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| ntroduction

Electromagnetic waves interact with atoms and molecules that compose naturally occurring
materials. Materials can therefore be used to guide or manipulate electromagnetic waves-in the
same way that a glass lens can focus light, for example. But the available electromagnetic
response from naturally occurring materials is limited. Artificial constructed meta-materials,
however, are not subject to the same limitations as real materials, and can be used to extend
material response. For example, a metal film with arrays of small holesin it could be transparent
to light; an array of nonmagnetic conductive elements could exhibit a strong, resonant magnetic
response and materials that exhibit negative refraction could thus be engineered, beyond any
intuitive expectations.

The notion of meta-materials originated in the microwave community but has been widely
adopted in the domain of optical research, thanks to rapidly improving nanofabrication
capabilities and the development of sub-wavelength scanning imaging techniques. In a meta-
material, the properties largely derive from the structure rather than from the materia itself. The
structural units can be tailored in shape and size; their composition and morphology can be
artificially tuned, and inclusions (defects) can be designed and placed at desired locations to
achieve new functionality.

Among the wide class of meta-materials we will focus on two sub-classes: photonic crystals
(PCs), in particular one-dimensional PCs, and negative index materials (NIMs). In a PC the
dimension of the unit cell is of the order of the fraction of the incident wave-length, whilein a
NIM the dimension of the unit cell is much more smaller that the dimension of the incident
wavelength. In the first case the exceptional properties arise due to scattering effects. In the
second case they arise from bulk properties: the electric permittivity € and the magnetic
permeability u of the engineered material that induce a negative refractive index at certain
frequencies. From the electromagnetic point of view, the wavelength, L, determines whether a
collection of atoms or other objects can be considered a material. Any collection of objects
whose size and spacing are much smaller than L can be described by the electromagnetic
parameters € and u. Although such an inhomogeneous collection may not satisfy our intuitive
definition of a material, an electromagnetic wave passing through the structure cannot tell the
difference. The most commonly known property of PCs is their ability to change the

transmission properties of their constituent materials. With a PC it is possible to open



transmission peaks (T=1) at a desired frequencies, and whole regions (gaps) where the
propagation of light is forbidden. That is why PCs are also known as photonic band gap
structures. The most commonly known properties of negative index materias is perhaps their
ability to refract light in the opposite direction with respect to naturally occurring materials, so
that the k vector inside the structure points in the opposite direction with respect to a natural

material, and the three vectors E, B and k form aleft-handed tern. That is why NIMs are also
known as left handed materials.

This Thesisis organized in two sections: the first section is devoted to the study of linear and
nonlinear properties of 1-D PCs, while the second section is devoted to the study of linear and
nonlinear properties of NIM. As we will see in section two some of the properties of 1-D PCs

can befound alsoin NIM.



Part |:

“Linear and non-linear effectsin one-dimensional photonic crystals.”

“If only it were possible to make dielectric materials in which
electromagnetic waves cannot propagate at certain frequencies, all

kinds of almost-magical things would be possible.”

-John Maddox

Nature 348, 481 (1990)






[-1 Introduction

[-1.1 Overview
Structures in which scattering or diffracting elements are arranged in such away that their

mutual distances are comparable with the wavelength of the incident wave are often referred to
as photonic crystals (PCs), or photonic band gap structures, PBGs in short. Typicaly, photonic
crystals are periodic or quasi-periodic arrays in one, two or three dimensions (see Fig I-1. 1), but
more sophisticated geometries, like defect, fractal and chirped structures (to name a few), have

Fig. I-1. 1: Simple examples of photonic bandgap structures: a)Structure periodic in one direction, b)
structure periodic in two directions, ¢) structure periodic in three directions.

been exploited as well. PBGs are able to selectively transmit or reflect light at various
wavelengths, as they affect the properties of the light in almost the same way that semiconductor
crystals affect the properties of electrons. A periodic arrangement of different dielectric materias
results in allowed and forbidden frequency bands and gaps for the incident light, in analogy to
energy bands and gaps of semiconductors [1]. PBGs are artificial structures, but wonderful
examples of them can also be found in nature. For example, the surface of the wings of a
butterfly is a periodic dielectric structure, and the colors are the result of a selective reflection of

the spectral components of sunlight (see Fig. 1-1. 2) [2]. Because a crystal array looks dlightly

Fig. I1-1. 2: Butterfly wing structure in different magnifications. Photo taken from Ref.[2]
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different from different angles, (unlike pigments, which are the same from any angle) photonic
crystals can lead to shifting shades of iridescent color.

The name “photonic crystal” and the exciting growth of photonic crystal research began with the
works of Eli Yablonovitch [3] and Sajev John [4], in the late 1980s. They began with basic
concepts and experiments in the microwave regime, where 3D structures could easily be
fabricated (see Fig.l-1.3). At the present time, fabrication techniques allow spatial resolutions in

the sub-micron regime, resulting in an explosion of new photonic bandgap structures in the
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Fig. I-1. 3: First PBG material: yablonovite after Eli Yablonovitch. a)The method of constructing the
yablonovite (FCC lattice): a slab of material is covered by a mask consisting of a triangular array of
holes Each hole is drilled through three times, at an angle 35.26° away from normal, and spread out
120° on the azimuth. b)Three dimensional image of the yablonovite. Picture from Ref [3]

infrared and visible regime. Photonic crystals can be engineered in order to control the optical
response of the materials. They can be designed in order to allow the propagation of light only in
certain directions and for certain frequencies, to localize light in specific areas, to Slow down its
velocity at certain frequencies, to artificially introduce dispersion (geometrical dispersion).

A new research direction results from the growth, intersection and overlap of research in the
fields of nonlinear optics and photonic crystals. Intense laser sources and confinement of light to
small spatia regions in photonic crystals allows us to generate optical fields that make
significant nonlinear changes in the dielectric constant. Since the slowing down depends strongly
on the light wavelength, different colors propagate with much different velocities, i.e. there is
strong dispersion at the photon band edge, near the photonic bandgap. This dispersion can be
used in order to compensate the normal dispersion of the material and achieve phase matching
condition for nonlinear phenomena. The new physical phenomena being discovered in linear and



nonlinear photonic crystals will lead to advances in optical devices and applications in optical
systems. Examples of optical devices include pulse shaping, pulse compression, and pulse
regeneration. Nonlinear photonic crystals may allow for significant advances in optical buffering
devices by using resonantly stored light in dielectric array defects. All-optical switches based on

nonlinear photonic crystal are now being explored for low-power, low-cost aternatives to the

Fig. I-1. 4: Photonic Crystal fiber (PCF). a) A cross section of a PCF reveals microstructuring with air
holes that run parallel to the fiber axis. b) A standard technique to construct PCFs consisting in arrange
common fibersin the desired geometry and then they are stretched altogether. The PCF is able to guide
in the air core due two the presence of a 2-D photonic crystal structure in the form of “honeycomb”
lattice
optical-electronic-optical techniques. Optical parametric amplification enhanced by dielectric
arrays is another important possible application. The reader interested in more details about those
and other nonlinear optical applications of photonic crystals may consult the book “Nonlinear

Photonic Crystals’ cited in our Ref. [5]. Other applications that have been proposed over the

Fig. I-1. 5. Glasses made of a one-dimensional metal-dielectric photonic crystal (transparent metal). a)
glasses and the transmission curve of the lenses. b)glasses.

years include photonic crystals fibers [6] (see Fig.I-1.4), photonic crystals circuits [7],



transparent metal-dielectric stacks (see Fig.I-1.5) [8], highly efficient micron-sized devices for
nonlinear frequency conversion [9].
[-1.2 Finite, One-Dimensional, Photonic Crystals

One-dimensional photonic crystals, also known as one dimensional photonic band gap
structures (1-PBGs), Bragg gratings, or smply multilayered structures, represent the simplest
example of a photonic band gap structure. Despite their simplicity, they retain many of the
characteristics that can be found in more complicated multidimensional structures. 1-D PBGs are
made of alternating layers of dielectric materials, or aternating layers of metallic and dielectric

materials. The basics properties of those structures can be found in many textbook, and we cite
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Fig. I-1. 6: How the energy band diagram changes with the introduction of 1D periodic dielectric
constant variation.



for example the book by P. Yeh “Optical wavesin layered media’[10]. Here we give just a brief
overview of their most salient properties.

A first analysis when a space periodicity is present can be made using the same approach used in
solid state physics, i.e. the Bloch theory [10]. In Fig. (I-1. 6) we show how the periodicity
changes the energy band diagram by opening forbidden bands. It is worth noting that, unlike
crystal lattices studied in solid state physics, 1-D PBGs are structures inherently finite in size, at
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Fig. I-1. 7: @Transmission spectrum of a 20-Periods, quarter/half-Wave Stack: A/4-A/2. The refractive
indexes are respectively 1 and 1.4. b) Bloch vector, real part (black line) and imaginary part (red line)
vs. o/my. oy is areference wavelength and A isthe length of the elementary cell.
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most 30-40 periods, for total lengths never exceeding 40-50um. For al intents and purposes,
these structures do not admit translational invariance and therefore the Bloch theory is no longer
exhaustive, although it still remain a useful tools. In Fig I-1. 7awe show the typical transmission
response of a multilayered structure. The transmission is characterized by pass bands where most
of field is transmitted through the structure, and bang gaps with high reflectivity, as shown in the
figure. In Fig 1-1. 7b we show the Bloch vector (Kg) as a function of the frequency for the same
elementary cell of the finite structure described in Fig. I-1. 7a. We note that the band gaps
coincide with the forbidden bands of the Bloch theory for the corresponding infinite structure
[10].

The transmission resonances near the band edges of the structure are of particular interest
because a field tuned at those points reaches high values of local intensity, making possible the
enhancement of nonlinear optical phenomena[9]. In Figs. I-1. 8 we show the typical localization

properties of an electromagnetic field inside a 1-D PBG with its frequency tuned respectively in
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Fig. 1-1. 8: Electric field distribution inside the structure defined in Fig. I-1. 7afor different tuning
conditions. a) frequency tuned in the pass band, b) frequency tuned inside the gap, ¢) frequency tuned at
the band edge transmission resonance. Ay=2nc/wy is a reference wavelength.

the pass band(Fig I-1. 8a), in the band gap (Fig I-1. 8 b) and at the band edge (Fig I-1. 8 ¢). The
fact that the structures we study are inherently finite in size leads to several important
consequences. Looking again at the field localization described in Fig.( I-1. 8), we can see that
even the band gaps are not strictly “forbidden” because a portion of incident field is able to
penetrate the structure in the form of an evanescent wave, and therefore to “tunnel” through it.
Moreover, the field localization properties at the band edges find their origin in the finiteness of
the structure, i.e. in the coupling with the external modes. In other words, the fact the structureis

finite prevents us from applying periodic boundary conditions, and therefore our electromagnetic



problem becomes non-hermitian. The consequences of this fact are that well established concepts
such as group velocity, energy velocity, and density of modes need in our case a complete and

profound reevaluation, as we will seein more details in the next chapter.
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-2  Green function, density of modes and tunneling times.
1-2.0 Introduction

Although the number of experimental and theoretical reports on 1-D PCs is already quite
large, in our view the issue of the density of modes (DOM) —or density of states (DOS)-
regarding what one means by it, and its true and otherwise implied connections to other physical
or measurable quantities, such as emitted energy and group velocity to name just two, is still far
from being considered closed. There are at least three different ways to calculate the DOM that
are currently used in the literature. The first way consists of calculating the local density of

modes (LDOM) as follows: p,(2)=(-2k,/ C)Im[Gw(Z, )], where G,(z,z) is the

electromagnetic Green function of a source located at &=z inside a 1-D structure, and which
oscillates with a harmonic time dependence of the type exp(-iot) [11-13]; c is the speed of light

in vacuum, and Ko=a@lC is the vacuum wavevector. The DOM is then defined as the weighted

L
average of the LDOM over the length L of the PC, i.e., p, =(-2k,/cC L)I £X(z)Im[G,,(z z)|dz
0

[13], where 85(2) is the spatially dependent, linear, real, relative dielectric function of the PC

and plays the role of the weight function. The second way consists of calculating the LDOM
(DOM) as the spatially averaged electromagnetic energy density stored inside the crystal. This
approach has been discussed at length in Ref[8], and we will return to it later. The third

approach was first proposed in Ref.[14], where the DOM was defined as: p; =(1/ L)(dgot / da)),
where @ (w) is the phase of the transmission function t =‘t~w‘exp[i ¢, (w)]. In the literature

24 :(d(pt/ da)): PoL is often referred to as the phase time [15-17], “group delay”, and

“Wigner time” [18], and it gives the time that the transmitted part of an incident, quasi-
monochromatic, un-chirped pulse takes to traverse a 1-D barrier [19-20]. We will refer to the
DOM calculated this way as the “DOM calculated via the Wigner time”.

We exploit connection and differences between the approaches outlined above in order to
give the DOM a firmer theoretical footing when it comes to 1-D crystals. We will show that the
DOM can be directly linked to the energy emitted from the structure, which is clearly a
measurable quantity, and we will clarify the links that have previously been established between

the concept of DOM and the tunneling times of quasi-monochromatic incident pulses.



[-2.1 The DOM calculated through the Green’sfunction: Thetrue DOM.

Let us suppose that a dipole sheet, of surface S and harmonically oscillating dipole moment:
p(t) = (1/ 2) P, exp(—imt)+ cCloriented along X, is located in the plane z=¢& and it is
positioned parallel to the surfaces A of a PBG of length L. This situation is sketched in Fig. (I-2.

1), where the structure is shown to occupy the space between z=0 and z=L. Due to its planar

symmetry, the problem reduces to a 1-D one. As a consequence, the electric field

X a

Fig. 1-2. 1: Schematic representation of a dipole sheet of surface S and dipole moment
p(t) = p, exp[—iwt] located along the plane z=¢ and parallel to the surfaces A of a 1-D PC of

length L located between z=0 and z=L.

E,(2&)=E,(z &)X generated in the PC by the current density J, (z,&)=J,(2&)R that

oscillates along the plane S can be calculated through the scalar Helmholtz equation as:

82Ew(22,§) + a)zgw(Z)zEw(Z,f) _ _,Uowz &5(2_6&)’ (I_2 1)
0z C S

10



where £, (z)=1+y,(2)= &> (z)+ig) (2) is the spatially dependent, complex dielectric function,
Yo (2) is the linear complex susceptibility of the medium, and 8(z-&) is the Dirac delta function.

We seek solutions of Eq.(I-2. 1) that satisfy boundary conditions of outgoing waves, i.e., the
radiated energy from the dipole sheet leaves the structure never to return, and no energy is

incident from outside, namely:

P
E,(28)=-"u,-3 G,(26). (1-2.2)
where G, (z &) is the scalar Green’s function that satisfies the following equation:

°G,(z.¢) w'e,(2)G,(2¢)
el - =d8(z-¢),

The way to construct the Green function for planar dielectric structures using the light-modes has

(1-2. 3)

been discussed at length in Refs.[21-23]. In 1-D, the Green function has the following form (see
Appendix A):

o, (20, '6) | L, £
2ik, t -
G,(z¢)= “ : (1-2. 4)
o),z . c
2ik, t -

where {d)(af)} are the left-to-right (LTR) and right-to-left (RTL) light-modes, t, = n, t” =n,t

is the transmission function, Npi1» are the refractive indices of the materials surrounding the

(=

structure, t*) are the LTR and RTL transmission functions (see Fig. (I-2. 2)), ko=w/c is the

vacuum wavevector. LTR and RTL modes can be calculated using a standard linear matrix

transfer technique, assuming a unitary electric field is incident on the structure from LTR for the

@) mode, and from RTL for the d)f;) mode, as shown in Fig. (I-2. 2), and as first reported in

ref. [24]. For clarity, we report the details of the calculations that lead to Eq.(I-2. 4) in Appendix
A [25]. Note that Eq.(I-2. 4) is valid for an arbitrary 1-D, finite structure, one that may also
include material absorption and dispersion. Now, using Eq.(I-2. 2) and the expression for the
current density, it can be shown that the mean electromagnetic power emitted by the dipole sheet

embedded within the PC is given by:

11
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Fig. 1-2. 2: Schematic representation of the boundary conditions imposed on: (a) LTR and (b) RTL
light-modes. I’a()i) are the LTR and the RTL reflection coefficients, respectively, and tg’r) are the
corresponding transmission coefficients. ny; and ng, are the refractive indexes of the materials

surrounding the PC. Note that no,ztfj’ = no,ltf;) as a consequence of time reversal symmetry.

_603,U0|p0|2A

So —mlG, (€. (1-2.5)

Vva%ﬁédinpc = —%Rej.jw ‘ E:}dV =
v

Eq.(I-2. 5) tells us that the mean electromagnetic power emitted by a dipole sheet located at z=&
is proportional to the imaginary part of the scalar Green function calculated at z=& . We use the
superscript “1D” to remark the fact that our approach is specific for electromagnetic problems
that have planar symmetry, and can therefore be reduced to 1-D problems. The mean

electromagnetic power emitted by the same dipole sheet located in free space in the same volume

V=AL occupied by the PC is:

W (D) o'y p0|2 A

emitted inV, freespace —
* 4 Sk,

(1-2. 6)

From Eq.(I-2. 5) and Eq.(I-2. 6) we find :

12



W inec (£)
W 1D

emitted inV, freespace

= 2k, Im[G,,(£,£)). (1-2.7)

There are at least two physical conditions that our 1-D LDOM should meet, i.e., that: (i) it
account for the modification of dipole sheet emission rates with respect to emission rates in
vacuum; (ii) it give the correct limiting value for the DOM of free space when calculated for a 1-
D empty cavity whose dimensions go to infinity. The simplest way to satisfy these two

requirements is to write the LDOM as:

WelgrllD) in (é:) 2k
pw(f)fpﬁ,?eespaoew(m)“e“ CE= - (G, (¢ 4, (1-2. 8)

emittedin V, free space

where p!2) =1/c is the 1-D DOM of the free space [26]. The DOM is then the average of

, freespace

the LDOM over the volume V:

_ (D) <Wef(1iitDt<)adin PC (Z)>
Po = pw,freespace W(lD)

emitted in V, free space

_ 2|I(_0 .!Im[Gw(Z, 2)|dz, (1-2.9)

where the integration variable & has been relabeled z. From Egs. (I-2. 8) and (I-2. 9), we note that
the DOM is defined in an unambiguous way because it is related to the power emitted by a
dipole sheet in a 1-D PC. In the case the PC is composed by non absorbing materials, the mean
power emitted by the dipole sheet is also equal to the mean power that flows through the surfaces

A of the PC : WD) o =W,

flowing through A - S0, We have arrived at an operational definition of the
DOM and LDOM that can be directly linked to an experimental quantity, i.e., the emitted energy.
It is worth noting that the DOM is calculated as the average of the LDOM over the volume

V, and not as the weighted average where the weight function is the real part of the dielectric

function, 85(2). The latter is a somewhat arbitrary operation which rescales the DOM by an

equally arbitrary factor given by the real part of the dielectric constant. Although apparently
unjustified, we will see later that this is consistent with the other approach which utilizes energy

conservation arguments. However, we look at the consequences of choosing the DOM as the

L
weighted average over £7(2): p’ = —%J.g:f(z) Im[G, (z, z)]dz. From Eq.(I-2. 9) we obtain:
Cl

0

£ L
p,=Po 4 2K, .|.§€R(Z)Im[Gw(Z,Z)]dZ (1-2. 10)

(el) oHed)o "
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[ [

where 9% (z)= ER(Z)—<8R> represents the variation of the real part of the dielectric function

with respect to its average value. In the case of structures with low index contrast (‘5&‘5 (Z)( << 1),

comparing Egs.(I-2. 9) and (I-2. 10) we note that the two definitions are proportional to each

other through a constant factor: (p, /p,) = <£§>. We will discuss the physical meaning of p.

in the next Section. For the time being, it becomes clear that p; overestimates the power emitted
by the dipole sheet of a factor that depends on the real part of the weight factor. In Fig. (I-2. 3)
we compare p,and p. for a 1-D PC composed of alternating layers of air and a non-absorbing

dielectric material. The details of the structure are given in the caption. The structure is
characterized by a high index contrast between the layers, and so the arguments about

proportionality between the two competing definitions no longer hold. For example the ratios of

10 T T T T T

(o¢]

(o)
R R
|

DOM (units of 1/¢)
D

/0,

Fig. 1-2. 3: py, (solid line) and P, =Py (dashed line) vs. /@y (wy=27mc/Agand A=1pm) for a structure

composed of 40 alternating layers of a dielectric material and air. The index of refraction of the
dielectric material is 1.42857, and it is considered constant in the range of frequency examined. The
layers have thicknesses a=350nm (dielectric material) and b=250nm (air) for a total length L=12um.
The structure is surrounded by air. Inset: Magnification of the DOM at the band edge resonances of the

first gap. Note that p, and p; = pz are not proportional each other through a constant factor:

Polp, =1.94 at ©/@=0.592 (left-side band edge resonance) and p, / p, =1.59 at 0/w=0.737

(right-side band edge resonance).
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the DOMs at the band edge resonances of first band gap are respectively p./p, =1.94 at

®/0p=0.592 (left-side band edge resonance) and p. / p, =1.59 at w/wy=0.737 (right-side band

edge resonance). The figure shows that in fact the two DOM are very different from each other,
although the location of the relative maxima and minima remain approximately the same. We

also note that for a non absorbing and non dispersive structure it can be demonstrated, as we will
see in the next Section, that p. = p?, i.e., the DOM calculated by averaging the Green function

over the grating profile is equal to the DOM calculated through the Wigner time. We will expand
on the link between the DOM and the tunneling times in the next Section.

