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1. INTRODUCTION

1 Introduction

In the last century, General Relativity and Quantum Mechanics revolutionized the physics and demol-
ished two deep-rooted prejudices about Nature: the determinism of physical laws and the absolute, inert
character of space and time. At the same time they explained most of the phenomena that we observe.
In particular the microscopic observations of nuclear and subnuclear physics have been explained within
the Quantum Field Theory (QFT) called Standard Model of particle physics, and, on the other side, the
large scale phenomena of the Universe have been explained within General Relativity (GR). QM and GR
are the two conceptual pillars on which modern physics is built. GR has modified the notion of space and
time; QM the notion of causality, matter and measurements, but these modified notions do not fit together
easily. The basic assumptions of each one of the two theories are contradicted by the other. On the one
hand QM is formulated in a Newtonian absolute, fixed, non-dynamical space-time, while GR describes
spacetime as a dynamical entity: it is no more an external set of clocks and rods, but a physical inter-
acting field, namely the gravitational field. Moreover the electromagnetic, weak and strong interactions,
unified in the language of Quantum Field Theory, obeys the laws of quantum mechanics, and on the other
side the gravitational interaction is described by the classical deterministic theory of General Relativity.
Both theories work extremely well at opposite scales but this picture is clearly incomplete [1] unless we
want to accept that Nature has opposite foundations in the quantum and in the cosmological realm. QM
describes microscopic phenomena involving fundamental particles, ignoring completely gravity, while GR
describes macroscopic systems, whose quantum properties are in general (safely) neglected. This is not
only a philosophical problem, but assumes the distinguishing features of a real scientific problem as soon
as one considers measurements in which both quantum and gravitational effects cannot be neglected.
The search for a theory which merges GR and QM in a whole coherent picture is the search for a theory
of Quantum Gravity (QG). If one asks the question:

why do we need Quantum Gravity?

the answers are many. It is worth recalling that the theory describing the gravitational interaction fails in
giving a fully satisfactory description of the observed Universe. General relativity, indeed, leads inevitably
to space-time singularities as a number of theorems mainly due to Hawking and Penrose demonstrate.
The singularities occur both at the beginning of the expansion of our Universe and in the collapse of
gravitating objects to form black holes. Classical GR breaks completely down at these singularities, or
rather it results to be an incomplete theory. On the quantum mechanical side, we can ask what would
happen if we managed to collide an electron-positron pair of energy (in the center of mass) greater than
the Planck energy. We are unable to give an answer to this question. The reason of this failure is related
to the fact that, in such an experiment, we cannot neglect the gravitational properties of the involved
particles at the moment of the collision. But, we do not have any scientific information on how taking
into account such an effect in the framework of QFT. In other words, when the gravitational field is so
intense that space-time geometry evolves on a very short time scale, QFT cannot be consistently applied
any longer. Or, from another perspective, we can say that when the gravitational effects are so strong to
produce the emergence of spacetime singularities, field theory falls into troubles.

A possible attempt for quantizing gravity is the one that leads to perturbative Quantum Gravity, the
conventional quantum field theory of gravitons (spin 2 massless particles) propagating over Minkowski
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spacetime. Here the metric tensor is splitted in

uv = Nuv + huu

and 7 is treated as a background metric (in general any solution to Einstein equations) and h is a dynamical
field representing self-interacting gravitons. This theory gives some insights but cannot be considered a
good starting point because it brakes the general covariance of General Relativity, and (more practically)
it is non-renormalizable. It is remarkable that it ¢s possible to construct a quantum theory of a system
with an infinite number of degrees of freedom, without assuming a fixed background causal structure; this
is the framework of modern background independent theories of quantum General Relativity, called Loop
Quantum Gravity.

The energy regime where we expect quantum gravity effects to become important (Planck scale) is
outside our experimental or observational capabilities. But we emphasize that it could be not necessary
to reach the Planck energy to see some QG effects. In this respect, we recall that a class of extremely
energetic phenomena called Gamma Ray Bursts could represent a really important laboratory to test QG
predictions |2, 3, 4, 5, 6], in fact they seem to be the natural candidates to verify whether the fundamental
hypothesis about a discrete structure of space-time will be confirmed by experiments. The peculiar features
which make Gamma Ray Bursts relevant for QG is the extremely wide range of the emitted energies and
the cosmological distance of the explosive events.

Loop quantum gravity has the main objective to merge General Relativity and quantum mechanics.
Its major features |7| are resumed in the following.

e LQG is the result of “canonical” quantization of Hamiltonian General Relativity.

e [t implements the teachings of General Relativity. First, the physical laws are relational: only events
independent from coordinates are meaningful; physics must be described by generally covariant
theories. Second, the gravitational field is the geometry of spacetime. The spacetime geometry is
dynamical: the gravitational field defines the geometry on top of which its own degrees of freedom
and those of matter fields propagate. GR is not a theory of fields moving on a curved background
geometry, GR is a theory of fields moving on top of each other, namely it is background independent.

e [t assumes QM, suitably formulated to be compatible with general covariance, to be correct; also
the Einstein equations, though they can be modified at high energy, are assumed to be correct, and
are the starting point of the quantization process.

e [t is non perturbative: the metric is not split in a Minkowskian background plus a dynamical
perturbation. The full metric tensor is dynamical.

e There are not extra-dimensions: it is formulated in four spacetime dimensions. We can say more:
the whole framework works only for a 4-dimensional spacetime!

e The major physical prediction is the discrete and combinatorial structure for quantum spacetime:
the spectra of geometrical observables, such as the length, the area and the volume operator, are
discrete [8] and the quantum states of geometry have a relational character. Discreteness and the
appearence of a fundamental Plankian lenght scale, renders the theory UV finite.
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e Its application in cosmology gave rise to Loop Quantum Cosmology [9]. Some of the main results
achieved by this theory are the explanation of the Bekenstein-Hawking formula for black-hole entropy
[10, 11, 12, 13] and the absence of the initial Big Bang singularity [14]|. Instead of a singularity, the
theory predicts a “bouncing”.

In the following we present the research line carried out during the PhD, which come together in this
thesis.

The kinematics of LQG is well understood, mathematically rigorous and almost without quantization
ambiguities. Conversely, even if still well-defined, the dynamics of the theory is plagued by quantization
ambiguities. The Hamiltonian quantum constraint defined by Thiemann is the most popular realization
of the LQG dynamics, but many others are possible; a natural requirement is that the quantum dynamics
should not give rise to anomalies, namely it should respect the classical algebra of constraints. This non-
trivial requirement is satisfied by Thiemann’s Hamiltonian. Nevertheless, because of the complicated form
of the Hamiltonian, we do not have control on which kind of quantum evolution it generates, in particular
if the correct semiclassical dynamics is reproduced. In other words, it is technically difficult to understand
the link (if any) between classical and quantum dynamics. Like in ordinary QFT, a covariant formulation
could help to find an answer.

Spin foams provide a non-perturbative and background independent definition of the path integral for
General Relativity, and at the same time they are an attempt to define the covariant version of LQG. In
this context it is easier to implement the dynamics. The hope is to find a clear-cut connection between
spin foam models and Loop Quantum Gravity. The “new spin foam models" (both the Euclidean and
the Lorentzian ones) realize the kinematical equivalence between canonical and covariant approaches [15],
while the full equivalence has been proven only in three dimensions [16]. In this thesis we will analyze the
LQG dynamics through spin foams, hoping that one day the equivalence of the two formalisms will be
proven also in four dimensions.

The recovering of the right semiclassical limit is perhaps the most important test for a quantum theory.
A possible way of studying the semiclassical limit of LQG is the comparison of n-point functions computed
in LQG with the ones of standard perturbative quantum gravity. The main issue with this approach is
even to formally define n-point functions which are background independent: the dependence on the n
points seems indeed to disappear if we implement diffeomorphism invariance in the path integral. We
can go over this difficulty using the general boundary formalism for background independent field theories
[17]. Using this general boundary framework and the “new” spin foam models we computed the connected
2-point function, or graviton propagator, in LQG finding an exact matching with the standard propagator.
More specifically, we recovered the right scaling behavior of all tensorial components; moreover the full
tensorial structure matches with the standard one in a particular limit, and in a particular gauge. This
non trivial result shows that the new models are an improvement of the previous Barret-Crane spin foam
model, since there, as shown in [18|, some components of the propagator had the wrong scaling.

The second original result presented in this thesis is a simple asymptotic formula for the fusion coeffi-
cients [19], which are a building block of the vertex amplitude of the new models. A consequence of our
asymptotic analysis is the following remarkable semiclassical property of the fusion coefficient: they map
semiclassical SO(3) tetrahedra into semiclassical SO(4) tetrahedra; this peculiar property sheds light on
the semiclassical limit of the “new” models.

Another criterion to select the good semiclassical behavior is the stability under evolution of coherent
wave-packets. The introduction of this approach [20] and its improvement [21] are another original con-
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tribution to the subject of semiclassical analysis in LQG. The main idea is as old as quantum physics: a
theory has the correct semiclassical limit only if semiclassical wave-packets follow the trajectory predicted
by classical equations of motion. The equations of motion of any dynamical system can be expressed as
constraints on the set formed by the initial, final and (if it is the case) boundary variables. For instance, in
the case of the evolution of a free particle in the time interval ¢, the equations of motion can be expressed
as constraints on the set (x;,ps;x¢,pr). These constraints are of course m(xy — x;)/t = p; = py (for the
general logic of this approach to dynamics, see [7]). In General Relativity, Einstein equations can be seen
as constraints on boundary variables; we can construct in LQG semiclassical wave packets centered on the
classical value of conjugate geometric quantities (intrinsic and extrinsic curvature, analogous to x and p).
It follows immediately from these considerations that a boundary wave packet centered on these values
must be correctly propagated by the propagation kernel, if the vertex amplitude is to give the Einstein
equations in the classical limit. We studied numerically the propagation of some degrees of freedom of
LQG, finding preliminary indications on the good semiclassical behavior. The propagation of semiclassical
equilateral tetrahedra in the boundary of a 4-simplex is “rigid”, that is four Gaussian wavepackets evolve
into one Gaussian wavepacket with the same shape, except for a flip in the phase. This is in agreement
with the geometry of one flat 4-simplex, the most simple instance of Einstein equations in the discretized
setting. This result was the first, though preliminary, indication of the good semiclassical properties of
the new spin foam models.

The semiclasgsical states used in the calculation of the propagator are put by hand but nevertheless are
motivated by geometrical intuition and by the requirement that they fit well with the spin foam dynamics
in order to reproduce the classical limit of the amplitudes computed, e.g. expectation values of geometric
operators and correlation functions. In this thesis we give a beautiful top-down derivation of those states,
as states centered on a point in the phase space of General Relativity, as captured by a graph. More
precisely we recover the states used in spin foam calculations in the large spin limit, so that the latter can
be viewed as approximate coherent states; the exact coherent states are here called coherent spin-networks,
and are candidate semiclassical states for full Loop Quantum Gravity. Their geometrical interpretation
is the following. A space-time metric (e.g. Minkowski or deSitter space-time) induces an intrinsic and
extrinsic geometry of a spatial slice 3. A graph I' embedded in ¥ is dual to a cellular decomposition of
3. The graph captures a finite amount of geometrical data: in fact we can smear the Ashtekar-Barbero
connection on links of the graph and the gravitational electric field on surfaces dual to links. These
smeared quantities are the labels for the coherent spin-networks. An interesting fact about these labels is
that for each edge of the graph they are in correspondence with elements in SL(2, C), that can be viewed
as the cotangent bundle of SU(2) and carries a natural phase space (simplectic) structure. For this reason
the labels of coherent spin-networks live on the phase space of GR as captured by a single graph.
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2 Hamiltonian General Relativity

In this chapter we briefly summarize the Hamiltonian formulation of General Relativity. It turns out that
the Hamiltonian is a linear combination of first class constraints, in the terminology of Dirac [22]; these
constraints generate gauge transformations and define the dynamics of General Relativity with respect to
the arbitrarily chosen time parameter. In order to quantize the theory, we perform a suitable change of
variables: we introduce the Ashtekar-Barbero connection. Then we express the constraints in these new
variables and write their commutation algebra. We conclude introducing the concept of holonomy which
will play a major role in the quantum theory.

2.1 Canonical formulation of General Relativity in ADM wvariables

The Hamiltonian formulation of a field theory requires the splitting of the spacetime in space and time
[23, 24, 25, 26, 27|. The first step is the choice of a time function ¢ and a vector field t# over the spacetime
manifold such that the hypersurfaces ; at constant ¢ are Cauchy spacelike surfaces and t#V,t = 1. The
second step is the definition of a configuration space of fields ¢ over 3; and conjugate momenta II. The
last step is the introduction of a Hamiltonian: a functional H|g,II] of the form

Hlq, 11} = . H(q,10), (1)

where H is the Hamiltonian density; the Hamilton equations ¢ = %‘ and II = —% are equivalent to the

field equations of Lagrangian theory. Given the Lagrangian formulation there is a standard prescription
to obtain the Hamiltonian one by the Legendre transformation

H(g, ) =1§— .2, (2)

where ¢ = ¢(q,II) and II = %.

Now consider General Relativity [28] on a globally hyperbolic spacetime (M, g,,,,). This spacetime can
be foliated in Cauchy surfaces Y, parametrized by a global time function ¢(2°, z', 2%, 23). Take n* the
unitary vector field normal to ¥;. The spacetime metric induces a spatial metric h,, on every X; given
by the formula

hul/ =g + NNy . (3)

The metric hy, is spatial in the sense that hy,,n* = 0. Take t* a vector field on M satisfying t"V ¢t = 1;
we decompose it in its tangent and normal components to ¢

th = N* 4+ Nn* (4)

where
N = —thn, = (n*V,t)" !, (5)
Ny = hyt”. (6)

We can interpret the vector field t* as the “flux of time” across spacetime, in fact we “move forward in
time” with the parameter ¢ starting from the surface ¥y and reaching the surface X;. If we identify the
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Figure 1: ADM foliation

hypersurfaces g and ¥; through the diffeomorphism obtained by following the integral curves of t#, we
can reinterpret the effect of moving through time as a changing spatial metric on a fized 3-dimensional
manifold ¥ from hg,(0) to hepy(t). Hence we can view a globally hyperbolic spacetime as the representation
of a time evolution of a Riemannian metric on a fixed 3-dimensional manifold. The quantity NV is called
lapse function and measures the flow of proper time with respect to the time coordinate ¢ when we move
in a direction normal to ;. N* is called shift vector and it measures the shift of ¢* in direction tangent
to ;. The fields N and N* are not dynamical as they only describe the way of moving through time.
Suitable initial data of the Cauchy problem for General Relativity are the spatial metric b, on ¥g and
its “time derivative”. The notion of time derivative of a spatial metric on 3 is provided by the extrinsic
curvature

Klﬂ/ = Vuglj ) (7)

where &, is the unitary timelike vector field tangent to the timelike geodesics normal to X (£# is equal to
n* on ;). K, is purely spatial; it can be expressed as a Lie derivative

1 1
Kw/ = icfguu = i*cghm/ . (8)

If we choose N* = 0, then the extrinsic curvature is simply

}ah;w
2 ot

K, =
In terms of general N, N* and t#, the metric is given by
g = B —pHn¥ = B — N7 (% — NH)(t¥ — NY), (10)
where we have used the identity n# = N=1(t# — NH).

2.2 Lagrangian and ADM Hamzltonian

The Lagrangian density for General Relativity in empty space is Zgr = (2k)~'\/—gR, with R the Ricci
scalar and k = 87G/c®. G is Newton’s gravitational constant, and ¢ the speed of light. The action of
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General Relativity is then
1
Sar = 2/d4x\/—gR. (11)
K

The Hamiltonian analysis is made passing to the variables N, N¥ h,,. In terms of these variables the
Lagrangian density reads

1
Lor = ﬂth[@)R + K, K" — K7, (12)
where K, can be written as
1 ..
K/uz = ﬁ[huu - D,U,Nl/ - DVNM] ) (13)

D,, is the covariant derivative with respect to hy, ()R is the Ricci scalar calculated with respect to huw
and hy, = hl’h, Lihyg .
The momentum conjugate to h, is
oL 1

I =

— — —Vh(K"™ — Kht*). 14
Sy 2 ( ) (14)

The Lagrangian does not contain any temporal derivative of N and N¢, so their conjugate momenta are
zero. As anticipated, the fields N and N® are not dynamical, so they can be considered as Lagrange
multipliers in the Lagrangian. Variation of the action (11) w.r.t. shift and lapse produces the following
constraints:

VY [h, 1] = —2D,(h~Y?11") = 0, (15)
S[h, 11 = —(h/2[®R — A1, 1177 + %h‘llﬂ) =0. (16)

The first is called vector constraint, and the second scalar constraint. These constraints, together with
the Hamilton equations

. 0H
h'uy == 51_-[7 B (17)
: OH
(L
I S (18)

define the dynamics of General Relativity, i.e. they are equivalent to vacuum Einstein equations. Finally,
the Hamiltonian density is

LI < 2N, (D, (2T ) (19)

Har = ihl/Q{N[—(i”)R + BT, T —
We deduce that the Hamiltonian is a linear combination of (first class) constraints, i.e. it vanishes identi-
cally on the solutions of equations of motion. This is a general property of generally covariant systems.
The variables chosen in this formulation are called ADM (Arnowitt, Deser and Misner) [29] variables.
Notice that ADM variables are tangent to the surface X;, so we can use equivalently the genuinely 3-
dimensional quantities hgp, e Ne, N (a,b =1,2,3); these are the pull back on ¥; of the 4-dimensional
ones.

10
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2.3 Triad formalism
The spatial metric hyp can be written as
hap = €beldi; 0,5 =1,2,3, (20)

where ¢! () is a linear transformation which permits to write the metric in the point x in flat diagonal
form. The index i of ¢! is called internal and € is called a triad, or better co-triad, because it defines a
set of three 1-forms. The triad can be seen as a map from the co-tangent bundle to the Euclidean space,
preserving the scalar product. We can introduce the densitized inverse triad

| o
E! = ieabce”ke{)ef; (21)
using this definition, the inverse 3-metric h is related to the densitized triad as follows:
b b sij
hh® = E}E; Y. (22)

We also define

) 1 L
K= ——FKuE§". (23)
det(E)

It is not difficult to see that E? and K/ are conjugate Hamiltonian variables, so the symplectic structure
is

{E} (@), Ki(y)} = 505650 (2, ). (24)
{Ef(2), B (y)} = {Ki(2), Ki(y)} = 0. (25)

We can write the vector and the scalar constraint (15-16) in terms of the new conjugate variables £ and
K¢. However these variables are redundant; in fact we are using the nine E¢ to describe the six independent
components of h. This is clear also from a geometrical point of view: we can choose different triads e’,
acting by local SO(3) rotations on the internal index ¢ without changing the metric:

R () R2, (x)e™(x) e (x)di; = ebeldis. (26)

Hence if we want to formulate General Relativity in terms of these redundant variables we have to impose
an additional constraint that makes the redundancy manifest. The missing constraint is:

Gi(ES, K)) = e;j EYK) = 0. (27)

For a review on the triad formalism, see e.g. [30].

2.4 Ashtekar-Barbero vartables

We can now introduce the Ashtekar-Barbero connection [31, 32, 33, 34, 35], defined in terms of the previous
canonically conjugate variables (E¢, K) as follows:

Ay =T4(B) +7Kq (28)

11
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where I'! (E) is the spin connection, that is the unique solution to the Cartan structure equation

Opachy + € T ef) = 0 (29)

la
and + is any non zero real number, called Barbero-Immirzi parameter. Explicitely, the solution of (29) is
, 1 ..

I (E) = —iezjke?(a[ae’g] + MG psefemBped) . (30)

By an explicit computation, the Poisson brackets between the new variables are
{B5(x), Ky(y)} = kv 05050(x,y) (31)
{Ef(«), B} (y)} = {A}(2), 4}(y)} = 0. (32)

This non trivial fact is remarkable, because it means that

(Ef,Tq) — (LBf, AL) (33)

is a canonical transformation. The new variables put classical General Relativity in a form which closely
resembles an SU(2) Yang-Mills theory. Indeed A% and EZ are the components of a connection and of
an electric field respectively. This follows from their transformation properties under local SU(2) gauge
transformations. Writing
A, = Al € su(2) (34)
E® = B € su(2) (35)

where 7¢ are su(2) generators, the transformation rules are

Ay =9Awg™ +90ug",  E" =gBE%, (36)
that is the standard transformation rules for connections and electric fields of Yang-Mills theories. We
can push the analogy even further looking at the constraints. This is done in the next section.
2.5 Constraint algebra

As we have seen, General Relativity can be formulated in terms of a real su(2) connection! A’ (x) and a
real momentum field Ef'(x), called electric field, both defined on a 3-dimensional differential manifold %.
The theory is defined by the Hamiltonian system constituted by the three constraints (27), (15), (16), and
the Hamilton equations. In terms of the new variables the full set of constraints is

GZ'EDGE?ZO, (37)

V= EYFl — (1 +9)K(G; =0, (38)
EaRb B .

S=—1"1 (M FE 201 +~K K)) =0, 39
det(E)( Fay — 2(1+77) K[, K)) (39)

!The groups SO(3) and SU(2) have the same Lie algebra, so we can speak equivalently about connections with values in
su(2) or su(3).

12
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where D, and F éb are respectively the covariant derivative and the curvature of the connection A% defined
by

Dqv; = 0qv; — EijkAzLUk ) (40)
Fly = 0, Ay — O, AL + €, AL A . (41)
As anticipated, the electric field satisfies the Gauss law, whose differential version is exactly the first
constraint (37). This Gauss constraint is also present in the Hamiltonian formulation of Yang-Mills

theories.
The system (37-39) generates gauge transformations. To see this, define the smeared constraints

- 3, iy 3, i a_

G(a)_/zd za'G; /Ed za'D,E! =0, (42)

vin= [ dpvi=o, (13)
b))

S(N) = / 3z NS. (44)
P

The “test” functions of, f® N are an internal vector field, a tangent vector field and a scalar field
respectively. A direct calculation implies

(SO[AE'1 = {AZ, G(a)} = —Dya! and B! ={E, G(a)} = [E*, a; (45)

which are the infinitesimal version of the SU(2) gauge transformations (36) (the square brackets in (45) are
the vector field commutator). The constraint (37) is in the form of the Gauss law of Yang-Mills theories.
For the smeared vector constraint we have

5pAL = {ALV(f)} = LsAL = f°F),  and  6;E! ={E!V(f)} = LsE!, (46)

so V(f) acts as the infinitesimal diffeomorphism associated to the vector field f, namely as a Lie derivative
L. Finally, one can show that the scalar constraint S generates time evolution w.r.t. the time parameter
t. In fact the Hamiltonian of General Relativity is the sum of the smeared constraints (42-44):

Hlo,N*,N| = G(a) + V(N*) + S(N), (47)
and the Hamilton equations of motion are therefore

Ay = (A}, Hla, N%, N]} = {45, G(a)} + {A}, V(ND)} + {A}, S(N)}, (48)
Ezq = {E?,H[Q,Na,N]} = {E37G(a)} + {E?, V(Na)} + {Ezaﬂs(N)} : (49)

These equations define the action of H[a, N*, N] on observables (phase space functions), that is their time
evolution up to diffeomorphisms and SU (2) gauge transformations. In General Relativity coordinate time
evolution has no physical meaning; it is analogous to a U(1) gauge transformation of QED.
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2. HAMILTONIAN GENERAL RELATIVITY

Next, we can compute all possible Poisson brackets between the smeared constraints, obtaining the
following constraint algebra:

{G(@),G(B)} = G([a, B]) (50)
{G(),V()} = G(Lfa), (51)
{G(a),S(N)} =0, (52)
V() V(g =V(lf.dD), (53)
{S(N),V(f)} = =S(LsN), (54)
{S(N),S(M)} = V(f) + terms proportional to Gauss law , (55)

where fo = h*®(NO,M — O,N). We can also give the Hamilton-Jacobi system by writing

B = sa ok (56)

in (37-39). The constraints (37) and (38) require the invariance of S[A] under local SU(2) transformations
and 3-dimensional diffeomorphisms. The last one, (39), is the Hamilton-Jacobi equation for General
Relativity. A preferred solution to the Hamilton-Jacobi equation is the Hamilton functional. This is
defined as the value of the action of a bounded region, computed on a solution of the field equations
determined by the boundary configuration AY.

2.6 The holonomy

The concept of holonomy has a major role in the quantization of General Relativity. It is a group element
giving the parallel transport of vectors along curves. Consider a Lie(G)-valued connection A defined on a
vector bundle with base manifold M and structure group G (the gauge group), and a curve v on the base
manifold parametrized as

v:[0,1] = M (57)
s — xh(s). (58)

The holonomy H[A,~] of the connection A along the curve v is the element of G defined as follows.
Consider the differential equation

Lh(s) +#(5) Au(y())h(s) = 0, (59)

with initial data
h(0)=1, (60)

where h(s) is a G-valued function of the parameter s. The solution to this Cauchy problem is

h(s) = Pexp /OS ds A'(8)r; (61)

14



2. HAMILTONIAN GENERAL RELATIVITY

where 7; is a basis of the Lie algebra of the group G and A'(s) = "y”(s)AL(’y(s)). The path ordered
exponential P exp is defined through the series

s S s S1 Sn—1
Pexp/ dsA(v(3)) = Z/ dsy / dso.. / dsp A(y(sn)) - .- A(y(s1)) - (62)
0 0’0 0 0
Finally, the holonomy of the connection A along «y is defined as

1
H[A~] = Pexp/ ds A'(s)1; = Pexp/A. (63)
0 Y

Intuitively, the connection A is the rule that defines the meaning of infinitesimal parallel transport of an
internal vector from a point of M to another near point: the vector v in z is defined parallel to the vector
v+ A,dz*v in  + do. The holonomy gives the parallel transport for points at finite distance. A vector
is parallel transported along ~y into the vector H[A,~y]v. Notice that even if there is a finite set of points
where v is not smooth and A is not defined, the holonomy of a curve ~ is well-defined; we can break v in
smooth pieces and define the holonomy as the product of holonomies associated to the smooth pieces. For
the applications to quantum gravity, we will be concerned with a base manifold given by the spatial slice
¥ and and with SU(2) as gauge group. In Spin Foams, we will consider SO(4) or SO(1,3) holonomies
over the 4-dimensional spacetime manifold.

15



3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

3 The structure of Loop Quantum Gravity

In this section review the “canonical” quantization of Hamiltonian General Relativity; in other words we
introduce Loop Quantum Gravity (LQG). We exhibit the states satisfying some of the quantum constraints,
and construct the basic geometric operators. We show that length, area and volume operators have
a discrete (quantized) spectrum. The quantum dynamics is defined by the quantization of the scalar
constraint. The main physical prediction of Loop Quantum Gravity is that spacetime is fundamentally
discrete, the minimal quanta being of size of the order of the Planck length.

3.1 Kinematical state space

At the intuitive level, the quantum states of Hamiltonian General Relativity in Ashtekar-Barbero variables
are Schrodinger wave functionals W[A] of the classical configuration variable, like in the Schrédinger repre-
sentation of ordinary quantum mechanics. The classical Hamilton function S[A] is interpreted as h times
the phase of W[A], i.e. we interpret the classical Hamilton-Jacobi equation as the iconal approximation of
the quantum wave equation. This can be obtained substituting the derivative of the Hamilton functional
(the electric field) with derivative operators. The quantization of the first two constraints require the
invariance of W[A] under SU(2) gauge transformations and 3-dimensional diffeomorphisms. Imposing the
scalar constraint leads to the Wheeler-DeWitt equation that governs the quantum dynamics of spacetime.

Cylindrical functions: Cyl(A) Consider the set A of smooth 3-dimensional real connections A% de-
fined everywhere (except, possibly isolated points) on a 3-dimensional surface ¥ with the topology of the
3-sphere. Consider also an ordered collection I' (graph) of L smooth oriented paths v; (I = 1,...L), called
links of the graph, and a smooth complex valued function f(g1,...,9r) of L group elements; smoothness
of f is with respect to the standard differential structure on SU(2). A couple (I', f) defines the complex
functional of A

U s[Al = f(H[A,m], ..., H[A,7L]) (64)
where H[A,~] is the holonomy of the connection along the path. We call functionals of this form “cylindrical

functions”; their linear span (vector space of their finite linear combinations) is denoted with Cyl(.A).

Scalar product on the space of cylindrical functions If two functionals ¥p [A] and Wp ,[A] are
supported on the same oriented graph I', we define the inner product

(Up,p, Urp) = /dg1,---7dgL flgr,---,90)h(91-..,91), (65)

where dg is the Haar measure over SU(2) (the unique normalized bi-invariant regular Borel measure over
a compact group). The previous definition extends to functionals supported on different graphs. If I' and
I are two disjoint graphs with n and n’ curves respectively, define the union graph T = T'|JT" with n+n’
curves. If we define

f(gl, <y 9ns9n+1, - - -gn+n’) = f(gl e 79”) 5 (66)
R(g1s-- s 9ns Intts- - Ingn) = h(Gngt1 - Gngnt) (67)
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3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

then we put
(Wr,p, Uron) = (Vi 7, Wp ) - (68)

If T' and IV are not disjoint, we can break I'|JT” into the two disjoint pieces I' and TV — (I’ TV), so we
are in the previous case. Notice that cylindrical functions do not live on a single graph but rather on all
possible graphs embedded in 3, so we can already envisage the profound difference with lattice Yang-Mills
theories, which are defined over a fixed lattice. In quantum GR we are not cutting any short (or large)
scale degree of freedom.

Kinematical Hilbert space The kinematical Hilbert space Hyin of quantum gravity is the completion
of Cyl(A) w.r.t. the previous inner product:

Hyin = Cyl(A). (69)

In order to have at our disposal also distributional states, we consider the topological dual of Cyl(A) to
build the Gelfand triple

Sckcds (70)

which constitutes the kinematical rigged Hilbert space. The kinematical Hilbert space can be viewed as
an L? space

Hyin = L*(A, dpar) (71)

where A is a suitable distributional extension of A and dpuay, the Ashtekar-Lewandowski measure [36].
The key to construct a basis in Hyi, is the Peter-Weyl theorem, which states that an orthonormal basis
for the Hilbert space L?(G,dg), where G is a compact group, is given by the matrix elements of unitary
irreducible representations. The unitary irreducible representations of SU(2)

SU(2) — Hom(H,) (72)
g — T1(g) (73)

are labeled by non-negative half-integers j € N/2 called spins, in analogy with the theory of angular
momentum in quantum mechanics. The carrying Hilbert space is H; = C%*!. Thus an orthonormal
basis for Hyipn is

Ur a0 [A] = V/dim(y) - dim(jy) ﬁalﬁl (H[A, 7)) .. .ﬁLaL[,L (H[A, 1)), (74)

where dim(j) = (25 4+ 1) is the dimension of the representation space of spin j. These functions, called
open spin-networks, are labeled by an oriented graph embedded in 3, a spin for each link (or edge) of
the graph, and the matrix indices (two for each link). Since graphs embedded in the 3-manifold 3 are
uncountable, it follows from the definition of the scalar product that the kinematical Hilbert space is
clearly non separable.

An interesting class of states are the traces of holonomies over a single closed loop «:

U, ;[A] =Tr lz[[A,oz] (75)
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3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

These are the most simple gauge invariant states, as we will see in the next section. For historical reasons,
Loop Quantum Gravity takes its name from the loop states.

