovite primarie.

Uno stadio finale di alterazione diffusa è infine identificato da un marcata sericitizzazione dei feldspati (Fig.19E) non solo lungo le microfratture, e da una cloritizzazione interstrato della biotite (Olives Banos, 1985; Gotzinger, 1986; Banfield & Eggleton, 1988; Kogure e Murakami, 1996; Deer et al, 2003).

5. Leptiniti e Leucosomi

5.1 Geochimica su Roccia Totale

In questo capitolo sono presentati i risultati ottenuti (Tabella A in App. A) da analisi di geochimica su roccia totale per le leptiniti e per i leucosomi delle migmatiti. Tutti campioni analizzati di leptiniti mostrano la SiO₂ compresa nell'intervallo 70-75% con Al₂O₃ variabile tra 13.6-15.6% e relativo arricchimenti in K₂O rispetto ad Na₂O. I campioni analizzati sono fortemente peralluminosi con A/CNK (molar Al₂O₃/(CaO+Na₂O+K₂O)) variabile nell'intervallo 1.03-1.51 con un valore medio di 1.22 ma generalmente maggiore di 1.1,. L'indice di saturazione in allumina A/CNK, per controllo, è stato ricalcolato anche con la correzione per l'apatite (ASI*= molar Al₂O₃/(CaO+Na₂O+K₂O-3.33*P₂O₅)) con risultati che hanno confermato i precedenti senza mostrare grandi differenze. In un diagramma A/CNK vs A/NK (Fig. 20) tutte le leptiniti (triangoli blu) ricadono all'interno del campo delle rocce peralluminose, con la sola eccezione del campione MT7 (leptinite non deformata nelle kinzigiti). Quest'ultimo campione presenta un valore di A/CNK=1.03 e in accordo con Shand (1947) descrive una roccia peralluminosa nel sottocampo delle rocce granitoidi suballuminose, ovvero rocce granitoidi che possono produrre associazioni mineralogiche e profili composizionali compatibili sia con le rocce peralluminose che con le rocce suballuminose. In questo sottocampo cadono anche (triangoli verdi) i leucosomi dalle migmatiti in facies granulitica. Questi presentano infatti A/CNK pari a 1.04-1.08 e mostrano inoltre caratteristiche composizionali simili a quelle delle leptiniti: SiO₂ =72-73%, Al₂O₃= 14-14.2% e K₂O>Na₂O.

Fig. 20 A/CNK vs A/NK per leptiniti (in blu) e leucosomi granulitici (in verde): è possibile vedere con le X nere i limiti ed il baricentro del carattere di peralluminosità delle leptiniti. Solo la leptinite MT7 (nelle kinzigiti) e i leucosomi granulitici presentano valore 1<A/CNK<1.1. Il passo successivo nella descrizione dei granitoidi leptinitici è stata la produzione di una classificazione formale di queste rocce, attraverso la classificazione Q'ANOR (Streckeisen e Le Maitre, 1979). Questa classificazione è basata sui minerali normativi. In questo lavoro è stato deciso di utilizzare la "Mesonorma per Graniti" per evitare la sovrastima dei costituenti felsici che caratterizza norme come la CIPW se applicate a rocce granitoidi. Nella norma CIPW infatti le fasi accessorie appaiono come hypersthene, ilmenite, magnetite ed in caso diopside mentre la mineralogia modale presenta biotite, clorite, muscovite e magnetite (Barth, 1962; Parslow, 1969).

La biotite, se presente, può contenere approssimativamente circa il 10% in K₂O, e un granito con il 10% di biotite presenterà una norma CIPW in cui l'ortoclasio sarà sovrastimato del 5% (Parslow, 1969). La clorite in un contesto normativo può essere considerata come una biotite, poiché nelle rocce granitiche solitamente è legata a proccessi secondari di cristallizzazione e sostituzione sulla biotite stessa (Parslow, 1969). La Muscovite può contenere fino al 11-12% in K₂O e quindi un granito contenente il 5% di muscovite modale mostrerà una sovrastima di ortoclasio, in norma CIPW, pari al 4-5% (Parslow, 1969). Ovviamente è necessario verificare, attraverso studio di struttura e fabric che la mica chiara presente sia connessa a condizioni genetiche magmatiche o pegmatitiche. Se la mica chiara è invece Sericite o Paragonite legata ad eventi successivi, nessuna "anomalia" è riportata dalla norma CIPW (Parslow, 1969).

Fig. 21 Diagramma Q'ANOR. Le leptiniti presentano carattere granitoide con distribuzione dalle granodioriti (campo 4) ai graniti a feldspati alcalini (campo 2). Il campione MT10 non è presente nel grafico per via dell'alto valore in quarzo normativo che eccede il limite superiore di costruzione del grafico Q= 50%.

Nella Tabella B (in Appendice A) sono presentati i risultati della Mesonorma calcolata per leptiniti e leucosomi granulitici. Le leptiniti nel diagramma Q'ANOR (Fig. 21) risultano distribuite nei campi 4 (granodioriti), 3b (monzograniti), 3a (sienograniti) e 2 (graniti a feldspati alcalini). Due note relative ai risultati mostrati in questo diagramma:

- I campioni BA1 e MA09/4 (entrambi da Bou Ahmed) contengono un importante numero di cristalli di tormalina; questo minerale, come sottolineato poi anche dallo studio della sua composizione chimica, presenta un costante valore in Na₂O del 2-3 wt%; questo potrebbe in parte giustificare lo spostamento di questi due campioni verso il limite formale tra sienograniti e graniti a feldspati alcalini; questi due campioni, da analisi modali, risultano essere leucosienograniti;
- Il campione MT10 non è presente nel diagramma poiché il suo valore di Q' (Q=48 wt%, Q'>50 wt%) eccede i limiti di costruzione del diagramma stesso. La roccia infatti da una analisi modale risulta essere un leucomonzogranito con quarzo (Q) modale normalizzato nel sistema QAP prossimo a 60%;

I Leucosomi dalle migmatiti in facies granulitica, nel diagramma Q'ANOR (Fig. 22) ricadono nel campo delle granodioriti (leucosoma MA09/13 da Mter) e nel campo dei monzograniti (leucosoma MA07/11 da Playa Smeila).

Fig. 22 Diagramma Q'ANOR. I leucosomi sono distribuiti nei campi "granodiorite" e "monzogranito".

5.1.1 Elementi Maggiori

In figura 23 sono riportati i diagrammi di variazione per gli elementi maggiori contro il contenuto in SiO₂.

Fig. 23 Diagrammi di Variazione di tipo Harker. I grafici sono costruiti utilizzando il contenuto in SiO₂ come indice di variazione. CaO, MnO, MgO e TiO₂ tra tutti, permettono di evidenziare l'evoluzione composizionale delle leptiniti (in blu) muovendosi dalle kinzigiti (base della sezione) al tetto degli gneiss (parte alta della sezione). In verde sono rappresentati i leucosomi granulitici dalle due località di Playa Smeila ed Mter.

I contenuti di Al₂O₃ e CaO consentono di differenziare le leptiniti dal top degli gneiss (alti valori di Al₂O₃ e bassi valori di CaO) da quelle nelle kinzigiti e negli gneiss inferiori (bassi valori di Al₂O₃ e alti valori di CaO).

I contenuti di MgO e TiO₂ descrivono un trend di impoverimento muovendo verso la parte alta della sezione studiata, dalle leptiniti nelle kinzigiti alle leptiniti negli gneiss. Opposto è invece il comportamento del contenuto di MnO, caratterizzato da un arricchimento verso la parte alta della sezione qui studiata.

Il contenuto in Fe₂O₃ può essere utilizzato solamente per discriminare le leptiniti (in questo caso due) provenienti dalle kinzigiti inferiori presso il contatto kinzigiti/peridotiti, rispetto alle restanti leptiniti.

Nessuna chiara informazione è stata ottenuta dai diagrammi del K₂O, Na₂O e P₂O₅.

I risultati dell'indagine geochimica sugli elementi maggiori possono essere integrati ed interpretati attraverso la mineralogia delle leptiniti. Plagioclasio, granato, biotite e fasi titanifere caratterizzano le principali differenze (in percentuale modale e mineralogia composizionale) delle leptiniti della sezione geologica qui descritta. Queste differenze si riflettono nella geochimica di roccia totale; ad esempio, muovendo dalle leptiniti nelle kinzigiti a quelle negli gneiss, l'arricchimento di MnO verso l'alto della sezione si può correlare con il parallelo arricchimento di spessartina nel granato; allo stesso modo l'impoverimento di CaO si può interpretare con *i*) il decremento di componente di grossularia nel granato e *ii*) di anortite nel plagioclasio sempre muovendosi dal basso verso l'alto della sezione (la composizione chimica delle fasi mineralogiche è presentata nel capitolo 6.2).

Muovendosi verso l'alto della sezione è possibile vedere inoltre un incremento della LOI nelle leptiniti; potrebbe questo essere spiegato con il progressivo arricchimento di tormalina, una fase minerale arricchita in H₂O e altre fasi fluide principalmente F⁻ e B⁻.

Per quanto riguarda i leucosomi delle migmatiti, dai diagrammi di variazione (Fig. 23), si può osservare come in generale si distribuiscano nei campi delle leptiniti provenienti dalle kinzigiti, con la caratteristica evidenziata nei diagrammi per Fe₂O₃, MgO e TiO₂ di rappresentare gli estremi minimo e massimo della distribuzione leptiniti + leucosomi.

5.1.2 Geochimica degli Elementi Minori, Traccia e REE

Le variazioni composizionali in termini di elementi minori, traccia e REE, sono analizzate al fine di evidenziare possibili variazioni "stratigrafiche" rispetto alla sezione studiata. Analogamente a quanto evidenziato per gli elementi maggiori, anche per quelli in traccia, per le leptiniti, si riscontrano variazioni composizionali muovendosi dalle kinzigiti inferiori al tetto degli gneiss. La prospettiva di questo capitolo è la possibilità di produrre una chiara caratterizzazione di questi corpi, sottolineando le relazioni tra composizione e relativa posizione nella sezione geologica.

Considerando la caratteristica leucocrata di queste rocce, viene proposto uno studio di elementi che possono avere particolari relazioni con indici di variazione scelti tra gli elementi maggiori: SiO₂ (per il carattere sovrassaturo di queste rocce), CaO (per la ponderata importanza di questo elemento, rappresentante l'evoluzione della grossularia nel granato e dell'anortite nel plagioclasio) e K₂O (rappresentante K-feldspato, biotite e muscovite).

Una breve introduzione è necessaria per comprendere, in una visione critica, i risultati che si ottengono dallo studio geochimico degli elementi minori e traccia. Pearce (1984) propose la prima classificazione tettonica per le rocce granitoidi utilizzando la concentrazione degli elementi in traccia e confrontandoli graficamente con il contenuto in silice di circa 600 corpi granitoidi selezionati: da questo studio rilevò che elementi come Y (ed il suo analogo Yb), Rb, Ba. K, Nb (ed il suo analogo Ta), Cs, Sm, Zr, Hf potevano effettivamente essere discriminanti per rocce granitoidi di differenti ambientazioni tettoniche o derivanti da diversi processi genetici. Da questa lista di elementi, Pearce (1984) notò che i più efficienti nella discriminazione le rocce granitoidi sono il Rb, Y-Yb, Nb-Ta.

Tali risultati classificativi vanno però sempre considerati da un punto di vista critico, a causa di ambiguità o segnali misti che possono ritrovarsi nelle rocce granitoidi (Rollinson, 1993): differenti meccanismi di messa in posto, interazione magma-fasi fluide, variazioni geochimiche possono verificarsi all'interno di una stessa suite magmatica che evolve (Arculus, 1987) e allo stesso modo processi di convergenza possono portare segnali simili in rocce diverse (Rollinson, 1993). Risulta quindi evidente che i diagrammi di variazione e di discriminazione non vanno utilizzati in modo non critico, ed in ogni caso effetti legati alla mobilità degli elementi e al frazionamento cristallo-liquido devono sempre essere considerati.

In quest'ottica critica, si è affrontata la discussione di questa parte della geochimica di roccia totale, usando metodi statistico-discriminatori con l'osservazione degli HFSE (come Ti, Zr, Y, Nb) i quali dovrebbero mostrarsi relativamente immobili anche in presenza di fluidi acquosi (a
meno di alte attività di F⁻); ciò vuol dire che questi elementi rimarranno stabili durante importanti eventi idrotermali e durante eventi metamorfici di basso e medio grado (Rollinson, 1993).

Oltre agli HFSE, sono stati selezionati LILE quali Rb, Ba, Sr ed Eu dopo aver valutato la loro possibile importanza in un sistema controllato da fasi minerali quali feldspati, granati e fillosilicati:

- Ba: per via della sua presenza nei feldspati variando da contenuto traccia fino a costituente maggiore. La sostituzione del bario è comparabile con quella Albite-Anortite nel plagioclasio con BaAl ↔ KSi (Deer et al., 2001);
- Rb: generalmente è presente solo come elemento minore nei feldspati e nella biotite;
 l'eccezione più nota è la sua presenza come componente principale in pegmatiti altamente frazionate (Deer et al., 2001);
- Sr: è stato considerato per la ampia possibilità di distribuzione nei feldspati in plutoni acidi e rocce granitoidi, e nei granati (Deer et al., 2001);
- Cs: può essere presente nei feldspati alcalini di rocce leucogranitiche e pegmatitiche anche se raramente eccede il valore di 50 ppm (Deer et al., 2001);
- Pb: la sua presenza può essere controllata dal K₂O nel K-feldspato e può arrivare, nelle pegmatiti, fino a 40 ppm (Arth e Hanson, 1975; Deer et al., 2001));

5.1.2.a Indici di Variazione: SiO₂ e K₂O

Fig. 24 Diagrammi di variazione. Attraverso il contenuto di Sr e Ba (in ppm)) è possibile osservare come si possano discriminare le leptiniti provenienti dalla parte inferiore della sezione da quelle provenienti dalla parte superiore. Il diagramma per il Rb evidenzia invece la relazione classica diretta tra il contenuto di questo elemento con il K₂O, non fornisce invece nessuna indicazione di tipo "stratigrafico".

I confronti di Sr e Ba contro il contenuto in SiO₂ (Fig. 24 in alto), permettono di discriminare graficamente le leptiniti che negli gneiss superiori mostrano contenuti di Sr e Ba nettamente pi

Bassi rispetto a quelli osservati nelle leptinti presenti negli gneiss inferiori e nelle kinzigiti, e nei leucosomi delle migmatiti (kinzigiti). Il diagramma Ba vs K₂O (Fig. 24, in basso a sx) conferma i risultati ottenuti dal confronto precedente Ba vs SiO₂. Il diagramma Rb vs K₂O (Fig. 24, in basso a dx) mostra come i due elementi siano strettamente correlati da una relazione di proporzionalità diretta. Nessun'altra informazione è stata ricavata dall'uso di K₂O come indice di variazione evidenziando così l'assenza di un controllo "stratigrafico" delle fasi minerali potassiche (Kfeldspato e fillosilicati potassici) sull'evoluzione dei fusi leptinitici.

5.1.2.b Indice di Variazione: CaO

Fig. 25 Diagrammi di variazione costruiti secondo l'indice CaO. I confronti con Rb, Sr, Eu e Ba permettono di discriminare stratigraficamente le leptiniti in: leptiniti nelle kinzigiti e alla base degli gneiss, leptiniti negli gneiss superiori e leptiniti al tetto degli gneiss; in questi confronti i leucosomi delle migmatiti in facies granulitica mostrano affinità composizionale con le leptiniti osservate alla base della successione.

L'uso del CaO come indice di variazione si è rivelato importante per la capacità di questo elemento di discriminare i prodotti leptinitici provenienti dal top degli gneiss (CaO < 1 wt%) da quelli osservati nel resto della sezione e dai leucosomi delle migmatiti (CaO > 1 wt%). Tale capacità discriminatoria è evidente nel diagramma Rb vs CaO (Fig. 25) ove nessun effetto stratigrafico è riconducibile al contenuto in Rb.

Lo sviluppo di confronti del contenuto in CaO con gli elementi Sr, Eu e Ba (Fig. 25) ha permesso di implementare la caratterizzazione delle leptiniti, riconoscendone tre gruppi stratigrafici:

- Leptiniti campionate al top degli gneiss (CaO < 1 wt%; Sr < 150 ppm; Eu < 1 ppm; Ba < 200 ppm);
- Leptiniti osservate negli gneiss medio-superiori (CaO > 1 wt%; Sr < 150 ppm; Eu < 1 ppm; Ba < 200 ppm);

 Leptiniti descritte negli gneiss inferiori e nelle kinzigiti (CaO>1%, alti contenuti in Ba, Sr ed Eu).

Quanto detto evidenzia come il CaO rappresenti un elemento chiave nell'evoluzione di questi fusi granitoidi e come abbia svolto un ruolo di controllo su alcuni elementi traccia significativi. Se il contenuto in CaO permette di discriminare la base della successione dal tetto, gli elementi minori da questo controllati permettono con la loro sensibilità di approfondire la caratterizzazione stratigrafica della successione e tracciarne uno schematico profilo: fusi che dalla base della successione si impoveriscono progressivamente di CaO e degli elementi suoi vicarianti fino a raggiungere i valori minimi al tetto della sezione.

Questi risultati devono essere integrati alla mineralogia (presentata nel capitolo 6.2) e soprattutto alle fasi plagioclasio e granato. Considerando un processo di differenziazione per progressiva cristallizzazione e normale impoverimento dei fusi delle componenti anortite nel plagioclasio e grossularia nel granato peritettico è possibile proprio descrivere il comportamento del CaO e quindi anche di Sr, Eu e Ba che costituiscono le maggiori sostituzioni proprio all'interno di queste fasi minerali.

In tutti i confronti eseguiti con il CaO come indice di variazione (Fig. 25) si è osservata l'affinità dei leucosomi dalle migmatiti in facies granulitica hanno con le leptiniti provenienti dagli gneiss inferiori e dalle kinzigiti stesse (o migmatiti in facies granulitica).

5.1.2.c Diagrammi HFSE

Ulteriori informazioni sono state ottenute dallo studio degli HFSE quali Zr, Y, Ti, Th, Hf, U, La e Sm (questi ultimi due considerati come rappresentativi delle LREE).

Fig. 26 Diagrammi di variazione costruiti sulla distribuzione degli HFSE. Th, Y e La (qui assunto come indicatore delle LREE) mostrano insieme al contenuto di TiO2 la possibilità di discriminare in modo netto le leptiniti provenienti dalle kinzigiti rispetto a quelle provenienti dagli gneiss (più povere in questi elementi). I confronti del rapporto La/Sm (indicante il frazionamento delle LREE) rispetto a Zr e SiO2 evidenziano il frazionamento dei fusi leptinitici attraverso trend negativi dalla base della successione (leucosomi e leptiniti nelle migmatiti) al tetto (gneiss sommitali). In questi ultimi due diagrammi sono stati inseriti anche i valori per i livelli restitici (associati ai leucosomi) delle kinzigiti migmatitiche.

Il contenuto in TiO2 come indice di variazione (Fig. 26) consente una diversa discriminazione delle leptiniti rispetto a quella prodotta dal contenuto in CaO; per valori di TiO₂<0.1% sono identificate tutte le leptiniti provenienti dagli gneiss, per valori di TiO₂>0.1 invece tutte le leptiniti provenienti dalle kinzigiti, come è possibile vedere dai diagrammi TiO₂ vs Th, Y e La; in questi diagrammi i leucosomi granulitici corrispondono al minimo e al massimo contenuto in TiO₂ delle leptiniti.

Se il rapporto Th/U, nel diagramma Th/U vs Zr/Hf (Fig.26), permette nuovamente di discriminare le leptiniti dagli gneiss (Th/U<2) dalle leptiniti nelle kinzigiti (Th/U>2), lo Zr, nel diagramma Zr vs La/Sm (Fig.26) permette non solo di separare le leptiniti dagli gneiss da quelle nelle kinzigiti, ma evidenzia inoltre un impoverimento di Zr e LREE muovendosi verso la parte alta della sezione geologica.

I leucosomi granulitici in questi diagrammi non forniscono reali indicazioni, mostrando grandi differenze nei contenuti in Zr e TiO₂. Considerando la bassissima percentuale di zirconi e di fasi titanifere, è evidente che pochi grani (anche uno solo), in più o in meno, possono produrre importanti variazioni nei risultati della geochimica degli elementi minori e traccia.

Per tentare quindi di capire meglio la relazione tra i leucosomi granulitici e le leptiniti è stato sviluppato un confronto tra il contenuto in SiO_2 e il rapporto La/Sm (identificante le LREE).(Fig.26)

Nel grafico sono stati inseriti anche i campioni di restite analizzati.

Le restiti mostrano valori di SiO₂<65% con un valore medio costante del rapporto La/Sm =6; i leucosomi granulitici e le leptiniti presentano lo stesso range di valori della SiO₂ (70-75%): mentre i leucosomi puntano a valori di La/Sm>7, le leptiniti mostrano tale rapporto La/Sm<6 decrescente muovendosi verso la parte alta della sezione (dalle kinzigiti agli gneiss), come era gia stato evidenziato dal confronto Zr vs La/Sm (Fig.26).

5.1.2.d Elementi Traccia e REE

Seguendo le indicazioni di Sun e McDonough (1989) e i coefficienti corretti del Mantello Primordiale proposti da McDonough (1992) è stato prodotto un set di spider-diagrams normalizzati (fig.27) per studiare i profili ed i trend nel gruppo delle leptiniti e dei leucosomi.

Fig. 27 Spider-Diagrams per gli elementi Traccia costruiti secondo la normalizzazione al Mantello Primordiale di McDonough (1992).

E' possibile identificare tre gruppi di leptiniti:

- Gruppo C: Leptiniti e leucosomi migmatitici dalle kinzigiti basali e dal contatto peridotite/kinzigiti; il leucosoma di Playa Smeila (Ma07/11) risulta essere il più impoverito (Fig. 27 in basso);
- Gruppo B: Leptiniti dalle kinzigiti superiori (MT7) e dagli gneiss medio-inferiori (MT10-MT11) (Fig. 27 al centro);
- Gruppo A: Leptiniti dagli gneiss superiori (Fig. 27 in alto);

Tutte le leptiniti e i leucosomi dalle migmatiti in facies granulitica sono caratterizzati da anomalie relative negative di Th, Ta, Nb, Tl e da anomalie relative positive di U, K e Pb; è possibile riconoscere inoltre una progressiva diminuzione, dalla base della sezione (gruppo C) al tetto (gruppo A) del valore indicante il contenuto in Sr (informazione questa già evidenziata dallo studio degli elementi traccia rispetto al contenuto di CaO, nella sezione 5.2.1.b).

Attraverso i coefficienti della Chondrite proposti da McDonough (1991) è stato sviluppato uno studio dei dati geochimici relativi alle REE con lo scopo di verificare ed integrare la caratterizzazione e descrizione di questi corpi granitoidi (Fig. 28).

Dalla graficazione dei pattern delle REE è possibile nuovamente produrre una discriminazione dei corpi leptinitici e dei leucosomi in base alla loro posizione stratigrafica nella sezione geologica Beni Bousera – Filalì.

I gruppi così identificati corrispondono a quelli già evidenziati dallo studio degli elementi in Traccia:

- Gruppo C: è composto da leptiniti e leucosomi dalle kinzigiti inferiori e dal passaggio kinzigiti/peridotiti. Le peculiarità di questo gruppo sono una chiara anomalia positiva in Eu e un lieve arricchimento delle LREE rispetto alle HREE (Fig. 28 in basso)
 - Leptiniti: $(La/Sm)_N = 3,51-3,63$; $(Tb/Yb)_N = 1,45-3,89$; $(Eu/Eu^*) = 9,51-18,29$;
 - Leucosomi: $(La/Sm)_N = 4.48-5,37$; $(Tb/Yb)_N = 0,50-0,74$; $(Eu/Eu^*) = 6,11-12,40$;
- Gruppo B: in questo gruppo sono descritte leptinti osservate nella parte superiore delle kinzigiti e alla base degli gneiss. L'Eu mostra ancora una anomalia positiva ma con valori più bassi (Eu/Eu* = 1,87-7,45) di quelli espressi dal gruppo C. Inoltre è osservabile un frazionamento progressivo delle LREE ((La/Sm)_N = 1,83-3,76) e delle HREE ((Tb/Yb)_N = 0,62-1,65) (Fig.28 al centro);
- Gruppo A: sono qui raggruppate tutte le leptiniti riconosciute negli gneiss superiori, fino al limite con i micascisti. La caratteristica principale, e differenza con i gruppi B e C,

di questo set di leptiniti è espressa dal valore da debolmente positivo a negativo dell'anomalia dell'Eu (Eu/Eu* = 0,27-2,57). Evidente anche l'ulteriore frazionamento di LREE ((La/Sm)_N = 1,71-2,94) e di HREE ((Tb/Yb)_N = 0,58-0,96) (Fig.28 in alto);

Fig. 28 REE-Diagrams costruiti secondo i coefficienti "REE Chondrite" proposti da Mc Donough (1991). Come per gli elementi traccia è stata sviluppata una suddivisione delle leptiniti dalla base della sezione al tetto degli gneiss.

La caratterizzazione delle REE ha permesso quindi di confermare la possibilità, per quanto riguarda le leptiniti e i leucosomi dalle migmatiti, di identificare sottogruppi stratigrafici principali. Tale caratterizzazione ha consentito inoltre di evidenziare attraverso lo studio qualitativo dei pattern delle REE e lo studio quantitativo di rapporti quali $(La/Sm)_N$, $(Tb/Yb)_N$ e (Eu/Eu^*) una possibile evoluzione di questi fusi. E' possibile infatti notare che: *i*) i leucosomi dalle migmatiti basali (kinzigiti basali) presentano forti affinità con le leptiniti anch'esse provenienti dalle kinzigiti migmatitiche; *ii*) si assiste ad un progressivo frazionamento di LREE e HREE muovendo dal basso al tetto della sezione; *iii*) si riconosce un progressivo decremento del valore assoluto dell'anomalia dell'Eu (da valori fortemente positivi a valori negativi) muovendo verso le leptiniti al tetto della sezione.

Quanto evidenziato permette di proporre quindi un modello di segregazione, migrazione ed ascesa di fusi controllati da cristallizzazione frazionata di fasi principali: i i feldspati, il granato e fasi minori quali zircone e fosfati.

Al fine di comprendere la genesi delle leptiniti e dei leucosomi migmatitici, e quindi poter produrre un modello di sintesi relativo all'evento magmatico relativo, sono stati prodotti spiderdiagrams di elementi Traccia e REE anche per i livelli restitici collezionati nelle kinzigiti migmatitiche. Lo studio geochimico su roccia totale è stato sviluppato per un totale di 5 campioni: 3 livelli restitici (MA09/15 da Mter, MA09/28M e K3 da Playa Smeila) e 2 "restiti acide", ovvero restiti con millimetrici livelli di leucosoma (Ma07/28 da Mter, MA07/13 da Playa Smeila).

Fig. 29 Spider-Diagrams (in alto elementi Traccia, in basso REE) per i livelli restitici campionati presso le località di Playa Smeila e Mter. Normalizzazioni secondo il Mantello Primordiale di McDonough (1992) e REE Chondrite di McDonough (1991).

Dall'esame qualitativo dei pattern degli elementi Traccia (fig. 29 A) è possibile notare come le restiti presentino comportamenti simili con uniche reali differenze nella distribuzione e nel contenuto degli elementi LILE (Cs, Rb, Ba e K). Importante osservare come le due "restiti acide" (MA 07/13 e MA 07/28) mostrino minori variazioni relative del contentuto dei LILE. L'assenza di tali variazioni potrebbe essere connessa proprio alla duplice presenza di livelli restitici e livelli millimetrici di leucosoma. I micro livelli di leucosoma potrebbero aver accumulato (Cs, Rb, Ba e K) proprio dai livelli restitici durante la formazione dei fusi granitoidi. Questa ipotesi può essere confermata dai patterns delle REE (Fig. 29 B): tutti i campioni mostrano una stessa anomalia positiva dell'Eu (Eu/Eu* = 7,20-10,01) e caratteristiche di frazionamento delle LREE ((La/Sm)_N = 3,48-4,16) e di HREE ((Tb/Yb)_N = 0,85-1,89).

Se dal punto di vista del contenuto degli elementi in traccia, le restiti risultano arricchite rispetto a leptiniti e livelli di leucosoma; osservando i pattern delle REE, oltre ad un arricchimento relativo delle LREE rispetto alle HREE, e valutandone i rapporti (La/Sm)_N, (Tb/Yb)_N e (Eu/Eu*) è possibile notare come questi livelli restitici siano confrontabili con i livelli stessi di leucosoma.

5.2 Studio delle Fasi Mineralogiche

5.2.1 Leptiniti

5.2.1.a Granato

I granati contenuti nelle leptiniti sono rappresentati principalmente da almandini con zonature ricche in spessartina (fino al 39%). Sono state investigate traverse, sui granati (diametro > 3mm) delle leptiniti, con risultanti profili composizionali contrastanti.

La traversa ottenuta da un granato del campione MT7 (leptiniti nelle kinzigiti) (Fig. 31, a,b) mostra un arricchimento dal nucleo al bordo di X_{Alm} fino al 72%, mentre X_{Pyr} e X_{Grs} mostra valori costanti intorno al 20% con una forte flessione limitata al bordo esterno dei cristalli. La componente spessartinica mostra per questi granati, contenuti molti bassi che raggiungono il loro massimo valore al bordo (5%); il rapporto Fe/(Fe+Mg) nei granati del campione MT7 assume un valore costante di circa 0.72 con un incremento verso il bordo che insieme alla diminuzione della componente piropo, indica una crescita in condizioni retrograde. Le mappe chemografiche (Fig. 31, c,d,e,f), visualmente descrivono la distribuzione di Fe, Mg, Mn e Ca (cationi rappresentativi di almandino, piropo, spessartina e grossularia rispettivamente) (Tabella C1 in App. A). Nei granati provenienti da questa letptinite (MT7) sono infine state identificate inclusioni di Corindone (Fig. 30), di feldspato, biotite e spinello.

Fig. 30 Cristalli di Corindone inclusi all'interno di un granato della leptinite MT7.

Fig. 31 Granati dalla leptinite (MT7) nelle kinzigiti. Nelle figure da (a) ad (f) transetto e mappe chemografiche eseguite sul cristallo di granato in foto (a). Nelle immagini (g-h-i-l) sono descritte le fasi presenti al bordo del granato con la presenza di minerali quarzo-felsici e strutture mirmechitiche tra i feldspati, e titanite. In foto (m) evidente la cristallizzazione tardiva di biotite-muscovite sviluppatasi al bordo dei granati.

Fig. 12 Granati dal campione leptinitico MT10 (alla base degli gneiss). Nelle figure (a-b-c-d-e-f) rappresentati un granato con relativo profilo composizionale e mappe chemografiche. Nelle figure (g-h-m-n) granato, profilo composizionale e mappe chemiografiche. Nelle foto (i-l) sono descritte le inclusioni all'interno del granato: apatite, K-feldspato, muscovite, quarzo, piombo, grafite e albite.

Sono state eseguite due traverse anche su esemplari di granato dal campione MT10 (leptinite al passaggio kinzigiti/gneiss) ed i risultati descrivono una distribuzione delle quattro componenti (almandino, piropo, spessartina, grossularia) della soluzione solida granato differente da quella del campione precedente. La componente almandino rimane costante intorno a valori X_{Alm} = 70-75%, e lo stesso avviene per il piropo intorno a valori X_{Pyr}=7-9%; si osserva invece un importante impoverimento dal nucleo (X_{Grs} 10%) al bordo (X_{Grs} 5%) della componente grossularia ed un leggero arricchimento, sempre dal nucleo (X_{Sps}=12%) al bordo (X_{Sps}=15%) della componente spessartina (Fig. 31); il rapporto Fe/(Fe+Mg) è costante per tutti i granati e per tutte le analisi svolte a 0.90-0.92. Sono inoltre qui presentate tavole chemiografiche di Fe, Mg, Mn e Ca per il primo granato (Fig. 31 c,d,e,f) e di Mn e Ca per il secondo granato (Fig. 31 m,n) per meglio visualizzare le relazioni ed il comportamento tra le due componenti spessartina e grossularia. Questi granati presentano inclusioni di quarzo, grafite, albite, apatite, K-feldspato e piombo.

Infine sono state prodotti tre transetti su granati del campione L1 (o MA07/14, leptinite proveniente dagli gneiss superiori). L'almandino è ancora il costituente principale ma con una variazione importante dal nucleo (X_{Alm} 59%) al bordo (X_{Alm} 75%). Lo stesso trend è stato osservato per piropo e grossularia (con valori che muovono dal 2% del nucleo a valori del 5-7% al bordo). La componente spessartina presenta un interessante arricchimento al nucleo dei granati (fino al 40% nei granati più grandi e al 30% nei granati minori) e un impoverimento costante muovendo verso il bordo (15% per i granati maggiori e 18% per i minori); il rapporto Fe/Fe+Mg mostra in generale valori molto alti con un massimo al nucleo dei granati (0.98) ed un minimo al bordo (0.92), questa informazione insieme all'aumento sensibile al bordo della componente piropo può spiegare un comportamento di crescita progrado (Fig. 33). Il comportamento della grossularia invece può essere spiegato come la risposta del granato al controllo della componente anortitica del plagioclasio sul Ca disponibile nel sistema (Spear and Kohn, 1996). Come per gli altri campioni sono state prodotte mappe chemografiche di Fe, Mg, Mn e Ca (Fig. 33).

Fig. 33 Leptinite (L1 o MA07/14) dagli gneiss superiori. Nelle foto (a-b-c) presentanta l'associazione mineralogica quarzofeldspatica con grossi cristalli di tormalina e granati con cristallizzazione al bordo e in bande di taglio C di biotite e muscovite. Rispettivamente nei gruppi (d-e-f-g-h-i-) e (I-m-n-o-p-q) rappresentati due granati, i relativi transetti composizionali e le mappe chemografiche per gli elementi Mg, Mn, Fe, Ca.

5.2.1.b Feldspati

L'associazione dei feldspati è costituita principalmente da plagioclasio e K-feldspato; nelle leptiniti provenienti dagli gneiss superiori è stata riscontrata anche la presenza di Albite (Fig. 34) (Tabella C2 in App. A).

Plagioclasio

I cristalli di plagioclasio nelle leptiniti mostrano debole zonatura con bordi arricchiti in albite. E' possibile identificare tre gruppi principali di leptiniti in base alla composizione di questa fase minerale:

- Leptiniti dalle kinzigiti (MT7): il plagioclasio presenta X_{An} nell'intervallo 37-57% descrivendo così un'associazione andesinico-labradoritica;
- Leptiniti dal limite kinzigiti/gneiss (MT10) e dagli gneiss inferiori (MT11-MT12): il plagioclasio mostra un contenuto X_{An} pari a 20-42% caratteristico di associazioni Oligoclasio-Andesina;
- Leptiniti dagli Gneiss superiori (BA1, L1 o MA07/14); i plagioclasi presentano bassi contenuti in X_{An} (10-20%) descrivendo una associazione Albite-Oligoclasio. Da questo ultimo gruppo sono state evidenziate anche strutture antipertitiche con perdita della componente albitica e sostituzioni subsolvus con crescita di lamelle di ortoclasio.

Da questi dati è possibile riconoscere un trend di impoverimento in componente anortitica muovendosi dalle leptiniti nelle kinzigiti alle leptiniti al tetto degli gneiss (Fig. 34).

Fig. 34 Grafico Ab-An-Or per i feldspati delle Leptiniti. E' possibile notare dal grafico Ab-An-Or per il sistema ternario dei feldspati come muovendo dalle leptiniti nelle kinzigiti alle leptiniti al tetto degli gneiss i plagioclasi diventino progressivamente impoveriti in molecola anortitica, indicando così un trend di differenziazione all'interno di questi fusi anatettici migrati all'interno delle rocce di alto grado metamorfico.

Feldspati alcalini

Il K-feldspato è il più abbondante dei feldspati alcalini presenti nelle leptiniti con un X_{Or} variabile nell'intervallo 76-97%. Il K-feldspato è caratterizzato da importanti essoluzioni pertitiche (crescita subsolvus di lamelle albitiche) con X_{Ab} fino al 60% (Fig. 33a, 34). L'albite è presente solamente nelle leptiniti campionate negli gneiss superiori e raggiunge valori di XAb=97% e può presentare antipertiti con X_{Or} fino al 45% (Fig. 34). L'associazione di plagioclasio albitico-oligoclasico (X_{An} 10-20%), il K-feldspato (X_{Ab}3-25%), l'albite (come feldspato alcalino) e la presenza di pertiti e antipertiti nei campioni BA1 ed L1 (Fig. 34), permettono di correlare questo sistema feldspatico ternario come il risultato di equilibri raggiunti in condizioni di subsolvus, da un relativo fuso con basso contenuto anortitico, escludendo quindi fenomeni di albitizzazione.

5.2.1.c Biotite

Questo fillosilicato è costituito da due sottopopolazioni (Tabella C3 in App. A): una caratterizzata da cristalli all'equilibrio intorno ai porfiroblasti di granato (Fig. 35, a, c) e una connessa all'associazione muscovite – biotite - sillimanite riconosciuta lungo la foliazione tardiva (Fig. 33c; 35 b, d).

Fig. 35 Biotite nelle leptiniti: (a-c) cristalli di biotite all'equilibrio al bordo dei granati; (b-d) biotite associata a muscovite e sillimanite per cristallizzazione terdiva.

La prima popolazione mostra valori più alti di TiO_2 (3-4%) rispetto alla seconda (0-0.25%). Tutti i cristalli di biotite mostrano sia in microscopia ottica sia allo studio composizionale fenomeni di cloritizzazione connessi ai processi deformativi ed idrotermali.

La periodica interstratificazione di clorite-biotite e la trasformazione clorite-biotite si verifica al pari del fenomeni di riempimento di una vena e Xu et al. (Xu et al., 1996) suggerisce che questo processo avvenga per processi non all'equilibrio in condizione di soluzione idrotermale.

Nel diagramma in figura 36, seguendo le indicazioni di Xu et al. (1996) è mostrato come tutte le biotiti analizzate provenienti dalle leptiniti mostrino interstratificazioni cloritiche con una progressiva perdita di K principalmente e Al subordinatamente.

Biotiti nelle Leptiniti

Fig. 36 Diagramma Si-Al-(K+Na) per le biotiti nelle leptiniti. E' possibile notare i diversi gradi di cloritizzazione di questo fillosilicato seguendo il vettore che identifica la progressiva sostituzione interstrato della clorite (Xu et al., 1996).

5.2.1.d Muscovite

Un limitato numero (riflettente la limitata distribuzione di questa fase nelle leptiniti) di cristalli di muscovite tardiva è stato analizzato; i dati risultanti mostrano come la componente dominante sia la Muscovite con valori superiori al 60% (X_{Ms} =64-86%; $X_{WMPhlog}$ =0-5%; X_{Al-Cel} =0-17%; X_{Fe-Cel} =0-14%, X_{Parag} =0-5% e $X_{Ti-Mn-CaWM}$ =0-7%) (Tabella C4 in App. A).

Dove è presente, questa fase mostra sempre una relazione di cristallizzazione tardiva per idratazione lungo la foliazione di taglio incipiente. Utilizzando le indicazioni di Speer e Becker (1992) per miche chiare e biotiti (a carattere magmatico, tardo-magmatico e tardivo) in rocce granitoidi (Fig. 37), è possibile evidenziare per le miche chiare un carattere tardivo ((Mn+Mg+Fe*) nell'intervallo 0-12%), e confermare una estesa cloritizzazione dei fillosilicati evidenziata dalla progressiva deviazione delle composizioni dalla linea di distribuzione teorica per miche di ottaedriche e triottaedriche (Muscovite-Phlogopite/Annite) primarie (Fig. 37).

(Muscovite + Biotite) Leptiniti

Fig. 37 Diagramma Al-Si-(Mn+Mg+Fe*) per muscovite e biotite. Per le miche chiare è possibile osservare il loro carattere tardivo indicato da sostituzioni triottaedrice (Mn+Mg+Fe*). Per tutti i fillosilicati è possibile descrivere una progressiva cloritizzazione come evidenziato dalla freccia tratteggiata verde (Speer and Becker, 1992).

5.2.1.e Tormalina

Questo minerale è distribuito in tutte le leptiniti esaminate con cristalli da millimetrici a centimetrici, e gli esemplari di dimensioni maggiori osservati nelle leptiniti al tetto degli gneiss sia nella località di Bou Ahmed (BA1) sia ad Mter (L1 e MA07/14) (Fig. 12c, 33b). Tutte le tormaline si presentano con un caratteristico colore nero tipico del termine schorlite. Al fine di investigare la composizione in elementi maggiori di questa fase idrata, sono stati effettuati alla microsonda due transetti su differenti cristalli, e mappe chemografiche per uno dei due cristalli investigati. Le due tormaline provengono dal campione MT10 (leptinite al limite kinzigiti/gneiss) (Fig. 38) (Tabella C5 in App. A).

I costituenti principali (Fig. 38e,g) risultano essere (esclusi SiO₂ e Al₂O₃ attestati al 35%) FeO ed MgO (Fig. 38e, g, h, i) i quali presentano pattern inversi di impoverimento e arricchimento. Na₂O presenta un valore costante del 2-3% con incremento al bordo (Fig. 38e, g, l) e tutti gli altri

ossidi mostrano valori compresi nell'intervallo 0-1%, unica eccezione risulta essere costituita dal TiO₂ che al bordo ha un arricchimento per valori compresi tra 1-2%. La complessità chimica di questa fase è ben descritta dalle mappe chemiografiche (Fig. 38h, i, l), bisogna però ricordare che la zonatura chimica di queste tormaline era già stata evidenziata dall'analisi in microscopia polarizzata delle sezioni sottili, dove le tormaline avevano mostrato zonature come diverso colore e diverso colore di interferenza (Fig. 12c).

Fig. 38 Leptinite MT10 (limite kinzigiti/gneiss): (a-b-c) componente quarzo-felsica della leptinite con cristalli all'equilibrio peritettico magmatico di cianite (c).(d-e)(f-g) esemplari di tormalina e rispettivi transetti composizionali espressi in elementi maggiori. (h-i-l) mappe chemografiche di Mg, Fe, Na della tormalina in foto (f) con evidente zonazione del sodio (l).

5.2.1.f Fasi Accessorie Minori

Nelle leptiniti sono state riconosciute anche le seguenti fasi minerali: zircone, apatite, rutilo, ilmenite, Fe-X-ossidi, 2 fasi di Al₂SiO₅. Il ritrovamento di zirconi bipiramidati (Fig. 39), simili alle tipologie S11, S13, S16, S17 descritte da Pupin (1980), con porzione prismatica dell'abito ben sviluppata e piramidi complesse con forme {211} prevalenti sulle {101}, indica alte temperature di cristallizzazione (prisma ben sviluppato) e marcate condizioni di peralluminosità del fuso (forma della bipiramide) (Pupin, 1980; Belousova et al., 2006). Gli alluminosilicati, come precedentemente descritto, sono stati identificati come Cianite (Fig. 14c,d; Fig. 16, Fig.38c) con abito prismatico e relazioni di equilibrio peritettico con granato e feldpsati, e come Sillimanite nella varietà Fibrolite (Fig. 14a,b; Fig. 33c), cresciuta per cristallizzazione tardiva lungo l'incipiente foliazione e su biotite, granato e cianite della roccia originaria (Fig. 17). La presenza di Corindone è stata osservata come inclusione in alcuni granati del campione MT7 (Fig.30).

Fig. 39 Cristalli di zircone dalle leptiniti. E' possibile riconoscere la porzione prismatica dell'abito ben sviluppata e le forme complesse delle zone piramidali.

5.2.2 Migmatiti in facies granulitica

In questa sezione viene descritta la composizione delle fasi minerali principali costituenti i livelli di leucosoma e di restite delle migmatiti in facies granulitica costituenti la copertura metamorfica delle peridotiti di Beni Bousera.

5.2.2.a Feldspati (Leucosomi)

Nei livelli di leucosoma sono state identificate due tipologie di feldspati (Tabella D1 in app. A): plagioclasio e K-feldspato, sempre assente invece è il feldspato albitico. I due campioni di leucosoma studiati si differenziano per la composizione del plagioclasio; il leucosoma da Playa Smeila presenta tenore anortitico pari a X_{An} 25% mente quello campionato presso Mter un tenore anortitico di X_{An} 47-60% (Fig. 40).

Il K-feldspato mostra una componente albitica XAb nell'intervallo 12-26%. I due feldspati descritti mostrano rispettivamente Or-antipertiti e Ab-An-pertiti (Fig. 41).

Feldspati nei leucosomi granulitici

Fig. 40 Diagramma Ab-An-Or per i feldspati dei leucosomi. I plagioclasi mostrano alti tenori in anortite comparabili con quelli delle leptiniti nelle kinzigiti. Alcuni feldspati del leucosoma di Playa Smeila (K1) mostrano importanti set di pertiti Ab-Or.

Fig. 41 Leucosoma granulitico da Playa Smeila (K1 o MA07/11). Diverse tipologia di pertiti e antipertiti osservate nei feldspati.

5.2.2.b Granati (Leucosomi)

La composizione chimica dei granati (Tabella D2 in App. A) contenuti nei leucosomi è stata studiata eseguendo varie traverse su cristalli ben sviluppati presenti nei livelli di leucosoma. Tutti i granati presentano gli stessi profili: almandino come costituente principale e arricchito al nucleo; piropo con un valore costante intorno al 30% e un impoverimento al bordo del cristallo; grossularia con un contenuto variabile tra il 5-10% con profili compositi che descrivono un trend d'impoverimento dal nucleo al bordo del granato e che potrebbero, viste le varie oscillazioni, identificare anche la coalescenza in crescita di granati minori; spessartina come costituente minore (2-5%) con un netto impoverimento al nucleo ed arricchimento limitato solo al bordo più esterno. La variazione del rapporto Fe/(Fe+Mg) è simile in tutti i granati dei leucosomi: al nucleo assume valori intorno allo 0.70 e al bordo di 0.80-0.83; come visto in precedenza per altri granati delle leptiniti, l'impoverimento del piropo al bordo insieme all'aumento del rapporto Fe/(Fe+Mg) indica crescita in condizioni retrograde (Spear and Kohn, 2009). Anche per questi granati (Fig. 42, 43, 44) sono state prodotte mappe chemografiche degli elementi Mg, Mn, Fe e Ca.

A 1000	A					В				
7000 - 5000 -	F	÷	4	+	+	+	+	-	grossular	
1000 - 1000 -					•		-	-	spessartine	
000 -	+		+	*	+	+		-	refire nug	
	1	2	3	4	5	6	7	8	C	

Fig. 42 Granati dal leucosoma K1 (= MA07/11). Nella foto (a) granato con corona di biotite oramai cloritizzata. Nelle foto (b) e (d) granati su cui è stata investigata la composizione con transetti orientati.

Fig. 43 Granati da livello di leucosoma delle kinzigiti migmatitiche proveniente dalla località di Playa Smeila. (a-f) e (g-n) rappresentano rispettivamente due granati investigati con rispettivi profili e mappe chemografiche per gli elementi Mg, Fe, Mn e Ca; le caratteristiche principali sono l'impoverimento di piropo al bordo e l'arricchimento di almandino al bordo (con conseguente aumento del valore Fe/(Fe+Mg) indicanti crescita in condizioni retrograde.

Fig. 44 Granati dai livelli di leucosoma delle kinzigiti migmatitiche di Playa Smeila. (a-f) (g-n) granati con rispettivi profili composizionali e relative mappe chemografiche Mg, Fe, Mn e Ca. in foto (o) ingrandimento delle inclusioni riconosciute all'interno dei granati costituite da: rutilo, ilmenite, biotite, quarzo, pirite e K-feldspato.

Confrontando la composizione dei granati presenti nei leucosomi con quella dei granati nelle leptiniti, attraverso un diagramma ternario Prp-Grs-Sps (Fig. 45), è possibile osservare come i primi presentino valori molto più alti della componente piropo. Inoltre il diagramma ternario in figura 45 evidenzia come i granati provenienti dai leucosomi migmatitici (kinzigiti basali) mostrino affinità composizionale con quelli provenienti dalle leptiniti campionate all'interno delle kinzigiti migmatitiche (MT7) e come siano ben discriminati dai quelli provenienti dalle leptiniti presenti negli gneiss (granati questi ultimi che divengono via via più arricchiti in Spessartina muovendo verso il tetto degli gneiss).

Granati dalle leptiniti e dai leucosomi migmatitici

Fig. 45 Diagramma Prp-Grs-Sps per i granati di leucosomi migmatitici e leptinti. I granati dai leucosomi mostrano il contenuto maggiore di piropo e sono abbastanza simili ai granati della leptinite (MT7) proveniente dalle kinzigiti. I granati dalle leptiniti negli gneiss mostrano progressivo arricchimento in molecola spessartinica, con valori massimi proprio per la leptinite L1 (MA07/14) campionata al tetto degli gneiss nella sezione di Mter.

5.2.2.c Biotite (Leucosomi)

I pochissimi cristalli analizzati (Tabella D3 in App. A) provenienti dall'associazione felsica e da inclusioni nel granato mostrano sia allo studio della sezione sottile, sia composizionalmente importanti fenomeni di cloritizzazione come anche evidenziato dall'applicazione dei diagrammi proposti da Speer e Backer (1992) (Fig. 46 dx) e da Xu et al.(1996) (Fig. 46 sx).

Biotiti nei leucosomi granulitici

Fig. 46 Biotiti dai leucosomi; sia nel diagramma Si-Al-(K+Na) (Xu et al., 1996) sia nel diagramma (Mg+Mn+Fe*)-Si-Al (Speer e Becker, 1992) è ben descritto il fenomeno di cloritizzazione.

5.2.2.d Fasi Accessorie Minori (Leucosomi)

Cristalli di cianite, rutilo, ilmenite, spinello, zircone e monazite sono stati osservati durante lo studio di questi livelli. Se cianite, zircone, monazite e rutilo sono stati trovati con abito proprio, è stato interessante verificare come altre fasi abbiano sviluppato interessanti strutture simplectitiche al bordo di granati e cianite, indicando così una fase evolutiva in decompressione caratterizzata da tassi di diffusione e capacità di crescita cristallina molto bassa.

5.2.2.e Feldspati (Restiti)

L'associazione feldspatica nei livelli restitici delle kinzigiti migmatitiche è costituita da plagioclasio dominante (con X_{An} 40-54% = andesina-labradorite) e K-feldspato (X_{Ab} = 06-14%) (Tabella E1 in App. A). Sia per i plagioclasi sia per i feldspati alcalini sono stati riconosciuti esemplari presentanti rispettivamente Or-antipertiti (X_{Or} fino al 37%) e Ab-An-pertiti (X_{Ab} finol 35% e X_{An} fino al 32%) (Fig. 47).

Fig. 47 Associazione feldspatica riconosciuta all'interno dei livelli restitici, il plagioclasio andesinico-labradoritico rappresenta la fase principale.

5.2.2.f Granati (Restiti)

I granati (Tabella E2 in App. A) dei livelli restitici delle migmatiti in facies granulitica possono essere descritti come la seguente associazione: Alm60-Prp25-Grs13-Sps2.

In questi granati (fig. 48) è possibile riconoscere alcuni caratteri distintivi:

- La componente grossularia in alcuni esemplari tende ad arricchire al bordo, in altri ad impoverirsi (Fig. 48); questo comportamento può essere spiegato assumendo la crescita del granato in un ambiente in cui il Ca disponibile nel sistema sia stato controllato dalla cristallizzazione di un'altra fase, come la componente anortitica nel plagioclasio (Spear and Kohn, 1996). Minerale quest'ultimo, come descritto nella sezione precedente, contenente in questi livelli fino al 54% in anortite;
- Comportamento variabile al bordo della componente piropo (Fig. 48): che mostra sia fenomeni di impoverimento al bordo sia fenomeni di arricchimento al bordo, sia comportamento costante, indicanti rispettivamente crescita retrograda, prograda, e a condizioni costanti. Tali assunzioni sono verificate anche dal comportamento del rapporto Fe/(Fe+Mg) (Fig. 48) che da valori costanti al nucleo (0.70 circa) mostra: i) aumento al bordo fino a valori di 0.85 per i granati che si impoveriscono in piropo, ii) diminuzione al bordo fino a 0.65 per i granati che si arricchiscono al bordo di piropo, iii) rimane pressoché costante per i granati con comportamento costante del piropo.

Fig. 48 Granati da un livello restitico (K3) nelle migmatiti granulitche di Playa Smeila. Nelle varie immagini rappresentati i granati su cui sono stati eseguiti i transetti composizionali. Per i granati in foto (h) e (q) sono state prodotte anche mappe chemografiche al fine di meglio descrivere la zonatura composizionale di questa fase minerale.

Questi granati in un diagramma Prp-Grs-Sps (Fig. 49) mostrano una distribuzione caratterizzata dalla predominanza della componente piropo, se confrontati con i granati di leptiniti e leucosomi (Fig. 45, 49) mostrano una distribuzione concomitante con quelli provenienti dai leucosomi granulitici.

Fig. 49 Diagramma Prp-Grs-Sps per i granati dai livelli restitici. Presentano alto contenuto in componente piropo e sono direttamente confrontabili con i granati dai leucosomi (in piccolo è riportato il grafico di (Fig. 45) per il confronto).

5.2.2.g Fasi Accessorie Minori(Restiti)

In questi livelli restitici sono stati riconosciuti per la loro presenza: biotite, cianite, sillimanite, rutilo, ilmenite, grafite (come inclusione nei granati) e spinello di tipo hercynite. La caratteristica fondamentale di queste restiti, come già descritto precedentemente, è la presenza di strutture simplettitiche che producono corone intorno al granato e alla cianite (Fig. 10).

Analisi conoscitive di queste fasi sono state eseguite durante lo studio attraverso microsonda elettronica e microscopia a scansione. Il riconoscimento di queste strutture simplectitiche costituite principalmente da biotite-ilmenite-spinello identifica, come per le simplectiti nei leucosomi, una fase di ricristallizzazione avvenuta in condizioni di decompressione, nel campo di stabilità dello spinello, con tassi di diffusione, velocità e capacità di crescita cristallina molto bassi.

6. Dicchi granitoidi tardivi

6.1 Geochimica su Roccia Totale

I campioni dei dicchi tardivi (Tabella A in App. A) mostrano un valore medio di SiO₂ di 74.35%, più alto di quello delle leptiniti ma in un intervallo di distribuzione più ampio (69-83%); anche l'Al₂O₃ mostra una distribuzione più ampia delle leptiniti variando da 10% a 15.7%. Ulteriore differenza rispetto a leptiniti e a leucosomi delle migmatiti,è la relazione non costante tra K₂O e Na₂O come evidenziato sia da campioni con leggero arricchimento di K₂O sia da campioni con leggero arricchimento opposto di Na₂O. In questo lavoro, i campioni presentanti chiari processi di alterazione e albitizzazione (impoverimento di SiO₂ fino a valori minimi di 61%; perdita di K₂O fino a valori prossimi all'1%; forti arricchimenti di Al₂O₃ ed Na₂O fino al 20% e all'8% rispettivamente) evidenziati e confermati anche dallo studio della sezione sottile, non sono stati considerati nella discussione dei dati geochimici. I dicchi presentano un valore medio di A/CNK di 1.12, come per il gruppo precedente è stato verificato tale rapporto anche attraverso la correzione per l'apatite (ASI* = 1.13); l'indice di saturazione in allumina per i dicchi granitoidi a carattere tardo strutturale varia nell'intervallo 1.027-1.24 e descrive un gruppo di rocce debolmente peralluminose.

Fig. 50 Diagramma A/CNK vs A/NK per i dicchi tardivi; presentano peralluminosità non marcata come evidenziato dalla loro distribuzione all'interno del sottocampo delle rocce suballuminose e dal loro baricento proprio sul limite tra rocce suballuminose e peralluminose schiette.

Nel diagramma A/CNK vs A/NK (Fig. 50), i dicchi si distribuiscono nel campo delle rocce peralluminose, con almeno la metà della popolazione nella sottoarea delle rocce suballuminose (1<A/CNK<1.1). Questa distribuzione identifica una condizione di transizione da metalluminoso a peralluminoso; questo profilo composizionale era già stato evidenziato dalla caratterizzazone della composizione mineralogia: l'associazione, infatti, di muscovite, tormalina, andalusite, monazite e minore biotite, in rocce granitoidi è indice di carattere per alluminoso; la presenza invece di rari cristalli di epidoto, magnetite e allanite sottolinea per queste rocce un subordinato carattere genetico metalluminoso.

La classificazione normativa Q'ANOR (Tabella B in App. A) è stata prodotta anche per questo secondo gruppo di rocce granitoidi; per il calcolo dei parametri normativi è stata utilizzata (come per leptiniti e leucosomi delle migmatiti) la Mesonorma per rocce granitoidi. I Dicchi tardivi in un diagramma Q'ANOR (Fig. 51) sono distribuiti nei seguenti campi: 4 (granodioriti), 3b (monzograniti), 2(graniti a feldspati alcalini). L'efficacia dell'utilizzo della Mesonorma per rocce granitoidi piuttosto che l'uso della norma CIPW, per i dicchi è dimostrata dalla corretta classificazione, nel diagramma Q'ANOR, dei campioni MA07/22 (o 28MT) e MA09/23 che vengono correttamente definiti granodioriti, come evidenziato da analisi modale, e non si presenti invece una sovrastima del K-feldspato a causa della presenza di biotite (5-10%).

Fig. 51 Diagramma Q'ANOR: i dicchi, attraverso mesonorma granitoide mostrano una distribuzione in 3 gruppi fondamentali, granodioriti (campo 4), monzograniti (campo3b) e graniti a feldspati alcalini (campo 2b).

Nel diagramma Q'ANOR di figura 51:

- Tre campioni (MA07/26 o 3MTE, MA09/22, MT9) sono classificati come monzograniti; MA09/22 è stato campionato presso il limite peridotiti/kinzigiti nella parte più interna della sezione di Mter, mentre gli altri due campioni sono stati collezionati negli gneiss;
- Nessun campione è presente nel campo dei sienograniti, e tre campioni (MA07/20 o 26MT, MA07/21, 13BA) provenienti dalle peridotiti sono rappresentativi dei graniti a feldspati alcalini;
- Tre filoni non sono stati considerati nella classificazione Q'ANOR:
 - Il campione 23MT per il suo altissimo contenuto in SiO₂ (83%) e di conseguenza per il suo altissimo contenuto in quarzo normativo (57%); da studio mineralogico modale questa roccia risulta essere un sienogranito ricco in quarzo con una associazione feldspatica caratterizzata da plagioclasio oligoclasico-andesinico e feldspato alcalino di tipo albite;
 - I campioni FR e 4MTE: analisi geochimiche di questi dicchi non sono state prodotte per via della loro caratteristica di quarzo-pegmatite; è stato deciso di esaminare soltanto la composizione chimica delle fasi mineralogiche e di investigare l'età di muscoviti primarie (FR) e di monaziti (4MTE). Da analisi in microscopia ottica, le due rocce risultano essere, da stima modale dei componenti, quarzo-pegmatiti con carattere composizionale sienogranitico/granito a feldspati alcalini.

6.1.1 Elementi Maggiori

Come per il gruppo di rocce magmatiche precedenti, anche per i dicchi tardo-strutturali sono stati prodotti diagrammi di variazione, o Harker, per la discussione dei caratteri composizionali. Gli elementi maggiori sono stati esaminati attraverso i singoli confronti con l'indice di variazione ($Fe_2O_3t + MgO + TiO_2$) wt%. Tale parametro di confronto è stato utilizzato al fine di evidenziare la variazione del contenuto di questi ossidi rispetto ad una composizione mineralogica quarzo-felsica dominante (contenuto in SiO_2 fino all'83% in peso) in apofisi e digitazioni magmatiche (con dimensioni da centimetriche a decimetriche) a carattere fortemente leucocratico (Fig. 52).

Fig. 52 Diagrammi di variazione o Harker per i dicchi tardivi; l'aumento in SiO2 è caratterizzato da un normale trend di impoverimento di Al2O3, FeO*, MgO e TiO2; interessante la possibilità di discriminare i dicchi in base al contenuto in CaO (con conferma dell'esistenza di un gruppo di filoni (graniti a feldspati alcalini nel Q'ANOR) estremamente poveri in questo elemento.

L'aumento del contenuto in SiO₂ si correla ad una forte diminuzione del valore dell'indice di variazione e ad un più blando decremento del contenuto in allumina. Queste relazioni sono caratteristiche di una normale evoluzione magmatica di fusi che per progressiva differenziazione muovono verso composizione minerale quarzo-felsica, con carattere leucocrato fortemente marcato e condizioni P-T di cristallizzazione via via decrescenti (per corpi filoniani ipoabissali si può arrivare anche a condizioni tardo-magmatiche e pegmatitiche). In tale scenario evolutivo si assiste quindi ad una progressiva diminuzione in peso delle fasi femiche (trend negativi di FeO*, MnO,

MgO e TiO₂) compensata da un aumento delle fasi quarzo e feldspati (questi ultimi con carattere alcalino-potassico; trend positivo di K₂O ed Na₂O).

Se nessuna indicazione è osservata dal confronto tra l'indice di variazione ed il contenuto in potassio, in quanto K₂O in queste rocce esprime sia il feldspato potassico sia i fillosilicati muscovite e biotite; ben più interessanti si rivelano i diagrammi costruiti sul CaO e sull'NaO. Il sodio conferma quanto scritto precedentemente mostrando un carattere di proporzionalità inversa con l'indice di variaizione. Il CaO invece dimostra, assieme al contenuto di FeO*, MgO e TiO₂, la possibilità di poter discriminare i dicchi tardo-strutturali rispetto alla loro composizione: *i*) dicchi monzogranitici provenienti dagli gneiss [(Fe₂O₃t + MgO + TiO₂) > 1.9% e CaO > 1.2%]; *ii*) dicchi granodioritici e monzogranitici provenienti da kinzigiti e peridotiti [(Fe₂O₃t + MgO + TiO₂) < 1% e CaO > 1%]; *iii*) dicchi pegmatitici, provenienti dalle peridotiti, a carattere "granitico a feldspati alcalini" [(Fe₂O₃t + MgO + TiO₂) < 1% e CaO < 1%].

E' stata riconosciuta una relazione diretta tra l'indice di variazione e gli ossidi FeO*, MgO, TiO₂ e MnO. Relazione diretta che esiste anche tra l'indice di variazione ferro magnesiaco qui usato e la LOI: relazione indicante una concentrazione degli ossidi costituenti il parametro di valutazione geochimico, nelle fasi minerali idrate dei dicchi ovvero biotite e muscovite.

Valutando l'importanza del K₂O in queste rocce granitiche (rappresentativo dei due maggiori costituenti mineralogici: K-feldspato e muscovite) e le evidenti possibilità discriminatorie di CaO e TiO₂, vengono proposti anche i seguenti diagrammi con TiO₂ come indice di variazione (sull'asse Y) (Fig. 53).

Fig. 53 Il contenuto di TiO2, nonostante il suo tenore medio molto basso (<0.1%) si rivela molto utile nel discriminare i vari filoni. Se confrontato con il contenuto in K2O permette di discriminare i filoni campionati nelle peridotiti e kinzigiti di Beni Bpusera da quelli campionati negli gneiss di Filali; il confronto con il contenuto in CaO permette di distinguere (per i corpi filoniani all'interno dell'Unità di Beni Bousera) i filoni granodioritici-granitici da quelli granitici a feldspati alcalini.

Il diagramma K₂O vs TiO₂ conferma la possibilità di seperare i dicchi dagli gneiss dagli altri filoni, nessun altra infromazione è ottenuta da questo confronto. Il diagramma CaO vs TiO₂ risulta invece essere il più interessante tra i diagrammi di variazione prodotti per i confronti tra elementi maggiori: se TiO₂ discrimina i dicchi negli gneiss (TiO₂>0.1%) da dicchi nelle kinzigiti e nelle peridotiti (TiO₂<0.1%), il contenuto in CaO permette di discriminare i graniti a feldspati alcalini (CaO<0.5%) nelle peridotiti dai graniti e dalle granodioriti (CaO>0.5%) intruse sempre nelle kinzigiti e nelle peridotiti.

6.1.2 Geochimica degli Elementi Minori, Traccia e REE

Sono stati qui considerati elementi LFS e HFS considerati significativi nella possibile evoluzione di queste rocce filoniane leucocratiche felsiche, e sono stati valutati i trend di questi elementi rispetto ad indici di variazione quali SiO₂ (indicante la sovrassaturazione marcata di queste rocce), il K₂O (rappresentativo delle due fasi maggiori dei dicchi: K-feldspato e muscovite) e CaO (rappresentante l'evoluzione della componente anortitica del plagioclasio).

6.1.2.a Indici di Variazione: SiO₂ e K₂O

Dai diagrammi elementi minori vs K₂O come indice di variazione (Fig. 54) si evidenzia: *i*) che un basso contenuto in K₂O delle due granodioriti (MA07/22, MA09/23) è in accordo con la minore presenza del K-feldspato rispetto al plagioclasio, ma anche della minor presenza di biotite e della quasi assenza di muscovite; *ii*) un elevato contenuto di Ba nei dicchi intrusi negli gneiss, confermato questo anche dallo studio composizionale delle fasi mineralogiche (i feldspati nel campione FR, una pegmatite negli gneiss, mostrano un tenore in BaO fino a valori di 3.4%)..

Fig. 54 Diagrammi di variazione di alcuni elementi significativi confrontati al contenuto in K2O. Il Bario permette di distinguere i dicchi (più ricchi in Ba) intrusi negli gneiss rispetto agli altri; Rb e Pb mostrano una classica correlazione positiva con il K2O denotando inoltre un controllo del K-feldspato su questi due elementi; allo stesso modo la correlazione negativa con lo Stronzio indica come quest'ultimo sia controllato dal CaO.

I diagrammi K₂O vs Rb e K₂Ovs Pb (Fig. 54) descrivono una classica correlazione positiva di questi elementi minori con il K₂O, indicando un controllo del K-feldspato (Bea et al., 1994; Deer et al., 2001) sulla loro distribuzione. Un opposto risultato invece è stato ottenuto per lo Sr (Fig. 54),

che ha mostrato una correlazione negativa con il K₂O, indicando quindi per questo elemento un controllo più probabile da parte del CaO.

Fig. 55 Diagrammi a dispersione per Ba e Rb confrontati al contenuto in SiO2. Il contenuto in Bario permette di discriminare, come nel precedente confronto con il K2O, i dicchi negli gneiss (Ba>800ppm) dagli altri oggetti filoniani; il Rubidio invece permette di discriminare due sottogruppi: 1) dicchi con Rb<100ppm con basso contenuto in K-feldspato campionati nelle peridotiti e nelle kinzigiti; 2) dicchi con 100<Rb<350ppm con K-feldspato come prima fase felsica provenienti da tutta la sezione studiata.

Solamente due confronti con relativi diagrammi (Fig. 55) vengono presentati per il contenuto in SiO₂ come indice di variazione. SiO₂ vs Ba e SiO₂ vs Rb: il Bario discrimina i dicchi negli gneiss dagli altri dicchi, mentre il Rubidio permette di ipotizzare la possibilità di riconoscere due sottogruppi:

- Dicchi nelle kinzigiti e nelle peridotiti con basso contenuto di K-feldspato (13BA, MA07/22, MA09/23, MA09/22, 23MT) e contenuto in Rb (<100ppm) basso e costante;
- Dicchi da tutta la sezione, con K-feldspato come fase principale (MT9, MA07/26, MA07/20, MA07/21) con Rb nell'intervallo 100-350ppm.

6.1.2.b Indice di Variazione: CaO

Fig. 56 Diagrammi a dispersione di Sr, Rb, Ba, Eu, Ca/Eu, Sr/Eu e Ca/Sr contro il contenuto in CaO per i dicchi tardivi. Il Contenuto in CaO come visto nei diagrammi di Harker per gli elementi maggiori permette di discriminare i dicchi granitici-granodioritici dai graniti a feldspati alcalini. Questi diagrammi evidenziano un diretto controllo del CaO su Eu e Sr (relazioni proporzionali dirette).

Per il valore di CaO=1.03% è possibile identificare (Fig. 56) il campione MA09/23, uno stock granodioritico (volumetricamente il corpo tardivo più grosso osservato), campionato presso le kinzigiti nella parte interna della sezione di Mter.

Per CaO<1% in ogni diagramma (Fig. 56) è possibile riconoscere i tre graniti a feldspati alcalini (MA07/20, MA07/21 e 13BA) dalle peridotiti e per CaO>1% i restanti dicchi.

Sr ed Eu, come prevedibile, mostrano arricchimento in campioni con CaO>1% e al contrario Ba è arricchito per campioni che mostrano CaO<1%.

Tra tutti i confronti il diagramma CaO vs Ba (Fig. 56) sembra produrre il risultato più interessante:

- Dalla granodiorite MA09/23 sembrano partire due trend diversi: uno caratterizzato da arricchimento in Bario (relativo ai dicchi negli gneiss) e uno con progressivo impoverimento in Ba (caratterizzante graniti e granodioriti nelle kinzigiti e nelle peridotiti);
- Nell'angolo con bassi contenuti sia di CaO sia di Ba, sono raggruppate le tre pegmatiti normativamente classificate graniti a feldspati alcalini campionate nelle peridotiti.

Dai confronti con i rapporti Sr/Eu, Ca/Sr e Ca/Eu (Fig. 56) possono essere recuperate le seguenti informazioni: i tre graniti a feldspati alcalini poveri in CaO mostrano un chiaro impoverimento dell'Eu come indicato dagli alti valori di Ca/Eu ed Sr/Eu, mentre il rapporto Ca/Sr rimane più o meno costante. Quest'ultima evidenza potrebbe essere interpretata come indizi di diversi stadi di segregazione e cristallizzazione frazionata: le apofisi filoniane più vicine allo stock magmatico costituente la possibile sorgente di digitazione sono più ricche di Sr ed Eu rispetto ai dicchi linearmente più distanti dal punto di digitazione.

6.1.2.c Diagrammi HFSE

Considerando le difficoltà di studiare gli sciami di dicchi senza conoscere la possibile o le possibili source(s), viene proposto un semplice approccio di studio degli HFSE, per valutare le relazioni tra gli elementi incompatibili quali Zr, Th, Nb (e i loro rispettivi relativi Hf, U, Ta), Y e TiO₂.

Nel diagramma Th/U vs Zr/Hf (Fig. 57), bassi valori del rapporto Zr/Hf (<25) rappresentano i tre graniti a feldspati alcalini, e Th/U >3 caratterizza i dicchi negli gneiss.

Fig. 57 Elementi incompatibili (Zr, Hf, Th, U, Nb, Ta, Y) espressi in rapporti noti e confrontati al fine di identificare possibili relazioni tra i vari prodotti filoniani; solamente il rapporto di Nb/Ta (con alcune oscillazioni) sembra caratterizzare in modo uniforme i filoni granitoidi tardivi.

Il rapporto Nb/Ta, nel grafico Nb/Ta vs Zr/Hf (Fig. 57), presenta un valore abbastanza costante con qualche variazione, ed insieme al rapporto Zr/Hf mette in evidenza una importante correlazione genetica: i dicchi presentano il classico impoverimento di Zr in rocce arricchite in alcali (come potrebbero essere i tre graniti a feldspati alcalini).

Il rapporto Y/Nb e il rapporto Nb/Ta se confrontati tra loro producono una distribuzione dei dicchi non ben definita che è stata qui interpretata, considerando anche la bassissima concentrazione di questi elementi, non come un reale segnale genetico, ma come la probabile conseguenza del basso contenuto di fase accessorie (che controllano la distribuzione degli elementi traccia) in queste rocce. Questa ipotesi può essere confermata attraverso i confronti TiO_2 vs La, Y, Th (Fig. 58).

Fig. 58 Il confronto di Th, Y, La (qui assunti come elementi incompatibili i primi due e come indicatore delle LREE l'ultimo) confrontati al contenuto di TiO2, permette di riconoscere un comportamento abbastanza costante di questi elementi in tutti i prodotti filoniani tardivi.

Il contenuto di TiO₂ è in generale molto basso (TiO₂ < 0.2%) e in particolare per i dicchi dalle kinzigiti e dalle peridotiti (TiO₂ <0.05%), mentre gli elementi traccia incompatibili (Th e Y) e le REE (qui espresse come La) presentano in generale, valori costanti per tutti i dicchi.

Proseguire la discussione su questo tema senza un dettagliato (elementi minori, traccia e REE) studio della composizione chimica delle fasi mineralogiche, può produrre soluzioni logiche e matematicamente corrette, ma non verificabili in questa sede.

6.1.2.d Elementi Traccia e REE

Spider-plots per gli elementi traccia (Fig. 59) sono stati prodotti utilizzando i coefficienti del Mantello Primordiale proposti da Sun e McDonough (1989) e corretti da McDonough (1992).

Fig. 59 Spider-plots per gli elementi Traccia costruiti normalizzando al Mantello Primordiale di McDonough(1992). Con il gruppo A sono descritti i filoni a carattere granodioritico-monzogranitico campionati nelle kinzigiti affioranti nella porzione più interna della valle del Oued Mter; il gruppo B è costituito da due filoni collezionati negli gneiss; il gruppo C descrive il comportamento dei graniti a feldspati alcalini intrusi nelle peridotiti; rappresenntato nel gruppo D un dicco a carattere quarzo-pegmatitico.

Dallo studio dei pattern degli elementi traccia (Fig. 59) è possibile riconoscere per i dicchi quattro sottogruppi:

- Gruppo A: comprende le granodioriti (MA09/23, MA07/22) ed il monzogranito (MA09/22) campionato nelle kinzigiti presso il limite kinzigiti/peridotiti nella parte interna della sezione di Mter. Le due caratteristiche salienti sono una forte anomalia positiva dell'U e una forte anomalia negativa di TI;
- Gruppo B: in questo gruppo sono rappresentati due dicchi dagli gneiss; la differenza principale con il gruppo A risiede nell'assenza dell'anomalia positiva di U, nella presenza dell'anomalia positiva in K e dell'anomalia negativa di Tl meno marcata;
- Gruppo C: sono qui raggruppati i tre graniti a feldspati alcalini dalle peridotiti; mostrano alcune nette divergenze dai gruppi A e B; forti differenze nei LILE sono state riconosciute con forte arricchimento di Cs, Rb, e K e forte impoverimento in Ba; altre differenze importanti sono la chiara anomalia negativa di Sr, la variabilità dell'anomalia di U, e la variabilità nel contenuto di Zr-Hf. In generale questi pattern descrivono una roccia alcalifelsica più evoluta di un granito s.s.;
- Gruppo D: in questo gruppo è presentato solamente il campione 23MT, il leucosienogranito ricco in quarzo a carattere fortemente pegmatitico. Le differenze con gli altri tre gruppi sono il trend negativo dei LILE (Cs, Ba, Rb e K), l'impoverimento di Nb-Ta e l'anomalia negativa molto forte di Tl. Questo campione inoltre presenta una particolare associazione mineralogica con i feldspati rappresentati solo da plagioclasio di tipo oligoclasio-andesina e da feldspato albitico; l'assenza di K-feldspato è probabilmente la ragione principale per il trend negativo dei LILE che sono controllati dal K nel K-feldspato. Nb e Ta presentano valori relativi negativi e ciò può essere collegato al bassissimo contenuto di fasi minerali accessorie in cui questi elementi vengono ospitati. Si può ipotizzare quindi che questo oggetto sia un corpo filoniano ancora più evoluto di quelli caratterizzanti il gruppo B, e meno evoluto di quelli del gruppo C.

Fig. 60 Spider-plots per REE costruiti secondo i coefficienti di McDonough (1991) per la REE Chondrite. I gruppi A, B, C, D sono gli stessi utilizzati per la presentazione degli spider diagrams degli elementi traccia.

Gli spider-diagrams sono stati costruiti anche per le REE (Fig. 60) dopo averle normalizzate alla composizione Chondritica (McDonough, 1991). I patterns risultanti possono essere suddivisi e discussi negli stessi gruppi presentati per gli elementi traccia:

- Gruppo A: granodioriti e dal monzogranito campionati nelle kinzigiti. Le caratteristiche principali sono l'arricchimento in LREE [(La/Sm)_N = 2,52-3,22], anomalia positiva dell'Eu variabile nell'intervallo (Eu/Eu*) = 2,66-7,04 e leggero arricchimento di HREE [(Tb/Yb)_N = 1,60-1,77];
- Gruppo B: i due monzograniti provenienti dagli gneiss. Rispetto al gruppo precedente presentano un maggior arricchimento in LREE [(La/Sm)_N = 2,72-3,68]; una forte anomalia positiva dell'Eu [(Eu/Eu*) = 6,16-6,76], ed un contenuto costante in HREE [(Tb/Yb)_N = 1,10-1,16];
- Gruppo C: tutti i dicchi classificati normativamente come graniti a feldspati alcalini. Presenta un valore variabile del rapporto (La/Sm)_N = 1,31-4,82 che descrive la presenza delle LREE; anche il contenuto delle HREE è invece simile e compatibile con i due gruppi A e B: (Tb/Yb)_N = 1,11-1,70. I dicchi di questo gruppo presentano tutti una evidente anomalia negativa dell'Eu [(Eu/Eu*) = 0,45-0,60].
- Gruppo D: si è deciso, come per gli elementi in Traccia, di presentare graficamente separato il filone pegmatitico quarzo-felsico. Mostra, tra i campioni magmatici a carattere tardo-strutturale qui esaminati, il rapporto più alto delle terre rare leggere [La/Sm_{)N} = 7,56], una anomalia positiva dell'Eu con valori simili a quelli presentati da granodioriti e monzograniti [(Eu/Eu*) = 5,14]; per tale campione è osservabile il valore più basso riscontrato del rapporto [(Tb/Yb_{)N} = 0,59] caratteristico per descrivere il comportamento delle HREE.

Le osservazioni qui riportate ben si conciliano in un modello che descrive digitazioni ed apofisi magmatiche minori a carattere crustale sub-superficiale che, per differenziazione e cristallizzazione frazionata, evolvono da carattere granodioritico-monzogranitico a carattere felsico-alcalino. La possibilità di comparare la composizione geochimica di corpi, non solo con composizione modale differente, ma anche con strutture cristalline variabili da microgranulari a pegmatitiche permette di ampliare tale scenario in cui intervengono in maniera significativa il contenuto in fluidi e le condizioni termiche di cristallizzazione dei fusi stessi che hanno generato i vari sciami del campo filoniano riconosciuto.

6.1.2.e Elementi di Transizione, Altri Metalli e Metalloidi

La descrizione della geochimica di roccia totale verrà conclusa con un confronto tra elementi di transizione, altri metalli e metalloidi contenuti nei dicchi e nelle leptiniti, per evidenziare da un ulteriore punto di vista le forti differenze composizionali che esistono tra i due gruppi di rocce granitoidi. Come verrà discusso nel seguente capitolo, i dicchi presentano una associazione di Pyrite, Arseniuri di ferro (Lollingite?) (Fig. 62) e Magnetite.

Mentre leptiniti e leucosomi mostrano un contenuto simile di Sc, V, Cr, Co, Pb, Zn, Sn (Fig.64); i dicchi dimostrano un più elevato contenuto di questi metalli e metalloidi (Sc, V, Cr, Co, Ni, Cu, Zn, Sn, Sb, Ta, W, Pb) e soprattutto di As (Fig. 61). Se infine viene prodotto un confronto con le restiti e le restiti acide (Fig. 61) (nessuna analisi di peridotite è stata sviluppata in questo lavoro) è evidente come il contenuto di questo set di elementi, nei dicchi, descriva fenomeni di estrazione da rocce arricchite in questi elementi, durante le fasi di migrazione in un sistema fuso-fluidi (Vernon, 2004).

Fig. 61 Metalli Transizionali e Metalloidi: nei vari diagrammi è visualmente descritta la distribuzione di questi elementi nei dicchi tardivi, nelle leptiniti, nei leucosomi e nelle restiti migmatitiche. In evidenza la differente distribuzione (qualitativa e quantitativa) di questi elementi nei due gruppi di rocce granitoidi (con i dicchi tardivi più arricchiti) ed il valore assoluto di arricchimento in As caratterizzante sempre i dicchi.

