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Introduction

The polynomial interpolation problem is a subject that has been widely studied

for centuries. The classical interpolation theory in one variable says that a

polynomial f of a given degree d over a field K is uniquely determined by the

values it assumes at d + 1 distinct points of the affine line. The generality

of the points is not necessary, the only requirement is that they are distinct.

This is nothing else than Ruffini Theorem and it is based on the fact that the

Vandermonde determinant is not zero.

A first generalization is asking not only for values of the polynomial, but also

for values of its derivatives. These are linear problems in the vector space of

polynomial of degree d. Moreover this can be generalized at the case of more

than one variable. A polynomial f of degree at most d in r variables depends

on
(
r+d

r

)
parameters. Let p1, . . . , pn be points in the affine r-dimensional space

and m1, . . . , mn positive integers. We can impose the vanishing at pi of the

partial derivatives of f up to order mi − 1 or, in other words, that the point pi

has multiplicity at least mi for the hypersurface f = 0. If one chooses integers

r, d, m1, . . . , mn such that

n∑

i=1

(
mi + r − 1

r

)
=

(
r + d

r

)
,

i.e. such that the number of conditions imposed equals the number of param-

eters on which the polynomials depend, one may ask: is f ≡ 0? There is so

far no general answer to the question.

The interpolation problem can be reformulated in a different setting. Fix

p1, . . . , pn distinct points in Pr and fix m1, . . . , mn positive integers. Define

Lr,d to be the linear system of hypersurfaces of Pr of degree d and consider

L := Lr,d(−
n∑

i=1

mipi)

the sub-linear system of those divisors of Lr,d having multiplicity at least mi at

pi, i = 1, . . . , n. A divisor in Lr,d has equation f = 0; the assumption of having

multiplicity mi at pi is translated into the vanishing of all the derivatives of

v



vi Introduction

order mi − 1 of f , whose number is
(
r+mi−1

r

)
. Hence the virtual dimension of

L is defined to be

virt-dim(L ) :=

(
r + d

r

)
− 1 −

n∑

i=1

(
r + mi − 1

r

)
,

i.e. the number of parameters minus the number of conditions. The expected

dimension is defined to be

exp-dim(L ) := max{virt-dim(L ),−1}.

If the conditions imposed by the assigned points are not linearly independent,

the actual dimension of L is greater than the expected one: in that case we

say that L is special. Otherwise, if the actual and the expected dimension

coincide, we say that L is non-special.

Let Z be a scheme of lenght
∑

i

(
r+mi−1

r

)
given by n fat points. We have the

following restriction sequence

0 → L = Lr,d(m1, . . . , mn) → Lr,d → Lr,d|Z .

In cohomology we get

0 → H0(Pr, L ) → H0(Pr, Lr,d) → H0(Z,Lr,d|Z) → H1(Pr, L ) → 0,

being h1(Pr, Lr,d) = 0. Thus L is non-special if and only if

h0(Pr, L ) · h1(Pr, L ) = 0.

The dimensionality problem consists in investigating, given a linear system

L , if it is non-special. It coincides with the original polynomial interpolation

problem and it is open in general.

It is very important to observe that the dimensionality problem depends on

the position of the points in Pr. For example consider the linear system of

cubics of P2 with five base points lying on a line L. The expected dimension

is four. However, if a cubic curve vanishes at four points, then by Bezout’s

Theorem it must vanish along the whole line L, so the condition imposed by

the fifth point is not linearly independent from the conditions imposed by the

first four points. For this reason it is convenient to assume that the points

p1, . . . , pn are sufficiently general. On the other hand, the dimension of L is

upper-semicontinuous in the position of the points p1, . . . , pn ∈ Pr; it achieves

its minimum value when they are in general position. In this case we use the

following notation for the corresponding linear system:

L = Lr,d(m1, . . . , mn).
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For r = 1, the system L1,d(m1, . . . , nn) is always non-special. Furthermore,

if all the points have multiplicity one, i.e. m1 = · · · = mn = 1, the system

Lr,d(1
n) is also non-special, see Theorem 1. However, the problem becomes

more and more complicated in more variables and higher multiplicities, namely

if r ≥ 2 and m1, . . . , mn ≥ 2. What is known is essentially concentrated in

Theroem 2, a result due to J. Alexander and A. Hirschowitz. They classify the

special cases for r ≥ 2 and m1 = · · · = mn = 2. This theorem has an equiva-

lent formulation in terms of higher secant varieties of Veronese embedding of

projective spaces (see Theorem 3).

A natural approach to the dimensionality problem of linear systems is via

degenerations. Degenerations allow us to move the multiple base points of

the linear system in special position, arguing with a semicontinuity argument.

More precisely, if one finds a specialization of the points, which is good in the

sense that the corresponding limit linear system L0 is non-special, then also

the original one is non-special. Computing the limit linear system is in general

delicate. A. Hirchowitz in [25] elaborated a degeneration technique, which he

called la méthode d’Horace, consisting in making iterated specializations of as

many points as convenient on a fixed hyperplane and then applying induction

on the dimension and on the degree. To be more explicit, let L := Lr,d(2
n)

be the linear system of hypersurfaces of Pr of degree d singular at a collection

of n general points (m1 = · · · = mn = 2); the main idea of Hirschowitz was

to suppose that h of the n points have support on a fixed hyperplane π ⊆ Pr;

hence one gets the so called Castelnuovo exact sequence:

0 → Lr,d−1(2
n−h, 1h) → L → Lr−1,d(2

h),

where the h base points of the kernel system are the residual of the h dou-

ble points specialized on π. Thus, arguing by induction, if the two ex-

ternal systems are non-special with virtual dimension at least −1, which

means that one does not lose any condition in this restriction procedure, i.e.

h1(Pr, Lr,d−1(2
n−h, 1h)) = h1(π, Lr−1,d(2

n)) = 0, then the system L is non-

special too. Unfortunately, this methode does not cover all the possible situa-

tions. A refined version, the so called méthode d’Horace différentielle, gives a

general solution. The original proof, of about a hundred pages proposed by J.

Alexander and A. Hirschowitz, is contained in [1]-[3]-[4]-[5] and simplified in

[6].

In 2002, K. Chandler presented an easier proof of the Alexander-Hirschowitz

Interpolation Theorem (Theorem 2) for d ≥ 4 in [11]. She still uses the Ho-

race’s method, but exploiting subsequent specializations of part of the double

base points of the linear system to a hyperplane π. In this way the system

degree decreases by one and induction can be applied. In the case with degree

three, this method does not work because specializing to hyperplanes one must
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deal with quadrics that are special. Another problem with cubics is that each

of the lines joining pairs of points lies in the base locus of the linear system,

hence the standard approach can fail because these lines meet π. K. Chandler

transformed the obstruction caused by the presence of lines in the base locus

of cubic linear systems on an advantage and completed the proof of Theorem

2, see [12], solving also the case of cubics. The innovation was to specialize

some of the points onto a subspace L of codimension 2 and pairs of points on

hyperplanes containing L.

A recent improvement of this argument is due to M. C. Brambilla and G.

Ottaviani. In a beautiful paper ([8]) they offer a shorter proof of Theorem 2

in the case of d ≥ 4 and propose a new and simpler degeneration argument

in the cubic case. Their argument is similar to that of K. Chandler, but it

is more effective. Their main idea is to choose a subspace L of codimension

three, instead of two, on which they specialize the points. This choice really

simplifies the arithmetic side of the problem.

C. Ciliberto and R. Miranda in [19] and [20] used a different degeneration

construction, originally proposed by Z. Ran, see [31], to prove Theorem 2 in

the planar case. This approach consists essentially in degenerating the plane

to a reducible surface, with two components intersecting in a line, and simul-

taneously degenerating the linear system L = L2,d(2
n) to a linear system L0

obtained as fibered product of linear systems on the two components over the

restricted system on their intersection. The limit linear system L0 is some-

what easier than the original, in particular this degeneration argument allows

to use induction either on the degree or on the number of imposed multiple

points. This contruction provides a recursive formula for the dimension of L0

involving the dimensions of the systems on the two components.

In the first part of this thesis we generalize this approach to the case with

r ≥ 3 and we complete the proof of Theorem 2 with this method, exploiting

induction on both d and r. In Section 2.1 we explain our approach which

generalizes the one of C. Ciliberto and R. Miranda. It consists in blowing up

a point p ∈ Pr and twisting by an appropriate negative multiple of the ex-

ceptional divisor, obtaining a reducible central fiber which is the union of the

exceptional divisor P and the strict transform F of the blowing up of Pr at

p in the central fiber of a trivial family Pr × ∆ over a disc ∆, with a linear

system L such that L restricts to OPr(d) on any fiber. The two components

intersect along a (r − 1)-dimensional variety R that is isomorphic to Pr−1.

Then we specialize some nodes on F and the remaining on P and we study the

corresponding limit linear systems. This argument does not suffice to cover all

the cases, because of an arithmetic obstruction similar to the one that M. C.

Brambilla and G.Ottaviani met. Our idea is to perform furher degenerations

in order to handle these cases; the interested reader can find the details of the
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contructions in Section 2.2 and in Section 2.3.

A tricky point of this approach is the study of the transversality of the re-

strictions of the systems on the intersection of the two components. In the

planar case, C. Ciliberto and R. Miranda proved it using the finitness of the

set of inflection points of linear systems on P1 ([19], Proposition 3.1). In higher

dimension transversality is more complicated. In Section 2.1.4, 2.3 and in 3.3

we present our approach to this problem: if at least one of the two restricted

systems is a complete linear system, then we are able to compute by hand

the dimension of their intersection. Anyhow, this is not sufficient to finish the

proof of Theorem 2. For istance, it does not work in the cubic cases. The

solution to this obstacle is to blow up a codimension three subspace L of Pr,

instead of a point. This approach to the cubic case is not so different from the

one of M. C. Brambilla and G. Ottaviani; we propose it in Section 3.1.1.

Also the quartic case must be analysed separately. Indeed, twisting by a nega-

tive multiple of the exceptional component P of the central fiber, we get degree

two either in the linear system LP on P or in the kernel system of the restric-

tion map of LP to the intersection R. We show Theorem 2 for quartics in

Section 3.1.2 by induction on r, with a very geometric argument that exploits

the property of cubics of containing all the lines trought two distinct double

points.

In Chapter 3 we apply all the techniques described in Chapter 2 and we com-

plete our proof of Theorem 2, for r ≥ 3. Before considering the higher dimen-

sional case, we analyse in details the linear systems L3,d(2
n) of surfaces of P3

with a general collection of double points, in order to make our work as clear

as possible to the reader.

Our construction besides its intrinsic intent (on the way we prove non-

speciality of some interesting systems, see Theorem 16) gives hope for further

extensions to greater multiplicities.

Let X ⊆ Pr be a projective, irreducible variety of dimension n. Its k-secant

variety Seck(X) is defined to be the closure of the union of all the Pk’s in Pr

meeting X in k + 1 independent points. The general question is the following:

if Seck(X) has the expected dimension (k +1)n+k, what is the number νk(X)

of (k + 1)-secant Pk’s to X intersecting a general subspace of codimension

(k + 1)n + k in Pr? Note that

νk(X) = deg(Seck(X)) · µk(X),

where µk(X) is defined to be the number of (k+1)-secant Pk’s passing through

the general point of Seck(X).

There is a long tradition within algebraic geometry that studies the dimension

and the degree of k-secant varieties. This is a problem which is unsolved in
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general. In the second part of our thesis we describe some partial results

obtained with a degeneration approach for projective toric surfaces, in the

cases k = 1 and k = 2. These results can be regarded as the beginning of a

similar study for the k-secant varieties of toric surfaces for k ≥ 3 and, in higher

dimension, for k ≥ 1.

The outline for the second part of this thesis is the following. In Chapter

4 we introduce the objects of our study: toric varieties, toric ideals and toric

degenerations. A convex lattice polytope P in Rn defines a toric variety XP

of dimension n endowed with an ample line bundle and therefore a morphism

in Pr, where r + 1 equals the number of reticular points of P . Some famil-

iar examples are Segre-Veronese embeddings, rational normal scrolls and Del

Pezzo surfaces of degree 6, 7, 8; all of them, and some further examples, have

ideals which are generated by quadrics (see Section 5.2); more precisely, the

ideal IX of X is given by the 2 × 2 minors of a suitable matrix A. The ideals

of the secant variety and of the higher secant varieties of X are strictly related

to IX , in fact the k-secant ideal I
{k}
X (see section 5.2 for a formal definition)

of the variety Seck(X) of the (k + 1)-secant Pk’s to X, for k ≥ 1, is generated

by the (k + 2) × (k + 2) minors of A or, in the scroll case, of another matrix.

Nevertheless, in general, there is only a little understanding of these ques-

tions. We exploit the knowledge of the defining ideals of these varieties and

of their k-secant varieties to approach the computation of the number νk for

any projective toric surface with dim Seck(X) = 3k + 2, for k = 1, 2, with a

combinatorial approach via degenerations.

A toric degeneration of XP is defined by a regular subdivision D of P in sub-

polytopes P1 . . . Pl of dimension n such that Pi ∩ Pj is a common face of Pi

and Pj (perhaps the empty face), such that

l⋃

i=1

Pi = P

and, furthermore, such that there exists an integral function F defined over P ,

which is piecewise linear over the sub-polytopes of D and strictly convex over

P . The central fiber X0 has l irreducible components that are the projective

toric varieties defined by the Pi’s.

Our approach to the problem of computing the number νk is the one of C.

Ciliberto, O. Dumitrescu and R. Miranda in [16] that is very close to that of

B. Sturmfels and B. Sullivant in [32]. In particular, if n = 2, we use planar

toric degeneration, i.e. we subdivide P in triangles having normalized area

equal to one. The ideal I0 of the central fiber is the monomial initial ideal

with respect to a suitable term order ≺ which corresponds to the triangulation

(see [33]):

I0 = in≺(IX)
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In Chapter 5 we define the k-secant varieties with particular attention to

the problem of the computation of the k-secant degree in the toric case; we

also introduce the notion of a k-delightful toric degeneration of a toric variety.

The basic setup was suggested by B. Sturmfels and B. Sillivant in [32]. In

particular they proved that if there exists at least one skew (k + 1)-sets, i.e.

a subset of (k + 1) triangles of D that are pairwise disjoint, then the k-secant

variety of X has the expected dimension. Moreover the number of such skew

(k + 1)-sets is a lower bound to the number νk(X):

νk(X) ≥ νk+1(D),

see Theorem 34. A planar toric degeneration D for which equality holds is said

to be k-delightful (according to [32] and [16]).

In Chapter 6 we apply these techniques and we expose our results. We

study non-k-delightful cases and we give a partial explanation to the lack of

k-delightfulness, improving the lower bound for νk given by the number of

skew (k + 1)-sets, for k = 1 and k = 2. The main tool is keeping into account

the singularities of the configuration D. Our original result is Theorem 35:

suppose that p is a reticular point in D such that the union of the triangles

having a vertex in p form a convex sub-polytope Qp of P ; for k ∈ {1, 2} we

exploit the knowledge of the toric surface Zp defined by Qp (cfr. Table 6.1

and Table 6.2) to prove that the number νk(Zp) contributes to νk(X), under

the hypothesis that dim(Seck(Zp)) = dim(Sec(X)) = 3k + 2. Moreover, if in

D there are more than one lattice point, {pi}i∈I , such that Qpi
is convex and

such that the Qpi
’s are pairwise not overlapping, i.e. dim(Qpi

∩Qpj
) < 2, then

the contributions of such singularities do not interfere to each other and all of

them contribute to νk(X).

The non-overlapping hypothesis is restrictive, in fact it prevents us from con-

sidering all the singularities of D. Indeed the reticular distance between two

lattice points pi and pj must be at least two, otherwise the corresponding

subpolytopes will have intersection of dimension 2. We conjecture that the

non-overlapping hypothesis may be removed and that all contributions may

sum up to νk+1(D) in the computation of νk(X), k = 1, 2 (Section 6.2).
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Part I

On the Alexander-Hirschowitz

Theorem

1





Chapter 1

Preliminaries on the

interpolation problem

We will work over an algebraically closed field K of characteristic zero. We

will denote by Pr the r-dimensional projective space over K.

1.1 Linear systems of hypersurfaces of Pr

Consider the linear system L := Lr,d(m
h1

1 , . . . , mhl

l ) consisting of hypersur-

faces of Pr of degree d with hi general points of multiplicity at least mi, for

i = 1 . . . , l. This system is said to be homogeneous if all the mi’s are equal.

The homogeneous polynomial of degree d in r + 1 variables form a projective

space of dimension (
r + d

r

)
− 1;

(
r + d

r

)
− 1 (1.1)

moreover, for a polynomial to have multiplicity at least mi at a point pi ∈ Pr

corresponds to (
mi − 1 + r

r

)

linear conditions imposed on the coefficients.

Definition 1. The virtual dimension of L is defined as

v(L ) = vr,d(m
h1

1 , . . . , mhl

l ) :=

(
r + d

r

)
− 1 −

l∑

i=1

hi

(
mi − 1 + r

r

)
.

The actual (projective) dimension of the linear system is at least −1, and

this is verified when the system is empty.

3



4 Preliminaries on the interpolation problem

Definition 2. The expected dimension of L is defined to be

e(L ) = er,d(m
h1

1 , . . . , mhl

l ) := max{−1, vr,d(m
h1

1 , . . . , mhl

l )}.

As the points vary in Pr, the dimension of the system is upper semicontin-

uous: there exists a Zariski open set in the parameter space of (
∑

hi)-tuples of

points where the dimension of the linear system achieves its minimum value;

we call it the (general) dimension of Lr,d(m
h1

1 , . . . , mhl

l ) and we denote it by

lr,d(m
h1

1 , . . . , mhl

l ). We have

lr,d(m
h1

1 , . . . , mhl

l ) ≥ er,d(m
h1

1 , . . . , mhl

l ); (1.2)

and equality implies the all the conditions imposed by the general points are

linearly independent.

Definition 3. The linear system L is said to be non-special if equality holds

in (1.2). Otherwise it is said to be special.

A linear system L on Pr is non-special if and only if

h0(Pr, L ) = h1(Pr, L ) = 0.

1.2 The Alexander-Hirschowitz Theorem

The general question is to compute the dimension of linear systems (see the

Introduction for a historical remark). In the multiplicity one case, i.e. for the

simple interpolation problem, there are no surprises; all such systems have the

expected dimension.

Theorem 1 (Multiplicity One Theorem). If n simple points are in general

position in Pr, then the system Lr,d(1
n) is non-special.

Proof. We prove the claim by induction on the number n of simple points. If

n = 1, there exists a hypersurface of Pr of degree d not passing through a gen-

eral point. For the inductive step we have to prove that an additional general

point imposes, on a not empty linear system, a linear condition independent

from the previous ones, or, equivalentely, that an additional general point does

not lie on every hypersurface of the system. This is surely true being the point

in general position.

In the cases of higher multiplicities, the problem of computing the dimen-

sion is still unsolved in general.

For the multiplicity two case, what is known is the following theorem, due to

J. Alexander and A. Hirschowitz, that classifies all special systems.
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Theorem 2 (Alexander-Hirschowitz). The linear system Lr,d(2
n) is non-

special except in the following cases:

r ∀ 2 3 4 4

d 2 4 4 4 3

n ≤ r 5 9 14 7

This theorem has an equivalent reformulation in terms of higher secant

varieties of Veronese embeddings. Let X ⊆ PN be a projective variety. The

k-secant variety Seck(X) of X is defined to be the Zariski closure of the union

of all the linear spans of p1, . . . , pk+1 independent points of X (cfr. Section

5.1). We have, counting parameters, that

dim(Seck(X)) ≤ min{(k + 1)n + k, N} =: exp-dim(Seck(X)).

The variety X is said to be k-defective if strict inequality holds; it is said to

be k-non-defective if equality holds.

The Veronese variety Vr,d is defined to be the image of the Veronese embedding

νr,d of degree d of Pr in the projective space of dimension
(
r+d

r

)
− 1.

Theorem 3. The (n− 1)-secant variety of the Veronese Vr,d is non-defective,

with the same list of exceptions of Theorem 2.

A hypersurface of Pr of degree d corresponds via the Veronese embedding

νr,d to a hyperplane section of Vr,d. Moreover, a hyperplane of Pr has a double

point at p ∈ Pr if and only if the corresponding hyperplane of P(r+d
r )−1 is

tangent to Vr,d at νr,d(p). Now, fix p1, . . . , pn general points in Pr and consider

the linear system Lr,d(2
n). It corresponds to the linear system of hyperplanes

P(r+d
r )−1 tangent to Vr,d at νr,d(p1), . . . , νr,d(pn). This linear system has as base

locus the general tangent space to Secn−1(Vr,d).

Lemma 4 (Terracini’s Lemma). Let X ⊆ PN be an irreducible, non-

degenerate, projective variety of dimension r. Let p1, . . . , pn general points

of X, with n ≤ N + 1. Then

TSecn−1(X),p =< TX,p1
, . . . , TX,pn >,

where p ∈< p1 . . . , pn > is a general point in Secn−1(X).

This proves the equivalence between Theorem 2 and Theorem 3.

Our aim is to propose a proof of Theorem 2, for r ≥ 3, generalizing the

degeneration tecniques introduced in [19] by C. Ciliberto and R. Miranda for

the planar case.



6 Preliminaries on the interpolation problem

1.2.1 The special cases

In this section we briefly describe the special cases of Theorem 2.

Quadrics of Pr

All linear systems of quadric hypersurfaces of Pr with at most r nodes are in

the list of special cases of Theorem 2.

The system L = Lr,d(2
2) consists of quadric cones with vertex containing the

double line through the two double points, so

dim(L ) =

(
r

2

)
− 1 > e(L ) = max{−1,

(
r + 2

r

)
− 1 − 2(r + 1)},

and h0(Pr, L ) =
(
r
2

)
, h1(Pr, L ) = 1.

The system L = Lr,2(2
r) contains only the double hyperplane of Pr deter-

mined by the r points:

dim(L ) = 0 > e(L ) = −1,

and h0(Pr, L ) = 1, h1(Pr, L ) =
(
r
2

)
.