Intuitively, the Hilbert space Hyi, is formed by Schridinger wave functions of the connection. Then,
at least formally, the connection itself must be quantized as a multiplication operator, and the electric
field as a functional derivative operator:

Al()W[A] = Al (x)W[A], (76)
E&(z)V[A] = —mm%mw : (77)

3.2 Solution to the Gauss and diffeomorphism constraints

The quantum Gauss and vector constraints impose the invariance of kinematical states under local SU(2)
transformations and 3-dimensional diffeomorphisms of the spatial slice ¥. Let us see how.
Under local SU(2) gauge transformations g : ¥ — SU(2), connection and holonomy transform as

Ay =gAg~' +gdg, (78)
UlAg,7] = g(x)U[A,A]g(z:) ", (79)

where z;, 7 € ¥ are the initial and final points of the oriented path . We can define the action of the
Gauss constraint on a cylindrical function ¥ ¢ € Cyl(A):

U(9)¥r s[A] = Urs[A7"] = flg(a})grg(@]) 7 (2} )grg(ai) ™) . (80)

From the definition (65) of scalar product, it follows that it is invariant under gauge transformations. It is
easy to prove that the transformation law (80) extends to a unitary representation of gauge transformations
over the whole Hy;,. Now consider an invertible function ¢ : ¥ — X such that the function and its inverse
are smooth everywhere, except possibly in a finite number of isolated points where they are only continuous.
Call the set of these functions extended diffeomorphisms Diff*. Under an extended diffeomorphism the
connection transforms as a 1-form:

A oA, (81)
where ¢* is the push-forward map, and the holonomy transforms as
UlA,n] = Ule™A,7] = U[A, 97111, (82)

that is applying a diffeomorphism ¢ to A is equivalent to applying the diffeomorphism to the curve ~.
The action of ¢ € Diff* on cylindrical functions Wr s is then defined as:

U(¢)Wr,s[A] = Up s[(¢%) Al = Uymrp 4[A]. (83)

It is immediate to verify that the scalar product is Diff*-invariant, and that (83) also extends to a unitary
representation on Hyip.

In this way we have easily implemented at the quantum level the classical kinematical gauge symmetries
which are the (semi-direct) product of local gauge transformations and diffeomorphisms; most importantly,
no anomalies arise.
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3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

Intertwiners The space solution to the Gauss constraint is easily expressed by first introducing the
objects called intertwiners. Consider N irreducible representations of SU(2), labeled by spins ji,...,jn,
and their tensor product which act on the space

Hjyjy = Hjy © ... @ Hjy (84)

where H; ~ C%*1. The tensor product (84) decomposes into a direct sum of irreducible subspaces. In
particular

O =InvHj . iy CHj gy (85)

J1--JN

is the subspace formed by invariant tensors, called N-valent intertwiners. The k-dimensional space of
intertwiners decomposes in the k 1-dimensional irreducible subspaces. Choosing a basis for each H;, we
can use an index notation: intertwiners are N-index objects v®*“N with an index for each representation,
invariant under the joint action of SU(2):

jlal j]\&N B1...0N ay...aN
%5 (g) ... 1175 (g) v =v VgeSU(2). (86)
We will use the notation v;"""*" with ¢ = 1,...,k to denote a set of k such invariant tensors, orthonormal

w.r.t. the standard scalar product in H;,  jy:

OFTIN GG ON = G (87)
Solution to the Gauss constraint: spin-network states Spin-network [37, 38| states are labeled
by an embedded oriented graph I', a set of spin labels j; (one for each link ), and a set of intertwiners
in (one for each node n). They are obtained by contraction of the open spin-network states (74) with the
intertwiners:

Bl---ﬁnl ﬁn1+1~--/3n2 ‘ﬂ’ﬂNfﬁ-l'“ﬁL

i1 Q1...0my 19 Qnq+1--Qng """ VIN On g 41---OQL F,lealyﬁl[ ]

lIJijhin [A] = v
B

(88)

The pattern of contraction of the indices is dictated by the topology of the graph itself: the index oy (5;)
of the link [ is contracted with the corresponding index of the intertwiner v;, of the node n where the link
[ begins (ends). To an N-valent node it is associated an N-valent intertwiner between the spins meeting
at the node. SU(2) indices are raised and lowered with the € tensor, which is the intertwiner between a
representation and its dual. In the fundamental 1/2 representation, its matrix form is

. < _01 (1) > . (89)

The importance of spin-network states is that they form an othonormal basis of the subspace of Hyi, solu-
tion of the Gauss constraint, namely the gauge-invariant subspace. Gauge invariance follows immediately
from the invariance of the intertwiners and from the transformation properties (80).
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J2=1/2

ni n2
Jz=1/2

Figure 2: A spin-network with two trivalent nodes

Examples The most simple example of (gauge invariant) spin-network state is the loop state (75).
Another more complicated example is given in figure 2. We have to associate to each node an intertwiner
between two fundamental (i.e. j = 1/2) and one adjoint (i.e. j = 1) irreducible representations. Since
their tensor product contains a single 1-dimensional (i.e. j = 0) representation,

11
505 01l=0e)el=1808102, (90)

there is a unique normalized intertwiner, represented by the triple of Pauli matrices: ’Uf4 B= %02 g ; hence
the spin-network state associated to the graph in figure 2 is:

1/2 1 - p L2
U[A] = T (H[A, v2)) "5 0,4 TIH[A, ) 077 THH[A, 73) - (91)

Four-valent intertwiners: virtual links In the case of 3-valent nodes (like in the previous example)
there is only one possible (normalized) intertwiner, namely the 3-valent intertwiner space is 1-dimensional.
If the node is instead 4-valent, the normalized intertwiner is no more unique. A possible basis is obtained by
decomposition in virtual links, that is writing the intertwiner as the contraction of two 3-valent intertwiners.
Explicitely, the virtual basis {v3*?} is

Ja J3
pobed — ydaey be /o7 ] > S < (92)
g1 J2

where a dashed line has been used to denote, in the language of Feynman diagrams, the virtual link
associated to the coupling channel; the index e is in the representation ¢ and each node represents Wigner
3j-symbols (related in a simple way to the Clebsh-Gordan coefficients). The link labeled by @ is called
virtual link, and the open links labeled by ji,j4 are said to be paired, or coupled. Two other choices of
pairing (coupling channels) are possible, giving two other bases:
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Figure 3: 6j-symbol
The formula for the change of pairing, called recoupling theorem, is

a d

N
' s :Zdim(m)(—l)b+c+f+m{§ Z 7;}} >< , (94)

d
where o
o nl (95)

Ja Js5 J6

is the Wigner 6j-symbol. The 6j-symbol is defined as the contraction of four 3j-symbols, according to the
tetrahedral pattern in figure 3.

Solution to the diffeomorphism constraint Spin-network states are not invariant under diffeomor-
phisms, because a generic diffeomorphism changes the underlying graph; it can also modify the link order-
ing and orientation. Diffeomorphism-invariant states must be searched in &', the distributional extension
of Hiin. Recall that S’ is formed by all the continuous linear functionals over the space of cylindrical
functions. The action of the extended diffeomorphism group is defined in S’ by duality

Upd (V) = ¢(Uy V), VP ES (96)
where Uy is the action (83), so a diffeomorphism invariant state ® is such that
O(Uy¥) = D(¥) . (97)

We can define formally [39, 40] a “projection” map onto the solutions of the diffeomorphism constraint

PDiﬁ‘ S — S, (98)
(Poir?)(¥) = ) (¥, V)
=U,W

The sum is over all the states U” € S for which there exist a diffeomorphism ¢ € Diff* such that
V" = U,¥; the main point is that this sum is effectively over a finite set, because a diffeomorphism
acting on a cylindrical function can either transform it in an orthogonal state, or leave it unchanged, or
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J2=1/2

~ n9 n2
n2 .

Js=1/2

change the link ordering and orientation, but these latter operations are discrete and contribute only with
a multiplicity factor. We shall write S5 for the space of solutions of the diffeomorphism and Gauss
constraint. Clearly Ppip+W¥ and the image of Ppig+ is Hpig. The scalar product on Spig+ is naturally
defined as

(@, ®")pig+ = (Ppir ¥, Poig* V') pigs = Ppig+ T(¥') . (99)

Denote ¢, Ur the state obtained from a spin-network Wr by a diffeomorphism ¢, where the maps {¢x}
form the discrete subgroup of diffeomorphisms which change only ordering and orientation of the graph
I'. For any two spin-networks supported on I' and I respectively, it is clear that

0 I # ¢I"” for all ¢ € Diff*

100
> (U, ¢, ¥r) T =¢I" for some ¢ € Diff* (100)

(Ppig=¥1, Poig= W) = {

An equivalence class under extended diffeomorphisms of non oriented graphs is called a knot; two spin-

networks Wr and Wps define orthogonal states in Sbiﬂ* unless they are in the same equivalence class.
So states in S are labeled by a knot and they are distinguished only by the coloring of links and
nodes. The orthonormal states obtained coloring links and nodes are called spin-knot states, or abstract
spin-networks, and, very often, simply spin-networks.

3.3 Electric flux operator

The operators (76) and (77) are not well defined in Hyin. The situation is quite similar to the quantum
mechanics of a particle on the real line, where the position and momentum operators are not well-defined
on L%*(R,dz), but a suitable regularization, or smearing, of them is well defined. The smearing of the
connection A along a path v gives nothing else then the holonomy; the corresponding operator H[A,~] is
a well-defined self-adjoint multiplication operator on Hy;,. It is defined as

H[A A pU[A] = H[A,4]* 5 T[A] (101)

where H[A,~] is intended in the fundamental, spin 1/2; representation of SU(2). Also the electric field
must be smeared. In fact it is a densitized vector, which is naturally smeared over surfaces. Before doing
this passage, it is instructive to write the action of the electric field operator F on spin-networks, at formal
level, using distributions. In particular, its action on a single holonomy functional in the fundamental
representation (the generalization to arbitrary representations is trivial) is:

5
S AL (y)

H[A,~] = /ds (5)0° (a(s), y) (H[A, ] H[A, 72)) (102)
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Figure 4: A partition of S

where s is an arbitrary parametrization of the curve ~y, z%(s) are the coordinates along the curve, v; and
2 are the two parts in which ~ is splitted by the point x(s), and 6% is a Dirac delta distribution. Its
effect is to insert SU(2) generators 7; between the splitted holonomies, an operation called grasping of
holonomies. Note that the r.h.s. of (3.3) is a two-dimensional distribution (& is integrated over a curve),
hence also from this “quantum” point of view it is natural to look for a well-defined operator smearing E
over a 2-dimensional surface.

Consider a two-dimensional surface S embedded in the 3-dimensional manifold ¥; be o = (0!, 0?)
coordinates on S. The embedding is defined by S : (o!,02) — 2%(c!,0?). Classically, the quantity we

are going to quatize is the electric flux:

E;(S) = —iii/-w/sdaldcr2 ne(o)Ej (o), (103)

where

0x°(0) 0z¢(0)

dolt  do?
is the 1-form normal to S. The observable E;(S) is quantized with the replacement E¢ — EZ“ inside (103).
If we now compute the action of E;(S) on the holonomy, using we obtain

(104)

Ng (0) = €abc

Ox® dxb dxc 3
S0l 52 s 0 (@(0),2(s)) H(A, 1)l (A, 72) . (105)

~

Ei(S)H[A,~] = —iliry / / dotdo?ds €qpe
S Jy

This integral vanishes unless the curve v and the surface S intersect. In the case they have a single
intersection, the result is

Ei(S)H(A, ) = ihkyH (A, 71)miH (A7) | (106)

where the sign is dictated by the relative orientation of v w.r.t. the surface. The electric flux operator
simply act grasping the holonomies. When many intersections p are present (like in figure 4) the result is

E(S)H (A7) = dihryH(AA})miH(A, ) (107)
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and the sum is over instersections. The action on an arbitrary representation of the holonomy is

~

Bu(S)R(H[A]) = 3 hn I(HIA AV LTI (H[A A2 (108)

where 7 are now generators of a generic representation j. It is easy to extend the electric flux to a
self-adjoint operator on the whole Hilbert space Hyip, in particular on its SU(2) gauge-invariant subspace.

3.4 Holonomy-flux algebra and the C*-algebraic viewpoint

We have found a well-defined quantization of holonomies and electric fluxes over a suitable Hilbert space
of Schrodinger wave functionals. Now we just have to solve the scalar constraint (we have already solved
the Gauss and diffeomorphism constraints), then start posing physical questions about quantum geometry,
the semiclassical limit of the theory and so on. Before attempting to do this, it is of great interest to ask
how much this construction is unique: which are the hypothesis bringing to the Loop Quantum Gravity
representation?

We answer (partially) sketching the recipes of algebraic quantization, and then enunciating the LOST
uniqueness theorem. The first step is to choose a basic set of classical observables P (a Poisson algebra)
and then considering the corresponding abstract *-algebra (algebra of quantum observables) obtained
by identifying (ih times) Poisson brackets with commutators and complex conjugation with involution
operation *. It is the free tensor algebra T'(P) over P modulo the 2-sided ideal generated by elements of
the form

fg—gf —in{f,g}. (109)

The representation theory on Hilbert spaces of the abstract *-algebra defines the quantum theory. If
the classical theory have first class constraints which generate gauge transformations, these should be well
(unitarily) implemented as operators in the quantum theory. Recall that if we give a state w (positive linear
functional) on a *-algebra A which is invariant under a group of automorphisms G, we can construct the
corresponding GNS representation (£, 7, H), where m(a) (a € A) is the representation of a as a bounded
linear operator on the Hilbert space H, and & is a cyclic vector, i.e. its image under 7 is dense. The
cyclic vector is such that (£, 7(a)€) = w(a); moreover, the group of automorphisms acts as a group of
unitary operators on the Hilbert space. Now we can see what happens when we apply this quantization
programme to GR.

In General Relativity, electric fluxes and holonomies are natural basic observables to start with the
quantization process. From the fundamental Poisson bracket between the Ashtekar-Barbero connection
and the electric field we derive easily

{E'(S), Hly, Al} = ys7' H[v, A] (110)

in the case the path « have a single intersection with S and starts on an interior point on the surface.
The most general rule can be given, but we skip the details. The abstract *-algebra, called holonomy-flux
algebra, is formed by the “words” made from letters E*(S) and H(v, A), subject to the commutation rules
like (110). The basic abstract *-operations can be read off from

Hy, Al = By, A = Hly ™, A (111)
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and the trivial

E'Y(S)* = Ei{(S) = E(S). (112)

SU(2) gauge transformations and diffeomorphisms act as automorphisms of the *-algebra. Now we can
state the uniqueness result, due to Lewandowski, Okolow, Sahlmann and Thiemann:

1. There exist a unique gauge and diffeomorphism invariant state on the holonomy-flux *-algebra. This
is the analogous of the vacuum state in algebraic quantum field theory, being the state annihilated
by all the momenta.

2. The GNS representation associated to the vacuum state is given by the Hilbert space L?(A,duar)
with the holonomy and flux operators acting on it, namely it gives the kinematics of Loop Quantum
Gravity!

3.5 Area and volume operators

The electric field flux E*(S) is not gauge invariant (it has an SU(2) index), but its norm is gauge invariant.
Now consider the operator E? = 22 | E*(S)E(S) and compute its action on a spin-network ¥p whose
graph has a single intersection with S. Let j be the spin of the link intersecting the surface. Since

3
N mn=4G+ 11 (113)
i=1
is the Casimir operator of SU(2) in the j representation, using the grasping rule (106) we have simply:
E(8)Ur = (hw7)*j(j + 1) ¥r. (114)

Now we are ready to quantize the area [8, 41, 42, 43|: in classical General Relativity the physical area of

a surface S is
A(S) :/d20 naEZ@nbEf?: lim g V E2(S,), (115)
S n—oo ”

where S, are N smaller surfaces in which S is partitioned. For N large enough, the operator associated
to A(S), acting on a spin-network, is such that every S, is punctured at most once by the links of the
spin-network. So we have immediately

A(A)Wr = iy >\ Jdp(ip + 1) Ur. (116)

This beautiful result tells us that A is well defined on Hiin and that spin-networks are eigenvectors of this
operator. So far we have tacitly supposed that the spin-network has no nodes on S. The result of the
complete calculation in the general case is:

- 1. 1. 1.
A(S)Up = hry ) \/QJU(Ju +1) + 54aJa +1) + 55e(je +1) Ur, (117)
u,d,t
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where u labels the outcoming parts of the links, d the incoming and ¢ the tangent links with respect to
the surface. We must stress again that the classical observable A(S) is the physical area of the surface
S, hence we have also a precise physical prediction: every measure of area can give only a result in the
spectrum of the operator A\(S), so the area is quantized. The quantum of area carried by a link in the
fundamental representation j = 1/2 is the smallest eigenvalue (area gap); it is of order of the Plank area:

Ay ~ 107 em? (y=1). (118)

Analogously, we can define an operator V(R) corresponding to the volume of a region R. The phyisical
volume of a 3-dimensional region is given by the expression |8, 44, 45, 46, 47, 48|

V(R) = /Rds.%'\/; ’ EQbCE?EJI?EEEijk ‘ = ]\}E}IIOOZ \/EabcEi(Sa)Ej(Sb)Ek(SC)Eijk, (119)
n

where the sum is over the N cubes in which the region R has been partitioned, and S¢ are three sections
of the n-th coordinate cube. Now consider the quantization of the right hand side of (119) and consider
its action on a spin-network. Definitely, for large N, each coordinate cube contains at most one node. It
turns out that, as for the area, spin-networks are eigenstates of the volume operator and the corresponding
eigenvalues receive one contribution from each node. The explicit calculation shows that nodes with valence
V < 3 do not contribute to the volume and that the spectrum is discrete.

3.6 Physical interpretation of quantum geometry

Since each node of a spin-network W contribute to the volume eigenvalue, the volume of the region R is
a sum of terms, one for each node contained in R. We can then identify nodes with quanta of volume;
these quanta are separated by surfaces whose area is measured by the operator E(S ). All the links of the
graph which intersect the surface S contribute to the area spectrum. Two space elements, or chunks, or
volume quanta, or nodes, are contiguous if they are connected by a link [; in this case they are separated
by a surface of area A; = heyG+/ji(j; + 1), where j; is the spin label of the link [. The intertwiners, the
labels of the nodes, are the quantum numbers of volume and the spins associated to the links are quantum
numbers of area. The graph I' determines the contiguity relations between the chunks of space, and can
be interpreted as the dual graph of a cellular decomposition of the physical space. A spin-network state
represents a quantized metric, and a discretized space.

Abstract spin-networks, the diffeomorphism equivalence class of embedded spin-networks have to be
regarded as more fundamental, because they solve the kinematical constraints of the theory; they have a
precise physical interpretation. Passing from an embedded spin-network state to its equivalence class, we
preserve all the information except for its localization in the 3-dimensional manifold; this is precisely the
implementation of the diffeomorphism invariance also in the classical theory, where the physical geometry
is an equivalence class of metrics under diffeomorphisms. A spin-network is a discrete quantized geometry,
formed by abstract quanta of space not living somewhere on a 3-dimensional manifold, they are only
localized one respect to another. This a remarkable result in LQG, which predicts a Plank scale discreteness
of space, on the basis of a standard quantization procedure, in the same manner in which the quantization
of the energy levels of an atom is predicted by nonrelativistic Quantum Mechanics.
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3.7 Dynamics

The quantization of the scalar constraint S is a more difficult task mainly for two reason: first of all
it is highly non linear, not even polynomial in the fundamental fields A and E. This gives origin to
quantization ambiguities and possible ultraviolet divergences; most importantly, it is difficult to have a
clear geometrical interpretation of the transformation generated by S (it contains Einstein equations!).
Remarkably, a quite simple quantization recipe has been found by Thiemann [49, 50|, and we sketch some
details of its construction.

The scalar constraint is the sum of two terms:

S(N) = SE(N) —2(1 +~+H)T(N), (120)

where E stands for Euclidean, for historical reasons. The procedure found by Thiemann consists in
rewriting S in such a way that the complicated non-polynomial structure gets hidden in the volume
observable. For example, the first Euclidean term can be rewritten as

,‘i")/ P . .
SE(N) = 4/Zd3x N5 F2 {AL VY. (121)
The main point is that a suitably regulated version of the last expression is easy to quantize. Indeed given
an infinitesimal loop g in the coordinate ab-plane, with coordinate area €2, the curvature tensor F,, can
be regularized observing that

H

Qab

[A] — H L [A] = @Fym + O(h). (122)

Qab
Similarly, the Poisson bracket {A%,V} is regularized as

HEHAWH, [A] VY = e{Aq, V3 + O(e), (123)
where e, is a path along the a—coordinate of coordinate length e. Using this we can write the scalar

constraint Sg(N) as a limit of Riemann sums

e—0

SP(N) =1im Y~ N;ee™ Tr[Fo[A{ A, V}] = (124)
I

ab

= lim > Ny Tx[(H, [A] - Hazb[A]_l)He_Il [A{H,1,V}],
I

where in the first equality we have replaced the integral in (121) by a limit of a sum over cells, labeled
with the index I, of coordinate volume €3. The loop aib is a small closed loop of coordinate area €2 in the
ab—plane associated to the I-th cell, while the edge e! is the corresponding edge of coordinate length e,
dual to the ab—plane. If we quantize the last expression in (124) we obtain the quantum scalar constraint

SE(N) = lim > Npe™ Tel(Hyy, [A] = Hyp, [A])H A, V] (125)
1

The regulated quantum scalar constraint, that is before taking the limit in (125), acts only at spin-network
nodes; this is a consequence of the very same property of the volume operator. By this we mean that
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the terms in (125) corresponding to cells which do not contain nodes annihilates the spin-network state.
Like the volume operator, it acts only at nodes of valence V' > 3. Due to the action of infinitesimal loop
operators representing the regularized curvature, the scalar constraint modify spin-networks by creating
new links around nodes, so creating a triangle in which one vertex is the node, a fact exemplified in the
following picture:

+ Zop Sjlmk,opq

(126)

A similar quantization can be given for the other term of the scalar constraint (120). To remove the
regulator € we note that the only dependence on e is in the position of the extra link in the resulting
spin-network. This suggests to define the quantum scalar constraint at the diffeomorphism invariant level,
that is to take the limit € — 0 weakly in the space S],.q. If we do that, the position of the new link is
irrelevant. Hence the limit
(®,5(N)¥) = lim(®, S(N)¥) (127)
exists trivially for any ¥, ® € S,.. In the language of particle physics, we have avoided any UV singularity
in taking away the regulator; this is a benefit of the diffeomorphism invariance of Loop Quantum Gravity.
We now point out some properties of the quantum scalar constraint.
There is a non trivial consistency condition on the quantum scalar constraint: it must satisfy the

quantum analog of the classical identity (55). The correct commutator algebra is recovered, in the sense
that

(@ | [S(V),S(M)] | ¥) =0 (128)

for any ® and ¥ in S}, and we can say that the loop quantization of GR does not give rise to anomalies.
Similar techniques can be applied to the case of (possibly supersymmetric) matter coupled to GR. We
should also point out that there is a rich space of rigorous solutions to the scalar constraint and a precise
algorithm for their construction has been developed [51, 52, 53]. The Hamiltonian constraint acts by
annihilating and creating spin degrees of freedom and therefore the dynamical theory obtained could be
called “Quantum Spin Dynamics in analogy to Quantum Chromodynamics in which the Hamiltonian acts
by creating and annihilating color degrees of freedom. In fact we could draw a crude analogy to Fock space
terminology as follows: the (perturbative) excitations of QCD carry a continuous label, the mode number
k € R? and a discrete label, the occupation number n € N (and others). In Loop Quantum Gravity the
continuous labels are the links of the abstract graphs and the discrete ones are spins j (and others).
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Next, when solving the Hamiltonian constraint, that is, when integrating the quantum Einstein equa-
tions, one realizes that one is not dealing with a (functional) partial differential equation but rather with a
(functional) partial difference equation. Therefore, when understanding coordinate time as measuring how
for instance volumes change, we conclude that also time evolution is necessarily discrete. Such discrete
time evolution steps driven by the Hamiltonian constraint assemble themselves into what is known as a
spin foam. A spin foam is a four dimensional complex of two dimensional surfaces where each surface is
to be thought of as the world sheet of a link of a spin-network and it carries the spin that the link was
carrying before it was evolved.

In summary, there is no mathematical inconsistency, however, there are doubts about the physical
correctness of the scalar constraint operator although no proof exists so far that it is necessarily wrong.
In the next section we introduce spin foam models, as an alternative, probably equivalent way to define
the dynamics of Loop Quantum Gravity.
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4 Covariant formulation: Spin Foam

Spin Foam Models (SFM) are proposals for the covariant Lagrangian (path integral) formulation of non-
perturbative quantum gravity. There are some indications that actually Spin Foam Models could be the
covariant implementation of the dynamics of Loop Quantum Gravity. A quite strong contact between
the two formalisms has been established for 3-dimensional Riemannian pure gravity by Reisenberger,
Perez and Noui in [54, 16]. In the 4-dimensional more physical case the New Spin Foam Models (NSFM)
[55, 15, 56, 57| realized a beautiful bridge with the kinematics of LQG, and remarkably the spectra of
geometric operators are the same of LQG, even in the Lorentzian signature version of the models. The
spin foam formulation is based on a path integral “4 la Feynmann” that implements the idea of sum over
geometries; more precisely, the sum is over colored 2-complexes (like in fig. 4.1), i.e. collections of faces,
edges and vertices combined together and labeled (or colored) using the representation theory of the gauge
group. As we mentioned in the end of the last section, we can think to this formalism as a way to represent
the time evolution of spin-networks: we can interpret a spin foam as an history of spin-networks. The two
formulations of nonperturbative quantum gravity, LQG and SFM, have different properties: Lagrangian
formalism is more transparent and keeps symmetries and covariance manifest. The Hamiltonian formalism
is more rigorous but calculations involving dynamics are cumbersome. Even if simpler and often euristi-
cally constructed, Spin Foam Models allow to compute explicitly transition amplitudes in quantum gravity
between two quantum states geometry, in particular between semiclassical states. In this section we give a
general definition of a SFM and we motivate at an intuitive level the reasons and the sense in which they
are the path integral representation of the action of the LQG scalar constraint. It is easier to start in three
dimensions, following an historical path, and introduce the topological Ponzano-Regge model of 3d pure
gravity; this is based on the triangulation “a la Regge” of a 3-dimensional manifold. Then we extend this
model to four dimensions obtaining the topological quantum BF theory. BF theory is currently the main
starting point for the construction of physical, non topological models for quantum gravity. The reason is
that BF theory becomes General Relativity under the imposition of some constraints in the path integral.
It is just the way those constraints are imposed that brought to the well known Barrett-Crane SFM, and
more recently to the New Spin Foam Models.

4.1 Path integral representation

A spin foam o is a 2-complex I" with a representation j; of the gauge group G associated to each face and
an intertwiner 7. associated to each edge [58]. The gauge group can be either SO(4) or SO(1,3) for the
4-dimensional models; it is SO(1,2) or SO(3) in 3 spacetime dimensions; usually they are replaced with
the corresponding universal covering groups. A Spin Foam Model [59] is defined, at least formally, by the
partition function

Z=> w)Z[T] (129)
r
where the amplitude associated to the spin foam I is

ZI0) =" T ArGp) T] Acroie) [T AvGipsie) - (130)

jfﬂ‘e f e

The weight w(I') is a possible multiplicity factor, Ay, A, and A, are the amplitudes associated to faces,
edges and vertices of I' respectively. For most models the face amplitude Af(j¢) is just the dimension of
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the representation dim(jy) = 2j5 + 1. So a spinfoam model is defined by:

1) a set of 2-complexes, and associated weights;

2) a set of representations and intertwiners;

3) a vertex and an edge amplitude.

There is a close relation between LQG dynamics and spin foams [60, 61, 62]. In the context of LQG,
there is an implicit way to solve the scalar constraint. We can define a “projection” operator P from the
kinematical Hilbert space Hyin to the kernel Sllohys C S]’)iﬂ* of the scalar constraint. Formally we can write
P as

pP= /D[N] et fs NS (131)

where the functional integration is over all lapse functions N. Indeed (4.1) represents a sort of infinite
dimensional ¢ distribution:

P~T[6(S5()). (132)

Expressions like (132) and were the starting point for a rigorous construction of the projector in 3d pure
gravity and 4d topological BF theory [16, 63]. For any state ¥ € Hyj,, PV is a formal solution to the
scalar constraint S. Moreover P naturally defines the physical scalar product

<\I/, qj,)phys = <P\I/, \I//>kin . (133)

The main importance of the physical scalar product is that it represents the probability amplitude for a
process involving quantum states of geometry. Following a quite standard derivation of the path integral
from the Hamiltonian theory, in analogy with nonrelativistic quantum mechanics and QFTs, one can see
that the physical scalar product of spin-networks states can be represented as a sum over spin-network
histories [64, 65|, or spin foams (see fig. 5) which are bounded by the given spin-networks

(T, W) prys = Y w(T)Z[T]. (134)
or=vuw’

Imagine that the ‘nitial” spin-network moves upward along a time coordinate of spacetime, sweeping a
worldsheet, changing at each discrete time step under the action of S. The worldsheet defines a possible
history. An history from ¥ to ¥’ is a 2-complex with boundary given by the graphs of the spin-networks,
whose faces f are the worldsurfaces of the links of the initial graph, and whose edges e are the worldlines of
the nodes. Since the scalar constraint acts on nodes, the individual steps in the history can be represented
as the branching off of the edges. We call vertices v the points where edges branch. We obtain in this
manner a collection of faces, meeting at edges, in turn meeting at vertices; the set of those elements and
their adjacency relations defines a 2-complex I'. Moreover the 2-complex is colored with the irreducible
representations and intertwiners inherited from spin-networks, namely it is a spin foam.

The underlying discreteness discovered in LQG is crucial to have a well-defined physical scalar product.
Indeed the functional integral for gravity is replaced by a discrete sum over quantum amplitudes associated
to combinatorial objects with a foam-like structure. A spin foam represents a possible quantum history
of the gravitational field. Boundary data in the path integral are given by quantum states of 3-geometry,
namely spin-networks.
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Figure 5: A spin foam seen as evolution of spin-networks

Deriving Spin Foam Models from the canonical theory can be a difficult task; for this reason they are
derived directly from the Lagrangian of General Relativity. The most common setting is a discretization
of the topological BF field theory: given a simplicial decomposition of spacetime one defines a discretize
version of BF theory and then quantize it. The result of the quantization is a recipe for spin foam
amplitudes on a fized triangulation of spacetime. This is a bad feature, because we expect from the
canonical theory that the Feynmann path integral constains, besides a sum over quantum numbers, also
a sum over graphs. The most common tool used to recover (maybe partially) the full state sum is an
auxiliary field theory called Group Field Theory (GFT) [66, 67, 68, 69]. Since every SFM has its GFT
twin, we have:

Z[l] = Zgpr[11, (135)
where the GFT amplitude Zgpr[I'] is defined inside a Feynman expansion

Py
Zayr = EF: mZGFT[T] : (136)

The sum (136) is over a certain class of triangulations, and possibly also over spacetime topologies, and
v[['] is the number of vertices in the triangulation I'. The physical origin of the sum over graphs is the
following: in a realistic model for quantum gravity, the sum over 2-complexes, or at least over simplicial
triangulations, must be present in order to capture the infinite number of degrees of freedom of General
Relativity: General Relativity is a field theory with local degrees of freedom. This is also what we expect
from the canonical theory, from expression like (134).