Fig. 62 Associazioni polimetalliche Fe-S, Fe-X-S, Fe-As all'interno dei dicchi granitoidi tardivi.

6.2 Studio delle Fasi Mineralogiche

6.2.1 Dicchi granitoidi tardivi

6.2.1.a Feldspati

L'associazione ternaria dei feldspati è composta in questi dicchi da plagioclasio e da due feldspati alcalini: K-feldspato e Albite (Tabella F1 in app. A). Tutti i feldspati sono caratterizzati dalla presenza di SrO (0-0.09%), BaO (0-0.7%), F⁻(0-0.2% e CI⁻(0-0.024%) (analisi con σ 1 0.002%). Nel campione FR, una pegmatite ipoabissale, è stata identificata e descritta una varietà di Kfeldspato ricco in Bario (BaO fino al 3.4%); come dimostrato da Taylor et al. (1934) l'Ortoclasio (KAlSi₃O₈) e la Celsiana (BaAl₂Si₂O₈) formano una serie isomorfa con lo hyalophane come membro intermedio. Lo ione Bario è presente, con basse concentrazioni, nella maggior parte dei feldspati, solo raramente raggiunge alti livelli (Deer et al., 2001). In generale i feldspati sono considerati varietà barifere quando BaO>2% (Deer et al., 2001), composizioni simili di Ba-K-feldspato sono state riportate da pegmatiti ricche in apatite presso Nisikkatch Lake (Hogarth, 1957) e in rocce vulcaniche potassiche e ultrapotassiche della regione dello Yukon (Goodfeellowet al., 1993), o in associazione con fenocristalli di mica, sanidino e vene polimetalliche presso il massiccio Boemo (Nemec, 1987). Il Bario viene proposto dai precedenti autori come indicatore di uno stadio magmatico tardivo o di origine tardo-idrotermale-pegmatitico: condizione questa che ben si accorda con il carattere di corpo pegmatitico-ipoabissale che presenta il campione FR.

Plagioclasio

I plagioclasi nei dicchi sono presenti sia zonati (principalmente nel campione MT28) sia non zonati (Fig. 63): i primi presentano normale evoluzione con bordi arricchiti in componente albitica.

Fig. 63 I plagioclasi si presentano sia zonati che non zonati, come si può vedere nelle foto dei dicchi granodioritici.

Attraverso la composizione dei plagioclasi è possibile descrivere i seguenti sottogruppi di dicchi:

- Dicchi con alta percentuale modale di plagioclasio (35-40%) con X_{An} variabile nell'intervallo 10-25% (campioni MA09/23, MA07/22 o 28MT);
- Dicchi con plagioclasio modale presente, leggermente inferiore rispetto al K-feldspato, con X_{An} nell'intervallo 6-36% (MT9, 23MT, MA07/26 o 3MTE); nel campione MT9 sono presenti importanti essoluzioni antipertitiche;
- Dicchi con plagioclasio modale <15% con X_{An}=5-14% (FR, MA07/20 o 26MT);
- Dicchi senza plagioclasio modale con la componente anortitica X_{An}<2% in tutti i cristalli di feldspato analizzati (4MTE);
- Dicchi altamente alterati ed albitizzati (i.e. 13BA) con valore attuale di X_{An} nell'intervallo
 0.5-0.8%, ma con nuclei relitti, nei cristalli maggiori albitizzati, aventi X_{An} fino a38%;

Nei grafici in Fig. 64 vengono presentati i risultati ottenuti dallo studio dell'associazione feldspatica: nel diagramma (a) la distribuzione cumulativa, mentre negli altri diagrammi (b-i) la composizione di ciascuno dei dicchi esaminati.

Fig. 64 Diagrammi Ab-An-Or per l'associazione ternaria dei feldspati nei dicchi; a) distribuzione complessiva riconosciuta nei campioni esaminati; b-c-d-e) associazione feldspatica in grano dioriti e graniti s.s.; f) filone con fenomeni di albitizzazione; g-h-i) filoni (a carattere pegmatitico) con associazioni a feldspati alcalini. Da notare l'assenza di K-feldspato nei due filoni 23MT (h) e 4MTE (g), quest'ultimo caratterizzato dalla presenza di sola albite.

K-feldspato

Il K-feldpsato è il costituente feldspatico principale caratterizzante la composizione mineralogica dei dicchi. E' presente in cristalli subedrali nei dicchi microgranulari e in esemplari da millimetrici a centimetrici, con carattere subedrale ed euedrale, nei corpi a carattere pegmatitoide (Fig. 65).

Fig. 65 Cristalli di K-feldspato. (a) è possibile riconoscere il carattere subedrale del K-feldspato con la presenza di strutture pertitiche non deformate simmetriche rispetto ad un piano di geminazione. (B) macrocristallo di K-feldspato da pegmatite, sono ancora evidenti le pertiti, un piano di geminazione ed una vena suturata a quarzo; in una microfrattura si sta sviluppando sericite.

Mostra geminazioni ben sviluppate di tipo Carlsbad e Manebach (Fig.69), ed in molti casi è possibile riconoscere essoluzioni e lamelle albitiche per riequilibrio in condizioni di subsolvus delle due componenti costituenti l'ipotetico corrispettivo di hypersolvus.

Il K-feldspato presenta (grafici in Fig. 64) un contenuto medio di molecola albitica nell'intervallo X_{Ab} =5-30%, e come per il plagioclasio è possibile discriminare una serie di sottogruppi di dicchi in base alla distribuzione e composizione di questa fase:

- Dicchi con il K-Feldspato < Plagioclasio;
- Dicchi con K-feldspato come costituente feldspatica principale, e con essoluzioni pertitiche ad albite;
- Dicchi con K-feldspato assente (4MTE, 23MT);
- Dicchi con K-feldspato alterato e sericitizzato (lungo microfratture); questa serie di filoni corrisponde al gruppo dei plagioclasi altamente alterati ed albitizzati;
- Dicchi conK-feldspato ricco in Bario (BaO fino a 3.4%) (campione pegmatitico FR).

Albite

L'albite, come fase feldspatica, è presente in numerosi dicchi (grafici in Fig. 64), con una composizione variabile nel sistema $X_{Ab}87X_{Or}7 - X_{Ab}99X_{Or}1$ e con fenomeni di essoluzioni subsolvus di molecola ortoclasica. Come per i plagioclasio s.s. e K-feldspato è possibile suddividere i dicchi in particolari sottogruppi:

- Dicchi senza cristalli di Albite (MA09/23, MA07/22 o 28MT, MT9);
- Dicchi con Albite subordinata a plagioclasi e K-feldspati (FR, MA07/26 o 3MTE, MA07/20 o 26MT);
- Dicchi con Albite come unico feldspato alcalino (23MT, 4MTE): in questo gruppo è possibile produrre una ulteriore suddivisione indentificando una tipologia di dicchi presentanti invariabilmente solo feldspato albitico (4MTE) ed una tipologia di dicchi in cui l'albite è associata ad un plagioclasio oligoclasico-andesinico (23MT);
- Dicchi con Albite sviluppatasi per alterazione ed albitizzazione degli altri feldspati (i.e. 13BA);

Lo studio della composizione feldspatica ternaria e la relativa distribuzione delle tre fasi nei dicchi ha mostrato la possibilità di riconoscere un'evoluzione di questi corpi da oggetti con tenore

anortitico del plagioclasio nel campo della "Andesina" a filoni che mostrano associazioni alcaline formate da K-feldspato e albite nei dicchi microcristallini, e da sola albite nei dicchi a carattere prettamente pegmatitico. In questi ultimi corpi filoniani inoltre è stata notata la presenza di celsiana (Ba-feldspato) indicante condizioni idrate in ambiente ipoabissale. Tale evoluzione dei feldspati ben si correla con quanto osservato durante lo studio e la discussione dei dati geochimici su roccia totale: *i*) l'evoluzione progressiva per differenziazione dei filoni, descritta dalla capacità discriminatoria del contenuto in CaO si accorda all'evoluzione del plagioclasio; *ii*) il carattere di graniti a feldspati alcalini (che aumenta al diminuire della componente anortitica nel plagioclasio) si correla in modo chiaro all'arricchimento del contenuto in NaO (come visto dai diagrammi di variazione); *iii*) l'alto tenore degli elementi LILE (Cs, Rb, Ba) nei dicchi a carattere pegmatitico è chiaramente connesso alla cristallizzazione di varietà feldspatiche minori, come la celsiana, caratteristiche di condizioni ipoabissali tardo-magmatiche e idrotermali; *iv*) la distribuzione delle REE (Eu soprattutto) e di alcuni elementi traccia (e.g. Sr) è la stretta risposta all'evoluzione dei feldspati: un impoverimento progressivo della componente anortitica produce una diminuzione del contenuto in Eu e Sr.

6.2.1.b Muscovite

Più di 120 cristalli di muscovite dai dicchi sono stati analizzati alla microsonda elettronica per valutare, attraverso i profili composizionali in ossidi maggiori, le caratteristiche e l'origine di questa fase minerale. Questa accurato quanto lungo studio si è reso necessario per le seguenti ragioni:

- Caratterizzare differenti popolazioni di muscoviti, distribuite in grossi ventagli e in aggregati di piccoli cristalli (Fig. 65, 66);
- Interpretare la genesi di questo minerale, esplorando la composizione chimica come indicatore di origine magmatica, tardo-magmatica, idrotermale o per circolazione di fluidi tardivi successivi idratazione e cristallizzazione;
- Selezionare cristalli utili per le datazioni Ar/Ar.

Fig. 65 Nelle quattro foto qui proposte sono riassunte le varie tipologie di muscovite riconosciute all'interno dei dicchi: a)muscovite microcristallina; b) muscovite a carattere interstiziale; c) muscovite macrocristallina ben sviluppata; d) muscovite in aggregati polimicrocristallini.

Fig. 66 Immagini da microscopia a scansione elettronica delle differenti tipologie di muscovite e loro relazione microtessiturale con le altre fasi dei dicchi (quarzo, albite, K-feldspato e tormalina in queste foto).

Δb

Oltre all'analisi in microsonda è stato effettuato uno studio con metodologia 57 Fe-Mossbauer (su muscoviti con FeOt fino al 10%, provenienti da quattro dicchi opportunamente scelti) per stimare il rapporto Fe₂O₃/FeO. Come il TiO₂, il Fe₂O₃ è un importante indicatore dell'origine delle miche chiare. In questo lavoro si è riconosciuta la necessità di ottenere valori indicativi del coefficiente di ripartizione di Fe³⁺ ed Fe²⁺ nella composizione delle muscoviti separate dai dicchi, senza riguardo alle rispettive distribuzioni nei siti M1 (trans) ed M2 (cis); è stato quindi usato un metodo "a forza bruta" con l'assunzione di un'uguaglianza dei valori di *f* per Fe2+ ed Fe3+. Nella Tabella F2 (App. A) sono presentati i risultati Mossbauer per i quattro campioni analizzati ed in figura 67 gli spettri relativi.

Qui di seguito vengono presentati diagrammi costruiti attraverso l'integrazione dei dati ottenuti con la Spettroscopia Mossbauer e le analisi alla Microsonda elettronica (tabella F3 in App. A); attraverso questi grafici è stato possibile riconoscere più popolazioni di muscoviti con diverso significato genetico.

Il diagramma TiO₂-Fe₂O₃-MgO (Fig. 68) è stato costruito attraverso le osservazioni riportate nel lavoro di Speer (1984), nel quale vengono identificate differenze sistematiche nella composizione di muscoviti primarie e secondarie da plutoni granitoidi degli Appalachi Meridionali e da Monier et al. (1984) che ha ottenuto una eccellente distinzione delle muscoviti magmatiche, tardo- e post-magmatiche e idrotermali da uno stesso plutone nel massiccio Millevaches in Francia.

Utilizzando queste indicazioni, si può identificare un gruppo di muscoviti magmatiche caratterizzate dalla presenza di TiO₂ che tende a diminuire sistematicamente in valore, probabilmente per effetto dell'evoluzione magmatica del corpo plutonico stesso; una popolazione

di muscoviti tardo- e post-magmatiche caratterizzate da bassi valori di TiO₂ e con Fe₂O₃ prevalente su MgO; ed una popolazione idrotermale caratterizzata da valori bassi sia di TiO₂ sia di Fe₂O₃. Generazioni di muscovite nei dicchi

Fig. 68 Diagramma TiO2-Fe2O3-MgO: è possibile riconoscere come le muscoviti nei dicchi siano divisibili in almeno tre popolazioni, una magmatica, una tardo-magmatica e una a carattere idrotermale.

Questi risultati permettono di affermare i seguenti punti:

- La muscovite dal campione FR (triangoli rossi) presenta caratteristiche magmatiche con una minore componente di origine idrotermale (Fig. 68);
- La popolazione dal campione 26MT (MA07/20) (triangoli verdi) è caratterizzata da alcuni cristalli di origine magmatica e da un importante set di cristalli con origine tardo-postmagmatica, anche qui sono presenti alcuni cristalli con origine idrotermale (Fig. 68);
- Nel campione 4MTE (triangoli celesti) le muscoviti possono essere divise in due sottogruppi: cristalli subordinati in numero con origine tardo-post-magmatica (presenza di TiO2) e cristalli di origine idrotermale (assenza di TiO₂) (Fig. 68);
- Nel campione 23MT (triangoli blu) è stata riconosciuta una popolazione costituita interamente da esemplari di origine idrotermale (Fig. 68).

La caratterizzazione genetica delle muscoviti è proseguita con la comparazione delle composioni chimiche ottenute attraverso analisi alla microsonda, utilizzando un diagramma ternario Ti-(Fe+Mg)-Na (Silva e Neiva, 1990) (Fig. 69a) e un diagramma Fe+Mg vs Al (Gomes e Neiva, 2000)(Fig. 69b).

Fig. 69 Studio composizionale delle miche nei filoni tardivi. (a) il diagramma Ti-Na-(Fe+Mg) permette di riconoscere i fillosilicati di origine magmatica primaria dalle cristallizzazioni tardive; (b) utilizzando le indicazioni di Gomes e Neiva (2000) è inoltre possibile riconoscere per i cristalli con origine idrotermale il tipo di sostituzione secondaria. In questi dicchi è evidente un tipo di sostituzione di tipo fengitica a spese di K-feldspato + quarzo.

Nel diagramma Ti-(Fe+Mg)-Na (Fig. 69a)sono di nuovo ben distinte le muscoviti di origine magmatica e tardo-post-magmatica (FR e 26MT) dai gruppi di origine idrotermale. E' da osservare la presenza di alcuni esemplari di mica chiara dal campione 3MTE (triangoli gialli) e dal campione 4MTE (triangoli celesti), che cadono nella zona di passaggio tra dominio magmatico e idrotermale (Silva e Neiva, 1990), probabilmente esemplari che descrivono un processo incompleto di idrotermalizzazione durante un evento tardivo di circolazione di fluidi.

Il diagramma Fe+Mg vs Al (Fig. 69b) permette di investigare l'origine della mica idrotermale (Gomes e Neiva, 2000): per valori compresi nell'intervallo Fe+Mg = 0.10-0.25 vengono identificate le muscoviti magmatiche, confermando così tale origine per i campioni FR e 26MT. Per valori di Fe+Mg < 0.10 si descrivono muscoviti di origine secondaria dovute alla cristallizzazione per sostituzione su albite (Gomes e Neiva, 2000), e per Fe+Mg > 0.25 vengono descritte fengiti idrotermali cristallizzate per sostituzione su K-feldspato+quarzo (Gomes e Neiva, 2000). I campioni investigati sembrano quindi mostrare, in questi diagrammi di variazione, per quanto riguarda le generazioni idrotermali e secondarie, una cristallizzazione dominante per effetto di sostituzione di tipo fengite.

La sostituzione di tipo fengite viene confermata anche dalla metodologia di confronto proposta da Speer e Becker (1992): nel diagramma Si-Al-(Mg+Mn+Fe*) (Fig. 70) sono rappresentate tutte le composizioni dei fillosilicati riconosciuti (muscoviti e rari cristalli di biotite).

Fig. 70 Diagramma Si-Al-(Mg+Mn+Fe*) (da Speer e Backer, 1992). In rosso le miche chiare in color vinaccia le rare biotiti; è possibile riconoscere anche in questo grafico la sostituzione fengitica dominante; inoltre si riconoscono fenomeni di sostituzione triottaedrica come indicato dai triangoli rossi che muovono verso le biotiti (e alcune sostituzioni opposte diottaedrice nelle biotiti); tutto il sistema mostra evidenze di leggera cloritizzazione.

Dal diagramma di figura 70 è possibile evidenziare il gruppo di muscoviti di origine magmatica, presso la posizione teorica della Muscovite magmatica, e due processi di sostituzione avvenuti: il primo riflette la sostituzione di tipo fengite precedentemente descritto (vettore muscovite-phengite), il secondo una sostituzione triottaedrica (vettore muscovite – phlogopite/annite). Quest'ultimo è ben descritto da alcuni esemplari di muscovite che muovono lungo il vettore muscovite-phlogopite fino quasi ad arrivare alla piccola color vinaccia rappresentante le biotiti del campione 28MT. Tutti questi ultimi fillosilicati descritti, muscoviti con sostituzioni triottaedriche e biotiti (anch'esse presentanti opposte sostituzioni diottaedriche), mostrano uno shift dalla linea muscovite-phlogopite verso tenori leggermenti più ricchi in (Mg+Mn+Fe*), questo indica l'inizio di fenomeni di cloritizzazione interstrato (vettore tratteggiato verde). L'ultima esplorazione delle differenze composizionali chimiche delle miche chiare è stata svolta dopo aver calcolato, per ciascun cristallo analizzato alla microsonda, l'attività molecolare delle componenti caratteristiche:

X-Muscovite

X-White Mica Phlogopite

X-Fe-Celadonite

X-Al-Celadonite

X-Paragonite

X-Ti-Mn-Ca-White Mica

Questi dati sono stati poi inseriti in un diagramma (Fig. 71) arbitrariamente costruito nel seguente modo: Vertice 1: (Muscovite + WMPhlogopite+TiMnCa-White Mica); Vertice 2: (Paragonite); Vertice 3: (Fe-Al-Celadonite). Questa costruzione è stata proposta con l'idea di separare le componenti magmatiche ricche in K, Fe e Ti (Vertice 1), dalle miche per sostituzione celadonitica (Vertice 3) e per sostituzione paragonitica (Vertice 2).

Fig. 71 Diagramma composizionale costruito sulla base dell'attività delle componenti (K-Fe-Ti), Celadonitica e Paragonitica. E' possibile vedere, anche in questo grafico, come dallo stock iniziale primario caratterizzato dai fillosilicati dei campioni FR e 26MT, si sviluppi una progressiva sostituzione della componente muscovitica con la componente celadonitica.

Da questo diagramma è possibile vedere come da uno stock principale di muscoviti di origine magmatica s.l. (concentrazione presso il vertice 1), si produca un progressivo fenomeno di sostituzione nella soluzione solida muscovite-celadonite, espressa dalla distribuzione di esemplari di fillosilicati lungo l'asse congiungente i vertici 1-3.

6.2.1.c Biotite

L'unica popolazione di biotiti primarie preservate è stata osservata nel campione 28MT (MA07/22) e nel campione MA09/23 (Fig. 72), provenienti dallo stesso affioramento di kinzigiti incassanti, nella parte interna della sezione di Oued MTer. Queste biotiti (tabella F4 in App. A) sono caratterizzate da un contenuto variabile in TiO₂ (0-3%), un valore medio di BaO = 0.110% e con una attività $X_{Al} = 0.2$ -1.05.

Fig. 72 In queste due immagini, già presentate per descrivere l'associazione dei plagioclasi, è possibile riconoscere la presenza di piccoli cristalli di biotiti distribuiti in modo isotropo all'interno della grana quarzo-felsica.

Come già sottolineato nel capitolo delle muscoviti, attraverso il diagramma di figura 70, tutte le biotiti presentano deboli fenomeni di cloritizzazione (Fig. 73). Per la geocronologia Ar/Ar, sono state selezionate, attraverso hand-picking in microscopia stereoscopica, previa separazione magnetica e a tavola a scosse, solamente campioni di biotite con tipica colorazione tabacco e senza fenomeni di alterazione della tavola di colori o evidenti inclusioni.

Fig. 73 Immagine S.E.M. della biotite dei campioni in figura (72). E' possibile osservare piccoli e diffusi fenomeni di cloritizzazione come già evidenziati dallo studio composizionale riportato graficamente in figura 70.

6.2.1.d Clorite

E' presente sia come interstratificazioni nella biotite e nella muscovite, sia come fase Vermiculite (Fig. 74). Questa fase è connessa ad alterazione idrotermale tardiva di fillosilicati preesistenti (Fig. 73, 74).

Fig. 74 Distribuzione delle cloriti nei dicchi. In foto (a) è possibile riconoscere sia cristalli lamellari di clorite sia esemplari di vermiculite (anche in foto c), cresciuti a spese della muscovite. Nelle foto (b-c-d-e) è possibile vedere altre sostituzioni cloritiche.

6.2.1.e Andalusite

In molti dicchi è stata riportata e analizzata la presenza dell'Al₂SiO₅ nella fase Andalusite. Questo alluminosilicato mostra sempre invariabilmente abito prismatico magmatico (Fig. 75a) e facce cristalline all'equilibrio con i feldspati ed il quarzo. In alcuni casi (Fig. 75b), al contatto con i feldspati, mostra concrescimenti e sostituzioni al bordo di piccoli cristalli e aggregati di muscovite in crescita per sostituzione secondaria. Questa tipologia di sostituzione è stata descritta da Clarke et al. (2005) come processo di sostituzione/trasformazione subsolvus di singoli cristalli di andalusite per generazione di pseudomorfi micro e policristallini di muscovite.

Fig. 75 Cristalli di andalusite di origine magmatica dai dicchi: a) abito prismatico ben formato; b) fenomeni di sostituzione secondaria dell'andalusite da aggregati microcristallini di muscovite.

6.2.1.f Zircone e Monazite

Queste due fasi minerali sono state identificate in tutti i dicchi con abiti magmatici ben sviluppati; purtroppo solamente due dicchi hanno prodotto un numero sufficiente di zirconi (Fig. 76,a,b) e monaziti (Fig. 76,c,d) per le datazioni U/Pb.

Fig. 76 a-b) cristalli di zircone dai dicchi; c-d) cristallo di monazite perfettamente sviluppato e relativa caratterizzazione al S.E.M.

6.2.1.g Fasi Accessorie Minori

E' stata riconosciuta nei dicchi una associazione di fasi minori accessorie quali pyrite, pyrite alterata, tormalina di tipo shorlite, magnetite, apatite, ossidi titaniferi; queste fasi sono state riportate sia da osservazioni in microscopia polarizzata, sia da analisi alla microsonda elettronica, sia da analisi in microscopia a scansione su cristalli da separazione magnetica e con liquidi pesanti.

Due "rari" cristalli di epidoto sono stati identificati alla microsonda elettronica; pochi ma non rari sono stati i cristalli trovati di allanite (Fig. 77a), magnetite (Fig. 77c), Fosfati di Th e REE (Brabantite?) (Fig. 77e), Fosfato di Y e Ca (Fig. 77i), Arseniuri di ferro (Lollingite?) (Fig. 77g).

Quest'ultimo gruppo di minerali - soprattutto la pirite e l'arseniuro di ferro (Fig.62) -, presentanti abito subedrale, può essere giustificato attraverso la seguente ipotesi: metalli basso fondenti (Ag, As, Au, Sn, Sb, Ta, Tl) con distribuzione localizzata e concentrazione irregolare nel prodotto magmatico sono componenti possibili di fusi parziali migranti, se il processo di melting avviene nel sistema Pb-Sb-S, Fe-Sb-S, Cu-Sb-S, Sb-As-S, Pbs-AgSbS e Fe-As-S a temperature di circa 525°C (Vernon, 2004). Questa ipotesi è confermata da Mavrogenes et al. (2001) che mostra anche come la presenza di questi elementi sia molto variabile fino anche al raggiungimento delle condizioni di eutettico del sistema galena-pyrrothite-sphalerite che si verifica all'interno di condizioni P-T caratteristiche della facies granulitica.

Fig. 77 Nelle foto ottenute tramite microscopia a scansione sono riportate le fasi minerali accessorie minori riconosciute nei dicchi granitici tardivi.

7. Geocronologia e Geochimica Isotopica

7.1 Datazioni U-Pb

I risultati delle datazioni U-Pb sono presentati nella Tabella 1 (App. B).

7.1.1 Leptiniti

Sono stati selezionati tre campioni per definire le età e le loro variazioni muovendosi dalle migmatiti granulitiche (leptinite MT7), agli gneiss (leptinite MT10) al tetto degli gneiss (leptinite L1 o MA07/14). Tutti i campioni contengono zirconi, caratterizzati da cores con luminescenza da moderata ad alta, da una ben preservata zonazione oscillatoria e spesso contenenti nuclei ereditati con zonazioni convolute ed oscillatorie.

Un'importante caratteristica degli zirconi delle leptiniti è il progressivo grado di alterazione muovendosi dalle kinzigite verso il tetto degli gneiss di Filali.

Infine il campione BA1 (da Bou Ahmed, vedasi Fig. 5 per la localizzazione) è stato utilizzato per analizzare zirconi *in situ* e quindi valutare le connessioni tra la crescita dello zircone e della monazite ed il fabric polifasico della roccia, con particolare riguardo allo sviluppo di tessiture secondarie.

7.1.1.a MT7

Il campione proviene da un corpo granitoide orizzontale (sheet-like) intruso nei livelli superiori delle granuliti migmatitiche. I contatti intrusivi sono netti e ben preservati, la leptinite si presenta inoltre paraconcordante con la foliazione di alto grado della roccia incassante (Fig. 7).

In questa località di campionamento è stato identificato anche un set di fratture (Fig. 12D) con andamento NW-SW e a carattere sub verticale, localmente riempite da dicchi granitici di piccole dimensioni (20-50cm di spessore) caratterizzati da importante alterazione dell'adiacente parete dell'incassante .

Questo campione di leptiniti contiene zirconi con abito da tozzo ad allungato (stubby to prismatic, da Vavra et al., 1999), con nuclei (interni ed esterni) a luminescenza medio-alta e una zona oscillatoria variabile ben preservata. Questi nuclei oscillatori sono inseriti all'interno di bordi (fino a 50 µm di spessore), omogenei alla BSE e a bassa luminescenza, che solitamente troncano nettamente la zonazione interna (Fig. 78).
7.1.1.b MT10

Questo campione proviene da un'intrusione planare (sheet-like) di piccole dimensioni. Questo corpo granitoide si presenta intensivamente deformato, con trasposizione dell'originale contatto intrusivo con le rocce incassanti (gneiss dell'unità di Filali). Questo corpo intrusivo è caratterizzato da cristallizzazione di origine sin metamorfica di associazioni a biotite-muscovite concordanti lungo piani di foliazione secondaria. I cristalli di zircone da questo campione presentano abito prismatico allungato e dominato da strutture metamittiche. Questa tipologia di struttura è tipica dei cristalli contenenti sostituzioni di U e Th radiogenici (Geissler et al., 2007). Gli zirconi meno alterati presentano luminescenza medio-bassa e zone oscillatorie ben preservate. Disturbi e variazioni nelle zone oscillatorie sono state riconosciute anche per la presenza di domini a zonazione convoluta (Fig. 78).

7.1.1.c L1 (MA07/14)

Questo campione proviene dal centro di uno stock granitico di relativamente modeste dimensioni (spessore pari a circa 20 m), intruso nei livelli superiori degli gneiss di Filali. Il campione si presenta abbastanza preservato con limitati fenomeni di alterazione della primaria associazione mineralogica ignea, riconoscibili in cristallizzazioni secondarie (sin-metamorfica) di biotite-muscovite. Questo campione ha prodotto gli zirconi di più ampie dimensioni, principalmente ad abito prismatico allungato (ca. 200-300 X 75-100 µm). Questi grani possono essere divisi principalmente in due popolazioni strutturali: la prima, più abbondante, comprende zirconi con luminescenza moderata, crescita correlabile ad un'unica fase con zone oscillatorie e bande di crescita planari; la seconda invece è caratterizzata da zirconi con nuclei oscillatori e settorialmente zonati (interni ed esterni), circondati da rims con luminescenza da debole a moderata, con estesa bandatura planare. Questi bordi si presentano sia continui e concordanti con i nuclei sia come troncanti la zonatura dei nuclei stessi (Fig. 78). In alcuni cristalli sono anche presenti strutture metamittiche di entità minore.

7.1.1.d Risultati

Nuclei con zonazione oscillatoria e bordi (n=43) presentano una dispersione dei valori del rapporto Th/U (0.01-0.66) con un valore medio pari a 0.42; i rim più esterni (omogenei alla BSE e

con bassa luminescenza) presentano invece valori Th/U compresi nell'intervallo 0.01-0.03 (n=9). Le analisi delle età dei nuclei mostrano una distribuzione delle età apparenti ²⁰⁶Pb/²³⁸U da 150 Ma a 2 Ga, ma in tutti i campioni è possibile riconoscere un raggruppamento principale intorno al valore 300 Ma (Fig. 79). L'analisi dei dati cumulativi definisce un valore di intercetta con la Concordia a 301 ± 8 Ma (2 σ , MSWD=0.47, n33). Età più antiche di 300 Ma possono essere ricondotte a due gruppi principali: un primo che definisce una discordia con una intercetta superiore a 573 (+53/-50) Ma, un secondo che è caratterizzato da età intorno ai 2 Ga.

Alcune età apparenti ²⁰⁶Pb/²³⁸U mostrano valori più giovani di 300 Ma e possono essere utilizzate per definire una discordia con una intercetta superiore a circa 300 Ma (consistente con un evento ercinico principale) e una intercetta inferiore correlabile al Miocene basale (consistente con un evento Alpino). Le Analisi delle età dei bordi, senza struttura, di zirconi provenienti dal campione MT7 presentano inoltre un gruppo ben definito a 21.7 ± 0.2 Ma (2 σ , MSWD=1.25, n=10).

Fig. 78 Immagini rappresentative in BSE e CL e dati U-Pb per gli zirconi selezionati dalle leptiniti. L'ubicazione degli spot eseguiti in LA-ICPMS sono indicati da cerchi bianchi. Tutte le età sono ²⁰⁶Pb/²³⁸U con errore definito a livello 2σ. A-B) (leptinite MT7) Nuclei ereditati e zonati inclusi in uno spesso settore zonato (magmatico) costituente il nucleo esterno e da un debolmente luminescente bordo esterno. C-D) (leptinite MT10) zirconi alterati con aloni metamittici, con resti dell'originale zona oscillatoria di crescita. E-G) (leptinit L1) Nuclei con settori zonati ed oscillatori (origine magmatica, con crescite al nucleo esterno ad alta luminescenza e deboli bandature al bordo.

Fig. 79 Diagrammi convenzionali basati sulla Concordia in cui sono espressi i risultati delle analisi eseguite sui cristalli in figura 78. Tutte le età sono ²⁰⁶Pb/²³⁸U con errore definito a livello 2 σ .

7.1.1.e BA1 (in situ)

Il campione BA1 proviene da un corpo intrusivo leptinitico deformato, di spessore metrico, localizzato all'interno di una zona ad alta deformazione negli gneiss di Filali presso l'area di Bou Ahmed (vedasi Fig. 7 per la localizzazione). L'associazione ignea è caratterizzata da cristalli ben sviluppati di quarzo e feldspati in cui si riconoscono anche grossi esemplari di tormalina, cristalli di cianite e granato. Questa associazione mineralogica è fortemente alterata e trasformata in una associazione composita di biotite-muscovite, strutturalmente legata a tessitura (di *high strain*) secondaria, inoltre masse di sillimanite fibrolitica circondano la cianite primaria. Dopo attente investigazioni petrografiche una porzione circolare (1 pollice in diametro e 100 μm di spessore) di roccia è stata prelevata da una sezione sottile lucidata e preparata per analisi in BSE e CL. Questo campione contiene 3 zirconi e 5 monaziti: gli zirconi si ritrovano all'interno di grossi feldspati e hanno forma arrotondata. La fratturazione di questi feldspati è abbastanza comune, ed è più sviluppata al bordo, dove si riconoscono anche aggregati microcristallini di Muscovite (Fig. 80, 81).

Le immagini in BSE documentano un processo di riequilibratura strutturale che interessa i nuclei degli zirconi, che sono caratterizzati da un aspetto poroso e l'occorrenza di ossidi di Th e U secondari. Le immagini in CL mostrano invece come i nuclei presentino domini convoluti siano inseriti all'interno di rims a moderata luminescenza (Figs. 80, 81).

Spot selezionati (8-16 μ m in diametro) sugli zirconi hanno prodotto una distribuzione delle età altamente dispersa con una apparente età 206 Pb/ 238 U variabile nell'intervallo 290 - 21 Ma, inoltre questi zirconi presentano un valore uniforme e basso (<0.01) del rapporto Th/U.

Le età apparenti ²⁰⁶Pb/²³⁸U definiscono una discordia con intercetta superiore con la Concordia a 295 +18/-19Ma a una intercetta inferiore a 20.2 +4.6/-4.9 Ma (Fig. 80, 81).

I cristalli di Monazite, di dimensioni ridotte (20-30 μ m) sono stati identificati associati alle bande di alterazione presentanti biotite e muscovite secondarie. La caratterizzazione in BSE non mostra zonazioni composizionali e sette spot sui cinque cristalli di monazite producono un gruppo concordante con un'età (relativa alla concordia) di 21.4 ± 0.3 Ma (Fig. 80, 81).

Fig. 80 A) Sezione lucidata del campione leptinitico BA1, il cerchio bianco indica la zona carotata ed utilizzata peer le analisi geocronologiche U-Pb *in situ*. B) Immagine BSE che mostra le relazioni tra i minerali quarzo-felsici ed i cristalli di zircone. C) Immagini BSE (sinistra) e CL (destra) degli zirconi. I cristalli mostrano nuclei altamente zonati e alterati all'interno di bordi non strutturati; notare la presenza di una struttura porosa e di inclusioni. Ubicazione degli spot per le analisi in LA-ICPMS (cerchi bianchi) ed età risultanti sono riportate in figura. D) Immagine BSE che mostra le relazioni tra la monazite e le bande di alterazione a muscovite in sostituzione sull'assemblaggio mineralogico magmatico. F) Alcune immagini in BSE di cristalli di monazite, con indicate le aree di analisi LA-ICPMS. Tutte le età sono ²⁰⁶Pb/²³⁸U con errore definito a livello 2σ.

Fig. 81 Risultati delle analisi in LA-ICPMS per le analisi *in situ* sul campione BA1. (A) Curva concordia convenzionale per le analisi in figura 80-C. (B) Curva concordia convenzionale convenzionale per le analisi eseguite su monazite.

7.1.2 Leucosomi delle kinzigiti migmatitiche

Il campione di leucosoma MT8 consiste in un livello intrafoliare di 2cm di spessore e 10cm di lunghezza, campionato nell'immediato incassante della leptinite MT7 (Fig. 8b). La paragenesi principale è costituita da K-feldspato, plagioclasio, quarzo, cianite, e granato. La crescita della associazione secondaria di biotite e muscovite si presenta principalmente come corone intorno ai granati e lungo bande di taglio sinmetamorfiche.

Immagini in BSE e in CL dei cristalli di zirconi, mostrano la possibilità di riconoscere sia i nuclei che bordi (Fig. 82). I nuclei presentano luminescenza medio-bassa con distribuzione settoriale ("soccer ball" zoning) (campione MT8). I bordi si presentano sia senza struttura, sia a bassa luminescenza con crescita non planare che tronca la zonazione interna, sia da bandatura planare a bassa luminescenza che mostrano transizione da aggradante ad adattata ai nuclei (Fig. 82). Questi grani sono quasi sempre circondati da un bordo esterno ad alta luminescenza, che forma un sottili films intorno ai domini zonati interni (nuclei e bordo). Inoltre sono stati osservati zirconi con caratteristiche strutturali omogenee.

Nuclei zonati e crescite planari bandate presentano valori variabili di Th/U nell'intervallo 0.02-0.45 (n=8). I bordi a bassa luminescenza e i grani omogenei hanno un valore di Th/U (n=6) più basso, sistematicamente inferiore a 0.01. Il set completo dei dati definisce una discordia con una intercetta superiore con la concordia a 305 +20/-22 Ma a una intercetta inferiore a 20 +4.1/-4 Ma (età 206 Pb/ 238 U; Fig. 82). Analisi (n=5) svolte su rims a bassa luminescenza e zirocni omogenei forniscono un set abbastanza concordante di dati alla terminazione inferiore della curva; questi ultimi dati producono un'età 206 Pb/ 238 U media pesata di 22.6 ± 0.7 Ma.

Fig. 82 Immagini rappresentative in BSE e CL e datazioni isotopiche U-Pb su zirconi selezionati dai livelli di leucosoma nelle granuliti migmatitiche K1 e MT8. L'ubicazione degli spot in LA-ICPMS è indicata con i cerchi bianchi. Tutte le età 206Pb/238U sono espresse in Ma e definite dal relativo errore espresso in 2σ. Curve convenzionali Concordia sono mostrate per ciascuno dei due leucosomi studiati.

7.1.3 Dicchi granitoidi tardo-strutturali

Solamente due campioni di questo set di rocce granitoidi hanno fornito un numero sufficiente di zirconi (MA07/26) e monaziti (MA07/22, MA07/26) per analisi in LA-ICP MS (Tabella 2 in App. B).

7.1.3.a MA07/26 (3MTE)

Il campione MA07/26 deriva da un dicco indeformato, con direzione NE-SW, spessore di circa 40 cm, che intrude in modo discordante gli gneiss di Filali (Fig. 16). Questo campione contiene zirconi subedrali sia elongati (300-400 x 100 μm) sia di forma più tozza (Fig. 76, 83).

Tutti i cristalli mostrano nuclei ereditati a luminescenza da moderata ad alta, con zonazione settoriale e oscillatoria. I nuclei sono circondati da estesi rim, con luminescenza medio-bassa, che formano una crescita planare con una leggera zonazione oscillatoria che tronca la zonazione delle zone interne (Fig. 83). Nella maggior parte dei cristalli, fenomeni di dissoluzione sembrano definire il passaggio nucleo-bordo (Fig. 83). I nuclei con zonazione oscillatoria (n=22) hanno una distribuzione dei valori Th/U nell'intervallo 0.02-0.44. Al contrario i bordi di crescita (n=16) mostrano sistematicamente valori bassi di Th/U (0.01-0.02).

Le analisi delle età dei nuclei ereditati rivelano una importante distribuzione delle età apparenti ²⁰⁶Pb/²³⁸U, nell'intervallo c.130 Ma -2.3 Ga; con un gruppo principale di valori intorno a 300 Ma. Questo set di età definisce una discordia con una intercetta superiore a 302 +26/-27 Ma ed una intercetta inferiore a 23 +2.7/-2.6 Ma. Analisi dei bordi con zonazione oscillatoria (n=15) producono un cluster di età localizzato in prossimità dell'intercetta inferiore della corda di discordia. Omettendo uno dei 15 punti-analisi (considerato un outlier) questi dati producono una età ²⁰⁶Pb/²³⁸U media pesata pari a 22.3+-0.2 Ma (95% confidence interval, MSWD=1.3).

Un singolo cristallo di monazite è stato separato da questo campione. Ad osservazione in BSE, il cristallo di monazite mostra zonazione a settori (di tipo "patchy"zoning) (Fig. 83), con domini ad alta luminescenza debolmente sviluppati al nucleo. Le età apparenti ²⁰⁶Pb/²³⁸U mostrano una significativa dispersione per quanto riguarda il nucleo, da 52.6 a 206 Ma. In contrasto, tutte le analisi dei bordi (n=5) mostrano dati concordanti con una età media pesata pari a 22.9 ± 1.1 Ma (95% confidence interval; MSWD=2.4). Tutti i dati ottenuti dalla monazite definiscono una discordia con intercetta superiore a 297 ± 37 Ma e una intercetta inferiore a 21.6 ± 6.7 Ma.

7.1.3.b MA07/22 (28MT)

Questo campione proviene da un dicco messosi in posto all'interno degli gneiss di Filali; ha prodotto vari cristalli di monazite. Questi cristalli presentano abito subedrale e mostrano sia zonazione settoriale e zonazione oscillatoria debolmente sviluppata sia assenza di zonazione (Fig. 83). Questi cristalli presentano inoltre numerose inclusioni (principalmente di quarzo e feldspato). Sono stati eseguiti 16 LA-ICP MS spot che hanno prodotto dati U/Pb concordanti con una età concordia 21.7 ± 0.2Ma (95% confidence interval, MSWD=1.4, Fig. 83). I valori 208 Pb/ 232 Th, dei 15 spot, producono un valore consistente di età (sempre da media pesata) di 21.8 ± 0.2 Ma; solamente uno degli spot ha prodotto una età con un valore debolmente più basso a 20.5 Ma e si è quindi deciso di escluderlo dal calcolo della media sopra citata.

Fig. 83 A) Immagini BSE e CL rappresentative e dati isotopici U-Pb per cristalli selezionati di zircone dal filone tardivo MA07/26 (o 3MTE). L'ubicazione degli spot in LA-ICPMS sono indicati da cerchi bianchi. Tutte le età sono ²⁰⁶Pb/²³⁸U con errore espresso al 2 σ . Curva convenzionale di tipo Concordia è riportata con i dati ottenuti dalle analisi. Nel riquadro è riportata l'età ²⁰⁶Pb/²³⁸U media pesata per i risultati ottenuti dallo studio delle zone oscillatorie di crescita. B) Immagine BSE e dati isotopici U-Pb ottenuti da una monazite del campione MA07/26. Gli spot in LA-ICPMS sono riportati nei cerchi bianchi e le età U-Pb son espresse in Ma. I dati sono infine espressi anche attraverso Curva convenzionale Concordia. C) Immagini BSE e dati isotopici U-Pb per grani di zircone dal campione MA07/22. Questi zirconi sono caratterizzati da zonazione settoriale. L'ubicazione degli spot in LA-ICPMS è indicata da cerchi bianchi. Tutte le età ²⁰⁶Pb/²³⁸U sono espresse in Ma ed è riportata la curva concordia per le analisi; nel riquadro la media pesata dei risultati U-Pb per le analisi eseguite su questi cristalli.

7.2 Datazioni ⁴⁰Ar/³⁹Ar

Le età U/Pb calcolate su zirconi e monaziti separati dai dicchi, sono state integrate con analisi geocronologiche ⁴⁰Ar/³⁹Ar su muscoviti e biotiti di diversa origine, discusse e descritte ampiamente nel capitolo relativo alla composizione chimica mineralogica, opportunamente separate da dicchi intrusi sia nelle peridotiti e nelle kinzigiti dell'unità di Beni Bousera sia negli gneiss di Filali (Fig. 16). I risultati ⁴⁰Ar/³⁹Ar (Tabella 3 in App. B) sono illustrati in figura 84. I quattro separati di muscovite mostrano età concordanti con plateu a 21.65 ± 0.44 Ma (FR), 21.59 ± 0.18 Ma (4MTE), 21.21 ± 0.18 Ma (MA07/20) e 21.27 ± 0.18 Ma (23MT) (errore al livello 2 σ).

I due separati di biotite producono risposte più disturbate, proabilmente a causa delle sostituzioni interstrato di clorite (già evidenziate, riconosciute e descritte nella sezione relativa dello Studio delle Fasi Mineralogiche dei dicchi) (e.g. Di Vincenzo et al., 2003). Nonostante tutto, età medie (21.42 ± 0.58 Ma per MA07/22; 22.21 ± 1.50 Ma per MA07/26; errore al livello del 2 σ) calcolate a temperature più alte (durante la procedura di analisi) di ciascun campione di biotite rientrano nell'errore delle età (*plateau*) delle muscoviti.

Fig. 87 Risultati delle analisi geocronologiche ⁴⁰Ar/³⁹Ar eseguite su separati di fillosilicati dai dicchi. l'altezza dei box rappresenta l'incertezza sulle età (1σ).

7.3 Analisi Isotopiche Sr-Nd

Le analisi isotopiche sono state sviluppate su 3 campioni di leptiniti (uno dalle kinzigiti, uno dalla base degli gneiss e uno dal tetto degli gneiss) rappresentativi della loro distribuzione nella sezione studiata e su 4 filoni granitoidi a diversa composizione, una granodiorite, un monzogranito, un sienogranito e un granito a feldspati alcalini, intrusi rispettivamente nelle kinzigiti, negli gneiss basali, al tetto degli gneiss e nelle peridotiti.

Questa selezione ha permesso quindi, in questo stadio conoscitivo di valutare i rapporti isotopici di Sr e Nd di tutte le tipologie di corpi leptinitici e di intrusioni tardo-strutturali riconosciute nell'area di studio. I risultati sono espressi nella tabella 4 in App. B.

7.3.1 Leptiniti

I rapporti isotopici sono stati calcolati a 300 Ma, età questa risultante dalle analisi U/Pb su zirconi e monaziti. Le leptiniti studiate provengono dalle kinzigiti (MT7) dalla base degli gneiss (MT10) e dal tetto degli gneiss (BA1); presentano (87 Sr/ 86 Sr)M variabile nell'intervallo 0.717768 - 0.775335 e (87 Sr/ 86 Sr)t nell'intervallo 0.710489 - 0.722233; il rapporto (143 Nd/ 144 Nd)M con valori compresi nell'intervallo 0.512057-0.512192 e valori del rapporto (143 Nd/ 144 Nd)t pari a 0.511789 - 0.511815 con -9.11 < ε-Nd <-8.50. I campioni esaminati presentano i seguenti range di valori per: Rb (129-229ppm), Sr (48-389ppm), Nd (3.72-13.7ppm) e Sm (1.08-3.14ppm).

7.3.2 Dicchi granitoidi tardo-strutturali

I rapporti isotopici sono stati calcolati a 20 Ma, età questa risultante dalle analisi U/Pb su zirconi e monaziti e dalle analisi Ar/Ar su biotiti e muscoviti. I dicchi analizzati provengono da quattro campioni provienienti da intrusioni nelle peridotiti (MA07/20), dalle kinzigiti (MA07/22), dagli gneiss basali (MT9) e dagli gneiss superiori (MA07/26); presentano (⁸⁷Sr/⁸⁶Sr)M variabile nell'intervallo 0.720082 - 0.729544 e (⁸⁷Sr/⁸⁶Sr)t nell'intervallo 0.719783 - 0.722538; il rapporto (¹⁴³Nd/¹⁴⁴Nd)M con valori compresi nell'intervallo 0.512052 - 0.512101 e valori del rapporto (¹⁴³Nd/¹⁴⁴Nd)t pari a 0.512026 - 0.512080 con -11.43 < ε-Nd <-10.39. I campioni esaminati presentano i seguenti range di valori per: Rb (20-336ppm), Sr (67-215ppm), Nd (7.05-16.4ppm) e Sm (1.89-4.15ppm) per quanto riguarda i campioni esaminati.

7.3.3 Discussione dei dati isotopici Sr-Nd

I due gruppi di rocce granitoidi oggetto di questa tesi mostrano una significativa differenza nei rapporti isotopici di Sr con distribuzione bimodale controllata dal Nd.

I rapporti isotopici Sr e Nd sono stati corretti a 300 Ma per le leptiniti e a 20 Ma per i dicchi, età queste ottenute con le analisi geocronologiche.

La diversificazione isotopica dei due gruppi è compatibile con la discriminazione ottenuta da: osservazioni di campagna, caratterizzazione minero-petrografica e geochimica su roccia totale.

Nel grafico (¹⁴³Nd/¹⁴⁴Nd)t vs (⁸⁷Sr/⁸⁶Sr)t in figura 88, in cui l'asse delle ordinate è espresso sia come (¹⁴³Nd/¹⁴⁴Nd) sia come $\varepsilon_{Nd}(t)$, le leptiniti (quadrati gialli) presentano valori dei due rapporti isotopici più bassi rispetto a quelli prodotti dalle analisi sui dicchi tardo-strutturali (rombi rossi). Entrambi i gruppi comunque si distribuiscono nell'area delle "Enriched Sources" (Zindler and Hart, 1986) identificando più precisamente, sorgenti di origine crostale (Westerman et al., 1993; Dini et al., 2002, 2005). Inoltre secondo quanto evidenziato da DePaolo e Wasserburg (1979) per le sorgenti arricchite - espresse in un diagramma $\varepsilon_{Sr}(t)$ vs $\varepsilon_{Nd}(t)$ nel II° quadrante "Enriched" - si può identificare una sorgente di tipo "Crosta inferiore / Crosta antica" per le leptiniti e una "Crosta superiore / Crosta giovane" per i dicchi a carattere tardo-strutturale.

Tali evidenze confermano i due scenari separati in cui le leptiniti sono il prodotto di un evento anatettico di età ercinica, sviluppatosi in condizioni granulitiche di HP su di un protolite acido di origine paleozoica; mentre invece i dicchi del campo filoniano tardo-strutturale descrivono un secondo evento di anatessi di età miocenica, su protoliti crostali principalmente acidi e caratterizzato da processi di messa in posto in condizioni crostali subsuperficiali.

I dati isotopici ottenuti in questo lavoro sono stati confrontati con prodotti magmatici dell'area mediterranea occidentale (Fig. 88); nel grafico sono stati inseriti: *i*) prodotti magmatici mio-pliocenici caratterizzanti la provincia magmatica toscana (Westerman et al., 1993; Dini et al., 2002; Dini et al., 2005 e referenze all'interno); *ii*) prodotti magmatici "mafici – intermedi" (RMI) e "granitoidi" (Gr1, Gr2) provenienti dall'Algeria (Cap Bougaron, Beni Touffout, El Milia, Filfila) (dati non ancora pubblicati, qui riprodotti per gentile concessione del Dr. Andrea Dini).

Come si può osservare dal grafico (Fig. 88), le leptiniti mostrano valori dell' $\epsilon_{Nd}(t)$ più bassi di tutti gli altri prodotti magmatici del Mio-Pliocene, gruppo isotopico in cui invece ben si inseriscono i risultati ottenuti per i dicchi tardo-strutturali.

Da questo confronto infatti è possibile ottenere due importanti informazioni riguardo i dicchi tardo-strutturali: *i*) mostrano forte affinità con i geograficamente vicini graniti miocenici

algerini (Gr1); *ii*) presentano valori isotopici di Sr e Nd simili ai graniti crostali tardivi riconosciuti nelle isole Elba e Giglio.

Fig. 88 Diagramma Sr-Nd costruito secondo i rapporti isotopici 87Sr/86Sr (t) e 143Nd/144Nd (t) [asse delle oridinate espresso anche come $\varepsilon_{Nd}(t)$]. I dicchi tardo-strutturali presenano valori isotopici maggiori delle leptiniti. Nel grafico sono presentate le aree di distribuzione di campioni magmatici miocenici algerini (RMI, Gr1, Gr2) (Dini A., dati non pubblicati) e provenienti dalla provincia magmatica toscana (età mio-pliocene) (Dini et al., 2005 e referenze all'interno).

8. Geotermometria e Geobarometria

8.1 Modello della Solubilità dello Zircone

La definizione delle temperature di solidificazione di un magma è complicato dalla difficoltà nel reperire coppie di minerali con reazioni di scambio sensibili alle variazioni di temperatura e al riequilibrio durante il raffreddamento; ancora più complesso è definire la temperatura di generazione di un magma. La termometria secondo il modello di saturazione dello zircone (Watson and Harrison, 1983) fornisce un metodo semplice e robusto di stima delle temperature di un magma. La solubilità dello zircone è estremamente sensibile alla temperatura, mentre viene debolmente influenzata da altri fattori (Miller et al., 2003). Inoltre è da tener presente la caratteristica ubiquitaria dello zircone nella maggior parte delle rocce plutoniche da intermedie a felsiche e la presenza come minerale accessorio in tutte le rocce granitoidi.

Ai fini dell'applicazione di questo geotermometro è necessaria la precisa stima della composizione della roccia plutonica (elementi maggiori e contenuto in Zr) derivante da un fuso saturo in zircone.

Watson e Harrison (1983) hanno dimostrato, attraverso studi sperimentali, la relazione tra solubilità dello zircone, temperatura e composizione in elementi maggiori del fuso:

$$\ln DZr^{zircon/melt} = \{-3.8 + [0.85 * (M-1)]\} + \frac{12900}{T}$$

con DZr^{Zircon/Melt} rappresentante il rapporto della concentrazione di Zr (ppm) nello zircone (ca. 497648ppm) con la concentrazione nel fuso saturo; M è un fattore composizionale che descrive la dipendenza della solubilità dello zircone rispetto alla SiO₂ e alla peralluminosità del fuso [(Na+K+2Ca)/(Al*Si) tutto in frazione cationica]; e T è la temperatura in Kelvin (le temperature riportate nel testo sono state convertite in gradi Celsius). Riscrivendo l'equazione in forma di geotermometro per fusi granitoidi:

$$TZr = \frac{1}{\langle \{3.8 + [0.85 * (M-1)] + \ln DZr\} / 12900 \rangle}$$

e semplificando

$$TZr = \frac{12900}{\left(2.95 + 0.85 * M + \ln \frac{497648}{Zr^{melt}}\right)}$$

La solubilità dello zircone non mostra deviazioni per variazioni di pressione e sembra mostrare piccoli scostamenti solo per condizioni anidre (H2O<1.5%) o per fusi schiettamente peralcalini.

Condizione fondamentale per applicare il termometro è la saturazione del fuso e questa può essere chiaramente valutata attraverso lo studio strutturale della roccia e dell'abito cristallino degli zirconi. Seguendo le indicazioni di Miller et al. (2003) si può interpretare valida la T_{zr} nelle seguenti condizioni:

- La composizione di prodotti felsici (apliti, graniti o pegmatiti) approssima il fuso segregato, già saturo in zircone all'estrazione dalla source. La T_{zr} indica quindi la stima minima della temperatura iniziale di messa in posto (Miller et al., 2003);
- Rocce plutoniche con assenza di zirconi ereditati o cristallizzati nelle fasi iniziali di generazione di fuso riflettono condizioni composizionali del fuso di sottosaturazione in zircone; in questo caso la T_{zr} indica la temperatura del fuso prima di una estensiva fase di cristallizzazione una volta avvenuta la messa in posto. L'assenza di zirconi ereditati è una condizione compatibile con la sottosaturazione della sorgente, in questo caso allora la T_{zr} può indicare anche la temperatura minima di segregazione di fuso alla sorgente; (Miller et al.,2003))
- Corpi intrusivi ricchi di zirconi ereditati, indicano una source satura in zircone, e poiché parte dello Zr totale è concentrato in questi grani relitti più che nel fuso, la T_{zr} può indicare la temperatura massima di genesi del magma. La composizione di una roccia granitoide ricca in grani di zircone ereditati, probabilmente indica una composizione molto prossima a quella del fuso iniziale e quindi dell'assenza di eventi di eventi di frazionamento nella storia del fuso. La T_{zr} di queste rocce è quindi utile nella stima della temperatura di generazione dei relativi fusi, con la possibilità di deboli sovrastime della stessa.

Il termometro secondo il modello di saturazione in zircone è stato applicato a tutte le rocce granitoidi oggetto di questo lavoro (leptiniti, leucosomi delle migmatiti e dicchi felsici) (tabella 1 in App. C).

8.1.1 Leptiniti

Presentano Zr nell'intervallo 18-151 ppm, e DZr variabile da 3295.68 a 27647.11 corrispondente a TZr rispettivamente di 788°C (MA09/16) e 643°C (BA1). Tutti i campioni

presentano il fattore composizionale M nell'intervallo 0.89-1.40 con un valore medio pari a 1.18 (Fig. 89);

8.1.2 Leucosomi delle migmatiti

I due leucosomi, entrambi caratterizzati da un M pari a 1.34, hanno prodotto due risultati in netta contrapposizione:

- Leucosoma da Playa Smeila (MA07/11): presenta un bassissimo contenunto in Zr (=5ppm) che condiziona in modo consistente il geotermometro; infatti Dzr presenta un valore di 99529.60 corrispondente ad una Tzr pari a 552°C (Fig. 89);
- Leucosoma da Mter (MA09/13): il contenuto di Zr è pari a 170 ppm, fornendo così un valore di Dzr = 2927.34 corrispondente ad una temperatura di 795°C (Fig. 89);

Il basso contenuto in Zr del leucosoma di PlayaSmeila, tenute presenti le concentrazioni nell'altro leucosoma e nelle leptiniti, viene considerato come un possibile errore analitico più che un particolare caso di sottosaturazione in Zr (Watson e Harrison, 1983; Miller et al., 2003).

Confrontando invece il risultato del leucosoma di Mter con le leptiniti è possibile notare come tale leucosoma (MA09/13) e la leptinite associata (MA09/16), entrambi i campioni provenienti dalla base delle kinzigiti, presentino simili valori di saturazione in zircone e simili temperature: 795°C per il leucosoma e 788°C per la leptinite. E' possibile inoltre notare come, muovendosi dalla base delle kinzigiti al tetto degli gneiss, le T_{Zr} tendano a diminuire progressivamente indicando forse le diverse temperature di messa in posto dei fusi che dalla base della granulite migmatitica si mobilizzavano e segregavano fino al tetto degli gneiss.

8.1.3 Dicchi felsici

I dicchi presentano un contenuto in Zr variabile da 8 a 194 ppm con M composizionale compreso nell'intervallo (1.19-1.37); tali valori assieme ad un DZr (2565.20 – 62206.00) indicano temperature rispettivamente di 819°C e 578°C. Esclusi però questi due valori estremi (entrambi caratteristici di due corpi pegmatitici), in generale i dicchi presentano i seguenti intervalli di distribuzione: Zr (33-83ppm), M (ca 1.26), DZr (5995.76-15080.24) e rispettive T_{Zr} di saturazione del fuso pari a 734°C – 670°C (Fig. 89).

8.1.4 Restiti (livelli nelle migmatiti)

E' stato infine applicato il Termometro "Zr", anche alle cinque restiti esaminate in questo studio. Il contenuto in Zr è variabile nell'intervallo 222-291 ppm e il fattore Dzr è compreso nel range di valori (1710.13-2241.66) indicando temperature rispettivamente di 928°C (K3) e 797°C (MA09/15) (Fig. 89). Tali valori di temperatura ben descrivono termicamente la facies granulitica in cui si sono formate. Ancora più interessante è notare come leptinite (MA09/16), leucosoma granulitico (MA09/13) e restite granulitca (MA09/15) provenienti dallo stesso affioramentoad Mter presso le kinzigiti al passaggio con le peridotiti mostrino con questo termometro temperature concordanti di 788°C, 795°C e 795°C rispettivamente. Questo dato risulta essere un importante tassello nella correlazione genetica di questi tre elementi (leptiniti, leucosomi e restiti) e quindi anche sulla loro età.

Fig. 89 Geotermometro secondo la solubilità dello zircone (Watson and Harrison, 1983); la temperatura espressa in funzione della solubilitò dello zircone e della composizione del fuso (M). Con i triangolo blu sono espresse le temperature stimate da questo modello per i corpi leptinitici, con i due triangolo verdi le due temperature dei leucosomi (il leucosoma che produce una TZr = 550°C non è considerato campione attendibile a causa del bassissimo contenuto in Zr ottenuto dalle analisi che non rispecchia il reale contenuto di questo elemento nella roccia, come si è visto anche dall'abbondanza di zirconi separati per le datazioni U-Pb); con i pallini rossi invece sono espresse le temperature ottenute per i dicchi. Entrambi i gruppi granitoidi sono descritti da una composizione leucogranitoide come si può vedere dal coefficiente M. Nel grafico con rombi viola sono presentati anche i valori TZr ottenuti per i livelli restitici i quali mostrano valori fino a 950°C (K3) denotando quindi una condizione di alta termalità del sistema granulitico.

8.2 Modello della Solubilità dello Zirconio nel Rutilo

Il Rutilo è un minerale abbastanza comune nelle rocce metamorfiche, e al contrario scarsamente presente all'interno di prodotti ignei (Watson et al., 2006). Questo minerale risulta essere una delle principali fasi che controllano la distribuzione ed il contenuto degli HFSE (HFSE, Zr, Nb, Mo, Sn, Sb, Hf, Ta e W); tra questi elementi risulta essere interessante il contenuto in Zr che è la risposta della coesistenza delle seguenti fasi nel sistema: quarzo-zircone-rutilo (Zack et al. 2004).

La solubilità di ZrO₂ nel rutilo è stato dimostrato come sia fortemente controllata dalla temperatura (Zack et al., 2004; Watson et al., 2006), ed è quindi stata valutata la sua capacità di esprimere un ottimo geotermometro, quando è dimostrata la sua coeistenza con quarzo e zircone, secondo la relazione:

$$T(in \circ C) = 127.8 * \ln(Zr in ppm) - 10$$

L'importanza della sostituzione Zr4+ - Ti4+ (con il raggio ionico di quest'ultimo inferiore al primo) suggerisce anche una dipendenza dalla pressione della struttura del rutilo: maggiore è la pressione minore sarà la possibilità di sostituzioni Zr-Ti (Tomkins et al., 2007).

Attraverso studi sperimentali di solubilità dello Zr nel rutilo eseguiti in condizioni P-T controllate è stato possibile identificare un'equazione che esprime il comportamento dello zirconio in dipendenza primaria dalla temperatura e secondaria dalla pressione (Tomkins et al, 2007):

$$T(in \circ C) = \left\{ \frac{[83.9 + (X * P)]}{[Xf - (R * \ln \varphi)]} \right\}$$

Dove P è la pressione espressa in Kbar, ϕ è il contenuto (in ppm) di Zr nel rutilo, R è la costante dei gas (0.0083144Kj K⁻¹) ed X ed Xf sono fattori correlati ai campi di stabilità delle fasi della silice in cui si vuole sviluppare il termometro (Tomkins et al., 2007):

Q-alpha	X=0.410	Xf=0.1428
Q-beta	X=0.473	Xf=0.1453
Coesite	X=0.206	Xf= 0.1412 (per P>26kbar)

Attraverso l'applicazione di questo modello di solubilità, utilizzando i parametri del Q-beta e tenendo presente che la differenza tra il modello Q-alpha e Q-beta per uno stesso contenuto in Zr è di 5°C ogni 10 kbar, alle composizioni dei rutili riconosciuti nelle restiti (K3) e nei leucosomi granulitici (K1 o B) provenienti dalla località di Playa Smeila è stato possibile ottenere i seguenti risultati:

• Per le restiti sono state riconosciute due progressioni P-T:

- Valori minimi: da 7 kbar a 20 kbar con temperature da 784°C a 857°C;
- Valori massimi: da 7 kbar a 20 kbar con temperature da 810 a 885°C;
- Per i leucosomi invece è stato verificato nello stesso range di pressioni un intervallo termico più ampio:
- Valori minimi: da 7 kbar a 20 kbar con temperature da 739°C a 798°C;
- Valori massimi: da 7 kbar a 20 kbar con temperature da 876°C 955°;
- Questi intervalli P-T riconosciuti per restiti e per leucosomi granulitici sono abbastanca concordanti con le rispettive temperature calcolate con il modello di solubilità in Zr di Watson and Harrison (1983).

8.3 Modello della Solubilità della Monazite (Termometria REE)

La diffusa distribuzione della monazite in rocce metasedimentarie di alto grado e in graniti peralluminosi, suggerisce il controllo di questa fase minerale sul comportamento di REE, U e Th durante le fasi di formazione e differenziazione di magmi peralluminosi (Montel, 1986; Rapp e Watson, 1986).

Studi sperimentali (Montel, 1986,1993; Rapp e Watson, 1986) dimostrano che per gli intervalli termici e per le composizioni dei fusi caratteristici dei fenomeni di fusione parziale di rocce metasedimentarie, il comportamento delle LREE è governato da equilibri chimici tra fuso e monazite. Caratterizzare questi equilibri significa quindi non solo valutare la solubilità della monazite in fusi felsici, ma stabilire anche una equazione che permetta di calcolare i profili delle REE di fusi all'equilibrio con le relative monaziti. Risulta evidente quindi come questa applicazione possa descrivere un termometro basato sul contenuto delle REE nelle rocce ignee (REEthermometry) (Montel, 1993).

Il modello di solubilità proposto da Montel (1993) assume l'influenza idipendente della composizione del fuso, della temperatura e dell contenuto di acqua sulla solubilità della monazite.

$$\ln REE_t = (9.50 + 2.34 * D_{REE} + 0.3879 * \sqrt{H_2O}) - \frac{13318}{T}$$

Dove

$$REE_{t} = \sum \left[\frac{REE_{i} ppm}{at. weight (g mol^{-1})} \right]$$

Е

$$D_{REE}) \left[(Na + K + Li + 2 * Ca) / Al * (Al * Si) \right]$$

Na, K, Li, Ca, Al, Si sono espressi in at %, H₂O in wt % e T in K. Le REE considerate vanno dal La al Gd con escluzione dell'Eu.

Nelle monaziti naturali, la presenza di inclusioni e associazioni di Th- e U-end-members [huttonite (ThSiO₄), brabantite (CaTh(PO₄)₂) e equivalenti uraniferi] può abbassare in modo significativo l'attivita del modello REEPO4 (Deer et al., 1962). Assumendo che Th- e U- endmembers agiscano come diluenti inerti (Montel, 1993), REEt può essere sostituita da (REEt/XREEPO₄) dove XREEPO₄ è la somma delle frazioni molari dei fosfati di terre rare nella monazite.

Da studi effettuati su gneiss di alto grado e graniti peralluminosi è stato evidenziato un valore medio XREEPO₄ =0.83 (Montel, 1993); non conoscendo la composizone delle REE delle monaziti delle rocce esaminate in questo studio e tenendo presente che in alcuni separati dai dicchi è stata riconosciuta la fase brabantite, si è deciso di utilizzare quest'ultimo fattore di correzione nel calcolo di questo geotermometro.

L'equazione così corretta fornisce però un risultato valido e attendibile se si tiene presente che tale temperatura "è quella a cui è stato raggiunto l'ultimo equilibrio tra fuso e minerale accessorio" e può indicare quindi:

- La temperatura di estrazione del fuso granitico dalla sua source, in caso non sia avvenuto nessun processo di cristallizzazione frazionata tra zona di genesi e livello di messa in posto (Miller et al., 1988);
- La temperatura di differenziazione da un magma parentale in caso di cristallizzazione frazionata (Scaillet, 1990; Scaillet et al., 1990);
- La temperatura di segregazione in caso di leucosomi in migmatiti anatettiche (Brouand et al 1990);

Queste temperature sono puramente magmatiche, e quindi bisogna tener presente che un termometro basato sulla solubilità di un minerale accessorio opera in modo corretto solo se l'equilibrio chimico rimane prevalente durante la differenziazione, se il minerale accessorio scelto controlla il comportamento del relativo elemento in solubilità e se la composizione della roccia totale corrisponde al liquido cristallizzato; ed infine se sono presenti cristalli ereditati dalla sorgente. In quest'ultimo caso infatti la temperatura può risultare sovrastimata: nel caso della monazite un 10% di cristalli ereditati può produrre una sovrastima fino a 10°C (Montel 1993) (risultati in Tabella 2 in App. C).

8.3.1 Leptiniti e Leucosomi

Il modello di Montel (1993) è applicabile solamente a rocce magmatiche presentanti monazite, che non abbiano subito successivamente alla messa in posto eventi deformativi e metamorfici importanti: tali eventi infatti potrebbero modificare considerevolmente il contenuto in REE delle monaziti originarie. Considerando l'ampia descrizione delle deformazioni riconosciute nelle leptiniti e l'importante circolazione di fluidi a cui è connessa una seconda fase di ricristallizzazione tardiva di Muscovite-Biotite a cui sono associati anche grani di monazite (come evidenziato dal campione BA1) è stato valutato non significativo applicare questo geotermometro a questo set di rocce granitoidi.

8.3.2 Dicchi felsici

I dicchi granitici presentano un DREE nell'intervallo 0.94 (MT9) – 1.134 (Ma07/21), indicanti questi due valori rispettivamente XREEt 0.467 e XREEt 0.077. Le temperature di solubilità (TREE) sono state calcolate per contenuti in H₂O pari a 1% (608 -762°C), 2% (599-749°C), 3% (592-739°C), 4% (586-732°C) e 5% (581-725°C).

Un confronto delle temperature calcolate con i geotermometri REE (Montel, 1993) e Zr (Watson and Harrison, 1983) è mostrato in figura 90 e poiché il TREE è svolto in considerazione del contenuto in acqua del fuso, l'intervallo calcolato, per ogni campione, 1-5 wt% in H₂O è rappresentato nel grafico da barre verticali.

La correlazione tra i due termometri è in conclusione soddisfacente e come si può vedere nel grafico (Fig. 90) rimane costante in un intervallo TZr ±40°C. Tali differenze potrebbero essere correlate alla presenza di volatili (non considerati dalle equazioni dei geotermometri) che disturbano il comportamento di uno dei due termometri (Keppler, 1992).

Due campioni soltanto mostrano forti discrepanze tra i due geotermometri, con un valore prodotto dal REE-termometro molto inferiore a quello dello Zr-termometro:

 13BA: dicco nelle kinzigiti presso Bou Ahmed caratterizzato da importanti fenomeni di alterazione (come già evidenziato dallo studio petrografico e composizionale delle fasi mineralogiche); 23MT: dicco pegmatitico presso le peridotiti affioranti ad Mter, caratterizzato dalla assenza di k-feldspato, dal contenuto totale molto basso di K₂O (0.46%) e dallo sviluppo di una popolazione secondaria idrotermale di muscoviti microcristalline.

Escludendo quindi questi due campioni, si può affermare per i restanti sette dicchi l'ottima correlazione tra i due termometri calibrati indipendentemente e indicanti quindi una contemporanea estrazione di zircone e monazite dal fuso granitico.

Inoltre, sempre attraverso il confronto dei due geotermometri, è possibile suddividere i dicchi in due sottogruppi: il primo è caratterizzato da Tzr compresa tra 670-730°C e correlazione con TREE per valori di H₂O < 5 wt % (con valore medio pesato tra 4-5%), condizioni di T e P_{H₂O} che ben descrivono il minimo granitico per fusi felsici leucocratici evoluti. Il secondo sottogruppo invece è caratterizzato da un unico campione (Ma07/21) con TZr =TREE(5%H₂O) = 580°C. Tale temperatura ben si correla ad una pegmatite leucocratica con associazione a feldpsati alcalini, messasi in posto come prodotto tardivo in facies pegmatitica-idrotermale con condizioni di impoverimento dei costituenti accessori (quali zircone e monazite) per precedenti processi di frazionamento avvenuti durante le fasi di migrazione del fuso stesso.

8.4 Associazione Feldspatica Ternaria (Termometria An-Ab-Or)

La composizione ternaria dei feldspati può essere utilizzata per calcolare la temperatura alla quale i feldspati stessi hanno raggiunto l'equilibrio. Esistono vari modelli basati sulla coesistenza di due feldspati, modelli che possono stimare a quali temperature le strutture disordinate Si-Al-O si riequilibrano. E' quindi fondamentale, per l'applicazione positiva di questo geotermometro, capire su quali coppie di feldspati calcolare l'equilibrio rispetto ad una o più delle tre componenti Ortoclasio-Albite-Anortite. (Lee e Parson, 1997)

In senso stretto una roccia che ha raggiunto il suo equilibiro, a qualsiasi temperatura, dovrebbe contenere solamente due feldspati. (Lee e Parson, 1997)

In pratica però una roccia difficilmente esiste in questo stato di equilibrio completo e quindi solitamente contiene distinte generazioni di plagioclasio caratterizzate da più o meno differenti tenori in anortite; ciascuno di questi plagioclasi può trovarsi in condizioni di equilibrio con un feldspato alcalino caratterizzato da diversi tenori in albite e ortoclasio. Infine ciascun feldspato alcalino può presentare smescolamenti pertitici subsolvus ricchi in ortoclasio o in albite, che a loro volta alla microscala possono presentare anch'essi micropertiti Ab-Or (Lee e Parson, 1997).

Risulta quindi evidente che applicare un geotermometro ad una coppia di feldspati analizzati alla microsonda elettronica, se non si considerano le relazioni strutturali e tessiturali dei feldspati stessi e della roccia totale, produce un risultato privo di riscontri reali. In questo lavoro è stato utilizzato il software SOLVCALC 2.0 (Nekvasil e Wen, 1996) per descrivere, attraverso opportuni confronti le temperature di concordanza o di equilibrio del sistema ternario Ab-Or-An, utilizzando la formulazione di Nekvasil e Burnham (1987) per l'equilibrio nel sistema granitico. Questo modello, come anche i modelli di Furhman e Lindsley (1989) e di Elkins e Grove (1990) sono basati sugli equilibri di fase e sui dati relativi a volumi di cella per feldspati "non-ordinati" (disordered feldspar). (Kroll et al., 1993).

Dati sull'equilibrio del sistema ternario per feldspati "ordinati" (ordered feldspar) all'equilibrio non esistono (Parson et al., 2009), e anche per il solo sitema binario Ab-Or una relazione di solvus per l'equilibrio di fasi ordinate non è mai stata ottenuta per sintesi diretta (Brown e Parson, 1984; Parson et al., 2009). Gli studi di Muller (1971) sulla variabilità dell'ordine strutturale dei feldspati, di Bachinsky e Muller (1971) relativi a feldspati completamente ordinati e di Smith e Parson (1974) relativi a feldspati completamente disordinati; integrati alle osservazioni di Smith e Parson (1974) sulle condizioni termiche degli equilibri di solvus e al modello proposto da Brown e Parson (1984) sulla stabilità di feldspati disordinati in condizioni di subsolvus e hypersolvus, permettono di correggere la temperatura di concordanza del sistema Ab-An-Ar (ottenuta attraverso i vari geotermometri basati sui feldspati) attraverso un incremento di 80-100°C rispettivamente per un sistema binario (stima di solvus in un sistema binario ordinato privo di deformazioni corrispettivo dello stesso sistema disordinato) e per un sistema ternario (Brown e Parson, 1984; Parson et al., 2009).

I principi di calcolo dei termometri del software SOLVCALC 2.0 sono descritti da Furhman e Lindsley (1988); il programma una volta inserite le componenti Ab-An-Or per la coppia di feldspati fornisce, per una data pressione stabilita dall'operatore, tre valori stimati di temperatura T (T_{Ab} - T_{An} - T_{Or}) e la loro T_{media} , attraverso la ricerca dell'ipotetica congiungente, prossima alla coppia di composizioni ternarie, che equalizza i potenziali chimici di ciascuna componente delle due fasi minerali. Quando le tre T stimate sono concordanti (in un range di 40°C) la coppia di feldspati è considerata all'equilibrio con un errore sulla T attestato intorno ai 30-50°C (Parson et al., 2009). Quando invece si hanno solo due temperature concordanti, la coppia di feldspati si definisce "vicino all'equilibrio", in questi casi, seguendo le indicazioni di Furhman e Lindsley (1988) la temperatura è stimata proprio sulla coppia concordante (i risultati di questo geotermometro sono riportati in tabella 3 in App.C).

8.4.1 Leptiniti

8.4.1.a MT7

La necessità di lavorare su feldspati non deformati e quindi quanto più possibile rappresentativi delle fasi generate per cristallizzazione da fuso, ha portato ad escludere dall'applicazione di questo geotermometro tutte le leptiniti deformate. E' stato quindi selezionato il campione MT7, una leptinite indeformata nelle kinzigiti, e di cui sono state svolte analisi petrografiche atte a descrivere la composizione delle fasi mineralogiche. Per questo campione sono stati sviluppati due confronti: un K-feldspato contro due diversi plagioclasi a contatto e all'equilibrio, presentanti due diversi valori di X_{An} (37% e 57% rispettivamente).

Il calcolo delle temperature è stato svolto in entrambi i casi per valori di pressione 5-10-15 kbar (valori scelti per descrivere il comportamento all'interno di range di pressioni compatibili con la cianite peritettica riconosciuta nei campioni leptinitici). Il confronto tra K-feldspato e plagioclasio (X_{An}37%) mostra concordanza solo per TAb-TAn con valori di 550-575-621°C rispettivamente per 5-10-15 Kbar; il confronto K-feldspato-plagioclasio (X_{An}57%) mostra una perfetta concordanza delle tre temperature producendo valori di 440-469-545°C (per 5-10-15 kbar).

Applicando le correzioni di 80-100°C (Parson et al., 2009) si riconoscono temperature massime a 15 kbar nell'intervallo 645-721°C e a 5 kbar di 540-650°C. Le prime (considerando anche l'errore di 30-50°C indicato da Parson et al., (2009)) corrispondo in difetto alle stime ottenute con i geotermometri a "Zr", e quindi possono identificare le temperature di inizio-fine cristallizzazione di questi corpi felsici. Le seconde, a valori di P inferiori, potrebbero invece essere l'indicazione di processi di riorganizzazione allo stato solido, nei campi Sanidino-Microclino, avvenuti successivamente alla cristallizzazione (Brown e Parson, 1984; Lee e Parson, 1997; Parson et al., 2009).

8.4.2 Leucosomi dalle migmatiti

8.4.2.a MT8

Questo leucosoma, come già descritto in precendenza, corrisponde ad un piccolo livello centimetrico a contatto con la leptinite MT7. Anche in questo caso è stato sviluppato il confronto tra K-feldspato e plagioclasi all'equilibrio, con diverso contenuto in X_{An} (47%-87%). Se il confronto con il plagioclasio andesinico (X_{An} 47%) ha fornito T concordanti di 483-542-596°C (5-10-15 kbar rispettivamente), più interessante è stato il confronto K-feldspato-Plagiocalsio anortitico (X_{An} 87%) che ha evidenziato temperature di concordanza di 671-782-805°C (a 5-10-15 kbar rispettivamente).

Se queste ultime temperature vengono corrette secondo le indicazioni di Brown e Parson (1984) con un incremento di 100°C si ottiene la seguente tripletta di valori: 771-882-905°C (per 5-10-15 kbar). Temperature che ben descrivono la genesi, l'estrazione e la cristallizzazione di un leucosoma generatosi per anatessi in campo granulitico. Tali temperature sono ben confrontabili con la predizione (TZr=795°C) fatta dal modello di solubilità dello zircone per un livello di leucosoma campionato sempre presso la sezione di Mter.

8.4.2.b K1

Questo leucosoma proviene da un livello decimetrico in spessore campionato presso la località di PlayaSmeila a nord del massiccio peridotitico (Fig. 7). La complessa associazione di coppie di feldspati all'equilibrio (come nel caso evidenziato da Lee e Parson, 1997) ha richiesto un diverso approccio: si è deciso infatti di sviluppare una serie di confronti comparativi tra le quattro coppie all'equilibrio così identificate: A) K-feldspato-Plagioclasio XAn 25%; B) K-feldspato-Plagioclasio XAn 26%; C) K-feldspato-An-pertite; D) Plagioclasio XAn 26% - Ab-Or-antipertite.

Se il confronto A ha mostrato temperature di concordanza di 622-719 (a 5-15 kbar), ben più complesso è stato il risultato degli altri confronti:

- B: condizioni vicino all'equilibrio per TAn-TAb di 609-697°C per 5-15 kbar;
- C: condizioni vicino all'equilibrio per TAn-TAb di 669-769°C per 5-15 kbar;
- D: condizioni vicino all'equilibrio per TAn-TAb di 861-966°C per 5-15 kbar;

Applicando la solita correzione per i sistemi di feldspati ordinari (incremento di 100°C) si può osservare come le temperature di concordanza si assestino in un range 709-961°C per 5 kbar e di 797-1066°C per 15 kbar.

Anche in questo caso, come per il leucosoma precedente, le temperature evidenziate descrivono gli equilibri in prima cristallizzazione da fuso in facies HT-HP-granulitica, e probabilmente i processi di riequilibrio subosolidus e subsolvus durante il raffreddamento.

8.4.3 Restiti dalle migmatiti

8.4.3.a K3

Associato al leucosoma K1, nella località di Playa Smeila è stato campionato anche un livello restitico (K3). Come per gli altri campioni sono stati sviluppati confronti tra coppie di feldspati per valori di pressione pari a 5-10-15 kbar.

Il primo confronto tra K-Feldspato e Plagioclasio XAn (33%) ha evidenziato condizioni vicino all'equilibrio con la concordanza di TAb-TAn e temperature di 597-648-695°C a 5-10-15 kbar; il secondo confronto tra K-feldspato e PlagioclasioXAn (52%) ha mostrato concordanza per per tutte e tre le componenti con valori di 551-632-672°C per 5-10-15 kbar.

