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Introduction 
Electromagnetic waves interact with atoms and molecules that compose naturally occurring 

materials. Materials can therefore be used to guide or manipulate electromagnetic waves–in the 

same way that a glass lens can focus light, for example. But the available electromagnetic 

response from naturally occurring materials is limited. Artificial constructed meta-materials, 

however, are not subject to the same limitations as real materials, and can be used to extend 

material response. For example, a metal film with arrays of small holes in it could be transparent 

to light; an array of nonmagnetic conductive elements could exhibit a strong, resonant magnetic 

response and materials that exhibit negative refraction could thus be engineered, beyond any 

intuitive expectations. 

The notion of meta-materials originated in the microwave community but has been widely 

adopted in the domain of optical research, thanks to rapidly improving nanofabrication 

capabilities and the development of sub-wavelength scanning imaging techniques. In a meta-

material, the properties largely derive from the structure rather than from the material itself. The 

structural units can be tailored in shape and size; their composition and morphology can be 

artificially tuned, and inclusions (defects) can be designed and placed at desired locations to 

achieve new functionality.  

Among the wide class of meta-materials we will focus on two sub-classes: photonic crystals 

(PCs), in particular one-dimensional PCs, and negative index materials (NIMs). In a PC the 

dimension of the unit cell is of the order of the fraction of the incident wave-length, while in a 

NIM the dimension of the unit cell is much more smaller that the dimension of the incident 

wavelength. In the first case the exceptional properties arise due to scattering effects. In the 

second case they arise from bulk properties: the electric permittivity ε and the magnetic 

permeability µ of the engineered material that induce a negative refractive index at certain 

frequencies. From the electromagnetic point of view, the wavelength, L, determines whether a 

collection of atoms or other objects can be considered a material. Any collection of objects 

whose size and spacing are much smaller than L can be described by the electromagnetic 

parameters ε and µ. Although such an inhomogeneous collection may not satisfy our intuitive 

definition of a material, an electromagnetic wave passing through the structure cannot tell the 

difference. The most commonly known property of PCs is their ability to change the 

transmission properties of their constituent materials. With a PC it is possible to open 
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transmission peaks (T=1) at a desired frequencies, and whole regions (gaps) where the 

propagation of light is forbidden. That is why PCs are also known as photonic band gap 

structures. The most commonly known properties of negative index materials is perhaps their 

ability to refract light in the opposite direction with respect to naturally occurring materials, so 

that the k vector inside the structure points in the opposite direction with respect to a natural 

material, and the three vectors E
r

, B
r

 and k
r

 form a left-handed tern. That is why NIMs are also 

known as left handed materials. 

This Thesis is organized in two sections: the first section is devoted to the study of linear and 

nonlinear properties of 1-D PCs, while the second section is devoted to the study of linear and 

nonlinear properties of NIM. As we will see in section two some of the properties of 1-D PCs 

can be found also in NIM. 



Part I: 
“Linear and non-linear effects in one-dimensional photonic crystals.” 

 

“If only it were possible to make dielectric materials in which 

electromagnetic waves cannot propagate at certain frequencies, all 

kinds of almost-magical things would be possible.” 

 

 -John Maddox 

Nature  348, 481 (1990) 
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I-1 Introduction 
I-1.1 Overview 

Structures in which scattering or diffracting elements are arranged in such a way that their 

mutual distances are comparable with the wavelength of the incident wave are often referred to 

as photonic crystals (PCs), or photonic band gap structures, PBGs in short. Typically, photonic 

crystals are periodic or quasi-periodic arrays in one, two or three dimensions (see Fig I-1. 1), but 

more sophisticated geometries, like defect, fractal and chirped structures (to name a few), have 

been exploited as well. PBGs are able to selectively transmit or reflect light at various 

wavelengths, as they affect the properties of the light in almost the same way that semiconductor 

crystals affect the properties of electrons. A periodic arrangement of different dielectric materials 

results in allowed and forbidden frequency bands and gaps for the incident light, in analogy to 

energy bands and gaps of semiconductors [1]. PBGs are artificial structures, but wonderful 

examples of them can also be found in nature. For example, the surface of the wings of a 

butterfly is a periodic dielectric structure, and the colors are the result of a selective reflection of 

the spectral components of sunlight (see Fig. I-1. 2) [2]. Because a crystal array looks slightly 

Fig. I-1. 1: Simple examples of photonic bandgap structures: a)Structure periodic in one direction, b) 
structure periodic in two directions, c) structure periodic in three directions. 

a) b) c) 

Fig. I-1. 2: Butterfly wing structure in different magnifications. Photo taken from Ref.[2] 



 2 

different from different angles, (unlike pigments, which are the same from any angle) photonic 

crystals can lead to shifting shades of iridescent color.  

The name “photonic crystal” and the exciting growth of photonic crystal research began with the 

works of Eli Yablonovitch [3] and Sajev John [4], in the late 1980s. They began with basic 

concepts and experiments in the microwave regime, where 3D structures could easily be 

fabricated (see Fig.I-1.3). At the present time, fabrication techniques allow spatial resolutions in 

the sub-micron regime, resulting in an explosion of new photonic bandgap structures in the 

infrared and visible regime. Photonic crystals can be engineered in order to control the optical 

response of the materials. They can be designed in order to allow the propagation of light only in 

certain directions and for certain frequencies, to localize light in specific areas, to slow down its 

velocity at certain frequencies, to artificially introduce dispersion (geometrical dispersion). 

A new research direction results from the growth, intersection and overlap of research in the 

fields of nonlinear optics and photonic crystals. Intense laser sources and confinement of light to 

small spatial regions in photonic crystals allows us to generate optical fields that make 

significant nonlinear changes in the dielectric constant. Since the slowing down depends strongly 

on the light wavelength, different colors propagate with much different velocities, i.e. there is 

strong dispersion at the photon band edge, near the photonic bandgap. This dispersion can be 

used in order to compensate the normal dispersion of the material and achieve phase matching 

condition for nonlinear phenomena. The new physical phenomena being discovered in linear and 

Fig. I-1. 3: First PBG material: yablonovite after Eli Yablonovitch. a)The method of constructing the 
yablonovite (FCC lattice): a slab of material is covered by a mask consisting of a triangular array of 
holes Each hole is drilled through three times, at an angle 35.260 away from normal, and spread out 
1200 on the azimuth.  b)Three dimensional image of the yablonovite. Picture from Ref [3] 

a) b)
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nonlinear photonic crystals will lead to advances in optical devices and applications in optical 

systems. Examples of optical devices include pulse shaping, pulse compression, and pulse 

regeneration. Nonlinear photonic crystals may allow for significant advances in optical buffering 

devices by using resonantly stored light in dielectric array defects. All-optical switches based on 

nonlinear photonic crystal are now being explored for low-power, low-cost alternatives to the 

optical-electronic-optical techniques. Optical parametric amplification enhanced by dielectric 

arrays is another important possible application. The reader interested in more details about those 

and other nonlinear optical applications of photonic crystals may consult the book “Nonlinear 

Photonic Crystals” cited in our Ref. [5]. Other applications that have been proposed over the 

years include photonic crystals fibers [6] (see Fig.I-1.4), photonic crystals circuits [7], 

Fig. I-1. 4: Photonic Crystal fiber (PCF). a) A cross section of a PCF reveals microstructuring with air 
holes that run parallel to the fiber axis. b) A standard technique to construct PCFs consisting in arrange 
common fibers in the desired geometry and then they are stretched altogether. The PCF is able to guide 
in the air core due two the presence of a 2-D photonic crystal structure in the form of “honeycomb” 
lattice 

a) b) 

Fig. I-1. 5: Glasses made of a one-dimensional metal-dielectric photonic crystal (transparent metal). a) 
glasses and the transmission curve of the lenses. b)glasses. 

a) b) 
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transparent metal-dielectric stacks (see Fig.I-1.5) [8], highly efficient micron-sized devices for 

nonlinear frequency conversion [9]. 

I-1.2 Finite, One-Dimensional, Photonic Crystals 

One-dimensional photonic crystals, also known as one dimensional photonic band gap 

structures (1-PBGs), Bragg gratings, or simply multilayered structures, represent the simplest 

example of a photonic band gap structure. Despite their simplicity, they retain many of the 

characteristics that can be found in more complicated multidimensional structures. 1-D PBGs are 

made of alternating layers of dielectric materials, or alternating layers of metallic and dielectric 

materials. The basics properties of those structures can be found in many textbook, and we cite 

Fig. I-1. 6: How the energy band diagram changes with the introduction of 1D periodic dielectric 
constant variation. 

-π/Λ π/Λ -π/Λ π/Λ

Λ
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for example the book by P. Yeh “Optical waves in layered media”[10]. Here we give just a brief 

overview of their most salient properties.  

A first analysis when a space periodicity is present can be made using the same approach used in 

solid state physics, i.e. the Bloch theory [10]. In Fig. (I-1. 6) we show how the periodicity 

changes the energy band diagram by opening forbidden bands. It is worth noting that, unlike 

crystal lattices studied in solid state physics, 1-D PBGs are structures inherently finite in size, at 

Fig. I-1. 7: a)Transmission spectrum of a 20-Periods, quarter/half-Wave Stack: λ/4-λ/2. The refractive 
indexes are respectively 1 and 1.4. b) Bloch vector, real part (black line) and imaginary part (red line) 
vs. ω/ω0. ω0 is a reference wavelength and Λ is the length of the elementary cell. 

0

0.5

1.0

0 0.5 1.0 1.5 2.0

0

0.5

1.0

0 0.5 1.0 1.5 2.0

gaps

pass-bands

Band Edges

0

0.5

1.0

0 0.5 1.0 1.5 2.0

gaps

pass-bands

Band Edges

ω/ω0

ω/ω0

Tr
an

sm
is

si
on

B
lo

ch
 v

ec
to

r (
un

its
 o

f π
/Λ

)

a)

b)

0

0.5

1.0

0 0.5 1.0 1.5 2.0

0

0.5

1.0

0 0.5 1.0 1.5 2.0

gaps

pass-bands

Band Edges

0

0.5

1.0

0 0.5 1.0 1.5 2.0

gaps

pass-bands

Band Edges

ω/ω0

ω/ω0

Tr
an

sm
is

si
on

B
lo

ch
 v

ec
to

r (
un

its
 o

f π
/Λ

)

0

0.5

1.0

0 0.5 1.0 1.5 2.0

0

0.5

1.0

0 0.5 1.0 1.5 2.0

gaps

pass-bands

Band Edges

0

0.5

1.0

0 0.5 1.0 1.5 2.0

gaps

pass-bands

Band Edges

ω/ω0

ω/ω0

Tr
an

sm
is

si
on

B
lo

ch
 v

ec
to

r (
un

its
 o

f π
/Λ

)

a)

b)

__ real(KB) 
__ imag(KB) 



 6 

most 30-40 periods, for total lengths never exceeding 40-50µm. For all intents and purposes, 

these structures do not admit translational invariance and therefore the Bloch theory is no longer 

exhaustive, although it still remain a useful tools. In Fig I-1. 7a we show the typical transmission 

response of a multilayered structure. The transmission is characterized by pass bands where most 

of field is transmitted through the structure, and bang gaps with high reflectivity, as shown in the 

figure. In Fig I-1. 7b we show the Bloch vector (KB) as a function of the frequency for the same 

elementary cell of the finite structure described in Fig. I-1. 7a. We note that the band gaps 

coincide with the forbidden bands of the Bloch theory for the corresponding infinite structure 

[10]. 

The transmission resonances near the band edges of the structure are of particular interest 

because a field tuned at those points reaches high values of local intensity, making possible the 

enhancement of nonlinear optical phenomena [9]. In Figs. I-1. 8 we show the typical localization 

properties of an electromagnetic field inside a 1-D PBG with its frequency tuned respectively in 

the pass band(Fig I-1. 8a), in the band gap (Fig I-1. 8 b) and at the band edge (Fig I-1. 8 c). The 

fact that the structures we study are inherently finite in size leads to several important 

consequences. Looking again at the field localization described in Fig.( I-1. 8), we can see that 

even the band gaps are not strictly “forbidden” because a portion of incident field is able to 

penetrate the structure in the form of an evanescent wave, and therefore to “tunnel” through it. 

Moreover, the field localization properties at the band edges find their origin in the finiteness of 

the structure, i.e. in the coupling with the external modes. In other words, the fact the structure is 

finite prevents us from applying periodic boundary conditions, and therefore our electromagnetic 
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problem becomes non-hermitian. The consequences of this fact are that well established concepts 

such as group velocity, energy velocity, and density of modes need in our case a complete and 

profound reevaluation, as we will see in more details in the next chapter. 
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I-2 Green function, density of modes and tunneling times. 
I-2.0 Introduction 

Although the number of experimental and theoretical reports on 1-D PCs is already quite 

large, in our view the issue of the density of modes (DOM) –or density of states (DOS)- 

regarding what one means by it, and its true and otherwise implied connections to other physical 

or measurable quantities, such as emitted energy and group velocity to name just two, is still far 

from being considered closed. There are at least three different ways to calculate the DOM that 

are currently used in the literature. The first way consists of calculating the local density of 

modes (LDOM) as follows: ( ) [ ]),(Im/2)( 0 zzGckz ωωρ −= , where ),( zzGω  is the 

electromagnetic Green function of a source located at ξ=z inside a 1-D structure, and which 

oscillates with a harmonic time dependence of the type exp(-iωt) [11-13]; c is the speed of light 

in vacuum, and k0=ω/c is the vacuum wavevector. The DOM is then defined as the weighted 

average of the LDOM over the length L of the PC, i.e., ( ) ( ) dzzzGzLck
L

R ],Im[)/2(
0

0 ωω
ε
ω ερ ∫−=  

[13], where ( )zR
ωε  is the spatially dependent, linear, real, relative dielectric function of the PC 

and plays the role of the weight function. The second way consists of calculating the LDOM 

(DOM) as the spatially averaged electromagnetic energy density stored inside the crystal. This 

approach has been discussed at length in Ref.[8], and we will return to it later. The third 

approach was first proposed in Ref.[14], where the DOM was defined as: ( )ωϕρ ϕ
ω ddL t)/1(= , 

where φt(ω)  is the phase of the transmission function )](exp[~~ ωϕωω titt = . In the literature 

( ) Ldd t
ϕ
ω

ϕ
ω ρωϕτ == /  is often referred to as the phase time [15-17], “group delay”, and 

“Wigner time” [18], and it gives the time that the transmitted part of an incident, quasi-

monochromatic, un-chirped pulse takes to traverse a 1-D barrier [19-20]. We will refer to the 

DOM calculated this way as the “DOM calculated via the Wigner time”. 

We exploit connection and differences between the approaches outlined above in order to 

give the DOM a firmer theoretical footing when it comes to 1-D crystals. We will show that the 

DOM can be directly linked to the energy emitted from the structure, which is clearly a 

measurable quantity, and we will clarify the links that have previously been established between 

the concept of DOM and the tunneling times of quasi-monochromatic incident pulses. 



 10

I-2.1 The DOM calculated through the Green’s function: The true DOM. 

Let us suppose that a dipole sheet, of surface S and harmonically oscillating dipole moment: 

( ) ( )[ ]..exp2/1)( 0 cctiptp +−= ωrr oriented along x̂ , is located in the plane z=ξ, and it is 

positioned parallel to the surfaces A of a PBG of length L. This situation is sketched in Fig. (I-2. 

1), where the structure is shown to occupy the space between z=0 and z=L. Due to its planar 

symmetry, the problem reduces to a 1-D one. As a consequence, the electric field 

( ) ( )xzEzE ˆ,, ξξ ωω =
r

 generated in the PC by the current density ( ) ( )xzJzJ ˆ,, ξξ ωω =
r

 that 

oscillates along the plane S can be calculated through the scalar Helmholtz equation as: 

( ) ( ) ( ) ( )ξδωµξεωξ ωωω −−=+
∂

∂ z
S
p

c
zEz

z
zE 02

02

2

2

2 ,,
, (I-2. 1) 

y

x

z

S

ξ

0pr ( ) ( )ξδωξω −−= zp
S

izJ 0, rr

xpp ˆ00 =r

Fig.1

ξ−L

A

y

x

z

S

ξ

0pr ( ) ( )ξδωξω −−= zp
S

izJ 0, rr

xpp ˆ00 =r

Fig.1

ξ−Ly

x

z

S

ξ

0pr ( ) ( )ξδωξω −−= zp
S

izJ 0, rr

xpp ˆ00 =r

Fig.1

ξ−L

A

Fig. I-2. 1: Schematic representation of a dipole sheet of surface S and dipole moment 
]exp[)( 0 tiptp ω−= rr

 located along the plane z=ξ  and parallel to the surfaces A of a 1-D PC of 
length L located between z=0 and z=L. 
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where ( ) ( ) ( ) ( )zizzz IR
ωωωω εεχε +=+= 1  is the spatially dependent, complex dielectric function, 

( )zωχ  is the linear complex susceptibility of the medium, and δ(z-ξ) is the Dirac delta function. 

We seek solutions of Eq.(I-2. 1) that satisfy boundary conditions of outgoing waves, i.e., the 

radiated energy from the dipole sheet leaves the structure never to return, and no energy is 

incident from outside, namely: 

( ) ( )ξµωξ ωω ,, 0
0

2 zG
S
p

zE −= , (I-2. 2) 

where ( )ξω ,zG is the scalar Green’s function that satisfies the following equation: 

( ) ( ) ( ) ( )ξδξεωξ ωωω −=+
∂

∂ z
c

zGz
z

zG
2

2

2

2 ,,
, (I-2. 3) 

The way to construct the Green function for planar dielectric structures using the light-modes has 

been discussed at length in Refs.[21-23]. In 1-D, the Green function has the following form (see 

Appendix A): 

( )

( )( ) ( )( )

( )( ) ( )( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤≤ΦΦ

≥≥ΦΦ

=
−+

−+

ξξ

ξξ

ξ

ω

ωω

ω

ωω

ω

z
tki

z

zL
tki

z

zG

0~2

~2
,

0

0
, (I-2. 4) 

where ( ){ }±Φω  are the left-to-right (LTR) and right-to-left (RTL) light-modes, )(
2,0

)(
1,0

~ +− == tntntω  

is the transmission function, n0,1-2 are the refractive indices of the materials surrounding the 

structure, ( )±
ωt  are the LTR and RTL transmission functions (see Fig. (I-2. 2)), k0=ω /c is the 

vacuum wavevector. LTR and RTL modes can be calculated using a standard linear matrix 

transfer technique, assuming a unitary electric field is incident on the structure from LTR for the 
( )+Φω  mode, and from RTL for the ( )−Φω  mode, as shown in Fig. (I-2. 2), and as first reported in 

ref. [24]. For clarity, we report the details of the calculations that lead to Eq.(I-2. 4) in Appendix 

A [25]. Note that Eq.(I-2. 4) is valid for an arbitrary 1-D, finite structure, one that may also 

include material absorption and dispersion. Now, using Eq.(I-2. 2) and the expression for the 

current density, it can be shown that the mean electromagnetic power emitted by the dipole sheet 

embedded within the PC is given by: 
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( )[ ]ξξ
µω

ωωω ,Im
2

Re
2
1

2

2
00

3
)1( G

S
Ap

dVEJW
V

D
PCinemitted −=⋅−≡ ∫ ∗

rr
. (I-2. 5) 

Eq.(I-2. 5) tells us that the mean electromagnetic power emitted by a dipole sheet located at z=ξ 

is proportional to the imaginary part of the scalar Green function calculated at z=ξ . We use the 

superscript “1D” to remark the fact that our approach is specific for electromagnetic problems 

that have planar symmetry, and can therefore be reduced to 1-D problems. The mean 

electromagnetic power emitted by the same dipole sheet located in free space in the same volume 

V=AL occupied by the PC is: 

0
2

2
00

3
)1(

, 4 kS
Ap

W D
spacefreeinVemitted

µω
= . (I-2. 6) 

From Eq.(I-2. 5) and Eq.(I-2. 6) we find : 
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Fig. I-2. 2: Schematic representation of the boundary conditions imposed on: (a) LTR and (b) RTL 
light-modes. )(±

ωr  are the LTR and the RTL reflection coefficients, respectively, and ( )±
ωt  are the 

corresponding transmission coefficients. n0,1 and n0,2 are the refractive indexes of the materials 
surrounding the PC. Note that )(

1,0
)(

2,0
−+ = ωω tntn  as a consequence of time reversal symmetry. 
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( )
( ) ( )[ ]ξξ

ξ
ω ,Im2 01

,

)1(

Gk
W

W
D

spacefreeVinemitted

D
PCinemitted −= . (I-2. 7) 

There are at least two physical conditions that our 1-D LDOM should meet, i.e., that: (i) it 

account for the modification of dipole sheet  emission rates with respect to emission rates in 

vacuum; (ii) it give the correct limiting value for the DOM of free space when calculated for a 1-

D empty cavity whose dimensions go to infinity. The simplest way to satisfy these two 

requirements is to write the LDOM as: 

( )
( ) ( )

( ) ( )],Im[
2 0

1
,

1
)1(

, ξξ
ξ

ρξρ ωωω G
c
k

W
W

D
spacefreeVinemitted

D
PCinemittedD

spacefree −=≡ , (I-2. 8) 

where cD
spacefree /1)1(

, =ωρ  is the 1-D DOM of the free space [26]. The DOM is then the average of 

the LDOM over the volume V: 
( ) ( )

( ) ( )∫−=≡
L

D
spacefreeVinemitted

D
PCinemittedD

spacefree dzzzG
cL
k

W

zW

0

0
1

,

1
)1(

, ],Im[
2

ωωω ρρ , (I-2. 9) 

where the integration variable ξ has been relabeled z. From Eqs. (I-2. 8) and (I-2. 9), we note that 

the DOM is defined in an unambiguous way because it is related to the power emitted by a 

dipole sheet in a 1-D PC. In the case the PC is composed by non absorbing materials, the mean 

power emitted by the dipole sheet is also equal to the mean power that flows through the surfaces 

A of the PC : Athroughflowing
D

PCinemitted WW =)1( . So, we have arrived at an operational definition of the 

DOM and LDOM that can be directly linked to an experimental quantity, i.e., the emitted energy. 