An analogous description is available for n general points, with 2 < n < r: the

linear system

L = Lr,2(2
n)

consists of quadric cones with vertex containing the double (n−1)-dimensional

linear subspace of Pr determined by the n points: hence

dim(L ) =

(
r − n + 2

2

)
− 1 > e(L ),

h0(Pr, L ) =
(
r−n+2

2

)
, h1(Pr, L ) =

(
n
2

)
.

The system Lr,2(2
n), with n ≥ r +1, are empty, and in particular non-special.

Quartics in Pr, with r = 2, 3, 4

For r = 2, 3, 4, let n =
(
r+2
2

)
− 1. The linear system Lr,4(2

n) is expected to

be empty. Nevertheless it is special because there is a quartic singular at the

given points, i.e. the double quadric through them. Indeed the linear system

Lr,2(1
n) is non special by Theorem 1 and it has dimension 0.

Cubics of P4

Through a general collection of seven points in P4 there exists a quartic rational

normal curve described by the 2 × 2 minors of
(

x0 x1 x2 x3

x1 x2 x3 x4

)
,
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in some system of coordinates. Its secant variety is the cubic surface with

equation

det




x0 x1 x2

x1 x2 x3

x2 x3 x4


 = 0;

it is singular along the whole curve and in particular at the seven points. Thus

L4,3(2
7) is special, having virtual dimension equal to −1.

The important remark that we must do is that for each special system

Lr,d(2
n), the general section of it is singular along a positive dimensional vari-

ety containing the double base points, as we have described above. This goes

back to Terracini (see [35]), but has been more recentely proved by C. Ciliberto

and A. Hirschowitz in [17].

Lemma 5. Let X be a projective variety and p1, . . . , pn ∈ X general points.

Let L be any a linear system on X. If L (−2
∑n

i=1 pi) is special, then every

section of L (−2
∑n

i=1 pi) is singular along a positive dimensional variety on

which p1, . . . , pn are supported.



8 Preliminaries on the interpolation problem



Chapter 2

The degeneration inductive

approach

Definition 4. A 1-dimensional degeneration is a morphism π2 : X → ∆,

where ∆ is a complex disc centered at the origin, X is a smooth (r + 1)-fold

and π2 is a proper and flat map.

For every t ∈ ∆ we will denote the fiber of π2 over t by Xt = π2
−1(t).

In a 1-dimensional degeneration of varieties of dimension r all the fibers

have dimension r, while the family X has dimension r + 1.

The reason to use degeneration is to exploit semicontinuity. If one can prove

that a property is satisfied in the central fiber, i.e. the degenerate object, then

one can obtain an inequality about the general fiber, i.e. the degenerating

object. In our cases, we will study non-speciality of a given linear system Lt

on the general fiber. Semicontinuity will give us the following inequality

dim(L0) ≥ dim(Lt),

where L0 is the limiting system. In this chapter we will see how this success-

fully gives us informations about the dimension of Lt.

2.1 The first degeneration of linear systems

We will generalize to higher dimension the degeneration technique introduced

by C. Ciliberto and R. Miranda in [19] for homogeneous planar linear systems,

that essentially consists in using a degeneration worked out by Z. Ran in [31].

More precisely, we will degenerate Pr to a reducible variety and we will study

how a linear system on the general fiber degenerates. The limiting system will

be easier than the general one, and this will enable us to use induction.

Let ∆ be a complex disc with center at the origin and consider the product

9
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V = Pr × ∆ with the natural projections p1 : V → Pr and p2 : V → ∆; let

Vt = Pr × {t} be the fiber of p2 over t ∈ ∆. Take a point (p, 0) in the central

fiber V0 and blow it up to obtain a new (r + 1)-fold X with the maps

• f : X → V,

• π1 = p1 ◦ f : X → Pr and

• π2 = p2 ◦ f : X → ∆.

We have the following commutative diagram:

X
f

//

π2

&&NNNNNNNNNNNNN

π1

--V p1

//

p2

��

Pr

∆

The so obtained flat morphism π2 : X → ∆, with fiber Xt = π−1
2 (t), t ∈ ∆,

produces a 1-dimensional degeneration of Pr. If t 6= 0 then Xt = Vt is a Pr,

while for t = 0 the fiber X0 is the union of the strict transform F of V0 and

the exceptional divisor P ∼= Pr of the blow-up. The two varieties P and F meet

transversally along a (r−1)-dimensional variety R which is isomorphic to Pr−1:

it represents a hyperplane on P and the exceptional divisor on F.

The Picard group of X0 is the fibered product of Pic(P) and Pic(F) over Pic(R).

The Picard group of P is generated by O(1), while the Picard group of F is

generated by the hyperplane class H and the class E of the exceptional divisor.

A line bundle N on X0 corresponds to two line bundles NF and NP, respectively

on F and on P, which agree on the intersection R. i.e. two line bundles of the

form

NP = OP(σ), and NF = OF(τH − σE),

for some σ and τ .

We degenerate the linear system O(d) on the general fiber of π2 as follows.

Take the line bundle

OX (d) = π∗
1(OPr(d)) :

its restriction on the general fiber Xt
∼= Pr is isomorphic to OPr(d), while on

the central fiber the restrictions to P and F are OP and OF(dH) respectively.

Now let us execute a twist by the bundle OX (−(d−k)P): the restriction to Xt

is still the same, while the restrictions to P and F become

OP(d − k) and OF(dH − (d − k)E);

the resulting line bundle on X0 is a flat limit of the bundle OPr(d) on the

general fiber. Such a limit is not unique.
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We now consider the homogeneus linear system Lt := L = Lr,d(2
n) of the

hypersurfaces of Pr of degree d with n assigned general points p1,t, . . . , pn,t of

equal multiplicity m = 2. Recall that it has virtual dimension

v(Lt) =

(
r + d

r

)
− 1 − n(r + 1).

Fix a non-negative integer b ≤ n and specialize b points generically on F and the

other n− b points generically on P: i.e. consider a flat family {p1,t . . . , pn,t}t∈∆

such that p1,0, . . . , pb,0 ∈ F and pb+1,0, . . . , pn,0 ∈ P; we consider these points

as limit of n general points in Xt
∼= Pr, for t → 0.

The limiting linear system L0 on X0 is formed by the divisors in the flat

limit of the bundle OPr(d) on the general fiber Xt, having multiplicity 2 at

p1,0, . . . , pn,0. This system restricts to F and to P to the following systems:

LP = Lr,d−k(2
n−b) and LF = Lr,d(d − k, 2b),

where the point of multiplicity d−k is the point p ∈ V0
∼= Pr which we blew up

to obtain F; we view F as a Pr blown up at a point and the corresponding line

bundle as a linear system of the same form as the others we are considering.

Definition 5. We say that the limit linear system L0 is obtained from L by

a (k, b)-degeneration.

At the level of vector spaces, the system L0 is the fibered product of LP

and LF over the restricted system on R which is OR(d − k): we have

W //

��

WP

��
WF

// H0(R,OR(d − k))

where WP and WF are the vector spaces from which one obtains the systems

LP and LF as projectivizations, and

W = WP ×H0(R,OR(d−k)) WF

is the fibered product of vector spaces which gives L0 as its projectivization.

An element of L consists either of a divisor SP on P and a divisor SF on F,

both satisfing the conditions imposed by the multiple points, which restrict to

the same divisor on R, or it is a divisor corresponding to a section of the bundle

which is identically zero on P (or on F) and which gives a general divisor in

LF (or in LP respectively) containing R as a component.

If we denote by l0 the dimension of L0 on X0, we have, by upper semicontinuity,

that l0 is at least the dimension of the linear system on the general fiber:

l0 ≥ dim(Lt) = lr,d(2
n).
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Lemma 6. In the above notation, if l0 = er,d(2
n), then the linear system L

has the expected dimension, i.e. it is non-special.

Let us consider the restriction exact sequences to R ∼= Pr−1 ⊂ Pr:

0 → L̂P → LP → RP ⊆ |OPr−1(d − k)|

0 → L̂F → LF → RF ⊆ |OPr−1(d − k)|,

where RP, RF denote the restrictions of the systems LP, LF to R and L̂P, L̂F

denote the kernel systems:

L̂P = Lr,d−k−1(2
n−b) and L̂F = Lr,d(d − k + 1, 2b).

The kernel L̂P consists of those sections of LP which vanish identically on R,

i.e. the divisors in LP containing R ∼= Pr−1 as component; the same holds for

L̂F.

We denote by vP, vF, v̂P, v̂F and by lP, lF, l̂P, l̂F the virtual and the actual

dimensions of the various linear systems. We have the following identities:

rP := dim(RP) = lP − l̂P − 1,

rF := dim(RF) = lF − l̂F − 1.

We want to compute the dimension l0 by recursion. The simplest cases occurs

when all the divisors in L0 come from a section which is identically zero on

one of the two components: in those cases the matching sections of the other

system must lie in the kernel of the restriction map.

Lemma 7. In the above notation, fixed n, d and b, we have that:

• if the system LP = ∅, then l0 = l̂F;

• if the system LF = ∅, then l0 = l̂P.

If, on the contrary, the divisors on L0 consist of a divisor on P and a divisor

on F, both not identically zero, which match on R, then the dimension of L0

depends on the dimension of the intersection

R := RP ∩ RF

of the restricted systems, being L0 obtained as fibered product. An element of

W is a pair (sP, sF) ∈ WP ×WF such that the restrictions of sP and sF coincide

on R:

W = {(sP, sF) : sP|R = sF|R}.

In other words, if WR is the vector space which corresponds to R, namely

P(WR) = R, then an element of W is obtained by taking an element sR of
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WR and choosing pre-images sP and sF of such an element in WP and WF:

the choice of sR depends on dim(R) + 1 parameters, and then the choice

of sP and sF depends on l̂P + 1 and l̂F + 1 parameters respectively. Thus

dim(W ) = dim(R) + l̂P + l̂F + 3 and, projectively,

l0 = dim(R) + l̂P + l̂F + 2. (2.1)

The crucial point is to compute the dimension of R, from which one obtains

l0. If the systems RP, RF ⊂ |OPr−1(d−k)| are transversal, i.e. if they intersect

properly inside |OPr−1(d − k)|, one can simply apply the Grassmann formula

for the dimension of the intersection R:

dim(R) =

{
−1 if rP + rF ≤

(
d+r−1−k

r−1

)
− 2

rP + rF −
(
d+r−1−k

r−1

)
+ 1 if rP + rF ≥

(
d+r−1−k

r−1

)
− 2

Notice that transversality holds if at least one between LP and LF cuts the

complete series on R.

2.1.1 Linear systems with virtual dimension v ≥ −1

In this section we will see how, under some hypothesis, a (1, b)-degeneration

can be used to prove non-speciality of a given linear system L = Lr,d(2
n),

d ≥ 4, with n such that the virtual dimension of L is at least −1, using the

recursive formula (2.1). If the system on the central fiber turns out to be non-

special, then, by semicontinuity, also our system L is non-special.

Proposition 8. Suppose that there exists an integer b, with 0 < b < n such

that:

1. the restricted systems RF and RP are transversal in |OPr−1(d − 1)|;

2. rP + rF ≥
(
r+d−2

r−1

)
− 2 (or, equivalently, l̂P + l̂F ≤ v − 1);

3. the systems LP and LF are non special with vP, vF ≥ −1.

Then L = Lr,d(2
n) is non-special with virtual dimension at least −1.

Proof. If RP and RF are transversal and if the second condition holds, then

the R = RP ∩ RF has dimension

r = rP + rF −

(
r + d − 2

r − 1

)
+ 1

Moreover if the third condition holds, we get
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l0 =

(
rP + rF −

(
r + d − 2

r − 1

)
+ 1

)
+ l̂P + l̂F + 2

= lP + lF −

(
r + d − 2

r − 1

)
+ 1

= vP + vF −

(
r + d − 2

r − 1

)
+ 1

= v.

2.1.2 Linear systems expected to be empty: v ≤ −1

In this section we will explain how, performing (1, b)-degenerations of Pr as

above, we can prove that L = Lr,d(2
n), with d ≥ 4 and virtual dimension

v ≤ −1, is empty.

Proposition 9. Suppose that there exists an integer b, with 0 < b < n such

that:

1. the kernel systems L̂P and L̂F are empty;

2. the restricted systems RP and RF do not intersect.

Then the system L is empty and therefore non-special.

Proof. We have

l0 = dim(RP ∩ RF) + l̂P + l̂F + 2 = −1.

So L is empty as expected.

2.1.3 Some useful lemmas

For what it concerns the analysis of the linear system on P and the relative

kernel system, we can exploit induction on d because they are linear systems

of hypersurfaces of lower degree with nodes. Actually this is the reason for

performing (1, b)-degenerations. However, in general the systems LF and L̂F

are unknown because of the presence of a point of greater multiplicity in their

base locus. This section is devoted to the study of such linear systems.

Let us begin with some preliminary results. Consider the linear system of

hypersurfaces of Pr of degree d; each element of this system is described by

the vanishing of a homogeneous polynomial f(x0, . . . , xr) of degree d in the

x0, . . . , xr’s. We can write:

f(x0, . . . , xr) =

d∑

i=0

xi
rfd−i(x0, . . . , xr−1),
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where the fi’s are homogeneous polynomials of degree d− i. Let p be the point

p = [0, . . . , 1] ∈ Pr; notice that the hypersurfaces of Pr of degree d having

multiplicity m at p can be written as follows

f(x0, . . . , xr) =
d−m∑

i=0

xi
rfd−i(x0, . . . , xr−1), (2.2)

in fact all partial derivatives of f up to order m − 1 must vanish at p.

Lemma 10. The linear system Lr,d(d, 2b) is either special of dimension

lr−1,d(2
b), or it is empty.

Proof. A hypersurface of Pr of degree d having multiplicity d in p = [0, . . . , 0, 1]

is defined by the vanishing of a homogeneous polynomial of degree d in the

x0, . . . , xr−1’s:

f(x0, . . . , xr) = fd(x0, . . . , xr−1).

In other words, the linear system Lr,d(d) consists of the cones of degree d with

vertex at the point p; as vector space it has dimension

h0(Pr, Lr,d(d)) =

(
r + d − 1

r − 1

)
= h0(Pr−1, Lr−1,d).

This means that, fixed the vertex p, we have to choose hypersurfaces of degree d

in a general hyperplane {xr = 0} ∼= Pr−1 ⊆ Pr. Now, let p1, . . . , pb 6= p general

points of Pr and let and p′1, . . . , p
′
b the projections from p to the hyperplane.

The conditions imposed on f by b general double points p1, . . . , pb of Pr are

∂xi
f(pj), i = 0, . . . , r, j = 1, . . . , b,

i.e.

∂xi
fd(p

′
j), i = 0, . . . , r − 1, j = 1, . . . , b.

Thus the number of independent conditions imposed by the nodes p1, . . . , pb on

Lr,d(d) is equal to the number of independend conditions imposed on Lr−1,d

by p′1, . . . , p
′
b, which are general in Pr−1. So we get

h1(Pr, Lr,d(d, 2b)) = b + h1(Pr−1, Lr−1,d(2
b))

h0(Pr, Lr,d(d, 2b)) = h0(Pr−1, Lr−1,d(2
b)),

and this concludes the proof.

Now, let p1, . . . , pb 6= p be general point of Pr with homogeneous coordinates

pj = [pj,0, . . . , pj,r−1, pj,r]. A general divisor of LF is given by

f(x0, . . . , xr) = fd(x0, . . . , xr−1) + xrfd−1(x0, . . . , xr−1)

=
∑

i+j+k=d aijkx
i
0x

j
1x

k
2 + xr

∑
l+m+n=d−1 clmnxl

0x
m
1 xn

2 ,

(2.3)
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using (2.2), such that
{

∂xi
fd(pj,0, . . . , pj,r−1) + pj,r∂xi

fd−1(pj,0, . . . , pj,r−1) = 0

fd−1(pj,0, . . . , pj,r−1) = 0,
(2.4)

for i = 0, . . . , r − 1, j = 1, . . . , b. This is a system of (r + 1)b linear equations

in the coefficients aijk, clmn.

Moreover the general divisor of the kernel system L̂F on {xr = 0} ∼= Pr−1 is

given by

fd(x0, . . . , xr−1) = 0

such that

∂xi
fd(pj,0, . . . , pj,r−1) = 0, i = 0, . . . , r − 1, j = 1, . . . , b.

Lemma 11. If the system Lr−1,d(2
b) is non special with virtual dimension

greater than or equal to −1, then the system Lr,d(d − 1, 2b) is non special and

nonempty.

Proof. Each element of the system Lr,d(d− 1) of hypersurfaces of Pr of degree

d passing through p = [0, . . . , 0, 1] with multiplicity d − 1 is described by a

homogeneous polynomial f of degree d, as in (2.3). The conditions for f to be

singular at pj are the (2.4), for i = 0, . . . , r − 1, j = 1, . . . , b; we want to prove

that they are linearly independent. Let

A =




A0

A1

...

Ar−1




be the (rb)×
(
r+d−1

r−1

)
matrix defined as follows: the j-th row of Ai is the vector

of coefficients of ∂xi
fd(pj,0, . . . , pj,r−1), j = 1, . . . , b. Similarly define C to be

the (rb) ×
(
r+d−2

r−1

)
matrix

C =




C0

C1

...

Cr−1




such that the j-th row of Ci is the vector of coefficients, for j = 1, . . . , b,

of pj,r∂xi
fd−1(pj,0, . . . , pj,r−1). Finally define C ′ to be the b ×

(
r+d−2

r−1

)
matrix

having as j-th rows the vector of coefficients of fd−1(pj,0, . . . , pj,r−1), j = 1 . . . b.

Notice that the equations in (2.4) are independent if and only if the matrix

M =

(
A C

0 C ′

)
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has maximal rank. A has maximal rank rb, in fact, by the hypothesis, b double

points in general position impose independent conditions on the hypersurfaces

of Pr−1 and

rb ≤

(
d + r − 1

r − 1

)
.

Moreover, C ′ has maximal rank b, in fact b general points impose exactly b

linearly independent conditions on the hypersurfaces of Pr−1 of degree d − 1

passing through them, and

b ≤

(
d + r − 2

r − 1

)
.

Therefore M has makimal rank (r + 1)b and this concludes the proof.

2.1.4 Transversality

In this section we will show that, under some hypothesis on the integer b,

transversality of the restricted systems of a (1, b)-degeneration holds. The

reason of the choice k = 1 for the twisting parameter sits here: in this way

we will be able to describe the restricted system RF and in particular its base

locus and therefore to compute the dimension of the intersection RP ∩ RF of

the restricted systems, that is the crucial point of our proof of Theorem 2.

First of all we describe the linear system LF on the strict transform F. Let us

study the blow up of Pr at p = [0, . . . , 0, 1] ∈ Pr: let x0, . . . , xr be homogeneous

coordinates for Pr and let U be the affine open set described by {xr = 1}: the

affine coordinate are x0 . . . , xr−1. Consider now the blow up of U ∼= Ar at the

origin: it is described by

{
rank

(
x0, . . . , xr−1

y0, . . . , yr−1

)
= 1

}
⊂ Ar × Pr−1

where y0, . . . , yr−1 are homogeneous coordinates of Pr−1. Let V = {yr−1 = 1}

be an affine open set of Pr−1: the affine equation of the blow up in Ar×Ar−1 ∼=

A2r−1 are

xi = yixr−1, i = 0, . . . , r − 2. (2.5)

The strict transform F has affine coordinates y0, . . . , yr−2, xr−1 and the excep-

tional divisor R has equation xr−1 = 0.

The generic hypersurface of Pr of degree d with multiplicity d − 1 at P is

described by

fd(x0, . . . , xr−1) + xrfd−1(x0, . . . , xr−1) = 0,
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using the (2.2), so in affine coordinates

fd(y0xr−1, . . . , yr−2xr−1, xr−1) + fd−1(y0xr−1, . . . , yr−2xr−1, xr−1) = 0,

i.e.

F (y0, . . . , yr−1, 1) := xr−1fd(y0, . . . , yr−2, 1) + fd−1(y0, . . . , yr−2, 1) = 0. (2.6)

Hence its restriction to R has equations
{

fd−1(y0, . . . , yr−2, 1) = 0

xr−1 = 0
(2.7)

Lemma 12 (Transversality Lemma). Keeping the same notation as above, the

restricted systems RP and RF are transversal in |OPr−1(d − 1)| if one of the

following conditions holds:

(i.) either the system L̂P is non-special and v̂P ≥ −1, or

(ii.) the system L̂F
∼= Lr−1,d(2

b) has dimension l̂F = vr−1,d(2
b) ≥ −1.

Proof. (i.) Under the hypothesis, LP is non-special and RP fills up the whole

space |OPr−1(d− 1)|; consequentely R = RF and transversality is trivial.

(ii.) Notice that the kernel of the restriction map LF → RF has dimension

equal to lr−1,d(2
b), by Lemma 10. Moreover the system LF is non-special,

by Lemma 11. This allows us the knowledge of the restricted system on

R: it is the complete linear system of hypersurfaces of Pr−1 of degree

d − 1 containing b simple points p′′1, . . . , p
′′
b , which are the traces on the

exceptional divisor R of the b lines through the (d − 1)-point p, that we

blew up, and the b double points specialized on F, i.e.

RF = Lr−1,d−1(1
b),

in fact b points are base points for the hypersurfaces of Pr−1 of degree

d− 1. The restriction to R of a general section of LF has affine equation

given by (2.7). We know that b general points p1, . . . , pb ∈ F impose

independent condition to the polynomial with affine equation of the form

(2.6): in other words, the conditions imposed by the vanishing of the

partial derivatives at p1, . . . , pb are independent, and in particular

∂xr−1
F (pj,0, . . . , pj,r−1) = fd−1(pj,0, . . . , pj,r−1) = 0, j = 1, . . . , b.

This means that the p′′j ’s are base points for the restricted system RF.

Notice also that RF has the right dimension:

rF = lF − l̂F − 1 =

(
r + d − 2

r − 1

)
− 1 − b.
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Now, if LP is empty, transversality is trivial, being R = ∅. Suppose,

from now on, that LP 6= ∅:

R = {S : S ∈ RP and p1, . . . , pb ∈ S} ⊆ RP ⊆ |OPr−1(d − 1)|.

