
UNIVERSITÀ DEGLI STUDI ROMA TRE
Dottorato di Ricerca in Matematica, XXII Ciclo

Alice Fabbri

Kronecker Function Rings of
Domains and Projective Models

THESIS

Advisor Co-Advisor
Prof. Bruce Olberding Prof. Marco Fontana
New Mexico State University Università degli Studi Roma Tre

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AMS classification: 13B22, 13F30, 14A05
Key words: Star operation, Kronecker function ring, Projective model



Contents

Introduction 1

1 Background results 9
1.1 Star operations and Kronecker function rings . . . . . . . . . . . . . 9
1.2 The Zariski space and the space of integrally closed overrings of a

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Semistar operations and generalizations of Kronecker function rings . 21
1.4 Basic properties of domains of classical ideal theory . . . . . . . . . . 27

2 Integral domains having a unique Kronecker function ring 32
2.1 Representations of an integrally closed domain . . . . . . . . . . . . 32
2.2 Vacant domains and domains of classical ideal theory . . . . . . . . . 35
2.3 Characterizations of vacant domains . . . . . . . . . . . . . . . . . . 38
2.4 Vacant pseudo-valuation domains . . . . . . . . . . . . . . . . . . . . 42
2.5 Pullbacks of vacant domains . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7 Discussion and questions . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Projective star operations and graded rings 58
3.1 Projective models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Homogenization, dehomogenization and saturation of ideals . . . . . 60
3.3 Star operations on homogeneous and non-homogeneous ideals . . . . 66
3.4 The projective b- and v-operation . . . . . . . . . . . . . . . . . . . . 74
3.5 Projective Kronecker function rings . . . . . . . . . . . . . . . . . . . 76
3.6 Discussion and questions . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 80

I



Introduction

Star operations were introduced by W. Krull in a series of papers starting from
1936. The purpose was to generalize Kronecker’s theory of divisibility, holding in
Dedekind domains, to arbitrary integrally closed domains. The main obstacle for
this generalization was the restriction on domains enjoying Gauss’ Lemma. In fact,
Gauss’ Lemma holds in an integrally closed domain R if and only if R is a Prüfer
domain, i.e., an integral domain in which every nonzero finitely generated ideal is
invertible (cf. [22, Corollary 28.5 and Theorem 28.6]).

By means of star operations it is possible to define a special kind of multipli-
cation for ideals, i.e. the !-multiplication, and then to isolate a particular class of
star operations, i.e. the e.a.b. star operations, enjoying cancellation properties on
!-multiplication. In such a situation a more general version of Gauss’ Lemma holds
in every integrally closed domain and a given integrally closed domain R can be
associated to a Kronecker function ring, a Bézout domain (i.e. an integral domain
such that every finitely generated ideal is principal) generalizing the classical domain
introduced by Kronecker and consisting of the possible gcd’s of elements in R. A
thorough historical overview on star operations and Kronecker function rings can be
found in [17].

It is well-known that the set of valuation overrings of an integral domain may
have a large variety of structures. The simplest of these structures is realized in
valuation domains, for which valuation overrings form a linearly ordered set.

In the class of integrally closed domains, a way to evaluate how complicated
is the set of valuation overrings is to look at the number of Kronecker function
rings admitted by the domain. In fact, the more complicated is the set of valuation
overrings of an integrally closed domain, the more the possible ways in which the
domain can be represented as an intersection of valuation overrings, the more the
possible number of distinct Kronecker function rings the domain admits.

Let R be an integral domain with quotient field K. Let F(R) denote the set of
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nonzero fractional ideals of R. A star operation on R is then defined as an application
! : F(R)→ F(R): I "→ I!, such that for all I, J ∈ F(R) and x ∈ K \ {0}:

(!1) R! = R and (xI)! = xI!;

(!2) I ⊆ I!, and I ⊆ J ⇒ I! ⊆ J!;

(!3) I!! := (I!)! = I!.

A star operation ! is called endlich arithmetisch brauchbar (in brief, e.a.b.) if for
each finitely generated I, J, H ∈ F(R), (IJ)! ⊆ (IH)! implies J! ⊆ H!. Given an
e.a.b. star operation the Kronecker function ring of R with respect to ! is defined by:

Kr(R, !) := {f/g | f, g ∈ R[X], g &= 0, C(f)! ⊆ C(g)! } ,

where C(f) denotes the content of the polynomial f(X) (i.e., C(f) is the ideal of
R generated by the coefficients of f). It is known that Kr(R, !) is a Bézout domain
with quotient field K(X) such that Kr(R, !) ∩K = R (see Theorem 1.1.9).

Given any two star operations !1 and !2 on R, we say that !1 and !2 are equivalent
(and we write !1 ∼ !2) if they agree on finitely generated ideals. If !1 and !2

are e.a.b. it is not hard to see that !1 ∼ !2 if and only if Kr(R, !1) = Kr(R, !2)
(cf. Remark 1.1.14).

Although a celebrated theorem by W. Krull states that an integrally closed do-
main can be written as an intersection of its valuation overrings, there are in general
many possible representations of an integrally closed domain by means of its valua-
tion overrings. To each such representation can be associated an e.a.b. star operation
(see Theorem 1.1.8). As a consequence of Krull’s intersection theorem, an integral
domain admits an e.a.b. star operation if and only if it is integrally closed.