As defined in our Eq.(I-2. 9), the DOM maintains its generality when absorption and
dispersion are present. In fact, the idea can be generalized to 2-D and 3-D structures of finite
size. While in the 1-D case the source needs to have planar symmetry (infinite dipole sheet), in
2-D the source should have cylindrical symmetry (infinite wire), and in 3-D the source should
have point symmetry (point source). In any case, the DOM can always be defined as the DOM of
free space multiplied by the ratio between the spatial average of the mean power emitted by a

source embedded within the PC and the mean power emitted by the source in the free

(nD) <Wef(’r::g€)d in PC (F)>

space: P, = Py, freespace W(nD) , n=1,2,3, where pc(ol,l?r)eespace =1/c, pc(oz,géespace =w/c’ s
emittedin V, free space
Pl reespace = @ /(8% are respectively the DOM of the free space in 1-D, 2-D and 3-D. The

reader interested in the extension of Eq.(I-2. 9) to the case of finite size, 3-D structures can
consult Ref. [27].
-2.2 DOM calculated through the Wigner time and DOM calculated through the dwell
time.

The DOM calculated using the Wigner time for 1-D, finite, structures is defined as follows
[14]:

1 dgo ¥
0? = t __ "o , 1-2. 11
@ L dw L ( )

where ¢y (@) is the phase of the transmission function. Defined in this fashion, 77 = (d¢t /dw) is

the Wigner[15-18], and it gives the time that the transmitted part of an incident, quasi-

monochromatic, un-chirped pulse takes to traverse a 1-D, barrier [19-20]. Now, from Eq.(I-2.
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A3), another way of writing the transmission for LTR propagation is tH = d)(+)(L); taking the

derivative with respect to the frequency, dt'")/dw=0®"(L)/0@w, and rewriting the

transmission in terms of a phase and an amplitude, i.e., t((;) = t[(;) expli ¢,(w)] [28], we obtain:

dt™) (+)
—? Lexp(ig,) +i do t*exp(ip) = M : (1-2.12)
w dw 0w
Using Egs.(I-2. 11)-(I-2. 12), the DOM can be recast as follows:
1 1 00™(L)
Y =—Im —2 | [-2.13

The term BCI)E:)(L)/ dw can be calculated using the Green function of Eq.(I-2. 4) (see Appendix
B):

aq> ___OL £,(£)
= Cﬂ s }G (LD (E)dE. (1-2. 14)

From the expression for the Green function given in Eq.(I-2. 4), we have:

o (L), €) _ @)

G,(L,¢) = — _ , I-2. 15
o(Lse) 2ik,t 2ik,n,, ( )
and from Eqgs.(I-2. 12)-(I-2. 15) we obtain:
k 1§ e, (2)
P =0 2¢,(2)+ 0—=" 10 (2)0")(2)dz|, 1-2. 16
pi = L[240 ol e o) @219

where the integration variable & has been relabeled z. Eq.(I-2. 16) can be rewritten as follows:

oo e 2K f W@ f| 0¢,(2) 9¢,(2)
Po=Po=g J.gw(z)Re[G (z,z)|dz- cL J'{ Im[G, (z )]+ - Re[Gw(z,z)]}dz,

0 0 el

(I1-2.17)
where we have identified p; =(-2k,/c L)Ig z)Im[G, (z, z)]dz as the DOM calculated using

the real part of the relative dielectric function as the weight function. Eq.(I-2. 17) provides an
illuminating link between the different definitions of DOM. For the sake of clarity we analyze
three cases: (a) No absorption and no dispersion; (b) Dispersion and negligible absorption; (c)

Absorption and dispersion.
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[-2.3 The case of no Absorption and no dispersion.
In this case from Eqgs.(I-2. 17) and (I-2. 10) we obtain:

Pl =po=(ed)p, 2 [0e5(2)im[G, (2 2)ldz. (1-2. 18)
cL ¢

Eq.(I-2. 18) tells us that in the absence of absorption and dispersion the DOM calculated through

the Wigner time p! is equal to the DOM calculated by averaging the Green function over the
real part of the dielectric function. However, both p. and p, overestimate the true DOM by a

factor that is equal to the average value of the grating, <€5> , with the addition of a term that

depends on the index contrast. In the case of no absorption, p; can also be expressed in a form

involving the dwell time (see Appendix C) as:

(+) (-)
e Ty +7 1 (+) )
P, = + Im(r +r 1-2. 19
@ 2L ZCkoL ( @ © ) ( )

where 7§) =(2L(U{"))/en,, and 7§)=(L{US"))/en,,, are the LTR and RTL dwell times

do ¥ (z)

[4]

dz

- @ _ L R ® () +. S 2 -
respectively, and U :Z £ (Z)((Dw (Z)( + are the corresponding LTR and

RTL time-averaged electromagnetic energy densities stored in the PC, for incident fields that

. 2
have a harmonic time dependence of the type e, and unitary amplitude (i.e. SO‘AS)‘ =1,¢1s

the vacuum dielectric constant, &(,i) are the amplitudes of incident fields). The dwell time was

first introduced for ballistic electrons, and was intended to measure the average time a quantum
particle spends within a barrier, whether it is reflected and/or transmitted at the end of its stay
[29-30]. In the case of electromagnetic radiation, the dwell time can be calculated by resorting to

the electromagnetic energy density [31-32] as the ratio between the stored electromagnetic

energy and the input power. Note that when ‘ra()i)‘ =0 (i.e. at the peaks of transmission),

£
[

(+) (=)
) +r . . .
=-2 P that is to say, p. is exactly the average of the LTR and RTL dwell times

divided the length L of the PC. We point out that in most cases koL>>1 (equivalent to saying that

the typical structure is much longer than the incident wavelength), and so the extra term
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1 . . : .
2—k0LIm( ra(f) + ra()‘)) nearly always gives a maximum correction of the order of 107°L/c inside
Cl

the gap[33]. As also noted in Ref.[31], this extra term comes from the fact that in a finite
structure the energy density is not equally shared between the electric and magnetic components

of the field. For symmetric or sufficiently long structures embedded in symmetric environments
[34] it is straightforward to verify that <U fj)> = <U i;)> = <Uw>, and consequently p; takes the
following simple form:

r

pj} = p;J) +|—Q)|LSin¢r ’ (I'2 20)

do,,
dz

2
:le:TTD is the DOM as it was first defined in

R 2 c’
{ew(z)|d>w| +;

o
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Fig. 1-2. 4 p, (solid line) and p’, = p’ (dashed line) vs. @/wy (@y=27c/Ag and Ag=1pm) for PCs

made by N=1, N=5, N=10, and N=20 periods, respectively. The elementary cell is composed of two
layers of refractive index respectively n,=2 and ny=3. The thicknesses of the layers are a=125nm and
b=166nm, respectively. The structure is surrounded by air.
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Ref.[8] in terms of the electromagnetic energy density [3]. Eq.(I-2.20) provides new insight into
the profound link that effectively binds the DOM calculated by averaging the Green’s function
over the grating, and the electromagnetic energy density, at least for non-absorbing structures. In

addition, Eq.(I-2.20) provides a theoretical foundation for the numerical results reported in Ref.

[8].

Some observations are now in order. We have shown that for a PC embedded in symmetric
environments, p? = p? is also approximately equal to p., . In Fig. (I-2. 4) we compare p? = p:,
with pz for PC’s made by the same elementary cell, repeated N=1, N=5, N=10, N=20 times,
respectively. The details of the structures are given in the figure caption. We note that when

N=20, the PC is practically equivalent to a symmetric structure, and p? = p: = p. . The small

A

discrepancy inside the gap is mostly due to the extra term sing, , and to a lesser degree to

0

the small asymmetry built into the structure. In Fig. (I-2. 5) we compare p? =pZ, p. and p,

30 T | T T | T | T

N
o

DOM (units of 1/c)

=
o

0.5 0.7 0.9 1.1 1.3 1.5
/oy,

Fig. 1-2. 5. p. (thin-solid line), p° = p? (dashed line) and p, (thick-solid line) vs. /ey

(0p=2mc/Ag and Ag=1um) for a PC made of N=20 periods. The elementary cell is the same described in
the caption of figure 4. The structure is surrounded by air. Inset: Magnification of DOM at the two
transmission resonance near the first band gap.
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for 20-period structure. Again the figure reflects the fact that: p? = p2 = p. . However, all three

DOMs consistently overestimate p,, as already discussed (see Fig. (I-2. 3)).

The first non trivial implications of our results affect the relation between the tunneling

times. From Egs.(I-2. 11), (I-2. 18), and (I-2. 19) we obtain:

¢ = ) 42—7,(;) +ilm( riprly, (1-2.21)
Eq. (I-2. 21) tells us that for a non-absorbing, non-dispersive structure the Wigner time and the
average ( RTL and LTR) dwell time differ by an amount proportional to the average imaginary
part of the RTL and LTR reflection coefficient. We note that this difference is zero at all
transmission resonances, because there the energy density is equally shared by the electric and
magnetic fields. Eq.(21) is a new result that clarifies the link between the Wigner time and the
dwell time. In related work on tunneling times [32], a link between the Wigner time and the
dwell time has also been pointed out. However, in Ref.[32] only the case of symmetric structures
in symmetric environments was addressed, which is a particular case of our more general Eq.(I-
2. 21). In fact, in the case of a symmetric structure located in a symmetric environment,

) =70 =7, and r{") =r!) =r_ and from our Eq.(I-2. 21) we obtain:

Th =15+ s Im(r,) (I1-2.22)
w

which is the result in ref.[32] There, the term 7, = lIm( r,) is referred to as “self-interference
w

delay”. Again we stress that Eq.(I-2. 22) is not valid in general, because it was designed to
handle symmetric structures located in symmetric environments. As a consequence, it does not
predict the correct tunneling times for periodic structures having only a few periods.

To better clarify this point, in Fig. (I-2. 6) we compare the Wigner time and the dwell times, i.e.,
Eqgs.(I-2. 21) and (I-2. 22), for a 5-period structure. In this case the LTR and RTL dwell times
differ from each other, and only their average value converges to the Wigner time, as predicted
by our Eq.(I-2. 21). As calculated by our Eq.(I-2. 21), the “self-interference delay” is of order 10
’fs, a quantity that is hardly measurable in any experiment. Our results also suggest that the

upper limit of the “self interference delay” available for any kind of structure can in fact be

estimated from our Eq.(I-2. 21), namely,

1 .
Ti|MAX S;, which means |Ti|MAX <0.5fs for A=1um,
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Fig. 1-2. 6; LTR dwell time 7. (short-dashed line), RTL dwell time 7.’ (long-dashed line) and

average dwell time (73 +757) /2 (thick solid line) vs. /ey (0y=2mc/Ao and Ag=1m) for a PC made
of N=5 periods. L/c is in this case is 4.85fs. The elementary cell is the same described in the caption of
figure 4. The figure contains also the Wigner time 7 Z (thin solid line) but on this scale it is practically

indistinguishable from the average dwell time. Inset: Magnification of the average dwell time (thick
solid line) and the Wigner time (thin solid line). The difference between the two times is of the order of
107fs.

and |Ti|MAX <0.1fs for A=0.2um. In units of (L/C), the upper limit of the available self

interference delay is 1/(koL). In the optical regime (A=1+0.2um) for PCs only a few micrometers
in length, koL=10 2 and the upper limit of the self interference delay available is of the order of

107 L/c. In the structure considered in Fig. (I-2. 6), L/c=4.85fs, and the upper limit for the self
interference delay in the range of frequency shown in the inset is approximately 0.8fs. This is
compatible with the lower limit of 10™fs that is the difference between the average dwell time
and the Wigner time. In summary, our results show that in most cases of interest, the correction
due to the self interference delay is negligible in the optical regime, and that the Wigner time is
for all intents and purposes approximately equal to the average of the LTR and RTL dwell times.
In Ref.[31] it was demonstrated that beginning with the definition of energy velocity as the ratio

between the spatially averaged Poynting vector and the spatially averaged energy density,

VE(i) =<S(i)>/<U (i)>, it is then possible to arrive at a simple relation that links the energy

(2] [
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velocity to the dwell time, namely V. = S‘r

(L/z‘D ). Now, by using Eq.(I-2. 21) and the

connection of the dwell time with the energy velocity, we arrive at the following equivalence:

LRV PV
N g mr ). (1-2.23)
E E

From Eq.(I-2. 23), once again for the case of a symmetric structure embedded in a symmetric

environment, and neglecting the corrective term %Im( ra(f) + ra()‘)) on the right hand side of
w

Eq.(I-2. 23), we obtain:V; = |t|2Vg , [31] where V, =L/7) is the group or tunneling velocity.

Therefore, our Eq.(I-2. 23) confirms and extends the results first reported in Ref.[31]
[-2.4 The case of dispersion with negligible absor ption.
In the case at hand, from Eq.(I-2. 17) we obtain:

o e de (2) ]
pL=pi—"1 j{ =2 =1m[G, (2,2 )]}dz. (I-2. 24)

Using the explicit expression for p; , Eq.(I-2. 24) can be recast in the following form:

e (2)
2

Pl =(=2k, /cL)| {eﬁ(z) Ew

}1 [G,(z 2)ldz (I-2. 25)

Eq.(I-2. 25) suggests that the DOM is calculated by averaging the imaginary part of the Green’s

R
function over the weight function: &5 (Z)+%a%(z) In analogy with the definition of p;, we
w
e L@ 9e;(2) .
can define p 200 =(-2k,/ CL).[ 2 5 Im[G, (z, z)]dz and we can rewrite Eq.(I-2.
w
25) in a more concise form as:
8+QE
Pl =p, 2. (1-2. 26)

Now, using the explicit expression of the imaginary part of the Green’s function in terms of the

light modes (see Eq. I-2. C7 in Appendix C) and using the following relation:

Jel (el

that involves again the dwell times:

w e

“dz= (C /@’ ”d(I) /dz‘ dz+(1/Ky )N, , 1 [ra(,i)] we can write pjr;% in a form
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wie _(5) , ()
pjfzﬁ _ Ty +7 4 1

Im(r'") +r0) 1-2.27
oL 2ok L (ry " +r1,7) ( )

where 757 = (2L{U%))/en,, and 75! = (2L{U)))/en,,., are the LTR and RTL dwell times,

2

respectively, and U = 1 i[wsjf (Z)]‘q)(i)(z)‘z =
4| dw

[0)

dz

do @ (z)

} are the corresponding time-

averaged electromagnetic energies calculated taking into account the dispersion of the medium
[36]. Therefore all the connections between the Wigner time and the dwell time and their
relationships with the DOM that were demonstrated for the case of no absorption and no
dispersion are still valid in the case of dispersion and negligible absorption, provided the energy
density is calculated taking into account the dispersion of the medium.
[-2.5 The case of absorption and dispersion

When the absorption of the material comes into play the DOM calculated using the Wigner
time can become negative near the absorption line of the material. Therefore, it can no longer be
interpreted as a DOM in the true sense of the word. On the other hand, the DOM defined through
Eq.(I-2. 9) continues to be a positive quantity, and maintains the physical meaning of a quantity
proportional to the mean power emitted by a source located inside the PC, as outlined at length in
Section 2. In Fig.(I-2. 7a) we compare the DOM calculated using the Wigner time, (dashed line)
and the DOM calculated using Eq.(I-2. 9) (solid line) for the same structure described in the
caption of Fig. (I-2. 3), except that the high index layer is endowed with a Lorentzian absorption
line centered around ®/my=0.65, and a refractive index approximately of 1.42 in the visible
range. The refraction index (n) and the extinction coefficient (B) of the high index layer are

shown in Fig. (I-2. 7b). The figure shows that the DOM calculated via the Wigner time attains

negative values near the center of the absorption line of the dielectric material (p) =-2/c at

/0y =0.66), while Eq.(I-2. 9) always gives a positive DOM. While this shortcoming clearly
implies that the Wigner time fails to adequately describe the DOM, it nevertheless continues to
be a good indicator of the tunneling time imparted to the peak of the transmitted part of an input,
quasi-monochromatic, un-chirped pulse as it traverses a 1-D barrier. In fact, it is well known that
the transit time of pulses tuned near the absorption line of a dielectric material can become
superluminal or even negative as in our case [37-39]. Of course, superluminal or negative transit

times are not an indication that causality or relativity somehow break down, because the fact is
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Fig. 1-2. 7: (@) p,,(solid line) and p! (dashed line) vs. /@y (wg=27mc/Ag and Ao=1pm) for the same

structure described in Fig.(I-2. 3) except that the high index layer now includes a dielectric material
with a Lorentzian absorption line centered around /w;=0.65 and an index of refraction of
approximately 1.42 in the visible range. (b) Refractive index (n) (solid line) and extinction coefficient
(B) (dashed line) of the dielectric material vs. w/wy. By definition the refractive index and the extinction

coefficient are related to the dielectric function by: \/_ = n+iB. The extinction coefficient is
magnified 50 times.

that signal velocity always remains subluminal [40], and the peak of the transmitted pulse can
always be found under the envelope of a similar input pulse propagating for the same length of
free space [20]. In Fig. (I-2. 8a) we compare the Wigner time and the transit time of a Gaussian

pulse of unitary amplitude that traverses the structure. Input pulses at z=0 (z=0 is the location of
the input surface of the PC) have the following form: A(z=0,t) = expl— (t2 / 22'02 )—ia)tJ where
7, = 0.5psand o is the carrier frequency. The transit time has been numerically calculated as the

time the peak of the transmitted part of the input pulse needs to exit the structure, and the
reference time ( t=0) is the time at which the peak of the input pulse reaches the input surface of

the PC. The figure shows that the transit time is well described by the Wigner time, even when
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Fig. 1-2. 8: (@) Transit time (solid circles) and Wigner time (solid line) vs. @/®, (We=27mc/A¢ and
A¢=1um) where  is the carrier frequency of the input pulse. The structure is the same as that described
in Fig. (I-2. 7). Input pulses at z=0 (z=0 is the location of the input surface of the PC) have the

following form: A(z=0,t) = expl— (tz /22’02 )— [ a)tJ where 7, =0.5pS. The transit time has

been calculated as the time the peak of the transmitted part of the input pulse needs to exit the structure,
and the reference time (t=0) is the time when the peak of the input pulse reaches the input surface of the
PC. (b) Tansit time (solid triangles) and Wigner time (solid line) in the case of a Gaussian pulse with

7, =0.1ps

strong absorption and dispersion come into play. In this case the spectral bandwidth of the input
pulse is ~ 6 THz, which corresponds to ~ 0.83 ps FWHM of the pulse intensity, and the quasi-
monochromatic limit is approached (this limit is quickly reached because the spatial extension of
a typical pulse is always much larger than the typical structure, which is only a few microns in
length). The transmitted pulses come out only slightly distorted with respect to the input pulses,
and attenuated by a factor that depends on the transmission properties of the PC. In general, in
the presence of absorption, the Wigner time correctly estimates the transit time for any quasi-

monochromatic Fourier-limited pulse. In the case of a quasi-monochromatic linearly chirped
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pulse, the transit time is related to the Wigner time through the relation: ttransitZtWignepLSyAtz,
where 0=[(dT/dw)/T]e-e0 and 7y is the magnitude of the linear chirp [20].

If shorter pulses were used, as in Fig. (I-2. 8b), where the pulses have a duration in time of
approximately 0.16 ps FWHM of the pulse intensity, the transit time then begins to differ
significantly from the Wigner time. In this case higher order terms of the geometrical dispersion
of the structure that are not accounted by the Wigner time come into play, and as a consequence
pulses that tunnel through the structure undergo appreciable distortion.

Conclusions

In conclusion, we have highlighted the connections that exist between the DOM and
tunneling times for 1-D barriers. In the absence of absorption, the DOM calculated using the
Wigner time is approximately equal to the average of the LTR and RTL dwell times, divided the
length L of the structure. We have shown that the self-interference delay is generally negligible
(Egs.(I-2. 19) and (I-2. 20), and Fig. (I-2. 6). Both the Wigner and dwell-time DOMs
overestimate the true DOM defined in our Eq.(I-2. 9) by a factor roughly proportional to the
average index of the barrier (Eq.(I-2. 18), and Figs.(I-2. 3) and (I-2. 5)). Structures embedded in
symmetric environments composed of a sufficient number of periods acquire the properties of
symmetric structures, and the DOM calculated through the Wigner time is then approximately
equal to the DOM calculated using the energy density (Eq.(I-2. 20) and Fig.(I-2. 4)), as first
proposed in Ref.[8] using heuristic arguments. In the case the absorption, the Wigner DOM can
become negative (see Fig. (I-2. 7)), while the true DOM remains always positive. In that case,
the Wigner DOM ceases to be a valid representation of DOM, but can still be interpreted and is
still a good measure of group velocity of un-chirped, quasi-monochromatic pulses. We conclude
that the DOM in 1-D barriers should always be calculated using our Eq.(I-2. 9), and plenty of
caution should be exercised when one makes connections between the DOM and tunneling
times. Such a connection sometimes yields useful information about the system, such as group
velocity, for example, but if the true DOM is sought the approach suggested by our Eq.(I-2. 9)
should always be preferred.