It is worth noting that the DOM is calculated as the average of the LDOM over the volume 

V, and not as the weighted average where the weight function is the real part of the dielectric 

function, ( )zR
ωε . The latter is a somewhat arbitrary operation which rescales the DOM by an 

equally arbitrary factor given by the real part of the dielectric constant. Although apparently 

unjustified, we will see later that this is consistent with the other approach which utilizes energy 

conservation arguments. However, we look at the consequences of choosing the DOM as the 

weighted average over ( )zR
ωε : ( ) ( )∫−=

L
R dzzzGz

cL
k

0

0 ],Im[
2

ωω
ε
ω ερ . From Eq.(I-2. 9) we obtain: 

( ) ( )[ ]∫+=
L

R
RR

dzzzGz
cL

k

0

0 ,Im
2

ωω
ωω

ε
ω

ω δε
εε

ρρ  (I-2. 10) 
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where ( ) ( ) RRR zz ωωω εεδε −=  represents the variation of the real part of the dielectric function 

with respect to its average value. In the case of structures with low index contrast ( ( ) 1<<zR
ωδε ), 

comparing Eqs.(I-2. 9) and (I-2. 10) we note that the two definitions are proportional to each 

other through a constant factor: R
ωω

ε
ω ερρ ≅)/( . We will discuss the physical meaning of ε

ωρ  

in the next Section. For the time being, it becomes clear that ε
ωρ  overestimates the power emitted 

by the dipole sheet of a factor that depends on the real part of the weight factor. In Fig. (I-2. 3) 

we compare ωρ and ε
ωρ  for a 1-D PC composed of alternating layers of air and a non-absorbing 

dielectric material. The details of the structure are given in the caption. The structure is 

characterized by a high index contrast between the layers, and so the arguments about 

proportionality between the two competing definitions no longer hold. For example the ratios of 
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Fig. I-2. 3: ρω (solid line) and ϕ
ω

ε
ω ρ=ρ  (dashed line) vs. ω/ω0 (ω0=2πc/λ0 and λ0=1µm) for a structure 

composed of 40 alternating layers of a dielectric material and air. The index of refraction of the 
dielectric material is 1.42857, and it is considered constant in the range of frequency examined. The 
layers have thicknesses a=350nm (dielectric material) and b=250nm (air) for a total length L=12µm. 
The structure is surrounded by air. Inset: Magnification of the DOM at the band edge resonances of the 
first gap. Note that ρω and ϕ

ω
ε
ω ρρ =  are not proportional each other through a constant factor: 

94.1/ ≅ω
ε
ω ρρ  at ω/ω0=0.592 (left-side band edge resonance) and 59.1/ ≅ω

ε
ω ρρ  at ω/ω0=0.737 

(right-side band edge resonance). 

___ ρω 
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ϕ
ω

ε
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the DOMs at the band edge resonances of first band gap are respectively 94.1/ ≅ω
ε
ω ρρ  at 

ω/ω0=0.592 (left-side band edge resonance) and 59.1/ ≅ω
ε
ω ρρ  at ω/ω0=0.737 (right-side band 

edge resonance). The figure shows that in fact the two DOM are very different from each other, 

although the location of the relative maxima and minima remain approximately the same. We 

also note that for a non absorbing and non dispersive structure it can be demonstrated, as we will 

see in the next Section, that ϕ
ω

ε
ω ρρ = , i.e., the DOM calculated by averaging the Green function 

over the grating profile is equal to the DOM calculated through the Wigner time. We will expand 

on the link between the DOM and the tunneling times in the next Section.  

As defined in our Eq.(I-2. 9), the DOM maintains its generality when absorption and 

dispersion are present. In fact, the idea can be generalized to 2-D and 3-D structures of finite 

size. While in the 1-D case the source needs to have planar symmetry (infinite dipole sheet), in 

2-D the source should have cylindrical symmetry (infinite wire), and in 3-D the source should 

have point symmetry (point source). In any case, the DOM can always be defined as the DOM of 

free space multiplied by the ratio between the spatial average of the mean power emitted by a 

source embedded within the PC and the mean power emitted by the source in the free 

space:
( ) ( )

( )nD
spacefreeVinemitted

nD
PCinemittednD

spacefree W

rW

,

)(
,

r

ωω ρρ ≡ , n=1,2,3, where cD
spacefree /1)1(

, =ωρ , 2)2(
, / cD

spacefree ωρω = , 

)/( 32)3(
, cD

spacefree πωρω =  are respectively the DOM of the free space in 1-D, 2-D and 3-D. The 

reader interested in the extension of Eq.(I-2. 9) to the case of finite size, 3-D structures can 

consult Ref. [27]. 

I-2.2 DOM calculated through the Wigner time and DOM calculated through the dwell 

time. 

The DOM calculated using the Wigner time for 1-D, finite, structures is defined as follows 

[14]: 

Ld
d

L
t

ϕ
ωϕ

ω
τ

ω
ϕρ == 1 , (I-2. 11) 

where φt(ω) is the phase of the transmission function. Defined in this fashion, ( )ωϕτ ϕ
ω dd t /=  is 

the Wigner[15-18], and it gives the time that the transmitted part of an incident, quasi-

monochromatic, un-chirped pulse takes to traverse a 1-D, barrier [19-20]. Now, from Eq.(I-2. 
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A3), another way of writing the transmission for LTR propagation is ( ) ( )( )Lt ++ Φ= ωω ; taking the 

derivative with respect to the frequency, ( ) ( )( ) ωω ωω ∂Φ∂= ++ // Lddt , and rewriting the 

transmission in terms of a phase and an amplitude, i.e., ( ) ( ) )](exp[ ωϕωω titt ++ =  [28], we obtain: 

( )
( )

( )( )
ω

ϕ
ω
ϕϕ

ω
ω

ω
ω

∂
Φ∂=+

+
+

+ Lit
d
dii

d
td

t
t

t )exp()exp( . (I-2. 12) 

Using Eqs.(I-2. 11)-(I-2. 12), the DOM can be recast as follows: 

( )

( )( )
⎥
⎦

⎤
⎢
⎣

⎡
∂

Φ∂=
+

+ ω
ρ ω

ω

ϕ
ω

L
tL
1Im1 . (I-2. 13) 

The term ( ) ( ) ωω ∂Φ∂ + /L  can be calculated using the Green function of Eq.(I-2. 4) (see Appendix 

B): 
( ) ( ) ( ) ( ) ( ) ( ) ξξξ

ω
ξεωξε

ω ωω
ω

ω
ω dLG

c
kL L

+
+

Φ⎥⎦
⎤

⎢⎣
⎡

∂
∂

+−=
∂

Φ∂
∫ ),(2
0

0 . (I-2. 14) 

From the expression for the Green function given in Eq.(I-2. 4), we have: 
( ) ( ) ( ) ( ) ( ) ( )

2,000 2~2
),(

nkitki
LLG ξξξ ω

ω

ωω
ω

−−+ Φ
=

ΦΦ
= , (I-2. 15) 

and from Eqs.(I-2. 12)-(I-2. 15) we obtain: 

( ) ( ) ( ) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
ΦΦ⎥⎦

⎤
⎢⎣
⎡

∂
∂

+−= −+∫ dzzzzz
tikcL

k L

ωω
ω

ω
ω

ϕ
ω ω

εωερ
00

0 2~2
1Im , (I-2. 16) 

where the integration variable ξ has been relabeled z. Eq.(I-2. 16) can be rewritten as follows: 

( ) ( ) ( ) ( ) ( ) ( )∫∫ ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

−−=
L IRL

I dzzzG
z

zzG
z

cL
k

dzzzGz
cL
k

0

0

0

0 ],Re[],Im[],Re[
2

ω
ω

ω
ω

ωω
ε
ω

ϕ
ω ω

ε
ω

εωερρ ,

 (I-2. 17) 

where we have identified ( ) ( ) dzzzGzLck
L

R ],Im[)/2(
0

0 ωω
ε
ω ερ ∫−=  as the DOM calculated using 

the real part of the relative dielectric function as the weight function. Eq.(I-2. 17) provides an 

illuminating link between the different definitions of DOM. For the sake of clarity we analyze 

three cases: (a) No absorption and no dispersion; (b) Dispersion and negligible absorption; (c) 

Absorption and dispersion. 
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I-2.3 The case of no Absorption and no dispersion. 

In this case from Eqs.(I-2. 17) and (I-2. 10) we obtain: 

( ) ( )[ ]∫−==
L

RR dzzzGz
cL
k

0

0 ,Im2
ωωωω

ε
ω

ϕ
ω δερερρ . (I-2. 18) 

Eq.(I-2. 18) tells us that in the absence of absorption and dispersion the DOM calculated through 

the Wigner time ϕ
ωρ  is equal to the DOM calculated by averaging the Green function over the 

real part of the dielectric function. However, both ε
ωρ  and ωρ  overestimate the true DOM  by a 

factor that is equal to the average value of the grating, R
ωε , with the addition of a term that 

depends on the index contrast. In the case of no absorption, ε
ωρ  can also be expressed in a form 

involving the dwell time (see Appendix C) as: 
( ) ( )

( ) ( ) )Im(
2

1
2 0

−+
−+

++
+

= ωω
ε
ω

ττρ rr
LckL

DD  (I-2. 19) 

where ( ) ( )( ) 01/2 cnULD
++ = ωτ  and ( ) ( )( ) 02/2 cnULD

−− = ωτ , are the LTR and RTL dwell times 

respectively, and ( ) ( ) ( ) ( )
( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Φ
+Φ=

±
±±

2

2

22

4
1

dz
zdczzU R ω

ωωω ω
ε  are the corresponding LTR and 

RTL time-averaged electromagnetic energy densities stored in the PC, for incident fields that 

have a harmonic time dependence of the type e-iωt, and unitary amplitude (i.e. ( ) 1
2

0 =±
ωε A , ε0 is 

the vacuum dielectric constant, ( )±
ωA  are the amplitudes of incident fields). The dwell time was 

first introduced for ballistic electrons, and was intended to measure the average time a quantum 

particle spends within a barrier, whether it is reflected and/or transmitted at the end of its stay 

[29-30]. In the case of electromagnetic radiation, the dwell time can be calculated by resorting to 

the electromagnetic energy density [31-32] as the ratio between the stored electromagnetic 

energy and the input power. Note that when ( ) 0=±
ωr  (i.e. at the peaks of transmission), 

( ) ( )

L
DD

2

−+ +
=

ττρ ε
ω , that is to say, ε

ωρ  is exactly the average of the LTR and RTL dwell times 

divided the length L of the PC. We point out that in most cases k0L>>1 (equivalent to saying that 

the typical structure is much longer than the incident wavelength), and so the extra term 
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( ) ( ))Im(
2

1

0

−+ + ωω rr
Lck

 nearly always gives a maximum correction of the order of 210 /L c−  inside 

the gap[33]. As also noted in Ref.[31], this extra term comes from the fact that in a finite 

structure the energy density is not equally shared between the electric and magnetic components 

of the field. For symmetric or sufficiently long structures embedded in symmetric environments 

[34] it is straightforward to verify that ( ) ( )
ωωω UUU == −+ , and consequently ε

ωρ  takes the 

following simple form: 

r
U

Lck
r

ϕρρ ω
ω

ε
ω sin

0

+= , (I-2. 20) 

where ( )∫ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Φ+Φ≡
L

DRU

L
dz

dz
dcz

Lcn 0

2

2

2
2

02
1 τ

ω
ερ ω

ωωω  is the DOM as it was first defined in 
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Fig. I-2. 4: U
ωρ  (solid line) and ϕ

ω
ε
ω ρρ =  (dashed line) vs. ω/ω0 (ω0=2πc/λ0 and λ0=1µm) for PCs 

made by N=1, N=5, N=10, and N=20 periods, respectively. The elementary cell is composed of two 
layers of refractive index respectively na=2 and nb=3. The thicknesses of the layers are a=125nm and 
b=166nm, respectively. The structure is surrounded by air. 
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Ref.[8] in terms of the electromagnetic energy density [3]. Eq.(I-2.20) provides new insight into 

the profound link that effectively binds the DOM calculated by averaging the Green’s function 

over the grating, and the electromagnetic energy density, at least for non-absorbing structures. In 

addition, Eq.(I-2.20) provides a theoretical foundation for the numerical results reported in Ref. 

[8].  

Some observations are now in order. We have shown that for a PC embedded in symmetric 

environments, ϕ
ωρ  = ε

ωρ  is also approximately equal to U
ωρ . In Fig. (I-2. 4) we compare ϕ

ωρ  = ε
ωρ  

with U
ωρ for PC’s made by the same elementary cell, repeated N=1, N=5, N=10, N=20 times, 

respectively. The details of the structures are given in the figure caption. We note that when 

N=20, the PC is practically equivalent to a symmetric structure, and U
ω

ε
ω

ϕ
ω ρρρ ≅= . The small 

discrepancy inside the gap is mostly due to the extra term rLck
r

ϕω sin
0

, and to a lesser degree to 

the small asymmetry built into the structure. In Fig. (I-2. 5) we compare ϕ
ωρ  = ε

ωρ , U
ωρ  and ωρ  
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Fig. I-2. 5: U
ωρ  (thin-solid line), ϕ

ω
ε
ω ρρ =  (dashed line) and ωρ (thick-solid line) vs. ω/ω0 

(ω0=2πc/λ0 and λ0=1µm) for a PC made of N=20 periods. The elementary cell is the same described in 
the caption of figure 4. The structure is surrounded by air. Inset: Magnification of DOM at the two 
transmission resonance near the first band gap. 
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for 20-period structure. Again the figure reflects the fact that: U
ω

ε
ω

ϕ
ω ρρρ ≅= . However, all three 

DOMs consistently overestimate ωρ  as already discussed (see Fig. (I-2. 3)).  

The first non trivial implications of our results affect the relation between the tunneling 

times. From Eqs.(I-2. 11), (I-2. 18), and (I-2. 19) we obtain: 
( ) ( )

( ) ( ) )Im(
2
1

2
−+

−+

++
+

= ωω
ϕ
ω ω

τττ rrDD . (I-2. 21) 

Eq. (I-2. 21) tells us that for a non-absorbing, non-dispersive structure the Wigner time and the 

average ( RTL and LTR) dwell time differ by an amount proportional to the average imaginary 

part of the RTL and LTR reflection coefficient. We note that this difference is zero at all 

transmission resonances, because there the energy density is equally shared by the electric and 

magnetic fields. Eq.(21) is a new result that clarifies the link between the Wigner time and the 

dwell time. In related work on tunneling times [32], a link between the Wigner time and the 

dwell time has also been pointed out. However, in Ref.[32] only the case of symmetric structures 

in symmetric environments was addressed, which is a particular case of our more general Eq.(I-

2. 21). In fact, in the case of a symmetric structure located in a symmetric environment, 
( ) ( )

DDD τττ == −+  and ( ) ( )
ωωω rrr == −+ , and from our Eq.(I-2. 21) we obtain: 

)Im(1
ω

ϕ
ω ω

ττ rD +=  (I-2. 22) 

which is the result in ref.[32] There, the term )Im(1
ωω

τ ri =  is referred to as “self-interference 

delay”. Again we stress that Eq.(I-2. 22) is not valid in general, because it was designed to 

handle symmetric structures located in symmetric environments. As a consequence, it does not 

predict the correct tunneling times for periodic structures having only a few periods. 

To better clarify this point, in Fig. (I-2. 6) we compare the Wigner time and the dwell times, i.e., 

Eqs.(I-2. 21) and (I-2. 22), for a 5-period structure. In this case the LTR and RTL dwell times 

differ from each other, and only their average value converges to the Wigner time, as predicted 

by our Eq.(I-2. 21). As calculated by our Eq.(I-2. 21), the “self-interference delay” is of order 10-

2fs, a quantity that is hardly measurable in any experiment. Our results also suggest that the 

upper limit of the “self interference delay” available for any kind of structure can in fact be 

estimated from our Eq.(I-2. 21), namely, 
ω

τ 1≤
MAXi , which means fs

MAXi 5.0≤τ  for λ≅1µm, 
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and fs
MAXi 1.0≤τ  for λ=0.2µm. In units of (L/c), the upper limit of the available self 

interference delay is 1/(k0L). In the optical regime (λ≅1÷0.2µm) for PCs only a few micrometers 

in length, k0L≈10 2, and the upper limit of the self interference delay available is of the order of 

cL /10 2− . In the structure considered in Fig. (I-2. 6), L/c=4.85fs, and the upper limit for the self 

interference delay in the range of frequency shown in the inset is approximately 0.8fs. This is 

compatible with the lower limit of 10-2fs that is the difference between the average dwell time 

and the Wigner time. In summary, our results show that in most cases of interest, the correction 

due to the self interference delay is negligible in the optical regime, and that the Wigner time is 

for all intents and purposes approximately equal to the average of the LTR and RTL dwell times.  

In Ref.[31] it was demonstrated that beginning with the definition of energy velocity as the ratio 

between the spatially averaged Poynting vector and the spatially averaged energy density, 
( ) ( ) ( )±±± = ωω USVE / , it is then possible to arrive at a simple relation that links the energy 
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Fig. I-2. 6: LTR dwell time ( )+
Dτ (short-dashed line), RTL dwell time ( )−

Dτ  (long-dashed line) and 

average dwell time ( ) ( ) 2/)( −+ + DD ττ  (thick solid line) vs. ω/ω0 (ω0=2πc/λ0 and λ0=1µm) for a PC made 
of N=5 periods. L/c is in this case is 4.85fs.  The elementary cell is the same described in the caption of 
figure 4. The figure contains also the Wigner time ϕ

ωτ  (thin solid line) but on this scale it is practically 
indistinguishable from the average dwell time. Inset: Magnification of the average dwell time (thick 
solid line) and the Wigner time (thin solid line). The difference between the two times is of the order of 
10-2fs. 
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velocity to the dwell time, namely ( ) ( ) ( ) )/(
2 ±±± = DE LtV τω . Now, by using Eq.(I-2. 21) and the 

connection of the dwell time with the energy velocity, we arrive at the following equivalence: 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) )Im(

2
1

2

22

−+
−+

+−−+

++
+

= ωω
ωωϕ

ω ω
τ rr

VV

VtVtL

EE

EE . (I-2. 23) 

From Eq.(I-2. 23), once again for the case of a symmetric structure embedded in a symmetric 

environment, and neglecting the corrective term ( ) ( ) )Im(
2
1 −+ + ωωω

rr on the right hand side of 

Eq.(I-2. 23), we obtain: gE VtV 2≅ , [31] where ϕ
ωτ/LVg =  is the group or tunneling velocity. 

Therefore, our Eq.(I-2. 23) confirms and extends the results first reported in Ref.[31] 

I-2.4 The case of dispersion with negligible absorption. 

In the case at hand, from Eq.(I-2. 17) we obtain: 

( ) ( )∫ ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−=

L R

dzzzG
z

cL
k

0

0 ],Im[ ω
ωε

ω
ϕ
ω ω

εωρρ . (I-2. 24) 

Using the explicit expression for ε
ωρ , Eq.(I-2. 24) can be recast in the following form: 

( ) ( ) ( ) dzzzG
z

zLck
L R

R ],Im[
2

)/2(
0

0 ω
ω

ω
ϕ
ω ω

εωερ ∫ ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+−=  (I-2. 25) 

Eq.(I-2. 25) suggests that the DOM is calculated by averaging the imaginary part of the Green’s 

function over the weight function: ( ) ( )
ω

εωε ω
ω ∂

∂
+

zz
R

R

2
. In analogy with the definition of ε

ωρ , we 

can define ( ) ( ) ( ) dzzzG
z

zLck
L R

R ],Im[
2

)/2(
0

0
2

ω
ω

ω
ω
εωε

ω ω
εωερ ∫ ⎥

⎦

⎤
⎢
⎣

⎡
∂

∂
+−≡∂

∂+
 and we can rewrite Eq.(I-2. 

25) in a more concise form as: 

ω
εωε

ω
ϕ
ω ρρ ∂

∂+
= 2 . (I-2. 26) 

Now, using the explicit expression of the imaginary part of the Green’s function in terms of the 

light modes (see Eq. I-2. C7 in Appendix C) and using the following relation: 

( ) ( ) ( ) ( ) ( ) ( )[ ]±±± +Φ=Φ ∫∫ ωωω ωε rnkdzdzdcdzz
LL

R Im/1// 2,010
0

222

0

2
 we can write ω

εωε

ωρ ∂
∂+

2  in a form 

that involves again the dwell times: 
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( ) ( )
( ) ( ) )Im(

2
1

2 0

2 −+
−+

∂
∂+

++
+

= ωω
ω
εωε

ω
ττρ rr

LckL
DD  (I-2. 27) 

where ( ) ( )( ) 01/2 cnULD
++ = ωτ  and ( ) ( )( ) 02/2 cnULD

−− = ωτ , are the LTR and RTL dwell times, 

respectively, and ( ) ( )[ ] ( ) ( )
( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Φ
+Φ

∂
∂=

±
±±

2

2
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4
1

dz
zdczzU R ω

ωωω ω
ωε

ω
 are the corresponding time-

averaged electromagnetic energies calculated taking into account the dispersion of the medium 

[36]. Therefore all the connections between the Wigner time and the dwell time and their 

relationships with the DOM that were demonstrated for the case of no absorption and no 

dispersion are still valid in the case of dispersion and negligible absorption, provided the energy 

density is calculated taking into account the dispersion of the medium.  