Choosing the b double points generically on F, also p1, . . . , pb are general

on R, then they impose b independent condition on R. Therefore we get

dim(R) = max{−1, rP − b}

hence

dim(R) =

{
−1 if rP + rF ≤

(
d+1
2

)
− 2

rP + rF −
(
d+1
2

)
+ 1 if rP + rF ≥

(
d+1
2

)
− 2

i.e. the restricted systems intersect properly.

2.2 The approach via collision of fat points

In this section we will construct a degeneration of schemes defined by collections

of n nodes to a fat point, which is a point with multiplicity, and a collection of

n− c general nodes. In other words, we will suppose that c nodes of Pr collide

to a fat point p. To this end, let us perform a (k, n − c)-degeneration of Pr

(and of L ); we get:

LF = Lr,d(d − k, 2n−c) L̂F = Lr,d(d − k + 1, 2n−c)

LP = Lr,d−k(2
c) L̂P = Lr,d−k−1(2

c).

Notice that if
1

r + 1

(
r + d − k − 1

r

)

is an integer and choosing c equal to that number, then v̂P = −1. Morover,

if under this choice LP 6= ∅ is non-special, then the restricted system RP ⊆

|OPr−1(d − k)| fills up the whole space. Indeed

rP = lP − l̂P − 1

=

(
r + d − k

r

)
− 1 − (r + 1)c =

(
r + d − k − 1

r − 1

)
− 1.

This means that LP does not impose matching conditions to RF or, equiv-

alently, that the c nodes specialized on the component P of the central fiber

collide to a point of multiplicity d − k on F. The limiting system on P is the
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system of surfaces having c general double points, with the minimal degree

with respect to the property that such a system is not empty, i.e.

Lr,d−k(2
c) 6= ∅, while Lr,d−k−1(2

c) = ∅.

The problem of studying non-speciality of L is now translated into the anal-

ysis of non-speciality of LF, that in some cases will be more easily solved.

We will see how this approach is useful to prove the statement of the Alexander-

Hirschowitz Theorem is some cases. In particular we will apply this construc-

tion to the linear systems L3,d(2
n), with d ≡ 0 (mod 6) (Section 3.2).

2.3 The second degeneration

The method consisting of simply specializing the double points some on P and

the others on F will be not enough to cover all the cases. Trying to prove the

non-speciality of a given linear system L , in some cases we are not able to find

an integer b such that the limiting system L0 has dimension equal to e(L ). In

those cases it is a arithmetic obstruction that prevent us from finding such a b.

Then we use another approach in order to overcome the problem. It consistes

in degenerating the system L0 on the central fiber X0 to a system L ′
0 such

that some of the points of P and of F approach R.

Let ∆′ be a complex disc around the origin. Consider the trivial family Z =

Z × ∆′ → ∆′ with reducible fibers Zs = Fs ∪ Ps
∼= X0, where Fs = F is

isomorphic to Pr blown up at a point, Ps = P is isomorphic to Pr and Fs∩Ps =

Rs
∼= Pr−1, for every s ∈ ∆′. The Picard group of Zs is the fibered product

of Pic(Ps) and Pic(Fs) over Pic(Rs). Consider on Zs, s 6= 0, the linear system

L ′
s := L0, where L0 is the flat limit of L = Lr,d(2

n), with respect to the first

degeneration. Such a system is given by two linear systems L ′
Ps

and L ′
Fs

on

the two components that agree on the intersection Rs. The system on Ps (or

on Fs) restricts to a system R′
Ps

(R′
Fs

respectively) and the relative kernel, at

the level of linear systems, is L̂ ′
Ps

(L̂ ′
Fs

respectively). We have the following

identities:

L̂
′
Fs

= L̂F, L̂
′
Ps

= L̂P, R
′
Fs

= R
′
F, R

′
Ps

= R
′
P, for s 6= 0

Now, let α, β ∈ N such that β ≤ b, α ≤ n− b. Consider on the central fiber

the scheme given by

• n − b − α double points in P0 \ R0,

• b − β in F0 \ R0

• and α + β in R0:
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we can consider these nodes as limit of the n general nodes in Zs (n − b in Fs

and b in Ps). So, on the central fiber Z0 the systems L ′
P0

and L ′
F0

are still the

same, while the kernels are

L̂ ′
P0

= Lr,d−2(2
n−b−α, 1α)

L̂ ′
F0

= Lr,d(d, 2b−β, 1β) ∼= Lr−1,d(2
b−β , 1β)

with the following restriction sequences:

0 → L̂ ′
P0

→ L ′
P0

→ R′
P0

⊆ Lr−1,d−1(2
α)

0 → L̂ ′
F0

→ L ′
F0

→ R′
F0

⊆ Lr−1,d−1(2
β , 1b−β).

We respectively denote by v̂′
P0

, v′
P0

, v̂′
F0

, v′
F0

and l̂′
P0

, l′
P0

, l̂′
F0

, l′
F0

the virtual

and the actual dimensions. As in Section 2.1, we obtain a recursive formula

for the dimension of L ′
0:

l′0 = l̂′
P0

+ l̂′
F0

+ dim(R′
0) + 2, (2.8)

where R′
0 := R′

P0
∩ R′

F0
.

Proposition 13. Keeping the same notations as above, if there are integers

b, α, β such that α ≤ n − b, β ≤ b and l′0 = e(L ), then L is non-special

Proof. Exploiting upper semicontinuity of the second degeneration, we have

l′0 ≥ l′s, s 6= 0, s ∈ ∆′. Moreover, by the first degeneration, we have l0 ≥ lt,

t 6= 0, t ∈ ∆. But l′s = l0 and lt = l and this concludes the proof.

Non-speciality of LF

In this Section we assume that the case of cubics is already solved, i.e. that

Lr,3(2
n) is non-special exept if r = 4 and n = 7. The proof of this is completely

untied from what follows and it will be discussed in Section 3.1.1.

Notice that if we only perform a (1, b)-degeneration, we simultaneously get

emptyness of L̂F and non-speciality of LF (under the hypothesys of Lemma

11) if and only if
1

r

(
r + d − 1

r − 1

)

is an integer. In all the remaining cases, if we choose

b ≥

⌊
1

r

(
r + d − 1

r − 1

)⌋
,

we preserve emptyness of L̂F, but we are no longer in the hypothesis of Lemma

11. In that situation, we need to perform a degeneration of the central fiber

and of the limit system L0 as described above. However we need a criterion
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for the non-speciality of L ′
Fs

. In this section we will prove that there exists

an upper bound on the number k of nodes such that the linear systems of the

form

Lr,d(d − 1, 2k)

are non-special. The proof will be by induction on both r and d. The first

two lemmas provide the starting points of the induction: they will describe the

cases with d = 4 in the first one and r = 3 in the second one.

Lemma 14. Let r ≥ 2. The linear system Lr,4(3, 2k), with

k ≤ k(r) :=

⌈
1

r + 1

(
r + 4

4

)⌉
− r − 1,

is non special.

Proof. The proof is by induction on r. It suffices to prove the statement for

k(r) nodes. For k < k(r), non-speciality of the corresponding linear system is

a consequence, being v(Lr,4(3, 2k(r))) ≥ −1, for r ≥ 2. The base step is the

case r = 2: the system L2,4(3, 22) is non-special. Consider now the scheme Z

given by the union of the triple point and k(r − 1) < k(r) double points. If

π ⊂ Pr is a fixed hyperplane containing the support of Z, then the trace of Z

with respect to π is the scheme Z ∩ π, while the residual scheme is given by a

point of multiplicity 2 and k(r − 1) simple points. Thus we get the following

restriction map,

Lr,4(3, 2k(r)) → Lπ := Lr−1,4(3, 2k(r−1)),

and the kernel is the system

L̂ := Lr,3(2
1+k(r)−k(r−1), 1k(r−1)).

This gives us the induction on r. The system on the right is non special with

virtual dimension at least −1, by the inductive hypothesis; the system on the

left is non-special and it has virtual dimension

v̂ =

(
r + 3

3

)
− 1 − (r + 1)(k(r) + 1) + rk(r − 1)

≥

(
r + 3

3

)
− 1 −

(
r + 4

4

)
+ r2 +

(
r + 3

4

)
− r2 = −1,

being

k(r) ≤
1

r + 1

(
r + 4

4

)
− r − 1 +

r

r + 1
and k(r − 1) ≥

1

r

(
r + 3

4

)
− r.

for all r. Therefore

lr,4(3, 2k(r)) = dim(Lπ) + dim(L̂ ) + 1 = v(L ),

and this concludes the proof.
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Lemma 15. Let d ≥ 4, and

k0(d) :=

⌊
d2 + 2d − 3

4

⌋
.

If k ≤ k0(d), then the linear system L = L3,d(d − 1, 2k) is non-special.

Proof. We prove the statement by induction on d for a collection of k0(d)

points. The base step is the cae L3,4(3, 25) that is non-special by Lemma 14.

For the inductive step, consider the system of surfaces of P3 of degree d with

a point p of multiplicity d− 1 and k0(d) double points. Notice that v(L3,d(d−

1, 2k0(d))) ≥ −1. Specializing p and

h =

⌊
2d + 1

3

⌋
≤ k0(d)

nodes on a general plane π, we obtain the following restriction map:

L3,d(d − 1, 2k0(d)) → Lπ := L2,d(d − 1, 2h),

with kernel

L̂ := L3,d−1(d − 2, 2k0(d)−h, 1h).

Notice that the integer h is the minimal one with respect to the property that

vπ ≥ −1. Being

h ≥
2d + 1

3
−

2

3
=

2d − 1

3
,

then

k0(d) − h ≤
d2 + 2d − 3

4
−

2d − 1

3
=

3d2 − 2d − 5

12
.

Moreover

k0(d − 1) =

⌊
d2 − 4

4

⌋
=

⌊
d2

4

⌋
− 1 =

{
d2/4 − 1 if d is even

d2/4 − 1 − 1/4 if d is odd
.

Thus k0(d)−h ≤ k0(d−1) and non-speciality of L3,d−1(d−2, 2k0(d)−h) follows

from the inductive hypothesis. In particular L̂ is non-special. Not only, it is

not empty, in fact it has positive virtual dimension.

v(L̂ ) =

(
d + 2

3

)
− 1 −

(
d

3

)
− 4(k0(d) − h) − h

≥

(
d + 2

3

)
− 1 −

(
d

3

)
−

3d2 − 2d − 5

3
−

2d + 1

3
=

1

3
.

Finally l3,d(d− 1, 2k0(d)) = dim(L̂ ) + dim(Lπ) + 1 = e(L ) and this concludes

the proof.
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Now, we prove a result for linear systems of hypersurfaces of degree d of

Pr with a point of multiplicity d − 1 and k general nodes in its full generality,

i.e. for every r ≥ 4 and d ≥ 4. To this end, let us define the number

k(r, d) :=

⌊
1

r + 1

(
r + d

r

)
−

1

r + 1

(
r + d − 2

r

)⌋
− (r − 2),

for every r and d. We want to prove that the linear system Lr,d(d − 1, 2k) is

non special, if k ≤ k(r, d).

Remark 1. Notice that k(3, d) is equal to the number k0(d) defined in Lemma

15, so that result can be employed as base step of the induction on r.

As in the case with r = 3, the trick, given Lr,d(d − 1, 2k(r,d)), will be to

specialize k(r − 1, d) nodes on an hyperplane π ∼= Pr−1 containing the support

of p as follows:

0 → L̂ → Lr,d(d − 1, 2k(r,d)) → Lπ = Lr−1,d(d − 1, 2k(r−1,d)). (2.9)

The kernel system is

L̂ = Lr,d−1(d − 2, 2k(r,d)−k(r−1,d), 1k(r−1,d)).

The (d−2)-point is the residual of the (d−1)-point and the simple base points

are the residual of the nodes specialized on π.

Let us consider first of all the quartic case because it is the starting step of

the induction on the degree: the linear system Lr,4(3, 2k), with k ≤ k(r, 4), is

non-special by Lemma 14; in fact k(r, 4) ≤ k(r) as it can be easily checked,

being

k(r, 4) ≤
( 1

r + 1

(
r + 4

r

)
−

1

r + 1

(
r + 2

r

)
− 1
)
− r + 2

=
1

r + 1

(
r + 4

r

)
− r −

( 1

r + 1

(
r + 2

r

)
− 1
)

and

k(r) ≥
( 1

r + 1

(
r + 4

r

)
+ 1
)
− r − 1 =

1

r + 1

(
r + 4

r

)
− r.

Theorem 16. The linear system Lr,d(d − 1, 2k), with k ≤ k(r, d) and d ≥ 4,

is non-special and it has virtual dimension at least −1.

Proof. The induction on r is based on the case of linear system in P3 analysed

in Lemma 15; while the base step of the induction on the degree is the case of

quartics, already examined in Lemma 14.

Consider the restriction exact sequence in (2.9): Lπ is non-special by induction
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on r, and vπ ≥ −1. Moreover the system L̂ is non special, applying induction

on d, if

k(r, d) − k(r − 1, d) ≤ k(r, d − 1). (2.10)

Now, being

k(r, d − 1) ≥
1

r + 1

(
r + d − 1

r

)
−

1

r + 1

(
r + d − 3

r

)
− (r − 2) −

r

r + 1
,

k(r, d) ≤
1

r + 1

(
r + d

r

)
−

1

r + 1

(
r + d − 2

r

)
− (r − 2)

k(r − 1, d) ≥
1

r

(
r + d − 1

r − 1

)
−

1

r

(
r + d − 3

r − 1

)
− (r − 3) −

r − 1

r
;

one can easily check that inequality (2.10) is veriefied if
(

r + d − 1

r − 1

)
−

(
r + d − 3

r − 1

)
≥ r3 − 3r − 1,

i.e. for every pair (r, d) 6= (4, 4), (4, 5), (4, 6), (5, 4), (5, 5), (6, 4), (6, 5). However,

in the exluded cases, it is very easy to check directly by hand that (2.10) holds.

Moreover L̂ has positive virtual dimension, for every (r, d) in fact

v̂ =

(
r + d − 1

r

)
−

(
r + d − 3

r

)
− (r + 1)k(r, d) + rk(r − 1, d) ≥ r − 1.

Finally,

lr,d(d − 1, 2k(r,d)) = dim(L̂ ) + dim(Lπ) + 1 = e(L )

and this completes the proof.

Remark 2. Lemma 14 provides an upper bound to the number of double points

which is bigger than the one we need for the base step of the induction on the

degree used in the proof of Theorem 16. Nevertheless k(r) is exactly the number

of nodes that we will specialize on the component F in the proof of Alexander-

Hirschowitz Theorem for quartics (see Section 3.1.2).

Remark 3. If a linear system of type Lr,d(d− 1, 2k) verifies the hypothesis of

Lemma 11, it consequentely verifies also the hypothesis of Theorem 16, being
⌊

1

r

(
r + d − 1

r − 1

)⌋
≤ k(r, d),

for every r and d. The hypothesys of Lemma 11 is too strong. The reason

to study those cases separately sits in the fact that also transversality holds in

the assumption of Lemma 11 (see Lemma 12). Recall that transversality is the

crucial fact in all our computations. So we put stronger assumption, but in

that way we get a stronger result concerning the intersection of the restricted

systems.
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Chapter 3

Proof of the

Alexander-Hirschowitz

Theorem

The goal of this chapter is to expose a proof of the Alexander-Hirschowitz The-

orem (Theorem 2), applying the degeneration techniques described in Chapter

2 for d ≥ 4 and discussing the case of cubics separately. The proof will be done

by induction on both r and d. The induction on the degree will be based on

the cases of cubics and quartics, while the induction on the dimension of the

ambient space will start from the case of linear systems of surfaces of P3.

Define

n− = n−(r, d) :=

⌊
1

r + 1

(
r + 4

4

)⌋
=

1

r + 1

(
r + 4

4

)
−

l−

r + 1
,

and

n+ = n+(r, d) :=

⌈
1

r + 1

(
r + 4

4

)⌉
=

1

r + 1

(
r + 4

4

)
+

l+

r + 1
,

with l−, l+ ∈ {0, . . . , r}. They are respectively the maximal number of nodes

with respect to the property that the linear system of surfaces of degree d

with a collection of nodes has virtual dimension at least −1 and the minimal

number of nodes such that the corresponding linear system is expected to be

empty. Obviously, if 1
r+1

(
r+d

r

)
is an integer, then n− = n+.

Notice that if non-speciality holds for a collection of n− double points, then

it holds, as an easy consequence, for a smaller number of double points. On

the other hand, if there are no hypersurfaces of degree d with a given collection

of nodes, the same is true adding other nodes; so it suffices to prove emptyness

of Lr,d(2
n) for n+.

27
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3.1 The base steps of the induction on the degree

3.1.1 Cubics

The techniques introduced in the previous sections do not work in the case

of cubics, because the limiting system on the exceptional component P of the

central fiber of a (1, b)-degeneration is a linear system of quadrics with nodes

which is special. We will prove non-speciality of Lr,3(2
n), for r ≥ 3, r 6= 4 by

induction on r, with a different degeneration argument.

The starting point is the linear system L3,3(2
5) of cubic surfaces of P3, which

is empty as expected. Indeed, if we restrict it to a plane π and if we specialize

three nodes on it, we get the following sequence:

0 → L3,2(2
2, 13) → L3,3(2

5) → L3,3(2
5)|π ⊂ L2,3(2

3).

An useful remark is that if a cubic has two double points, then by Bézout’s

Theorem, it must vanish identically on the line joining them. This line meets

π at a point, so

L3,3(2
5)|π ⊆ L2,3(2

3, 1) = ∅.

Moreover the kernel L3,2(2
2, 13) is empty, and this concludes the proof in the

case of P3.

We will study the linear system Lr,3(2
n), for r ≥ 5. Observe that

n−(r, 3) =

{
1

r+1

(
r+3
3

)
if r ≡ 0, 1 (mod 3)

1
r+1

(
r+3
3

)
− 1

3 if r ≡ 2 (mod 3)

Let l ∈ Z be such that r = 3l + k, with k ∈ {0, 1, 2}; define

γ(r) :=

{
0 if r ≡ 0, 1 (mod 3)

l + 1 if r ≡ 2 (mod 3).

We will prove the following result, due to J. Alexander and A. Hirschowitz

(see [5]).

Theorem 17. Let r 6= 2 (mod 3), r 6= 4. Then there are no cubics in Pr

singular at n−(r, 3) general points.

Let r = 3k + 2. Then there are no cubics in Pr singular at n−(r, 3) general

points and passing through γ(r) additional general points.

The degeneration construction for cubics

Let us consider the trivial family Y = Pr ×∆ → ∆, where ∆ is a complex disc

with center at the origin. Let Y0 be the central fiber. Choose a general linear

subspace L ⊂ Y0 = Pr of codimension h:

NL|Y = OL(1)⊕h ⊕OL
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is the normal sheaf of L in Y. Blowing up L in the family, we obtain a new

family X , with maps π1 : X → Pr and π2 : X → ∆ and a reducible central

fiber X0 which is the union of the strict transform V of Pr, i.e. Pr blown

up along L, and the exceptional divisor T , which is isomorphic to P(N ∗
L|Y) ∼=

P(OPr−h(1)⊕h ⊕ OPr−h(2)). This variety of dimension r is a Ph-bundle over

L ∼= Pr−h with the natural map p : T → L. The intersection of the two

components of X0 is a (r − 1)-dimensional subvariety Q of degree h:

Q = P(OPr−h(1)⊕h) ∼= Pr−h × Ph−1.

It is the exceptional divisor of the blow up of L in the central fiber. The Picard

group of V is generated by the hyperplane class HV , which corresponds to the

line bundle OV (1) pull back of OPr(1), and by the divisor Q. The Picard

group of T is generated by π := p∗(OL(1)) and by Q; so the O(1)-bundle of

T ∼= P(OPr−h(1)⊕h ⊕OPr−h(2)) is of the form HT = Q + 2π.

Now, consider the line bundle OX (3) = π∗
1OPr(3). It restricts to OPr(3) on

the general fiber; while on the central one we have:

• |OX (3)|T | = |3π|

• |OX (3)|V | = |3HV |.

If r 6= 7, choose h = 3 and twist by −T : on the general fiber we do not make

any change, while on the special one we get:

• |3π + Q| on T ,

• |3HV − Q| on V .

Consider the linear system of cubics on the general fiber

Lt := L = Lr,3(2
n−(r,3), 1γ(r)),

which has virtual dimension −1, for every r. Specializing n−(r − 3, 3) nodes

and γ(r − 3) simple points on the component T , we get

LT = |3π + Q − 2n−(r−3,3) − 1γ(r−3)|

LV = |3H − Q − 2r+1 − 1γ(r)−γ(r−3)|,

where γ(r) − γ(r − 3) ∈ {0, 1}.

Notice that, to be precise, instead of −2a − 1b we would have to write −2E1 −

· · · − 2Ea − Ea+1 − · · · − Eb, where the Ei’s are the exceptional divisor of the

blow up of X at these points.

The system LV is isomorphic to the linear system of cubic hypersurfaces of

Pr containing a 3-codimensional subspace L, being singular at r + 1 general
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points, and passing through γ(r) − γ(r − 3) general points; we will use the

following notation:

LV
∼= Lr,3(L, 2r+1, 1γ(r − 3)).

If we restrict the two linear systems to the intersection Q, we obtain as kernels

the following systems:

L̂T = |3π − 2n−(r−3,3) − 1γ(r−3)| ∼= Lr−3,3(2
n−(r−3,3), 1γ(r−3))

L̂V = |3H − 2Q − 2r+1 − 1γ(r)−γ(r−3)|

The motivation of this choice is that in this way the kernel L̂T is known to be

empty, applying induction from r − 3 to r, if r 6= 7.

The kernel L̂V is empty

The kernel system of the component V is isomorphic to the linear system of

cubic hypersurfaces of Pr that are singular along a 3-codimensional subspace

L and at r + 1 general points, and with γ(r)− γ(r− 3) additional base points:

L̂V
∼= Lr,3(2L, 2r+1, 1γ(r)−γ(r−3)).