Finally, we point out that while the DOM defined through Eq.(I-2. 9) can be
straightforwardly generalized to multidimensional cases, the other definitions based on the
tunneling times find a direct link with the DOM only in one dimension, and then only when there

is no absorption.
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[-2.A  Appendix A
We begin with Eq.(I-2. 3):

asz(Z,f)+ w’e,(2)G,(2.$) 8(z-¢)

= I-2. Al
0z’ c? ( )
when G, (z,¢) exists, it follows that G, (z &) satisfies the homogeneous equation:
2 2

0z’ c? ’
at all points of the interval 0<z<L except at the point z=. As discussed at length in Ref. [24], the

light-modes {(I)S)} are a fundamental (you mean complete?) set of solutions of Eq.(I-2. A2) and

they are subject to the following boundary conditions (see Fig. (I-2. 2)):

oL(0) =141 0(0)= 10
o, )(L)=t; oO(L)=1+r1"
+) i )y ) . (I-2. A3)
[dD,’/dz], , =ik,n,,(1-1") [dD!))/dz],., = ik, t,
[dD)/dz],_, =ik,n,.t, [dD’) /dz],., = ik,n,,(rS) 1)

Consequently, we can express the most general solution of Eq.(I-2. Al) as:

C(¢)@(2)+D )0} (2) L22z>¢
G,(z¢)= (I-2. A4)
D, ()0} (2)+C, (£} (z)  0<z<¢

w
The four constants must now be determined. First we impose the condition of “ outgoing waves” .
This condition requires that the radiated energy from the point source located at z=¢ leaves the
structure, and no energy is incoming into the structure. This means that the coefficients D; of the
incoming RTL wave and the coefficient D, of the incoming LTR wave must be zero. The

constant C; and C, must be determined by imposing the continuity of G, (z &) at z=€, while iits

derivative has a jump of magnitude one [25]. Following the above procedure we find:

C (5)_ q)g)(é:) , D=0

Wil o).

, (I-2. A5)
()
N T SRSl I
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o) o™
where W(Cl)g),d)g))z‘

f)’ N is the Wronskian of the fundamental set of
/dz do'/d

19

solutions. In our case the Wronskian is a conserved quantity, i.e. dW(d)E;),d)g) )/ dz=0. This can
be shown by resorting to the boundary conditions in Eq.(I-2. A3). The result is:
Wiel). o)., = Wil o)., =2ikn, t) =Wl =2ikn,.t, from which
one also derives that no,ltf;) = no,ztg) =t . The Wronskian calculated at the point z=& can be
consequently expressed as:

w(@l.ef)= wiehaf )L, =2ik, . (2. A6)

Eq.(I-2. 4) in the main text follows from Eqgs.(I-2. A4),(I-2. AS),(I-2. A6).
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-2.B  Appendix B

We start by writing the Helmholtz equation for the field dDE;E 0(2):

24 (+) 2 (+)
0 d)aw+§w(z) N (@+ ow) 8w+52w(2)‘1)w+5w(2) -0, (I-2. B1)
Z C

Let us write 0w = Aw where A<<1 is a perturbation parameter, and let us expand the functions in

Taylor series:

o). (2)=0"(2)+ AT, (2)+..., (1-2. B2.1)
(w+ow) e, (2)=wc,(2)+ ﬂ{za)ze‘w(zh o’ a%(z)} +.., (I-2. B2.2)
[0

where T, (z)= w(BdDS)(Z)/aa)). By substituting Egs.(I-2. B2.1) and (I-2. B2.2) in Eq.(I-2. B1)
and equating the terms of order A, we obtain the following equation for T, (2):

821),2(2) + a)zg,;,(z) l"w(Z) _ _w_jcpg)(z){zgw(zﬁai(z)w] (1-2. B3)
0z C c ow

The solution of second order linear differential equations of the same type as that in Eq.(I-2. B3)
can be written using the method of the Green’s function [25]. In our case, the solution of Eq.(I-2.
B3) with the boundary conditions corresponding to “outgoing waves” can be expressed in terms
of the Green function calculated in Appendix A as follows:
o’ N e,
@)=~ [6,(emt (€] 26,6+ 22 loe. 0-2.34)
0

by calculating Eq.(I-2. B4) for z=L we obtain Eq.(I-2. 14) in the main text.
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[-2.C Appendix C

Let us start from the definition of p_ :
pe = (-2K, /cl_)jg 2)Im[G,,(z,2)]dz. (1-2.Cl)
Eq.(I-2. C1) can be rewritten in the following form :
st
0

where we have used the expression of the Green’s function given by Eq.(I-2. 4) in the main text,

o |coslpl) + ol — g, iz, (1-2.C2)

we have written the LTR and RTL modes as: <I>S)(Z) = ‘CI)(;)(Z)‘ exp(i (pf) ), and the transmission

function of the PC as: t = ‘th‘ expli ¢, (@)]. Now, equating the real and imaginary parts of Eq.(I-

2. A6), we obtain:

d\cpﬁﬁ " d\cp

@0 - el — =2k, [T [sinlgl! + 05 - @], (1-2. C3.1)
0 dp)]
o0 |of) %—d% = 2k, [t coslpl) + 0 o, . (I-2. C3.2)

Using Eq.(I-2. C3.2), we can recast Eq.(I-2. C2) in the following form:

i d¢w d¢£)‘)
"ok CL‘t \Zlg‘? ‘ ‘ o ‘ { 4z —T}dz. (1-2. C4)

For a non-absorbing PC, i.e. £.(z)=0, it can be shown that ‘CI)Ef)(Z)‘2 (dp) /dz) is a conserved

quantity [31] and it can be calculated by resorting to the boundary conditions imposed on the

LTR and RTL modes, i.e. Egs.(I-2. A3), giving the following results:

®)
o) 2do, _ +ﬁ‘t~w . (1-2. C5.1)
dz )
)
@l do,” _ _ﬁ‘fw i (I-2. C5.2)
dz Ny,
From Egs.(I-2. C5) and (I-2. C4) we obtain:
1 e [ ) ) 2}
o o [eR(Zn ot oY) |dz, 1-2.C6
P 2C|_no,1no,2'([ D@+ e ( )
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and we also arrive to an useful expression of the imaginary part of the Green’s function in terms

of the LTR and RTL light modes:

2
N, @ +n,,|@f)
Im[G,(z,2)] = - LS o . (1-2. C7)
4k0 nO,l n0,2

‘22

L
Now, using the relation: I gg(z)d)(af)
0

“dz=(c? /0 )ﬂdcb(i) /dz dz+(1/k,)n,,, mr )] (81311,
0

Eq.(I-2. C6) can be recast in the following form:

. 1 1k . 2 1 & ) 2
Po=7d aﬂgﬁ‘@;) }dz+@ﬂg§‘®;)r +%

do )
dz

do (+)
dz

2 ¢
a)z

2
:ldz+ kilm( i) ey

0
(I-2. C8)

The dwell time is defined as the average electromagnetic energy density stored in the structure
divided by the input power [31-32]. In our case the expression for the dwell times for a LTR and
RTL input are respectively:

do (=)
dz

> ¢?

a)Z

]dz, (1-2. C9)

where n®) = N,, and n") = N> - Bq.(I-2. 19) in the main text comes from Eq.(I-2. C8) and (I-2.

C9).
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I-3  THz Generation via Difference Frequency Generation in ax® Photonic Crystal
1-3.0 Introduction

Recently, a great deal of attention has been devoted to the problem of the generation of
coherent THz radiation because of the many possible applications that have been identified: from
spectroscopic imaging to radar systems, and from security and medical to biological as well as
pure research purpose. Unfortunately, the number and types of THz sources available are not
always adequate for all possible applications mentioned. This has led to a great deal of activity to
come up with new designs and sources with different characteristics. Free-electron lasers and
synchrotron radiation are powerful THz sources, but their physical size limits their application.
More compact sources are based on photoconductivity (electro-optic devices) and optical
rectification (all optical devices). In the first case a femtosecond laser operating in the visible or
near infrared regime is used in order to create electron-hole pairs that accelerate through an
appropriate electric field. The resulting changing dipole leads the generation of THz generation
[1,2]. These kinds of devices are usually referred to as photoconductive antennas. In the second
case, a femtosecond pulse interacts with a nonlinear crystal with a second order nonlinear
susceptibility, generating a THz pulse through optical rectification [3]. Organic and inorganic
electro-optic crystals like DAST, ZnTe, GaAs, LiNbO; [4,5], as well as polymers [6] have also
been exploited. A wide range of techniques are currently under investigation including: quantum
cascading [7], optical parametric oscillations [8], femtosecond pulse shaping [9]. Most of these
sources produce THz pulses. Continuous THz sources can be obtained through difference
frequency generation in second order nonlinear crystals. In this case two c.w. optical pumps
interact in the crystal and generate coherent THz radiation at frequency Aw=wm;-m,, where m; and
o, are the frequencies of the pumps. For this purpose inorganic crystals like GaP [10] and GaSe
[11], for example, have been used. Most recently, organic crystals (DAST) [12, 13] and EO
polymer composites [14, 15] (CFAPC, DAPC, ...) with large nonlinearity have been explored
with promising results. Some limitations of those techniques include low tunability range, and/or
low efficiency. The latter is usually due to material absorption at THz wavelengths. Typical
conversion efficiencies experimentally achieved are of the order ~10° [11].

We study THz emission from a y® —doped, one-dimensional photonic crystal (1-D PC),
based on a rigorous Green function approach, and a three-dimensional vector model. THz

radiation is generated via a difference-frequency generation (DFQG) process, where two nearly-
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degenerate optical pumps of frequencies ®; and m, generate a frequency @;=m;-m, found in the
THz range. The pumps are assumed to work in a collinear configuration. The 1-D PC structures
that we study are known to exhibit some peculiar properties, such as field localization,
superluminal pulse propagation in the band gap, and high density of modes, to name a few , but
the structure is flexible enough that it can be optimized for various and quite different purposes,
including nonlinear frequency conversion [16]. Previously, the dispersive properties of photonic
band gap structures had been used to solve the phase matching problem using the optical
rectification effect [17]. The use of 1-D layered structures, in order to generate submillimeter
wavelengths through difference frequency generation, was already anticipated by Bloembergen
and Sievers [18] in 1970. In their seminal paper, the authors discussed the properties of nonlinear
optics, in particular of second order phenomena, namely second harmonic and sum/difference
frequency generation in such structures. Although, Bloembergen and Sievers considered infinite
structures, the results they obtained have general validity: they showed that the periodicity of the
layered structure can be used to compensate the normal dispersion of materials in order to obtain
high conversion efficiency through phase-matched second order interactions. On the other hand,
as we will see later, in the case of finite structures the efficiency of second order interaction is
not directly linked to a phase-matching term, but rather to overlap integrals of the interacting
fields, as also discussed in Refs [19-20]. A first study of THz emission in 1-D PCs that used a
coupled mode analysis to describe multiple field confinement, enhancement, and overlap near
the photonic band edge of one-dimensional photonic band gap structures was described in
reference [21]. That study, which analyzed THz emission from a defect layer, showed that it was
possible, at least in principle, to obtain continuous and tunable sources from the sub-THz regime
up to 12 THz. The advantages of using finite 1-D PCs in order to generate THz radiation can be
found in the flexibility of those structures that allow achieving high conversion efficiency either
in collinear and non collinear configuration due to high field localizations.
1-3.1 General considerations

We are studying THz generation via a second order process, which means we have two
pumps and four second-order processes involved, and four generated fields. Three of those fields
are generated at optical frequencies (2, 20, ®;+®;), while the fourth is generated in the THz
region (w;—®,). The efficiency of optical processes is in general much greater than THz

generation, and so those processes cannot be ignored. The first challenge is to inhibit any
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undesired process. The transmission spectrum of a 1-D photonic crystal is characterized by wide
band gaps and relatively narrow transmission peaks. Frequencies that fall inside the gap
correspond to modes that are not supported by the cavity, have poor localization properties, [22],
so that if a generated frequency falls inside the gap the related process is practically inhibited.
The key to efficient THz generation is then to find a structure in which all the generated

frequencies, except the THz, are tuned inside a transmission gap. The two optical pumps (®; and

uuuuuuumHUHHWHHI”” g
|

0.75 Band edge

resonance

1.00
0.50 I T ]
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Fig. I-3. 1: Transmission spectrum of a one-dimensional periodic structure. The elementary cell is made
by two layers of refractive index n;=1.8 and n,=1.4 at the frequency A¢=1 um. The lower index layer
exhibits a normal dispersion. The thickness of the two layers are respectively d;= Ay/2n;, dy= Ag/4n,.
The structure is surrounded by air (ng=1). The transmission is a function of the normalized frequency
/@y, where wg=27mc/Ay. In the inset is reported the spectrum of THz frequencies as a function of THz.
The colored region in the inset is the part of THz spectrum for which all the undesired second order
processes fall in the gap.

) are nearly degenerate (®;~m,~); therefore, one important condition is to design a 1-D

structure such that the frequency 2® happens to fall inside a gap.
As an example, in the Fig. (I-3. 1) we show the transmittance of a 1-D structure composed of

40 periods of alternating layers (n;~1.8, ny~1.4) whose thicknesses are chosen to be a=A/2n; and
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b=MA/4n,, respectively where A is the reference wavelength A=1um. The high index layers are
assumed to possess normal dispersion, while for simplicity the low index material is assumed to
be dispersionless. Fig. (I-3. 1) thus suggests that if the pumps ®; and m;, are chosen near the first
order band edge, as indicated, then the frequencies 2w, 2m,, and ®;+®, are to be found
somewhere inside the second order band gap, and their generation will be suppressed. On the
other hand, the wave at the difference frequency w;—®, (THz) will be tuned within the first pass
band, away from any gap, and so it will not be inhibited.
[-3.2 Plane wave approach

In this section we follow a plane-wave approach to describe the multi-wave interaction. We
deal with a six-field problem: two pumps (®; and ), the second harmonics (SHs) (2®; and
2@,), the up-converted or sum frequency (SF) (m;+,), and the down-converted or difference

frequency (DF) (w;-;). We have to solve a system of six coupled, second order differential

equations:
;Z—ZE(D] + w‘zi";E‘”‘ ) (’:122 [APE By +dPEL By .y +dPEy By, )
;Z—zz N wzzsc(;zsz =-2 0:222 [APE) By +dPE) By o +dPELE), )
by, e B O, R, )
jz—zzEm,mz L +w2)2:2“"+“’2E‘°'+“)2 pAC 22(”2)2 [4PE, B, +dPE, o Eyy +dPE} o Eoy )
jz_zzE‘”"“)z G +m2)2;“"“”2 oo, _ 5 (® ;2(”2)2 [APE ) +dPEqy 0 Eso +dPE) 0 Eay )

(I-3.1)
In the system of Egs.(I-3. 1), d® is the nonlinear optical coefficient. It is assumed to be 100
pm/V for all processes, a practical but sensible value for many semiconductor materials.
In the un-depleted pump regime all the recombination processes can be neglected and the formal

solution of system (I-3. 1) is:
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E, = A,d>; +Bo,
E, = Azd);2 +B,®,

E,., =46y, (6207 (DE ()

.y, =4 5[ Gay, (6,207 (OE, (§) : (1-3.2)
B =222 6, (6207 D, (E, (O
e =222 (G, (6. 28V GIE, (DIE, ()05

where ®," and ®, are the Right-to-Left (RTL) and Left-to-Right (LTR) linear propagating
modes of the structure [23-24], respectively, at frequency ®, with ©=2®;, 20, ®+w;, ®;-0;.
The propagation modes are steady state waves, and in each layer they have the form of a
superposition of forward and backward propagating plane waves, (the general solution of the
Helmoltz equation) with suitable coefficients that can be calculated through a standard matrix

transfer method [25]. Moreover, the LTR mode satisfies the boundary conditions:

14rR = q)LTR (0) ’ I{QJ(I _ LR ) _ iq)LTR (2) iq)LTR (2)
c dz

dz

and '™ = 9" (L), i{@thTR _
C

z=0 z=L
, compatible with a plane wave that propagates from left to right. The RTL mode satisfies the

boundary conditions: t*™ = ¢*"™(0), —i(%)]tRTL = i(bRTL (2)

dz
i[gthTR — iq)LTR (Z)
. \C dz

propagates from right to left. In Eq. (I-3. 2), A;, Az, By, B, are complex coefficients that have the

and 141" =¢"™(L),

z=0

i[gj(—l+rlm)= diq)RTL (2) compatible with a plane wave that
z

C

z=L

dimensions of an electric field. These coefficients are uniquely determined by the boundary
conditions. In the special case of LTR incidence, B; and B, are zero, while A; and A, are the
magnitude of the pumps’ electric fields at the first interface. On the other hand, in the case of
RTL incidence, A; and A, are zero, while B, and B, are the magnitudes of the pumps’ electric
fields at the last interface. In this section we will study only the case of LTR incidence, so B; and

B, are set to zero. In Egs. (I-3. 2), G, is the Green function at frequency ®, =2, 20, ®;+0;,

W;-0; [23-24]:
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Gw(za &) =

I o, (2®,E) 0<z<& (1-3. 3)
2ik, (@) | @4 ()DL E)  E<z<L |

where t() is the transmission of the structure at frequency .

In the plane wave regime, the conversion efficiency 1 of a process is defined by the ratio of the
I

intensity of the generated wave I, and the sum of the input pump intensities Ipymp: = ———.
2 L pump
In this case, forward " and backward M conversion efficiencies can be defined without
I
2 L pump

electromagnetic field in the forward (+) and backward (-) directions. Taking into account the

0+

ambiguity as follows: mM* = where I;‘r are the intensities of the generated

relation between the intensity and the electric field for the plane waves (in complex notation)

I=goc|E|* we have for the conversion efficiencies of the four generated waves:

0.075
— Nt
- n+THz(* 100)
0.05 -
-+ M (*100)

n
/
0.025 - / N s
~ 7~
/ - —
N /
/o~ __."
/ -
/
— e
0 inal L B pe=s=======°="% - - ==x=-= I ===
1 3 5 7 9
v [THZz]

Fig. I-3. 2. Conversion efficiency vs. generated THz frequency. The full trace is the total conversion
efficiency, defined as M= N2witN 202 No1+e2 T Nol-a2- The dashed trace is the forward THz conversion
efficiency 1, multiplied by 100. The small dashed line is the backward THz conversion efficiency
tH, Multiplied by 100. The two pumps are arranged as shown in Fig. I-3. 3. The intensity is assumed to
be 10 GW/cm? for both pumps.
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M2 :n_d(z)z(;] Itot( L j ‘LfoL grating(z)[cbgz (z)]zd)§w2 (z)dz

TgC 1+Q Mo,
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+ 47‘52 2 L . + + + ?
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(I1-3.4)
Where grating (2) is the grating of the second order nonlinearity. I; is the intensity of the pump at
frequency ; and I, the intensity of the second pump, Q is the ratio I;/I; and I is the total

intensity [,+1,.From Eq. (I-3. 4) it follows that we have the higher conversion efficiency for the

1.00
T
0.75

0.50 ¢

0.25

0.630 0.645 0.660
o/ @,

Fig. 1-3. 3: Transmission spectrum as a function of the normalized frequency near the band edge. ®; is
fixed on the band edge resonance, while ®, is moved back in frequency.
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DF (and the SF) when the two pumps are balanced (I;=I;). So we will consider only the case
I,=L,.The total conversion efficiency Ny is defined as the sum of all the conversions efficiencies:
Nw=2MNi. In Fig. (I-3. 2) we report M as a function of the generated THz radiation. The total
intensity is fixed to a value of 20 GW/cm” (10 GW/ cm® for each pump). , is tuned at the band
edge while m;, is chosen such that (w,—®;) ranges from 1 to approximately 10 THz (see Fig. (I-3.

3)) and in such a way that the second harmonic always falls inside the second order gap to

v (THZ2)
0 2.5 5.0 7.5 10.0
1.2
T
0.8 — |y, tot
— |y, Forward
— |y, Backward
04 % o
0
0.66 0.64 0.62
o/,

Fig. 1-3. 4: Transmission and square modulus of the overlap integrals as a function of the second pump
normalized frequency (lower scale) and vs. the THz generated frequency (upper scale)

The dark line is the Transmission (T), the dark dashed line is the sum of all the THz overlap integrals
(Ity, tot), the gray line is the THz forward overlap integral (Ity, for), the gray dashed line is the
backward overlap integral (Ity, back), and the gray small dashed line is the sum of the overlap integrals
of all the other generated frequencies, the optical ones (Z I,p).

suppress its conversion efficiency. As shown in Fig. (I-3. 2) the un-depleted pump approximation
is well verified also for the relatively intense, incident fields we are considering. The conversion
efficiencies of Eq. (I-3. 4) is proportional to the product of the square of the frequency (L/A)?,
and a term that represents the structure’s properties via an overlap integral which we focus on
below:

2

1 = | erating ()0, ()]0, )] @, @)z (1:3.5)
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In Fig. (I-3. 4) we report the behavior of the integral overlap as a function of ®, (lower scale) and
the generated THz frequency (upper scale). We have greater total efficiency at 1 THz, when the
two pumps are both tuned to the band edge resonance, and the largest forward efficiency at 2.5
THz, when the @, is tuned to the second transmission resonance. This suggests that if one wishes
to generate a low THz frequency (~1THz), better results can be obtained with a structure having
broader resonances, such that both pumps can be tuned within the same resonance. For example,
with a similar structure (25 periods instead of 40) the overlap integrals at 1 THz (and so the
conversion efficiency) are nearly double. Moreover, the structure (at least for LTR incidence)
will generate efficiently up to 3-4 THz, as the overlap integral becomes progressively smaller at

higher frequencies.
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Fig. 1-3. 5: Overlap integrals as functions of the normalized first pump frequency ®,/®,, for four
generated frequency: a) ®;-0,=1THz b) ®;-0,=2.4THz c) 0;-0»,=5THz d) ®,-w,=7.5THz. The black
line is the Transmission, the black dashed line is the sum of the THz overlap integrals (Overlap Tot),
the gray line is the forward THz overlap integral (Overlap F), and the gray dashed line is the backward
overlap integral (Overlap B).