I-2.5 The case of absorption and dispersion  

When the absorption of the material comes into play the DOM calculated using the Wigner 

time can become negative near the absorption line of the material. Therefore, it can no longer be 

interpreted as a DOM in the true sense of the word. On the other hand, the DOM defined through 

Eq.(I-2. 9) continues to be a positive quantity, and maintains the physical meaning of a quantity 

proportional to the mean power emitted by a source located inside the PC, as outlined at length in 

Section 2. In Fig.(I-2. 7a) we compare the DOM calculated using the Wigner time, (dashed line) 

and the DOM calculated using Eq.(I-2. 9) (solid line) for the same structure described in the 

caption of Fig. (I-2. 3), except that the high index layer is endowed with a Lorentzian absorption 

line centered around ω/ω0=0.65, and a refractive index approximately of 1.42 in the visible 

range. The refraction index (n) and the extinction coefficient (β) of the high index layer are 

shown in Fig. (I-2. 7b). The figure shows that the DOM calculated via the Wigner time attains 

negative values near the center of the absorption line of the dielectric material ( c/2−≅ϕ
ωρ  at 

ω/ω0 ≅0.66), while Eq.(I-2. 9) always gives a positive DOM. While this shortcoming clearly 

implies that the Wigner time fails to adequately describe the DOM, it nevertheless continues to 

be a good indicator of the tunneling time imparted to the peak of the transmitted part of an input, 

quasi-monochromatic, un-chirped pulse as it traverses a 1-D barrier. In fact, it is well known that 

the transit time of pulses tuned near the absorption line of a dielectric material can become 

superluminal or even negative as in our case [37-39]. Of course, superluminal or negative transit 

times are not an indication that causality or relativity somehow break down, because the fact is 
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that signal velocity always remains subluminal [40], and the peak of the transmitted pulse can 

always be found under the envelope of a similar input pulse propagating for the same length of 

free space [20]. In Fig. (I-2. 8a) we compare the Wigner time and the transit time of a Gaussian 

pulse of unitary amplitude that traverses the structure. Input pulses at z=0 (z=0 is the location of 

the input surface of the PC) have the following form: ( )[ ]tittzA ωτ −−== 2
0

2 2/exp),0(  where 

ps5.00 =τ and ω is the carrier frequency. The transit time has been numerically calculated as the 

time the peak of the transmitted part of the input pulse needs to exit the structure, and the 

reference time ( t=0) is the time at which the peak of the input pulse reaches the input surface of 

the PC. The figure shows that the transit time is well described by the Wigner time, even when 

Fig. I-2. 7: (a) ωρ (solid line) and ϕ
ωρ (dashed line) vs. ω/ω0 (ω0=2πc/λ0 and λ0=1µm) for the same 

structure described in Fig.(I-2. 3) except that the high index layer now includes a dielectric material 
with a Lorentzian absorption line centered around ω/ω0=0.65 and an index of refraction of 
approximately 1.42 in the visible range. (b) Refractive index (n) (solid line) and extinction coefficient 
(β) (dashed line) of the dielectric material vs. ω/ω0. By definition the refractive index and the extinction 
coefficient are related to the dielectric function by: β+=ε in . The extinction coefficient is 
magnified 50 times. 
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strong absorption and dispersion come into play. In this case the spectral bandwidth of the input 

pulse is ~ 6 THz, which corresponds to ~ 0.83 ps FWHM of the pulse intensity, and the quasi-

monochromatic limit is approached (this limit is quickly reached because the spatial extension of 

a typical pulse is always much larger than the typical structure, which is only a few microns in 

length). The transmitted pulses come out only slightly distorted with respect to the input pulses, 

and attenuated by a factor that depends on the transmission properties of the PC. In general, in 

the presence of absorption, the Wigner time correctly estimates the transit time for any quasi-

monochromatic Fourier-limited pulse. In the case of a quasi-monochromatic linearly chirped 

Fig. I-2. 8: (a) Transit time (solid circles) and Wigner time (solid line) vs. ω/ω0 (ω0=2πc/λ0 and 
λ0=1µm) where ω is the carrier frequency of the input pulse. The structure is the same as that described 
in Fig. (I-2. 7). Input pulses at z=0 (z=0 is the location of the input surface of the PC) have the 

following form: ( )[ ]tittzA ωτ −−== 2
0

2 2/exp),0(  where ps5.00 =τ . The transit time has 
been calculated as the time the peak of the transmitted part of the input pulse needs to exit the structure, 
and the reference time (t=0) is the time when the peak of the input pulse reaches the input surface of the 
PC. (b) Tansit time (solid triangles) and Wigner time (solid line) in the case of a Gaussian pulse with 

ps1.00 =τ  
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pulse, the transit time is related to the Wigner time through the relation: ttransit=tWigner+δγ∆t2, 

where δ=[(dT/dω)/T]ω=ω0 and γ is the magnitude of the linear chirp [20]. 

If shorter pulses were used, as in Fig. (I-2. 8b), where the pulses have a duration in time of 

approximately 0.16 ps FWHM of the pulse intensity, the transit time then begins to differ 

significantly from the Wigner time. In this case higher order terms of the geometrical dispersion 

of the structure that are not accounted by the Wigner time come into play, and as a consequence 

pulses that tunnel through the structure undergo appreciable distortion. 

Conclusions 

In conclusion, we have highlighted the connections that exist between the DOM and 

tunneling times for 1-D barriers. In the absence of absorption, the DOM calculated using the 

Wigner time is approximately equal to the average of the LTR and RTL dwell times, divided the 

length L of the structure. We have shown that the self-interference delay is generally negligible 

(Eqs.(I-2. 19) and (I-2. 20), and Fig. (I-2. 6). Both the Wigner and dwell-time DOMs 

overestimate the true DOM defined in our Eq.(I-2. 9) by a factor roughly proportional to the 

average index of the barrier (Eq.(I-2. 18), and Figs.(I-2. 3) and (I-2. 5)). Structures embedded in 

symmetric environments composed of a sufficient number of periods acquire the properties of 

symmetric structures, and the DOM calculated through the Wigner time is then approximately 

equal to the DOM calculated using the energy density (Eq.(I-2. 20) and Fig.(I-2. 4)), as first 

proposed in Ref.[8] using heuristic arguments. In the case the absorption, the Wigner DOM can 

become negative (see Fig. (I-2. 7)), while the true DOM remains always positive. In that case, 

the Wigner DOM ceases to be a valid representation of DOM, but can still be interpreted and is 

still a good measure of group velocity of un-chirped, quasi-monochromatic pulses. We conclude 

that the DOM in 1-D barriers should always be calculated using our Eq.(I-2. 9), and plenty of 

caution should be exercised when one makes connections between the DOM and tunneling 

times. Such a connection sometimes yields useful information about the system, such as group 

velocity, for example, but if the true DOM is sought the approach suggested by our Eq.(I-2. 9) 

should always be preferred.  

Finally, we point out that while the DOM defined through Eq.(I-2. 9) can be 

straightforwardly generalized to multidimensional cases, the other definitions based on the 

tunneling times find a direct link with the DOM only in one dimension, and then only when there 

is no absorption. 
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I-2.A Appendix A 

We begin with Eq.(I-2. 3): 

( ) ( ) ( ) ( )ξδξεωξ ωωω −=+
∂

∂ z
c

zGz
z

zG
2

2

2

2 ,,
 (I-2. A1) 

when ),( ξω zG exists, it follows that ),( ξω zG satisfies the homogeneous equation: 

( ) ( ) ( )
0

,,
2

2

2

2

=+
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∂
c

zGz
z

zG ξεωξ ωωω , (I-2. A2) 

at all points of the interval 0≤z≤L except at the point z=ξ. As discussed at length in Ref. [24], the 

light-modes ( ){ }±Φω  are a fundamental (you mean complete?) set of solutions of Eq.(I-2. A2) and 

they are subject to the following boundary conditions (see Fig. (I-2. 2)): 
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. (I-2. A3) 

Consequently, we can express the most general solution of Eq.(I-2. A1) as: 
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 (I-2. A4) 

The four constants must now be determined. First we impose the condition of “outgoing waves”. 

This condition requires that the radiated energy from the point source located at z=ξ leaves the 

structure, and no energy is incoming into the structure. This means that the coefficients D1 of the 

incoming RTL wave and the coefficient D2 of the incoming LTR wave must be zero. The 

constant C1 and C2 must be determined by imposing the continuity of ),( ξω zG  at z=ξ, while iits 

derivative has a jump of magnitude one [25]. Following the above procedure we find: 
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where ( )( )
( )

( ) dzddzd
W
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ΦΦ
ΦΦ

≡ΦΦ
ωω

ωω
ωω  is the Wronskian of the fundamental set of 

solutions. In our case the Wronskian is a conserved quantity, i.e. ( )( ) 0/, )( =ΦΦ +− dzdW ωω . This can 

be shown by resorting to the boundary conditions in Eq.(I-2. A3). The result is: 
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one also derives that ( ) ( )
ωωω ttntn ~

2,01,0 == +− . The Wronskian calculated at the point z=ξ can be 

consequently expressed as: 
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+−+− . (I-2. A6) 

Eq.(I-2. 4) in the main text follows from Eqs.(I-2. A4),(I-2. A5),(I-2. A6). 
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I-2.B Appendix B 

We start by writing the Helmholtz equation for the field ( ) ( )z+
+Φ δωω : 
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. (I-2. B1) 

Let us write λωδω =  where λ<<1 is a perturbation parameter, and let us expand the functions in 

Taylor series: 
( ) ( ) ( ) ( ) ( ) ...+Γ+Φ=Φ ++

+ zzz ωωδωω λ , (I-2. B2.1) 
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where ( ) ( ) ( )( )ωω ωω ∂Φ∂=Γ + /zz . By substituting Eqs.(I-2. B2.1) and (I-2. B2.2) in Eq.(I-2. B1) 

and equating the terms of order λ, we obtain the following equation for ( )zωΓ : 
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The solution of second order linear differential equations of the same type as that in Eq.(I-2. B3) 

can be written using the method of the Green’s function [25]. In our case, the solution of Eq.(I-2. 

B3) with the boundary conditions corresponding to “outgoing waves” can be expressed in terms 

of the Green function calculated in Appendix A as follows: 
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by calculating Eq.(I-2. B4) for z=L we obtain Eq.(I-2. 14) in the main text. 



 30

I-2.C Appendix C 

Let us start from the definition of ε
ωρ : 

( ) ( ) dzzzGzLck
L

R ],Im[)/2(
0

0 ωω
ε
ω ερ ∫−= . (I-2. C1) 

Eq.(I-2. C1) can be rewritten in the following form : 
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where we have used the expression of the Green’s function given by Eq.(I-2. 4) in the main text, 

we have written the LTR and RTL modes as: ( ) ( ) ( )( )±±± Φ=Φ ωωω ϕizz exp)()( , and the transmission 

function of the PC as: )](exp[~~ ωϕωω titt = . Now, equating the real and imaginary parts of Eq.(I-

2. A6), we obtain:  
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Using Eq.(I-2. C3.2), we can recast Eq.(I-2. C2) in the following form: 

( ) ( ) ( )
( ) ( )

dz
dz

d
dz

dz
tcLk

L
R

⎥
⎦

⎤
⎢
⎣

⎡
−ΦΦ=

−+
−+∫ ωω

ωωω

ω

ε
ω

ϕϕερ
22

0
2

0
~2

1 . (I-2. C4) 

For a non-absorbing PC, i.e. ( ) 0=zI
ωε , it can be shown that ( ) ( ) )/()(

2
dzdz ±±Φ ωω ϕ  is a conserved 

quantity [31] and it can be calculated by resorting to the boundary conditions imposed on the 

LTR and RTL modes, i.e. Eqs.(I-2. A3), giving the following results: 
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From Eqs.(I-2. C5) and (I-2. C4) we obtain: 
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and we also arrive to an useful expression of the imaginary part of the Green’s function in terms 

of the LTR and RTL light modes: 
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Now, using the relation: ( ) ( ) ( ) ( ) ( ) ( )[ ]±±± +Φ=Φ ∫∫ ωωω ωε rnkdzdzdcdzz
LL

R Im/1// 2,010
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222
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 [8],[31], 

Eq.(I-2. C6) can be recast in the following form: 
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 (I-2. C8) 

The dwell time is defined as the average electromagnetic energy density stored in the structure 

divided by the input power [31-32]. In our case the expression for the dwell times for a LTR and 

RTL input are respectively: 
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where ( )
1,0nn =+  and ( )

2,0nn =− . Eq.(I-2. 19) in the main text comes from Eq.(I-2. C8) and (I-2. 

C9). 
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I-3 THz Generation via Difference Frequency Generation in a χ(2) Photonic Crystal 

I-3.0 Introduction 

Recently, a great deal of attention has been devoted to the problem of the generation of 

coherent THz radiation because of the many possible applications that have been identified: from 

spectroscopic imaging to radar systems, and from security and medical to biological as well as 

pure research purpose. Unfortunately, the number and types of THz sources available are not 

always adequate for all possible applications mentioned. This has led to a great deal of activity to 

come up with new designs and sources with different characteristics. Free-electron lasers and 

synchrotron radiation are powerful THz sources, but their physical size limits their application. 

More compact sources are based on photoconductivity (electro-optic devices) and optical 

rectification (all optical devices). In the first case a femtosecond laser operating in the visible or 

near infrared regime is used in order to create electron-hole pairs that accelerate through an 

appropriate electric field. The resulting changing dipole leads the generation of THz generation 

[1,2]. These  kinds of devices are usually referred to as photoconductive antennas. In the second 

case, a femtosecond pulse interacts with a nonlinear crystal with a second order nonlinear 

susceptibility, generating a THz pulse through optical rectification [3]. Organic and inorganic 

electro-optic crystals like DAST, ZnTe, GaAs, LiNbO3 [4,5], as well as polymers [6] have also 

been exploited. A wide range of techniques are currently under investigation including: quantum 

cascading [7], optical parametric oscillations [8], femtosecond pulse shaping [9]. Most of these 

sources produce THz pulses. Continuous THz sources can be obtained through difference 

frequency generation in second order nonlinear crystals. In this case two c.w. optical pumps 

interact in the crystal and generate coherent THz radiation at frequency ∆ω=ω1-ω2, where ω1 and 

ω2 are the frequencies of the pumps. For this purpose inorganic crystals like GaP [10] and GaSe 

[11], for example, have been used. Most recently, organic crystals (DAST) [12, 13] and EO 

polymer composites [14, 15] (CFAPC, DAPC, …) with large nonlinearity have been explored 

with promising results. Some limitations of those techniques include low tunability range, and/or 

low efficiency. The latter is usually due to material absorption at THz wavelengths. Typical 

conversion efficiencies experimentally achieved are of the order η∼10-6 [11]. 

We study THz emission from a χ(2) –doped, one-dimensional photonic crystal (1-D PC), 

based on a rigorous Green function approach, and a three-dimensional vector model. THz 

radiation is generated via a difference-frequency generation (DFG) process, where two nearly-
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degenerate optical pumps of frequencies ω1 and ω2 generate a frequency ω3=ω1-ω2 found in the 

THz range. The pumps are assumed to work in a collinear configuration. The 1-D PC structures 

that we study are known to exhibit some peculiar properties, such as field localization, 

superluminal pulse propagation in the band gap, and high density of modes, to name a few , but  

the structure is flexible enough that it can be optimized for various and quite different purposes, 

including nonlinear frequency conversion [16]. Previously, the dispersive properties of photonic 

band gap structures had been used to solve the phase matching problem using the optical 

rectification effect [17]. The use of 1-D layered structures, in order to generate submillimeter 

wavelengths through difference frequency generation, was already anticipated by Bloembergen 

and Sievers [18] in 1970. In their seminal paper, the authors discussed the properties of nonlinear 

optics, in particular of second order phenomena, namely second harmonic and sum/difference 

frequency generation in such structures. Although, Bloembergen and Sievers considered infinite 

structures, the results they obtained have general validity: they showed that the periodicity of the 

layered structure can be used to compensate the normal dispersion of materials in order to obtain 

high conversion efficiency through phase-matched second order interactions. On the other hand, 

as we will see later, in the case of finite structures the efficiency of second order interaction is 

not directly linked to a phase-matching term, but rather to overlap integrals of the interacting 

fields, as also discussed in Refs [19-20]. A first study of THz emission in 1-D PCs that used a 

coupled mode analysis to describe multiple field confinement, enhancement, and overlap near 

the photonic band edge of one-dimensional photonic band gap structures was described in 

reference [21]. That study, which analyzed THz emission from a defect layer, showed that it was 

possible, at least in principle, to obtain continuous and tunable sources from the sub-THz regime 

up to 12 THz. The advantages of using finite 1-D PCs in order to generate THz radiation can be 

found in the flexibility of those structures that allow achieving high conversion efficiency either 

in collinear and non collinear configuration due to high field localizations. 

I-3.1 General considerations 

We are studying THz generation via a second order process, which means we have two 

pumps and four second-order processes involved, and four generated fields. Three of those fields 

are generated at optical frequencies (2ω1, 2ω2, ω1+ω2), while the fourth is generated in the THz 

region (ω1−ω2). The efficiency of optical processes is in general much greater than THz 

generation, and so those processes cannot be ignored. The first challenge is to inhibit any 
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undesired process. The transmission spectrum of a 1-D photonic crystal is characterized by wide 

band gaps and relatively narrow transmission peaks. Frequencies that fall inside the gap 

correspond to modes that are not supported by the cavity, have poor localization properties, [22], 

so that if a generated frequency falls inside the gap the related process is practically inhibited. 

The key to efficient THz generation is then to find a structure in which all the generated 

frequencies, except the THz, are tuned inside a transmission gap. The two optical pumps (ω1 and 

ω2) are nearly degenerate (ω1~ω2~ω); therefore, one important condition is to design a 1-D 

structure such that the frequency 2ω happens to fall inside a gap. 

As an example, in the Fig. (I-3. 1) we show the transmittance of a 1-D structure composed of 

40 periods of alternating layers (n1~1.8, n2~1.4) whose thicknesses are chosen to be a=λ/2n1 and 
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Fig. I-3. 1: Transmission spectrum of a one-dimensional periodic structure. The elementary cell is made 
by two layers of refractive index n1=1.8 and n2=1.4 at the frequency λ0=1 µm. The lower index layer 
exhibits a normal dispersion. The thickness of the two layers are respectively d1= λ0/2n1, d2= λ0/4n2. 
The structure is surrounded by air (n0=1). The transmission is a function of the normalized frequency 
ω/ω0, where ω0=2πc/λ0. In the inset is reported the spectrum of THz frequencies as a function of THz. 
The colored region in the inset is the part of THz spectrum for which all the undesired second order 
processes fall in the gap. 
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b=λ/4n2, respectively where λ is the reference wavelength λ=1µm. The high index layers are 

assumed to possess normal dispersion, while for simplicity the low index material is assumed to 

be dispersionless. Fig. (I-3. 1) thus suggests that if the pumps ω1 and ω2 are chosen near the first 

order band edge, as indicated, then the frequencies 2ω1, 2ω2, and ω1+ω2 are to be found 

somewhere inside the second order band gap, and their generation will be suppressed. On the 

other hand, the wave at the difference frequency ω1−ω2  (THz) will be tuned within the first pass 

band, away from any gap, and so it will not be inhibited. 

I-3.2 Plane wave approach 

In this section we follow a plane-wave approach to describe the multi-wave interaction. We 

deal with a six-field problem: two pumps (ω1 and ω2), the second harmonics (SHs) (2ω1 and 

2ω2), the up-converted or sum frequency (SF) (ω1+ω2), and the down-converted or difference 

frequency (DF) (ω1-ω2). We have to solve a system of six coupled, second order differential 

equations: 
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. ( I-3. 1)  

In the system of Eqs.(I-3. 1), d(2) is the nonlinear optical coefficient. It is assumed to be 100 

pm/V for all processes, a practical but sensible value for many semiconductor materials.   

In the un-depleted pump regime all the recombination processes can be neglected and the formal 

solution of system (I-3. 1) is: 
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where Φω
+ and Φω

- are the Right-to-Left (RTL) and Left-to-Right (LTR) linear propagating 

modes of the structure [23-24], respectively, at frequency ω, with ω=2ω1, 2ω2, ω1+ω2, ω1-ω2.   

The propagation modes are steady state waves, and in each layer they have the form of a 

superposition of  forward and backward propagating plane waves, (the general solution of the 

Helmoltz equation) with suitable coefficients that can be calculated through a standard matrix 

transfer method [25]. Moreover, the LTR mode satisfies the boundary conditions: 
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Lz
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⎛ω  

Lz

LTRLTR )z(
dz
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c
i

=

φ=⎟
⎠
⎞

⎜
⎝
⎛ω  compatible with a plane wave that 

propagates from right to left. In Eq. (I-3. 2), A1, A2, B1, B2 are complex coefficients that have the 

dimensions of an electric field. These coefficients are uniquely determined by the boundary 

conditions. In the special case of LTR incidence, B1 and B2 are zero, while A1 and A2 are the 

magnitude of the pumps’ electric fields at the first interface. On the other hand, in the case of 

RTL incidence, A1 and A2 are zero, while B1 and B2 are the magnitudes of the pumps’ electric 

fields at the last interface. In this section we will study only the case of LTR incidence, so B1 and 

B2 are set to zero. In Eqs. (I-3. 2), Gω is the Green function at frequency ω, ω=2ω1, 2ω2, ω1+ω2, 

ω1-ω2 [23-24]: 
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where t(ω) is the transmission of the structure at frequency ω. 

In the plane wave regime, the conversion efficiency η of a process is defined by the ratio of the 

intensity of the generated wave Ig and the sum of the input pump intensities Ipump: 
∑

=η
pump

g

I
I

. 