Let us denote by Zar(R) the set of valuation rings of K containing R. Suppose
Σ ⊆ Zar(R) is such that R =

⋂
V ∈Σ V . Then the application I "→ I!Σ :=

⋂
V ∈Σ IV

is an e.a.b. star operation (see Theorem 1.1.8). Moreover Theorem 1.1.15 shows
that an e.a.b. star operation on R is equivalent to a star operation !Σ for a suitable
Σ ⊆ Zar(R).

Hence, equivalence classes of e.a.b. star operations, and consequently the number
of distinct Kronecker function rings, are closely related to representations of R as
intersection of its valuation overrings.

Suppose Σ ⊆ Zar(R) is such that
⋂

V ∈Σ V = R, we say that W ∈ Σ is irredundant
for the representation if

⋂
{V ∈ Σ : V &= W} ! R. If every W ∈ Σ is irredundant

then we say
⋂

V ∈Σ V (= R) is an irredundant representation of R (cf. Definition
2.1.2).
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In [23, Theorem 1.7], R. Gilmer and W. Heinzer proved that if a Prüfer domain
has an irredundant representation, then it is the unique such representation. We
recall their result in Theorem 2.1.3.

The valuation overrings of Kr(R, !), for an e.a.b. star operation !, are given
by Gaussian extensions of valuation overrings of R (for more details on Gaussian
extensions see the discussion at page 13). Hence, denoting by V b the Gaussian
extension to K(X) of a valuation ring V of K, we have that an irredundant repre-
sentation

⋂
V ∈Σ V of R lifts to an irredundant representation

⋂
V ∈Σ V b of Kr(R, !Σ)

for some e.a.b. star operation depending on Σ (see Proposition 2.1.7). Reciprocally
if a maximal Kronecker function ring of R has an irredundant representation, this
representation restricts in K to an irredundant representation of R (see Proposition
2.1.8).

So, if an integrally closed domain with a unique Kronecker function ring has an
irredundant representation, then it is the unique such representation (see Corollary
2.1.9). More precisely, an integrally closed domain has at least as many distinct Kro-
necker function rings as the number of irredundant representations of the domain. In
general, an integrally closed domain may not have any irredundant representation
and either one or more Kronecker function rings. For an example of such situa-
tion it is enough to consider a Prüfer domain that does not have an irredundant
representation (cf. Examples 2.1.6 (b)).

If I is an ideal of the integral domain R, an element x in the quotient field K of
R is integral over I, provided there exist ai ∈ Ii such that:

xn + a1x
n−1 + · · ·+ an−1x + an = 0.

By [49, Theorem 1, Appendix 4], the set I consisting of the elements of K integral
over the ideal I, i.e. the integral closure of I, coincides with the ideal

⋂
V ∈Zar(R) IV ,

called the completion of I.
An integrally closed domain, then, has a unique Kronecker function ring if and

only if every e.a.b. star operation is equivalent to the b-operation (or integral closure
of ideals, or completion), which coincide, by using the language introduced before,
with the star operation !Σ, where Σ = Zar(R). In particular, an integrally closed
domain with a unique Kronecker function ring has a rather simple Zariski space, so
that it is not possible to generate non equivalent representations of the domain itself.

K. A. Loper called domains having a unique Kronecker function ring, vacant
domains, to point out this “lack” in valuation overrings. We will use the same
terminology throughout.
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Definition. An integrally closed domain is vacant if it has a unique Kronecker
function ring.

In Chapter 2 we tackle the problem of characterizing vacant domains from dif-
ferent points of view.

We start by studying the property of having a unique Kronecker function ring
for distinguished classes of domains of classical ideal theory. We prove that the most
celebrated classes (whose definitions are recalled later), i.e. Krull domains, P!MD’s,
where ! is any star operation, GCD-domains and more in general generalized GCD-
domains, have a unique Kronecker function ring if and only if they are Prüfer.

In Section 2.3 we give characterizations of integrally closed domains having a
unique Kronecker function ring, by studing their Zariski space and the integral clo-
sure of finitely generated ideals (Theorem 2.3.1). We deduce a new characterization
of Prüfer domains as integrally closed domains for which whenever I is a finitely
generated ideal, Ib is flat.

Motivated by what is to our knowledge the only example in literature of a non-
Prüfer vacant domain (namely, [22, Example 12, Section 32]), Section 2.4 is devoted
entirely to the study of pseudo-valuation domains (in brief, PVD’s; the definition is
recalled in Section 1.4). We prove, in Theorem 2.4.9, that having a unique Kronecker
function ring for an integrally closed PVD R with maximal ideal M and associated
valuation overring V , is equivalent to the requirement that the transcedence degree
of the residue field V/M over R/M is 1. For our proof we added the hypothesis that
the field V/M is a finite extension of a transcendental extension of R/M .

In order to build new examples of non-Prüfer vacant domains, in Section 2.5, we
study how the uniqueness of the Kronecker function ring is preserved in a pullback
diagram. We prove in Theorem 2.5.1, that an integrally closed domain R with a
divided prime ideal P (i.e. a prime ideal for which P = PRP ), such that RP is a
valuation domain, has a unique Kronecker function ring if and only if so has R/P .
In particular it will immediately follow that the CPI extension of a domain R with
respect to a prime ideal P (i.e., the pullback π−1(R/P ), where π is the canonical
projection of RP onto RP /PRP ), for which RP is a valuation domain has a unique
Kronecker function ring if and only if R/P has a unique Kronecker function ring.