Applicando le correzioni di Brown e Parson (1984) e considerando l'errore di 30-50°C (Parson et al., 2009) è possibile osservare come le temperature nell'intervallo 10-15 kbar – oltre ad essere coerenti con quelle calcolate per leucosomi e leptinite – sono perfettamente in accordo

con le temperature indicate dai modelli termometrici basati sullo "Zr" (Solubilità dello Zr e Zr in rutilo) per questi livelli restitici, identificando quindi le possibili condizioni di genesi dell'associazione leptiniti-leucosomi-restiti per valori di T>740°C e pressioni minime nell'intervallo 10-15 kbar.

8.4.4 Dicchi granitici tardivi

Sono stati esclusi dall'applicazione del geotermometro per i feldspati i campioni caratterizzati da fenomeni diffusi di alterazione e albitizzazione (13BA) o dicchi che non presentavano l'associazione ternaria completa (23MT associazione Ab-An; 4MTE solo Ab). Sono stati sviluppati i confronti per i cinque campioni rimanenti di cui sono stati caratterizzati composizionalmente i feldspati (dicchi sia a carattere microgranulare sia pegmatitico).

I confronti tra coppie di feldspati sono stati prodotti per valori di pressione pari a 2.5 kbar e 7.5 kbar; valori scelti per le seguenti condizioni:

- i) limitato volume dei dicchi, indicante una loro segregazione come apofisi e digitazioni da uno o più stock plutonici a medio-basse profondità crostali;
- ii) vincoli P-T legati alla cristallizzazione all'equilibrio con i minerali quarzo-felsici di andalusite magmatica (condizioni superficiali con P< 4 kbar (Clarke et al., 2005)).

I confronti opportunamente sviluppati hanno prodotto temperature vicino all'equilibrio nell'intervallo 335-490°C per 2,5 kbar e 410-607°C per 7.5 kbar, e temperature concordanti all'equilibrio di 421-505°C per 2,5 kbar e 453-562°C per 7,5 kbar.

Tutti i risultati ottenuti, nonostante l'applicazione della correzione di Brown e Parson (1984) raggiungono difficilmente i 600°C per 2,5 kbar e solo in alcuni casi superano i 660°C per 7,5 kbar; valori questi che non trovano accordo con l'intervallo ristretto 670-760°C descritto dai modelli si solubilità dello zircone e della monazite, mentre ben si inseriscono nell'intervallo 578-760°C che descrive le temperature T*Zr* e TREE sia per i dicchi sia per i corpi a carattere pegmatitico spinto.

Considerando i vincoli P-T imposti dall'andalusite di origine magmatica in peritettico o in cotettico con il fuso, con condizioni di saturazione in H₂O (come indicato dalla presenza di generazioni magmatiche e tardo-magmatiche di Muscovite) ed eccesso in Al₂O₃ (peralluminosità descritta da A/CNK >1) (Clarke et al., 2005), le temperature prodotte dai termometri "Zr" e "REE" sono probabilmente indicative delle condizioni P-T di cristallizzazione da fuso di questi corpi

filoniani, mentre le temperature più basse prodotte dal termometro "feldspati" indicano gli intervalli termici post-magmatici ed idrotermali in cui si sono verificati i processi di riequilibrio subsolvus (distribuzione di importanti set di pertiti e antipertiti in molti feldspati), e di circolazione di fluidi (facies idrotermale in cui si sono sviluppate le popolazioni secondarie di muscovite per sostituzione fengitica, e i processi di albitizzazione diffusamente riconosciuti).

Infine bisogna tenere presente che, nella maggior parte dei feldspati dei dicchi tardivi è stata riconosciuta la molecola della celsiana (Ba-feldspato) presente fino a valori del 3.4% in alcuni cristalli da pegmatiti. Nessuno dei termometri attualmente in uso per il sistema ternario Ab-An-Or prende in considerazione questa componente e ciò potrebbe aver influito sul risultato del geotermometro.

8.5 Geobarometria GASP

L'effetto del contenuto in Ca nel granato e nel plagioclasio è stato ampiamente discusso negli ultimi due decenni (i.e. Asorth and Evirgen, 1985, Todd, 1988; Holdaway, 2001). Asworth ed Evirgen (1985) hanno dimostrato come l'associazione granato-plagioclasio non sia affidabile come geobarometro in condizioni di T<700°C e con un plagioclasio sodico (XAn<20%); simili conclusioni sono state ottenute separatamente anche da Krogh et al (1990).

Il barometro GASP è quindi valido solamente per contenuti consistenti di anortite nel plagioclasio e di grossularia nel granato (Todd, 1988; Holdaway, 2001). Il confronto di modelli teorici con lo studio di differenti tipologie di metapeliti ha dimostrato che per valori di grossularia < 10% e anortite <30% si possono ottenere, nella definizione della pressione, variazioni fino a 3 kbar e a volte anche superiori (Todd, 1988). Studi più recenti e raffinamenti del modello di calcolo hanno verificato la positiva applicabilità del GASP per coppie plagioclasio-granato i cui valori minimi di anortite e grossularia siano rispettivamente 17% e 3% (Holdaway, 2001).

La stima P-T e le reazioni tra fasi plagioclasio-granato all'equilibrio, secondo questo geobarometro, sono state calcolate attraverso l'uso del software THERMOCALC 3.26 (Powell and Holland, 2008) utilizzando la modalità AVERAGE P-T; è stato così possibile ricostruire attraverso l'identificazione per queste rocce dell'equazione di equilibrio Grt+Qz+2Ky=3An, le coppie di profili P-T calcolate considerando per ciascun campione sia la composizione al nucleo del granato sia la composizione al bordo (Fig. 91) (le composizioni delle coppie granato-plagioclasio ed i risultati ottenuti attraverso l'uso del GASPsono riportati in Tabella 5 in App. C):

- Leucosomi granulitici:
 - GASP nucleo granato: 7-20±0.6 kbar e 543-1309±36°C;
 - GASP bordo granato: 5-19±0.75 kbar e 520-1194±22°C;
- Leptiniti indeformate dalle kinzigiti:
 - GASP nucleo granato: 9-20±0.4 kbar e 594-1194±22°C;
 - GASP bordo granato: 9-20±0.42 kbar e 606-1214±23°C;

Fig. 91 Geobarometro GASP calcolato per Leucosomi granulitici e Leptiniti non deformate. I grafici sono comparabili perchè costruiti con la stessa scala P-T. I leucosomi granulitici hanno i GASP "nucleo" e "bordo" confrontabili, con le stime P-T per il bordo indicanti gradiente termico maggiore. Il GASP applicato ai granati delle leptiniti indeformate ha prodotto risultati identici per le composizioni al nucleo e al bordo dei granati.

Da questi risultati, che sono stati ottenuti attraverso la caratterizzazione di una leptinite e di un leucosoma provenienti dalle kinzigiti, si può osservare come per le leptiniti, il GASP calcolato al nucleo del granato produca risultati identici a quelli ottenuti applicando il GASP alla composizione del bordo del granato. Questo potrebbe identificare quindi una crescita del granato all'equilibrio con un fuso felsico in condizioni di gradiente termobarometrico costante. Per quanto riguarda invece i leucosomi granulitici, il GASP ha evidenziato, per pari condizioni di pressione, temperature di equilibrio più basse per la composizione al nucleo del granato rispetto a quella del bordo, con differenze tra le due progressioni P-T anche di 200°C.

Non sono state invece prodotte modellizzazioni dirette di tipo GASP sui livelli restitici perché, come evidenziato nella sezione relativa ai granati dei livelli restitici (5.2.2.f), questa fase mostra un comportamento della componente grossularia variabile e complesso, connesso con molta probabilità all'evoluzione del livello restitico durante le fasi di segregazione ed estrazione di fuso, piuttosto che alla condizione di crescita all'equilibrio in un sistema ipoteticamente chiuso (Spear e Kohn, 1996).

9. Discussione

I dati raccolti in questo lavoro dimostrano come le unità metamorfiche di alto grado del Dominio di Alboran, esposte nella catena del Rif marocchino, siano caratterizzate da più eventi di segregazione magmatica di tipo granitoide a carattere peralluminoso.

Le evidenze petrografiche dimostrano che la produzione di questi fusi granitoidi è avvenuta in condizioni *P-T* diverse come indicato dalla presenza di cianite peritettica nelle leptiniti e andalusite magmatica nei dicchi; se la presenza della cianite indica condizioni di fusione e messa in posto a condizioni superiori a 8-10 kbar, l'andalusite invece suggerisce pressioni inferiori a 4-6 kbar (Le Breton & Thompson, 1988; Clarke et al., 2005).

9.1 Petrogenesi delle Leptiniti e dei Leucosomi delle migmatiti

Le leptiniti a cianite, come si è visto, contengono zirconi con forme cristalline e strutture interne tipiche di processi di cristallizzazione da fuso (Vavra et al., 1996, Rubatto e Gebauer, 2000; Harley et al., 2007). Alcuni degli zirconi studiati hanno mostrato la presenza di nuclei ereditati. Le analisi in LA-ICPMS delle aree a zonazione oscillatoria al nucleo e al bordo hanno evidenziato un gruppo principale di età a circa 300 Ma (concordia ²⁰⁶Pb/²³⁸U a 301 ± 8Ma). Tale risultato è stato interpretato come l'evidenza di un magmatismo di età ercinica, generatosi e messo in posto in condizioni di alta pressione (crosta medio-inferiore). Le analisi sui nuclei ereditati hanno mostrato una storia molto più antica con due momenti principali di cristallizzazione nei protoliti: 0.6-0.5 Ga (età Panafricana) e 2.0 Ga (età Proterozoica Inferiore). Altri risultati sono stati ottenuti con distribuzione dispersa, e sono stati interpretati più ragionevolmente come perdita di Pb durante l'evento Ercinico e soprattutto durante l'evoluzione Alpina del Rif.

Sono stati quindi analizzati anche gli zirconi dai livelli di leucosoma nelle kinzigiti (migmatiti in facies granulitica), i quali hanno mostrato assenza di nuclei ereditati e tipologia di crescita e zonazione di tipo magmatico legate a condizioni di HT (Harley et al., 2007). Le analisi svolte su questi domini cristallini degli zirconi hanno mostrato età prossime a 300 Ma, età queste compatibili con quelle ottenute (284 ± 27Ma) dalle datazioni EMPA U-Th-Pb su monaziti incluse nei granati provenienti dalle granuliti di Beni Bousera (Montel et al., 2001).

L'insieme dei dati di età LA-ICPMS U-Pb derivati sia dalle leptiniti sia dai livelli di leucosoma ospitati nelle migmatiti in facies granulitica sia dall'unità di Beni Bousera indicano un evento di

segregazione e messa in posto di magma avvenuto a *ca.* 300 Ma, permettendo di riferire il magmatismo leptinitico ad un episodio di età ercinica, cui è corrisposto un evento di segregazione e messa in posto di magma in condizioni di alta pressione (crosta medio-inferiore). Questi nuovi dati geocronologici confermano le ipotesi circa la presenza di un evento ercinico preservato nelle Sebtidi Inferiori (Bouybaouene et al., 1998; Michard et al., 2006) e nel complesso Alpujarride nelle Betiche della Spagna meridionale (Zeck and Whitehouse, 1999). Il magmatismo leptinitico presente nelle Sebtidi Inferiori del Rif, in Marocco, può dunque essere interpretato come legato ad un importante evento tettono-metamorfico ercinico, in cui si è sviluppata rifusione anatettica dei protoliti crostali continentali panafricani e proterozoici alla scala dell'intero Dominio di Alboran (vedasi anche Zeck and Whitehouse, 1999).

La storia successiva all'evento ercinico di leucosomi e leptiniti è ben documentata dallo studio delle fasi accessorie (zircone e monazite) separate da queste rocce. Gli zirconi hanno infatti mostrato dei bordi, più o meno sviluppati, caratterizzati da processi di riequilibrio secondario e strutture di alterazione. I processi di ricristallizzazione e riequilibrio sono maggiormente sviluppati in zirconi provenienti dalla porzione inferiore delle kinzigiti (o migmatiti in facies granulitica) dove i cristalli di questa fase, sia nelle leptiniti(MT7) sia nei leucosomi (MT8) mostrano bordi abbastanza omogenei non strutturati. Le immagini in catodoluminescenza di questi zirconi sono simili a quelle riportate per cristalli di zircone separati dalla restite metapelitica delle granuliti di Ronda e Beni Bousera (Whitehouse e Platt, 2003); le età U-Pb di questi rim mostrano valori concordanti intorno a 22 Ma (Miocene inferiore). Tali età sono compatibili *(i)* con l'età ricavata dall'intercetta inferiore della discordia per gli zirconi separati dalle leptiniti negli gneiss (campioni MT10 ed L1), *(ii)* con le età U-Pb disponibili per le kinzigiti (Platt et al., 2003,a), e *(iii)* con la maggior parte dei risultati geocronologici disponibili per l'area del Rif (Michard et al., 2006). Il significato di questa sovra impronta alpina sulle età erciniche delle leptiniti e dei leucosomi verrà discussa nel paragrafo 9.3.

9.1.1 Condizioni P-T

La caratterizzazione delle condizioni P-T associate al magmatismo ercnico delle leptiniti è stata affrontata mediante termo-barometria classica e mediante il metodo delle pseudosezioni (*modelling inverso* e predittivo in Powell and Holland, 2008).

9.1.1.a Modelling inverso

Una prima indicazione delle alte pressioni associate alla messa in posto delle leptiniti è stata fornita dalla presenza della cianite, polimorfo di HP dell'Al₂SiO₅.
L'uso combinato delle termometrie a zirconio (solubilità dello Zircone nel fuso, Watson and Harrison, 1983; solubilità dello Zirconio nel Rutilo, Tomkins et al., 2007), della termometria per associazione feldspatica ternaria (Nekvasil and Burnham, 1987; calcolato mediante il software SOLVACALC 2.0, Wen S., 1996) e della barometria GASP (e.g. Holdaway, 2001) ha permesso di caratterizzare i possibili intorni P-T relativi al magmatismo ercinico, leptiniti (Fig. 92) e leucosomi delle migmatiti in facies granulitica (Fig. 93). Il barometro GASP è stato prodotto, sia per leptiniti sia per leucosomi, su coppie all'equilibrio granato-plagioclasio, secondo la reazione

Grt + Qz + 2Ky = 3An

calcolata attraverso software THERMOCALC 3.26 (Powell and Holland, 2008). Considerando la zonazione composizionale dei granati, il GASP è stato calcolato prima sulla composizione del nucleo del granato, poi considerando la composizione al bordo sempre rispetto al plagioclasio in condizioni di equilibrio.

Fig. 92 Condizioni P-T relative alla cristallizzazione delle leptiniti (nelle kinzigiti), integrando i dati della Termometria per solubilità dello zircone nel fuso (Watson and Harrison, 1983), termometria Ab-An-Or (Nekvasil and Burnham, 1987), e barometria GASP (calcoli mediante il software THERMOCALC).

Per le leptiniti (Fig.92), incrociando i valori minimi e massimi di temperatura ottenuti attraverso il modello di solubilità dello Zircone nel fuso (Zr 45ppm – 643°C; Zr 151ppm – 788°C; modello di Watson and Harrison, 1983) (Tabella 1 in App. C) con i risultati del barometro GASP (calcolato, mediante software THERMOCALC, per il nucleo del granato [Xgrs 0.17; Xprp 0.21; Xalm 0.58; Xsps 0.021 – XAn 0.41] e per il bordo del granato [Xgrs 0.19; Xprp 0.14; Xalm 0.65; Xsps 0.021 – XAn 0.41]) (Tabella 5 in App. C), è possibile individuare un intorno *P*-T (relativo alla

cristallizzazione del fuso) di 9.5-12.5 kbar e 640-790°C. Integrando infine le curve P-T ottenute attraverso lo studio dei feldspati (tabella 4a in App. C) si vede come queste presentino valori più bassi di quelli descritti dal minimo del modello di solubilità dello Zircone nel fuso, indicando probabilmente le condizioni a cui si è riequilibrato il sistema feldspati dopo la cristallizzazione.

Fig. 93 Condizioni P-T di segregazione dei leucosomi nelle migmatiti in facies granulitica dell'unità di Beni Bousera stimate attraverso l'integrazione dei termometri a Zr [Solubilità dello Zircone nel fuso(Watson and Harrison, 1983); Solubilità dello Zr nel Rutilo (Tomkins et al., 2007)], del termometro Ab-An-Or (Nekvasil and Burnham, 1987; calcolato mediante software SOLVCALC) del barometro GASP (Holdaway, 2001; calcolato mediante software THERMOCALC) calcolato per nucleo e bordo del granato.

Per i leucosomi (Fig. 93) dalle migmatiti in facies granulitica, è stata valutata la concordanza tra i due termometri costruiti sulla solubilità dello Zr, nel fuso (Zr 5ppm – 550°C; Zr 170ppm – 795°C; valori minimo e massimo secondo il modello di Watson and Harrison, 1983) (Tabella 1 in App. C) e nel rutilo (ZrO₂ 0.120 wt% – 729°C per 7 kbar; ZrO₂ 0.471% - 925°C per 15 kbar valori minimo e massimo dell'intervallo PT calcolato secondo il modello di Tomkins et al., 2007) (Tabella 2 in App. C) nella finestra 740-900°C.

E' stato osservato inoltre come il GASP (Tabella 5 in App. C) applicato al bordo del granato (Xgrs 0.05; Xprp 0.20; Xalm 0.72; Xsps 0.036) abbia indicato, per pari valori di pressione, temperature più alte del GASP per il nucleo (Xgrs 0.07; Xprp 0.30; Xalm 0.61; Xsps 0.021) rispetto al plagioclasio all'equilibrio (XAn 0.26). L'integrazione del GASP ai risultati ottenuti tramite i geotermometri a zirconio permette di descrivere una finestra di equilibrio tra i 740-900°C per un

intervallo di pressioni compreso tra 8 e 13 kbar. In questa finestra si distribuiscono anche i termomeri definiti sulla composizione feldspatica ternaria (Tabella 4b in App. C). Questa finestra pressione-temperatura quindi descrive le condizioni di genesi dell'evento magmatico che ha portato alla produzione di questi leucosomi migmatitici.

9.1.1.b Modelli predittivi (PERPLE_X)

Gli intorni termo-barici connessi alla genesi del magmatismo ercinico sono stati investigati mediante modelling predittivo attraverso la costruzione di pseudosezioni con l'ausilio del software PERPLE X (Connolly 2005; http://www.perplex.ethz.ch/) nel sistema composizionale NKCFMASH. E' stata utilizzata una composizione di roccia totale ricalcolata, assumendo un'origine in situ per le segregazioni leucocratiche, a partire da un volume ricostruito dal rapporto in 2-D restite/leucosoma in affioramento (Fig. 11; Tabella 6 in App. C). Sono state utilizzate le seguenti fasi mineralogiche (simboli e componenti in parentesi) fra quelle fornite dal software PERPLE X: granato (Gt: spss, alm, py, gr), muscovite/fengite (Pheng: cel, fcel, mu, ncel, nfcel, pa), biotite (Bio: ann, phl, east), spinello (Spl: spl, herc], ortopirosseno (Opx: en, fs, mgts], clinopirosseno (Cpx: cats, jd, hed), plagioclasio (PI: an, ab), K-feldspato (Kfs), cianite (Ky), quarzo (Qtz) e una fase silicatica di fuso (Melt: h2OL, fo8L, fa8L, sil8L, kspL). Le fasi K-feldspato, cianite e quarzo sono state considerate come fasi pure. I modelli di soluzione solida adottati per i vari componenti (dettagli in solut07.dat; PERPLEX 07; database: hp04ver.dat) sono: Gt(HP), Pheng(HP), Bio(HP), Sp (stx), Opx (HP), Cpx(HP), Pl(h) e Melt (HP). I risultati indicano che il campo P-T cui riferire la paragenesi di picco nelle restiti (Gt, Ky, Qtz ± Kfs) è delimitato rispettivamente dalla curva di disidratazione della muscovite (Pheng-out) verso le basse temperature e dalla comparsa di spinello (Sp-in) verso le basse pressioni. La stabilità del K-feldspato è fortemente influenzata dal tenore di H₂O, favorita per condizioni maggiormente anidre ($H_20 < 2\%$). Ciò suggerisce condizioni *P-T* minime di circa 750 °C e 10 kbar. La figura 94 mostra una pseudosezione costruita per un tenore di $H_2O = 3\%$, dove sono state anche diagrammate: i) le isoplete della grossularia (X_{grs}), così come ottenute dai profili chimici attraverso i porfiroclasti di granato delle restiti (vedasi Fig. 50) e ii) le stime di temperatura così come ottenute dal termometro basato sul contenuto di Zr in rutilo secondo la calibrazione pressione-dipendente di Tomkins et al. (2007). Le condizioni P-T di picco possono dunque essere collocate a circa 970 °C e 12-14 kbar. Tale diagramma permette anche di tracciare un possibile percorso P-T durante le fasi di metamorfismo progrado e retrogrado così come ricostruito dai livelli granulitici (restitici). Per la traiettoria retrograda, viene qui considerata i) la zonazione retrograda dei granati delle restiti, definita dall'incremento di X_{Grs} (X_{Grs} variante da 0.06 a 0.07 mol.% muovendosi dal bordo interno verso quello esterno); *ii*) la cristallizzazione *sub-solidus* di associazioni a Bt-Pheng. Queste considerazioni permettono di descrivere un percorso *P-T* caratterizzato da "riscaldamento-raffreddamento" circa isobarico, cui è seguita una decompressione verso il campo *sub-solidus* in cui è stabile l'associazione PI-Bt-Pheng (P < 10 kbar e T ~ 650 °C; Fig. 94).

Fig. 94 Pseudosezione P-T calcolata per sistema composizionale NKCFMASH, assumendo un'origine *in situ* per le segregazioni leucocratiche a partire dal volume ricostruito dal rapporto 2D restite/leucosoma (in fig. 11) e per un tenore in H₂O =3%. Sono state diagrammate anche le isoplete della grossularia così come ottenute dai profili chimici attraverso i porfiroclasti di granato nelle restiti (Fig. 48). Le condizioni di picco P-T possono essere qui stimate a ≈13 Kbar per 970°C. Per il percorso P-T retrogrado si rimanda al testo.

9.1.2 Petrogenesi ed evoluzione PTt

L'evoluzione P-T, descritta sia attraverso termobarometria classica, sia attraverso pseudosezione, si può quindi ipotizzare rappresenti l'evoluzione di una porzione di crosta continentale inferiore durante la messa in posto ad alte temperature di un corpo ultramafico mantellico (come le peridotiti di Beni Bousera) (Fig. 95). Ed in questo contesto si possono inserire i seguenti processi:

• la generazione di fusi anatettici profondi per fusione parziale della metapelite in facies granulitica;

• la loro segregazione a formare i leucosomi granulitici in situ ed i fusi differenziati leptinitici migrati all'interno delle unità di alto grado metamorfiche (rappresentate da kinzigiti di Beni Bousera e da gneiss di Filali) ;

• un raffreddamento del sistema con cristallizzazione dei fusi anatettici a temperature progressivamente decrescenti (modelli termometrici precedentemente discussi) e pressioni decrescenti (dati dalla barometria GASP) nel campo di stabilità della cianite.

Nell'ultima fase infine la decompressione del sistema si sviluppa nel campo di stabilità dello spinello come evidenziato dalla comparsa di questo minerale all'interno delle simplectiti.

Il modello proposto per questo evento anatettico, in condizioni di crosta intermediaprofonda (12-14 kbar-900°C) localizzato all'interno di rocce migmatitiche in facies granulitica, è supportato anche dalla mineralogia composizionale, dallo studio della geochimica su roccia totale degli elementi traccia e dalla geochimica isotopica.

L'evoluzione della composizione del plagioclasio caratterizzante i livelli di leucosoma e le leptiniti mostra chiaramente un impoverimento di componente anortitica muovendo dalla base della sezione (XAn \approx 60%) al tetto degli gneiss (XAn \approx 5%), comportamento tipico per volumi minori di fuso granitoide che subiscono cristallizzazione frazionata durante la migrazione, ipotesi che trova riscontro anche nell'evoluzione dell'anomalia dell'Europio, elemento fortemente controllato dalla componente anortitica nel plagioclasio, che da valori altamente positivi (Eu/Eu* = 12.40) raggiunge progressivamente valori negativi (Eu/Eu* = 0.27).

L'importanza dell'anortite, e quindi del contenuto in CaO wt%, nell'evoluzione di questi fusi è stata evidenziata anche dalla composizione dei granati studiati nelle leptiniti e nei leucosomi. E' stato infatti osservato come questi granati mostrino nei profili composizionali (presentati nel capitolo 5.2) un impoverimento di CaO (espresso nella componente grossularia) dal nucleo muovendo verso il bordo dei cristalli. Questa comportamento è concordante con l'ipotesi di un granato peritettico che cresce durante la produzione di un fuso granitoide ed in cui il decremento della componente calcica è la risposta del granato stesso al controllo del CaO libero nel sistema da parte della componente anortitica del plagioclasio (Spear and Kohn, 1996).

La geochimica isotopica, attraverso lo studio dei rapporti isotopici di Sr e Nd, infine ha confermato la condizione di evento magmatico in condizione di crosta inferiore per leptiniti e leucosomi attraverso i valori di ε_{Nd} t e ε_{Sr} t, risultati caratteristici delle "sorgenti arricchite" (Zindler and Hart, 1986), identificanti sorgenti crostali acide (e.g. Westerman et al., 1993) di tipo "Crosta inferiore/Crosta antica" (DePaolo and Wasserburg, 1979).

Top degli gneiss di Filali

Base delle kinzigiti migmatitiche di Beni Bousera

Fig. 95 Modello petrogenetico proposto per l'evento anatettico ercinico: la messa in posto della peridotite in condizioni di crosta profonda (c.a. 20Kbar a 900°C) genera anatessi localizzata nelle migmatiti granulitiche e produzione di fusi che ascendono nella sezione attraverso migrazione e differenziazione, come mostrato dal comportamento dell'Europio e del trend anortitico decrescente del plagioclasio; La cristallizzazione di questi fusi avviene in decompressione e raffreddamento come è possibile vedere dal comportamento della componente piropo nel granato (che diminuisce rapidamente verso l'alto della serie) e dall'aumento della componente spessartina, e del rapporto Fe/(Fe+Mg)

9.2 Petrogenesi dei Dicchi felsici tardo-strutturali

La maggioranza degli zirconi separati dai dicchi tardivi mostra nuclei bordati da sovraccrescite successive. I nuclei ereditati mostrano bandature di crescita a carattere magmatico primario, con un bordo caratterizzato da zone erose ad alta luminescenza. I bordi esterni mostrano zonazioni oscillatorie che evidenziano una fase finale di crescita per cristallizzazione da fuso felsico. Al contrario, i grani di monazite mostrano zonazioni di tipo poligonale con l'assenza di chiari nuclei (fatta eccezione per monaziti provenienti dal campione 3MTE o MT07/26). Molte monaziti presentano abito euedrale, cosa che suggerisce una loro crescita in condizioni magmatiche per cristallizzazione da fuso piuttosto che rielaborazione di cristalli ereditati. Tali cristalli al bordo hanno registrato quindi l'età di cristallizzazione da fuso e quindi l'età di cristallizzazione nel sistema (soprattutto per quanto riguarda i nuclei delle monaziti del campione 3MTE o MA07/26) indicano una possibile perdita del contenuto in Pb durante l'evento magmatico del Miocene inferiore.

Il risultato ottenuto di 22 Ma è confermato dalle datazione Ar-Ar su Muscoviti e Biotiti che producono risultati con età comparabili. Questi risultati geocronologici confermano i dati ottenuti da studi precedenti (Polvè, 1983) fornendo così un vincolo cronologico per l'intrusione di questi corpi filoniani durante l'evento miocenico. Le età dai nuclei di zirconi separati dai dicchi mostrano una distribuzione dispersa con un raggruppamento principale a circa 300 Ma, dato questo che suggerisce una sorgente crostale di età ercinica coinvolta nella produzione anatettica di questi fusi.

Per queste rocce granitoidi, come per il gruppo precedente, attraverso l'unione dei dati ottenuti dalle osservazioni di campagna, i dati petrografici, mineralogici e geochimici e l'uso di termometri quali la solubilità dello Zirconio (Watson and Harrison, 1983), la solubilità delle REE nella monazite (Montel, 1986) ed il modello dell'associazione feldspatica ternaria (Nekvasil and Burnham, 1987) si è cercato di definire le condizioni P e T di evoluzione.

La termometria Zr (Zr 8 ppm – 578°C; Zr 194 ppm – 818°C; valori minimo e massimo calcolati secondo il modello di Watson and Harrison, 1983) suggerisce una finestra termica in cui questi fusi hanno sviluppato la saturazione in Zr nell'intervallo 580-730°C con un picco massimo di 820°C. Applicando il modello di solubilità delle REE nella monazite (XREEt 0.077 – 581°C per 5 wt% in H₂O; XREEt 0.467 – 761°C per 1 wt% in H₂O; valori minimo e massimo secondo il modello di Montel, 1986) si può vedere come la finestra 580-730°C sia confermata per contenuti in H₂O pari

al 4-5% in peso, evidenziando così la condizione di saturazione in fluidi di questi corpi filoniani (Fig. 96).

Fig. 96 Condizioni di cristallizzazione dei dicchi tardivi stimate utilizzando le condizioni termobarometriche calcolate con le termometrie: in rosso T Zr (Watson and Harrison, 1983), in violetto T REE (Montel, 1986), in verde T Ab-An-Or (Nekvasil and Burnham, 1987) e vincolate dalle condizioni P-T per l'andalusite in ambito magmatico (Clarke et al., 2005). Nel grafico inoltre sono riportate le curve di equilibrio andalusite-sillimanite secondo Holdaway (1971) e Pattison (1992) oltre che in blu la curva di solidus granitico sovrassaturo in H₂O e saturo in Al (Johannes & Holtz, 1996). Considerando l'associazione magmatica muscovite+andalusite, l'assenza di sillimanite e le condizioni P-T identificate, si può ricondurre il campo filoniano qui studiato ad una cristallizzazione per decompressione adiabatica (modello b) di un fuso idrato piuttosto che per raffreddamento isobarico (modello a) (Clarke et al., 2005).

I dati ottenuti dal termometro basato sull'equilibrio dell'associazione ternaria feldspatica (Nekvasil and Burnham) mostrano invece una distribuzione abbastanza ampia nell'intervallo 400-650°C e per pressioni inferiori a 5 kbar (Tabella 4c in App. C); interessante notare come le curve P-T dei feldspati con temperature più alte intersechino i tracciati degli altri termometri tra 580-610°C per valori di P tra 1-3 kbar.

Questi valori di temperatura e pressione ben si collocano all'interno del campo di esistenza dell'andalusite, fase minerale ampiamente riconosciuta nell'associazione magmatica dei filoni qui esaminati.

Considerando i modelli proposti da Johanes and Holtz (1996) e da Clarke et al.(2005), tenendo presente il lavoro di Richardson et al. (1969), ove viene descritta in modo approfondito la reazione And = Sill per condizioni magmatiche, e considerando, per i dicchi, l'associazione di muscovite e andalusite magmatiche con assenza di sillimanite è possibile ricondurre questi corpi granitoidi tardivi ad un modello di messa in posto per decompressione adiabatica con temperature finali comprese tra i 600-650°C (Clarke et al., 2005). Inoltre i valori termici di solidus descritti da Clarke et al. (2005), possono essere ulteriormente abbassati di circa 30°C per condizioni di eccesso di Al₂O₃ e per condizioni di saturazione in H₂O del fuso (Clarke et al., 2005): entrambe queste condizioni sono state verificate attraverso il carattere di peralluminosità (descritto sia composizionalmente sia dalla mineralogia modale) e la saturazione in H₂O descritta dalla presenza di fasi magmatiche idrate (muscoviti e tormaline) e dalla concordanza dei termometri Zr e REE per valori di H₂O tra il 4-5 wt%.

Tale ulteriore abbassamento di 30°C della finestra termica descritta da Clarke et al.(2005) porta il dominio magmatico T2 (muscovite + andalusite) (modello b, Fig. 96) descritto da Clarke et al. (2005) a coincidere esattamente con le condizioni termobariche qui descritte per i filoni tardivi riconosciuti nell'area di Mter.

9.2.1 Petrogenesi

Si può quindi produrre un'ipotesi consistente sull'origine di questi corpi filoniani miocenici: un impulso termico a 22 Ma ha prodotto fusione parziale per anatessi di rocce crostali fertili erciniche (età dei nuclei di zircone ereditati dal protolite). Questi fusi hanno raggiunto la saturazione in Zr alle temperature indicate dal modello si solubilità di Watson ed Harrison (1983), in condizioni idrate come descritto dalla presenza di minerali magmatici idrati e dal modello di solubilità delle REE di Montel (1993). Da questi fusi magmatici si sono digitati infine gli sciami filoniani che hanno cristallizzato in condizioni subsuperficiali, dicchi volumetricamente contenuti la cui messa in posto è stata controllata dai campi di fratturazione nei settori di distensione legati alle geometrie (e alle intersezione) dei sistemi trascorrenti (destri e sinistri) e dei sistemi estensionali caratterizzanti l'evento tettono-termico che ha interessato il Rif ed il Dominio di Alboran nel Miocene inferiore. La fase magmatica finale di questo evento è descritta:

• dalla messa in posto di corpi quarzo-pegmatitici;

• dalla cristallizzazione idrotermale di fillosilicati policristallini per sostituzione di tipo fengitica;

• dalla riorganizzazione, in condizione subsolidus tra i 350-410°C, dei feldspati (come evidenziato dai sistemi di essoluzioni pertitiche sodico-potassiche e dalle temperature all'equilibrio prodotte dallo studio composizionale dei feldspati);

• dalla crescita di vermiculiti ben sviluppate a spese degli altri fillosilicati.

Se le osservazioni di campagna, la petrografia e la geocronologia permettono di definire chiaramente sia l'età dell'evento anatettico sia le condizioni di messa in posto degli sciami filoniani, più complessa rimane la definizione della sorgente magmatica a causa della assenza di informazioni sui non affioranti corpi plutonici responsabili del campo filoniano.

I campioni esaminati dei dicchi felsici mostrano una derivazione da sorgente crostale (sedimentaria?) attraverso le seguenti caratteristiche (Patino Douce, 1999; Dini et al., 2005): *i*) carattere peralluminoso evidenziato dall'indice A/CNK (A/CNK >1); *ii*) contenuto in SiO₂> 69 wt%; *iii*) basso contenuto in CaO ed in elementi ferromagnesiaci.

Queste condizioni esprimono le caratteristiche di magmi acidi crostali derivati da processi di fusione anatettica in cui il basso, seppur significativo, contenuto degli elementi ferromagnesiaci è compatibile con la produzione di fusi per deidratazione di muscovite-biotite (Dini et al., 2005 e referenza all'interno).

Lo studio degli elementi maggiori attraverso l'indice di variazione (FeO*+MgO+TiO₂), ha evidenziato come il CaO (sempre inferiore al 2 wt%) presenti un comportamento direttamente proporzionale con gli elementi ferromagnesiaci: condizione questa compatibile con una sorgente arricchita in plagioclasio e quindi più plausibilmente di tipo metagrovacca che di tipo metapelite ricca in biotite e muscovite (Patino Douce, 1999).

Queste ipotesi sono supportate dai dati isotopici di Sr e Nd; i dicchi felsici analizzati si distribuiscono nel campo delle sorgenti arricchite con la derivazione crostale indicata dall'alto

valore del rapporto isotopico 87 Sr/ 86 Sr (0.719-0.722) e da un $\varepsilon_{Nd}(t)$ relativamente basso (-10, - 11,50).

Tali condizioni però non sono al momento sufficienti per identificare univocamente un protolite sedimentario come sorgente magmatica, ed escludere completamente l'ipotesi di mixing o ibridismo magmatico.

I processi di mixing infatti non possono essere esclusi alla luce dei seguenti dati:

• gli sciami di dicchi leucocratici, qui esaminati, corrispondo alle apofisi più o meno differenziate di corpi maggiori non esposti;

• i dicchi leucogranitoidi hanno estensione limitata, si presentano con strutture cristalline da microgranulari a pegmatitiche con fasi minerali arricchite in elementi LILE: condizioni che indicano chiaramente una evoluzione in condizioni tardomagmatiche – idrotermali;

carattere suballuminoso dei dicchi (1 < A/CNK < 1.1);

• ritrovamento di fasi minerali (epidoto, allanite, magnetite) caratteristiche di condizioni magmatiche metalluminose.

Queste osservazioni permettono quindi di lasciare aperto lo scenario di fenomeni di mixing magmatico che hanno prodotto una omogeneizzazione isotopica (Sr e Nd) (ricordando che una coppia isotopica non può essere frazionata da processi controllati da equilibri cristallo-fuso durante differenziazione per cristallizzazione frazionata) dei plutoni (non esposti) e dei relativi sciami di dicchi leucogranitoidi. Nello scenario così ipotizzato, il carattere suballuminoso e le fasi minerali metalluminose potrebbero essere la possibile indicazione dell'ibridismo avvenuto tra fusi di origine crostale per fusione anatettica di sorgenti fertili e un magma mantellico coinvolto principalmente come sorgente termica e di cui il contributo di massa è limitato e trascurabile.

9.3 Eventi anatettici ed evoluzione tettonica nel Rif

I risultati ottenuti in questo lavoro dimostrano come sia possibile riconoscere all'interno del nucleo metamorfico di alto grado del Dominio di Alboran nella catena del Rif, due eventi distinti di anatessi crostale di età ercinica (300 Ma) e Alpina (22 Ma) rispettivamente.

L'integrazione delle relazioni geocronologiche tra magmatismo felsico e metamorfismo di alto grado, con i dati strutturali, petrografici, mineralogici e geochimici permettono di portare luce su aspetti poco chiari e dibattuti riguardo l'evoluzione del Dominio di Alboran nel Mediterraneo Occidentale.

I dati ottenuti da questo studio indicano che le leptiniti (graniti ercinici) si sono formate in seguito alla generazione, migrazione e messa in posto di melt in condizioni di alta pressione a circa 300 Ma. Poiché questi corpi granitoidi si presentano pressoché con gli stessi caratteri e le stesse età sia nelle kinzigiti di Beni Bousera sia negli gneiss di Filali, ciò indica che tali rocce di alto grado metamorfico erano già giustapposte prima delle fine del ciclo ercinico; quindi la porzione di alto grado metamorfico delle Sebtidi Inferiori descrive una sezione tettono-metamorfica pre-Alpina.

Quanto detto risulta chiaramente in accordo con il riconoscimento, nel massiccio di Beni Malek, di corpi peridotitici stratigraficamente coperti dalla serie mesozoica del Dominio Esterno del Rif, indicando così una esumazione pre-Alpina delle unità profonde (Michard et al., 1992).

L'età Miocenica inferiore, riconosciuta per il magmatismo felsico anatettico caratterizzante i dicchi granitoidi tardivi è compatibile con l'età di circa 19 Ma riportata per dicchi leucocratici che intrudono le peridotiti di Ronda nella Cordillera Betica (Tubia et al., 1997; Cuevas et al., 2006). Queste età mioceniche si inseriscono in un insieme più ampio di età isotopiche caratterizzanti il Dominio di Alboran nel Mediterraneo occidentale. In questo contesto vanno considerati i seguenti dati:

• Età Lu/Hf e Sm/Nd nell'intervallo 25-20 Ma sono state riportate per i livelli di pirossenite a granato, presenti nelle peridotiti di Beni Bousera (Blichert-Toft et al., 1999; Pearson and Nowell, 2004);

Età Sm/Nd di 21.5±1.8Ma da coppie granato-pirosseno (Zindler et al., 1983) ed età
U-Pb di 19.9±1.7 (Sanchez-Rodriguez and Gebauer, 2000) sono riportate per i livelli di pirosseniti a
granato presenti nelle peridotiti di Ronda (Betiche);

• Dati geocronologici dai complessi Sebtide-Alpujarride indicano un evento tettonotermico principale di età miocenica inferiore (Michard et al., 2006); • L'evoluzione Alpina delle unità di alto grado (Sebtidi ed Alpujarridi) è caratterizzata dalla crescita di Andalusite e Cordierite (minerali tipomorfi di condizioni HT/LP) (Campos, 1993; Bouybaouene et al., 1998; El Maz and Guiraud, 2001; Rossetti et al., 2005; Negro et al., 2006);

• Una età miocenica è stata proposta anche per la messa in posto di prodotti magmatici acidi nel Dominio di Alboran (Zeck et al., 1998);

La coincidenza dei dati geocronologici ottenuti attraverso diversi sistemi isotopici e l'assenza di chiare correlazioni tra età e gradienti metamorfici, come osservato durante questo lavoro, rende difficoltosa una la loro interpretazione come età di raffreddamento, mentre si dimostrano chiaramente argomentabili come la risposta all'evento tettono termico regionale miocenico in cui si assiste ad una nuova fase magmatica ed in cui si produce l'azzeramento dei geocronometri. Durante i processi di anatessi si verificano infatti importanti interazioni fusofluido-roccia che possono essere causa di reset sistematico per esempio del geocronometro U/Pb (Vavra et al., 1999; Harley et al., 2007; Buick et al., 2008).

Questa considerazione è supportata dai seguenti argomenti: le strutture secondarie osservate su alcuni zirconi provenienti dalle leptiniti erciniche, mostrano fenomeni di riequilibrio al bordo e condizioni metamittiche intervenute sulle originali strutture magmatiche; tali zirconi, inoltre, mostrano porosità che suggerisce processi di diffusione e dissoluzione in condizioni di reazioni fluido-roccia, condizione questa che può aver favorito la perdita di Pb (Geisler et al., 2007).

Come osservato dallo studio sul campione BA1, la modificazione dell'età U-Pb magmatica degli zirconi è stato controllato dalla circolazione di fluidi associati alla cristallizzazione di monazite, muscovite e biotite durante l'evento miocenico (Montel et al., 2001). Inoltre l'intensa fratturazione e i diffusi fenomeni di alterazione sono stati riconosciuti sistematicamente associati alla messa in posto del campo filoniano granitoide tardivo nelle rocce di alto grado nell'area di Mter, durante l'evento miocenico inferiore.

Lo studio della sezione di Mter ha mostrato come il limite inferiore dell'Unità di Filali (base degli gneiss), corrisponda ad un importante limite strutturale con le sottostanti granuliti di Beni Bousera, poiché al di sopra di questo limite, gli originali contatti intrusivi sono stati progressivamente rielaborati e deformati in condizioni da duttile a fragile con deformazione di taglio top to the N/NW. Quest'ultimo fabric, risulta essere un carattere distintivo dei complessi del Rif strutturatisi durante l'evento Alpino (Michard et al., 2006); anche in questo caso bisogna portare all'attenzione due risultati:

• Il campo filoniano non intrude i micascisti di Filali (membro metamorfico superiore dell'Unità di Filali, al di sopra degli gneiss);

 Solo dalle leptiniti e dai leucosomi granulitici intrusi nella porzione inferiore delle kinzigiti granulitiche di Beni Bousera provengono zirconi con bordi presentanti età concordanti al miocene inferiore.

Queste strutture riequilibrate, osservate negli zirconi, non possono essere quindi correlate direttamente alla deformazione Alpina (il fabric legato alla deformazione di taglio top to the NW); mentre possono essere spiegate considerando l'evento magmatico miocenico e quindi con una struttura termica di Beni Bousera con distribuzione a domo ed incremento delle temperature in profondità (fino a valori anche superiori a 600-650°C) come documentato da Negro et al (2006) per l'Unità di Filali. Tale episodio di reset isotopico è stato caratterizzato da importanti circolazioni di fluidi e processi di annealing e ricristallizzazione verificatisi a condizioni crostali subsuperficiali (come indicato dalla vincolante presenza di andalusite magmatica nei corpi felsici tardivi) e la cui intensità è stata controllata dalla distanza relativa con la sorgente termica dell'evento magmatico miocenico stesso.

Identificare sia la sorgente termica dell'evento avvenuto nel Miocene inferiore, sia la regione di origine dei fusi costituenti il campo filoniano non è un'operazione banale. Tubia et al. (1997) e Cuevas et al. (2006) hanno proposto per gli sciami di dicchi intrusi nelle peridotiti di Ronda un'origine connessa alla migmatizzazione dei sottostanti gneiss di Ojen durante un processo di messa in posto di un cuneo mantellico caldo all'interno della crosta continentale inferiore. Per quanto concerne il Rif, non è esposta la sequenza crostale sottostante le peridotiti, ed i dicchi granitici riconosciuti presso Mter, nel massiccio di Beni Bousera, sono indeformati e non presentano deformazione duttile come nell'area di Ronda (Cuevas et al., 2006), poiché la messa in posto di questi corpi magmatici, nelle rocce cristalline, è avvenuta in condizioni di crosta superiore accompagnata da estesa fratturazione fragile.

Similmente alle Betiche, una sezione interpretativa NW-SE attraverso il nucleo metamorfico della catena del Rif suggerisce che l'Unità di Beni Bousera sia sovrapposta strutturalmente ad unità crostali del basamento dominate da paragneiss ed ortogneiss, affette solamente dall'evento deformativo Alpino (Zeck e Whitehouse, 1999; Michard et al., 2006), e che l'intero Dominio di Alboran sia impilato tettonicamente sopra unità sedimentarie dei domini esterni (flysch magrebide ed unità predorsali) (Chalouan e Michard, 2004; Chalouan et al., 2008).

Le rocce di alto grado, kinzigiti e gneiss, delle Sebtidi inferiori, ci si aspetta mostrino comportamento refrattario alla generazione di nuovo magma (White and Powell, 2002) e quindi non siano da considerare come possibili sorgenti dei fusi anatettici del miocene inferiore. Questo è confermato dal fatto che sia leptiniti erciniche sia incassante cristallino mostrano le evidenze di un unico assemblaggio mineralogico di alto grado rielaborato in seguito durante la deformazione (alpina) connessa a circolazione di fluidi. Il carattere pegmatitico di molti dei dicchi miocenici, il loro carattere strutturale discordante ed il carattere fragile che descrive la relazione dicco-incassante sono condizioni che indicano come i prodotti filoniani siano prodotti granitoidi tardivi differenziati. E soprattutto, a differenza delle leptiniti, i dicchi intrudono anche le peridotiti. Di conseguenza l'ipotesi di un'origine in situ di questi corpi granitoidi non è supportata dai dati e quindi la sorgente va ricercata in rocce crostali fertili localizzate a profondità maggiori nella struttura orogenica a falde (caratterizzante il Dominio di Alboran).

Queste considerazioni permettono di candidare quindi come possibile sorgente magmatica, per anatessi, rocce sedimentarie delle unità dei domini esterni. Probabilmente durante l'evoluzione prograda, per temperature superiori al minimo granitico idrato, queste rocce in profondità possono aver costituito una sorgente fertile sia per quanto riguarda la genesi di fluidi sia per la possibile genesi di fusi felsici anatettici peralluminosi. Un possibile scenario geodinamico, coinvolgerebbe quindi un impulso termico con relativo metamorfismo di medio-alto grado in profondità, di età miocenica inferiore, collegato all'evoluzione spazio-temporale della zona di subduzione nel Mediterraneo Occidentale attraverso processi di *slab break-off*, processi di *detachment* profondi e frammentazione durante la continua convergenza N-S tra la placca Africana e la placca Eurasiatica. In questo contesto geodinamico i processi di underplating di fusi mafici e basaltici in crosta profonda (Faccenna et al., 2004; Tubia et al., 2004) possono essere indicati come la possibile sorgente termica che ha indotto la fusione parziale dei livelli crostali fertili all'interno della già strutturata pila di falde caratterizzante il Dominio di Alboran nel Rif, generando così i fusi felsici responasibili del magmatismo miocenico a 22 Ma.

10. Conclusioni

Le relazioni strutturali osservate sul terreno, la caratterizzazione petrografica, mineralogica e geochimica, e le età dei prodotti granitici provenienti dalle unità metamorfiche di alto grado del Dominio di Alboran nel Rif magrebide forniscono dei vincoli forti relativamente all'interpretazione dell'evoluzione Alpina nell'area del Mediterraneo Occidentale. Riassumendo i punti principali:

• È chiaramente documentata la presenza di un evento magmatico ercinico nell'area di catena interna dell'orogeno Betiche-Rif (Dominio di Aloran);

• Evidente l'età pre-alpina (verosimilmente ercinica) per il metamorfismo di alto grado riconosciuto al nucleo del Dominio di Alboran;

 Riconoscimento di un evento magmatico anatettico di età miocenica inferiore, e messa in posto di dicchi granitoidi in condizioni superficiali nel Rif (e documentati anche nelle Betiche);

• Argomentazioni che suggeriscono un resetting generale dei geocronometri al nucleo del Dominio di Alboran proprio in concomitanza con l'evento magmatico del Miocene inferiore.

Da questi punti qui brevemente riassunti è possibile concludere come l'evento miocenico documentato nel Dominio di Alboran nel Mediterraneo occidentale sia da considerare un impulso termico tardivo che ha interessato un settore orogenico crostale già strutturato e già interessato da polimetamorfismo (ercinico ed alpino). In quest'ottica una origine ed una evoluzione composita pre-Alpina ed Alpina per le peridotiti di Beni Bousera (Zeck e Whitehouse, 2002; Montel et al., 2001; Pearson and Nowell, 2004; Tubia et al., 2004) meglio si inserisce nel contesto metamorfico polifasico e magmatico descritto in questo lavoro.

Qualsiasi futura revisione del *modelling P-T-t* dell'evento Alpino nel settore Betiche-Rif deve tenere in considerazione il *reset* miocenico delle età primarie (pre-alpine ed alpine). Da qui consegue che i modelli che invocano un'unica storia magmatico-metamorfica alpina per il Dominio di Alboran, non sono compatibili con l'insieme dei dati qui presentati.

Bibliografia

- Arculus R.J. (1987) The Significance of source versus process in the tectonic controls of magma genesis. J. Volc. Geothermal Res., 32, 1-12.
- Argles, T.W., J.P. Platt, and D.J. Waters (1999), Attenuation and excision of a crustal section during extensional exhumation: The Carratraca massif, Betic Cordillera, southern Spain. J. Geol. Soc., London, 156, 149–162.
- Arth J.G. & Hanson B. (1975) Geochemistry and origin of the early Precambrian crust of northeastern Minnesota. *Geochim. Cosmochim. Acta*, 39, 325-362.
- Ashworth, J.R., Evirgen, M.M., (1985). Plagioclase relations in pelites, central Menderes Massif, Turkey: II. Perturbation of garnet–plagioclase barometers. *J. Metamorph. Geol. 3*, 219–229.
- Bachinski S.W., Muller G. (1971) Experimental determination of the microcline—low albite solvus. *J. Petrol.* 12:329–356
- Banfield J.F. e Eggleton R.A. (1988) Transmission electron microprobe study of biotite wheatering. *Clays and Clay Minerals*, *36*,47-70.
- Barth T.F.W. (1962) A final proposal for calculating the Mesonorm of metamorphic rocks. *The Journal of Geology*, *70*, 497-498.
- Belousova E.A., Griffin W.L. and O'Reilly S.Y. (2006) Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling : Examples from Eastern Australian Granitoids. *Journal of Petrology*, 47, 329-353.
- Bernard-Griffith, J., J.M. Cantagrel, J. Kornprobst (1977), Age des gneiss du Hacho de Ceuta: un événement thermique Hercynien dans le zone interne du Rif (abstract), *RAST Rennes*, 64.
- Berger, A. and C.L. Rosenberg (2003), Preservation of chemical residue-melt equilibria in natural anatexite: the effects of deformation and rapid cooling. *Contr. Mineral. Petrol.*, *144*, 416-427.
- Blichert-Toft, J., F. Albarede, and J. Kornprobst (1999), Lu-Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morocco: Implications for basalt origin, *Science*, 283, 1303–1306.
- Bouybaouene, M.L., A. Michard, B. Goffé (1998). High-pressure granulites on top of the Beni Bousera pridotites, Rif Belt, Morocco: a record of an ancient thickened crust in the Alboran domain, *Bull. Soc. Geol. France*, 2, 153–162.
- Bouybaouene M.L. e Goffe B., (2003), La Mineralogie metamorphique des unites internes du Rif (Maroc): temoin de deux regimes thermiques, *Trav. Inst. Sci. 21*, 151-166.

- Brouand, M., Banzet, G. and Barbey, P., (1990). Zircon behaviour during crustal anatexis --Evidence from the Tibetan Slab migmatites (Nepal). J. Volcanol. Geotherm. Res., 44, 143-161.
- Brown W.L., Parsons I. (1984) Exsolution mechanisms and kinetics in an ordered cryptoperthite series. *Contrib. Mineral. Petrol.* 86:3–18.
- Buick, I.S., A. Sorkey, and I.S. Williams (2008), Timing relationships between pegmatite emplacement, metamorphism and deformation during the intraplate Alice Springs Orogeny, central Australia, *J. Metam. Geol.*, 26, 915-936.
- Carminati, E., M.J.R. Wortel, W. Spakman, and R. Sabadini (1998). The role of slab detachment processes in the opening of the western-central Mediterranean basins: some geological and geophysical evidence. *Earth Planet. Sci. Lett.*, 160, 651–665.

Clarke D.B. (1992) Granitoid Rocks. New York, Chapman and Hall.

- Clarke D.B., et al. (2005), Occurrence and origin of andalusite in peraluminous felsic igneous rocks, *J Petrol*, *46*: 441–472.
- Chalouan, A., and A. Michard (1990), The Ghomarides nappes, Rif coastal range, Morocco: a Variscan chip in the Alpine belt, *Tectonics*, *9*, 1565-1583.
- Chalouan, A., and A. Michard (2004), The Alpine Rif Belt (Morocco): a case of mountain building in a subduction–subduction–transform fault triple junction, *Pure Appl. Geophys.*, 161, 489– 519.
- Chalouan, A., A. Michard, K. El Kadiri, F. Negro, D. Frizon de Lamotte, J.I. Soto, and O. Saddiqi (2008), The Rif belt, in: *The Geology of Morocco*, edited by A. Michard, O. Saddiqi, A. Chalouan, D. Frizon de Lamotte, pp. 203-302, Springer, Berlin.
- Chappell BW, White AJR (1974) Two contrasting granite types. Pac.Geol. 8, 173–174.
- Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. *Trans R Soc Edinb Earth Sci*, 83, 1–26.
- Connolly J.A.D. (2005) Computation of phase equilibria by linear programming: a toll for geodynamic modeling and its application to subduction zone decarbonation. *Earth Planet*. *Sci. Lett.* 236:524–541
- Cuevas, J., J.J. Esteban, and J.M. Tubía (2006), Tectonic implications of the granite dyke swarm in the Ronda peridotites (Betic Cordillera, Southern Spain). *J. Geol. Soc.*, *London*, *163*, 631-640.
- Dewey J.F., M.L. Helman, E. Turco, D.H.W. Hutton, S.D. Knott (1989), Kinematics of the western Mediterranean, in: *Alpine Tectonics*, edited by M.P. Coward, D. Dietrich, and R.G. Park, pp. 421–443, *Geol. Soc. Spec. Publ.*, 45.

- Deer, W.A., Howie, R.A. and Zussman, J., (1962). Rock-forming Minerals: Non-silicates. Longman, London, pp. 337-346.
- Deer W.A., Howie R.A. e Zussman J. (2001) Rock-Forming Minerals, Volume 4A, Framework silicates: Feldspars., *The Geological Society, London*, pp. 739.
- Deer W.A., Howie R.A. e Zussman J. (2003) Rock-Forming Minerals, Volume 3A, Sheet silicates: Micas by Fleet M.E., *The Geological Society, London*, pp. 739.
- DePaolo D.J. and Wasserburg G.J. (1979), Petrogenetic mixing models and Nd-Sr isotopic patterns., *Geochim. Cosmochim. Acta*, 43, 615-627.
- Dewey, J.F. (1988), Extensional collapse of orogens, Tectonics, 7, 1123–1139.
- Di Vincenzo, G., C. Viti, and S. Rocchi (2003), The effect of chlorite interlayering on ⁴⁰Ar-³⁹Ar biotite dating: an ⁴⁰Ar-³⁹Ar laser-probe and TEM investigation of variably chloritised biotites, *Contrib. Mineral. Petrol.*, *145*, 643-658.
- Diener J.F.A., White R.W. and Powell R. (2008), Granulite facies metamorphism and subsolidus fluid-absent reworking, Strangways Range, Arunta Block, central Australia, J. Metam. Geol., 26, 603-622.
- Dini A., Innocenti F., Rocchi S., Tonarini S., and Westerman D.S. (2002), The magmatic evolution of the laccolith-pluton-dyke complex of Elba Island, Italy., *Geol. Mag.*, 139, 257-279.
- Dini A., Rocchi S. and Westerman D.S., (2004), Reaction microtextures of REE-Y-Th-U accessory minerals in the Monte Capanne pluton (Elba Island, Italy): a possible indicator of hybridization processes., *Lithos*, 78, 101-118. Province, Italy), *Lithos*, 81, 1-31.
- Dini A., Giannelli G., Puxeddu M. and Ruggieri G., (2005), Origin and evolution of Pliocene-Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic
- Dyar M.D. (2002) Optical and Mossbauer Spectroscopy of Iron in Micas. In : Mottana A. Sassi F.P., Thompson Jr J.B. & Guggenheim S. (2002) Micas : Crystal Chemistry & Metamorphic Petrology, *Reviews in Mineralogy & Geochemistry*, 46, 313-349.
- Eby G.N. (1990) A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. *Lithos 26*, 115–134. doi:10.1016/0024-4937(90)90043-Z
- El Maz, A., and M. Guiraud (2001), Paragenese à faible variance dans les métapélites de la série de Filali (Rif interne marocain): description, interpretation et conséquences géodynamiques, *Bull. Soc. Géol. France*, 172, 469–485.
- El Maz A., Guiraud M., e Mokhtari A. (2003), Sur l'absence de paragenes de haute pression dans le serie metapelitiques de Filali (Rif interne marocain), *Trav. Inst. Sci., 21*, 167-174.
- Elkins L.T., Grove T.L. (1990) Ternary feldspar experiments and thermodynamic models. Am. Mineral. 75:544–559

- Faccenna, C., C. Piromallo, A. Crespo Blanc, L. Jolivet, and F. Rossetti (2004). Lateral slab deformation and the origin of the western Mediterranean arcs. *Tectonics*, 32, doi: 1029/2002TC001488.
- Ferrow E.A: (1998) Some ezamples of application of Mossbauer spectroscopy and transimission electron microscopy to micas. *Hyper interact, 117*, 159-173.
- Frei, D., and A. Gerdes (2009), Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS, *Chem. Geol.*, *261*, 261-270.
- Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. (2001) A geochemical classification for granitic rocks. J. Petrol. 42, 2033–2048.
- Fuhrman M.L., Lindsley D.L. (1988) Ternary feldspar modelling and thermometry. Am. Mineral. 73:201–215
- García-Dueñas, V., J.C. Balanyá, J.M. Martínez-Martínez (1992), Miocene extensional detachments in the outcropping basement of the northern Alboran Basin and their tectonic implications. *Geol. Marine Lett.*, 12, 88-95.
- Gerdes, A., and A. Zeh (2006), Combined U-Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany, *Earth Planet. Sci. Lett.*, 249, 47-62
- Gerdes, A., and A. Zeh (2009), Zircon formation versus zircon alteration new insights from combined U-Pb and Lu-Hf in-situ La-ICP-MS analyses of Archean zircons from the Limpopo Belt, *Chem Geol*, 261, 230-243.
- Geisler, T., U. Schaltegger, and F. Tomasckek (2007), Re-equilibration of zircon in aqueous fluids and melts, *Elements*, *3*, 43–50.
- Goodfellow W.D., Cecile M.P. & Leybourne M. (1995) Geochemistry, petrogenesis and tectonic setting of Lower Paleozoic alkalic and potassic volcanic rocks, northern Canadian Cordilleran miogeocline. *Can. J. Earth SCi.*, 32, 1236-1254.
- Goodman B.A. (1976) The Mossbauer spectrum of a ferrian muscovite and its implications in the assignement of sites in dioctahedral micas. *Mineral. Mag.*, 40, 513-517.
- Gomes M.E.P. & Neiva A.M.R. (2000) Chemical zoning of muscovite from the ERvedosa granite, northern Portugal. *Min. Mag.*, *64*, 347-358.
- Gotzinger M.A. (1986) Continuous biotite-hydrobiotite-vermiculite transitions in the original speciment "Hydrobiotit", Schrauf (1882), from the serpentinites near Kremze, CSSR. *Neues Jahrb.Min., Monat., 1986*, 163-171.
- Hanmer S., (1982), Microstructure and geochemistry of plagioclase and microcline in naturally deformed granite. *Journal of Structural Geology*, *4*, 197-214.

- Haissen F., A. Garcia-Casco, R. Torres-Roldan, A. Aghzer (2004), Decompression reactions and P– T conditions in high-pressure granulites from Casares-Los Reales units of the Betic-Rif belt (S Spain and N Morocco), J. Afr. Earth Sc., 39, 375–383.
- Harley, S.L., N.M. Kelly, and A. Möller (2007), Zircon behaviour and the thermal histories of mountain chains, *Elements*, *3*, 25-30.
- Hogarth D.D: (1957) The apatite-bearing veins of Nisikkatch Lake, Saskatchewan. Can. Min, 6, 140-150.
- Holdaway, M.J., (2001). Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet– biotite geothermometer. *Am. Mineral.* 86, 1117–1129.
- Horstwood, M.S.A., G.L. Foster, R.R. Parrish, S.R. Noble, and G.M. Nowell (2003), Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS, J. Anal. At. Spectrom., 18, 837-846.
- Janots, E., F. Negro, F. Brunet, B. Goffé, M. Engi, and ML. Bouybaouene (2006), Evolution of the REE mineralogy in HP–LT metapelites of the Sebtide complex, Rif, Morocco: Monazite stability and geochronology, *Lithos*, 87, 214–234.
- Jiang N., Zhang S., Zhou W. and Liu Y. (2009) Origin of a Mesozoic granite with A-type characteristic from the North China craton: highly fractionates from I-type magmas? *Contrib. Mineral. Petrol*, 158, 113-130.
- Johannes, W. & Holtz, F. (1996). Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer, 335 pp.
- Jolivet, L., and C. Faccenna (2000), Mediterranean extension and the Africa–Eurasia collision, *Tectonics*, 19, 1095–1106.
- Keppler, H., (1992). The role of fluorine in the enrichment of HFS elements in the differentiation of granitic melts. Abstr. 4th Int. Syrup. on Experimental Mineralogy, Petrology and Geochemistry, Clermont-Ferrand, April 15-17 1992, p.23.
- Kogure T. e Murakami T., (1996), Direct identification of biotite/vermiculite layers in hydrobiotite using high-resolution TEM. *Min. Jour.*, *18*, 131-137.
- Kornprobst, J. (1974), Contribution a l'etude petrographique et structurale de la zone interne du Rif (Maroc septentrional); petrography and structure of the Rif inner area, northern Morocco, *Notes et Mémoires du Service Géologique*, Rabat (Morocco), 251, 256 pp.
- Kretz, M. (1983), Symbols for rock-forming minerals: Am. Min., 68, 277-279.

- Krogh, E.J., Andresen, A., Bryhni, I., Broks, T.M., Kristensen, S.E., (1990). Eclogites and polyphase P–T cycling in the Caledonian Uppermost Allochthon in Troms, northern Norway. *J. Metamorph. Geol.* 8, 289–309.
- Kroll H., Evangelakakis C., Voll G. (1993) Two-feldspar geothermometry: a review and revision for slowly cooled rocks. *Contrib. Mineral. Petrol.* 114:510–518.
- Lalonde A.E., Rancourt D.G. & Ping J.Y. (1998) Accuracy of ferric/ferrous determination in micas: A comparison of Mossbauer spectroscopy and the Pratt and Wilson wet chemical methods. *Hyper Interact*, 117, 175-204.
- Lagarec K. and Rancourt D.G. (1998) RECOIL. Mössbauer spectral analysis software for Windows, version 1.0. Department of Physics, University of Ottawa, Canada.
- Le Breton, N., A.B. Thompson (1988), Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis, *Contrib. Mineral. Petrol*, 99, 226-237.
- Lee M.R., Parsons I. (1997) Dislocation formation and albitization in alkali feldspars from the Shap granite. *Am. Mineral.* 82, 557–570.
- Lonergan, L., and N. White (1997), Origin of the Betic-Rif mountain belt, Tectonics, 16, 504–522.
- Long G.J., Cranshaw T.E. and Longworth G. (1983) The ideal Mössbauer effect absorber thickness. *Möss. Effect Ref. Data J.*, 6, 42-49.
- Ludwig, K. (2003). User's manual for Isoplot/Ex v3.0, a geochronological toolkit for Miscrosoft Excel. *Berkeley Geochronol. Center Sp. Pub.*, *4*, 25-31.
- Mavrogenes J.A., MacIntosh I.W. & Ellis D.J. (2001) Partial melting of the Broken Hill galenasphalerite ore: experimental studies in the system PbS-FeS-ZnS (Ag2S). *Economic Geology*, 96, 205-210.
- McDonough W.F., Sun S., Ringwood A.E., Jagoutz E. and Hofmann A.W. (1991) K, Rb and Cs in the earth and moon and the evolution of the earth's mantle. *Geochim. Cosmochim. Acta*, Ross Taylor Symposium Volume.
- Michard, A., H. Feinberg, D. El-Azzab, M. Bouybaouene, O. Saddiqi (1992), A serpentinite ridge in a collisional paleomargin setting: the Beni Malek massif, External Rif, Morocco, *Earth Planet. Sc. Lett.*, 113, 3, 435-442.
- Michard, A., B.Goffé, M.L Bouybaouenne, and Saddiqi O. (1997), Late Hercynian-Mesozoic thinning in the Alboran domain; metamorphic data from the northern Rif, Morocco: *Terra Nova*, *9*, 171–174.
- Michard, A., F. Negro, O. Saddiqi, M.L Bouybaouene, A. Chalouan, R. Montigny, and B. Goffé (2006), Pressure-temperature-time constraints on the Maghrebide mountain building:

evidence from the Rif–Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications, *C.*. *R. Acad. Sci., Ser. II*, 338, 92–114.

- Miller, C.F., Watson, E.B. and Harrison, T.M., (1988). Perspectives on source, segregation and transport of granitoid magma. *Trans. R. Soc. Edinburgh, Earth Sci.*, 79, 135-156.
- Miller C.F., McDowell S.M. & Mapes R.W. (2003) Hot and Cold granites? Implications of zircon saturation temperatures and preservation of inheritance. *Geology*, *31*, 529-532.
- Monié, P, R.L. Torres Roldan, A. Garcià Casco (1994), Cooling and exhumation of the Western Betic Cordilleras, ⁴⁰Ar/³⁹Ar thermochronological constraints on a collapsed terrane, *Tectonophysics*, 238, 353-379.
- Monier G., Mergoil-Daniel J. & Labernardiere H. (1984) Generations successives de muscovites et feldspaths potassiques dans les leucogranite du Massif de Millevaches (Massif Central francais), *Bull. Mineral.*, *107*, 55-68.
- Montel J.M. (1986) Ezperimental determination of the solubility of Ce-monazite in SiO2-Al2O3-K2O-Na2O melts at 800°C, 2Kbar, under H2O saturated conditions. *Geology*, *14*, 659-662.
- Montel J.M. (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. *Chem. Geol.*, *110*, 127-146.
- Montel, J.M., J. Kornprobst, and D. Vielzeuf (2001), Preservation of old U–Th–Pb ages in shielded monazite; example from the Beni Bousera Hercynian kinzigites (Morocco), J. Metam. Geol., 18, 335–342.
- Muller G. (1971) Der Einfluss der Al, Si-Verteilung auf die Mischungslu"cke der Alkalifeldspa"te. *Contrib. Mineral. Petrol.* 34:73–79.
- Negro, F., O. Beyssac, B. Goffé, O. Saddiqi, and M.L. Bouybaouene (2006), Thermal structure of the Alboran Domain in the Rif (northern Morocco) and the Western Betics (southern Spain). Constraints from Raman spectroscopy of carbonaceous material: *J. Metam. Geol.*, 24, 309– 327.
- Nekvasil H. & Burnham C.W. (1987) The calculated individual effects of pressure and water content on phase equilibria in the granite system. In: Mysen BO (ed) Magmatic processes physicochemical principles. Geochemical Society, University Park, p 500.
- Nemec D. (1987) Barium in dyke rocks of the minette series. Chem. Erde., 47, 117-124.
- Olives Banos J. (1985), Biotites and Chlorites as interlayeres biotite-chlorite crystals. *Bull. Mineral.*, 108,635-641.
- Parslow G.R. (1969) Mesonorms of granitic rock analyses. Mineralogical Magazine, 37, 262-269.

- Parson I., Magee C.W., Allen C.M., Shelley J.M.G. & Lee M.R. (2009) Mutual replacement reactions in alkali feldspars II: trace element partitioning and geothermometry. *Contrib. Mineral. Petrol.*, 157, 663-687.
- Patiňo Douce, A.E. (1999), What do experiments tell us about the relative contribution of crust and mantle to the origin of granitic magmas?, in: *Understanding Granites: Integrating New and Classical Techniques*, edited by A. Castro, C. Fernández, and J.-L. Vigneresse, pp. 55–75, *Geol. Soc. London, Spec. Publ.*, 168.
- Pearce J.A. (1983) Role of the sub-continental litosphere in magma genesis at active continental margins. In: Hawkesworth C.J. and Norry M.J. (eds), *Continental basalts and mantle xenoliths.*, Shiva, Nantwich, pp. 230-249.
- Pearson, D.G., and G.M. Nowell (2004), Re–Os and Lu–Hf Isotope constraints on the origin and age of pyroxenites from the Beni Bousera Peridotite Massif: implications for mixed peridotite–pyroxenite mantle sources, *J. Petrol.*, *45*, 439-455.
- Phillips, G., C.J.L. Wilson, D. Phillips, and S. Szczepanski (2007), Thermochronological (⁴⁰Ar/³⁹Ar) evidence for Early Palaeozoic basin inversion within the southern Prince Charles Mountains, East Antarctica: implications for East Gondwana, J. Geol. Soc., London, 164, 771-784.
- Platt, J.P., and M.J. Whitehouse (1999), Early Miocene high-temperature metamorphism and rapid exhumation in the Betic Cordillera (Spain): evidence from U–Pb zircon ages. *Earth Planet*. *Sc. Lett.*, 171, 591–605.
- Platt, J.P., J.-I. Soto, M.J. Whitehouse, A.J. Hurford, and S.P. Kelley (1998), Thermal evolution, rate of exhumation, and tectonic significance of metamorphic rocks from the floor of the Alboran extensional basin, western Mediterranean, *Tectonics*, *17*, 671–689.
- Platt, J. P., and R.L.M. Vissers (1989), Extensional collapse of thickened continental lithosphere: a working hypothesis for the Alboran Sea and Gibraltar Arc, *Geology*, *17*, 540–543.
- Platt, J.P., M.J. Whitehouse, S.P. Kelley, A. Carter, and L. Hollick (2003a), Simultaneous extensional exhumation across the Alboran Basin: implications for the causes of late orogenic extension,: *Geology*, 31, 251–254.
- Platt, J.P., T.W. Argles, A. Carter, S.P. Kelley, M.J. Whitehouse, and L. Lonergan (2003b) Exhumation of the Ronda peridotite and its crustal envelope: constraints from thermal modelling of a P–T–time array, J. Geol. Soc., London, 160, 655–676.
- Platt, J.P. (2007), From orogenic hinterland to Mediterranean-style back-arc basins: a comparative analysis, *J. Geol. Soc.*, *London*, *164*, 297-311.

- Polvé, M. (1983). Les isotopes du Nd et du Sr dans les lherzolites orogeniques: contribution à la détermination de la structure et de la dynamique du manteau supérieur [PhD thesis], Université Paris 7.
- Powell, R. and Holland, T.J.B., 2008, On thermobarometry. J. Metamorphic Geol., 26, 155–179.
- Pupin, J. P. (1980). Zircon and granite petrology. *Contributions to Mineralogy and Petrology* 73, 207–220.
- Rancourt D.G. (1993) Mossbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas : Reply. *Am. Mineral.*, 78, 669-671.
- Rancourt D.G. (1994a) Mossbauer spectrosocopy of minerals I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions. *Phys. Chem. Minerals*, 21, 244-249.
- Rancourt D.G. (1994b) Mossbauer spectroscopy of minerals II. Problem of resolving cis and trans octahedral Fe2+ sites. *Phys. Chem. Minerals*, 21, 250-257.
- Rapp R.P. and Watson E.B. (1986) Monazite solubility and dissolution kinetics : implications for the Th and light rare-earth chemistry of felsic magmas. *Contrib. Mineral. Petrol.*, 94, 304-316.
- Reid, A.J., Fowler, A.P., Phillips, D. and Wilson, C.J.L. (2005), Thermochronology of the Yidun Arc, central eastern Tibetan Plateau: constraints from ⁴⁰Ar/³⁹Ar K-feldspar and apatite fission track data. J. Asian Earth Sci., 25, 915-935.
- Renne, P.R., C.C. Swisher, A.L. Deino, D.B. Karner, T.L. Owens, and D.J. DePaolo (1998), Intercalibration of standards, absolute ages and uncertainties in ⁴⁰Ar/³⁹Ar dating, *Chem. Geol.*, 145, 117-152.
- Richardson, S. W., Gilbert, M. C. & Bell, P. M. (1969). Experimental determination of kyanite– andalusite and andalusite–sillimanite equilibria; the aluminum silicate triple point. *American Journal of Science* 267, 259–272.
- Rollinson H.R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. *Pearson Prentice Hall*, pp. 352.
- Rossetti, F., C. Faccenna, A. Crespo-Blanc (2005), Structural and kinematic constraints to the exhumation of the Alpujarride Complex (Central Betic Cordillera, Spain), *J. Struct. Geol*, 27, 199-216.
- Rubatto, D., and D. Gebauer (2000), Use of cathodoluminescence for U–Pb zircon dating by ion microprobe: some examples from the Western Alps, in: *Cathodoluminescence in Geosciences*, edited by M. Pagel, V. Barbin, P. Blanc, and D. Ohnenstetter, pp. 373–400, Springer, Berlin.

- Sánchez-Rodriguez, L., and D. Gebauer (2000), Mesozoic formation of pyroxenites and gabbros in the Ronda area (southern Spain), followed by early Miocene subduction metamorphism and emplacement into the middle crust: U-Pb sensitive high-resolution ion microprobe dating of zircon, *Tectonophysics*, 316, 19–44.
- Scaillet, B., (1990). Structure et geochimie d'un leucogranite en r6gime de collision continentale: l'exemple du massif de Gangotri-Badrinath (Hymalaya du Garwhal). Thesis, INPL (Inst. Natl. Polytech. Lorraine), Nancy, 142 pp.
- Scaillet, B., France-Lanord, C. and Le Fort, P., 1990. Badrinath-Gangotri plutons (Garwhal, India): petrologogical and geochemical evidence for fractionation processes in a High Himalayan leucogranite. J. Volcanol. Geotherm. Res., 44, 163-188.
- Shabani A.A.T., Rancourt D.G. & Lalonde A.E. (1998) Determination oc *cis* and *trans* Fe2+ populations in 2M1 Muscovite by Mossbauer spectroscopy. *Hyper interact 117*, 117-129.
- Silva M.M.V.G. & Neiva A.M.R. (1990) Geochemistry of the granites and their minerals from Paredes da Beira-Penedono, northern Portugal., *Chem. Geol.*, *85*, 147-170.
- Simancas, J.F., and J. Campos (1993), Compresión NNW-SSE tardi- a postmetamórfica y estensión subordinada en el Complejo Alpujarride (Domino de Alboran, Orogeno Bético), *Rev. Soc. Geol. Espaňa*, 6, 23-36.
- Smith P., Parsons I. (1974) The alkali feldspar solvus at 1 kilobar water vapour pressure. *Mineral. Mag.* 39:747–767.
- Soto J.I., and J.P. Platt (1999), Petrological and Structural Evolution of High-Grade Metamorphic Rocks from the Floor of the Alboran Sea Basin, Western Mediterranean, *J. Petrol*, 40, 21-60.
- Spear, F.S. and Kohn, M.J., (1996). Trace element zoning in garnet as a monitor of crustal melting. *Geology*, *24*, 1099–1102.
- Speer J. A. (1984) Micas in Igneous rocks. Reviews in Mineralogy, 13, 299-356.
- Speer J.A. & Becker S.W. (1992) Evolution of magmatic and subsolidus AFM mineral assemblages in granitoid rocks: Biotite, muscovite and garnet in the Cuffytown Creek pluton, South Carolina. *Amer. Min.*, 77, 821-833.
- Stacey J.S., and J.D. Kramers (1975), Approximation of terrestrial lead isotope evolution by a twostage model, *Earth Planet. Sci. Lett.*, *26*, 207–221.
- Streckeisen A. & Le Maitre R.W. (1979), A chemical approximation to the modal QAPF classification of the igneous rocks. *Neues Jahrb. Miner. Abh.*, *136*, 169-206.

- Sun S.S. and McDonough W.F. (1989) Chemical and Isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D. and Norry M.J. (eds), *Magmatism in ocean basins, Geol. Soc. London Spec. Pub.* 42, pp. 313-345.
- Taylor W.H., Darbyshire J.A. & Strunz H. (1934) An X-ray investigation of the feldspars., *Z. Krist.*, 87, 464-498.
- Todd, C.S., (1998). Limits on the precision of geobarometry at low grossular and anorthite content. *Am. Mineral.* 83, 1161–1167.
- Tomkins, H.S, Powell, R. and Ellis D.J., 2007. The pressure dependence of the zirconium-in-rutile thermometer. *J. Metam. Geol.*, *25*, 703–713.
- Tubía, J.M., J. Cuevas, and J.J. Esteban (2004), Tectonic evidence in the Ronda peridotites, Spain, for mantle diapirism related to delamination, *Geology*, *32*, 941–944.
- Tubía, J.M., J. Cuevas, and J.I. Gil Ibarguchi (1997), Sequential development of the metamorphic aureole beneath the Ronda peridotites and its bearing on the tectonic evolution of the Betic Cordillera, *Tectonophysics*, 279, 227-252.
- Turner, S.P., J.P. Platt, R.M.M. George, S.P. Kelley, D.G. Pearson, and G.M. Nowell (1999), Magmatism associated with orogenic collapse of the Betic-Alboran domain, SE Spain, J. *Petrol.*, 40, 1011-1036.
- Van der Wal, D., and R.L.M. Vissers (1993), Uplift and emplacement of upper mantle rocks in the western Mediterranean, *Geology*, 21, 1119–1122.
- Vavra, G., D. Gebauer, R. Schmidt, and W. Compston (1996), Multiple zircon growth and recrystallization during polyphase Late Carbonifeorus to Triassic metamorphism in granulites from the Ivrea Zone (southern Alps): an ion microprobe (SHRIMP) study, *Contrib. Mineral. Petrol.*, 122, 337-358.
- Vavra, G., R. Schmidt, and D. Gebauer (1999), Internal morphology, habit and U-Th-Pb micronanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps), *Contrib. Mineral. Petrol.*, 134, 380-404.
- Vernon, R.H. (1996), Problems with inferring P-T-t paths in low-P granulite facies rocks, *J. Metam. Geol*, *14*, 143-153.
- Vernon, R.H. (2004), A practical guide to rock microtextures, *Cambridge University Press, Cambridge*, 594 pp.
- Watson B.E. & Harrison T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magmas types. *E.P.S.L.*, *64*, 295-304.