In this case, forward η+ and backward η- conversion efficiencies can be defined without 

ambiguity as follows: 
∑

=η
±

±

pump

g

I
I

 where ±
gI  are the intensities of the generated 

electromagnetic field in the forward (+) and backward (-) directions. Taking into account the 

relation between the intensity and the electric field for the plane waves (in complex notation) 

I=ε0c|E|2 we have for the conversion efficiencies of the four generated waves: 
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Fig. I-3. 2: Conversion efficiency vs. generated THz frequency. The full trace is the total conversion 
efficiency, defined as ηtot=η2ω1+η2ω2+ηω1+ω2+ηω1-ω2. The dashed trace is the forward THz conversion 
efficiency η+

THz multiplied by 100. The small dashed line is the backward THz conversion efficiency η-

THz multiplied by 100. The two pumps are arranged as shown in Fig. I-3. 3. The intensity is assumed to 
be 10 GW/cm2 for both pumps. 
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 (I-3. 4) 

Where grating (z) is the grating of the second order nonlinearity. I1 is the intensity of the pump at 

frequency ω1 and I2 the intensity of the second pump, Q is the ratio I1/I2 and Itot is the total 

intensity I1+I2.From Eq. (I-3. 4) it follows that we have the higher conversion efficiency for the 

Fig. I-3. 3: Transmission spectrum as a function of the normalized frequency near the band edge. ω1 is 
fixed on the band edge resonance, while ω2 is moved back in frequency. 
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DF (and the SF) when the two pumps are balanced (I1=I2). So we will consider only the case 

I1=I2.The total conversion efficiency ηtot is defined as the sum of all the conversions efficiencies: 

ηtot=Σηi. In Fig. (I-3. 2) we report ηtot as a function of the generated THz radiation. The total 

intensity is fixed to a value of 20 GW/cm2 (10 GW/ cm2 for each pump). ω1 is tuned at the band 

edge while ω2 is chosen such that (ω2−ω1) ranges from 1 to approximately 10 THz (see Fig. (I-3. 

3)) and in such a way that the second harmonic always falls inside the second order gap to 

suppress its conversion efficiency. As shown in Fig. (I-3. 2) the un-depleted pump approximation 

is well verified also for the relatively intense, incident fields we are considering. The conversion 

efficiencies of Eq. (I-3. 4) is proportional to the product of the square of the frequency (L/λ)2, 

and a term that represents the structure’s properties via an overlap integral which we focus on 

below: 
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Fig. I-3. 4: Transmission and square modulus of the overlap integrals as a function of the second pump 
normalized frequency (lower scale) and vs. the THz generated frequency (upper scale) 
The dark line is the Transmission (T), the dark dashed line is the sum of all the THz overlap integrals 
(ITHz tot), the gray line is the THz forward overlap integral (ITHz for), the gray dashed line is the 
backward overlap integral (ITHz back), and the gray small dashed line is the sum of the overlap integrals 
of all the other generated frequencies, the optical ones (Σ Iopt). 
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In Fig. (I-3. 4) we report the behavior of the integral overlap as a function of ω2 (lower scale) and 

the generated THz frequency (upper scale). We have greater total efficiency at 1 THz, when the 

two pumps are both tuned to the band edge resonance, and the largest forward efficiency at 2.5 

THz, when the ω2 is tuned to the second transmission resonance. This suggests that if one wishes 

to generate a low THz frequency (~1THz), better results can be obtained with a structure having 

broader resonances, such that both pumps can be tuned within the same resonance. For example, 

with a similar structure (25 periods instead of 40) the overlap integrals at 1 THz (and so the 

conversion efficiency) are nearly double. Moreover, the structure (at least for LTR incidence) 

will generate efficiently up to 3-4 THz, as the overlap integral becomes progressively smaller at 

higher frequencies. 

Up to now we have used a fixed value of ω1 to maximize its localization properties, while 

tuning ω2 to lower frequencies. This may not be the best choice, but it provides a good 
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Fig. I-3. 5: Overlap integrals as functions of the normalized first pump frequency ω1/ω0, for four 
generated frequency: a) ω1-ω2=1THz b) ω1-ω2=2.4THz c) ω1-ω2=5THz d) ω1-ω2=7.5THz. The black 
line is the Transmission, the black dashed line is the sum of the THz overlap integrals (Overlap Tot), 
the gray line is the forward THz overlap integral (Overlap F), and the gray dashed line is the backward 
overlap integral (Overlap B). 
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qualitative picture of what one may expect for structures similar to our own.  If the desired 

outcome is a tunable device with only one tunable pump, the situation we have described is 

suitable. In Fig. (I-3. 5) we show what happens to the overlap integrals if we tune ω1 away from 

the band edge, for the generation of 1, 2.4, 5 and 7 THz. The result is that only for the highest 

frequency (7.5 THz) the chosen configuration is not ideal. The plane waves approach offers a 

complete description for all the optical frequencies because it allows the calculation of the 

conversion efficiency as long as the spatial properties of the emitted fields are those of plane 

waves. In fact, this model offers only partial information on THz emission in that while it allows 

a correct estimation of the conversion efficiency, diffraction of the generated THz waves is not 

taken into account, and we have little or no information on the spatial distribution of the 

radiation. This aspect of THz generation will be discussed in the next section with the help of a 

three dimensional model. 

I-3.3 Three dimensional approach 

In this section we develop a three dimensional model to simulate the spatial characteristic of 

THz generation. The THz signal is generated from the interaction of two optical pumps in a 

volume that can be approximated with a cylinder of radius R (equal to the pumps spot size) and 

length equal to the length of the 1-D PC structure (See Fig. (I-3. 6)). As explained in the previous 
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Fig. I-3. 6: Configuration of the three-dimensional simulations. The pumps enter the structure at normal 
incidence; the interactive area is a cylinder of radius R equal to the spot size and length L equal to the 
PC length. 
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section, we can neglect all the recombination terms. The THz field, according to Maxwell’s 

equations, satisfies the vectorial equation: 

*
21EEEE :d2ˆxx

)2(

00
2 εεµω =−∇∇  (I-3. 6) 

Equation (I-3. 6) has the formal solution:  

*
21EEr'rE :d2),(Ĝ'dV

)2(

0
V

2
0 εωµ ∫=  (I-3. 7) 

where ),(Ĝ r'r  is the dyadic Green function of the problem; 
)2(

d is the nonlinear tensor; E1 and 

E2 are the pump fields. Without lack of generality we will study the configuration E1//E2//PNL. 

As the THz wave-length is much greater compared to the length of the structure, the structure 

itself may be considered a point source of THz radiation. In Eq. (I-3. 7) we can use the free space 

dyadic Green function [26].In the far field approximation, the dyadic Green function reduces to 

the simple form [27]: 
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Assuming a plane wave form for the pump fields from Eqs.(I-3. 6&7), we arrive at the following 

expression for the electric field: 
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Fig I-3. 7: Spatial distribution of THz emission a) from a 1-D PC, b) from an equivalent bulk, c) from a 
point dipole. 
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⎝
⎛−= ++
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*
210x )'x(grating)'x()'x(

r
'xxkiexp'dxI ; J1 is the Bessel function of order 1; 

ρ2=y2+z2; A1 and A2 are the amplitude of the pump fields E1 and E2. 

From Eq. (I-3. 9) the square modulus of the electric field and the Poynting vector (S) can easily 

be calculated. The intensity of the electromagnetic field is given by the modulus of the Poynting 

vector. It comes out that the emission is directional, namely: the intensity of the electromagnetic 

field is largest near the x axis and the direction of the Poynting vector is nearly along the x axis. 
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Fig. I-3. 8: Square modulus of the electric field, at a plane parallel to the yz plane, distant 4 cm from the 
source, in the forward direction as a function of the z coordinate. The full line is the photonic crystal 
emission, the dashed line is the equivalent dipole emission and the small dashed line is the equivalent 
bulk emission. In the case of: a) ω1-ω2=1 THz b) ω1-ω2=2.5 THz c) ω1-ω2=5 THz d) ω1-ω2=7.5 THz. 
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Moreover, even if the emission is not in the form of a plane wave we have that |S| ∝ E·E'. 

The THz emission obtained pumping the 1-D PC structure may be compared with the emission 

obtained from an equivalent bulk and that of an equivalent dipole. In Fig (I-3. 7) we show the 

spatial emission for both: 1-D PC, bulk and equivalent dipole emissions at 1THz. Moreover in 

Fig (I-3. 8) we plot the emission for the generation of 1, 2.5, 5 and 7.5 THz. 

The equivalent bulk is composed of a non-linear material of length L1 equal to the sum of all the 

non-linear layers in the 1-D PC structure. The emission from that structure is found following the 

model developed by Shen [27]. 

The equivalent dipole is a point dipole of intensity given by the sum of all the dipole distributed 

in the 1-D PC structure. Although the point dipole is an idealization, comparing this case with 

the 1-D PC and the bulk shows that the 1-D PC and the bulk have a much more directional 

emission. That directionality is due to the fact that in both cases the dipoles are excited by highly 

directional optical pumps. As predicted by the plane wave approach, the emission from the 1-D 

PC structure can be much higher than the emission from the bulk. In particular, at 1 and 2.5THz, 

Figs. (I-3. 8a) and (I-3. 8b), we have an enhancement of nearly 6 with respect to the bulk. At 5 

THz (Fig. (I-3. 8c)) the emission from the 1-D PC and from the bulk are nearly equal. At 7.5 

THz (Fig. (I-3. 8d)) there is no advantage in using the 1-D PC. 

To evaluate the conversion efficiency we calculate the flux of the Poynting vector through a 

close surface and divide it by the flux of the pumps through the input surface S (a circle of radius 

R). For example, we can enclose the source in a cylinder of radius a, and length 2d, where d>>L 

(far field approximation). In that case we have: 
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 (I-3. 10) 

Note that the Poynting vector goes to zero far from the x axis. So if in Eq. (I-3. 10) the radius a is 

taken large enough to contain the peak of the emission, we identify three contributions to the 

conversion efficiency: forward (η+), backward (η-) and lateral (ηlat) conversion efficiency, as 

follows: 
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The forward and the backward conversion efficiency are proportional to the flux of the Poynting 

vector through the basis of the cylinder. The lateral conversion efficiency is proportional to the 

flux of the Poynting vector through the lateral surface of the cylinder. 

It turns out that the emission through the lateral surface is negligible with respect to the emission 

through the basis of the cylinder. Expression (11) can be recast in the following form: 
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Fig. I-3. 9: Overlap integrals (lines) and their equivalent for the 3-D model (points) as functions of the 
generated THz frequency. The full line and the circles are for the total (sum of the forward and 
backward) overlaps (Overlap Tot and EqOverlap Tot), the dashed line and square are for the forward 
overlaps (Overlap forward and EqOverlap forward), while the small dashed line and the triangle are for 
the backward overlaps (Overlap backward and EqOverlap backward). 
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In Eq. (I-3. 13) ∫ ΦΦ⎟
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quantities +
eqI  and −

eqI  play in the conversion efficiency of the three dimensional model the same 

role as the overlap integrals defined in Eq. (I-3. 5).  

 In Fig. (I-3. 9) we compare the behavior of the overlap integrals in the two models. While 

the two models have the same qualitative behavior, there are some quantitative differences due to 
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Fig. I-3. 10: Field localization as a function of the propagation coordinate x, for several incidence 
frequencies ν, in the plane wave approximation. Full line ν=100THz, dashed line ν=10THz, small 
dashed line ν=1THz, dashed-point line ν=0.1THz. The gray line is the refractive index grating of the 
structure. 
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the fact that on one hand the 3-D model neglects the internal details of the structure for the THz 

frequency, while on the other hand, the 1-D model neglects the 3-D aspect of the emission. The 

localization of the field grows with frequency, while the emission spread goes in the other 

direction. So moving to higher frequencies the field localization becomes dominant and the 1-D 

model makes more accurate predictions, while moving to lower frequencies it is the 3-D model 

that becomes more accurate. THz frequencies lie in the transition region between those two 

regimes. In Fig. (I-3. 10) we plot the field localization (the square modulus of the 1-D PC modes) 

moving from the microwaves to the far infrared. If there is no localization we will have a 

constant value 1, otherwise we will see oscillations end maybe high localization zones. It is clear 

that from this point of view THz frequencies represent a transition region. Even if we do not 

have strong field localization, one cannot assume that THz radiation does not feel the structure. 

I-3.4 Four gate system 

As shown by Centini et al [28] the use of the 1-D PC structure as a four gate system, namely 

pumping the structure from both sides, modifies the field distribution of the pumps inside the 

structure. This effect allows us to change the conversion efficiency [28] and the ratio of the 

forward and backward emission by changing the phase difference between the RTL and LTR 

input fields. The overlap integrals (Eqs. (I-3. 5) and (I-3. 13)) become functions of the phase 

differences ∆ϕ1 and ∆ϕ2 between the RTL and LTR incident fields at frequencies ω1 and ω2, 

respectively. In particular pumping from both sides makes it possible to control: (a) field 

localization in the active layers; and (b) the amount of relative forward and backward THz 

emission. In order to take advantage of effect (a) we need the pumps to be tuned at the 

transmission peaks near the band edge, where the field is most intense. In order to take advantage 

of effect (b) we need the LTR and RTL modes of the generated frequency to have different 

localization properties. 

In Fig. (I-3. 11) we report field localization of the structure’s modes (LTR and RTL) for 1, 

2.5, 5, and 7.5 THz. At 1THz the field does not feel the structure: there is no field localization 

and the LTR and RTL are practically the same and flat. In this case we may not change the 

balance of the forward and backward emission. Moreover, the two pumps are tuned at the band 

edge, and we expect to have higher conversion efficiency. At 2.5THz LTR and RTL mode 

localization is sensibly different. We expect to be able to change the balance of the forward and 

backward emission in an equally sensible way. As only one pump is tuned at the band edge, we 
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do not expect to fully exploit field localization effects. At 5 and 7.5 THz we still have that the 

LTR and RTL modes localized differently and so we can partially control the directionality of 

the emission.  But the efficiency of the process will not be as high as also having the second 

pump tuned far from the band edge. 

In the conversion efficiencies formulas, in the case of LTR+RTL incidence, the only factors 

that change are the overlap integrals, Eq. (I-3. 5), and the corresponding quantity in the 3D 

model, Eq. (I-3. 13). In Eqs (I-3. 5) and (I-3. 13) )z(
1

+
ωΦ  must be replaced by 

( )1iexp)z()z(
11

ϕ∆Φ+Φ −
ω

+
ω  while, )z(

2
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ω−Φ  must be changed to ( )2iexp)z()z(

22
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Because in case of symmetric or nearly symmetric structures, we have that )zL()z( −φ≈φ −
ω

+
ω , 

the following condition is satisfied:  ),(I),(I 2121 ϕ∆ϕ∆=ϕ∆−ϕ∆− +−   

This means that if the behavior of the forward overlap integral is known, then the backward 

overlap integral is also known. The phase differences ∆ϕ1 and ∆ϕ2 can be chosen (at each 

frequency) in order to maximize the total conversion efficiency (η++η-), namely the sum of the 

forward and backward overlap integrals, as well as the forward or the backward conversion 

efficiency. 
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Fig. I-3. 11: Field localization as a function of the propagation coordinate x, in the case of LTR 
incidence (full line) and RTL incidence (dashed line). The frequency ν is a) 1THz b) 2.5THz c) 5THz 
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In Fig. (I-3. 12) we show what happens when ∆ϕ1 and ∆ϕ2 are chosen in order to maximize 

the total conversion efficiency. Note ∆ϕ1 and ∆ϕ2 have a different value for each frequency. The 

forward and the backward overlap integrals, as well as the sum of the two, are plotted as 

functions of the generated THz frequency. Comparing the behavior of the total overlap integral 

with the case of LTR incidence (Fig. (I-3. 9)), we find an enhancement factor of nearly 4 at 1 

THz, which translates to an enhancement factor of nearly 20 with respect to the bulk. Moreover, 

the four gate system is always more efficient than the one sided incidence, but any significant 

advantage quickly goes away as the second pump moves away from the band edge, and the 

generated frequency increases. The maximum efficiency is reached almost always when the 

forward and the backward emissions are nearly equal. The 3-D and the 1-D models show some 

quantitative differences for reasons that were discussed earlier. In Fig. (I-3. 13) we show what 

happens when ∆ϕ1 and ∆ϕ2 are chosen in order to maximize the forward conversion efficiency. 

According to Fig. (I-3. 11), near 1 THz, we cannot control the direction of the emission. In that 

case forward and backward emissions are similar. As one moves to higher frequencies, control of 

the directionality of the emission increases, and the efficiency drops. 
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Fig. I-3. 12: Overlap integral (lines) and its equivalent for the 3-D model (points) in the case of both 
sides incidence. For both pumps, the phase difference between the LTR and RTL beam is chosen in 
order to maximize the total conversion efficiency. The full line and the circles are for the total overlaps; 
the dashed line and the squares are for the forward overlaps; the small dashed line and the triangles are 
for the backward overlaps. 
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Conclusions 

We have developed a 3-D model able to simulate THz emission from a PC structure via 

difference frequency generation. The model allows the calculation of the conversion efficiency 

as well as the spatial properties of the emission. This model also shows that 1-D PC structures 

are versatile and powerful devices, able to efficiently generate THz frequencies. The general 

analysis on THz emission in PC structure carried out in this work is a useful overview that will 

allow us to properly design structures for specific purposes. 

In this paper we have not referred to any particular material, and so our results have general 

validity, thanks in part to the fact that 1-D PCs with similar characteristics can be obtained 

adjusting the number of periods and/or the index contrast. A structure with low index contrast 

and large number of periods behaves like a structure with a high index contrast and fewer 

periods. Moreover, we stress that not all materials suitable for stratification have been 

characterized in the THz regime, and at the present time, the best candidate for nonlinear 

material appears to be GaAs, which has already been used to generate THz pulses via optical 

rectification [5]. 

0

1

2

3

4

2.5 5.0 7.5

Overlap tot
EqOverlap tot
Overlap forward
EqOverlap forward
Overlap backward
EqOverlap backward

ν [THz]

O
ve

rl
ap

 In
te

gr
al

0

1

2

3

4

2.5 5.0 7.5

Overlap tot
EqOverlap tot
Overlap forward
EqOverlap forward
Overlap backward
EqOverlap backward

ν [THz]

O
ve

rl
ap

 In
te

gr
al

Fig. I-3. 13: Overlap integral (lines) and its equivalent for the 3-D model (points) in the case of both 
sides incidence. For both pumps, the phase difference between the LTR and RTL beam is chosen in 
order to maximize the forward conversion efficiency. The full line and the circles are for the total 
overlaps; the dashed line and the squares are for the forward overlaps; the small dashed line and the 
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I-4 Cross phase modulation effects in a χ(3) photonic crystals: applications 

to all-optical switching devices 
I-4.0 Introduction 

We present a numerical study of a finite photonic band gap structure with a χ(3)
 nonlinearity 

that couples two input pump beams at frequencies ω1 and ω2. We show that in this configuration 

a variety of all-optical devices can be obtained: an optical transistor, a double switch, and a 

dynamical switch. The seminal work of Chen and Mills [1] on the appearance of gap solitons in 

one-dimensional photonic crystals (1-D PCs) with a χ(3) nonlinearity can be characterized as the 

beginning of a period of intense experimental and theoretical investigations whose focus was to 

study the possibility of using these structures as all optical devices: as switching and limiting 

devices, and as diodes [2-8]. Although a large number of papers have already been published on 

the subject, the vast majority of them generally consider configurations with only one input 

pump beam, limiting the flexibility of the proposed devices. In reference [8] a more flexible 

configuration was studied, but the proposed device is an electro-optic rather than an all-optical 

device. Here we study an all-optical device based on a two-pump scheme, where the two pumps 

are coupled by the cross phase modulation terms of the cubic nonlinearity. In particular, we will 

discuss an optical transistor, a double switch, and a dynamical switch. 

I-4.1 The model. 

Our study is based on the plane monochromatic wave approach. Two input beams, of 

frequencies ω1 and ω2 respectively, propagate in the z direction and arrive at normal incidence at 

the input surface of a 1-D PC composed of alternating layers of a linear dielectric material 

juxtaposed to a non linear dielectric material with a cubic nonlinearity. The two waves are 

assumed to be linearly polarized in the same direction. The problem can be described by the 

following system of nonlinear coupled differential equations: 
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, (I-4. 1) 

where, E1 and E2 are the amplitudes of the electric fields, normalized with respect to the input 

amplitudes, at frequency ω1 and ω2 respectively. The dimension-less coefficients σs are the 

elements of the χ(3) tensor multiplied the square modulus of the related input amplitudes (i.e. 
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σij=χ(3)(ωj;ωj,ωi,-ωi)|Ei
(0)|2). For simplicity, we assume that the χ(3) tensor is not dispersive, so 

that σ11= σ12=σ1 and σ21= σ22=σ2. n1 and n2 are the z-dependent, linear refractive indexes, at 

frequencies ω1 and ω2 respectively. We consider a 1-D PC composed of N=40 periods, and we 

assume that the elementary cell is made of two layers of non-dispersive and non-absorbing 

dielectric materials of low refractive index nL=1.7 λ/4nL thick, and high refractive index nH=3.5 

λ/2nH thick, respectively. The reference wavelength is  λ=1µm. The low index layer exhibits the 

χ(3) nonlinearity. 

In Fig. (I-4.1) we show the linear transmission of the structure (T). The arrows indicate the 

tuning of the two incident pumps. The ω1 pump is tuned at the low frequency band edge 

transmission resonance, while the ω2 pump is tuned at high frequency band edge transmission 

resonance. In both cases T~1. We note that this structure was not optimized for the devices that 

will be studied in the next Sections. And so we seek proof-of-principle results and an 
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Fig. I-4 1:Linear transmission vs. ω/ω0 where λ0=1µm is the reference wavelength and ω0=2πc/λ0.  
The structure is composed of N=40 periods. The elementary cell consists of two layers of refractive 
index nH=3.5 and nL=1.7, respectively. The thickness of the two layers are respectively dH= λ0/2nH, 
dL= λ0/4nL. The structure is surrounded by air (n0=1). The arrows indicate the position of the two 
pumps (ω1 and ω2) on the transmission spectrum. 
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understanding of the qualitative aspects of the dynamics that ensues when two pumps are 

coupled as in Eq.(I-4. 1) above. Moreover, although in our calculations we use a λ/4-λ/2 

structure; similar results can be expected for different types of structures. We numerically 

integrate Eq.(I-4. 1) using a shooting procedure, as described in references [9-10], for example. 