By means of the results collected, we give in Section 2.6 new examples of domains
having a unique Kronecker function ring. We construct quasi-local domains with
this property which are neither valuation domains, nor pseudo-valuation domains.
We give next two ways to build semi-quasi-local domains with a unique Kronecker
function ring and a pre-assigned number of maximal ideals such that the localization
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in each of those is not a valuation domain.

In 2001 two generalizations of the concept of Kronecker function rings were pro-
posed: one by F. Halter-Koch [24], and the other one by M. Fontana and K. A. Loper
[15, 16]. Halter-Koch’s construction starts from an axiomatization of two properties
of the classical Kronecker function ring, whilst the Fontana - Loper approach uses
semistar operations (see [37, 38]). According to Halter-Koch’s axiomatization, if F is
a field and X is an indeterminate over F , an F -function ring is a domain H ⊆ F (X)
such that:

(Ax1) X, X−1 ∈ H;

(Ax2) for all f ∈ F [X], f(0) ∈ fH.

(cf. Definition 1.3.12).
It is easily seen that the Gaussian extension to F (X) of a valuation ring V of F

satisfies (Ax1) and (Ax2). Moreover any intersection of F -function rings is still an
F -function ring, so that every Kronecker function ring of a domain with quotient field
F is an F -function ring (cf. Remark 1.3.13). In general when H is an F -function ring
such that H ∩ F has quotient field F , then H is a Kronecker function ring of R (in
the sense that there exists an e.a.b. star operation ! on R such that H = Kr(R, !)).
However, the notion of F -function ring does not require that H ∩ F has quotient
field F . Thus H ∩F can even be a field and, in this case, for lack of fractional ideals,
it is not possible to build a star operation on K := H ∩ F to make H a Kronecker
function ring.

In Chapter 3 we show that by shifting focus to projective model we can introduce
ideals in this context and build projective star operations to deduce F -function rings
in a way very similar to the classical one. These results are a joint work with
O. Heubo.

Let F be a field and R a subring (possibly a field) of F . We denote by Zar(F/R)
the Zariski space of F over R and keep the notation Zar(R) when F is the quotient
field of R. A natural topology, called the Zariski topolgy, can be introduced on
Zar(F/R) by taking as an open basis the sets of the form:

U(z1, . . . , zn) := {V ∈ Zar(F/R) : zi ∈ V, ∀i = 1, . . . , n} ,

for all finite subsets {z1, . . . , zn} ⊆ F . The set of prime ideals Spec(R) of R, is
endowed with the Zariski spectral topology. There is a continuous map:

ϕ : Zar(F/R) −→ Spec(R)
V "−→ P := MV ∩D,
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where MV is the (unique) maximal ideal of the valuation ring V .
This construction can be generalized, to include also the case in which R is a

subfield of F , by introducing the concept of complete model. We denote by L(F/R)
the set of quasi-local domains S, such that R ⊆ S ⊆ F . A basis for a topology on
L(F/R) is given by the following collection of open sets:

W(z1, . . . , zn) := {S ∈ L(F/R) : zi ∈ S} , for all finite subsets {z1, . . . , zn} ⊆ F.

With this construction, Zar(F/R) is a topological subspace of L(F/R) and the in-
duced topology coincides with the Zariski topology on Zar(F/R) (see the discussion
at page 59).

For any domain T , with R ⊆ T ⊆ F , V (T ) := {TP : P ∈ Spec(T )} is a subset of
L(F/R), and a topological subspace, homeomorphic to Spec(T ).

A complete model of F over R is then a collection M :=
⋃n

i=0 V (Ri), such that:

(M1) R ⊆ Ri ⊆ F and each Ri is finitely generated over R;

(M2) for each V ∈ Zar(F/R) there exists a unique S ∈M dominated by V .

If the Ri’s are such that Ri = R[x0
xi

, . . . , xn
xi

], for some finite set {x0, . . . , xn} ⊆ F ,
the model M =

⋃n
i=0 V (Ri) is called a projective model. (A quick overview on model

and ideals in models will be given in Section 3.1. More details can be found in [49,
Ch. VI, § 7] and [1, § 6, p.167]).

If F := K(Y1, . . . , Yn) is a purely transcendental extension of K we can associate
to Zar(F/K) a projective model of F over K, such that all the Ri’s can be chosen to
be integrally closed and have quotient field F (see [49, Lemma 1, Ch. VI, § 17] and
[49, pages 119-120]). It is possible indeed to take the underlying domains as Ri :=
K[Y1

Yi
, . . . , Yn

Yi
, Y1···Yn

Yi
]. With a change of variables we have that Ri = K[X0

Xi
, . . . , Xn

Xi
]

and the model M =
⋃n

i=0 V (Ri) can be endowed with a scheme structure, precisely
it can be viewed as the projective scheme Proj(S) where S := K[X0, . . . , Xn].

With this new setting we can consider coherent sheaves of ideals on Proj(S) and
define a projective star operation as an application from the set of coherent sheaves
of ideals into itself, satisfying the same properties of classical star operations. For
this construction we can reduce to consider homogeneous ideals of S, in view of the
bijection between the set of coherent sheaves of ideals of Proj(S) and homogeneous
saturated relevant ideals of S (see Proposition 3.2.7).