- Watson, E.B., Wark D.A and Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. *Contr. Min. Petrol.*, 151, 413-433.
- Wen S.X., Nekvasil H. (1994) SOLVACALC—an interactive graphics program package for calculating the ternary feldspar solvus and for 2-feldspar geothermometry. *Comput Geosci* 20:1025–1040. doi:10.1016/0098-3004(94)90039-6
- Westerman D.S., Innocenti F., Tonnarini S., and Ferrara G., (1993), The Pliocene intrusion of the Island of Giglio (Tuscany), *Mem. Soc. Geol. Ital.*, 49, 345-363.
- Whalen JB, Currie KL, Chappell BW (1987), A-type granites: geochemical characteristics, discrimination and petrogenesis. *Contrib. Mineral. Petrol.* 95, 407–419. doi:10.1007/BF00402202
- White, R.W., and R. Powell (2002), Melt loss and preservation of granulite facies mineral assemblages, *J. Metam. Geol.*, 20, 621-632.
- Wu F.Y., Sun D.Y., Li H.M., Jahn B.M., Wilde S.A. (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. *Chem. Geol.* 187, 143–173.
- Xu H., Zhang Y. & Veblen D.R. (1996) Periodic and nonperiodic interstratification in the chloritebiotite series. *Amer. Min.*, *81*, 1396-1404.
- Zack T., Moraes R., Kronz A. (2004) Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. *Contrib Mineral Petrol 148*, 471–488
- Zeck, H.P., P. Monié, I.M. Villa, and BT. Hansen (1992), Very high rates of cooling and uplift in the Alpine belt of the Betic Cordilleras, southern Spain, *Geology*, 20, 79-82.
- Zeck, H.P. (1996), Betic-Rif orogeny: subduction of Mesozoic Tethys lithosphere under eastward drifting Iberia, slab detachment shortly before 22 Ma, and subsequent uplift and extensional tectonics: *Tectonophysics*, 254, 1–16.
- Zeck, H.P., and M.J. Whitehouse (1999), Hercynian, Pan-African, Proterozoic and Archean ionmicroprobe zircon ages for a Betic-Rif core complex, Alpine belt, W Mediterranean consequences for its P-T-t path, *Contr. Mineral. Petrol.*, 134, 134-149.
- Zeck, H.P., and M.J. Whitehouse (2002), Repeated age resetting in zircons from Hercynian-Alpine polymetamorphic schists (Betic-Rif tectonic belt, S. Spain) a U–Th–Pb ion microprobe study, *Chem. Geol.*, 182, 275–292.
- Zeck, H.P., A.B. Kristensen, I.S. Williams (1998), Post-collisional volcanism in a sinking slab setting—crustal anatectic origin of pyroxene-andesite magma, Caldear Volcanic Group, Neogene Alborán volcanic province, southeastern Spain, *Lithos*, 45, 499-522.

- Zindler, A., H. Staudigel, S.R. Hart, R. Endres, and S. Goldstein (1983), Nd and Sm isotopic study of a mafic layer from Ronda ultramafic complex, *Nature*, *304*, 226.
- Zindler A. and Hart S.R., (1986), Chemical Geodymanics, Ann. Rev. Earth Planet. Sci., 14, 493-571.

APPENDICE A

	Lep	Lep	Lep	Lep	Lep	Lep	Lep	Lep	Lep	Lep	Lep	Leuco	Leuco	
	MA 00/4	MA 00/40	MA 00/20		40.04	MA 07/44	MA 07/40	MA 07/20	MT 7	MT 40	MT 44	Mter	P. Smeila	
Ossidi moga	WA 09/4	IVIA U9/16	WA 09/20	DA I	TO DA	MA 07/14	MA 07/19	WA 07/29	IVI I 7	IVIT TU		INIA U9/13	WA 07/11	
Ossidi magg	JION (WI%)	70.04	70.44	74.0	74 70	74.00	70.04	74.40	74 70	70.00	70.00	70.40	70 70	
5102	15.02	12.31	73.14	71.8	14.72	74.98	14.25	14.13	11.70	10.00	10.02	14.00	12.12	
AI203	15.03	14.13	15.64	15.30	14.42	14.25	14.35	15.01	14.07	13.59	13.93	14.23	14.09	
Fe2O3(1)	1.24	1.97	0.99	1.15	1.29	0.75	1.95	1.23	1.15	0.79	0.59	2.81	0.84	
Mao	0.10	0.034	0.094	0.057	0.027	0.065	0.034	0.128	0.027	0.067	0.043	0.073	0.032	
NigO	0.11	0.49	0.12	0.27	0.33	0.1	0.50	0.20	0.32	0.17	0.18	0.78	0.15	
CaU	0.69	1.79	1.93	0.82	1.56	0.84	2.2	1.87	1.65	0.89	2.32	2.29	1.56	
NazO	2.74	2.01	3.21	2.48	1.7	3.62	2.28	3.38	1.64	1.91	3.17	2.74	2.93	
K2U	6.25	5.71	4.68	5.23	5.57	3.53	4.33	2.26	7.35	3.93	2.96	4.14	5.43	
1102	0.03	0.24	0.038	0.094	0.141	0.023	0.263	0.051	0.171	0.029	0.045	0.309	0.017	
P205	0.13	0.11	0.14	0.18	0.14	0.13	0.11	0.07	0.08	0.13	0.14	80.0	0.13	
	0.36	0.01	0.3	0.89	0.68	0.69	0.34	0.71	0.37	0.54	0.61	0.04	0.46	
I otal	98.67	98.82	100.3	98.33	100.6	98.99	99.63	99.1	98.59	98.74	94.62	100.7	98.35	
Elementi minori, traccia, REE (ppm)														
Sc	3	5	6	5	4	2	5	10	5	3	3	10	3	
Be	1	2	2	3	< 1	3	2	2	1	1	3	< 1	< 1	
V	< 5	15	7	< 5	24	< 5	20	5	16	< 5	9	32	< 5	
Sr	32	276	96	48	383	19	255	73	389	77	221	277	261	
Ba	48	882	57	58	1085	33	758	27	731	172	494	817	722	
Cr	< 20	90	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	200	< 20	
Co	< 1	3	< 1	< 1	3	< 1	3	< 1	2	< 1	2	5	< 1	
Ni	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	
Cu	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Zn	30	< 30	< 30	50	< 30	40	< 30	< 30	< 30	< 30	50	< 30	< 30	
Ga	13	13	14	20	19	18	20	23	13	13	14	12	14	
Ge	4.8	1.5	3.3	2.7	1	2.9	1.1	2.3	1	2	1.4	1.7	1.6	
As	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
Rb	202	149	139	205	161	216	140	82	229	129	86	99	158	
Y	10.5	13	15.3	13.4	10.3	6.4	12.5	38	11.6	21.4	13.6	29.6	7.1	
Zr	45	151	43	18	72	23	117	22	82	30	29	170	5	
Nb	4	8.1	2.9	4.9	1.7	1.4	2	4.2	4.5	0.7	0.3	5	0.3	
Мо	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	
Ag	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
In	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Sn	7	13	2	8	< 1	6	< 1	3	< 1	2	< 1	< 1	< 1	
Sb	< 0.2	< 0.2	< 0.2	1.8	< 0.2	< 0.2	< 0.2	1.3	0.8	< 0.2	1.2	< 0.2	1.6	
Cs	1.8	0.6	1.5	6.4	1	2.7	0.9	0.8	1.7	0.7	0.7	0.3	1.6	

Tabella A. Geochimica su roccia totale: Leptiniti e Leucosomi

La	6.64	27.5	5.48	4.76	23.1	3.33	37.3	7.85	5.51	8.37	3.19	18.1	5.79	
Ce	13.6	51.9	10.8	9.85	47.8	6.76	80.2	16.7	9.41	17.4	6.71	28.2	9.35	
Pr	1.59	6.07	1.2	1.18	4.86	0.74	8.35	1.63	0.93	1.76	0.81	2.8	0.83	
Nd	5.44	22.6	4.34	5.46	18	3.48	30.9	6.74	3.64	7.05	3.72	10.2	3.11	
Sm	1.73	4.84	1.16	1.73	4.09	1.12	6.38	1.69	0.91	1.89	1.08	2.51	0.67	
Eu	0.144	2.32	0.479	0.297	4.16	0.06	2.7	0.374	1.33	0.354	1.09	1.13	2.46	
Gd	1.27	3.11	1.28	1.9	3.02	0.88	3.81	2	1.09	2.02	1.29	2.8	0.65	
Tb	0.3	0.42	0.32	0.4	0.42	0.2	0.45	0.59	0.26	0.44	0.28	0.58	0.15	
Dy	1.74	2.31	2.36	2.69	2.05	1.3	2.31	4.89	1.87	3.04	2	4.5	1.18	
Но	0.34	0.47	0.54	0.51	0.34	0.25	0.47	1.08	0.36	0.62	0.45	1.14	0.28	
Er	1.08	1.31	1.77	1.53	0.83	0.78	1.44	3.65	0.92	1.84	1.52	3.45	0.97	
Tm	0.253	0.183	0.364	0.258	0.094	0.155	0.21	0.634	0.12	0.275	0.275	0.561	0.165	
Yb	2.04	1.28	2.42	1.84	0.48	1.34	1.24	4.27	0.7	1.73	2.01	3.48	1.32	
Lu	0.3	0.168	0.351	0.3	0.063	0.228	0.172	0.621	0.098	0.242	0.32	0.465	0.219	
Hf	1.3	3.5	1.3	0.9	2	0.9	3.1	0.9	2	1.1	0.9	4.3	0.2	
Та	0.37	0.73	0.21	0.3	0.14	0.13	0.19	0.15	0.38	0.04	0.08	0.33	0.03	
W	0.9	< 0.5	< 0.5	0.9	< 0.5	0.5	< 0.5	0.9	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
ті	0.87	0.58	0.6	1.02	1.06	1.04	0.95	0.58	1.24	0.75	0.87	0.31	0.85	
Pb	46	31	44	46	53	25	44	23	64	47	85	18	89	
Bi	0.2	< 0.1	0.2	0.6	0.2	0.2	0.4	0.3	< 0.1	< 0.1	0.1	< 0.1	< 0.1	
Th	1.29	7.64	0.86	0.96	7.33	0.41	17.7	2.27	1.08	2.13	0.32	2.35	0.45	
U	3.02	2.25	1.87	1.79	1.06	2	1.95	1.96	0.39	2.18	0.82	0.77	0.36	

Tabella A. Geochimica su roccia totale: Dicchi

	Dyke	Dyke	Dyke	Dyke	Dyke	Dyke	Dyke	Dyke	Dyke	Dyke	Dyke
	MA 09/22	MA 09/23	MA 07/20	MA 07/22	MA 07/26	MT 9	23MT	MA 07/21	13 BA	SE 1	MA 07/4
Ossidi maggio	ori (wt%)										
SiO2	77.46	76.65	73.61	76.66	73.36	69.69	83.57	75.55	72.46	77.86	61.05
AI2O3	12.6	13.39	14.01	12.96	14.32	15.69	10.02	13.47	12.24	13.07	20.55
Fe2O3(T)	0.51	0.72	0.44	0.5	1.32	2.47	0.82	0.5	0.32	0.49	1.34
MnO	0.008	0.013	0.013	0.013	0.017	0.024	0.006	0.004	0.024	0.008	0.028
MgO	0.39	0.19	0.53	0.22	0.48	0.82	0.11	0.01	0.28	0.24	0.91
CaO	1.3	1.03	0.4	1.67	1.26	1.53	1.69	0.14	0.23	0.25	1.6
Na2O	3.92	5.06	3.8	4.29	2.78	3.26	3.6	2.63	4.35	5.27	7.91
K2O	3.01	1.48	5.29	1.74	4.97	4.09	0.46	7.85	4.01	1.07	1.33
TiO2	0.052	0.042	0.04	0.052	0.198	0.161	0.012	0.038	0.027	0.046	0.038
P2O5	0.04	0.05	0.06	0.04	0.13	0.11	0.02	0.06	0.04	0.05	0.06
LOI	0.32	0.53	0.93	1.54	1.16	2.39	0.58	0.59	0.71	1.24	2.81
Total	99.61	99.16	99.12	99.68	99.99	100.2	100.9	100.8	94.71	99.61	97.63
Elementi mino	ori, traccia e RE	E (ppm)									
Sc	2	1	3	3	6	4	< 1	< 1	2	4	2
Ве	7	7	8	7	2	4	4	< 1	8	4	3
V	< 5	< 5	< 5	< 5	24	19	< 5	< 5	< 5	< 5	21
Sr	155	213	20	173	180	336	192	22	60	120	182
Ва	417	516	116	218	880	1149	139	203	172	200	147

Cr	120	< 20	30	< 20	< 20	< 20	< 20	< 20	20	< 20	< 20
Co	1	< 1	< 1	1	3	8	< 1	< 1	< 1	< 1	4
Ni	< 20	< 20	< 20	< 20	< 20	20	< 20	< 20	< 20	< 20	< 20
Cu	< 10	< 10	< 10	< 10	< 10	30	< 10	20	< 10	10	10
Zn	< 30	< 30	< 30	< 30	< 30	30	< 30	< 30	< 30	< 30	< 30
Ga	11	12	19	17	18	14	8	11	15	17	19
Ge	1.7	1.6	1.8	1.3	2	1.4	1	1.7	0.9	1.3	0.9
As	< 5	< 5	26	80	< 5	6	< 5	< 5	15	< 5	< 5
Rb	64	43	215	67	168	122	10	340	75	43	65
Y	13.6	13.5	22.2	25.8	22.5	20.4	8.2	3.5	20.1	17.7	12.6
Zr	58	53	33	66	56	69	194	8	83	49	49
Nb	6.7	8.6	12.3	4.3	9	4.8	1.5	5.7	13.8	10.7	5.4
Мо	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Ag	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sn	2	5	8	3	2	3	< 1	7	2	3	< 1
Sb	< 0.2	< 0.2	6.4	0.6	0.7	3.6	6.4	9.7	2.7	2.3	2.6
Cs	1	1	12.7	10.1	2.3	1.8	0.4	16.6	3.5	0.8	0.6
La	17.8	8.74	4.9	16.9	12.4	18.6	11.2	4.04	4.54	8.66	16.1
Ce	35.2	17.8	13	38.3	26.8	37.6	16.5	5.47	11.8	22.1	28.3
Pr	4.02	2.06	1.45	4.03	2.78	3.82	1.47	0.5	1.34	2.39	2.72
Nd	14.2	7.12	7.18	16.4	11.4	13.7	4.73	2.02	6.85	10.3	10.5
Sm	3.43	2.15	2.31	4.15	2.83	3.14	0.92	0.52	2.1	3.08	2.25
Eu	1.02	0.555	0.093	1.4	1.23	1.37	1.01	0.088	0.117	0.563	1.04
Gd	2.68	1.89	2.59	4.01	2.71	2.92	0.91	0.53	2.13	2.8	1.98
Tb	0.49	0.44	0.56	0.7	0.54	0.52	0.18	0.1	0.48	0.52	0.38
Dy	2.56	2.5	3.65	4.08	3.5	3.14	1.29	0.6	3.14	3.07	2.3
Ho	0.47	0.46	0.66	0.77	0.69	0.62	0.3	0.12	0.64	0.55	0.44
Er	1.27	1.22	1.85	2.19	2.12	1.91	1.03	0.32	2.01	1.52	1.24
Tm	0.196	0.189	0.279	0.324	0.33	0.298	0.179	0.044	0.3	0.24	0.181
Yb	1.23	1.21	1.74	1.94	2.17	1.98	1.34	0.26	1.91	1.49	1.16
Lu	0.18	0.169	0.238	0.272	0.316	0.29	0.232	0.036	0.306	0.211	0.178
Hf	1.9	1.9	1.9	2.5	1.6	1.7	4.9	0.4	3.5	2	2.7
Та	1.56	1.98	2.74	0.66	2.13	0.92	0.19	1.09	3.06	4.37	2.35
W	0.7	1.6	1.3	0.6	< 0.5	0.7	< 0.5	2	1.9	2.1	0.9
ΤI	0.18	0.15	0.92	0.32	0.71	0.78	0.16	1.41	0.16	0.19	0.56
Pb	54	26	73	60	49	43	44	69	42	15	7
Bi	< 0.1	0.2	2.3	0.9	0.2	0.4	< 0.1	0.2	< 0.1	2.2	< 0.1
Th	7.2	4.46	4.65	7.73	4.65	7.17	4.63	1.14	6.55	6.77	8.22
	8 16	4 21	7 98	6 27	1 42	2 27	5 13	0.67	9.21	6 44	9.59

	Met	Met	Met	Met	Met
	MA 09/15	MA 09/28M	K3	MA 07/13	MA 07/28
Ossidi maggiori (wt%)					
SiO2	54.16	58.19	52.28	63.08	62.72
AI2O3	18.29	16.7	23.81	18.36	16.56
Fe2O3(T)	8.2	8.2	12.41	7.66	6.03
MnO	0.141	0.072	0.294	0.13	0.067
MgO	4.48	3.52	3.02	2.11	1.95
CaO	6.73	4.13	0.85	2.1	3.72
Na2O	2.08	2.29	0.35	0.92	2.84
K2O	0.3	2.16	2.73	2.88	3.65
TiO2	1.207	1.463	1.427	1.001	1.084
P2O5	0.28	0.03	0.1	0.19	0.53
LOI	3.26	2.89	2.1	2.18	0.78
Total	99.14	99.65	99.35	100.6	99.94
Elementi minori, traccia e l	REE (ppm)				
Sc	25	17	32	18	15
Be	2	1	1	1	2
V	182	269	264	167	51
Sr	195	195	89	167	217
Ba	89	389	598	752	382
Cr	190	220	180	110	< 20
Co	30	32	33	19	13
Ni	70	60	70	50	< 20
Cu	40	100	40	40	10
Zn	80	160	180	110	110
Ga	19	23	42	23	20
Ge	1.9	0.5	3.1	1.7	1.4
As	< 5	< 5	5	< 5	5
Rb	4	97	118	113	171
Y	18.3	10	57.3	36.3	30.9
Zr	222	248	291	235	224
	13.8	19.9	20.1	15.8	16.7
MO	< 2	3	3	< 2	< 2
Ag	< 0.5	< 0.5	< 0.5	< 0.5	0.5
III So	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sh	- 0 2	< 0.2	16	< 0.2	18
60	0.2	0.2	1.0	0.2	2.5
60	35.5	15 /	1.3 82 8	0.0 53 R	2.5
	68.6	33.4	178	107	62 6
Pr	7 94	3.84	18.3	11 2	6.58
Nd	30.4	13.8	66.5	38.5	24.8
Sm	6.26	2.42	13.8	8.03	5.35
Eu	1.61	1.75	2.18	2.03	1.54

Tabella A. Geochimica su roccia totale: livelli restitici

Gd	4.78	1.7	11.1	7.13	5.07
Tb	0.72	0.25	1.89	1.18	0.9
Dy	3.54	1.58	11	6.31	5.4
Ho	0.68	0.38	2.16	1.21	1
Er	1.87	1.18	6.54	3.42	2.76
Tm	0.263	0.173	0.978	0.498	0.378
Yb	1.69	1.3	6.18	3.07	2.19
Lu	0.252	0.197	0.902	0.444	0.303
Hf	5	6.1	7.8	5.7	5
Та	1.07	1.23	1.17	1.08	1.36
W	2	< 0.5	< 0.5	0.9	0.9
TI	< 0.05	0.28	0.88	0.71	1.01
Pb	8	< 5	17	17	22
Bi	< 0.1	< 0.1	0.1	8.9	< 0.1
Th	5.07	2.52	31.2	17	7.1
U	1.42	0.99	2.03	1.38	1.41

Tabella B. Mesonorma Granitica applicata a Leptiniti, Leucosomi e Dicchi tardo-strutturali

	Orthoclase	Albite	Anorthite	Quartz	Apatite	Ilmenite	Biotite	Corundum	Rest	Sum
Leptiniti										
MA 09/4	36.454265	23.2078	2.571264	30.946324	0.3068	0.0285	0.790605	2.815512	-0.03607	97.085
MA 09/16	32.43616	17.0247	8.158208	35.222628	0.2596	0.228	1.93152	1.653164	-0.08998	96.824
MA 09/20	27.239519	27.1887	8.656192	32.798672	0.3304	0.0361	0.662183	2.112836	-0.032602	98.992
BA 1	30.160297	21.0056	2.888704	36.089164	0.4248	0.0893	1.129429	4.559632	-0.055926	96.291
18 BA	32.0431605	14.399	6.820992	40.549972	0.3304	0.13395	1.2967485	3.096536	-0.062759	98.608
MA 07/14	20.5093215	30.6614	3.315264	38.961324	0.3068	0.02185	0.5618255	3.248112	-0.027897	97.558
MA 07/19	24.1060315	19.3116	10.191808	38.959228	0.2596	0.24985	2.1883955	2.171864	-0.101377	97.337
MA 07/29	12.5639255	28.6286	8.816896	41.998536	0.1652	0.04845	1.2344535	3.756968	-0.054029	97.159
MT 7	42.5685755	13.8908	7.660224	30.759684	0.1888	0.16245	1.2823035	0.615192	-0.060029	97.068
MT 10	22.7320645	16.1777	3.563264	48.974524	0.3068	0.02755	0.7646765	4.886612	-0.037191	97.396
MT 11	16.9980525	26.8499	10.590592	36.264472	0.3304	0.04275	0.7529925	1.616636	-0.037795	93.408
Leucosomi										
MA 09/13	22.4001645	23.2078	10.834624	36.712384	0.1888	0.29355	3.0705765	1.262192	-0.138091	97.832
MA 07/11	31.6951685	24.8171	6.886464	31.899324	0.3068	0.01615	0.6047045	0.864212	-0.030923	97.059
Dicchi										
MA 09/22	16.851646	33.2024	6.186112	40.448292	0.0944	0.0494	1.399222	0.611296	-0.062768	98.78
MA 09/23	8.268691	42.8582	4.78144	39.46944	0.118	0.0399	0.714387	1.68812	-0.033178	97.905
MA 07/20	30.00495	32.186	1.591168	30.546788	0.1416	0.038	1.88605	1.442944	-0.0845	97.753
MA 07/22	9.730496	36.3363	8.021312	41.567192	0.0944	0.0494	0.824572	1.058996	-0.037668	97.645
MA 07/26	28.132029	23.5466	5.398464	35.816124	0.3068	0.1881	1.828653	2.384512	-0.086282	97.515
MT 9	22.1616405	27.6122	6.868608	32.088628	0.2596	0.15295	2.9935085	3.373464	-0.135599	95.375
23MT	2.450906	30.492	8.251456	57.296096	0.0472	0.0114	0.401742	0.555448	-0.018248	99.488
MA 07/21	46.343319	22.2761	0.301568	30.047788	0.1416	0.0361	0.069383	0.541844	-0.005702	99.752
13 BA	23.0084935	36.8445	0.878912	31.405492	0.0944	0.02565	1.0409295	0.409196	-0.046573	93.661
SE 1	5.734723	44.6369	0.91264	42.69674	0.118	0.0437	0.877711	2.88402	-0.040434	97.864
MA 07/4	5.709159	66.9977	7.543168	6.665388	0.1416	0.0361	3.231263	3.294244	-0.142622	93.476
MA 09/33	4.124895	44.1287	5.658368	38.027788	0.7316	0.1805	1.668715	2.596044	-0.08661	97.03
Tabella C1. Analisi alla microsonda: Granati (Leptiniti)

Comment	х	SiO2	TiO2	Al2O3	MgO	CaO	MnO	FeO	SrO	BaO	Na2O	K2O	F-	Cl-	P2O5	Cr2O3	SO3 Total	grossular	pyrope	almandine	spessartine	xAl
MT7	Grt	37.398	0	21.087	4.762	4.474	1.492	29.791	0	0.035	0.026	0.022	0	0.017		0	99.104	0.1269	0.1879	0.6505	0.0334	0.9866
MT7	Grt	38.091	0.036	21.106	4.715	8.032	0.816	26.194	0	0.059	0.021	0.018	0	0.016		0.007	99.111	0.2271	0.1855	0.5681	0.0182	0.9847
MT7	Grt	38.041	0	21.296	4.357	6.767	1.051	28.318	0	0.072	0.002	0.006	0.041	0.025		0	99.976	0.1905	0.1707	0.6153	0.0234	0.9894
MT10	Grt	37.51	0.02	20.567	2.218	1.582	5.76	34.517	0	0.026	0	0.013	0.133			0.06	102.406	0.0448	0.0874	0.7388	0.1290	0.9614
MT10	Grt	37.579	0	21.042	2.233	1.417	5.786	34.698	0	0.006	0	0	0.071			0.023	102.855	0.0398	0.0873	0.7445	0.1285	0.9751
MT10	Grt	37.23	0.01	20.792	1.984	1.471	7.746	33.544	0	0	0.025	0.004	0.052			0	102.858	0.0412	0.0774	0.7084	0.1717	0.9617
MT10	Grt	37.414	0.025	20.67	2.073	1.695	7.145	33.589	0	0.03	0	0	0			0.056	102.697	0.0477	0.0812	0.7122	0.1590	0.9598
MT10	Grt	37.595	0.02	20.805	2.05	1.745	6.396	33.956	0	0	0.041	0.02	0.026			0	102.654	0.0492	0.0804	0.7257	0.1425	0.9678
MT10	Grt	37.402	0	20.566	2.021	1.076	6.36	33.921	0	0.034	0.001	0	0.072			0.054	101.507	0.0309	0.0807	0.7440	0.1443	0.9742
MT11	Grt	38.231	0	21.256	5.178	3.779	2.686	28.58	0	0.022	0.016	0.044	0	0		0	99.792	0.1071	0.2041	0.6278	0.0602	0.9937
MT11	Grt	38.159	0.017	21.094	5.262	3.365	2.7	29.153	0	0.007	0.022	0.018	0.056	0		0.019	99.872	0.0953	0.2074	0.6357	0.0605	0.9860
MT12	Grt	37.396	0.032	20.502	2.752	3.022	10.233	27.579	0.012	0	0.03	0.018	0.061			0.08	101.717	0.0852	0.1079	0.5774	0.2280	0.9535
MT12	Grt	37.782	0.011	20.837	3.803	2.435	7.336	29.593	0	0	0.022	0	0			0.013	101.832	0.0681	0.1480	0.6206	0.1622	0.9615
MT12	Grt	38.025	0	20.768	3.285	2.506	7.631	29.777	0	0.01	0	0.018	0			0	102.02	0.0706	0.1287	0.6309	0.1698	0.9648
MT12	Grt	37.435	0.028	20.74	3.07	2.389	7.083	30.339	0	0.089	0.012	0.029	0.037			0.001	101.252	0.0677	0.1211	0.6517	0.1588	0.9704
MT12	Grt	36.975	0.034	20.368	2.886	1.832	7.724	29.371	0	0	0.013	0.154	0.011			0	99.368	0.0533	0.1168	0.6517	0.1776	0.9774
BA1a	Grt	35.719	0.318	34.746	1.796	0.27	0.253	11.565	0	0.044	2.102	0.048	0.022	0		0	86.883	0.0171	0.1582	0.5713	0.0127	1.0000
BA1a	Grt	37.128	0	20.933	2.546	1.559	8.534	29.689	0	0.057	0.059	0.005	0	0		0.053	100.563	0.0447	0.1015	0.6576	0.1932	0.9892
BA1a	Grt	36.65	0.009	20.863	3.407	2.065	4.326	31.719	0	0.173	0.032	0.009	0	0		0	99.253	0.0594	0.1362	0.7045	0.0983	0.9894
BA1a	Grt	37.555	0.017	20.669	3.379	1.725	3.629	32.312	0	0.007	0.015	0.018	0.015	0.019		0	99.36	0.0502	0.1368	0.7287	0.0835	0.9923

Tabella C1. Analisi alla microsonda: Granati (Leptiniti)

Comment	x	SiO2	TiO2	Al2O3	V2O3	Cr2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	Total	grossular	pyrope	almandine	spessartine	xAl
mt7	#1	37.490	0.028	21.867	0.000	0.000	0.000	27.033	0.930	5.545	6.463	0.019	99.375	0.1793	0.2140	0.5853	0.0204	1.0000
mt7	#2	37.605	0.018	21.827	0.000	0.000	0.279	25.994	0.817	5.811	7.288	0.000	99.641	0.2007	0.2227	0.5588	0.0178	0.9919
mt7	#3	37.532	0.033	22.192	0.000	0.000	0.000	25.696	0.701	5.623	7.668	0.000	99.446	0.2124	0.2167	0.5555	0.0154	1.0000
mt7	#4	37.319	0.035	22.165	0.000	0.000	0.000	26.358	0.580	5.703	7.456	0.012	99.628	0.2046	0.2177	0.5645	0.0126	1.0000
mt7	#5	37.498	0.020	21.852	0.000	0.000	0.126	26.374	0.648	5.335	7.586	0.044	99.484	0.2096	0.2051	0.5689	0.0142	0.9963
mt7	#6	37.642	0.013	21.823	0.000	0.000	0.304	26.174	0.680	5.489	7.624	0.055	99.805	0.2099	0.2102	0.5623	0.0148	0.9912
mt7	#7	37.460	0.000	21.831	0.000	0.000	0.280	26.660	0.553	5.476	7.451	0.000	99.710	0.2052	0.2098	0.5730	0.0120	0.9919
mt7	#8	37.781	0.023	21.818	0.000	0.000	0.172	26.223	0.682	5.462	7.532	0.023	99.716	0.2082	0.2101	0.5657	0.0149	0.9950
mt7	#9	37.434	0.023	21.355	0.000	0.000	0.394	27.243	0.833	4.904	6.881	0.013	99.081	0.1930	0.1914	0.5965	0.0185	0.9883
mt7	#10	37.556	0.048	21.740	0.000	0.000	0.119	26.899	0.576	5.068	7.494	0.000	99.500	0.2082	0.1959	0.5833	0.0126	0.9965
mt7	#11	32.002	0.028	20.221	0.000	0.000	1.329	29.942	1.001	4.686	4.080	0.001	93.291	0.1174	0.1876	0.6723	0.0228	0.9597
mt7	#14	36.281	0.003	21.137	0.000	0.000	0.000	32.234	2.029	2.315	4.806	0.022	98.827	0.1380	0.0925	0.7224	0.0460	1.0000
mt7_gt1-line	#160	37.274	0.038	21.744	0.000	0.000	0.404	27.200	0.985	5.610	6.488	0.000	99.744	0.1787	0.2150	0.5848	0.0215	0.9883
mt7_gt1-line	#161	37.475	0.015	21.731	0.000	0.000	0.000	26.767	0.896	5.303	6.463	0.000	98.649	0.1824	0.2082	0.5895	0.0200	1.0000
mt7_gt1-line	#162	37.271	0.033	22.135	0.000	0.000	0.000	27.406	0.923	5.414	6.445	0.035	99.663	0.1782	0.2083	0.5915	0.0202	1.0000
mt7_gt1-line	#163	33.382	0.032	19.832	0.000	0.000	0.706	25.259	0.786	4.831	6.359	0.027	91.214	0.1900	0.2008	0.5891	0.0186	0.9778
mt7_gt1-line	#164	37.088	0.025	21.793	0.000	0.000	0.000	26.769	0.824	5.258	6.919	0.000	98.676	0.1934	0.2045	0.5839	0.0182	1.0000
mt7_gt1-line	#165	37.079	0.028	21.903	0.000	0.000	0.245	26.915	0.810	5.492	7.034	0.040	99.546	0.1933	0.2100	0.5772	0.0176	0.9929
mt7_gt1-line	#166	37.135	0.018	21.871	0.000	0.000	0.049	26.526	0.806	5.529	7.104	0.000	99.036	0.1966	0.2129	0.5729	0.0176	0.9986
mt7_gt1-line	#167	37.547	0.040	22.007	0.000	0.000	0.000	26.525	0.817	5.421	7.367	0.000	99.724	0.2032	0.2080	0.5710	0.0178	1.0000
mt7_gt1-line	#168	37.562	0.027	21.731	0.000	0.000	0.172	25.759	0.884	5.685	7.311	0.007	99.137	0.2029	0.2195	0.5579	0.0194	0.9950
mt7_gt1-line	#169	37.359	0.018	21.748	0.000	0.000	0.382	25.981	0.746	5.515	7.682	0.034	99.465	0.2117	0.2115	0.5589	0.0163	0.9889
mt7_gt1-line	#170	37.325	0.035	22.103	0.000	0.000	0.000	25.911	0.648	5.597	7.419	0.044	99.082	0.2059	0.2162	0.5614	0.0142	1.0000
mt7_gt1-line	#171	37.013	0.037	21.846	0.000	0.000	0.102	25.992	0.700	5.580	7.543	0.003	98.815	0.2086	0.2148	0.5612	0.0153	0.9970
mt7_gt1-line	#172	37.115	0.010	21.680	0.000	0.000	0.269	25.988	0.660	5.481	7.564	0.032	98.799	0.2098	0.2115	0.5626	0.0145	0.9921
mt7_gt1-line	#173	37.383	0.035	21.496	0.000	0.000	0.439	25.826	0.651	5.512	7.490	0.055	98.887	0.2085	0.2134	0.5610	0.0143	0.9871
mt7_gt1-line	#174	37.096	0.030	21.846	0.000	0.000	0.000	26.355	0.686	5.297	7.542	0.000	98.851	0.2094	0.2046	0.5710	0.0150	1.0000
mt7_gt1-line	#175	37.156	0.028	21.653	0.000	0.000	0.247	26.290	0.733	5.278	7.490	0.030	98.906	0.2081	0.2041	0.5702	0.0161	0.9928

mt7_gt1-line	#176	36.677	0.045	21.848	0.000	0.000	0.314	26.531	0.750	5.263	7.701	0.030	99.159	0.2117	0.2013	0.5692	0.0163	0.9909
mt7_gt1-line	#177	35.564	0.028	21.408	0.000	0.000	0.249	26.418	0.595	5.641	6.645	0.000	96.549	0.1867	0.2206	0.5795	0.0132	0.9926
mt7_gt1-line	#178	37.575	0.023	21.840	0.000	0.000	0.430	26.603	0.606	5.479	7.525	0.054	100.135	0.2062	0.2089	0.5691	0.0131	0.9876
mt7_gt1-line	#179	37.263	0.022	21.546	0.000	0.000	0.216	26.338	0.604	5.247	7.442	0.000	98.678	0.2080	0.2040	0.5746	0.0134	0.9936
mt7_gt1-line	#180	35.913	0.012	19.713	0.000	0.000	0.980	25.272	0.542	4.769	6.768	0.000	93.969	0.2017	0.1977	0.5878	0.0128	0.9692
mt7_gt1-line	#181	36.666	0.013	21.855	0.000	0.000	0.069	27.021	0.691	5.189	7.260	0.009	98.774	0.2009	0.1998	0.5837	0.0151	0.9980
mt7_gt1-line	#182	33.964	0.033	20.225	0.000	0.000	2.021	26.590	0.562	6.210	5.607	0.030	95.241	0.1579	0.2434	0.5846	0.0125	0.9400
mt7_gt1-line	#183	36.720	0.030	22.071	0.000	0.000	0.205	27.013	0.693	5.298	7.535	0.051	99.616	0.2057	0.2012	0.5756	0.0150	0.9941
mt7_gt1-line	#184	36.551	0.025	21.602	0.000	0.000	0.441	26.351	0.723	5.305	7.483	0.058	98.538	0.2072	0.2044	0.5696	0.0158	0.9871
mt7_gt1-line	#185	36.919	0.010	21.770	0.000	0.000	0.001	26.941	0.668	5.146	7.206	0.000	98.660	0.2006	0.1993	0.5854	0.0147	1.0000
mt7_gt1-line	#186	36.632	0.007	21.744	0.000	0.000	0.176	27.747	0.710	4.912	7.010	0.000	98.937	0.1944	0.1895	0.6005	0.0156	0.9949
mt7_gt1-line	#187	36.829	0.015	21.769	0.000	0.000	0.000	28.155	0.732	4.693	6.646	0.009	98.848	0.1859	0.1827	0.6147	0.0162	1.0000
mt7_gt1-line	#188	36.392	0.023	21.621	0.000	0.000	0.222	28.494	0.804	4.562	6.685	0.000	98.805	0.1862	0.1768	0.6193	0.0177	0.9935
mt7_gt1-line	#189	36.127	0.023	20.863	0.000	0.000	0.582	29.391	0.923	3.462	6.550	0.000	97.922	0.1869	0.1375	0.6547	0.0208	0.9825
mt7_gt1-line	#190	0.006	0.012	0.000	0.000	0.000	0.340	0.000	0.000	0.048	55.283	0.000	55.689	0.9988	0.0012	0.0000	0.0000	0.0000
mt10_gt2	#139	36.174	0.000	21.190	0.000	0.000	0.054	32.191	5.068	1.915	3.214	0.005	99.812	0.0918	0.0761	0.7174	0.1144	0.9984
mt10_gt2	#140	36.454	0.022	21.321	0.000	0.000	0.000	32.039	5.166	1.849	3.386	0.034	100.270	0.0964	0.0733	0.7122	0.1163	1.0000
mt10_gt2	#141	36.292	0.023	21.268	0.000	0.000	0.000	32.499	5.273	1.821	2.866	0.016	100.058	0.0820	0.0725	0.7255	0.1192	1.0000
mt10_gt2	#142	36.118	0.000	21.566	0.000	0.000	0.000	32.507	5.528	1.935	2.645	0.055	100.354	0.0752	0.0765	0.7212	0.1242	1.0000
mt10_gt2	#143	36.253	0.018	21.402	0.000	0.000	0.000	32.876	5.127	1.900	2.363	0.000	99.941	0.0681	0.0762	0.7390	0.1167	1.0000
mt10_gt2	#144	36.236	0.008	21.542	0.000	0.000	0.000	33.240	5.590	1.917	2.346	0.015	100.894	0.0663	0.0753	0.7328	0.1248	1.0000
mt10_gt2	#145	36.390	0.012	21.374	0.000	0.000	0.000	33.217	5.068	1.978	2.381	0.013	100.434	0.0679	0.0784	0.7388	0.1142	1.0000
mt10_gt2	#146	36.322	0.020	21.593	0.000	0.000	0.000	32.880	5.245	1.827	2.495	0.034	100.415	0.0715	0.0728	0.7352	0.1188	1.0000
mt10_gt2	#147	36.210	0.000	21.466	0.000	0.000	0.101	33.633	5.285	1.871	2.460	0.019	101.045	0.0692	0.0733	0.7389	0.1176	0.9970
mt10_gt2	#148	36.287	0.018	21.372	0.000	0.000	0.000	32.907	5.282	1.829	2.415	0.023	100.134	0.0693	0.0730	0.7368	0.1198	1.0000
mt10_gt2	#149	36.347	0.007	21.502	0.000	0.000	0.000	33.009	5.231	1.960	2.397	0.058	100.510	0.0682	0.0776	0.7334	0.1177	1.0000
mt10_gt2	#150	36.238	0.020	21.564	0.000	0.000	0.000	33.100	5.281	1.945	2.495	0.009	100.653	0.0708	0.0768	0.7334	0.1185	1.0000
mt10_gt2	#151	36.270	0.005	21.506	0.000	0.000	0.000	32.696	5.220	1.942	2.477	0.000	100.116	0.0711	0.0776	0.7328	0.1185	1.0000
mt10_gt2	#152	36.441	0.000	21.491	0.000	0.000	0.018	33.367	5.548	1.776	2.512	0.036	101.189	0.0708	0.0697	0.7341	0.1236	0.9995
mt10_gt2	#153	36.307	0.008	21.428	0.000	0.000	0.142	33.561	5.178	1.960	2.432	0.032	101.049	0.0685	0.0768	0.7378	0.1153	0.9958
mt10_gt2	#154	36.426	0.000	21.425	0.000	0.000	0.000	32.894	5.483	1.924	2.215	0.016	100.383	0.0634	0.0766	0.7350	0.1241	1.0000

mt10_gt2	#155	36.315	0.017	21.411	0.000	0.000	0.000	33.262	5.613	1.965	2.082	0.011	100.676	0.0591	0.0776	0.7368	0.1259	1.0000
mt10_gt2	#156	36.061	0.003	21.973	0.000	0.000	0.000	33.548	5.223	1.897	1.987	0.013	100.705	0.0568	0.0755	0.7489	0.1181	1.0000
mt10_gt2	#157	36.255	0.007	21.389	0.000	0.000	0.078	34.236	5.396	2.093	1.473	0.000	100.926	0.0417	0.0823	0.7554	0.1206	0.9977
mt10_gt2	#158	36.099	0.000	21.258	0.000	0.000	0.033	34.086	5.546	1.975	1.368	0.003	100.369	0.0390	0.0783	0.7578	0.1249	0.9990
mt10_gt2	#159	36.512	0.000	21.357	0.000	0.000	0.010	34.308	5.552	1.963	1.349	0.000	101.051	0.0383	0.0775	0.7597	0.1245	0.9997
mt10_gt1-line	#211	35.879	0.013	21.689	0.000	0.000	0.000	34.406	5.857	2.008	0.904	0.039	100.795	0.0256	0.0793	0.7618	0.1313	1.0000
mt10_gt1-line	#212	35.986	0.000	21.408	0.000	0.000	0.152	34.125	6.167	2.011	1.154	0.011	101.014	0.0325	0.0789	0.7506	0.1374	0.9955
mt10_gt1-line	#213	36.069	0.008	21.324	0.000	0.000	0.054	34.274	5.911	2.000	1.034	0.000	100.675	0.0293	0.0790	0.7591	0.1326	0.9984
mt10_gt1-line	#214	35.971	0.000	21.406	0.000	0.000	0.000	33.939	5.869	2.076	1.153	0.036	100.449	0.0327	0.0820	0.7518	0.1317	1.0000
mt10_gt1-line	#215	36.228	0.013	21.642	0.000	0.000	0.000	34.354	5.916	2.071	1.242	0.000	101.467	0.0349	0.0809	0.7529	0.1313	1.0000
mt10_gt1-line	#216	35.862	0.010	21.307	0.000	0.000	0.221	34.148	5.817	2.000	1.311	0.024	100.700	0.0370	0.0786	0.7531	0.1299	0.9934
mt10_gt1-line	#217	36.225	0.000	21.349	0.000	0.000	0.092	34.059	5.746	2.086	1.291	0.001	100.851	0.0366	0.0822	0.7526	0.1286	0.9972
mt10_gt1-line	#218	36.112	0.002	21.457	0.000	0.000	0.000	33.487	5.737	2.000	1.589	0.027	100.411	0.0453	0.0793	0.7448	0.1292	1.0000
mt10_gt1-line	#219	36.332	0.007	21.306	0.000	0.000	0.000	33.611	5.670	2.020	1.220	0.000	100.165	0.0351	0.0809	0.7550	0.1290	1.0000
mt10_gt1-line	#220	36.097	0.000	21.629	0.000	0.000	0.000	33.725	5.519	2.078	1.215	0.000	100.262	0.0349	0.0831	0.7566	0.1254	1.0000
mt10_gt1-line	#221	36.294	0.003	21.476	0.000	0.000	0.000	33.714	5.827	1.965	1.343	0.004	100.626	0.0384	0.0781	0.7517	0.1316	1.0000
mt10_gt1-line	#222	36.076	0.003	21.451	0.000	0.000	0.040	34.098	5.818	1.987	1.429	0.016	100.918	0.0403	0.0780	0.7511	0.1298	0.9988
mt10_gt1-line	#223	36.082	0.000	21.285	0.000	0.000	0.183	34.043	5.834	2.033	1.289	0.007	100.755	0.0365	0.0801	0.7525	0.1306	0.9945
mt10_gt1-line	#224	36.330	0.018	21.578	0.000	0.000	0.000	33.810	5.627	1.902	1.412	0.015	100.692	0.0404	0.0758	0.7556	0.1274	1.0000
mt10_gt1-line	#225	36.253	0.020	20.981	0.000	0.000	0.628	33.620	5.804	1.998	1.669	0.000	100.974	0.0473	0.0788	0.7438	0.1301	0.9812
mt10_gt1-line	#226	36.014	0.000	21.281	0.000	0.000	0.000	33.638	5.613	1.995	1.489	0.000	100.029	0.0426	0.0794	0.7511	0.1269	1.0000
mt10_gt1-line	#227	36.294	0.003	21.362	0.000	0.000	0.000	33.980	5.636	2.035	1.352	0.000	100.662	0.0384	0.0805	0.7543	0.1267	1.0000
mt10_gt1-line	#228	36.020	0.000	21.264	0.000	0.000	0.284	34.111	5.790	2.068	1.305	0.000	100.843	0.0369	0.0813	0.7524	0.1294	0.9915
mt10_gt1-line	#229	36.131	0.008	21.559	0.000	0.000	0.000	33.860	5.829	1.899	1.420	0.000	100.706	0.0405	0.0753	0.7530	0.1313	1.0000
mt10_gt1-line	#230	36.193	0.012	21.736	0.000	0.000	0.000	33.485	5.847	1.879	1.146	0.000	100.297	0.0332	0.0757	0.7572	0.1339	1.0000
11	#1	36.576	0.000	21.268	0.000	0.000	0.000	33.004	6.624	1.592	1.352	0.000	100.415	0.0391	0.0641	0.7453	0.1515	1.0000
11	#3	35.847	0.008	21.141	0.000	0.000	0.196	32.599	8.516	1.481	0.852	0.000	100.640	0.0243	0.0587	0.7251	0.1919	0.9941
11	#4	35.780	0.000	21.381	0.000	0.000	0.000	31.496	8.742	1.194	1.998	0.001	100.592	0.0568	0.0473	0.6993	0.1966	1.0000
11	#5	35.783	0.002	21.332	0.000	0.000	0.048	29.909	11.049	0.947	1.851	0.000	100.920	0.0525	0.0374	0.6623	0.2478	0.9986
11	#6	36.065	0.005	21.207	0.000	0.000	0.106	27.281	13.948	0.542	2.029	0.000	101.183	0.0578	0.0215	0.6066	0.3141	0.9968
11	#7	35.862	0.025	21.247	0.000	0.000	0.000	27.658	15.735	0.381	0.278	0.018	101.204	0.0080	0.0152	0.6191	0.3567	1.0000

11	#8	35.325	0.015	21.164	0.000	0.000	0.104	26.552	17.217	0.204	0.367	0.024	100.972	0.0105	0.0081	0.5916	0.3885	0.9969
11	#9	35.596	0.012	21.171	0.000	0.000	0.000	26.450	16.955	0.172	0.543	0.000	100.900	0.0156	0.0069	0.5927	0.3848	1.0000
11	#10	35.372	0.027	21.026	0.000	0.000	0.386	26.656	17.157	0.171	0.480	0.007	101.280	0.0137	0.0068	0.5928	0.3864	0.9884
11	#11	35.194	0.002	21.247	0.000	0.000	0.000	26.767	17.004	0.161	0.481	0.008	100.864	0.0137	0.0064	0.5960	0.3835	1.0000
11	#12	35.688	0.028	21.290	0.000	0.000	0.063	26.818	17.080	0.199	0.456	0.015	101.639	0.0130	0.0079	0.5948	0.3837	0.9981
11	#13	35.628	0.013	21.296	0.000	0.000	0.062	26.441	17.501	0.161	0.474	0.018	101.595	0.0135	0.0064	0.5863	0.3930	0.9982
11	#14	35.509	0.035	21.179	0.000	0.000	0.165	26.726	17.198	0.154	0.427	0.012	101.405	0.0122	0.0061	0.5940	0.3871	0.9950
11	#15	35.346	0.015	21.266	0.000	0.000	0.000	26.165	17.157	0.186	0.511	0.000	100.645	0.0147	0.0074	0.5876	0.3902	1.0000
11	#16	35.517	0.028	20.905	0.000	0.000	0.294	26.191	17.178	0.171	0.541	0.000	100.826	0.0156	0.0068	0.5874	0.3902	0.9911
11	#17	35.607	0.010	21.164	0.000	0.000	0.127	26.444	17.091	0.202	0.572	0.027	101.244	0.0163	0.0080	0.5888	0.3854	0.9962
11	#18	35.350	0.030	20.845	0.000	0.000	0.458	25.895	17.020	0.269	0.786	0.027	100.680	0.0225	0.0107	0.5795	0.3858	0.9862
11	#19	35.173	0.012	21.190	0.000	0.000	0.096	27.164	16.037	0.469	0.525	0.004	100.670	0.0150	0.0186	0.6047	0.3616	0.9971
11	#20	35.151	0.005	21.060	0.000	0.000	0.111	27.801	14.837	0.595	0.609	0.000	100.170	0.0175	0.0238	0.6224	0.3364	0.9966
11	#21	35.453	0.012	21.092	0.000	0.000	0.048	29.171	12.580	0.864	0.936	0.000	100.156	0.0269	0.0345	0.6533	0.2854	0.9986
11	#22	35.412	0.025	20.998	0.000	0.000	0.213	30.969	10.460	1.153	0.806	0.011	100.047	0.0231	0.0460	0.6932	0.2371	0.9936
11	#23	35.489	0.005	21.289	0.000	0.000	0.025	31.643	8.733	1.287	1.721	0.022	100.213	0.0490	0.0509	0.7026	0.1964	0.9993
11	#26	36.193	0.007	21.258	0.000	0.000	0.089	31.955	8.239	1.463	1.655	0.013	100.873	0.0471	0.0579	0.7092	0.1852	0.9973
11	#27	36.290	0.008	21.415	0.000	0.000	0.000	31.717	8.121	1.473	2.025	0.000	101.048	0.0574	0.0581	0.7023	0.1821	1.0000
11	#28	36.178	0.000	21.270	0.000	0.000	0.240	32.734	9.285	1.424	0.476	0.000	101.607	0.0135	0.0561	0.7228	0.2077	0.9928
11	#29	36.234	0.030	20.988	0.000	0.000	0.399	31.482	10.352	1.252	0.530	0.012	101.279	0.0151	0.0497	0.7011	0.2335	0.9880
11	#30	35.740	0.088	20.988	0.000	0.000	0.213	30.784	11.048	1.176	0.372	0.047	100.457	0.0107	0.0469	0.6894	0.2506	0.9936
11	#31	36.176	0.058	21.336	0.000	0.000	0.198	30.595	12.005	1.159	0.390	0.022	101.939	0.0110	0.0455	0.6743	0.2680	0.9941
11	#32	35.973	0.085	21.245	0.000	0.000	0.108	30.056	12.340	1.106	0.414	0.000	101.328	0.0118	0.0438	0.6671	0.2774	0.9968
11	#33	35.849	0.030	21.251	0.000	0.000	0.219	29.506	13.071	1.026	0.488	0.008	101.449	0.0138	0.0405	0.6525	0.2928	0.9934
11	#34	35.952	0.035	21.160	0.000	0.000	0.127	29.684	12.524	1.093	0.438	0.011	101.022	0.0125	0.0434	0.6611	0.2825	0.9962
11	#35	36.106	0.023	21.190	0.000	0.000	0.166	30.400	11.983	1.088	0.397	0.015	101.367	0.0113	0.0431	0.6753	0.2696	0.9950
11	#36	36.213	0.007	21.338	0.000	0.000	0.120	31.530	8.758	1.250	2.040	0.011	101.267	0.0577	0.0492	0.6965	0.1960	0.9964
11	#37	36.317	0.000	21.304	0.000	0.000	0.259	32.421	7.853	1.345	2.039	0.000	101.537	0.0576	0.0528	0.7144	0.1753	0.9923
11	#38	36.204	0.007	21.442	0.000	0.000	0.000	32.012	7.851	1.418	1.920	0.000	100.852	0.0547	0.0562	0.7122	0.1769	1.0000
11	#39	36.341	0.010	21.119	0.000	0.000	0.131	31.691	8.247	1.416	1.757	0.000	100.712	0.0502	0.0563	0.7071	0.1864	0.9961
L1b	#7	35.551	0.040	21.185	0.000	0.000	0.000	31.048	8.560	1.439	1.359	0.023	99.205	0.0395	0.0582	0.7044	0.1967	1.0000

L1b	#8	35.314	0.015	21.190	0.000	0.000	0.126	31.906	8.645	1.602	1.131	0.000	99.929	0.0322	0.0635	0.7096	0.1947	0.9962
L1b	#9	35.327	0.000	21.238	0.000	0.000	0.016	31.839	8.858	1.464	1.167	0.000	99.908	0.0333	0.0581	0.7089	0.1997	0.9995
L1b	#10	35.207	0.018	21.336	0.000	0.000	0.000	31.365	8.377	1.555	1.441	0.015	99.315	0.0415	0.0623	0.7048	0.1907	1.0000
L1b	#11	35.806	0.017	21.205	0.000	0.000	0.000	31.326	8.743	1.443	1.354	0.003	99.897	0.0390	0.0578	0.7040	0.1990	1.0000
L1b	#12	36.024	0.010	21.156	0.000	0.000	0.056	31.519	8.241	1.559	1.682	0.000	100.247	0.0481	0.0620	0.7036	0.1863	0.9983
L1b	#13	35.735	0.032	21.175	0.000	0.000	0.361	33.017	7.204	1.809	1.336	0.000	100.670	0.0378	0.0713	0.7297	0.1612	0.9892
L1b	#14	35.746	0.012	21.368	0.000	0.000	0.352	34.093	5.712	1.877	1.851	0.022	101.033	0.0520	0.0733	0.7469	0.1267	0.9896
L1b	#15	35.588	0.000	21.251	0.000	0.000	0.000	33.912	5.316	1.832	1.777	0.003	99.678	0.0508	0.0728	0.7562	0.1201	1.0000
L1b	#16	35.620	0.015	21.529	0.000	0.000	0.000	34.147	5.324	1.910	1.946	0.005	100.496	0.0549	0.0749	0.7513	0.1186	1.0000
L1b	#17	36.067	0.023	21.200	0.000	0.000	0.377	33.657	5.721	1.796	2.085	0.000	100.927	0.0589	0.0706	0.7426	0.1279	0.9888
L1b	#18	35.744	0.005	21.132	0.000	0.000	0.180	33.061	6.141	1.758	1.937	0.008	99.966	0.0552	0.0698	0.7361	0.1385	0.9946
L1b	#19	35.560	0.000	21.185	0.000	0.000	0.137	33.344	6.647	1.796	1.319	0.000	99.989	0.0376	0.0712	0.7415	0.1497	0.9959
L1b	#20	35.740	0.020	21.211	0.000	0.000	0.152	32.834	6.771	1.663	1.848	0.008	100.248	0.0526	0.0658	0.7289	0.1522	0.9954
L1b	#21	36.048	0.018	21.300	0.000	0.000	0.234	33.522	6.961	1.748	1.291	0.000	101.123	0.0365	0.0687	0.7393	0.1555	0.9930
L1b	#22	36.309	0.010	21.398	0.000	0.000	0.035	32.806	7.055	1.696	1.799	0.000	101.109	0.0509	0.0668	0.7245	0.1578	0.9990
L1b	#23	36.150	0.003	21.432	0.000	0.000	0.168	32.869	7.213	1.715	1.797	0.000	101.347	0.0506	0.0671	0.7219	0.1604	0.9950
L1b	#24	35.887	0.003	21.438	0.000	0.000	0.118	32.223	7.909	1.623	1.735	0.055	100.992	0.0489	0.0636	0.7085	0.1761	0.9965
L1b	#25	36.101	0.017	21.272	0.000	0.000	0.149	32.341	8.818	1.544	0.893	0.000	101.134	0.0253	0.0609	0.7160	0.1977	0.9956

Tabella C2. Analisi alla microsonda: Feldspati (Leptiniti)

Comment	х	SiO2	TiO2	AI2O3	Cr2O3	Fe2O3	Mn2O3	MgO	CaO	Na2O	К2О	BaO	Total	ANORTHITE	HIGH_ALBITE	K_FELDSPAR
MT7	Feld	53.905	0.014	28.515	0.000	0.244	0.019	0.014	11.413	4.684	0.187	0.051	99.046	0.5679	0.4211	0.0110
MT7	Feld	64.959	0.000	18.228	0.006	0.019	0.000	0.010	0.083	1.417	13.988	0.153	98.863	0.0072	0.1325	0.8603
MT7	Feld	53.684	0.011	28.073	0.011	0.252	0.036	0.007	11.318	4.892	0.216	0.055	98.555	0.5545	0.4329	0.0126
MT7	Feld	65.024	0.000	18.156	0.032	0.124	0.019	0.006	0.108	1.481	13.997	0.216	99.162	0.0096	0.1372	0.8532
MT7	Feld	56.475	0.048	27.611	0.000	0.036	0.057	0.023	9.735	5.663	0.165	0.000	99.813	0.4824	0.5078	0.0097
MT7	Feld	64.970	0.021	18.120	0.023	0.294	0.000	0.050	0.026	0.248	15.943	0.058	99.753	0.0024	0.0231	0.9745
MT7	Feld	57.943	0.010	26.753	0.000	0.071	0.000	0.000	9.128	6.111	0.382	0.036	100.434	0.4426	0.5354	0.0220
MT7	Feld	56.472	0.000	27.031	0.000	0.018	0.030	0.009	9.632	5.689	0.341	0.069	99.290	0.4744	0.5057	0.0200
MT7	Feld	65.685	0.005	18.586	0.027	0.098	0.010	0.000	0.138	1.470	14.421	0.152	100.593	0.0097	0.1328	0.8575
MT7	Feld	57.401	0.008	27.185	0.008	0.066	0.000	0.000	9.356	6.140	0.253	0.009	100.424	0.4506	0.5349	0.0145
MT7xx	Feld	59.052	0.003	23.254	0.000	0.066	0.043	0.000	9.354	7.337	0.106	0.000	99.214	0.4110	0.5834	0.0055
MT7xx	Feld	56.603	0.036	28.466	0.000	0.087	0.018	0.002	9.429	5.702	0.270	0.000	100.613	0.4698	0.5142	0.0160
MT7xx	Feld	66.075	0.001	19.261	0.000	0.000	0.000	0.002	0.080	1.070	11.875	0.171	98.536	0.0088	0.1193	0.8719
MT7xx	Feld	57.810	0.000	27.954	0.000	0.052	0.000	0.000	8.487	6.050	0.311	0.000	100.664	0.4285	0.5528	0.0187
mt7	#16	63.865	0.012	18.940	0.000	0.021	0.000	0.000	0.263	1.482	14.925	0.095	99.603	0.0144	0.1292	0.8564
mt7	#17	63.694	0.000	18.533	0.000	0.000	0.057	0.000	0.048	1.164	15.471	0.191	99.158	0.0057	0.1020	0.8923
mt7	#18	63.722	0.008	18.363	0.000	0.004	0.033	0.000	0.060	1.374	15.284	0.153	99.002	0.0056	0.1195	0.8749
mt7	#19	63.723	0.015	18.327	0.000	0.010	0.000	0.012	0.083	1.465	15.051	0.140	98.825	0.0065	0.1281	0.8655
mt7	#20	63.996	0.015	18.564	0.000	0.000	0.043	0.000	0.097	1.697	14.783	0.159	99.354	0.0074	0.1475	0.8451
mt7	#21	63.284	0.000	18.345	0.000	0.046	0.000	0.000	0.027	1.130	15.673	0.125	98.629	0.0035	0.0984	0.8981
mt7	#22	56.342	0.000	27.258	0.000	0.110	0.026	0.000	9.139	6.381	0.324	0.000	99.581	0.4337	0.5480	0.0183
mt7	#23	56.731	0.008	26.418	0.000	0.000	0.000	0.002	8.681	6.612	0.346	0.011	98.809	0.4124	0.5681	0.0195
mt7	#24	56.951	0.002	25.270	0.000	0.010	0.057	0.000	7.652	4.740	3.590	0.000	98.271	0.3732	0.4183	0.2085
mt7	#25	56.238	0.000	26.925	0.000	0.066	0.000	0.000	9.141	6.606	0.333	0.000	99.307	0.4254	0.5562	0.0184
mt7	#26	57.071	0.007	26.547	0.000	0.086	0.000	0.003	8.544	6.625	0.393	0.000	99.275	0.4069	0.5709	0.0223
mt7	#27	57.334	0.000	25.717	0.000	0.000	0.000	0.025	7.964	6.907	0.619	0.000	98.567	0.3757	0.5896	0.0348
mt7	#28	63.783	0.032	18.676	0.000	0.010	0.000	0.025	0.053	1.273	15.564	0.137	99.553	0.0049	0.1100	0.8851
mt7	#29	56.392	0.003	26.877	0.000	0.029	0.029	0.003	9.054	6.452	0.341	0.000	99.179	0.4284	0.5524	0.0192
mt7	#30	58.267	0.012	20.876	0.000	0.070	0.000	0.025	3.327	2.714	10.532	0.044	95.866	0.1608	0.2362	0.6030

mt7	#31	56.743	0.000	26.974	0.000	0.084	0.000	0.000	9.154	6.479	0.343	0.000	99.778	0.43	0.550	0.0192
mt7	#32	57.101	0.000	26.425	0.000	0.139	0.000	0.000	8.421	6.744	0.464	0.000	99.293	0.39	77 0.576	63 0.0261
mt7	#33	63.635	0.005	18.604	0.000	0.000	0.000	0.000	0.066	0.663	16.033	0.171	99.176	0.00	53 0.058	88 0.9349
mt7	#34	62.177	0.000	18.214	0.000	0.004	0.039	0.000	0.085	1.286	15.129	0.173	97.109	0.00	73 0.113	36 0.8792
mt7	#35	62.667	0.018	18.472	0.000	0.027	0.000	0.002	0.098	1.464	14.794	0.157	97.700	0.00	76 0.129	97 0.8626
mt7	#39	63.468	0.010	18.277	0.000	0.000	0.000	0.000	0.122	1.472	15.244	0.161	98.753	0.00	36 0.126	69 0.8645
mt7	#40	62.502	0.023	18.990	0.000	0.016	0.020	0.008	0.633	1.576	14.532	0.197	98.498	0.03	38 0.136	67 0.8295
mt7	#41	56.347	0.003	26.486	0.000	0.049	0.000	0.003	8.662	6.295	0.457	0.000	98.302	0.42	0.553	0.0264
mt7	#42	56.212	0.010	26.416	0.000	0.073	0.000	0.015	8.466	6.413	0.539	0.000	98.143	0.40	38 0.560	0.0310
mt7	#43	56.219	0.010	27.393	0.000	0.060	0.000	0.000	9.247	6.392	0.329	0.000	99.650	0.43	51 0.545	55 0.0185
mt7	#44	52.177	0.000	29.596	0.000	0.043	0.026	0.048	12.056	4.935	0.127	0.004	99.012	0.57	0.422	25 0.0071
mt7	#45	63.797	0.002	18.667	0.000	0.030	0.000	0.000	0.059	1.379	15.142	0.169	99.244	0.00	58 0.120	0.8733
mt7	#46	55.153	0.010	27.865	0.000	0.069	0.000	0.000	9.869	6.076	0.141	0.001	99.183	0.46	93 0.522	28 0.0080
MT11	Feld	64.870	0.000	18.464	0.000	0.028	0.000	0.004	0.149	1.732	13.771	0.291	99.309	0.01	29 0.158	84 0.8287
MT11	Feld	59.071	0.000	25.791	0.000	0.000	0.061	0.015	7.768	6.871	0.175	0.114	99.865	0.38	19 0.607	0.0102
MT11	Feld	59.296	0.048	25.118	0.067	0.034	0.031	0.019	7.156	7.030	0.389	0.008	99.197	0.35	19 0.625	53 0.0228
MT11	Feld	59.223	0.027	25.658	0.000	0.032	0.000	0.005	7.772	6.742	0.410	0.057	99.926	0.38	0.595	57 0.0238
MT12	Feld	64.188	0.028	17.429	0.000	0.010	0.025	0.009	0.027	0.879	14.048	0.183	96.826	0.00	51 0.086	64 0.9085
MT12	Feld	65.592	0.024	18.507	0.018	0.034	0.000	0.000	0.079	1.776	13.160	0.109	99.299	0.00	53 0.169	91 0.8246
MT12	Feld	57.381	0.011	30.536	0.079	0.180	0.000	0.037	4.727	4.867	0.312	0.041	98.171	0.34	0.632	0.0267
MT12	Feld	62.080	0.000	23.827	0.000	0.000	0.024	0.012	5.754	7.915	0.550	0.044	100.207	0.27	31 0.690	0.0316
MT12	Feld	60.980	0.000	24.599	0.000	0.008	0.000	0.016	6.471	7.553	0.290	0.019	99.936	0.31	51 0.667	0.0169
MT12	Feld	58.089	0.000	26.648	0.000	0.037	0.000	0.000	8.614	6.319	0.207	0.000	99.914	0.42	44 0.563	0.0121
MT12	Feld	65.250	0.000	18.167	0.007	0.080	0.020	0.020	0.102	1.442	13.586	0.119	98.794	0.00	77 0.137	0.8545
MT12	Feld	65.663	0.000	18.315	0.048	0.000	0.068	0.008	0.099	1.697	13.058	0.092	99.048	0.00	71 0.163	0.8291
MT10	Feld	63.427	0.023	23.504	0.019	0.063	0.092	0.014	4.842	8.558	0.346	0.031	100.920	0.23	39 0.746	62 0.0199
MT10	Feld	65.896	0.000	18.544	0.009	0.014	0.031	0.008	0.056	1.789	13.721	0.139	100.208	0.00	54 0.164	45 0.8301
MT10	Feld	64.291	0.014	23.065	0.000	0.000	0.012	0.004	4.232	8.914	0.371	0.000	100.904	0.20	34 0.775	53 0.0212
MT10	Feld	65.686	0.018	18.499	0.000	0.027	0.000	0.007	0.061	1.608	13.726	0.000	99.633	0.00	32 0.150	0.8462
mt10_line1	#53	59.749	0.008	24.959	0.000	0.066	0.000	0.000	6.539	8.256	0.192	0.000	99.769	0.30	12 0.688	83 0.0105
mt10_line1	#54	59.592	0.005	24.858	0.000	0.070	0.000	0.000	6.195	8.263	0.298	0.000	99.280	0.28	31 0.695	54 0.0165
mt10_line1	#55	60.071	0.007	24.499	0.000	0.010	0.009	0.012	5.827	8.300	0.398	0.000	99.131	0.27	33 0.704	45 0.0222

mt10_line1	#56	61.126	0.000	23.882	0.000	0.000	0.027	0.018	5.242	8.644	0.470	0.000	99.409	0.2445	0.7295	0.0261
mt10_line1	#57	61.461	0.003	23.604	0.000	0.053	0.014	0.000	4.974	8.896	0.423	0.000	99.430	0.2305	0.7461	0.0233
mt10_line1	#58	61.346	0.000	23.579	0.000	0.001	0.007	0.015	5.058	8.870	0.455	0.000	99.332	0.2336	0.7413	0.0250
mt10_line1	#59	61.564	0.000	23.343	0.000	0.027	0.000	0.000	4.817	8.810	0.472	0.000	99.034	0.2259	0.7477	0.0264
mt10_line1	#60	62.043	0.000	23.422	0.000	0.000	0.000	0.000	4.704	8.793	0.387	0.009	99.357	0.2233	0.7548	0.0218
mt10_line1	#61	61.392	0.000	23.744	0.000	0.064	0.000	0.000	4.998	9.019	0.289	0.000	99.506	0.2307	0.7534	0.0159
mt10_line1	#62	62.001	0.000	23.597	0.000	0.000	0.037	0.000	4.593	8.755	0.433	0.008	99.425	0.2193	0.7561	0.0246
mt10_line1	#63	60.827	0.000	24.668	0.000	0.013	0.000	0.015	5.862	8.568	0.290	0.000	100.243	0.2700	0.7141	0.0159
mt10	#64	62.648	0.012	22.861	0.000	0.019	0.022	0.005	4.189	9.036	0.322	0.000	99.112	0.2002	0.7815	0.0183
mt10	#65	62.499	0.000	22.980	0.000	0.021	0.020	0.000	4.404	9.335	0.305	0.000	99.564	0.2033	0.7799	0.0168
mt10_tour2	#96	63.940	0.003	18.237	0.000	0.252	0.000	0.000	0.015	0.803	16.035	0.016	99.301	0.0010	0.0707	0.9283
mt10_fsp-line	#191	65.127	0.000	18.846	0.000	0.024	0.026	0.000	0.253	6.256	8.120	0.004	98.656	0.0120	0.5329	0.4551
mt10_fsp-line	#192	62.486	0.000	18.757	0.000	0.000	0.000	0.012	0.083	1.712	14.475	0.006	97.529	0.0041	0.1517	0.8441
mt10_fsp-line	#193	62.890	0.000	18.619	0.000	0.000	0.000	0.002	0.083	1.998	14.375	0.000	97.965	0.0040	0.1737	0.8223
mt10_fsp-line	#194	63.022	0.003	18.592	0.000	0.027	0.009	0.000	0.148	2.158	13.837	0.016	97.813	0.0075	0.1902	0.8023
mt10_fsp-line	#195	62.980	0.000	18.883	0.000	0.000	0.000	0.000	0.160	2.641	13.143	0.006	97.812	0.0078	0.2321	0.7601
mt10_fsp-line	#196	62.531	0.000	18.530	0.000	0.009	0.053	0.000	0.122	2.676	13.258	0.000	97.179	0.0059	0.2334	0.7607
mt10_fsp-line	#197	62.109	0.010	18.624	0.000	0.000	0.000	0.010	0.178	2.647	13.435	0.007	97.020	0.0086	0.2285	0.7629
mt10_fsp-line	#198	63.046	0.000	18.650	0.000	0.024	0.004	0.005	0.088	2.210	13.778	0.015	97.819	0.0046	0.1951	0.8004
mt10_fsp-line	#199	62.270	0.008	18.478	0.000	0.036	0.017	0.000	0.147	2.183	13.859	0.000	96.998	0.0071	0.1918	0.8011
mt10_fsp-line	#200	62.156	0.007	18.715	0.000	0.000	0.000	0.000	0.120	2.496	13.563	0.000	97.057	0.0058	0.2173	0.7769
mt10_fsp-line	#201	62.274	0.000	18.536	0.000	0.006	0.017	0.010	0.133	2.172	13.813	0.000	96.961	0.0065	0.1916	0.8019
mt10_fsp-line	#202	61.763	0.007	18.715	0.000	0.017	0.000	0.025	0.102	2.538	13.413	0.000	96.580	0.0049	0.2223	0.7728
mt10_fsp-line	#203	61.669	0.008	18.412	0.000	0.009	0.000	0.007	0.140	1.651	14.756	0.001	96.652	0.0068	0.1444	0.8488
mt10_fsp-line	#204	63.160	0.010	19.084	0.000	0.031	0.000	0.010	0.136	4.480	10.398	0.004	97.314	0.0067	0.3931	0.6003
mt10_fsp-line	#205	62.180	0.000	18.650	0.000	0.007	0.000	0.000	0.139	2.386	13.437	0.000	96.798	0.0068	0.2111	0.7821
mt10_fsp-line	#206	61.621	0.005	18.405	0.000	0.037	0.000	0.017	0.094	1.910	14.152	0.001	96.242	0.0046	0.1695	0.8259
mt10_fsp-line	#207	61.157	0.000	18.534	0.000	0.000	0.000	0.000	0.126	2.580	13.110	0.004	95.511	0.0063	0.2288	0.7650
mt10_fsp-line	#208	60.673	0.000	18.301	0.000	0.019	0.000	0.010	0.127	2.211	13.817	0.000	95.157	0.0062	0.1944	0.7994
mt10_fsp-line	#209	60.781	0.000	18.481	0.000	0.024	0.000	0.005	0.106	2.510	13.353	0.000	95.261	0.0052	0.2211	0.7738
mt10_fsp-line	#210	60.183	0.013	18.326	0.000	0.063	0.023	0.000	0.122	2.221	13.860	0.000	94.811	0.0059	0.1947	0.7994
11	#2	97.855	0.010	0.000	0.000	0.043	0.000	0.002	0.000	0.008	0.008	0.000	97.926	0.0000	0.5931	0.4069

11	#25	65.001	0.000	19.147	0.000	0.000	0.014	0.005	0.020	1.263	15.372	0.020	100.842	0.0013	0.1109	0.8878
l1	#42	45.096	0.000	56.018	0.000	0.192	0.010	0.022	0.035	0.000	0.017	0.000	101.389	0.6353	0.0000	0.3647
l1	#43	66.419	0.000	21.820	0.000	0.001	0.004	0.000	2.125	10.040	0.728	0.000	101.138	0.1004	0.8586	0.0409
l1	#44	64.730	0.000	18.525	0.000	0.003	0.006	0.013	0.020	0.933	15.383	0.000	99.613	0.0010	0.0843	0.9147
l1	#45	64.704	0.000	18.803	0.000	0.031	0.007	0.008	0.050	1.741	15.029	0.040	100.415	0.0031	0.1492	0.8477
l1	#48	46.671	1.002	37.289	0.000	1.302	0.000	0.470	0.000	0.673	10.405	0.038	97.850	0.0010	0.0894	0.9096
11	#49	99.524	0.002	0.026	0.000	0.000	0.000	0.005	0.024	0.004	0.023	0.000	99.608	0.4076	0.1254	0.4670
11	#50	65.513	0.003	19.171	0.000	0.030	0.000	0.000	0.011	1.842	14.808	0.035	101.412	0.0011	0.1588	0.8401
11	#51	64.329	0.003	18.884	0.000	0.036	0.000	0.000	0.050	1.848	14.524	0.015	99.690	0.0027	0.1616	0.8357
11	#52	64.987	0.000	18.865	0.000	0.001	0.000	0.000	0.034	1.421	15.211	0.037	100.555	0.0023	0.1240	0.8737
11	#53	65.050	0.000	18.896	0.000	0.019	0.000	0.000	0.000	1.355	15.444	0.018	100.781	0.0003	0.1176	0.8821
11	#55	99.597	0.000	0.017	0.000	0.000	0.000	0.000	0.003	0.000	0.051	0.000	99.667	0.0444	0.0000	0.9556
11	#56	67.360	0.010	20.474	0.000	0.017	0.000	0.000	0.575	11.197	0.223	0.000	99.855	0.0273	0.9602	0.0126
11	#57	65.810	0.000	22.097	0.000	0.000	0.000	0.002	2.531	10.018	0.613	0.000	101.072	0.1183	0.8475	0.0341
11	#59	67.661	0.000	19.921	0.000	0.001	0.006	0.008	0.263	11.722	0.136	0.000	99.719	0.0122	0.9804	0.0075
11	#60	64.925	0.012	21.965	0.000	0.000	0.000	0.005	2.556	9.998	0.624	0.000	100.084	0.1195	0.8458	0.0347
11	#61	64.739	0.000	18.857	0.000	0.046	0.000	0.000	0.038	2.194	14.198	0.013	100.084	0.0020	0.1898	0.8082
11	#62	64.156	0.000	18.718	0.000	0.000	0.006	0.003	0.038	1.384	15.393	0.000	99.698	0.0018	0.1200	0.8782
11	#63	64.075	0.005	18.579	0.000	0.023	0.000	0.003	0.063	1.902	14.622	0.000	99.273	0.0030	0.1646	0.8324
11	#64	65.112	0.000	18.993	0.000	0.020	0.000	0.000	2.538	11.154	0.123	0.000	97.940	0.1110	0.8826	0.0064
11	#65	64.796	0.000	21.913	0.000	0.027	0.022	0.000	2.596	10.291	0.206	0.000	99.851	0.1210	0.8676	0.0114
11	#67	64.184	0.002	18.491	0.000	0.000	0.006	0.012	0.084	1.193	15.300	0.013	99.284	0.0043	0.1055	0.8902
11	#68	64.555	0.003	18.733	0.000	0.033	0.000	0.000	0.018	1.610	15.022	0.000	99.975	0.0009	0.1399	0.8592
11	#73	63.776	0.012	18.730	0.000	0.497	0.001	0.012	0.008	1.306	15.492	0.097	99.932	0.0021	0.1134	0.8845
BA1a	Feld	62.476	0.000	23.047	0.052	0.000	0.041	0.032	4.322	8.144	0.141	0.069	98.325	0.2258	0.7655	0.0087
BA1a	Feld	63.417	0.030	22.808	0.017	0.000	0.061	0.000	4.293	7.643	0.261	0.000	98.530	0.2329	0.7503	0.0169
BA1a	Feld	62.601	0.017	23.109	0.000	0.049	0.000	0.006	4.344	8.770	0.254	0.005	99.154	0.2118	0.7735	0.0147
BA1a	Feld	66.981	0.000	19.949	0.000	0.039	0.000	0.000	1.079	8.701	0.161	0.047	96.957	0.0644	0.9244	0.0113
BA1a	Feld	63.006	0.026	22.240	0.000	0.270	0.000	1.067	0.633	5.155	0.641	0.041	93.080	0.0604	0.8685	0.0711
BA1a	Feld	68.017	0.016	19.925	0.021	0.066	0.000	0.010	0.847	10.363	0.137	0.121	99.522	0.0450	0.9468	0.0082
BA1a	feld	64.093	0.007	18.270	0.000	0.181	0.000	0.000	0.003	1.211	14.534	0.055	98.354	0.0012	0.1123	0.8865

Tabella C3. Analisi alla microsonda: Biotite e Clorite (Leptiniti)

Cloriti	MT11	mt7	L1b						
х	Bt chlor	#11	#12	#13	#15	#36	#37	#38	#27
SiO2	35.590	33.464	25.754	24.797	25.251	44.292	26.101	25.795	41.801
TiO2	0.235	0.030	0.023	0.082	0.050	36.298	0.182	0.229	0.002
AI2O3	24.584	21.145	18.501	18.852	20.180	13.824	18.095	18.727	31.026
Cr2O3	0.060	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
FeO	17.467	32.561	30.224	30.741	29.658	2.495	30.109	29.424	7.154
MnO	0.283	1.046	0.192	0.227	0.306	0.000	0.230	0.272	0.137
MgO	11.079	4.900	10.766	9.993	10.799	0.477	10.702	10.917	0.659
H2O	12.444	11.974	10.771	10.609	10.915	14.600	10.776	10.807	12.467
F-	0.211	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
CI-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	101.952	105.121	96.231	95.302	97.160	111.987	96.196	96.171	93.246
Total_corr.	101.8629	105.1208	96.23097	95.30157	97.15977	111.9873	96.19626	96.17138	93.24569
Si	6.8055	6.7036	5.7350	5.6065	5.5491	7.2768	5.8096	5.7253	8.0423
AI_T	1.1945	1.2964	2.2650	2.3935	2.4509	0.7232	2.1904	2.2747	-0.0423
sum4	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
AI_O	4.3458	3.6957	2.5906	2.6299	2.7758	1.9537	2.5566	2.6241	7.0773
Cr	0.0090	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ті	0.0338	0.0045	0.0039	0.0139	0.0083	4.4857	0.0305	0.0383	0.0002
Fe	2.7932	5.4547	5.6286	5.8124	5.4505	0.3428	5.6047	5.4615	1.1510
Mn	0.0458	0.1775	0.0362	0.0436	0.0570	0.0000	0.0434	0.0511	0.0223
Mg	3.1583	1.4634	3.5740	3.3682	3.5378	0.1168	3.5512	3.6121	0.1891
sum6	10.3860	10.7959	11.8333	11.8679	11.8293	6.8990	11.7864	11.7870	8.4400
F	0.1273	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CI	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
н	15.8727	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000	16.0000
xSi	1.4027	1.3518	0.8675	0.8032	0.7746	1.6384	0.9048	0.8627	2.0211
xMg	0.5266	0.2062	0.3868	0.3652	0.3911	0.2542	0.3860	0.3959	0.1388
xFe	0.4657	0.7687	0.6092	0.6301	0.6026	0.7458	0.6093	0.5985	0.8448