I-4.2 Optical Transistor and double switch. 

In electronics, a transistor is made of three layers of a doped semiconductor material. The 

three-layer structure consists of an N-type (P-type) semiconductor layer sandwiched between 

two P-type (N-type) layers. In such a device a small change in the current or voltage at the inner 

semiconductor layer, which acts as control, produces a large change in the current passing 

through the entire structure. The device can thus act as a switch, opening and closing an 

electronic gate. From this point of view, the optical configuration we propose shows transistor 

like behavior (see Fig. 1-4.2). 

In Fig. (I-4. 3) we show that a small change in the intensity of the ω2 pump produce a large 

change in the transmitted intensity of the ω1 field (dashed line), a behavior that is due to the 
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Fig. I-4. 2: Schematic drawing of our optical transistor. A small change in the intensity of the ω2 field 
induces a large change in the transmission of the ω1 field. 
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optical bistability induced by the ω2 pump. In fact, if we turn off the electric field E2 and allow 

the intensity of the ω1 pump to vary, no bistable behavior is noted. (Fig. (I-4. 3)-solid line).  

The ω2 pump also manifests bistable behavior, as shown in Fig. (I-4. 4). The device can then be 

used as a double switch, as the switching point of the transmitted fields at ω1 and ω2 is the same 

for both curves. In Figs. (I-4. 5) and (I-4. 6) we show the square modules of E1 and E2, 

respectively, inside the PC before the switch (thin solid line), when σ1=0.002 and σ2=0.002, and 

after the switch (thick solid line), when σ1=0.002 and σ2=0.03. Note that for σ1=0.002 the 

nonlinear transmission for ω1 is T~0.75, and E1 has the characteristic bell-shaped envelope 

consistent with its tuning very near the peak of transmission of the low frequency band edge 

[11], close to its original tuning position. This clearly indicates that the transmission resonance 

for the ω1 pump has suffered a small, nonlinear shift toward low frequencies. On the other hand, 

for the same control parameter (i.e. σ2=σ1=0.002 ), the high frequency band edge transmission 

resonance has already suffered a large shift toward low frequencies causing the E2 field to “fall” 
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Fig. I-4. 3: Nonlinear transmission of the electric field E1. The solid line is the transmission of the 
electric field E1 as a function of its own control parameter σ1=χ(3)|E1

(0)|2(the second pump ω2 is in this 
case turned off: i.e. σ2=0). Ej

(0) with j=1,2 are the amplitudes of the input fields at frequency ω1 and ω2 
respectively. The dashed line is the transmission of the electric field E1 as a function of the control 
parameter σ2=χ(3)|E2

(0)|2  (the first pump ω1 is in this case set at a fixed value: σ1=0.002). In the first case 
(solid line) in the abscise axis σ stays for σ1 while in the second case (dashed line) σ stays for σ2. 
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in the valley between the first and the second transmission resonances, at the high frequency 

band edge, with T~0.25. The different behavior of the two fields can be easily explained because 

of their different localization properties within the PC: E1 is initially mostly localized on the 

linear, high-index layers, while E2 is initially localized in the nonlinear, low-index, layers. After 

switching occurs, the nonlinear shift of the transmission cause the E1 field to fall inside the gap, 

near the low frequency band edge. The E2 field is then tuned near the second peak of 

transmission of the high frequency band edge, consistent with its double-bell shaped envelope. 
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Fig. I-4. 4:Transmission of the electric fields E1 and E2 vs. σ2 . The control parameter of the first pump 
is set at σ1=0.002.  
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 I-4.3 Dynamical switch. 

A simple all-optical switch in PC structures with a cubic nonlinearity has been studied in 

Refs.[3-4]. In the present case, our device can benefit from additional flexibility by dynamically 

(or parametrically) controlling the switching point of the E2 field using the intensity of the E1 

field. In other words, we fix the intensity of the E1 input field, vary the intensity of the E2 field, 

and so monitor the change of the switching point of the E2 field for different values of the E1 

intensity. In Fig.(I-4. 7) we calculate the nonlinear transmission curves of the E2 field vs. σ2 for 

different values of the parameter σ1 (σ1=0; 0.004; 0.008). The figure shows that the switching 

point is reached for lower values of σ2 as σ1 increases. In other words, the larger the intensity of 

the ω1 pump is, the lower the intensity of the ω2 pump will be to achieve self-switching. In 

Fig.(I-4. 8) we show the variation of the switching point (σ2s) as a function of the σ1 parameter. 

Note that while for low values of σ1 the curve is linear, for higher values of σ1 the curve show 

saturating behavior. 
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Fig. I-4. 7: Transmission of the electric field E2 vs. σ2, for different values of the control parameter σ1. 
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Conclusions. 

In summary, we have shown that a 1-D PC doped with a χ(3) nonlinearity, and pumped with 

two electromagnetic fields, can act as a more versatile device compared to having just a single 

pump. The switching properties of the structure [3, 4 and 7] can be improved by using a double 

pumping scheme such that both pumps are tuned their respective band edges, and become 

localized inside the stack. The dynamics that ensues, gives rise to a double switch (Fig. (I-4. 4)), 

and to a dynamical switch (Fig. (I-4. 7)). An all-optical transistor (Figs. (I-4. 2) and (I-4. 3)) is 

also envisioned. 
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Fig. I-4 8: Variation of the switching point of the E2 field vs.σ1. The switching point is indicated as σ2s 
and the relative variation of the switching point is calculated as follows:  

(σ2s (σ1 =0)- σ2s (σ1))/ σ2s (σ1 =0). 
The circles represent the actual data calculated. The straight, solid line connecting the first points 
indicates that the variation of the switching point is linear only for small values of the control parameter 
σ1. In this case saturation effects come into play above σ1~0.006. 
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“Negative index materials.” 
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II-1 Introduction 
II-1.1 Historical background 

When both the electric susceptibility ε and the magnetic permeability µ are 

simultaneously negative, the index of refraction n=± εµ  admits the negative root as a possible 

solution, leading to negative refraction of the incident beam, among other things. Those features 

had been first pointed out in 1968 by V. G. Veselago in his paper: “The electrodynamics of 

substance with simultaneous negative values of ε and µ” [1]. That paper remained forgotten for 

more than thirty years, until recently in 2000 Pendry [2] conjectured that a material with the 

properties just described may be used to construct a “perfect” lens, i.e. a lens that can focus all 

Fourier components of a 2D image, even those that do not propagate in a radiative manner. 

Although some aspects of the “superlensing” effect are still under debate, the work of Pendry has 

nevertheless paved the way to an intense, sometimes quite passionate, investigation on the 

possibility of creating new artificial materials with simultaneous negative ε and µ  and low 

absorption that could match the properties of the material envisioned by Veselago more than 30 

years before.  

 

 

Fig.II-1. 1: Left-Handed Material (LHM) or Negative Index Material (NIM)sample. The LHM sample consists 
of square copper split ring resonators and copper wire strips on fiber glass circuit board material . Photo taken 
from Ref.[3] 
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In 2001 Shelby, Smith and Schultz published the result of their experimental work [3] in 

which they demonstrated negative refraction, in the microwaves regime, from a material made 

by a two dimensional array of repeated unit cells of copper strips and split-ring resonators (see 

Fig.II-1 1). Nowadays these substances are sometimes referred to as negative index materials 

(NIMs), or left handed materials (LHMs). A large number of papers have been published on the 

subject just in the last few years and a review can be found in Ref.[4]. 

II-1.2 Basic properties 

The refractive index n and the extinction coefficient β of a material are found by solving 

the following complex, algebraic equation:  

εµ=2n̂  (II-1.1) 

where βinn +=ˆ  is the complex refractive index, ε and µ are the frequency dependent, 

complex, electric susceptibility and magnetic permeability functions of the medium, 

respectively. In general, in the case of a passive medium the law of increase of entropy 

determines that Im(ε) and Im(µ), which are linked to the electric and magnetic losses 

respectively, are always positive. Moreover, to the extent that every non-steady process is 

thermodynamically irreversible, Im(ε) and Im(µ) are not exactly zero for any frequency other 

than zero [5]. These considerations lead to the condition that the damping term β must be always 

positive for a wave propagating in the positive direction and also that β is  never exactly zero. 

Physically, this means that, slight as it may be, there is always some damping of the 

electromagnetic wave during its propagation. Now, by equating the real and imaginary parts of 

the right hand and left hand sides of Eq.(1), and by solving the corresponding system of algebraic 

equations with the condition β >0, we find the expressions for the refractive index and the 

extinction coefficient as follows: 

( ) ( )[ ] [ ]22 )Im(ReRe2

)Im(

εµεµεµ

εµ

++−
=n ,                          (II-1. 2a) 

( ) ( )[ ] [ ]
2

)Im(ReRe 22 εµεµεµ
β

++−
= .                               (II-1. 2b) 
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We note that Eqs.(2) are valid in general for any kind of passive medium, and we also note that 

that the sign of n depends on the sign of the quantity Im(εµ)=Re(ε)Im(µ)+Re(µ)Im(ε). Now, for 

a passive medium Im(ε) and Im(µ) must be positive and therefore it is straightforward to verify 

that when Re(ε) and Re(µ) are simultaneously negative the refractive index n given by Eq.(II-1 

2a) is also negative [6].In the limit of negligible losses (i.e. Im(ε)→0 and Im(µ)→0), from 

Eqs.(II-1) we have that: 

⎪⎩
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⎧
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)Re()Re(n
0

0)Re(and0)Re(for

)Re()Re(n
0

0)Re(and0)Re(for

.                                       (II-

1.3)Therefore, we can distinguish three different regimes: a) positive index regime, where n is 

positive and β is negligible; b) negative index regime, where n is negative and β is negligible; c) 

transient or zero-n regime where n is zero and β is significantly different from zero. Let us now 

consider a plane monochromatic wave incident at the plane boundary between two generic 

materials. The incident wave gives raise to a reflected and to a transmitted wave. The time 

averaged Poynting vector ( ]HERe[
2
1S *

rrr
×= ) for the transmitted wave can be written both in the 

positive and in the negative index regime as: 

t

22

k
4

Ec
S

rr

πωµ
= ,                                                             (II-1. 4) 

where tk
r

 is the k-vector of the transmitted wave, and it must be consistent with the Snell law. 

Moreover, causality requires that the direction of the Poynting vector of the transmitted field (i.e. 

the energy flow in the refracting material) always point away from the source towards the 

refracting material itself. 

The Snell’s law states that, for monochromatic, plane-waves “any boundary condition that relates 

the incident, the reflected and the transmitted field amplitudes at the plane interface will require 

that the spatial (and temporal) variation of all fields be the same”[7]. Therefore, the wavevectors 

respectively of the incident ( ik
r

), reflected ( rk
r

) and transmitted ( tk
r

) wave must satisfy the 
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following relation: rkrkrk tri
rrrrrr

⋅=⋅=⋅  at the interface. This means that the transverse 

component of the k-vector ( //k
r

)must be the same for all the k-vectors. This requirement can be 

satisfied by the transmitted wave in two different ways (see figure II-1. 2): a) tk
r

 pointing 

towards the refractive material and to the “right”(Fig II-1. 2a) or b) tk
r

 pointing towards the 

incident material and to the “left”(Fig II-1. 2b). The correct choice is the one that ensures the 

right behavior of the Poynting vector (see Eq. II-1. 4). In the negative index regime, i.e. µ and ε 

simultaneously negative, S
r

 and tk
r

 are anti-parallel. This means that the correct behavior is the 

one with tk
r

 pointing to the “left”, contrary of what happens for ordinary positive index materials 

(PIMs). These considerations, together with Fig.II-1.2, also explain why sometimes negative 

index materials are also referred to as “left-handed materials”. A consequence of the behavior 

just described is that, as predicted by Veselago [1], a concave/concave lens made of a NIM is 

Fig II-1. 2: a) Reflection and refraction of a plane wave at an air/positive index material (PIM) 
interface b) Reflection and refraction of a plane wave at an air/NIM interface. ik

r
 is the k-vector of the 

incident wave, rk
r

 is the k-vector of the reflected wave, tk
r

 is the k-vector of the transmitted wave, 

//k
r

is the transverse component of the k-vectors and S
r

 is the Poynting vector of the transmitted wave. 

Note that in both cases //k
r

is conserved as required by the Snell law and the Poynting vector of the 
transmitted wave points in the just direction, i.e. towards the refractive material. Also note that in the 
case of air/PIM interface tk

r
and S

r
 are parallel while they are anti-parallel in the case of air/NIM. 
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divergent, while a convex/convex lens is convergent, contrary of what would happen for lenses 

made of ordinary dielectric materials (see Fig. II-1.3) 

 

 

II-1.3 Negative index materials and Drude model 

The electric susceptibility and the magnetic permeability of a NIM can be described with 

a lossy Drude model [2,8]: 

                                             ( )
)~~(~

11~
eiγωω

ωε
+

−= ,                                              (II-1. 5a) 

                                             ( ) ( )
)~~(~

/
1~

2

m

pepm

iγωω
ωω

ωµ
+
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where peωωω /~ = is the normalized frequency, ωpe and ωpm are the respective electric and 

magnetic plasma frequencies, peee ωγγ /~ =  and pemm ωγγ /~ =  are the respective electric and 

magnetic loss terms normalized with respect to the electric plasma frequency. One may ask: 

“How realistic is the Drude model to describe the dispersive properties of a NIM?” In order to 

Fig II-1. 3: Path of the optical rays through lenses made of a negative index material. 
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answer this question we direct the reader's attention to Figs. (II.1-4). In Fig.(II.1-4(a)) we show 

the refractive index, the extinction coefficient, the real part of the electric susceptibility, and the 

real part of the magnetic permeability for a NIM whose dispersion is described by Eqs.(3). In 

Fig.(II.1-4(a)) we have taken the following parameters: 8.0/ =pepm ωω and 410~~ −≈≈ me γγ . In 

Fig. (II.1-4(b)) we show the refractive index and the extinction coefficient, in the range between 

10.7 and 15 GHz, deduced from the experimental data reported in Ref.[3]. The figure shows that 

the complex refractive index is negative below 11GHz and becomes almost a pure imaginary 

number in the range between 11GHz and 12.8GHz, where -10-2<n<10-2. Although the parameters 

in Fig. .(II.1-4(a)) were not chosen with the intent to fit the experimental data of Fig.(II.1-4(b)), 

nevertheless their behavior is remarkably similar in both cases. In other words, the salient 

characteristics of the refractive index and the extinction coefficient of currently available 

negative index meta-materials appear to be well-described by an effective Drude model. This is 

the main reason why the Drude model is widely used in most theoretical efforts [8] that address 

negative index materials. 

Fig II-1. 4: (a) Refractive index n (solid line), extinction coefficient β (short dashed line), Re(ε) (long-
short dashed line), and Re(µ) (dashed line) vs. ω/ωpe where ωpe is the electric plasma frequency. In this 
case we have chosen in Eq.(3) 8.0/ =pepm ωω and 410~~ −≈≈ me γγ . The refractive index n goes 
from positive values at higher frequencies to negative values at lower frequencies. Moreover, where 
Re(ε) and Re(µ) have opposite sign n is nearly zero. Note that in the transition region the extinction 
coefficient increases considerably. (b) Refractive index (solid line) and extinction coefficient (short 
dashed line) as calculated from the experimental data reported in Ref.[3]. Note that the parameters in 
Fig.(a) have not been chosen in order to numerically fit the results presented in Fig.(b). The comparison 
only intends to show that the salient characteristics of the refractive index and the extinction coefficient  
can be qualitatively described by a Drude model. 
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II-1.4 Pulse propagation 

Electromagnetic propagation in negative index materials can be, of course, also studied in pulsed 

regime. The dynamics of pulses can on one hand confirm the results obtained in the 

monochromatic plane wave approach, on the other hand it can put into evidence different aspects 

of negative refraction that are not taken into account in the former approach. Solving Maxwell’s 

equations with two spatial coordinates (one longitudinal, one transverse) and time Scalora et al. 

[9] found negative refraction as the wave packet undergoes significant and unusual shape 

distortions. Both a direct calculation of the spatial derivative of the instantaneous, local phase of 

the pulse and a Fourier analysis of the signal reveal the same inescapable fact: that inside a 

negative-index material, a transmitted, forward-moving wave packet is indeed a superposition of 

purely negative wave vectors. In contrast, in positive index materials the generation of negative 

wave-numbers is associated with reflected or backward-propagating components. Moreover, the 

calculation confirms that causality is not violated in the short-pulse regime, and that energy and 
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Fig. II-1. 5: A 100-wave cycles pulse crosses from vacuum into a NIM at an incident angle of 45 
degrees, assuming a Drude-like dispersion model, and no absorption. λpe= 2πc/ωpe.The refraction 
angle is -45 degrees, as predicted by Snell’s law and an index of refraction n=-1.  
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group velocities never exceed the speed of light in vacuum. Here we do not go into the technical 

details of the calculation. Suffice it to say that the pulse propagation algorithm uses a FFT-BPM 

(fast Fourier transform beam propagation method) ad hoc modified in order to handle reflections. 

More details can be found in our Ref. [9]. In Fig. (II-1. 5) we show the case of negative 

refraction of a pulse launched at 45 degree impinging the air/NIM interface. The dispersion 

properties of the NIM are taken according to the Drude model as in Eqs. (II-1. 3) with ωpe=ωpm 

and negligible losses. The carrier frequency of the pulse ω0 is centered in the spectral region 

where ε=µ=-1. 
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II-2 Linear Properties 

II-2.1 Transmission properties, field localization and tunneling times. 

We start studying the transmission properties of a single slab, Fabry-Perot etalon composed 

of a negative index material. Some of those properties are reminiscent of those of a multilayer, 

one-dimensional photonic band gap structure (1-D PBG) [1]. It is worth to point out that while in 

a PBG structure the formation of the gap is due to interferential effects, in the case at hand the 

formation of the gap is essentially due to the peculiar dispersion properties of the bulk of the 

material. We begin by describing the electric susceptibility and the magnetic permeability of the 

NIM with a lossy Drude model [2]: 

( )
)~~(~

11~
eiγωω

ωε
+

−=        ,     ( ) ( )
)~~(~

/
1~

2

m

pepm

iγωω
ωω

ωµ
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−= , (II-2. 1) 

where peωωω /~ = is the normalized frequency, ωpe and ωpm are the respective electric and 

magnetic plasma frequencies, peee ωγγ /~ =  and pemm ωγγ /~ =  are the respective electric and 

magnetic loss terms normalized with respect to the electric plasma frequency. The refractive 

index n and the extinction coefficient β of the material are given by: εµβ ±=+ in . As already 

discussed in Chap. II-1, the sign in front of the square root must be chosen in a way that ensures 

the Poynting vector of the light refracted into a semi-infinite slab of NIM will always be directed 

away from the interface into the refracting material itself. Only one of the two possible solutions 

of the square root satisfies this requirement. The complex wavevector of the material is then 

calculated as K(ω)=(ω /c)(n+iβ) and the dispersion relation of the NIM can be visualized in the 

(K,ω) plane. In Figs.(II-2. 1) we show the dispersion relation of the NIM for two different values 

of the ratio pepm ωω / . We have also performed a systematic study of the dispersion relations as a 

function of the ratio pepm ωω / , and our findings can be summarized as follows: (i) the dispersion 

relation gives rise to a band gap in a spectral range around the electric plasma frequency where 

the refractive index gets value near to zero. (ii) The center-gap frequency ωc,gap and the spectral 

width of the gap ∆ωgap depend on the electric and magnetic plasma frequency as 
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follows: ( ) 2/, pmpegapc ωωω +=  and pmpegap ωωω −=∆ . The only gap that forms disappears 

when ωpe=ωpm . (iii) The results shown in Figs. (II-2. 1) refer to the bulk properties of our NIM. 

In Fig.(II-2. 2) we show the transmittance (bold-solid line) and the group velocity (thin-line) 

for a slab of  NIM whose dispersion relation is described in Fig.(II-2. 1a). The group velocity is 

Fig. II-2. 1: Normalized frequency ω/ωpe vs. K in units of 2π/λpe where λpe=2πc/ωpe is the wavelength 
corresponding to the electric plasma frequency for (a) 2/1)8.0(/ =pepm ωω  and (b) 

2/1)25.1(/ =pepm ωω . The solid lines correspond to Re(K) and the dashed lines to Im(K).  In this 

case we have chosen in Eq.(1) 410*5.4~~ −≈≈ me γγ . The shaded regions indicate the spectral 
position of the band-gap. In the region below the gap n is negative. 
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Fig. II-2. 2: Transmittance at normal incidence (solid-line) and group velocity (thin- line) vs. ω/ωpe for 
a NIM of length L=5λpe and ωpm/ωpe=(0.8)1/2, i.e. with the dispersion properties described in Fig.(II-2. 
1a). The arrows indicate the position of the band edge resonances. 
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calculated as: ϕτ/LVg = , where L is the length of the cavity and τφ is the Wigner time (or 

“phase time”) and it gives the time that the transmitted part of an incident, quasi-monochromatic, 

un-chirped pulse takes to traverse a 1-D barrier [3]. In particular the group velocity is 

superluminal inside the gap while slow group velocities, less than 0.3c in this case, characterize 

the high and low frequency band-edge. The reflectivity near the center of the stop band is 

approximately 99%. Field localization properties at the high and low frequency band-edge are 

shown in Figs.(II-2. 3). In this case the structure admits localized modes at the peaks of 

transmission near the high-frequency band edge (Fig. (II-2. 3a)) and delocalized modes at the 

low frequency side (Fig. (II-2. 3b)). 