Denoting by H(S) the set of nonzero homogeneous relevant ideals of S, we shall
say that an S-submodule J of F is a homogeneous fractional ideal if there exists a
homogeneous f ∈ S such that fJ ∈ H(S).
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A projective star operation on S (or equivalently on Proj(S)) is a mapping ! :
F(S)→ F(S); I "→ I!, such that, whenever I ∈ H(S) then I! ∈ H(S), and for every
nonzero homogeneous rational function f (i.e., f = g

h with g and h &= 0 homogeneous
polynomials in S) in the quotient field of S and every I, J ∈ H(S):

(a) (f)! = (f), (fI)! = fI!;

(b) I ⊆ I! and if I ⊆ J then I! ⊆ J!;

(c) I!! := (I!)! = I!.

(cf. Definition 3.3.4).
So we will consider projective star operations as maps from the set of homoge-

neous fractional ideals into itself satisfying (a), (b) and (c) above.
Projective star operations can be sometimes deduced from star operations on

S. More precisely if a star operation ! on S preserves homogeneous ideals (namely
I ∈ H(S) implies I! ∈ H(S)), then it can be restricted to a projective star operation.
We compare then the set of star operations of S with the set of projective star
operations on Proj(S), and give examples of star operations on S preserving or
not preserving homogeneous ideals: we observe, in Section 3.2, that the identity
d-, the saturation sat, the b- and the v- operation have the homogeneous preserving
property, while for the v(I)’s operations (for which Jv(I) := (I : (I : J))) it is possible,
by choosing a suitable I, that for a homogeneous ideal J , J! is not homogeneous
(Example 3.3.6 (b)).

Because of the fact that we can move ideals of S to each of the Ri’s, by using
the dehomogenization ai (see the discussion at page 61 and Theorem 3.2.3), and the
other way round, by homogenization h (see the discussion at page 62 and Theorem
3.2.4), we prove, in Section 3.3, that each projective star operation ! induces a star
operation !i on each Ri by defining for each ideal I of Ri:

I!i := ai

(
(hI)!

)
.

This process can be reversed. If a compatibility condition between star operations on
different Ri’s is given (cf. Definition 3.3.12), the projective star operation built from
those local compatible star operations !0, . . . , !n is defined, for each homogeneous
ideal J of S, by:

J! := sat

(
n⋂

i=0

h ((aiI)!i)

)
,

where, for each ideal J of S:

satJ := {f ∈ S : ∀i = 0, . . . , n ∃mi ≥ 0 such that Xmi
i f ∈ J} .
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In Section 3.4, we show that the projective b-operation (resp., v-operation) dehomog-
enizes to the integral closure of ideals (resp., divisorial closure of ideals) in each Ri,
and observe that the saturation sat is a projective star operation which dehomog-
enizes to the identity star operation (Lemma 3.4.1, Lemma 3.4.2 and Proposition
3.4.3 for the b-operation, Proposition 3.4.5 and Remark 3.4.6 for the v-operation).
Furthermore given any projective star operation !, the composition sat ◦ ! is again
a projective star operation and dehomogenizes to the same star operations obtained
locally from !. We obtain then a bijection between the (n + 1)-tuples of compat-
ible star operations, each of those defined on one of the Ri’s and projective star
operations of the form sat ◦ −:






{!0, . . . , !n}
!i = star operation on Ri,

!i compatible with !j , ∀i, j





←→






sat ◦ !

! = projective star operation
on S






The e.a.b. property is then defined for projective star operations in the natural way
(cf. Definition 3.5.1). We prove that we can associate to such a projective e.a.b. star
operation a projective Kronecker function ring, PKr(S, sat ◦ !), which turns out to
be an F -function ring (cf. Corollary 3.5.6), and has a natural interpretation in terms
of valuations of F . In particular, the F -function ring H =

⋂
V ∈Zar(F/K) V b coincides

with the projective Kronecker function ring PKr(S, sat ◦ b) (cf. Corollary 3.5.9).
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Chapter 1

Background results

This chapter collects the basic background results that will be used throughout
Chapter 2 and Chapter 3. To avoid heavy notations and an excess of concepts, some
of them are reformulated in a more synthetic version.

For the proofs references are given, except when the used techniques, or results,
are of particular interest for our purposes. In this latter case, for the sake of the
reader, the complete proof is included.

All rings considered are commutative rings with identity 1. A ring homomor-
phism ϕ will always satisfy ϕ(1) = 1.

Notation 1.0.1. For a quasi-local domain S, we shall denote by MS its unique
maximal ideal and by kS its residue field S/MS .

Given I, J ideals in the integral domain R having quotient field K, we will use
the identification:

End(I) = (I : I) = {x ∈ K : xI ⊆ I} .

1.1 Star operations and Kronecker function rings

Let R be an integral domain with quotient field K. We shall denote by F(R) the set
of nonzero fractional ideals of R.

Definition 1.1.1. A star operation on R is an application:

! : F(R) −→ F(R)
I "−→ I!

satisfying the following properties for each I, J ∈ F(R) and x ∈ K \ {0}:

(!1) R! = R and (xI)! = xI!;
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(!2) I ⊆ I! and I ⊆ J ⇒ I! ⊆ J!;

(!3) I!! := (I!)! = I!.