Biotiti	MT7	MT7	MT7	MT11	mt7	mt10	L1b	L1b	L1b	L1b						
Х	Bt	Bt	Bt	Bt	#11	#12	#13	#15	#36	#37	#38		#4	#26	#28	#29
SiO2	34.737	34.484	33.859	34.484	32.002	25.666	24.771	25.231	31.104	26.057	25.732	45.569	33.217	33.960	77.367	34.347
TiO2	4.014	4.593	2.882	0.228	0.028	0.023	0.082	0.050	25.490	0.182	0.229	0.565	3.455	1.625	0.018	3.804
Al2O3	15.347	15.213	15.607	23.820	20.221	18.437	18.832	20.164	9.708	18.065	18.681	32.179	20.004	22.211	13.564	19.293
Cr2O3	0.003	0.050	0.009	0.058	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
FeO	22.424	21.969	24.474	16.924	31.138	30.121	30.708	29.634	1.752	30.059	29.351	6.740	21.379	20.815	1.580	21.407
Fe2O3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MnO	0.153	0.373	0.103	0.274	1.001	0.191	0.227	0.306	0.000	0.230	0.271	1.016	0.427	0.294	0.183	0.360
MgO	8.222	9.233	7.507	10.735	4.686	10.729	9.983	10.790	0.335	10.684	10.890	0.408	4.947	6.180	0.118	5.051
NiO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
CaO	0.054	0.136	0.162	0.064	4.080	0.066	0.032	0.048	27.644	0.032	0.171	0.516	0.000	0.027	0.043	0.081
Na2O	0.125	0.109	0.202	0.041	0.001	0.061	0.013	0.004	0.031	0.031	0.007	0.000	0.193	0.403	0.417	0.173
K2O	8.335	7.810	8.018	2.448	0.076	0.111	0.030	0.014	0.019	0.052	0.033	7.968	9.624	9.026	3.457	9.381
BaO	0.094	0.123	0.126	0.059	0.000	0.000	0.000	0.000	0.874	0.000	0.000	0.000	0.096	0.037	0.000	0.125
F-	0.249	0.299	0.310	0.204	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
CI-	0.027	0.092	0.037	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
H2O	3.673	3.666	3.576	3.817	3.764	3.421	3.374	3.472	4.080	3.426	3.436	4.405	3.788	3.889	4.989	3.831
Total	97.457	98.150	96.872	93.156	96.998	88.825	88.054	89.714	101.038	88.818	88.800	99.366	97.130	98.468	101.737	97.854
Total_corr.	97.34567	98.0037	96.73325	93.0698	96.99816	88.82525	88.05364	89.71444	101.0379	88.81775	88.79973	99.36628	97.12963	98.46752	101.7372	97.85382
Si	2.7427	2.6986	2.7199	2.6421	2.5492	2.2495	2.2014	2.1789	2.2857	2.2806	2.2455	3.1015	2.6292	2.6180	4.6492	2.6882
AI_T	1.2573	1.3014	1.2801	1.3579	1.4508	1.7505	1.7986	1.8211	0.8408	1.7194	1.7545	0.8985	1.3708	1.3820	0.0000	1.3118
4	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		4.0000	4.0000	4.0000	4.0000	4.0000		4.0000
Ті	0.2384	0.2704	0.1741	0.0131	0.0017	0.0015	0.0055	0.0033	1.4090	0.0120	0.0150	0.0289	0.2057	0.0942	0.0008	0.2239
AI_O	0.1708	0.1017	0.1975	0.7930	0.4476	0.1540	0.1738	0.2312	0.0000	0.1440	0.1668	1.6828	0.4953	0.6359	0.9607	0.4678
Cr	0.0002	0.0031	0.0006	0.0035	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Fe2	1.4806	1.4377	1.6442	1.0844	2.0743	2.2077	2.2822	2.1402	0.1077	2.2001	2.1420	0.3836	1.4151	1.3419	0.0794	1.4011
Fe3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mn	0.0102	0.0247	0.0070	0.0178	0.0675	0.0142	0.0171	0.0224	0.0000	0.0170	0.0200	0.0586	0.0287	0.0192	0.0093	0.0239
Mg	0.9678	1.0771	0.8990	1.2261	0.5565	1.4018	1.3225	1.3891	0.0367	1.3940	1.4167	0.0414	0.5837	0.7103	0.0105	0.5893
Ni	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

sum6	2.8680	2.9147	2.9224	3.1379	3.1477	3.7792	3.8010	3.7862	1.5534	3.7672	3.7605	2.1953	2.7284	2.8016	1.0608	2.7060
Ca	0.0046	0.0114	0.0139	0.0053	0.3482	0.0062	0.0031	0.0044	2.1766	0.0030	0.0160	0.0376	0.0000	0.0022	0.0028	0.0068
Na	0.0191	0.0165	0.0315	0.0061	0.0002	0.0103	0.0023	0.0007	0.0044	0.0053	0.0011	0.0000	0.0296	0.0602	0.0485	0.0262
К	0.8395	0.7797	0.8217	0.2393	0.0077	0.0124	0.0034	0.0016	0.0018	0.0058	0.0036	0.6919	0.9717	0.8877	0.2650	0.9367
Ва	0.0029	0.0038	0.0040	0.0018	0.0000	0.0000	0.0000	0.0000	0.0252	0.0000	0.0000	0.0000	0.0030	0.0011	0.0000	0.0038
sum8	0.8662	0.8114	0.8711	0.2524	0.3562	0.0289	0.0088	0.0067	2.2080	0.0141	0.0207	0.7295	1.0043	0.9512	0.3164	0.9735
F	0.0622	0.0740	0.0788	0.0494	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cl	0.0036	0.0122	0.0050	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
н	1.9342	1.9138	1.9162	1.9506	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000
components																
xAI	0.0854	0.0508	0.0988	0.3965	0.2238	0.0770	0.0869	0.1156	0.0000	0.0720	0.0834	0.8414	0.2476	0.3180	0.4803	0.2339

Tabella C4. Analisi alla microsonda: Miche Chiare (Leptiniti)

Wmica	MT10	MT10	MT10	MT11	MT11	MT11	MT12
х	Wmica						
SiO2	45.865	47.354	49.470	46.124	46.984	48.592	45.697
TiO2	0.007	0.009	0.548	0.156	0.443	0.472	0.043
AI2O3	35.346	36.552	30.364	34.421	29.639	29.054	33.262
Cr2O3	0.058	0.000	0.041	0.040	0.000	0.000	0.007
FeO	1.569	0.266	2.023	1.311	1.750	3.066	1.618
Fe2O3	0.000	0.000	0.000	0.000	1.961	0.000	2.079
MnO	0.164	0.034	0.010	0.019	0.000	0.000	1.375
MgO	0.439	0.032	1.446	1.267	2.626	2.473	0.761
CaO	0.061	0.035	0.108	0.026	0.008	0.014	0.366
Na2O	0.587	0.335	0.110	0.371	0.091	0.088	0.310
К2О	9.879	10.148	10.032	9.765	9.901	9.502	8.747
ВаО	0.039	0.000	0.180	0.226	0.069	0.022	0.000
F-	0.051	0.000	0.216	0.000	0.159	0.295	0.000
H2O	4.442	4.559	4.391	4.462	4.340	4.300	4.468
Total	98.507	99.324	98.939	98.188	97.972	97.878	98.733
Total_corr.	98.48548	99.32359	98.84781	98.18393	97.90503	97.75311	98.73322
Si	6.1583	6.2293	6.6024	6.1938	6.3803	6.5619	6.1333
AI_T	1.8417	1.7707	1.3976	1.8062	1.6197	1.4381	1.8667
sum4	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000	8.0000
Al_O	3.7517	3.8962	3.3785	3.6415	3.1240	3.1860	3.3947
Ті	0.0007	0.0009	0.0550	0.0158	0.0453	0.0479	0.0043
Cr	0.0062	0.0000	0.0043	0.0042	0.0000	0.0000	0.0007
Fe2	0.1762	0.0293	0.2258	0.1472	0.1988	0.3463	0.1817
Fe3	0.0000	0.0000	0.0000	0.0000	0.2004	0.0000	0.2100
Mn	0.0187	0.0038	0.0011	0.0022	0.0000	0.0000	0.1563
Mg	0.0879	0.0063	0.2877	0.2536	0.5316	0.4979	0.1523

sum6	4.0412	3.9364	3.9524	4.0645	4.1000	4.0781	4.1000
Ca	0.0088	0.0049	0.0154	0.0037	0.0012	0.0020	0.0526
Ва	0.0021	0.0000	0.0094	0.0119	0.0037	0.0012	0.0000
Na	0.1528	0.0854	0.0285	0.0966	0.0240	0.0230	0.0807
к	1.6922	1.7030	1.7081	1.6729	1.7153	1.6370	1.4977
sum8	1.8558	1.7934	1.7614	1.7851	1.7441	1.6632	1.6310
F	0.0217	0.0000	0.0912	0.0000	0.0683	0.1260	0.0000
Cl	0.0000	0.0000	0.0000	0.0036	0.0000	0.0007	0.0000
н	3.9783	4.0000	3.9088	3.9964	3.9317	3.8733	4.0000
Components							
MUSCOVITE	0.8043	0.8636	0.6496	0.7903	0.6678	0.6383	0.7145
WM_PHLOGOPITE	0.0206	-0.0318	-0.0238	0.0322	0.0500	0.0390	0.0500
AL_CELADONITE	0.0283	0.0207	0.1767	0.0669	0.1404	0.1668	0.0451
FE_AL_CELADONITE	0.0567	0.0967	0.1386	0.0388	0.0525	0.1160	0.0538
PARAGONITE	0.0823	0.0476	0.0162	0.0541	0.0137	0.0139	0.0495
TI_MN_CA_WM	0.0077	0.0032	0.0427	0.0177	0.0755	0.0259	0.0871
ХОН	0.9946	1.0000	0.9772	0.9991	0.9829	0.9683	1.0000

Tabella C5. Analisi alla microsonda: Tormalina (Leptiniti)

	х	Na2O	К2О	BaO	MnO	Al2O3	MgO	SiO2	CaO	FeO	TiO2	Total	comment
MT10 tor	#66	1.851	0.064	0	0.036	34.225	4.208	34.697	0.379	8.276	0.752	84.491	mt10_lin2
MT10 tor	#67	1.77	0.087	0.023	0	34.367	4.197	35.315	0.311	8.504	0.757	85.334	mt10_lin2
MT10 tor	#68	1.826	0.034	0	0.059	34.17	4.293	35.129	0.255	8.1	0.572	84.443	mt10_lin2
MT10 tor	#69	1.859	0.045	0.007	0.037	34.465	4.246	35.307	0.351	8.571	0.726	85.616	mt10_lin2
MT10 tor	#70	1.905	0.048	0.007	0.019	34.227	4.313	35.176	0.306	8.333	0.582	84.92	mt10_lin2
MT10 tor	#71	1.849	0.051	0.049	0.044	34.304	4.258	35.108	0.319	8.156	0.711	84.852	mt10_lin2
MT10 tor	#72	2.007	0.031	0	0.001	34.569	4.309	35.012	0.316	8.473	0.544	85.266	mt10_lin2
MT10 tor	#73	1.942	0.061	0.001	0	34.454	4.303	35.38	0.287	8.43	0.639	85.501	mt10_lin2
MT10 tor	#74	1.595	0.102	0.011	0.006	34.149	4.356	34.733	0.686	8.506	0.681	84.829	mt10_lin2
MT10 tor	#75	1.69	0.081	0	0.054	34.263	4.346	34.308	0.718	8.7	0.776	84.938	mt10_lin2
MT10 tor	#76	1.806	0.133	0.002	0.105	34.401	3.969	34.562	0.855	8.785	0.44	85.063	mt10_lin2
MT10 tor	#77	1.841	0.139	0.019	0	34.342	3.973	34.481	0.856	9.238	0.48	85.372	mt10_lin2
MT10 tor	#78	1.828	0.102	0.04	0	34.446	4.117	34.535	0.859	8.715	0.445	85.091	mt10_lin2
MT10 tor	#79	1.801	0.134	0.028	0.001	33.951	3.714	34.468	0.764	9.489	0.425	84.778	mt10_lin2
MT10 tor	#80	1.953	0.11	0	0.056	33.679	3.396	34.524	0.866	10.069	0.407	85.062	mt10_lin2
MT10 tor	#81	1.918	0.142	0.011	0.046	34.042	3.389	34.693	0.86	10.035	0.439	85.578	mt10_lin2
MT10 tor	#82	2.061	0.114	0	0.111	33.775	3.218	34.045	0.901	10.644	0.41	85.284	mt10_lin2
MT10 tor	#83	1.956	0.08	0	0.022	34.132	3.17	34.252	0.852	10.549	0.414	85.43	mt10_lin2
MT10 tor	#84	1.941	0.128	0.048	0.059	34.032	3.596	34.368	0.904	9.813	0.445	85.338	mt10_lin2
MT10 tor	#85	1.789	0.173	0	0.079	34.087	4.092	34.477	0.83	8.955	0.627	85.113	mt10_lin2
MT10 tor	#86	1.952	0.119	0.013	0.094	34.11	3.369	34.62	0.834	10.157	0.452	85.724	mt10_lin2
MT10 tor	#87	1.971	0.136	0.011	0.076	34.064	3.031	34.051	0.81	10.749	0.549	85.451	mt10_lin2
MT10 tor	#88	1.922	0.116	0	0.049	34.221	3.125	34.13	0.83	10.917	0.505	85.82	mt10_lin2
MT10 tor	#89	1.882	0.134	0	0.09	34.707	3.324	33.927	0.751	9.856	0.465	85.14	mt10_lin2
MT10 tor	#90	1.917	0.141	0	0.03	34.971	3.512	33.901	0.789	9.422	0.494	85.181	mt10_lin2
MT10 tor	#91	1.918	0.143	0	0.04	34.971	3.295	33.861	0.807	9.8	0.414	85.253	mt10_lin2
MT10 tor	#92	2.015	0.065	0	0.044	34.748	4.067	33.829	0.749	8.748	0.917	85.186	mt10_lin2
MT10 tor	#93	2.037	0.08	0	0.012	34.121	4.352	34.107	0.665	8.078	0.994	84.448	mt10_lin2
MT10 tor	#94	1.875	0.073	0.009	0.061	34.384	4.275	34.113	0.697	8.343	1.136	84.968	mt10_lin2

MT10 tor	#95	2.041	0.092	0.039	0.046	34.338	4.155	34.006	0.679	8.878	1.064	85.341	mt10_lin2
MT10 tor	#99	1.967	0.101	0.004	0.054	35.157	2.268	35.499	0.164	10.975	0.082	86.274	mt10_tour2
MT10 tor	#100	2.111	0.041	0	0.056	34.818	2.779	35.578	0.119	10.489	0.088	86.083	mt10_tour2
MT10 tor	#101	1.853	0.101	0.002	0.009	36.366	3.497	34.226	0.806	9.287	0.309	86.459	mt10_tour2
MT10 tor	#102	1.998	0.034	0	0.058	35.196	3.885	35.658	0.266	9.234	0.359	86.691	mt10_tour2
MT10 tor	#103	2.11	0.033	0	0.087	35.085	2.182	35.743	0.139	11.472	0.087	86.938	mt10_tour2
MT10 tor	#104	2.081	0.045	0	0.025	35.276	3.752	35.591	0.204	9.151	0.259	86.387	mt10_tour2
MT10 tor	#105	1.996	0.043	0	0.009	35.378	3.656	35.544	0.109	9.014	0.148	85.902	mt10_tour2
MT10 tor	#106	2.056	0.025	0	0.096	35.451	3.523	35.478	0.176	9.396	0.127	86.332	mt10_tour2
MT10 tor	#107	1.994	0.025	0	0.072	35.094	3.954	36.214	0.185	8.612	0.209	86.362	mt10_tour2
MT10 tor	#108	2.017	0.024	0	0.03	35.1	3.008	35.516	0.119	10.096	0.118	86.031	mt10_tour2
MT10 tor	#109	2.06	0.045	0	0.034	35.2	3.278	35.681	0.141	9.49	0.175	86.107	mt10_tour2
MT10 tor	#110	2.107	0.027	0	0.021	34.798	3.116	35.448	0.109	10.104	0.12	85.852	mt10_tour2
MT10 tor	#111	2.056	0	0	0.034	35.094	3.752	35.908	0.168	8.955	0.219	86.189	mt10_tour2
MT10 tor	#112	1.968	0.022	0	0.034	34.932	4.102	35.944	0.185	8.617	0.23	86.037	mt10_tour2
MT10 tor	#113	1.949	0.028	0	0.01	34.971	4.193	35.846	0.283	8.64	0.444	86.367	mt10_tour2
MT10 tor	#114	1.933	0.033	0.008	0.065	34.947	3.983	35.771	0.173	8.893	0.319	86.127	mt10_tour2
MT10 tor	#115	1.964	0.039	0	0.035	35.276	3.63	35.7	0.192	8.909	0.203	85.95	mt10_tour2
MT10 tor	#116	2.033	0.048	0.031	0.035	35.281	3.887	35.837	0.16	8.679	0.232	86.226	mt10_tour2
MT10 tor	#117	2.031	0.019	0	0.018	35.217	4.097	36.019	0.222	8.565	0.357	86.552	mt10_tour2
MT10 tor	#118	2.095	0.043	0	0.052	34.951	4.139	36.068	0.157	8.68	0.225	86.413	mt10_tour2
MT10 tor	#119	2.126	0.03	0	0.079	35.168	3.338	35.476	0.232	9.525	0.167	86.143	mt10_tour2
MT10 tor	#120	2.119	0.031	0.012	0.04	35.797	3.154	35.183	0.298	9.74	0.197	86.574	mt10_tour2
MT10 tor	#121	1.967	0.036	0.006	0.019	35.17	3.945	35.651	0.199	8.942	0.282	86.22	mt10_tour2
MT10 tor	#122	2.023	0.06	0	0	35.345	4.047	35.908	0.199	8.446	0.292	86.324	mt10_tour2
MT10 tor	#123	2.068	0.045	0.011	0.068	35.153	3.994	35.683	0.148	8.944	0.155	86.272	mt10_tour2
MT10 tor	#124	1.867	0.014	0	0.019	35.302	4.139	36.231	0.239	8.562	0.387	86.764	mt10_tour2
MT10 tor	#125	1.826	0.046	0.008	0.068	34.884	4.19	35.666	0.252	8.612	0.427	85.984	mt10_tour2
MT10 tor	#126	1.956	0.042	0	0.087	35.155	4.15	35.664	0.222	8.676	0.337	86.293	mt10_tour2
MT10 tor	#127	1.949	0.045	0.012	0.063	35.089	4.008	35.341	0.339	8.625	0.477	85.949	mt10_tour2
MT10 tor	#128	1.906	0.063	0	0	35.415	4.097	35.91	0.343	8.459	0.554	86.75	mt10_tour2
MT10 tor	#129	1.907	0.046	0	0.032	35.3	4.157	35.531	0.357	8.462	0.534	86.329	mt10_tour2

MT10 tor	#130	1.945	0.089	0	0.023	35.079	3.936	34.695	0.75	8.7	0.967	86.189	mt10_tour2
MT10 tor	#131	2.145	0.083	0	0.017	35.022	3.931	34.821	0.775	8.906	0.957	86.662	mt10_tour2
MT10 tor	#132	2.049	0.098	0.017	0.05	35.31	4.041	34.562	0.733	8.736	0.912	86.511	mt10_tour2
MT10 tor	#133	2.116	0.08	0.016	0.019	35.109	3.84	34.999	0.824	8.785	0.951	86.742	mt10_tour2
MT10 tor	#134	2.025	0.111	0	0.025	35.293	4.014	34.894	0.691	8.559	0.952	86.568	mt10_tour2
MT10 tor	#135	2.038	0.108	0	0.049	35.287	4.029	34.772	0.782	8.832	0.909	86.81	mt10_tour2
MT10 tor	#136	1.903	0.069	0	0.026	35.06	3.971	34.783	0.824	8.661	0.969	86.269	mt10_tour2
MT10 tor	#138	1.864	0.059	0.033	0	35.398	4.144	35.33	0.637	8.311	0.796	86.574	mt10_tour2
MT10 tor	#137	1.024	2.938	0.011	0	29.562	3.215	39.376	0.597	6.627	0.744	84.097	mt10_tour2

Tabella D1. Analisi alla microsonda: Feldspati (Leucosomi)

		SiO2	TiO2	Al2O3	Cr2O3	Fe2O3	Mn2O3	MgO	CaO	Na2O	K2O	BaO	Total	ANORTHITE	HIGH_ALBITE	K_FELDSPAR
MT8	Feld	51.596	0.000	32.493	0.000	0.141	0.000	0.000	13.267	3.588	0.074	0.011	101.170	0.6685	0.3270	0.0044
MT8	Feld	46.691	0.000	36.021	0.000	0.284	0.000	0.000	16.817	1.366	0.030	0.047	101.256	0.8704	0.1278	0.0018
MT8	Feld	47.215	0.000	35.501	0.000	0.392	0.000	0.045	16.155	1.619	0.039	0.011	100.978	0.8445	0.1531	0.0024
MT8	Feld	56.120	0.007	28.208	0.000	0.085	0.000	0.002	9.571	5.824	0.174	0.000	99.990	0.4711	0.5187	0.0102
MT8	Feld	55.991	0.000	28.217	0.000	0.029	0.000	0.000	9.623	5.845	0.406	0.000	100.109	0.4653	0.5114	0.0233
MT8	Feld	64.634	0.000	19.033	0.000	0.000	0.036	0.000	0.021	0.439	14.787	0.198	99.148	0.0051	0.0430	0.9520
MT8	Feld	51.450	0.000	32.374	0.000	0.161	0.007	0.000	13.426	3.726	0.114	0.059	101.318	0.6616	0.3317	0.0067
MT8	Feld	55.497	0.026	29.243	0.000	0.077	0.000	0.000	10.324	5.501	0.220	0.010	100.897	0.5027	0.4845	0.0128
MT8	Feld	52.307	0.019	31.307	0.000	0.008	0.000	0.012	12.776	4.308	0.079	0.018	100.835	0.6183	0.3771	0.0046
k1_3	#15	61.511	0.003	24.214	0.000	0.103	0.035	0.000	5.569	8.711	0.377	0.000	100.524	0.2557	0.7237	0.0206
k1_3	#25	61.642	0.008	24.553	0.000	0.116	0.006	0.003	5.740	8.611	0.305	0.000	100.983	0.2647	0.7186	0.0167
k1_3	#26	65.081	0.000	18.947	0.000	0.029	0.011	0.005	0.097	1.962	14.332	0.147	100.612	0.0072	0.1709	0.8218
k1_3	#27	61.818	0.000	24.203	0.000	0.061	0.023	0.000	5.480	8.525	0.549	0.022	100.683	0.2544	0.7152	0.0303
k1_3	#28	61.438	0.020	24.165	0.000	0.026	0.000	0.005	5.478	8.625	0.445	0.000	100.202	0.2534	0.7221	0.0245
k1_3	#29	61.034	0.010	24.270	0.000	0.059	0.029	0.007	5.681	8.680	0.368	0.000	100.137	0.2603	0.7196	0.0200
k1_3	#30	64.530	0.012	18.729	0.000	0.059	0.000	0.000	0.111	1.831	14.598	0.085	99.954	0.0068	0.1590	0.8342
k1_3	#31	62.868	0.007	22.450	0.000	0.039	0.000	0.005	3.878	6.737	4.617	0.008	100.608	0.1799	0.5652	0.2549
k1_3b	#32	61.779	0.000	24.194	0.000	0.047	0.000	0.000	5.382	8.800	0.320	0.000	100.523	0.2482	0.7342	0.0176
k1_fsp	#33	65.269	0.008	19.371	0.000	0.000	0.000	0.012	0.396	3.110	12.650	0.023	100.838	0.0192	0.2668	0.7140
k1_fsp	#34	64.872	0.000	18.542	0.000	0.000	0.010	0.002	0.176	2.869	12.945	0.049	99.465	0.0093	0.2496	0.7411
k1_fsp	#35	64.798	0.017	18.794	0.000	0.000	0.000	0.010	0.150	2.666	13.159	0.036	99.630	0.0079	0.2336	0.7585
k1_3b2	#37	63.985	0.005	18.698	0.000	0.000	0.000	0.000	0.101	1.870	14.449	0.117	99.225	0.0069	0.1632	0.8299
k1_3b2	#38	62.032	0.008	21.453	0.000	0.037	0.003	0.000	2.886	4.858	7.459	0.049	98.785	0.1411	0.4272	0.4316
k1_3b2	#39	64.792	0.000	18.900	0.000	0.001	0.000	0.000	0.123	1.942	14.537	0.095	100.392	0.0075	0.1675	0.8250
k1_3b2	#40	62.529	0.013	22.616	0.000	0.069	0.000	0.000	4.084	6.242	5.032	0.038	100.623	0.1916	0.5282	0.2802
k1_anper1	#41	62.055	0.000	23.877	0.000	0.056	0.016	0.000	5.295	8.906	0.423	0.000	100.627	0.2416	0.7354	0.0230
k1_anper1	#42	61.534	0.000	24.391	0.000	0.000	0.000	0.000	5.651	8.681	0.190	0.000	100.447	0.2618	0.7277	0.0105
k1_anper1	#43	64.896	0.028	18.864	0.000	0.013	0.000	0.000	0.125	1.754	14.779	0.079	100.537	0.0073	0.1517	0.8410
k1_anper1	#44	64.976	0.010	18.868	0.000	0.003	0.013	0.003	0.139	1.790	14.616	0.082	100.500	0.0081	0.1557	0.8362
k1_anper1	#45	65.048	0.010	18.922	0.000	0.013	0.000	0.000	0.157	1.929	14.361	0.125	100.565	0.0097	0.1679	0.8224

Tabella D2. Analisi alla microsonda: Granati (Leucosomi)

		SiO2	TiO2	Al2O3	V2O3	Cr2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	Total	grossular	pyrope	almandine	spessartine	Fe/(Fe+Mg)	xAl
MT7	Grt	37.398	0.000	21.087	0.000	0.000	0.448	29.388	1.492	4.762	4.474	0.026	99.075	0.1269	0.1879	0.6505	0.0334	0.7759	0.9866
MT7	Grt	38.091	0.036	21.106	0.000	0.007	0.506	25.739	0.816	4.715	8.032	0.021	99.069	0.2271	0.1855	0.5681	0.0182	0.7538	0.9847
MT7	Grt	38.041	0.000	21.296	0.000	0.000	0.358	27.996	1.051	4.357	6.767	0.002	99.868	0.1905	0.1707	0.6153	0.0234	0.7828	0.9894
MT8	Grt	39.084	0.064	22.667	0.000	0.000	0.000	27.385	1.793	7.214	3.024	0.000	101.231	0.0843	0.2800	0.5962	0.0395	0.6805	1.0000
MT8	Grt	38.956	0.027	22.418	0.000	0.000	0.000	27.303	0.881	6.365	4.993	0.044	100.987	0.1389	0.2464	0.5930	0.0194	0.7064	1.0000
MT8	Grt	38.701	0.036	22.014	0.000	0.000	0.000	29.425	1.053	5.493	3.306	0.012	100.040	0.0951	0.2198	0.6605	0.0239	0.7503	1.0000
MT8	Grt	38.527	0.030	22.240	0.000	0.000	0.000	30.041	1.004	5.761	3.208	0.007	100.818	0.0904	0.2259	0.6609	0.0224	0.7452	1.0000
b_smeila	#3	37.603	0.020	22.048	0.000	0.000	0.066	30.369	1.117	6.371	2.997	0.000	100.591	0.0822	0.2432	0.6503	0.0242	0.7278	0.9981
b_smeila	#4	38.104	0.038	22.275	0.000	0.000	0.083	29.636	1.041	7.338	2.677	0.000	101.191	0.0727	0.2771	0.6279	0.0223	0.6938	0.9976
b_smeila	#5	38.016	0.020	22.260	0.000	0.000	0.000	29.100	0.908	7.537	2.628	0.000	100.468	0.0719	0.2869	0.6215	0.0196	0.6841	1.0000
b_smeila	#6	37.992	0.023	22.188	0.000	0.000	0.000	28.837	0.925	7.530	2.596	0.000	100.091	0.0715	0.2885	0.6199	0.0201	0.6824	1.0000
b_smeila	#7	37.836	0.040	22.328	0.000	0.000	0.000	29.307	0.921	7.897	2.208	0.000	100.537	0.0600	0.2986	0.6216	0.0198	0.6755	1.0000
b_smeila	#8	37.573	0.017	22.088	0.000	0.000	0.153	29.042	0.894	8.104	1.956	0.000	99.827	0.0534	0.3080	0.6192	0.0193	0.6678	0.9956
b_smeila	#9	37.500	0.040	22.239	0.000	0.000	0.015	29.135	0.913	7.867	2.302	0.000	100.010	0.0627	0.2982	0.6195	0.0197	0.6751	0.9996
b_smeila	#10	37.411	0.023	22.186	0.000	0.000	0.062	29.124	1.021	7.651	2.472	0.008	99.959	0.0674	0.2903	0.6199	0.0220	0.6811	0.9982
b_smeila	#11	37.479	0.035	21.956	0.000	0.000	0.080	28.950	0.957	7.318	2.770	0.003	99.547	0.0763	0.2804	0.6223	0.0208	0.6894	0.9977
b_smeila	#12	36.991	0.032	21.797	0.000	0.000	0.073	29.507	1.043	6.628	2.964	0.000	99.035	0.0822	0.2559	0.6390	0.0229	0.7141	0.9979
b_smeila	#13	36.608	0.005	21.478	0.000	0.000	0.517	31.587	1.357	5.469	2.624	0.012	99.656	0.0729	0.2115	0.6852	0.0298	0.7642	0.9849
b_smeila	#14	35.986	0.002	21.241	0.000	0.000	0.271	34.114	1.910	3.797	1.883	0.016	99.221	0.0533	0.1495	0.7536	0.0427	0.8344	0.9919
b_smeila	#20	36.784	0.002	21.666	0.000	0.000	0.000	34.021	2.532	4.091	1.408	0.000	100.504	0.0395	0.1596	0.7447	0.0561	0.8235	1.0000
b_smeila	#21	37.075	0.000	21.850	0.000	0.000	0.000	34.111	2.311	4.114	1.514	0.000	100.975	0.0424	0.1604	0.7460	0.0512	0.8230	1.0000
b_smeila	#22	36.983	0.000	21.445	0.000	0.000	0.608	33.421	2.159	4.759	1.610	0.000	100.986	0.0447	0.1838	0.7241	0.0474	0.7975	0.9822
b_smeila	#23	37.603	0.017	21.923	0.000	0.000	0.187	31.759	1.467	5.675	2.524	0.001	101.156	0.0694	0.2171	0.6816	0.0319	0.7584	0.9946
b_smeila	#24	37.543	0.027	21.939	0.000	0.000	0.245	30.286	1.067	6.406	3.061	0.000	100.573	0.0840	0.2445	0.6484	0.0231	0.7262	0.9929
b_smeila	#25	36.948	0.032	21.642	0.000	0.000	0.464	29.604	1.076	6.801	2.742	0.020	99.329	0.0758	0.2614	0.6383	0.0235	0.7095	0.9865
b_smeila	#26	37.856	0.052	22.182	0.000	0.000	0.181	29.055	0.901	6.903	3.761	0.019	100.911	0.1022	0.2611	0.6164	0.0194	0.7025	0.9948
b_smeila	#27	38.407	0.042	22.324	0.000	0.000	0.000	28.407	0.927	7.373	3.579	0.000	101.059	0.0974	0.2792	0.6035	0.0199	0.6837	1.0000
b_smeila	#28	38.320	0.012	22.286	0.000	0.000	0.000	28.584	0.961	7.862	2.728	0.000	100.753	0.0743	0.2978	0.6073	0.0207	0.6710	1.0000
b_smeila	#29	37.943	0.018	22.358	0.000	0.000	0.000	28.848	0.874	7.641	2.842	0.009	100.535	0.0774	0.2897	0.6136	0.0188	0.6793	1.0000

b_smeila	#30	37.860	0.035	22.029	0.000	0.000	0.000	28.703	0.870	7.197	3.164	0.000	99.858	0.0872	0.2761	0.6177	0.0190	0.6911	1.0000
b_smeila	#31	37.644	0.012	21.872	0.000	0.000	0.254	29.363	0.936	6.676	3.397	0.007	100.161	0.0934	0.2555	0.6304	0.0204	0.7116	0.9926
b_smeila	#32	37.280	0.017	21.803	0.000	0.000	0.175	30.663	1.116	6.013	2.948	0.016	100.030	0.0815	0.2314	0.6619	0.0244	0.7410	0.9949
b_smeila	#34	37.120	0.005	21.629	0.000	0.000	0.309	31.228	1.184	5.862	2.524	0.012	99.873	0.0701	0.2265	0.6768	0.0260	0.7493	0.9910
b_smeila	#35	37.402	0.033	21.876	0.000	0.000	0.007	31.576	1.406	5.583	2.555	0.012	100.451	0.0708	0.2152	0.6827	0.0308	0.7603	0.9998
b_smeila	#36	36.824	0.015	21.615	0.000	0.000	0.277	33.073	1.632	5.112	1.739	0.000	100.289	0.0484	0.1978	0.7179	0.0359	0.7840	0.9919
b_smeila	#37	36.548	0.005	21.538	0.000	0.000	0.322	33.015	2.019	4.655	1.971	0.035	100.109	0.0550	0.1805	0.7183	0.0445	0.7991	0.9905
b_smeila	#39	37.113	0.008	21.451	0.000	0.000	0.104	33.920	2.554	3.985	1.465	0.000	100.600	0.0413	0.1562	0.7457	0.0569	0.8268	0.9969
b_smeila	#41	37.443	0.023	21.629	0.000	0.000	0.269	31.501	1.312	5.703	2.411	0.000	100.290	0.0670	0.2206	0.6836	0.0288	0.7560	0.9921
b_smeila	#42	37.860	0.010	21.980	0.000	0.000	0.023	30.101	1.054	6.424	3.025	0.000	100.477	0.0834	0.2463	0.6474	0.0230	0.7244	0.9993
b_smeila	#44	34.980	0.055	21.338	0.000	0.000	0.340	32.226	1.818	4.300	2.992	0.000	98.048	0.0841	0.1682	0.7073	0.0404	0.8079	0.9899
b_smeila	#45	36.906	0.002	21.644	0.000	0.000	0.000	33.806	1.965	3.462	2.759	0.000	100.544	0.0777	0.1356	0.7429	0.0437	0.8456	1.0000
b_smeila	#46	37.738	0.063	22.120	0.000	0.000	0.296	29.402	1.017	5.764	4.980	0.031	101.411	0.1353	0.2179	0.6235	0.0219	0.7410	0.9915
b_smeila	#47	38.074	0.053	22.141	0.000	0.000	0.075	28.032	0.851	6.308	5.220	0.034	100.788	0.1426	0.2397	0.5976	0.0184	0.7137	0.9978
b_smeila	#48	38.132	0.042	22.116	0.000	0.000	0.174	28.437	0.854	6.741	4.424	0.000	100.919	0.1206	0.2557	0.6052	0.0184	0.7030	0.9950
b_smeila	#49	37.858	0.037	21.931	0.000	0.000	0.152	30.072	0.939	6.487	3.096	0.005	100.578	0.0852	0.2483	0.6458	0.0204	0.7223	0.9956
b_smeila	#50	37.605	0.032	21.893	0.000	0.000	0.180	31.018	1.170	5.945	2.906	0.000	100.748	0.0800	0.2278	0.6667	0.0255	0.7453	0.9948
b_smeila	#51	35.795	0.012	21.315	0.000	0.000	1.010	31.256	1.342	5.817	2.682	0.000	99.229	0.0740	0.2234	0.6733	0.0293	0.7509	0.9706
b_smeila	#52	37.257	0.008	21.772	0.000	0.000	0.020	33.810	1.957	4.048	2.376	0.000	101.249	0.0661	0.1567	0.7342	0.0431	0.8241	0.9994
b_smeila	#53	36.859	0.002	21.381	0.000	0.000	0.228	33.515	1.945	4.030	2.215	0.000	100.173	0.0624	0.1579	0.7365	0.0433	0.8235	0.9932
b_smeila	#54	37.010	0.022	21.795	0.000	0.000	0.098	32.324	1.333	5.099	2.686	0.000	100.367	0.0745	0.1967	0.6996	0.0292	0.7805	0.9971
b_smeila	#55	37.441	0.045	21.997	0.000	0.000	0.201	30.594	1.045	5.913	3.574	0.000	100.808	0.0979	0.2254	0.6541	0.0226	0.7437	0.9942
b_smeila	#57	37.423	0.028	21.753	0.000	0.000	0.447	30.281	1.074	5.746	3.858	0.015	100.627	0.1061	0.2199	0.6500	0.0234	0.7472	0.9870
b_smeila	#58	37.248	0.032	21.931	0.000	0.000	0.000	30.780	1.262	5.471	3.523	0.007	100.253	0.0974	0.2104	0.6642	0.0276	0.7594	1.0000
b_smeila	#59	37.447	0.018	21.725	0.000	0.000	0.022	33.281	1.702	5.151	1.381	0.000	100.727	0.0385	0.1998	0.7242	0.0375	0.7838	0.9993
b_smeila	#61	38.157	0.032	22.076	0.000	0.000	0.370	29.940	1.112	7.510	2.118	0.000	101.317	0.0575	0.2838	0.6348	0.0239	0.6910	0.9894
b_smeila	#63	37.864	0.002	22.088	0.000	0.000	0.082	31.797	1.210	6.522	1.630	0.028	101.222	0.0446	0.2484	0.6794	0.0262	0.7323	0.9976
b_smeila	#64	37.900	0.022	22.146	0.000	0.000	0.114	29.475	0.994	7.189	2.867	0.000	100.707	0.0782	0.2728	0.6275	0.0214	0.6970	0.9967
b_smeila	#65	38.084	0.010	22.220	0.000	0.000	0.000	29.603	1.058	7.111	2.379	0.000	100.465	0.0657	0.2732	0.6380	0.0231	0.7002	1.0000
b_smeila	#66	38.106	0.025	22.152	0.000	0.000	0.160	29.098	0.979	7.306	3.066	0.001	100.893	0.0835	0.2769	0.6185	0.0211	0.6908	0.9954
b_smeila	#67	38.127	0.018	22.230	0.000	0.000	0.155	29.192	0.977	7.257	3.187	0.000	101.144	0.0865	0.2741	0.6185	0.0210	0.6929	0.9956
b_smeila	#68	38.132	0.027	22.103	0.000	0.000	0.182	28.813	0.984	7.401	3.095	0.001	100.737	0.0844	0.2809	0.6134	0.0212	0.6859	0.9948

b_smeila	#69	38.228	0.035	22.016	0.000	0.000	0.392	29.216	0.928	7.447	2.839	0.000	101.101	0.0773	0.2820	0.6207	0.0200	0.6876	0.9888
b_smeila	#70	37.969	0.015	22.245	0.000	0.000	0.155	28.741	0.877	7.296	3.567	0.012	100.876	0.0967	0.2754	0.6085	0.0188	0.6884	0.9956
b_smeila	#73	38.196	0.033	22.107	0.000	0.000	0.138	29.226	0.985	7.313	2.856	0.000	100.853	0.0780	0.2778	0.6229	0.0213	0.6915	0.9960
b_smeila	#74	37.990	0.025	22.167	0.000	0.000	0.135	29.435	0.925	7.293	2.850	0.008	100.829	0.0776	0.2764	0.6257	0.0199	0.6936	0.9961
b_smeila	#75	37.862	0.010	22.059	0.000	0.000	0.177	29.552	0.990	7.200	2.717	0.000	100.568	0.0743	0.2738	0.6305	0.0214	0.6972	0.9949
b_smeila	#76	37.569	0.015	22.010	0.000	0.000	0.402	30.344	1.198	6.668	2.831	0.000	101.037	0.0770	0.2525	0.6447	0.0258	0.7185	0.9885
b_smeila	#77	37.558	0.038	21.986	0.000	0.000	0.207	30.471	1.122	5.937	3.564	0.000	100.883	0.0977	0.2263	0.6517	0.0243	0.7422	0.9940
b_smeila	#78	37.152	0.040	21.663	0.000	0.000	0.409	31.851	1.357	5.555	2.506	0.003	100.535	0.0693	0.2137	0.6873	0.0297	0.7628	0.9881
b_smeila	#79	36.675	0.008	21.383	0.000	0.000	0.617	32.102	1.715	4.852	2.749	0.011	100.112	0.0765	0.1879	0.6973	0.0377	0.7878	0.9819
b_smeila	#80	36.272	0.000	21.459	0.000	0.000	0.407	34.090	2.253	4.255	1.452	0.040	100.229	0.0405	0.1652	0.7425	0.0497	0.8180	0.9880
k1_1	#1	24.517	0.023	19.505	0.000	0.000	4.360	30.859	0.263	8.922	0.069	0.000	88.518	0.0019	0.3375	0.6549	0.0057	0.6599	0.8751
k1_1	#3	38.790	0.007	22.617	0.000	0.000	0.000	26.976	1.410	8.585	2.987	0.011	101.383	0.0805	0.3218	0.5672	0.0300	0.6380	1.0000
k1_1	#4	38.915	0.023	22.664	0.000	0.000	0.000	27.528	1.464	9.127	2.036	0.008	101.766	0.0544	0.3396	0.5746	0.0310	0.6285	1.0000
k1_1	#5	38.465	0.030	22.313	0.000	0.000	0.000	26.534	1.384	8.615	2.828	0.013	100.182	0.0772	0.3271	0.5652	0.0299	0.6334	1.0000
k1_1	#6	37.710	0.032	21.986	0.000	0.000	0.000	30.005	2.491	4.890	4.013	0.001	101.128	0.1108	0.1879	0.6468	0.0544	0.7749	1.0000
k1_3	#7	38.067	0.027	21.982	0.000	0.000	0.161	29.409	1.617	7.728	1.389	0.036	100.417	0.0381	0.2951	0.6299	0.0351	0.6810	0.9953
k1_3	#8	37.986	0.020	21.982	0.000	0.000	0.253	29.356	1.650	7.704	1.543	0.031	100.526	0.0422	0.2934	0.6271	0.0357	0.6813	0.9927
k1_3	#9	38.232	0.032	22.137	0.000	0.000	0.000	28.591	1.630	7.676	2.179	0.011	100.487	0.0597	0.2928	0.6117	0.0353	0.6763	1.0000
k1_3	#10	38.514	0.030	22.080	0.000	0.000	0.058	28.449	1.640	7.497	2.512	0.027	100.807	0.0688	0.2858	0.6085	0.0355	0.6804	0.9983
k1_3	#11	38.245	0.028	22.315	0.000	0.000	0.164	28.236	1.593	7.565	3.166	0.000	101.313	0.0856	0.2845	0.5958	0.0341	0.6768	0.9953
k1_3	#12	38.412	0.045	22.281	0.000	0.000	0.000	27.460	1.471	7.263	3.922	0.000	100.853	0.1071	0.2759	0.5852	0.0317	0.6796	1.0000
k1_3	#13	38.502	0.010	22.292	0.000	0.000	0.034	27.852	1.459	7.041	4.128	0.000	101.318	0.1121	0.2661	0.5905	0.0313	0.6894	0.9990
k1_3	#14	38.375	0.015	21.838	0.000	0.000	0.289	28.754	2.081	6.298	3.485	0.000	101.137	0.0959	0.2412	0.6176	0.0453	0.7192	0.9916
k1_2	#16	38.433	0.023	22.460	0.000	0.000	0.543	26.096	1.892	8.563	3.852	0.000	101.862	0.1024	0.3166	0.5413	0.0397	0.6309	0.9848
k1_2	#17	38.583	0.020	22.426	0.000	0.000	0.002	25.595	1.231	7.907	5.041	0.007	100.812	0.1362	0.2973	0.5399	0.0263	0.6449	0.9999
k1_2	#18	38.517	0.032	22.553	0.000	0.000	0.000	25.350	1.113	7.860	5.111	0.004	100.540	0.1392	0.2978	0.5388	0.0240	0.6440	1.0000
k1_2	#19	38.369	0.027	22.507	0.000	0.000	0.000	25.440	1.069	7.978	5.083	0.028	100.502	0.1376	0.3005	0.5376	0.0229	0.6414	1.0000
k1_2	#20	38.487	0.018	22.602	0.000	0.000	0.000	25.207	1.147	7.970	5.188	0.000	100.619	0.1408	0.3008	0.5338	0.0246	0.6396	1.0000
k1_2	#21	38.444	0.015	22.694	0.000	0.000	0.000	25.687	1.205	7.993	4.854	0.012	100.904	0.1312	0.3006	0.5419	0.0257	0.6432	1.0000
k1_2	#22	38.679	0.042	22.468	0.000	0.000	0.000	25.727	1.205	7.897	4.521	0.000	100.538	0.1237	0.3007	0.5495	0.0261	0.6463	1.0000
k1_2	#23	38.583	0.028	22.405	0.000	0.000	0.000	26.668	1.458	8.008	3.730	0.000	100.880	0.1013	0.3024	0.5650	0.0313	0.6513	1.0000

Tabella D3. Analisi alla microsonda: Fillosilicati (Leucosomi)

Chlorite

		Si	02	TiO2	Al2O	3 Cr	203	FeO	MnO	Μ	lgO	H2O	F-		Cl-	То	tal	Total_co	rr.	xSi	хN	٧g	ĸFe
MT8	Bt ch	lor	27.389	0.10	1 19	9.874	0.000	24.67	5 C	0.167	13.461	11.1	27	0.184	1 O.	.000	96.977	96.900	08355	0.9	291	0.4913	0.5052
MT8	Bt ch	lor	28.090	1.30	3 19	9.512	0.000	24.16	9 C).161	14.837	11.4	81	0.195	5 0.	.000	99.748	99.665	82356	0.9	9109	0.5208	0.4760
MT8	Bt ch	lor	27.250	0.11	.9 20).166	0.000	24.67	8 C).175	14.699	11.3	67	0.061	L 0.	.000	98.516	98.490	53097	0.8	8678	0.5132	0.4833
MT8	Bt ch	lor	35.495	3.75	1 15	5.797	0.000	15.75	8 C	0.053	12.680	11.4	85	0.441	L 0.	.059	95.518	95.319	31984	1.6	5356	0.5884	0.4102
Biotite																							
		SiO2	TiO2	Al2O3	Cr2O3	FeO	Fe2O3	MnO	MgO	NiO	CaO	Na2O	K2O		BaO	F-	CI-	H2O	Total	Total_corr.		xAl	
MT8	Bt	36.784	3.670	15.703	0.000	16.165	0.000	0.025	14.034	0.000	0.030	0.280		5.354	0.000	0.442	0.000	3.744	96.231	96.04482065			0.0968
b_smeila	#1	34.135	4.646	17.366	0.000	22.013	0.000	0.068	7.497	0.000	0.000	0.160		9.569	0.238	0.000	0.000	3.869	99.563	99.56312531			0.1155
b_smeila	#2	36.807	0.022	26.177	0.000	20.061	0.000	0.917	3.532	0.000	0.729	0.147		2.319	0.057	0.000	0.000	3.957	94.725	94.72459292			0.5634
b_smeila	#16	34.125	3.195	18.993	0.000	19.845	0.000	0.022	8.938	0.000	0.000	0.125		9.698	0.161	0.000	0.000	3.896	98.998	98.9983137			0.1743
b_smeila	#17	33.699	3.912	17.948	0.000	22.839	0.000	0.022	7.449	0.000	0.001	0.102		9.436	0.403	0.000	0.000	3.857	99.669	99.66881596			0.1318
b_smeila	#18	35.218	5.245	17.916	0.000	14.292	0.000	0.009	11.644	0.000	0.010	0.287		9.362	0.356	0.000	0.000	3.972	98.311	98.31101413			0.1262
b_smeila	#19	32.672	1.920	18.743	0.000	21.823	0.000	0.089	9.761	0.000	0.010	0.089		6.780	0.035	0.000	0.000	3.780	95.701	95.70096215			0.1719
b_smeila	#38	34.197	0.007	21.993	0.000	31.447	0.000	2.385	5.734	0.000	1.031	0.022		0.258	0.008	0.000	0.000	3.965	101.046	101.0462836			0.2733
b_smeila	#40	31.686	1.410	18.898	0.000	22.968	0.000	0.205	10.822	0.000	0.003	0.080		5.524	0.039	0.000	0.000	3.763	95.397	95.39692307			0.1500
b_smeila	#43	49.196	2.876	13.345	0.000	18.609	0.000	0.172	5.426	0.000	0.013	0.067		5.291	0.157	0.000	0.000	4.187	99.340	99.33969326			0.3244
b_smeila	#56	28.395	0.005	21.003	0.000	26.549	0.000	0.762	5.404	0.000	2.703	0.004		0.037	0.000	0.000	0.000	3.482	88.346	88.34606791			0.2881
b_smeila	#60	35.481	6.086	16.680	0.000	14.279	0.000	0.028	12.037	0.000	0.000	0.194		9.804	0.214	0.000	0.000	3.981	98.785	98.78510757			0.0766
b_smeila	#62	49.320	0.007	34.205	0.000	1.461	0.000	0.005	0.922	0.000	0.036	0.173		9.652	0.093	0.000	0.000	4.583	100.457	100.4571313			0.9323
b_smeila	#71	35.145	5.772	18.090	0.000	13.976	0.000	0.041	11.658	0.000	0.000	0.241		9.822	0.298	0.000	0.000	3.998	99.042	99.04213926			0.1174
b_smeila	#90	32.954	5.560	18.335	0.000	22.212	0.000	0.059	5.933	0.000	0.000	0.112		9.313	0.734	0.000	0.000	3.830	99.043	99.04313982			0.1360
b_smeila	#91	43.172	0.000	30.014	0.000	8.188	0.000	0.079	3.535	0.000	0.056	0.257		6.941	0.182	0.000	0.000	4.263	96.688	96.68798532			0.7622
b_smeila	#93	44.443	0.000	31.864	0.000	5.765	0.000	0.050	2.451	0.000	0.077	0.226		7.435	0.148	0.000	0.000	4.329	96.789	96.78871468			0.8393
b_smeila	#94	32.666	5.772	16.931	0.000	23.114	0.000	0.108	5.890	0.000	0.000	0.129		9.366	0.427	0.000	0.000	3.773	98.177	98.1769376			0.0909
b_smeila	#95	43.627	0.020	30.982	0.000	7.179	0.000	0.028	3.098	0.000	0.080	0.181		8.183	0.285	0.000	0.000	4.315	97.976	97.97633414			0.7846
b_smeila	#96	33.686	5.502	17.644	0.000	23.170	0.000	0.118	6.391	0.000	0.000	0.129		9.239	0.444	0.000	0.000	3.872	100.195	100.1946837			0.1096
b_smeila	#97	43.846	0.007	31.008	0.000	7.343	0.000	0.066	3.278	0.000	0.091	0.268		7.444	0.274	0.000	0.000	4.329	97.954	97.95401448			0.7840

		SiO2	TiO2	Al2O3	Cr2O3	FeO	Fe2O3	MnO	MgO	CaO	Na2O	К2О	BaO	F-	H2O	Total	Total_corr.	MUSCOVITE	WM_PHLOGOPITE	AL_CELADONITE	FE_AL_CELADONITE	PARAGONITE	TI_MN_CA_WM	ХОН
MT8	Wmica	46.161	0.000	38.460	0.000	0.709	0.000	0.000	0.268	0.172	0.178	7.937	0.715	0.000	4.606	99.206	99.20619	0.8588	0.0199	0.0190	0.0282	0.0316	0.0425	1.0000
MT8	Wmica	45.302	0.000	33.769	0.000	-3.894	10.584	0.055	3.029	0.292	0.148	6.101	0.375	0.139	4.611	100.511	100.453	0.6490	0.0500	-0.1501	0.1083	0.0336	0.3092	0.9859
MT8	Wmica	48.972	0.025	33.096	0.000	1.615	0.000	0.000	1.364	0.054	0.119	8.096	0.071	0.205	4.468	98.085	97.9988	0.7431	0.0016	0.1348	0.0895	0.0217	0.0093	0.9787

Tabella E1. Analisi alla microsonda: Feldspati (Restiti)

		SiO2	TiO2	Al2O3	Cr2O3	Fe2O3	Mn2O3	MgO	CaO	Na2O	К2О	BaO	Total	ANORTHITE	HIGH_ALBITE	POTASSIUM_FELDSPAR
k3	#16	55.978	0.008	27.197	0.000	0.268	0.026	0.000	9.580	6.171	0.384	0.000	99.611	0.4518	0.5266	0.0215
k3	#17	56.971	0.017	26.642	0.000	0.133	0.000	0.012	8.642	6.473	0.448	0.000	99.337	0.4137	0.5607	0.0256
k3	#18	57.392	0.002	26.438	0.000	0.054	0.000	0.000	8.473	6.651	0.533	0.000	99.543	0.4007	0.5693	0.0300
k3	#19	57.367	0.005	26.280	0.000	0.047	0.000	0.000	8.519	6.605	0.517	0.015	99.355	0.4041	0.5667	0.0292
k3	#20	57.550	0.010	26.072	0.000	0.000	0.023	0.008	8.494	6.331	0.446	0.000	98.933	0.4147	0.5593	0.0259
k3	#21	56.450	0.007	27.264	0.000	0.103	0.000	0.090	7.425	6.271	0.676	0.000	98.285	0.3793	0.5796	0.0411
k3	#22	54.708	0.000	28.008	0.000	0.023	0.000	0.025	9.658	5.558	0.398	0.000	98.379	0.4784	0.4982	0.0234
k3	#23	54.168	0.000	28.440	0.000	0.000	0.000	0.010	10.959	5.389	0.298	0.000	99.263	0.5202	0.4630	0.0168
k3	#24	55.390	0.000	27.435	0.000	0.003	0.000	0.005	9.932	5.839	0.334	0.000	98.938	0.4753	0.5057	0.0190
k3	#25	56.754	0.025	26.734	0.000	0.000	0.000	0.007	8.895	6.443	0.396	0.000	99.254	0.4230	0.5545	0.0224
k3	#26	57.462	0.000	26.536	0.000	0.034	0.000	0.000	8.675	6.591	0.449	0.000	99.748	0.4104	0.5643	0.0253
k3	#27	57.244	0.017	26.449	0.000	0.000	0.000	0.000	8.576	6.633	0.451	0.000	99.369	0.4061	0.5685	0.0254
k3	#28	57.165	0.003	26.250	0.000	0.000	0.017	0.000	8.394	6.572	0.420	0.000	98.823	0.4038	0.5721	0.0241
k3	#29	57.038	0.000	26.440	0.000	0.023	0.000	0.028	8.877	6.422	0.483	0.006	99.318	0.4213	0.5514	0.0273
k3	#30	56.093	0.000	27.035	0.000	0.024	0.000	0.000	9.524	6.153	0.414	0.000	99.244	0.4503	0.5264	0.0233
k3	#73	63.990	0.008	18.891	0.000	0.000	0.000	0.020	0.112	0.754	16.245	0.425	100.445	0.0128	0.0650	0.9222
k3	#74	58.024	0.005	26.207	0.000	0.006	0.000	0.018	8.485	6.565	0.542	0.000	99.853	0.4039	0.5654	0.0307
k3	#75	59.494	0.000	23.854	0.000	0.014	0.000	0.020	5.287	4.062	6.466	0.167	99.364	0.2622	0.3604	0.3774
k3	#92	57.382	0.002	26.762	0.000	0.116	0.000	0.000	9.000	6.479	0.421	0.000	100.161	0.4240	0.5524	0.0236
k3	#93	56.964	0.003	26.860	0.000	0.175	0.000	0.000	9.107	6.339	0.377	0.000	99.825	0.4331	0.5455	0.0214
k3	#120	57.482	0.007	26.978	0.000	0.315	0.000	0.028	8.834	6.305	0.193	0.001	100.142	0.4315	0.5573	0.0112
k3	#121	55.515	0.007	26.641	0.000	0.380	0.016	0.125	7.307	5.989	0.993	0.000	96.972	0.3781	0.5607	0.0612
k3	#136	56.931	0.010	27.562	0.000	0.431	0.030	0.010	9.498	6.134	0.235	0.000	100.843	0.4549	0.5317	0.0134
k3	#137	56.258	0.000	27.629	0.000	0.061	0.000	0.000	10.070	5.985	0.231	0.000	100.235	0.4755	0.5115	0.0130
k3	#138	64.428	0.000	18.513	0.000	0.000	0.000	0.000	0.115	1.002	15.614	0.489	100.161	0.0142	0.0876	0.8982
k3	#139	56.528	0.000	27.547	0.000	0.000	0.020	0.000	9.766	6.080	0.307	0.000	100.248	0.4621	0.5206	0.0173
k3	#140	64.155	0.007	18.546	0.000	0.039	0.000	0.008	0.155	1.257	15.397	0.422	99.986	0.0148	0.1087	0.8765
k3	#148	37.038	0.017	62.634	0.000	1.812	0.000	0.371	0.073	0.022	0.069	0.000	102.036	0.3759	0.2017	0.4224
k3	#149	36.970	0.038	63.402	0.000	0.282	0.003	0.022	0.008	0.000	0.014	0.000	100.740	0.3279	0.0000	0.6721
k3	#150	36.741	0.005	63.465	0.000	0.200	0.000	0.012	0.020	0.016	0.010	0.001	100.470	0.3292	0.4819	0.1889
k3	#151	63.402	0.013	18.688	0.000	0.126	0.019	0.003	0.235	1.457	14.847	0.537	99.327	0.0208	0.1271	0.8521
k3	#152	63.217	0.012	18.604	0.000	0.030	0.000	0.000	0.298	1.606	14.856	0.504	99.127	0.0229	0.1379	0.8393
k3	#153	55.759	0.018	27.805	0.000	0.226	0.012	0.032	10.031	5.820	0.225	0.000	99.928	0.4816	0.5056	0.0129

Tabella E2. Analisi alla microsonda: Granati (Restiti)

		SiO2	TiO2	Al2O3	V2O3	Cr2O3		Fe2O3	FeO	MnO	MgO	CaO	Na2O	Total	grossular	pyrope	almandine	spessartine	Fe/(Fe+Mg)	xAl
k3	#1	37.96678	0.033366	21.86487		0	0	0.316257	27.66434	0.466133	6.861946	4.888828	0.00674	100.0693	0.134274	0.262222	0.593048239	0.010120665	0.693404308	0.990849
k3	#2	37.56245	0.035035	21.85165		0	0	0.019782	27.47313	0.419649	6.531949	5.20225	0.005392	99.10128	0.144206	0.251924	0.594404289	0.009195797	0.702333152	0.999422
k3	#3	38.2449	0.045044	21.86865		0	0	0.328488	27.49896	0.432561	6.774058	5.198052	0	100.3907	0.142692	0.258728	0.589193437	0.009386823	0.694868121	0.9905
k3	#4	37.87051	0.043376	21.82897		0	0	0.370781	27.47634	0.395115	6.706068	5.294598	0.01348	99.99925	0.145426	0.256278	0.589047011	0.008579158	0.696828907	0.989271
k3	#5	37.82773	0.045044	21.82331		0	0	0.490277	27.14754	0.415775	6.850338	5.475095	0	100.0751	0.149904	0.260956	0.580141193	0.008998937	0.68974311	0.985859
k3	#6	38.24062	0.041708	21.87054		0	0	0.472985	27.12193	0.361543	6.774058	5.689174	0.008088	100.5806	0.155511	0.257629	0.578647771	0.007812388	0.691933167	0.98638
k3	#7	38.06305	0.031698	21.88377		0	0	0.325956	27.03296	0.348631	6.716018	5.73115	0	100.1332	0.15723	0.256354	0.578854932	0.007560876	0.693065773	0.990579
k3	#8	37.87265	0.048381	21.82331		0	0	0.397613	27.05081	0.405445	6.626471	5.73115	0.022915	99.97875	0.157335	0.253105	0.579623298	0.008798878	0.696053499	0.988501
k3	#9	38.10798	0.03003	21.7704		0	0	0.270879	26.81107	0.379621	6.611547	5.780122	0	99.76164	0.159647	0.254075	0.577989705	0.008288683	0.694645287	0.992118
k3	#10	37.95609	0.033366	21.91967		0	0	0.217572	27.09446	0.42094	6.792299	5.452708	0.00674	99.89384	0.149817	0.259657	0.581047792	0.00914284	0.691143342	0.993702
k3	#11	38.13793	0.033366	22.09161		0	0	0.188083	27.65103	0.439017	6.893454	5.128092	0	100.5626	0.139927	0.261708	0.58889588	0.009469746	0.692326985	0.994593
k3	#12	37.70578	0.026693	21.92723		0	0	0.280043	27.85774	0.436435	6.905062	4.77829	0	99.91727	0.131005	0.263402	0.596134355	0.009459042	0.693553731	0.991912
k3	#13	37.97106	0.035035	21.97446		0	0	0.060393	27.97819	0.450638	7.05099	4.316552	0	99.83733	0.118846	0.270105	0.601241565	0.009808146	0.690014595	0.998248
k3	#14	39.50496	0.008342	21.12609		0	0	1.311103	28.38371	0.418357	8.244949	2.206549	0.041787	101.2459	0.06089	0.316558	0.61133924	0.009126206	0.658843523	0.961885
k3	#32	38.50162	0.026693	22.00092		0	0	0	27.27608	0.404154	6.70441	5.300194	0.004044	100.2181	0.146234	0.257367	0.58738268	0.008814865	0.695333703	1
k3	#33	38.57649	0.031698	22.29945		0	0	0	27.07925	0.436435	6.802248	5.647198	0.010784	100.8836	0.154245	0.258503	0.577295067	0.009423453	0.690710848	1
k3	#34	38.53371	0.040039	22.23332		0	0	0.045852	26.94794	0.437726	6.921644	5.693371	0.016176	100.8698	0.154996	0.262177	0.572609766	0.009420308	0.685935137	0.998685
k3	#35	38.47381	0.03003	22.05382		0	0	0.123161	26.60435	0.373164	6.928277	5.817901	0	100.4045	0.159317	0.263972	0.568633029	0.008078103	0.682956841	0.996447
k3	#36	38.71769	0.056723	21.85732		0	0	0.238704	26.16719	0.386077	7.09908	5.708763	0	100.2315	0.1572	0.271988	0.562407884	0.008404226	0.674030407	0.993075
k3	#37	38.47167	0.045044	22.10295		0	0	0.358276	26.68997	0.413192	7.032749	5.880865	0.012132	101.0068	0.159605	0.265561	0.565373367	0.008864809	0.680406475	0.989757
k3	#38	38.6043	0.058391	22.03493		0	0	0.115926	26.1889	0.378329	6.924961	6.069758	0.018872	100.3944	0.166391	0.264126	0.560348496	0.008198621	0.679643335	0.996652
k3	#39	38.61286	0.055054	22.08216		0	0	0.152459	26.37601	0.349922	6.996267	5.953624	0.024263	100.6026	0.162688	0.265997	0.56255667	0.0075589	0.678962593	0.995611
k3	#40	38.57435	0.061728	22.08405		0	0	0.236342	26.43433	0.422231	7.001242	5.955023	0.01348	100.7828	0.162321	0.265522	0.562394521	0.009098142	0.679288965	0.993213
k3	#41	38.56794	0.051718	21.96879		0	0	0.18584	26.42702	0.396407	6.997925	5.752138	0.008088	100.3559	0.157837	0.267169	0.5659938	0.008598723	0.679331983	0.994628
k3	#42	38.67062	0.046713	22.01225		0	0	0.293548	26.40858	0.38995	7.022799	5.936833	0	100.7813	0.162082	0.266763	0.562739534	0.008415917	0.678406276	0.991557
k3	#43	38.69416	0.041708	22.05193		0	0	0	26.52735	0.346049	6.876871	5.815102	0	100.3532	0.159923	0.263136	0.569417491	0.007523223	0.683940963	1
k3	#44	38.73694	0.053386	21.77418		0	0	0.449378	26.29152	0.364126	6.978026	5.882264	0	100.5298	0.161601	0.266727	0.563764284	0.007907935	0.678832287	0.986994
k3	#45	38.66635	0.036703	22.01792		0	0	0.19592	26.45783	0.386077	7.032749	5.794114	0	100.5877	0.15859	0.267824	0.565231815	0.008353638	0.678503899	0.994351
k3	#46	38.61714	0.02002	22.06327		0	0	0.062307	26.76975	0.346049	7.077522	5.444313	0.005392	100.4058	0.149285	0.270017	0.572929394	0.00750108	0.679675013	0.9982
k3	#47	38.5551	0.050049	22.02737		0	0	0.046949	27.18881	0.369291	7.029432	5.100108	0	100.3671	0.140137	0.268738	0.583103988	0.008021471	0.684521539	0.998641
k3	#48	38.71127	0.025025	22.2371		0	0	0	27.6453	0.391242	7.09908	4.88463	0.00674	101.0004	0.133238	0.269422	0.588571684	0.008436315	0.685986255	1
k3	#49	38.67276	0.011678	22.21065		0	0	0	27.6646	0.339593	7.094105	4.445279	0.012132	100.4508	0.122802	0.272671	0.596504241	0.007416125	0.686287492	1
k3	#50	38.5551	0.026693	21.99147		0	0	0	27.92833	0.422231	7.225109	4.012924	0.002696	100.1646	0.110846	0.277676	0.602123991	0.009219787	0.684387581	1
k3	#52	38.62356	0.035035	22.16719		0	0	0	28.18306	0.446764	7.342846	3.586166	0.01348	100.3981	0.099127	0.282397	0.608039317	0.009762293	0.682855223	1
k3	#53	38.45027	0.040039	22.14262		0	0	0	27.06124	0.413192	6.994608	5.336574	0	100.4386	0.14614	0.266505	0.578410836	0.008944805	0.684578378	1

k3	#54	38.68132	0.023356	21.72883	0	0	0.632735	26.80323	0.408028	7.006216	5.454107	0.040439	100.7783	0.149353	0.266937	0.572874158	0.008832658	0.682146659	0.981747
k3	#55	38.85033	0.021688	21.42652	0	0	0.697431	26.41439	0.427396	7.117321	5.230234	0	100.1853	0.144931	0.274406	0.571300538	0.009362337	0.675530667	0.97964
k3	#60	38.54226	0.031698	21.88566	0	0	0.492191	27.34008	0.417066	7.196918	4.929405	0.009436	100.8447	0.134577	0.273374	0.582582538	0.009001034	0.680621831	0.985844
k3	#61	37.95609	0.028361	21.77985	0	0	0.285242	27.10433	0.480336	7.201893	4.656559	0.01348	99.50613	0.128505	0.276527	0.583816438	0.01047883	0.678585648	0.991707
k3	#62	38.38609	0.043376	22.01792	0	0	0.415119	27.58439	0.47388	7.344505	4.642567	0	100.9079	0.126273	0.27794	0.585597711	0.010189062	0.67813798	0.988105
k3	#63	38.62998	0.051718	21.85543	0	0	0.47454	27.41257	0.446764	7.314656	4.624378	0.005392	100.8154	0.126486	0.278366	0.585221201	0.009660033	0.677662823	0.986326
k3	#64	38.48664	0.025025	22.13129	0	0	0.121679	27.63359	0.401571	7.32958	4.560014	0	100.6894	0.124441	0.278299	0.588596552	0.008663093	0.678970334	0.996502
k3	#65	38.38609	0.023356	21.931	0	0	0.231903	27.32085	0.382203	7.432393	4.452275	0.005392	100.1655	0.122216	0.283863	0.585359175	0.008293772	0.673428389	0.993294
k3	#66	38.6257	0.051718	22.0576	0	0	0.430105	27.86037	0.371873	7.556764	4.271778	0.012132	101.238	0.115932	0.285342	0.59015221	0.007978144	0.674078979	0.987703
k3	#67	38.58719	0.031698	22.24466	0	0	0	27.95792	0.398989	7.475509	3.919178	0.02022	100.6354	0.107393	0.285008	0.597954251	0.008642786	0.677214165	1
k3	#68	38.63426	0.031698	21.86298	0	0	0.268472	28.3017	0.418357	7.551789	3.428056	0	100.4973	0.094292	0.289008	0.607603494	0.009096723	0.677666246	0.992221
k3	#69	38.34544	0.005005	21.9669	0	0	0	28.28983	0.426105	7.54184	3.225171	0.004044	99.80435	0.089233	0.290325	0.610920393	0.009319666	0.677862613	1
k3	#70	38.9359	0.031698	22.54319	0	0	0	26.94031	0.415775	7.2334	3.139819	0.02022	99.26031	0.090755	0.2909	0.607787009	0.00950029	0.676305466	1
k3	#77	38.5059	0.038371	21.75528	0	0	0.024664	30.84962	0.542315	6.624813	2.147782	0.026959	100.5157	0.059791	0.2566	0.670316293	0.011934698	0.723168329	0.999277
k3	#78	38.65137	0.018351	22.08405	0	0	0	29.77573	0.512617	6.838731	3.016689	0.004044	100.9016	0.083369	0.262957	0.642272541	0.011199011	0.709513308	1
k3	#79	38.61714	0.02002	21.77229	0	0	0.371772	29.60587	0.502287	7.183652	2.805409	0.005392	100.8838	0.077252	0.275229	0.636316947	0.010933958	0.698063836	0.989215
k3	#80	38.59147	0.018351	22.10484	0	0	0.272263	29.06117	0.49454	6.89677	4.067493	0.012132	101.519	0.110653	0.261047	0.61706774	0.010635322	0.702719135	0.992197
k3	#81	38.59575	0.008342	22.00092	0	0	0.006619	29.72732	0.47388	7.188627	2.728453	0	100.7299	0.075148	0.275476	0.639058393	0.010317704	0.698780262	0.999808
k3	#82	83.05327	0.070069	7.935747	0	0	0	2.526659	0.024533	0.981699	0.139921	0.040439	94.77234	0.039188	0.382549	0.552335627	0.00543178	0.590805952	1
k3	#83	38.64709	0.040039	22.15585	0	0	0	27.68004	0.433852	7.225109	4.445279	0.012132	100.6394	0.121897	0.275659	0.592437292	0.009404747	0.682455505	1
k3	#84	38.70271	0.050049	22.36936	0	0	0	27.41888	0.418357	7.016166	5.182661	0	101.1582	0.141308	0.266165	0.583509494	0.009017276	0.686744922	1
k3	#85	38.9359	0.051718	22.52241	0	0	0	27.24392	0.451929	7.100738	5.058132	0.010784	101.3755	0.13828	0.27009	0.581329389	0.009766813	0.682776669	1
k3	#86	36.43288	0.036703	22.19175	0	0	0	26.88113	0.396407	6.594964	4.725121	0.016176	97.27513	0.134142	0.260495	0.595636516	0.008896196	0.69573047	1
k3	#87	38.74336	0.026693	22.20498	0	0	0.173589	27.7181	0.442891	7.347821	4.558615	0.029655	101.2457	0.123807	0.277656	0.587570243	0.009508732	0.679094139	0.995033
k3	#88	38.49734	0.03003	22.23899	0	0	0	27.25807	0.529403	6.898428	5.36036	0	100.8126	0.146249	0.261869	0.580464646	0.011418174	0.689115234	1
k3	#89	38.80112	0.036703	22.25221	0	0	0	26.60582	0.414484	6.795615	6.020786	0.010784	100.9375	0.16455	0.25841	0.567551179	0.008954999	0.687140083	1
k3	#90	37.22871	0.043376	23.25363	0	0	0	26.83353	0.409319	6.442403	6.086548	0.035047	100.3326	0.167299	0.24638	0.575683179	0.008894	0.700290351	1
k3	#91	38.74336	0.036703	22.08594	0	0	0.187525	27.18968	0.446764	6.780691	5.629008	0	101.0997	0.153636	0.257497	0.579227503	0.009639474	0.692256232	0.994608
k3	#95	38.34117	0.031698	21.99903	0	0	0.10207	29.77908	0.45322	7.123954	2.889362	0.001348	100.7209	0.079367	0.272267	0.638457806	0.009841475	0.701043824	0.997046
k3	#96	38.24917	0.043376	21.91211	0	0	0.223185	27.39688	0.377038	6.215219	6.050169	0.005392	100.4725	0.166262	0.237639	0.587639145	0.008190768	0.712049399	0.993539
k3	#97	38.33475	0.055054	21.83653	0	0	0.382739	26.75287	0.33701	6.386021	6.399971	0	100.4849	0.175666	0.243879	0.573142338	0.007312482	0.70150198	0.988933
k3	#98	38.49092	0.045044	21.86676	0	0	0.372162	26.44848	0.35767	6.372755	6.678413	0	100.6322	0.183114	0.243114	0.566019481	0.007752514	0.699537632	0.98925
k3	#99	38.45669	0.068401	21.63058	0	0	0.731694	26.03749	0.331845	6.585014	6.703599	0.005392	100.5507	0.183859	0.251287	0.557390984	0.007194922	0.689261941	0.978859
k3	#100	38.25559	0.058391	22.08027	0	0	0.301804	26.41402	0.318933	6.611547	6.667219	0.008088	100.7159	0.181423	0.250315	0.561003231	0.006860567	0.691471434	0.991348
k3	#101	38.31763	0.068401	22.1105	0	0	0.168276	26.30517	0.293108	6.56014	6.767962	0	100.5912	0.184621	0.248984	0.560075113	0.00632067	0.6922552	0.995164
k3	#102	38.36684	0.048381	21.79118	0	0	0.513347	26.08987	0.32668	6.648029	6.623844	0	100.4082	0.181498	0.253449	0.557977264	0.007076153	0.687650305	0.985182
k3	#103	38.20639	0.075074	21.69293	0	0	0.471132	26.19347	0.343466	6.440744	6.59446	0.009436	100.0271	0.181721	0.246944	0.563381916	0.007482102	0.695253497	0.986323

k3	#104	38.31335	0.058391	21.94234	0	0	0.249563	26.43916	0.356379	6.551849	6.40137	0.017524	100.3299	0.175539	0.249977	0.565888941	0.00772547	0.6936053	0.99279
k3	#105	38.25987	0.076742	21.97824	0	0	0.368128	26.78403	0.312477	6.621496	6.261449	0.01348	100.6759	0.170839	0.251365	0.570390203	0.006739749	0.694112024	0.989419
k3	#106	38.34758	0.038371	21.85165	0	0	0.470359	26.68175	0.395115	6.777374	5.97741	0.002696	100.5423	0.163541	0.257995	0.569784962	0.008545753	0.688329266	0.986443
k3	#107	38.63853	0.051718	21.84031	0	0	0.375596	26.70526	0.343466	6.886821	5.733948	0	100.5757	0.15739	0.263014	0.572142717	0.007452832	0.685072298	0.989139
k3	#108	38.36256	0.068401	21.54933	0	0	0.480044	26.63444	0.396407	6.782349	5.522668	0	99.7962	0.153147	0.261682	0.576481156	0.008689847	0.687790872	0.985976
k3	#109	38.54226	0.051718	21.97824	0	0	0.236181	26.93106	0.387368	6.994608	5.451309	0.001348	100.5741	0.149302	0.26654	0.575704757	0.008386869	0.683536169	0.993185
k3	#110	39.08565	0.053386	21.4303	0	0	0.794609	26.70774	0.333136	7.064256	5.258218	0	100.7273	0.14527	0.271543	0.575912131	0.007275635	0.679578618	0.976873
k3	#112	38.76903	0.051718	21.60602	0	0	0	26.66114	0.267284	6.679536	5.198052	0	99.23278	0.146373	0.261699	0.585978448	0.005949842	0.691275416	1
k3	#113	38.4139	0.058391	21.75151	0	0	0.401902	26.86299	0.408028	6.921644	5.392542	0	100.2109	0.148504	0.265209	0.577404898	0.008882709	0.68525455	0.98834
k3	#114	37.82131	0.041708	22.09728	0	0	0	26.99691	0.380912	6.812198	5.168669	0	99.31899	0.143496	0.263139	0.585004768	0.008359869	0.689747239	1
k3	#115	38.23634	0.045044	21.81953	0	0	0.338281	27.07333	0.369291	6.903403	5.329578	0	100.1148	0.146587	0.264181	0.581202453	0.008029417	0.687501552	0.990198
k3	#116	38.51017	0.03003	22.24277	0	0	0	27.78424	0.343466	6.813856	5.174266	0	100.8988	0.141326	0.258941	0.592317005	0.007415995	0.695813573	1
k3	#117	38.29624	0.035035	21.69293	0	0	0.621346	27.5635	0.349922	7.052648	4.824464	0.010784	100.4469	0.132369	0.269231	0.590275047	0.007589647	0.686760874	0.98204
k3	#118	38.2342	0.01001	21.96879	0	0	0.176538	28.49506	0.38995	7.326264	3.691107	0	100.2919	0.10131	0.279779	0.61044953	0.008460954	0.685722173	0.994895
k3	#119	40.0291	0.011678	21.62869	0	0	0	27.9695	0.322807	7.939826	1.427191	0.377431	99.70622	0.040496	0.313453	0.619431602	0.007240705	0.66399607	1
k3	#122	38.43316	0.026693	21.91022	0	0	0.374142	28.79711	0.464842	7.730883	2.87397	0.039091	100.6501	0.078642	0.29433	0.615037708	0.010055125	0.676335577	0.989215
k3	#123	38.44385	0.036703	21.94045	0	0	0.162491	28.20923	0.375747	7.376012	3.794648	0	100.3391	0.104329	0.282156	0.605349148	0.008166572	0.682079825	0.995294
k3	#124	38.65993	0.040039	21.93289	0	0	0.388006	28.53892	0.358961	7.573347	3.493819	0.004044	100.99	0.095467	0.287922	0.608656993	0.007753755	0.678865665	0.988831
k3	#125	38.67704	0.036703	22.11239	0	0	0.25627	29.11673	0.35767	7.780631	2.920144	0	101.2576	0.07945	0.294536	0.618321099	0.007692781	0.67734686	0.992655
k3	#126	38.3048	0.056723	21.80063	0	0	0.579718	28.52594	0.458385	7.639678	3.311922	0.00674	100.6845	0.090537	0.290573	0.608650634	0.00990578	0.676862113	0.983305
k3	#127	38.33689	0.061728	21.99714	0	0	0.181627	28.49177	0.437726	7.410836	3.590364	0	100.5081	0.098404	0.282605	0.609507006	0.009483992	0.68321841	0.994756
k3	#128	38.49734	0.156821	21.76095	0	0	0.446641	28.62767	0.42094	7.498724	3.19159	0.040439	100.6411	0.087741	0.286825	0.614274831	0.009148007	0.681694713	0.987065
k3	#129	38.38181	0.326989	21.91778	0	0	0.193176	28.98825	0.387368	7.657919	2.75084	0.016176	100.6203	0.075641	0.29298	0.622153222	0.008420324	0.679849536	0.994404
k3	#130	38.65351	0.093425	21.72316	0	0	0.457969	28.44509	0.426105	7.261591	3.682712	0	100.7436	0.101383	0.27814	0.61120422	0.009273105	0.687252734	0.986718
k3	#131	38.45241	0.068401	21.67971	0	0	0.559461	27.85203	0.382203	7.031091	4.536228	0	100.5615	0.124759	0.26905	0.597881554	0.008309638	0.689652315	0.98379
k3	#132	38.32833	0.033366	22.1464	0	0	0.264856	27.92029	0.42094	7.009533	4.941998	0	101.0657	0.134221	0.264877	0.591864268	0.009037576	0.690832197	0.992422
k3	#133	38.48236	0.03003	21.72694	0	0	0.360366	27.60278	0.446764	6.888479	4.719524	0.014828	100.2721	0.130272	0.264552	0.594686732	0.009748631	0.692108749	0.989521
k3	#134	38.49948	0.025025	22.04437	0	0	0.110384	28.85691	0.429978	7.385962	3.344104	0.002696	100.6989	0.091648	0.281634	0.617269466	0.009315397	0.686691854	0.996813
k3	#157	38.2235	0.051718	21.98391	0	0	0.18125	26.43887	0.375747	6.851997	5.996999	0	100.104	0.164466	0.261453	0.565935351	0.008146087	0.684002096	0.994763
k3	#158	38.2449	0.051718	21.97635	0	0	0.382053	25.92756	0.322807	7.15712	6.212477	0	100.275	0.16945	0.271613	0.551977011	0.006960357	0.670208686	0.989022
k3	#159	38.16788	0.066732	21.89133	0	0	0.511268	25.69422	0.335719	7.011191	6.583267	0	100.2616	0.179584	0.266105	0.547071562	0.007239594	0.672758646	0.985307
k3	#160	38.61286	0.056723	22.33157	0	0	0.233197	26.33167	0.361543	6.99295	6.521702	0.001348	101.4436	0.175825	0.262311	0.554092246	0.007705378	0.678699108	0.993377
k3	#161	37.91116	0.045044	21.82331	0	0	0.346787	25.7972	0.375747	7.085814	6.059964	0.012132	99.45715	0.166606	0.271048	0.553575482	0.008166378	0.671306751	0.989956
k3	#162	37.99887	0.050049	21.97257	0	0	0.231519	25.93308	0.386077	7.027774	6.173299	0	99.77324	0.169142	0.267908	0.554587663	0.00836218	0.674273869	0.993317
k3	#163	38.10584	0.051718	21.85543	0	0	0.573779	26.18087	0.378329	7.024457	6.157908	0	100.3283	0.16795	0.26656	0.557332429	0.008156992	0.67646232	0.983514
k3	#164	38.18927	0.043376	22.01414	0	0	0.309086	26.09742	0.380912	6.876871	6.397172	0.00674	100.315	0.174557	0.261081	0.555813332	0.008216475	0.680398329	0.991115
k3	#165	37.88335	0.048381	22.08594	0	0	0.459097	25.97788	0.418357	6.971393	6.569275	0.026959	100.4406	0.177911	0.262687	0.549124362	0.008956621	0.676418404	0.986902