Up to now we have used a fixed value of m; to maximize its localization properties, while

tuning ®, to lower frequencies. This may not be the best choice, but it provides a good
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qualitative picture of what one may expect for structures similar to our own. If the desired
outcome is a tunable device with only one tunable pump, the situation we have described is
suitable. In Fig. (I-3. 5) we show what happens to the overlap integrals if we tune ®; away from
the band edge, for the generation of 1, 2.4, 5 and 7 THz. The result is that only for the highest
frequency (7.5 THz) the chosen configuration is not ideal. The plane waves approach offers a
complete description for all the optical frequencies because it allows the calculation of the
conversion efficiency as long as the spatial properties of the emitted fields are those of plane
waves. In fact, this model offers only partial information on THz emission in that while it allows
a correct estimation of the conversion efficiency, diffraction of the generated THz waves is not
taken into account, and we have little or no information on the spatial distribution of the
radiation. This aspect of THz generation will be discussed in the next section with the help of a
three dimensional model.
-3.3 Threedimensional approach

In this section we develop a three dimensional model to simulate the spatial characteristic of
THz generation. The THz signal is generated from the interaction of two optical pumps in a
volume that can be approximated with a cylinder of radius R (equal to the pumps spot size) and

length equal to the length of the 1-D PC structure (See Fig. (I-3. 6)). As explained in the previous

A

y

v

z

Fig. I-3. 6: Configuration of the three-dimensional simulations. The pumps enter the structure at normal
incidence; the interactive area is a cylinder of radius R equal to the spot size and length L equal to the
PC length.
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section, we can neglect all the recombination terms. The THz field, according to Maxwell’s

equations, satisfies the vectorial equation:

=2

VxVXE — 0’ 8E = 2e,d  : E,E, (I-3. 6)

Equation (I-3. 6) has the formal solution:

=(2)

E =, [dV'G(r,r')2e,d :EE, (1-3.7)
\%

- =
where G(r,r'") is the dyadic Green function of the problem; d is the nonlinear tensor; E; and

E; are the pump fields. Without lack of generality we will study the configuration E1//Eo//P"".

As the THz wave-length is much greater compared to the length of the structure, the structure
itself may be considered a point source of THz radiation. In Eq. (I-3. 7) we can use the free space
dyadic Green function [26].In the far field approximation, the dyadic Green function reduces to

the simple form [27]:

exp(ik,r) exp(— ik, 1) , (1-3. 8)
T

1
Gij(rar') = (Sij - X Xj)4nr3

IER a.u.

D PC Bul

z A A

Fig 1-3. 7: Spatial distribution of THz emission a) from a 1-D PC, b) from an equivalent bulk, ¢) from a
point dipole.

Assuming a plane wave form for the pump fields from Eqs.(I-3. 6&7), we arrive at the following

expression for the electric field:
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L '
where 1, = jdx'exp(—iko ﬁjdﬁ(x')CI)g(x')*grating(x'); J1 is the Bessel function of order 1;
0 r

pz=y2+z2 ; Ay and A, are the amplitude of the pump fields E; and E,.

From Eq. (I-3. 9) the square modulus of the electric field and the Poynting vector (S) can easily

be calculated. The intensity of the electromagnetic field is given by the modulus of the Poynting

vector. It comes out that the emission is directional, namely: the intensity of the electromagnetic

field is largest near the x axis and the direction of the Poynting vector is nearly along the x axis.
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Fig. I-3. 8. Square modulus of the electric field, at a plane parallel to the yz plane, distant 4 cm from the
source, in the forward direction as a function of the z coordinate. The full line is the photonic crystal
emission, the dashed line is the equivalent dipole emission and the small dashed line is the equivalent
bulk emission. In the case of: a) ®;-m,=1 THz b) ®;-0,=2.5 THz ¢) ®;-0,=5 THz d) w,-®,=7.5 THz.
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Moreover, even if the emission is not in the form of a plane wave we have that | o E-E".

The THz emission obtained pumping the 1-D PC structure may be compared with the emission
obtained from an equivalent bulk and that of an equivalent dipole. In Fig (I-3. 7) we show the
spatial emission for both: 1-D PC, bulk and equivalent dipole emissions at 1 THz. Moreover in
Fig (I-3. 8) we plot the emission for the generation of 1, 2.5, 5 and 7.5 THz.

The equivalent bulk is composed of a non-linear material of length L1 equal to the sum of all the
non-linear layers in the 1-D PC structure. The emission from that structure is found following the
model developed by Shen [27].

The equivalent dipole is a point dipole of intensity given by the sum of all the dipole distributed
in the 1-D PC structure. Although the point dipole is an idealization, comparing this case with
the 1-D PC and the bulk shows that the 1-D PC and the bulk have a much more directional
emission. That directionality is due to the fact that in both cases the dipoles are excited by highly
directional optical pumps. As predicted by the plane wave approach, the emission from the 1-D
PC structure can be much higher than the emission from the bulk. In particular, at 1 and 2.5THz,
Figs. (I-3. 8a) and (I-3. 8b), we have an enhancement of nearly 6 with respect to the bulk. At 5
THz (Fig. (I-3. 8c)) the emission from the 1-D PC and from the bulk are nearly equal. At 7.5
THz (Fig. (I-3. 8d)) there is no advantage in using the 1-D PC.

To evaluate the conversion efficiency we calculate the flux of the Poynting vector through a
close surface and divide it by the flux of the pumps through the input surface S (a circle of radius
R). For example, we can enclose the source in a cylinder of radius a, and length 2d, where d>>L

(far field approximation). In that case we have:

a a

2n 27 d 2n
[dpp [deS, (d,p,9)—[dpp [deS, (—d,p,@)+a [ dx' [ d(P[Sy(XBa,<r>)cos<p+ S,(x',a,9)sin <p]
0 0 0 0 —d 0
R 2%e,c(AZ +A2) '

’n:

(I-3.10)
Note that the Poynting vector goes to zero far from the x axis. So if in Eq. (I-3. 10) the radius a is
taken large enough to contain the peak of the emission, we identify three contributions to the
conversion efficiency: forward (n"), backward (") and lateral (nlat) conversion efficiency, as

follows:
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Fig. 1-3. 9: Overlap integrals (lines) and their equivalent for the 3-D model (points) as functions of the
generated THz frequency. The full line and the circles are for the total (sum of the forward and
backward) overlaps (Overlap Tot and EqOverlap Tot), the dashed line and square are for the forward
overlaps (Overlap forward and EqOverlap forward), while the small dashed line and the triangle are for
the backward overlaps (Overlap backward and EqOverlap backward).
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lat _ —d 0
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The forward and the backward conversion efficiency are proportional to the flux of the Poynting
vector through the basis of the cylinder. The lateral conversion efficiency is proportional to the
flux of the Poynting vector through the lateral surface of the cylinder.

It turns out that the emission through the lateral surface is negligible with respect to the emission

through the basis of the cylinder. Expression (11) can be recast in the following form:
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In Eq. (I-3. 13) L, = jdx'x'exp(—iko ﬁjd)fr(x')d)z(x')*grating(x'). The a-dimensional
0 T

quantities I{, and I, play in the conversion efficiency of the three dimensional model the same

role as the overlap integrals defined in Eq. (I-3. 5).
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Fig. 1-3. 10: Field localization as a function of the propagation coordinate x, for several incidence
frequencies v, in the plane wave approximation. Full line v=100THz, dashed line v=10THz, small

dashed line v=1THz, dashed-point line v=0.1THz. The gray line is the refractive index grating of the
structure.

In Fig. (I-3. 9) we compare the behavior of the overlap integrals in the two models. While

the two models have the same qualitative behavior, there are some quantitative differences due to
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the fact that on one hand the 3-D model neglects the internal details of the structure for the THz
frequency, while on the other hand, the 1-D model neglects the 3-D aspect of the emission. The
localization of the field grows with frequency, while the emission spread goes in the other
direction. So moving to higher frequencies the field localization becomes dominant and the 1-D
model makes more accurate predictions, while moving to lower frequencies it is the 3-D model
that becomes more accurate. THz frequencies lie in the transition region between those two
regimes. In Fig. (I-3. 10) we plot the field localization (the square modulus of the 1-D PC modes)
moving from the microwaves to the far infrared. If there is no localization we will have a
constant value 1, otherwise we will see oscillations end maybe high localization zones. It is clear
that from this point of view THz frequencies represent a transition region. Even if we do not
have strong field localization, one cannot assume that THz radiation does not feel the structure.
|-3.4 Four gate system

As shown by Centini et al [28] the use of the 1-D PC structure as a four gate system, namely
pumping the structure from both sides, modifies the field distribution of the pumps inside the
structure. This effect allows us to change the conversion efficiency [28] and the ratio of the
forward and backward emission by changing the phase difference between the RTL and LTR
input fields. The overlap integrals (Egs. (I-3. 5) and (I-3. 13)) become functions of the phase
differences A@l and A@2 between the RTL and LTR incident fields at frequencies ®1 and ®2,
respectively. In particular pumping from both sides makes it possible to control: (a) field
localization in the active layers; and (b) the amount of relative forward and backward THz
emission. In order to take advantage of effect (a) we need the pumps to be tuned at the
transmission peaks near the band edge, where the field is most intense. In order to take advantage
of effect (b) we need the LTR and RTL modes of the generated frequency to have different
localization properties.

In Fig. (I-3. 11) we report field localization of the structure’s modes (LTR and RTL) for 1,
2.5, 5, and 7.5 THz. At 1THz the field does not feel the structure: there is no field localization
and the LTR and RTL are practically the same and flat. In this case we may not change the
balance of the forward and backward emission. Moreover, the two pumps are tuned at the band
edge, and we expect to have higher conversion efficiency. At 2.5THz LTR and RTL mode
localization is sensibly different. We expect to be able to change the balance of the forward and

backward emission in an equally sensible way. As only one pump is tuned at the band edge, we
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Fig. 1-3. 11: Field localization as a function of the propagation coordinate x, in the case of LTR
incidence (full line) and RTL incidence (dashed line). The frequency v is a) 1THz b) 2.5THz ¢) 5THz
d) 7.5 THz.

do not expect to fully exploit field localization effects. At 5 and 7.5 THz we still have that the
LTR and RTL modes localized differently and so we can partially control the directionality of
the emission. But the efficiency of the process will not be as high as also having the second
pump tuned far from the band edge.

In the conversion efficiencies formulas, in the case of LTR+RTL incidence, the only factors

that change are the overlap integrals, Eq. (I-3. 5), and the corresponding quantity in the 3D
model, Eq. (I-3. 13). In Egs (I-3. 5) and (I-3. 13)CI>(+D1 (z) must be replaced by

@, (2)+ D, (z)exp(iAg,) while, @, (z) must be changed to @, (2)+d7, (2)exp(iAg,).
Because in case of symmetric or nearly symmetric structures, we have that ¢,,(z) = ¢,(L—2),

the following condition is satisfied: I (-A@,,—A@,) =1"(A@,,AQ,)

This means that if the behavior of the forward overlap integral is known, then the backward
overlap integral is also known. The phase differences A@l and A@2 can be chosen (at each
frequency) in order to maximize the total conversion efficiency (1 +1"), namely the sum of the

forward and backward overlap integrals, as well as the forward or the backward conversion

efficiency.
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In Fig. (I-3. 12) we show what happens when A@1 and A@2 are chosen in order to maximize
the total conversion efficiency. Note A@l and A@2 have a different value for each frequency. The
forward and the backward overlap integrals, as well as the sum of the two, are plotted as
functions of the generated THz frequency. Comparing the behavior of the total overlap integral
with the case of LTR incidence (Fig. (I-3. 9)), we find an enhancement factor of nearly 4 at 1
THz, which translates to an enhancement factor of nearly 20 with respect to the bulk. Moreover,
the four gate system is always more efficient than the one sided incidence, but any significant
advantage quickly goes away as the second pump moves away from the band edge, and the
generated frequency increases. The maximum efficiency is reached almost always when the
forward and the backward emissions are nearly equal. The 3-D and the 1-D models show some
quantitative differences for reasons that were discussed earlier. In Fig. (I-3. 13) we show what
happens when A@1 and A@2 are chosen in order to maximize the forward conversion efficiency.
According to Fig. (I-3. 11), near 1 THz, we cannot control the direction of the emission. In that
case forward and backward emissions are similar. As one moves to higher frequencies, control of

the directionality of the emission increases, and the efficiency drops.
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Fig. [-3. 12: Overlap integral (lines) and its equivalent for the 3-D model (points) in the case of both
sides incidence. For both pumps, the phase difference between the LTR and RTL beam is chosen in
order to maximize the total conversion efficiency. The full line and the circles are for the total overlaps;
the dashed line and the squares are for the forward overlaps; the small dashed line and the triangles are
for the backward overlaps.
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Fig. [-3. 13: Overlap integral (lines) and its equivalent for the 3-D model (points) in the case of both
sides incidence. For both pumps, the phase difference between the LTR and RTL beam is chosen in
order to maximize the forward conversion efficiency. The full line and the circles are for the total
overlaps; the dashed line and the squares are for the forward overlaps; the small dashed line and the
triangles are for the backward overlaps.

Conclusions

We have developed a 3-D model able to simulate THz emission from a PC structure via
difference frequency generation. The model allows the calculation of the conversion efficiency
as well as the spatial properties of the emission. This model also shows that 1-D PC structures
are versatile and powerful devices, able to efficiently generate THz frequencies. The general
analysis on THz emission in PC structure carried out in this work is a useful overview that will
allow us to properly design structures for specific purposes.

In this paper we have not referred to any particular material, and so our results have general
validity, thanks in part to the fact that 1-D PCs with similar characteristics can be obtained
adjusting the number of periods and/or the index contrast. A structure with low index contrast
and large number of periods behaves like a structure with a high index contrast and fewer
periods. Moreover, we stress that not all materials suitable for stratification have been
characterized in the THz regime, and at the present time, the best candidate for nonlinear
material appears to be GaAs, which has already been used to generate THz pulses via optical

rectification [5].
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-4  Crossphase modulation effectsin ax(3) photonic crystals: applications

to all-optical switching devices
1-4.0 Introduction

We present a numerical study of a finite photonic band gap structure with a ¥ nonlinearity
that couples two input pump beams at frequencies ®; and . We show that in this configuration
a variety of all-optical devices can be obtained: an optical transistor, a double switch, and a
dynamical switch. The seminal work of Chen and Mills [1] on the appearance of gap solitons in
one-dimensional photonic crystals (1-D PCs) with a x(3) nonlinearity can be characterized as the
beginning of a period of intense experimental and theoretical investigations whose focus was to
study the possibility of using these structures as all optical devices: as switching and limiting
devices, and as diodes [2-8]. Although a large number of papers have already been published on
the subject, the vast majority of them generally consider configurations with only one input
pump beam, limiting the flexibility of the proposed devices. In reference [8] a more flexible
configuration was studied, but the proposed device is an electro-optic rather than an all-optical
device. Here we study an all-optical device based on a two-pump scheme, where the two pumps
are coupled by the cross phase modulation terms of the cubic nonlinearity. In particular, we will
discuss an optical transistor, a double switch, and a dynamical switch.

1-4.1 The model.

Our study is based on the plane monochromatic wave approach. Two input beams, of
frequencies m; and m, respectively, propagate in the z direction and arrive at normal incidence at
the input surface of a 1-D PC composed of alternating layers of a linear dielectric material
juxtaposed to a non linear dielectric material with a cubic nonlinearity. The two waves are
assumed to be linearly polarized in the same direction. The problem can be described by the

following system of nonlinear coupled differential equations:

d’E, o 2 2
2l +_2l[nl(z)+3611(z)|El| +6621(Z)|E2| ]El =0
@ e (I-4. 1)
d°’E, ;

LSE [N S

where, E; and E, are the amplitudes of the electric fields, normalized with respect to the input
amplitudes, at frequency ®; and ®, respectively. The dimension-less coefficients s are the

elements of the ¥ tensor multiplied the square modulus of the related input amplitudes (i..
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Gij:X(B)((l)j;(l)j,(l)i,-(l)i)|Ei(0)’2). For simplicity, we assume that the ¥ tensor is not dispersive, so
that 6,;= 61,=6, and G,;= 6»=0C». n; and n, are the z-dependent, linear refractive indexes, at
frequencies ®; and m, respectively. We consider a 1-D PC composed of N=40 periods, and we
assume that the elementary cell is made of two layers of non-dispersive and non-absorbing
dielectric materials of low refractive index np=1.7 A/4ny thick, and high refractive index ny=3.5
A/2ny thick, respectively. The reference wavelength is A=1um. The low index layer exhibits the

¥ nonlinearity.
@, @,
1.00 1717177

0.75

0.50

0.25

0 \
Fig. -4 1:Linear transmission vs. ®/®, where A¢=1um is the reference wavelength and w,=2mc/A,.
The structure is composed of N=40 periods. The elementary cell consists of two layers of refractive
index ng=3.5 and n;=1.7, respectively. The thickness of the two layers are respectively dy= Ay/2ny,

d = A¢/4n;. The structure is surrounded by air (ny=1). The arrows indicate the position of the two
pumps (®; and ¢,) on the transmission spectrum.

In Fig. (I-4.1) we show the linear transmission of the structure (T). The arrows indicate the
tuning of the two incident pumps. The ®; pump is tuned at the low frequency band edge
transmission resonance, while the @, pump is tuned at high frequency band edge transmission
resonance. In both cases T~1. We note that this structure was not optimized for the devices that

will be studied in the next Sections. And so we seek proof-of-principle results and an
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understanding of the qualitative aspects of the dynamics that ensues when two pumps are
coupled as in Eq.(I-4. 1) above. Moreover, although in our calculations we use a A/4-A/2
structure; similar results can be expected for different types of structures. We numerically
integrate Eq.(I-4. 1) using a shooting procedure, as described in references [9-10], for example.
[-4.2 Optical Transistor and double switch.

In electronics, a transistor is made of three layers of a doped semiconductor material. The
three-layer structure consists of an N-type (P-type) semiconductor layer sandwiched between
two P-type (N-type) layers. In such a device a small change in the current or voltage at the inner
semiconductor layer, which acts as control, produces a large change in the current passing
through the entire structure. The device can thus act as a switch, opening and closing an

electronic gate. From this point of view, the optical configuration we propose shows transistor

like behavior (see Fig. 1-4.2).
]
>
'

Fig. 1-4. 2: Schematic drawing of our optical transistor. A small change in the intensity of the w, field
induces a large change in the transmission of the o, field.

e
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In Fig. (I-4. 3) we show that a small change in the intensity of the @, pump produce a large

change in the transmitted intensity of the ; field (dashed line), a behavior that is due to the
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optical bistability induced by the @, pump. In fact, if we turn off the electric field E, and allow

the intensity of the ®; pump to vary, no bistable behavior is noted. (Fig. (I-4. 3)-solid line).

1.2
T

0.8

04

0
0 0.01 0.02 0.03 - 0.04

Fig. I-4. 3: Nonlinear transmission of the electric field E;. The solid line is the transmission of the
electric field E, as a function of its own control parameter ,=3”|E,"”|*(the second pump , is in this
case turned off: i.e. 6,=0). Ej(o) with j=1,2 are the amplitudes of the input fields at frequency ®; and ,
respectively. The dashed line is the transmission of the electric field E; as a function of the control
parameter o,=Y”|E,”)|* (the first pump @, is in this case set at a fixed value: 6,=0.002). In the first case
(solid line) in the abscise axis G stays for 6; while in the second case (dashed line) G stays for G,.

The m, pump also manifests bistable behavior, as shown in Fig. (I-4. 4). The device can then be
used as a double switch, as the switching point of the transmitted fields at ®; and o, is the same
for both curves. In Figs. (I-4. 5) and (I-4. 6) we show the square modules of E; and E,,
respectively, inside the PC before the switch (thin solid line), when 6,=0.002 and 6,=0.002, and
after the switch (thick solid line), when ¢,=0.002 and ©,=0.03. Note that for ¢,=0.002 the
nonlinear transmission for ®; is T~0.75, and E; has the characteristic bell-shaped envelope
consistent with its tuning very near the peak of transmission of the low frequency band edge
[11], close to its original tuning position. This clearly indicates that the transmission resonance
for the ®; pump has suffered a small, nonlinear shift toward low frequencies. On the other hand,
for the same control parameter (i.e. 6,=6,=0.002 ), the high frequency band edge transmission

resonance has already suffered a large shift toward low frequencies causing the E, field to “fall”
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Fig. I-4. 4:Transmission of the electric fields E; and E, vs. 6, The control parameter of the first pump
is set at 5,=0.002.