4.2 Regge discretization

Historically, the fist SFM was the one introduced by Ponzano and Regge. This is the quantization
of a discretization of classical GR introduced by Regge himself in the early 1960’s and called Regge
calculus [70]. Regge calculus is a natural way to approximate General Relativity by means of a discrete
lattice theory. We illustrate the construction for Euclidean (i.e. Riemannian) General Relativity in any

32



4. COVARIANT FORMULATION: SPIN FOAM

dimension. A Riemannian manifold (M, g), where M is a smooth manifold and ¢ its metric tensor, can be
“approximated” with a piecewise flat manifold (A, ga), formed by flat simplices (triangles in 2d, tetrahedra
in 3d, 4-simplices in 4d...) glued together in such a way that the geometry of their shared boundaries
matches. Here A is the abstract triangulation, and the discretized metric ga assumes a constant value on
the edges of simplices and is determined by the size of simplices. For instance, a curved 2d surface can be
approximated by a surface obtained by gluing together flat triangles along their sides: curvature is then
concentrated on the points where triangles meet, possibly forming “the top of a hill”. With a sufficient
number N of simplices, we can (fixing the abstract triangulation and varying the size of the individual n-
simplices) approximate sufficiently well any given Riemannian manifold with a Regge triangulation. Thus,
over a fixed A we can define an approximation of GR, in a manner analogous to the way a given Wilson
lattice defines an approximation to Yang-Mills field theory, or the approximation of a partial differential
equation with finite differences defines a discretization of the equation. Therefore the Regge theory over
a fixed triangulation A defines a cut-off version of GR.

The meaning of Regge cut-off There is an important and fundamental difference between this kind
of discretization and lattice Yang-Mills theories: the Regge cut-off is neither ultraviolet nor infrared. In
lattice QCD, the number N of elementary cells of the lattice defines an infrared cut-off: long wavelength
degrees of freedom are recovered by increasing N. On the other hand, the physical size a of the individual
cells enters the action of the theory, and short wavelength degrees of freedom are recovered in lattice
QCD by decreasing a. Hence a is an ultraviolet cut-off. In Regge GR, on the contrary, there is no fixed
background size of the cells that enters the action. A fixed A can carry both a very large or a very small
geometry, depending on the (discrete) metric we put on it. The cut-off implemented by A is therefore
of a different nature than the one of lattice QFT. It is not difficult to see that it is a cut-off in the ratio
between the smallest allowed wavelength and the overall size of the spacetime region considered. Thus,
fixing A is equivalent to cutting-off the degrees of freedom of GR that have much smaller wavelength than
the arbitrary size L of the region one considers. Since the quantum theory has no degrees of freedom
below the Planck scale, it follows that a Regge approximation is good for L small, and it is a low-energy
approximation for L large.

Geometrical construction Consider a 4d triangulation. This is formed by oriented 4-simplices (v),
tetrahedra (e), triangles (f), segments and points. The notation refers to the dual triangulation (v for
vertices, e for edges and f for faces) that will be useful when dealing with spin foams. The metric is
flat within each 4-simplex v. All the tetrahedra and triangles are flat. The geometry induced on a given
tetrahedron from the geometry of the two adjacent 4-simplices is the same. In d dimensions, a (d — 2)-
simplex is surrounded by a cyclic sequence of d-simplices, separated by the (d — 1)-simplices that meet
at the (d — 2)-simplex. This cyclic sequence is called the link of the (d — 2)-simplex. For instance, in
dimension 2, a point is surrounded by a link of triangles, separated by the segments that meet at the point;
in dimension 3, it is a segment which is surrounded by a link of tetrahedra, separated by the triangles
that meet at the segment; in dimension 4, a triangle f is surrounded by a link of 4-simplices vy, ..., vp,
separated by the tetrahedra that meet at the triangle f. In Regge calculus, curvature is concentrated on
the (d—2)-simplices. In dimension 4, curvature is therefore concentrated on the triangles f. It is generated
by the fact that the sum of the dihedral angles of the 4-simplices in the link around the triangle may be
different from 27w. We can always choose Cartesian coordinates covering one 4-simplex, or two adjacent
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4-simplices; but in general there are no continuous Cartesian coordinates covering the region formed by
all the 4-simplices in the link around a triangle. The variables used by Regge to describe the geometry
ga of the triangulation A are given by the set of the lengths of all the segments of the triangulation.
Regge has also written the Einstein action in this discretized context: in three dimensions the discretized
Einstein-Hilbert action for a tetrahedron v is

So =Y 10s(l5). (137)
f

where 0 is the dihedral angle associated to the segment f, that is the angle between the outward normals
of the triangles incident to the segment. One can show that the action

SRegge = Z Sv ) (138)

called the Regge action, is an approximation to the integral of the Ricci scalar curvature, namely to the
Einstein-Hilbert action.

4.3 Quantum Regge calculus and spinfoam models

Quantum Regge calculus is a quantization of discretized General Relativity [71]. Contrary to LQG, here
the discretization is not derived, but imposed already in the classical theory. Consider the 3d Euclidean
case, which is easier and is the one originally studied by Ponzano and Regge. The idea is to define a
partition function as a sum over Regge geometries, using the Regge action as the weight in the Feynman
path integral:

7 = /dl1 ... dly e Resee (139)

this is a sum over the N edge lengths of a fixed triangulation. Regge discovered a surprising property
of the Wigner 6j-symbol, a well-known combinatorial object in the theory of angular momentum: in the
large spins j limit the following asymptotic formula holds, linking the symbol which depends on 6 spins
to the Regge action (137):

. 1 , T
{65} ~ Witria cos (Sv(jn) + Z) . (140)

Sy is the Regge action for a single tetrahedron with edge lengths j,,. Expanding the cosine in two complex
exponentials, the two resulting terms correspond to forward and backward propagation in coordinate
time, and 7/4 does not affect classical dynamics. V' is the volume of the tetrahedron. So the 6j-symbol
knows about quantum gravity: it is the right weight for the path integral! Under the assumption that
the lengths are quantized multiples of a fundamental length, they proposed the following formula for 3d

quantum gravity:
Zer = Y [[dimGy) [[{65}- (141)

Ji-dn f v

Formula (141) contains a sum over all possible spins and there is a product of 6;5’s, one per each dual
vertex (tetrahedron) of the triangulation. This formula has the general form (130) where the set of two
complexes summed over is formed by a single 2-complex (we are not summing over triangulations); the
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representations summed over are the unitary irreducible of SU(2), the intertwiners are the unique 3-valent
ones and the vertex amplitude is A, = {6j5}. So (141) defines a spin foam model called the Ponzano-Regge
model. This model can be obtained also by direct evaluation of a discrete path integral when we introduce
appropriate variables. To this aim, consider the dual triangulation A* defined as follows: place a vertex
v inside each tetrahedron of A; if two tetrahedra share a triangle e, we connect the two corresponding
vertices by an edge e, dual to the triangle e; for each segment (or edge, one has to be careful not to
confuse with the dual edge) f of the triangulation we have a face f of A*. Finally for each point of A
we have a 3d region of A*, bounded by the faces dual to the segments sharing the point (Table 1). Let

x X Ay A}
3 3 s
tetrahedron wverter (4 edge, 6 faces) dsimplex verter (5 edge,10 faces)
. tetrahedron edge (4 faces)
triangle edge (3 faces) -
triangle face
segment face .
oint 3d redion segment 3d region
D g point 4d region

Table 1: Relation between a triangulation and its dual, in three and four dimensions. In parenthesis:
adjacent elements.

he = Pexp ([, w'n;) be the holonomy of the SU(2) spin connection along each edge of A*; let l} be the
line integral of the triad (gravitational field) ¢’ along the segment f of A. The basic variables are h. and
l;}. The discretized Einstein-Hilbert action in these variables reads

Sl k) = 3 B Telhym] = 37 Tt (1)
f !
where
hy :hG{...he£ (143)
is the product of group elements associated to the edges e{, e ,eqfl bounding the face f. The I;’s are

elements in the Lie algebra su(2) (Iy = ljcn). If we vary this action w.r.t. the lengths 13} we obtain the
simple equations of motion

hy=1, (144)

namely the lattice connection is flat. Varying w.r.t. he, and using (144), we obtain the equations of motion
Iy, +1% + 1%, = 0 for the three sides f1, f2, f3 of each triangle. This is the discretized version of the Cartan
structure equation De = 0. Now we can define the path integral as

7 = / dldhe expiS|ly, he] , (145)

where dh, is the Haar measure over SU(2). Up to an overall normalization factor, we find

Z:/dhené(he{...hefl): > Hdim(jf)/dheHTrlz[f(he{...hefl), (146)
f

J1-Jdn f f
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where we have expanded the Dirac § distribution over the group manifold using the Plancherel expansion
J
§(h) = dim(j)TrII(h) (147)
J

in which the sum is over all unitary irreducible representations of SU(2). Since every dual edge is shared
by three dual faces, the integrals over a single holonomy h. are of the form
J1 J2 J3

/ dglI(g)*, 11 (g)bb, II(g), = Ve (148)
SU(2)

where v%¢ is the normalized intertwiner (v“bcvabc = 1) between the representations of spin j1, j2, j3. Each

of the two invariant tensors in the r.h.s. is associated to one of the two vertices that bounds the edge.
In all we have four intertwiners for each vertex; these intertwiners get fully contracted among each other
following a tetrahedral pattern. This contraction is precisely the Wigner 6j-symbol. Bringing all together
we obtain the Ponzano-Regge partition function (141).

4.4 BF theory

Here we extend the above construction to four dimensions. As a first step we do not consider GR, but a
much simpler 4d theory, called BF theory, which is topological and is a simple extension to 4 dimensions
of the topological 3d GR. BF theory for the group SU(2) is defined by two fields: an su(2)-valued 2-form
B!/ (indices I, J are in the Lie algebra), and an su(2)-valued spin connection I'//. The action is a direct
generalization of the 3d one:

S[B,T| = /B”AF”[F}. (149)

The wedge A is the exterior product of differential forms, so we are integrating a 4-form over a 4-dimensional
space. We discretize BF theory on a fixed triangulation; the discrete configuration variables are B;J ,
which are the integrals of the smooth 2-forms over triangles f (f stands for faces dual to triangles). The
construction of the dual 4-dimensional triangulation is resumed in Table 1. Following the same procedure
of the 3d model, we obtain an equation analog to (146), but now we are in four dimensions, and every
edge bounds four faces; so we have to compute integrals of this form

Ji J2 J3 Ja ,
/ dg R (9) R(9)"y R(9)°0 R (9)"y =D 0f*lspyerar (150)

?bc‘i (vgdevj abed = 0ij) in the space of the intertwiners between the

representations of spin j1, j2, j3, j4; we choose the virtual spin basis, and ¢ is intertpreted as a virtual spin.
Now, each vertex bounds ten faces and so for each vertex we have ten representations. Analogously to
the three dimensional case, where the vertex amplitude was given by a 6j-symbol, we find that here the
vertex amplitude is the Wigner 15j-symbol

Here ¢ labels an orthonormal basis v

. s S\ a1a6a9as5, 20701001, a3070802, 640494703, A5010A804 __ .
A(J1y .- 10501, - -4 05) = E vy, v, Vg v;, v = {155}.
ai...aio
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We have 15 spins because 10 of them are associated to faces, while 5 of them are the virtual spins labeling
the interwiner basis. The pattern of the contraction of the indices reproduces the structure of a four
simplex (fig 4.4). We can then write the full partition function

7= [[dimGp][{15}- (151)

jfvie f
In conclusion, the spinfoam model of BF theory is defined by the following choices:

Uiy

Figure 6: The Wigner 15j-symbol

1) the set of two complexes summed over is formed by a single 2-complex, given by the 2-skeleton of the
dual triangulation;

2) the representations summed over are the unitary irreducibles of SU(2);

4) the vertex amplitude is A, = {15j}.

For the applications to gravity, BF theory must be formulated with the SO(4) or SO(3,1) gauge group.
The fields B and F' will have values in the respective Lie algebras. General Relativity can be obtained
from SO(3,1) BF theory substituting the field B!/ with GUKLeK A e, where e is a Lorentz tetrad, and
this is the reason for which we describe BF theory as an intermediate step. We will describe the Euclidean,
version, where the gauge group is SO(4).

The quantization of the discretized SO(4) BF theory is straightworfard, because of the decomposition
SO(4) ~ SU(2) x SU(2)/Zs. SO(4) unitary irreducible representations are then the tensor product of
couples of SU(2) representations. They are labeled by couples ji,j—. A basis for the 4-valent intertwiner
space is given by the tensor product of the basis intertwiners of SU(2); from this, also intertwiners can be
labeled by a couple i4,i_ of virtual spins. The resulting vertex amplitude is

AGE, .. g5, i) = {1551 {1557) (152)

that is the product of two 15j-symbols. The full partition function is

z = [[dim(G§)dim(if) [ [{1557 30 (155"} (153)

iric £ v

4.5 Barret-Crane model

Now we are ready to look for a spinfoam model for quantum General Relativity. We restrict our attention
on the Euclidean signature model, with gauge group SO(4). As we have anticipated, to obtain GR from
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the topological BF theory we must replace B7 with

Bl =l el nel (154)

1

18 a tetrad. Equation (154) is equivalent to the following constraint:

where e
BY nBEF = velIEL (155)

where V' is proportional to the volume element. Consider now the simplicial discretization of BF theory.
For each tetrahedron, the discretized version of equation (155) is the following:

B; B; =0, (156)
B} -By =0, f and f’ share an edge, (157)
B} - By = 2V (v) f and f’ are opposite faces of t, (158)

where V(v) is the volume of the 4-simplex v, and the x is the Hodge dual w.r.t. the internal indices. In
the quantum theory, as in the quantization of lattice Yang-Mills theories, the standard procedure is to
quantize Bﬁ‘] as left-invariant or right-invariant vector fields of the SO(4) Lie algebra, depending on the
orientation of the face. It is immediate to see that the four bivectors associated to the four triangles of a
single tetrahedron satisfy the closure relation

B (t)+ Bf/(t)+ Bf/(t) + B}/ (t) =0, (159)

which is the discrete analog of Gauss constraint. Equation (156) is called diagonal simplicity constraint,
and it becomes, in the quantum theory, a restriction on the representations summed over in the partition
function. Recall indeed that irreducible representations of SO(4) are labeled by couples of spins j4,j_.
The quantum diagonal simplicity constraint expresses the vanishing of the pseudo-scalar Casimir operator:

et By BfY = BBy — BYB ;= [ji(js +1) = j-(j- + 1)1 =0. (160)
The quantities BJIFJ and B!’ are respectively the self-dual and antiself-dual parts of B!”:
B = B + B/, (161)

It follows that the representations have to be simple, that is j+ = j—. This suggests that quantum GR
can be obtained by restricting the sum over representations in (153) to the sole simple representations.
The other two constraints (157) and (158) are called off-diagonal and dynamical simplicity constraints
respectively; the off-diagonal one selects the simple representations also in the intertwiner space. This
singles out the Barrett-Crane intertwiner, defined as

igg/)(bb/)(cc/)(dd/) — Z(2Z + 1) ,UabgUngUa’b/g/UQIC'd' ’ (162)

7

where the SO(4) indices are couple of SU(2) indices, and the indices g and ¢ are in the representation i.
The BC intertwiner has the property of being formed by a simple virtual link in any decomposition

iBCZZ(%‘“rl) >—I'——< >—Z——< = Z(%Ml) L P

(163)
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Note that the scalar Casimir éf : Bf is the quantization of the area of the triangle f and its eigenvalues
Jf(4¢ + 1) are the quantum numbers of area. The Barret-Crane vertex amplitude is:

iBC

il Z'1

(164)

This combinatorial symbol is called 10j-symbol. The Barret-Crane spinfoam model [72, 73] is defined by
the partition function constructed with the vertex amplitude (164):

Zc = _ [ [ dim()® [[{104}. (165)
f v

Jf
A remarkable property of the 10j-symbol is its asymptotic expansion [74, 75]. Its large spin behavior is

{107} ~ Y P(0) c08 Skegge(0) + k7 + D, (166)

where

SRegge(a) = Zjaea (167)

is the so-called area Regge calculus action for a 4-simplex; j, is the area of the a-th triangle in the 4-simplex,
and 6 the exterior 4-dimensional dihedral angle between the two tetrahedra sharing the a-th triangle. The
sum is over possible discrete degeneracies. The term P(o) is a non oscillating, slowly varying factor,
like the volume factor in the Ponzano-Regge asymptotic formula; D is the contribution of the so-called
degenerate configurations and k is an integer depending on o . In [76] Baez, Christensen and Egan showed
that the term D is in fact dominant in the asymptotics of the 10j-symbol, i.e. the leading order terms are
contained in the set of degenered configurations. This has later been confirmed by the results of Freidel
and Louapre [77| and Barrett and Steele [78]. However, such degenerate terms do not contribute in the
calculation of observables (e.g. the 2-point function) in the semiclassical limit.

There some difficulties in interpreting the Barrett-Crane model as a model for quantum gravity. The
first is that the low energy 2-point function is pathological: some components of the graviton propagator
(the ones depending on the intertwiners d.o.f.) are suppressed. Another more structural problem is in the
interpretation of the model as an amplitude for the LQG spin-networks. LQG spin-networks are based on
the group SU(2), while the covariant state space of spin foams is based on SO(4). In principle, one could
build a natural correspondence between the two state spaces, but in the case of the BC model, there is a
mismatch between the linear structures of SO(4) and SO(3) in building up this correspondence. We refer
to [79] for a short discussion on this subtle point.
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5 A new model: EPRL vertex

Some time ago, J. Engle, R. Pereira and C. Rovelli [55] introduced a new spinfoam model. The main
motivation was to find an improvement of the Barrett-Crane model. The difficulties with the BC model
are related to the fact that the intertwiner quantum numbers are fully constrained; this is has been traced
back to the mistake of imposing the simplicity constraints as strong operator equations, even though
they are second class constraints. In fact it is well known that imposing second class constraints strongly
may lead to the incorrect elimination of physical degrees of freedom. The generalization of this model
to arbitrary values of « is performed i a paper by J. Engle, E.R. Livine, R. Pereira and C. Rovelli [15].
Here we describe this more general model, called shortly EPRL model. Its main characteristics are the
following ones:

e The boundary quantum state space matches ezactly the one of SO(3) LQG: no degrees of freedom
are lost.

e The asymptotic expansion of the vertex on a coherent state basis gives the exponential of the Regge
action.

o As the degrees of freedom missing in BC are recovered, the vertex yield the correct low-energy
n-point functions.

e The vertex is SO(4)-covariant.

e The spectrum of area and volume operators coincides with the on of Loop Quantum Gravity, even
in the Lorentzian version of the model.

5.1 The goal of the model: imposing weakly the simplicity constraints

The Barrett-Crane theory constrains entirely the intertwiner degrees of freedom. The reduction of the
intertwiner space to the sole intertwiner ¢g¢ comes from the strong imposition of the off-diagonal simplicity
constraints, as we have seen in section 4.5. But these constraints do not commute with one another, and
are therefore second class. Imposing second class constraints strongly is a well-known way of erroneously
killing physical degrees of freedom in a quantum theory.

In order to illustrate the problems that follow from imposing second class constraints strongly, and
a possible solutions to this problem, consider a simple system that describes a single particle, but using
twice as many variables as needed. The phase space is the doubled phase space for one particle, formed
by the two couples (q1,p1) and (g2, p2), and the symplectic structure is the one given by the commutator
{qa, v} = dap . We set the constraints to be

@1 —q=0, (168)
p1—p2=0.

To simplify the constraints we perform a change of variables g+ = (q1 + ¢2)/2 and p+ = (p1 £ p2)/2, so
now the system (168) reads: ¢— = p— = 0. They are clearly second class constraints.
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Suppose we quantize this system on the Schrodinger Hilbert space L?(IR?) formed by wave functions of
the form ¥ (g4, q—). If we impose strongly the constraints we obtain the set of two equations

q- ¥(q+,q-) =0,
i Vi) =0, (169)

which has no non trivial solutions. We have lost entirely the system.

There are several ways of dealing with second class systems. One possibility, which is employed for
instance in the Gupta-Bleuler formalism for electromagnetism and in string theory, can be illustrated
as follows in the context of the simple model above. Define the creation and annihilation operators
al = (p— +ig-)/v2 and a_ = (p_ —iq_)//2 . The constraints now read a_ = al = 0. Impose only
one of these strongly: a_|¢) = 0 and call the space of states solving this H,, . Notice that the other one
holds weakly, in the sense that

(plal ) =0 Y ¢,1 € Hpp - (170)

That is, al maps the physical Hilbert space Hpy into a subspace orthogonal to H,,. Similarly, in the
Gupta-Bleuler formalism the Lorenz gauge condition (which forms a second class system with the Gauss
constraint) holds in the form

(9|0"Auly) =0 V¢, 1h € Hpp . (171)

A general strategy to deal with second class constraints is therefore to search for a decomposition of
the Hilbert space of the theory Hiin = Hpnys ® Hsp (sp. for spurious) such that the constraints map
Hpnys — Hsp - We then say that the constraints vanish weakly on Hppys . This is the strategy we employ
below for the off-diagonal simplicity constraints of BF theory. Since the decomposition may not be unique,
we will have to select the one which is best physically motivated.

5.2 Description of the model

As in the BC model we discretize spacetime using as configuration variables the bivectors Bf(t)!7 associ-
ated to faces f, and the holonomy Uy(t,t') along the tetrahedra sharing f, starting from the tetrahedron
t and ending at t'; Us(t) = Uy(t,t) is the holonomy around the full link of tetrahedra. Discretized GR
results from imposing constraints on the B variables as seen for the BC model. They are:

1) simplicity constraints (diagonal (156), off-diagonal (157), dynamical (158));

2) closure constraint.

The dynamical simplicity constraint is automatically satisfied when the other constraints are satisfied.
The closure constraint will be automatically implemented in the quantum theory; its effect, as known, is
to restrict the states of the quantum theory to the gauge invariant ones.

Classical theory In the EPRL model the the classical action one starts with is a slight modification of
BF theory which includes the immirzi parameter. This is the Holst action, obtained adding to the original
action a term that does not change the equations of motion. Holst action is also the one used in LQG,
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because it the one resulting from the Einstein-Hilbert action after the introduction of the Ashtekar-Barbero
variables. A possible discretization of the the Holst action is

S — —% S I {Bf(t)Uf(t)+ 1*Bf(t)Uf(t)]
feintA v

—% Z Tr[Bf(t)Uf(t, ')+ }yB}'Z(t)Uf(t, t’)] : (172)
fedA

where the original variables have been integrated over paths and surfaces of a simplicial triangulation of
spacetime. The boundary conjugate variables can be read off from the action. For each triangle f on the
boundary, we have two tetrahedra tr, tg sharing it; to these tetrahedra are associated the holonomies
Uf(tr) and Uy(tr), and the shifted fields

N 1
Jy(t) = By(t) + ;Bf(t) (173)
Holonomies and shifted fields are canonically conjugate variables, with Poisson brackets
{77 (), U (1)} = 77U (1) (174)

where 71/ are SO(4) (SO(1,3) in the Lorentzian) generators. Now constraints have to be imposed on
these boundary variables. The constraints (156) and (157) have two sectors of solutions, one in which
B =*eAe, and one in which B = eAe. For finite Immirzi parameter both sectors in fact yield GR, but the
value of the Newton constant and Immirzi parameter are different in each sector. In the B = *e A e sector,
the discrete Holst action becomes the Holst formulation of GR [80] with Newton constant G and Immirzi
parameter . In the B = e A e sector, one also obtains the Holst formulation of GR, but this time with
Newton constant G7, and Immirzi parameter s/7, where the signature s is +1 in the Euclidean theory
and -1 in the Lorentzian theory. In order to select a single sector, the EPRL construction reformulate the
simplicity constraints in such a way that these two sectors are distinguished. This was a crucial step for
the construction of the new SFM. To this purpose, we replace the off-diagonal constraint (157) with the
following stronger constraint: for each tetrahedron ¢ there must exist a (timelike in the Lorentzian case)
vector n! such that

ni B (t) =0 (175)

for every triangle f of the tetrahedron. This condition is stronger than (157) since it selects only the
desired B = e A e sector.

For each tetrahedron t, define the gauge-fixed spatial and temporal components of J(t) choosing a
coordinate system such thate the vector normal to ¢ takes the standard form (1,0,0,0); then we can
determine the “magnetic” and “electric” components of J:

I 1 % 7
L= iejkj’f (176)
K'=J% i jk=1,23. (177)
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In terms of the shifted fields, the diagonal and off-diagonal simplicity constraints (156)-(175) read

9
Crr=(1+ i2)*Jf Jf - ;Jf Jp =0 (178)

J — 1J IJY ~ J— i _ S i
Cy =ns("Jy 7Jf)~0<:>cf:Lf—§Kf~o. (179)
The first constraint (178) commutes with the others, while the system of off-diagonal constraints (179)
does not close a Poisson algebra. Thus we will impose strongly (178) and more weakly (179).

Quantization We quantize the discretized classical theory as in lattice QFT. We choose the uncon-
strained kinematical quantum state space to be

L*(S0(4),dg)/SO(4) (180)

where G is SO(4) or SO(1,3), dg is the Haar measure, and L is the number of links in the dual graph
of the boundary triangulation (or the number of triangles in the boundary). Division by SO(4) means
that we took the gauge invariant subspace. We quantize the variable J ]{J (tr) as a right-invariant vector
field over SO(4), and J]{J(tL) as a left-invariant vector field, acting on the portion of the Hilbert space
associated to the link f. What is right or left is determined by the orientation of the graph.

The quantum diagonal and off-diagonal constraints now read

~ S ~ ~
Crp=(14+ 2T T =27 Jr ~o0, 181
(1 72) f= s (181)
A T S i
Cr =1Ly - K ~0. (182)
I

where the “electric” and “magnetic” fields become the generators of SU(2) rotations (that leave n' invari-
ant) and boosts at the quantum level. The Gauss constraint, which in the discretized context means that
the bivectors associated to a tetrahedron satisfy the closure relation

> By(t) =0 (183)
f
implements, as usual, the gauge invariance of quantum states.

Euclidean In the Euclidean version of EPRL model, consider a single link, and its associated Hilbert
space L?(SO(4),dg). The SO(4) scalar Casimir J-J acts diagonally on the (j+,] ) irreducible component
of this Hilbert space; the associated eigenvalue is ji(j+ + 1) +j—(j— + 1). The pseudo-scalar Casimir
*J-J gives instead the eigenvalue ji(j+ + 1) — j_(j— + 1). Then by a simple calculation we see that the
diagonal constraint (182) restricts the self dual and anti-self dual quantum numbers to be related by

v+1

i 184
|7 —1] (184)

J+ =
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Also in the BC model the diagonal constraint gives the relation between the two sectors, but here the
two sectors are not balanced because of the finite value of v. The system of off-diagonal constraints (182)
must be imposed weakly. Alternatively, it can be replaced by the single “master” constraint

Y= (I'-ZK')?~0. (185)
i i
which is of course equivalent at the classical level. Using (181) the “master” constraint becomes simply

*J-J—4yI% ~0, (186)

i.e. a simple relation between the pseudo-scalar Casimir and the generator of rotations. To see its effect,
notice that the SO(4) representation space labeled by (j+,j—) decomposes into the Clebsch-Gordan series
of SU(2) irreducible subspaces

|y —J-1&... & (s +7-) (187)

labeled by a pure rotation quantum number k. The “master” constraint simply means that:

(188)

k_{j++j 0<y<1,
J

t—ji oy >1.

For v < 1 the constraint picks out the highest SU(2) irreducible representation, for v > 1 the lowest. The
set of closure, diagonal, and “master” constraints selects a physical state space Hpy, which is spanned by
SO(4) spin-networks (viewed as functions of holonomies, not of the connection) labeled by quantum num-
bers (j+,j—) satisfying an unbalanced relation. One can show that the effect of the full set of constraints
on the intertwiner labels is to project onto the following highest (or lowest) weight intertwiner space:

Inv Mgy | @ Hjay | (189)
where the sign depends on v as we have seen. Remarkably, Hpy, is isomorphic to
L*(SU(2),dg)/SU(2) (190)

which is the Hilbert space associated to a single graph! The isomorphism is realized identifying the label
of rotations k with the SU(2) label of LQG, while the intertwiner mapping can be defined in terms of
fusion coefficients f:

— Y falinelio), (191)

Z+Z_

where

o e byb_ dyd_ . -
fii (G, J2, 3, Ja) = (i i-|fli) = 1"l Cgre- O O oyt Z;r+b+c+d+za,b,c,d, : (192)

The intertwiners |#), |i4) ® |i_) form respectively an SU(2) and SO(4) orthonormal basis of intertwiners
and

Car* = (jijy »ara—ljia) (193)
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are Clebsh-Gordan coefficients. The fusion coefficients (192) define a map
JiInvH;, ®...® Hj, — Inv H(u—;m i) @ ® H(\l—;u‘;,(u;)m) (194)

from the SU(2) to the SO(4) intertwiner space. The elementary objects which codes the dynamics is
the vertex amplitude. The natural vertex amplitude associated to the physical Hilbert space we have
constructed is the full contraction of five intertwiners of the kind (189), with contraction pattern given by
the 4-simplex graph, namely:

A ) = 3 g (20 ) asy (2 L0 e ) [ G 199)

i 49
It depends on 10 spins and 5 SU(2) intertwiners.

Lorentzian With some modifications, we can repeat the previous construction for the Lorentzian sig-
nature. In this case we have to consider the SL(2,C) Casimir operators for the representations of the
Lorentz group in the so called principal series (n, p). They are given by

~ ~ ~ 1

J J:2(L2—K2):§( 2 pr—4)1, (196)

*J.J=—AL-K =npl. (197)
The solutions of (181) are given by either p = yn or p = —n/v. The existence of these two solutions

reflects the two sectors mentioned previously with Immirzi parameter v and —1/~. BF theory cannot a
priori distinguish between these two sectors. However, in our framework, the “master” constraint (185)
breaks this symmetry and selects the first branch p = yn. It further imposes that k& = n/2, where k
again labels the subspaces diagonalizing L2. Therefore the constraints select the lowest SU (2) irreducible
representation in the decomposition of

Hinpy = D M- (198)

k>n/2

Notice also that the continuous label p becomes quantized, because n is discrete. It is because of this fact
that any continuous spectrum depending on p comes out effectively discrete on the subspace satisfying
the simplicity constraints.