Conditions (!1) and (!2) imply that if I is an (integral) ideal of R, then I! ⊆
R! = R is an (integral) ideal too. Moreover if J is a fractional ideal of R, then there
exists x ∈ R\{0} such that xJ = I ⊆ R. Therefore, by (!1), J! = (x−1I)! = x−1I!,
so that the behavior of the star operation ! is completely determined by its action
on integral ideals.

Definition 1.1.2. Let ! be a star operation on the integral domain R. A fractional
ideal J of R is called a !-ideal provided J! = J .

It is easily seen that, by condition (!3), J is a !-ideal of R if and only if there
exists H ∈ F(R) such that H! = J .

Definition 1.1.3. Let ! be a star operation on the integral domain R. A !-ideal J

of R is called !-finite if there exists H ∈ F(R) finitely generated such that H! = J .

Each finitely generated !-ideal of R is clearly !-finite.
Basic properties of !-ideals are summarized in the following results:

Proposition 1.1.4. ([22, Proposition 32.2]) Let ! be a star operation on the integral
domain R. Then for all I, J ∈ F(R) and for each subset {Iα} of F(R), we have:

(a) (
∑

α Iα)! = (
∑

α I!
α)!, if

∑
α Iα is a fractional ideal of R.

(b)
⋂

α I!
α = (

⋂
α I!

α)!, if
⋂

α Iα &= (0).

(c) (IJ)! = (IJ!)! = (I!J!)!.

Given a star operation !, the set of !-ideals has in particular the following dis-
tinguished properties. Furthermore, each set of ideals S satisfying those properties
yields a star operation ! having S contained in the set of !-ideals.

Proposition 1.1.5. ([22, (32.3)]) Let ! be a star operation on the integral domain
R. Let S denote the set of !-ideals of R. The following hold:

(a) Each nonzero principal ideal of R can be expressed as an intersection of a set
of elements of S.

(b) If J ∈ S and if x ∈ K \ {0}, then xJ ∈ S.
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Proposition 1.1.6. ([22, Proposition 32.4]) Let S be a subset of F(R) satisfying (a)
and (b) of Proposition 1.1.5. For J ∈ F(R), we define J! to be the intersection of
the set of elements of S which contain J . Then J → J! is a star operation on R.

Proposition 1.1.4 and Proposition 1.1.5 suggest that a special !-multiplication
can be defined for !-ideals. In fact, although in general (IJ)! &= I!J!, we have,
by (c) of Proposition 1.1.4, that (I!J!)! = (IJ)!, and we can define I! × J! :=
(I!J!)! = (IJ)!. Some star operations enjoy good cancellation properties with
respect to !-multiplication and form, from our point of view, an important class of
star operations.

Definition 1.1.7. Let R be an integral domain. A star operation ! on R is arit-
metisch brauchbar or, in brief, a.b. (resp., endlich aritmetisch brauchbar, or, in brief,
e.a.b.), provided:

(IJ)! ⊆ (IH)! =⇒ J! ⊆ H!

for all I, J, H ∈ F(R), I finitely generated (resp., I, J, H finitely generated).

It follows directly by definition that an a.b. star operation is also e.a.b.. The
reverse implication is not true in general. A counterexample has been recently pre-
sented by M. Fontana and K. A. Loper in [19].

The following result gives an alternative method to build star operations. This
process will be widely used later, in view of the fact that an e.a.b. star operation can
be always associated, up to equivalence, to an e.a.b. star operation built as follows.

Theorem 1.1.8. ([22, Theorem 32.5]) Let R be a domain with quotient field K,
and assume {Rα} is a family of overrings of R such that R =

⋂
α Rα. If I ∈ F(R),

we define I! :=
⋂

α IRα. Then the mapping I → I! is a star operation on R and
IRα = I!Rα for each I ∈ F(R) and each α. If each Rα is a valuation ring, then this
star operation is a.b..

A star operation associated to a family of valuation overrings {Vγ}γ∈Γ, as in The-
orem 1.1.8, was classically called a w-operation (cf. [22, Section 32]). Later the name
w-operation was used in a different sense to denote a precise star operation, that
will be introduced in Section 1.3. Hence, to avoid confusion and also to emphasize
the family Γ to which the chosen valuation domains belong to, we will denote by !Γ

the star operation associated to the family Γ, as in Theorem 1.1.8. We will use the
name w-operation with the meaning it has nowadays.

Given a domain R and a polynomial f ∈ R[X], we denote by C(f) the content
of f , i.e. the ideal of R generated by the coefficients of f .
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Each integral domain, endowed with an e.a.b. star operation, can be associated to
a Bézout domain, living in a larger quotient field. Nevertheless, the starting domain
is strictly related to such a Bézout domain:

Theorem 1.1.9. ([22, Theorem 32.7]) Let R be an integral domain with quotient
field K. Let ! be an e.a.b. star operation on R. Let

Kr(R, !) := {f/g | f, 0 &= g ∈ R[X], C(f)! ⊆ C(g)! } .

Then:

(a) Kr(R, !) is a domain with identity with quotient field K(X); Kr(R, !)∩K = R.

(b) Kr(R, !) is a Bézout domain.

(c) If I is a finitely generated ideal of R, then I! = IKr(R, !) ∩R.

If ! is an e.a.b. star operation on the domain R, Kr(R, !) is called the Kronecker
function ring of R with respect to the star operation ! and the indeterminate X.

Since a Kronecker function ring is a Bézout domain, hence an integrally closed
domain, by (a) of Theorem 1.1.9 the following corollary is straightforward.