0

in the valley between the first and the second transmission resonances, at the high frequency
band edge, with T~0.25. The different behavior of the two fields can be easily explained because
of their different localization properties within the PC: E; is initially mostly localized on the
linear, high-index layers, while E; is initially localized in the nonlinear, low-index, layers. After
switching occurs, the nonlinear shift of the transmission cause the E; field to fall inside the gap,
near the low frequency band edge. The E, field is then tuned near the second peak of

transmission of the high frequency band edge, consistent with its double-bell shaped envelope.
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6,=0.002 & 6,=0.002
‘2 —_— 5,=0.002 & 6,=0.03

E,/E?

|
20 ﬂﬂ ﬂ

10

O. |
0 2 4 z[um] 6

Fig. 1-4. 5. Square modulus of E/E,”) inside the structure. The solid line represents the field profile
after the switching (6,=0.002 and 6,=0.03). The dashed line represents the profile of the field before the
switching (¢,=0.002 and 6,=0.002).

4

‘2

‘EZ/Eg

6,=0.002 & 6,=0.00
n h— 6,=0.002 & 6,=0.03

Fig. !-4. 6: Square modulus of E,/E,"” inside the structure after the switching (solid line) for 5,=0.002
and 6,=0.03 and before the switching (dashed line) for 6;=0.002 and 6,=0.002.
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[-4.3 Dynamical switch.

A simple all-optical switch in PC structures with a cubic nonlinearity has been studied in
Refs.[3-4]. In the present case, our device can benefit from additional flexibility by dynamically
(or parametrically) controlling the switching point of the E; field using the intensity of the E;
field. In other words, we fix the intensity of the E; input field, vary the intensity of the E, field,
and so monitor the change of the switching point of the E, field for different values of the E,
intensity. In Fig.(I-4. 7) we calculate the nonlinear transmission curves of the E; field vs. o, for
different values of the parameter 6, (5,=0; 0.004; 0.008). The figure shows that the switching
point is reached for lower values of G, as G, increases. In other words, the larger the intensity of
the ®; pump is, the lower the intensity of the ®, pump will be to achieve self-switching. In
Fig.(I-4. 8) we show the variation of the switching point (G2) as a function of the ¢, parameter.
Note that while for low values of G, the curve is linear, for higher values of 6, the curve show

saturating behavior.

1.00
T
0.75

0.50

o—+o 0120
—n 0120.004
A—A 0120.008

0.25

0 001 002 0.03 0.046 0.05
2

Fig. I-4. 7: Transmission of the electric field E, vs. G,, for different values of the control parameter G;.
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Variation of the switching point

0 0.004 0.008 0.012
G,

Fig. 1-4 8: Variation of the switching point of the E, field vs.c;. The switching point is indicated as G
and the relative variation of the switching point is calculated as follows:

(02 (01 =0)- 0y (01))/ G2 (61 =0).
The circles represent the actual data calculated. The straight, solid line connecting the first points
indicates that the variation of the switching point is linear only for small values of the control parameter
0. In this case saturation effects come into play above 6,~0.006.

Conclusions.

In summary, we have shown that a 1-D PC doped with a X(3) nonlinearity, and pumped with
two electromagnetic fields, can act as a more versatile device compared to having just a single
pump. The switching properties of the structure [3, 4 and 7] can be improved by using a double
pumping scheme such that both pumps are tuned their respective band edges, and become
localized inside the stack. The dynamics that ensues, gives rise to a double switch (Fig. (I-4. 4)),
and to a dynamical switch (Fig. (I-4. 7)). An all-optical transistor (Figs. (I-4. 2) and (I-4. 3)) is

also envisioned.
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Part |l

“Negative index materials.”



[1-1 Introduction
[1-1.1 Historical background
When both the electric susceptibility € and the magnetic permeability p are

simultaneously negative, the index of refraction n=t /ey admits the negative root as a possible

solution, leading to negative refraction of the incident beam, among other things. Those features
had been first pointed out in 1968 by V. G. Veselago in his paper: “The electrodynamics of
substance with simultaneous negative values of € and " [1]. That paper remained forgotten for
more than thirty years, until recently in 2000 Pendry [2] conjectured that a material with the
properties just described may be used to construct a “perfect” lens, i.e. alens that can focus all
Fourier components of a 2D image, even those that do not propagate in a radiative manner.
Although some aspects of the “superlensing” effect are still under debate, the work of Pendry has
nevertheless paved the way to an intense, sometimes quite passionate, investigation on the
possibility of creating new artificial materials with simultaneous negative € and n and low
absorption that could match the properties of the material envisioned by Veselago more than 30

years before.

Fig.ll1-1. 1: Left-Handed Material (LHM) or Negative Index Material (NIM)sample. The LHM sample consists
of square copper split ring resonators and copper wire strips on fiber glass circuit board material . Photo taken
from Ref.[3]
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In 2001 Shelby, Smith and Schultz published the result of their experimental work [3] in
which they demonstrated negative refraction, in the microwaves regime, from a material made
by atwo dimensional array of repeated unit cells of copper strips and split-ring resonators (see
Fig.ll-1 1). Nowadays these substances are sometimes referred to as negative index materials
(NIMs), or left handed materials (LHMs). A large number of papers have been published on the
subject just in the last few years and areview can be found in Ref.[4].

[1-1.2 Basic properties

The refractive index n and the extinction coefficient S of a material are found by solving

the following complex, algebraic equation:
A2 = ey (1-1.1)

where N=nN+if is the complex refractive index, ¢ and p are the frequency dependent,
complex, electric susceptibility and magnetic permeability functions of the medium,
respectively. In general, in the case of a passive medium the law of increase of entropy
determines that Im(g)and Im(x), which are linked to the electric and magnetic losses
respectively, are always positive. Moreover, to the extent that every non-steady process is
thermodynamically irreversible, Im(e) and Im(x) are not exactly zero for any frequency other
than zero [5]. These considerations lead to the condition that the damping term 4 must be always
positive for a wave propagating in the positive direction and also that fis never exactly zero.
Physically, this means that, dight as it may be, there is aways some damping of the
electromagnetic wave during its propagation. Now, by equating the real and imaginary parts of
the right hand and left hand sides of Eq.(1), and by solving the corresponding system of algebraic
equations with the condition #>0, we find the expressions for the refractive index and the

extinction coefficient as follows:

e Im(eu) , (11-1. 2q)
V2|~ Releu) + {[Relew)F +[im(eu)}

\/— Refeu)++/[Re(eu)I” +[Im(ew) .

7 (11-1. 2b)
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We note that Egs.(2) are valid in general for any kind of passive medium, and we aso note that
that the sign of n depends on the sign of the quantity Im(gu)=Re(&)lm(w)+ Re(w)Im(g). Now, for
a passive medium Im(g) and Im(x) must be positive and therefore it is straightforward to verify
that when Re(€) and Re(u) are ssmultaneously negative the refractive index n given by Eq.(11-1
2a) is aso negative [6].In the limit of negligible losses (i.e. Im(e)—0 and Im(u)—0), from
Egs.(11-1) we have that:

B—0
for Re(e) > 0andRe(u) > 0 {n R m
for Re(e) <0andRe(u)<o{B_>o . (I1-
n - —JRee) Re()
for Re(e) < Oand Re(u) > 0 {B — J[Ree) Reu)|
or Re(e) >0andRe(u) <0 (n—0
1.3)Therefore, we can distinguish three different regimes: a) positive index regime, where n is
positive and f is negligible; b) negative index regime, where n is negative and 3 is negligible; ¢)
transient or zero-n regime where n is zero and B is significantly different from zero. Let us now
consider a plane monochromatic wave incident at the plane boundary between two generic

materials. The incident wave gives raise to a reflected and to a transmitted wave. The time
averaged Poynting vector (§= % Re[Ex F|*] ) for the transmitted wave can be written both in the

positive and in the negative index regime as.

E

S= K

, 1-1. 4
dnon (1-1.4)

where k, is the k-vector of the transmitted wave, and it must be consistent with the Snell law.

Moreover, causality requires that the direction of the Poynting vector of the transmitted field (i.e.
the energy flow in the refracting material) always point away from the source towards the
refracting material itself.

The Snell’ slaw states that, for monochromatic, plane-waves “any boundary condition that relates
the incident, the reflected and the transmitted field amplitudes at the plane interface will require
that the spatial (and temporal) variation of all fields be the same”’[7]. Therefore, the wavevectors

respectively of the incident (k,), reflected (k,) and transmitted (k,) wave must satisfy the
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following relation: k,-F=k,-F=k,-F a the interface. This means that the transverse
component of the k-vector (k,, )must be the same for all the k-vectors. This requirement can be
satisfied by the transmitted wave in two different ways (see figure I1-1. 2): a) Rt pointing

towards the refractive material and to the “right”(Fig 11-1. 2a) or b) Rt pointing towards the

k. K k. Kk

Fig 11-1. 2: @) Reflection and refraction of a plane wave at an air/positive index material (PIM)
interface b) Reflection and refraction of a plane wave at an air/NIM interface. ki is the k-vector of the

incident wave, Rr is the k-vector of the reflected wave, Rt is the k-vector of the transmitted wave,
K ;1S the transverse component of the k-vectors and S isthe Poynting vector of the transmitted wave.

Note that in both cases K ;1S conserved as required by the Snell law and the Poynting vector of the
transmitted wave points in the just direction, i.e. towards the refractive material. Also note that in the
case of air/PIM interface ktand S are parale while they are anti-parallel in the case of air/NIM.

incident material and to the “left”(Fig I1-1. 2b). The correct choice is the one that ensures the

right behavior of the Poynting vector (see Eq. 11-1. 4). In the negative index regime, i.e. u and €

simultaneously negative, S and Rt are anti-paralel. This means that the correct behavior is the

one with Rt pointing to the “left”, contrary of what happens for ordinary positive index materials

(PIMs). These considerations, together with Fig.ll-1.2, also explain why sometimes negative
index materials are also referred to as “left-handed materials’. A consequence of the behavior
just described is that, as predicted by Veselago [1], a concave/concave lens made of a NIM is
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divergent, while a convex/convex lens is convergent, contrary of what would happen for lenses
made of ordinary dielectric materials (see Fig. 11-1.3)

Fig I1-1. 3: Path of the optical rays through lenses made of a negative index material.

I1-1.3 Negativeindex materials and Drude model
The electric susceptibility and the magnetic permeability of a NIM can be described with
alossy Drude mode [2,8]:

~ 1

8(0))—1-m, (”'1 5&)
~\ _ (Ut)pm/a)pe)2

ﬂ(w)—l—m, (111.5b)

where o =wl/w,is the normalized frequency, ape and awym are the respective electric and
magnetic plasma frequencies, 7, =y./w, ad y, =y, /w, ae the respective electric and

magnetic loss terms normalized with respect to the electric plasma frequency. One may ask:
“How redlistic is the Drude model to describe the dispersive properties of a NIM?" In order to
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answer this question we direct the reader's attention to Figs. (11.1-4). In Fig.(I1.1-4(a@)) we show
the refractive index, the extinction coefficient, the real part of the electric susceptibility, and the
real part of the magnetic permeability for a NIM whose dispersion is described by Egs.(3). In
Fig.(11.1-4(a)) we have taken the following parameters. @, /@, =0.8andy, =7, = 10™. In
Fig. (11.1-4(b)) we show the refractive index and the extinction coefficient, in the range between
10.7 and 15 GHz, deduced from the experimental data reported in Ref.[3]. The figure shows that

a) b)

11 12 13 14 15
©/Wpe V[GHZ]

Fig 11-1. 4: (a) Refractive index n (solid line), extinction coefficient 4 (short dashed line), Re(e) (long-
short dashed lin€e), and Re(u) (dashed line) vs. af wp,e Where ayeis the electric plasma frequency. In this

case we have chosen in Eq.(3) @y / @pe =0.8and Yo = ¥ =107, The refractive index n goes

from positive values at higher frequencies to negative values at lower frequencies. Moreover, where
Re(e) and Re(u) have opposite sign n is nearly zero. Note that in the transition region the extinction
coefficient increases considerably. (b) Refractive index (solid line) and extinction coefficient (short
dashed line) as calculated from the experimental data reported in Ref.[3]. Note that the parameters in
Fig.(a) have not been chosen in order to numerically fit the results presented in Fig.(b). The comparison
only intends to show that the salient characteristics of the refractive index and the extinction coefficient
can be qualitatively described by a Drude model.

the complex refractive index is negative below 11GHz and becomes amost a pure imaginary
number in the range between 11GHz and 12.8GHz, where -10%<n<1072. Although the parameters
in Fig. .(11.1-4(a)) were not chosen with the intent to fit the experimental data of Fig.(11.1-4(b)),
nevertheless their behavior is remarkably similar in both cases. In other words, the salient
characteristics of the refractive index and the extinction coefficient of currently available
negative index meta-materials appear to be well-described by an effective Drude model. Thisis
the main reason why the Drude model is widely used in most theoretical efforts [8] that address

negative index materials.
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I1-1.4 Pulse propagation

Electromagnetic propagation in negative index materials can be, of course, also studied in pulsed
regime. The dynamics of pulses can on one hand confirm the results obtained in the
monochromatic plane wave approach, on the other hand it can put into evidence different aspects
of negative refraction that are not taken into account in the former approach. Solving Maxwell’s
equations with two spatial coordinates (one longitudinal, one transverse) and time Scalora et al.
[9] found negative refraction as the wave packet undergoes significant and unusual shape
distortions. Both a direct calculation of the spatial derivative of the instantaneous, local phase of
the pulse and a Fourier analysis of the signal reveal the same inescapable fact: that inside a
negative-index material, a transmitted, forward-moving wave packet is indeed a superposition of
purely negative wave vectors. In contrast, in positive index materials the generation of negative
wave-numbers is associated with reflected or backward-propagating components. Moreover, the

calculation confirms that causality is not violated in the short-pulse regime, and that energy and
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Fig. 11-1. 5: A 100-wave cycles pulse crosses from vacuum into a NIM at an incident angle of 45
degrees, assuming a Drude-like dispersion model, and no absorption. Ape= 2nc/wpe The refraction

angle is-45 degrees, as predicted by Snell’slaw and an index of refraction n=-1.
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group velocities never exceed the speed of light in vacuum. Here we do not go into the technical
details of the calculation. Suffice it to say that the pulse propagation algorithm uses a FFT-BPM
(fast Fourier transform beam propagation method) ad hoc modified in order to handle reflections.
More details can be found in our Ref. [9]. In Fig. (II-1. 5) we show the case of negative
refraction of a pulse launched at 45 degree impinging the air/NIM interface. The dispersion
properties of the NIM are taken according to the Drude model as in Egs. (11-1. 3) with ®pe=wpm
and negligible losses. The carrier frequency of the pulse my is centered in the spectral region

where e=u=-1.
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[1-2 Linear Properties

[1-2.1 Transmission properties, field localization and tunneling times.

We start studying the transmission properties of a single slab, Fabry-Perot etalon composed
of a negative index material. Some of those properties are reminiscent of those of a multilayer,
one-dimensional photonic band gap structure (1-D PBG) [1]. It is worth to point out that whilein
a PBG structure the formation of the gap is due to interferential effects, in the case at hand the
formation of the gap is essentially due to the peculiar dispersion properties of the bulk of the
material. We begin by describing the electric susceptibility and the magnetic permeability of the
NIM with a lossy Drude model [2]:

o o )
e@)=1-—1 | u(ﬁ)):l—w, (11-2. 1)
d(D+i7,) (D+i7,.)

where @ =w/w,is the normalized frequency, @pe and @pm are the respective electric and

magnetic plasma frequencies, 7, =7y./®, and 7, =7, /®, are the respective electric and
magnetic loss terms normalized with respect to the electric plasma frequency. The refractive
index n and the extinction coefficient £ of the material are given by: n+if =t,/eu . As already
discussed in Chap. II-1, the sign in front of the square root must be chosen in a way that ensures
the Poynting vector of the light refracted into a semi-infinite slab of NIM will always be directed
away from the interface into the refracting material itself. Only one of the two possible solutions
of the square root satisfies this requirement. The complex wavevector of the material is then
calculated as K(w)=(w/c)(n+if) and the dispersion relation of the NIM can be visualized in the
(K,w) plane. In Figs.(II-2. 1) we show the dispersion relation of the NIM for two different values

of the ratio ®,,,, / @, . We have also performed a systematic study of the dispersion relations as a

function of the ratio®,,, / @, , and our findings can be summarized as follows: (i) the dispersion

pe?
relation gives rise to a band gap in a spectral range around the electric plasma frequency where
the refractive index gets value near to zero. (ii) The center-gap frequency @k gap and the spectral

width of the gap Awyp depend on the electric and magnetic plasma frequency as
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Fig. 11-2. 1. Normalized frequency @ ape vs. K in units of 277 Ay, where Ape=27C/ axe is the wavelength
corresponding to the electric plasma frequency for (a) @,/ @, = (0.8)"? and (b)

@y O = (1.25)"2 . The solid lines correspond to Re(K) and the dashed lines to Im(K). In this

case we have chosen in Eq.(l) 7, =7, = 4.5%107". The shaded regions indicate the spectral
position of the band-gap. In the region below the gap n is negative.

follows: @, ., = (a)pe +a)pm)/2 and Amgy,, = ‘a)

egop = —a)pm‘. The only gap that forms disappears

pe
when the= @pm . (111) The results shown in Figs. (II-2. 1) refer to the bulk properties of our NIM.

In Fig.(II-2. 2) we show the transmittance (bold-solid line) and the group velocity (thin-line)
for a slab of NIM whose dispersion relation is described in Fig.(II-2. 1a). The group velocity is
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Fig. 11-2. 2: Transmittance at normal incidence (solid-line) and group velocity (thin- line) vs. @/, for
a NIM of length L=5),,. and ®,,/®,.=(0.8)"?, i.e. with the dispersion properties described in Fig.(II-2.
1a). The arrows indicate the position of the band edge resonances.
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calculated as: V, =L/7,, where L is the length of the cavity and 7, is the Wigner time (or

>
“phase time”) and it gives the time that the transmitted part of an incident, quasi-monochromatic,
un-chirped pulse takes to traverse a 1-D barrier [3]. In particular the group velocity is
superluminal inside the gap while slow group velocities, less than 0.3¢ in this case, characterize
the high and low frequency band-edge. The reflectivity near the center of the stop band is
approximately 99%. Field localization properties at the high and low frequency band-edge are

shown in Figs.(II-2. 3). In this case the structure admits localized modes at the peaks of

(a) (b)
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Fig. I1-2. 3: (a) Field localization in the NIM for an input field tuned near the high-frequency band-edge
at the first peak of transmission, ®w/m,=1.021, (solid line) and at the second peak of transmission,
0/0,:=1.065, (dashed line). (b) Field localization near the low frequency band edge at the first peak of
transmission, ®/w,:=0.875, (solid line) and at the second peak of transmission, @/,=0.839, (dashed
line).

transmission near the high-frequency band edge (Fig. (II-2. 3a)) and delocalized modes at the
low frequency side (Fig. (II-2. 3b)).

In the case of Figs.(II-2. 3) we have @,,/®, <1 and the localized mode is found at the
high-frequency band edge. In contrast, when @,/ @, >1 the localized mode shifts to the low-
frequency band-edge, as shown in Fig.(II-2. 4). In terms of the refractive index of the material,
the field localization occurs for refractive indices in the range: 1>n>0 when ®,,/®, <1,
while in the range: 0 >n> -1 when @,/ @, >1.

Another aspect worthy of note is that the spectral position and the spectral width of the gap
are independent on the length of the NIM at normal incidence. This is shown in Fig.(II-2. 5)
where the transmission is calculated for different lengths of the NIM slab. The figure suggests
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Fig. I1-2. 4: (a) Transmittance vs. @ @pe for a NIM of length L=5A,,. In this case wpm/cope:(l.ZS)m, ie.
the NIM has the dispersion properties described in Fig.(II-2. 1b). (b) Field localization at the low
frequency band edge (solid line) and at the high frequency band edge (dashed line).
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Fig. I1-2. 5: Transmittance vs. &/, for different lengths of the slab. The NIM has the dispersion

properties described in Fig. (II-2. 1a). L=3A,c(thin-solid line), L=5A,. (dashed line), L=10A,. (thick-
solid line)

that although the number of resonances in the pass band increases proportionally to the length of
the structure, the position and the spectral width of the gap remain practically unchanged. The
reason for this is due to the peculiar dispersion characteristics of the bulk of NIM, and not to

interference effects, as for example in PBG structures.
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At angular incidence and for a fixed length, the width of the gap increases as shown in Fig.
(I1-2. 6). This behavior is unusual compared to PBG structures where at angular incidence a blue

shift of the gap is expected, but it can be easily explained as a total internal reflection. In fact the
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Fig. I1-2. 6: Transmittance vs. &/, for different angles () of the incident radiation: 0° (dashed line),
10°(solid line), 20° (long-short dashed line). The length of the NIM is L=5), The NIM has the
dispersion properties described in Fig. (II-2. 1a).

refraction index in the gap of the NIM is very close to zero and therefore a field incident at an

angle (0) from air, the air is in this case the high index medium, undergoes to a total internal

reflection.
[1-2.2 Omnidirectional gap.