As before, we have an embedding map of SU(2) intertwiners into the space of SL(2,C) intertwiners,
which gives also the solution of the simplicity constraints for the intertwiner labels:

i InvH®. @Hj, — InvHiy, p) @ .. @ Hiny pa)s

i — 3 [ do(a? + )fiyln. 0 (199)

where A )
711/1 = iadevaZ(’:Z . (200)
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Here v(™#) is an SL(2,C) 4-valent intertwiner labeled by the virtual link (n, p). The boundary space is
once again just given by the SU(2) spin-networks and the vertex amplitude has the form:

A(jabaia) = Z/dpa(nczz + p?t) (H friLZpa (jab)) 15jSL(2,(C) ((2jab7 2jab7)? (naapa)) . (201)

Notice the precence of the SL(2, C) 15j-symbol.
The final partition function for an arbitrary triangulation, both for the Euclidean and Lorentzian
model, is given by gluing the vertex amplitudes with suitable face amplitudes:

Z=> 11 ArGp) T AGy.ie) - (202)

jfvie f

An important unexpected result provided by the EPRL model comes from the calculation of the spectrum
of the operator related to the area of a triangle dual to the face f, given by the formula:
—2

| NN 1
Area = 5(*3)”(*3)” ==

45272? . (203)

It is ezactly the spectrum of LQG, for both FKuclidean and Lorentzian signatures:

Area = ky\/k(k +1). (204)

Remarkably, imposing the simplicity constraints (178) and (186) reduces the potentially continuous spec-
trum to the exact discrete LQG spectrum (204). This answers, at least in the contex of spin SFM, a
common objection to the genuineness of the discreteness found in LQG, which is sometimes imputed to
the use of SU(2) (instead of the full SO(1,3)) group as the gauge group. Indeed SO(3) is compact,
while SO(1,3) is non compact, and the latter is likely to yield continuous spectra. The EPRL model is
an example which shows that this is not always the case, and strengthen the physical discrete picture of
spacetime provided by Loop Quantum Gravity.

We close this section telling that E. Livine and S. Speziale have found an independent derivation of
the EPRL vertex, based on the use of the coherent intertwiners they have introduced in [56|. With similar
techniques, L. Freidel and K. Krasnov introduced another spin foam model [57| which is very similar to
the EPRL one, and concides with it for v < 1. There is also a relation between the states of EPRL model
and the projected spin-network states studied by E. Livine and S. Alexandrov [81, 82|. The problem
of computing semiclassical quantities such as n-point functions is related to the asymptotic behavior of
the vertex for large quantum numbers. In the next section we study some properties of the EPRL model
investigating the semiclassical limit of its fusion coefficients [19]. We will continue the semiclassical analysis
with preliminary numerical investigations and then with the calculation of the graviton propagator. The
main result will be that the EPRL model gives the correct 2-point function. For different approaches to
the semiclassical limit, see [83] and [84].
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6 Asymptotics of LQG fusion coefficients

In the last chapter we have described the new spinfoam model Engle-Pereira-Rovelli-Livine (EPRL). Here
we present a careful analysis of the asymptotics of fusion coefficients of Euclidean EPRL model. This is
a preliminary step for the study of the semiclassical properties. In particular it allows to check if the new
vertex has the right dependence in the intertwiners variables. The region of parameter space of interest is
large spins jg (a, b label two connected nodes of a spin-network) and intertwiners i, of the same order of
magnitude of the spins.

This chapter is organized as follows: in the first section (6.1) we show a simple analytic expression for
the EPRL fusion coefficients; in the second (6.2) we use this expression for the analysis of the asymptotics
of the coefficients in the region of parameter space of interest, and in third part (6.3) we show that the
fusion coefficients map SO(3) semiclassical intertwiners into SU(2)r x SU(2)g semiclassical intertwiners.
We conclude discussing the relevance of this result for the analysis of the semiclassical behavior of the
model. In the end s we collect some useful formula involving Wigner coefficients.

6.1 Analytical expression for the fusion coefficients

The fusion coefficients provide a map from four-valent SO(3) intertwiners to four-valent SO(4) intertwin-
ers. They can be defined in terms of contractions of SU(2) 3j-symbols. In the following we use a planar
diagrammatic notation for SU(2) recoupling theory [85]. We represent the SU(2) Wigner metric and the
SU(2) three-valent intertwiner respectively by an oriented line and by a node with three links oriented
counter-clockwise?. As we have seen before, a four-valent SO(3) intertwiner |i) can be represented in

terms of the recoupling basis as
Ju . Ja
i) = v2i+ 1>+- = +< (205)
J2 J3

where a dashed line has been used to denote the virtual link associated to the coupling channel. Similarly
a four-valent SO(4) intertwiner can be represented in terms of an SU(2)r, x SU(2)r basis as |ip)|ig).

Using this diagrammatic notation, the EPRL fusion coefficients for given Immirzi parameter v are
given by

£ i Gy gos sy ja) =(—1)7r 92 tia=ia \/(21' +1)(2ip +1)(2ig + DI (25, +1) X (206)
+ +
1—~/M+7)j3
2 2
T Y et
. 1 2 1 2 1 .
X ir b1 biRr
! [1—=~lj2 . ! . A4 !
+ 2 1 A2 2
[1—~]d1 (14+v)J2
2 2

2 A minus sign in place of the + will be used to indicate clockwise orientation of the links.
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Using the identity

(207)

~
=y

where the shaded rectangles represent arbitrary closed graphs, we have that the diagram in (206) can be
written as the product of two terms

fin G, G2, J3s ja) = (208)
= (—1)7 I f(20 + 1) (2dg, + 1) (2ig + DI, (25 + 1) ¢l,5,(G1.52) €24, (3, ) (209)

where quiR is given by the following 9j-symbol

_ + .
J2 J1
_ _ 1—~] . . 1—~| .
| QWIJI ir \ 2v\]2
% s _ 1—]4: 14+7)J — 14 - . 1 .
QiLiR(]laJQ) = % Epn = 77]1 iR ?]2 : (210)
1
- bi P J1 ? J2
+ ~_ 1 _ - +

From the form of qf”» ., We can read a number of properties of the fusion coeflicients. First of all, the
diagram in expression (210) displays a node with three links labelled ¢,ir,ir. This corresponds to a
triangular inequality between the intertwiners 4,4y, g which is not evident from formula (206). We have
that the fusion coefficients vanish outside the domain

lip —ip| <i<ip-+ig. (211)

Moreover in the monochromatic case, j1 = jo = j3 = ja4, we have that the fusion coefficients are non-
negative (as follows from (209)) and, for i;, + ir + ¢ odd, they vanish (because the first and the third
column in the 9j-symbol are identical).

As discussed in [57, 56|, the fact that the spins labeling the links in (206) have to be half-integers
imposes a quantization condition on the Immirzi parameter v. In particular v has to be rational and a
restriction on spins may be present. Such restrictions are absent in the Lorentzian case. Now notice that
for 0 < 7 < 1 we have that 32 + 1220 — 1 while for v > 1 we have that 32 — 252 = 1 (with the
limiting case v = 1 corresponding to a selfdual connection). As a result, in the first and the third column
of the 9j-symbol in (210), the third entry is either the sum or the difference of the first two. In both
cases the 9j-symbol admits a simple expression in terms of a product of factorials and of a 3j-symbol (see
appendix). Using this result we have that, for 0 <y < 1, the coefficient quiR(jl,jg) can be written as

P (i ip—ir+(j1—j2) i IR ! i
qiLiR(‘h’]2) - (_1) 1—yU1—d2) (A+1)(1—52) —(' -J ) AiLiR(]17j2) (212)
2 2 J1—J2
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with AfLZ-R (j1,J2) given by

(i (J1+J2 =)' (o + jo + i+ 1)!
Aipin(nJ2) = - - 213
ivin(1:2) \/ (271 + 1) (22 4 1)! % (213)

y \/ (11— ~[50)! (]1 = ~2)! y
(

D=l |, I=vlde _ ; \y (A=l | [1—vlj2 |
Mol Il )y (Al 4 D=l -y 4 1)1

» \/ (1T + 7)) (A +7)52)!

((1+2'y)j1 n (1+;)j2 ~ iR)! ((1+;)j1 + (1+;)j2 +ip+ 1)!

A similar result is available for v > 1. The Wigner 3j-symbol in expression (212) displays explicitly
the triangle inequality (211) among the intertwiners. Notice that the expression simplifies further in the
monochromatic case as we have a 3j-symbol with vanishing magnetic indices.

The fact that the fusion coefficients (206) admit an analytic expression which is so simple is certainly
remarkable. The algebraic expression (209),(212),(213) involves no sum over magnetic indices. On the
other hand, expression (206) involves ten 3j-symbols (one for each node in the graph) and naively fifteen
sums over magnetic indices (one for each link). In the following we will use this expression as starting
point for our asymptotic analysis.

6.2 Asymptotic analysis

The new analytic formula (209),(212),(213) is well suited for studying the behavior of the EPRL fusion
coefficients in different asymptotic regions of parameter space. Here we focus on the region of interest in
the analysis of semiclassical correlations. This region is identified as follows: let us introduce a large spin
jo and a large intertwiner (i.e. virtual spin in a coupling channel) ip; let us also fix the ratio between i
and jo to be of order one — in particular we will take ig = %jg; then we assume that

e the spins ji, j2, j3, ja, are restricted to be of the form je = jo + dje with the fluctuation je small
with respect to the background value jo. More precisely we require that the relative fluctuation dJe

Jo
is of order o(1/1/j0);

e the SO(3) intertwiner i is restricted to be of the form i = ip + d¢ with the relative fluctuation ?—; of

order o(1/v/j0);

e the intertwiners for SU(2)r, and SU(2)gr are studied in the region close to the background values
z'OL = H;Qﬂio and i% = H%ig. We study the dependence of the fusion coefficients on the fluctuations

of these background values assuming that the relative fluctuations diy/ip and digr/ip are of order

o(1/v/jo)-

A detailed motivation for these assumptions is provided in section 6.3. Here we notice that, both for
0 <~ < 1 and for v > 1, the background value of the intertwiners ir, i, ¢, saturate one of the
two triangular inequalities (211). As a result, we have that the fusion coefficients vanish unless the
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perturbations on the background satisfy the following inequality

01 < dip, + dig 0<~y<1 (214)
dip < 01+ dig, v>1. (215)

In order to derive the asymptotics of the EPRL fusion coefficients in this region of parameter space we
need to analyze both the asymptotics of the 3j-symbol in (212) and of the coefficients Al in (j1,J2). This
is done in the following two paragraphs

Asymptotics of 3j-symbols The behavior of the 3j-symbol appearing in equation (212) in the asymp-
totic region described above is given by Ponzano-Regge asymptotic expression (equation 2.6 in [71]; see
also the last section):

i iR 7 -1 i +ip—i+1
( ) Vi (16)

|1*'Y|(QJ‘1*J'2) (1+7)(211*12) —(j1 — jo) oA

1 1 1 _ L .
X Cos ((iL + )00+ (ir + 5)0n + (i 4 5)0 + Fp=Rlg - Nkl 4 %) .

The quantities A, 61, Og, 0, ¢—, ¢4 admit a simple geometrical representation: let us consider a triangle
with sides of length if, + %, iR+ %, 7+ % embedded in 3d Euclidean space as shown below

- 1
'L+§

h+ \1—W\(gl—j2)

N

ir+
h 4 (061 =s2)

h—(j1 — j2) (217)

In the figure the height of the three vertices of the triangle with respect to a plane are given; this fixes
the orientation of the triangle and forms an orthogonal prism with triangular base. The quantity A is the
area of the base of the prism (shaded in picture). The quantities 01, Or, 6 are dihedral angles between the
faces of the prism which intersect at the sides iy, iR, ¢ of the triangle. The quantities ¢_, ¢ are dihedral
angles between the faces of the prism which share the side of length h + |1 — v|(j1 — j2)/2 and the side of
length h + (14 v)(j1 — j2)/2, respectively. For explicit expressions we refer to the appendix.

In the monochromatic case, j; = jo, we have that the triangle is parallel to the plane and the formula
simplifies a lot; in particular we have that the area A of the base of the prism is simply given by Heron
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formula in terms of iy, iR, ¢ only, and the dihedral angles 6, O, 6 are all equal to 7/2. As a result the
asymptotics is given by

) 7 1 1 1 —1)tTir+e ip+ip+i
L 'R N + ( ) (_1) L+2R+ ‘ (218)
0O 0 O V2TA 2

Notice that the sum iy 4+ i + ¢ is required to be integer and that the asymptotic expression vanishes
if the sum is odd and is real if the sum is even. Now, the background configuration of iy, ig and ¢ we
are interested in corresponds to a triangle which is close to be degenerate to a segment. This is due to
the fact that U= 7) o + (HV) ig = ip for 0 < v < 1, and (7;1)10 (7 )20 = ig for v > 1. In fact the
triangle is not degenerate as an offset % is present in the length of its edges As a result the area of this

almost-degenerate triangle is non-zero and scales as ig/ % for large 79. When we take into account allowed
perturbations of the edge-lengths of the triangle we find

) %\/1—7223/2(\/1—1—2 (8ir + dig — d1) + o(i 3/4)) 0<y<1 o19)

%\/727—12'3/2(\/14—2 (6@ + dir, — diRr) + o(ig 3/4)) v>1

This formula holds both when the respective sums diy, + dir — 07 and di + di, — dig vanish and when they
are positive and at most of order O(1/ip). As a result we have that, when diy, + dig — 87, or §i + dip — dig
respectively, is even the perturbative asymptotics of the square of the 3j-symbol is

2
@Z‘U + dig, (1+’Y) 1o +0ig g+ 01
~ (220)
0 0 0
2 1 i *?
2 iy . .
T /1-72 \/14+2(3i+6ig—0i) 0(0ir +0ir =01)  0<vy<1
~ —3/2
2_1 0 0(8i + &ip, — dig) > 1

T \/v2=1 \/1+2(6i+6ir—biR)

The theta functions implement the triangular inequality on the fluctuations. In the more general case
when j; — jo is non-zero but small with respect to the size of the triangle, we have that the fluctuation in
dje can be treated perturbatively and, to leading order, the asymptotic expression remains unchanged.

Gaussians from factorials In this paragraph we study the asymptotics of the function AﬁLiR (J1,J2)
which, for 0 < < 1, is given by expression (213). The proof in the case v > 1 goes the same way. In the
asymptotic region of interest all the factorials in (213) have large argument, therefore Stirling’s asymptotic
expansion can be used:

= /2mjy etdollogjo —1) (14 Zanyo + 0y M) forall N >0,  (221)
n=1
where a, are coefficients which can be computed; for instance a; = 1—12 The formula we need is a

perturbative expansion of the factorial of (1 + £)jo when the parameter £ is of order o(1/1/j9). We have
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that
(1 +&)jo)! = /2mjo exp ( + jo(log jo — 1) + &jo log jo + Jjo Z Ckﬁk) X (222)
k=1
Sl —(N+4+1)
< (L4) 0 anbmiy" €™ + 0Gy 2 7) (223)
n=1m=1

where the coefficients b, and c; can be computed explicitly. We find that the function AﬁLiR(jl, Jj2) has
the following asymptotic behavior

Alotoi (jo + 641, Jo + 8ja) ~ Ag(jo) e H(Fiz:0ir03:071.052) (224)

|1*;‘i0 +8ip, (1+;)i0 +dig

where Ag(jo) is the function evaluated at the background values and H(dir, dig, 07,071, dj2) is given by
1
H(dig, 8ig, 0i, 041, 0j2) = §(arcsinh\/§) (8ir + dig — 0i)+ (225)

V3 (0iL)® V3 (dir)®  V3(61)
Tl 2 Ui 4 @

1

16ip, +6ip — 01, .. .
—*i(5‘71+532)+0( —)

2 10 Vio
for 0 <~ < 1, while for v > 1 it is given by
1
H(biy,, big, 0i, 041, 052) = 5(awcsmh\@) (8i + &ig, — dig)+ (226)
L VB @) V3 iRl V(607
2 [1—nlio 2 (1+7)ic 4 o

18i + 6ip, — dip , .. . 1
-2 s 5 _
5 i (071 + ‘72)+0(\/‘T0

Perturbative asymptotics of the fusion coefficients Collecting the previous results we find for the
fusion coefficients the asymptotic formula

) -

o 1
i0+01 . . . . . .

. , +0j.) ~ 0(dir, + 0igp — 6 227
f‘l_;‘lo sy <1+2wo &,R(Jo Je) fo(jo) \/1 2(0iz, + 0i 5) (dig, IR i) X (227)

x exp ( — arcsinh(v/3) (diy, + dip — 8i)) x

(9ip)? (Bir)® | V3 (8i)?
x exp ( \/§|1—7|i0 \/§(1+7)i0+ > ) x
16ip, + i — i, .. . . .
X exp (§—L ioR (641 + j2 + 643 + 6j4))
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for 0 <y <1, and

ZO+§Z . . . . .
—~li i +5 e) ™ 0 51‘1‘62 _62 X 228
Tt §‘°+6iL,7(”§)°+6iR(‘70 Je) ~ Joldo) V14 2(6i + dig, — diR) ( L~ 8r) (228)

x exp (— arcsinh(v/3) (8i + 8if, — big)) x

(di)? (0ir)* | V3 (5i)
< exp ( \/gll—vlio \/§(1+’y)iojL 2 i ) %
164 +5ZL 5iR

X exp (2 i

(671 + 6j2 + 63 + 6ja))

for v > 1, where fo(jo) is the value of the fusion coefficients at the background configuration. As we will
show in next section, this asymptotic expression has an appealing geometrical interpretation and plays
a key role in the connection between the semiclassical behavior of the spinfoam vertex and simplicial
geometries.

6.3 Semziclassical behavior

To illustrate some important features of the semiclassical behavior of the fusion coefficients, we must first
anticipate the principal idea of the next chapter: the propagation of boundary wave packets as a way
to test the semiclassical behavior of a spinfoam model. Consider an “initial” state made by the product
of four intertwiner wavepackets; this state has the geometrical interpretation of four semiclassical regular
tetrahedra in the boundary of a 4-simplex of linear size of order /j,. Then we can evolve this state
(numerically) by contraction with the flipped vertex amplitude to give the “final” state, which in turn is
an intertwiner wavepacket. While in [20] we considered only very small jo’s, in [21] we make the same
calculation for higher spins both numerically and semi-analitically, and the results are clear: the “final”
state is a semiclassical regular tetrahedron with the same size as the incoming ones. This is exactly what
we expect from the classical equations of motion.
The evolution is defined by

Z W (jo, i1, - - - ,i5) ¥(i1, jo) - - - ¥ (i5, Jo) = ¢(is, jo), (229)
where
#li.0) = Ol exp (— 204 Ty (230)

is a semiclassical SO(3) intertwiner (actually its components in the virtual basis |i)), or a semiclassical
tetrahedron (see section chapter 8.2) in the equilateral configuration, with C'(jo) a normalization constant,
and W (jo,1,...,45) is the vertex (195) with v = 0 evaluated in the homogeneous spin configuration (the
ten spins equal to jo). We are also using the notation i for the imaginary unit. If we want to evaluate the
sum (229) over intertwiners, for fixed jo, then we have to evaluate the function g defined as follows:

g(iL.ir, jo) Z L in(G0) (4, Jo) - (231)
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Figure 7: (a) Interpolated plot of the modulus of g(ir, iR, jo) for jo = 20 and v = 0 computed using the
exact formula of the fusion coefficients. (b) Top view of the imaginary part.

The values of g are the components of an SO(4) intertwiner in the basis |i,)|ir), where |ir,) is an intertwiner

between four SU(2) irreducible representations of spin j& = @ Jjo, and |igr) is an intertwiner between

representations of spin jy' = HTV]'O-

We show that EPRL fusion coefficients map SO(3) semiclassical intertwiners into SU(2);, x SU(2)r
semiclassical intertwiners. The sum over the intertwiner ¢ of the fusion coefficients times the semiclassical
state can be computed explicitly at leading order in a stationary phase approximation, using the asymptotic
formula (227)(228). The result is

11— )2

Z +in(G0) ¥ (i, 50) = ag fo(jo) C(jo) X EXP(—\/g(iL_ 2 0

v
11— /1o 2

(i = B52i0)) x  (232)

(iR (147) 2‘0)2

LT 1+7) .
x exp( — V3 2__ +i=(ip — a4, )
p( (14 7)io 2(R 2 i)
where
e—arcsinh(\/g)k o
o = eT2k ~0.97; (233)

e V1t 2k

the plus-minus signs both in (232) and (233) refer to the two cases v < 1 (upper sign) and v > 1 (lower
sign). The r.h.s. of (232), besides being a very simple formula for the asymptotical action of the map f on
a semiclassical intertwiner, is asymptotically invariant under change of pairing of the virtual spins iy, and
ir (up to a normalization V). Recalling that the change of pairing (94) is made by means of 6j-symbols,
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we have

L=, A=l
N1 i ; —5 Jo Jo 'L
ZZ\/lel(ZL)dlm(ZR)(—1)ZL+]€L+ZR+ICR { |127| \137\ - } X (234)
i, 1R 2 ] 2 Jo L

14y . 14y ;

2 Jo 2 Jo R . . .
X Q(ZLJR) ~ N(]O) g(kLv kRa]O) :

{ S0 o kR}

This result holds because each of the two exponentials in (232) is of the form
2o
exp(——iili(k—kg)), (235)

which is a semiclassical equilateral tetrahedron (section 8.2) with area quantum numbers ko; it follows
that g is (asymptotically) an SO(4) semiclassical intertwiner. The formula (232) can be checked against
plots of the exact formula for large jo’s; a particular case is provided in fig.7.

In addition, we can ask whether the inverse map f~! has the same semiclassical property. Remarkably,
the answer is positive: f~! maps semiclassical SO(4) intertwiners into semiclassical SO(3) intertwiners.
The calculation, not reported here, involves error functions (because of the presence of the theta function)
which have to be expanded to leading order in 1/jo.

A final remark on our choice for the asymptotic region is needed. The goal we have in mind is to apply
the asymptotic formula for the fusion coefficients to the calculation of observables like the semiclassical
correlations for two local geometric operators @1, O,

(0, ), — Siasia VU a) 01 02 ¥y i)
! Zjubia W(jab,@a) \Ijq(]aby Z(l)

(236)

in the semiclassical regime (at the single-vertex level). If the classical (intrinsic and the extrinsic) geometry
q over which the boundary state is peaked is the geometry of the boundary of a regular 4-simplex, then the
sums in (236) are dominated by spins of the form ju, = jo+ djap and intertwiners of the form i, = ig+ diq,
with 49 = 2jo/v/3, where the fluctuations must be such that the relative fluctuations d;/jo,di/jo go to
zero in the limit jo — oo. More precisely, the fluctuations are usually chosen to be at most of order
O(+/j0). This is exactly the region we study here. As to the region in the (iy,ir) parameter space, the
choice of the background values 1 27‘ 10, 1+7'Lo and the order of their fluctuations is made a posteriori both
by numerical investigation and by the form of the asymptotic expansion. It is evident that the previous
considerations hold in particular for the function g analyzed in this section.

6.4 The case v =1

When v = 1 we have that jp = e |] = 0 and we can read from the graph (206) that the fusion coefficients
vanish unless ir, = 0. Furthermore it is easy to see that for v = 1 the fusion coefficients vanish also when
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i is different from 4. This can be seen, for instance, applying the identity

d

'R

[ 1
i iR = T Siip b (237)
L |

to the graph (206) with i, = 0. As a result, we have simply
Fiyin(t g2, 33, 5a) = 01y 00 (238)

and the asymptotic analysis is trivial. The previous equation can be also considered as a normalization
check; in fact, with the definition (206) for the fusion coefficients, the EPRL vertex amplitude (424)
reduces for v = 1 to the usual SO(3) BF vertex amplitude. Now one can argue that the case v = 1 should
correspond to self-dual (quantum) gravity and not to the topological SO(3) BF theory. However notice
that v = 1 is a singular value for the Barbero-Immirzi parameter in the derivation of EPRL Euclidean
vertex amplitude from the classical theory [15].

6.5 Summary of semiclassical properties of fusion coefficients

We provided and a simple analytic asymptotic formula for the fusion coefficients; thanks to this formula,
we found the asymptotical action of the fusion coefficients on a semiclassical intertwiner (see chapter 8).
We resume briefly some properties, focusing on the case v = 0.

The action of f; ; (viewed as a map between intertwiner spaces) on a semiclassical intertwiner is

given by
g(ir,ig) Z PR (239)
We showed that, for large jo’s
gliv,in) = Cexp (= (i — )2 = S (in— 902 +i3(in +in)), (240)

where C'is an irrelevant normalization factor not depending on iz, and ig at leading order in 1/jp powers.
Hence, asymptotically, the function g factorizes into left and right parts; we indicate them, with abuse
of notation, g(ir) and g(ig). The values of g(ir,ir) are the components of an SO(4) ~ SU(2) x SU(2)
intertwiner in the basis |if, ig), which we call SO(4) semiclassical intertwiner. Also the converse holds:
the asymptotical action of the fusion coefficients on an SO(4) semiclassical intertwiner is an SO(3) semi-
classical intertwiner, i.e.

Y fin9linsir) = (i), (241)

iL,iR
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6.6 Properties of 9j-symbols and asymptotics of 3j-symbol
The 9j-symbol with two columns with third entry given by the sum of the first two can be written as

a f c

gtatb— f g h
—_ (_1\f—g+tat+b—(ct+d)
aiﬁ i cid = D7 <a—c b—d-4a+b—@+d»> 8 (242)
(2a)!(20)!1(20)!2d)!(a+b+c+d—h)!(a+b+c+d+h+1)!
(2a+2b+D)!(2c+2d+Dla+c— N a+c+ f+DI(b+d—g)lb+d+g+ 1)

An analogous formula for the 9j-symbol with two columns with third entry given by the difference of the
first two can be obtained from the formula above noting that

a f c b—a h d—c
b g d = a f c , (243)
b—a h d—c b g d

so we are in the previous case.
The 3j-symbol with vanishing magnetic numbers has the simple expression

a b c QM c+a b—1\1(c— a+b 1\|/atbtcy)
- (_1)aibﬂ-1/4 c a b—1 ( c+a b )E a+b | a)+1()+c+1 ') (244)
0 00 N/ (a+b—c)! M=) (F=E=)!
These formula can be derived from [85, 86].

The asymptotic formula of 3j-symbols for large spins a,b,c and admitted magnetic numbers, i.e.
ma + mp +me = 0, given by G. Ponzano and T. Regge in [71] is

b -1 a+b—c+1 1
(nja . 'njC>N(\)/mCOS(( )9 + b+ )9b+(c+ ) + Mape — mb¢b+%) (245)

with

- AFCCOS (2(@ +3)%me +ma((c+3)* + (a+3)* — (b+ %)2)> (246)

a2 = md) (a6 a2 (e 52+ (a+ 12— 0+ 1))

1(a+3)% = (b+3)%— (c+ 3)? — 2myme
(g = arccos 7(&—1—2) (bt35)" — (et 5) T (247)
V(@52 = md) e+ 32 = m2)
0 (a+3)2-—m2 (b+1)2-m} 1
1 +3)% —m? 0 +12-m? 1
A= |~ Lae| @t2) o o e (248)
16 (b+3)°—my (c+35)°—m 0 1
1 1 1 0

and 6y, 0., ¢p are obtained by cyclic permutations of (a, b, ¢).
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7 Numerical investigations on the semiclassical limit

In this chapter we introduce a new technique to test the spinfoam dynamics, which is complementary to
the calculation of n-point functions. This technique, presented for the first time in [20], and improved in
[21], is the propagation of semiclassical wavepackets: as in ordinary Quantum Mechanics, the theory has
the correct semiclassical limit only if semiclassical wavepackets follow the trajectory predicted by classical
equations of motion.

In [20], the wave-packet propagation in the intertwiner sector of EPR model was studied numerically.
In brief, we considered the most simple solution of discretized Einstein equations given by a single flat
4-simplex with boundary constituted by five regular tetrahedra. In the dual LQG picture this boundary is
represented by a pentagonal 4-valent spin-network, labeled by ten spins and five intertwiners; in order to
have a semiclassical state one has to construct some (infinite) linear combination of spin-networks of this
kind. It is well known (see |87] and chapter 8) that we can take a superposition of intertwiners in the virtual
spin basis with a Gaussian weight, in order to be catch the classical geometry of a tetrahedron: since in
a quantum tetrahedron the angles do not commute, one has to consider semiclassical superpositions of
angle eigenstates in order to peak all angles on the right classical value. We chose an initial state formed
by four coherent intertwiners at four nodes, and made the drastic approximation of taking the ten spins
fixed to be equal to some jg. Then we calculated numerically its evolution, here called 4-to-1 evolution,
that is its contraction with the EPR spin foam vertex amplitude. Classical Einstein equations impose the
final state to be a coherent intertwiner with the same geometrical properties (mean and phase). We found
good indications but, due to the very low jo’s used in the numerical simulation, we were not in a good
semiclassical regime.

In the second paper [21] we found the general behavior of the evolution at high jo’s. In fact we will se
that the propagation is perfectly “rigid”: four gaussian wave-packets evolve into one gaussian wave-packet
with the same parameters, except for a flip in the phase. The phase of the evolved phase, and in particular
its flipping, are the right ones which yield the correct physical expectation values. This is why the evolution
of intertwiner wave-packets can check if a vertex amplitude has the correct dependence on the intertwiner
variables. We have made our analysis in two independent ways: the first is semi-analytical and based on
a numerical result about the 15j-symbol, viewed as a propagation kernel, and the asymptotic properties
of the fusion coefficients (chapter 6); the second is purely numerical. The first has the advantage of giving
a nice picture of the dynamics in terms of wave-packets evolving separately in the left and right sectors of
SO(4). We also explore the possibility of propagating three coherent intertwiners into two (we will refer to
it as the 3-to-2 evolution), finding similar results. Then we present the results from another point of view,
namely as physical expectation values, finding that these are asymptotically the classical ones. Though
we use the drastic approximation of fixing all spins, these results were the first clear indication that the
EPRL model possesses good semiclassical properties.

7.1 Wave-packets propagation

Suppose you are explicitly given the propagation kernel Wy(x,y) of a one-dimensional nonrelativistic
quantum system defined by a Hamiltonian operator H

Wiz, y) = (zle”n " |y) (249)
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and you want to study whether the classical (A — 0) limit of this quantum theory yields a certain given
classical evolution. One of the (many) ways of doing so is to propagate a wave-packet ¥, ,(x) with Wi(z, y).
Suppose that in the time interval ¢ the classical theory evolves the initial position and momentum x;, p; to
the final values z¢,ps. Then you can consider a semiclassical wave-packet ¥, p,(y) centered on the initial
values x;, p;, compute its evolution under the kernel

o) = / dy Wiz, y) o) (250)

and ask whether or not this state is a semiclassical wave-packet centered on the correct final values x s, p;.
Here, we consider the possibility of using this method for exploring the semiclassical limit of the dynamics
of nonperturbative quantum gravity.

We are interested in investigating the intertwiner dependence of the EPR vertex. The derivation of
the vertex amplitude presented in [88] indicates that the process described by one vertex can be seen as
the dynamics of a single cell in a Regge triangulation of General Relativity. This is a fortunate situation,
because it allows us to give a simple and direct geometrical interpretation to the dynamical variables
entering the vertex amplitude, and a simple formulation of the dynamical equations.

We consider the boundary of a Regge cell that is formed by five tetrahedra joined along all their faces,
thus forming a closed space with the topology of a 3-sphere. Recall that the ten spins jpm (n,m =1,...,5)
are the quantum numbers of the areas Ay, that separates the tetrahedra n and m, and the five intertwiners
in, are the quantum numbers associated to the angles between the triangles (mp) and (¢r) in the tetrahedron
n (see section 8.2). These quantities determine entirely the intrinsic and extrinsic classical geometry of
the boundary surface. Each tetrahedron has six such angles; of which only two are independent (at given
values of the areas); but the corresponding quantum operators do not commute [87] and a basis of the
Hilbert space on which they act can be obtained by diagonalizing just a single arbitrary one among these
angles. Therefore the intrinsic geometry of the boundary of a classical Regge cell is determined by twenty
numbers, but the the corresponding quantum numbers are only fifteen: the fifteen quantities jpm,in.
These are the fifteen arguments of the vertex. When using the intertwiners labeled by virtual spins i,, we
have of course to specify to which pairing we are referring.