k3	#166	38.07375	0.050049	22.01225	0	0	0.408653	26.34489	0.415775	6.779033	6.426556	0	100.511	0.174873	0.256654	0.55952998	0.008943654	0.685544339	0.988285
k3	#167	38.02027	0.061728	22.0028	0	0	0.308898	26.3729	0.384785	6.719335	6.391576	0	100.2623	0.174494	0.255231	0.561970215	0.008304316	0.687676274	0.991116
k3	#168	37.93469	0.055054	22.12184	0	0	0	27.62472	0.408028	5.989693	6.192888	0.001348	100.3283	0.170073	0.228866	0.592136428	0.008858152	0.721236024	1
k3	#169	36.94846	0.03003	22.15585	0	0	0	31.28606	0.969711	3.409416	5.833292	0	100.6328	0.16311	0.132643	0.682812225	0.021434952	0.837339156	1
k3	#171	23.26527	0.045044	45.30367	0	0	0	23.90034	0.144617	5.999643	0.023787	0.161756	98.84413	0.000867	0.304289	0.680006316	0.004167341	0.690855735	1
k3	#173	38.093	0.033366	21.74584	0	0	0.254042	30.0836	1.721205	6.404262	2.395442	0	100.7308	0.066269	0.246506	0.649583959	0.037641576	0.724909478	0.992596
k3	#174	38.26201	0.035035	22.11428	0	0	0.027322	30.63882	1.718622	6.432453	2.289102	0.002696	101.5203	0.062687	0.245088	0.654885944	0.037205223	0.727671746	0.999212
k3	#175	38.21922	0.02002	21.62113	0	0	0.595747	30.14407	1.737991	6.439086	2.396841	0.024263	101.1984	0.066026	0.246793	0.648124371	0.0378472	0.724227953	0.982711
k3	#176	38.24917	0.035035	21.80819	0	0	0.416546	30.58191	1.749612	6.364464	2.289102	0.01348	101.5075	0.06285	0.24313	0.655374614	0.037974889	0.729405564	0.987952
k3	#177	37.95181	0.033366	21.90266	0	0	0.238546	30.48606	1.79997	6.331298	2.294699	0.037743	101.0762	0.063059	0.242074	0.653888717	0.039101863	0.72981703	0.993094
k3	#178	38.39251	0.025025	21.74584	0	0	0.353928	30.12366	1.750903	6.475568	2.319884	0.014828	101.2021	0.063992	0.248527	0.648560884	0.038179912	0.722962525	0.989715
k3	#179	38.11654	0.028361	21.57768	0	0	0.465718	30.0488	1.714749	6.475568	2.266715	0.004044	100.6982	0.062802	0.249627	0.649811594	0.037556975	0.722463899	0.986407
k3	#180	38.2834	0.03003	22.05571	0	0	0.197561	30.68504	1.781893	6.462302	2.20515	0.024263	101.7254	0.060251	0.245669	0.654391912	0.038487748	0.727052604	0.994313
k3	#181	38.00101	0.038371	22.01225	0	0	0	30.44598	1.703128	6.371097	2.233134	0	100.805	0.061676	0.244822	0.656317494	0.037184412	0.728319412	1
k3	#182	38.09728	0.023356	22.00847	0	0	0.129245	30.52009	1.743156	6.342906	2.375853	0.026959	101.2673	0.065182	0.242122	0.653551077	0.037805909	0.729675774	0.996264
k3	#183	38.19355	0.033366	21.88188	0	0	0.118961	30.14726	1.792222	6.427478	2.339473	0	100.9342	0.064574	0.246838	0.649482268	0.039105798	0.724609298	0.996541
k3	#184	38.26201	0.035035	21.95746	0	0	0.461081	30.75282	1.747029	6.477226	2.308691	0.005392	102.0067	0.062882	0.245462	0.653774191	0.037616018	0.727032684	0.98677
k3	#185	38.12723	0.025025	21.8422	0	0	0.251337	29.88534	1.807717	6.624813	2.331078	0	100.8947	0.064211	0.253898	0.642527548	0.039363501	0.716766025	0.992707
k3	#187	38.06947	0.031698	21.9858	0	0	0.277849	30.32977	1.737991	6.583356	2.361861	0	101.3778	0.064587	0.250482	0.647359575	0.037571084	0.721017658	0.991996
k3	#188	38.33689	0.041708	22.0935	0	0	0	30.23114	1.743156	6.447377	2.417829	0.037743	101.3493	0.066368	0.246236	0.647695605	0.037825296	0.724546929	1
k3	#189	38.14649	0.153485	22.14829	0	0	0	30.15009	1.650187	6.500442	2.277908	0.041787	101.0687	0.062865	0.249603	0.649444751	0.036001167	0.72236995	1
k3	#190	38.10584	0.011678	22.07271	0	0	0.112129	30.42485	1.681177	6.541899	2.359062	0	101.3094	0.064566	0.249117	0.649943181	0.036373916	0.722914015	0.996767
k3	#191	38.72197	0.02002	21.89133	0	0	0.15305	30.01238	1.665682	6.626471	2.287703	0.017524	101.3961	0.063055	0.254119	0.645658684	0.036293135	0.717575634	0.995556
k3	#192	38.51659	0.03003	22.08027	0	0	0.008094	30.02574	1.809008	6.676219	2.261118	0.01348	101.4206	0.06205	0.25491	0.643126863	0.039243998	0.716147872	0.999766
k3	#193	38.15504	0.036703	22.10484	0	0	0.191758	30.39437	1.756068	6.742551	2.181363	0	101.5627	0.05948	0.255799	0.646868495	0.037852446	0.716618426	0.994492
k3	#194	38.16574	0.035035	21.99714	0	0	0.295266	30.16615	1.771563	6.797274	2.136588	0.036395	101.4011	0.058368	0.258359	0.643215569	0.03825806	0.713435617	0.991502
k3	#196	38.40535	0.016683	21.98769	0	0	0.117589	30.17422	1.696672	6.737576	2.072225	0.035047	101.243	0.056925	0.257517	0.646971391	0.03684483	0.715290195	0.996597
k3	#197	38.43744	0.023356	21.91967	0	0	0.197504	30.02512	1.71604	6.876871	2.014857	0	101.2109	0.055392	0.263043	0.644270852	0.037294162	0.71008581	0.99428
k3	#198	38.25987	0.035035	21.98391	0	0	0.036444	30.24981	1.659226	6.636421	2.101608	0.029655	100.992	0.057878	0.254291	0.650230378	0.036122677	0.718866735	0.998943
k3	#199	38.2235	0.013346	22.05571	0	0	0.10308	30.14868	1.809008	6.803907	2.047039	0.01348	101.2178	0.056084	0.259361	0.644706836	0.039179985	0.713117677	0.997025
k3	#200	38.32405	0.023356	22.08405	0	0	0	30.1784	1.643731	6.797274	2.084818	0.004044	101.1397	0.057269	0.259791	0.647043857	0.03569424	0.713518587	1
k3	#201	38.32619	0.018351	22.10106	0	0	0	30.12179	1.694089	6.790641	2.119798	0.025611	101.1975	0.058134	0.259108	0.644760321	0.036726837	0.713334352	1
k3	#202	38.57008	0.031698	22.0028	0	0	0.261773	30.12296	1.655352	6.878529	2.184161	0.002696	101.71	0.05971	0.261633	0.642749945	0.035773763	0.710705489	0.992461
k3	#203	38.37967	0.011678	22.1653	0	0	0.115216	30.23296	1.655352	6.812198	2.255521	0.029655	101.6576	0.06147	0.258307	0.643097957	0.035662899	0.713439517	0.996692
k3	#204	38.25131	0.035035	22.15963	0	0	0	29.98285	1.717331	6.815515	2.270912	0	101.2326	0.062194	0.259706	0.640919659	0.037180437	0.711638281	1
k3	#205	38.41604	0.025025	22.15963	0	0	0	29.78473	1.615324	6.812198	2.378651	0.01348	101.2051	0.065337	0.260348	0.638569151	0.035075489	0.710376058	1
k3	#206	38.2449	0.031698	21.92912	0	0	0.390343	29.69594	1.753486	6.827123	2.447212	0.045831	101.3656	0.066876	0.259579	0.633398375	0.037880162	0.709310386	0.988763

k3	#207	38.43102	0.038371	22.25788	0	0	0	29.6072	1.571423	6.626471	2.596927	0.010784	101.1401	0.071763	0.254777	0.638591872	0.034328028	0.714812854	1
k3	#208	38.38395	0.023356	22.32401	0	0	0	29.92882	1.580461	6.840389	2.554951	0.021567	101.6575	0.069578	0.259182	0.636152914	0.034024014	0.710519275	1
k3	#210	38.30908	0.025025	22.20687	0	0	0.06233	29.73251	1.576588	6.76245	2.8222	0.012132	101.5092	0.076886	0.256331	0.632230771	0.033954079	0.71152165	0.998211
k3	#212	38.49092	0.021688	22.16719	0	0	0	29.03728	1.510735	6.603255	3.181796	0	101.0129	0.087828	0.253603	0.625603668	0.032965628	0.711554935	1
k3	#213	38.4246	0.025025	22.14451	0	0	0.163353	29.26338	1.471998	6.737576	3.328712	0.001348	101.5605	0.090677	0.255363	0.622195111	0.031698534	0.709007114	0.995312
k3	#214	38.45241	0.036703	22.21065	0	0	0.13772	29.01242	1.583044	6.611547	3.696704	0	101.7412	0.100476	0.250027	0.61548263	0.034013748	0.711121378	0.996057
k3	#215	38.24062	0.035035	22.13696	0	0	0.256787	28.70716	1.517191	6.581698	4.00313	0.016176	101.4948	0.108794	0.248872	0.608943041	0.032595409	0.709876451	0.992648
k3	#216	38.45669	0.045044	21.90455	0	0	0.320854	28.45011	1.363535	6.410895	4.239596	0.02022	101.2115	0.116218	0.244514	0.608717427	0.029547986	0.713426263	0.990734
k3	#217	38.35186	0.025025	22.26355	0	0	0	28.3027	1.435844	6.409237	4.453674	0.00674	101.2486	0.121655	0.243586	0.6034216	0.031004873	0.712416007	1
k3	#218	38.64067	0.035035	22.11617	0	0	0.2014	28.2617	1.447465	6.432453	4.55022	0	101.6851	0.123974	0.243843	0.601007021	0.0311759	0.711377133	0.994219
k3	#219	38.42246	0.036703	22.10861	0	0	0.127616	27.9846	1.351914	6.420845	4.72652	0.022915	101.2022	0.129095	0.244003	0.596580407	0.029189636	0.709722128	0.996328
k3	#220	38.62784	0.053386	22.13507	0	0	0.100633	28.01274	1.469416	6.269942	4.873436	0.002696	101.5452	0.133052	0.238169	0.596932133	0.03171347	0.714802128	0.997106
k3	#221	38.48664	0.038371	22.08783	0	0	0.186219	27.58581	1.398398	6.429136	5.041341	0.009436	101.2632	0.13759	0.244135	0.587638316	0.030170676	0.70648875	0.994646
k3	#223	38.57649	0.038371	22.1823	0	0	0.05187	27.35934	1.262819	6.294816	5.524067	0.010784	101.3009	0.150706	0.238941	0.5825861	0.02723488	0.709150498	0.998509
k3	#224	38.51017	0.045044	22.273	0	0	0.264077	27.39997	1.235704	6.374413	5.768929	0.014828	101.8861	0.1558	0.239523	0.577570593	0.02638148	0.70685949	0.992487
k3	#225	38.43744	0.050049	22.25221	0	0	0	26.97247	1.176307	6.321348	5.87247	0.00674	101.089	0.160178	0.239898	0.574228247	0.025363802	0.705330973	1
k3	#226	38.47167	0.053386	22.17852	0	0	0.092517	26.81203	1.116911	6.410895	5.927039	0.018872	101.0818	0.161539	0.243104	0.570362489	0.024064091	0.701150413	0.997344
k3	#227	38.28554	0.043376	22.3807	0	0	0.051305	27.03051	1.025234	6.563457	5.941031	0	101.3212	0.160649	0.246937	0.570498453	0.021915575	0.697912923	0.998538
k3	#228	38.39679	0.050049	22.38826	0	0	0.014736	26.96307	0.921936	6.606572	5.984406	0.002696	101.3285	0.161936	0.248734	0.569476309	0.019721351	0.696002434	0.99958
k3	#229	38.42674	0.060059	22.19175	0	0	0.211986	26.81389	0.923227	6.740892	5.78432	0.009436	101.1623	0.157017	0.254593	0.568115234	0.019811387	0.69054271	0.993938
k3	#230	38.51231	0.038371	22.3089	0	0	0.168458	26.76429	0.84188	6.928277	5.742344	0.026959	101.3318	0.155256	0.260627	0.564803961	0.017993756	0.684253182	0.995202
k3	#231	38.53157	0.053386	22.60554	0	0	0	26.98019	0.840588	7.046015	5.48489	0	101.5422	0.148195	0.264877	0.568974481	0.017953988	0.682345288	1
k3	#232	38.43102	0.026693	22.52241	0	0	0	26.83224	0.765697	6.966418	5.154677	0.017524	100.7167	0.141505	0.266083	0.574925088	0.01661656	0.683614621	1
k3	#233	38.04808	0.026693	21.75717	0	0	0.475764	28.92952	1.552054	7.488775	2.165972	0.004044	100.4481	0.059505	0.286252	0.620334832	0.033707115	0.684253213	0.98623
k3	#234	38.02027	0.035035	22.10861	0	0	0.257387	29.14017	1.5159	7.591588	2.214944	0.016176	100.9001	0.060271	0.28742	0.618903976	0.032608549	0.682873081	0.992622
k3	#235	38.1144	0.028361	21.75717	0	0	0.272068	28.73715	1.491367	7.414152	2.228936	0.017524	100.0611	0.061598	0.28508	0.619864247	0.032581193	0.684974996	0.992079
k3	#236	38.24704	0.025025	22.14262	0	0	0.290401	29.26355	1.557219	7.477167	2.360461	0.002696	101.3662	0.064073	0.282389	0.6199911	0.033414722	0.687061916	0.991696
k3	#237	38.3048	0.026693	21.99147	0	0	0.198005	28.82953	1.524938	7.392595	2.454208	0.025611	100.7478	0.06725	0.281848	0.616598984	0.03303295	0.686294336	0.994284
k3	#238	38.26629	0.031698	22.11428	0	0	0	28.70151	1.508153	7.326264	2.543758	0.039091	100.531	0.069879	0.280021	0.615404607	0.032751487	0.687275837	1
k3	#239	38.31335	0.025025	21.91022	0	0	0.231724	28.77217	1.537851	7.306364	2.519971	0.02022	100.6369	0.069239	0.279314	0.61703822	0.03340284	0.688387805	0.993293
k3	#240	38.15504	0.008342	22.17286	0	0	0	29.04757	1.487493	7.376012	2.395442	0.001348	100.6441	0.065613	0.281101	0.621009946	0.03220871	0.688396191	1
k3	#241	38.71983	0.028361	21.90455	0	0	0.463201	28.53043	1.537851	7.581638	2.547955	0.026959	101.3408	0.06956	0.287982	0.607936964	0.033188994	0.67856223	0.986678
k3	#242	38.14007	0.028361	20.25883	0	0	1.694381	26.78451	1.455212	7.706009	2.387046	0.025611	98.48003	0.067792	0.304497	0.593724087	0.032670597	0.660999927	0.949306
k3	#243	38.46311	0.033366	22.1823	0	0	0.134567	28.94707	1.537851	7.54184	2.392643	0.025611	101.2584	0.065121	0.285597	0.614933455	0.033087762	0.682857092	0.996142
k3	#244	38.50803	0.031698	22.08405	0	0	0.156504	28.87845	1.469416	7.661235	2.241529	0	101.0309	0.061239	0.29122	0.615805329	0.031735404	0.678928598	0.995496
k3	#245	38.59147	0.03003	22.18041	0	0	0.230541	29.11415	1.430679	7.775657	2.165972	0	101.5189	0.058794	0.293668	0.616837664	0.030700021	0.677467269	0.993407
k3	#247	38.33261	0.005005	22.0746	0	0	0.316268	28.86077	1.567549	7.876811	2.013458	0.009436	101.0565	0.05478	0.29817	0.612871157	0.033714148	0.67271492	0.990935

k3	#248	38.65137	0.026693	22.11806	0	0	0.087016	28.92811	1.382904	7.885103	1.888929	0.029655	100.9978	0.05163	0.29987	0.617152424	0.029880925	0.67299636	0.997494
k3	#249	38.55724	0.021688	22.23899	0	0	0	28.72853	1.38936	7.853595	1.918312	0.036395	100.7441	0.052654	0.299925	0.615467248	0.030146441	0.67235356	1
k3	#250	38.39679	0.028361	22.32212	0	0	0.048031	28.79723	1.308012	7.987916	2.244327	0.00674	101.1395	0.060853	0.301345	0.609435819	0.028036181	0.669135905	0.998628
k3	#251	38.47167	0.028361	22.27489	0	0	0.175839	28.58317	1.339002	7.671185	2.840389	0.031003	101.4155	0.076896	0.288952	0.603977016	0.028656356	0.676400134	0.994985
k3	#252	38.75406	0.018351	22.32968	0	0	0	27.80483	1.156939	7.516965	3.66732	0.028307	101.2765	0.099672	0.28425	0.589828948	0.024856847	0.67480029	1
k3	#253	38.73053	0.041708	22.27867	0	0	0	27.35199	1.136279	7.29144	4.340339	0	101.1709	0.118162	0.276186	0.581198482	0.024454031	0.6778739	1
k3	#255	38.61928	0.026693	22.30512	0	0	0.133382	26.96438	0.920644	6.958126	5.470898	0.009436	101.408	0.14809	0.262056	0.569691645	0.019700224	0.684933176	0.996196
k3	#256	38.6043	0.040039	22.25977	0	0	0.371712	27.07927	0.861248	7.054306	5.487688	0	101.7583	0.147839	0.264417	0.569402365	0.018341734	0.682884613	0.989451

Tabella E3. Analisi alla microsonda: Rutilo (Restiti)

	SiO2	ZrO2	Nb2O3	TiO2	Total		SiO2	ZrO2	Nb2O3	TiO2	Total
#1	29.259	0.005	0.018	70.714	99.999	#23	0.053	0.203	0.263	99.479	100
#2	0.088	0.22	0.259	99.43	100	#24	0.056	0.212	0.259	99.471	100
#3	0.073	0.22	0.273	99.434	100.001	#25	0.053	0.178	0.23	99.534	99.999
#4	0.09	0.209	0.266	99.432	100	#26	1.256	0.219	0.264	98.258	99.999
#5	15.379	0.142	0.167	84.308	100	#27	0.913	0.196	0.262	98.628	100.001
#6	40.85	0.15	0.224	58.774	100.001	#28	0.043	0.213	0.245	99.496	99.999
#7	0.083	0.212	0.284	99.417	99.999	#29	0.105	0.242	0.315	99.337	100
#8	1.299	0.232	0.302	98.166	100.001	#30	10.885	0.154	0.184	88.774	99.999
#9	0.105	0.219	0.258	99.419	100.002	#31	30.635	0.012	0.033	69.318	100
#10	8.801	0.173	0.233	90.79	100	#32	33.844	0	0	66.154	100
#11	29.349	0.096	0.146	70.405	100	#33	34.244	0	0	65.753	100
#12	0.062	0.22	0.237	99.479	100	#34	33.187	0	0	66.811	100
#13	81.325	0.027	0.062	18.583	100	#35	32.076	0.019	0.029	67.873	100
#14	0.075	0.205	0.164	99.554	100	#36	84.093	0.034	0.058	15.811	100
#15	0.071	0.219	0.22	99.487	99.999	#37	93.32	0	0.014	6.662	100
#16	45.64	0.019	0.024	54.314	100	#38	11.971	0.328	0.697	86.999	99.999
#17	22.077	0.104	0.157	77.658	100	#39	0.047	0.267	1.062	98.621	100
#18	0.041	0.216	0.297	99.442	99.999	#40	0.368	0.15	0.291	99.189	100
#19	29.075	0.027	0.044	70.852	100.001	#41	0.026	0.239	0.346	99.387	100
#20	33.178	0	0	66.817	99.999	#42	0.186	0.211	0.308	99.292	100
#21	32.147	0	0.006	67.845	100.001	#43	2.325	0.158	0.651	96.863	100
#22	34.603	0	0	65.393	99.999	#44	24.467	0.061	0.125	75.344	100

Tabella E4. Analisi alla microsonda: Biotite (Restiti)

SiO2 TiO2 Al2O3 Cr2O3 FeO Fe2O3 MnO MgO NiO CaO Na2O K2O BaO F-Cl-H2O Total Total_corr. xAl k3_bt #1 35.853 6.837 15.431 0.000 16.719 0.000 0.030 10.943 0.000 0.052 0.101 9.797 0.304 0.000 0.000 3.983 100.049 100.049269 0.0342 k3_bt #2 35.823 7.764 15.138 0.000 17.420 0.000 0.070 10.021 0.000 0.018 0.069 9.858 0.317 0.000 0.000 3.984 100.483 100.4832037 0.0195 k3_bt #3 35.419 7.654 15.089 0.000 16.247 0.000 0.023 10.431 0.000 0.000 0.078 9.997 0.384 0.000 0.000 3.947 99.269 99.26897795 0.0210 k3_bt #4 35.988 7.494 14.953 0.000 16.732 0.000 0.068 10.683 0.000 0.000 0.075 9.919 0.368 0.000 0.000 3.985 100.266 100.2661132 0.0168 #5 0.0091 k3_bt 35.534 7.441 14.810 0.000 16.423 0.000 0.009 11.114 0.000 0.018 0.101 9.467 0.378 0.000 0.000 3.954 99.249 99.24944828

Tabella E5. Analisi alla microsonda: Inclusioni nei granati (Restiti)

		SiO2	TiO2	Al2O3	Cr2O3	FeO	Fe2O3	MnO	MgO	NiO	CaO	Na2O	К2О	BaO	F-	CI-	H2O	Total
k3	#31	85.242	0.007	2.487	0.000	3.216	0.000	0.028	0.965	0.000	0.270	0.047	0.133	0.000	0.0	0.0	00 4.892	97.286
k3	#51	53.177	0.003	23.800	0.000	4.092	0.000	0.072	1.094	0.000	6.445	3.762	2.383	0.003	0.0	0.0	00 4.514	99.347
k3	#57	35.051	0.040	19.824	0.000	27.045	0.000	0.381	6.648	0.000	4.704	0.057	0.006	0.000	0.0	0.0	00 3.902	97.658
k3	#72	84.061	0.058	4.846	0.000	2.186	0.000	0.000	0.544	0.000	3.343	0.022	0.043	0.000	0.0	0.0	00 4.989	100.092
k3	#76	28.701	10.744	20.272	0.000	15.246	0.000	0.019	12.692	0.000	0.186	0.074	0.930	0.316	0.0	0.0	00 3.873	93.054
k3	#111	35.393	0.053	22.114	0.000	25.815	0.000	0.311	6.053	0.000	5.033	0.000	0.419	0.000	0.0	0.0	00 3.993	99.185
k3	#186	32.449	0.075	21.432	0.000	28.035	0.000	1.455	6.043	0.000	2.019	0.009	0.523	0.000	0.0	0.0	00 3.791	95.832
k3	#195	36.187	0.042	21.251	0.000	27.666	0.000	1.472	6.427	0.000	1.774	0.018	0.578	0.000	0.0	0.0	00 3.987	99.401
k3	#211	37.239	0.080	18.101	0.000	25.270	0.000	1.092	5.434	0.000	1.917	0.038	1.390	0.010	0.0	0.0	00 3.809	94.381
k3	#246	33.048	0.017	22.250	0.000	28.192	0.000	1.276	6.447	0.000	1.945	0.020	0.020	0.000	0.0	0.0	00 3.866	97.083
k3	#254	34.000	0.040	20.091	0.000	26.727	0.000	1.014	6.195	0.000	4.810	0.016	0.005	0.000	0.0	0.0	00 3.849	96.747

Tabella F1. Analisi alla microsonda: Feldspati (Dicchi)

		SiO2	TiO2	AI2O3	MgO	CaO	MnO	FeO	SrO	BaO	Na2O	К2О	F-	CI-	P2O5	Cr2O3	SO3	Total	An	Ab	Or
3MTE	Feld	65.069	0	18.551	0	0.054	0.063	0.055	0	0.247	1.16	13.75	0.086	0.01	0.056		0	99.101	0.007754	0.112764	0.879482
3MTE	Feld	61.851	0	24.076	0	5.503	0	0	0	0.055	8.345	0.217	0	0	0.074		0.012	100.133	0.264488	0.723139	0.012373
3MTE	Feld	67.493	0.033	20.797	0	0.877	0.033	0.002	0	0.029	10.983	0.087	0.218				0	100.552	0.042539	0.952496	0.004964
3MTE	Feld	64.577	0.029	19.227	0.001	0.079	0.064	0.014	0	0.101	1.75	12.552	0.034				0.005	98.433	0.006361	0.173731	0.819908
3MTE	Feld	65.17	0.004	19.365	0.003	0.133	0	0.005	0	0.127	3.078	10.538	0				0	98.423	0.009808	0.304423	0.68577
3MTE	Feld	77.62	0.02	14.883	0.011	2.5	0	0.002	0	0.029	5.84	0.107	0.054				0.019	101.085	0.190113	0.80024	0.009647
3MTE	Feld	64.04	0	19.165	0.019	0.061	0	0	0	0.231	2.142	12.101	0				0.028	97.787	0.007894	0.210318	0.781788
3MTE	Feld	67.209	0.02	20.514	0	0.521	0	0.017	0	0.055	11.273	0.243	0				0.008	99.86	0.025489	0.960883	0.013629
3MTE	Feld	64.537	0.003	22.043	0.02	2.205	0.001	0.033	0	0	10.006	0.132	0				0.019	98.999	0.107726	0.884596	0.007678
3MTE	Feld	68.036	0.089	20.256	0.001	0.419	0	0.002	0	0.076	11.034	0.632	0				0.035	100.58	0.021109	0.943339	0.035552
3MTE	Feld	68.04	0.01	20.708	0.024	0.61	0.023	0	0	0	11.135	0.208	0.167				0	100.925	0.029038	0.959173	0.011789
3MTE	Feld	66.95	0.051	20.785	0.011	0.853	0	0	0	0.023	11.021	0.084	0.058				0.069	99.905	0.041207	0.954009	0.004784
3MTE	Feld	62.714	0.002	24.402	0	4.488	0.008	0.012	0	0	9.096	0.202	0.066				0.055	101.045	0.211815	0.776834	0.011351
3MTE	Feld	64.82	0	19.262	0.009	0.119	0	0	0	0.199	1.478	12.26	0.034				0	98.181	0.010982	0.153148	0.83587
3MTE	Feld	66.126	0.022	21.708	0	1.878	0.019	0.026	0	0.049	10.287	0.104	0				0	100.219	0.09188	0.902119	0.006001
4MTE	Feld	67.834	0.074	19.02	0.011	0.179	0.006	0	0	0.005	11.222	0.038	0	0	0.019		0.034	98.442	0.008807	0.98899	0.002204
4MTE	Feld	68.016	0	19.346	0	0.26	0.032	0	0	0	11.01	0.062	0.006	0.014	0.003		0.053	98.802	0.012835	0.983521	0.003644
4MTE	Feld	67.24	0	20.169	0.015	0.423	0.001	0	0	0.036	10.9	0.089	0				0	98.873	0.021522	0.97325	0.005229
4MTE	Feld	67.445	0	20.304	0	0.378	0.038	0.043	0	0	11.145	0.068	0.064				0	99.485	0.018326	0.977749	0.003925
4MTE	Feld	66.23	0	19.533	0.005	0.329	0	0.064	0	0.065	10.696	0.068	0.019				0.013	97.022	0.017827	0.978082	0.004091
4MTE	Feld	67.59	0.041	19.941	0.01	0.234	0.038	0.062	0	0	11.292	0.054	0				0.029	99.291	0.011287	0.985612	0.003101
4MTE	Feld	67.843	0.051	20.107	0	0.294	0	0.062	0	0.06	11.346	0.054	0				0.005	99.822	0.015109	0.981817	0.003075
4MTE	Feld	62.699	0.021	23.67	0.33	0.236	1.458	0.319	0	0.065	8.759	2.185	0.013				0	99.755	0.013883	0.847079	0.139038
4MTE	Feld	68.409	0.033	19.989	0.005	0.211	0.039	0	0	0	11.232	0.031	0				0.029	99.978	0.010256	0.98795	0.001794
4MTE	Feld	68.264	0	20.209	0	0.325	0	0.014	0	0.016	11.009	0.056	0.006				0.035	99.934	0.016283	0.980436	0.003281
4MTE	Feld	68.116	0.001	20.073	0.008	0.277	0.012	0.024	0	0	11.038	0.035	0				0.043	99.627	0.01365	0.984296	0.002054
23MT	Feld	64.74	0.005	21.037	0.008	2.134	0.005	0.089	0	0.046	10.176	0.219	0			0		98.459	0.103277	0.884202	0.012521
23MT	Feld	63.435	0	22.622	0	3.85	0.034	0.03	0	0.032	9.499	0.068	0.173			0		99.743	0.182745	0.813424	0.003831
23MT	Feld	67.04	0	20.985	0.004	1.997	0.034	0.004	0.097	0.028	10.589	0.07	0.127			0.004		100.979	0.094449	0.901629	0.003922

23MT	Feld	66.668	0.004	21.058	0.012	2.299	0.03	0.029	0	0.095	9.691	0.735	0			0		100.621	0.112495	0.845321	0.042184
23MT	Feld	66.403	0.013	22.079	0	3.252	0.04	0.004	0	0.288	9.739	0.195	0.045			0		102.058	0.158269	0.830786	0.010945
23MT	Feld	65.315	0	21.954	0.008	3.138	0	0.068	0	0	9.725	0.233	0.051			0		100.492	0.149333	0.837465	0.013202
26MT	Feld	68.418	0.011	20.422	0.017	1.223	0	0	0	0.03	10.946	0.279	0.044			0		101.39	0.057733	0.926724	0.015542
26MT	Feld	67.525	0.009	20.351	0.001	1.189	0.033	0	0	0	10.622	0.262	0.044			0.019		100.055	0.057378	0.927568	0.015054
26MT	Feld	66.881	0.003	20.674	0.451	1.285	0	0.002	0	0	10.28	0.501	0			0		100.077	0.062732	0.908146	0.029121
26MT	Feld	64.751	0.035	18.154	0	0.006	0	0.025	0	0.04	1.54	12.808	0.046	0.012	0.122		0	97.539	0.001142	0.154327	0.84453
26MT	Feld	68.805	0	19.994	0.018	0.581	0.015	0.005	0	0.028	10.815	0.158	0.043	0	0.146		0	100.608	0.029054	0.961702	0.009244
26MT	Feld	65.165	0.079	18.295	0.016	0.01	0.006	0	0	0.116	1.37	12.609	0.033	0.008	0.066		0	97.773	0.002988	0.141304	0.855708
26MT	Feld	65.429	0.044	20.978	0	2.122	0.007	0.025	0	0	9.923	0.51	0.018	0.001	0.014		0.046	99.117	0.102584	0.868061	0.029355
26MT	Feld	66.963	0	20.311	0	1.268	0	0	0	0.054	10.897	0.175	0.067	0.008	0.03		0	99.773	0.0607	0.929478	0.009822
26MT	Feld	65.057	0.01	18.314	0.005	0.021	0.029	0.011	0	0.011	0.606	14.395	0.033	0.019	0.008		0.006	98.525	0.00137	0.060051	0.938579
26MT	Feld	65.444	0	18.37	0.009	0	0.066	0.055	0	0.009	1.482	13.151	0	0.015	0.109		0	98.71	0.000179	0.146199	0.853622
28MT	Feld	62.407	0.03	22.583	0.006	4.261	0.02	0.011	0	0	8.912	0.417	0.088	0.003	0.044		0	98.782	0.204029	0.772197	0.023774
28MT	Feld	64.232	0.025	17.777	0.002	0.004	0	0.089	0	0.237	0.419	14.575	0.013	0.005	0		0	97.378	0.004982	0.041654	0.953365
28MT	Feld	64.671	0	18.46	0.001	0.058	0.004	0	0	0.119	0.54	14.564	0.013	0.024	0.029		0.051	98.534	0.005512	0.053051	0.941437
FR	Feld	65.566	0	18.497	0.019	0.041	0.012	0	0	0.016	1.484	13.317	0.052	0	0.019		0	99.023	0.002521	0.144468	0.853012
FR	Feld	63.273	0.025	17.685	0	0.244	0.001	0.03	0	0	0.932	13.722	0	0.018	0.055		0	95.985	0.013356	0.092317	0.894327
FR	Feld	71.676	0.009	18.693	0	0.856	0.018	0	0	0.016	9.789	0.19	0.059				0.037	101.343	0.045839	0.942129	0.012032
FR	Feld	65.591	0	19.198	0.002	0.049	0.005	0.026	0	0.016	1.296	12.251	0				0	98.434	0.003229	0.13806	0.858711
FR	Feld	65.697	0.046	19.315	0	0.038	0.027	0	0	0	1.386	12.131	0				0.01	98.65	0.002237	0.147621	0.850143
FR	Feld	65.254	0.03	19.129	0	0.031	0	0	0	0.041	1.164	12.416	0.028				0	98.093	0.002716	0.124374	0.87291
FR	Feld	64.807	0.022	19.23	0.008	0.039	0	0	0	0	1.581	12.176	0				0	97.863	0.002242	0.164446	0.833312
FR	Feld	64.615	0.021	19.244	0	0.056	0	0	0	0.062	1.465	12.55	0.062				0	98.075	0.004452	0.150009	0.84554
FR	Feld	68.715	0.006	20.266	0	0.375	0	0.005	0	0	11.163	0.16	0				0	100.69	0.018059	0.972767	0.009174
FR	Feld	67.232	0.046	20.923	0	0.895	0.024	0.026	0	0.007	11.223	0.086	0.019				0.013	100.494	0.042122	0.953073	0.004805
FR	Feld	67.312	0.006	21.845	0.005	1.638	0.054	0	0	0	10.348	0.199	0				0.003	101.41	0.079513	0.908985	0.011502
FR	Feld	68.353	0	21.117	0	0.862	0	0	0	0.023	10.986	0.159	0				0.011	101.511	0.041568	0.949391	0.009041
FR	Feld	67.601	0	21.44	0	1.143	0.025	0	0	0	11.128	0.071	0				0	101.408	0.0535	0.942543	0.003957
FR	Feld	67.374	0	21.058	0	0.959	0.069	0	0	0	11.167	0.054	0				0.011	100.692	0.04517	0.951801	0.003028
FR	Feld	67.912	0.037	21.079	0.025	0.898	0	0	0	0.023	11.102	0.096	0.052				0.029	101.253	0.042937	0.951649	0.005415
FR	Feld	64.464	0.03	22.596	0	3.086	0	0	0	0	9.833	0.29	0				0.021	100.32	0.145396	0.838335	0.016268

FR	Feld	64.617	0.034	21.92	0.02	1.85	3 0	0.081	0	0	9.751	0.34	14 0.046	5			0.106	98.772	0.09308	0.886346	0.020574	
FR	Feld	72.577	0	17.705	0.014	0.72	6 0.003	0.05	0	0.059	9.728	0.10	0.026	5			0.072	101.068	0.040454	0.952587	0.006959	
FR	Feld	67.305	0.013	20.999	0.011	1.28	7 0	0	0	0	10.53	0.3	12 0.072	L			0.043	100.379	0.062828	0.930197	0.006975	
SE7	Feld	68.044	0	19.388	0	0.34	5 0.017	0.02	0	0.019	11.232	0.0	53 0.062	L		0.008		99.187	0.01697	0.979988	0.003043	
SE8	Feld	58.988	0	26.284	0.006	7.9	7 0.045	0.044	0	0.005	6.983	0.25	51 0.006	5 0		0		100.582	0.381302	0.604403	0.014295	
SE8	Feld	59.272	0	25.295	0	6.85	6 0	0.003	0	0.074	7.29	0.28	34 0	0 0		0.03		99.104	0.337191	0.646243	0.016565	
MT9	Plg1	56.613	0	28.572	0	9.4	5 0	0.073	0	0	5.922	0.34	48 0.122	L 0	0	0	0.01	101.109	0.459171	0.520696	0.020133	
MT9	Plg rim	59.557	0	26.234	0.025	6.98	3 0.035	0.071	0	0.016	7.573	0.32	21 0.08	3 0.009	0	0	0	100.904	0.33162	0.650245	0.018135	
MT9	Plg core	58.519	0	27.24	0.012	8.00	2 0	0	0	0	6.781	0.44	16 0.082	0.001	0	0	0	101.082	0.384644	0.589831	0.025526	
MT9	Kfelds	64.813	0	18.946	0	0.06	5 0	0	0	0.025	0.757	14.40	0.028	3 0	0	0	0	99.042	0.003986	0.073652	0.922362	
MT9	Kf in plg pdx	64.443	0	18.943	0		0 0	0.017	0	0.648	0.366	14.20	02 0.145	5 0.009	0	0	0.018	98.791	0.013308	0.037189	0.949503	
MT9	Plg cn Kf pdx	55.963	0.018	28.1	0.002	9.12	7 0.06	0.017	0	0	6.049	0.22	23 0.068	3 0	0	0	0.005	99.632	0.448753	0.538192	0.013055	
MT9	Plg antpert	61.74	0.016	23.108	0	3.95	3 0.014	0.047	0	0.118	4.297	6.75	54 0.116	5 0.027	0	0	0.01	100.2	0.201688	0.392444	0.405868	
MT9	plg fuori plg	56.537	0	27.003	0.055	8.33	7 0	0.036	0	0.028	6.384	0.25	54 0	0.02	0	0	0.013	98.667	0.413191	0.571839	0.01497	
MT9	plg brd grtrim	53.831	0	28.592	0.016	10.16	7 0.023	0.211	0	0.015	5.51	0.08	38 0.115	5 0.002	0	0	0	98.57	0.502396	0.49243	0.005175	
MT9	plg in bit	57.639	0.007	26.887	0.005	7.94	1 0.02	0.301	0	0	6.975	0.23	37 0.147	7 0	0	0	0	100.159	0.380957	0.605506	0.013537	
MT9	An (Plg)	56.379	0.011	29.067	0.014	9.66	3 0	0.178	0	0	5.699	0.12	28 0	0 0	0	0	0	101.139	0.480075	0.512353	0.007572	
MT9	Plg antpert	49.441	0	32.63	0.371	13.22	4 0.027	1.318	0	0.064	3.311	0.26	59 (0 0	0	0	0.013	100.668	0.6773	0.306325	0.016375	
		SiO2	TiO2	AI2O3	Cr2O3	ſ	Fe2O3	Mn2O3	MgO	CaO	Na20	С	К2О	BaO	Total		ANO	RTHITE	HIGH_ALBITE POT	ASSIUM_FEL	DSPAR	
28mt	#30	65.40376	0.001668	18.5809	19	0	0	0	0.011608	0.03777	9 1.74	41574	13.93607	0.007816	99.72126		0.002054		0.159285	159285 C		
28mt	#31	62.88584	0.001669	22.7674	8	0	0.038615	0.034495	0	3.56487	5 9.50	62728	0.445841	0.109451	99.41099		0.168138		0.807102	0	0.024759	
28mt	#32	65.64523	0	21.7001	.6	0	0.028599	0.010059	0	2.26567	.265675 10.0		0.675891	0	100.379		0.106556		0.855595	0.037848		
28mt	#33	63.45696	0.001668	18.7000)2	0	0	0	0.003317	0.03218	2 1.20	03735	15.1732	0	98.57109		C	0.001587	0.107427	0	.890986	
28mt	#35	64.1761	0.018358	18.5475	8	0	0.075801	0	0	0.03079	3 1.42	27981	15.06989	0.064779	99.41128		C	0.002647	0.125551	0	.871802	
28mt	#36	62.2905	0	23.9995	3	0	0	0.014369	0.011609	5.07662	8 8.53	34499	0.315626	0.027914	100.2707		C).243315	0.738709	0	.017975	
28mt	#37	64.39289	0	18.7488	31	0	0.018588	0	0.011609	0.04757	7 2.29	94431	13.71556	0	99.22945		C	0.002317	0.202237	0	.795446	
28mt	#38	65.01042	0.008342	18.253	5	0	0.010009	0.005748	0.011609	0.0195	9 0.9	94634	15.5405	0.017865	99.82392		C	0.001291	0.0846		0.91411	
28mt	#39	64.41489	0.005005	18.6135	8	0	0.005719	0	0.008292	0.06576	4 1.60	66131	14.40624	0.036846	99.22246		C	0.003914	0.148909	0	.847177	
28mt	#40	63.61375	0.003338	18.4500	9	0	0.058635	0.002874	0.006635	0.02939	2 1.5	73517	14.62075	0	98.35897		C).001449	0.140369	0	.858183	
28mt	#41	63.75337	0.013347	18.3589	19	0	0.008579	0.002874	0.014925	0.02238	8 0.73	31985	15.71127	0.079276	98.69701		C).002559	0.065956	0	.931485	
28mt	#42	64.4868	0	18.85898	0	0.002859	0	0.004975	0.085353	2.859076	12.66658	0.208789	99.17341	0.007921	0.253402	0.738678						
------	-----	----------	----------	----------	---	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------						
28mt	#43	63.06237	0.003337	18.23807	0	0.011438	0	0	0.008396	0.540564	15.77152	0.100491	97.73618	0.00228	0.049399	0.948321						
28mt	#44	63.7537	0.008343	18.44724	0	0	0.027303	0.004975	0.036384	1.604281	14.85221	0	98.73444	0.001764	0.140766	0.85747						
28mt	#45	63.76503	0	18.46195	0	0	0	0	0	0.655112	16.00799	0.033495	98.92358	0.000605	0.058519	0.940876						
28mt	#46	63.77786	0.003337	18.58476	0	0	0	0.001658	0.023787	0.903138	15.45388	0.037961	98.78638	0.001877	0.081421	0.916703						
28mt	#47	63.89553	0.011678	18.47518	0	0	0	0.011608	0.01679	0.586366	16.20675	0.08932	99.29322	0.002424	0.051995	0.945582						
28mt	#48	61.33322	0.001668	17.87953	0	0.017158	0	0	1.940854	0.527097	15.74785	0.078161	97.52554	0.090869	0.044008	0.865123						
28mt	#49	63.15234	0.005005	23.21978	0	0.021448	0	0.006634	3.715222	9.867996	0.18914	0	100.1776	0.170445	0.819223	0.010332						
28mt	#50	62.90808	0.013347	23.09226	0	0	0.011495	0	4.038307	9.039912	0.332487	0.033497	99.46938	0.194694	0.786278	0.019028						
28mt	#51	62.47964	0.01168	22.96482	0	0	0.041676	0.01161	3.786923	9.364641	0.553011	0.039085	99.25309	0.177581	0.791659	0.03076						
28mt	#52	62.47287	0	23.008	0	0	0	0	3.714893	9.482954	0.281878	0	98.96059	0.175144	0.809033	0.015823						
28mt	#53	63.00922	0	23.37134	0	0	0.005747	0.014925	4.063394	9.311986	0.362595	0.016748	100.1559	0.190593	0.789187	0.02022						
28mt	#54	63.52863	0	22.75484	0	0.005719	0.01437	0	3.713807	9.377253	0.43008	0.027915	99.85261	0.175621	0.80023	0.024149						
28mt	#55	62.53743	0.006673	23.3747	0	0	0.001437	0	4.241021	9.162193	0.328859	0.035728	99.68803	0.200426	0.781126	0.018448						
28mt	#56	62.67051	0	22.79034	0	0.035749	0	0.009951	3.718248	9.643458	0.331316	0.025683	99.22526	0.172795	0.808918	0.018286						
28mt	#57	62.50435	0	22.23764	0	0.005719	0	0	3.794741	9.353777	0.155398	0	98.05162	0.181514	0.809635	0.00885						
28mt	#58	64.91385	0	21.17333	0	0	0	0.001658	2.361861	10.13672	0.348131	0	98.93555	0.111834	0.86854	0.019627						
28mt	#59	62.78928	0	23.02507	0	0.040039	0	0.013268	4.068173	9.409039	0.219275	0.015634	99.57978	0.190714	0.797064	0.012222						
28mt	#60	63.5896	0	22.64711	0	0	0	0.003317	3.608554	9.268627	0.434862	0	99.55207	0.172671	0.802554	0.024775						
28mt	#61	61.80815	0	23.2139	0	0.00429	0.01437	0.004975	4.392457	9.408212	0.213232	0.033498	99.09308	0.203138	0.785153	0.011709						
28mt	#62	62.89646	0	22.98344	0	0	0	0.00995	3.783455	9.561136	0.33488	0.029029	99.59834	0.176515	0.804934	0.01855						
28mt	#63	62.35093	0.005005	23.1686	0	0	0	0.006633	4.015723	9.075867	0.508343	0.027913	99.15901	0.191214	0.780038	0.028747						
28mt	#64	62.83733	0	22.84023	0	0.00572	0.037365	0.001659	3.959078	9.11932	0.474701	0.054719	99.33013	0.189064	0.784081	0.026855						
28mt	#65	63.06348	0	23.10078	0	0.041469	0	0	3.868073	9.336284	0.497587	0.051368	99.95904	0.181851	0.790431	0.027719						
28mt	#66	62.66541	0	22.71135	0	0	0	0	3.741478	9.160789	0.267422	0.037961	98.58441	0.181851	0.802731	0.015419						
28mt	#67	61.57214	0	23.47901	0	0.011439	0.012933	0	4.428946	9.221051	0.371057	0.022332	99.11891	0.205755	0.773758	0.020487						
28mt	#68	62.81706	0	22.27178	0	0.007149	0	0	3.362395	9.684094	0.302365	0.023447	98.4683	0.158597	0.824465	0.016938						
28mt	#69	61.96461	0	23.08471	0	0	0.011495	0.004975	4.052301	9.274474	0.471024	0.053595	98.91718	0.190138	0.783674	0.026188						
28mt	#70	63.49973	0	22.18981	0	0.040039	0	0.001659	3.343267	9.487245	0.524091	0.011167	99.09701	0.158349	0.812132	0.029519						
28mt	#71	62.41645	0	23.06773	0	0.038614	0.03162	0	3.826563	9.352271	0.561512	0.085996	99.38076	0.17986	0.788972	0.031168						
28mt	#72	62.1532	0.003337	22.96297	0	0.044333	0.017247	0	4.141332	9.284528	0.262672	0.014518	98.88414	0.195041	0.790248	0.014711						
23mt	#1	59.55813	0.005005	24.00319	0	0.012868	0	0.0199	5.427824	8.471101	0.199976	0.045779	97.74377	0.259121	0.729547	0.011332						

23mt	#2	64.09882	0	21.87679	0	0.282005	0.014386	0.023245	2.741635	10.24913	0.031358	0	99.31738	0.128562	0.869687	0.001751
23mt	#3	65.09787	0.013353	21.41182	0	0.11014	0	0.001659	2.225764	10.06182	0.07713	0.006702	99.00626	0.108548	0.886979	0.004474
23mt	#9	65.16226	0.01001	20.98515	0	0	0.008621	0	2.079297	10.07508	0.519204	0	98.83962	0.09935	0.871112	0.029538
23mt	#27	61.00528	0.011678	22.85873	0	0	0	0	4.060497	9.194488	0.342108	0.014515	97.4873	0.19259	0.788115	0.019295
23mt	#28	61.60216	0.006673	23.24796	0	0	0	0	4.576805	8.883108	0.483047	0	98.79975	0.215618	0.757287	0.027095
23mt	#29	65.3952	0	21.32827	0	0	0	0.004975	2.277908	10.42518	0.089141	0	99.52067	0.1072	0.887805	0.004995
23mt	#30	64.26341	0.020022	20.97701	0	0	0.022992	0.016584	2.318714	10.31702	0.067465	0	98.00321	0.110057	0.88613	0.003813
23mt	#31	65.73535	0.008342	20.85212	0	0	0	0.019899	1.381017	11.30945	0.093959	0	99.40014	0.062893	0.932012	0.005095
23mt	#32	59.06745	0.001669	24.08676	0	0	0.034489	0.009951	5.913944	7.931298	0.620466	0.025683	97.6917	0.281872	0.682973	0.035155
23mt	#33	61.41565	0	22.96731	0	0.047191	0	0.021562	4.439183	8.872775	0.128919	0.032385	97.92497	0.215438	0.777133	0.00743
23mt	#34	64.77228	0.005006	20.87365	0	0.030028	0	0.004975	1.866777	10.74736	0.046986	0.0067	98.35376	0.087457	0.909926	0.002617
23mt	#35	59.74084	0.003337	24.14612	0	0.008579	0.015807	0.004975	5.892682	7.871616	0.636099	0.023449	98.3435	0.282319	0.681448	0.036233
23mt	#36	62.64261	0	22.12172	0	0	0.01868	0.011609	3.407341	10.01351	0.090353	0.004466	98.31029	0.157556	0.837472	0.004972
23mt	#37	58.16665	0	24.66026	0	0.0429	0	0.001659	6.466952	7.601275	0.186749	0.020101	97.14654	0.316566	0.672561	0.010872
23mt	#38	60.11449	0	23.35027	0	0.021448	0	0.02156	5.061401	8.545563	0.369848	0.016749	97.50134	0.241637	0.737365	0.020998
23mt	#39	62.06746	0.010013	23.39463	0	0	0.068989	0	4.301021	9.078526	0.42294	0	99.34358	0.202565	0.773718	0.023717
23mt	#40	63.38887	0	22.3676	0	0.041469	0	0.01161	3.217337	9.592465	0.228915	0	98.84826	0.154323	0.832603	0.013074
23mt	#41	58.81737	0	24.49983	0	0	0.027303	0.033169	6.361555	7.6749	0.522861	0.012283	97.94927	0.304934	0.665246	0.02982
23mt	#42	60.10979	0	24.0814	0	0.020018	0	0.003317	5.307647	8.23814	0.449356	0.005583	98.21525	0.255862	0.718356	0.025782
23mt	#43	63.99394	0	21.43785	0	0	0	0.021558	2.552153	9.72424	0.608325	0.002233	98.3403	0.122304	0.842997	0.034699
23mt	#44	63.5472	0.003337	21.52301	0	0.00143	0	0	2.847403	9.681164	0.609534	0	98.21308	0.135	0.830591	0.034409
23mt	#45	63.8613	0	21.65136	0	0	0	0.00995	2.906152	9.728284	0.570983	0	98.72803	0.137148	0.830769	0.032083
23mt	#46	59.30511	0	23.82432	0	0	0.01868	0	5.679847	8.194971	0.384301	0.032381	97.43961	0.27131	0.706879	0.021811
23mt	#47	59.23873	0.003338	24.03721	0	0.040047	0.044559	0.004977	5.762666	7.935728	0.578424	0.020105	97.66578	0.277153	0.689767	0.033081
23mt	#48	59.85218	0	24.07882	0	0.050051	0	0	5.722583	8.431999	0.210851	0.030152	98.37664	0.269907	0.718275	0.011818
23mt	#49	64.89481	0.008342	21.61625	0	0	0.008621	0	2.375939	10.3339	0.061437	0	99.29929	0.112343	0.884198	0.003459
23mt	#50	63.64522	0	21.0713	0	0	0	0.001658	2.234533	10.42653	0.106005	0.012282	97.49753	0.105452	0.888604	0.005944
23mt	#51	63.92548	0	21.82708	0	0	0	0	2.885164	9.934523	0.168645	0	98.74089	0.136977	0.85349	0.009533
23mt	#52	67.5344	0.003337	19.58676	0	0.007149	0	0.024875	0.554102	11.25856	0.061437	0	99.03062	0.026385	0.970131	0.003483
23mt	#53	67.15159	0	19.82047	0	0	0	0.011608	0.762568	11.14095	0.057821	0.005583	98.9506	0.036421	0.9603	0.003279
23mt	#54	65.94028	0	20.16247	0	0.01573	0.028742	0.021562	0.912454	11.20372	0.03253	0	98.31749	0.04299	0.955186	0.001825
23mt	#55	67.43613	0	19.95274	0	0	0	0	0.404371	11.41998	0.061435	0.006699	99.28135	0.019239	0.977301	0.003459

23mt	#56	67.49706	0	19.80943	0	0.050051	0	0.014928	0.454836	11.6003	0.059038	0.007817	99.49346	0.021269	0.975465	0.003267
23mt	#57	67.36848	0	19.80182	0	0	0.002874	0	0.400178	11.38642	0.04698	0	99.00675	0.019001	0.978343	0.002656
23mt	#58	63.51258	0.003337	21.22624	0	0	0	0	2.665488	10.15963	0.026501	0	97.59378	0.126437	0.872066	0.001497
23mt	#59	66.41027	0	20.64849	0	0.027168	0	0	1.214647	11.02761	0.053009	0	99.3812	0.057206	0.939822	0.002972
23mt	#60	64.63881	0	21.5428	0	0.011438	0	0.018242	2.312998	10.58609	0.016865	0	99.12725	0.107635	0.891431	0.000934
13ba	#64	63.56325	0.005007	18.09111	0	0.108713	0	0	0	0.056643	17.056	0.243518	99.12423	0.004345	0.005	0.990655
13ba	#66	62.06309	0	17.73675	0	1.203631	0.049136	1.371017	0.156214	0.280649	15.03715	0.831009	98.72865	0.024382	0.02691	0.948708
13ba	#68	63.26353	0.003341	18.259	0	0.302098	0.007194	0.283965	0.032227	0.148485	16.56855	0.130815	98.99921	0.003988	0.013384	0.982628
13ba	#74	63.24986	0	18.22966	0	0.00143	0	0	0.005597	0.963803	15.97557	0.098253	98.52418	0.001996	0.083821	0.914183
13ba	#75	62.94566	0	18.04438	0	0	0	0	0.004198	0.621413	16.09352	0.023447	97.73262	0.000629	0.055396	0.943975
13ba	#76	67.25731	0.011679	19.90325	0	0.018588	0	0	0.450579	11.32919	0.165044	0	99.13564	0.021306	0.969402	0.009292
13ba	#77	63.11039	0.011681	17.96679	0	0.044331	0	0.003317	0.058779	0.338409	16.63777	0.036852	98.20832	0.003526	0.02988	0.966594
13ba	#80	66.93715	0	19.19553	0	0	0.005747	0.023216	0.117536	11.73704	0.165035	0	98.18125	0.005453	0.98543	0.009117
13ba	#82	63.04835	0	18.00659	0	0	0	0	0	0.183324	17.07045	0.007816	98.31653	0.000138	0.016057	0.983804
13ba	#83	66.79005	0	20.7671	0	0	0	0	1.143152	10.80531	0.248149	0	99.75375	0.054458	0.931467	0.014075
13ba	#84	67.48533	0.013346	20.04154	0	0	0	0.031507	0.552687	11.39033	0.280673	0	99.79541	0.025708	0.958747	0.015545
13ba	#85	67.32374	0.001669	19.34448	0	0.011441	0.060365	0.009953	0.314916	11.65804	0.075913	0	98.80051	0.014646	0.98115	0.004204
13ba	#86	65.27112	0	20.25505	0	0	0	0	1.161341	11.05064	0.271036	0.018981	98.02817	0.05437	0.930612	0.015018
13ba	#87	66.01412	0	20.83735	0	0.015729	0.010059	0	1.139076	10.7485	0.668627	0.030149	99.4636	0.053752	0.90904	0.037208
13ba	#88	66.25093	0	20.38164	0	0	0	0	1.070393	11.03716	0.16744	0	98.90757	0.05039	0.940225	0.009385
13ba	#89	65.5963	0	20.88991	0	0	0	0	1.687443	10.81879	0.313197	0.021214	99.32685	0.078317	0.904455	0.017228
13ba	#90	68.58281	0	19.73356	0	0	0	0.001658	0.289636	11.08434	0.114437	0	99.80644	0.01414	0.979208	0.006652
13ba	#91	66.12471	0	21.45108	0	0	0	0	1.846953	10.43057	0.408361	0.017864	100.2795	0.087369	0.889712	0.022919
13ba	#93	63.28207	0.016686	18.07721	0	0.031459	0	0.009951	0.078367	1.302324	15.21996	0.04355	98.06156	0.004583	0.114552	0.880864
13ba	#94	63.26717	0	18.24843	0	0.058649	0.054628	0	0	1.130181	15.76679	0.029044	98.55489	0.00051	0.098189	0.901301
13ba	#96	65.53249	0.006674	20.25715	0	0	0.024429	0.004975	1.25242	11.13806	0.145772	0	98.36197	0.058033	0.933924	0.008042
13ba	#97	67.03205	0	20.07627	0	0.007149	0.001437	0	0.519124	10.93241	0.187925	0	98.75637	0.025291	0.963808	0.010901
13ba	#99	63.37339	0	17.73413	0	0.200371	0.027328	0.01494	0	0.093107	17.10036	0	98.54363	0	0.008207	0.991793
FR	#16	63.58144	0	18.45386	0	0	0.015806	0	0.090955	1.685084	13.36487	0	97.19201	0.004774	0.16004	0.835186
FR	#17	60.55788	0.010011	18.79262	0	0.021448	0	0	0	0.612039	15.04101	3.224788	98.2598	0.058399	0.05484	0.886761
FR	#18	64.35807	0	18.40151	0	0.01287	0.033054	0	0.036387	1.704183	14.78235	0	99.32842	0.001756	0.148827	0.849417
FR	#19	62.7246	0.006674	18.38111	0	0.027168	0	0.023219	0.001399	0.583743	15.74013	0.707952	98.19601	0.012979	0.052664	0.934357

FR	#20	62.96268	0	18.32146	0	0.00286	0.011495	0.003317	0.116142	1.319748	14.88027	0.094909	97.71288	0.007447	0.117898	0.874655
FR	#21	60.9367	0.006674	18.93561	0	0	0.014369	0.024876	0	1.207861	13.98762	3.405567	98.51927	0.062011	0.108819	0.82917
FR	#22	61.17215	0.005005	18.57154	0	0	0	0.003317	0.01819	0.765646	15.02744	2.541162	98.10445	0.04685	0.068502	0.884648
FR	#23	63.55942	0	18.35982	0	0.015729	0.005748	0	0.04338	1.721523	14.68315	0	98.38877	0.002102	0.150922	0.846976
FR	#24	60.74421	0.005005	19.1088	0	0	0.007184	0	0	1.529996	13.59322	3.574049	98.56246	0.064517	0.136651	0.798833
FR	#25	63.52328	0.003337	18.47329	0	0	0	0	0.08815	1.769882	14.55042	0	98.40836	0.004276	0.155356	0.840369
FR	#27	61.2867	0	18.38487	0	0	0.025866	0	0.025189	0.47724	15.37748	1.599031	97.17637	0.030835	0.043654	0.925511
FR	#28	63.76182	0	18.31611	0	0.018588	0	0.003317	0.111946	2.256688	13.67221	0	98.14068	0.005468	0.19945	0.795083
FR	#29	63.1429	0	18.14772	0	0.038609	0	0.014927	0.047581	1.988603	14.33853	0	97.71887	0.002297	0.173687	0.824016
FR	#30	63.58172	0.011681	18.41358	0	0.054343	0	0	0.06158	1.782452	14.33833	0	98.24368	0.003025	0.158429	0.838546
FR	#31	67.04677	0	19.46903	0	0	0	0	0.51211	11.5723	0.309583	0.007816	98.91761	0.023596	0.959514	0.01689
FR	#32	65.95802	0	19.69332	0	0	0.015806	0.00995	0.506547	11.4558	0.09517	0	97.73462	0.023726	0.970966	0.005308
FR	#34	67.14597	0	19.70102	0	0.064355	0	0	0.3345	11.41764	0.285568	0	98.94906	0.015678	0.968385	0.015936
4mte	#39	66.38653	0	19.33701	0	0	0.002874	0	0.307829	11.19906	0.057822	0	97.29112	0.014913	0.981752	0.003335
4mte	#42	66.97855	0.026697	19.45332	0	0.022879	0.015808	0	0.246301	11.27624	0.065059	0	98.08485	0.011882	0.984381	0.003737
4mte	#49	66.98612	0	19.65776	0	0	0.020117	0.004975	0.233687	11.57733	0.057826	0	98.53781	0.010996	0.985765	0.00324
4mte	#50	66.48412	0	19.16105	0	0	0	0	0.132925	11.31484	0.039752	0	97.13269	0.006435	0.991273	0.002291
4mte	#52	67.20294	0	19.726	0	0	0	0.041457	0.22947	11.12073	0.03132	0	98.35192	0.011254	0.986917	0.001829
4mte	#53	67.22728	0.008342	19.44093	0	0	0.002874	0	0.155314	11.70724	0.009637	0	98.55162	0.007274	0.992189	0.000537
4mte	#54	66.46059	0	19.50871	0	0	0	0	0.537295	11.09378	0.054207	0	97.65458	0.025986	0.970893	0.003121
4mte	#55	66.3842	0	19.49126	0	0	0.017243	0	0.400203	11.23075	0.068668	0	97.59232	0.019236	0.976834	0.00393
26mt	#1	67.58802	0	19.22529	0	0	0	0	0.162308	9.907563	0.405952	0	97.28913	0.008738	0.965239	0.026023
26mt	#2	68.71516	0.015016	20.06727	0	0.014298	0	0.008292	0.081159	11.2454	0.137333	0	100.2839	0.003941	0.988119	0.00794
26mt	#3	65.92503	0	21.11589	0	0	0.012932	0.013267	1.543408	10.7978	0.202385	0	99.61072	0.07238	0.916319	0.011301
26mt	#4	67.23717	0.023356	20.19837	0	0	0	0	0.534497	11.39033	0.169849	0	99.55356	0.025037	0.96549	0.009473
26mt	#5	65.85268	0.011679	20.65118	0	0.012868	0.001437	0.008292	1.45806	10.59027	0.277076	0	98.86354	0.069591	0.914663	0.015746
26mt	#6	63.93617	0	18.43172	0	0	0	0	0.004198	1.481417	14.91662	0.016748	98.78687	0.000505	0.131076	0.868419
26mt	#7	64.49668	0	18.80205	0	0	0	0.003317	0.027984	3.466973	12.04243	0.001117	98.84056	0.001376	0.303952	0.694673
26mt	#8	63.81946	0	18.59069	0	0.025738	0	0.008292	0.034984	1.559779	14.96051	0	98.99945	0.001692	0.13655	0.861758
26mt	#9	62.98845	0.01001	18.36181	0	0	0	0	0.029383	0.730599	15.96704	0	98.08728	0.001443	0.064926	0.933631
26mt	#10	63.51472	0	18.47329	0	0	0	0.019899	0.015391	0.870787	15.65745	0	98.55154	0.000761	0.077877	0.921362
26mt	#11	63.6588	0	18.36642	0	0.010009	0	0	0.051773	1.156609	15.32929	0	98.57291	0.002538	0.102613	0.894849

26mt	#12	63.25363	0.003337	18.32334	0	0	0.014369	0.003317	0.081159	0.965209	15.67415	0.026798	98.34531	0.004437	0.0852	0.910363
26mt	#13	63.58746	0.005005	18.17286	0	0	0	0.006633	0.026585	1.117465	14.70702	0	97.62303	0.001359	0.103382	0.895259
26mt	#14	63.22377	0.01001	18.44683	0	0	0	0.016583	0.015391	0.524359	16.20434	0.002233	98.44353	0.0008	0.046837	0.952363
26mt	#15	72.4636	0.003337	17.09034	0	0.017159	0.011496	0.004975	0.176321	9.973448	0.151798	0	99.89247	0.00958	0.980599	0.00982
26mt	#16	67.48484	0.006674	20.42819	0	0.037179	0	0	0.806065	11.24915	0.190356	0	100.2025	0.037686	0.951717	0.010597
26mt	#17	67.24049	0	20.2025	0	0.004289	0	0	0.489731	10.32696	2.051478	0	100.3154	0.022652	0.864367	0.112981
26mt	#18	68.4098	0.018352	20.00446	0	0.00143	0.007184	0	0.298042	11.33816	0.148172	0.007816	100.2334	0.014332	0.977264	0.008403
26mt	#21	66.58039	0.011678	19.60696	0	0	0	0.006633	0.067162	11.76776	0.166235	0.037961	98.24478	0.003757	0.987069	0.009175
26mt	#28	63.08686	0.011678	18.29379	0	0	0	0	0.054569	0.506836	15.91403	0.002233	97.86999	0.00278	0.04604	0.951179
26mt	#36	66.7185	0.008342	21.00554	0	0	0.004311	0.00995	1.4566	10.58308	0.213219	0	99.99955	0.069823	0.918007	0.012169
26mt	#41	64.36618	0.01001	18.82851	0	0	0	0.011608	0.022387	3.493933	12.55439	0.024563	99.31158	0.001473	0.296806	0.701722
26mt	#42	63.92885	0.01001	18.29225	0	0.004289	0	0.006633	0.046175	1.116139	15.37708	0.001117	98.78255	0.002286	0.099127	0.898587
26mt	#43	63.05612	0.030036	18.22798	0	0.00858	0.040241	0.033173	0.064378	1.228275	15.36096	0.045787	98.09553	0.003939	0.10793	0.888131
26mt	#44	63.40071	0.020024	18.33383	0	0.00286	0.045989	0.006635	0.050383	1.017946	14.94168	0.121726	97.94179	0.004811	0.093375	0.901814
26mt	#45	63.42285	0.010011	18.28684	0	0.030028	0	0	0.02239	1.202552	15.20419	0.017866	98.19673	0.001424	0.107155	0.891421
26mt	#46	63.39003	0	18.40568	0	0	0.027303	0	0.001399	1.136479	15.46545	0	98.42635	6.84E-05	0.100456	0.899475
26mt	#48	63.42286	0	18.61628	0	0.00429	0.033053	0	0.05038	1.524812	14.7529	0.034618	98.4392	0.003092	0.135337	0.861571
26mt	#49	62.07303	0.011681	18.13069	0	0.060065	0	0.014929	0.040588	0.852154	15.88113	0.116149	97.18041	0.004045	0.075096	0.920858
26mt	#50	63.61664	0	18.2305	0	0.034319	0	0.003317	0.002799	0.80621	15.82857	0.0134	98.53575	0.000379	0.071821	0.9278
26mt	#51	63.72438	0	18.35047	0	0	0	0.003317	0.019589	0.788561	15.75984	0	98.64616	0.000969	0.070603	0.928428
26mt	#53	63.5404	0.011678	18.33158	0	0	0	0.011608	0.026585	1.124205	14.94553	0.00335	97.99493	0.001401	0.102448	0.896151
26mt	#55	67.1058	0.005005	20.7348	0	0.00286	0.017244	0.021559	1.151642	11.0866	0.072282	0	100.1978	0.054069	0.941891	0.004041
26mt	#56	66.19077	0	20.73324	0	0.03289	0.012934	0	1.308507	10.72647	0.479524	0	99.48434	0.061462	0.91172	0.026818
26mt	#57	65.67973	0.006673	20.55925	0	0	0	0	1.478961	10.64355	0.272241	0	98.64041	0.070215	0.914396	0.015389
26mt	#58	65.56207	0.035035	21.0883	0	0	0	0.006633	1.590898	10.55459	0.391497	0	99.22902	0.075198	0.902769	0.022033
26mt	#60	67.88197	0	19.95425	0	0.018588	0	0	0.425391	11.43568	0.291536	0.00335	100.0108	0.019873	0.963958	0.01617
26mt	#61	66.53119	0	20.17569	0	0	0	0.006633	0.759769	11.20835	0.040957	0.001117	98.72371	0.036042	0.961645	0.002312
26mt	#62	66.22413	0.01001	20.41851	0	0.011438	0	0	1.194979	11.00264	0.131308	0	98.99302	0.056204	0.936442	0.007353
3mte	#64	63.20151	0	17.92192	0	0	0.004311	0.016583	0.055969	1.272507	15.13014	0.461125	98.06406	0.010935	0.112096	0.876969
3mte	#65	63.27726	0.006673	18.38259	0	0	0	0.00995	0.144118	1.51916	14.97324	0.108301	98.42129	0.00885	0.132415	0.858736
3mte	#66	63.04696	0.013347	18.5705	0	0.010009	0	0	0.062967	1.195702	14.84743	0.412009	98.15892	0.010653	0.107886	0.881461
3mte	#67	63.49868	0	18.35892	0	0	0.033052	0	0.055977	1.48973	14.84539	0.120601	98.40235	0.004889	0.131683	0.863428

3mte	#68	64.39529	0	18.76903	0	0.034319	0	0.04478	0.151137	4.12002	10.37083	0.079284	97.96469	0.009014	0.373077	0.617909
3mte	#69	62.61741	0	18.39238	0	0.060074	0.033062	0.004977	0	1.293256	15.16526	0.32951	97.89592	0.005874	0.114061	0.880065
3mte	#70	62.29316	0	17.91589	0	0	0	0	0.043375	0.630849	15.62011	0.579465	97.08286	0.012768	0.057092	0.930139
3mte	#71	62.84083	0	18.37881	0	0	0	0.001658	0.107739	1.005584	15.24668	0.480096	98.06141	0.013987	0.089831	0.896182
3mte	#72	64.66291	0.015018	18.8056	0	0.0429	0	0	0.075571	5.692194	8.613345	0.527089	98.43463	0.012886	0.494634	0.492479
3mte	#73	62.567	0.02002	18.5602	0	0	0	0	0.05317	1.546119	14.65884	0.470048	97.87539	0.010992	0.136635	0.852373
3mte	#75	62.85428	0	18.40166	0	0.017159	0.007185	0	0.005597	1.01783	15.59897	0.09268	97.99536	0.001931	0.090046	0.908023
3mte	#76	62.67183	0.013346	18.2919	0	0	0	0	0.193091	1.897939	14.19386	0.059175	97.32113	0.01045	0.167133	0.822417
3mte	#77	62.44714	0.015016	18.14197	0	0	0.014369	0.006634	0.095152	0.912636	15.12484	0.346139	97.1039	0.011153	0.083065	0.905782
3mte	#78	62.46859	0	17.95368	0	0	0	0	0.067162	1.188908	15.30812	0.042427	97.02889	0.004041	0.105148	0.890811
3mte	#79	65.75189	0	21.74966	0	0.021448	0	0.024876	1.021511	10.07695	0.883054	0.032381	99.56177	0.050855	0.897402	0.051744
3mte	#81	64.62294	0.005006	20.67502	0	0.060067	0.010061	0	1.780322	10.43369	0.236173	0.002234	97.82551	0.085048	0.901525	0.013427
3mte	#82	67.75622	0.013348	19.7018	0	0	0.027303	0	0.233694	11.13279	0.150593	0.033499	99.04925	0.011956	0.979327	0.008716
3mte	#83	66.40211	0.001668	20.00105	0	0.012868	0	0	0.56391	11.41655	0.175882	0	98.57404	0.026311	0.963918	0.009771
3mte	#84	62.34997	0.01335	24.662	0	0.061494	0	0.044785	1.151845	8.638668	1.915818	0.054723	98.89265	0.061402	0.819077	0.119521
3mte	#85	60.7614	0.001668	23.37456	0	0	0	0.016583	4.421493	8.626994	0.478228	0	97.68092	0.214615	0.757747	0.027638
3mte	#86	60.13646	0	23.6247	0	0	0.007184	0.00995	5.322748	8.458763	0.397532	0.010049	97.96739	0.25236	0.725214	0.022426
3mte	#87	59.89913	0	23.55086	0	0.024308	0	0	5.507856	8.534882	0.163843	0	97.68088	0.260451	0.730324	0.009225
3mte	#88	67.63722	0.001668	19.39723	0	0	0	0.001658	0.095146	11.71923	0.063844	0	98.91601	0.004451	0.991993	0.003556
3mte	#90	65.27989	0	20.63747	0	0.008579	0	0	1.607746	10.67359	0.061437	0	98.26872	0.076576	0.91994	0.003484
3mte	#91	60.58122	0	23.95697	0	0.014299	0.008622	0.004975	5.234945	8.371702	0.490322	0	98.66306	0.249665	0.722492	0.027843
3mte	#92	59.71677	0.01001	23.85697	0	0	0.005748	0	5.718701	8.10823	0.457761	0	97.87419	0.27315	0.700816	0.026033
3mte	#93	57.38459	0.005006	25.60185	0	0	0.030178	0	7.62109	7.087207	0.362634	0	98.09255	0.365037	0.614282	0.020681
3mte	#97	62.80347	0.010012	18.3659	0	0.048622	0	0.003317	0.039187	0.875026	15.82962	0.132893	98.10805	0.004279	0.077169	0.918553

Tabella F2. Mossbauer: Muscoviti (Dicchi)

			Mossbauer	Errore	Fe3+/(Total Iron)	Total Fe as FeO	Desired Fe2O3	Desired FeO	Weight corr. factor	Oscillazione errore
		FeO (da microsonda)	Fe2O3 %							
3MTE	WM	1.762			0	1.762	0	1.762	1	0
3MTE	WM	1.701			0	1.701	0	1.701	1	0
3MTE	WM	4.435			0	4.435	0	4.435	1	0
3MTE	WM	2.358			0	2.358	0	2.358	1	0
3MTE	WM	2.56			0	2.56	0	2.56	1	0
3MTE	WM	1.883			0	1.883	0	1.883	1	0
3MTE	WM	1.394			0	1.394	0	1.394	1	0
3MTE	WM	1.94			0	1.94	0	1.94	1	0
3MTE	WM	1.273			0	1.273	0	1.273	1	0
3MTE	WM	1.127			0	1.127	0	1.127	1	0
4MTE	WM	2.326	41	11	0.41	2.326	1.059840504	1.37234	0.998859895	0.284347452
4MTE	WM	1.876	41	11	0.41	1.876	0.854798274	1.10684	0.999073967	0.229336122
4MTE	WM	1.593	41	11	0.41	1.593	0.725849494	0.93987	0.999223445	0.194740108
4MTE	WM	1.342	41	11	0.41	1.342	0.611481495	0.79178	0.999350756	0.164056011
4MTE	WM	1.575	41	11	0.41	1.575	0.717647805	0.92925	0.999229671	0.192539655
4MTE	WM	1.862	41	11	0.41	1.862	0.848419183	1.09858	0.999094183	0.227624659
4MTE	WM	1.704	41	11	0.41	1.704	0.776426578	1.00536	0.999177513	0.20830957
4MTE	WM	1.429	41	11	0.41	1.429	0.651122993	0.84311	0.999304954	0.174691535
23MT	WM	2.443	28.1	2.2	0.281	2.443	0.762916017	1.756517	0.999162171	0.05973008
23MT	WM	2.187	28.1	2.2	0.281	2.187	0.682970663	1.572453	0.999270851	0.053471013
23MT	WM	2.262	28.1	2.2	0.281	2.262	0.706392153	1.626378	0.999253273	0.055304724
26MT	WM	0.762	43.4	3.4	0.434	0.762	0.367529029	0.431292	0.999608274	0.028792597
26MT	WM	0.555	43.4	3.4	0.434	0.555	0.267688466	0.31413	0.999712031	0.020970986
26MT	WM	0.864	43.4	3.4	0.434	0.864	0.416725828	0.489024	0.999559837	0.032646724
26MT	WM	9.154	43.4	3.4	0.434	9.154	4.41517156	5.181164	0.99519359	0.345889016
26MT	WM	7.861	43.4	3.4	0.434	7.861	3.791529783	4.449326	0.995931186	0.297032287
28MT	WM	19.103			0	19.103	0	19.103	1	0
28MT	WM	1.879			0	1.879	0	1.879	1	0
28MT	WM	5.847			0	5.847	0	5.847	1	0
FR	WM	0.608	33.9	6.8	0.339	0.608	0.22906051	0.401888	0.999758589	0.045947241
FR	WM	0.965	33.9	6.8	0.339	0.965	0.363558211	0.637865	0.999616365	0.072926131
FR	WM	1.095	33.9	6.8	0.339	1.095	0.412534965	0.723795	0.999566692	0.082750376
FR	WM	1.141	33.9	6.8	0.339	1.141	0.429865201	0.754201	0.999544875	0.086226648
FR	WM	0.14	33.9	6.8	0.339	0.14	0.052744196	0.09254	0.999943332	0.010579957

FR	WM	0.914	33.9	6.8	0.339	0.914	0.344344254	0.604154	0.999633335	0.069072004
FR	WM	0.891	33.9	6.8	0.339	0.891	0.335679136	0.588951	0.999641907	0.067333868
FR	WM	0.958	33.9	6.8	0.339	0.958	0.360921001	0.633238	0.999614523	0.072397133
FR	WM	0.662	33.9	6.8	0.339	0.662	0.2494047	0.437582	0.99973136	0.050028081
FR	WM	0.69	33.9	6.8	0.339	0.69	0.259953539	0.45609	0.9997291	0.052144073
FR	WM	1.037	33.9	6.8	0.339	1.037	0.390683798	0.685457	0.999592275	0.078367251
FR	WM	0.972	33.9	6.8	0.339	0.972	0.366195421	0.642492	0.999611023	0.073455129
FR	WM	1.222	33.9	6.8	0.339	1.222	0.460381486	0.807742	0.999509299	0.092347909
28mt	#73	2.267			0	2.267	0	2.267	1	0
23mt	#4	3.854	28.1	2.2	0.281	3.854	1.203552325	2.771026	0.998717014	0.094228296
23mt	#5	1.468	28.1	2.2	0.281	1.468	0.458436641	1.055492	0.999513204	0.035891837
23mt	#6	1.14	28.1	2.2	0.281	1.14	0.356006656	0.81966	0.999618822	0.027872407
23mt	#7	2.329	28.1	2.2	0.281	2.329	0.727315352	1.674551	0.999228935	0.056942839
23mt	#8	3.389	28.1	2.2	0.281	3.389	1.058339084	2.436691	0.998873543	0.082859288
23mt	#10	1.814	28.1	2.2	0.281	1.814	0.566487784	1.304266	0.999395482	0.044351357
23mt	#11	2.094	28.1	2.2	0.281	2.094	0.653928015	1.505586	0.999305322	0.051197211
23mt	#12	3.039	28.1	2.2	0.281	3.039	0.949038795	2.185041	0.999000539	0.07430197
23mt	#13	2.083	28.1	2.2	0.281	2.083	0.650492863	1.497677	0.999305789	0.050928267
23mt	#14	3.861	28.1	2.2	0.281	3.861	1.205738331	2.776059	0.998711822	0.094399442
23mt	#15	2.682	28.1	2.2	0.281	2.682	0.8375525	1.928358	0.999095284	0.065573505
23mt	#16	1.454	28.1	2.2	0.281	1.454	0.454064629	1.045426	0.999521053	0.035549544
23mt	#17	1.477	28.1	2.2	0.281	1.477	0.46124722	1.061963	0.999512274	0.036111882
23mt	#18	1.554	28.1	2.2	0.281	1.554	0.485293283	1.117326	0.999485105	0.037994492
23mt	#19	2.196	28.1	2.2	0.281	2.196	0.685781242	1.578924	0.999274402	0.053691058
23mt	#20	2.588	28.1	2.2	0.281	2.588	0.808197566	1.860772	0.999117209	0.063275254
23mt	#21	3.139	28.1	2.2	0.281	3.139	0.980267449	2.256941	0.99896514	0.076746918
23mt	#22	3.234	28.1	2.2	0.281	3.234	1.00993467	2.325246	0.998931106	0.079069618
23mt	#23	2.981	28.1	2.2	0.281	2.981	0.930926176	2.143339	0.999004633	0.0728839
23mt	#24	2.667	28.1	2.2	0.281	2.667	0.832868202	1.917573	0.99910706	0.065206763
23mt	#25	3.103	28.1	2.2	0.281	3.103	0.969025134	2.231057	0.998958302	0.075866736
23mt	#26	3.351	28.1	2.2	0.281	3.351	1.046472196	2.409369	0.998876262	0.081930207
13ba	#67	18.51			0	18.51	0	18.51	1	0
13ba	#72	19.593			0	19.593	0	19.593	1	0
13ba	#73	19.463			0	19.463	0	19.463	1	0
13ba	#81	16.085			0	16.085	0	16.085	1	0
13ba	#92	13.846			0	13.846	0	13.846	1	0
13ba	#98	18.045			0	18.045	0	18.045	1	0