Notice, as a preliminary step, that the linear system Lr,2(2L, 2) has dimension

2. Indeed, if a quadric hypersurface is singular along L ∼= Pr−3 and at p /∈ L,

then it is singular along L̃ =< L, p >∼= Pr−2. So, if x0, . . . , xr are homogeneous

coordinates for Pr and L̃ = {x0 = x1 = 0} ⊂ Pr, a quadratic polynomial in

x0, . . . , xr vanishing along L̃ is of the form

x0(a0x0 + · · · arxr) + x1(b1x1 + · · · brxr)

Furthermore, imposing the vanishing of the first partial derivatives along L̃,

we get

Lr,2(2L, 2) = Lr,2(2L̃) = {a0x
2
0 + a1x0x1 + b1x

2
1 = 0}

depending on two projective parameters.

Proposition 18. The system Lr,3(2L, 2r+1) is empty, for r ≥ 3.

Proof. In the first case (r = 3), a sublinear space of codimension 3 is a point,

so the corresponding system is L3,3(2
5) that is empty.

A general hyperplane of P4 will intersect a general line L at a point; so, restrict-

ing the linear system L4,3(2L, 25) to the hyperplane containing the supports

of four of the five nodes, we get

0 → L4,2(2L, 2, 14) → L4,3(2L, 25) → L3,3(2, 24)
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The kernel system is empty, so our system is empty too.

Similarly, for r ≥ 5, the statement follows by induction on r and by the se-

quence

0 → Lr,2(2L, 2, 1r) → Lr,3(2L, 2r+1) → Lr−1,3(2L′, 2r)

where L′ ∼= Pr−4 is the intersection of L with the restricting hyperplane. The

restricted system is empty by the inductive assumption; the kernel is empty

too.

From this proposition in particular follows the emptyness of L̂V , for r ≥ 5,

r 6= 7.

Matching systems

Let p1, . . . , pt, with t = n−(r − 3, 3), be the nodes specialized on T . Each of

them lies on a distinct fiber of the ruling of T : say pi ∈ fi
∼= P3. This implies

that each of the sections of LT must contain f1, . . . , ft. Therefore the sections

of LT |Q must contain t distinct planes σi = fi|Q
∼= P2, each of them imposing

3 linear conditions on it.

The sections of LV |Q must agree with those of LT |Q. Define L m
V ⊆ LV and

L̂ m
V ⊆ L̂V to be the linear systems on V defined by the matching conditions.

Similarly, let L m
T ⊆ LT and L̂ m

T ⊆ L̂T be the corresponding systems on

the exceptional component. We will refer to them as the matching systems,

according to the notation of [21].

The system L m
V is isomorphic to the linear system of cubic hypersurfaces of

Pr which contain a linear subspace L of codimension 3 and which are singular

at n−(r, 3) nodes, such that n−(r− 3, 3) of them are supported on L and r +1

are general in Pr \L and which pass through γ(r)−γ(r−3) additional general

points:

L
m
V

∼= Lr,3({L, 2n−(r−3,3)}, 2r+1, 1γ(r)−γ(r−3)), r 6= 7.

We use the notation {L, 2t} for the scheme given by a subspace L and t general

nodes supported on it. It suffices to prove the emptyness of L m
V , for every

r ≥ 5, r 6= 7, to conclude. Indeed, if on the contrary the system Lt on the

general fiber is nonempty, then there exists an integer k such that the limiting

system L0 is given by two systems L m
V,k and L m

T,k obtained by twisting by

−kT ,

L m
T,k ⊆ LT,k = |3π + kQ − 2n−(r−3,3) − 1γ(r−3)|

L m
V,k ⊆ LV,k

∼= Lr,3(kL, 2r+1, 1γ(r)−γ(r−3))

both nonempty. But, if k = 0, we would have that L m
T,0 ⊆ LT,0

∼=

Lr−3,3(2
n−(r−3,3), 1γ(r−3)) = ∅. If k = 1, then L m

V,1 = L m
V = ∅ by assump-

tion. Finally, if k ≥ 2, then L m
V,k ⊆ Lr,3(2L, 2r+1, 1γ(r)−γ(r−3)) = L̂V = ∅ (see

Proposition 18).
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We will prove that the matching system L m
V is empty, for r ≥ 5, by in-

duction from r − 3 to r, starting from the cases r = 5, 6, 7. This proof is very

similar to the one of M. C. Brambilla and G. Ottaviani in [8], Section 5.

We need two preliminary results.

Proposition 19. The system K2(r) := Lr,3({L1, 2
3}, {L2, 2

3}, {L3, 2
3}), with

L1, L2, L3
∼= Pr−3 three general subspaces of Pr, is empty for r ≥ 6.

Proof. For r = 6 it suffices to make the computation explicitly. Indeed if we

choose generically three general subspaces of dimension 3, that intersect two

by two at a point, and three general points on each of them and if we impose

them as nodes for the cubics of P6, the resulting system is empty. We can check

this for example choosing L1 = {x0 = x1 = x2 = 0}, L2 = {x4 = x5 = x6 = 0},

L3 = {x3 = x0 − x4 = x2 − x6} and pi
j ∈ Li, i, j = 1, 2, 3, as follows:

p1
1 = [0, 0, 0, 1, 1, 0, 0] p1

2 = [0, 0, 0, 1, 0, 1, 1] p1
3 = [0, 0, 0, 0, 1, 0,−1]

p2
1 = [1, 1, 0, 1, 0, 0, 0] p2

2 = [0, 0, 1, 1, 0, 0, 0] p2
3 = [−1, 0, 1, 1, 0, 0, 0]

p3
1 = [1, 1, 1, 0, 1, 0, 1] p3

2 = [1, 0, 1, 0, 1, 1, 1] p3
3 = [1,−1, 0, 0, 1, 1, 0].

For r ≥ 7, we prove the statement by induction from r − 1 to r. Choose a

general hyperplane of Pr: it intersects Li in a subspace L′
i of dimension r − 4,

for i = 1, 2, 3. Moreover specialize the nine nodes on it, three on each L′
i, and

consider the following exact sequence

0 → Lr,2(L1, L2, L3) → K2(r) → K2(r − 1). (3.1)

The kernel system is empty for r ≥ 7. Indeed in P7 there are no quadric hyper-

surfaces vanishing along three general subspaces of dimension four. Similarly,

for r ≥ 8, the kernel of (3.1) is empty. Indeed a subspace of dimension r − 3

of Pr imposes
(
r−1
2

)
linear conditions to the system Lr,2. If L1, L2, L3 ⊆ Pr

then, Li ∩ Lj is a Pr−6, i 6= j and L1 ∩ L2 ∩ L3 is a Pr−9 for r ≥ 9 and it is

empty if r = 8. Thus the total number of linear conditions imposed to Lr,d is

3
(
r−1
2

)
− 3
(
r−4
2

)
+
(
r−7
2

)
. Therefore

lr,2(L1, L2, L3) =

(
r + 2

2

)
− 1 − 3

(
r − 1

2

)
+ 3

(
r − 4

2

)
−

(
r − 7

2

)
= −1.

Proposition 20. Let L1, L2
∼= Pr−3 be general subspaces of Pr. The linear

system K1(r) = Lr,3({L1, 2
r−2}, {L2, 2

r−2}, 23) is empty for r ≥ 3, r 6= 4.

Proof. We will prove the statement by induction on r, from r−3 to r, starting

from the cases r = 3, 5, 7. For r = 3, one has K1(3) = L3,3(2
5): this system

is empty. For r = 5 and r = 7 it is an explicit computation. For r = 5 one
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can check that there are no cubics in K1(5) choosing for example L1 = {x0 =

x1 = x2 = 0}, L2 = {x3 = x4 = x5 = 0}, pi
j ∈ Li, for i = 1, 2, j = 1, 2, 3 and

q1, q2, q3 ∈ P5 \ (L1 ∪ L2) as follows:

p1
1 = [0, 0, 0, 1, 0, 0] p2

1 = [1, 0, 0, 0, 0, 0] q1 = [1, 1, 0, 1, 0, 1]

p1
2 = [0, 0, 0, 0, 1, 0] p2

2 = [0, 1, 0, 0, 0, 0] q2 = [1, 0, 1, 0, 1, 1]

p1
3 = [0, 0, 0, 0, 0, 1] p2

3 = [0, 0, 1, 0, 0, 0] q3 = [1, 1, 1,−1,−1,−1].

(3.2)

Similarly for r = 7, with an explicit computation we conclude, for example

choosing L1 = {x0 = x1 = x2 = 0}, L2 = {x5 = x6 = x7 = 0}, pi
j ∈ Li, for

i = 1, 2, j = 1, . . . 5, and q1, q2, q3 ∈ P7 \ (L1 ∪ L2) as follows:

p1
1 = [0, 0, 0, 0, 1, 0, 0, 1] p2

1 = [1, 0, 0, 1, 0, 0, 0, 0]

p1
2 = [0, 0, 0, 1, 0, 0, 1, 0] p2

2 = [0, 1, 0, 0, 1, 0, 0, 0]

p1
3 = [0, 0, 0, 0, 0, 1, 0, 0] p2

3 = [0, 0, 1, 1, 0, 0, 0, 0]

p1
4 = [0, 0, 0, 0, 0, 1, 1, 1] p2

4 = [0, 1, 1, 0, 0, 0, 0, 0]

p1
5 = [0, 0, 0, 0,−1, 1, 1,−1] p2

5 = [1, 1, 1, 1, 0, 0, 0, 0]

q1 = [−1,−1, 1, 0, 0,−1, 1, 1] q2 = [0, 1,−1, 1, 0, 1,−1, 0]

q3 = [0, 1, 0, 0,−1, 1, 0, 1].

For r = 6, r ≥ 8, we prove the statement exploiting the following restriction

exact sequence:

0 → K2(r) → K1(r) → K1(r − 3).

The kernel is empty by Proposition 19 and K1(r − 3) is empty by induction.

Proposition 21. In the same notation as above, the matching linear system

L m
V = Lr,3({L, 2n−(r−3,3)}, 2r+1, 1γ(r)−γ(r−3)), with L ∼= Pr−3, is empty, for

r ≥ 5.

Proof. For r = 5, the matching system is L m
V = L5,3({L, 23}, 26, 1). With an

explicit computation, one can easily see that there is a unique cubic in P5 that

vanishes along L = {x0 = x1 = x2 = 0} and that is singular at the nine points

in (3.2) (three of them supported on L). Therefore, there are no cubics passing

through one further general point.

For r = 6 the matching system is L m
V = L6,3({L, 25}, 27). Restricting it to

a general L1
∼= P3 intersecting L in the support p of one of the nodes and

specializing on it four general nodes, we get

0 → L6,2({L, 24}, {L1, 2
4}, 23) → L6,3({L, 25}, 27) → L3,3({p, 2}, 24).

The kernel is empty by Proposition 20, and the restricted system is L3,3(2
5)

which is empty.

For r = 7 the matching system is L m
V = L7,3({L, 27}, 28), with L ∼= P4. Let
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p1, . . . , p7 ∈ L and q1, . . . , q8 ∈ Pr \L be the supports of the fifteen nodes. Let

π be a hyperplane such that L ∩ π = L′ ∼= P3 and such that p4, . . . , p7 ∈ L′;

moreover specialize on π the points q2, . . . , q8:

L
m
V

φ
→ L

m
V |π ⊆ L6,3({L

′, 24}, 27).

Notice that the line joining q1 and pi is contained in all the sections of L m
V

and it intersects π at a point, for i = 1, 2, 3. Therefore

L
m
V |π ⊆ L6,3({L

′, 24}, 27, 13).

It is non-special as consequence of the previous point (case r = 6), moreover

it is empty, having virtual dimension equal to −1. Furthermore the kernel of

the restriction map φ is

L7,2({L, 23}, 2, 17).

It is easy to check that l7,2({L, 23}, 2) = 6, choosing for example L = {x0 =

x1 = x2 = 0} and

p1 = [0, 0, 0, 0, 0, 0, 0, 1] p2 = [0, 0, 0, 0, 0, 0, 1, 0]

p3 = [0, 0, 0, 0, 0, 1, 0, 0] q1 = [1, 0, 0, 0, 0, 0, 0, 0].

Therefore, imposing seven further general base points, the resulting system is

empty.

For r ≥ 8, the statement follows by induction restricting to a general Pr−3 and

making specializations of the points as follows:

Lr,3({L, 2n−(r−3,3)}, 2r+1, 1γ(r)−γ(r−3)) → Lr−3,3({L
′, 2n−(r−6,3)}, 2r−2, 1γ(r)−γ(r−3)),

where L′ = L ∩ Pr−3 ∼= Pr−6: the kernel is K1(r) = ∅ and this concludes the

proof.

Finally, being L m
V = L̂ m

T = ∅, for r ≥ 5, r 6= 7, then L = Lt is empty.

Remark 4. For r = 7, the emptyness of the matching system does not suffice

to conclude that the system of cubics of P7 with fifteen nodes is empty (and

in particular non-special), because the kernel system L̂T
∼= L4,3(2

7) on the

other component is nonempty (see Section 1.2.1). Nevertheless this is crucial

because it represents the starting point of the induction from r − 3 to r, for

r ≥ 10, r ≡ 1 (mod 3); so we will analyse this case separately.

Cubics in P7

In the case r = 7 this method fails. We would have to blow up a L ∼= P4,

but this is not the right thing to do, because cubics with seven nodes are

defective there. To avoid the problem, we will reproduce the same argument,
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but blowing up a subspace L1 of codimension four, instead of three, in the

central fiber of the trivial family P7 × ∆. Let us denote by T the exceptional

component of the new special fiber, and with V the strict transform, as above.

Let p : T → L1 the natural map and π := p∗OL1
(1). Twist by −T and consider

the limit of the linear system of cubics of P7:

• |3π + Q| on T and

• |3HV − Q| on V , where HV is the pull-back of an hyperplane, and Q is

the exceptional divisor of the blow up along L1
∼= P3.

Consider the system L7,3(2
15) on the general fiber. To prove its emptyness,

we use the same trick as in the general case: we specialize the points on the

two components as follows:

LT = |3π + Q − 25|,

LV = |3HV − Q − 210| ∼= L7,3(L1, 2
10)

The kernels of the restriction to Q are

L̂T
∼= L3,3(2

5) = ∅,

L̂V = |3HV − 2Q − 210| ∼= L7,3(2L1, 2
10).

Each node specialized on T selects a fiber of the ruling of T . Each fiber cuts a

P3 at the intersection Q, which corresponds to a fiber of the ruling of Q. So,

as in the general case, the matching system on V is

L
m
V,7

∼= L7,3({L1, 2
5}, 210)

and it has virtual dimension −1. To prove its emptyness, we make two sub-

sequent specialization of the general nodes, five on L2 and five on L3, where

L2, L3
∼= P3 are general subspaces of P7, as we did for the general case:

0 → K1 → L7,3({L1, 2
5}, 210) → L3,3(2

5) → 0

where K1 := L7,3({L1, 2
5}, {L2, 2

5}, 25) and

0 → K2 → K1 → L3,3(2
5) → 0

where K2 := L7,3({L1, 2
5}, {L2, 2

5}, {L3, 2
5}). With an explicit computation

we prove that K2 is empty, choosing for example

L1 = {x0 = x1 = x2 = x3 = 0},

L2 = {x4 = x5 = x6 = x7 = 0},

L3 = {x0 − x4 = x1 − x5 = x2 − x6 = x3 − x7 = 0}
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and choosing pi
j ∈ Li, for i = 1, 2, 3 and j = 1 . . . , 5, as follows:

p1
1 = [0, 0, 0, 0, 0, 0,−1, 1] p1

2 = [0, 0, 0, 0, 0, 0, 1, 0]

p1
3 = [0, 0, 0, 0, 0, 1, 0, 0] p1

4 = [0, 0, 0, 0, 1, 0, 1, 0]

p1
5 = [0, 0, 0, 0, 1, 1, 1, 1] p2

1 = [1,−1, 0, 0, 0, 0, 0, 0]

p2
2 = [0, 1, 0, 0, 0, 0, 0, 0] p2

3 = [0, 0, 1, 0, 0, 0, 0, 0]

p2
4 = [0, 1, 0, 1, 0, 0, 0, 0] p2

5 = [1, 1, 1, 1, 0, 0, 0, 0]

p3
1 = [1, 1, 1, 0, 1, 1, 1, 0] p3

2 = [0, 1, 1, 1, 0, 1, 1, 1]

p3
3 = [1, 1, 0, 1, 1, 1, 0, 1] p3

4 = [1, 0, 1, 1, 1, 0, 1, 1]

p3
5 = [1,−1, 1,−1, 1,−1, 1,−1].

Therefore also K1 is empty and, as consequence, L m
V,7 = ∅. This completes

the proof of Theorem 17.

3.1.2 Quartics

Quartics in P3

If n > 9 the system is empty because there exists a unique quartic surface

singular at nine points (see Section 1.2.1). For n = 8, we prove non-speciality

of the corresponding linear system performing a (1, 4)-degeneration:

LF = L3,4(3, 24) L̂F = L3,4(4, 24) ∼= L2,4(2
4)

LP = L3,3(2
4) L̂P = L3,2(2

4)

The system LP is non-special as we have seen in the previous section, while

the system LF is non-special by Lemma 11; RF is the complete series L2,3(1
4)

and the restricted systems intersect transversally (see the proof of Lemma 12).

Hence, by Proposition 8, we get

l0 = dim(R) + l̂P + l̂F + 2

= (lP − 4) + l̂P + l̂F + 2 = v3,4(2
8).

It follows that also the system of quartic surfaces of P3 having n nodes, with

n < 8, is non-special.

Quartics in P4

The systems of quartics with n nodes in P4, for n > 14, is obviously empty,

being l4,4(2
14) = 0 (see Section 1.2.1).

Performing a (1, 8)-degeneration of P4, we prove that the system L4,4(2
13) is

non-special, exactly as for the case of P3. Indeed

LF = L4,4(3, 28) L̂F
∼= L3,4(2

8)

LP = L4,3(2
5) L̂P = L4,2(2

5) = ∅
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Both systems LP and LF are non special with positive dimension, moreover

RF = L3,3(1
8) and transversality holds, so

l0 = dim(R) + l̂P + l̂F + 2

= (lP − 8) + l̂P + l̂F + 2 = v4,4(2
13).

As consequence, for a smaller number of double points, the system of quadrics

of P4 results to be non-special.

Quartics in Pr, r ≥ 5

Let n− := n−(r, 4) and n+ := n+(r, 4). We will prove non-speciality of the

system of quartic hypersurfaces of Pr, with r ≥ 5, with a collection of n nodes,

with n− ≤ n ≤ n+; in all the remaining cases, non-speciality follows. The

expected dimension of L is

e(L ) =

{
−1 + l− if n = n−

−1 if n = n+ .

Let us perform a (1, n − r − 1)-degeneration. We will show that, under this

choice, the two kernel system are both empty and the intersection R of the

restricted systems has dimension equal to e(L ). On the two components of

the central fiber we get the following linear systems:

LF = Lr,4(3, 2n−r−1) and LP = Lr,3(2
r+1).

The system LP is non-special by Theorem 17. Furthermore the system LF is

non-special by Lemma 14. Being L̂P = Lr,2(2
r+1) = ∅, the restriction map to

R

LP →֒ RP ⊆ |OPr−1(3)|

is injective. We want to describe the image RP. We know that a cubic sin-

gular at two points must contain the whole line joining them. Similarly, if a

cubic has k nodes, then it must contains all the
(
k
2

)
lines joining the points.

Consequentely, when we restrict to the hyperplane R, the image of the cubics

in LP must contain the traces of these lines as base points; so we get

RP ⊆ Lr−1,3(1
(r+1

2 )).

Actually, these
(
r+1
2

)
points give linearly independent conditions, and therefore

RP is the complete series.

Proposition 22. In the setting of above, the system RP is the complete linear

system of cubics of R with
(
r+1
2

)
base points and dim(RP) =

(
r+2
r−1

)
− 1 −

(
r
2

)
.
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Proof. We have to prove that the
(
r+1
2

)
points on R, traces of the lines joining

the r + 1 nodes p1, . . . , pr+1 specialized on the component P, impose indepen-

dent conditions. If we prove that this is true for quadrics, it will be true in

higher degree and in particular for cubics.

The proof will be by induction on r. The base step (r = 3) is easy: let p1, . . . , p4

points in P ∼= P3: three of them, say p1, p2, p3, span a plane π, which cuts a

line π′ on R ∼= P2 ; on this line we will have the three distinct points given as

traces of the three lines < pi, pj >, i 6= j, i, j = 1, 2, 3. The line π′ splits off

the system of conics through these three points, thus

L2,2(1
6) = π′ + L2,1(1

3),

where the three base points of the system on the right are the projection of

p1, p2, p3 from p4 to R and they will not lie on a line, by generality. So our

system is empty.

For the inductive step, suppose that Lr−2,2(1
(r
2)) = ∅ and consider Lr−1,2(1

(r+1

2 )):

we have to show that there are no quartics in R ∼= Pr−1 through these points.

On the hyperplane π ⊂ Pr spanned by p1, . . . , pr, we have the
(
r
2

)
lines joining

the r points two by two. Now, π cuts π′ ∼= Pr−2 on R and π′ contains the(
r
2

)
traces of the lines on π. These points are in general position by induction.

Therefore the system of quadrics of π′ containing these points is empty; this

means that π′ splits off Lr−1,2(1
(r+1

2 )):

Lr−1,2(1
(r+1

2 )) = π′ + Lr−1,1(1
r).

Notice finally that the

r =

(
r + 1

2

)
−

(
r

2

)

points on R correspond to the lines < pr+1, pi >, i = 1, . . . , r; precisely they

are the projections p′1, . . . , p
′
r of p1, . . . , pr from pr+1 to R. Therefore, being

p1, . . . , pr in general position in Pr, then also their projections are in general

position in R, so

Lr−1,1(1
r) = Lr−1,1(p

′
1, . . . , p

′
r) = ∅.

Notice finally that

dim(RP) =

(
r + 2

r − 1

)
− 1 −

(
r + 1

2

)
=

(
r + 2

2

)
− 1 = dim(LP).