The equations of motion of any dynamical system can be expressed as constraints on the set formed
by the initial, final and (if it is the case) boundary variables. For instance, in the case of the evolution
of a free particle in the time interval ¢, the equations of motion can be expressed as constraints on the
set (x4, pi,x¢,pr). These constraints are of course m(xy — x;)/t = p; = py (for the general logic of this
approach to dynamics, see [7]). In General Relativity, the Einstein equations can be seen as constraints
on a boundary 3-surface. These, in fact, can be viewed as the ensemble of the initial, boundary and final
data for a process happening inside the boundary 3-sphere. Such constraints are a bit difficult to write
explicitly, but one solution is easy: the one that corresponds to flat space and to the boundary of a reqular
4-simplex. This is given by all equal areas A, = jo, all equal angles i, = 79, and equal extrinsic curvature
angles 0, = 0. Elementary geometry gives

2 1
0= ——=Jo, cosl = ——. 251
Ve 1 25
It follows immediately from these considerations that a boundary wave-packet centered on these values
must be correctly propagated by the vertex amplitude, if the vertex amplitude is to give the Einstein

equations in the classical limit.
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The simplest wave packet we may consider is a factored Gaussian wave-packet
\I/(jnma Zn) = H 7L(]nm) H ?ﬁ(ln) (252)
nm n

where

D) = 7 7 rm=do)405m (253)
and 3 . N i
$(i) = N+/dim(3) ¢ %o =0 5t (254)

In other words, the state considered has a Gaussian weight over the spins, with phase 6 given by the
extrinsic curvature angle and by a “coherent tetrahedron” state (see [87] and section 8.2) for each tetrahe-
dron. Let us write the wave packet (252) as an “initial state” times a “final state” by viewing the process
represented by the spacetime region described by the Regge cell as a process evolving four tetrahedra into
one. That is, let us write this state in the form

\Ij(]nma Zn) = dJinit (]nma Z%)w(%) (255)

where i}, = (i1,...,44). Then we can test the classical limit of the vertex amplitude by computing the
evolution of the four “incoming” tetrahedra generated by the vertex amplitude

Si) = > Wlijnms iy, ) init (s i) (256)

. )
Inm;sln

where i is i5, and comparing ¢ (i) with ¥ (7). For large jo, the evolution should evolve the “initial” bound-
ary state 1;(jnm,,) into a final state ¢(i) which is still a wave-packet centered on the same classical
tetrahedron as the state ¥(7) given in (254). That is, ¢(7) must be a state “similar” to (i), plus perhaps
quantum corrections representing the quantum spread of the wave packet.

We have tested this hypothesis numerically, under a drastic approximation: replacing the Gaussian
dependence on the spins with a state concentrated on jn,, = jo. That is, we have tested the hypothesis
in the 7 — oo limit. Explicitly, we considered the boundary state

10 5
U (nmyin) o ] Giuo [T % (im)- (257)
n=1 m=1
We want to compare the evolved state
4
¢(i) = Y Wit .oyia, i) [ ] v(in) (258)
1.0 n=1
with the coherent tetrahedron state (254), where
W (in) = W (Gnm, in) | jnm=jo- (259)

If the function ¢(i) turns out to be sufficiently close to the coherent tetrahedron state (i), we can say
that the EPR vertex amplitude appears to evolve four coherent tetrahedra into one coherent tetrahedron,
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Figure 8: jo=2. Modulus square of the amplitude. Left: coherent tetrahedron (imeanto/2 = 2.5440.39).

Right: Evolved state (imean£0/2 = 2.54+0.46). CPU time with a 1.8 Ghz processor: few seconds (old
code), ~ 107! s (new code)
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Figure 9: jo =2. Modulus square of the (discrete) Fourier transform of the amplitude. Left: coherent
tetrahedron (Nyean+0/2 = 1.25+£0.27). Right: Evolved state (nyean+0/2 = 1.1540.31).

consistently with the geometry of a classical 4-simplex. In the first paper [20] we have compared the
two functions 1 (i) (coherent tetrahedron) and ¢(i) (evolved state) for the cases jo = 2 and jo = 4. The
numerical results are shown in the figures below. The overall relative amplitude of (i) and ¢(i) is freely
adjusted by fixing the normalization constant N and therefore is not significant. The quantity imean is the
mean value of 7. It gives the position of the wave-packet. The quantity o/2 is the corresponding variance.
It gives the (half) width of the wave packet. In Fig.8 and Fig.10 we compare the modulus square of the
wave function (for the two values of jo). In Fig.9 and Fig.11 we compare the modulus square of the discrete
Fourier transform of the wave function: n stands for the n*® multiple of the fundamental frequency 27 /7.

The agreement between the evolved state and the coherent tetrahedron state is quite good. Besides the
overall shape of the state, notice the concordance of the mean values and the widths of the wave packet.
Considering the small value of jg, which is far from the large scale limit, and the 7 — oo limit we have
taken, we find this quite surprising.
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(i)l o)

Figure 10: jo=4. Modulus square of the amplitude. Left: coherent tetrahedron (imeanto/2 = 4.8840.56).
Right: Evolved state (imean+0/2 = 4.85£0.96).CPU time with a 1.8 Ghz processor: 6 h (old code), few
seconds (new code)

Figure 11: jo=4. Modulus square of the (discrete) Fourier transform of the amplitude. Left: coherent
tetrahedron (nmeant0o/2 = 2.2540.32). Right: Evolved state (nmeant0o/2 = 2.084+0.59).
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Figure 12: On the left: modulus of the evolved state for the 4-to-1 propagation performed by one 15j

(jo = 30). On the right: its real and imaginary (dashed) part. CPU time with a 1.8 Ghz processor: few
seconds

7.2 The semi-analytic approach

The property (240) gives a new picture of the dynamics in the semiclassical regime. The EPR vertex is
given by (we omit normalization factors, which are not essential in this semiclassical analysis):

5
W(ir...is) = > 155(ires - ise)15i(i1r, - isr) [ £i7, 0 (260)
{inc Hinr} n=1

Four of the fusion coefficients are contracted in (258) with the four initial packets (making the sum over

i1...14). By (240), for large jo’s this contraction gives four SO(4) semiclassical intertwiners, so the evolved
state (258) becomes

dis) ~ > | Y _155(irp, - isp)glin) - . gliar) | x

5L, i5R [ (1L ---14L

| “1R---94R

We can see in the last expression the action of two 15j’s separately on the left and right part (the
expressions in square brackets). Those actions are interpreted as independent 4-to-1-evolutions in the left
and right sectors, namely the evolution of the left an right part of four SO(4) semiclassical intertwiners,
where the propagation kernel is the 15j-symbol. By numerical investigations (Fig. 12), it turns out
that the final state of the right (left) partial evolution is the right (left) part of an SO(4) semiclassical
intertwiner, with the phase flipped as compared to the incoming packets. For example, for the left part:

¢r(ise) = Y 154 (i .- i50) g(irr) - - griar) ~ g(iLs) - (262)

111141

Then (261) becomes
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P(i5) ~ Z 9(isz) 9(i5R) £72, s p- (263)
i50,I5R
The last expression is the contraction between the a single fusion coefficient and an SO(4) semiclassical
intertwiner. By (241), this gives an SO(3) semiclassical intertwiner:

(i5) ~ h(is). (264)

While in [20] we expected only a conservation of mean values, and possibly a spread of wave-packets, the
present argument shows that the gaussian shape is conserved, together with its mean value and width,
while the phase is flipped, because of the complex conjugation in (264). Similarly, the 3-to-2 evolution
is the contraction between the EPR vertex and three initial semiclassical intertwiners. Numerical results
about this type of evolution are discussed in section 7.4.

7.3 Physical expectation values

Another perspective is to interpret the results about wave-packet propagation as expectation values of
geometric observables associated to the intertwiners degrees of freedom. By construction, the boundary
state (257) is peaked kinematically on a semiclassical geometry. This should be also true in a dynamical
sense, that is as a physical expectation value. Consider the physical expectation value of an intertwiner
on this boundary state, defined as:

Zjnmin W(jnm, /I’n) il \Il(jnma 1’71)

) = — —
< 1> Zjnmin W(]nmﬂn)\y(]nmﬂn)

(265)

We expect this quantity to be equal to ig for large jo’s, if the dynamics has the correct semiclassical limit.
Analogously, we can consider the expectation value of two intertwiners:

Z W(]nma Zn) Z'1 Z'2 qj(]nma Zn)

i Z = Jnmin . : : . : 266
) Zjnmin W (Jrm, i)Y (Jrm, in) (266)

the last expression should be asymptotically equal to i3. The results about wave-packet propagation
permit to extract the previous physical expectation values. In fact, (265) can be viewed as the contraction
between the evolved state and a semiclassical boundary intertwiner with one insertion, so

el avli) ¥ vE) i)
) = 2 O(i)Yi) 3, (in)Y(i) =0 (267)

where we used (264), and evaluated the sum with a simple Gaussian integration; what we have found
is that dynamical and kinematical means coincide in the asymptotic regime. We stress that the result
holds because of the peakedness properties of the evolved state and because of the flip in the phase: the
phase of the evolved state has to be opposite and cancel with the phase of the initial state, otherwise the
sum would be suppresed through the mechanism of rapid oscillations. The same qualitative properties
(peakedness and phase flip) hold for the 3-to-2 propagation (see numerical results in the next section),
and the expectation value of 7172 turns out to be the correct one: z'%.
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Figure 13: On the left: modulus of the evolved state for the 4-to-1 propagation performed by the flipped
vertex (jo = 30). On the right: its real and imaginary (dashed) part. CPU time with a 1.8 Ghz processor:
~ 10 minutes

7.4 Improved numerical analysis

We wrote an improved, efficient numerical algorithm in the C++ programming language. This algorithm
performs the 4-to-1 and 3-to-2 evolutions, and compute the physical expectation values (265)(266). It
evaluates very big, nested sums serially (similar algorithms were used in [89, 90]). The results are shown
in the figures. In Fig.13 the result of the 4-to-1 evolution for jo = 30 is reported. From the plot on the
left (the modulus) we can see that the evolved state is a Gaussian peaked on ig with the same width of
the “incoming” Gaussians. On the right the real and imaginary parts are plotted, and it is clearly visible
that the frequency of oscillation is —7 /2, which is exactly the phase opposite to the one of initial packets.
In Fig.15 are shown the results of the 3-to-2 propagation (moduli), from jo = 10 to jo = 32 for even
jo’s. Compared with the 4-to-1 case, here the Gaussian shape seems not to be conserved, but the state is
nevertheless peaked on ig and presents a —m /2 phase in both variables; going to higher spins (we explored
up to jo = 56), the result seems to converge slowly to Gaussian as well. Non-Gaussianity has to be
imputed to quantum effects. Small deviations from Gaussianity are present also in the 4-to-1-evolution,
though less pronounced. Both in the 4-to-1 and 3-to-2 evolution, non-Gaussianity gives rise to deviations
of physical expectation values from the classical behavior, in the quantum regime. Deviations are well
visible in the plots in Fig.14.

In conclusion, the physical expectation values (Fig.14) are in complete agreement with the expected
ones. The small deviations from the semiclassical values gradually disappear as jg increases.
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Figure 14: On the left: physical expectation value of 4;. On the right: physical expectation value of i1is.
The solid line is the expected behavior.

8 Semiclassical states for quantum gravity

The concept of semiclassical states is a key ingredient in the semiclassical analysis of LQG. Semiclassical
states are kinematical states peaked on a prescribed intrinsic and extrinsic geometry of space. The simplest
semniclassical geometry one can consider is the one associated to a single node of a spin-network with given
spin labels. The node is labeled by an intertwiner, i.e. an invariant tensor in the tensor product of
the representations meeting at the node. However a generic intertwiner does not admit a semiclassical
interpretation because expectation values of non-commuting geometric operators acting on the node do
not give the correct classical result in the large spin limit. For example, the 4-valent intertwiners defined
with the virtual spin do not have the right semiclassical behavior; one has to take a superposition of
them with a specific weight in order to construct semiclassical intertwiners. The Rovelli-Speziale quantum
tetrahedron described in section 8.2 is an example of semiclassical geometry; there the weight in the linear
superposition of virtual links is taken as a Gaussian with phase. The Rovelli-Speziale quantum tetrahedron
is actually equivalent to the Livine-Speziale coherent intertwiner with valence 4 (introduced section 8.1);
more precisely, the former constitutes the asymptotic expansion of the latter for large spins. Coherent
intertwiners, introduced for general valence in the next section, are defined on a robust mathematical
setting as the geometric quantization of the classical phase space associated to the degrees of freedom of
a tetrahedron. But from the point of view of LQG they are only a first step. The missing step is to define
in the most physically motivated way semiclassical states associated to a spin-network graph; we expect
them to be a superposition over spins of spin-network states, as we shall argue in a moment.

In the recent graviton propagator calculations [91, 92, 93, 79, 94, 95, 96], semiclassical states associated
to a spin-network graph I' have been already considered. The states used in the definition of semiclassical
n-point functions (see chapter 10) are labeled by a spin jO and an angle & per link e of the graph, and
for each node a set of unit vectors 7, one for each link at that node. Such variables are suggested by
the simplicial interpretation of these states: the graph I' is in fact assumed to be dual to a simplicial
decomposition of the spatial manifold, the vectors 7 are associated to unit-normals to faces of tetrahedra,
and the spin jO is the average of the area of a face. Moreover, the simplicial extrinsic curvature is an
angle associated to faces shared by tetrahedra and is identified with the label &. Therefore, these states
are labeled by an intrinsic and extrinsic simplicial 3-geometry. They are obtained via a superposition over
spins of spin-networks having nodes labeled by Livine-Speziale coherent intertwiners [56, 97, 98|. The
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Figure 15: Modulus of the evolved state for the 3-to-2 intertwiner propagation, from jo = 10 to jo = 32
with step 2.
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coefficients ¢; of the superposition over spins are given by a Gaussian times a phase as originally proposed
by Rovelli in [91]
(j — Jo)*

500 ) exp(—i&j) . (268)

¢;(jo, &) = exp (—

Such proposal is motivated by the need of having a state peaked both on the area and on the extrinsic
angle. The dispersion is chosen to be given by o9 = (jo)¥ (with 0 < k < 2) so that, in the large jo
limit, both variables have vanishing relative dispersions (as explained in [92]). Moreover, a recent result
of Freidel and Speziale strengthens the status of these classical labels [99, 100]: they show that the
phase space associated to a graph in LQG can actually be described in terms of the labels (52, &, fie, 71
associated to links of the graph. The states have good semiclassical properties and a clear geometrical
interpretation, finding a better top-down derivation of the coefficients (268) is strongly desirable. This is
one of the objectives of this thesis.

On the other hand, within the canonical framework, Thiemann and collaborators have strongly advo-
cated the use of complexifier coherent states [101, 102, 103, 104, 105, 106, 107, 108, 109, 110]. Such states
are labeled by a graph I' and by an assignment of a SL(2,C) group element to each of its links. The state
is obtained from the gauge-invariant projection of a product over links of modified® heat-kernels for the
complexification of SU(2). Their peakedness properties have been studied in detail [102, 108]. However
the geometric interpretation of the SL(2,C) labels and the relation with semiclassical states used in Spin
Foams has largely remained unexplored. Exploring these aspects is the other objective of this paper.

Surprisingly, the two goals discussed above turn out to be strictly related. In this chapter we present
a proposal of coherent spin-network states: the proposal is to consider the gauge invariant projection of
a product over links of Hall’s heat-kernels for the cotangent bundle of SU(2) [111, 112]. The labels of
the state are the ones used in Spin Foams: two normals, a spin and an angle for each link of the graph.
This set of labels can be written as an element of SL(2,C) per link of the graph. Therefore, these states
coincide with Thiemann’s coherent states with the area operator chosen as complexifier, the SL(2,C)
labels written in terms of the phase space variables (j2, &, e, 7i.) and the heat-kernel time given as a
function of ;2.

We show that, for large 77, coherent spin-networks reduce to the semiclassical states used in the spin-
foam framework. In particular we find that they reproduce a superposition over spins of spin-networks
with nodes labeled by Livine-Speziale coherent intertwiners and coefficients ¢; given by a Gaussian times
a phase as originally proposed by Rovelli. This provides a clear interpretation of the geometry these states
are peaked on. The relation between coherent spin-networks and the semiclassical states used in SFMs is
also briefly discussed at the beginning of section 10.1.

8.1 Livine-Speziale coherent intertwiners
In ordinary Quantum Mechanics, SU(2) coherent states are defined as the states that minimize the
dispersion

-

AJ? = (J?) = (J)? (269)

3In particular, the modified heat-kernels reduce to ordinary Hall’s heat-kernels for the complexification of SU(2) when
the complexifier is chosen to be the area operator.
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of the angular momentum operator j, acting as a generator of rotations on the representation space
H; ~ C¥*1 of the spin j representation of SU(2). On the usual basis |j,m) formed by simultaneous
eigenstates of J? and J3 we have

(Gym| 23, m) — (Gom| T |3, m)? = j(j + 1) —m?, (270)

so the maximal and minimal weight vectors |j, +j) are coherent states. Starting from |7, 7), the whole set
of coherent states is constructed through the group action

4,9) = 9li,5) g€ SUQ2). (271)

One can take a subset of them labeled by unit vectors on the sphere S
g, 7 = g(A)j,5) (272)

where 7 is a unit vector defining a direction on the sphere S? and g(f) a SU(2) group element rotating
the direction 2 = (0,0, 1) into the direction n. In other words, a coherent states is a state satisfying

J - lj,ny = jlj,n) . (273)

For each n there is a U(1) family of coherent states that satisfy (273), and they are related one another
by a phase factor. The choice of this arbitrary phase is equivalent to a section of the Hopf fiber bundle
s:8%~SU(2)/U(1) — SU(2). Explicitly, denoting 7 = (sin @ cos ¢, sin @ sin ¢, cos #), a possible section is

g(n) =exp{im -7}, (274)

where m = (sin ¢, — cos ¢, 0) is a unit vector orthogonal both to 2 and 7. A coherent state can be expanded

in the usual basis as )
J

|j7 ﬁ> = Z am(ﬁ”]a m>v (275)

m=—j
where
X (2))! g 0 .
_ . — tan —e ¢ 276
o \/u —mlG Py T 270
Coherent states are normalized but not orthogonal, and their scalar product is
14 A1 -foNd
(g, nlj, ne) = <+ T;l ng) Az R2) (277)

where A is the area of the geodesic triangle on the sphere S? with vertices 2, 72y and fg. Furthermore they
provide an overcomplete basis for the Hilbert space H; of the spin j irreducible representation of SU(2),
and the resolution of the identity can be written as 1; = d; [ d*i|j,n)(j, 7|, with d*A the normalized
Lebesgue measure on the sphere S2.

69



8. SEMICLASSICAL STATES FOR QUANTUM GRAVITY

The Livine-Speziale coherent intertwiners are naturally defined taking the tensor product of V' coherent
states (V stands for valence of the node) and projecting onto the gauge-invariant subspace:

i,ﬁ)o = /dh ®y:1 h‘j“ﬁz> = Z Ci1...iv,3(ji7ﬁi) ‘]1 R VN A .iV_3> . (278)

1.0y —3

Here the projection is implemented by group averaging. They are labeled by V' spins j and V' unit
vectors n. The explicit coefficients entering (278) can be found using (275) to decompose |j,7 )0 into the

conventional basis of Hy = Inv ®Y:1 H;,. To each node of valence V' of a spin-network we can associate V'
areas and 2(V — 3) angles between them. Alternatively, one can use the normal vectors n; normalized to
the areas, constrained to close, namely to satisfy >, j;n; = 0. The conventional recoupling basis used in
LQG gives quantum numbers for V areas but only V' — 3 angles, because one associates SU(2) generators
J; with each face, and only V — 3 of the possible scalar products J; - J_/; commute among each other.
Thus half the classical angles are missing. The states |j, 7)o instead carry enough information to describe
a classical geometry associated to the node. In fact we interpret the vectors j;n; as normal vectors to
triangles, normalized to the areas j; of the triangles.

8.2 Coherent tetrahedron

The case of 4-valent coherent intertwiners is of particular importance for LQG and especially for Spin
Foam Models. In fact it is the lowest valence carrying a non-zero volume and most SFMs are build over
a simplicial triangulation, so that the boundary state space has only 4-valent nodes, dual to tetrahedra.
A 4-valent coherent intertwiner with normals satisfying the closure condition can be interpreted as a
semiclassical tetrahedron. In fact expectation values of geometric operators associated to a node give the
correct classical quantities in the semiclassical regime. This regime is identified with the large spin (large
areas) asymptotics. In the following we give some details.

Define 77 = jn as the normals normalized to the area. In terms of them, the volume (squared) of the
tetrahedron is given by the simple relation:

VQZ—% ﬁl-ﬁgxﬁg,. (279)
The geometric quantization of these degrees of freedom is based on the identification of generators J; of
SU(2) as quantum operators corresponding to the 77; [113]. As mentioned, this construction gives directly
the same quantum geometry that one finds via a much longer path by quantising the phase space of
General Relativity, that is via Loop Quantum Gravity. The squared lengths |7i;|? are the SU(2) Casimir
operators C2(j), as in LQG. A quantum tetrahedron with fixed areas lives in the tensor product ®?:1 Hj,.
The closure constraint reads:

4
d Ji=0, (280)

and imposes that the state of the quantum tetrahedron is invariant under global rotations. The state
space of the quantum tetrahedron with given areas is thus the Hilbert space of intertwiners

4
Lyjs =Tnv Q) Hj, . (281)
i=1
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The operators J: - J; are well defined on this space, and so is the operator
U= —eaqpe IS5 . (282)

Its absolute value |U| can immediately be identified with the quantization of the classical squared volume
36V2, by analogy with (279), again in agreement with standard LQG results (equation 119).

To find the angle operators, let us introduce the quantities Jw = Ji+ J Their geometrical interpreta-
tion can be found applying the same arguments as above to 7;+1;. It turns out that /.J;;2 is proportional
to the area A;;j of the internal parallelogram, whose vertices are given by the midpoints of the segments
belonging to either the triangle i or the triangle j but not to both (see [113]), A;; = 4\/«/ Jij?. Given
these quantities, the angle operators 6;; can be recovered from

|
JiJjcosy; = J; - J; = 5(JEJ-—JE—J]?). (283)

We conclude that the quantum geometry of a tetrahedron is encoded in the operators J2, ij and U, acting
on I, ;,. It is a fact that out of the six independent classical variables parametrizing a tetrahedron, only
five commute in the quantum theory. Indeed while we have [Ji2, J; - J;] = 0, it is easy to see that:

1 . a C .
[Jy-Jy, Jy- J3) = i (5, Jis] = i€ape J{ SIS = —iU #0. (284)

A complete set of commuting operators, in the sense of Dirac, is given by the operators JZ, J3,. In other
words, a basis for I, ;, is provided by the eigenvectors of any one of the operators ij We write the
corresponding eigenbasis as [j);;. These are the virtual links introduced in section 3.2 with a graphical
notation; here we are introducing them via a geometric quantization of the classical tetrahedron. For
instance, the basis |j)12 diagonalises the four triangle areas and the dihedral angle 612 (or, equivalently,
the area Ajo of one internal parallelogram). As we already said, the relation between different basis is
easily obtained from SU(2) recoupling theory: the matrix describing the change of basis in the space of
intertwiners is given by the usual Wigner 6j-symbol,

Wik = 12(jlk)13 = (—1)2 dim<j>d1m<k>{?1 22 ;} (285)
J3 Ja

so that
k)iz =) Wikli)io. (286)

Notice that from the orthogonality relation of the 6j-symbol,
Ly v J2 i JioJ2 1 djk
dim (2 G o = —_ 287
; ®) { J3 J4 ) }{ J3 Ja k } dim(y) (287)

Z WiiWix = dj - (288)

we have

The states |j)12 are eigenvectors of the five commuting geometrical operators J?2, J3,, thus the average
value of the operator corresponding to the sixth classical observable, say J123, is on these states maximally
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spread. This means that a basis state has undetermined classical geometry or, in other words, is not an
eigenstate of the geometry. We are then led to consider superpositions of states to be able to study the
semiclassical limit of the geometry. Suitable superpositions could be constructed for instance requiring
that they minimise the uncertainty relations between non—commuting observables, such as

1
ATy AT = (e T = 4 KON (289)

States minimising the uncertainty above are usually called coherent states. Coherent intertwiners seem
not to verify exactly (289), but they are such that all relative uncertainties (A2.J;;)/ (ij), or equivalently
(AB;5)/(0ij), vanish in the large scale limit. The limit is defined by taking the limit when all spins involved
go uniformly to infinity, namely j; = Ak; with A — oo. Notice that this is a different requirement than
minimising (289), but the two are likely to be intimately related. Because of these good semiclassical
properties we can associate to a coherent intertwiner the geometrical interpretation of a semiclassical
tetrahedron; an analogous interpretation should be also valid nodes of higher valence. In the next section
we introduce coherent states which are associated not to a single node, but to the entire graph; we are
forced to use them if we consider the full phase space of General Relativity.

8.3 Bianchi-Magliaro-Perini coherent spin-networks

In this section we discuss a proposal of coherent states for Loop Quantum Gravity, an original contribution
appeared in reference [114]. These states are labeled by a point in the phase space of General Relativity
as captured by a spin-network graph. They are defined as the gauge invariant projection of a product over
links of Hall’s heat-kernels [115] for the cotangent bundle of SU(2). The labels of the state are written in
terms of two unit-vectors, a spin and an angle for each link of the graph. The heat-kernel time is chosen
to be a function of the spin. These labels are the ones used in the Spin Foam setting and admit a clear
geometric interpretation. Moreover, the set of labels per link can be written as an element of SL(2,C).
Therefore, these states coincide with Thiemann’s coherent states with the area operator as complexifier.
We study the properties of semiclassicality of these states and show that, for large spins, they reproduce
a superposition over spins of spin-networks with nodes labeled by Livine-Speziale coherent intertwiners.
Moreover, the weight associated to spins on links turns out to be given by a Gaussian times a phase as
originally proposed by Rovelli.

The Hilbert space of LQG decomposes into sectors isomorphic to Kr = L2(SU(2)L/SU((2)N,du*)
associated to an embedded graph I' having L links and N nodes. States WU(hy,..,hr) in Kp capture a
finite number of degrees of General Relativity: the ones associated to the classical phase space T*SU (2)*
of holonomies of the Ashtekar-Barbero connection along links of the graph and fluxes through surfaces
dual to links of the graph. Here we consider states belonging to Kr and labeled by a point in phase space.
Notice that the cotangent bundle T*SU(2) is diffeomorphic? to the group SL(2,C), the universal covering
of the Lorentz group SO(1,3). This fact is largely exploited in the following: the states we consider are
in fact labeled by an element of SL(2,C) per link of the graph.

“In fact, since SU(2) is a Lie group, its tangent bundle is trivial: T*SU(2) ~ SU(2) x su(2)* ~ SU(2) x su(2); then
observe that every element in SL(2,C) is of the form z exp(iy) with x € SU(2) and y € su(2). Moreover, the complex
structure of SL(2,C) and the symplectic structure of T*SU(2) fit together so as to form a Kéhler manifold.
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Let us consider the heat kernel K;(h,ho) on SU(2). Being an L? function over SU(2), it has the
following Peter-Weyl expansion

Ki(h,ho) = (25 + 1)e U U (nngt) . (290)

J
It is easy to show that, as a function of h, it is peaked on the conjugacy class of hg. Moreover, when seen
as an LQG state associated to a loop v, W, (h) = K(h, ho), it is peaked on small areas (that is small j).
There is a rather simple variant of K;(h, hg) that allows to peak on a prescribed spin jo: it is given by the

complexified heat kernel, i.e. by K;(h, Hy) with the group element Hy belonging to the complexification
of SU(2):

SU(2)Y ~ SL(2,C). (291)

This complexified Heat kernel is the unique analytic continuation of the SU(2) heat kernel. These objects
are the building blocks of Thiemann’s complexifier coherent states. To simplify the notation, in the
following we assume that I' is a complete graph so that, if a,b,.. =1,.., N label nodes of the graph, then
links are labeled by couples ab. For instance, the holonomy associated to an oriented link is hg, and its
inverse is h;bl = hpe. The generalization to arbitrary graphs is immediate.

Coherent spin-networks are defined as follows: we consider the gauge-invariant projection of a product
over links of heat kernels,

\I’I‘,Hab (hab) = / (Hd9a> H Ktab(habv Ja Hygy, gb_l)- (292)
a ab

These states were first considered in [101]. Here the positive numbers ¢4 are fixed in terms of the labels
H,;, as explained later on. Now, notice that every element H, of SL(2,C) can be written in terms of two
unit-vectors in R3, a positive real number and an angle, that is: exactly the labels used in the semiclassical
states adopted in spin foams (see chapter 9), the ones that in a simplicial setting correspond to ‘twisted
geometries’ [100]. Let us see how.

An element Hgy, of SL(2,C) can be written in terms of a positive real number 74, and two unrelated
SU(2) group elements g, and gy, as® [116]

Hup = gape"™ gy, . (293)

In turn, a SU(2) group element can be uniquely written in terms of an angle ¢ and a unit-vector 7. Let
us define 7 via its inclination and azimuth

= ( sin 6 cos ¢, sin # sin ¢, cos 0) , (294)
and introduce the associated group element n € SU(2) defined as

n = e 107 =0T (295)

®In the following 7; = % with o; hermitian Pauli matrices.
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Then the SU(2) group element g is given by g = n e+t Using such parametrization in (293) we finally
find '
Hgy = nagpe "™ n, 1 (296)

with z4p = &ap+inaep and Egp = nga—qgab. Therefore, for each link we have as labels the set (7igp, Tbas Eabs Mab)-
These variables admit the following classical interpretation: a link connects two nodes living inside two
adjacent chunks of space; the interface between them is a surface dual to the link; let us choose a frame
in each of the two chunks; the variable iy, can be interpreted as the (unit-)flux of the electric field E!
in the chunk a through the surface; similarly 7, can be viewed as the flux in b through this surface.
In general, the two vectors are different as we have not chosen the same frame. There is a rotation R
such that Rilq, = —ilpe. The product Re %" ™ ¢ SU(2) can be understood as the holonomy of the
Ashtekar-Barbero connection, A° = I'" + vK*. Finally, the positive parameter 74, can be related to the
area of the surface, i.e. to the spin jg.

In order to test and strengthen our geometric interpretation of the SL(2,C) labels, in the following we
study the asymptotics of coherent spin-networks for large parameter 7,,. This allows to test the proposal
against candidate semiclassical states that have been studied previously. The state (292) can be expanded
on the spin-network® basis ¥r ;_, ;. (ha). Its components fj,, i.,

‘IIF:Hab (hab) = Z Z fjabyia \Ilrvjabyia(hab) (297)
Jab  ‘ta
are given by’
Finnia = (H(Qjab i 1)e*jab(jab+1)tabD(jab)(Hab)) . (H%) 7 (298)
ab a

where from now on Hg, is given by (296). Notice that here the sum over spins runs over half-integers
including zero. Thus, strictly speaking, a coherent spin-network does not live on a single graph I'" but on
a superposition of all the subgraphs of T'.