Omnidirectional reflectors have been made in 1D PBGs by forming an extra wide gap[4-6].
The idea is to make the normal incidence gap extremely wide so that the shift with angle is not
large enough to completely move the entire stop band to a new range of frequencies. The gap in
a 1D PBG can be widened by having a very large index contrast and/or by adding more periods
with different lattice constants. Omnidirectional NIMs do not have these constraints since the
gap does not shift and actually widens with increasing angle of incidence. As already discussed
in Chap. II-1, a convincing experimental demonstration of negative refraction was made by

Shelby, Smith, and Schultz. They constructed a 2D NIM consisting of metal wires for the electric
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response and split ring resonators (SRRs) for the magnetic response. According to their
experimental results, the complex, frequency dependent electric susceptibility € and the magnetic
permeability u of the NIM can be modeled as follows[7, 8]:

e(o)=1-(0F, - 0) /(0 -0, +iyw) (11-2.2a)

o) =1- (05, —05) /(0 — o), +iyo) (I1-2. 2b)
where @, is the electric plasma frequency, ., is the electric resonance frequency, ®m is the
magnetic plasma frequency and ®n, is the magnetic resonance frequency and y the loss term.
The parameters are taken according to the experimental results reported in Ref. 7, i.e.
0ep=27x12.8GHz, 0:,=21x10.3GHz, 0np=21x10.95GHz, 0n,=27x10.05GHz, y=2nx10MHz.
We want to clarify that in the following discussion, the material parameters of the NIM from
Egs. II-2. 2 are assumed to be isotropic, that is, we are assuming a fully 3D NIM structure. The
NIM of Ref. [7] is actually a combination of a 1D electric and 2D magnetic metamaterial. The

experimental results of negative refraction in Ref. [7] were demonstrated for TE polarization

with the incident electric field always parallel to the metal wires. Therefore, we expect the NIM

o B

T -

L -

1 b .

v _ -

(o B i I’ T~ ]

2 o Bo_ T
S E Omnidir ectional 1 1@

[ - __n i

1= reflector B -

2 F 3

.3 :. 1 1 1 1 1 -

1.1 1.2 1./3 1.4 1.5 1.6

4 — T T T T T (Dlmn T T T T T T ]

":f\ :

2 I-LI \\“ —

el Ki 0 T - _ -

- o ™4 s T o o e e - = o
g L E 1 1v

= C n -

-4 | Omnidirectional B -

reflector -

-6 —]

| | | | | | | | | | | L

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 Fig.1

Fig. I1-2. 7: Optical constants of a broadband omnidirectional reflector. Index of refraction n (solid
line) and extinction coefficient B (dashed line) vs. ®/®, where w=2mx10GHz. a) optical constants
based on the experimental parameters of Ref. [7]. b) we use the same parameters as in Fig. (II-2. 7a)
except that 0,=2nx25GHz.
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of Ref. [7] to display omnidirectional reflection for only TE polarization. A true omnidirectional
reflector requires a 3D structure. Fig. (II-2. 7a) shows the optical constants for the material
parameters described above. Fig. (II-2. 7b) shows the optical constants for the same material
parameters as in Fig. (II-2. 7a) with the exception that the electric plasma frequency has been
moved to ., =2tx25GHz. Notice that a gap forms between the electric and magnetic plasma
frequencies. On the low frequency side of the gap is the region of negative index. Inside the gap,
the optical constants of the NIM are similar to a metal at optical frequencies with a small index
of refraction and a small but finite extinction coefficient. For comparison, the optical constants of
silver at A = 620 nm are n=0.131 and [=3.88 (Ref. [9]). Metals are good reflectors at optical
frequencies because the refractive index is close to zero and 3 is reasonably large. NIMs reflect
radiation more efficiently than metals because the refractive index is essentially zero inside the
gap.

Comparing Figs (II-2. 7a) with (II-2. 7b) illustrates the dependence of the gap on the choice
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Fig. I1-2. 8: Angular reflectivity of TE and TM polarized light for the optical constants shown in Fig.
(II-2. 7a). The shaded area indicates the spectral position of the omnidirectional gap.
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of w¢, and M. Increasing the separation of the electric and magnetic plasma frequencies has
expanded the width of the gap by a factor of five. It has been previously shown that the width
and center frequency of the gap can be written as Aw~ | Wep-Omp | and Oc~(Wept®mp)/2,
respectively, therefore, the larger the separation between the electric and magnetic plasma
frequency the wider the spectral region where the NIM behaves as an omni-directional reflector.
In Fig. (II-2. 8) we plot the reflectivity from a single layer of NIM having the optical constants
shown in Fig. (II-2. 7a). The reflectivity has been calculated by the standard matrix transfer
method. The structure is L=5A in length where Aj=2mc/®my=3cm. At normal incidence, the highly
reflecting band occupies the region between the magnetic plasma frequency and the electric
plasma frequency of the NIM. At the steeper angles of incidence, the low frequency side of the
reflecting band remains fixed at the magnetic plasma frequency. On the high frequency side of
the gap where the NIM has a positive index of refraction, the reflecting band begins to widen as
the angle of incidence increases. In this frequency region, the optical constants of the NIM are
similar to a low loss dielectric with the exception that the index of refraction is less than unity.

The radiation is propagating from a high index region to a low index region and the highly
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Fig. 11-2. 9: Angular reflectivity of TE and TM polarized light for the optical constants shown in Fig.
(II-2. 7b). The shaded area indicates the spectral position of the omnidirectional gap.
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reflecting band terminates when the angle of incidence is less than the angle required for total
internal reflection. In Fig. (II-2. 9) we show that increasing the separation between the magnetic
plasma frequency and the electric plasma frequency can expand the omnidirectional reflecting
band. The optical constants used to calculate the reflectivity are plotted in Fig. (II-2. 7b). By

moving the electric plasma frequency from =21x12.8GHz to .,=2ntx25GHz, the
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Fig. I1-2. 10: TE and TM reflectivity vs. the angle of incidence at ., i.e. at the central frequency of the
gap. Figs. (II-2. 10a) and (II-2. 10b) are calculated using the optical constants of Fig. (II-2. 7a) and (II-
2. 7b) respectively.

omnidirectional reflecting band has increased from Aw/®m.~15% to Aw/®, ~ 78%. The overall
features of Figs (II-2. 8) and (II-2. 9) are similar with the exception that the width of the
omnidirectional reflecting band has increased fivefold by shifting the electric plasma frequency.
For the center gap frequency, Fig. (II-2. 10) shows the complete angular dependence of the
reflectivity for TE and TM polarizations. The polarization dependence shown in Fig. (II-2. 10) is
reminiscent of a metal with the TM polarization showing a reduced reflectivity relative to TE
polarization. The unusual feature illustrated in Fig. (II-2. 10) is that the reflectivity for all angles
and polarizations never drops below 98.6%. The reflectivity plots of Figs. (II-2. 9) and (II-2. 10)
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show that the larger the separation between the electric and magnetic plasma frequencies not
only makes the omnidirectional reflecting band wider but also deeper. The center gap reflectivity
for the NIM having Aw/®, ~ 78% is never less than 99%. In this paper we have demonstrated
that a single layer of a NIM has omnidirectional reflecting properties in the region between the
electric and magnetic plasma frequencies. In this frequency region, the optical constants of a
NIM are similar to real metals at optical frequencies. However, the reflecting properties of
“metallic NIMs” are far superior to ordinary metals as a result of the real part of the index of
refraction being nearly zero. The wide range of applications for NIMs in general and for metallic
NIMS in particular, such as hollow core waveguides [10] and highly efficient back-reflectors for
common light fixtures, give additional motivation to develop these unique metamaterials.

I1-2.3 Dispersion-Free Pulse Propagation

Now, we will demonstrate that a NIM allows an ultrashort pulse to propagate with minimal
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Fig. I1-2. 11: a) Refractive index n vs. o/, for different values of the ratio ®pm/®pe; Wpm/Wpe =0.8 (thin
solid line), ®ym/®,. =1 (dashed line), Wym/m, =1.2 (thick solid line). b) GVD parameter [3, vs. /@y, for
different values of the ratio ®,m/®,.. Note that the B,s curves are plotted only in the region around their
respective zero GVD points. The arrows indicate the position of the zero GVD points. B, is calculated in
units of Ay/(4m°c?) where A, =27mc/ .
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Fig. 11-2. 12: Pulse propagation at different times of an ultrashort, gaussian, unchirped pulse in a NIM
at the zero GVD point for wpm,/m, =0.8. a) At t;=0, the pulse is in air directed toward the NIM, z=0 is
the air/NIM interface. The peak of the square modulus of the incident electric field is normalized to 1.
Its FWHM is ~5A,. b) At t;= 600A,/(2mc), the incident pulse has entered the NIM giving rise to a
reflected and to a transmitted pulse. The FWHM of the transmitted field is ~2A,. ¢) At t,=1400A,,./(27c),
the transmitted pulse (thick solid line) has propagated for approximately 50, in the NIM and its
FWHM is ~2.67\,.. For comparison: the same pulse (dashed line) at the same time after it has
propagated in the same NIM but with the dispersion approximated up to the second order and with the
dispersion approximated up to the third order (open circles).

dispersion due to the presence of a zero group velocity dispersion (GVD) point. We describe the
NIM with a lossy Drude model as in Egs. II-2. 1. In Fig.(II-2. 11a) we show the refraction index
n for different values of the ratio @pmw/ @pe and in Fig.(II-2. 11(b)) we show the GVD parameter

B, =d’k/de® [11], where k=nw/c is the NIM wavevector. In our model we assume 7,~7, ~10™

and the extinction coefficient din the region around the zero GVD point is also of order 10™.
Note that the zero GVD points (i.e. the points where [3,=0) are located in the region where

W<®pe, and that no zero GVD point is present when @pm /@pe=1. In figures (I1I-2. 12) we show

three snapshots of an unchirped, ultrashort, gaussian pulse with its central frequency tuned at

®:=0.706,. that corresponds to a zero GVD point for @wym /@pe=0.8 as shown in Fig. (II-2. 11b).
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In Fig. (II-2. 12a) the pulse is in air away from the interface air/NIM and its full width half
maximum (FWHM) is ~5A,., in Fig. (II-2. 12b) the pulse has entered the NIM giving rise to a
reflected and a transmitted field. Ap.=2mc/m,. is the electric plasma wavelength and c is the
velocity of the light in vacuo. Note that the transmitted pulse is now spatially compressed with a
FWHM of ~2A,. while its temporal duration shortly after it has entered in the medium is
T~2Ape/Vo~5.8\pe/c where V~0.34c is the group velocity of the pulse. In Fig. (II-2. 12¢) we
show the transmitted pulse after it has propagated in the NIM for ~25 times its FWHM width, i.e.
~ 50Ape. The pulse maintains a FWHM of less than 3\,.. The ripples that appear on the left of the
main pulse, and the slight increase in FWHM, are due mostly to third order dispersion. In our
calculations all dispersion orders are taken into account [12].

In Fig.(II-2. 12¢) we also show the pulse at the same time after it has propagated in the same
NIM except that now the complex wavevector of the NIM, 12((0) =(n+id)(w/c), is

approximated up to second order (dashed line) around the central frequency of the pulse, and up
to the third order (open circles). In the case of second order dispersion only, the pulse propagates
undistorted and with no dispersion, as expected. A small decrease in the amplitude of the
undistorted pulse with respect to the amplitude of the incident pulse (see Fig. (II-2. 12b)) is due
to linear absorption. On the other hand, taking dispersion terms up to third order produces a pulse

almost identical in shape and amplitude to the pulse obtained via the exact calculation. The high

order dispersion length, LY =T /[B,

, gives an estimate of the propagation distance over which
the cubic dispersion term starts to play a significant role [13], Ty is a measure of the initial pulse
duration in time, and Bs;=d’k/d®’. In the case depicted in figure (II-2. 12), To~5Ape/c, and
d’k/dw’ ~ 7007»2pe /(8n’c?), giving a dispersion length LY ~ 401, , consistent with the results
of our numerical calculation. In figures (II-2. 13) the central frequency of the pulse is now tuned
at ®:=0.892y,. , that corresponds to the zero GVD point when @ym /a@he=1.2. The incident pulse
has the same duration in time of that shown in Fig. (II-2. 12a), i.e. To~5A,¢/c. The calculated

high-order dispersion length is now L{) ~ 60L,,., which is longer than that of the previous case;

this is consistent with the results of our numerical calculation (see Fig.(II-2. 13c¢)).
In principle, the use of longer pulses would give rise to much longer dispersion length: for

example the use of a pulse of time duration Tp~5x10 Ape/c would make the dispersion length
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Fig. 11-2. 13: Pulse propagation in a NIM at the zero GVD point for 0,m/®,. =1.2. a) Incident pulse at
t;=0. b) Transmitted and reflected fields at t;= 600A,/(2mc). ¢) Transmitted pulse (thick solid line) at
t,=1400A,,/(2mc). For comparison: transmitted pulse calculated in Fig. II-2. 12¢) (thin solid line in the
present figure) but with its amplitude renormalized to the amplitude of the pulse calculated in this case.

longer of a factor 10° than those previously calculated and therefore the pulse could propagate
undistorted and with no dispersion for a distance of approximately 10107\1,@. Moreover the
dependence of the position of the zero GVD points on the electric and magnetic plasma
frequency might open the door to a whole new class of artificial materials assembled in such a
way to obtain dispersion free propagation in spectral regions otherwise inaccessible for
conventional positive index materials. In photonic crystal fibers [13] or in tapered fibers [14], for
example, the tunability of the zero-GVD point has been demonstrated within the entire visible
range. In contrast, NIMs offer the possibility to tune the zero GVD zone in a quite different
spectral range that spans from the microwave to near-infrared range. In Reference [7], for
example, a NIM was fabricated and experimentally tested in the microwave range, while the
experimental results reported in Reference [15] point toward the possibility to have a NIM

operating in the near infrared regime.
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However, although at least in principle dispersion-free propagation in NIMs is possible, still the
issue of the absorption and/or loss is a serious obstacle to its practical realization. In our model
the extinction coefficient is of the order of 10™*, corresponding to an attenuation length of several
hundreds of wavelengths in units of A,.. This means that, for example, a pulse of temporal
duration T0~5x102kpe/c will be attenuated by a factor 1/e after it has propagated only for
approximately one FWHM. Currently available meta-materials experimentally tested have an
even shorter attenuation length:~10 wavelengths or less [7]. It is interesting to note that
absorption represents a limiting factor also in the case of the so-called “superlensing” effect [16].
On the other hand, while the causality principle requires that the real and imaginary parts of the
dispersion of a medium be Kramers-Kronig pairs, it does not put a limit to how small the
absorption of a medium should be, as long as it is not zero. The real and imaginary parts of both
€ and W in our lossy Drude model are in fact Kramers-Kronig pairs regardless of how small the
electric and magnetic loss terms may be. Therefore, while NIMs with low absorption are at the
present time out of reach, nevertheless, in principle, nothing prevents their availability in the near
future.

Conclusions

We have reported novel, interesting properties of NIMs. We have shown that even a single
slab of such material has several significant characteristics, such as: high transmittance and slow
group velocity near the band edge; high reflectivity and superluminal group velocity in the band
gap. Moreover, a single layer of a negative index material has omnidirectional reflection
properties. In the range between the electric plasma frequency and the magnetic plasma
frequency, negative index materials reflect radiation for all angles of incidence and polarization
with reflectivities of ~99%. In addition, with increasing angles of incidence, the reflecting band
does not shift in frequency but actually widens. The operational bandwidth can be 100% or
greater by increasing the separation between the electric and magnetic plasma frequencies.

The dispersion properties of NIMs allow the presence of a zero group velocity dispersion
point. The spectral position of the zero group velocity dispersion point can be controlled varying
the ratio between the electric and magnetic plasma frequency. In this way it is possible, at list in
principle, to obtain dispersion free propagation in spectral regions otherwise inaccessible using
conventional positive index materials. Our predictions are confirmed by pulse propagation

simulations where all orders of the complex dispersion of the material are taken into account.
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[1-3 Guiding properties of negative index materials.
11-3.0 Introduction

We numerically demonstrate that a planar waveguide in which the inner layer is a gas with
refractive index No=1, sandwiched between two identical semi-infinite layers of a negative index
material, can support both transverse electric (TE) and transverse magnetic (TM) guided modes
with low losses. Recent developments in the design of meta-materials with an effective negative
index suggest that this waveguide could operate in the infrared region of the spectrum.

In optics it is well known that when the inner layer of a planar waveguide is a gas with
refractive index ny=1 and it is sandwiched by two standard dielectric materials with refractive
index n>1, total internal reflections cannot be achieved. The field coupled inside such a
waveguide attenuates in the propagation direction by leaking power to the two bounding media
[1]. The losses suffered via these “leaky” modes may be balanced when the molecular gas in the
core is an active medium, as for example in CO, waveguide lasers [2-3]. In metal-clad
waveguides [4] the refractive index of the guiding layer can be arbitrarily low as long as it is
greater than the refractive index of the substrate. Total internal reflections are always achieved
thanks to the low refractive index of the metal. In Ref.[4] guiding has been demonstrated in an
air-polystyrene-silver waveguide at optical frequencies, in a 1.81um thick polystyrene film.
Losses were estimated at approximately 1dB/cm for the fundamental TE mode. The theory of
hollow waveguides has been developed in Ref.[5], and different types of hollow waveguides in
the infrared have been realized during the years. We cite for example hollow sapphire fibers [6],
hollow Ag/Agl coated glass waveguides [7], ZnS-coated Ag hollow waveguides [8]. These
guides have losses as low as 0.1dB/m at 10.6um, for a bore diameter of approximately 1000um.
In the visible region, a tremendous breakthrough in the possibility of confining light in air has
been achieved at the end of 1999, with the introduction of the so-called photonic crystal fibers
(PCFs) [9-10]. In a PCF light confinement does not require a core with a higher refractive index
because guidance is achieved not by total internal reflection, but by the presence of a cladding in
the form of a full two-dimensional photonic band gap. We note also that PCFs are single-mode
fibers, while traditional hollow waveguides are highly multimodal. On the other hand, the
fundamental mode in traditional hollow waveguides has generally a much longer attenuation
length than all higher order modes thanks to lower diffraction losses. Therefore, it is clear that

for some applications the initial presence of many modes can be easily overcome.
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The aim of this work is to demonstrate that light can be confined in air also by using a
waveguide where the bounding medium, or cladding, is made of a NIM. In this case the
confinement is due, as in classical waveguides, to total internal reflections. The guiding
properties of a waveguide with a core made of NIM and a cladding composed of a standard
dielectric material have been studied in Refs.[11], where it was demonstrated that guided modes
are admitted. In our work we study the opposite configuration, i.e. a symmetric waveguide where
an air-core is surrounded by a NIM. We note that, to our knowledge, at the present time an
experimental realization of a meta-materials that posses an effective negative index has been
achieved only in the microwave regime [12]. In this regard, several efforts are currently
underway to design NIMs at higher frequency than the microwave regime. In Ref.[13-14], for
example, O’ Brian and Pendry have designed a NIM in the infrared region, and its nonlinear
properties also has been numerically studied. The structure consists of a periodic nano-structured
array of modified split-ring resonator which is magnetically active in the near-infrared region of
the spectrum. The structure is numerically demonstrated to posses a negative effective
permeability at telecommunications wavelengths, i.e. 1.5um. Although further material
development is still clearly needed, the practical realization of meta-materials in the infrared
region seems to be within reach [15], and the results reported in Ref.[13-15] help to put our
present work in its proper perspective.

I1-3.1 Basic equations

In the last chapter we have widely explored the linear properties of negative index material
and the similarity with PBG structures. Both exhibit a transmission gap, but in PBG the
formation of the gap is due to destructive interference caused by the periodic arrangement of
scattering or diffracting elements whose sizes are on the order of the incident wavelength. In
contrast, NIMs are structured on a much finer scale that ranges from 1/10™ to 1/1,000™ of the
wavelength [15], and therefore they respond with an effective dispersion that is essentially due to
the bulk properties of the medium. However, while the nature of the gap is different in the two
cases, it would be interesting to explore the possibility of using NIMs in the spectral region of
opacity as the cladding of a waveguide (see Fig. (II-3. 1)). In analogy with PCF, where the a 2-D
PBG is used as a cladding. As usual we will describe the electric and magnetic response of NIMs

thought a lossy Drude model:
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Fig. 11-3. 1 Schematic representation of the geometry we study. A core of air of thickness d is
sandwiched between two identical semi-infinite layers of NIM. ¥ is the angle formed by the wavevector
of the radiation with the propagation axis z. The y axis is orthogonal to the plane (x,z).