The system L̂F = Lr,4(4, 2n−r−1) has dimension lr−1,4(2
n−r−1) and, being
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Lr−1,4(2
n−r−1) non-special and

vr−1,4(2
n−r−1) =

(
r + 3

4

)
− 1 − r(n − r − 1)

≤

(
r + 3

4

)
− 1 −

r

r + 1

(
r + 4

4

)
+ r(r + 1)

= −
r3 − 3r2 − 2r

8
− 1 ≤ −1,

it is empty. Finally, observe that

lF −

(
r + 1

2

)
=

(
r + 4

r

)
− 1 −

(
r + 2

r

)
− (r + 1)(n − r − 1) −

(
r + 1

2

)

= v(L )

therefore, the intersection R of the restricted systems has dimension

dim R = max

{
lF −

(
r + 1

2

)
,−1

}
= e(L ).

Thus, we conclude applying Formula (2.1).

Remark 5. This discussion does not apply if r = 3, 4. Indeed the kernel on

the component F would be isomorphic to L2,4(2
5) and L3,4(2

9) respectively,

that are special and in particular nonempty.

3.2 The proof in P3

In this section we will apply the techniques introduced in Chapter 2 to the

case r = 3 and d ≥ 5. This plays the role of the starting point of the induction

on r. We will investigate the non-speciality of the linear system L3,d(2
n), for

n−(3, d) ≤ n ≤ n+(3, d).

The cases with d 6≡ 0 (mod 3)

Observe that if d = 3k + 1, for some k, then

1

3

(
d + 2

2

)
=

(k + 1)(3k + 2)

2
∈ Z;

if d = 3k + 2, for some k, then

1

3

(
d + 2

2

)
=

(k + 1)(3k + 4)

2
∈ Z;

while if d is a multiple of three this number is not an integer. So, when d ≡ 1, 2

(mod 3), define the integer b as follows:

b :=
1

3

(
d + 2

2

)

and perform a (1, b)-degeneration of P3 and of the linear system L3,d(2
n).
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Proposition 23. Let d ≥ 5, d 6≡ 0 (mod 3). Let n− ≤ n ≤ n+. Assume that

LP and L̂P are non-special. Then the linear system L is non-special.

Proof. We prove that L is non-special if n = n+
0 and n = n−

0 .

• Case n = n+
0 . Notice that the kernel system L̂F = L3,d(d, 2b) has di-

mension

l̂F = v2,d(2
b) =

(
d + 2

2

)
− 1 − 3b = −1.

Consequentely, LF is non-special, by Lemma 11; moreover it cuts out

the complete series RF = L2,d−1(1
b) on R by Lemma 12. The kernel

system L̂P = L3,d−2(2
n−b) is non special by assumption, and it has

virtual dimension at most −1, in fact

v̂P =

(
d + 1

3

)
− 1 − 4n + 4b

≤

(
d + 1

3

)
− 1 −

(
d + 3

3

)
+

4

3

(
d + 2

2

)
=

1 − d2

3
− 1 ≤ −1,

being

n ≥
1

4

(
d + 3

3

)
.

The system LP = L3,d−1(2
n−b) is non-special by assumption, and rP =

lP. Therefore R is the system of curves of RP with b more simple points

(the points imposed by RF):

dim(R) = max{−1, lP − b}.

We have

lP − b =

(
d + 2

3

)
− 1 − 4n + 3b

≤

(
d + 2

3

)
− 1 −

(
d + 3

3

)
+

(
d + 2

2

)
− 1.

Therefore L3,d(2
n+

) is empty, as expected.

• Case n = n−
0 . The system L̂F

∼= L2,d(2
b) is empty and l2,d(2

b) = −1.

Moreover, by Lemma 12, transversality holds and, by Lemma 11, LF is

non-special. The system LP = L3,d−1(2
n−b) is non special by assumption

and its virtual dimension is at least −1 being

vP =

(
d + 2

3

)
− 1 − 4(n − b) ≥

(
d + 2

2

)
− 1.



Proof of the Alexander-Hirschowitz Theorem 41

Finally, the system L̂P = L3,d−2(2
n−b) is non-special, and in particular

empty, in fact

v̂P =

(
d + 1

3

)
− 1 − 4(n − b)

≤

(
d + 1

3

)
−

(
d + 3

3

)
+

4

3

(
d + 2

2

)
+ 3 =

1 − d2

3
+ 3 ≤ −1.

Applying Proposition 8, we conclude the proof.

Corollary 24. Keeping the same assumptions as in Proposition 23, L3,d(2
n)

is non-special for every n.

The cases with d ≡ 0 (mod 3)

The case of sextics. We study first of all the linear system

L = L3,6(2
21).

We perform a (1, 10)-degeneration, specializing the first ten points, say

p1, . . . , p10, on F and the remaining ones, say p11 . . . , p21, on P:

LF = L3,6(5, 210) and LP = L3,5(2
11).

We know by induction that the system LP is non-special. Indeed, consider for

a moment the system L3,5(2
14): the hypothesis of Proposition 23 are satisfied,

in fact n− b would be equal to seven, and both the quartics and the cubics of

P3 with seven nodes are non-special, as we have already proved in Section 3.1;

in particular L3,5(2
11) is non-special.

The system LF is non-special and it has dimension 8, by Lemma 15. Now,

we want to degenerate the collection of nodes in such a way that one of the

points on F and three of the points on P approach R. To do that, we perform

a degeneration of the central fiber (see Section 2.3). Let q1, . . . , q10 be the

limits of the points specialized on F and q12, . . . , q21 the limits of the points

specialized on P and

• q1, q11, q12, q13 ∈ R0,

• q2, . . . , q10 ∈ F0 \ R0 and

• q14, . . . , q21 ∈ P0 \ R0.

We get the following restriction exact sequence

0 → L̂
′
F0

= L3,6(6, 29, 1) → L
′
F0

→ R
′
F0

.
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The nine points, traces on R of the nine lines through q2, . . . , q10 and the node

supported at q1, are base points of R′
F0

(see Lemma 12), thus

R
′
F0

⊆ L2,5(1
9, 2).

Furthermore the kernel system L̂ ′
F0

has dimension v2,6(2
9, 1) = −1, then R′

F0

is the complete series L2,5(1
9, 2).

On the other component, we get

0 → L̂ ′
P0

= L3,4(2
8, 13) → L

′
P0

→ R
′
P0

⊆ L2,5(2
3).

The kernel is empty and it has virtual dimension exactly −1. Thus also in this

case the restricted system is complete.

One has

R
′
0 = L2,5(2

4, 19) = ∅.

Finally, using formula (2.8) for the dimension of the system on the central

fiber, we get

l′0 = l̂′P0
+ l̂′F0

+ dim(R′
0) + 2 = −1

so the limiting system of the second degeneration is empty. By upper semi-

continuity, the system on the general fiber is empty and therefore, a fortiori,

L is empty, as expected.

The case d ≡ 3 (mod 6). Let d = 6k + 3, k ≥ 1. Observe that

1

4

(
d + 3

3

)
=

(k + 1)(3k + 2)(6k + 5)

2
∈ Z.

Consider the linear system L = L3,d(2
n) of surfaces of degree d with

n =
1

4

(
d + 3

3

)

nodes: v(L ) = −1. Performing a (1, b)-degeneration, the limit system restricts

to the following systems on the two components of the special fiber:

LF = L3,d(d − 1, 2b) LP = L3,d−1(2
n−b),

specializing p1, . . . , pb on F and pb+1, . . . , pn on P. As in the sextic case, let us

suppose that β points of F and α points of P approach the plane R, performing

a degeneration of the special fiber. We obtain the following exact sequences

on the central fiber of the second degeneration (see Section 2.3):

0 → L̂
′
F0

= L3,d(d, 2b−β, 1β) → L
′
F0

→ R
′
F0

⊆ L2,d−1(1
b−β , 2β).

and

0 → L̂
′
P0

= L3,d−2(2
n−b−α, 1α) → L

′
P0

→ R
′
P0

⊆ L2,d−1(2
α),
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with L ′
F0

= LF and L ′
P0

= LP. Notice that

1

3

(
d + 2

2

)
= 6k2 + 9k + 3 +

1

3
.

So, choose

b =
1

3

(
d + 2

2

)
+

2

3
∈ Z

and β = 1.

Proposition 25. Keeping the same setting as above, assume that L̂ ′
P0

and

L ′
P0

are non-special. Then the linear system Lr,3(2
n) is empty.

Proof. The kernel L̂ ′
F0

consists of the cones of degree d with vertex at the d-ple

point and having b − 1 nodes and a simple point; the dimension is

l̂′F0
= v2,d(2

b−1, 1) = −1.

The system L ′
F0

is non-special, as consequence. Accordingly, R′
F0

is the com-

plete series L2,d−1(1
b−1, 2), in fact, being h0(F0, L̂

′
F0

) = h1(F0, L̂
′
F0

) = 0, then

dim(R′
F0

) = l′
F0

= l2,d−1(1
b−1, 2). On the exceptional component P of the first

degeneration we specialized n − b nodes. Observe that there exists an integer

α such that v̂′
P0

= −1, namely

α =
1

3

[
4n − 4b −

(
d + 1

3

)]
= 4k2 + 4k.

The systems L̂ ′
P0

and L ′
P0

are non-special by assumption. Furthermore L ′
P0

cuts the complete series on R0, i.e. R′
P0

= L2,d−1(2
α), being

dim(R′
P0

) = l′P0
= l2,d−1(2

α).

Finally, the intersection of the restricted systems is

R
′
0 = L2,d−1(2

α+1, 1b−1) :

it is non-special being the points in general position by construction; it has

virtual dimension exactly −1 and this concludes the proof.

The case d ≡ 0 (mod 6), d 6= 6. We will use the technique described in

Section 2.2. Let k ∈ N \ {0, 1} be such that d = 6k; notice that

c =
1

4

(
d

3

)
=

k(3k − 1)(6k − 1)

2
∈ Z
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a =
1

3

(
d

2

)
= k(6k − 1) ∈ Z

Let us first of all perform a (2, n − c)-degeneration:

LF = L3,d(d − 2, 2n−c) L̂F = L3,d(d − 1, 2n−c)

LP = L3,d−2(2
c) L̂P = L3,d−3(2

c).

Assume that LP and L̂P are non-special. We have v̂P = −1 and vP =
(
d
2

)
− 1.

Therefore the restricted systems intersect transversally, in particular we have

that R = RF, because RP fills up the whole space, namely RP = |OP2(d− 2)|.

Observe that v3,d(2
n) = v3,d(d − 2, 2n−c) and non-speciality of the system

L3,2(d − 2, 2n−c) implies non-speciality of L .

Proposition 26. If d ≡ 0 (mod 6) and d 6= 6, then the linear system L =

L3,d(d − 2, 2n−c) is non-special.

Proof. Let b = n − c − a (a and c as above). Performing a degeneration of Pr

to X0 = F ∪ P (in the usual notation) and specializing on F b nodes and on P

the remaining a nodes and the (d − 2)-point, we get:

LF = L3,d(d − 1, 2b) L̂F = L3,d(d, 2b) ∼= L2,d(2
b)

LP = L3,d−1(d − 2, 2a) L̂P = L3,d−2(d − 2, 2a) ∼= L2,d−2(2
a).

We have l̂P = l2,d−2(2
a) = v2,d−2(2

a) = −1. Moreover a ≤ k0(d − 1) and

b ≤ k0(d), being

k0(d − 1) − a ≥
d2 + 2d − 6

12
≥ 0 and k0(d) − b ≥

3d2 − 3d − 12

8
≥ 0

for d ≥ 12; thus LP and LF are both non-special by Lemma 15. Moreover the

kernel system L̂F is empty, being

v2,d(2
b) =

(
d + 2

2

)
− 3(n − c − a) ≤ −

d2 + d + 22

8
≤ −1.

Now, if one can show that RP = L2,d−1(1
a), one would have transversality,

concluding the proof. Indeed the system R would contain the section of RF

that vanish at the a base points imposed by RP; being those points in general

position on R, one would get

v(R) = rF − a =

(
d + 3

3

)
− 1 −

(
d + 1

3

)
− 4b − a = −1.

The series cut out by LP is complete, in fact a surface S ∈ LP is described by

the vanishing of a homogeneous polynomial of the form

f(x0, . . . , x3) = fd−1(x0, . . . , x2) + x3fd−2(x0, . . . , x2),
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with partial derivatives vanishing at p1 . . . , pa, supposing, without waste of

generality, p = [0, 0, 0, 1] ∈ P3. The restriction C of S to R has equation

fd−1(x0, . . . , x2) = 0.

We have to prove that fd−1(p
′
j) = 0, for j = 1, . . . , a (where p′j are the projec-

tion of pj from p to R). The linear conditions imposed by the node pj to S are

the following
{

∂xi
fd−1(p

′
j) + pj,r∂xi

fd−2(p
′
j) = 0, i = 0, 1, 2

fd−2(p
′
j) = 0.

for j = 1, . . . a. Now, using the Euler formula for homogeneous polynomials,

we get

0 = fd−2(p
′
j) =

1

d − 2

3∑

i=0

p′i∂xi
fd−2(p

′j)

= −
1

d − 2

1

pj,3

3∑

i=0

p′i∂xi
fd−1(p

′j)

= −
d − 1

d − 2

1

pj,3
fd−1(p

′
j)

and this prove that p′1, . . . , p
′
a are base points for RP. Furthermore

rP = lP − l̂P − 1 = l2,d−1(1
a),

thus LP cuts the complete series on R.

Corollary 27. In the same notation as above, if L3,d−2(2
c) and L3,d−3(2

c)

are non-special, then the system L3,d(2
n) is non-special too.

Putting all together, we obtain the following

Theorem 28. Let d ≥ 3. For a general collection of n double points, the linear

system L3,d(2
n) is non-special, except if (d, n) = (4, 9).

Proof. The cubic and quartic cases have been analysed separately in Section

3.1. We will apply induction for d ≥ 5. The first case we meet is L3,5(2
n): for

n = 14 the system has virtual dimension equal to −1. Proposition 23 shows

that it is non-special. The sextic case has been already analysed above. For

d ≥ 7, we have to study non-speciality of Lr,d(2
n), supposing that the thesis

is true for every smaller degree. Consider the following possibilities:

1. Let either d = 3k + 2 or d = 3k + 1, k ≥ 2. We know by induction

that Lr,d−1(2
n−b) and Lr,d−2(2

n−b) are non-special, so we conclude using

Proposition 23.
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2. If d = 6k, k ≥ 2, then we exploit Corollary 27; while if d = 6k +3, k ≥ 2,

we apply Proposition 25.

3.3 The proof in higher dimension

This last Section is devoted to the proof of the following

Theorem 29. Let r ≥ 4 and d ≥ 5. Then the system Lr,d(2
n) is non-special.

We will study linear system of hypersurfaces of Pr, with r ≥ 4, of degree

d ≥ 5 with a collection of n nodes in general position; in this range we will

never deal with special cases. Take n general points, such that n−(r, d) ≤ n ≤

n+(r, d), then the linear system L = Lr,d(2
n) has expected dimension

e(L ) =

{
−1 + l− if n = n−

−1 if n = n+

We will show that L has the expected dimension by induction on r and on d,

exploiting as base steps the case of cubics and quartics, for the induction on the

degree, and the case of surfaces of P3 for the induction on the dimension. The

technique will be the usual one: we will perform (1, b)-degenerations, trying to

find a good specialization of the n points on the components F and P of the

special fiber.

Let us define the number

b0 :=
1

r

(
r + d − 1

r − 1

)
.

If it is an integer, we will specialize b = b0 point on F; if, to the opposite, b0

is not an integer, then we will construct a further degeneration of the central

fiber letting some of the points go to the intersection of the components, as we

already did in P3 for d = 6 and d ≡ 3 (mod 6).

Case b0 ∈ Z. Specializing b = b0 points on the component F of the central

fiber, and the remaining n − b on P, we get :

LF = Lr,d(d − 1, 2b) L̂F = Lr,d(d, 2b) ∼= Lr−1,d(2
b)

LP = Lr,d−1(2
n−b) L̂P = Lr,d−2(2

n−b)

Proposition 30. Keep the same notation of above. Assume that the linear

systems Lr−1,d(2
b)(∼= L̂F), LP and L̂P are non-special. Then the linear system

L is non-special too.
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Proof. The system L̂F is special of dimension lr−1,d(2
b); the system Lr−1,d(2

b)

is non-special, by assumption, and moreover vr−1,d(2
b) = −1; therefore the

kernel system L̂F is empty. As a consequence, the system LF is non-special,

by Lemma 11 and it cuts the complete series

RF = Lr−1,d−1(1
b)

on R, by Lemma 12. Furthermore the restricted systems intersect transver-

sally.

The system LP = Lr,d−1(2
n−b) on the component P in non special, by assump-

tion and it is nonempty, in fact

vP =

(
r + d − 1

r

)
− 1 − (r + 1)(n − b)

≥

(
r + d − 1

r

)
− 1 −

(
r + d

r

)
− l+ +

r + 1

r

(
r + d − 1

r − 1

)

= b − l+ − 1 > −1

The kernel system L̂P = Lr,d−2(2
n−b) is non-special and

v̂P =

(
r + d − 2

r

)
− 1 − (r + 1)(n − b)

≤ −

(
r + d − 2

r − 1

)
− 1 + b + l− ≤ −1.

Moreover the dimension of the intersection R of the restricted systems on R

is

dim(R) = max{−1, lP − b} =

{
−1 + l− if n = n−

−1 if n = n+ .

Now, we can compute the dimension of the limiting system L0 on the central

fiber with our recursive formula (formula (2.8)):

l0 = dim(R) + l̂P + l̂F + 2 = dim(R) = e(L ).

Therefore, by upper semicontinuity, the system L is non-special.

Case b0 /∈ Z. We want to analyse the cases in which performing a (1, b)-

degeneration is not enough. Let us first of all explain why the (1, b)-

degeneration approach does not suffice. For example when L is expected

to be empty, namely if n = n+, we would like to find a specialization of the

n nodes on the components of the special fiber, such that both kernel systems

and also the intersection of the restricted systems are empty. Looking for an

integer b such that L̂F is empty, we notice that the minimal one is

b =

⌈
1

r

(
r + d − 1

r − 1

)⌉
=

1

r

(
r + d − 1

r − 1

)
+

l′

r
;
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but we would have a problem with the dimension of the intersection of the

restricted systems R on R (which we wish to be empty); indeed

lP − b =

(
r + d − 1

r

)
− 1 − (r + 1)n + rb

=

(
r + d − 1

r

)
− 1 −

(
r + d

r

)
− l+ +

(
r + d − 1

r − 1

)
+ l′ = −1 − l+ + l′

and we are not able to check if l′ ≤ l+. On the other hand, if we choose

b =

⌊
1

r

(
r + d − 1

r − 1

)⌋
,

then L̂F, which has dimension lr−1,d(2
b), is nonempty.

Thus, we degenerate the central fiber X0 is such a way that some of the points

specialized on F approach the intersection R with the exceptional component,

in order to avoid this arithmetical problem. Let us construct the trivial family

Z = Z × ∆, where ∆ is a disc centered at the origin, with reducible fibers

Zs = Fs ∪ Ps, see Section 2.3. Consider the scheme given by a collection of n

nodes such that b of them lie on Fs and the other n − b lie on Ps, for s 6= 0.

We suppose that such a scheme degenerates in the following way: the limit on

the central fiber Z0 of the b points on Fs is a scheme given by β ≤ b general

points on the intersection R0 of F0 and P0 and b−β general points on F0 \R0.

Let L ′
s be the system on the general fiber, which corresponds to the limit

system of the first degeneration, i.e. L ′
s = L ′

Ps
×R′

Ps
∩R′

Fs
L ′

Fs
. If we prove

that the system L ′
0, which is the limiting system of the second degeneration,

has dimension equal to e(L ), we conclude, by upper semicontinuity, that L

is non-special. We have to choose integers b and β such that the system L ′
0

has dimension equal to e(L ). Let β be defined as follows:

1

r

(
r + d − 1

r − 1

)
=

⌊
1

r

(
r + d − 1

r − 1

)⌋
+

β

r
, β ∈ {0, . . . , r − 1}.

Choose

b =
1

r

(
r + d − 1

r − 1

)
−

β

r
+ β ∈ Z.

From now on, we assume that the systems Lr−1,d(2
b−β), Lr,d−1(2

n−b+β) and

Lr,d−2(2
n−b) are non-special.

Consider the following exact restriction sequence on the component F0:

0 → L̂
′
F0

= Lr,d(d, 2b−β, 1β) → L
′
F0

→ R
′
F0

= Lr−1,d−1(1
b−β, 2β) (3.3)

The kernel system has dimension

l̂′
F0

= lr−1,d(2
b−β, 1β)

= vr−1,d(2
b−β, 1β)

=

(
r + d − 1

r − 1

)
− 1 − r(b − β) − β = −1
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so it is empty. The system L ′
F0

is non-special by Lemma 16, in fact

b ≤
1

r

(
r + d − 1

r − 1

)
+ r − 1

≤
1

r + 1

(
r + d

r

)
−

1

r + 1

(
r + d − 2

r

)
− (r − 2) −

r

r + 1
≤ k(r, d)

for d ≥ 6, if r = 4, 5 and for d ≥ 5 if r ≥ 6 and moreover the points are in

general position being β < b. (Notice that if r = 4, d = 5 then b0 ∈ Z, so this

case is already covered in the previous section; while if r = 5, d = 4 we have

b = 26 ≤ k(5, 5) = 29, so L ′
F0

is anyhow non-special.)