Here we are interested in its asymptotics for 745 > 1. First of all, notice that, in the limit 1., — 400,
we have the following asymptotic behavior

D(jab) (efizabTS)mm, — 5%,67imzab — 5%, 6+"7abjab (6771] befigabjab + O(efnab)) . (299)
Therefore, introducing the projector
Py = |jab, +ab) (Jabs +iav| € H;,, ® Hj, (300)

onto the highest magnetic number, we can write (299) as

D(jab) (efizabTii) ~ efié.ab.jabe“"nabjabp_‘r . (301)

SHere spin-network states can be viewed as functions of holonomies, as opposed to functions of distributional connections
because we have fixed a graph.

"The notation - in (298) stands for a contraction of dual spaces. To be more explicit we recall that, if V@) is the vector
space where the representation j of SU(2) acts, then the tensor product of representations DYe) (k. ) lives in ®.(VUe)* @1V e))
while the tensor product of intertwiners lives precisely in the dual of this space.
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Recall that the coherent intertwiners ®,(7iq) introduced by Livine and Speziale [56] have components on
a orthonormal basis v;, in intertwiner space, ®q (7)™ "™ = >, ®;, (1) v """, given by

(I)ia (ntlb = Vi, - (® ‘]ab’nab ) (302)
where |jab, ab) = Mab|jab, +Jab)- Moreover, notice that

(n—1t)°
At

n—t\2
5 )it +

—jG+Dt+jn=—(— (303)

Therefore, up to an overall normalization of the state, we find the following asymptotics for our states:

Finnia (Hexp ]ab Jab) *1§ab]ab> <Hq>zu Nab) ) (304)

with 1
Tlab 0 _—
2 1 = d pu— .
( ]ab + ) tab an Oab Qtab

(305)

Finally, introducing spin-networks with nodes labeled by coherent intertwiners as in [96],
Vr . @aiian) (R Z (H‘I’za ) P.dapia (ab) - (306)

we find that the coherent spin-networks, for large nqp, are given by the following superposition

]ab ]a —q i
UEAUDEDS (Hexl’ ) ) et “b) VT, ®a i) (hab) - (307)
b

]ab

Unexpectedly, these are exactly the states considered in the definition of semiclassical correlation functions
(chapter 9). There, the graph I is assumed to be the one dual to the boundary triangulation of a 4-simplex,
the quantities jgb and 7l are areas and normals of faces of tetrahedra chosen so to reproduce the intrinsic
geometry of the boundary of a regular Euclidean 4-simplex. Moreover, the parameters £, are chosen so to
reproduce its extrinsic curvature. The analysis of the correlation function of metric operators confirms that
the appropriate value is &, = 7K, = yarccos(—1/4). This result confirms the geometric interpretation
of our variables and extends the validity of the semiclassical states used in [96] well beyond the simplicial
setting: coherent spin-networks are defined in full LQG.

In order to better test the interpretation of our variables, we consider a rather simple example: the
coherent loop. This example allows us to discuss the importance of the appropriate choice of heat-kernel
time tqp in (292). When the graph is given by a loop =, the dependence of the state on the normals 7 in
(292) drops out and the state is simply labeled by £ and 7. For large n, we find

U ein(h ZGXP J_LZO) ) —ifjx(j)(h) (308)
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with jp and og given in terms of 1 and ¢ by (305). Now we compute the expectation value of the area
operator & for a surface that is punctured once by the loop. As well known (equation 114), we have

AU in(h) =YL Zexp ‘7_‘20)) —€ /i + 1) XD (h) . (309)

In the limit of large 1 and large jo, the expectation value of the area operator is easily computed

(\I’%Hinv *‘Z{\I'%@rin) _
(‘I’%£+in> \I’%Hin)

(o) = YL V/jo(jo + 1) (310)

and confirms the interpretation of n as the quantity that prescribes the expectation value of the area. Now
we consider the other observable acting on the Hilbert space K,: the Wilson loop operator W,. Recall
that it acts on basis vectors as

2 () X9 (h) = XU (h) + X7 (h) . (311)
As a result, we find
(W,) =2 cos(£/2) e 5. (312)

Therefore, in the limit ¢ — 0 compatible with 1 and jg large, the parameter £ identifies the conjugacy class
of the group element hy where the Ashtekar-Barbero connection is peaked on. According to the Aharonov-
Bohm picture of LQG [117], the angle & is thus the expectation value of the flux of the magnetic field
through a line defect encircled by the loop ~. Similarly, we can compute the dispersions of the area
operator and of the Wilson loop. We find

= /(?) WLP V200, (313)

AW, = /(W2) — (W,)2 = 1/ (sin(€/2))° \/2170 . (314)

Now notice that, due to the relation (305), the limit “large n and large jo” can be attained only if we
assume that ¢ scales with jg as

and

t~(o)*  with k> -1. (315)

Moreover, as the area and the Wilson loop are non-commuting operators, we cannot make both their
dispersions vanish at the same time. Small heat-kernel time means that the state is sharply peaked on
the holonomy, while large heat-kernel time means that the state is sharply peaked on the spin. A good
requirement of semiclassicality is that the relative dispersions of both operators vanish in the large jg
limit. Using the results derived above, we find the following behavior for relative dispersions:

Adl o\ kt2 AW.

I72] ~ (Jo)~ 2 and <W’Y; ~ (jo)

[NIES

(316)

The first requires k > —2 and the second k < 0. Taking into account the three bounds (315) (316) we find
that the coherent loop behaves semiclassically when the heat-kernel time scales as (jo)* with —1 < k < 0.
For instance, the choice t = 1/4/jy guarantees the semiclassicality of the state.
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8.4 Resolution of the identity and holomorphic representation

In the previous section we focused on the properties of semiclassicality of coherent spin-networks: peaked-
ness on a classical configuration with small dispersions. In this section we discuss their coherence proper-
ties: for a given choice of parameters t,p, coherent spin-networks provide a holomorphic representation for
Loop Quantum Gravity. This result was obtained long ago by Ashtekar, Lewandowski, Marolf, Mourao
and Thiemann [112] and is based on the Segal-Bargmann transform for compact Lie groups introduced
by Hall [111]. Here we report their result in the formalism of this paper and comment on its relevance for
the analysis of the semiclassical behavior of Loop Quantum Gravity.

Let us consider the SL(2,C) heat-kernel® Fy(H) and introduce a function €(H) on SL(2,C) given by

0, (H) = / Fy(Hg)dg (317)
SU(2)

This function is just the heat-kernel on SL(2,C)/SU(2), regarded as a SU(2)-invariant function on
SL(2,C). A key result of Hall [111] is that the delta function on SU(2) can be written in terms of
the following SL(2,C) integral

S(h,h') = / K (hH™Y) K (WH-Y) Qg (H) dH , (318)
SL(2,C)

where dH is the Haar measure on SL(2,C). This expression admits a straightforward generalization in
terms of coherent spin-networks.

We recall that, in the holonomy representation, the identity operator 1r on the Hilbert space Kr is
given by the distribution or(hap, b)) on SU(2)L/SU(2)N. Tt can be written in terms of the spin-network
basis as

St (b ig) = [ ([T dge) ([Tt TL 600 hansne o binsh) (319)
a a ab

- Z \I/ijabyia(hab> \Ijrvjabvia (h'ilb) :

Jabla

The resolution of the identity for coherent spin-networks is given by

(S]_"(hab, h;b) - / \I/F7Hab (h(lb) \IIF,Hab (h/ab) ( H Q2tab (Hab) dHab) (320)
SL(2,C)" o

with the measure on SL(2,C)" that factors in a product of measures per link given by the SU(2)-averaged
heat-kernel for SL(2,C) at time 2t, times the Haar measure dH,;. Expression (320) for the resolution of
the identity can be easily proved using formula (318), the definition of coherent spin-networks (292) and
expression (319) for or(hap, hl)-

As shown in [112], coherent spin-networks provide a Segal-Bargmann transform for Loop Quantum
Gravity. In fact, given a state Wp ¢(hqp), its scalar product with a coherent spin-network Vr g, (hap)

8The SL(2,C) heat-kernel F;(H, Hy) is not to be confused with the analytic continuation to SL(2,C) of the SU(2)
heat-kernel K, (h, ho).
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defines a function @ y(Hyp) that is holomorphic in Hy,

Pr s(Hawp) = / Ur a1, (hav) Or,f(hay) | ] dPas , (321)
SU(2)L "

and belongs to the Hilbert space HL?(SL(2,C)", (Q2:dH)") of holomorphic functions normalizable with
respect to the measure (Qg:dH)*. Moreover, from expression (320) follows that the trasform preserves
the scalar product,

/ Ur,p, (hab) Yr, 7, (hab) Hdhab = / ®r,f, (Hap) Pr,p, (Hab) (HQQtab(Hab) dHab) :
SU(2)L b SL(2,C)L ab

What is now available is a representation for Loop Quantum Gravity where states are functions of classical
variables Hy,p, that admit a clear geometric interpretation in terms of areas, extringic angles and normals,
(Mabs Eab, Tap), the variables generally used in the Spin Foam setting.

In the following we present the proof of formula (318). The representation of the delta function of
SU(2) in terms of an integral on SL(2,C), formula (318), is a key ingredient in the proof of the resolution
of the identity provided by coherent spin-networks. To make the paper self-contained, in this appendix
we report an elementary proof of formula (318). The proof is by direct computation and is similar to
the derivation of [102] (section 4.4). A more general proof for compact Lie groups can be found in [111]
(section 7).

Let us use the polar decomposition

|y

H=gel (322)

to parametrize an element H of SL(2,C) in terms of an element g of SU(2) and a vector p'in R3. In these
variables, the Haar measure dH on SL(2,C) factors into a SU(2) term and a R3 term

(sinh |])?

dH = _
7|2

d*p dg (323)
where dg is the Haar measure on SU(2) and d3p'is the Lebesgue measure on R3.

The SU(2)-averaged heat kernel on SL(2,C) coincides with the heat kernel on the hyperboloid H? =
SL(2,C)/SU(2). Its explicit form in terms of the variables (322) can be found in [?] and is given by

o[y

Vs WPl e (324)

Qi(geP2) =
tlge”) (7Tt)3/2e sinh |p']

Therefore, the measure in the resolution of the identity (318) is given by

Qoy(Hap) dHap = pi(|7]) d°F dg (325)
where ) inh |7 )
. _./o sinh |p|  _15

Now we want to compute the integral that appears on the rhs of (318). Using the Peter-Weyl expansion
of the heat-kernel we find

Ki(hH™") Ky (WH™) Qo(H) dH =y (2 + 1)(25" + 1)e 707U £ (h, b)) (327)

SL(2,C) I
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where the coefficients in the sum are given by

fat) = [ OH ) O WH) Qs (H) dE (325)
SL(2,C)
This quantity can be computed in two steps: (i) first we integrate over the subgroup SU(2) and obtain
Vv
25 +1

fyr(h 1) = Tr(DY (hh' ™) A) (329)

where A is a (25 + 1) x (2j + 1) matrix. Then, (ii) we compute the matrix A. It is given by the following
integral over R3

w[Qy

A= DU (7P
R3

) (7)) 5 (330)

Notice that the matrix A commutes with the irreducible representation j of SU(2). Therefore it has to

be a multiple of the identity
c

- 1

27+1
with the constant c given by the trace of the matrix. Such constant can be computed explicitly performing
the integral and is given by

(331)

°° sinh((27 + 1)p) , (o
=TrA=4 s T = (2§ +1) eI
c r W/o sinh(p) pt(p) dp (2j+1)e (332)

Therefore the integral (328) is simply given by
Fij(hh') = 63" a2t YD (hh' ™1y (333)
Inserting this result into the rhs of expression (327) we find the Peter-Weyl expansion of the delta-function,

S(h, ') =" (25 + D)XV (hh' ) | (334)
J

This proves expression (318).
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9 Graviton propagator in Loop Quantum Gravity

In this short chapter we discuss a possible definition of the n-point functions for nonperturbative quantum
gravity, and shall reserve the next chapter to the effective implementation of the formal definition in Spin
Foam Models. The goal is to compare them with the standard n-point functions of perturbative quantum
gravity. Agreement at large distance can be taken as evidence that the nonperturbative quantum theory
has the correct low energy limit, while the differences at short distance reflect the improved ultraviolet
behavior of the nonperturbative theory. The difficulty is that general covariance makes conventional n-
point functions ill-defined in the ahsence of a background. A strategy for addressing this problem has
been suggested in [118]; the idea is to study the boundary amplitude, namely the functional integral
over a finite spacetime region, seen as a function of the boundary value of the gravitational field [17].
In conventional quantum field theory, this boundary amplitude is well-defined [119, 120| and codes the
physical information of the theory; so does in quantum gravity, but in a fully background-independent
manner [121].

A generally covariant definition of n-point functions can be based on the idea that the distance between
physical points (arguments of the n-point function) is determined by the state of the gravitational field
on the boundary of the spacetime region considered. This strategy was first implemented by C. Rovelli
in the letter [91], where some components of the graviton propagator were computed to the first order
in the Group Field Theory expansion parameter A. The calculation of the so-called diagonal components
to second order in A is performed in [91] (for an implementation of these ideas in 3 dimensions, see
[122, 123]). Only a few components of the boundary state contribute to the leading order in A, namely
the ones supported on the dual graph, boundary of a single 4-simplex. This reduces the calculation to
a generalization of the “nutshell” 3d model studied in [124|. The boundary amplitude which defines n-
point functions can be read as the creation, interaction and annihilation of “atoms of space”, in the sense in
which Feynman diagrams in conventional Quantum Field theory can be viewed as creation, interaction and
annihilation of particles. Using a natural Gaussian weight for of the boundary state, peaked on the intrinsic
as well as the extrinsic geometry of a Fuclidean 3-sphere, we can compute the graviton propagator. In the
Euclidean EPRL Spin Foam Model, this agrees with the conventional Euclidean graviton propagator, in
the limit of vanishing Barbero-Immirzi parameter. In the first part of this section we show how to define
n-point functions for generally covariant field theories, in the context of the general boundary formulation.

In order to explain the concept of boundary amplitude, we first illustrate a very simple example: the
harmonic oscillator. Then we sketch the phylosophy behind the general boundary formulation for field
theories, in particular for quantum gravity. We conclude showing a formal expression for quantum gravity
n-point functions, well suited for an implementations in SFMs.

In the section we present the main ingredients for the graviton propagator definition and the results
skipping the calculations. In the third section we stress the problem of the gauge choice for the comparison
with the standard linearized theory and how in principle the problem is solved by the compatibility between
radial and harmonic gauge. The Feynman rules of perturbative quantum gravity are mostly known in
harmonic gauge, but the calculation we present in Loop Quantum Gravity is made in a sort of radial
gauge (the field insertions have vanishing radial components). We show [125] that radial and harmonic
gauges are compatible, and it is possible to compare the full tensorial structure of the LQG propagator
with the standard propagator.
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9.1 n-point functions in generally covariant field theories

In standard perturbative quantum gravity the metric is split in a flat background metric n plus a per-
turbation: g, (x) = N + hu(x); the background is classical, and only the perturbation is considered a
dynamical quantum field. The 2-point function is defined as the vacuum expectation value

G uvpo (2,Y) = (0hyw () hpo (y)]0) - (335)

If a candidate fully nonperturbative theory, diffeomorphism invariance implies that the propagator does
not depend on the points z, y, namely it must be constant. This problem can only be solved if we change
our perspective. It is physically more motivated to define n-point functions associated to a finite region
of spacetime, since any real measurement process is done in a finite amount of time, and in a finite region
of space. The theory which deals with finite region measurements is a generalization of Quantum Field
Theory called Genal Boundary QFT [17]. Of course, for flat time slices separated far away, the theory
reduces to the ordinary one found in text-books. We now cast the quantum mechanics of an harmonic
oscillator in the form of a general boundary theory, and define the associated 2-point function. This will
give an intuitive feeling of general boundary formalism.

The 2-point function, or propagator, for the quantum harmonic oscillator propagator is the “vacuum”
expectation value of two position operators:

Go(t1,t2) = (0|&(t1)Z(t2)]0) = (0]ze 1=t g|0) | (336)

where the “vacuum” state is the eigenstate of the Hamiltonian with minimal energy, the ground state. In
the Schrodinger representation L?(IR,dx), the 2-point function is a Lebesgue integral over positions:

Go(t1,t2) = /dmdl’z o(x1) ;AW (21, 225 t1, t2) T2t0(22) (337)

where ¢y = (x|0) is the wave function of ground state. The integral kernel W is called propagation kernel
and it codes the full dynamics of the system. In the more formal functional representation, the 2-point
function reads

Goltr, ) = / Dty ) (ta)el ) Lt (338)

The Schrodinger representation is recovered by breaking the functional integral into five spacetime regions:
the two regions external to the initial and final time, the two regions (planes) at initial and final time
and the region in between. The external integration gives back the ground state, the internal integration
gives back the propagation kernel W and the integration on the time slices t; and t9 is just the integration
appearing in the Schrodinger representation. Now we introduce the relativistic form of the 2-point function.
By relativistic here we mean “general relativistic” in the sense that we want to eliminate as much as possible
the preferred role of time, which is present in any non relativistic theory. This idea is well illustrated in
[7]. B

Let us glue the initial and final background configuration 1y and g in single composite state, the
tensor product of the two. Call it “boundary state” ¥, an element in H* ® H. H the Hilbert space of
configurations at fixed time. Then H* and H have to be interpreted as the spaces of initial and final
data, respectively. We use the notation H;| ® Hy,. Then we define the relativistic position operators
21 =2 ® 1 and 22 = 1 ® £, which act separately on the two Hilbert spaces. The propagation kernel W
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can be interpreted as linear functional (a “bra”) on Hy ® Hy,. With the previous definitions, the 2-point
function assumes the compact form

Go(t1,t2) = (Wi, [2122| Wo) - (339)

The physical interpretation is the following: Wq represents the joint configuration at initial and final time
with no excitations present; W codes the dynamics and 1, Z2 create two excitations at initial and final
time. The state &122|Wy) is the excited boundary configuration detected in the experiment. In this new
language, we can consider the following normalization condition:

(0] M1=12)]0) = (W, 4, | W) = 1. (340)

Its physical meaning is the following. When (340) holds, then the final state is exactly the time evolution
of the initial state; in other words, the joint “boundary state” satisfies the quantum dynamics. In the
jargon of quantum gravity, this normalization condition is called Wheeler-deWitt equation.

More in general, we can consider a joint coherent state peaked on the doubled phase space point

(Qlaplv q27p2):

\IJQ1,P1,¢]27P2 (.%'1, x2) = w!h,inl <$1)wQ27P2 (x2> : (341)
The main object we consider is then the semiclassical 2-point function constructed this way:
GQ17P17(I27P2 (t1,t2) = <Wt1,t2’\1’q1,p1,q2,p2> : (342)

The associated Wheeler-deWitt equation is:

<Wt1t2|\IJQ1,p17QQ,p2> =1. (343)

We choose the couple position/momentum g1, p1 to be the classical evolution of g2, p2. For the harmonic
oscillator, since the coherent states are Gaussian wave-packets and the dynamics does not destroy the
coherence properties (in fact the evolution is rigid) the Wheeler-deWitt equation is satisfied exactly. We
call the quadruplet (g1, g2, p1,p2) a physical boundary configuration, denoted q. The 2-point function for
a physical boundary configuration is the quantum amplitude for a quantum excitation to propagate over
a classical trajectory starting with initial condition (g2, p2).

In quantum field theory we can do the very same step. As before, we define the 2-point function, e.g.
for a scalar field theory:

Gq(z,y) = /D¢1D¢2wq17p1(¢1)¢1(1")w(¢17¢2;t17t2)¢q27p2(¢2)¢2(y)‘ (344)

Here x,y are points on two space-like hyperplanes in Minkowski space, and q is the joint boundary
configuration (it comprehends both the scalar field ¢ and its conjugate momentum II). It is well-known
that in the Scrédinger representation of the free theory the vacuum state is a functional with Gaussian
dependence on the scalar field, just like the “vacuum” state of harmonic oscillator is a Gaussian. The
propagation kernel W comes from the functional integration restricted to the spacetime region between

two time slices
@|t2:¢2 . rtg

W (g1, p2;t1,t2) = / D ¢t Ji 4t #7216 (345)
‘Pltlz(ﬁl
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Now it is the time for the crucial step: instead of time slices, which is a rather particular and unphysical
choice, we define the 2-point function for a general 3-dimensional boundary X of a finite spacetime region
R in the following way:

Galz,y) = / D6 o(x)p(y) W (6, 2)(6) (346)

In this expression z and y are points on the boundary 3; W is, as before, the result of the functional
integration restricted to the interior of the region considered:

W(p; %) = Dy el rd'zZle] (347)
Op=¢

This definition is suitable for generally covariant field theories, like nonperturbative quantum gravity. In
ordinary quantum field theories it is the condition we put on the fields at infinity in the path integral that
determine the boundary state, but this is an operation that becomes ill defined in a generally covariant
context; in the absence of a background structure it does not even make sense generally to speak about
fields at infinity. Expression (346) gives instead a a good definition of 2-point function: the ill-defined
functional integration in the external region is encoded in the well-defined boundary state. The dependence
on the boundary state determines the non-trivial behavior of the 2-point function under diffeomorphisms:

Gglz,y) = Gg(2',y'). (348)

We stress again the physical meaning of this general boundary formalism. The 2-point function (346)
defines an amplitude associated to a joint set of measurements performed on the 3-dimensional boundary:
we detect the mean geometry g with two excitations in  and y (possibly at different times). Suppose
now we are describing the physical world and so include the gravitational field among the other fields
in our general boundary field theory. In nonrelativistic physics we have to know the spacetime location
of detectors and then we perform measures on the fields (except the gravitational field). On the other
hand, in relativistic physics we perform measures on the fields, including the gravitational field, and this
is sufficient to determine also the geometry of the apparatus. Conversely, measuring the geometry of the
apparatus is a measurement of the gravitational field on the boundary.

Notice that, because of the Feynman path integral, the geometry in the interior is free to fluctuate
quantum-mechanically. The point is that the propagation kernel W can be interpreted as a sum over
geometries. It is this radical point of view which is usually adopted, and concretely implemented in the
context of Spin Foam Models. The calculation of graviton propagator in the new SFMs in chapter 9 is an
application of the general boundary formalism in quantum gravity.

9.2 Compatibility between of radial, Lorenz and harmonic gauges

A technical point in the calculation of n-point functions in quantum gravity is the choice of the gauge.
Which gauge shall we use in order to make a comparison between the LQG and the standard graviton
propagator? The LQG propagator is defined in a generalized temporal gauge: h,, has vanishing compo-
nents along the normals to the boundary 3-sphere. This gauge is called radial, or Fock-Schwinger gauge
[126, 127, 128]. Perturbative quantum gravity is mostly known in harmonic gauge. We show that in
linearize General Relativity there exists a gauge in which the linearized gravitational field is radial and
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harmonic [125]. We present this original result, and an analogous original result for Maxwell electromag-
netic theory.
The radial gauge, or Fock-Schwinger gauge is defined by

atAy(x) =0 (349)

in Maxwell theory, and by
eHhy(x) =0 (350)

in linearized General Relativity. Here z* are Lorentzian (or Euclidean) spacetime coordinates in d + 1
spacetime dimensions, where ©u=0,1,...,d; A,(x) is the electromagnetic potential. The radial gauge has
been considered with various motivations. For instance, radial-gauge perturbation theory was studied in
[129, 128, 130, 131], where an expression for the propagator and Feynman rules in this gauge were derived.
A number of papers implicitly use this gauge in the context of nonperturbative Euclidean Loop Quantum
Gravity |7, 91, 92, 123, 93]. Here, indeed, consider a spherical region in spacetime, and identify the degrees
of freedom on the 3d boundary ¥ of this region with the degrees of freedom described by Hamiltonian Loop
Quantum Gravity. The last is defined in a “temporal” gauge where the field components in the direction
normal to the boundary surface ¥ are gauge fixed. Since the direction normal to a sphere is radial, this
procedure is equivalent to imposing the radial gauge (350) in the linearization around flat spacetime.
The radial gauge is usually viewed as an alternative to the commonly used Lorenz and harmonic
gauges, defined respectively by
OuA* =0 (351)

in Maxwell theory and by
1
ouht, — 5 oy, =0 (352)

in linearized General Relativity. Here we observe, instead, that the radial gauge is compatible with the
Lorenz and the harmonic gauges. That is, if A, and hy, solve the Maxwell and the linearized Einstein
equations, then they can be gauge-transformed to fields Aj, and k), satisfying (349,350) and (351,352).
This is analogous to the well known fact (see for instance [28]) that the Lorenz and the harmonic gauges

can be imposed simultaneously with the temporal gauge

Ay=0, (353a)
hou =0 . (353b)
“w

We find convenient, below, to utilize the language of tensor calculus. To avoid confusion, let us point
out that this does not mean that we work on a curved spacetime. We are only concerned here with
Maxwell theory on flat space and with linearized General Relativity also on flat space. Tensor calculus is
used below only as a tool for dealing in compact form with expressions in the hyperspherical coordinates
that simplify the analysis of the radial gauge.

Maxwell theory is discussed in the first paragraph, gravity in the second. We work in an arbitrary
number of dimensions, and we cover the Fuclidean and the Lorentzian signatures at the same time. That
is, we can take either (7,,)=diag[1,1,1,1,...] or (1. )=diag[l,—1,—1,—1,...]. The analysis is local in
spacetime and disregards singular points such as the origin.
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9.2.1 Mazxwell theory

In this paragraph we show the compatibility between Lorenz and radial gauge in electromagnetism.
Maxwell vacuum equations are

8, F"" =0, (354)

where F),, = 0,A, — 0,A, . That is
0A, — 0,0,A” =0, (355)

where O = n*"0,0, . This equation is of course invariant under the gauge transformation

Ay — Al = A, + 9. (356)

Temporal and Lorenz gauge We begin by recalling how one can derive the well-know result that the
Lorenz and temporal gauges are compatible. This is a demonstration that can be found in most elementary
books on electromagnetism; we recall it here in a form that we shall reproduce below for the radial gauge.

Let us write (z#)= (2 2")=(¢,%), where i=1,...,d. Let A, satisfy the Maxwell equations (355).
We now show that there is a gauge equivalent field AL satisfying the temporal as well as the Lorenz gauge
conditions. That is, there exist a scalar function A such that A, defined in (356) satisfies (353a) and (351).
The equation (353a) for A, defined in (356) gives Ag + doA = 0, with the general solution

Mt E) = —/tAO(T,f)dT—FS\(f), (357)

to

where 5\(:? ) is an integration “constant”, which is an arbitrary function on the surface ¥ defined by t=t.
Can A(Z) (which is a function of d variables) be chosen in such a way that the Lorenz gauge condition
(which is a function of d + 1 variables) is satisfied? To show that this is the case, let us first fix A\(Z) in
such a way that the Lorenz gauge condition is satisfied on 3. Inserting A, in (351) and using (353a) we
have ' '

O A" = ;A" = ;A" + AN =0, (358)

where A = 9;0" is the Laplace operator? on ¥. The restriction of this equation to ¥ gives the Poisson
equation

ANZE) = —8;A(to, T) , (359)

which determines A(#). With \(Z) satisfying this equation, Al, satisfies the temporal gauge condition
everywhere and the Lorenz gauge condition on ¥ . However, this implies immediately that AL satisfies the
Lorenz gauge condition everywhere as well, thanks to the Maxwell equations. In fact, the time component
of (355) reads

OAj — 000, A" = —0p(0,A") = 0. (360)

That is: for a field in the temporal gauge, the Maxwell equations imply that if the Lorenz gauge is satisfied
on X then it is satisfied everywhere.

9Minus the Laplace operator in the Lorentzian case.
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Radial and Lorenz gauge We now show that the radial and Lorenz gauge are compatible, following
steps similar to the ones above. We want to show that there exists a function A such that A; defined in
(356) satisfies (349) and (351), assuming that A, satisfies the Maxwell equations.

Due to the symmetry of the problem, it is convenient to use polar coordinates. We write these as
(%) = (2",2") = (r, &), where 7= /|nuarz”| is the (d + 1)-dimensional radius and Z = (z') are three
angular coordinates. In these coordinates the metric tensor 7,, takes the simple form

ds® = Yab(r, &) da® dz? = dr? + r2§ij () dat da’ | (361)

where &;;(Z) is independent from r and is the metric of a 3-sphere of unit radius in the Euclidean case,
and the metric of an hyperboloid of unit radius in the Lorentzian case. It is easy to see that in these
coordinates, the radial gauge condition (349) takes the simple form

A =0. (362)
Inserting the definition of A, gives
A= —A, (363)
with the general solution
A = = [ A7) dp 4 3@ (364)
ro

where the integration constant A is now a function on the surface ¥ defined by r=rq. The surface ¥
is a d-sphere in the Euclidean case and a d-dimensional hyperboloid in the Lorentzian case. As in the
previous section, we fix 5\(3? ) by requiring the Lorenz condition to be satisfied on ¥ . It is convenient to
use general covariant tensor calculus in order to simplify the expressions in polar coordinates. In arbitrary
coordinates, the Lorenz condition reads

VoAl = \%@(ﬁfl’“) 0, (365)

where V, is the covariant derivative, Ap=A%gq , and 7y is the determinant of v, . This determinant has
the form v=r24¢  where ¢ is the determinant of &i; . When the radial gauge is satisfied, (365) reduces to

3;(vVeA) = 0. (366)

Let us now require that A;L satisfies this equation on ¥ . Using (356), this requirement fixes A to be the
solution of a Poisson equation on X, that is

- 1 .
AN = ——0;(\VEAY , (367)
\/g Z( )
where the Laplace operator is A = V,; £¥ V. In arbitrary coordinates, Maxwell equations read

1
V,F® =-—"9, F®) =0, 368
7 (VA F?) (368)
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where
Fob = veAb —vhae, (369)
Consider the radial (b = r) component of (368); since A”. =0, using the form (361) of the metric, we have

%aamm - %aamwabﬂw) T 0L~ 0,4 =

IR P2 P N SR SV
__7531(\/5 TQaTAj)_ rz\/ga,al(\/égﬂAj)_o, (370)

1

which shows that the Lorenz gauge condition (366) is satisfied everywhere if it satisfied on ¥ . This shows
that we can find a function A such that both the radial and the Lorenz gauge are satisfied everywhere.