1 ~
D)=1-— w)=1-
@) o(@+iy) ,u( )

(@ @)

BT (II-3. 1)

where @ =w/w,is the normalized frequency, @pe and apm are the respective electric and
magnetic plasma frequencies, 7, =y,/w, and 7, =7,/w, are the respective electric and
magnetic loss terms normalized with respect to the electric plasma frequency. We have taken the
following parameters: @,/ @p =0.8and ¥, = ¥, = 107,

We begin by first focusing on the TE modes. In this case the electric field is polarized along the

y axis, (see Fig. (II-3. 1)) and the Helmholtz equation for our geometry is:

0°E.(x,z) 9°E,(X,2) @7 -
Tt [XEKX2)=0, (11-3.2)
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where f(x) =f? for x>d and x<0 , while ?(X) =n, for d >x>0. Nis the refractive index of the

NIM and ny is the refractive index of the core of the waveguide. The solution of Eq. (II-3. 2)can

be written as follows:

A exp

ig(nozcosf}nx 1- nOCOS 19 ]
C

E,(x,2)= exp(l—nozcosﬂj[Azexp(l—noxsnz‘})+Agexp( |%n0xsmz9ﬂ 0<x<d

Cexpll—(nozcosé%n(x d),|1- noc:zs ﬁ}] x>d
(II-3. 3)

where C is an arbitrary normalization constant that is chosen consistent with the following

+oo
normalization condition: ”Ey( X,Z= O)‘de =1 . The choice of the complex parameters A;, A,,

—oo

Asand & is determined by imposing that Ey, as well as (1/ ¢ )(JE, / dx), must be continuous at

both x=0 and x=d. The continuity requirements lead to the following modal equation for D

2nonsmz9 /1 nocosﬁ
an(%nodsinz?jz— 4 1

— 5 , (II-3. 4)
e sin? 19+n—2—&2c03219
Yz,
and to the following system of linear algebraic equations for A;, A,, and As:
. 12 - -1 ) -1 ) A 0
D 1-To cos? n,sing _nsnd Al=|o0]. (11-3. 5)
U n
. @ I . @ A C
0 exp(|—nod smﬁ} exp(—l—nod smﬂ]
C C

We note that?) (i.e. the angle that the wavevector of the radiation forms with the propagation
axis z - see Fig. (II-3. 1)) and the attenuation length L (i.e. the length along z covered by the

radiation before its intensity drops of a factor 1/e) are linked to the complex parameter ]

through the following relations:
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¥ = ar cog Re(cosf?)] , (I1-3. 6a)

c
201, Im(cos?)

(II-3. 6a)

The calculation for TM modes follows a development similar to that of TE modes. In the case of
TM modes we must impose the continuity conditions on the magnetic field Hy and on

(1/&)(0H, / 9x). The solution for TM modes and the modal condition can be obtained from

those calculated for TE modes by making the following formal transformations: E,—Hy and
U—E.

[1-3.2 Resultsand discussion.

5r 5 —
~ 4t (a) b ol (b)
s =2
S NS
= 3 ] 3f
[ B O T
= [ N
N L, . x 2
o) r < T
< | >
m>' C E L
= ot ] 1l
o: . 0: ‘
-4 2 6 -4 2

[E,(x,2)]* (n.u.)

Fig. 11-3. 2: Transverse profile of the TE guided modes at different propagation distances for a
waveguide whose air core has a thickness d=24p ,Ape =2mc/®,.. The frequency of the field is

In order to calculate the modes admitted by our waveguide, we have to solve Eq.(II-3. 4) for
TE modes and the corresponding equation for TM modes. Eq.(II-3. 4) is a complex,
transcendental equation that does not admit analytical solutions. It can be solved numerically by
using the Newton-Rapson method [16]. Then, by using Egs.(II-3. 3) and (II-3. 5) we can

calculate the transverse mode profile for different propagation distances. In Fig.(II-3. 2) we show
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TE guided modes for a waveguide whose core has thickness d=2Ape, where Ape=27C/ the.. The
electromagnetic field is approximately tuned at the center of the opaque region of the NIM,
where @=0.88ake. The thickness of the core is in this case large enough to accommodate three
confined modes at different angles: 9=15.9° for TE,, 9=33° for TE,, and 9=53.9° for TE,. In the
case of the fundamental mode (TEy), we find an attenuation length of approximately L’=7* 1047\,9e
Supposing that that the waveguide operates around 10um, the attenuation length is

approximately 0.7m, which corresponds to a loss factor of approximately 6dB/m.
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Fig. I1-3. 3: Transverse profile of the first three TE guided modes at different propagation distances for
a waveguide whose air core has a thickness d=14/. (a) TE,. (b) TE,. (c) TE,

The losses drastically drop for larger core diameters, as shown in Fig.(II-3. 3), where the core is
d=14/pe. In the case of Fig.(II-3. 3), for an operational wavelength around 10um, the attenuation
length of the TE(, mode is approximately 240m, the losses are approximately 0.01dB/m, and the
size of the air core is only 140um. In this case the guide accommodates a large number of modes
at different angles. The first three modes are excited respectively at 9=2.2° , 9=4.4° and 09=6.6" .
In Fig. (II-3. 4) we show the TM, mode for : a) d=24,c and b) d=144,e. In the case of Fig. (1I-3.
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Fig. I1-3. 4: Transverse profile of the TM, mode for different propagation distances. The waveguide has
an air core of thickness respectively: (a) d=24, ,(b) d=14/4p.

4a) the angle formed by the wavevector with the z-axis is 9=17.3° and the attenuation length is
L’E3.4*1047Lpe , which corresponds to approximately 12dB/m in losses for a wavelength of
10um. In Fig. (II-3. 4b) 9=2.3°, L’=1.4*10"A,. and the losses are of the order of 0.03dB/m. Note
that in the case we have studied the TE guided modes have longer attenuation lengths than the
TM guided modes, and in the opaque region of the NIM Re(g) is less than zero while Re(u) is
greater than zero. If we consider the opposite case, i.e. Re(¢) >0 and Re(1)<0, the TM guided
modes would have a longer attenuation length than the TE guided modes.

Finally we note that recently waveguides with an air core and a cladding made by a two-
dimensional square array of silver nano-wires embedded in an air host medium have been
numerically demonstrated to guide at optical frequency more efficiently than silver waveguides
[17]: the effective extinction coefficient of the nano-structured cladding is smaller than that of a
homogeneous silver cladding. In the case of Ref. [17] the effective index of the cladding can be
made to vary in the range 0<n<I, depending on the ratio between the width of the silver wires
and the periodicity of the array. Of course, a meta-material designed in this way is by definition

not a NIM, and light refraction will be right handed as in standard positive index materials. In
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this work we have instead explored the guiding properties of a NIM in its opaque region, i.e. in
the region where its refractive index varies in the range -102<n<1072,
Conclusions

In conclusion, we have studied a symmetric hollow waveguide made with a NIM cladding. In
the opacity region of the NIM, the waveguide admits both TE and TM guided modes with
relatively low losses. While further material development is still needed, recent advancements in
the design of meta-materials suggest that this waveguide could operate in the infrared regime
with better performances compared to more traditional hollow waveguides. Although, we have
studied only planar waveguides we expect to find similar results also for cylindrical waveguides
due to the intrinsic nature of the omnidirectional gap. The topic of cylindrical waveguides will be

the subject of future investigation.
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[1-4 Second Har monic Generation in NIM/PIM Heter o-Structure

[1-4.0 Introduction.

Using a Green function approach, we will study second harmonic generation in single and
coupled cavities made of a generic, quadratic, positive index material (PIM) sandwiched between
two negative index materials. Some of the linear and nonlinear properties of NIM/PIM cavities
have been already studied: for example, in Ref [1] a PIM/NIM/PIM structure is studied; Ref [2]
deals with finite and infinite one-dimensional photonic crystals (1-D PCs) made of a NIM/PIM
unit cell; in Ref [3] and [4] omni-directional reflectance is predicted for NIM/PIM 1-D PCs;
finally, in Ref.[5], the authors show how an optical diode can be realized with NIM/PIM
stratifications. This study differs from the works cited above in that we focus on the region
where the NIM displays its intrinsic gap, where the refractive index is approximately equal to
zero as its magnitude changes sign, as discussed at length in Ref.[6].

I1-4.1 Single Cavity.
We begin by studying the linear and nonlinear behavior of a single NIM/PIM cavity. The

electric and magnetic responses of the NIM are modeled with a lossy Drude model [5]:

€

2
e L g B O
(@+1Y,) (O+17y,)

where @=w/w,is the normalized frequency, @he and @pm are the respective electric and

. (114 1)

magnetic plasma frequencies, 7, =y,/w, and 7, =y, /o, are the respective electric and

magnetic loss terms normalized with respect to the electric plasma frequency. Here we take
Wpm/ Wpe=0.8, and ye/O)pezym/(J)pe=1O'4. As discussed at length in Refs.[6-8], the transmission
spectrum of a single layer of NIM exhibits a gap with band-edge resonances around the electric
and magnetic plasma frequencies that are very similar to those of a PBG structure. In our case,
the gap of the single slab of NIM is located in the spectral range between 0.8 < @ < 1. Moreover,
the width of the gap depends upon the separation of the electric and magnetic plasma
frequencies, and its depth is related to the thickness of the layer [7]. Now, when we sandwich
one layer of PIM between two layers of NIMs, a transmission resonance appears in the middle of

the gap, similar to a defect-resonance of PBG structures.

- 103 -



In figure (II-4. 1) we plot the transmission spectrum of a cavity made with a single layer of non-
dispersive PIM enclosed between two layers of NIM. The layers of NIM have thicknesses
a=2.5\,e, while the PIM layer has thickness d=0.16338A,., where A,.=2mc/m,. is the electric

1.00
S 075
o p—
/)]
‘Sﬂ 1.0
& 0.50
2z
8 u 0.5
= 0.25
0 ey

0.5 1.0 1.5 2.0

/0,

Fig. I1-4. 1: Transmission spectrum of a NIM/PIM/NIM cavity vs ®/@,.. The thickness of each layer of
NIM is 2.5A,., while the thickness of the PIM is 0.16338A,, A, =2mc/m,. is the electric plasma
wavelength. The PIM is assumed to be non dispersive and non-absorbing with a refractive index of
n=1.4. Inset: magnification of the defect resonance inside the gap. The defect resonance is centered
around 0.9y

plasma wavelength. The thickness of the PIM has been chosen in order to have a transmission
resonance at the frequency ® = 0.9, and its refractive index is assumed to be n=1.4. Note that at
® = 1.8, or double the frequency where the transmission resonance occurs, the curve is relatively
smooth. In Figs (II-4. 2a) we choose ® = 0.9, and plot the transmission as a function of the PIM
thickness. In Figs(II-4. 2b) and (II-4. 2c) we show magnifications of the first and second
transmission resonances, which correspond to PIM layer thicknesses of d=0.16338\,. (Fig. (1I-4.
2b)) and d=0.5602\, (Fig. (II-4. 2¢)) respectively. In Figs. (II-4. 3a) and (II-4. 3b) we show field
localization inside the structure corresponding to the first and the second transmission resonances
shown in Figs. (II-3. 2), respectively. As one may expect, the field intensity is single-peaked at

the first transmission resonance, double-peaked at the second transmission resonance, and so on.
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Fig. 11-4. 2: a) Transmission vs. PIM thickness, for the NIM/PIM/NIM cavity described in Fig.1 at the
frequency of 0.9, that corresponds to the peak of the band gap transmission resonance in Fig.1. The
thickness of the two NIM mirrors is fixed at 2.5),.. b) Magnification of the first transmission resonance
around d= 0.16338A,,.. ¢c) Magnification of the second transmission resonance around d= 0.5602A,..
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Fig. 11-4. 3: Square modulus of the electric field for the NIM/PIM/NIM cavity at 0.9m,, when a) the
PIM thickness is 0.16638\,,. and b) when the PIM thickness is 0.56022,,. .
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Let us go to the main focus of our study, i.e. second harmonic generation (SHG) in this
cavity where only the PIM possesses a quadratic nonlinearity. Under the monochromatic, plane
wave approximation, and for normal incidence, the Helmholtz equations that describe SHG in

the NIM/PIM/NIM cavity are given by:

2 2 2
d Ezo) + w gm(z)%w(Z)Ew — _Zw_zuwd(Z)(Z)E:)EZw’ (H_4_ 23)
dz c c
2 2 2
d E2w + (20)) 82w(Z)M2m(Z)E2w - _ (20;) MZmd(Z) (Z)Efo, (H_4. Zb)

dz* c?
where €420, Mo20 are respectively the z-dependent electric susceptibility and magnetic

permeability at the fundamental (FF) and second harmonic (SH) frequency. d is the quadratic

coupling coefficient of the PIM: ew’m:eg%), um,zmzug’g\gj, and d?=0 for O<z<a and

2atd>z>a; €5, = eg{g/lw Wgpoe =1 and d® #0 for a<z<a+d, where a and d are the thicknesses of

the NIM and PIM layers respectively, and L=2a+d is the total length of the structure. In what
follows we suppose that the structure is surrounded by air. Egs. (II-4. 2) should be solved in each
layer separately and then the solutions should be matched at the interfaces by using the boundary
conditions appropriate to the case of magnetically active materials. In general, given the
nonlinear nature of the equations, this computational task can be accomplished only numerically.
In the undepleted pump regime, a fast and elegant way to proceed is to resort to the Green
function approach. In that case, the formal expression for the electric fields that is valid inside

the structure can be written as:

E,(z) = AD! (2)+BD_(2) , (I1-4. 3a)
2L

Eaa(2) =477 [ Gaol&2)d (QEL©)E, (11-4. 3b)
0

where @, and @, are the Right-to-Left (RTL) and Left-to-Right (LTR) linear modes of the
structure at the FF as described in Refs [9-11]. RTL and LTR propagating modes can be
calculated independently using a standard linear matrix-transfer technique [12] adapted to the
case of magnetic active materials. In Eq.(II-4. 3a), A and B are complex coefficients that have
the dimensions of an electric field. These coefficients are uniquely determined by the boundary

conditions. In the special case of LTR incidence B is zero, while A is the complex amplitude of

- 106 -



the FF pump field incident from LTR. In Eq. (II-4. 3b), Gy, is the Green function at frequency
2m. The Green function can be calculated in term of the RTL and LTR propagating modes of the
structure at frequency 2m. In order to do so, the theory developed in references [10, 11] has been
extended to magnetically active media (see appendix A for details).

Eq.(IT-4. 3a) gives the generated electric SH field in all the space, and allows the calculation of
the conversion efficiency (7). In the plane wave regime the conversion efficiency is defined as

the sum of the forward and backward generated SH intensity divided by the input pump

intensity:
Igzjt%lztickward + Igzjtl;*}l;rward
n= Jinput (I1-4. 4)
0
where 19 cwara = (17 2)80C|E2m(0)|2 and 15¢ o nwara = (1/2)80c|E2w(L)|2 in the case of a cavity

embedded in air, andliﬂp‘lt is the intensity of the pump beam incident from LTR. Now, taking

into account Eqs. (II-4. 3a) and (II-4. 4), and using Eqs. (II-4. A4) and (II-3. AS5) of the

Appendix, we finally arrive to an expression for the conversion efficiency in term of overlap

2
input
pinput

(11-4. 5)

integrals [13]:
2022 (]1 . :
= Ufﬁd(”(z)[cb;(z)f@m (2)dz

+

1
T [y dP @)@ (2)) @3, (z)dz

€,C

In Eq.(II-4. 5), two contributions to the conversion efficiency can be easily identified. The first
integral refers to the forward conversion efficiency, while the second integral gives the backward
conversion efficiency.

In Fig.(II-4. 4a) we plot the total conversion efficiency (forward+backward) as a function of the
PIM thickness, when the pump is tuned to a frequency @ = 0.9, and its intensity is 100MW/cm®.
The nonlinear coefficient is taken to be d?=9pm/V. The conversion efficiency shows a series of
peaks in correspondence to the transmission resonances shown in Fig.(I[-4. 2a). In this case we
have considered the quadratic material as being non dispersive. Note that the conversion
efficiency grows approximately as the square of the length of the quadratic material, as one may
expect for perfectly phase-matched interactions. For comparison, in Fig.(II-4. 4b) we plot the

total conversion efficiency of a single layer of the same quadratic material as a function of its
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Fig. 11-4. 4: a) Conversion efficiency (n) vs. PIM thickness for the NIM/PIM/NIM cavity. b)
Conversion efficiency vs. thickness for a single layer of PIM. As explained in the text, the thin line
refers to the conversion efficiency calculated considering the layer as a Fabry-Perot etalon, the thick
line considering it as a bulk material.

thickness. The conversion efficiency of the single layer has been calculated in two different
ways: a) considering it as a Fabry-Perot etalon with all interference effects taken into account
(thin line) and b) considering it as a bulk material (thick line) using the standard formula for

SHG in bulk materials [14]:

n= (11-4. 6)

- fA(d%L)ZM. input
nwnZa)C

(Akd/2) °

where L is the length of the quadratic material, Ak = (2w/ ¢)(n,, —1n,) is the phase mismatch, in

the case of Fig.(II-4. 4) n,=ny,=1.4, and I™™" is the input intensity calculated in a medium that

has the same refractive index of the quadratic material at the FF frequency. The NIM/PIM/NIM
cavity shows an enhancement in the conversion efficiency by a factor of 10* with respect to the
PIM layer. Moreover, in the case of the NIM/PIM/NIM cavity the calculations shows that the SH

signal is generated almost perfectly balanced in the forward and backward directions.
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Conversion efficiencies balanced in the forward and backward directions are typical of
structures with high feedback, as discussed at length in Ref. [15] for the case of PBG structures.
On the other hand, in the case of the single layer shown in Fig.(II-4. 4b), our calculations show
that approximately 5% of the total conversion efficiency is generated in the backward direction.
In Figs.(II-4. 5) we plot the generated SH field for the first and the second resonance shown in
Figs.(I1-4. 2).

Let us now investigate SHG outside of phase matching conditions. In Fig. (II-4. 6a) we plot
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Fig. I1-4. 5: Square modulus of the generated second harmonic electric field for a) PIM thickness of
0.16638\,,. and b) PIM thickness is 0.5602,,. The pump field is tuned at 0.9, i.¢. at the transmission
resonance in the band gap and its intensity is assumed to be 100 MW/cm® . The quadratic nonlinearity of
the PIM layer is d?=9pm/V . The PIM is assumed to be non dispersive and non-absorbing with a
refractive index of 1.4.
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Fig. I1-4. 6: a) Conversion efficiency (1) vs. PIM thickness as in Fig.(II-4. 4a) except that now the PIM
is assumed to be dispersive with a 10% linear dispersion between the FF and the SH. b) Conversion
efficiency vs. thickness for single layer of PIM. The thin and thick line refers respectively to the Fabry-
Perot and bulk configuration as in Fig. (I[-4. 5b).
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Fig. 11-4. 7: Same as Figs.(II-4. 6) except that now the PIM is assumed to have a 20% dispersion.
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the conversion efficiency of the NIM/PIM/NIM cavity as a function of the PIM thickness, and
assuming a normal dispersion of 10% of the refractive index of the PIM at the SH frequency
with respect to the refractive index at the FF, i.e. n,=1.4 and n;,=1.54. In Fig. (II-4. 6b) we plot
the conversion efficiency of a slab of the same PIM material as function of its thickness. As in
Fig.(II-4. 4), the thin line corresponds to the conversion efficiency calculated assuming the PIM
layer is a Fabry-Perot etalon, while the thick line is calculated using the bulk conversion
efficiency Eq.(II-4. 6). In this case the coherence length of the PIM calculated from Eq.(1I-4. 6)
is L=2m/Ak=3.97\,.. We note that the concept of coherence length is still valid in the case of the
NIM/PIM/NIM cavity. In fact, comparing Fig.(II-4. 6a) and (II-4. 6b), it is evident that the
conversion efficiency of the NIM/PIM/NIM cavity at the transmission resonances is
approximately modulated by the function sin?(Akd/2). Comparing the SH energy generated
from the NIM/PIM/NIM cavity to the SH generated in the single layer, our calculations show an
enhancement factor of approximately 4x10*. Once again we find that SH emission from the
NIM/PIM/NIM cavity is balanced between the forward and backward directions, while in the
single phase matched PIM layer SHG occurs almost completely in the forward direction. Finally,
in Figs.(II-4. 7a) and (II-4. 7b) we plot the same quantities shown in figures (II-4. 6a) and (1I-4.
6b), respectively, but now assuming a normal PIM dispersion of 20%. In this case the coherence
length of the PIM calculated from Eq.(II-4. 6) drops to 1.=2m/Ak=1.98A,., and the enhancement
factor is approximately 4x10*. One may therefore conclude that while material dispersion is
detrimental to the conversion efficiency of the single PIM layer, the NIM/PIM/NIM cavity
conversion efficiency seems to benefit by as much as a factor of four as the amount of dispersion
changes from 10% to 20% (see Figs. (I1I-4. 4), (II-4. 6), and (II-4. 7)).

I1-4.2 Coupled Cavities.