In the case of Figs.(II-2. 3) we have 1/ <pepm ωω  and the localized mode is found at the 

high-frequency band edge. In contrast, when 1/ >pepm ωω  the localized mode shifts to the low-

frequency band-edge, as shown in Fig.(II-2. 4). In terms of the refractive index of the material, 

the field localization occurs for refractive indices in the range: 01 >> n  when 1/ <pepm ωω , 

while in the range: 10 −>> n  when 1/ >pepm ωω . 

Another aspect worthy of note is that the spectral position and the spectral width of the gap 

are independent on the length of the NIM at normal incidence. This is shown in Fig.(II-2. 5) 

where the transmission is calculated for different lengths of the NIM slab. The figure suggests 

Fig. II-2. 3: (a) Field localization in the NIM for an input field tuned near the high-frequency band-edge 
at the first peak of transmission, ω/ωpe≅1.021, (solid line) and at the second peak of transmission, 
ω/ωpe≅1.065, (dashed line). (b) Field localization near the low frequency band edge at the first peak of 
transmission, ω/ωpe≅0.875, (solid line) and at the second peak of transmission, ω/ωpe≅0.839, (dashed 
line). 
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that although the number of resonances in the pass band increases proportionally to the length of 

the structure, the position and the spectral width of the gap remain practically unchanged. The 

reason for this is due to the peculiar dispersion characteristics of the bulk of NIM, and not to 

interference effects, as for example in PBG structures. 

Fig. II-2. 4: (a) Transmittance vs. ω/ωpe for a NIM of length L=5λpe. In this case ωpm/ωpe=(1.25)1/2, i.e. 
the NIM has the dispersion properties described in Fig.(II-2. 1b). (b) Field localization at the low 
frequency band edge (solid line) and at the high frequency band edge (dashed line). 
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solid line) 
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At angular incidence and for a fixed length, the width of the gap increases as shown in Fig. 

(II-2. 6). This behavior is unusual compared to PBG structures where at angular incidence a blue 

shift of the gap is expected, but it can be easily explained as a total internal reflection. In fact the 

refraction index in the gap of the NIM is very close to zero and therefore a field incident at an 

angle (ϑ) from air, the air is in this case the high index medium, undergoes to a total internal 

reflection. 

II-2.2 Omnidirectional gap. 

Omnidirectional reflectors have been made in 1D PBGs by forming an extra wide gap[4-6]. 

The idea is to make the normal incidence gap extremely wide so that the shift with angle is not 

large enough to completely move the entire stop band to a new range of frequencies. The gap in 

a 1D PBG can be widened by having a very large index contrast and/or by adding more periods 

with different lattice constants. Omnidirectional NIMs do not have these constraints since the 

gap does not shift and actually widens with increasing angle of incidence. As already discussed 

in Chap. II-1, a convincing experimental demonstration of negative refraction was made by 

Shelby, Smith, and Schultz. They constructed a 2D NIM consisting of metal wires for the electric 
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dispersion properties described in Fig. (II-2. 1a). 
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response and split ring resonators (SRRs) for the magnetic response. According to their 

experimental results, the complex, frequency dependent electric susceptibility ε and the magnetic 

permeability  µ of the NIM can be modeled as follows[7, 8]: 

( ) )i/()(1 2
eo

22
eo

2
ep γω+ω−ωω−ω−=ωε  (II-2. 2a)  

( ) )i/()(1 2
mo

22
mo

2
mp γω+ω−ωω−ω−=ωµ  (II-2. 2b) 

where ωep is the electric plasma frequency, ωeo is the electric resonance frequency, ωmp is the 

magnetic plasma frequency and ωmo is the magnetic resonance frequency and γ the loss term. 

The parameters are taken according to the experimental results reported in Ref. 7, i.e.: 

ωep=2π×12.8GHz, ωeo=2π×10.3GHz, ωmp=2π×10.95GHz, ωmo=2π×10.05GHz, γ=2π×10MHz.  

We want to clarify that in the following discussion, the material parameters of the NIM from 

Eqs. II-2. 2 are assumed to be isotropic, that is, we are assuming a fully 3D NIM structure. The 

NIM of Ref. [7] is actually a combination of a 1D electric and 2D magnetic metamaterial. The 

experimental results of negative refraction in Ref. [7] were demonstrated for TE polarization 

with the incident electric field always parallel to the metal wires. Therefore, we expect the NIM 
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Fig. II-2. 7: Optical constants of a broadband omnidirectional reflector. Index of refraction n (solid 
line) and extinction coefficient β (dashed line) vs. ω/ω0 where ω0=2π×10GHz. a) optical constants 
based on the experimental parameters of Ref. [7]. b) we use the same parameters as in Fig. (II-2. 7a) 
except that  ωep=2π×25GHz.  
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of Ref. [7] to display omnidirectional reflection for only TE polarization. A true omnidirectional 

reflector requires a 3D structure. Fig. (II-2. 7a) shows the optical constants for the material 

parameters described above. Fig. (II-2. 7b) shows the optical constants for the same material 

parameters as in Fig. (II-2. 7a) with the exception that the electric plasma frequency has been 

moved to ωep =2π×25GHz. Notice that a gap forms between the electric and magnetic plasma 

frequencies. On the low frequency side of the gap is the region of negative index. Inside the gap, 

the optical constants of the NIM are similar to a metal at optical frequencies with a small index 

of refraction and a small but finite extinction coefficient. For comparison, the optical constants of 

silver at λ = 620 nm are n=0.131 and β=3.88 (Ref. [9]). Metals are good reflectors at optical 

frequencies because the refractive index is close to zero and β  is reasonably large. NIMs reflect 

radiation more efficiently than metals because the refractive index is essentially zero inside the 

gap. 

Comparing Figs (II-2. 7a) with (II-2. 7b) illustrates the dependence of the gap on the choice 
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Fig. II-2. 8: Angular reflectivity of TE and TM polarized light for the optical constants shown in Fig. 
(II-2. 7a). The shaded area indicates the spectral position of the omnidirectional gap. 
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of ωep and ωmp. Increasing the separation of the electric and magnetic plasma frequencies has 

expanded the width of the gap by a factor of five. It has been previously shown that the width 

and center frequency of the gap can be written as ∆ω~⏐ωep-ωmp⏐and ωc~(ωep+ωmp)/2, 

respectively, therefore, the larger the separation between the electric and magnetic plasma 

frequency the wider the spectral region where the NIM behaves as an omni-directional reflector. 

In Fig. (II-2. 8) we plot the reflectivity from a single layer of NIM having the optical constants 

shown in Fig. (II-2. 7a). The reflectivity has been calculated by the standard matrix transfer 

method. The structure is L=5λ0 in length where λ0=2πc/ω0=3cm. At normal incidence, the highly 

reflecting band occupies the region between the magnetic plasma frequency and the electric 

plasma frequency of the NIM. At the steeper angles of incidence, the low frequency side of the 

reflecting band remains fixed at the magnetic plasma frequency. On the high frequency side of 

the gap where the NIM has a positive index of refraction, the reflecting band begins to widen as 

the angle of incidence increases. In this frequency region, the optical constants of the NIM are 

similar to a low loss dielectric with the exception that the index of refraction is less than unity. 

The radiation is propagating from a high index region to a low index region and the highly 
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Fig. II-2. 9: Angular reflectivity of TE and TM polarized light for the optical constants shown in Fig. 
(II-2. 7b). The shaded area indicates the spectral position of the omnidirectional gap.  



 85

reflecting band terminates when the angle of incidence is less than the angle required for total 

internal reflection. In Fig. (II-2. 9) we show that increasing the separation between the magnetic 

plasma frequency and the electric plasma frequency can expand the omnidirectional reflecting 

band. The optical constants used to calculate the reflectivity are plotted in Fig. (II-2. 7b). By 

moving the electric plasma frequency from ωep=2π×12.8GHz to ωep=2π×25GHz, the 

omnidirectional reflecting band has increased from ∆ω/ωc~15% to  ∆ω/ωc ~ 78%. The overall 

features of Figs (II-2. 8) and (II-2. 9) are similar with the exception that the width of the 

omnidirectional reflecting band has increased fivefold by shifting the electric plasma frequency. 

For the center gap frequency, Fig. (II-2. 10) shows the complete angular dependence of the 

reflectivity for TE and TM polarizations. The polarization dependence shown in Fig. (II-2. 10) is 

reminiscent of a metal with the TM polarization showing a reduced reflectivity relative to TE 

polarization. The unusual feature illustrated in Fig. (II-2. 10) is that the reflectivity for all angles 

and polarizations never drops below 98.6%. The reflectivity plots of Figs. (II-2. 9) and (II-2. 10) 
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Fig. II-2. 10: TE and TM reflectivity vs. the angle of incidence at ωc, i.e. at the central frequency of the 
gap. Figs. (II-2. 10a) and (II-2. 10b) are calculated using the optical constants of Fig. (II-2. 7a) and (II-
2. 7b) respectively. 
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show that the larger the separation between the electric and magnetic plasma frequencies not 

only makes the omnidirectional reflecting band wider but also deeper. The center gap reflectivity 

for the NIM having ∆ω/ωc ~ 78% is never less than 99%.  In this paper we have demonstrated 

that a single layer of a NIM has omnidirectional reflecting properties in the region between the 

electric and magnetic plasma frequencies. In this frequency region, the optical constants of a 

NIM are similar to real metals at optical frequencies. However, the reflecting properties of 

“metallic NIMs” are far superior to ordinary metals as a result of the real part of the index of 

refraction being nearly zero. The wide range of applications for NIMs in general and for metallic 

NIMS in particular, such as hollow core waveguides [10] and highly efficient back-reflectors for 

common light fixtures, give additional motivation to develop these unique metamaterials. 

II-2.3 Dispersion-Free Pulse Propagation 

Now, we will demonstrate that a NIM allows an ultrashort pulse to propagate with minimal 

Fig. II-2. 11: a) Refractive index n vs. ω/ωpe for different values of the ratio ωpm/ωpe; ωpm/ωpe =0.8 (thin 
solid line), ωpm/ωpe =1 (dashed line), ωpm/ωpe =1.2 (thick solid line). b) GVD parameter β2 vs. ω/ωpe for 
different values of the ratio ωpm/ωpe. Note that the β2‘s curves are plotted only in the region around their 
respective zero GVD points. The arrows indicate the position of the zero GVD points. β2 is calculated in 
units of λpe/(4π2c2) where λpe=2πc/ωpe . 
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dispersion due to the presence of a zero group velocity dispersion (GVD) point. We describe the 

NIM with a lossy Drude model as in Eqs. II-2. 1. In Fig.(II-2. 11a) we show the refraction index 

n for different values of the ratio ωpm/ωpe and in Fig.(II-2. 11(b)) we show the GVD parameter 
22

2 d/kd ω=β  [11], where k=nω/c is the NIM wavevector. In our model we assume e
~γ ~ m

~γ ~10-4 

and the extinction coefficient δ in the region around the zero GVD point is also of order 10-4. 

Note that the zero GVD points (i.e. the points where β2=0) are located in the region where 

ω<ωpe, and that no zero GVD point is present when ωpm /ωpe=1. In figures (II-2. 12) we show 

three snapshots of an unchirped, ultrashort, gaussian pulse with its central frequency tuned at 

ωc=0.706ωpe that corresponds to a zero GVD point for ωpm /ωpe=0.8 as shown in Fig. (II-2. 11b). 
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Fig. II-2. 12: Pulse propagation at different times of an ultrashort, gaussian, unchirped pulse in a NIM 
at the zero GVD point for ωpm/ωpe =0.8. a) At t0=0, the pulse is in air directed toward the NIM, z=0 is 
the air/NIM interface. The peak of the square modulus of the incident electric field is normalized to 1. 
Its FWHM is ~5λpe b) At t1= 600λpe/(2πc), the incident pulse has entered the NIM giving rise to a 
reflected and to a transmitted pulse. The FWHM of the transmitted field is ~2λpe c) At t2=1400λpe/(2πc), 
the transmitted pulse (thick solid line) has propagated for approximately 50λpe in the NIM and its 
FWHM is ~2.67λpe. For comparison: the same pulse (dashed line) at the same time after it has 
propagated in the same NIM but with the dispersion approximated up to the second order and with the 
dispersion approximated up to the third order (open circles).
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In Fig. (II-2. 12a) the pulse is in air away from the interface air/NIM and its full width half 

maximum (FWHM) is ~5λpe, in Fig. (II-2. 12b) the pulse has entered the NIM giving rise to a 

reflected and a transmitted field.  λpe=2πc/ωpe is the electric plasma wavelength and c is the 

velocity of the light in vacuo. Note that the transmitted pulse is now spatially compressed with a 

FWHM of ~2λpe while its temporal duration shortly after it has entered in the medium is 

T~2λpe/Vg~5.8λpe/c where Vg~0.34c is the group velocity of the pulse. In Fig. (II-2. 12c) we 

show the transmitted pulse after it has propagated in the NIM for ~25 times its FWHM width, i.e. 

~ 50λpe. The pulse maintains a FWHM of less than 3λpe. The ripples that appear on the left of the 

main pulse, and the slight increase in FWHM, are due mostly to third order dispersion. In our 

calculations all dispersion orders are taken into account [12]. 

In Fig.(II-2. 12c) we also show the pulse at the same time after it has propagated in the same 

NIM except that now the complex wavevector of the NIM, ( ) ( )c/)in(k̂ ωδ+=ω , is 

approximated up to second order (dashed line) around the central frequency of the pulse, and up 

to the third order (open circles). In the case of second order dispersion only, the pulse propagates 

undistorted and with no dispersion, as expected. A small decrease in the amplitude of the 

undistorted pulse with respect to the amplitude of the incident pulse (see Fig. (II-2. 12b)) is due 

to linear absorption. On the other hand, taking dispersion terms up to third order produces a pulse 

almost identical in shape and amplitude to the pulse obtained via the exact calculation. The high 

order dispersion length, 3
3
0

)3(
D /TL β= , gives an estimate of the propagation distance over which 

the cubic dispersion term starts to play a significant role [13], T0 is a measure of the initial pulse 

duration in time, and β3=d3k/dω3. In the case depicted in figure (II-2. 12), T0~5λpe/c, and 

)c8/(700~d/kd 332
pe

33 πλω , giving a dispersion length pe
)3(

D 40~L λ , consistent with the results 

of our numerical calculation. In figures (II-2. 13) the central frequency of the pulse is now tuned 

at ωc=0.892ωpe , that corresponds to the zero GVD point when ωpm /ωpe=1.2. The incident pulse 

has the same duration in time of that shown in Fig. (II-2. 12a), i.e. T0~5λpe/c. The calculated 

high-order dispersion length is now pe
)3(

D 60~L λ , which is longer than that of the previous case; 

this is consistent with the results of our numerical calculation (see Fig.(II-2. 13c)).  

In principle, the use of longer pulses would give rise to much longer dispersion length: for 

example the use of a pulse of time duration T0~5×103λpe/c would make the dispersion length 
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longer of a factor 109 than those previously calculated and therefore the pulse could propagate 

undistorted and with no dispersion for a distance of approximately 1010λpe. Moreover the 

dependence of the position of the zero GVD points on the electric and magnetic plasma 

frequency might open the door to a whole new class of artificial materials assembled in such a 

way to obtain dispersion free propagation in spectral regions otherwise inaccessible for 

conventional positive index materials. In photonic crystal fibers [13] or in tapered fibers [14], for 

example, the tunability of the zero-GVD point has been demonstrated within the entire visible 

range. In contrast, NIMs offer the possibility to tune the zero GVD zone in a quite different 

spectral range that spans from the microwave to near-infrared range. In Reference [7], for 

example, a NIM was fabricated and experimentally tested in the microwave range, while the 

experimental results reported in Reference [15] point toward the possibility to have a NIM 

operating in the near infrared regime. 
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Fig. II-2. 13: Pulse propagation in a NIM at the zero GVD point for ωpm/ωpe =1.2. a) Incident pulse at 
t0=0. b) Transmitted and reflected fields at t1= 600λpe/(2πc). c) Transmitted pulse (thick solid line) at 
t2=1400λpe/(2πc). For comparison: transmitted pulse calculated in Fig. II-2. 12c) (thin solid line in the 
present figure) but with its amplitude renormalized to the amplitude of the pulse calculated in this case. 
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However, although at least in principle dispersion-free propagation in NIMs is possible, still the 

issue of the absorption and/or loss is a serious obstacle to its practical realization. In our model 

the extinction coefficient is of the order of 10-4 , corresponding to an attenuation length of several 

hundreds of wavelengths in units of λpe. This means that, for example, a pulse of temporal 

duration T0~5×102λpe/c will be attenuated by a factor 1/e after it has propagated only for 

approximately one FWHM. Currently available meta-materials experimentally tested have an 

even shorter attenuation length:~10 wavelengths or less [7]. It is interesting to note that 

absorption represents a limiting factor also in the case of the so-called “superlensing” effect [16]. 

On the other hand, while the causality principle requires that the real and imaginary parts of the 

dispersion of a medium be Kramers-Kronig pairs, it does not put a limit to how small the 

absorption of a medium should be, as long as it is not zero. The real and imaginary parts of both 

ε and µ in our lossy Drude model are in fact Kramers-Kronig pairs regardless of how small the 

electric and magnetic loss terms may be. Therefore, while NIMs with low absorption are at the 

present time out of reach, nevertheless, in principle, nothing prevents their availability in the near 

future. 

Conclusions 

We have reported novel, interesting properties of NIMs. We have shown that even a single 

slab of such material has several significant characteristics, such as: high transmittance and slow 

group velocity near the band edge; high reflectivity and superluminal group velocity in the band 

gap. Moreover, a single layer of a negative index material has omnidirectional reflection 

properties. In the range between the electric plasma frequency and the magnetic plasma 

frequency, negative index materials reflect radiation for all angles of incidence and polarization 

with reflectivities of ~99%. In addition, with increasing angles of incidence, the reflecting band 

does not shift in frequency but actually widens. The operational bandwidth can be 100% or 

greater by increasing the separation between the electric and magnetic plasma frequencies.  

The dispersion properties of NIMs allow the presence of a zero group velocity dispersion 

point. The spectral position of the zero group velocity dispersion point can be controlled varying 

the ratio between the electric and magnetic plasma frequency. In this way it is possible, at list in 

principle, to obtain dispersion free propagation in spectral regions otherwise inaccessible using 

conventional positive index materials. Our predictions are confirmed by pulse propagation 

simulations where all orders of the complex dispersion of the material are taken into account. 
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II-3 Guiding properties of negative index materials. 
II-3.0 Introduction 

We numerically demonstrate that a planar waveguide in which the inner layer is a gas with 

refractive index n0=1, sandwiched between two identical semi-infinite layers of a negative index 

material, can support both transverse electric (TE) and transverse magnetic (TM) guided modes 

with low losses. Recent developments in the design of meta-materials with an effective negative 

index suggest that this waveguide could operate in the infrared region of the spectrum. 

In optics it is well known that when the inner layer of a planar waveguide is a gas with 

refractive index n0=1 and it is sandwiched by two standard dielectric materials with refractive 

index n>1, total internal reflections cannot be achieved. The field coupled inside such a 

waveguide attenuates in the propagation direction by leaking power to the two bounding media 

[1]. The losses suffered via these “leaky” modes may be balanced when the molecular gas in the 

core is an active medium, as for example in CO2 waveguide lasers [2-3]. In metal-clad 

waveguides [4] the refractive index of the guiding layer can be arbitrarily low as long as it is 

greater than the refractive index of the substrate. Total internal reflections are always achieved 

thanks to the low refractive index of the metal. In Ref.[4] guiding has been demonstrated in an 

air-polystyrene-silver waveguide at optical frequencies, in a 1.81µm thick polystyrene film. 

Losses were estimated at approximately 1dB/cm for the fundamental TE mode. The theory of 

hollow waveguides has been developed in Ref.[5], and different types of hollow waveguides in 

the infrared have been realized during the years. We cite for example hollow sapphire fibers [6], 

hollow Ag/AgI coated glass waveguides [7], ZnS-coated Ag hollow waveguides [8]. These 

guides have losses as low as 0.1dB/m at 10.6µm, for a bore diameter of approximately 1000µm. 

In the visible region, a tremendous breakthrough in the possibility of confining light in air has 

been achieved at the end of 1999, with the introduction of the so-called photonic crystal fibers 

(PCFs) [9-10]. In a PCF light confinement does not require a core with a higher refractive index 

because guidance is achieved not by total internal reflection, but by the presence of a cladding in 

the form of a full two-dimensional photonic band gap. We note also that PCFs are single-mode 

fibers, while traditional hollow waveguides are highly multimodal. On the other hand, the 

fundamental mode in traditional hollow waveguides has generally a much longer attenuation 

length than all higher order modes thanks to lower diffraction losses. Therefore, it is clear that 

for some applications the initial presence of many modes can be easily overcome. 
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The aim of this work is to demonstrate that light can be confined in air also by using a 

waveguide where the bounding medium, or cladding, is made of a NIM. In this case the 

confinement is due, as in classical waveguides, to total internal reflections. The guiding 

properties of a waveguide with a core made of NIM and a cladding composed of a standard 

dielectric material have been studied in Refs.[11], where it was demonstrated that guided modes 

are admitted. In our work we study the opposite configuration, i.e. a symmetric waveguide where 

an air-core is surrounded by a NIM. We note that, to our knowledge, at the present time an 

experimental realization of a meta-materials that posses an effective negative index has been 

achieved only in the microwave regime [12]. In this regard, several efforts are currently 

underway to design NIMs at higher frequency than the microwave regime. In Ref.[13-14], for 

example, O’ Brian and Pendry have designed a NIM in the infrared region, and its nonlinear 

properties also has been numerically studied. The structure consists of a periodic nano-structured 

array of modified split-ring resonator which is magnetically active in the near-infrared region of 

the spectrum. The structure is numerically demonstrated to posses a negative effective 

permeability at telecommunications wavelengths, i.e. 1.5µm. Although further material 

development is still clearly needed, the practical realization of meta-materials in the infrared 

region seems to be within reach [15], and the results reported in Ref.[13-15] help to put our 

present work in its proper perspective.  