As a consequence, L ′
F0

cuts the complete series on R0, namely

R
′
F0

= Lr−1,d−1(1
b−β, 2β),

in fact the b−β simple points (trace on R0 of the lines through the b−β double

points and the (d − 1)-point) are base points (see Lemma 12). Moreover the

system L̂ ′
P0

= Lr,d−2(2
n−b) is empty; indeed it is non-special by assumption

and

v̂′P0
=

(
r + d − 2

r

)
− 1 − (r + 1)(n − b)

≤ −

(
r + d − 2

r − 1

)
− 1 − (r + 1) +

1

r

(
r + d − 1

r − 1

)
+ r2 < −1

for r ≥ 4, d ≥ 5. It remains only to prove that R′
P0

and R′
F0

intersect transver-

sally on R0. The intersection R′
0 is given by those divisors of R′

P0
that are

singular at β further general points of R0 and passing through b − β points,

the ones imposed by R′
F0

. Let us denote by

L̂ ′
m

P0
⊆ L̂

′
P0

, L
′m
P0

⊆ L
′
P0

and R
′m
P0

= R
′
P0

(2β , 1b−β) ⊆ R
′
P0

,

the systems defined by these matching conditions. It is clear that

dim(L̂ ′
m

P0
) = dim(L̂ ′

P0
) = −1,

therefore

dim(R′m
P0

) = dim(L ′m
P0

).

It suffices to prove that if we impose our β nodes to R′
P0

, the resulting system

R̄
′
P0

:= R
′
P0

(2β)

is non-special, i.e. that

dim(R̄′
P0

) = dim(R′
P0

) − rβ;
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the b−β simple points give b−β independent conditions being them in general

position. Notice that R′m
P0

⊆ R̄′
P0

⊆ R′
P0

, and in particular that R′m
P0

=

R̄′
P0

(1b−β).

Let L̄ ′
P0

:= Lr,d−1(2
n−b+β) ⊂ L ′

P0
be the linear system of hypersurfaces of P0

with n − b general nodes on P0 and β general nodes on R0 ⊆ P0. Recall that

R0 is a general hyperplane for P0 and that β < r: so the n − b + β nodes are

in general position in P0.

Proposition 31 (Transversality on R′
0). Keep the same construction as above

and assume that L̄ ′
P0

and L̂ ′
P0

are non-special. Then the linear system R̄′
P0

in

non-special.

Proof. We have

dim(L̄ ′
P0

) =

(
r + d − 1

r

)
− 1 − (r + 1)(n − b + β)

≥

(
r + d − 1

r

)
− 1 −

(
r + d

r

)
− l+ + (r + 1)

⌊
1

r

(
r + d − 1

r − 1

)⌋

≥

(
r + d − 1

r

)
− 1 −

(
r + d

r

)
− r + (r + 1)

[1
r

(
r + d − 1

r − 1

)
− 1
]

= −1 +
1

r

(
r + d − 1

r − 1

)
− (2r + 1) > −1

for r ≥ 4 and d ≥ 5, therefore L̄ ′
P0

is nonempty. Consider the restriction map

of L̄ ′
P0

to R0:

L̄
′
P0

→ R̄
′
P0

;

the kernel is ˆ̄
L ′

P0
:= Lr,d−2(2

n−b, 1β) ⊆ L̂ ′
P0

= ∅. The following facts hold:

• h0(P0,
ˆ̄

L ′
P0

) = h0(P0, L̂
′
P0

) = 0;

• h1(P0, L̂
′
P0

) = l̂′
P0

− v̂′
P0

> 0,

• h1(P0,
ˆ̄

L ′
P0

) = h1(P0, L̂
′
P0

) + β;

• h0(P0, L̄
′
P0

) = h0(P0, L
′
P0

) − (r + 1)β ≥ 0.
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We get the following commutative diagram:

0 0

K(r+1)β

OO

V

OO

0

0 // H0(P0, L
′
P0

) //

OO

H0(R0, R
′
P0

) //

OO

H1(P0, L̂
′
P0

) //

OO

0

0 // H0(P0, L̄
′
P0

) //
?�

OO

H0(R0, R̄
′
P0

) //
?�

OO

H1(P0,
ˆ̄

L ′
P0

) //

OO

0

0

OO

0

OO

Kβ
?�

OO

BC

ED

@A

GF
//

0

OO

It follows that

dim(V ) = h0(R0, R
′
F0

) − h0(R0, R̄
′
P0

)

= h0(P0, L
′
P0

) + h1(P0, L̂
′
P0

) − h0(P0, L̄
′
P0

) − h1(P0,
ˆ̄

L
′
P0

)

= dim(K(r+1)β) − dim(Kβ) = rβ.

Hence H0(R0, R̄
′
P0

) has codimension equal to dim(V ) = rβ in H0(R0, R
′
P0

)

and, at the level of linear systems, we have the following equivalence:

dim(R̄′
P0

) = dim(R′
P0

) − rβ.

This concludes the proof.

By consequence, the matching system R′m
P0

, that corresponds to the inter-

section R′ of the two restricted systems, is non-special, being the b − β base

points in general position. In particular

dim(R′) = max{−1, dim(R̄′
P0

) − (b − β)} =

{
−1 + l− if n = n−

−1 if n = n+

Proposition 32. In the above notation, assume that the linear systems

Lr−1,d(2
b−β)(∼= L̂ ′

F0
), L̄ ′

P0
and L̂ ′

P0
are non-special. Then the linear system

Lr,d(2
n) is non-special.
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Proof. Following the argument of this section we get l′0 = e(L ). Thus we

conclude by upper semicontinuity applyed to the two performed degenerations.

Putting together Propostion 30 and Proposition 32, the proof of Theo-

rem 29 is now completed, and consequentely also the proof of the Alexander-

Hirschowitz theorem (Theorem 2).



Part II

On the degree of the k-secant

varieties of toric surfaces
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Chapter 4

Toric varieties

4.1 Toric varieties

A separated normal variety X of dimension n is a toric variety if it contains a

torus (C∗)n as a dense open subvariety, with an action

(C∗)n × X → X

of (C∗)n on X that extends the natural action of the torus on itself. In the

practise, toric varieties arise from lattices, fans and polytopes.

Let N ∼= Zn be a lattice of rank n, that is, a finitely generated free abelian

group of rank n. We denote by NR the associated real vector space NR =

N ⊗Z R and we set M = Hom(N, Z), which is isomorphic to Zn. Let MR =

M ⊗Z R ∼= Hom(NR, R) and denote by 〈·, ·〉 the natural pairing MR ×NR → R.

Let now V be a vector space; an integral structure on V is the datum of a

lattice N such that NR = V ; we have MR = V ∨ = Hom(V, R).

Definition 6. A polyhedral cone in a vector space V is the positive hull of a

finite set of vectors of V , that is

σ := {a1v1 + · · · asvs : ai ∈ R+}.

A rational polyhedral cone in V = NR is a polyhedral cone in V which can be

generated by elements of N . A rational polyhedral cone is said to be strongly

convex if it does not contain any linear subspace; we will call such a strongly

convex rational polyhedral cone simply a cone.

The dimension of σ is the dimension of the linear space R · σ it spans.

Definition 7. The dual cone σ∨ of a rational cone σ in NR is the set:

σ∨ = {u ∈ MR : 〈u, v〉 ≥ 0,∀v ∈ σ}.
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In what follows, we will see how to construct an affine toric variety starting

from a cone. A cone σ determines a finitely generated semigroup Sσ = σ∨∩M

described by

Sσ = {u ∈ M : 〈u, v〉 ≥ 0,∀v ∈ σ} ⊆ M.

The property of finite generation of Sσ is known as Gordon’s Lemma. The

algebra Aσ = C[Sσ], corresponding to the semigroup Sσ, is a finitely gener-

ated commutative C-algebra: a set of generators {ui} for Sσ determines a set

of generators {χui} for C[Sσ] as a complex vector space, with the following

operation

χu · χu′

= χu+u′

.

The C-algebra Aσ is commutative and finitely generated, so it determines an

affine variety

Uσ = Spec(Aσ)

that we call affine toric variety.

There is an order-preserving correspondence between cones and affine toric

varieties: if τ is a face of σ, then Sσ ⊂ Sτ , Aσ is a subalgebra of Aτ : this

inclusion of algebras induces a morphism of affine varieties Uτ → Uσ which

embeds Uτ as a principal open subset of Uσ.

We construct general toric varieties by combining affine ones taking fans which

are families of cones instead of single cones.

Definition 8. A fan ∆ in NR is a collection of cones such that:

1. if τ is a face of a cone σ, then τ is a cone of ∆;

2. if σ1, σ2 are cones of ∆, then σ1 ∩ σ2 is a common face of them.

We define the toric variety X(∆) as the disjoint union of the affine toric

varieties Uσ associated to the cones σ ∈ ∆; two cones σ and σ′ with a common

face τ = σ ∩ σ′ are glued together along the affine subvarieties Uτ . These

identifications are compatible because of the order-preserving correspondence

between cones and affine toric varieties; X(∆) is separated because the diagonal

map Uτ → Uσ × Uσ′ is a closed embedding.

In the second part of this section, we describe a combinatorial way to define

projective toric varieties endowed with a base point free and ample line bundle.

Definition 9. A convex polytope P in a vector space V of finite dimension

n, is the convex hull of a finite set A of points of V , that is a set of the form

P =

{∑

i

λiui : λi ∈ R≥0,
∑

i

λi = 1

}
.
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A face F of a polytope P is the intersection of P with a supporting affine

hyperplane. A facet of P is a face of codimension one. We call vertices the

faces of dimension zero and edges the faces of dimension one.

The normalized Ehrhart polynomial of a polytope P is the numerical function

EP : N → N

t 7→ ♯(ZA ∩ tP ).

It is known that EP is a polynomial of degree dim(P ):

EP =

dim(P )∑

i=0

ci

i!
ti.

The leading coefficient cdim(P ) is denoted by Vol(P ) and it is called the (nor-

malized) volume of P . If dim(P ) = n, we have

Vol(P ) =
V (P )

n!
,

where V (P ) is the usual Euclidean volume of P (see [33]). If dim(P ) = n = 2,

then we write Area(P ) for the normalized volume of P .

Suppose now that V = MR. We construct from P a fan ∆P , and then a

toric variety XP = X(∆P ), as follows: for each face Q of P , define

σQ =
{
v ∈ NR : 〈u, v〉 ≤

〈
u′, v

〉
for all u ∈ Q and u′ ∈ P

}
.

Observe that σQ is the dual cone of the cone σ∨
Q consisting of all vectors pointing

from points of Q to points of P : σ∨
Q is generated by the vectors u′−u, where u′

and u vary among the vertices of P and Q respectively. The σQ’s form a fan,

as Q varies among the faces of P (for a complete proof see [24]). The degree of

the projective toric variety XP is equal to the normalized volume Vol(P ) (see

[33]).

The toric variety XP is irreducible, reduced, separated and normal.

4.1.1 Toric degenerations

Let P be any polytope in MR.

Definition 10. A subdivision D of P is a partition of P given by a finite

family {Qi}i∈I of convex sub-polytopes of maximal dimension such that

•
⋃

i∈I Qi = P ,

• Qi ∩ Qj, with i 6= j, is either a common face or it is empty.
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Given a piecewise linear positive function F defined over a polytope P with

values in R, define the graph polytope G(F ) to be the following object:

G(F ) := {(x, z) ∈ P × R : 0 ≤ z ≤ F (x)} .

Definition 11. A subdivision D is said to be regular if there exists a piece-

wise linear positive function F with values in R defined over P , verifying the

following requests:

(a.) each Qi is the orthogonal projection of the n-dimensional faces of G(F )

on z = 0;

(b.) F is strictly convex.

We will call such an F a lifting function (according to [26]).

Consider for example the triangle P with edges of reticular lenght three (and

normalized area nine) and a subdivision D of P in triangles of normalized area

one, as in Figure 4.1. This subdivision is regular, in fact there exists a lifting

function F , see Figure 4.2 for an example.

@
@

@
@

@
@@

@
@

@
@@

@
@@

Figure 4.1: A regular subdivision D of P .

Figure 4.2: A lifting function over P .

Now, let PM := P ∩ M = {m0, . . . , mr} be the set of lattice points of P ,

where mi = (mi1, . . . , min), i = 1 . . . n. Given a regular subdivision D of P ,

we can define the associated morphism as follows:

ΦD : (C∗)n+1 → Pr × C

(x, t) 7→ ([tF (m0)xm0 : · · · : tF (mr)xmr ], t).
(4.1)
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The closure of ΦD((C∗)n+1), for all t 6= 0, is a variety Xt projectively equivalent

to XP . Let X0 be the flat limit of Xt, when t tends to zero: such a variety

is the union of the varieties XQi
, i ∈ I. Indeed, the restriction F|Qi

of F to

Qi has equation a1x1 + · · · anxn + b, for some a1, . . . , an, b ∈ R; we can always

compose ΦD with the following reparametrization

x1, . . . , xn, t 7→ t−a1x1, . . . , t
−anxn, t

getting

(C∗)n+1 → Pr × C

(x, t) 7→ ([· · · : tF (mi)−FQi
(mi)xmi : · · · ], t).

For t tending to zero, we see that XQi
sits in X0. The map (4.1) can be

extended to a map

XP × C∗ → Pr

(x, t) 7→ ([tF (m0)xm0 : · · · : tF (mr)xmr ], t)

and the flat morphism

πD : ([· · · : tF (mi)−FQi
(mi)xmi : · · · ], t) 7→ t

provides a 1-dimensional embedded1 degeneration of XP to X0.

Definition 12. The flat morphism πD is said to be a toric degeneration of the

toric variety XP .

The reducible central fiber X0 is given by the subdivision D of P : the

irreducible components of X0 are the XQi
’s. Notice that if i 6= j and Qi and

Qj have a common face Qi∩Qj , then XQi
and XQj

intersect along XQi∩Qj
. In

the example drown in Figure 4.1, the central fiber of the toric degeneration is a

reducible surface given by the union of nine planes, each one corresponding to

a triangle of the configuration of D; the intersection between the components

are easily depicted looking at the figure.

Definition 13. If n = 2 and the reducible central fiber X0 is a union of planes,

i.e. if the subdivision D of the polytope P is a triangulation of it, we say that

πD is a planar toric degeneration of XP .

1A degeneration π : X → ∆, with ∆ a complex disc centered at the origin, is said to be

embedded if X ⊆ ∆ × Pr and the following diagram commutes.

X

��

� � // ∆ × Pr

π

{{ww
ww

ww
ww

w

∆
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In this case the family D of sub-polytopes of P is a simplicial complex2,

whose maximal simplices are the Qi’s.

In the next chapters we will deal with toric degenerations of toric surfaces, and

we will use the notation

X0 = lim
D

X =

to say that X0 is the flat limit, for t tending to zero, of X; namely X0 is the

central fiber of the toric degeneration and Xt
∼= X is the general one.

4.2 Toric ideals

In this section we will define a special class of ideals and their interesting prop-

erties.

Let K be any field and let K[x0, . . . , xr] be the polynomial ring in r + 1 inde-

terminates. Fix a subset A = {α0, . . . , αr} ⊂ Zn+1 and suppose that all the

vectors of A lye on a hyperplane of Rn+1, i.e. suppose that there exists a vector

ω ∈ Qn+1 such that ωT · αi = 1, for all i. Identify each vector ai ∈ Zn+1 with

a monomial tai in the Laurent polynomial ring K[t±1
1 , . . . , t±1

n+1]. Consider the

semigroups homomorphism

πA : Nr+1 → Zn+1

(u0, . . . , ur) 7→ u0α0 + · · · + urαr

and the corresponding semigroup algebras homomorphism

π̂A : K[x0, . . . , xr] → K[t±1
1 , . . . , t±1

n+1]

xi 7→
∏n+1

j=1 t
αij

j .

We denote with IA the kernel of the map π̂A and we call it the homogeneous

toric ideal of A.

Notice that a binomial of the form xu0

0 · · ·xur
r −xv0

0 · · ·xvr
r , where πA(u0, . . . , ur) =

πA(v0, . . . , vr), lies in IA. Moreover each polynomial in IA is a K-linear com-

bination of binomials of that form (for a complete proof see [33], chapter 4).

Therefore

{xu0

0 · · ·xur
r − xv0

0 · · ·xvr
r : πA(u0, . . . , ur) = πA(v0, . . . , vr)}

is a generating set for IA. The hypothesis that the αi’s lie on a hyperplane

ensures that IA is a homogeneous ideal, in fact, given u, v such that u0α0 +

2A simplex in M is the convex hull of n + 1 independent points. A simplicial complex D

is a set of simplices in M that satisfies the following conditions:

• any face of a simplex from D is also in D;

• the intersection of any two simplices Q1, Q2 ∈ D is a face of both Q1 and Q2.
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· · · + urαr = v0α0 + · · · + vrαr, then, multiplying by ωT on both sides, we get

u0 + · · ·+ ur = v0 + · · ·+ vr, therefore xu0

0 · · ·xur
r − xv0

0 · · ·xvr
r is homogeneous.

One can define in general the projective toric variety associated to any set

A; in contrast to the construction of toric varieties via polytopes, such varieties

need not be normal.

Example 1. Consider

A = AV3
=




0 1 0 2 1 0 3 2 1 0

0 0 1 0 1 2 0 1 2 3

3 2 2 1 1 1 0 0 0 0


 , ω =




1/3

1/3

1/3


 .

Let the embedding

P2 ν3→ P9

[y0, y1, y2] 7→ [x003, x102, x012, x201, x111, x021, x300, x210, x120, x030]

be the morphism associated to the map

K[x003, . . . , x030] → K[y0, y1, y2]

xijk 7→ yi
0y

j
1y

k
2

The polytope corresponding to A is a triangle with normalized area equal to

nine; the projective surface it defines is the 3-ple Veronese embedding V3 ⊆ P9

of P2 (cfr. Figure 4.1 and Figure 4.3). The reticular points of the polytope

@
@

@
@

@
@

.

. .

. . .

. . . .

x003

x102 x012

x201 x111 x021

x300 x210 x120 x030

Figure 4.3: The polytope of the Veronese surface V3 ⊆ P9.

correspond to the homogeneous coordinates xijk of P9. The toric ideal IV3
of

V3 is generated by the quadratic binomials xi1,j1,k1
xi2,j2,k2

−xi3,j3,k3
xi4,j4,k4

such

that (i1 + i2, j1 + j2, k1 + k2) = (i3 + i4, j3 + j4, k3 + k4). Its ideal has a nice

determinantal presentation, namely it is generated by the 2 × 2 minors of the

following catalecticant matrix:

A =




x300 x210 x201 x120 x111 x102

x210 x120 x111 x030 x021 x012

x201 x111 x102 x021 x012 x003



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Example 2. Let δ1, δ1 ∈ {0, 1, 2, . . . }, δ1 ≤ δ2, and let δ = δ1+δ2. The rational

normal scroll S(δ1, δ2) is the toric surface of degree δ in Pδ+1 corresponding

to:

A = Aδ1,δ2 =




1 1 · · · 1 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1

0 1 · · · δ1 0 1 · · · δ2


 , ω =




1

1

0




To each vector of A corresponds a coordinate of Pδ+1. Let

K[x100, . . . , x1,0,δ1 , x010, . . . , x0,1,δ2 ]

be the coordinate ring of Pδ+1. The corresponding polytope is the trapezium

drawn in Figure 4.4. The ideal Iδ1,δ2 of S(δ1, δ2) is generated by the binomials

HHHH

. . . . .

. . . . . . .
x100 x101 x10δ1

x010 x011 x01δ2

. . .

. . .

Figure 4.4: The polytope of the rational normal scroll S(δ1, δ2) ⊆ Pδ+1.

xi1,j1,k1
xi2,j2,k2

−xi3,j3,k3
xi4,j4,k4

such that (i1+i2, j1+j2, k1+k2) = (i3+i4, j3+

j4, k3 + k4), i.e. Iδ1,δ2 is generated by the 2 × 2 minors of

M = Mδ1,δ2 =

(
x100 . . . x1,0,δ1−1 x010 . . . x0,1,δ2−1

x101 . . . x1,0,δ1 x011 . . . x0,1,δ2

)

For a complete reference see [18, 32].

4.2.1 Initial ideals and regular triangulations

In this section we will briefly recall what the initial ideal of a toric ideal with

respect to a term order is (for a complete reference see [33]).

A term order ≺ on Nr+1 is a total order such that the zero vector is the unique

minimal element with respect to ≺ and such that if α ≺ β then α + γ ≺ β + γ,

for all α, β, γ ∈ Nr+1. Given a homogeneous polynomial f and a term order

≺, the (unique) initial monomial of f with respect to ≺ is denoted by in≺(f).

If I ⊆ K[x0, . . . , xr] is any ideal, then the corresponding initial ideal is the

monomial ideal

in≺(I) := 〈in≺(f) : f ∈ I〉 ⊆ K[x0, . . . , xr].

The passage from I to its initial ideal is a flat deformation: the zero set of I

is deformed into the zero set of in≺(I) which is a union of linear coordinate

subspaces. This operation, when I defines a projective toric variety X of

any dimension n, corresponds to performing a toric degeneration of X to a

union of Pn’s. The initial complex ∆≺(I) of an ideal I with respect to ≺ is
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the simplicial complex whose Stanley-Reisner ideal, or non-face ideal, is the

radical of in≺(I), i.e. it is the simplicial complex on the vertex set {0, . . . , r}

defined by the following rule: a subset F ⊆ {0, . . . , r} is a face of the complex

if do not exist polynomials f ∈ I such that in≺(I) has support on F (see [23],

Section 15.8 and [33], chapter 8).

Let A ⊆ Zn+1 be the vector configuration of any toric ideal IA. Let γ be

a subset of A and consider the cone spanned by γ, denoting it by pos(γ).

Definition 14. A triangulation of A is a collection D of subsets of A such

that the set

{pos(γ) : γ ∈ D}

is the set of cones in a simplicial fan whose support is pos(A), i.e. the convex

hull of the vectors of A.

Notice that pos(A) is a polytope in Rn and a triangulation of A is a toric

degeneration of the toric variety X = V(IA). Regular triangulations corre-

spond to regular toric degenerations.

The radical of in≺(IA) is a squarefree monomial ideal whose corresponding ini-

tial complex ∆≺(IA) is a regular triangulation of A. Conversely, every regular

triangulation of A can be interpreted as ∆≺(IA), for some ≺ ([33], Theorem

8.3).

A triangulation is said to be full if every vector of A is the vertex of some

simplex in the triangulation. It is said to be unimodular if all the maximal

simplices have normalized volume equal to one, i.e. it is a tetrahedron with

edges of reticular lenght one (a triangle if n = 2). Full unimodular regular

triangulations corresponds to toric degenerations to unions of Pn’s.
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Chapter 5

Secant varieties of toric

surfaces

In this chapter we will introduce the concept of k-secant variety of a variety

and in particular, in the toric case, we will define what a k-delightful toric

degeneration is.