Corollary 1.1.10. ([22, Corollary 32.8]) If an integral domain R admits an e.a.b. star
operation, then R is integrally closed.

It is easily seen that the converse of Corollary 1.1.10 is also true. For, let R be
an integrally closed domain and, as in the Introduction, denote by Zar(R) the set
of valuation overrings of R (the set, or more precisely, the topological space Zar(R),
will be widely investigated in Section 1.2). Consider the mapping from F(R) into
itself that associates to I ∈ F(R) the fractional ideal Ib :=

⋂
V ∈Zar(R) IV . Since R

is integrally closed Rb =
⋂

V ∈Zar(R) V = R and, by Theorem 1.1.8, b is an e.a.b. star
operation on R. This construction corresponds to a well-known star operation, called
the b-operation (see Examples 1.1.17 (b)).

It follows that an integral domain R admits an e.a.b. star operation if and only if
b is a star operation on R. Hence for each integrally closed domain we can consider
the Kronecker function ring Kr(R, b) and, whenever we assume an integral domain
to admit a Kronecker function ring, we need that the domain is integrally closed, by
Corollary 1.1.10.
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Given a valuation v of a field K with values in an ordered abelian group Γ, if X

is an indeterminate for K, the mapping

w : K[X] −→ Γ ∪ {∞}

f =
∑n

i=0 aiXi "−→ w(f) :=

{
∞ if f = 0;
min0≤i≤n(v(ai)) otherwise.

induces a valuation, vb, of K(X) by defining for each f, g ∈ K[X] \ {0}, vb(f/g) :=
w(f)−w(g). The valuation vb is called the Gaussian extension, or the trivial exten-
sion, of v to K(X) and enjoys the following properties:

(a) vb extends the valuation v, namely the restriction vb |K= v;

(b) vb(X) = 0;

(c) the class X of the residue field of vb is transcendental over the residue field of v.

For more details on the trivial extension of a given valuation the reader may refer
to [11, Section 2] and [22, Section 18].

The following results show how the valuation overrings of an integrally closed
domain R are related to the valuation overrings of a Kronecker function ring of R.

Theorem 1.1.11. ([22, Theorem 32.10]) Let R be an integrally closed domain with
quotient field K and let ! be an e.a.b. star operation on R, with Kronecker func-
tion ring Kr(R, !). If W is a valuation overring of Kr(R, !), then W is the trivial
extension of W ∩K to K(X).

Theorem 1.1.12. ([22, Theorem 32.11]) Let R be an integrally closed domain with
quotient field K and let {Vλ}λ∈Λ be a family of valuation overrings of R such that
R =

⋂
λ∈Λ Vλ. Let !Λ : I "→ I!Λ be the e.a.b. star operation induced by the family

{Vλ}λ∈Λ (as in Theorem 1.1.8). Let Kr(R, !Λ) be the Kronecker function ring of R

with respect to !Λ, and, for each λ ∈ Λ, let V b
λ denote the trivial extension of Vλ to

K(X). Then Kr(R, !λ) =
⋂

λ∈Λ V b
λ .

The problem to determine the number of Kronecker funciton rings admitted by an
integrally closed domain cannot be solved just by looking at the number of distinct
e.a.b. star operations on the domain. In fact, different e.a.b. star operation may
induce the same Kronecker function ring. It is possible anyway to introduce, on the
set of star operations on a given domain, an equivalence relation, which, restricted to
e.a.b. star operations collects together star operations defining the same Kronecker
function ring.
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Definition 1.1.13. Let !1 and !2 be star operations on the domain R. Then !1 is
equivalent to !2, and we write !1 ∼ !2, if for each finitely generated ideal I of R,
I!1 = I!2 .

Remark 1.1.14. ([22, Remark 32.9]) It is easily seen that if !1 and !2 are e.a.b. star
operations on the (integrally closed) domain R, then !1 ∼ !2 if and only if Kr(R, !1) =
Kr(R, !2). For suppose !1 ∼ !2, and let f, 0 &= g ∈ R[X]. The content C(f) (resp.,
C(g)) is a finitely generated ideal of R, hence, by assumption, C(f)!1 = C(f)!2

(resp., C(g)!1 = C(g)!2). Therefore

f/g ∈ Kr(R, !1)⇔ C(f)!1 ⊆ C(g)!1 ⇔ C(f)!2 ⊆ C(g)!2 ⇔ f/g ∈ Kr(R, !2),

so that Kr(R, !1) = Kr(R, !2).
For the converse it is enough to apply (c) of Theorem 1.1.9 to conclude that, for

each finitely generated ideal I of R, I!1 = IKr(R, !1) ∩K = IKr(R, !2) ∩K = I!2 .

Furthermore, as shown in the following theorem, in each equivalence class of
e.a.b. star operations there is a distinguished representative of the form !Σ.

Theorem 1.1.15. ([22, Theorem 32.12]) Each e.a.b. star operation on an integrally
closed domain R is equivalent to a star operation of the form !Σ for some Σ ⊆
Zar(R).

We introduce now some of the most commonly used star operations. Other
examples require more advanced tools and will be given in Section 1.3. We start
with a result that yields a whole family of star operations.

Proposition 1.1.16. ([28, Proposition 3.2]) Let R be an integral domain and I an
ideal of R. If (I : I) = R, then the mapping J "→ Jv(I) := (I : (I : J)) is a star
operation on R.