13ba	#100	17.995			0	17.995	0	17.995	1	0
FR	#1	1.002	33.9	6.8	0.339	1.002	0.377497749	0.662322	0.99959446	0.075722262
FR	#2	0.943	33.9	6.8	0.339	0.943	0.355269837	0.623323	0.999624499	0.071263566
FR	#3	0.975	33.9	6.8	0.339	0.975	0.367325654	0.644475	0.999613373	0.073681842
FR	#4	1.172	33.9	6.8	0.339	1.172	0.441544273	0.774692	0.999531153	0.088569353
FR	#5	1.508	33.9	6.8	0.339	1.508	0.568130344	0.996788	0.999386199	0.113961249
FR	#6	1.44	33.9	6.8	0.339	1.44	0.542511734	0.95184	0.999422603	0.108822413
FR	#7	0.969	33.9	6.8	0.339	0.969	0.365065188	0.640509	0.999612297	0.073228415
FR	#8	0.979	33.9	6.8	0.339	0.979	0.368832631	0.647119	0.999605217	0.073984126
FR	#9	1.295	33.9	6.8	0.339	1.295	0.487883817	0.855995	0.999480686	0.0978646
FR	#10	1.58	33.9	6.8	0.339	1.58	0.595255931	1.04438	0.999357701	0.11940237
FR	#11	0.849	33.9	6.8	0.339	0.849	0.319855877	0.561189	0.999658843	0.064159881
FR	#12	1.211	33.9	6.8	0.339	1.211	0.456237299	0.800471	0.999521147	0.091516626
FR	#13	1.564	33.9	6.8	0.339	1.564	0.589228023	1.033804	0.999373047	0.118193232
FR	#14	0.979	33.9	6.8	0.339	0.979	0.368832631	0.647119	0.999605769	0.073984126
FR	#15	1.047	33.9	6.8	0.339	1.047	0.39445124	0.692067	0.999582862	0.079122963
FR	#26	0.057	33.9	6.8	0.339	0.057	0.021474423	0.037677	0.99996263	0.004307554
FR	#33	1.09	33.9	6.8	0.339	1.09	0.410651243	0.72049	0.999560945	0.082372521
FR	#35	0	33.9	6.8	0.339	0	0	0	1	0
4mte	#36	2.296	41	11	0.41	2.296	1.046171022	1.35464	0.998863699	0.28068003
4mte	#37	2.182	41	11	0.41	2.182	0.994226991	1.28738	0.998920198	0.266743827
4mte	#38	1.106	41	11	0.41	1.106	0.503948236	0.65254	0.999454178	0.135205624
4mte	#40	1.617	41	11	0.41	1.617	0.73678508	0.95403	0.999193858	0.197674046
4mte	#41	1.024	41	11	0.41	1.024	0.466584986	0.60416	0.999487663	0.125181338
4mte	#43	1.452	41	11	0.41	1.452	0.661602929	0.85668	0.999267805	0.177503225
4mte	#44	1.532	41	11	0.41	1.532	0.698054881	0.90388	0.999238406	0.187283017
4mte	#45	2.127	41	11	0.41	2.127	0.969166274	1.25493	0.998943872	0.26002022
4mte	#46	0.104	41	11	0.41	0.104	0.047387538	0.06136	0.999950536	0.01271373
4mte	#47	1.975	41	11	0.41	1.975	0.899907565	1.16525	0.999021347	0.241438615
4mte	#48	24.381	41	11	0.41	24.381	11.10918802	14.38479	0.986448413	2.980513859
4mte	#51	0	41	11	0.41	0	0	0	1	0
26mt	#19	0.544	43.4	3.4	0.434	0.544	0.262382929	0.307904	0.999722557	0.020555345
26mt	#20	0.473	43.4	3.4	0.434	0.473	0.228138098	0.267718	0.999756811	0.01787257
26mt	#22	0.015	43.4	3.4	0.434	0.015	0.007234823	0.00849	0.99999213	0.000566783
26mt	#23	0.62	43.4	3.4	0.434	0.62	0.299039367	0.35092	0.999677409	0.023427047
26mt	#24	0.861	43.4	3.4	0.434	0.861	0.415278863	0.487326	0.999558258	0.032533367
26mt	#25	0.789	43.4	3.4	0.434	0.789	0.380551711	0.446574	0.99959287	0.029812807

26mt	#26	1.027	43.4	3.4	0.434	1.027	0.495344242	0.581282	0.999459948	0.03880577
26mt	#27	1.171	43.4	3.4	0.434	1.171	0.564798547	0.662786	0.999396513	0.044246891
26mt	#29	2.5	43.4	3.4	0.434	2.5	1.2058039	1.415	0.998715574	0.0944639
26mt	#30	1.041	43.4	3.4	0.434	1.041	0.502096744	0.589206	0.999459931	0.039334768
26mt	#31	0.852	43.4	3.4	0.434	0.852	0.410937969	0.482232	0.99956676	0.032193297
26mt	#32	1.05	43.4	3.4	0.434	1.05	0.506437638	0.5943	0.999467733	0.039674838
26mt	#33	0.81	43.4	3.4	0.434	0.81	0.390680464	0.45846	0.999589723	0.030606304
26mt	#37	3.767	43.4	3.4	0.434	3.767	1.816905317	2.132122	0.9976831	0.142338205
26mt	#38	1.184	43.4	3.4	0.434	1.184	0.571068727	0.670144	0.999393684	0.044738103
26mt	#39	11.415	43.4	3.4	0.434	11.415	5.505700607	6.46089	0.994137914	0.431322167
26mt	#40	0.427	43.4	3.4	0.434	0.427	0.205951306	0.241682	0.99978198	0.016134434
26mt	#47	0	43.4	3.4	0.434	0	0	0	1	0
26mt	#52	2.985	43.4	3.4	0.434	2.985	1.439729857	1.68951	0.990007104	0.112789897
26mt	#54	0	43.4	3.4	0.434	0	0	0	1	0
26mt	#59	0.724	43.4	3.4	0.434	0.724	0.349200809	0.409784	0.999629559	0.027356745
26mt	#63	0.889	43.4	3.4	0.434	0.889	0.428783867	0.503174	0.999540198	0.033591363
3mte	#74	0.008			0	0.008	0	0.008	1	0
3mte	#80	0			0	0	0	0	1	0
3mte	#89	0.006			0	0.006	0	0.006	1	0
3mte	#94	0.086			0	0.086	0	0.086	1	0
3mte	#95	28.647			0	28.647	0	28.647	1	0
3mte	#96	5.255			0	5.255	0	5.255	1	0
3mte	#98	1.371			0	1.371	0	1.371	1	0
3mte	#99	1.723			0	1.723	0	1.723	1	0
3mte	#100	2.332			0	2.332	0	2.332	1	0
3mte	#101	76.175			0	76.175	0	76.175	1	0
3mte	#102	68.232			0	68.232	0	68.232	1	0

Tabella F3. Analisi alla Microsonda: Muscoviti (Dicchi)

		SiO2	TiO2	Al2O3	MgO	CaO	MnO	FeO	SrO	BaO	Na2O	К2О	F-	CI-	P2O5	Cr2O3	SO3	Total	MUSCOVITE	WM_PHLOGOPITE	AL_CELADONITE	FE_AL_CELADONITE	PARAGONITE	TI_MN_CA_WM	хон
3MTE	WM	47.571	0.077	33.633	1.463	0.011	0.003	1.762	0	0.096	0.347	9.146	0			0.002		94.111	0.751715	0.02825	0.094206	0.063648	0.054301	0.00788	1
3MTE	WM	50.838	0.044	30.143	1.745	0.171	0	1.701	0	0.074	0.074	9.086	0.091			0		93.967	0.625079	-0.03087	0.241679	0.132158	0.012009	0.019948	0.990501
3MTE	WM	46.616	0.035	31.461	2.508	0.108	0.018	4.435	0	0.047	0.132	9.785	0.155	0.006	0.021		0	95.327	0.693809	0.05	0.101509	0.00184	0.019881	0.132961	0.9834
3MTE	WM	51.652	0.02	33.355	1.391	0.356	0.043	2.358	0	0.146	0.174	8.332	0.088	0.008	0.03		0	97.953	0.633916	-0.00099	0.152788	0.145296	0.029579	0.039409	0.990791
3MTE	WM	46.196	0	34.828	1.639	0.011	0.005	2.56	0	0.118	0.5	9.562	0.113	0.017	0.029		0	95.578	0.771964	0.05	0.039093	0.008749	0.073297	0.056897	0.987279
3MTE	WM	48.1	0.094	33.336	1.501	0.023	0	1.883	0	0.121	0.222	9.306	0.119				0.041	94.746	0.750133	0.024093	0.105943	0.074557	0.034784	0.01049	0.98758
3MTE	WM	45.729	0.304	36.417	0.977	0	0	1.394	0	0.005	0.581	8.999	0.106				0.016	94.528	0.828253	0.045581	0.011975	0.009585	0.089341	0.015264	0.988925
3MTE	WM	44.989	0.264	35.734	1.253	0.02	0.023	1.94	0	0.121	0.53	9.024	0.013				0.034	93.945	0.812743	0.05	0.002025	0.000639	0.0815	0.053092	0.99863
3MTE	WM	46.149	0.197	36.375	1.033	0	0	1.273	0	0.036	0.57	9.222	0				0	94.855	0.82309	0.041256	0.023075	0.015952	0.085777	0.01085	1
3MTE	WM	46.255	0.173	36.351	0.884	0	0	1.127	0	0.057	0.45	9.26	0				0	94.557	0.83982	0.030492	0.029558	0.021139	0.068656	0.010335	1
4MTE	WM	45.379	0.078	34.048	1.665	0.022	0.097	2.326	0	0.339	0.39	8.656	0	0.003	0.005		0.018	93.026	0.763459	0.05	0.049174	0.011842	0.063249	0.062277	0.999829
4MTE	WM	44.756	0	33.627	1.793	0	0.046	1.876	0	0.343	0.398	9.397	0.118	0	0		0.039	92.393	0.775962	0.05	0.055678	0.00852	0.059846	0.049994	0.987268
4MTE	WM	45.018	0.118	35.596	1.294	0	0.036	1.593	0	0.568	0.451	8.763	0.131				0.003	93.571	0.804552	0.05	0.022969	0.009618	0.071229	0.041632	0.986129
4MTE	WM	48.759	0.143	34.054	1.199	0.02	0.044	1.342	0	0.316	0.203	8.083	0.066				0.068	94.297	0.746658	0.001021	0.120181	0.07546	0.036274	0.020407	0.993189
4MTE	WM	46.615	0.096	34.414	1.336	0.13	0	1.575	0	0.377	0.27	8.174	0.132				0.143	93.262	0.754127	0.036172	0.079916	0.052851	0.046581	0.030353	0.986087
4MTE	WM	46.42	0.137	34.383	1.585	0.045	0.018	1.862	0	0.505	0.279	8.36	0.124				0.034	93.752	0.765296	0.05	0.065695	0.0426	0.047235	0.029174	0.986961
4MTE	WM	46.504	0.153	35.494	1.324	0.056	0	1.704	0	0.421	0.245	8.465	0.105				0.026	94.497	0.797474	0.05091	0.048293	0.034867	0.04131	0.027146	0.989062
4MTE	WM	50.266	0	32.726	1.427	0.188	0.039	1.429	0	0.068	0.135	7.498	0				0.013	93.789	0.680546	-0.01512	0.183033	0.102822	0.026031	0.022683	1
23MT	WM	45.78	0	30.985	1.548	0	0	2.443	0	0.184	0.213	9.984	0			0.014		91.151	0.730016	0.037836	0.103471	0.091605	0.031234	0.005839	1
23MT	WM	46.975	0.033	33.224	1.434	0.099	0	2.187	0	0.282	0.294	9.199	0.045			0		93.772	0.731765	0.038837	0.088878	0.07604	0.045522	0.018959	0.995232
23MT	WM	47.754	0.043	32.184	1.486	0.06	0.015	2.262	0	0.165	0.195	10.294	0.219			0.026		94.703	0.724849	0.024176	0.113782	0.097162	0.02772	0.012311	0.976783
26MT	WM	46.031	0	35.987	0.486	0.021	0.019	0.762	0	0	0.726	9.89	0.033			0.005		93.96	0.814274	0.004964	0.041936	0.036886	0.100207	0.001734	0.996512
26MT	WM	44.121	0.058	35.893	1.722	0	0	0.555	0	0.079	0.708	9.967	0			0		93.103	0.829238	0.05	-0.01926	0.003991	0.097226	0.038806	1
26MT	WM	46.004	0.034	37.09	0.336	0	0	0.864	0	0.017	0.831	9.323	0.213	0.017	0.032		0.048	94.809	0.824469	0.012785	0.016915	0.024401	0.119246	0.002183	0.976785
26MT	WM	42.788	0.144	26.477	6.843	0.247	0.662	9.154	0	0.032	0.09	5.111	0.006	0	0.034		0	91.588	0.424801	0.05	1.705539	-1.86778	0.025029	0.662413	0.99938
26MT	WM	42.399	0.014	28.222	5.211	0.043	1.165	7.861	0	0.038	0.186	7.788	0	0.015	0		0.036	92.978	0.561105	0.05	0.983758	-1.15905	0.03482	0.529365	0.999155
28MT	WM	34.066	3.228	18.028	7.987	0.099	0.232	19.103	0	0.089	0.132	7.643	0.05	0.06	0.059		0.061	90.837	-0.00035	0.150623	1.444512	-1.92847	0.025222	1.308471	0.990842
28MT	WM	46.852	0	33.766	1.838	0.057	0.06	1.879	0	0.101	0.375	9.466	0	0.009	0.016		0	94.419	0.754133	0.05	0.083198	0.039151	0.056346	0.017173	0.999493
28MT	WM	42.319	0	32.011	3.597	0.02	0.171	5.847	0	0.084	0.406	8.021	0.151	0.012	0		0.024	92.663	0.682762	0.05	2.336695	-2.50095	0.071082	0.360409	0.983347

FR	WM	48.652	0.029	35.479	0.304	0.062	0.028	0.608	0	0.05	0.116	9.611	0.098			0	95.037	0.831479	-0.03635	0.084224	0.094496	0.01789	0.008265	0.989897
FR	WM	46.475	0.523	36.316	0.485	0.006	0	0.965	0	0	0.674	9.318	0.127	0	0.005	0.012	94.906	0.80912	0.004917	0.028626	0.031952	0.098996	0.02639	0.986777
FR	WM	47.34	1.65	34.398	0.728	0.003	0.031	1.095	0	0	0.578	9.13	0.331	0	0.021	0.036	95.341	0.741981	-0.01836	0.057997	0.048937	0.087749	0.0817	0.965651
FR	WM	46.367	0.586	35.956	0.553	0.038	0	1.141	0	0	0.669	9.1	0.044	0.016	0.043	0.069	94.582	0.793114	0.008537	0.030546	0.035356	0.100186	0.032261	0.994509
FR	WM	46.855	0	37.153	0.067	0.052	0.053	0.14	0	0.04	0.165	8.647	0	0.008	0.024	0.039	93.243	0.899391	-0.02144	0.040416	0.047376	0.028007	0.00625	0.999554
FR	WM	45.524	0.497	36.438	0.398	0.021	0	0.914	0	0.067	0.828	9.119	0.189	0	0	0.057	94.052	0.802694	0.010662	0.016276	0.020968	0.120819	0.028581	0.980085
FR	WM	46.079	0.359	36.298	0.382	0.02	0	0.891	0	0	0.793	8.915	0.139	0	0.005	0	93.881	0.797635	0.003552	0.026138	0.034201	0.118892	0.019582	0.98541
FR	WM	48.75	0	33.737	1.126	0.259	0.007	0.958	0	0	0.113	8.473	0.189	0	0.037	0.118	93.767	0.739245	-0.01439	0.156519	0.074704	0.019379	0.024545	0.980341
FR	WM	47.73	0.015	34.145	0.873	0.159	0	0.662	0	0.054	0.089	9.167	0	0.011	0.019	0.063	92.987	0.793625	-0.01839	0.13598	0.057845	0.01431	0.016634	0.999379
FR	WM	50.378	0.034	34.59	1.079	0.107	0.015	0.69	0	0.044	0.1	8.798	0.202	0.006	0.053	0.015	96.111	0.764171	-0.0278	0.172059	0.061724	0.016787	0.013055	0.979243
FR	WM	47.189	0.236	36.841	0.514	0.026	0	1.037	0	0	0.709	9.137	0.188	0.006	0.037	0.039	95.959	0.801979	0.008858	0.032941	0.037282	0.105266	0.013675	0.980341
FR	WM	46.286	0.864	35.888	0.376	0.038	0.009	0.972	0	0.049	0.739	8.9	0.126	0.007	0	0.027	94.281	0.778385	-0.00469	0.02739	0.03972	0.111532	0.047663	0.986425
FR	WM	46.226	0.206	35.885	0.487	0.006	0.006	1.222	0	0.038	0.552	9.082	0.163	0.019	0.021	0.036	93.949	0.817928	0.011122	0.030963	0.043585	0.08442	0.011982	0.981796

		Na2O	K2O	BaO	MnO	AI2O3	MgO	SiO2	CaO	FeO	TiO2	Total	MUSCOVITE	WM_PHLOGOPITE	AL_CELADONITE	FE_AL_CELADONITE	PARAGONITE	TI_MN_CA_WM	ХОН
28mt	#73	0.39	10.635	0.01	0.021	34.431	1.469	44.792	0.029	2.267	0	94.048	0.815578	0.05	0.025662	0.005515	0.052603	0.050642	1
23mt	#4	0.264	10.71	0.323	0.015	33.28	1.821	43.56	0.031	3.854	0	93.862	0.784601	0.05	-0.0269	0.008008	0.035734	0.148554	1
23mt	#5	0.406	10.604	0.167	0	35.553	0.761	45.327	0	1.468	0.013	94.303	0.847329	0.035134	0.027664	0.029928	0.054705	0.00524	1
23mt	#6	0.504	10.441	0.144	0	35.336	0.658	45.293	0.003	1.14	0.012	93.534	0.834164	0.020786	0.036644	0.035591	0.06808	0.004735	1
23mt	#7	0.489	10.334	0.145	0	34.884	1.119	45.053	0.053	2.329	0.017	94.428	0.806283	0.05	0.025194	0.018281	0.066593	0.033649	1
23mt	#8	0.297	10.563	0.313	0.017	33.777	1.56	44.071	0.008	3.389	0.023	94.021	0.797338	0.05	0.002814	-9.6E-05	0.040542	0.109402	1
23mt	#10	0.143	10.682	0.111	0.015	32.523	1.2	47.253	0.057	1.814	0.023	93.826	0.760578	0.009844	0.108866	0.092271	0.019774	0.008667	1
23mt	#11	0.232	11.004	0.106	0	33.09	1.267	46.423	0.018	2.094	0.007	94.243	0.781681	0.033786	0.077358	0.071741	0.030898	0.004537	1
23mt	#12	0.394	10.498	0.308	0	35.185	1.318	44.268	0	3.039	0.023	95.036	0.823439	0.05	-0.02531	0.001003	0.053454	0.097411	1
23mt	#13	0.117	10.188	0.207	0	31.514	1.545	47.982	0.143	2.083	0.028	93.811	0.700188	0.012277	0.143409	0.108419	0.016894	0.018813	1
23mt	#14	0.395	10.279	0.262	0.015	33.819	1.471	43.511	0.027	3.861	0.01	93.653	0.788675	0.05	-0.03235	0.00579	0.054658	0.133224	1
23mt	#15	0.411	10.392	0.298	0.079	34.66	0.948	43.164	0.004	2.682	0.022	92.664	0.838958	0.05	-0.01159	-0.00396	0.056231	0.070359	1
23mt	#16	0.453	10.621	0.143	0.031	35.995	0.55	45.667	0	1.454	0.017	94.935	0.849727	0.027995	0.022949	0.033993	0.06063	0.004706	1
23mt	#17	0.377	10.839	0.286	0	35.576	0.63	45.483	0.025	1.477	0.003	94.7	0.842009	0.028514	0.030269	0.039797	0.049787	0.009625	1
23mt	#18	0.394	10.612	0.219	0	36.037	0.575	44.94	0.031	1.554	0.012	94.377	0.862135	0.038477	0.014966	0.022675	0.052921	0.008826	1
23mt	#19	0.512	10.704	0.238	0.021	35.378	0.783	44.713	0.036	2.196	0.035	94.619	0.829341	0.05	0.014173	0.018795	0.067191	0.020501	1

23mt	#20	0.35	9.747	0.24	0.034	33.755	1.071	43.744	0.091	2.588	0.015	91.639	0.804822	0.05	0.025821	0.019141	0.051067	0.049149	1
23mt	#21	0.445	10.658	0.29	0.062	35.064	1.141	43.992	0.003	3.139	0.005	94.802	0.822388	0.05	-0.02339	-0.00144	0.059169	0.093272	1
23mt	#22	0.442	10.434	0.286	0	34.646	1.341	44.136	0.006	3.234	0.03	94.558	0.804557	0.05	-0.01462	-0.00017	0.060003	0.100227	1
23mt	#23	0.268	10.53	0.284	0.031	33.664	1.734	44.095	0	2.981	0.015	93.606	0.801241	0.05	0.010264	-0.00106	0.036976	0.102577	1
23mt	#24	0.108	10.801	0.016	0.019	30.692	1.645	47.315	0.087	2.667	0.008	93.362	0.707462	0.028792	0.126447	0.114998	0.014841	0.007461	1
23mt	#25	0.359	10.544	0.345	0.005	33.549	1.648	43.47	0.031	3.103	0.042	93.099	0.791372	0.05	-0.00338	0.000402	0.048566	0.11304	1
23mt	#26	0.381	10.24	0.249	0.01	34.393	1.368	43.066	0.039	3.351	0.09	93.192	0.816914	0.05	-0.06068	0.014104	0.053046	0.126613	1
13ba	#67	0.31	8.472	0	0.163	19.079	9.972	35.05	0.085	18.51	0.14	91.785	0.1068	0.100016	1.243676	-1.77946	0.052268	1.276695	1
13ba	#72	0.208	9.262	0	0.133	18.018	8.614	34.333	0.022	19.593	1.414	91.601	0.032047	0.139583	1.218195	-1.71056	0.032876	1.287863	1
13ba	#73	0.19	9.197	0	0.182	18.709	8.093	34.53	0.055	19.463	1.566	91.989	0.172569	0.081429	1.302285	-1.84407	0.030305	1.257486	1
13ba	#81	0.186	9.694	0	0.253	21.267	9.711	35.7	0.025	16.085	0	92.926	0.321205	0.05	1.292375	-1.86097	0.028276	1.169119	1
13ba	#92	0.239	8.283	0	0.121	23.23	7.902	35.251	0.017	13.846	0	88.893	0.417482	0.05	1.139207	-1.6604	0.041874	1.011838	1
13ba	#98	0.299	8.975	0.095	0.155	16.136	9.673	35.11	0.022	18.045	3.815	92.329	-0.3328	0.270397	1.603144	-1.92601	0.047984	1.337285	1
13ba	#100	0.274	9.301	0.078	0.138	16.737	9.758	35.213	0.048	17.995	3.304	92.849	-0.2393	0.235647	1.559938	-1.92292	0.042521	1.324116	1
FR	#1	0.655	10.155	0	0.017	35.155	0.582	45.169	0.034	1.002	0.449	93.22	0.810312	0.010514	0.032911	0.031789	0.089066	0.025407	1
FR	#2	0.454	10.624	0.019	0.001	36.179	0.456	45.556	0	0.943	0.515	94.752	0.860952	0.010524	0.019048	0.022096	0.060984	0.026395	1
FR	#3	0.685	10.57	0.012	0.012	35.805	0.4	46.082	0.007	0.975	0.595	95.147	0.812901	-0.00065	0.028518	0.039036	0.089556	0.030643	1
FR	#4	0.627	10.161	0.004	0.018	34.747	0.395	45.408	0.05	1.172	1.721	94.307	0.781273	-0.0096	0.019543	0.032555	0.085382	0.090847	1
FR	#5	0.318	9.231	0	0.015	34.163	0.726	46.215	0.097	1.508	0.399	92.674	0.790996	0.007881	0.056951	0.066321	0.049358	0.028493	1
FR	#6	0.697	10.2	0.01	0	35.493	0.415	45.43	0	1.44	0.39	94.078	0.813042	0.015122	0.019593	0.038167	0.09404	0.020036	1
FR	#7	0.625	10.226	0.023	0.005	35.818	0.487	44.735	0.036	0.969	1.371	94.299	0.825576	0.010276	0.003198	0.003565	0.084765	0.07262	1
FR	#8	0.674	10.18	0.03	0.017	35.393	0.424	44.345	0.059	0.979	1.458	93.563	0.812236	0.006468	0.004713	0.006098	0.090946	0.079539	1
FR	#9	0.685	10.284	0.037	0	35.48	0.411	45.404	0.025	1.295	0.449	94.073	0.810763	0.011187	0.021979	0.03884	0.091637	0.025594	1
FR	#10	0.062	10.171	0.061	0.046	31.123	1.408	48.23	0.064	1.58	0.038	92.788	0.719189	-0.01162	0.168342	0.105969	0.009115	0.009008	1
FR	#11	0.646	10.575	0	0	36.107	0.438	45.004	0.034	0.849	0.242	93.898	0.846535	0.014043	0.019157	0.020843	0.084707	0.014716	1
FR	#12	0.76	10.229	0	0	36.746	0.229	46.029	0.028	1.211	0.173	95.408	0.827861	0.011425	0.012284	0.036453	0.101279	0.010698	1
FR	#13	0.069	10.291	0.03	0	32.642	0.764	48.587	0.055	1.564	0.093	94.098	0.76206	-0.02709	0.114096	0.130978	0.009998	0.009957	1
FR	#14	0.728	10.078	0	0	35.718	0.433	45.464	0.008	0.979	0.284	93.694	0.816911	0.007791	0.027084	0.034368	0.098853	0.014992	1
FR	#15	0.601	10.547	0	0.031	36.06	0.468	45.58	0	1.047	0.359	94.697	0.840999	0.013818	0.021019	0.026405	0.079721	0.018038	1
FR	#26	0.053	0.006	0	0.478	0	0.055	0.026	56.893	0.057	0	57.568	-9.5764	7.578316	1.264466	0.733739	0.001669	0.998205	1
FR	#33	0.697	10.284	0.012	0.01	36.218	0.358	44.78	0.01	1.09	0.202	93.663	0.847204	0.020435	0.010258	0.017506	0.093277	0.01132	1
FR	#35	10.099	1.636	0.008	0.005	18.586	0.012	65.084	0.27	0	0	95.702	-0.71295	-0.39663	1.204616	0	0.891652	0.013315	1

4mte	#36	0.403	10.368	0.611	0	33.209	1.535	43.56	0	2.296	0.148	92.134	0.780417	0.05	0.035524	0.009765	0.054847	0.069446	1
4mte	#37	0.4	10.118	0.615	0	33.443	1.486	43.736	0.017	2.182	0.147	92.146	0.781891	0.05	0.036791	0.01271	0.055667	0.062942	1
4mte	#38	0.093	9.378	0.045	0	32.013	1.172	48.489	0.126	1.106	0.023	92.449	0.727994	-0.02648	0.1767	0.093543	0.014666	0.013576	1
4mte	#40	0.313	9.735	0.554	0.006	33.435	1.157	44.414	0.081	1.617	0.175	91.492	0.776415	0.040753	0.059089	0.046311	0.045486	0.031947	1
4mte	#41	0.14	9.185	0.093	0.043	32.583	1.041	46.966	0.08	1.024	0.033	91.192	0.766343	-0.01222	0.136418	0.075252	0.022442	0.011765	1
4mte	#43	0.384	9.945	0.282	0.025	33.241	0.899	43.924	0	1.452	0.305	90.46	0.803064	0.027552	0.047258	0.042841	0.054999	0.024286	1
4mte	#44	0.41	10.68	0.2	0	33.836	0.889	43.813	0.018	1.532	0.377	91.757	0.821817	0.03586	0.031055	0.030031	0.054729	0.026508	1
4mte	#45	0.454	10.346	0.211	0	34.189	1.154	43.053	0.069	2.127	0.234	91.839	0.822304	0.05	0.002977	0.00116	0.061868	0.06169	1
4mte	#46	7.654	3.687	0.052	0	24.799	0.045	59.53	0.101	0.104	0	95.975	-0.32637	-0.27452	0.36433	0.475677	0.754348	0.006532	1
4mte	#47	0.466	10.293	0.512	0	33.101	1.418	44.061	0	1.975	0.205	92.034	0.77182	0.05	0.048217	0.030175	0.063518	0.03627	1
4mte	#48	0.133	0.748	0	0.231	18.834	8.403	27.762	0.507	24.381	0.013	81.016	-1.16171	0.412047	0.349349	-0.65662	0.147365	1.909571	1
4mte	#51	11.002	1.06	0.028	0	21.199	0.036	62.848	0.409	0	0	96.586	-0.65733	-0.34645	1.062239	0	0.922143	0.019397	1
26mt	#19	0.772	10.683	0	0.006	37.496	0.08	45.111	0	0.544	0.025	94.721	0.877548	0.007626	0.003013	0.011556	0.098999	0.001258	1
26mt	#20	0.636	9.662	0	0.001	36.615	1.258	45.259	0.031	0.473	0.023	93.962	0.842331	0.044718	0.01536	0.003241	0.090752	0.003597	1
26mt	#22	10.804	0.204	0	0	19.35	0	60.05	1.661	0.015	0.012	92.099	-0.79038	-0.36169	0	1.162772	0.911286	0.078014	1
26mt	#23	0.725	10.003	0.007	0.015	37.099	0.151	44.157	0.043	0.62	0.017	92.841	0.878199	0.017687	0.000273	0.00063	0.098906	0.004306	1
26mt	#24	0.756	10.217	0.01	0.07	36.345	0.305	45.441	0	0.861	0.133	94.142	0.834707	0.009533	0.018461	0.029212	0.101083	0.007004	1
26mt	#25	0.725	9.955	0	0.026	36.504	0.284	45.122	0.011	0.789	0.188	93.607	0.845039	0.010285	0.013553	0.021144	0.099596	0.010384	1
26mt	#26	0.778	9.713	0	0.067	35.238	0.575	44.069	0.055	1.027	0.319	91.842	0.811558	0.02496	0.017376	0.01739	0.108044	0.020671	1
26mt	#27	0.551	10.138	0.028	0.035	35.627	0.464	45.627	0.01	1.171	0.052	93.706	0.833668	0.013705	0.029927	0.04233	0.076223	0.004146	1
26mt	#29	0.267	10.934	0	0.272	33.345	1.247	45.293	0	2.5	0.072	93.932	0.802567	0.05	0.04825	0.03669	0.035771	0.026723	1
26mt	#30	0.729	10.269	0	0	35.878	0.322	44.72	0.011	1.041	0.117	93.091	0.838887	0.014839	0.014971	0.027171	0.097332	0.0068	1
26mt	#31	0.771	10.12	0	0	36.645	0.292	46.087	0.01	0.852	0.209	94.987	0.826137	0.003669	0.020997	0.034371	0.103702	0.011125	1
26mt	#32	0.755	9.961	0	0	37.014	0.348	45.89	0.013	1.05	0.24	95.273	0.835553	0.016454	0.011863	0.020062	0.103182	0.012886	1
26mt	#33	0.663	10.062	0.018	0.041	37.447	0.262	45.903	0.018	0.81	0.132	95.361	0.859798	0.013573	0.009996	0.017346	0.090881	0.008406	1
26mt	#37	0.082	0.084	0	0.19	8.251	21.363	43.607	0.992	3.767	0.042	78.383	-2.56	0.405136	12.72696	-11.5923	0.119876	1.900355	1
26mt	#38	0.594	9.681	0.006	0.173	37.188	0.459	44.722	0.066	1.184	0.227	94.304	0.866749	0.041936	-0.00422	-0.0061	0.084897	0.01674	1
26mt	#39	0.139	9.222	0.707	0.501	18.796	4.208	48.401	0.104	11.415	0.047	93.543	0.201113	0.05	0.337788	0.065742	0.02167	0.323687	1
26mt	#40	0.692	10.257	0.047	0	39.438	0.043	43.592	0.097	0.427	0.023	94.619	0.9418	0.039415	-0.01265	-0.07027	0.09216	0.009546	1
26mt	#47	2.278	15.244	0	0	18.012	0.043	61.1	0.098	0	0	96.779	0.03016	-0.38622	1.167407	0	0.184271	0.004378	1
26mt	#52	0.001	0.019	0.267	0	0	0.053	0	0.039	2.985	10.926	14.29	-10.2019	3.961017	0.05663	1.786811	0.015042	5.382423	1
26mt	#54	10.305	0.176	0	0.014	21.08	0.007	63.227	2.046	0	0.005	96.863	-0.7913	-0.35102	1.1521	0	0.892119	0.098105	1

26mt	#59	0.689	10.32	0	0.035	37.777	0.197	44.591	0.001	0.724	0.068	94.406	0.896536	0.025495	-0.00577	-0.01189	0.092089	0.003544	1
26mt	#63	0.847	10.211	0	0	36.832	0.257	44.273	0.057	0.889	0.015	93.384	0.852369	0.024276	0.002377	0.004612	0.111427	0.004939	1
3mte	#74	0.751	15.588	0.4	0.012	17.948	0	62.065	0.186	0.008	0	96.96	0.112532	-0.39323	0	1.197207	0.067088	0.016407	1
3mte	#80	10.935	0.06	0	0.032	19.246	0.007	65.019	0.767	0	0	96.069	-0.80803	-0.38597	1.197477	0	0.959348	0.037176	1
3mte	#89	8.131	2.339	0	0.044	23.582	0.032	60.959	1.114	0.006	0.007	96.216	-0.51889	-0.30148	0.870045	0.099645	0.790512	0.060162	1
3mte	#94	5.16	0.44	0	0	41.322	0.081	44.891	2.619	0.086	0	94.602	-0.0996	0.040386	0.063422	0.037741	0.748175	0.209878	1
3mte	#95	0.001	0.035	0.016	0.16	20.837	11.068	24.54	0.041	28.647	0.107	85.454	-2.10518	0.741161	0.132434	-0.27493	0.027005	2.47951	1
3mte	#96	0.104	8.175	0.066	0.018	30.588	2.422	44.525	0.161	5.255	0.15	91.469	0.680872	0.05	0.065406	-0.0105	0.018583	0.195637	1
3mte	#98	0.507	9.326	0.068	0.003	30.456	0.774	33.418	0.031	1.371	0.165	76.121	0.930874	0.05	1.048026	-1.2252	0.075942	0.120355	1
3mte	#99	0.147	6.864	0.078	0	20.255	0.867	23.857	0.105	1.723	0	53.897	0.877399	0.05	-0.70105	0.576917	0.031017	0.165712	1
3mte	#100	0.043	9.581	0.039	0	30.977	1.481	48.483	0.139	2.332	0.082	93.161	0.695618	0.004218	0.146631	0.129559	0.006706	0.017268	1
3mte	#101	0.108	0	0	0	0	0.194	4.101	0.257	76.175	0	80.836	-9.32785	3.685631	-0.01638	1.585224	0.431157	4.64222	1
3mte	#102	0.082	0.005	0	0	0.495	0.41	6.345	0.585	68.232	0.012	76.167	-8.929	3.401207	-0.0452	1.781575	0.201235	4.590189	1

	SiO2	TiO2	Al2O3	Cr2O3	FeO	Fe2O3	MnO	MgO	CaO	Na2O	K2O	BaO	F-	H2O	Total	Total_corr.	MUSCOVITE	WM_PHLOGOPITE	AL_CELADONITE	FE_AL_CELADONITE	PARAGONITE	TI_MN_CA_WM	ХОН
MT9	44.147	0.054	35.286	0	-1.26916	4.977894	0.029	1.693	0.031	0.41	9.565	0.351	0.078	4.44991	99.80264	99.74906	0.801684	0.05	-0.09013	0.037905	0.060368	0.140177	0.986618
MT9	44.193	0.111	34.997	0	-0.62129	3.820015	0	1.613	0.034	0.447	9.633	0.26	0.072	4.421395	98.98012	98.93312	0.800634	0.05	-0.0359	0.007757	0.065192	0.112314	0.988168
MT9	44.791	0.052	35.433	0	-0.79139	4.189091	0.054	1.641	0.02	0.44	9.585	0.297	0.039	4.503027	100.2527	100.2214	0.798665	0.05	-0.0416	0.011254	0.064537	0.117142	0.992231
MT9	44.077	0.008	34.263	0	-3.62335	8.984498	0.018	2.572	0.01	0.411	9.572	0.218	0.071	4.50894	101.0901	101.0433	0.754791	0.05	-0.45551	0.359986	0.06081	0.229924	0.988443
MT9	44.632	0.032	33.857	0	-2.71078	7.829176	0.061	2.444	0.023	0.347	8.869	0.074	0.136	4.488948	100.0823	100.0251	0.75074	0.05	-0.14989	0.093262	0.055875	0.20001	0.985839
MT9	41.17	0.232	29.948	0	-10.1351	22.28141	0.127	4.461	0.088	0.232	6.018	0.091	0	4.542267	99.05562	99.05404	0.582812	0.05	0.975246	-1.24296	0.054476	0.580421	0.999609

Tabella F4. Analisi alla Microsonda: Biotite (Dicchi)

		SiO2	TiO2	Al2O3	Cr2O3	FeO	Fe2O3	MnO	MgO	NiO	CaO	Na2O	К2О	BaO	F-	CI-	H2O	Total	xAl
28mt	#34	33.908	3.283	19.176	0.000	18.444	0.000	0.301	6.956	0.000	0.217	0.225	7.455	0.127	0.000	0.000	3.761	93.855	0.2528
28mt	#73	44.793	0.000	34.432	0.000	2.267	0.000	0.021	1.469	0.000	0.029	0.390	10.635	0.010	0.000	0.000	4.409	98.455	0.9028
28mt	#74	33.975	3.025	19.229	0.000	17.756	0.000	0.208	6.890	0.000	0.346	0.247	7.336	0.113	0.000	0.000	3.738	92.861	0.2717
28mt	#75	34.140	3.819	19.256	0.000	15.236	0.000	0.182	5.971	0.000	0.817	0.226	6.608	0.167	0.000	0.000	3.686	90.109	0.3114
28mt	#76	34.901	3.290	19.070	0.000	18.515	0.000	0.266	7.454	0.000	0.071	0.139	8.994	0.173	0.000	0.000	3.852	96.725	0.2333
28mt	#77	33.808	3.407	19.382	0.000	18.691	0.000	0.223	7.119	0.000	0.178	0.171	8.264	0.103	0.000	0.000	3.792	95.137	0.2399
28mt	#78	34.991	3.423	18.360	0.000	18.326	0.000	0.235	7.036	0.000	0.374	0.178	7.160	0.123	0.000	0.000	3.783	93.989	0.2441
28mt	#79	45.369	0.000	37.432	0.000	2.233	0.000	0.003	0.594	0.000	0.930	0.147	0.410	0.117	0.000	0.000	4.392	91.626	1.0548
28mt	#80	44.325	0.000	29.051	0.000	4.799	0.000	0.000	1.313	0.000	1.913	0.185	0.538	0.059	0.000	0.000	4.050	86.232	0.9083
28mt	#81	33.357	3.020	19.854	0.000	17.796	0.000	0.256	6.704	0.000	0.175	0.108	7.429	0.075	0.000	0.000	3.721	92.494	0.2867
28mt	#82	34.084	2.960	19.106	0.000	18.447	0.000	0.275	7.449	0.000	0.157	0.101	8.666	0.100	0.000	0.000	3.789	95.134	0.2397
28mt	#83	34.321	3.260	18.594	0.000	17.805	0.000	0.278	6.925	0.000	0.115	0.061	8.589	0.173	0.000	0.000	3.751	93.871	0.2479

Tabella F5. Analisi alla Microsonda: Altre Fasi (Dicchi)

	Verm	Verm	Verm		And	And	Chl	And		Ар	Ар	Cc		Ep?	Ep?	Ep?	Ep?
SO3	0.119	0.052	0.047	SO3	0.015	0	0.052	0.046	SO3	0	0	0	SO3	0.081	0.003	0	0.034
P2O5	0.051	0.023	0.023	P2O5	0.011	0.03	0.008	0.044	P2O5	0	40.847	0	P2O5	0.126	0.093	0.558	0.156
SiO2	25.245	25.494	26.123	SiO2	37.269	36.766	43.319	36.593	SiO2	101.317	0.073	0.008	SiO2	43.147	42.924	41.672	44.259
TiO2	0.018	0.045	0.032	TiO2	0.083	0.142	0.51	0.151	TiO2	0	0.101	0.041	TiO2	0.123	0.025	0.025	0.074
Al2O3	20.922	21.199	21.915	Al2O3	63.023	64.145	32.251	62.596	AI2O3	0.048	0.003	0	Al2O3	32.915	33.726	32.553	31.086
MgO	10.926	10.636	13.038	MgO	0.009	0.025	3.275	0.013	MgO	0.001	0.046	0.032	MgO	3.428	3.525	2.634	3.373
CaO	0.283	0.189	0.11	CaO	0.018	0.009	0.13	0.003	CaO	0	52.574	65.434	CaO	0.788	0.665	1.298	1.019
MnO	0.293	0.264	0.076	MnO	0.007	0.013	0.128	0.013	MnO	0	1.13	0.416	MnO	0.153	0.057	0.077	0.178
FeO	27.325	27.717	25.007	FeO	0.445	0.549	7.25	0.764	FeO	0.018	0.753	0.019	FeO	4.299	4.401	5.356	5.454
SrO	0	0	0	SrO	0	0	0	0	SrO	0	0	0	SrO	0	0	0	0
BaO	0.003	0	0	BaO	0.002	0	0.017	0.033	BaO	0	0.009	0	BaO	0.037	0	0	0.044
Na2O	0.004	0.008	0.017	Na2O	0.007	0.003	1.523	0.011	Na2O	0	0.185	0.014	Na2O	0.088	0.092	0.108	0.069
К2О	0.065	0.052	0.087	К2О	0.006	0	0.056	0	К2О	0	0.017	0.006	К2О	0.21	0.24	0.238	0.338
F	0	0	0.11	F	0.012	0.042	0.127	0.054	F	0.027	4.72	0	F	0.036	0	0.126	0
Cl	0.014	0.02	0	Cl	0.018	0.006	0	0.001	CI	0	0.051	0.017	Cl	0	0	0	0
Total:	85.268	85.699	86.585	Total:	100.925	101.73	88.646	100.322	Total:	101.411	100.509	65.987	Total:	85.431	85.751	84.645	86.084

	Opaco	Opaco	Opaco	Monaz		Tur	And	Tur		Pyr	Pyr	Pyr	Pyr		ер	opc pyr	Pyr	Pyr
SO3	0.085	0.056	0.078	0.01	SiO2	36.939	36.603	35.904	SiO2	4.563	4.339	8.126	6.854	SiO2	36.612	0.005	5.706	16.803
P2O5	0	0.014	0.508	0	TiO2	0.643	0.192	1.007	TiO2	0	0	0	0	TiO2	0.123	0.035	0.018	0
SiO2	4.55	3.521	6.536	36.995	Al2O3	35.493	60.915	34.147	Al2O3	0.017	0.033	3.985	1.312	Al2O3	24.946	0.001	0.001	0.076
TiO2	0	0.02	0	0	Cr2O3	0.004	0.027	0	Cr2O3	0.04	0	0.031	0.017	Cr2O3	0.002	0	0.036	0.018
AI2O3	0	0.068	1.115	0	MgO	3.553	0.038	3.359	MgO	0.238	0.236	0.836	0.579	MgO	0.02	0	0.509	0.508
MgO	0.151	0.42	0.442	0.034	CaO	0.096	0.02	0.16	CaO	0.428	0.409	0.819	0.391	CaO	20.777	0.005	0.449	1.45
CaO	0.329	0.137	0.592	0.001	MnO	0.126	0.043	0.075	MnO	0.007	0.044	0.185	0.025	MnO	0.29	0.021	0	0.069
MnO	0	0	0.062	0	FeO	8.378	0.919	9.785	FeO	76.763	77.52	63.857	66.666	FeO	8.282	63.522	74.476	61.891
FeO	75.546	73.815	65.489	0.162	SrO	0	0	0	SrO	0	0	0.028	0	SrO	0.107	0.094	0	0
SrO	0.008	0	0.008	0	BaO	0.026	0.047	0	BaO	0.03	0.018	0.057	0	BaO	0.061	0	0.031	0
BaO	0.018	0	0.011	0	Na2O	1.649	0	1.789	Na2O	0.004	0.035	0.096	0.03	Na2O	0.006	0.063	0.035	0.078
Na2O	0	0.01	0.003	0	К2О	0.024	0	0.035	K2O	0	0.024	0.068	0.052	К2О	0.005	0.002	0.048	0.044
K2O	0.016	0	0.004	0.018	F	0.071	0.088	0	F	0.006	0	0.014	0.029	F	0.04	0.07	0	0.079
F	0.024	0	0.013	0														
CI	0.013	0.022	0.029	0	Total:	87.002	98.892	86.261	Total:	82.096	82.658	78.102	75.955	Total:	91.271	63.818	81.309	81.016

Total: 80.74 78.083 74.89 37.22

APPENDICE B

Tabella 1a. Risultati delle analisi U-Th-Pb LA- ICPMS su zirconi separati dalle leptiniti (Oued Mter area)

20/mib uic mic 200m, 200m, 200m, 4 - 200m, A 200M, 2007	
<u>[∞]·Pb</u> [∞] U [∞] Pb [∞] <u>Th</u> [∞] <u>[∞]·Pb</u> <u>[∞]·Pb</u> [∞] ±2σ <u>[∞]·Pb</u> [∞] ±2σ <u>[∞]·Pb</u> [∞] ±2σ Rho [∞] <u>[∞]·Pb</u> ±2σ <u>[∞]·Pb ±2σ <u></u>[∞]·Pb ±2σ <u>[∞]·Pb ±2σ <u></u>[∞]·Pb ±2σ <u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>	²⁰⁷ Pb ±2σ
#Spot grain Characters ^a (cps) (ppm) (ppm) U ²⁰⁴ Pb ²³⁶ U (%) ²³⁵ U (%) ²⁰⁸ Pb (%) ²³⁸ U ²³⁶ U ²³⁶ U	²⁰⁶ Pb
A1 L1-g1 p-ic-z 2753 292 12 0.14 3819 0.04379 2.2 0.3189 3.4 0.05281 2.7 0.63 276 6 281 8	321 60
A2 L1-02 p-io-z 14045 119 48 0.47 9997 0.34788 1.9 5.912 2.6 0.1233 1.8 0.72 1924 31 1963 23	2004 32
A3 L1-11 p-ic-z 2393 341 15 0.13 6490 0.04662 2.0 0.3372 3.6 0.05246 3.0 0.56 294 6 295 9	306 69
A4 L1-h1a p-oc-z 2214 196 9 0.14 2660 0.04564 1.9 0.3307 4.8 0.05255 4.5 0.38 288 5 290 12	309 102
A5 L1-h1b p-t-z 10233 1886 57 0.03 28194 0.03249 2.0 0.2321 2.6 0.05181 1.6 0.79 206 4 212 5	277 36
A6 L1-b2a sric-z 2543 64 4 0.39 1112 0.05883 2.3 0.4433 3.8 0.05465 3.0 0.61 368 8 373 12	398 67
A7 L1-h2b sric-z 2548 68 4 0.45 1384 0.05735 2.3 0.4301 4.8 0.05440 4.2 0.47 359 8 363 15	387 94
A8 L1-a1a p-jo-z 1922 311 13 0.09 2318 0.04474 1.8 0.3252 4.5 0.05272 4.1 0.40 282 5 286 11	317 94
A9 L1-a1b p-oc-z 41805 7246 303 0.00 38540 0.04590 2.2 0.3304 2.5 0.05220 1.2 0.88 289 6 290 6	294 27
A10 L1-a1c p-r-z 34681 4688 198 0.00 22007 0.04633 2.0 0.3324 2.4 0.05204 1.4 0.83 292 6 291 6	287 31
A11 L1-a2a p-t-z 3053 501 21 0.13 8376 0.04443 2.3 0.3201 3.9 0.05226 3.2 0.57 280 6 282 10	297 74
112 11-bia p-ic-z 4753 722 31 0.10 2790 0.04415 2.0 0.3166 3.3 0.05202 2.7 0.60 278 5 279 8	286 61
A13 L1-b2a p-io-z 3713 674 25 0.11 2721 0.03849 2.5 0.2760 4.1 0.05238 3.3 0.61 243 6 249 9	302 75
A14 L1-b2b p-r-z 12654 1986 86 0.05 34570 0.04651 2.1 0.3355 2.6 0.05232 1.5 0.81 293 6 294 7	299 34
A15 L1-b2c p-oc-z 4194 669 29 0.09 11456 0.04565 1.9 0.3292 3.2 0.05231 2.5 0.60 288 5 289 8	299 58
A16 L1-b3a p-t-z 13703 2367 86 0.04 37488 0.03928 2.3 0.2823 3.1 0.05212 2.0 0.75 248 6 252 7	291 46
A17 L1-b4a p-jo-z 2792 425 20 0.20 7588 0.04660 1.9 0.3375 3.3 0.05253 2.7 0.57 294 5 295 9	309 62
A18 L1-b3b p-oc-z 2917 260 11 0.06 5217 0.04525 2.0 0.3241 4.4 0.05195 4.0 0.44 285 5 285 11	283 91
A19 L1-b3c p-rz 20218 3109 129 0.00 55390 0.04537 2.3 0.3265 2.8 0.05219 1.7 0.80 286 6 287 7	294 38
A20 L1-b3d p-rz 17665 2614 111 0.00 36516 0.04646 1.9 0.3353 2.2 0.05235 1.1 0.86 293 5 294 6	301 26
A21 L1-c1a sric-z 2914 214 22 0.66 6965 0.08427 2.0 0.6829 3.8 0.05877 3.2 0.53 522 10 529 16	559 70
A22 L1-c1b sric-z 2977 169 15 0.38 2716 0.08460 1.9 0.6738 3.0 0.05776 2.4 0.62 524 9 523 13	521 52
A23 L1-c1c sr-r-z 6870 492 40 0.19 16964 0.08212 2.0 0.6535 3.0 0.05772 2.3 0.66 509 10 511 12	519 50
A24 L1-c1a p-f-z 32334 5043 204 0.01 16112 0.04429 1.9 0.3200 2.3 0.05241 1.3 0.82 279 5 282 6	303 31
A25 L1-d1a p-io-z 2417 221 10 0.14 1223 0.04638 2.2 0.3340 3.5 0.05222 2.7 0.64 292 6 293 9	295 61
A26 L1-e1a p-io-z 22832 3973 131 0.00 13231 0.03602 2.1 0.2604 2.4 0.05244 1.2 0.88 228 5 235 5	305 27
A27 L1-e1b p-f-z 2961 350 15 0.20 6141 0.04404 2.0 0.3192 3.4 0.05256 2.8 0.57 278 5 281 8	310 64
A28 L1-p1a p-f-z 12485 2265 96 0.03 34328 0.04593 2.2 0.3295 3.0 0.05203 2.0 0.74 290 6 289 7	287 46
A29 L1-p1b p-ic-z 17484 1235 95 0.01 38926 0.08356 2.0 0.6791 2.6 0.05894 1.7 0.77 517 10 526 11	565 36
A30 L1-o1a p-ic-z 2727 108 4 0.09 1483 0.04058 3.1 0.3133 6.7 0.05600 5.9 0.46 256 8 277 16	452 131
A31 L1-o1b p-oc-z 3686 104 4 0.09 1477 0.04188 3.0 0.3011 3.8 0.05215 2.4 0.78 264 8 267 9	292 54
A32 L1-o1c p-f-z 28132 4442 178 0.01 56803 0.04377 1.9 0.3185 2.4 0.05277 1.4 0.81 276 5 281 6	319 32
A33 L1-r1a p-ic-z 30457 4489 185 0.00 83374 0.04514 1.9 0.3253 2.3 0.05227 1.2 0.85 285 5 286 6	297 28
A34 L1-r1b p-r-z 2933 167 7 0.15 1265 0.04556 1.9 0.3287 4.7 0.05233 4.3 0.41 287 5 289 12	300 98
Sample MT10	
A35 Mt10-b1a p-ic-z-al 66731 9654 418 0.00 9246 0.04736 2.7 0.3438 2.9 0.05265 0.90 0.95 298 8 300 7	314 20
A36 Mt10-b1b p-oc-z 26488 4213 150 0.00 13970 0.03907 2.0 0.2834 2.3 0.05260 1.12 0.87 247 5 253 5	312 25
A37 Mt10-b1c p-r-z 9652 4648 103 0.00 26409 0.02437 2.5 0.1734 3.6 0.05162 2.54 0.70 155 4 162 5	269 58
A38 Mt10-b2a p-r-z 13795 4495 99 0.00 9932 0.02405 1.8 0.1728 2.4 0.05212 1.58 0.76 153 3 162 4	291 36
A39 Mt10-b2b p-oc-z 78152 11803 479 0.00 41544 0.04454 2.2 0.3166 2.4 0.05156 1.09 0.89 281 6 279 6	266 25
A40 Mt10-b2c p-ic-z-al 9183 1514 64 0.00 21039 0.04557 2.9 0.3248 4.4 0.05170 3.21 0.67 287 8 286 11	272 74
A41 Mt10-c1a p-r-z-al 40525 6851 222 0.00 68659 0.03555 1.8 0.2554 2.2 0.05211 1.28 0.82 225 4 231 5	290 29
A42 Mt10-d1a p-r-un-al 2699 5645 18 0.00 8041 0.00344 2.0 0.0226 3.6 0.04761 2.96 0.57 22 0.5 23 0.8	80 70

Sample	
MT7	

A1	Mt7-c1a	sr-ic-z	83442.319	1379.0193	172.51361	0.05	56370.243	0.11960	2.9	2.4287108	3.4	0.14727	1.72	0.86	728	20	1251	25	2315	30
A2	Mt7-c1b	sr-oc-z	3163.7382	436.19598	14.634604	0.03	6072.75	0.03653	1.7	0.261581	3.4	0.05194	2.97	0.50	231	4	236	7	283	68
A3	Mt7-cb1c	sr-r-un	512.17612	1103.5053	3.4352649	0.03	1112.2128	0.00338	2.5	0.0223025	6.2	0.04783	5.64	0.40	22	0.5	22	1	91	134
A4	Mt7-c1d	sr-rim-un	579.80959	1266.4188	3.8770434	0.03	1270.9963	0.00334	2.3	0.0211822	8.7	0.04602	8.39	0.27	21	0.5	21	2		
A5	Mt7-c1e	sr-oc-z	3767.0346	506.70939	19.461914	0.06	7178.3798	0.04190	1.9	0.3018058	2.8	0.05224	2.01	0.69	265	5.0	268	7	296	46
A6	Mt7-d1a	p-ic-z	4274.7169	361.53481	24.406161	0.10	7458.4842	0.07070	1.6	0.5563199	2.9	0.05707	2.39	0.56	440	7	449	10	494	53
A7	Mt7-d1b	p-r-un	146.56861	292.00671	0.8767809	0.03	304.34162	0.00337	2.8	0.0220592	13.9	0.04752	13.64	0.20	22	0.6	22	3	76	324
A8	Mt7-d1c	p-r-z	4807.9675	344.73732	8.379707	0.07	9194.1715	0.02631	1.9	0.1893398	3.1	0.05220	2.44	0.61	167	3	176	5	294	56
A9	Mt7-d2a	p-ic-z	18878.8	180.92622	71.627475	0.58	15345.571	0.32957	2.0	5.5783333	2.4	0.12276	1.33	0.84	1836	32	1913	21	1997	24
A10	Mt7-d2b	p-r-un	1110.5351	184.65789	0.5803379	0.02	233.61852	0.00340	4.8	0.0213854	8.7	0.04565	7.25	0.55	22	1	21	2		
A11	Mt7-d2c	p-r-un	963.18379	137.82041	0.4098347	0.03	48.58783	0.00327	4.7	0.0212425	8.3	0.04715	6.82	0.57	21	1	21	2	57	163
A12	Mt7-f1a	p-ic-z	16690.292	217.65933	57.090872	0.44	2435.5722	0.21818	3.5	4.5863716	3.8	0.15246	1.51	0.92	1272	40	1747	32	2374	26
A13	Mt7-f1b	p-r-un	286.31854	239.93357	0.7747941	0.01	619.40086	0.00350	12.2	0.0224137	14.9	0.04649	8.56	0.82	23	3	23	3	23	206
A14	Mt7-f2a	p-r-un	1323.7788	204.66392	4.1008128	0.08	2522.0711	0.02168	2.4	0.1557828	4.8	0.05211	4.16	0.49	138	3	147	7	290	95
A15	Mt7-f2b	p-r-un	79.43022	152.8219	0.4157884	0.02	46.913965	0.00294	4.8	0.0190553	18.5	0.04707	17.83	0.26	19	0.9	19	4	53	426
A16	Mt7-f2a	p-r-un	173.97541	378.61033	1.1803042	0.03	399.49846	0.00334	5.2	0.0200715	15.5	0.04364	14.58	0.34	21	1	20	3		
A17	Mt7-f2b	p-r-un	267.26424	531.98511	1.6772196	0.02	572.78639	0.00339	2.7	0.0218278	8.6	0.04668	8.22	0.31	22	0.6	22	2	33	197
A18	Mt7-f2c	p-ic-z	20738.393	445.55078	22.334255	0.17	39155.551	0.05029	4.0	0.3662819	4.4	0.05282	1.80	0.91	316	12	317	12	321	41
A19	Mt7-b1a	sr-oc-z	5412.5788	319.67068	33.518315	0.56	3936.7329	0.09158	1.8	0.7567245	3.0	0.05993	2.33	0.62	565	10	572	13	601	51
A20	Mt7-b1a	sr-oc-z	4764.9864	294.28981	31.554464	0.66	1594.1367	0.09115	1.7	0.7481045	3.3	0.05952	2.79	0.53	562	9	567	14	586	61
A21	Mt7-b1a	p-r-un	747.66561	641.3448	2.1884761	0.03	1232.7875	0.00338	3.6	0.0243623	11.8	0.05232	11.22	0.31	22	0.8	24	3	300	256
A22	Mt7-b1a	p-r-un	642.66342	638.27541	2.1797434	0.03	1132.8785	0.00341	3.1	0.0264118	13.2	0.05618	12.88	0.23	22	0.7	26	3	459	286

Diameter of laser spots were 20-30µm; depth of crater ~10-15 µm.

^aCharacters of analysed zircons grains based on optical, CL and SEM investigations.

Abbreviations: (i) Grain morphology, eu:euhedral, pr: prismatic/elongate; sr: subhedral/rounded; (ii) Spot location, ic: inner core; oc: outer core; r: rim; (iii) Zonation, z: oscillatoty/sector zoned; un: unzoned; al: altered.

^bWithin run background-corrected mean ²⁰⁷Pb signal.

^cU and Pb content and Th/U ratio were calculated relative to GJ-1 reference (LA-ICP-MS values; Gerdes and Zeh, 2008).

^dCorrected for background, within-run Pb/U fractionation and common Pb using Stacy and Kramers (1975) model Pb composition and subsequently normalised to GJ-1 (ID-TIMS value/measured value);

to GJ-1 (ID-TIMS value/measured value); ²⁰⁷Pb/²³⁵U calculated using ²⁰⁷Pb/²⁰⁸Pb/(²³⁸U/²⁰⁸Pb x 1/137.88)

 ^{e}Rho is the error correlation defined as $err^{206}Pb/^{238}U/err207Pb/^{235}U$

Table 1b. Risultati di analisi in situ U-Th-Pb LA-ICP-MS su Zircone e Monazite (sample BA1)

																Age (M	a)		
		²⁰⁷ Pb ^b	U°	Pb ^c	<u>Th</u> °	²⁰⁶ Pb	²⁰⁶ Pb ^d	±2σ	²⁰⁷ Pb ^d	±2σ	²⁰⁷ Pb ^d	±2σ	rho ^e	²⁰⁶ Pb	±2σ	207Pb	±2σ	207Pb	±2σ
grain	Characters ^a	(cps)	(ppm)	(ppm)	U	²⁰⁴ Pb	²³⁸ U	(%)	²³⁵ U	(%)	²⁰⁶ Pb	(%)		²³⁸ U	(Ma)	²³⁵ U	(Ma)	²⁰⁶ Pb	(Ma)
z1a	sr-r-un	94993	909	69	0.002	462	0.00410	11	0.026	12	0.04645	3.9	0.94	26.4	3.0	26.3	3.1	21	93
z1b	sr-r-un	1218	876	4.5	0.007	3171	0.00511	3.4	0.037	6.5	0.05297	5.6	0.52	32.9	1.1	37.2	2.4	328	126
z1c	sr-ic-al	63212	27490	765	0.004	47821	0.03055	4.2	0.2182	4	0.05182	1.4	0.95	194.0	8.1	200	8	277	31
z1d	sr-oc-al	36863	30911	608	0.006	28161	0.02157	3.2	0.152	4.4	0.05123	2.9	0.74	137.5	4.4	144	6	251	67
z1e	sr-r-un	3937	707	3.2	0.002	534	0.00390	17	0.026	17	0.04783	4.7	0.96	25.1	4.2	25.8	4.5	91	111
z2a	sr-r-un	1932	751	22	0.005	16354	0.03169	2.9	0.228	4.8	0.05229	3.8	0.61	201.1	5.8	209	9	298	87
z2b	sr-ic-al	1616	1779	44	0.003	3746	0.02694	4.8	0.1948	8.5	0.05243	7.0	0.57	171.4	8.1	181	14	304	159
z2c	sr-r-un	5749	2528	107	0.003	6637	0.04604	2.6	0.3319	3.5	0.05228	2.3	0.74	290.2	7.2	291	9	298	53
z3a	sr-r-un	1765	1390	14	0.004	17458	0.01097	6.5	0.077	7.1	0.05087	2.9	0.91	70.3	4.5	75	5	235	67
z3b	sr-r-un	1806	1102	11	0.003	17810	0.01043	6.7	0.0733	7.3	0.05097	3.0	0.91	66.9	4.5	71.8	5.1	240	69
z3c	sr-ic-al	7108	2220	87	0.001	32966	0.04326	2.2	0.307	2.7	0.05152	1.5	0.82	273	6	272	6	264	35
z3d	sr-r-un	1245	570	2.2	0.002	864	0.003375	4.8	0.0213	6.7	0.04587	4.7	0.71	21.7	1.0	21.4	1.4	-9	114
z3e	sr-ic-al	3201	1226	28	0.002	31057	0.025357	4.3	0.1810	4.9	0.05176	2	0.89	161.4	6.9	169	8	275	51
mz7		10201	8884	32	0.014	826	0.003320	2.8	0.0214	10	0.04682	9	0.28	21.4	0.6	21.5	2.1	40	226
mz7		9594	10794	38	0.021	2228	0.003311	2.2	0.0223	13	0.04885	13	0.17	21.3	0.5	22.4	2.8	141	295
mz3		4725	15464	46	0.010	904	0.003217	2.7	0.0204	11	0.04598	10	0.25	20.7	0.6	20.5	2.2	-3	251
mz5		4158	15371	48	0.015	800	0.003435	2.2	0.0222	10	0.04685	9	0.23	22.1	0.5	22.3	2.1	42	224
mz6		3799	8792	28	0.010	532	0.003386	2.6	0.0207	8.2	0.04432	8	0.32	21.8	0.6	20.8	1.7	-93	190
mz1		5592	7012	24	0.013	446	0.003290	3.3	0.0233	25	0.05130	25	0.13	21.2	0.7	23.4	5.8	254	569
mz1		39251	9503	70	0.009	229	0.003263	3.1	0.0207	23	0.04596	23	0.14	21.0	0.6	20.8	4.7	-5	543
Mana ^f		16132	940	1687	62	13129	0.08961	1.4	0.7147	4	0.05785	3.4	0.37	553	7	548	16	524	75

Applied spot sizes varied between 8 and 20µm, depending on width of the respective growth domain; depth of crater ~15µm. See Table 3a for analytical details and key to symbols.

'mean (n=6; 30 μm spot size) with 2 SD (standard deviation) of the Manangotry reference monazite [c.f. Horstwood et al. 2003] used as quality control.

Tabella 1c. Risultati delle analisi U-Th-Pb LA- ICPMS su zirconi separati dal leucosoma MT8

						-												Age (Ma)		
			²⁰⁷ Pb ^b	U°	Pb °	<u>Th</u> °	²⁰⁶ Pb	²⁰⁶ Pb ^d	±2σ	²⁰⁷ Pb ^d	±2σ	²⁰⁷ Pb ^d	±2σ	Rho °	²⁰⁶ Pb	±2σ	²⁰⁷ Pb	±2σ	²⁰⁷ Pb ^d	±2σ
grain	L-No.	Characters ^a	(cps)	(ppm)	(ppm)	U	²⁰⁴ Pb	²³⁸ U	(%)	²³⁵ U	(%)	²⁰⁶ Pb	(%)		²³⁸ U		²³⁵ U		²⁰⁶ Pb	
Z3a	a53	sr-ic-z	3042	306	12	0.070	13459	0.04199	2.9	0.3030	3.8	0.05234	2.5	0.76	265	7	269	9	300	56
Z3a1	a54	sr-r-un	1241	613	2.1	0.005	7431	0.00355	4.9	0.02321	6.2	0.04737	3.8	0.79	22.9	1.1	23.3	1.4		
Z3a2	a55	sr-r-un	1597	193	1.9	0.023	2984	0.01039	9.8	0.07250	12	0.05062	6.9	0.82	66.6	6.5	71	8	224	159
Z2a	a1	sr-ic-al	11330	4400	239	0.45	53884	0.02747	3.2	0.1999	3.6	0.05278	1.6	0.90	175	6	185	6	319	37
Za2a1	a2	sr-r-z	1643	416	15	0.023	7582	0.04008	3.1	0.2941	5.1	0.05322	4.1	0.60	253	8	262	12	338	92
Z2b	a3	sr-r-un	1812	146	0.5	0.007	4577	0.003535	4.9	0.02157	8.0	0.04425	6.3	0.61	22.7	1.1	21.7	1.7		
Z2b1	a4	sr-ic-un	1119	149	0.5	0.003	2327	0.003404	4.2	0.02287	9.6	0.04873	8.6	0.44	21.9	0.9	23.0	2.2	135	202
Z2b2	a5	sr-r-un	1249	1234	3.9	0.001	3813	0.003479	3.2	0.02215	7.4	0.04617	6.7	0.43	22.4	0.7	22.2	1.6		
Z2b3	a6	sr-r-un	1353	450	1.5	0.005	4284	0.003635	3.9	0.02466	6.6	0.04920	5.4	0.59	23.4	0.9	24.7	1.6		
Z1a	a7	sr-ic-z	2735	267	11	0.041	13278	0.04407	3.3	0.3141	4.6	0.05169	3.2	0.71	278	9	277	11	272	74
Z1a1	a8	sr-ic-z	11564	493	22	0.033	55578	0.04780	2.9	0.3441	3.4	0.05221	1.9	0.84	301	8	300	9	294	43
Z1b	a9	sr-ic-z	5453	519	22	0.050	25886	0.04567	2.6	0.3323	3.7	0.05278	2.6	0.70	288	7	291	9	319	60
Z1b1	a10	sr-r-z	3830	1233	55	0.052	18906	0.04887	3.2	0.3441	4.0	0.05106	2.4	0.80	308	10	300	10	244	55
Z1	a11	sr-r-z	4398	867	38	0.033	20997	0.04766	3.9	0.3476	5.1	0.05289	3.3	0.76	300	11	303	13	324	75

Diameter of laser spot = 20, 30 and 16µm, respectively; depth of crater 10-15 µm. See Table 3a for analytical details and key to symbols.

	-	-	-	-	-	-	-	-		-		-			-			Age (Ma))		
			²⁰⁷ Pb ^b	U °	Pb °	<u>Th</u> °	²⁰⁶ Pb	²⁰⁶ Pb ^d	±2σ	²⁰⁷ Pb d	±2σ	²⁰⁷ Pb ^d	±2σ	Rho °	²⁰⁶ Pb	Age (Ma) ±2σ	²⁰⁷ Pb	±2σ	a ²⁰⁷ Pb	±2σ	conc
#Spot	grain	Charact	(cps)	(ppm)	(ppm)	U	²⁰⁴ Pb	²³⁸ U	(%)	²³⁵ U	(%)	²⁰⁶ Pb	(%)		²³⁸ U		²³⁵ U		- 206Pb		(%)
-1	70-	ers ^a	4400	4050		0.010	7400	0.000050	0.7	0.00400		0.04070	0	- 40	04.0	0.0	04.7		-		
ai -2	238	eu-r-z	1106	1056	3.2	0.010	7428	0.003350	2.7	0.02160	0.4	0.04670	5.8	0.42	21.0	0.6	21.7	1.4			
az -2	230	eu-r-z	1304	1041	3.7	0.020	8760	0.003920	2.9	0.02640	0.0	0.04890	8.3	0.33	25.2	0.7	26.4	2.3			
a3	Z30 72 ol	eu-r-z	1504	1211 504	3.8	0.010	1031	0.003420	2.9	0.02000	15.2	0.04240	15	0.19	22.0	0.6	20.1	3	227	77	00
d4	23 01	eu-ic-z	1304	1024	21	0.12	9000	0.04380	2.9	0.3220	4.0	0.05320	3.4	0.05	211	0	203	10	337		405
a5 =C	Ze3 e	eu-ic-z	1438	482	22	0.31	8099	0.04830	3.1	0.3470	4.7	0.05210	3.5	0.67	304	9	302	12	289	80	105
ao -7	231	eu-ic-z	1190	1048	10.7	0.010	7265	0.01130	3.0	0.07970	4.0	0.05120	3.5	0.64	72.0	2.0	78.0	3.0	252	82	29
a/ =0	Z4a	p-r-2	1100	1000	5.3	0.010	4401	0.003450	2.3	0.02330	6.7 E.E	0.04900	0.3	0.34	22.2	0.5	23.4	1.5	400	400	00
a8 -0	Z4D	p-oc-z	1429	541	30	0.020	9320	0.05990	2.7	0.4560	5.5	0.05520	4.8	0.49	375	10	381	18	420	108	89
a9 o10	Z40 74d	p-ic-2	3173	100	24	0.44	143/5	0.1497	2.3	1.428	3.7	0.06910	2.8	0.64	900 501	20	901	10	903 527	58 75	07
-11	Z4u 74-	p-00-2	1004	000	11	0.10	0070	0.08420	2.0	0.0760	4.3	0.03820	5.4	0.01	34.0	10	024	10	100	10	97
a11	Z4e 77o	p-r-z	1624	938	4.5	0.020	2078	0.005240	3.2	0.03560	0.5 E.0	0.04930	5.0	0.50	34.0 614	1.0	30.0	2.0	100	131	21
a12	27a 77o	ST-IC-Z	1034	350	37	0.060	2970	0.09990	3.0	0.8630	5.0	0.06260	4.0	0.59	014	17	032	24	695	65	88
d 14	270	51-1-2	1100	247	0.0	0.020	3079	0.003510	2.0	0.02370	7.9	0.04900	7.4	0.32	22.0	0.0	23.0	1.0			
a15 -10	2/0	SI-I-Z	1103	397	1.2	0.010	2299	0.003390	2.1	0.02070	1.0	0.04440	7.3	0.28	21.8	0.5	20.8	1.6	640	<u></u>	405
a 10	208	eu-ic-z	2241	109	17	0.34	5404	0.1058	3.4	0.8810	4.0	0.06040	3.1	0.73	648	21	042	22	700	00	105
a17	200	eu-ic-z	1/48	109	11	0.27	7 148	0.1006	3.2	0.8960	4.8	0.06460	3.0	0.66	010	19	000	23	762	76	61
a18	200	eu-r-z	1157	489	1.0	0.003	3780	0.00357	2.6	0.02190	0.0	0.04450	0.1	0.40	23.0	0.6	22.0	1.4			
a19	260	eu-r-z	1104	820	2.0	0.020	4060	0.00354	2.6	0.02330	0.0	0.04760	0.3	0.39	22.8	0.6	23.4	1.0			
a20	26e	eu-r-z	1147	433	1.4	0.020	3728	0.00347	2.6	0.02060	8.3	0.04300	7.9	0.31	22.3	0.6	20.7	1.7			404
a21	25a	eu-ic-z	1433	65	28	0.33	4570	0.4229	2.3	7.963	5.3	0.1366	4.8	0.43	2273	44	2227	49	2184	83	104
a22	250	eu-ic-z	1513	74	15	0.35	1343	0.1966	3.3	3.347	5.2	0.1235	4.1	0.63	1157	35	1492	42	2007	72	58
a23	25C	eu-r-z	1157	515	1.6	0.006	1302	0.00350	3.1	0.02130	8.0	0.04410	7.4	0.38	22.5	0.7	21.4	1.7	400	407	
a24	Z50	eu-oc-z	1139	365	3.5	0.020	4396	0.01040	3.4	0.06930	6.7	0.04850	5.8	0.50	66.0	2.0	68.0	4.0	122	137	55
a25	25e	eu-oc-z	1125	111	4.3	0.11	4127	0.04270	3.8	0.3030	5.5	0.05150	4.0	0.69	270	10	269	13	265	91	102
a26	21a	p-ic-z	1155	84	1.7	0.25	3697	0.01950	3.6	0.1340	7.0	0.04990	6.0	0.51	125	4	128	8	192	140	65
a27	210	p-ic-z	1224	114	4.9	0.11	2308	0.04720	3.2	0.3360	4.5	0.05170	3.3	0.69	297	9	294	12	272	75	109
a28	Z1C	p-r-z	115/	385	1.2	0.020	3/8/	0.003487	3.3	0.02140	1.4	0.04470	6.6	0.45	22.4	0.7	21.5	1.6	007		
a29	∠1d	p-oc-z	1224	118	3.6	0.080	18/6	0.03310	2.8	0.23800	4.4	0.05230	3.4	0.64	210	6	217	9	297	11	/1
a30	∠1e	p-r-z	1115	434	1.4	0.01	4086	0.003511	2.9	0.0234	5.9	0.0483	5.1	0.5	22.6	0.7	23.4	1.4			

Tabella 2a. Risultati delle analisi U-Th-Pb LA- ICPMS su zirconi separati dal campione MA07/26 (Dicco)

Diameter of laser spot = 20, 30 and 16µm, respectively; depth of crater 10-15 µm. See Table 3a for analytical details and key to symbols.

	²⁰⁷ Pb ^a	U ^b	Pb⁵	Th⁵	²⁰⁶ Pb	²⁰⁶ Pb ^c	+20	²⁰⁷ Pb ^c	+20	²⁰⁸ Pb ^c	+20	²⁰⁷ Pb ^c	+20	Rho ^e	²⁰⁶ Pb	+20	А ²⁰⁷ Рb	.ge (Ma) +2σ	²⁰⁸ Pb	+20
Grain	(cps)	(ppm)	(ppm)	U	²⁰⁴ Pb	²³⁸ U	(%)	²³⁵ U	(%)	²³² Th	(%)	²⁰⁶ Pb	(%)		²³⁸ U	(Ma)	²³⁵ U	(Ma)	²³² Th	(Ma)
sample MA07/26																				
mz_a1	12589	9411	501	6.3	10819	0.0273	3.4	0.199	4.2	0.00781	2.9	0.0527	2.4	0.81	174	5.8	184	7.1	157	4.5
mz_a2	4409	7951	138	7	1314	0.0105	3.9	0.0716	8	0.00197	4.7	0.0494	7.2	0.48	67.4	2.6	70.3	5.6	39.8	1.9
mz_a3	511	2487	42	22	366	0.00338	9.5	0.0213	14	0.00107	4.9	0.0457	10	0.69	21.8	2.1	21.4	2.9	21.6	1.1
mz_a4	12257	1337	64	30	28	0.00344	18	0.0246	22	0.0011	8.7	0.0519	14	0.79	22.1	3.9	24.7	5.5	22.1	1.9
mz_a5	25474	550	284	93	69	0.00441	6.1	0.0296	11	0.00125	19	0.0488	8.9	0.57	28.3	1.7	29.7	3.2	25.3	4.8
mz_a6	14831	13993	418	3.8	5430	0.0201	3.7	0.142	4.1	0.00469	4.1	0.0515	1.9	0.89	128	4.7	135	5.3	94.6	3.8
mz_a7	4227	9695	170	6.6	1649	0.00822	4	0.0564	4.8	0.00187	3.6	0.0498	2.7	0.83	52.8	2.1	55.7	2.6	37.7	1.4
mz_a8	11482	1459	68	31	35	0.00478	11	0.0317	14	0.00137	5.1	0.048	9.8	0.73	30.7	3.2	31.6	4.5	27.6	1.4
mz_a9	1710	7239	74	9	747	0.0036	4.7	0.0227	9.7	0.00116	3.8	0.0458	8.5	0.48	23.2	1.1	22.8	2.2	23.5	0.9
mz_a10	10231	4387	313	12	10951	0.0324	2.9	0.227	5.9	0.00759	3	0.0507	5.2	0.49	206	6	207	11.2	153	4.5
mz_a11	1332	3445	51	16	393	0.00333	8.7	0.0218	11	0.00115	3.6	0.0475	6.7	0.8	21.4	1.9	21.9	2.4	23.3	0.8
sample MA07/22																				
mz3a_r	6996	8925	63	3.3	1187	0.00332	1.8	0.0214	5.9	0.00106	3	0.0468	5.6	0.31	21.4	0.4	21.5	1.3	21.3	0.6
mz3a_c	9304	11790	82	3.1	1422	0.00342	1.9	0.02	7.3	0.00108	2.9	0.0424	7.1	0.26	22	0.4	20.1	1.5	21.8	0.6
mz3a_r	7090	8497	62	3.3	1574	0.00337	2.3	0.0207	9	0.00107	3	0.0446	8.7	0.26	21.7	0.5	20.8	1.8	21.7	0.7
mz3b_c	1830	1988	55	20	423	0.00334	2.9	0.0204	4.4	0.00107	2.8	0.0442	3.3	0.66	21.5	0.6	20.5	0.9	21.7	0.6
mz4a_c	4541	4075	58	9.2	536	0.00342	2.9	0.0215	6.6	0.00105	3.1	0.0456	6	0.43	22	0.6	21.6	1.4	21.2	0.7
mz4a_r	7613	6604	72	6.6	610	0.0034	2.7	0.0213	7.3	0.00106	2.3	0.0455	6.8	0.38	21.9	0.6	21.4	1.6	21.4	0.5
mz15_c	1712	2065	56	21	289	0.00336	2.9	0.0205	6.3	0.00109	2.8	0.0442	5.6	0.47	21.6	0.6	20.6	1.3	22	0.6
mz13_r	8931	12631	73	2.2	1789	0.00338	1.9	0.0208	8.3	0.00108	2.5	0.0446	8.1	0.23	21.8	0.4	20.9	1.7	21.9	0.5
mz13_r	8034	8439	62	3.3	4212	0.00337	2.3	0.0218	10	0.00109	2	0.047	10	0.22	21.7	0.5	21.9	2.2	16.2	0.4
mz3_r	5775	6233	80	8.2	1646	0.0034	2.4	0.0218	8.1	0.00102	1.9	0.0466	7.7	0.29	21.9	0.5	21.9	1.8	22	0.4
mz3_c	7713	7911	67	4.4	2331	0.00337	2.5	0.0213	11	0.0011	2.5	0.0459	11	0.23	21.7	0.5	21.4	2.3	20.6	0.4
mz2a	5900	7261	45	2.6	3374	0.00329	2.3	0.0211	8.1	0.0011	3.5	0.0466	7.8	0.28	21.1	0.5	21.2	1.7	22.1	0.6
mz2a	8920	11000	73	2.7	4065	0.00343	2.4	0.0214	6.9	0.0011	2.8	0.0453	6.5	0.35	22.1	0.5	21.5	1.5	22.3	0.8
mz2b	1855	1440	48	25	680	0.00331	3	0.0217	8	0.00105	2.8	0.0475	7.4	0.37	21.3	0.6	21.8	1.7	22.3	0.6
mz2c	1541	1536	42	19	456	0.00341	4.2	0.0232	12	0.00109	4.1	0.0493	11	0.36	22	0.9	23.3	2.7	21.3	0.6
mz2c	6261	2268	54	16	362	0.00338	3.1	0.0228	17	0.00109	2.7	0.0489	17	0.18	21.7	0.7	22.9	3.9	21.9	0.9

Tabella 2b. Risultati delle analisi U-Th-Pb LA- ICPMS su esemplari di zirconi e monaziti separati dai dicchi MA07/26 and MA07/22

Diameter of laser spot = 20µm; depth of crater ~10 µm. r = outer part of the grain; c = inner part of the grain. See Table 3a for details.