9.2.2 Linearized General Relativity

We now consider the compatibility between the radial gauge and the harmonic traceless gauge (also known
as transverse traceless gauge [28|) in linearized General Relativity. Einstein equations in vacuum are given
by the vanishing of the Ricci tensor. If |h,, (z)| < 1, and we linearize these equations in h,, , we obtain
the linearized Einstein equations

00, + 000 By — 0,0 howy — 0™ hey = 0 . (371)

Under infinitesimal coordinate transformations,
nuv

1
s = iy = Iy + 5 (@ + 0N (372)

where the factor 1/2 is inserted for convenience. These are gauge transformations of the linearized theory.
The harmonic gauge is defined by the condition

V'Vt =0, (373)
where V,, is the covariant partial derivative'?; in the linearized theory (373) reduces to
14 1 v
o, h"H — 58’% , =0, (374)
and in this gauge the Einstein equations (371) read simply

Ohy =0 (375)

ONotice that (373) means the covariant Laplacian of d+1 scalars (d+1 coordinates), not the covariant Laplacian of a
(d+1)-vector.
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Temporal and harmonic gauge As we did for Maxwell theory, we begin by recalling how the com-
patibility between temporal and harmonic gauge can be proved. Start by searching a gauge parameter A,
that takes h,, to the temporal gauge hy, = 0. Equation (353b) gives

1
h(),u + 5(80)‘11 + 8,)\0) =0 (376)
with the general solution
t ~
No(t,#) = —/ hoo (7, ) dr + Ro(@) | (377)
2
: )
M(7) = = [ (200 7) + 2dalr, 7)) dr + Au(@) (378)
to

where the integration constants S\M(f ) are functions on the 3d surface ¥ defined by ¢ = ¢y. Next, we fix
Ai by imposing the harmonic gauge condition (374) on X . Since we are in temporal gauge, this gives

AN = —20;h°; + 01’ (379)

which can be clearly solved on ¥ . The time-time component of Finstein equations becomes

O2h, =0, (380)
whose only well behaved solution is A", = 0; so in the temporal gauge the invariant trace of hiw vanishes:
h”‘u = n“”hiw =0, (381)
and the harmonic condition (374) takes the simpler form
o,h"H =0, (382)
similar to the Lorenz gauge. Now the (¢,7) components of Einstein equations read
&ih”, =0, (383)

which gives ajh/j ; = 0 everywhere, once imposed on X.

Radial and harmonic gauge Let us finally come to the compatibility between the radial and harmonic
gauges. We return to the polar coordinates used in the Maxwell case. In these coordinates, the radial
gauge condition (350) reads

hl. =h.=0. (384)

Inserting the gauge transformation (372) gives
3 VI (385)
2
OrNi + Oi A — ;)\1 = —2h;; , (386)
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with the general solution

A7) :_/ hon(p @) dp + An(F) | (387)
o
T2h’ri 7_‘ ’i>\T 7_' N /=
N(r @) = —7«2/ ( x);;@ PZ) G412 Xu(7) (388)
T0

where S\T, /N\Z are functions on the surface ¥ given by r = r9. We can then fix 5\1 by imposing the harmonic
condition on ¥ precisely as before. In the polar coordinates (361), we have easily the following rules for
the Christoffel symbols:

. 1 .
rY, =0, I, =-§, I
r

rr 7

ra =0. (389)
We note also that Fijk is independent of r. Consider the (r,r) component of Einstein equations:
V. V.h +V, Ve, — V.V — V.V, =0. (390)
Taking into account (361) and (389), it is verified after a little algebra that the previous equation becomes
O2h, + %aTh’aa =0, (391)
which is a differential equation for the trace h'®,. Its only solution well-behaved at the origin and at
infinity is A'%,= 0. Using this, the (r,4) components of Einstein equations read:
VoVehl, — V.V, — V;V°h,. = -0,V =0, (392)
and the harmonic condition is simply
Voh'® =0. (393)

Equation (392) shows immediately that the b=1¢ components of the gauge condition (393) hold everywhere
if they hold on ¥ . The vanishing of the b=7 component of (393) follows immediately since, using (389),
we have

1
Vah'', = — 1 =0. (394)

a

Therefore the harmonic gauge condition, the radial gauge condition and the vanishing of the trace are all
consistent with one another.
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10 LQG propagator from the new spin foams

This chapter is the reproduction of the original work of reference [96]. We compute metric correlations
in Loop Quantum Gravity and compare them with the scaling and the tensorial structure of the graviton
propagator in perturbative Quantum Gravity [132, 133, 134]|. The strategy is the one introduced in [91]
and developed in [92, 93, 135, 136, 79, 94, 95, 137|. In particular, we use the boundary amplitude formalism
[7, 17, 138, 121]. The dynamics is implemented in terms of (the group field theory expansion of) the new
spin foam models introduced by Engle, Pereira, Rovelli and Livine (EPRL model) [15] and by Freidel and
Krasnov (FK model) [57]. We restrict attention to Euclidean signature and Immirzi parameter smaller
than one: 0 < < 1. In this case the two models coincide.

Previous attempts to derive the graviton propagator from LQG adopted the Barrett-Crane spin foam
vertex [139] as model for the dynamics |91, 92, 93, 135, 136, 79, 94, 95, 137| (see also [122, 123, 140] for
investigations in the three-dimensional case). The analysis of [79, 94] shows that the Barrett-Crane model
fails to give the correct scaling behavior for off-diagonal components of the graviton propagator. The
problem can be traced back to a missing coherent cancellation of phases between the intertwiner wave
function of the semiclassical boundary state and the intertwiner dependence of the model. The attempt
to correct this problem was part of the motivation for the lively search of new spin foam models with
non-trivial intertwiner dependence [141, 88, 15, 57, 56]. The intertwiner dynamics of the new models was
investigated numerically in [142, 143, 144, 145], and presented here in chapter 7. The analysis of the large
spin asymptotics of the vertex amplitude of the new models was performed in [146, 84, 97, 147] in the
Euclidean setting and in [148] in the Lorentzian. In [95], the obstacle that prevented the Barrett-Crane
model from yielding the correct behaviour of the propagator was shown to be absent for the new models:
the new spin foams feature the correct dependence on intertwiners to allow a coherent cancellation of
phases with the boundary semiclassical state. Here we restart from scratching the calculation and derive
the graviton propagator from the new Spin Foam Models.

In this introduction we briefly describe the quantity we want to compute. We consider a manifold R
with the topology of a 4-ball. Tts boundary is a 3-manifold ¥ with the topology of a 3-sphere S3. We
associate to ¥ a boundary Hilbert space of states: the LQG Hilbert space Hy spanned by (abstract)
spin-networks. We call |¥) a generic state in Hy. A spin foam model for the region R provides a map
from the boundary Hilbert space to C. We call this map (W| (see section 9.1). It provides a sum over the
bulk geometries with a weight that defines our model for quantum gravity. The dynamical expectation
value of an operator O on the state |U) is defined via the following expression'!

(Wlo|w)

(©) = e (396)

The operator O can be a geometric operator as the area, the volume or the length [149, 150, 151, 152,

1This expression corresponds to the standard definition in (perturbative) quantum field theory where the vacuum expec-
tation value of a product of local observables is defined as

mmy~mmmmwi/0mwwwunmomn%w

(O(x1) - O(xn)) ‘/Dm
S [ Diglets [ piawieivola

(395)

The vacuum state ¥o[¢] codes the boundary conditions at infinity.
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153, 154, 155]. The geometric operator we are interested in here is the (density-two inverse-) metric
operator ¢*(z) = 5”Ef(x)E§’(x). We focus on the connected two-point correlation function G4 (x, )
on a semiclassical boundary state |Wo). It is defined as

Gz, y) = (¢**(x) ¢“*(y)) — (@**()) (¢ (y)) - (397)

The boundary state |¥y) is semiclassical in the following sense: it is peaked on a given configuration of the
intrinsic and the extrinsic geometry of the boundary manifold ¥. In terms of Ashtekar-Barbero variables
these boundary data correspond to a couple (Ep, Ap). The boundary data are chosen so that there is a
solution of Einstein equations in the bulk which induces them on the boundary. A spin foam model has
good semiclassical properties if the dominant contribution to the amplitude (W |¥) comes from the bulk
configurations close to the classical 4-geometries compatible with the boundary data (FEy, Ag). By classical
we mean that they satisfy Einstein equations.

The classical bulk configuration we focus on is flat space. The boundary configuration that we consider
is the following: we decompose the boundary manifold S® in five tetrahedral regions with the same
connectivity as the boundary of a 4-simplex; then we choose the intrinsic and the extrinsic geometry to
be the ones proper of the boundary of a Euclidean 4-simplex. By construction, these boundary data are
compatible with flat space being a classical solution in the bulk.

For our choice of boundary configuration, the dominant contribution to the amplitude (W|¥q) is
required to come from bulk configurations close to flat space. The connected two-point correlation function
Gd(z, 1) probes the fluctuations of the geometry around the classical configuration given by flat space.
As a result it can be compared to the graviton propagator computed in perturbative quantum gravity.

The plan of this chapter is the following: in section 10.1 we introduce the metric operator and construct
a semiclassical boundary state; in section 10.2 we recall the form of the new spin foam models; in section
10.3 we define the LQG propagator and provide an integral formula for it at the lowest order in a vertex
expansion; in section 10.6 we compute its large spin asymptotics; in section 10.11 we discuss expectation
values of metric operators; in section 10.12 we present our main result: the scaling and the tensorial
structure of the LQG propagator at the leading order of our expansion; in section 10.13 we attempt a
comparison with the graviton propagator of perturbative quantum gravity.

10.1 Semaiclassical boundary state and the metric operator

Semiclassical boundary states are a key ingredient in the definition of boundary amplitudes. Here we
describe in detail the construction of a boundary state peaked on the intrinsic and the extrinsic geometry
of the boundary of a Euclidean 4-simplex. The construction is new: it uses the coherent intertwiners of
Livine and Speziale [56] (see also [97]) together with a superposition over spins as done in [91, 92]. It can
be considered as an improvement of the boundary state used in [79, 94, 95] where Rovelli-Speziale gaussian
states [87] for intertwiners were used. Remarkably, the semiclassical states we use can be derived from the
mathematical construction of coherent states for the natural phase space associated to the SU(2) gauge
group (this derivation is discussed in chapter 8). More precisely, and in order to not confuse the notation,
here we call “coherent spin-networks” the states with fized spins, with nodes labeled by Livine-Speziale
coherent intertwiners, and take a superposition over spins in order to construct the desired semiclassical
geometry. In chapter 8 instead we call coherent spin-networks the coherent states derived in a more
sistematic way from the analysis of the phase space of General Relativity. The superposition over spins
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used here and the coherent spin-networks introduced in chapter 8 do not coincide exactly, but only in the
large spin limit.

We consider a simplicial decomposition Az of S3. The decomposition Aj is homeomorphic to the
boundary of a 4-simplex: it consists of five cells ¢, which meet at ten faces fu (a,b=1,..,5 and a < b).
Then we consider the sector of the Hilbert space Hy, spanned by spin-network states with graph I's dual
to the decomposition As,

Us lus U4

(398)

V2

I'5 is a complete graph with five nodes. We call v, its nodes and I, (@ < b) its ten links. Spin-network
states supported on this graph are labelled by ten spins jg, (@ < b) and five intertwiners i,. We denote
them by |I's, jap, iq) and call Hr, the Hilbert space they span. On Hp, we can introduce a metric operator
smearing the electric field on surfaces dual to links, i.e. considering scalar products of fluxes. We focus on
the node n and consider a surface f,, which cuts the link from the node n to the node a. The flux operator
through the surface f,q, parallel transported in the node n, is denoted'? (E%);. Tt has the following three
non-trivial properties:

(i) the flux operators (E%); and (E7); are related by a SU(2) parallel transport gg, from the node a to
the node n together with a change of sign which takes into account the different orientation of the face

Jan, )
(E'g)l = _(Ran)ij (E;L)] ) (399)

where R,, is the rotation which corresponds to the group element g, associated to the link l,y,, i.e.
Ran = D(l) (gab);
(ii) the commutator of two flux operators for the same face f,, is'®

[(ER)i s (ER)j] = ineis® (B ; (400)
(iii) a spin-network state is annihilated by the sum of the flux operators over the faces bounding a node
> (ES)ilTs, jabsia) =0 . (401)

c#En

This last property follows from the SU(2) gauge invariance of the spin-network node.

Using the flux operator we can introduce the density-two inverse-metric operator at the node n,
projected in the directions normal to the faces fnq and fup. It is defined as E% - Eb = 0¥ (E2);(EL);. Tts
diagonal components E7 - Ef measure the area square of the face fnq,

2
B U5, jabsia) = (73 Gnalina + 1)) T, japsia) - (402)

12Throughou‘c the chapter i,7, k... =1,2,3 are indices for vectors in R3.
13Throughout the chapter we put ¢ = i = GNewton = 1.
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Spin-network states are eigenstates of the diagonal components of the metric operator. On the other
hand, the off-diagonal components E2-E? with a # b measure the dihedral angle between the faces fnq
and fnp (weighted with their areas). It reproduces the angle operator [153]. Using the recoupling basis
for intertwiner space, we have that in general the off-diagonal components of the metric operator have
non-trivial matrix elements

E3-B}|Ts, jabia) = Y (En-ED), " U5, fab, il) - (403)

7
/LC

We refer to [79, 94| and to section 8.2 for a detailed discussion. In particular, from property (ii), we have
that some off-diagonal components of the metric operator at a node do not commute [152]

(BB, ES-ES] 0. (404)

From this non-commutativity an Heisenberg inequality for dispersions of metric operators follows. Here we
are interested in states which are peaked on a given value of all the off-diagonal components of the metric
operator and which have dispersion of the order of Heisenberg’s bound. Such states can be introduced
using the technique of coherent intertwiners (|56, 97| and section 8.1). We recall the definition in order to
introduce the notation used in this chapter. A coherent intertwiner between the representations ji, .., ja
is defined as'*

4
dh [ (ar mal DY) (h)|ja, 7ia) (405)

1
VA0, Jsue)

and is labelled by four unit vectors 7y, . ., 74 satisfying the closure condition

Oy L Ty)

Jimg -+ jatiy = 0. (406)

The function (7, ..,74) provides normalization to one of the intertwiner. The function ™14 ig
invariant under rotations of the four vectors 7iy,..,74. In the following we always assume that this
invariance has been fixed with a given choice of orientation'®.

Nodes of the spin-network can be labelled with coherent intertwiners. In fact such states provide an
overcomplete basis of Hr,. Calling v;"""™* the standard recoupling basis for intertwiners, we can define
the coefficients

B (i, .. 7g) = 0™ Dy (1, 7) (407)

= Ui
We define a coherent spin-network |I's, jap, Po) as the state labelled by ten spins ju and 4 X 5 normals
Tigp and given by the superposition

5
05, o @) = > ( TT @i iat) ) U5, s ) (408)

i1 a=1

'4There is a phase ambiguity in the definition of the coherent intertwiner. Such ambiguity becomes observable when a
superposition over spins is considered.

Y5For instance we can fix this redundancy assuming that the sum j17i1 + jofi2 is in the positive z direction while the vector
71 X 2 in the positive y direction. Once chosen this orientation, the four unit-vectors 71, .., 74 (which satisfying the closure

condition) depend only on two parameters. These two parameters can be chosen to be the dihedral angle cos 612 = 71 - 7iz
(7iq X7ip)- (73 XTig)
[fiy X7ig| [figXfig| *

and the twisting angle tan ¢(12)(34) =
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The expectation value of the metric operator on a coherent spin-network is simply
(U5, jabs ®al B2~ BeITs, Jabs Pa) = 7 Jeadeh flea - b (409)

in the large spin limit. As a result we can choose the normals 74, so that the coherent spin-network state
is peaked on a given intrinsic geometry of 3.

Normals in different tetrahedra cannot be chosen independently if we want to peak on a Regge geometry
[156]. The relation between normals is provided by the requirement that they are computed from the
lengths of the edges of the triangulation As. In fact, a state with generic normals (satisfying the closure
condition (406)) is peaked on a discontinuous geometry. This fact can be seen in the following way: let
us consider an edge of the triangulation As; this edge is shared by three tetrahedra; for each tetrahedron
we can compute the expectation value of the length operator for an edge in its boundary [155]; however
in general the expectation value of the length of an edge seen from different tetrahedra will not be the
same; this fact shows that the geometry is discontinuous. The requirement that the semiclassical state is
peaked on a Regge geometry amounts to a number of relations between the labels 7i,,. In the case of the
boundary of a Euclidean 4-simplex (excluding the ‘rectangular’ cases discussed in [157]), the normals turn
out to be completely fixed once we give the areas of the ten triangles or equivalently the ten spins jus,

ﬁab - ﬁab(jcd) . (410)

This assignment of normals guarantees that the geometry we are peaking on is Regge-like. In particular,
in this chapter we are interested in the case of a 4-simplex which is approximately regular. In this case
the spins labelling the links are of the form j,, = jo + djap with %‘;b < 1 and a perturbative expression
for the normals solving the continuity condition is available:

fap(jo + 67) = fian(jo) + Y _ v Dsjq . (411)
cd

The coefficients v(@(¢d) can be computed in terms of the derivative of the normals 77,4, (for a given choice of

orientation, see footnote 15) with respect to the ten edge lengths, using the Jacobian of the transformation
from the ten areas to the ten edge lengths of the 4-simplex.

In the following we are interested in superpositions over spins of coherent spin-networks. As coherent
intertwiners are defined only up to a spin-dependent arbitrary phase, a choice is in order. We make
the canonical choice of phases described in [147]. We briefly recall it here. Consider a non-degenerate
Euclidean 4-simplex; two tetrahedra ¢, and ¢, are glued at the triangle fop = fio. Now, two congruent
triangles fap and fy, in R® can be made to coincide via a unique rotation Ry, € SO(3) which, together
with a translation, takes one outward-pointing normal to minus the other one,

Rabﬁab = _ﬁba . (412)

The canonical choice of phase for the spin coherent states |jup, ap) and |jap, 7ipe) entering the coherent
intertwiners ®, and ®; is given by lifting the rotation Ry, to a SU(2) transformation g, and requiring
that

|jab7 ﬁba> = D(jab) (gab) J‘jab; ﬁab> (413)
where J : H; — H; is the standard antilinear map for SU(2) representations defined by
(el(lo) ® J|B)) = (Bla) with |a),|8) € H; (414)
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and (€| is the unique intertwiner in H; ® H;. In the following we will always work with coherent spin-
networks |I's, jap, Pa(7(j))) satisfying the continuity condition, and with the canonical choice for the
arbitrary phases of coherent states. From now on we use the shorter notation |j, ®(77)).

Coherent spin-networks are eigenstates of the diagonal components of the metric operator, namely the
area operator for the triangles of As. The extrinsic curvature to the manifold ¥ measures the amount
of change of the 4-normal to X, parallel transporting it along . In a piecewise-flat context, the extrinsic
curvature has support on triangles, that is it is zero everywhere except that on triangles. For a triangle
fap, the extrinsic curvature Ky, is given by the angle between the 4-normals N} and Né‘ to two tetrahedra
t, and t; sharing the face f,5. As the extrinsic curvature is the momentum conjugate to the intrinsic
geometry, we have that a semiclassical state cannot be an eigenstate of the area as it would not be peaked
on a given extrinsic curvature. In order to define a state peaked both on intrinsic and extrinsic geometry,
we consider a superposition of coherent spin-networks,

[W0) = > 0.0 ()15 (7)) (415)
jab
with coefficients 1}, 4,(j) given by a gaussian times a phase,

4 1 Jab — Joab Jed — Jocd 4 b 4
Voo () = —exp ( — Y ald)ed) 22 : exp (=i Y ¢8" (Gab — Joav) ) - 416
J0 ¢0( ) N < C%c:d \/m \/M > ( %b: 0 ( 0 )) ( )

As we are interested in a boundary configuration peaked on the geometry of a regular 4-simplex, we choose
all the background spins to be equal, joq = jo. Later we will consider an asymptotic expansion for large
jo- The phases (;SSZ’ are also chosen to be equal. The extrinsic curvature at the face fup in a regular
4-simplex is Ky, = arccos N, - Ny = arccos(—%). In Ashtekar-Barbero variables (Ep, Ag) we have

P = ¢ = yK o = yarccos(—1/4) . (417)

The 10 x 10 matrix (9D ig agsumed to be complex with positive definite real part. Moreover we require

that it has the symmetries of a regular 4-simplex. We introduce the matrices P,gab)(Cd) with £ = 0,1,2
defined as

(ab)(ed) . - .

Py =1 if (ab) = (cd) and zero otherwise, (418)

Pl(ab)(Cd) =1 if {a=c¢,b#d} or a permutation of it and zero otherwise, (419)

Pz(ab)(Cd) =1 if (ab) # (cd) and zero otherwise. (420)

Their meaning is simple: a couple (ab) identifies a link of the graph I's; two links can be either coincident,

(ab)(cd)

or touching at a node, or disjoint. The matrices P, correspond to these three different cases. Using

the basis P,gab)(Cd) we can write the matrix (@) g

2
a(ab)(cd) _ Zak P}gab)(Cd) ] (421)
k=0

As a result our ansatz for a semiclassical boundary state |¥() is labelled by a (large) half-integer jo and
has only three complex free parameters, the numbers ay.
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10.2 The new spin foam dynamaics

The dynamics is implemented in terms of a spin foam functional (W|. Here we are interested in its
components on the Hilbert space spanned by spin-networks with graph I's. The sum over 2-complexes can
be implemented in terms of a formal perturbative expansion in the parameter A of a Group Field Theory
[158]:
(WITs, jabsia) = »_ AN"W (o) (422)
g

The sum is over spinfoams (colored 2-complexes) whose boundary is the spin-network (I's, jap, ia), W (o)

is the spinfoam amplitude
=T w: I we (423)
fCo vCo

where W, and Wy are the vertex and face amplitude respectively. The quantity Ny in (422) is the number
of vertices in the spin foam o, therefore the formal expansion in A is in fact a vertez expansion.

The spin foam models we consider here are the EPRL [15] and FK [57] models. We restrict attention
to 0 < v < 1; in this case the two models coincide. The vertex amplitude is given by

o (Jabs a) 2{153} Gl id) {155} (G i H . (Jab) (424)

za Qg
where the unbalanced spins j,j~ are

+ l=Evy

&= =51 (425)

This relation puts restrictions'® on the value of v and of j,. The fusion coefficients f;ii+ (Jap) are defined
[15] (see also [159]) and built out of the intertwiner v;"'"™* in H; ® - - @H;, and the intertwiners

i my in Hﬁ ®- - ® ij. Defining a map Y : ‘H; — H;+ ® H;- with matrix elements Y. =

it mtm—
(3t,m*; 57, m™|Y|j,m) given by Clebsh-Gordan coefficients, we have that the fusion coefficients fi+i+

are given by

+omt —
_ L myeemyg o Ty Ty Ty Ty
Za la leml my Ym4m2'm; vy vi+ Ui : (426)

Indices are raised and lowered with the Wigner metric.
Throughout this chapter we will restrict attention to the lowest order in the vertex expansion. To this
order, the boundary amplitude of a spin-network state with graph I'; is given by

(W1T's, Jabs ta) = (Jab) Wo(Jab, ta) » (427)

i.e. it involves a single spin foam vertex.

The function p is defined as ,u( ) =11 Wr.,(4). Anatural choice for the face amplitude is W;(j7,77) =
(257 +1)(257 +1) = (1 —~2)52+ 25 + 1. Other choices can be considered. We assume that p1(A\jqp) scales
as A for some p for large \. We will show in the following that, at the leading order in large jo, the LQG
propagator (397) is in fact independent from the choice of face amplitude, namely from the function u(j).

®Formula (424) is well-defined only for j= half-integer. As a result, for a fixed value of +, there are restrictions on the
boundary spin j. For instance, if we choose v = 1/n with n integer, then we have that j has to be integer and j > n, i.e.
je{n,n+1n+2,---}.
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10.3 LQG propagator: integral formula

In this section we define the LQG propagator and then provide an integral formula for it. The dynamical
expectation value of an operator O on the state |¥y) is defined via the following expression

(W]O[Wo)

O = )

(428)

The geometric operator we are interested in is the metric operator E¢ - E? discussed in section 10.1. We
focus on the connected two-point correlation function G on a semiclassical boundary state |Wg). It is
defined as

Gobed — (B2-EY Bt E%) — (EX-EL) (ES,-EY) . (429)

We are interested in computing this quantity using the boundary state |¥p) introduced in section 10.1
and the spin foam dynamics (424). This is what we call the LQG propagator. As the boundary state is a
superposition of coherent spin-networks, the LQG propagator involves terms of the form (W|O|j, ®(7)).
Its explicit formula is

Gabed _ >, YO WIEL-E) Bp B 15,2() 3, w(G)(WIER-E5,2(7)) 3, v(5)(WIEF, Ef,15,2(7))

= SO W80 B ST 10N Y STOIUAEIG) (430)

In the following two subsections we recall the integral formula for the amplitude of a coherent spin-network
(W, ®(7)) and derive analogous integral expressions for the amplitude with metric operator insertions
(W|E5-Ep|j, ®()) and (W|Ef-E}, Ey, - Ef,|j, ®(7)).

10.4 Integral formula for the amplitude of a coherent spin-network

The boundary amplitude of a coherent spin-network |7, ®(77)) admits an integral representation [97, 146,
147]. Here we go through its derivation as we will use a similar technique in next section.

The boundary amplitude (W|j, ®(77)) can be written as an integral over five copies of SU(2) x SU(2)
(with respect to the Haar measure):

(W o, @ Z(H% ) (W ljas ) = / Hdgmga [[P"tg).  (431)
b

a

The function P*(g*, g7) is given by

Pt g7) = (abs —7ibal YT DU ((95) g ) @ DYat) ((97) 205 )Y |jiabs i) - (432)
where the map Y is defined in section 10.2. Using the factorization property of spin coherent states,
Yija) =it a) @i, a9, (433)
we have that the function P®(g*, g7) factorizes as

P(g*t,g7) =P (gt) PP (g7) (434)
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with

_ o 1 o DL\
P = (o, —Tinal DI ((9) 705 s ) = ({5 =7ioal (95) 05 5 70a)) "+ (435)

In the last equality we have used (again) the factorization property of spin coherent states to exponentiate
the spin j5. In the following we will drop the 1/2 in |3, flap) and write always |fiqp) for the coherent state
in the fundamental representation.

The final expression we get is

Wlj, / H dg dgy €5 (436)

where the “action” S is given by the sum S = ST + S, with

=" 2% log(—ia|(9%) " g [7iva) - (437)
ab

10.5 LQG operators as group integral insertions

In this section we use a similar technique to derive integral expressions for the expectation value of metric
operators. In particular we show that

(WIEL-EL s, @, / Hdg+dga g e (438)
and that
(W|E®EL ES,- E% | jap, Da(i) / Hdg+dga g (9% 97) a9t g7) € (439)

1" n # m and a,b,c,d # n,m. The expression for the insertions ¢2°(g*,g~) in the

integral is derived below.
We start focusing on (E¢-E?) in the case a # b. The metric field (E?); acts on a state |jap, map) as ¥
times the generator J; of SU(2). As a result we can introduce a quantity Q% defined as

where we assume

a _ . . + _ =Y N1 -
Q¢ (g7, 97) = (abs —iibal YIDU) (g) " ) @ DY) ((97) g5 )Y (EL)iljabs ) (440)
so that
wiE-E" ) 8() = [ [[dotdsr 5”@”“Q“bH Pel(gt 7). (441)
a=1

The product [] is over couples (cd) different from (na), (nb). Thanks to the invariance properties of the
map Y, we have that
Ti Gabs map) = (JEF 4 TN |ja map) - (442)

17Similar formulae can be found also in the remaining cases but are not needed for the calculation of the LQG propagator.
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Thus be can be written as
Q?b — Q?b+ Pab— + Pab+ Q;zbf (443)

with
. . -+ _ . —
QI = (j5 ~Tina DY) (0) ™ 57) JE¥51 7555 i) (444

Now we show that Q?bi is given by a function A?bi linear in the spin j;tb, times the quantity P®* defined
in (435),
bt b+ pabt
QP* = A= po= | (445)

The function A% is determined as follows. The generator J** of SU(2) in representation j;tb can be

obtained as the derivative
4+

O pui) (h(a))

oat

7

= Job= (446)

at=0

where the group element /(«) is defined via the canonical parametrization h(a) = exp(—ia’%t). Therefore,
we can write bei as

0
oot

.0 . - q
17 g0 (7 (7l (92) ™ g3 (@)l ))

Qi =iy

(45, ~a DY) (9~ 57) DY) (@) i )

at=0

-+
2Jab

at=0
) . - i o _ Lo\ 255 -1
= Jay (—eal(92) " g5 0" lia) (= Tibal (92) " g5 7ias)) 7 (447)

Comparing expression (447) with (445) and (435), we find that A7F is given by

nat _ .+ <_ﬁan‘(gai)_1grjztai|ﬁna>
A =Yna = ¥ Ea— . (448)
(—=Tlan|(9a ) "1gn |Tina)

A vectorial expression for A% can be given, introducing the rotation R = DU (gF),

+ + ot +
1 RFInpe — Ringn — i(Rinpg X Ringy,)

APE = ji (Rix 449
1 ryj7la ( ﬂ,) 1 — (}{2?71041) X (}%;E7l7la) ( )
Thanks to (443) and (445), we have that the expression for Q% simplifies to
Q= AP P (450)
with

AP = AT oAb (451)

As a result, equation (441) reduces to

5 ..

(W|Ey-Epj, ® (i) = / [ ] doddga 67 A7 AP PUg™,97) (452)

a=1 cd
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which is of the form (436) with the insertion A™® . A"’ Therefore, comparing with equation (438), we
have that
ab(g .g ): Anae .Anb (453)

for a # b. The case with a = b can be computed using a similar technique but the result is rather simple
and expected, thus we just state it

w975 97) =V naline + 1) - (454)

As far as (E¢-E? E¢,-E2) a similar result can be found. In particular, for n # m and a, b, c,d # n,m
the result is stated at the beginning of this section, equation (439), with the same expression for the
insertion ¢%(g*, g7) as in equation (453) and equation (454).

Substituting (438)-(439) in (430) we obtain a new expression for the propagator in terms of group
integrals:

qobed _ 2 HDP0G) [ g™ ai g e® 35, n(G() [ dg*™ g’ e® ¥ ni)v (i) [ dg* gy e
o >0 )Y () [ dgEed oY) [dgFed 3T u()v() [dg* ed

This expression with metric operators written as insertions in an integral is the starting point for the large
Jo asymptotic analysis of next section.

(455)

10.6 LQG propagator: stationary phase approximation

The correlation function (455) depends on the scale jo fixed by the boundary state. We are interested
in computing its asymptotic expansion for large jo. The technique we use is an (extended) stationary
phase approximation of a multiple integral over both spins and group elements. In 10.7 we put expression
(455) in a form to which this approximation can be applied. Then in 10.8 we recall a standard result in
asymptotic analysis regarding connected two-point functions and in 10.9-10.10 we apply it to our problem.

10.7 The total action and the extended integral
We introduce the “total action” defined as Siot = log®y + S or more explicitly as

]ab — Joab Jed — Jocd . b .
Siot (Jabs G 02 ) = — = Y aled)ed —2C iy & (b — Joab
tOt( a a a a‘ch \/]07 ]QC Z 0 ( a a )
+ 5 (Jabr 92 ) + S (Jabs 9 ) - (456)

Notice that the action ST + S~ is a homogeneous function of the spins j,; therefore, rescaling the spins
Joab and jgp by an interger A so that joas — Ajoap and jep — Ajap, we have that the total action goes to
Siot — ASior- We recall also that q“b — \q “b. In the large A limit, the sums over spins in expression
(455) can be approximated with integrals over continuous spin variables®

Do / dPg™ gpl Mot = / d'5d%* patt ¥ + OAN) YN >0. (457)

18The remainder, i.e. the difference between the sum and the integral, can be estimated via Euler-Maclaurin summation
formula. This approximation does not affect any finite order in the computation of the LQG propagator.
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Moreover, notice that the action, the measure and the insertions in (455) are invariant under a SO(4)
symmetry that makes an integration dg™dg~ redundant. We can factor out one SO(4) volume, e.g.
putting g = g; = 1, so that we end up with an integral over dig* = H2:2dgjdg;.
As a result we can re-write expression (455) in the following integral form
[d105 dgEp qab ged XSeor [ d105 dbgtp qab eMStor [ 105 ddgt g gt XSt

abed __ 4 _
Gnm =A ( fdloj d4giu eAsmt fdloj d4giu eASwt f dloj d4gi,u,e/\5tot ) . (458)

To this expression we can apply the standard result stated in the following section.