Examples 1.1.17. (a) The identity star operation d, such that, for each I ∈ F(R),
Id := I is trivially a star operation for any domain R.

(b) The integral closure b, for which Ib :=
⋂

V ∈Zar(R) IV , is a star operation on R

if and only if R is integrally closed (in fact Rb = R if and only if R is integrally
closed). In this case, b is an a.b (hence e.a.b.) star operation by Theorem 1.1.8.

(c) The divisorial closure v, for which Iv := (R : (R : I)), is a star operation for
any domain R (cf. [22, Theorem 34.1 (1)]).
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(d) If R is integrally closed, then (I : I) = R for each nonzero finitely generated
ideal I of R (cf. [22, Proposition 34.7]). Hence, by Proposition 1.1.16, every
finitely generated ideal I of an integrally closed domain defines a star operation
of the form v(I). In this setting, the divisorial closure v = v(R).

Given an integrally closed domain R with quotient field K, the collection of
Kronecker function rings of R is a poset with respect to inclusion. Moreover if S1

and S2 are Kronecker function rings of R, then each T such that S1 ⊆ T ⊆ S2 is
still a Kronecker function ring of R. The set of Kronecker function rings of each
integrally closed domain R has a minimum, namely Kr(R, b), but may not have any
maximum element. The following results summarize all these properties.

Theorem 1.1.18. ([22, Theorem 32.15]) Let R be an integrally closed domain with
quotient field K, and let Kr(R, b) be the Kronecker function ring of R with respect
to the b-operation.

(a) If S is an integrally closed overring of R, then for each e.a.b. star operation
! on S, the Kronecker function ring Kr(S, !) is an overring of Kr(R, b) such
that Kr(S, !) ∩K = S.

(b) If T is an overring of Kr(R, b), then T is a Kronecker function ring of T ∩K.

By Theorem 1.1.18 (a) has an immediate consequence:

Corollary 1.1.19. ([22, Corollary 32.14]) Each Kronecker function ring of an in-
tegrally closed domain R contains Kr(R, b), the Kronecker function ring of R with
respect to the b-operation.

It follows from (b) of Theorem 1.1.18 that the set of Kronecker function ring of
an integrally closed domain R with quotient field K, is completely determined by
those overrings T of Kr(R, b) such that T ∩K = R. Although the set of Kronecker
function rings of R has always a minimum and an easy application of Zorn’s Lemma
shows that maximal elements exist, it is hard in general to determine them. We will
give some more details on this problem in Section 2.1, since it is partially related to
the representations of the domain R as an intersection of its valuation overrings.

An exception is given by the class of domains we are going to introduce, i.e. the
class of v-domains. As we will see, such domains have always a Kronecker function
ring which is the largest.

Proposition 1.1.20. ([22, Theorem 34.1 (4)]) Let R be an integral domain with
quotient field K. If ! is a star operation on R, then, for each I ∈ F(R), I−1 :=
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(R : I) is a !-ideal. In particular Iv is a !-ideal and I! ⊆ Iv. If I, J ∈ F(R),
then I! ⊆ J! implies Iv ⊆ Jv. Therefore if the v-operation on R is e.a.b., then the
Kronecker function ring of each e.a.b. star operation on R is contained in Kr(R, v),
the Kronecker function ring of R with respect to the v-operation.

Definition 1.1.21. An integrally closed domain R such that the v-operation on R

is e.a.b. is called a v-domain.

Recall that if R ⊆ S is a ring extension, an element s ∈ S is almost integral
over R if all powers of s belong to a finite R-submodule of S. The ring R is said
completely integrally closed in S if every element of S, almost integral over R, is in
R. A domain is completely integrally closed if it is completely integrally closed in its
quotient field.

Examples of v-domains are completely integrally closed domains (cf. [22, Theo-
rem 34.3]) and Prüfer domains (cf. [22, Proposition 32.18]).

1.2 The Zariski space and the space of integrally closed
overrings of a domain

Definition 1.2.1. Let R be a domain (possibly a field) contained in a field K. The
Zariski space of R with respect to K is the set of valuation rings of K containing R:

Zar(K/R) := {V : V valuation ring of K, R ⊆ V } .

When K is the quotient field of R, as briefly mentioned in Section 1.1, we will
simply write Zar(R) rather than Zar(K/R).

Let V ∈ Zar(R). It is well-known that MV ∩R is a prime ideal of R. In general,
an application between Zar(R) and the set of prime ideals of R, Spec(R), can be
considered:

ϕ : Zar(R) −→ Spec(R)
V "−→ MV ∩R

The set Spec(R) is endowed with the Zariski spectral topology, i.e. the topology
having as an open basis the complements of the form D(f) := Spec(R) \ V (f) =
{P ∈ Spec(R) : f &∈ P}, for f ∈ R (cf. [3, Exercises 15 and 17]).

A natural question is whether there exists a topology on Zar(R) making ϕ a
continuous map. O. Zariski gave a positive answer to this question introducing
the following topology on Zar(R) (see [49, Ch. IV, § 17]): for each finite subset
{x1, . . . , xn} of K define

UR(x1, . . . , xn) := {V ∈ Zar(R) : xi ∈ V, ∀i = 1, . . . , n} = Zar(R[x1, . . . , xn]).
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It is easily seen that these sets verify the axioms for an open basis of a topology on
Zar(R).