5.1 k-secant varieties

Let X ⊂ Pr be an irreducible, non-degenerate, projective variety of dimension

n. Fix an integer k ≥ 1 and consider the k-th symmetric product Symk(X).

We define the abstract k-th secant variety of X, Sk
X ⊆ Symk(X) × Pr, as the

Zariski closure of the set

{((x0, . . . , xk), z) ∈ Symk(X) × Pr : dim(π) = k and z ∈ π}

where π = 〈x0, . . . , xk〉. It is irreducible of dimension (k + 1)n + k. Consider

the projection pk
X on the second factor and define the k-th secant variety of X

Seck(X) := pk
X(Sk

X)

as the scheme-theoretic image of Sk
X in Pr, i.e.

Seck(X) =
⋃

xi∈X, dim(〈x0,...,xk〉)=k

〈x0, . . . , xk〉 ⊆ Pr.

It is an irreducible algebraic variety of dimension

dim(Seck(X)) ≤ min{(k + 1)n + k, r} (5.1)

Definition 15. The right hand side of (5.1) is called the expected dimension

of Seck(X). If strict inequality holds, the k-secant variety of X does not have

the expected dimension and X is said to be k-defective.
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The general fiber of pk
X is pure of dimension (k + 1)n + k − dim(Seck(X));

denote by µk(X) the number of irreducible components of this fiber. If

dim(Seck(X)) = (k + 1)n + k ≤ r,

then pk
X is generically finite and µk(X) = deg(pk

X), i.e. µk(X) is the number

of (k +1)-secant Pk’s to X passing through the general point of Seck(X). This

number is equal to one unless X is k-weakly defective; the weakly defective

surfaces are classified in [13].

Suppose now that Seck(X) is not k-defective and that dim Seck(X) = (k +

1)n+k. Let L be a general linear subspace of Pr of codimension dim(Seck(X)):

X has

νk(X) = µk(X) · deg(Seck(X))

(k + 1)-secant Pk’s meeting L. Let πL be the projection of X from L to

P(k+1)n+k−1: the image X ′ of X has νk(X) new (k + 1)-secant Pk−1’s that X

did not use to have.

Definition 16. Let X ⊂ Pr as above, with r ≥ (k + 1)n + k. The number

νk(X) is called the number of apparent (k + 1)-secant Pk−1’ s to X.

In particular ν1(X) corresponds to the number of double points that X

acquires in a general projection to P2n, ν2(X) is the number of trisecant lines

in a general projection of X to P3n+1 and so on.

Notice that if νk(X) = 1, then Seck(X) = Pr and µk(X) = 1 which means

that for a general points of Seck(X) there is a unique (k + 1)-secant Pk.

If one is able to compute the number of apparent (k +1)-secant Pk−1 of X,

one can say something about the degree of its k-secant variety.

We will deal with the surface case. Let X be a smooth surface, the Severi’s

double point formula gives the number of nodes of a general projection of X

to P4:

ν1(X) =
d(d − 5)

2
− 5g + 6pa − K2 + 11, (5.2)

where d is the degree, g is the sectional genus, pa is the arithmetic genus and

K is the canonical divisor of X. In particular, if X = XP is a projective toric

surface, then

ν1(X) =
d2 − 10d + 5B + 2V − 12

2
, (5.3)

where d is the normalized area of the polytope P , B is the number of lattice

points on the boundary and V is the number of vertices of P , see [22].

If X does not contain lines, a formula for ν2(X), known as the LeBarz’ trisecant

formula for surfaces in P7 (see [29, 30]), is

ν2(X) =
d3 − 30d2 + 224d − 3d(5h + K2 − c2) + 192h + 56K2 − 40c2

6
(5.4)
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where H is the hyperplane divisor, c2 is the second Chern class of X and

h = HK; if the surface X contains a finite number of lines, the contribution

of each line to ν2(X) is

−

(
4 + a

3

)
,

where a ∈ Z is its self-intersection.

For the rational normal surface scrolls there is a formula for the number of

trisecant lines of a general projection of X to P7, due to C. James (see [27]):

ν2(X) =

(
d

3

)
− 2d2 + 12d − 3dg + 20g − 20. (5.5)

There are similar, but more complicated, formulas for the number νk(X) in

the curve case (see [2], chapter VIII), and in the surface case, if X does not

contain any line, for k ≤ 5 (see [29, 30]).

5.2 k-secant ideals

Let I be an ideal in the polynomial ring K[x0, . . . , xr]. The secant of I

I{1} = I ∗ I

is an ideal in K[x0, . . . , xr] defined in the following way: take the polynomial

ring K[x, y] = K[x0, . . . , xr, y0, . . . , yr] and consider the map

K[x, y] → K[x, y]

xi 7→ yi,

for i = 0, . . . , r. Denote with I ′ the image of I under that map. Then I{1} is

the elimination ideal

I ′ + I ′ + 〈2yi − xi : 0 ≤ i ≤ r〉 ∩ K[x0, . . . , xr].

Similarly, we define the 2-secant of I as

I{2} = I ∗ I ∗ I

and the k-secant of I as

I{k} =

k+1︷ ︸︸ ︷
I ∗ · · · ∗ I .

For homogeneous prime ideals, the k-secant ideals represent the prime ideals

of the k-secant varieties of irreducible projective varieties.
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Secants of edge ideals

Let I = IA ⊆ K[x0, . . . , xr] be the homogeneous toric ideal defining a pro-

jective toric variety and let ≺ be any term order on K[x0, . . . , xr]. Set

I0 := in≺(I). Let ∆ be the simplicial complex of I0 (see Section 4.2.1).

Moreover define ∆{k} to be the simplicial complex of I
{k}
0 whose faces are the

subset F of A such that there are no monomials in I
{k}
0 having support on F .

The simplices in ∆{k} are unions of k+1 simplices in ∆ (see [32], Remark 2.9).

In the case of edge ideals, we can simplify the study of secant ideals by consid-

ering the coloring properties of the graph they reflect. An edge ideal I(G) is

an ideal generated by the squarefree quadratic monomials xixj corresponding

to the edges {i, j} of a graph G with vertex set {0, . . . , r}. The chromatic

number χ(G) of a graph is the minimal number of colors which can be used to

color the vertices of G in such a way that no adjacent vertices have the same

color; it corresponds to the smallest k such that the secant ideal I(G){k−1} is

zero. The ideal I(G){k−1} has a nice combinatorial description. Given a sub-

set V ⊆ {0, . . . , r} of the vertex set of G, we write GV for the sub-graph of G

which is induced on the set of vertices V ; let mV =
∏

i∈V xi be the monomial

corresponding to G.

Theorem 33. The k-secant ideal I(G){k} of an edge ideal I(G) is generated by

the squarefree monomials mV whose corresponding sub-graph GV has chromatic

number strictly greater than k + 1:

I(G){k} = 〈mV : χ(GV ) > k + 1〉 .

For a proof see [32]. This result is very helpful to compute the degree of

the k-secant varieties, via toric degenerations.

Example 3. For example, consider the triangle in Figure 5.1 (cfr. Table 6.1,

sixth row): it describes a toric singular sextic surface X ⊆ P6. The ideal IX
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Figure 5.1: A triangle.

of X is generated by the following quadratic binomials:

x0x3 − x2
1, x0x5 − x2

2, x3x5 − x2
4, x4x6 − x2

5, x0x4 − x1x2,

x2x3 − x1x4, x1x5 − x2x4, x1x6 − x2x5, x3x6 − x4x5

Now, consider the subdivision D of X in Figure 5.1 on the right. The initial

ideal I0 with respect to this planar toric degeneration is an edge ideal: I0 =
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I(G), where G is the graph with vertex set {0, . . . , 6} and edge set the set of

the non-edges of D:

{{0, 3}, {0, 5}, {3, 5}, {4, 6}, {0, 4}, {2, 3}, {1, 5}, {1, 6}, {3, 6}},

where the vertex i of G corresponds to the coordinate xi of P6. Therefore

I0 = 〈x0x3, x0x5, x3x5, x4x6, x0x4, x2x3, x1x5, x1x6, x3x6〉 ,

and, by Theorem 33

I
{1}
0 = 〈x0x3x5〉 ,

in fact the only squarefree monomial of degree three such that the xi’s are

pairwise disjoint is x0x3x5.

Example 4. Consider the surface X defined by the polytope in Figure 5.2 (cfr.

Table 6.1, eleventh row). It is a singular surface of degree eight in P8 whose
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Figure 5.2: A triangle.

ideal is generated by the 2 × 2 minors of the following matrix:

C =




x4 x5 x1 x6

x5 x6 x2 x4

x1 x2 x0 x3

x6 x4 x3 x8




The initial ideal I0 with respect to the triangulation in the right hand side of

Figure 5.2 is

I0 = 〈x0x4, x0x5, x0x6, x0x7, x0x8, x1x3, x1x5, x1x6, x1x7, x1x8,

x3x4, x3x5, x3x6, x3x7, x4x6, x4x7, x4x8, x5x7, x5x8, x6x8〉 .

It is an edge ideal: the corresponding graph G has as edge set the non-edges of

D, i.e. the pairs {i, j} such that there is not an edge joining the vertices i and

j. Moreover

I
{1}
0 = 〈x0x4x6, x0x4x7, x0x4x8, x0x5x7, x0x5x8, x0x6x8, x1x3x5,

x1x3x6, x1x3x7, x1x5x7, x1x5x8, x1x6x8, x4x6x8〉

and

I
{2}
0 = 〈x0x4x6x8〉 .

Therefore, using for example the software CoCoA ([15]), one can compute the

Hilbert polynomial, and in particular the degree and the dimension, of the al-

gebraic varieties that I
{1}
0 and I

{2}
0 respectively define: V(I

{1}
0 ) has dimension

five and degree three, while V(I
{2}
0 ) has dimension seven and degree four.
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The ideals of some toric surfaces and of their k-secant varieties

In this section we briefly investigate the ideals of the toric surfaces we will deal

with in the last chapter.

Consider first of all the surface X defined by the polytope in Figure 5.2,

cfr Example 4. The secant variety Sec(X) of X is generated by the minors of

C of order three, so it has dimension five as expected and degree eight; the

variety Sec2(X) is defined by det(C), so it is a hypersurface of degree four, and

in particular X is 2-defective.

Let now S8 ⊆ P8 be the embedding of the smooth quadric P1 × P1 via

O(2, 2). The defining configuration is

A =




1 1 1 1 1 1 1 1 1

0 1 2 0 1 2 0 1 2

0 0 0 1 1 1 2 2 2


 , ω =




1

1

0




A reference is for example [32]. The embedding is the one associated to the

map

K[x0000, . . . , x1111] → K[y0, y1; z0, z1]

xijkl 7→ yiyjzkzl.

The corresponding polytope is the four sided polygon of edge lenght two with a

unique internal lattice point, for example a square as in Figure 5.3 (cfr. Table

6.1, tenth row). The toric ideal IS8
of S8 in generated by the 2 × 2 minors of

. . .

. . .

. . .

x0011 x0111 x1111

x0001 x0101 x1101

x0000 x0100 x1100

Figure 5.3: A polytope of S8.

the matrix

B =




x0000 x0001 x0100 x0101

x0001 x0011 x0101 x0111

x0100 x0101 x1100 x1101

x0101 x0111 x1101 x1111


 ;

I
{1}
S8

is generated by the 3× 3 minors of B, so deg(Sec(S8)) = 10. The variety

Sec2(S8) is a quartic hypersurface defined by det(B) = 0, then S8 is 2-defective.

Now we consider the 3-ple Veronese embedding V3 of P2 in P9 (described

in Example 1, cfr. Table 6.1, last row) and some further toric surfaces which

can be obtained as projection of V3 from a finite number of general points on

it. The (toric) ideal of V3 is generated by the 2 × 2 minors of A. The ideal

I
{1}
V3

of Sec(V3) is generated by the 3× 3 minors of A by a result of Kanev (see
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[28]). Therefore V3 is not 1-defective and deg Sec(V3) = 15. Moreover Sec2(V3)

is a hypersurface, as expected, and it has the quartic Aronhold invariant of

ternary cubic as equation (see for example [32]).

Consider the Del Pezzo surface X8 of degree eight in P8. Its toric configuration

corresponds to AV3
without the vector T (0, 0, 3) (or T (0, 3, 0) or T (3, 0, 0) by

simmetry). The associated polytope is the one represented in Figure 5.4 (or in

Figure 5.5 respectively).
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Figure 5.4: A polytope of X8.
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Figure 5.5: Other polytopes of X8.

Notice that this toric surface is obtained, starting from V3, by projecting

from the point [0, . . . , 0, 1] ∈ V3 ⊆ P9, as Figure 5.4 suggests. The (toric)

ideal IX8
of X8 is generated by the 2 × 2 minors of the matrix A8 obtained

from A by erasing the last column (the one containing the coordinate x003).

Indeed X8 is embedded in P8 via the linear system of plane cubics passing

through [0, 0, 1] ∈ P2, i.e. the cubic curves not containing the monomial y3
2,

where y0, y1, y2 are homogeneous coordinates for P2, which corresponds to the

coordinate x003 of P9. Therefore

IX8
= IV3

∩ K[x̂003, · · · , x030].

The secant variety of the projection of a variety equals the projection of the

secant variety of that variety. Therefore the ideal I
{1}
X8

of Sec(X8) is generated

by the 3×3 minors of A8, it has the expected dimension and deg(Sec(X8)) = 10.

Moreover Sec2(X8) fills up P8 as expected. Indeed, let ν8 be the embedding

of P2 in P8, via the linear system of cubic curves through a fixed point q ∈ P2

such that ν8(P
2) = X8. Let p1, p2, p3 be general points of P2; the linear system

L = L2,3(2
3, 1) of plane cubics singular at p1, p2, p3 and passing through

q corresponds to the linear system of hyperplanes of P8 tangent to X8 at

ν8(p1), ν8(p2), ν8(p3); its base locus is the general tangent space to Sec2(X8).
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Now, the non-speciality of L is equivalent to the 2-non-defectivity of X8, by

Terracini’s Lemma (see Section 1.2). The same holds for the surfaces described

by the polytopes in Figure 5.5.

Let now Xi ⊆ Pi be the Del Pezzo surface of degree i, for i = 6, 7: X7 is

obtained from X8 by projecting from a general point; X6 is obtained from X7

by projecting from a further general point. The corresponding polytopes are

drown in the seventh row and in the third row of Table 6.1 respectively. The

ideal IXi
of Xi, for i = 6, 7, is generated by the 2 × 2 minors of the matrix Ai

obtained by erasing from A the right columns, in the same way as above. The

ideal I
{1}
Xi

is generated by the 3 × 3 minors of Ai. With an easy computation

we get that deg(Sec(X6)) = 3, Sec2(X6) = P6 and that deg(Sec(X7)) = 6,

Sec2(X7) = P7. (For a reference see for example [10]).

Now, exploiting the same rule, we complete the description of the toric surfaces

in Table 6.1. Let X be the toric surface in P7 obtained as image of V3 under the

projection of P9 to P7 from the line {xijk = 0 : (i, j, k) 6= (0, 0, 3), (1, 0, 2)} ⊆ P9

or from the line {xijk = 0 : (i, j, k) 6= (0, 0, 3), (0, 1, 2)} ⊆ P9: the corresponding

polytopes are drawn in the eighth row of Table 6.1. As above, the ideal of X

and of its secant variety are generated by the minors of order two and three

respectively of the matrix obtained by erasing from A the two corresponding

columns: deg(Sec(X)) = 6 and Sec2(X) = P7.

By projecting from a further point to P6, we get the toric surfaces of degree

six whose polytopes are drown in the fourth and the fifth rows: the secant

varieties have degree three and the varieties of trisecant planes fill up P6.

By projecting from a further point to P5, we get the toric quintic surfaces

defined by the polytopes in the first two rows whose secant varieties fill up P5.

Finally, consider the rational normal surface scrolls S(δ1, δ2) ⊆ Pδ+1, where

δ = δ1 + δ2 and δ1 ≤ δ2 (cfr. Example 2), whose polytopes are the trapezia

drown in Table 6.2. All the secant ideals of S(δ1, δ2) are known to have deter-

minantal presentations, see for example [32] for a recent reference. Define

M
{1}
δ1

=




x100 . . . x1,0,δ1−2

x101 . . . x1,0,δ1−1

x102 . . . x1,0,δ1


 , M

{1}
δ2

=




x010 . . . x0,1,δ2−2

x011 . . . x0,1,δ2−1

x012 . . . x0,1,δ2


 .

If δi ∈ {0, 1}, then M
{1}
δi

denotes the empty matrix. Let δ ≥ 5. If δ1 ≥ 2, the

ideal I
{1}
δ1,δ2

is generated by the 3 × 3 minors of the matrix

M{1} = M
{1}
δ1,δ2

=
(

M
{1}
δ1

M
{1}
δ2

)
,

while if δ1 ∈ {0, 1}, then I
{1}
δ1,δ2

is generated by the 3 × 3 minors of M
{1}
δ2

.
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Define

M
{2}
δ1

=




x100 . . . x1,0,δ1−3

x101 . . . x1,0,δ1−2

x102 . . . x1,0,δ1−1

x103 . . . x1,0,δ1


 , M

{2}
δ2

=




x010 . . . x0,1,δ2−3

x011 . . . x0,1,δ2−2

x012 . . . x0,1,δ2−1

x013 . . . x0,1,δ2


 .

If δi ∈ {0, 1, 2}, M
{2}
δi

is the empty matrix. Let δ ≥ 8. The ideal I
{2}
δ1,δ2

, if

δ1 ≥ 3, is generated by the 4 × 4 minors of

M{2} = M
{2}
δ1,δ2

=
(

M
{2}
δ1

M
{2}
δ2

)

while if δ1 ∈ {0, 1, 2}, I
{2}
δ1,δ2

is generated by the 4 × 4 minors of M
{2}
δ2

. The

trick is the same for k ≥ 3.

We are interested in Seck(S(δ1, δ2)), for k = 1, 2 and δ1 ≤ 2, as we will ap-

preciate in the next chapter. We can easily compute the dimensions and the

degrees.

δ1 = 0: S(0, δ) is a rational cone over a rational normal curve Cδ ⊆ Pδ ⊆ Pδ+1

of degree δ.

– Sec(S(0, δ)) = Pδ+1 if δ ≤ 3, while S(0, δ) is 1-defective if δ ≥ 4;

– Sec2(S(0, δ)) = Pδ+1 if δ ≤ 5, while S(0, δ) is 2-defective if δ ≥ 6.

δ1 = 1:

– Sec(S(1, δ−1)) = Pδ+1 if δ ≤ 4, while Sec(S(1, δ−1)) has dimension

five and degree
(
δ−2
2

)
for δ ≥ 5, using formula (5.2);

– Sec2(S(1, δ − 1)) = Pδ+1 if δ ≤ 6, while S(1, δ − 1) is 2-defective if

δ ≥ 7.

δ1 = 2:

– For the 1-secant variety of S(2, δ − 2) the same things as for the

scroll S(1, δ − 1) hold;

– Sec2(S(2, δ − 2)) = Pδ+1 if δ ≤ 7, while Sec2(S(2, δ − 2)) has di-

mension eight and degree
(
δ
3

)
− 2((δ − 3)2 + 1) for δ ≥ 8, applying

formula (5.5).

5.3 k-delightfulness and k-secant degree

Let ≺ be any term order. The initial ideal of the k-secant ideal I{k} of I is

contained in the k-secant of the initial ideal of I, for k ≥ 1:

in≺(I{k}) ⊆ (in≺(I)){k}. (5.6)

For a reference see for example [32], Corollary 4.2.
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Definition 17. If equality holds in (5.6), then ≺ is said to be k-delightful for

the ideal I. It is said to be delightful for I if it is k-delightful for I, for every

k ≥ 1.

Let us go back to Example 3, Section 5.2. The initial ideal in≺(I
{1}
X ), i.e.

the ideal of the flat limit of Sec(X) with respect to D, must contain I
{1}
0 , by

(5.6). Moreover, the dimension (and also the degree) is preserved under flat

deformations, so

dim(Sec(X)) = dim(V(in≺(I{1}))) ≥ dim(V(I
{1}
0 )) = 5,

then Sec(X) is a hypersurface of P6. Its defining equation is given by a homo-

geneous cubic polynomial whose initial term, with respect to the term order

associated to the triangulation D, is x0x3x5. Therefore deg(Sec(X)) = 3.

Let us look now at Example 4 (see Section 5.2). We have that

deg(Sec(X)) = 6 > deg I
{1}
0 = 3,

then the term order associated to the degeneration D is not 1-delightful for the

ideal of X. Furthermore, one can check that the monomial x0x4x6x8 defining

I
{2}
0 is the initial term of the quadratic polynomial det(C) defining Sec2(X),

thus X is 2-delightful.

k-delightful toric degenerations

Let D be a toric degeneration of a toric variety X of dimension n. Any subset

of D of m pairwise disjoint planes, i.e. m(n + 1) vertices of D such that they

form the vertices of m disjoint tetrahedra of D, will span a linear subspace

of Pr of dimension m(n + 1) − 1. A subset of this type is said to be a skew

m-set ; we denote by Nm(D) the set of such skew m-sets and by νm(D) its

cardinality, see [16, 32]. Consider the following result, due to Sturmfels and

Sullivant ([32], Theorem 5.4), which gives a lower bound to the number νk(X)

for toric varieties.

Theorem 34. If there exists a toric degeneration D of X to a union of Pn’s

with at least one skew (k + 1)-set, then Seck(X) has the expected dimension

and νk(X) is bounded below by the number of skew (k + 1)-sets:

νk(X) ≥ νk+1(D). (5.7)

Proof. Notice first of all that it must be (k + 1)n + k ≤ r. Let I be the ideal

of X and let I0 = in≺(I) be the ideal of the central fiber X0. The simplicial

complex of X0 is D; let D{k} be the simplicial complex of I
{k}
0 : the simplices in

D{k} are the unions of k+1 simplices in D, (see [32], Remark 2.9). Notice that



Secant varieties of toric surfaces 75

the simplices of D{k} of maximal dimension are the skew (k + 1)-sets and the

subspaces they span sit in the flat limit of Seck(X). Therefore, if there exists

at least one skew (k + 1)-set in D, then Seck(X) has the expected dimension

(k + 1)n + k, having at least an irreducible linear component of dimension

(k + 1)n + k.