II-3.1 Basic equations  

In the last chapter we have widely explored the linear properties of negative index material 

and the similarity with PBG structures. Both exhibit a transmission gap, but in PBG the 

formation of the gap is due to destructive interference caused by the periodic arrangement of 

scattering or diffracting elements whose sizes are on the order of the incident wavelength. In 

contrast, NIMs are structured on a much finer scale that ranges from 1/10th to 1/1,000th of the 

wavelength [15], and therefore they respond with an effective dispersion that is essentially due to 

the bulk properties of the medium. However, while the nature of the gap is different in the two 

cases, it would be interesting to explore the possibility of using NIMs in the spectral region of 

opacity as the cladding of a waveguide (see Fig. (II-3. 1)). In analogy with PCF, where the a 2-D 

PBG is used as a cladding. As usual we will describe the electric and magnetic response of NIMs 

thought a lossy Drude model: 
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where peωωω /~ = is the normalized frequency, ωpe and ωpm are the respective electric and 

magnetic plasma frequencies, peee ωγγ /~ =  and pemm ωγγ /~ =  are the respective electric and 

magnetic loss terms normalized with respect to the electric plasma frequency. We have taken the 

following parameters: 8.0/ =pepm ωω and 410~~ −≈≈ me γγ . 

We begin by first focusing on the TE modes. In this case the electric field is polarized along the 

y axis, (see Fig. (II-3. 1)) and the Helmholtz equation for our geometry is: 
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Fig. II-3. 1 Schematic representation of the geometry we study. A core of air of thickness d is 
sandwiched between two identical semi-infinite layers of NIM. ϑ is the angle formed by the wavevector 
of the radiation with the propagation axis z. The y axis is orthogonal to the plane (x,z). 
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where 2n̂)x(f̂ =  for x>d and x<0 , while 0n)x(f̂ = for d ≥x≥0. n̂ is the refractive index of the 

NIM and n0 is the refractive index of the core of the waveguide. The solution of Eq. (II-3. 2)can 

be written as follows: 
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where C is an arbitrary normalization constant that is chosen consistent with the following 

normalization condition: ∫
+∞

∞−

== 1dx)0z,x(E
2

y  . The choice of the complex parameters A1, A2, 

A3 and ϑ̂  is determined by imposing that Ey, as well as )x/E)(/1( y ∂∂µ , must be continuous at 

both x=0 and x=d. The continuity requirements lead to the following modal equation for ϑ̂ : 
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and to the following system of linear algebraic equations for A1, A2, and A3: 
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We note thatϑ  (i.e. the angle that the wavevector of the radiation forms with the propagation 

axis z - see Fig. (II-3. 1)) and the attenuation length 'L  (i.e. the length along z covered by the 

radiation before its intensity drops of a factor 1/e) are linked to the complex parameter ϑ̂  

through the following relations:  
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( )]ˆcoscos[Rear ϑϑ = , (II-3. 6a) 
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'

ϑω
= . (II-3. 6a) 

The calculation for TM modes follows a development similar to that of TE modes. In the case of 

TM modes we must impose the continuity conditions on the magnetic field Hy and on 

)x/H)(/1( y ∂∂ε . The solution for TM modes and the modal condition can be obtained from 

those calculated for TE modes by making the following formal transformations: Ey→Hy and 

µ→ε.  

II-3.2 Results and discussion. 

In order to calculate the modes admitted by our waveguide, we have to solve Eq.(II-3. 4) for 

TE modes and the corresponding equation for TM modes. Eq.(II-3. 4) is a complex, 

transcendental equation that does not admit analytical solutions. It can be solved numerically by 

using the Newton-Rapson method [16]. Then, by using Eqs.(II-3. 3) and (II-3. 5) we can 

calculate the transverse mode profile for different propagation distances. In Fig.(II-3. 2) we show 
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Fig. II-3. 2: Transverse profile of the TE guided modes at different propagation distances for a 
waveguide whose air core has a thickness d=2λpe ,λpe =2πc/ωpe. The frequency of the field is 
ω=0.88ωpe (a) TE0. (b) TE1. (c) TE2 
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TE guided modes for a waveguide whose core has thickness d=2λpe, where λpe=2πc/ωpe.. The 

electromagnetic field is approximately tuned at the center of the opaque region of the NIM, 

where ω=0.88ωpe. The thickness of the core is in this case large enough to accommodate three 

confined modes at different angles: ϑ≅15.90 for TE0, ϑ≅330 for TE1, and ϑ≅53.90 for TE2. In the 

case of the fundamental mode (TE0), we find an attenuation length of approximately L’≅7*104λpe 

.Supposing that that the waveguide operates around 10µm, the attenuation length is 

approximately 0.7m, which corresponds to a loss factor of approximately 6dB/m.  

The losses drastically drop for larger core diameters, as shown in Fig.(II-3. 3), where the core is 

d=14λpe. In the case of Fig.(II-3. 3), for an operational wavelength around 10µm, the attenuation 

length of the TE0 mode is approximately 240m, the losses are approximately 0.01dB/m, and the 

size of the air core is only 140µm. In this case the guide accommodates a large number of modes 

at different angles. The first three modes are excited respectively at ϑ≅2.20 , ϑ≅4.40 and ϑ≅6.60 . 

In Fig. (II-3. 4) we show the TM0 mode for : a) d=2λpe and b) d=14λpe. In the case of Fig. (II-3. 
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Fig. II-3. 3: Transverse profile of the first three TE guided modes at different propagation distances for 
a waveguide whose air core has a thickness d=14λpe. (a) TE0. (b) TE1. (c) TE2 
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4a) the angle formed by the wavevector with the z-axis is ϑ≅17.30 and the attenuation length is 

L’≅3.4*104λpe , which corresponds to approximately 12dB/m in losses for a wavelength of 

10µm. In Fig. (II-3. 4b) ϑ≅2.30, L’≅1.4*107λpe and the losses are of the order of 0.03dB/m. Note 

that in the case we have studied the TE guided modes have longer attenuation lengths than the 

TM guided modes, and in the opaque region of the NIM Re(ε) is less than zero while Re(µ) is 

greater than zero. If we consider the opposite case, i.e. Re(ε) >0 and Re(µ)<0, the TM guided 

modes would have a longer attenuation length than the TE guided modes. 

Finally we note that recently waveguides with an air core and a cladding made by a two-

dimensional square array of silver nano-wires embedded in an air host medium have been 

numerically demonstrated to guide at optical frequency more efficiently than silver waveguides 

[17]: the effective extinction coefficient of the nano-structured cladding is smaller than that of a 

homogeneous silver cladding. In the case of Ref. [17] the effective index of the cladding can be 

made to vary in the range 0<n<1, depending on the ratio between the width of the silver wires 

and the periodicity of the array. Of course, a meta-material designed in this way is by definition 

not a NIM, and light refraction will be right handed as in standard positive index materials. In 
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Fig. II-3. 4: Transverse profile of the TM0 mode for different propagation distances. The waveguide has 
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this work we have instead explored the guiding properties of a NIM in its opaque region, i.e. in 

the region where its refractive index varies in the range -10-2<n<10-2. 

Conclusions 

In conclusion, we have studied a symmetric hollow waveguide made with a NIM cladding. In 

the opacity region of the NIM, the waveguide admits both TE and TM guided modes with 

relatively low losses. While further material development is still needed, recent advancements in 

the design of meta-materials suggest that this waveguide could operate in the infrared regime 

with better performances compared to more traditional hollow waveguides. Although, we have 

studied only planar waveguides we expect to find similar results also for cylindrical waveguides 

due to the intrinsic nature of the omnidirectional gap. The topic of cylindrical waveguides will be 

the subject of future investigation.  
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II-4 Second Harmonic Generation in NIM/PIM Hetero-Structure 
II-4.0 Introduction. 

Using a Green function approach, we will study second harmonic generation in single and 

coupled cavities made of a generic, quadratic, positive index material (PIM) sandwiched between 

two negative index materials. Some of the linear and nonlinear properties of NIM/PIM cavities 

have been already studied: for example, in Ref [1] a PIM/NIM/PIM structure is studied; Ref [2] 

deals with finite and infinite one-dimensional photonic crystals (1-D PCs) made of a NIM/PIM 

unit cell; in Ref [3] and [4] omni-directional reflectance is predicted for NIM/PIM 1-D PCs; 

finally, in Ref.[5], the authors show how an optical diode can be realized with NIM/PIM 

stratifications. This study differs from the works cited above in that we focus on the region 

where the NIM displays its intrinsic gap, where the refractive index is approximately equal to 

zero as its magnitude changes sign, as discussed at length in Ref.[6]. 

II-4.1 Single Cavity. 

We begin by studying the linear and nonlinear behavior of a single NIM/PIM cavity. The 

electric and magnetic responses of the NIM are modeled with a lossy Drude model [5]: 

( )
)~i~(~

11~
e

NIM

γ+ωω
−=ωε       ,     ( ) ( )

)~i~(~
/

1~
m

2
pepmNIM

γ+ωω
ωω

−=ωµ , (II-4. 1) 

where peωωω /~ = is the normalized frequency, ωpe and ωpm are the respective electric and 

magnetic plasma frequencies, peee ωγγ /~ =  and pemm ωγγ /~ =  are the respective electric and 

magnetic loss terms normalized with respect to the electric plasma frequency. Here we take 

ωpm/ωpe=0.8, and γe/ωpe=γm/ωpe=10-4. As discussed at length in Refs.[6-8], the transmission 

spectrum of a single layer of NIM exhibits a gap with band-edge resonances around the electric 

and magnetic plasma frequencies that are very similar to those of a PBG structure. In our case, 

the gap of the single slab of NIM is located in the spectral range between 1~8.0 <ω< . Moreover, 

the width of the gap depends upon the separation of the electric and magnetic plasma 

frequencies, and its depth is related to the thickness of the layer [7]. Now, when we sandwich 

one layer of PIM between two layers of NIMs, a transmission resonance appears in the middle of 

the gap, similar to a defect-resonance of PBG structures.  
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In figure (II-4. 1) we plot the transmission spectrum of a cavity made with a single layer of non-

dispersive PIM enclosed between two layers of NIM. The layers of NIM have thicknesses 

a=2.5λpe, while the PIM layer has thickness d=0.16338λpe, where λpe=2πc/ωpe is the electric 

plasma wavelength. The thickness of the PIM has been chosen in order to have a transmission 

resonance at the frequency 9.0~ =ω , and its refractive index is assumed to be n=1.4. Note that at 

8.1~ =ω , or double the frequency where the transmission resonance occurs, the curve is relatively 

smooth. In Figs (II-4. 2a) we choose 9.0~ =ω , and plot the transmission as a function of the PIM 

thickness. In Figs(II-4. 2b) and (II-4. 2c) we show magnifications of the first and second 

transmission resonances, which correspond to PIM layer thicknesses of d=0.16338λpe (Fig. (II-4. 

2b)) and d=0.5602λpe (Fig. (II-4. 2c)) respectively. In Figs. (II-4. 3a) and (II-4. 3b) we show field 

localization inside the structure corresponding to the first and the second transmission resonances 

shown in Figs. (II-3. 2), respectively. As one may expect, the field intensity is single-peaked at 

the first transmission resonance, double-peaked at the second transmission resonance, and so on. 
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Fig. II-4. 1: Transmission spectrum of a NIM/PIM/NIM cavity vs ω/ωpe. The thickness of each layer of 
NIM is 2.5λpe, while the thickness of the PIM is 0.16338λpe, λpe =2πc/ωpe is the electric plasma 
wavelength. The PIM is assumed to be non dispersive and non-absorbing with a refractive index of 
n=1.4. Inset: magnification of the defect resonance inside the gap. The defect resonance is centered 
around 0.9ωpe. 
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Fig. II-4. 2: a) Transmission vs. PIM thickness, for the NIM/PIM/NIM cavity described in Fig.1 at the 
frequency of 0.9ωpe that corresponds to the peak of the band gap transmission resonance in Fig.1. The 
thickness of the two NIM mirrors is fixed at 2.5λpe. b) Magnification of the first transmission resonance 
around d= 0.16338λpe. c) Magnification of the second transmission resonance around d= 0.5602λpe.. 
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PIM thickness is 0.16638λpe and b) when the PIM thickness is 0.5602λpe . 
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Let us go to the main focus of our study, i.e. second harmonic generation (SHG) in this 

cavity where only the PIM possesses a quadratic nonlinearity. Under the monochromatic, plane 

wave approximation, and for normal incidence, the Helmholtz equations that describe SHG in 

the NIM/PIM/NIM cavity are given by: 

ωωω
ωωωω µω−=µεω+ 2

*)2(
2

2

2

2

2

2
EE)z(d

c
2

c
E)z()z(

dz
Ed , (II-4. 2a)
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where εω,2ω, µω,2ω are respectively the z-dependent electric susceptibility and magnetic 

permeability at the fundamental (FF) and second harmonic (SH) frequency. d(2) is the quadratic 

coupling coefficient of the PIM: NIM
2,2, ωωωω ε=ε , NIM

2,2, ωωωω µ=µ , and d(2)=0 for 0<z<a and 

2a+d>z>a; PIM
2,2, ωωωω ε=ε , 12, =µ ωω  and d(2) ≠0 for a<z<a+d, where a and d are the thicknesses of 

the NIM and PIM layers respectively, and L=2a+d is the total length of the structure. In what 

follows we suppose that the structure is surrounded by air. Eqs. (II-4. 2) should be solved in each 

layer separately and then the solutions should be matched at the interfaces by using the boundary 

conditions appropriate to the case of magnetically active materials. In general, given the 

nonlinear nature of the equations, this computational task can be accomplished only numerically. 

In the undepleted pump regime, a fast and elegant way to proceed is to resort to the Green 

function approach. In that case, the formal expression for the electric fields that is valid inside 

the structure can be written as: 

)z(B)z(A)z(E −
ω

+
ωω Φ+Φ=    , (II-4. 3a) 

∫ ξξξξω−= ωωω

L

0

2)2(
22
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2 d)(E)(d)z,(G
c

4)z(E , (II-4. 3b) 

where Φω
+ and Φω

- are the Right-to-Left (RTL) and Left-to-Right (LTR) linear modes of the 

structure at the FF as described in Refs [9-11]. RTL and LTR propagating modes can be 

calculated independently using a standard linear matrix-transfer technique [12] adapted to the 

case of magnetic active materials. In Eq.(II-4. 3a), A and B are complex coefficients that have 

the dimensions of an electric field. These coefficients are uniquely determined by the boundary 

conditions. In the special case of LTR incidence B is zero, while A is the complex amplitude of 
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the FF pump field incident from LTR. In Eq. (II-4. 3b), G2ω is the Green function at frequency 

2ω. The Green function can be calculated in term of the RTL and LTR propagating modes of the 

structure at frequency 2ω. In order to do so, the theory developed in references [10, 11] has been 

extended to magnetically active media (see appendix A for details). 

Eq.(II-4. 3a) gives the generated electric SH field in all the space, and allows the calculation of 

the conversion efficiency (η). In the plane wave regime the conversion efficiency is defined as 

the sum of the forward and backward generated SH intensity divided by the input pump 

intensity:  

input

output
Forward,2

output
Backward,2

I

II

ω

ωω +
=η  (II-4. 4) 

where 2
20

output
Backward,2 )0(Ec)2/1(I ωω ε= and 2

20
output

Forward,2 )L(Ec)2/1(I ωω ε=  in the case of a cavity 

embedded in air, and inputIω  is the intensity of the pump beam incident from LTR. Now, taking 

into account Eqs. (II-4. 3a) and (II-4. 4), and using Eqs. (II-4. A4) and (II-3. A5) of the 

Appendix, we finally arrive to an expression for the conversion efficiency in term of overlap 

integrals [13]: 

input
2

L
0 2

2)2(
2

L
0 2

2)2(
3

0

22
Idz)z()]z()[z(d

L
1dz)z()]z()[z(d

L
1

c
L2

ω
+

ω
+
ω

−
ω

+
ω ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫ ΦΦ+∫ ΦΦ

ε
ω=η .

 (II-4. 5) 

In Eq.(II-4. 5), two contributions to the conversion efficiency can be easily identified. The first 

integral refers to the forward conversion efficiency, while the second integral gives the backward 

conversion efficiency. 

In Fig.(II-4. 4a) we plot the total conversion efficiency (forward+backward) as a function of the 

PIM thickness, when the pump is tuned to a frequency 9.0~ =ω , and its intensity is 100MW/cm2. 

The nonlinear coefficient is taken to be d(2)=9pm/V. The conversion efficiency shows a series of 

peaks in correspondence to the transmission resonances shown in Fig.(II-4. 2a). In this case we 

have considered the quadratic material as being non dispersive. Note that the conversion 

efficiency grows approximately as the square of the length of the quadratic material, as one may 

expect for perfectly phase-matched interactions. For comparison, in Fig.(II-4. 4b) we plot the 

total conversion efficiency of a single layer of the same quadratic material as a function of its 
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thickness. The conversion efficiency of the single layer has been calculated in two different 

ways: a) considering it as a Fabry-Perot etalon with all interference effects taken into account 

(thin line) and b) considering it as a bulk material (thick line) using the standard formula for 

SHG in bulk materials [14]: 

( ) inputI
kd

kdLd
cnn ω

ωω

ωµη 2

2
2)2(

2
2

0

)2/(
)2/(sin2

∆
∆=  (II-4. 6) 

where L is the length of the quadratic material, )nn)(c/2(k 2 ωω −ω=∆  is the phase mismatch, in 

the case of Fig.(II-4. 4) nω=n2ω=1.4, and inputIω  is the input intensity calculated in a medium that 

has the same refractive index of the quadratic material at the FF frequency. The NIM/PIM/NIM 

cavity shows an enhancement in the conversion efficiency by a factor of 104 with respect to the 

PIM layer. Moreover, in the case of the NIM/PIM/NIM cavity the calculations shows that the SH 

signal is generated almost perfectly balanced in the forward and backward directions.
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Fig. II-4. 4: a) Conversion efficiency (η) vs. PIM thickness for the NIM/PIM/NIM cavity. b) 
Conversion efficiency vs. thickness for a single layer of PIM. As explained in the text, the thin line 
refers to the conversion efficiency calculated considering the layer as a Fabry-Perot etalon, the thick 
line considering it as a bulk material. 
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 Conversion efficiencies balanced in the forward and backward directions are typical of 

structures with high feedback, as discussed at length in Ref. [15] for the case of PBG structures. 

On the other hand, in the case of the single layer shown in Fig.(II-4. 4b), our calculations show 

that approximately 5% of the total conversion efficiency is generated in the backward direction. 

In Figs.(II-4. 5) we plot the generated SH field for the first and the second resonance shown in 

Figs.(II-4. 2).  

Let us now investigate SHG outside of phase matching conditions. In Fig. (II-4. 6a) we plot 
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Fig. II-4. 5: Square modulus of the generated second harmonic electric field for a) PIM thickness of 
0.16638λpe and b) PIM thickness is 0.5602λpe. The pump field is tuned at 0.9ωpe, i.e. at the transmission 
resonance in the band gap and its intensity is assumed to be 100 MW/cm2 .The quadratic nonlinearity of 
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Fig. II-4. 6: a) Conversion efficiency (η) vs. PIM thickness as in Fig.(II-4. 4a) except that now the PIM 
is assumed to be dispersive with a 10% linear dispersion between the FF and the SH. b) Conversion 
efficiency vs. thickness for single layer of PIM. The thin and thick line refers respectively to the Fabry-
Perot and bulk configuration as in Fig. (II-4. 5b). 
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the conversion efficiency of the NIM/PIM/NIM cavity as a function of the PIM thickness, and 

assuming a normal dispersion of 10% of the refractive index of the PIM at the SH frequency 

with respect to the refractive index at the FF, i.e. nω=1.4 and n2ω=1.54. In Fig. (II-4. 6b) we plot 

the conversion efficiency of a slab of the same PIM material as function of its thickness. As in 

Fig.(II-4. 4), the thin line corresponds to the conversion efficiency calculated assuming the PIM 

layer is a Fabry-Perot etalon, while the thick line is calculated using the bulk conversion 

efficiency Eq.(II-4. 6). In this case the coherence length of the PIM calculated from Eq.(II-4. 6) 

is Lc=2π/∆k≅3.97λpe. We note that the concept of coherence length is still valid in the case of the 

NIM/PIM/NIM cavity. In fact, comparing Fig.(II-4. 6a) and (II-4. 6b), it is evident that the 

conversion efficiency of the NIM/PIM/NIM cavity at the transmission resonances is 

approximately modulated by the function )2/kd(sin2 ∆ . Comparing the SH energy generated 

from the NIM/PIM/NIM cavity to the SH generated in the single layer, our calculations show an 

enhancement factor of approximately 4×104. Once again we find that SH emission from the 

NIM/PIM/NIM cavity is balanced between the forward and backward directions, while in the 

single phase matched PIM layer SHG occurs almost completely in the forward direction. Finally, 

in Figs.(II-4. 7a) and (II-4. 7b) we plot the same quantities shown in figures (II-4. 6a) and (II-4. 

6b), respectively, but now assuming a normal PIM dispersion of 20%. In this case the coherence 

length of the PIM calculated from Eq.(II-4. 6) drops to lc=2π/∆k≅1.98λpe, and the enhancement 

factor is approximately 4×104. One may therefore conclude that while material dispersion is 

detrimental to the conversion efficiency of the single PIM layer, the NIM/PIM/NIM cavity 

conversion efficiency seems to benefit by as much as a factor of four as the amount of dispersion 

changes from 10% to 20% (see Figs. (II-4. 4), (II-4. 6), and (II-4. 7)). 

II-4.2 Coupled Cavities. 