Temp	Cum.%	⁴⁰ Ar	±	³⁹ Ar	±	³⁸ Ar	±	³⁷ Ar	±	³⁶ Ar	±	Ca/K	±	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar	±	Age	±
(°C)	³⁹ Ar	(x10 ⁻¹³ r	noles)	(x10 ⁻¹⁴	moles)	(x10 ⁻¹⁶	moles)	(x10 ⁻¹⁶ me	oles)		(x10 ⁻¹⁶ moles)						(Ma)	
Sample FR																		
J-Value =	0.00475	1.4E-05																
700	0.79	0.6562	0.0014	0.1665	0.0006	0.3374	0.0163	0.5275	0.5275	2.0567	0.048	0.055	0.055	7.4	2.913	0.85	24.8	7.19
800	2.82	0.7819	0.0016	0.4305	0.0007	0.4102	0.037	0.5278	0.5278	2.2262	0.028	0.021	0.021	15.9	2.882	0.194	24.54	1.64
900	12.95	1.1242	0.0023	2.1489	0.0019	0.3206	0.174	0.528	0.5281	1.92	0.036	0.004	0.004	49.5	2.591	0.051	22.08	0.43
930	32.89	1.22	0.0027	4.2265	0.0038	0.0004	0.3434	0.5283	0.5283	0.553	0.051	0.002	0.002	86.6	2.5	0.037	21.3	0.31
960	49.16	0.9703	0.002	3.4487	0.0024	0.0004	0.2987	0.5286	0.5286	0.2974	0.086	0.003	0.003	90.9	2.559	0.074	21.8	0.62
990	58.74	0.5987	0.0012	2.0306	0.0031	0.0004	0.1933	0.5289	0.5289	0.2218	0.093	0.005	0.005	89	2.626	0.135	22.37	1.14
1020	64.44	0.3868	0.0008	1.2067	0.0018	0.2551	0.134	0.5292	0.5292	0.317	0.071	0.008	0.008	75.8	2.429	0.173	20.7	1.47
1050	68.15	0.2734	0.0006	0.7875	0.002	0.0004	0.1319	0.5295	0.5295	0.1969	0.05	0.012	0.012	78.7	2.733	0.187	23.28	1.58
1100	72.29	0.2971	0.0007	0.8774	0.0018	0.0984	0.1192	0.5298	0.5298	0.3377	0.102	0.011	0.011	66.4	2.248	0.342	19.17	2.9
1150	77.49	0.325	0.0007	1.1019	0.0019	0.0004	0.1593	0.53	0.53	0.1461	0.098	0.008	0.008	86.7	2.558	0.264	21.8	2.23
1200	84.81	0.4221	0.0009	1.5508	0.0011	0.0004	0.1565	0.5303	0.5303	0.102	0.048	0.006	0.006	92.8	2.527	0.091	21.54	0.77
1250	92.33	0.4057	0.002	1.5942	0.001	0.0004	0.1387	0.5306	0.5306	0.0493	0.122	0.006	0.006	96.4	2.454	0.227	20.91	1.92
1350	97.57	0.3138	0.0007	1.1118	0.0017	0.0004	0.0922	0.5309	0.5309	0.1582	0.088	0.008	0.008	85.1	2.403	0.233	20.48	1.97
1450	100	0.1956	0.0004	0.5146	0.0003	0.0004	0.0418	0.5312	0.5312	0.1717	0.009	0.018	0.018	74.1	2.815	0.053	23.97	0.45
Sample 4MT																		
J-Value =	0.00476	1.4E-05																
700	1.42	0.4227	0.0009	0.2852	0.0005	0.2499	0.034	0.5172	0.5172	1.1587	0.019	0.032	0.032	19	2.814	0.202	23.98	1.71
800	4.69	0.4519	0.0009	0.6541	0.0008	0.1825	0.0556	0.5175	0.5175	0.8901	0.018	0.014	0.014	41.8	2.887	0.082	24.6	0.7
900	12.3	0.8398	0.0019	1.5268	0.0014	0.2504	0.1302	0.5178	0.5178	1.473	0.027	0.006	0.006	48.2	2.649	0.053	22.58	0.45
930	24.45	0.8404	0.0017	2.4351	0.0026	0.0842	0.1987	0.5181	0.5181	0.7567	0.015	0.004	0.004	73.4	2.533	0.02	21.6	0.17
960	38.36	0.8501	0.0018	2.7876	0.0021	0.0011	0.226	0.5184	0.5184	0.5152	0.023	0.003	0.003	82.1	2.503	0.025	21.35	0.21
990	48.2	0.608	0.0012	1.9721	0.0025	0.068	0.1618	0.5187	0.5187	0.3458	0.016	0.005	0.005	83.2	2.565	0.026	21.87	0.22
1020	55.15	0.4436	0.001	1.3923	0.0019	0.0843	0.1124	0.5189	0.5189	0.3097	0.015	0.007	0.007	79.4	2.529	0.033	21.56	0.28
1050	59.92	0.3088	0.0007	0.9558	0.0014	0.0226	0.0805	0.5192	0.5192	0.2114	0.007	0.01	0.01	79.8	2.578	0.023	21.98	0.2
1100	65.16	0.3327	0.0007	1.0495	0.0012	0.0004	0.0916	0.5195	0.5195	0.235	0.014	0.009	0.009	79.1	2.509	0.04	21.39	0.34
1150	72.48	0.4231	0.0009	1.4673	0.0015	0.0004	0.121	0.5198	0.5198	0.1645	0.014	0.006	0.006	88.5	2.552	0.03	21.76	0.25
1200	86.57	0.7636	0.0033	2.8245	0.0105	0.0004	0.2292	0.52	0.5201	0.1784	0.011	0.003	0.003	93.1	2.517	0.019	21.46	0.16
1250	97.94	0.6108	0.0013	2.2776	0.0013	0.0004	0.1862	0.5203	0.5203	0.1253	0.011	0.004	0.004	93.9	2.519	0.016	21.48	0.13
1350	99.55	0.1213	0.0003	0.323	0.0007	0.0058	0.0282	0.5206	0.5206	0.1424	0.019	0.028	0.028	65.3	2.454	0.176	20.93	1.49
1450	100	0.1039	0.0003	0.0908	0.0003	0.0116	0.0129	0.5209	0.5209	0.2495	0.016	0.1	0.1	29	3.322	0.517	28.27	4.37
Sample MA07/	20																	
J-Value =	0.00476	1.4E-05																
700	0.53	0.5656	0.0012	0.1213	0.0004	0.2979	0.0181	0.4886	0.4886	1.7542	0.025	0.07	0.07	8.3	3.891	0.61	33.1	5.14
800	2.16	0.6874	0.0014	0.375	0.0008	0.3666	0.0395	0.4888	0.4888	1.9794	0.03	0.023	0.023	14.9	2.733	0.235	23.31	1.99
900	7.96	1.3213	0.0027	1.3341	0.0015	0.5677	0.1127	4.8909	4.891	3.2557	0.029	0.064	0.064	27.2	2.692	0.067	22.96	0.57
930	23.02	1.3348	0.0028	3.4657	0.0023	0.104	0.2808	4.8935	4.8936	1.5869	0.023	0.025	0.025	64.9	2.498	0.021	21.32	0.18
960	38.8	1.2045	0.0031	3.6296	0.0032	0.0004	0.2977	4.8962	4.8962	1.0604	0.034	0.024	0.024	74	2.455	0.029	20.95	0.25
990	48.92	0.8831	0.0019	2.3274	0.003	0.1024	0.1924	4.8988	4.8988	1.0247	0.019	0.037	0.037	65.7	2.493	0.026	21.28	0.22
1020	55.91	0.7279	0.0016	1.6087	0.0012	0.1098	0.1312	4.9015	4.9015	1.0913	0.014	0.053	0.053	55.7	2.52	0.027	21.5	0.23
1050	60.41	0.5683	0.0012	1.0364	0.0011	0.1476	0.0866	4.9041	4.9041	1.056	0.011	0.083	0.083	45.1	2.472	0.033	21.1	0.28
1100	64.51	0.5486	0.0012	0.9413	0.0015	0.1328	0.0811	4.9067	4 9067	1.0326	0.015	0.091	0.091	44.4	2.587	0.048	22.07	0.41

Tabella 3. Risultati analitici "⁴⁰Ar/³⁹Ar furnace step-heating" per I dicchi granitici

1150	69.24	0.3966	0.001	1.0892	0.0026	0.0004	0.091	4.9093	4.9094	0.4047	0.012	0.079	0.079	69.8	2.543	0.035	21.7	0.3
1200	77.56	0.5503	0.0012	1.9131	0.0025	0.0004	0.1581	4.912	4.912	0.2607	0.014	0.045	0.045	86	2.474	0.023	21.11	0.19
1250	89.03	0.7162	0.0016	2.6385	0.0018	0.0004	0.215	4.9147	4.9147	0.2184	0.013	0.033	0.033	91	2.47	0.016	21.08	0.14
1350	97.56	0.5711	0.0012	1.9628	0.0028	0.0004	0.1623	4.9173	4.9173	0.3018	0.016	0.044	0.044	84.4	2.455	0.025	20.95	0.21
1450	100	0.3034	0.0007	0.5619	0.0013	0.055	0.0474	0.492	0.492	0.5078	0.008	0.015	0.015	50.5	2.729	0.045	23.28	0.38
Sample 23MT																		
J-Value =	0.00477	1.3E-05																
600	0.09	0.0834	0.0002	0.0186	0.0004	0.0234	0.0146	0.4779	0.4779	0.2539	0.016	0.449	0.449	10	4.494	2.456	38.22	20.67
700	0.83	0.2186	0.0005	0.1547	0.0003	0.089	0.0196	0.4781	0.4781	0.6119	0.008	0.054	0.054	17.3	2.445	0.15	20.9	1.28
750	1.84	0.1636	0.0003	0.2125	0.0007	0.0755	0.0194	0.4784	0.4784	0.3402	0.02	0.039	0.039	38.5	2.967	0.282	25.33	2.39
780	3.01	0.1734	0.0004	0.2454	0.0003	0.0635	0.0341	0.4786	0.4786	0.4005	0.018	0.034	0.034	31.8	2.245	0.214	19.19	1.82
810	4.47	0.1944	0.0005	0.3083	0.0012	0.0468	0.0285	0.4789	0.4789	0.366	0.026	0.027	0.027	44.4	2.799	0.254	23.9	2.15
840	6.34	0.182	0.0004	0.3924	0.0007	0.0314	0.0351	0.4791	0.4791	0.2841	0.011	0.021	0.021	53.9	2.499	0.086	21.35	0.73
870	8.83	0.2117	0.0006	0.5214	0.0013	0.0311	0.0472	0.4794	0.4794	0.2563	0.014	0.016	0.016	64.2	2.607	0.08	22.27	0.68
900	13.34	0.3367	0.0008	0.9491	0.0009	0.0474	0.0798	0.4797	0.4797	0.3191	0.019	0.009	0.009	72	2.554	0.059	21.82	0.5
930	22.74	0.6123	0.0013	1.9722	0.002	0.0956	0.1601	0.4799	0.4799	0.4015	0.021	0.004	0.004	80.6	2.503	0.032	21.39	0.27
960	33.82	0.6798	0.0016	2.3269	0.0027	0.048	0.1901	0.4802	0.4802	0.2956	0.015	0.004	0.004	87.1	2.546	0.02	21.75	0.17
990	43.41	0.5998	0.0012	2.0153	0.0022	0.0413	0.165	0.4804	0.4804	0.3464	0.025	0.004	0.004	82.9	2.468	0.038	21.09	0.32
1020	50.35	0.4621	0.0011	1.458	0.0014	0.0004	0.1179	0.4807	0.4807	0.3486	0.012	0.006	0.006	77.7	2.463	0.024	21.05	0.21
1050	56.33	0.3997	0.0009	1.2548	0.002	0.0241	0.1048	0.4809	0.4809	0.2555	0.025	0.007	0.007	81.1	2.584	0.059	22.07	0.5
1100	63.52	0.4494	0.001	1.5097	0.0023	0.0267	0.1226	0.4812	0.4812	0.2239	0.012	0.006	0.006	85.3	2.538	0.025	21.69	0.22
1350	98.61	1.9651	0.004	7.3694	0.0059	0.1081	0.5957	0.4815	0.4815	0.454	0.018	0.001	0.001	93.2	2.484	0.009	21.23	0.08
1450	100	0.1225	0.0003	0.292	0.0008	0.0323	0.0312	0.4858	0.4858	0.1578	0.009	0.029	0.029	61.9	2.598	0.095	22.2	0.81
0	100																	
Sample MAU/	0.00477	1 25 05																
550	0.00477	0.6051	0.0014	0.0154	0.0002	0.3646	0.0131	0.4699	0.4699	1 0769	0.028	0.534	0.534	2.5	13 6/9	5 43	113.67	13 83
600	0.88	0.9241	0.0014	0.0491	0.0002	0.637	0.0149	0.469	0.469	3.0388	0.020	0.167	0.167	2.8	5 317	1 489	45.14	12.00
650	2 59	0.4903	0.0011	0.1256	0.0008	0.2988	0.0313	0.4693	0.4693	1 5496	0.029	0.065	0.065	6.6	2.58	0.687	22.04	5.83
700	6.19	0.3878	0.0011	0.2644	0.0006	0.2685	0.0394	0.4695	0.4695	1.1278	0.025	0.031	0.031	14.1	2.064	0.287	17.65	2.44
750	11.63	0.3979	0.001	0.3988	0.0006	0.259	0.0324	0.4698	0.4698	1.0177	0.02	0.021	0.021	24.4	2.436	0.15	20.82	1.27
800	19.84	0.5525	0.0012	0.6025	0.0003	0.4034	0.0531	0.47	0.47	1.2994	0.02	0.014	0.014	30.5	2.798	0.102	23.89	0.86
850	31.66	0.7189	0.0015	0.8676	0.0016	0.6211	0.0742	0.4703	0.4703	1.6941	0.018	0.009	0.009	30.4	2.516	0.063	21.5	0.54
900	41.14	0.4396	0.0011	0.6951	0.0017	0.3858	0.0626	0.4705	0.4705	0.8959	0.018	0.012	0.012	39.8	2.515	0.077	21.49	0.65
950	47.21	0.37	0.0008	0.4457	0.0003	0.2613	0.037	0.4708	0.4708	0.8138	0.013	0.018	0.018	35	2.907	0.091	24.82	0.77
1000	52.48	0.4326	0.0011	0.3863	0.001	0.2955	0.0354	0.471	0.4711	1.1075	0.01	0.021	0.021	24.3	2.726	0.084	23.29	0.72
1050	57.97	0.5079	0.0011	0.4034	0.001	0.3592	0.0347	0.4713	0.4713	1.3574	0.033	0.02	0.02	21	2.647	0.24	22.62	2.03
1100	66.99	0.4345	0.001	0.6615	0.001	0.3639	0.0581	0.4716	0.4716	0.8458	0.035	0.012	0.012	42.5	2.79	0.159	23.82	1.35
1150	78.04	0.3104	0.0007	0.8107	0.0008	0.3069	0.0683	0.4718	0.4718	0.3324	0.017	0.01	0.01	68.3	2.617	0.063	22.36	0.53
1350	99.38	0.5043	0.0011	1.5656	0.0019	0.4849	0.1358	0.4721	0.4721	0.357	0.021	0.005	0.005	79.1	2.547	0.041	21.77	0.34
1450	100	0.0801	0.0002	0.0458	0.0006	0.0164	0.0193	0.4723	0.4723	0.2097	0.023	0.181	0.181	22.7	3.971	1.488	33.82	12.55
Sample MA07	/22																	
J-Value =	0.00477	9E-06																
550	0.32	1.273	0.0026	0.0157	0.0003	0.8285	0.0167	0.4243	0.4243	4.0967	0.033	0.473	0.473	4.9	39.748	6.379	313.03	46.12
600	1.92	1.7526	0.0037	0.0795	0.0002	1 1359	0.0222	0 4246	0.4246	5 76	0.045	0.093	0.002	2.0	6 353	1 720	53.93	14.51
						111000	0.0222	0.1210	0.4240	5.70	0.045	0.055	0.093	2.5	0.555	1.730	55.65	
650	5.94	0.4777	0.001	0.1999	0.0008	0.3514	0.0192	0.4248	0.4248	1.5309	0.045	0.037	0.037	5.3	1.266	0.287	10.85	2.45

700	12.67	0.3101	0.0006	0.3343	0.0007	0.1991	0.0279	0.4251	0.4251	0.8571	0.012	0.022	0.022	18.3	1.7	0.107	14.56	0.91
750	23.49	0.2805	0.0006	0.5372	0.0006	0.0481	0.0498	0.4253	0.4253	0.5462	0.021	0.014	0.014	42.5	2.218	0.115	18.97	0.98
800	35.3	0.2276	0.0006	0.5866	0.001	0.0718	0.0501	0.4256	0.4256	0.3258	0.024	0.013	0.013	57.7	2.239	0.122	19.16	1.04
850	42.83	0.1549	0.0003	0.3739	0.0008	0.0205	0.0339	0.4258	0.4258	0.1927	0.008	0.02	0.02	63.2	2.618	0.06	22.38	0.51
900	48.11	0.1414	0.0004	0.2624	0.0008	0.001	0.0233	0.426	0.426	0.2476	0.009	0.028	0.028	48.2	2.599	0.104	22.22	0.88
950	54.79	0.1684	0.0004	0.3319	0.0007	0.0139	0.0282	0.4263	0.4263	0.2841	0.011	0.022	0.022	50.1	2.543	0.102	21.74	0.86
1000	63.89	0.2119	0.0005	0.452	0.0013	0.0823	0.0446	0.4265	0.4265	0.368	0.013	0.017	0.017	48.7	2.283	0.083	19.53	0.71
1050	76.61	0.2659	0.0019	0.6319	0.0041	0.0262	0.0569	0.4267	0.4267	0.3905	0.039	0.012	0.012	56.6	2.381	0.184	20.36	1.57
1100	87.89	0.2127	0.0005	0.5605	0.0006	0.0004	0.0459	0.4269	0.427	0.244	0.011	0.013	0.013	66.1	2.508	0.059	21.44	0.5
1150	95.88	0.1461	0.0004	0.3966	0.0008	0.0153	0.0339	0.4272	0.4272	0.1438	0.009	0.019	0.019	70.9	2.612	0.07	22.32	0.6
1350	99.9	0.1187	0.0002	0.1999	0.0003	0.0004	0.0248	0.4274	0.4274	0.2177	0.032	0.037	0.037	45.8	2.722	0.473	23.26	4.02
1450	100	0.07	0.0002	0.0048	0.0002	0.0339	0.0094	0.4276	0.4276	0.2235	0.011	1.557	1.558	5.6	8.172	6.606	68.94	54.68

TIME	analista	Sample		Rb	Sr	87Sr/86Sr	err.	87Rb/86Sr	87Sr/86Sr	e Sr	T (UR)	T (UR)	T (UR)
years				ppm	ppm	measured			calculated		Ga	Ga	Ga
o 11													
Granites													
2000000) Dini, 2007	MA07_20	Dicco granito	215	20	0.729544 ±	7	31.16966893	0.720690557	230.1529658	0.056708366	-15.5686529	-13.9689256
2000000) Dini, 2007	MA07_22	Dicco granito	67	173	0.722187 ±	9	1.122122881	0.721868272	246.8705486	1.18702795	-16.8476129	-14.9839128
2000000) Dini, 2007	MA07_26	Dicco Granito	168	180	0.723306 ±	10	2.704555923	0.722537797	256.3744127	0.503117709	-17.585187	-15.5615775
2000000) Dini, 2007	MT9	Dicco Granito	122	336	0.720082 ±	10	1.051823715	0.71978324	217.2736597	1.122048179	-14.5989365	-13.1851212
30000000) Dini, 2007	BA1	Leptinite	205	48	0.775335 ±	11	12.43865145	0.722233319	256.7884766	0.402535244	-17.2488041	-15.3963146
30000000) Dini, 2007	MT7	Leptinite	229	389	0.717768 ±	8	1.704943864	0.710489447	90.00801221	0.573251924	-5.36657129	-5.18055283
30000000) Dini, 2007	MT10	Leptinite	129	77	0.737762 ±	8	4.861507573	0.717007803	182.5783708	0.488355895	-11.7129068	-10.8287831

Tabella 4	 Analisi ise 	otopiche Sr-No	d su leptiniti e dia	cchi
TIN 4 5			51	~

TIME	analista	Sample									Faure	Faure	De Paolo
years				Sm	Nd	143Nd/144Nd	err.	147Sm/144No	143Nd/144Nd	e Nd	T (CHUR)	T (DM)	T (DM)
				ppm	ppm	measured			calculated		Ga	Ga	Ga
Granites													
2000000) Dini, 2007	MA07_20	Dicco granito	2.31	7.18	0.512052 ±	10	0.195190657	0.512026467	-11.4277905	50.15946345	50.15946345	1.73084622
2000000) Dini, 2007	MA07_22	Dicco granito	4.15	16.4	$0.512061 \pm$	10	0.152960127	0.512040992	-11.1444553	2.003879668	2.314512609	1.712049792
2000000) Dini, 2007	MA07_26	Dicco Granito	2.83	11.4	0.512075 ±	5	0.150057257	0.512055371	-10.8639368	1.834588136	2.192469026	1.693346692
2000000) Dini, 2007	MT9	Dicco Granito	1.89	7.05	0.512101 ±	10	0.162050647	0.512079802	-10.3873356	2.351568106	2.562143814	1.661352691
30000000) Dini, 2007	BA1	Leptinite	1.73	5.46	0.512192 ±	9	0.191531787	0.511815846	-8.50851281	12.65664076	12.65664076	1.71814494
30000000) Dini, 2007	MT7	Leptinite	3.14	13.7	0.512057 ±	8	0.138542384	0.511784913	-9.11237095	1.519957498	1.924400559	1.759559106
30000000) Dini, 2007	MT10	Leptinite	1.08	3.72	0.512134 ±	6	0.175494001	0.511789343	-9.02589473	3.59156342	3.59156342	1.753657239

APPENDICE C

Leptiniti	MZr	Zr ppm	DZr ^{min/melt}	T(Zr) °K	T(Zr) °C
MA 09/4	1.212	45	11058.84	970.56	697.41
MA 09/16	1.299	151	3295.68	1061.31	788.16
MA 09/20	1.291	43	11573.21	962.43	689.28
BA 1	1.053	18	27647.11	916.70	643.55
18 BA	1.138	72	6911.78	1011.12	737.97
MA 07/14	1.107	23	21636.87	929.85	656.70
MA 07/19	1.239	117	4253.40	1043.80	770.65
MA 07/29	1.070	22	22620.36	929.00	655.85
MT 7	1.404	82	6068.88	1003.52	730.37
MT 10	0.891	30	16588.27	960.97	687.82
MT 11	1.284	29	17160.28	935.34	662.19
Leucosomi	MZr	Zr ppm	DZr ^{min/melt}	T(Zr) °K	T(Zr) °C
Leucosomi MA 07/11	MZr 1.376	Zr ppm 5	DZr ^{min/melt} 99529.60	T(Zr) °K 825.44	T(Zr) °C 552.29
Leucosomi MA 07/11 MA 09/13	MZ r 1.376 1.342	Zr ppm 5 170	DZr ^{min/melt} 99529.60 2927.34	Τ(Zr) °K 825.44 1068.58	T(Zr) °C 552.29 795.43
Leucosomi MA 07/11 MA 09/13	MZr 1.376 1.342	Zr ppm 5 170	DZr ^{min/melt} 99529.60 2927.34	T(Zr) °K 825.44 1068.58	T(Zr) °C 552.29 795.43
Leucosomi MA 07/11 MA 09/13 Dicchi	MZr 1.376 1.342 MZr	Zr ppm 5 170 Zr ppm	DZr ^{min/melt} 99529.60 2927.34 DZr ^{min/melt}	Т(Zr) °К 825.44 1068.58 Т(Zr) °К	T(Zr) ℃ 552.29 795.43 T(Zr) ℃
Leucosomi MA 07/11 MA 09/13 Dicchi MA 09/22	MZr 1.376 1.342 MZr 1.308	Zr ppm 5 170 Zr ppm 58	DZr ^{min/melt} 99529.60 2927.34 DZr ^{min/melt} 8580.14	T(Zr) °K 825.44 1068.58 T(Zr) °K 983.33	T(Zr) °C 552.29 795.43 T(Zr) °C 710.18
Leucosomi MA 07/11 MA 09/13 Dicchi MA 09/22 MA 09/23	MZr 1.376 1.342 MZr 1.308 1.214	Zr ppm 5 170 Zr ppm 58 53	DZr ^{min/melt} 99529.60 2927.34 DZr ^{min/melt} 8580.14 9389.58	т(Zr) °К 825.44 1068.58 т(Zr) °К 983.33 982.51	T(Zr) ℃ 552.29 795.43 T(Zr) ℃ 710.18 709.36
Leucosomi MA 07/11 MA 09/13 Dicchi MA 09/22 MA 09/23 MA 07/20	MZr 1.376 1.342 MZr 1.308 1.214 1.299	Zr ppm 5 170 Zr ppm 58 53 33	DZr ^{min/melt} 99529.60 2927.34 DZr ^{min/melt} 8580.14 9389.58 15080.24	т(Zr) °К 825.44 1068.58 т(Zr) °К 983.33 982.51 943.33	T(Zr) ℃ 552.29 795.43 T(Zr) ℃ 710.18 709.36 670.18
Leucosomi MA 07/11 MA 09/13 Dicchi MA 09/22 MA 09/23 MA 07/20 MA 07/22	MZr 1.376 1.342 MZr 1.308 1.214 1.299 1.261	Zr ppm 5 170 Zr ppm 58 53 33 66	DZr ^{min/melt} 99529.60 2927.34 DZr ^{min/melt} 8580.14 9389.58 15080.24 7540.12	т(Zr) °К 825.44 1068.58 т(Zr) °К 983.33 982.51 943.33 996.16	T(Zr) °C 552.29 795.43 T(Zr) °C 710.18 709.36 670.18 723.01
Leucosomi MA 07/11 MA 09/13 Dicchi MA 09/22 MA 09/23 MA 07/20 MA 07/22 MA 07/26	MZr 1.376 1.342 MZr 1.308 1.214 1.299 1.261 1.222	Zr ppm 5 170 Zr ppm 58 53 33 66 56	DZr ^{min/melt} 99529.60 2927.34 DZr ^{min/melt} 8580.14 9389.58 15080.24 7540.12 8886.57	т(Zr) °К 825.44 1068.58 т(Zr) °К 983.33 982.51 943.33 996.16 986.14	T(Zr) ℃ 552.29 795.43 T(Zr) ℃ 710.18 709.36 670.18 723.01 712.99
Leucosomi MA 07/11 MA 09/13 Dicchi MA 09/22 MA 09/23 MA 07/20 MA 07/20 MA 07/26 MT 9	MZr 1.376 1.342 MZr 1.308 1.214 1.299 1.261 1.222 1.198	Zr ppm 5 170 Zr ppm 58 53 33 66 56 56 69	DZr ^{min/melt} 99529.60 2927.34 DZr ^{min/melt} 8580.14 9389.58 15080.24 7540.12 8886.57 7212.29	т(Zr) °К 825.44 1068.58 т(Zr) °К 983.33 982.51 943.33 996.16 986.14 1003.72	T(Zr) ℃ 552.29 795.43 T(Zr) ℃ 710.18 709.36 670.18 723.01 712.99 730.57

Tabella 1. Termometria secondo il modello di solubilità dello zircone nel fuso(Watson & Harrison, 1983)

MA 07/21	1.372	8	62206.00	851.25	578.10
13 BA	1.356	83	5995.76	1007.69	734.54
Restiti	MZr	Zr ppm	DZr ^{min/melt}	T(Zr) °K	T(Zr) °C
MA 09/15	1.630	222	2241.66	1070.50	797.35
MA 09/28M	1.424	248	2006.65	1096.50	823.35
K3	0.409	291	1710.13	1200.92	927.77
MA 07/13	0.744	235	2117.65	1147.64	874.49
MA 07/28	1.551	224	2221.64	1077.29	804.14

							T °C (Tomki	ns et al., 200	7)	
	spot	Nb2O3	ZrO2	FeO	T °C (Watson et al., 2006)	T °C (Ferry & Watson, 2007)	7 kbar	10kbar	15kbar	20kbar
Restite										
k3	#1	0.047	0.22	1.038	805	803	789	806	834	862
k3	#2	0.059	0.22	0.714	805	803	789	806	834	862
k3	#3	0.052	0.247	1.059	818	816	801	818	847	876
k3	#4	0.058	0.267	0.985	827	825	810	827	856	885
k3	#5	0.035	0.209	1.029	799	798	784	800	829	857
Leucosoma										
В	#1	0.115	0.123	0.948	743	742	731	747	774	800
В	#2	0.043	0.193	0.848	790	789	775	792	820	848
В	#3	0.042	0.12	0.865	740	740	729	745	771	798
В	#4	0.045	0.176	0.789	780	779	766	783	810	838
В	#5	0.045	0.471	0.967	898	895	876	894	925	955
В	#6	0.059	0.469	0.94	897	895	875	894	924	955

Tabella 2. Termometria secondo il modello di solubilità della Zirconio nel rutilo (Tomkins et al., 2007)

Tabella 3. Termometria REE secondo il modello di solubilità della monazite (Montel, 1986)

			Correzione Monazite		Contenuto in H_2O wt%				
			REEt / XReePO4 =	0.83	1.00	2.00	3.00	4.00	5.00
	Dree	REE tot	X REEt						
Dicchi					T(REE) °C	T(REE) °C	T(REE) °C	T(REE) °C	T(REE) °C
MA 09/22	1.0980124	0.5452701	0.4525742		731.98	719.94	710.89	703.39	696.88
MA 09/23	1.0077907	0.2798032	0.2322366		698.53	687.27	678.81	671.79	665.69
MA 07/20	1.0614513	0.2197033	0.1823537		673.17	662.49	654.45	647.78	641.99
MA 07/22	1.0521203	0.5895313	0.489311		746.24	733.86	724.56	716.85	710.16
MA 07/26	0.9945026	0.4147133	0.3442121		729.60	717.61	708.61	701.14	694.66
MT 9	0.9478621	0.5628279	0.4671471		761.90	749.13	739.55	731.61	724.72
23MT	1.0448891	0.2529384	0.2099389		685.40	674.44	666.20	659.37	653.43
MA 07/21	1.1343323	0.0922955	0.0766053		608.18	598.90	591.92	586.12	581.07
13 BA	1.1317153	0.2011756	0.1669757		656.49	646.18	638.42	631.98	626.38

Tabella 4a. Termometria An-Ab-Or (Nekvasil and Burnham, 1987)

LEPTINITI INDEFORMATE

	Average	Temperature(C)	=	766.9	Pressure(Kbar)	=	15	SUM(dT)	=	872.2612
	_			Ab	Or	An	dX	•		
	Concordant	Temperatures(C):		621.52	1057.65	621.52				
	Original	Plagioclase	Composition:	0.4039	0.2137	0.3824	0.02			
	Adjusted	Plagioclase	Composition:	0.4074	0.2099	0.3827	-0.0036			
Original	Alkali	Feldspar	Composition:	0.0218	0.9758	0.0024	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.05	0.9492	0.0008	-0.0291			
	Average	Temperature(C)	=	545.16	Pressure(Kbar)	=	15	SUM(dT)	=	0
				Ab	Or	An	dX			
	Concordant	Temperatures(C):		545.16	545.16	545.16				
	Original	Plagioclase	Composition:	0.4081	0.0073	0.5846	0.02			
	Adjusted	Plagioclase	Composition:	0.386	0.0137	0.6003	0.02			
Original	Alkali	Feldspar	Composition:	0.0218	0.9758	0.0024	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0373	0.9624	0.0003	-0.0155			
	Average	Temperature(C)	=	724.23	Pressure(Kbar)	=	10	SUM(dT)	=	894.749
				Ab	Or	An	dX			
	Concordant	Temperatures(C):		575.1	1022.48	575.1				
	Original	Plagioclase	Composition:	0.4039	0.2137	0.3824	0.02			
	Adjusted	Plagioclase	Composition:	0.4083	0.2091	0.3826	-0.0045			
Original	Alkali	Feldspar	Composition:	0.0218	0.9758	0.0024	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.049	0.9504	0.0005	-0.0279			
	Average	Temperature(C)	=	469.1	Pressure(Kbar)	=	10	SUM(dT)	=	0.0373
				Ab	Or	An	dX			
	Concordant	Temperatures(C):		469.1	469.09	469.11				
	Original	Plagioclase	Composition:	0.4081	0.0073	0.5846	0.02			
	Adjusted	Plagioclase	Composition:	0.4054	0.0102	0.5844	0.0028			
Original	Alkali	Feldspar	Composition:	0.0218	0.9758	0.0024	0.02			
	Original Adjusted Original Adjusted Original Adjusted	Original AdjustedConcordant Original AdjustedAdjustedAlkaliAdjustedAlkaliAlkaliAverageOriginal AdjustedConcordant Original AlkaliOriginal AdjustedAlkaliAdjustedAlkaliAdjustedAlkaliAdjustedAlkaliAdjustedAlkaliAdjustedAlkaliAdjustedAlkaliAdjustedAlkaliAdjustedAlkaliAdjustedAlkaliAdjustedAlkaliAlkaliAlkaliAlkaliAlkaliAlkaliAlkaliAlkaliAlkaliAlkaliAlkaliAlkaliAlkali	Original AdjustedConcordant Original AdjustedTemperatures(C): Plagioclase Plagioclase Feldspar FeldsparOriginal AdjustedAlkaliFeldspar FeldsparAverageTemperatures(C): Plagioclase Plagioclase PlagioclaseOriginal AdjustedConcordant Original AlkaliTemperatures(C): Plagioclase Plagioclase Plagioclase PlagioclaseOriginal AdjustedAverageTemperatures(C): Plagioclase Plagioclase Plagioclase Plagioclase Plagioclase Plagioclase Plagioclase PlagioclaseOriginal AdjustedConcordant Original AlkaliTemperatures(C): Plagioclase Plagioclase Plagioclase Plagioclase PlagioclaseOriginal AdjustedAverageTemperatures(C): PlagioclaseOriginal AdjustedAlkaliTemperatures(C): Plagioclase Plagioclase Plagioclase Plagioclase Plagioclase Plagioclase	Original AdjustedTemperatures(C): PlagioclaseComposition: Composition:Original AdjustedAlkaliPlagioclaseComposition: Composition:AdjustedAlkaliFeldsparComposition: Composition:AdjustedAlkaliFeldsparComposition:AdjustedAlkaliFeldsparComposition:AverageTemperatures(C): Plagioclase=Original AdjustedPlagioclaseComposition: Composition:Original AdjustedPlagioclaseComposition: Composition:AdjustedPlagioclaseComposition: Composition:AdjustedPlagioclaseComposition: Composition:AdjustedTemperatures(C): Plagioclase=Original AdjustedTemperatures(C): Plagioclase=Original AdjustedTemperatures(C): PlagioclaseComposition: Composition: Composition:Original AdjustedTemperatures(C): PlagioclaseComposition: Composition: Composition: Composition: PlagioclaseOriginal AdjustedTemperatures(C): Plagioclase=Concordant AlkaliTemperatures(C): Plagioclase=Original AdjustedPlagioclase PlagioclaseComposition: Composition: Composition: Composition:Original AdjustedPlagioclase PlagioclaseComposition: Composition: Composition: Composition:Original AdjustedPlagioclase PlagioclaseComposition: Composition:Original AdjustedPlagioclase Plagi	AbConcordantTemperatures(C):621.52OriginalPlagioclaseComposition:AdjustedPlagioclaseComposition:AdjustedAlkaliFeldsparAdjustedAlkaliFeldsparAdjustedAlkaliFeldsparAdjustedAlkaliFeldsparAdjustedAlkaliFeldsparAverageTemperature(C)=S45.16S45.16OriginalPlagioclaseComposition:AdjustedPlagioclaseComposition:OriginalAlkaliFeldsparAdjustedPlagioclaseComposition:OriginalAlkaliFeldsparAdjustedPlagioclaseComposition:OriginalAlkaliFeldsparAdjustedPlagioclaseComposition:OriginalAlkaliFeldsparAdjustedPlagioclaseComposition:OriginalAlkaliFeldsparAdjustedPlagioclaseComposition:OriginalAlkaliFeldsparAdjustedPlagioclaseComposition:AdjustedPlagioclaseComposition:AdjustedPlagioclaseComposition:AdjustedPlagioclaseComposition:AdjustedPlagioclaseComposition:AdjustedPlagioclaseComposition:AdjustedPlagioclaseComposition:AdjustedPlagioclaseComposition:AdjustedPlagioclaseComposition:A	AbOrOriginalPlagioclaseComposition:0.40390.2137AdjustedPlagioclaseComposition:0.40740.2099OriginalAlkaliFeldsparComposition:0.02180.9758AdjustedAlkaliFeldsparComposition:0.02180.9758AdjustedAlkaliFeldsparComposition:0.02180.9758AdjustedAlkaliFeldsparComposition:0.050.9492AverageTemperature(C)=545.16Pressure(Kbar)OriginalPlagioclaseComposition:0.40810.0073AdjustedPlagioclaseComposition:0.40810.0073AdjustedPlagioclaseComposition:0.3860.0137OriginalAlkaliFeldsparComposition:0.02180.9758AdjustedPlagioclaseComposition:0.03730.9624AlkaliFeldsparComposition:0.03730.9624AlgustedPlagioclaseComposition:0.40390.2137AdjustedPlagioclaseComposition:0.40390.2137AdjustedPlagioclaseComposition:0.40330.2091OriginalAlkaliFeldsparComposition:0.40390.2137AdjustedPlagioclaseComposition:0.40330.2091OriginalAlkaliFeldsparComposition:0.40330.2091AdjustedPlagioclaseComposition:0.40810.0073 </td <td>Ab ConcordantOrAn 621.52Original AdjustedPlagioclaseComposition: Omposition:0.40390.21370.3824AdjustedPlagioclaseComposition: Omposition:0.40740.20990.3827Original AdjustedAlkaliFeldsparComposition: Omposition:0.002180.97580.0024AdjustedAlkaliFeldsparComposition: Omposition:0.02180.94920.0088AverageTemperature(C)=545.16Pressure(Kbar)=Concordant OriginalTemperatures(C):545.16545.16545.16Original AdjustedPlagioclaseComposition: Omposition:0.02180.00730.5846AdjustedPlagioclaseComposition: Omposition:0.02180.97580.0024AdjustedPlagioclaseComposition: Omposition:0.02180.97580.0024AdjustedPlagioclaseComposition: Omposition:0.02180.97580.024AdjustedPlagioclaseComposition: Omposition:0.02380.20310.3824AdjustedPlagioclaseComposition: Omposition:0.04030.21370.3824AdjustedPlagioclaseComposition: Omposition:0.04030.20410.3824AdjustedPlagioclaseComposition: Omposition:0.40330.20410.3824AdjustedPlagioclaseComposition: Omposition:0.40430.20410.3826Original</td> <td>Ab Or An dX Concordant Temperatures(C): 621.52 1057.65 621.52 Original Plagioclase Composition: 0.4039 0.2137 0.3824 0.02 Adjusted Plagioclase Composition: 0.4074 0.2090 0.3827 -0.0036 Adjusted Alkali Feldspar Composition: 0.0218 0.9758 0.0024 0.02 Adjusted Alkali Feldspar Composition: 0.025 0.9492 0.008 -0.291 Adjusted Plagioclase Composition: 0.055 0.9492 0.008 -0.291 Concordant Temperatures(C): 545.16 Pressure(Kbar) = 15 Ab Or An dX 0.024 0.003 0.024 Original Plagioclase Composition: 0.4081 0.0073 0.5846 0.024 Original Alkali Feldspar Composition: 0.0218 0.9758 0.0024 0.025</td> <td>Ab Criginal AdjustedTemperatures(C): PlagioclaseAb Composition:Or 621.52An 1057.65Act 621.52Original AdjustedPlagioclase PlagioclaseComposition:0.40390.21370.38240.02AdjustedPlagioclase Composition:0.02180.02990.3827-0.0360.0214AlkaliFeldsparComposition:0.02180.99290.0008-0.0291AverageTemperature(C)=545.16Pressure(kbar)=15SUM(dT)AbOrAndX<</td> <td>$\begin{array}{cccccc} Ab & Or & An & dX \\ Concordant & Temperatures(C): & Composition: 0.4039 & 0.2137 & 0.3824 & 0.02 \\ Original & Plagioclase & Composition: 0.4039 & 0.2137 & 0.3824 & 0.02 \\ Adjusted & Plagioclase & Composition: 0.4074 & 0.2099 & 0.3827 & -0.0036 \\ Alkali & Feldspar & Composition: 0.0218 & 0.9758 & 0.024 & 0.02 \\ Alkali & Feldspar & Composition: 0.05 & 0.9492 & 0.008 & -0.291 \\ \end{array}$</td>	Ab ConcordantOrAn 621.52Original AdjustedPlagioclaseComposition: Omposition:0.40390.21370.3824AdjustedPlagioclaseComposition: Omposition:0.40740.20990.3827Original AdjustedAlkaliFeldsparComposition: Omposition:0.002180.97580.0024AdjustedAlkaliFeldsparComposition: Omposition:0.02180.94920.0088AverageTemperature(C)=545.16Pressure(Kbar)=Concordant OriginalTemperatures(C):545.16545.16545.16Original AdjustedPlagioclaseComposition: Omposition:0.02180.00730.5846AdjustedPlagioclaseComposition: Omposition:0.02180.97580.0024AdjustedPlagioclaseComposition: Omposition:0.02180.97580.0024AdjustedPlagioclaseComposition: Omposition:0.02180.97580.024AdjustedPlagioclaseComposition: Omposition:0.02380.20310.3824AdjustedPlagioclaseComposition: Omposition:0.04030.21370.3824AdjustedPlagioclaseComposition: Omposition:0.04030.20410.3824AdjustedPlagioclaseComposition: Omposition:0.40330.20410.3824AdjustedPlagioclaseComposition: Omposition:0.40430.20410.3826Original	Ab Or An dX Concordant Temperatures(C): 621.52 1057.65 621.52 Original Plagioclase Composition: 0.4039 0.2137 0.3824 0.02 Adjusted Plagioclase Composition: 0.4074 0.2090 0.3827 -0.0036 Adjusted Alkali Feldspar Composition: 0.0218 0.9758 0.0024 0.02 Adjusted Alkali Feldspar Composition: 0.025 0.9492 0.008 -0.291 Adjusted Plagioclase Composition: 0.055 0.9492 0.008 -0.291 Concordant Temperatures(C): 545.16 Pressure(Kbar) = 15 Ab Or An dX 0.024 0.003 0.024 Original Plagioclase Composition: 0.4081 0.0073 0.5846 0.024 Original Alkali Feldspar Composition: 0.0218 0.9758 0.0024 0.025	Ab Criginal AdjustedTemperatures(C): PlagioclaseAb Composition:Or 621.52An 1057.65Act 621.52Original AdjustedPlagioclase PlagioclaseComposition:0.40390.21370.38240.02AdjustedPlagioclase Composition:0.02180.02990.3827-0.0360.0214AlkaliFeldsparComposition:0.02180.99290.0008-0.0291AverageTemperature(C)=545.16Pressure(kbar)=15SUM(dT)AbOrAndX<	$ \begin{array}{cccccc} Ab & Or & An & dX \\ Concordant & Temperatures(C): & Composition: 0.4039 & 0.2137 & 0.3824 & 0.02 \\ Original & Plagioclase & Composition: 0.4039 & 0.2137 & 0.3824 & 0.02 \\ Adjusted & Plagioclase & Composition: 0.4074 & 0.2099 & 0.3827 & -0.0036 \\ Alkali & Feldspar & Composition: 0.0218 & 0.9758 & 0.024 & 0.02 \\ Alkali & Feldspar & Composition: 0.05 & 0.9492 & 0.008 & -0.291 \\ \end{array}$

Adjusted	Alkali	Feldspar	Composition:	0.0313	0.9686	0.0001	-0.0092			
		- (0)					_			
	Average	Temperature(C)	=	686.24	Pressure(Kbar)	=	5	SUM([dT])	=	911.4604
				Ab	Or	An	dX			
	Concordant	Temperatures(C):		526.48	982.21	550.03				
	Original	Plagioclase	Composition:	0.4039	0.2137	0.3824	0.02			
	Adjusted	Plagioclase	Composition:	0.4127	0.2123	0.375	-0.0082			
Original	Alkali	Feldspar	Composition:	0.0218	0.9758	0.0024	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0477	0.9519	0.0004	-0.0265			
	A	To para a rationa (C)		440 72	Dressure (Khor)		-			0 2752
	Average	Temperature(C)	=	440.72	Pressure(Kbar)	=	5	SUIVI([d1])	=	0.2752
				Ab	Or	An	dX			
	Concordant	Temperatures(C):		440.76	440.63	440.76				
	Original	Plagioclase	Composition:	0.4081	0.0073	0.5846	0.02			
	Adjusted	Plagioclase	Composition:	0.4058	0.0096	0.5846	0.0023			
Original	Alkali	Feldspar	Composition:	0.0218	0.9758	0.0024	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0357	0.9642	0.0001	-0.0137			

LEUCOSOMI

MT8

	Average	Temperature(C)	=	596.53	Pressure(Kbar)	=	15	SUM(dT)	=	0.5016
				Ab	Or	An	dX			
	Concordant	Temperatures(C):		596.45	596.45	596.7				
	Original	Plagioclase	Composition:	0.4966	0.024	0.4794	0.02			
	Adjusted	Plagioclase	Composition:	0.4995	0.0214	0.479	-0.0027			
Original	Alkali	Feldspar	Composition:	0.0406	0.9543	0.0051	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0589	0.9405	0.0006	-0.0176			
	Average	Temperature(C)	=	542.32	Pressure(Kbar)	=	10	SUM(dT)	=	0
				Ab	Or	An	dX			
	Concordant	Temperatures(C):		542.32	542.32	542.32				
	Original	Plagioclase	Composition:	0.4966	0.024	0.4794	0.02			
	Adjusted	Plagioclase	Composition:	0.5039	0.0188	0.4773	-0.0065			
Original	Alkali	Feldspar	Composition:	0.0406	0.9543	0.0051	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0573	0.9424	0.0003	-0.0159			
	Average	Temperature(C)	=	483.67	Pressure(Kbar)	=	5	SUM(dT)	=	0.0045
				Ab	Or	An	dX			
	Concordant	Temperatures(C):		483.67	483.67	483.67				
	Original	Plagioclase	Composition:	0.4966	0.024	0.4794	0.02			
	Adjusted	Plagioclase	Composition:	0.5047	0.0156	0.4797	-0.0081			
Original	Alkali	Feldspar	Composition:	0.0406	0.9543	0.0051	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0536	0.9463	0.0002	-0.0121			

	Average	Temperature(C)	=	811.53	Pressure(Kbar)	=	15	SUM(dT)	=	36.7652	
				Ab	Or	An	dX				
	Concordant	Temperatures(C):		805.4	805.4	823.78					
	Original	Plagioclase	Composition:	0.1213	0.0018	0.8768	0.02				
	Adjusted	Plagioclase	Composition:	0.104	0.0233	0.8727	0.0199				
Original	Alkali	Feldspar	Composition:	0.0406	0.9543	0.0051	0.02				
Adjusted	Alkali	Feldspar	Composition:	0.0431	0.9515	0.0055	-0.0029				
	Δυρτάσο	Temperature(C)	_	787 94	Pressure(Khar)	_	10	SUM([dT])	_	0	
	Average	remperature(C)	-	707.94 Ab	Or	- An	4X TO	50M([u1])	-	0	
	Concordant	Temperatures(C)		787 94	787 94	787 94	un				
	Original	Plagioclase	Composition:	0.1213	0.0018	0.8768	0.02				
	Adjusted	Plagioclase	Composition:	0.1026	0.0223	0.8751	0.02				
Original	Alkali	Feldspar	Composition:	0.0406	0.9543	0.0051	0.02				
Adjusted	Alkali	Feldspar	Composition:	0.0492	0.9464	0.0043	-0.0088				
	Average	Temperature(C)	=	671.44	Pressure(Kbar)	=	5	SUM(dT)	=	0	
				Ab	Or	An	dX				
	Concordant	Temperatures(C):		671.44	671.44	671.44					
	Original	Plagioclase	Composition:	0.1213	0.0018	0.8768	0.02				
	Adjusted	Plagioclase	Composition:	0.1052	0.0153	0.8795	0.0155				
Original	Alkali	Feldspar	Composition:	0.0406	0.9543	0.0051	0.02				
Adjusted	Alkali	Feldspar	Composition:	0.0469	0.9515	0.0016	-0.0058				
K1		Average	Temperature(C)	=	622.69	Pressure(Kbar)	=	5	SUM(dT)	=	0
----	----------	------------	------------------	--------------	--------	----------------	---------	---------	-----------	-----	---------
					Ab	Or	An	dX			
		Concordant	Temperatures(C):		622.69	622.69	622.69				
		Original	Plagioclase	Composition:	0.7152	0.0303	0.2544	0.02			
		Adjusted	Plagioclase	Composition:	0.6938	0.0484	0.2578	0.02			
	Original	Alkali	Feldspar	Composition:	0.1517	0.841	0.0073	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.1678	0.8308	0.0014	-0.0141			
		Average	Temperature(C)	=	719.6	Pressure(Kbar)	=	15	SUM(dT)	=	0
					Ab	Or	An	dX			
		Concordant	Temperatures(C):		719.6	719.6	5 719.6				
		Original	Plagioclase	Composition:	0.7152	0.0303	0.2544	0.02			
		Adjusted	Plagioclase	Composition:	0.6959	0.0508	0.2533	0.02			
	Original	Alkali	Feldspar	Composition:	0.1517	0.841	0.0073	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.1576	0.8398	0.0026	-0.0054			
		Average	Temperature(C)	=	596.34	Pressure(Kbar)	=	5	SUM(dT)	= !	57.6777
					Ab	Or	An	dX			
		Concordant	Temperatures(C):		605.95	577.11	605.95				
		Original	Plagioclase	Composition:	0.7186	0.0167	0.2647	0.02			
		Adjusted	Plagioclase	Composition:	0.7067	0.0398	0.2535	0.02			
	Original	Alkali	Feldspar	Composition:	0.1517	0.841	0.0073	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.1592	0.8397	0.0011	-0.0069			
		Average	Temperature(C)	=	685.56	Pressure(Kbar)	=	15	SUM(dT)	=	70.4116
					Ab	Or	An	dX			
		Concordant	Temperatures(C):		697.29	662.09	697.29				
		Original	Plagioclase	Composition:	0.7186	0.0167	0.2647	0.02			
		Adjusted	Plagioclase	Composition:	0.7077	0.0398	0.2525	0.02			
	Original	Alkali	Feldspar	Composition:	0.1517	0.841	0.0073	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.1461	0.8519	0.002	-0.0094			

	Average	Temperature(C)	=	751.57	Pressure(Kbar)	=	5	SUM(dT)	=	661.292
				Ab	Or	An	dX			
	Concordant	Temperatures(C):		861.78	531.14	861.78				
	Original	Plagioclase	Composition:	0.7186	0.0167	0.2647	0.02			
	Adjusted	Plagioclase	Composition:	0.7027	0.0391	0.2582	0.02			
Original	Alkali	Feldspar	Composition:	0.4272	0.4316	0.1411	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.4884	0.4597	0.0519	-0.079			
	Average	Temperature(C)	=	843.39	Pressure(Kbar)	=	15	SUM(dT)	=	739.2962
				Ab	Or	An	dX			
	Concordant	Temperatures(C):		966.61	596.96	966.61				
	Original	Plagioclase	Composition:	0.7186	0.0167	0.2647	0.02			
	Adjusted	Plagioclase	Composition:	0.7028	0.0392	0.258	0.02			
Original	Alkali	Feldspar	Composition:	0.4272	0.4316	0.1411	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.4789	0.4517	0.0693	-0.0641			
	Average	Temperature(C)	=	733.01	Pressure(Kbar)	=	5	SUM(dT)	=	381.4505
	_			Ab	Or	An	dX			
	Concordant	Temperatures(C):		669.44	860.16	669.44				
	Original	Plagioclase	Composition:	0.5652	0.2549	0.1799	0.02			
	Adjusted	Plagioclase	Composition:	0.5631	0.2586	0.1783	0.0032			
Original	Alkali	Feldspar	Composition:	0.1517	0.841	0.0073	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.1615	0.836	0.0025	-0.0085			
	Average	Temperature(C)	=	832.4	Pressure(Kbar)	=	15	SUM(dT)	=	374.5489
		_		Ab	Or	An	dX			
	Concordant	Temperatures(C):		769.98	957.25	769.98				
	Original	Plagioclase	Composition:	0.5652	0.2549	0.1799	0.02			
	Adjusted	Plagioclase	Composition:	0.5637	0.2566	0.1797	0.0016			
Original	Alkali	Feldspar	Composition:	0.1517	0.841	0.0073	0.02			

Tabella 4c. Termometria An-Ab-Or (Nekvasil and Burnham, 1987)

RESTITI

КЗ	Average Temperature(C) = 804.10	Pressure(Kbar) = 15.00 Or	00	SUM(d		T) = 651.7374 dX
	Concordant Temperatures(C):	695	48	1021 34		695 48	ux
	Original Plagioclase Composition:	0.48	19	0 1889		0 3292	0.02
	Adjusted Plagioclase Composition:	0.48	271	0.1876		0.3252	-0 0047
	Original Alkali Feldsnar Composition:	0.0	165	0.1070		0.0128	0.0047
	Adjusted Alkali Feldspar Composition:	0.08	93	0.9087		0.0019	-0.0211
	Average Temperature(C) = 760.90	Pressure(Kbar) = 10.00	00	SUM(d		T) = 672.2411
		Ab	Or		An		dX
	Concordant Temperatures(C):	648.	.86	984.98		648.86	
	Original Plagioclase Composition:	0.48	19	0.1889		0.3292	0.02
	Adjusted Plagioclase Composition:	0.48	44	0.185		0.3306	-0.0034
	Original Alkali Feldspar Composition:	0.0	65	0.9222		0.0128	0.02
	Adjusted Alkali Feldspar Composition:	0.08	89	0.9098		0.0013	-0.0207
	Average Temperature(C) = 712.67	Pressure(Kbar) = 5.000	00	SUM(d		T) = 690.3279
		Ab	Or		An		dX
	Concordant Temperatures(C):	597.	.61	942.77		597.61	
	Original Plagioclase Composition:	0.48	19	0.1889		0.3292	0.02
	Adjusted Plagioclase Composition:	0.4	87	0.1835		0.3295	-0.0053
	Original Alkali Feldspar Composition:	0.0	65	0.9222		0.0128	0.02
	Adjusted Alkali Feldspar Composition:	0.08	377	0.9114		0.0008	-0.0197
	Average Temperature(C) = 672.79	Pressure(Kbar) = 15.00	00	SUM(d		T)= 0.0000
		Ab	Or		An		dX
	Concordant Temperatures(C):	672.	.79	672.79		672.79	

Original Plagioclase Composition:	0.463	3 0.0168	0.5202	0.02
Adjusted Plagioclase Composition:	0.4403	0.026	0.5339	0.02
Original Alkali Feldspar Composition:	0.065	5 0.9222	0.0128	0.02
Adjusted Alkali Feldspar Composition:	0.0814	4 0.9169	0.0016	-0.0145
Average Temperature(C) = 632.71	Pressure(Kbar) = 10.0000	SUM(d	T)= 0.0000
	Ab	Or	An	dX
Concordant Temperatures(C):	632.7	1 632.72	632.71	
Original Plagioclase Composition:	0.463	3 0.0168	0.5202	0.02
Adjusted Plagioclase Composition:	0.456	0.0249	0.519	0.0076
Original Alkali Feldspar Composition:	0.06	5 0.9222	0.0128	0.02
Adjusted Alkali Feldspar Composition:	0.089	7 0.9092	0.0012	-0.0214
Average Temperature(C) = 551.41	Pressure(Kbar) = 5.0000	SUM(d	T)= 0.1877
	Ab	Or	An	dX
Concordant Temperatures(C):	551.34	4 551.44	551.44	
Original Plagioclase Composition:	0.463	3 0.0168	0.5202	0.02
Adjusted Plagioclase Composition:	0.461	5 0.0192	0.5193	0.0021
Original Alkali Feldspar Composition:	0.06	5 0.9222	0.0128	0.02
Adjusted Alkali Feldspar Composition:	0.08	<u> </u>	6 0.0005	-0.0138

Tabella 4d. Termometria An-Ab-Or (Nekvasil and Burnham, 1987)

DICCHI GRANITOIDI

3MT		Average	Temperature(C)	=	477.06	Pressure(Kbar)	=	2.5	SUM(dT)	=	80.7206
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	450.19	490.55	490.45				
		Original	Plagioclase	Composition:	0.8919	0.0545	0.0536	0.02			
		Adjusted	Plagioclase	Composition:	0.8789	0.0788	0.0423	0.02			
	Original	Alkali	Feldspar	Composition:	0.0539	0.9334	0.0127	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0846	0.9154	0	-0.028			
		Average	Temperature(C)	=	492.35	Pressure(Kbar)	=	2.5	SUM(dT)	=	0
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	492.35	492.35	492.35				
		Original	Plagioclase	Composition:	0.6002	0.0214	0.3784	0.02			
		Adjusted	Plagioclase	Composition:	0.6005	0.0228	0.3767	0.0015			
	Original	Alkali	Feldspar	Composition:	0.0539	0.9334	0.0127	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0756	0.9242	0.0002	-0.0197			
		Average	Temperature(C)	=	514.74	Pressure(Kbar)	=	7.5	SUM(dT)	=	0
		Ū.			Ab	Or	An	dX			
			Concordant	Temperatures(C):	514.74	514.74	514.74				
		Original	Plagioclase	Composition:	0.8919	0.0545	0.0536	0.02			
		Adjusted	Plagioclase	Composition:	0.8932	0.0598	0.047	0.0057			
	Original	Alkali	Feldspar	Composition:	0.0539	0.9334	0.0127	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.1027	0.8972	0.0001	-0.0461			
		Average	Temperature(C)	=	513.68	Pressure(Kbar)	=	7.5	SUM(dT)	=	0
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	513.68	513.68	513.68				

	Original Adjusted	Original Adjusted Alkali Alkali	Plagioclase Plagioclase Feldspar Feldspar	Composition: Composition: Composition: Composition:	0.6002 0.6003 0.0539 0.0628	0.0214 0.0214 0.9334 0.9369	0.3784 0.3783 0.0127 0.0002	0.02 0.0001 0.02 -0.0112			
26 MT		Average	Temperature(C)	=	373.42	Pressure(Kbar)	=	2.5	SUM(dT)	=	122.2776
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	393.8	332.66	393.79				
		Original	Plagioclase	Composition:	0.9387	0.0042	0.0571	0.02			
		Adjusted	Plagioclase	Composition:	0.9192	0.0266	0.0542	0.02			
	Original	Alkali	Feldspar	Composition:	0.0442	0.955	0.0008	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0502	0.9498	0	-0.0059			
		Average	Temperature(C)	=	421.2	Pressure(Kbar)	=	2.5	SUM(dT)	=	0.2099
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	421.24	421.13	421.24				
		Original	Plagioclase	Composition:	0.8612	0.0309	0.1079	0.02			
		Adjusted	Plagioclase	Composition:	0.8546	0.0377	0.1077	0.0065			
	Original	Alkali	Feldspar	Composition:	0.0442	0.955	0.0008	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.06	0.9399	0	-0.0162			
		Average	Temperature(C)	=	331.6	Pressure(Kbar)	=	2.5	SUM(dT)	=	72.3196
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	343.66	307.5	343.66				
		Original	Plagioclase	Composition:	0.9875	0.0084	0.0041	0.02			
		Adjusted	Plagioclase	Composition:	0.9662	0.0295	0.0043	0.02			
	Original	Alkali	Feldspar	Composition:	0.0442	0.955	0.0008	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0305	0.9695	0	0.015			
		Average	Temperature(C)	=	348.45	Pressure(Kbar)	=	2.5	SUM(dT)	=	91.2295
					Ab	Or	An	dX			

		Concordant	Temperatures(C):	318.05	363.66	363.65				
	Original	Plagioclase	Composition:	0.2915	0.7072	0.0013	0.02			
	Adjusted	Plagioclase	Composition:	0.2727	0.7271	0.0001	0.02			
Original	Alkali	Feldspar	Composition:	0.0442	0.955	0.0008	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0629	0.937	0	-0.0193			
	Average	Temperature(C)	=	376.4	Pressure(Kbar)	=	7.5	SUM(dT)	=	99.9797
				Ab	Or	An	dX			
		Concordant	Temperatures(C):	343.08	393.07	393.06				
	Original	Plagioclase	Composition:	0.2915	0.7072	0.0013	0.02			
	Adjusted	Plagioclase	Composition:	0.2727	0.7272	0.0001	0.02			
Original	Alkali	Feldspar	Composition:	0.0442	0.955	0.0008	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0615	0.9385	0	-0.0177			
	Average	Temperature(C)	=	374.07	Pressure(Kbar)	=	7.5	SUM(dT)	=	33.4865
				Ab	Or	An	dX			
		Concordant	Temperatures(C):	379.65	362.91	379.65				
	Original	Plagioclase	Composition:	0.9875	0.0084	0.0041	0.02			
	Adjusted	Plagioclase	Composition:	0.9662	0.0295	0.0043	0.02			
Original	Alkali	Feldspar	Composition:	0.0442	0.955	0.0008	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0305	0.9695	0	0.015			
	Average	Temperature(C)	=	418.24	Pressure(Kbar)	=	7.5	SUM(dT)	=	132.7621
				Ab	Or	An	dX			
		Concordant	Temperatures(C):	440.37	373.99	440.37				
	Original	Plagioclase	Composition:	0.9387	0.0042	0.0571	0.02			
	Adjusted	Plagioclase	Composition:	0.9166	0.0242	0.0592	0.02			
Original	Alkali	Feldspar	Composition:	0.0442	0.955	0.0008	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0537	0.9463	0	-0.0095			
	Average	Temperature(C)	=	453.63	Pressure(Kbar)	=	7.5	SUM(dT)	=	0.0684
				Ab	Or	An	dX			

			Concordant	Temperatures(C):	453.62	453.62	453.66				
		Original	Plagioclase	Composition:	0.8612	0.0309	0.1079	0.02			
		Adjusted	Plagioclase	Composition:	0.8588	0.0337	0.1075	0.0025			
	Original	Alkali	Feldspar	Composition:	0.0442	0.955	0.0008	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0556	0.9443	0	-0.0116			
		Average	Temperature(C)	=	573.53	Pressure(Kbar)	=	7.5	SUM(dT)	=	566.0758
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	479.19	479.19	762.22				
		Original	Plagioclase	Composition:	0.8612	0.0309	0.1079	0.02			
		Adjusted	Plagioclase	Composition:	0.8408	0.0368	0.1224	0.0175			
	Original	Alkali	Feldspar	Composition:	0.0442	0.955	0.0008	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.069	0.9302	0.0008	-0.026			
28 MT		Average	Temperature(C)	=	439.63	Pressure(Kbar)	=	2.5	SUM(dT)	=	0.3294
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	439.52	439.69	439.69				
		Original	Plagioclase	Composition:	0.8482	0.0398	0.112	0.02			
		Adjusted	Plagioclase	Composition:	0.847	0.0412	0.1118	0.0013			
	Original	Alkali	Feldspar	Composition:	0.0393	0.9558	0.0049	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0708	0.9292	0	-0.0309			
		Average	Temperature(C)	=	481.61	Pressure(Kbar)	=	2.5	SUM(dT)	=	17.0877
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	478.76	478.76	487.3				
		Original	Plagioclase	Composition:	0.7272	0.0187	0.2541	0.02			
		Adjusted	Plagioclase	Composition:	0.7165	0.0303	0.2532	0.0108			
	Original	Alkali	Feldspar	Composition:	0.0393	0.9558	0.0049	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0806	0.9193	0.0002	-0.0411			
		Average	Temperature(C)	=	492.67	Pressure(Kbar)	=	7.5	SUM(dT)	=	8.4367
					Ab	Or	An	dX			
					\frown						

			Concordant	Temperatures(C):	494.08	489.86	494.08				
		Original	Plagioclase	Composition:	0.8482	0.0398	0.112	0.02			
		Adjusted	Plagioclase	Composition:	0.8476	0.0404	0.112	0.0006			
	Original	Alkali	Feldspar	Composition:	0.0393	0.9558	0.0049	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0784	0.9215	0.0001	-0.0389			
		Average	Temperature(C)	=	474.78	Pressure(Kbar)	=	7.5	SUM(dT)	=	0.2167
				Ab	Or	An	dX				
			Concordant	Temperatures(C):	474.71	474.81	474.81				
		Original	Plagioclase	Composition:	0.7272	0.0187	0.2541	0.02			
		Adjusted	Plagioclase	Composition:	0.7229	0.0237	0.2534	0.0046			
	Original	Alkali	Feldspar	Composition:	0.0393	0.9558	0.0049	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.055	0.9449	0.0001	-0.0146			
FR		Average	Temperature(C)	=	349.39	Pressure(Kbar)	=	2.5	SUM(dT)	=	85.7182
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	377.96	335.1	335.1				
		Original	Plagioclase	Composition:	0.9393	0.0041	0.0566	0.02			
		Adjusted	Plagioclase	Composition:	0.9248	0.0284	0.0469	0.02			
	Original	Alkali	Feldspar	Composition:	0.0497	0.9373	0.0129	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0426	0.9574	0	0.018			
		Average	Temperature(C)	=	457.45	Pressure(Kbar)	=	2.5	SUM(dT)	=	20.9633
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	450.46	460.94	460.93				
		Original	Plagioclase	Composition:	0.8303	0.017	0.1527	0.02			
		Adjusted	Plagioclase	Composition:	0.8173	0.0412	0.1414	0.02			
	Original	Alkali	Feldspar	Composition:	0.0497	0.9373	0.0129	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0744	0.9256	0.0001	-0.0223			
		Average	Temperature(C)	=	402.95	Pressure(Kbar)	=	7.5	SUM(dT)	=	46.9878
		-			Ab	Or	An	dX			
					\frown						

			Concordant	Temperatures(C):	410.78	387.28	410.78				
		Original	Plagioclase	Composition:	0.9393	0.0041	0.0566	0.02			
		Adjusted	Plagioclase	Composition:	0.9253	0.0284	0.0463	0.02			
	Original	Alkali	Feldspar	Composition:	0.0497	0.9373	0.0129	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0403	0.9597	0	0.02			
		Average	Temperature(C)	=	504.78	Pressure(Kbar)	=	7.5	SUM(dT)	=	38.4081
					Ab	Or	An	dX			
			Concordant	Temperatures(C):	491.98	511.18	511.18				
		Original	Plagioclase	Composition:	0.8303	0.017	0.1527	0.02			
		Adjusted	Plagioclase	Composition:	0.8172	0.0412	0.1416	0.02			
	Original	Alkali	Feldspar	Composition:	0.0497	0.9373	0.0129	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.073	0.9268	0.0001	-0.0211			
MT9		Average	Temperature(C)	=	505.04	Pressure(Kbar)	=	2.5	SUM(dT)	=	2.4553
		11010.80		Ab	Or	An	dX		•••••([•••])		
			Concordant	Temperatures(C):	505.45	504.23	505.45				
		Original	Plagioclase	Composition:	0.6367	0.0188	0.3445	0.02			
		Adjusted	Plagioclase	Composition:	0.6304	0.0265	0.3432	0.0069			
	Original	Alkali	Feldspar	Composition:	0.035	0.9516	0.0133	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0863	0.9135	0.0002	-0.0487			
		Average	Temperature(C)	=	496.56	Pressure(Kbar)	=	2.5	SUM(dT)	=	0.166
		-			Ab	Or	An	dX			
			Concordant	Temperatures(C):	496.58	496.5	496.59				
		Original	Plagioclase	Composition:	0.2939	0.0166	0.6895	0.02			
		Adjusted	Plagioclase	Composition:	0.3003	0.0112	0.6885	-0.006			
	Original	Alkali	Feldspar	Composition:	0.035	0.9516	0.0133	0.02			
	Adjusted	Alkali	Feldspar	Composition:	0.0538	0.946	0.0002	-0.0174			
		Average	Temperature(C)	=	565.17	Pressure(Kbar)	=	7.5	SUM(dT)	=	251.7781
					Ab	Or	An	dX			
					\frown						

		Concordant	Temperatures(C):	481.24	607.13	607.13				
	Original	Plagioclase	Composition:	0.6367	0.0188	0.3445	0.02			
	Adjusted	Plagioclase	Composition:	0.6344	0.0407	0.3249	0.02			
Original	Alkali	Feldspar	Composition:	0.035	0.9516	0.0133	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0506	0.9489	0.0005	-0.0149			
	Average	Temperature(C)	=	562.65	Pressure(Kbar)	=	7.5	SUM(dT)	=	0.0159
				Ab	Or	An	dX			
		Concordant	Temperatures(C):	562.65	562.64	562.65				
	Original	Plagioclase	Composition:	0.2939	0.0166	0.6895	0.02			
	Adjusted	Plagioclase	Composition:	0.2962	0.0145	0.6893	-0.0022			
Original	Alkali	Feldspar	Composition:	0.035	0.9516	0.0133	0.02			
Adjusted	Alkali	Feldspar	Composition:	0.0554	0.9441	0.0005	-0.0187			

Leptinite			gr + q -	+ 2ky = 3an	l		Leucosom	าล		i	gr + q + 2ky = 3a	n
MT7 (in Ki	nzigiti)			GASP			b-K1 (Play	ya Smeila)			GASP	
	Grt core	PI		P (kbar)	т (°С)			Grt core	PI		P (kbar)	T (°C)
SiO2	37.274	57.071		5	хх		SiO2	38.320	61.034		5	xx
TiO2	0.038	0.007		7	хх		TiO2	0.012	0.010		7	543
Al2O3	21.744	26.547		9	594		Al2O3	22.286	24.270		9	663
Cr2O3	0.000	0.000		11	705		Cr2O3	0.000	0.000		11	783
Fe2O3	0.404	0.086		13	815		Fe2O3	0.000	0.059		13	902
FeO	27.200	0.000		15	925		FeO	28.584	0.000		15	1021
MnO	0.985	0.000		17	1033		MnO	0.961	0.029		17	1138
MgO	5.610	0.003		19	1141		MgO	7.862	0.007		19	1252
CaO	6.488	8.544		20	1194		CaO	2.728	5.681		20	1309
Na2O	0.000	6.625					Na2O	0.000	8.680			
К2О	0.000	0.393	е	0.4	22		K2O	0.000	0.368	е	0.6	36

Tabella 5. Geobarometro GASP applicato su coppie granato-plagioclasio in leptiniti non deformate e leucosomi. [attraverso l'uso del software THERMOCALC 3.26 (Powell and Holland, 2008) utilizzando la modalità AVERAGE P-T]

	Grt rim	Pl		P (kbar)	T (°C)			Grt rim	PI		P (kbar)	Т (°С)
SiO2	36.127	57.071		5	XX		SiO2	36.824	61.034		5	520
TiO2	0.023	0.007		7	XX		TiO2	0.015	0.010		7	659
Al2O3	20.863	26.547		9	606		Al2O3	21.615	24.270		9	797
Cr2O3	0.000	0.000		11	718		Cr2O3	0.000	0.000		11	936
Fe2O3	0.582	0.086		13	830		Fe2O3	0.277	0.059		13	1073
FeO	29.391	0.000		15	941		FeO	33.073	0.000		15	1206
MnO	0.923	0.000		17	1051		MnO	1.632	0.029		17	1337
MgO	3.462	0.003		19	1160		MgO	5.112	0.007		19	1464
CaO	6.550	8.544		20	1214		CaO	1.739	5.681		20	ХХ
Na2O	0.000	6.625					Na2O	0.000	8.680			
К2О	0.000	0.393	е	0.42	23		к2О	0.000	0.368	е	0.75	51

Tabella 6. Roccia totale ricalcolata, per origine in situ delle segregazioni leucocratiche,a partire da volume ricostruito dal rapporto 2D restite/leucosoma in affioramento.

Restite	65%
Leucosoma	35%

Composizione in ossidi maggiori della restite K3 e del leucosoma MA07/11

	SiO2	Al2O3	Fe2O3t	MnO	MgO	CaO	Na2O	K2O	TiO2	P2O5	LOI	Total	FeOt	Tot Fe2
КЗ	52.28	23.81	12.41	0.294	3.02	0.85	0.35	2.73	1.427	0.1	2.1	99.35	11.17	98.13
MA07/11	72.72	14.09	0.84	0.032	0.15	1.56	2.93	5.43	0.017	0.13	0.46	98.35	0.76	98.27
"														
"Modello 35%"	SiO2	AI2O3		MnO	MgO	CaO	Na2O	K2O	TiO2	P2O5	LOI		FeOt	Tot Fe2
Vol35%	59.43	20.41		0.20	2.02	1.10	1.25	3.68	0.93	0.11	1.53		7.52	98.18
Normalizzazione a 100 nel si	stema NKCFMA	SH con 3%	di H₂O											
	S	А			Μ	С	Ν	К			Н		F	Tot
Composizione														
Perple-X	60.43	20.75			2.05	1.12	1.27	3.74			3.00		7.65	100.00

Indice

1.	Introduzione		1
2.	Metodologie di A	5	
3.	Inquadramento	Geologico Regionale	9
	3.1. Il Massiccio	di Beni Bousera	10
4.	Dati Strutturali		13
	4.1. Migmatiti in	n facies granulitica	16
	4.2. Leptiniti		21
	<i>4.2.1.</i> Dati S	Strutturali	22
	4.2.2. Micro	ofabric e Petrografia	23
	4.3. Sciami di Die	cchi granitici tardivi	26
	<i>4.3.1.</i> Dati S	Strutturali	27
	4.3.2. Micro	ofabric e Petrografia	27
5.	Leptiniti e Leuco	osomi	30
	5.1. Geochimica	su Roccia Totale	30
	<i>5.1.1</i> . Eleme	enti Maggiori	33
	<i>5.1.2.</i> Geocl	himica degli Elementi Minori, Traccia e REE	35
	5.1.2.a.	Indici di Variazione: SiO ₂ e K ₂ O	38
	5.1.2.b.	Indice di Variazione: CaO	38
	5.1.2.c.	Diagrammi HFSE	40
	5.1.2.d.	Elementi Traccia e REE	42
	5.2. Studio delle	e Fasi Mineralogiche	47
	5.2.1. Leptir	niti	47
	5.2.1.a.	Granato	47
	5.2.1.b.	Feldspati	52
	5.2.1.c.	Biotite	53
	5.2.1.d.	Muscovite	54
	5.2.1.e.	Tormalina	55
	5.2.1.f.	Fasi Accessorie Minori	57
	5.2.2. Migm	natiti in facies granulitica	58

	5.2.2.a.	Feldspati (leucosomi)	58
	5.2.2.b.	Granati (leucosomi)	60
	5.2.2.c.	Biotite (leucosomi)	64
	5.2.2.d.	Fasi Accessorie Minori (leucosomi)	64
	5.2.2.e.	Feldspati (restiti)	64
	5.2.2.f.	Granati (restiti)	65
	5.2.2.g.	Fasi Accessorie Minori (restiti)	67
6.	Dicchi granitoidi	tardivi	68
	6.1. Geochimica	su Roccia Totale	68
	<i>6.1.1.</i> Eleme	enti Maggiori	71
	6.1.2. Geoch	nimica degli Elementi Minori, Traccia e REE	75
	6.1.2.a.	Indici di Variazione: SiO ₂ e K ₂ O	75
	6.1.2.b.	Indice di Variazione: CaO	77
	6.1.2.c.	Diagrammi HFSE	79
	6.1.2.d.	Elementi Traccia e REE	81
	6.1.2.e.	Elementi di Transizione, Altri Metalli e Metalloidi	85
	6.2. Studio delle	Fasi Mineralogiche	88
	6.2.1. Dicchi	i granitoidi tardivi	88
	6.2.1.a.	Feldspati	88
	6.2.1.b.	Muscovite	94
	6.2.1.c.	Biotite	101
	6.2.1.d.	Clorite	102
	6.2.1.e.	Andalusite	103
	6.2.1.f.	Zircone e Monazite	104
	6.2.1.g.	Fasi Accessorie Minori	105
7.	Geocronologia e	Geochimica Isotopica	107
	7.1. Datazioni U-	Pb	107
	7.1.1. Leptin	niti	107
	7.1.1.a.	MT7	107
	7.1.1.b.	MT10	108
	7.1.1.c.	L1 (MA07/14)	108
	7.1.1.d.	Risultati	108

	7.1.1.e. BA1 (in situ)	112
	7.1.2. Leucosomi delle kinzigiti migmatitiche	115
	7.1.3. Dicchi granitoidi tardo-strutturali	117
	<i>7.1.3.a.</i> MA07/26 (3MTE)	117
	<i>7.1.3.b.</i> MA07/22 (28MT)	118
	7.2. Datazioni ⁴⁰ Ar/ ³⁹ Ar	120
	7.3. Analisi Isotopiche Sr-Nd	122
	<i>7.3.1.</i> Leptiniti	122
	7.3.2. Dicchi granitoidi tardo-strutturali	122
	7.3.3. Discussione dei dati isotopici Sr-Nd	123
8.	Geotermometria e Geobarometria	125
	8.1. Modello della Solubilità dello Zircone	125
	<i>8.1.1.</i> Leptiniti	126
	8.1.2. Leucosomi delle migmatiti	127
	8.1.3. Dicchi felsici	127
	8.1.4. Restiti (livelli nelle migmatiti)	128
	8.2. Modello della Solubilità dello Zirconio nel Rutilo	129
	8.3. Modello della Solubilità della Monazite (Termometria REE)	130
	8.3.1. Leptiniti e leucosomi	132
	8.3.2. Dicchi felsici	132
	8.4. Associazione Feldspatica Ternaria (Termometria An-Ab-Or)	134
	<i>8.4.1.</i> Leptiniti	135
	<i>8.4.1.a.</i> MT7	135
	8.4.2. Leucosomi delle migmatiti	136
	<i>8.4.2.a.</i> MT8	136
	<i>8.4.2.b.</i> K1	137
	8.4.3. Restiti delle migmatiti	137
	<i>8.4.3.a.</i> K3	137
	8.4.4. Dicchi granitici tardivi	138
	8.5. Geobarometria GASP	140
9.	Discussione	142
	9.1. Petrogenesi delle Leptiniti e dei Leucosomi delle migmatiti	142

9.1.1. Condizioni P-T	143			
9.1.1.a. Modelling inverso	143			
9.1.1.b. Modelli predittivi (PERPLE_X)	146			
9.1.2. Petrogenesi ed evoluzione PTt	148			
9.2. Petrogenesi dei Dicchi felsici tardo-strutturali	151			
9.2.1. Petrogenesi	153			
9.3. Eventi anatettici ed evoluzione tettonica nel Rif	156			
10. Conclusioni	160			
Bibliografia				
Appendice A	174			
Appendice B	234			
Appendice C	244			