10.8 Asymptotic formula for connected two-point functions

Consider the integral

F()\) = / dz f(z) M@ (459)

over a region of R, with S(z) and f(z) smooth complex-valued functions such that the real part of
S is negative or vanishing, ReS < 0. Assume also that the stationary points xg of S are isolated so
that the Hessian at a stationary point H = S”(z) is non-singular, det H # 0. Under these hypothesis an
asymptotic expansion of the integral F' for large ) is available: it is an extension of the standard stationary
phase approximation that takes into account the fact that the action S is complex [?]. A key role is played
by critical points, i.e. stationary points z¢ for which the real part of the action vanishes, ReS(zg) = 0.
Here we assume that there is a unique critical point. Then the asymptotic expansion of F(\) for large A
is given by

(o § pilnd H ,\S(xo) 1,1,, L
P = (5) e (70 + 5 GG D)+ ot (460

with fj5 = 9°f/02'0x7 and Ind H is the index'? of the Hessian. The term D does not contain second
derivatives of f, it contains only?® f(z¢) and f/(x¢). Now we consider three smooth complex-valued
functions g, h and p. A connected 2-point function relative to the insertions g and A and w.r.t. the
measure u is defined as

_ [ da p(z) g(x)h(z) @) _ Jdwpu(z)g(z) e [ dx p(x) h(z) ) . (462)

G
[ dz p(z) erS@) [ dz p(z) e}S@) [ dz p(z) e}S@)

Using (460) it is straightforward to show that the (leading order) asymptotic formula for the connected
2-point function is simply

G = (H™1)7 gj(wo) j(wo) +O(3) - (463)

""The index is defined in terms of the eigenvalues of i of the Hessian as Ind H = 1 3, arg(hy) with —Z < arg(hx) < +3.
20More explicitly, the term D is given by

D = fi(wo) Rjiu(wo) (H ™) (H™H)™ + gf(l’o)Ré’;"k(ﬂfo)Riﬁnz(wo)(H_l)im(H_l)j"(H_l)“ (461)

with R(z) = S(z) — S(wo) — 3 Hij(zo)(x — 20)"(x — o).
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Notice that both the measure function p and the disconnected term D do not appear in the leading term
of the connected 2-point function; nevertheless they are present in the higher orders (loop contributions).
The reason we are considering the quantity G, built from integrals of the type (459), is that the LQG
propagator has exactly this form. Specifically, in sections 10.9 we determine the critical points of the total
action, in 10.10 we compute the Hessian of the total action and the derivative of the insertions evaluated
at the critical points, and in 10.12 we state our result.

10.9 Critical points of the total action
The real part of the total action is given by

ReS, — — Re o) (@) (cd) Jab — J0ab Jed — jOcd+ 164

ot agc:d( ) V ]Oab V ]Ocd ( )
R nab) R 7’Lba R nab) (R;_nba)

+ Zﬂab 5 + Z] log - 5 : (465)

Therefore, having assumed that the matrix « in the boundary state has positive definite real part, we have
that the real part of the total action is negative or vanishing, ReSi,; < 0. In particular the total action
vanishes for the configuration of spins jq, and group elements gF satisfying

jab = jOab s (466)
gF such that REng(j) = —Rfnpa(j) - (467)

Now we study the stationary points of the total action and show that there is a unique stationary
point for which ReSiot vanishes.

The analysis of stationary points of the action ST +.5~ with respect to variations of the group variables
gF has been performed in full detail by Barrett et al. in [147]. Here we briefly summarize their result
as they apply unchanged to the total action. We invite the reader to look at the original reference for a
detailed derivation and a geometrical interpretation of the result.

The requirement that the variation of the total action with respect to the group variables gflt vanishes,
dgStot = 0, leads to the two sets of equations (respectively for the real and the imaginary part of the
variation):

Z] 7 R Nab — Rl:)tnba o 4 (Rgnab) X (Rl:,tnba)
Qa 1 .

=0 ’ Ja =0. (468)
(Ranap) - (Ry mva) *1— (Rana) - (Rfns)

b#a b#a
When evaluated at the maximum point (467), these two sets of equations are trivially satisfied. Infact
the normals 7y, in the boundary state are chosen to satisfy the closure condition (406) at each node.
Therefore the critical points in the group variables are given by all the solutions of equation (467).

For normals 7i,, which define non-degenerate tetrahedra and satisfy the continuity condition (410),
the equation Rgnge, = —Rpnpe admits two distinct sets of solutions, up to global rotations. These two sets
are related by parity. The two sets can be lifted to SU(2). We call them g} and g, . Out of them, four
classes of solutions for the couple (g7, g, ) can be found. They are given by

(G4.92), (Ga.38), @90, (32.32) - (469)
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The geometrical interpretation is the following. The couples (JapTab, jabTap) are interpreted as the selfdual
and anti-selfdual parts (with respect to some “time" direction, e.g. (0,0,0,1)) of area bivectors associated
to triangles in 4-dimensions; since these bivectors are diagonal, they live in the 3-dimensional subspace of
R* orthogonal to the chosen “time” direction. Because of the closure condition (406), for a fixed n the four
bivectors (jnafina, JnaTna) define an embedding of a tetrahedron in R*. The two group elements gj[ and
go of the action (437) define an SO(4) element which rotates the “initial” tetrahedron. The system (467) is
a gluing condition between tetrahedra. The first two classes of solutions in (469) glue five tetrahedra into
two Euclidean non-degenerate 4-simplices related by a reflection, while the second two classes correspond
to degenerate configurations with the 4-simplex living in the three-dimensional plane orthogonal to the
chosen “time” direction.

The evaluation of the action S(jap, 97,95 ) = ST (Jab, 97) + S~ (Jab, g5 ) on the four classes of critical
points gives

S(Jabs 9a »9a ) = + Sregge(Jab) (470)
S(Jabs G »9a ) = — Sregge(Jab) (471)
S(Jabs G4 Gd) = + 7" Shegge (Jab) » (472)
S(Jabs Ga +Ga ) = =" Shegge (Jab) » (473)

where Sgegge (Jab) is Regge action for a single 4-simplex with triangle areas A,y = vjqp and dihedral angles
@ap(J) written in terms of the areas

SRegge Jab Z 7]ab¢ab (474)

Now we focus on stationarity of the total action with respect to variations of the spin labels j,;. We
fix the group elements (g;, g, ) to belong to one of the four classes (469). For the first class we find

aS‘cot ab) Cd) d - jOcd) 8SRegg;e
0= — E gz§ — 475
Ojab (ﬁi@; V. JoabV Joed Ojab ( )

The quantity OSRegge/0Jap is v times the extrinsic curvature at the triangle fq of the boundary of a
4-simplex with triangle areas A, = Yjqb. As the phase gbgb in the boundary state is choosen to be exactly
v times the extrinsic curvature, we have that equation (475) vanishes for ju» = joap- Notice that, besides
being a stationary point, this is also a critical point of the total action as stated in (466).

On the other hand, if equation (475) is evaluated on group elements belonging to the classes (g, 3. ),
(G.,3.), (GF,3F), we have that there is no cancellation of phases and therefore no stationary point with
respect to variations of spins. This is the feature of the phase of the boundary state: it selects a classical
contribution to the asymptotics of a spin foam model, a fact first noticed by Rovelli for the Barrett-Crane
model in [91].

10.10 Hesstan of the total action and derivatives of the insertions

Here we compute the Hessian matrix of the total action Sio at the critical point jup = Joas, (97,9, ) =
(g.5,9,). We introduce a local chart of coordinates (p;,p, ) in a neighborhood of the point (g}, g, ) on
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SU(2) x SU(2). The parametrization is defined as follows: we introduce
9a (02) = h(p2) Ga (476)

with h(pF) = /1 — |pi|2 +ipF-&. The vector fiF is assumed to be in a neighborhood of the origin, which

corresponds to the critical point gF. We introduce also the notation n;

nE = Rin, (477)
where R is the rotation associated to the SU(2) group element g-. The bivectors (jabn;fb, Jabn,,) have
the geometrical interpretation of area bivectors associated to the triangles of a 4-simplex with faces of
area proportional to jgp.

The Hessian matrix is obtained computing second derivatives of the total action with respect to jup,
pl and p,, and evaluating it at the point ju = joap and pjf = 0. With this definitions we have that the
(gauge-fixed) Hessian matrix is a (10+ 12+ 12) x (104 124 12) matrix (as it does not contain derivatives
w.r.t. gF) and has the following structure:

% 0120><12 O10x12
St = | O12x10 3?D+S§;’f+ O12x12 (478)
2
O12x10  O12x12 62_5522
as
9%S 925
el =0, =] =0, (479)
P | DjanOPLT |5
For the non-vanishing entries we find
825t0t a(ab)(Cd) "
D = DDl Voo e (450)
p:
HE %S = 2 jous (07 — niTpiE 4 jcikpkt) (481)
(ai)(bj) — opiopi=| 7" J0ab ab ab ab ) >
=0
2
Higiyai) = Liismt'i = 27" ) jow (67 —nignly) . (482)
8pa ap‘]]‘ p=0 b#a

where we have defined the 10x10 matrix of second derivatives of the Regge action

2
0 SRegge

- - 483
8]aba]cd ( )

(Sﬁegge ) (ab)(cd) =

Joab
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We report also the first derivatives of the insertion ¢2°(g+, g7) evaluated at the critical point:

dq® ) L L L .

8ﬁ1 = 2727i30na]0nb(n?§b — Npa " Nnp nia +1 n7:|l:a X nfb) ) (484)
a 1p=0

dqgy’ 0 I S I S as -

aﬁi = =1y ]OnaJOnb(nna + nnb)(l — Nna - nnb) ) (485)
n 17:0

aqf;b _ 72 a(jnaﬁna ' jnbﬁnb) (486)

Ojed p=0 Ojed Joab

We recall that in all these expressions the normals 714, are functions of jg as explained in section 10.1.
These expressions will be used in section 10.12 to compute the leading order of the LQG propagator.

10.11 Expectation value of metric operators

Before focusing on the LQG propagator, i.e. on the two-point function, here we briefly discuss the one-
point function (E? - E?). Tts meaning is the dynamical expectation value of the metric operator. The
fact that it is non-vanishing provides the background for the propagator. Using the technique developed
in the previous sections we can compute it at the leading order in the large spin expansion. We use the
integral formula for the metric operator (438)-(439) and the stationary phase analysis of section 10.6 and
find that the expectation value of the metric operator is simply given by the evaluation of the insertion
q®(g*,g7) at the critical point

(En-Ep)=a(9"97)] . +0O(o) (487)
Joab:g".g
For the diagonal components a = b we have that the insertion is simply given by ¢%* = (7Vjna)? so that its
evaluation at the critical point gives the area square of the triangle f,,. For the off-diagonal components
we have that ¢%® = A% - A% where A% is given in equation (449). Its evaluation at the critical point can
be easily found using equation (467) in expression (449). We find

Al = At .+ A = 'Vj(;rnaﬁna(jo) +7janaﬁna(j0) = 'VjOnaﬁna(jO) (488)
Joab:gT.g~ Joab,g " Joab,g~

so that A" at the critical point evaluates to the classical value Egd = YJjonaTna(Jo), the normal to the face

a of the tetrahedron n (normalized to the area of the face). It is the classical counterpart of the operator

(E2)". Therefore we have that at the leading order the expectation value of the off-diagonal components
is given by the dihedral angle between two faces of a tetrahedron

<EZ : Ef) = ngcl : Ezcl + O(]O)
= v jonadons fina(Jo) - fins (Go) + O(jo) - (489)

They have the expected geometrical meaning. We observe that the same quantities computed with the
Barrett-Crane spinfoam dynamics do not show the right behavior when the off-diagonal components of
the metric operator are considered.
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Using the same technique we can evaluate the leading order of the two-point function. We have that

Eb ETCnc] glcl + O(.]g) . (490)

ncl

(Bo-Eb BE,-EL) = B2,
The quantity we are specifically interested in in this chapter is the connected two-point function. It is
of order O(j), therefore it requires the next-to-leading orders in equations (489) and (490). Such orders
depend on the measure p(j). However in the computation of the connected part, these contributions
cancel. The technique we use in next section for the calculation of the connected two-point function is the
one introduced in section (10.8) and captures directly the leading order.

10.12 LQG propagator: the leading order

We have defined the LQG propagator as the connected two-point function G4 = (E¢ - Eb E¢, - E4) —
(B2 - Eb) (ES, - EL). Using the integral formula (438)-(439) and the result (463) for the asymptotics
of connected two-point functions, we can compute the LQG propagator in terms of (the inverse of) the
Hessian of the total action and of the derivative of the metric operator insertions at the critical point.
These two ingredients are computed in section 10.10. Using them, we find that the LQG propagator is
given by

b a cd
Gi(@) = 3" Qi) Iy

Pars a]’pq Ojrs
8qab ach 1 8qab ach
+ Z Z 7‘1 (sk) '7 k + (H ) ri)(sk ZTL* l;n—
r,s=2 1 k= l< 8 +8 " ot )apr aps )
+0(j3) (491)

where all the terms appearing in this expression are defined in section 10.10. From this expression we can
extract the dependence on the boundary spin jp and on the Immirzi parameter v. We notice that the

combinations
- p<;<sc2(pq - a]pz gjd (492)
K iy 33 (5 o S L S ) o
ybed — 27 7 TSEQMZ1< ;1 )(sk) nga{ de ,Yl_ (H _)(ﬁ)(skz) 2;? ggg) ; (494)

are in fact independent from jg and from ~. In terms of these quantities we have that the LQG propagator
has the following structure

Grml(a) = (740)° (R (@) + v X + 47V + O(j5) (495)
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where the dependence on vy and on jo has been made explicit now. The matrices R4, X abed ynd Y abed can

nm
be evaluated algebraically. Only the matrix R%l;‘;d depends on the three parameters ag, a1, a2 appearing
on the boundary state. We find that

Cc1 C3 C3 C3 C; Cg C3 Cg Cy
C3 Cy C4 Cy C3 Cg Ce C4 Cp
C3 C4 C9 Cg Cg C4 C; Cg C3
C3 C5 Cg Cy C3 C4 C4 Cg Cg
Rgll;,cld = C; C3 Cg cC3 C1 C3 Cg C3 Cjy (496)
Ce Cg C4 Cq4 C3 C9 Cg C; C3
C3 Cg Ch C4 Cg Cg Cy C4 C3
Cg C4 Cg cg C3 Cx c4 C2 C3
C; Cg C3 Cg C5 C3 Cc3 C3 (1
where
2
ca=40 , ca=4B2 , c3= -3 (260 — 361 +382) , (497)
1 1 1
Cq4 = g (Sﬁo — 12ﬁ1) , C5 = § (49ﬁ0 — 93ﬁ1 + 48ﬁ2) , Cg = —§ (2360 — 42ﬁ1 + 1552) s (498)
and?!
1 1 32 )
L 4 — , 501
o 10 ( ao +6a1 + 302 —8ap — 8ay + 16a + V15 ap — 20 + as + i\/15) (501
1 3 16 )
b 30 ( ag +6ay + 32 —8ag — 8aq + 16as +ivV15 g — 201 + an + i\/15> (502)
1 3 64 5
b= (- - —_— ) e
30 ag + 61 + 302 —8ag — 8oy + 16a +ivV15  ag — 2aq + o +iV/15

The matrices X4 and Y,2°d turn out to be proportional

ngfbd — lZabcd ’ Yﬁ,?fd = 4 \ 15Zag§d 7 (504)

36 "™ 36 "

21'We notice that the inverse of the matrix Q(ab)(cd) can be written in terms of the parameters [y using the formalism (421)
introduced in section 10.1,

2
(@ =3 i re (20
k=0

The matrix Qap)(cq) is defined in equation (480) and is given by
12
Q(ab)(cd) . Z(ihk _ ak)Plgab)@d) , (500)
k=0

. g : E E
with ho = —2 g,hlzg\/g,fm:_ oy
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with the matrix Z3%¢ given by
000 0 —1 €5 0 e’z -1
000 -1 0 e’z e’ 0 €3
0 00 e's e"% 0 -1 eig 0
0 -1 €5 000 0 e i3
Zabed — -1 0 '3 000 s 0 -1 (505)
s e300 00 0) es -1 0
0 e'5 -1 0 €3 e'3 000
e’ 0 €3 s 0 -1 000
-1 e’% 0 e_i% -1 0 000

This is the main result of the chapter, the scaling and the tensorial structure of metric correlations in
LQG. In the following we collect some remarks on this result:

The LQG propagator scales as jg, as expected for correlations of objects with dimensions of area
square, Eff - B} ~ (7jo)*.

The off-diagonal components are not suppressed as happened for the Barrett-Crane model [79, 94]
and have the same scaling as the diagonal ones.

The contribution R%¢? in (495) matches exactly with the matrix of correlations of areas and angles
computed in perturbative quantum Regge calculus with a boundary state as done in [135].

On the other hand, the “y-terms’ in (495), yX20ed 1 42y abed are new and proper of the spin foam
model. They come from SU(2) x SU(2) “group” fluctuations. They don’t contribute to area-area
correlations, nor to area-angle correlations. On the other hand, their contribution to angle-angle

correlations is non-trivial.

In the limit v — 0 and jp — oo with vjp = const = Ag, only the Regge contribution survives. It
is interesting to notice that the same limit was considered in [?] in the context of loop quantum
cosmology.

The ‘y-terms’ have an interesting feature that we now describe. Let us focus on the tensorial

components Gy = G§%4)(45) and G5 = G§325)(45). They are related by a permutation of the vertices 4

and 5, keeping the other three vertices fixed. The ‘Regge-term’ is invariant under this permutation,

Rgl)(%) = RgS)(%). On the other hand the ‘y-terms’ are not. In particular we have that

AXEII a2y @I _ o (GO |2y, 6009))

12 (506)

2
+7 ¥
It would be interesting to identify the origin of the phase %’r We notice that the permutation of the
vertex 4 with the vertex 5 of the boundary spin-network corresponds to a parity transformation of

the four-simplex. In this sense the ‘“y-terms’ are parity violating.

In next section we investigate the relation of the result found with the graviton propagator computed
in perturbative quantum field theory.
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10.13 Comparison with perturbative quantum gravity

The motivation for studying the LQG propagator comes from the fact that it probes a regime of the
theory where predictions can be compared to the ones obtained perturbatively in a quantum field theory
of gravitons on flat space [132, 133, 134|. Therefore it is interesting to investigate this relation already at
the preliminary level of a single spin foam vertex studied in this chapter. In this section we investigate
this relation within the setting discussed in [79, 94, 95].

In perturbative quantum gravity??, the graviton propagator in the harmonic gauge is given by

—1
<hMV(x)hPU(y)> = ‘2 (6up51/a + 6u051/p - 5uV6pa)- (507)

2lr —y
Correlations of geometrical quantities can be computed perturbatively in terms of the graviton propagator.
For instance the angle at a point z,, between two intersecting surfaces fnq and fp is given by?3

qub = guu(xn)gpa(xn)Bﬁg(xn) b (Tn) (508)

where B* is the bivector associated to the surface?*. As a result the angle fluctuation can be written in

terms of the graviton field
5(];;() = hyw () (Tgb)w ) (510)
where we have defined the tensor (T9°)" = 26,, Bh% (x,)BYd(x,). The angle correlation (G9) s is
simply given by
(GrmDate = (P (@) oo () (T30) (T5)P . (511)
In particular, this quantity can be computed for couples of surfaces identified by triangles of area Ag living

on the boundary of a regular Euclidean 4-simplex. This quantity has been computed in [94] and we report
it here for reference,

~16 6 6 6 4 -7 6 -7 4

6 —28 16 4 6 -7 7 16 -7

6 16 —28 7 -7 16 4 -7 6

Y 6 4 -7 —28 6 16 16 -7 -7

(G;‘;?;d) S 4 6 -7 6 —16 6 7 6 4
i 18v/3 x 512 -7 -7 16 16 6 —28 -7 4 6

6 -7 4 16 -7 -7 28 16 6

-7 16 -7 -7 6 4 16 -28 6
4 -7 6 7 4 6 6 6 —16

The question we want to answer here is if the quantity (G2%),q and the leading order of the LQG
propagator given by equation (495) can match. As we can identify vjo with the area Ag, we have that the

*2Here we consider the Euclidean case.

Z3We thank E. Alesci for a discussion on this point.

24To be more specific, we consider local coordinates (o', o%) for a surface ¢ and call t* (o) its embedding in the 4d manifold.
The bivector B (x) is defined as
_ 8t'u atu Otﬁ
= 902 9B

B (x) (509)
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two have the same scaling. The non-trivial part of the matching is the tensorial structure. Despite the
fact that we have 9 x 9 tensorial components, only six of them are independent as the others are related by
symmetries of the configuration we are considering. On the other hand the semiclassical boundary state
|Wo) we used in the LQG calculation has only three free parameters, g, aq, ag. Therefore we can ask if
there is a choice of these 3 parameters such that we can satisfy the 6 independent equations given by the
matching condition

(Gaet(@)) = (Gaet) . (512)

lqg qft

We find that a solution in terms of the parameters oy, can be found only in the limit of vanishing Immirzi
parameter, keeping constant the product vjo = Ag. In this limit we find a unique solution for ay, given by

1

g = ﬁ(495616\/5 — 45V1514) , (513)
1

o = %(—299008\& +35V/154) , (514)
1

g = —(31744v/3 — 5V/1514) . (515)

25

Therefore the matching condition (512) can be satisfied, at least in the specific limit considered. Having
found a non-trivial solution, it is interesting to study the real part of the matrix alab)(ed) in order to
determine if it is positive definite. Its eigenvalues (with the associated degeneracy) are

A5 =9216V3, deg=5, (516)
4608+/3
Ay = 5\f , deg=4, (517)
10243
A= — 5‘[, deg =1. (518)

We notice that all the eigenvalues are positive except one, A\;. The corresponding eigenvector represents
conformal rescalings of the boundary state, joap — Ajoap- It would be interesting to determine its origin
and to understand how the result depends on the choice of gauge made for the graviton propagator (507).
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11 Conclusions and outlook

In this last part we want to discuss and put in the light of a future research some of the original results
contained in this thesis. We have presented, unfortunately in a very concise and partial way, the theory of
Loop Quantum Gravity and its tentative covariant version given by Spin Foams. We showed preliminary
indications in favor of the good semiclassical limit of the new EPRL Spin Foam Model, through the
new technique of the propagation of wave-packets and through the asymptotic analysis of the fusion
coefficients. The main result in this thesis is the calculation of the graviton propagator in the new model
and its comparison with the one of perturbative quantum gravity, but we would like to emphasize the
importance of semiclassical states in the calculation, and start our discussion from these.

We have presented a proposal of coherent states for Loop Quantum Gravity and shown that, in a
specific limit, they reproduce the states used in the Spin Foam framework. Moreover, these states coincide
with Thiemann’s complexifier coherent states with the natural choice of complexifier operator, a rather
specific choice of heat-kernel time and a clear geometrical interpretation for their SL(2, C) labels. Coherent
spin-networks are candidate semiclassical states for full Loop Quantum Gravity. Given a space-time metric
(for instance the Minkowski or de Sitter ones), we can identify an intrinsic and extrinsic metric on a spatial
slice 2. Then, we can consider a cellular decomposition of 3 and a graph I' embedded in ¥ and dual to
the decomposition. The data captured by the graph is easy to determine: we can smear the Ashtekar-
Barbero connection on links of the graph and the electric field on surfaces dual to links. This procedure
determines a finite amount of data that can be used as labels for the coherent state. In the case of
a simplicial decomposition, we know that this data correspond to a Regge geometry with dislocations.
These geometries are studied in [100] and are called ‘twisted’.

The remarkable fact that, in the large spin limit, the states we consider reproduce the Livine-Speziale
coherent intertwiners on nodes guaranties that they are actually peaked on a classical expectation value of
non-commuting geometric operators. For instance, we know that the expectation value of the volume of
a region containing a 4-valent node is given by the classical volume of an Euclidean tetrahedron with the
normals to faces and the areas as prescribed by the labels of the coherent spin-network. What needs to
be better understood is the relation and the origin of the tension with the results of Flori and Thiemann
[109, 110] where they claim that only nodes of valency 6 can have a semiclassical behavior.

Coherent spin-networks are coherent in the strict mathematical sense, because they form an overcom-
plete basis of the kinematical Loop Quantum Gravity Hilbert space Kr on a fixed graph I, are eigenstates
of suitable annihilation operators, and saturate Heisenberg uncerty relations. An aspect that needs further
investigation regards the redundancy of the labels of these states. The situation is analogous to the one
of the labels of the Livine-Speziale coherent intertwiners (four unit-normals) [56] as opposed to the con-
strained labels of the same states obtained by Conradi and Freidel via geometric quantization of a classical
tetrahedron [97, 98]. Similarly, it is possible that the coherent states obtained via geometric quantization
of the phase space of LQG associated to a graph actually coincide with a subset of the coherent states in-
troduced here via heat-kernel methods. This would be an instance of Guillemin-Sternberg’s ‘quantization
commutes with reduction’ statement. Notice that the situation here is slightly more involved: geometric
quantization seemingly knows nothing about heat kernels. Nevertheless, explicit computations by Hall
[115] show that amazingly the two approaches give precisely the same coherent states in all the studied
cases. This aspect deserves to be understood better.

A surprising property of the states we have discussed is that they bring together so many (apparently
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conflicting) ideas that have been proposed in the search for semiclassical states in Loop Quantum Gravity.
We consider this convergence to be a measure of the robustness of the theory. In particular, the convergence
makes stronger the semiclassical calculations done in Spin Foams.

Now we discuss our calculation of the correlation functions of metric operators in Loop Quantum
Gravity. The analysis presented involves two distinct ingredients:

e The first is a setting for defining correlation functions. The setting is the general boundary formal-
ism. It involves a boundary semiclassical state |¥o) which identifies the regime of interest, LQG
operators E¢ - EY which probe the quantum geometry on the boundary, a spin foam model (W|
which implements the dynamics. The formalism allows to define semiclassical correlation functions
in a background-independent context.

e The second ingredient consists in an approximation scheme applied to the quantity defined above. It
involves a vertex expansion and a large spin expansion. It allows to estimate the correlation functions
explicitly. The explicit result can then be compared to the graviton propagator of perturbative
quantum gravity. We focused on the lowest order in the vertex expansion and the leading order in
the large spin expansion.

The results found can be summarized as follows:

1. In section 10.1 we have introduced a semiclassical state |¥¢) peaked on the intrinsic and the extrinsic
geometry of the boundary of a regular Euclidean 4-simplex. The technique used to build this state
is the following: (i) we use the coherent intertwiners introduced in [56, 97| to label spin-network
nodes as in [147]; (ii) we choose the normals labelling intertwiners so that they are compatible with
a simplicial 3-geometry (410). This addresses the issue of discontinuous lengths identified in [155];
(iii) then we take a gaussian superposition over coherent spin-networks in order to peak on extrinsic
curvature as in [91, 92]. This state is an improvement of the ansatz used in [79, 94, 95|, as it depends
only on the three free parameters ag, ai, as.

2. In section 10.3 we have defined expectation values of geometric observables on a semiclassical state.
The LQG propagator is defined in equation (429) as a connected correlation function for the product
of two metric operators

Gl =By E, Ey,-Ey,) — (By-Bp) (Ep,-Ey) (519)

This is the object that in principle can be compared to the graviton propagator on flat space: the
background is coded in the expectation value of the geometric operators and the propagator measures
correlations of fluctuations over this background.

3. In section 10.5 we have introduced a technique which allows to write LQG metric operators as
insertions in a SO(4) group integral. It can be interpreted as the covariant version of the LQG
operators. The formalism works for arbitrary fixed triangulation. Having an integral formula for
expectation values and correlations of metric operators allows to formulate the large spin expansion
as a stationary phase approximation. The problem is studied in detail restricting attention to the
lowest order in the vertex expansion, i.e. at the single-vertex level.
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4. The analysis of the large spin asymptotics is performed in section 10.6. The technique used is the one
introduced by Barrett et al in [147]. There, the large spin asymptotics of the boundary amplitude
of a coherent spin-network is studied and four distinct critical points are found to contribute to the
asymptotics. Two of them are related to different orientations of a 4-simplex. The other two come
from selfdual configurations. Here, our boundary state is peaked also on extrinsic curvature. The
feature of this boundary state is that it selects only one of the critical points, extracting exp t.SRregge
from the asymptotics of the EPRL spin foam vertex. This is a realization of the mechanism first
identified by Rovelli in [91] for the Barrett-Crane model.

6. In 10.11 we compute expectation values of LQG metric operators at leading order and find that they
reproduce the intrinsic geometry of the boundary of a regular 4-simplex.

7. Computing correlations of geometric operators requires going beyond the leading order in the large
spin expansion. In section 10.8 we derive a formula for computing directly the connected two-point
correlation function to the lowest non-trivial order in the large spin expansion. The formula is used
in section 10.10.

8. The result of the calculation, the LQG propagator, is presented in section 10.12. We find that the
result is the sum of two terms: a “Regge term” and a “y-term”. The Regge term coincides with
the correlations of areas and angles computed in Regge calculus with a boundary state [135]. It
comes from correlations of fluctuations of the spin variables and depends on the parameters oy of
the boundary state. The “y-term” comes from fluctuations of the SO(4) group variables. An explicit
algebraic calculation of the tensorial components of the LQG propagator is presented.

9. The LQG propagator can be compared to the graviton propagator. This is done in section 10.13.
We find that the LQG propagator has the correct scaling behaviour. The three parameters oy
appearing in the semiclassical boundary state can be chosen so that the tensorial structure of the
LQG propagator matches with the one of the graviton propagator. The matching is obtained in the
limit v — 0 with ~jg fixed.

Now we would like to put these results in perspective with respect to the problem of extracting the low
energy regime of Loop Quantum Gravity and Spin Foams (see in particular [160]).

Deriving the LQG propagator at the level of a single spin foam vertex is certainly only a first step.
Within the setting of a vertex expansion, an analysis of the LQG propagator for a finite number of spinfoam
vertices is needed. Some of the techniques developed generalize to this more general case. In particular
superpositions of coherent spin-networks can be used to build semiclassical states peaked on the intrinsic
and the extrinsic curvature of an arbitrary boundary Regge geometry. Moreover, the expression of the
LQG metric operator in terms of SO(4) group integrals presented here works for an arbitrary number of
spin foam vertices and allows to derive an integral representation of the LQG propagator in the general
case, analogous to the one of [146] but with non-trivial insertions. This representation is the appropriate
one for the analysis of the large spin asymptotics along the lines discussed for Regge calculus in [83]. The
non-trivial question which needs to be answered then is if the semiclassical boundary state is able to enforce
semiclassicality in the bulk. Another feature identified which appears to be general is that, besides the
expected Regge contribution, correlations of LQG metric operators have a non-Regge contribution which
is proper of the spin foam model. It would be interesting to investigate if this contribution propagates
when more than a single spin foam vertex is considered.
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