Let us now investigate the case of coupled, multiple cavities, and let us first discuss some of
their linear properties. When we add more layers, the defect resonance found at the center of the
gap splits into several transmission resonances whose number equals the number of coupled
cavities, as one may expect. In Fig. (II-4. 8) we show the transmission spectrum of a symmetric,
3 and 1/2 period structure, with initial and and final NIM layers (Fig.(II-4. 9)). The thickness of
each NIM layers is a =2.5\,., and the thickness of each PIM layer is d =0.5602,.. The PIM is
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Fig. 11-4. 8: Linear transmission of three coupled cavities, i.e. (NIM/PIM)*NIM with a 20% dispersion
in the PIM and PIM thickness d= 0.5602A,.. The inset shows the three defect resonances that appear in
the gap. The arrow indicates the tuning of the SH when the FF field is tuned at the third resonance.

assumed to be dispersive with a linear dispersion of 20% with respect to ®=0.9, i.e.
n(®)=1.4+(0.28/0.9)(®-0.9). The dispersion relations for the NIM layers are the same as

those used for the single cavity. The inset of Fig.(II-4. 8) shows the three defect resonances that
appear inside the gap around ® = 0.9. Note that the spectral position of the gap does not depend
on the number of coupled cavities. In fact, the gap remains positioned in the spectral region
between the electric and magnetic plasma frequencies, as for the case of the single cavity (see
Fig.1). This fact confirms that the gap is intrinsic, i.e. it only depends on the dispersion relations
of the NIM, not on any kind of interference effect from any of the layers, as it would for ordinary
PBG structures made with PIMs [6-8], for example. Adding more cavities to the structure causes
more transmission resonances to appear inside the gap, the transmission spectrum outside the gap
become oscillates unpredictably, and SH emission is consequently much more difficult to
control. For these reasons we focus our attention on the structure of Fig.(II-4. 8), which is formed
by only three coupled cavities. In Fig. (II-4. 9) we plot the square modulus of the FF electric

field tuned at the third transmission resonance inside the band gap of the structure. Note that the
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Fig. 11-4. 9: Square modulus of the FF field when it is tuned at the third transmission resonance inside
the band gap.
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Fig. I1-4. 10: Square modulus of the generated SH field for tuning conditions described in Fig. (II-3. 8).
The pump intensity and the quadratic nonlinearity of the PIM arte the same used in the previous figures.
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electric field profile inside the PIM layers is almost identical to the profile it has for the single
cavity case (see Fig. (II-4. 3b)). In Fig.(II-4. 10) we plot the SH generated field when the FF is
tuned to the third resonance peak. We find a conversion efficiency of 2.6 % with an input pump
of 100MW/cm®. We note that in the case of a single NIM/PIM/NIM cavity the maximum
conversion efficiency available for the same intensity of input pump never exceeds 1.2% (see
Fig.(II-4. 7a)). We have also calculated the conversion efficiency when the pump is tuned to the
first and the second transmission resonances. Tuning to the first transmission resonance yields a
conversion efficiency of 1.3%, while tuning to the second resonance peak is yields a conversion
efficiency of 0.9%. The reasons the third resonance peak yields a higher conversion efficiency is
due to a combination of higher field localization and better phase link for the FF and SH fields
over the PIM layers; these conditions ultimately lead to a higher value of the square modulus of
the overlap integrals calculated in Eq.(II-4. 5).

Conclusions.

In this paper we have explored the possibility of using NIMs as mirrors in the spectral region
that contains an intrinsic gap, where the refractive index n=0, in single or multiple coupled cavity
configuration. Recent advancements in the field of metamaterials suggest that NIMs operating in
the near infrared regime (~1.5um) may be within reach [16-18], therefore suggesting that
NIM/PIM/NIM single and multiple cavities may be exploited to obtain efficient SHG devices.
From a more practical point of view, assuming a NIM operating around ~1.5um, the defect
resonances that appear in the intrinsic gap region may resolved with input pulses of temporal

duration ~50ps+100ps.
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I1-4.A Appendix A.

Let us consider Eq. (II-4. 2b) of the main text that here for the sake of clarity we write again:

2 2 2
(f_zEzw + (2('0) 82w(Z)M2w(Z)E2w —— (2(0) u«zw (Z)d(z)Ei(Z) . (II'4. Al)
z

2 2
C C

In the undepleted pump approximation E, is a known function and therefore the term at the right
hand side of Eq.(II-4. A1) acts as a source term. Because we are dealing with magnetic active

materials, we associate to Eq.(I[-4. A1) a Green function that satisfies the following equation:

2 2
0 C;Zgz,&) , 2o %(z)itzm(z)Gw(z,é) — Wy ()3(z-E), (I1-4. A2)

where 98(z-§) is the so called “Dirac delta function that is in this case multiplied by the z-
dependent magnetic permeability of the structure. As we will see later in this section, this is a
more convenient choice when, as in this case, the problem is related to stratifications of

magnetically active media. We can write the formal solution of Eq.(II-4. A1) as follows:
ot
Eao(2) =45 [ Ga (624 )EG (E)E. (I1-4. A3)
0

The Green function G, (z,£) must be continuous at all points of the interval 0<z<L except at

the point z=€, where it must have a jump equal to [1(z) in its first derivative. The calculation of
the Green functions follows formally the same steps outlined in Ref.[11] with the only two
differences: a) the jump in the derivative of the Green function at z=€ must be p(z) and not 1 as
it would be the case for non magnetic material and b) the boundary conditions appropriated for
magnetic active materials must be applied. Following Ref.[11], Eq. (II-4. A2) can be solved in

term of the RTL and LTR propagating modes of the structure at frequency 2m:

SORE00E  0sz<t
G,y (2,8)= : (I1-4. Ad)
SOLERLE) 122>

where W is a conserved quantity, i.e. dW/dz=0, given by:
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()

1 Note that in the case of non magnetic

Laot)rdz Lao® df:

()

u u

materials, i.e. lW(z)=1, W would be the Wronskian of the fundamental set of solutions. Now using

w=w(@!) o)

the condition that W is a conserved quantity, it can be calculated using the boundary conditions
at z=L or z=0:

n n
W =122 2m)ttTR = %L @)tk (II-4. A5)

20 20 0
Ho,» Ko 1

where ng ;2 and o are the refractive index and the magnetic permeability of the materials
surrounding the structure; tgg)R and tYI" are respectively the linear transmission coefficient of

20

the structure for an incident field from LTR and RTL respectively.

-116 -



References and Notes

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]
[9]

[10]
[11]

[12]
[13]

Keunhan Park, Bong Jae Lee, Ceji Fu, and Zhuomin M. Zhang J. Opt. Soc. Am. B 22,
1016 (2005)

D.R. Fredkin, A. Ron, Appl. Phys. Lett. 81,.1753 (2002).

H. Jiang, H. Chen, H. Li, and Y. Zhang, S. Zhu, Appl. Phys. Lett. 83,.5386 (2003).

D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. P. Vigneron, E. H. El
Boudouti, and A. Nougaoui Phys. Rev. E 69, 066613 (2004).

Michael W. Feise, Ilya V. Shadrivov, and Yuri S. Kivshar, Phys. Rev. E 71, 037602-1
(2005)

G. D’Aguanno, N. Mattiucci, M. Scalora, M.J. Bloemer, Phys Rev. Lett. 93 213902
(2004).

G. D’Aguanno, N. Mattiucci, M. Scalora, and M.J. Bloemer, Laser Physics 15, 590
(2005)

G. D’Aguanno, N. Mattiucci, M. Scalora, M.J. Bloemer, Phys Rev. E 71 046603 (2005).
G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C.
M. Bowden, J. Opt. Soc. Am. B 19, 2111-2121 (2002).

0.Di Stefano, S. Savasta, and R. Girlanda, J.Mod.Opt 48, 67-84 (2001).

G. D’Aguanno, N. Mattiucci, M. Scalora, M. J. Bloemer, and A. M. Zheltikov, Phys.
Rev. E 70, 016612 (2004)

J. Lekner Journal of Optical Society of America A 11, 2892 (1994)

It is worth to note that an expression for SH conversion efficiency that involves overlap
integrals has also been obtained in our Ref.[9] through a multiple scale expansion
approach, see in particular Egs.(16a) and (16b). While the two approaches give very
similar results, in the case of Ref.[9] the formula for SH conversion efficiency also
involve the calculation of the average of the momentum operator of the electromagnetic
field that is coupled with the overlap integrals. There are two main advantages in using
the Green’s function approach instead of the multiple scale expansion approach to
calculate SH conversion efficiency: a) it does not relay on the existence of a fast and a
slow scale of variation of the involved fields; b) it only involves the calculation of
overlap integrals and not that of the momentum operator and therefore a much simpler

expression can be obtained.

-117 -



[14]
[15]

[16]
[17]

[18]

A. Yariv, P. Yeh, “Optical Waves in Crystals” John Wiley & Sons, New York 1984.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, C. M. Bowden, M. J.
Bloemer, Phys. Rev. E 67, 016606 (2003).

J. Pendry, Opt. and Photon. News, 15, No9, 33 (2004)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis., Science 306,
1351 (2004).

Podolskiy, A K. Sarychev, V.M. Shalev, Opt. Express 11,735 (2003).

- 118 -



[1-5 Dark and bright gap solitons in a negative index Fabry-Perot etalon

with ax® nonlinearity.
I1-5.0 Introduction

We predict the existence of bright and dark gap solitons in a single slab of negative index
material. The formation of gap solitons is made possible by the exceptional interplay between the
linear dispersive properties of the negative index etalon and the effect of a cubic nonlinearity.
The presence of a cubic (Kerr) nonlinearity in structures characterized by a periodic variation of
the linear refractive index leads to the formation of localized electromagnetic modes in spectral
regions that otherwise would just alow evanescent modes. These localized modes are generally
referred to as gap solitons (GS) [1]. GS have attracted the attention of many researchers for
amost two decades, beginning with the theoretical predictions of Chen and Mills for one-
dimensional (1-D) photonic lattices with a Kerr nonlinearity [1]. Subsequently GS have been
studied both theoretically [2] and experimentally [3], and their existence has also been predicted
in 1-D periodic media with shallow gratings and a quadratic nonlinearity [4]. GSin 2D and 3D
photonic crystals (PCs) have aso been theoretically studied using different mathematical
approaches [5].

We will show that the presence of bright and dark GS is supported in a single slab of
material. This surprising outcome is borne out of the peculiar dispersive properties of NIMs [6-
8]. NIMsS most impressive property is their ability to refract light in the opposite way with
respect to what an ordinary material does. Very recently, nonlinear effects in NIMs have been
also investigated [9]. While it is not surprising that a single slab of frequency dispersive material
together with a cubic nonlinearity can support soliton waves in general, what it is surprising is
that in this case the single slab appears to support both bright and dark GS.

Before going into details, it is worth to say a few words to define the terms “bright” and
“dark” GSin the case of NIMs. By the term “bright GS” in NIMs we refer to a highly localized
electromagnetic mode with approximately decaying tails excited inside the gap of a NIM (see
Figs. (11-5. 3b) and (11-5.3c)). These modes have localization properties similar to the classical
GS excited in the gap of distributed feedback structures with a cubic nonlinearity [1-3]. We
emphasi ze that the formation of the gap in the NIM is due to the peculiar dispersive properties of
the bulk of the material, while the formation of the gap in distributed feedback structures is due
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to interference effects. On the other hand, the physical mechanism that leads to the formation of
bright GS in both cases is the same: a dynamical change in the refractive index of the material
occurs due to the presence of a cubic nonlinearity that shifts the position of the band gap, and
allows the formation of localized modes in a spectral region that would otherwise support only
evanescent modes. While “bright GS” in NIMs are localized over the structure in way similar to
GS in distributed feed-back structures, in contrast “dark GS* are excited in the gap of a NIM in
the form of delocalized modes, with approximately non-decaying tails. These states display a
low intensity at the center of the structure, and a high intensity at the edges (see Fig.(I1-5. 5¢)).
We note that contrary to bright GS, the intensity inside the structure never exceeds 1 with respect
to a unitary input intensity. Therefore, dark GS have no counterpart in the case of the structures
studied in Ref.[1-4]. Dark solitons generated at frequencies outside the gap or in other systems
where there is no photonic band gap structure are not uncommon. For example, light wavesin
the form of dark solitons appear in optical fibers operating in the normal dispersion regime [10],
in Raman scattering [11], and atomic, out-of-gap dark soliton waves are supported in a Bose-
Einstein condensate interacting with a periodic optical field [12]. In contrast, here we present
numerical evidence that dark solitons can also occur when the incident light frequency is tuned
inside the photonic band gap of a NIM.
I1-5.1 Resultsand discussion

We will describe the effective electric susceptibility and magnetic permeability of a NIM
with alossy Drude model [13]:

~ (a)pm/a)pe)2
, ﬂ(w)—l—m, (11-5. 1)

8(5)=1—%

o(w+iy,)
where o =w/ @ ,.is the normalized frequency, ahe and wm are the respective electric and
magnetic plasma frequencies, y, =7, /@, and 7, =7,/w, are the respective electric and

magnetic loss terms normalized with respect to the electric plasma frequency.
In Fig. (11-5. 1a) we show the refractive index and the extinction coefficient for a NIM with

0l o, =08 and y, ~ ¥, ~45*10™. The refractive index n and the extinction coefficient 5

of the material aregivenby: n+if = i@ . The sign in front of the square root must be chosen

in away that ensures the Poynting vector of the light refracted into a semi-infinite slab of NIM

will always be directed away from the interface into the refracting material itself. Of course, only
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Fig. 11-5. 1: a) Refractive index (solid line) and extinction coefficient (dashed line) vs. normalized
frequency (a@/ay) for a NIM with @, /@, =0.8 and Y. =7,=45%10". b) Linear

transmittance vs. normalized frequency (afa,e) for a Fabry-Perot etalon of length L=5A, where
Aoe=27Cl e i's the wavel ength corresponding to the electric plasma frequency.

one of the two possible solutions of the sgquare root satisfies this requirement. In Fig. (11-5. 1b)
we show the linear transmission property of a Fabry-Perot (FP) etalon made by the same NIM.

Fig. (I1-5. 1b) shows that the transmission spectrum of the FP etalon is smilar to the
transmission spectrum that occurs in structures that have a periodic variation of the refractive
index. The center-gap frequency axgsp and the spectral width of the gap Aayp depend on the

electric and magnetic plasma frequency as foIIows:a)C’gap:(wpe+a)pm)/2 and

A@y,, = ‘a)pe —a)pm‘. The only gap that forms disappears when @pe= axm. Moreover, the gap

appears in the region where values of the refractive index n are near zero.

121



Let us now suppose the FP possesses a Kerr nonlinearity. The Helmholtz equation that

governs the nonlinear dynamic at normal incidence is given by:

—+—€,UE=—%IU}( E, (11-5. 2)

where € and u are the effective electric susceptibility and magnetic permeability given by Eq.(I1-
5. 1), x(3) Is the coefficient of the cubic nonlinearity. The boundary conditions that apply to

1.0
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o)

2
. The input field is tuned at

Fig. 11-5. 2: Transmittance vs. control parameter 0 = ;((3)‘E(i"p”t)

o=y iN the band gap near the high frequency band edge.

Eq.(11-5. 2) are those vaid in the case of normal incidence in a magnetic material. Eq.(11-5. 2)
has been numerical integrated using an explicit method in conjunction with a shooting procedure

[14]. In Fig. (1I-5. 2) we show the transmission of the FP etalon as function of the control
parameter ¢ :;((3)‘E“”p“”‘2, where E™" is the input field. The input field is tuned at wo=wpe,

i.e. inside the band-gap near the high frequency band edge. At wo=wmpe the refractive index, the
extinction coefficient, and the magnetic permeability are: n=9.4*10% p=9*10% n=3.6*10" + |
3*10™, respectively. The figure shows bistable behavior that is typical of distributed feedback
structures with a cubic nonlinearity [1, 15]. In Figs.(11-5. 3) we calculate the field localization
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over the FP cavity for different values of the control parameter ¢. In the linear case (6=0, Fig.(l1-

5. 33)), the field is evanescent, consistent with its tuning inside the bandgap. For 6=0.0039 the
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Fig. I1-5. 3: Field localization in the cavity for different values of the control parameter: (a) 6=0, (b)
6=0.0039, (c) 6=0.027.

field becomes localized in the form of a single bright soliton envelope, similar to that reported in
reference [1]. For 6=0.027 atwo-peaked, localized, bright-soliton state is excited.

The FP etalon also supports dark solitons. These states manifest themselves when the carrier
frequency is tuned inside the gap, but now near the low frequency band edge. In Fig.(11-5. 4) we
show the transmission as a function of the control parameter o, for an input field tuned at
00=0.81mpe. In this case, the transmission shows multi-stable behavior. By increasing the value
of the control parameter up to o =5, three stable branches are found. The first branch is located
intherange 0< ¢ <1.5, and it corresponds to evanescent-type solutions as those shown in Fig.
(11-5. 58). The second branch isin the range 1.5< o < 2.61, and the corresponding solutions are

of the type shown in Fig. (11-5. 5b). Finaly for ¢ > 2.61 dark soliton-type solutions are excited
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Fig. I1-5. 5: Field localization in the cavity for different values of the control parameter: (a) 6=0, (b)
0=1.6, (c) 6=2.7.
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as shown in Fig. (I1-5.5¢). The excitation of dark solitons is somewhat surprising because, as
discussed in the introduction, their appearance in the gap has to our knowledge never been
predicted [16]. At 00=0.81wye the refractive index, the extinction coefficient, and the magnetic
permeability are n=-1.16*10"%, B=1.13*10""; u=2.45*10+i5.41* 10, respectively.
Conclusions

Our calculations suggest that when @,/ @,,, <1 and x*® >0, bright solitons are excited near
the high frequency band edge, where n>0, and that dark solitons are excited near the low
frequency band edge where n<0. On the contrary, in the case w,,/w,, >1and 3 <0, bright
solitons are excited near the low frequency band edge and dark solitons are excited near the high
frequency band edge.

In conclusion, using a numerical approach we have predicted the existence of a new class of

bright and dark gap solitons that are supported by NIMs. Our results suggest that NIMs could
find further applicationsin al-optical switching devices and al-optical buffering, for example.
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Conclusions

We have discussed linear and nonlinear properties of 1-D photonic crystals (part 1) and of
negative index materials (part 2), underlining similarities and differences between them.

In Chapter I-2 we have presented a unified treatment of density of modes and tunneling times in
finite, one-dimensional photonic crystals. We have exploited connections and differences
between the various approaches used to calculate the density of modes, which include the Green
function, the Wigner phase time, and the electromagnetic energy density, and we have concluded
that the Green function is always the correct path to the true density of modes. We have also
found that for an arbitrary structure the density of modes can always be found as the ratio
between the power emitted by a source located inside the structure and the power emitted by the
same source in free space, regardless of absorption or dispersion. In Chapter I-3 we have
developed a three dimensional model in order to study the properties of THz emission from a one
dimensional, X(Z)-doped photonic crystal. We have exploited difference frequency generation in a
collinear configuration and we have found an enhancement factor of up to 20 with respect to
difference frequency conversion from an equivalent bulk structure. In Chapter I-4 we have
studied third order nonlinear processes in photonic band gap structures. We showed how two
pumps can interact through a x° nonlinearity, i.e. cross phase modulation coupling. The
transmission properties of an electromagnetic field can be strongly modified by the interaction
with another electromagnetic field. The mutual interaction of two pumps can be applied in order
to obtain a variety of all optical devices. In particular, with this configuration it is possible to
obtain an optical transistor, a double switch and dynamical switch.

In Chapter 11-2 we have studied the linear properties of a single slab of negative index material
of finite thickness at normal and angular incidence. We have shown that the slab is characterized
by a band gap in the transmission spectrum with superluminal group velocities and small group
velocities at the band edges. The transmission spectrum is remarkably similar to the transmission
spectrum of 1-D photonic crystals. The spectral width of the gap is proportional to the difference
between the electric and magnetic plasma frequencies. The spectral position and the spectral
width of the gap are independent on the length of the slab. With increasing angles of incidence,
the reflecting band does not shift in frequency but it actually becomes wider. This behavior

makes a single layer of a negative index material an omnidirectional reflector, in the range
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between the electric plasma frequency and the magnetic plasma frequency. The operational
bandwidth can be 100% or greater by increasing the separation between the electric and
magnetic plasma frequencies. Moreover, we have shown that negative index materials have two
points of zero group velocity dispersion that allow undistorted pulse propagation. In Chapter II-3
we have studied a symmetric hollow waveguide made with a NIM cladding. In the opacity
region of the NIM, the waveguide admits both TE and TM guided modes with relatively low
losses. While further material development is still needed, recent advancements in the design of
meta-materials suggest that this waveguide could operate in the infrared regime with better
performances compared to more traditional hollow waveguides. In Chapter 1I-4 we used a Green
function approach to theoretically study second harmonic generation in single and coupled
cavities made of a generic quadratic, positive index material sandwiched between two or more
negative index materials that act as mirrors. These structures show nonlinear conversion
efficiencies that may be at least four orders of magnitudes larger than perfectly phase matched
bulk materials of similar length. In Chapter 1I-5 we have studied third order nonlinear process in
NIM. We have found that a slab of NIM support the formation of both bright and dark gap
solitons.

In conclusions, in this work we have discussed several basic properties related to
photonic structures and negative index materials. If anything, what this work really shows is that
much remains to be done in order to understand the real, underlying nature of many optical
phenomena that at first sight seem simple or obvious. For this reason we wish to continue this
work in our future efforts, confident that these structures have yet to reveal many more pleasant

surprises.
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