Moreover, the toric variety described by D{k} is the reduced union of the

coordinate subspaces in Pr given by the skew (k+1)-sets. Notice that different

skew (k+1)-sets could span the same subspace π of Pr and that for the general

point of π there is a unique subspace of dimension k meeting the k + 1 planes

each at a point, for each skew (k + 1)-set spanning π. Furthermore, the limit

of the k-secant variety of X contains the variety defined by the k-secant of I0,

by the (5.6), thus inequality (5.7) is proven.

Sturmfels and Sullivant in [32] conjectured that if the lower bound in (5.7)

holds with equality, then D is k-delightful. We will call such degenerations

k-delightful, according to Ciliberto, Dumitrescu e Miranda in [16].

Now, consider the two following examples. Let V3 be the Veronese surface

in P9. We have deg(Sec(V3)) = 15 and µ1(V3) = 1, therefore ν1(V3) = 15 is the

number of nodes that X aquires in a general projection to P4. Let D be the

triangulation shown in Figure 5.6: ν3(D) = 12: twelve nodes of the image of
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Figure 5.6: A planar degeneration of V3.

X in P4 correspond to the pairs of planes that are disjoint in X0, but whose

projections meet in P4; so D is not 1-delightful because strict inequality holds

in (5.7).

As a second example consider the Del Pezzo surface X6 of degree 6 in P6:

ν1(X6) = deg(Sec(X6)) = 3. Consider the triangulation D′ of the hexagon in

Figure 5.7. We get ν2(D
′) = 0.

In both cases the sextuple central point, marked in the figures, causes an

obstruction to the presence of skew 2-sets in D and in D′: in both examples it

counts for three more nodes in a general projection to P4.

How do the singularities of the configuration influence the lack of delightful-

ness? This question was asked in [16] by Ciliberto, Dumitrescu and Miranda.

Our aim is to give an explanation to this phenomenon. In the next chapter we
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Figure 5.7: A planar degeneration of X6

will expose some partial results in this direction, for n = 2 and k = 1, 2.



Chapter 6

Some speculations on the lack

of k-delightfulness

Let P ⊆ MR be the defining polytope of a projective toric surface X and let

D be a planar toric degeneration of X to a union of planes X0. Let p ∈ PM

be a lattice point of P and let Q1, . . . , Qδ ∈ D be the triangles in D having

a vertex in p: Q1 ∩ · · · ∩ Qδ = {p}. Suppose that the union of the Qi’s is a

convex planar figure, namely a sub-polytope Qp of P , of (normalized) area

Area(Qp) = δ.

The configurations in Figure 6.1 are admitted, while the ones in Figure 6.2 are

not admitted. Let Z = Zp be the projective toric sub-variety of degree δ of
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��@@
•p

��@@
HHH@@
•p

Figure 6.1: Admitted configurations.
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Figure 6.2: Not admitted configurations.

X defined by Qp and let Z0 be the union of δ planes defined by the Qi’s.

If p is an internal lattice point, i.e. p ∈ P ◦ ∩ M , we will call it an elliptic

singularity for D because Z0 is a reduced cycle of planes intersecting at a point

(corresponding to p): it has sectional genus one, being the general hyperplane

77
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section a cycle of lines. If p is a boundary point, i.e. p ∈ ∂P ∩ M , we will say

that p is a rational singularity for D because the general hyperplane section of

Z0 is a chain of lines.

Let now p1, p2 be two singularities for D with the properties described above.

If dim(Qp1
∩ Qp2

) < 2, i.e. if Qp1
and Qp2

intersect in a common proper

face (perhaps the empty face), then we will say that Qp1
and Qp2

are non-

overlapping.

6.1 An improved lower bound for νk, k = 1, 2

This section is devoted to the proof of the following result that improves the

lower bound for νk of Theorem 34 for the cases k = 1 and k = 2.

Theorem 35. Let k ∈ {1, 2}. Let X = XP be a projective toric surface such

that dimSeck(X) = 3k+2. Let D be any triangulation of P ; let {pi}i∈I ⊆ PM ,

{Qpi
}i∈I and {Zpi

}i∈I be as above. Assume that

1. dimSeck(Zpi
) = 3k + 2, for i ∈ I,

2. there exists a regular subdivision D1
i of P containing Qpi

and such that

the polytopes of D1
i are unions of polytopes of D, for every i ∈ I and

3. the polytopes {Qpi
}i∈I are pairwise non-overlapping.

Then D is not k-delightful. Moreover

νk(X) ≥ νk+1(D) +
∑

i∈I

νk(Zpi
). (6.1)

6.1.1 The case k = 1

Let X = XP be a projective toric surface such that dim Sec(X) = 5. Let D be

a planar toric degeneration of X and let p be an elliptic or rational singularity

for D. Let Q = Qp = ∪δ
i=1Q

i be the sub-polytope of P corresponding to

p and let Z = Zp be the projective toric surface of degree δ defined by Q:

Z ⊆ Pδ′ ⊆ Pr, where

δ′ =

{
δ if p is elliptic

δ + 1 if p is rational

We will prove that the flat limit of the secant variety of Z sits in the flat limit

of the secant variety of X and in particular that it is a component of degree

ν1(Z) of it. For this reason, we will assume that δ′ ≥ 5. If, on the contrary,

δ′ < 5, then the secant variety of Z has dimension less than five, so it does not



Some speculations on the lack of k-delightfulness 79

contribute to the degree computation.

Our approach consists in considering a toric degeneration D1 of X, if it exists,

such that the variety Z is an irreducible component of the central fiber. To

this end, assume that an intermediate regular partition D1 of P given by Q

and the by the families {Tk}k∈I1 and {Sj}j∈I2 , where the Tk’s are triangles of

D and Sj ’s are convex unions of triangles of D, exists; the reader can see some

examples in Figure 6.3, Figure 6.4 and Figure 6.5.
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Figure 6.3: An example of decomposed degeneration, Zp = X6.
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Figure 6.4: An example of decomposed degeneration, Zp = X7.

@@

�� @@

��

P :

@@

�� @@

��

@@
@@

@@�
�

�

��������A
A
A

�
�

�

Qp

S1S1,2

��

D1 :

@@

�� @@

��

@
@

@

@@

�����
@@��

@@���
�

�

���

���
�
�

�����A
A
A

��•p

D :

Figure 6.5: An example of decomposed degeneration, Zp = S(2, 3).

By decomposing the degeneration D of X to X0 into two subsequent de-

generations and by exploting the fact that the degree is preserved under flat

deformations, we are able to improve the lower bound for the number ν1(X)

of Theorem 34.

We need the following definition that generalizes to arbitrary irreducible

varieties the concept of join of linear spaces.

Definition 18. Let X, Y ⊆ Pr be irreducible varieties. Let JX,Y ⊆ X×Y ×Pr

be the abstract join of X and Y defined as the Zariski closure of the set

{((x, y), z) : x 6= y, z ∈ 〈x, y〉} ⊆ X × Y × Pr.
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It is irreducible of dimension dim(X) + dim(Y ) + 1. Consider the projection

pX,Y on the second factor and define the join of X and Y

J(X, Y ) := pX,Y (JX,Y ),

to be the scheme-theoretic image of JX,Y in Pr. It is an irreducible variety of

dimension

dimJ(X, Y ) ≤ min{dimX + dimY + 1, r}.

Proposition 36. Keeping the same setting as above, if there exists in D a sin-

gularity p as in Table 6.1 or in Table 6.2 and if there exists a regular subdivision

D1 of P as above, then

ν1(X) ≥ ν2(D) + ν1(Z). (6.2)

Proof. 1. Let us consider first of all the degeneration D1 of X. Let X1
t be

the fiber of D1: X1
t
∼= X, for t 6= 0, while X1

0 is the reduced union of the

toric surfaces given by D1 that are: Z, {XTk
}k∈I1 and {XSj

}j∈I2 . We

have that

• the secant variety of Z,

• the secant variety of Sj , for j ∈ I2 and

• all the joins J(Z, XSj
), J(Z, XTk

), J(XSj1
, XSj2

), J(XTk1
, XTk2

),

J(XSj
, XTk

), for j, j1, j2 ∈ I2, j1 6= j2 and k, k1, k2 ∈ I1, k1 6= k2,

sit in the flat limit limD1 Sec(X) of the secant variety of X, with respect

to D1. Notice that

{J(XTk1
, XTk2

) : k1 6= k2 and dimJ(XTk1
, XTk2

) = 5} = N2(D
1).

2. We consider now the second degeneration D2 which has as general fiber

X2
s
∼= X1

0 , s 6= 0, and as central fiber the reduced union of planes X2
0
∼=

X0. The flat limit, with respect to D2, of limD1 Sec(X), that is nothing

but limD Sec(X), contains as component the flat limits, with respect to

D1 of all the components of limD1 Sec(X), namely the following:

• limD2 Sec(Z),

• limD2 Sec(XSj
) and

• the flat limit, with respect to D2, of all the joins between compo-

nents of X2
s , s 6= 0.

In particular the components of maximal dimension, i.e. of dimension

equal to dim(Sec(X)) = 5, contribute to the computation of the degree of
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limD Sec(X), namely of ν1(X). Unfortunately, we are not able to deter-

mine how because we do not know the degree of all of them. Nevertheless

we can give at least a partial explanation.

First of all, the ν1(D
1) skew 2-sets of D1 are skew 2-sets also for D2:

N2(D
1) ⊆ N2(D

2). Moreover, in D2 there are further pairs of disjoint

triangles, and the P5’s they define are 5-dimensional components of the

flat limits, with respect to D2, of the joins of components of X1
0 . Thus,

the whole set N2(D
2) = N2(D) sits certainly in the flat limit and it cor-

responds to ν2(D) linear irreducible distinct components of limD Sec(X).

Moreover limD2 Sec(Z) is a component of the flat limit of Sec(X) of de-

gree

deg

(
lim
D2

(Sec(Z))

)
= deg(Sec(Z)) = ν1(Z).

All these contributions do not interfere to each other, because they come

from different components of the limit of Sec(X) with respect to D1.

Hence the number ν2(D) + ν1(Z) provides a lower bound for ν1(X).

What does it happen if in D there are more than one singularity? If there

are singularities {pi}i∈I in D satisfying the hypotheses of Proposition 36 and

the non-overlapping property, then the contributions given by the degrees of

the Sec(Zp1
)’s do not interfere to each other. To see this, let us decompose the

degeneration D taking subdivisions D1
i and D2

i , for each i. The flat limit of

the secant variety of Zpi
with respect to D2

i sits in the flat limit of the secant

variety of X with respect to D, for every i, by Proposition 36. Moreover, the

non-overlapping assumption assures that limD2
i
Sec(Zpi

) and limD2
j
Sec(Zpj

)

are two different components of limD Sec(X), for all i, j ∈ I, i 6= j; hence

the respective degrees sum up to ν2(D). This proves Theorem 35 for the case

k = 1.

6.1.2 The case k = 2

In this section we will make the same analysis for the varieties of trisecant

planes of toric surfaces.

Let X = XP be a toric surface such that dim Sec2(X) = 8. Let D be any

triangulation of P .

There are only two types of elliptic singularities we are interested in, namely

the ones such that Zp is either the Veronese surface V3 in P9 or the del Pezzo

surface X8 of degree eight in P8. Indeed in all the remaining cases (see Table

6.1, third column) the 2-secant variety has dimension less than eight.

On the other hand, the only toric surface with sectional genus zero such that

its 2-secant variety has dimension eight and such that there exists a toric
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degeneration of it to a union of planes all of them intersecting at a single point

is the rational normal scroll S(2, δ − 2) ⊆ Pδ+1, with δ ≥ 7, (see Table 6.2,

third column).

Using the same contruction and making the same remarks as we did in the

previous section for the case k = 1, we obtain the following result.

Proposition 37. Let X = XP be a toric surface such that dimSec2(X) = 8

and let D be a triangulation of P . Let p ∈ PM be a multiple point such that

Zp is either V3, or X8, or S(2, δ − 2), with δ ≥ 7. Assume furthermore that

there exists an intermediate regular subdivision D1 of P given by Qp and either

triangles of D or unions of triangles of D. Then

ν2(X) ≥ ν3(D) + ν2(Zp). (6.3)

Proof. 1. Let D1 be a toric degeneration of X as above. The following

varieties are distinct components of the flat limit limD1 Sec2(X):

• Sec2(Z);

• J(XSj1
, J(XSj2

, XSj3
)), for every j1, j2, j3 ∈ I2; notice that if j1 =

j2 = j3 = j, then it is the 2-secant variety of XSj
;

• J(XTk1
, J(XTk2

, XTk3
)), for every k1, k2, k3 ∈ I1, that is a skew 3-

sets of D1 if Tk1
∩ Tk2

∩ Tk3
= ∅;

• J(XSj
, J(XTk1

, XTk2
)), J(J(XSj1

, XSj2
), XTk

), for j, j1, j2 ∈ I2 and

k, k1, k2 ∈ I1, and

• J(Z, J(XSj1
, XSj2

)), J(Z, J(XSj
, XTk

)), J(Z, J(XTk1
, XTk2

)) for ev-

ery j, j1, j2 ∈ I2 and every k, k1, k2 ∈ I1;

• J(SecZ, XSj
), J(SecZ, XTk

), j ∈ I2, k ∈ I1;

2. Then, looking at the second degeneration D2, we see that the skew 3-sets

of D2 (that are the skew 3-sets of D) and the limit limD2 Sec2(Z) sit in

the flat limit of Sec2(X) with respect to D, with the same argument as

in Proposition 36.

If there are more than one singularity in D, {pi}i∈I , satisfying the hy-

potheses of Proposition 37, and such that the polytopes {Qp1
}i∈I are pairwise

non-overlapping, then

ν2(X) ≥ ν3(D) +
∑

i∈I

ν2(Zpi
).

From this follows Theorem 35 for the case k = 2.
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To conclude this section we explore, given a regular subdivision D, the exis-

tence of an intermediate regular subdivision D1.

Assume first of all that either the edges of Q have reticular lenght equal to one

or they lye on the boundary of P (under this assumption p must be an elliptic

singularity, cfr. Table 6.1). The family of sub-polytopes of P given by Q and

by the Area(P )−δ triangles of D not having a vertex in p form a partition of P

(see Figure 6.3). Such a subdivision is regular. Indeed, given a lifting function

FD over D, one can always find a lifting function FD1 over D1, exploiting the

fact that strict convexity is a local property: it is enough to flatten FD over Q.

More precisely, one can always assume that FD(m) ≫ 2, for m /∈ Q and that

FD(m) =

{
1 − ǫ if m = p

1 if m ∈ QM \ {p}
,

with 0 < ǫ ≪ 1. Hence, a lifting function FD1 for D1 is the following:

FD1(m) :=

{
1 if m = p

FD(m) if m ∈ PM \ {p}

Suppose now that Q has edges L1 . . . , Lm of lenght respectively l1, . . . , lm >

1. Let us contruct a partition of P containing Q, triangles and unions of

triangles of D, using the following algorithm.

Input: a triangulation D of P .

Output: a subdivision D1 of P containing Q.

- Let Si be the minimal convex union of triangles of D such that Si ∩Q =

Li, for i = 1, . . . , m. If all the Si has edges either of lenght one or lying

on ∂P we stop.

- Otherwise, for each i = 1, . . . , m, let Li,1, . . . , Li,mi
be the edges of Si

of lenght respectively li,1, . . . , li,mi
> 1, for i ∈ {1, . . . , m}. Let Si,j be

the minimal convex union of triangles of D such that Si,j ∩ Si = Li,j ,

i = 1, . . . , m, j = 1, . . . , mi. If all the Si,j ’s have edges either of lenght

one or contained in ∂P , then we stop.

- Otherwise we go on as above, until all the polytopes have edges either of

lenght one, or contained in ∂P .

Notice that this process is finite. The output is a complex D1 whose maxi-

mal polyhedra are Q, the Si’s, the Si,j ’s, etc. and the remaining triangles Tk’s

of D. See for example Figure 6.5. If one is able to flatten the lifting function

FD over Q, the Si’s, the Si,j ’s, etc. and to rescale it over the Tk’s, in such a

way that the resulting piecewise linear function is strictly convex over P , one
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has found a lifting function FD1 for D1 to be regular.

At this point it is not difficult to define D2: it is sufficient to take triangula-

tions DQ of Q, DSi
of Si, DSi,j

of Si,j , etc., such that, combining them, one

gives rise to the full regular triangulation D of P .

6.2 A conjecture

In the previous sections we showed that the presence in D of a reticular point,

which is the common vertex of a sufficiently large number of triangles, induces

an obstruction to the k-delightfulness of D, for k = 1, 2. Moreover the contri-

butions of the singularities do not interfere, provided that the corresponding

sub-polytopes do not overlap. We conjecture that the non-overlapping hypoth-

esis may be removed.

Conjecture 38. Let k ∈ {1, 2}. Let D be a planar toric degeneration of a

toric surface X = XP with dim(Sec(X)) = 3k+2. Let {pi}i∈I ⊆ PM be the set

of all lattice points such that conditions 1. and 2. of Theorem 35 are satisfied.

Then

νk(X) ≥ νk+1(D) +
∑

i∈I

νk(Zpi
), k = 1, 2. (6.4)

Let us show some examples in the case k = 1.

Example 5. Consider the 4-ple Veronese embedding V4 of P2 in P14 and the

regular subdivisions D and D′ of the triangle of edge lenght four (and normal-

ized area sixteen) shown in Figure 6.6. We know that ν1(V4) = deg(Sec(V4)) =
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Figure 6.6: Planar toric degenerations of V4 ⊆ P14

75, using Formula (5.2). One can easily check that ν2(D) = 66. Moreover

ν1(Zp1
) = ν1(Zp2

) = ν1(Zp3
) = 3. Therefore the four contributions sum up to

restore the secant degree:

ν2(D) + ν1(Xp1
) + ν1(Xp2

) + ν1(Xp3
) = 75,

and (6.4) holds with equality. Similarly, looking at the figure on the right, one

can check that

ν2(D
′) + ν1(Xp′

1
) + ν1(Xp′

2
) + ν1(Xp′

3
) + ν1(Xp′

4
) = 60 + 3 + 10 + 1 + 1 = 75.
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Example 6. Let X be the quadric P1 × P1 embedded in P11 via O(2, 3): one

has ν1(X) = deg(Sec(X)) = 35. Consider the three planar degenerations of

X shown in Figure 6.7. In the first two cases, the sum of the number of skew
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Figure 6.7: Planar toric degenerations of X ⊆ P11

2-sets and of the contributions of the singularities restores the secant degree:

v2(D) + ν1(Xp1
) + ν1(Xp2

) = 29 + 3 + 3 = 35

and

v2(D
′) + ν1(Xp′

1
) + ν1(Xp′

2
) + ν1(Xp′

3
) = 28 + 3 + 1 + 3 = 35.

In the third configuration, something different happens. One can see that:

v2(D
′′) + ν1(Xp′′

1
) + ν1(Xp′′

2
) + ν1(Xp′′

3
) + ν1(Xp′′

4
) = 29 + 1 + 1 + 1 + 1

= 33 < 35

In D′′ there is a lattice point q which is the common vertex of five triangles:

certainly it causes an obstruction to the presence of skew 2-sets, but we are not

able, so far, to check how, because the polygon given by the triangles around it

is not convex, so the above description does not make sense.

An intention for the future is to fully understand the lack of k-delightfulness

in order to give an answer to Conjecture 38 and to have a complete explana-

tion of this phenomenon. Moreover it would be interesting to prove something

similar for the cases k ≥ 3 and in higher dimension.

Notice that in the surface case, the expected dimension of Sec3(X) is

min{11, r}. No one of the singularities in Table 6.1 is interesting in this case,

because dim Sec3(Zp) < 11. Also in the rational case (Table 6.2) there are no

examples of rational normal scrolls in Pδ, with δ ≥ 11 that could contribute to

ν3, indeed

• if δ1 ≤ 2, then S(δ1, δ2) is 3-defective, while

• if δ1 ≥ 3 there are no triangulations of the defining polytope such that

all the triangles have a common vertex p; indeed p would lye on one of

the two horizontal edges of the trapezium, but they are both too long.

Therefore for k = 3, thus also for k ≥ 4, the description done for k = 1, 2 does

not work; the causes to the lack of k-delightfulness must be hidden elsewhere.
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6.3 Tables

In the following tables, we summarize the singularities that influence the lack

of k-delightfulness of a planar toric degeneration, for k = 1, 2. We already

described their ideals and k-secant ideals, for k = 1, 2, in Section 5.2.

In the first column we drow the subdivision of the poltope Q = Qp, in the

remaining columns we write the degree, the 1-secant degree and the 2-secant

degree of the surface Z = Zp defined by Q.

In all cases, deg(Seck(Z)) = νk(Z), i.e. µk(X) = 1, for k = 1, 2 (see [13], where

the surfaces with µk > 1 are classified).
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triangulation of Q deg(Z) ν1(Z) ν2(Z)
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Table 6.1: The elliptic case
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triangulation of Q deg(Z) ν1(Z) ν2(Z)
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PPPPP
XXXXXX
```````̀
•

8 15 4

11. S(1, δ − 1) δ ≥ 9
(
δ−2
2

)
/

12. S(2, δ − 2) δ ≥ 9
(
δ−2
2

) (
δ
3

)
− 2((δ − 3)2 + 1)

Table 6.2: The rational case
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[33] B. Sturmfels. Gröbner Bases and Convex Polytopes, University Lecture

Series, 8. American Mathematical Society, Providience (1996).

[34] A. Simis and B. Ulrich: On the ideal of an embedded join, Journal of

Algebra 226 (2000), 114.

[35] A. Terracini: Sulle Vk per cui la varietà degli Sh (h+1)-seganti ha dimen-
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