Let us now investigate the case of coupled, multiple cavities, and let us first discuss some of 

their linear properties. When we add more layers, the defect resonance found at the center of the 

gap splits into several transmission resonances whose number equals the number of coupled 

cavities, as one may expect. In Fig. (II-4. 8) we show the transmission spectrum of a symmetric, 

3 and 1/2 period structure, with initial and and final NIM layers (Fig.(II-4. 9)). The thickness of 

each NIM layers is a =2.5λpe, and the thickness of each PIM layer is d =0.5602λpe. The PIM is 
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assumed to be dispersive with a linear dispersion of 20% with respect to 90.~ =ω , i.e. 

( ) ).~)(./.(.~ 909028041n −ω+=ω . The dispersion relations for the NIM layers are the same as 

those used for the single cavity. The inset of Fig.(II-4. 8) shows the three defect resonances that 

appear inside the gap around 9.0~ =ω . Note that the spectral position of the gap does not depend 

on the number of coupled cavities. In fact, the gap remains positioned in the spectral region 

between the electric and magnetic plasma frequencies, as for the case of the single cavity (see 

Fig.1). This fact confirms that the gap is intrinsic, i.e. it only depends on the dispersion relations 

of the NIM, not on any kind of interference effect from any of the layers, as it would for ordinary 

PBG structures made with PIMs [6-8], for example. Adding more cavities to the structure causes 

more transmission resonances to appear inside the gap, the transmission spectrum outside the gap 

become oscillates unpredictably, and SH emission is consequently much more difficult to 

control. For these reasons we focus our attention on the structure of Fig.(II-4. 8), which is formed 

by only three coupled cavities. In Fig. (II-4. 9) we plot the square modulus of the FF electric 

field tuned at the third transmission resonance inside the band gap of the structure. Note that the  
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electric field profile inside the PIM layers is almost identical to the profile it has for the single 

cavity case (see Fig. (II-4. 3b)). In Fig.(II-4. 10) we plot the SH generated field when the FF is 

tuned to the third resonance peak. We find a conversion efficiency of 2.6 % with an input pump 

of 100MW/cm2. We note that in the case of a single NIM/PIM/NIM cavity the maximum 

conversion efficiency available for the same intensity of input pump never exceeds 1.2% (see 

Fig.(II-4. 7a)). We have also calculated the conversion efficiency when the pump is tuned to the 

first and the second transmission resonances. Tuning to the first transmission resonance yields a 

conversion efficiency of 1.3%, while tuning to the second resonance peak is yields a conversion 

efficiency of 0.9%. The reasons the third resonance peak yields a higher conversion efficiency is 

due to a combination of higher field localization and better phase link for the FF and SH fields 

over the PIM layers; these conditions ultimately lead to a higher value of the square modulus of 

the overlap integrals calculated in Eq.(II-4. 5).  

Conclusions. 

In this paper we have explored the possibility of using NIMs as mirrors in the spectral region 

that contains an intrinsic gap, where the refractive index n≅0, in single or multiple coupled cavity 

configuration. Recent advancements in the field of metamaterials suggest that NIMs operating in 

the near infrared regime (~1.5µm) may be within reach [16-18], therefore suggesting that 

NIM/PIM/NIM single and multiple cavities may be exploited to obtain efficient SHG devices. 

From a more practical point of view, assuming a NIM operating around ~1.5µm, the defect 

resonances that appear in the intrinsic gap region may resolved with input pulses of temporal 

duration ~50ps÷100ps.  
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II-4.A Appendix A. 

Let us consider Eq. (II-4. 2b) of the main text that here for the sake of clarity we write again: 

)z(Ed)z(
c

)2(
c

E)z()z()2(
E

dz
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µεω

+ . (II-4. A1) 

In the undepleted pump approximation Eω is a known function and therefore the term at the right 

hand side of Eq.(II-4. A1) acts as a source term. Because we are dealing with magnetic active 

materials, we associate to Eq.(II-4. A1) a Green function that satisfies the following equation: 
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, (II-4. A2) 

where δ(z-ξ) is the so called “Dirac delta function that is in this case multiplied by the z-

dependent magnetic permeability of the structure. As we will see later in this section, this is a 

more convenient choice when, as in this case, the problem is related to stratifications of 

magnetically active media. We can write the formal solution of Eq.(II-4. A1) as follows: 

( ) ( ) ( ) ( ) ξξξξω−= ωωω ∫ dEdzG
c

4zE 22
L

0
22

2

2 ,)( . (ΙΙ−4. Α3) 

The Green function ),z(G 2 ξω  must be continuous at all points of the interval 0≤z≤L except at 

the point z=ξ, where it must have a jump equal to µ(z) in its first derivative. The calculation of 

the Green functions follows formally the same steps outlined in Ref.[11] with the only two 

differences: a) the jump in the derivative of the Green function at z=ξ must be µ(z) and not 1 as 

it would be the case for non magnetic material and b) the boundary conditions appropriated for 

magnetic active materials must be applied. Following Ref.[11], Eq. (II-4. A2) can be solved in 

term of the RTL and LTR propagating modes of the structure at frequency 2ω: 
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where W is a conserved quantity, i.e. dW/dz=0, given by: 
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≡ΦΦ= . Note that in the case of non magnetic 

materials, i.e. µ(z)=1, W would be the Wronskian of the fundamental set of solutions. Now using 

the condition that W is a conserved quantity, it can be calculated using the boundary conditions 

at z=L or z=0: 
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where n0,1,2 and µ0,1,2 are the refractive index and the magnetic permeability of the materials 

surrounding the structure; LTR
2t ω  and RTL

2t ω  are respectively the linear transmission coefficient of 

the structure for an incident field from LTR and RTL respectively. 
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II-5 Dark and bright gap solitons in a negative index Fabry-Perot etalon 

with a χ(3) nonlinearity. 

II-5.0 Introduction 

We predict the existence of bright and dark gap solitons in a single slab of negative index 

material. The formation of gap solitons is made possible by the exceptional interplay between the 

linear dispersive properties of the negative index etalon and the effect of a cubic nonlinearity. 

The presence of a cubic (Kerr) nonlinearity in structures characterized by a periodic variation of 

the linear refractive index leads to the formation of localized electromagnetic modes in spectral 

regions that otherwise would just allow evanescent modes. These localized modes are generally 

referred to as gap solitons (GS) [1]. GS have attracted the attention of many researchers for 

almost two decades, beginning with the theoretical predictions of Chen and Mills for one-

dimensional (1-D) photonic lattices with a Kerr nonlinearity [1]. Subsequently GS have been 

studied both theoretically [2] and experimentally [3], and their existence has also been predicted 

in 1-D periodic media with shallow gratings and a quadratic nonlinearity [4]. GS in 2D and 3D 

photonic crystals (PCs) have also been theoretically studied using different mathematical 

approaches [5]. 

We will show that the presence of bright and dark GS is supported in a single slab of 

material. This surprising outcome is borne out of the peculiar dispersive properties of NIMs [6-

8]. NIMs’ most impressive property is their ability to refract light in the opposite way with 

respect to what an ordinary material does. Very recently, nonlinear effects in NIMs have been 

also investigated [9]. While it is not surprising that a single slab of frequency dispersive material 

together with a cubic nonlinearity can support soliton waves in general, what it is surprising is 

that in this case the single slab appears to support both bright and dark GS. 

Before going into details, it is worth to say a few words to define the terms “bright” and 

“dark” GS in the case of NIMs. By the term “bright GS” in NIMs we refer to a highly localized 

electromagnetic mode with approximately decaying tails excited inside the gap of a NIM (see 

Figs. (II-5. 3b) and (II-5.3c)). These modes have localization properties similar to the classical 

GS excited in the gap of distributed feedback structures with a cubic nonlinearity [1-3]. We 

emphasize that the formation of the gap in the NIM is due to the peculiar dispersive properties of 

the bulk of the material, while the formation of the gap in distributed feedback structures is due 
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to interference effects. On the other hand, the physical mechanism that leads to the formation of 

bright GS in both cases is the same: a dynamical change in the refractive index of the material 

occurs due to the presence of a cubic nonlinearity that shifts the position of the band gap, and 

allows the formation of localized modes in a spectral region that would otherwise support only 

evanescent modes. While “bright GS” in NIMs are localized over the structure in way similar to 

GS in distributed feed-back structures, in contrast “dark GS” are excited in the gap of a NIM in 

the form of delocalized modes, with approximately non-decaying tails. These states display a 

low intensity at the center of the structure, and a high intensity at the edges (see Fig.(II-5. 5c)).  

We note that contrary to bright GS, the intensity inside the structure never exceeds 1 with respect 

to a unitary input intensity. Therefore, dark GS have no counterpart in the case of the structures 

studied in Ref.[1-4]. Dark solitons generated at frequencies outside the gap or in other systems 

where there is no photonic band gap structure are not uncommon.  For example, light waves in 

the form of dark solitons appear in optical fibers operating in the normal dispersion regime [10], 

in Raman scattering [11], and atomic, out-of-gap dark soliton waves are supported in a Bose-

Einstein condensate interacting with a periodic optical field [12]. In contrast, here we present 

numerical evidence that dark solitons can also occur when the incident light frequency is tuned 

inside the photonic band gap of a NIM.  

II-5.1 Results and discussion 

We will describe the effective electric susceptibility and magnetic permeability of a NIM 

with a lossy Drude model [13]: 

( )
)~~(~

11~
eiγωω

ωε
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−=        ,     ( ) ( )
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pepm

iγωω
ωω

ωµ
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−= ,  (II-5. 1) 

where peωωω /~ = is the normalized frequency, ωpe and ωpm are the respective electric and 

magnetic plasma frequencies, peee ωγγ /~ =  and pemm ωγγ /~ =  are the respective electric and 

magnetic loss terms normalized with respect to the electric plasma frequency. 

In Fig. (II-5. 1a) we show the refractive index  and the extinction coefficient for a NIM with 

8.0/ =pepm ωω  and 410*5.4~~ −≈≈ me γγ . The refractive index n and the extinction coefficient β 

of the material are given by: εµβ ±=+ in . The sign in front of the square root must be chosen 

in a way that ensures the Poynting vector of the light refracted into a semi-infinite slab of NIM 

will always be directed away from the interface into the refracting material itself. Of course, only 
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one of the two possible solutions of the square root satisfies this requirement. In Fig. (II-5. 1b) 

we show the linear transmission property of a Fabry-Perot (FP) etalon made by the same NIM. 

Fig. (II-5. 1b) shows that the transmission spectrum of the FP etalon is similar to the 

transmission spectrum that occurs in structures that have a periodic variation of the refractive 

index. The center-gap frequency ωc,gap  and the spectral width of the gap ∆ωgap depend on the 

electric and magnetic plasma frequency as follows: ( ) 2/, pmpegapc ωωω +=  and 

pmpegap ωωω −=∆ . The only gap that forms disappears when ωpe=ωpm. Moreover, the gap 

appears in the region where values of the refractive index n are near zero. 
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Fig. II-5. 1: a) Refractive index (solid line) and extinction coefficient (dashed line) vs. normalized 
frequency (ω/ωpe) for a NIM with 8.0/ =pepm ωω  and 410*5.4~~ −≈≈ me γγ . b) Linear 

transmittance vs. normalized frequency (ω/ωpe) for a Fabry-Perot etalon of length L=5λpe where 
λpe=2πc/ωpe is the wavelength corresponding to the electric plasma frequency. 
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Let us now suppose the FP possesses a Kerr nonlinearity. The Helmholtz equation that 

governs the nonlinear dynamic at normal incidence is given by: 

( ) EE
c

E
cdz

Ed 23
2

2

2

2

2

2

µχωεµω −=+ , (II-5. 2) 

where ε and µ are the effective electric susceptibility and magnetic permeability given by Eq.(II-

5. 1), χ(3) is the coefficient of the cubic nonlinearity. The boundary conditions that apply to 

Eq.(II-5. 2) are those valid  in the case of normal incidence in a magnetic material. Eq.(II-5. 2) 

has been numerical integrated using an explicit method in conjunction with a shooting procedure 

[14]. In Fig. (II-5. 2) we show the transmission of the FP etalon as function of the control 

parameter ( ) 2)(3 inputEχσ = , where )(inputE  is the input field. The input field is tuned at ω0=ωpe, 

i.e. inside the band-gap near the high frequency band edge. At ω0=ωpe the refractive index, the 

extinction coefficient, and the magnetic permeability are: n≅9.4*10-3; β=9*10-3; µ=3.6*10-1 + i 

3*10-4, respectively. The figure shows bistable behavior that is typical of distributed feedback 

structures with a cubic nonlinearity [1, 15]. In Figs.(II-5. 3) we calculate the field localization 
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Fig. II-5. 2: Transmittance vs. control parameter ( ) 2)(3 inputEχσ = . The input field is tuned at 

ω0=ωpe in the band gap near the high frequency band edge. 
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over the FP cavity for different values of the control parameter σ. In the linear case (σ=0, Fig.(II-

5. 3a)), the field is evanescent, consistent with its tuning inside the bandgap. For σ=0.0039 the 

field becomes localized in the form of a single bright soliton envelope, similar to that reported in 

reference [1]. For σ=0.027 a two-peaked, localized, bright-soliton state is excited. 

The FP etalon also supports dark solitons. These states manifest themselves when the carrier 

frequency is tuned inside the gap, but now near the low frequency band edge. In Fig.(II-5. 4) we 

show the transmission as a function of the control parameter σ, for an input field tuned at 

ω0=0.81ωpe. In this case, the transmission shows multi-stable behavior. By increasing the value 

of the control parameter up to σ =5, three stable branches are found. The first branch is located 

in the range 5.10 ≤≤ σ , and it corresponds to evanescent-type solutions as those shown in Fig. 

(II-5. 5a). The second branch is in the range 61.25.1 ≤≤ σ , and the corresponding solutions are 

of the type shown in Fig. (II-5. 5b). Finally for 61.2≥σ  dark soliton-type solutions are excited 
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Fig. II-5. 3: Field localization in the cavity for different values of the control parameter: (a) σ=0 , (b) 
σ=0.0039, (c) σ=0.027. 
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ω0=0.81ωpe in the band gap near the low  frequency band edge. 
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Fig. II-5. 5: Field localization in the cavity for different values of the control parameter: (a) σ=0 , (b) 
σ=1.6, (c) σ=2.7. 
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as shown in Fig. (II-5.5c). The excitation of dark solitons is somewhat surprising because, as 

discussed in the introduction, their appearance in the gap has to our knowledge never been 

predicted [16]. At ω0=0.81ωpe the refractive index, the extinction coefficient, and the magnetic 

permeability are n≅-1.16*10-3; β≅1.13*10-1; µ≅2.45*10-2+i5.41*10-4, respectively. 

Conclusions 

Our calculations suggest that when 1/ <pepm ωω  and χ(3) >0, bright solitons are excited near 

the high frequency band edge, where n>0, and that dark solitons are excited near the low 

frequency band edge where n<0. On the contrary, in the case 1/ >pepm ωω and χ(3) <0, bright 

solitons are excited near the low frequency band edge and dark solitons are excited near the high 

frequency band edge. 

In conclusion, using a numerical approach we have predicted the existence of a new class of 

bright and dark gap solitons that are supported by NIMs. Our results suggest that NIMs could 

find further applications in all-optical switching devices and all-optical buffering, for example. 

 



 126

References and Notes 

[1] W. Chen and D.L. Mills, Phys. Rev. Lett. 58, 160 (1987). 

[2] C.M. de Sterke and J.E. Sipe, in Progress in Optics XXXIII, edited by E. Wolf (Elsevier, 

Amsterdam,1994), Chap.3; D.N. Christodoulides and R.I. Joseph., Phys. Rev. Lett. 62, 

1746  (1989); D.L. Mills and S.E. Trulinger, Phys. Rev. B, 36, 947 (1987); J.E. Sipe and 

H. Winful, Opt. Lett. 13, 132 (1998). 

[3] B.J. Eggleton, et al.,  Phys. Rev. Lett. 76,  1627 (1996). 

[4] C. Conti, S Trillo, G. Assanto, Opt. Lett. 22, 445  (1997); T. Peschel et al. Phys. Rev. E 

55, 4730 (1997) ; C. Conti, S Trillo, G. Assanto, Opt. Expr.3, 389 (1998). 

[5] S. John and N. Akozbek,  Phys. Rev. Lett. 71,  1168 (1993);  S.F. Mingalev and Y.S. 

Kivshar, Phys. Rev. Lett. 86, 5474 (2001); Ping Xie and Zhao-Qing Zhang Phys. Rev. 

Lett. 91, 213904 (2003). 

[6] V.G. Veselago, Sov. Phys. USPEKHI 10, 509 (1968). 

[7] J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). 

[8] R.A. Shelby, D.R. Smith, and S. Schultz, Science 292, 77 (2001). 

[9] S. O’Brien, et al.,  Phys. Rev. B 69, 241101 (R) (2004). 

[10] A.D. Kim, W.L. Kath, and C. G. Goedde, Opt. Lett. 21, 465 (1996). 

[11] M. Scalora, S. Singh, and C.M. Bowden, Phys. Rev. Lett. 70,  1248 (1993). 

[12] A.V. Yulin and D. Skryabin, Phys. Rev. A  67, 023611 (2003). 

[13] R.W. Ziolkowski and E. Heyman, Phys. Rev E 64, 056625 (2001). 

[14] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in 

C, (Cambridge Univ. Press, Cambridge,1988) 

[15] B. Acklin et al.,  Appl. Phys. Lett.63, 2177 (1993). 

[16] Here we refer to a “true” in-gap dark soliton, i.e., a dark gap soliton excited by a single 

pump with no external feedback mechanism to re-inject the output field back into the 

structure.  This external feedback scheme indeed can lead to delocalized modes excited 

by two counter-propagating pumps.  In this regard, it is well known that in the linear 

regime a multilayer structure pumped on both sides can give rise to unusual delocalized 

states by simply choosing a proper phase link between the incident pumps [see: Centini et 

al. Phys. Rev. E , 67, 036617 (2003)].   Therefore, in the nonlinear regime dark in-gap 

solitons or delocalized modes can be excited using either external feedback or two 



 127

counter-propagating pumps that may cause destructive interference and a local minimum 

inside the structure.  A very good example of external feedback that can give rise to 

delocalized states in the gap of a multilayer structure is discussed in the following paper: 

Alatas et al,  Journ. of Nonlin. Opt. Phys. & Materials, 13, 259 (2004). 



 



 129 

Conclusions 
 

We have discussed linear and nonlinear properties of 1-D photonic crystals (part 1) and of 

negative index materials (part 2), underlining similarities and differences between them.  

In Chapter I-2 we have presented a unified treatment of density of modes and tunneling times in 

finite, one-dimensional photonic crystals. We have exploited connections and differences 

between the various approaches used to calculate the density of modes, which include the Green 

function, the Wigner phase time, and the electromagnetic energy density, and we have concluded 

that the Green function is always the correct path to the true density of modes. We have also 

found that for an arbitrary structure the density of modes can always be found as the ratio 

between the power emitted by a source located inside the structure and the power emitted by the 

same source in free space, regardless of absorption or dispersion. In Chapter I-3 we have 

developed a three dimensional model in order to study the properties of THz emission from a one 

dimensional, χ(2)-doped photonic crystal. We have exploited difference frequency generation in a 

collinear configuration and we have found an enhancement factor of up to 20 with respect to 

difference frequency conversion from an equivalent bulk structure. In Chapter I-4 we have 

studied third order nonlinear processes in photonic band gap structures. We showed how two 

pumps can interact through a χ(3)
 nonlinearity, i.e. cross phase modulation coupling. The 

transmission properties of an electromagnetic field can be strongly modified by the interaction 

with another electromagnetic field. The mutual interaction of two pumps can be applied in order 

to obtain a variety of all optical devices. In particular, with this configuration it is possible to 

obtain an optical transistor, a double switch and dynamical switch. 

In Chapter II-2 we have studied the linear properties of a single slab of negative index material 

of finite thickness at normal and angular incidence. We have shown that the slab is characterized 

by a band gap in the transmission spectrum with superluminal group velocities and small group 

velocities at the band edges. The transmission spectrum is remarkably similar to the transmission 

spectrum of 1-D photonic crystals. The spectral width of the gap is proportional to the difference 

between the electric and magnetic plasma frequencies. The spectral position and the spectral 

width of the gap are independent on the length of the slab. With increasing angles of incidence, 

the reflecting band does not shift in frequency but it actually becomes wider. This behavior  

makes a single layer of a negative index material an omnidirectional reflector, in the range 
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between the electric plasma frequency and the magnetic plasma frequency. The operational 

bandwidth can be 100% or greater by increasing the separation between the electric and 

magnetic plasma frequencies. Moreover, we have shown that negative index materials have two 

points of zero group velocity dispersion that allow undistorted pulse propagation. In Chapter II-3 

we have studied a symmetric hollow waveguide made with a NIM cladding. In the opacity 

region of the NIM, the waveguide admits both TE and TM guided modes with relatively low 

losses. While further material development is still needed, recent advancements in the design of 

meta-materials suggest that this waveguide could operate in the infrared regime with better 

performances compared to more traditional hollow waveguides. In Chapter II-4 we used a Green 

function approach to theoretically study second harmonic generation in single and coupled 

cavities made of a generic quadratic, positive index material sandwiched between two or more 

negative index materials that act as mirrors. These structures show nonlinear conversion 

efficiencies that may be at least four orders of magnitudes larger than perfectly phase matched 

bulk materials of similar length. In Chapter II-5 we have studied third order nonlinear process in 

NIM. We have found that a slab of NIM support the formation of both bright and dark gap 

solitons. 

In conclusions, in this work we have discussed several basic properties related to 

photonic structures and negative index materials.  If anything, what this work really shows is that 

much remains to be done in order to understand the real, underlying nature of many optical 

phenomena that at first sight seem simple or obvious.  For this reason we wish to continue this 

work in our future efforts, confident that these structures have yet to reveal many more pleasant 

surprises. 
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