It is not hard to prove that ϕ is also surjective and closed (see [22, Theorem 19.6]
and [5, Theorem 2.5]). Hence the map ϕ is close to being an isomorphism, but it is
not injective except in rare cases, precisely, in the integrally closed case, if and only
if R is a Prüfer domain ([5, Proposition 2.2]).

Although the map ϕ is not a homeomorphism, Zar(R) turns out to be a spectral
space, meaning that there exists a ring S such that Zar(R) is homeomorphic to
Spec(S). In [5, Theorem 4.1] it is shown that, for any domain R, Zar(R) satisfies
M. Hochster’s necessary and sufficient conditions for a topological space in order to
be a spectral space (cf. [30, Proposition 4]). Later, in [7], D. Dobbs and M. Fontana
present a homeomorphism between Zar(R) and Spec(Kr(R, b)), where R denotes the
integral closure of R. So they find an explicit construction, which works for any
integral domain R, of a ring whose prime spectrum is homeomorphic to Zar(R):

Theorem 1.2.2. ([7, Theorem 2]) Let R be an integral domain. Then Zar(R) is
homeomorphic to Spec(Kr(R, b)).

For an integral domain R, the homeomorphism built in [7, Theorem 2], is given
by:

ψ : Zar(R) −→ Spec(Kr(R, b))
V "−→ MV b ∩Kr(R, b)

It is easily seen that ψ is a bijection. In fact, ψ is obtained as the composition of
the following applications:

Zar(R) id−→ Zar(R) σ−→ Zar(Kr(R, b)) ϕ−→ Spec(Kr(R, b))

As observed earlier, since Kr(R, b) is a Bézout (hence a Prüfer) domain the
application ϕ is a homoeomorphism, in particular, a bijection. Moreover Theorem
1.1.11 and Theorem 1.1.12 imply that if the Kronecker function ring of an integrally
closed domain is taken with respect to the b-operation, then the correspondence
σ : Zar(R)→ Zar(Kr(R, b)), V "→ V b is one-one.

Therefore ψ is a bijection. Furthermore ϕ and the identity id are homeomor-
phisms. The fact that σ is a homeomorphism too is guaranteed by the following
proposition:

Proposition 1.2.3. ([7, Lemma 1]) If R is an integrally closed domain with quotient
field K, then the bijection σ : Zar(R)→ Zar(Kr(R, b)) is a homeomorphism.
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Proof. It is easily seen that:

σ(UR(x1, . . . , xn)) = UKr(R,b)(x1, . . . , xn),

so that σ is an open map.
As σ is a bijection, it now suffices to show that σ−1 maps the typical subbasic

open set UKr(R,b)(α) to an open set. The case α = 0 is trivial. If α &= 0, we can write
in lowest terms:

α =
a0 + a1X + · · ·+ anXn

b0 + b1X + · · ·+ bmXm

with all the ai’s and bj ’s in K. Let v denote the valuation associated to the valuation
domain V . Ignoring possible vanishing coefficients, we have:

σ−1(UKr(R,b)(α)) =
{

V ∈ Zar(R) : α ∈ V b
}

=

= {V ∈ Zar(R) : inf{v(ai)} ≥ inf{v(bj)}} =

=
⋃

i,j

{V ∈ Zar(R) : v(ai) ≤ v(aλ) ∀λ, v(bj) ≤ v(bµ) ∀µ, v(ai) ≥ v(bj)} =

=
⋃

i,j

UR

({
aλ

ai
: 1 ≤ λ ≤ n

}
∪

{
bµ

bj
: 1 ≤ µ ≤ m

}
∪

{
ai

bj

})
.

Thus σ−1(UKr(R,b)(α)), as a (finite) union of open sets, is open and σ is continuous.

The correspondence established, for an integrally closed domain R, between
Zar(R) and Spec(Kr(R, b)), led recently to two different generalizations. On one
side O. Heubo proved that the Zariski space Zar(K/R) is spectral, also in the case
in which K is not the quotient field of R. In Heubo’s result R may even be a field.
This result will be recalled in Section 1.3.

In another direction, B. Olberding considered a natural extension Ψ of ψ to larger
spaces, i.e. the space of integrally closed overrings of an integral domain R and the
space of prime semigroup ideals of the Kronecker function ring Kr(R, b). He showed
that, given an integrally closed domain R, even though Ψ may not be surjective, the
homeomorphism is preserved on the image of Ψ.

Definition 1.2.4. [40, Section 2]. Let R be an integral domain with quotient field
K. We define the space of integrally closed overrings as the set:

Over(R) := {S : R ⊆ S ⊆ K, S integrally closed} ,
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endowed with the Zariski topology whose basic open sets are of the form:

ER(x1, . . . , xn) := {S ∈ Over(R) : xi ∈ S, ∀i = 1, . . . , n} ,

for {x1, . . . , xn} that ranges over the finite subsets of K.

In this setting Zar(R) is a subset of Over(R) and the Zariski topology of Over(R)
induced on Zar(R) coincides with the Zariski topology on Zar(R).

In order to generalize Theorem 1.2.2 we need to consider on the set Over(R) a
topology finer than the Zariski topology.

Definition 1.2.5. Let Over(R) be the set of integrally closed overrings of an inte-
gral domain R with quotient field K. The b-topology on Over(R), is the topology
generated by declaring as subbasic open sets those of the form:

ER(I, J) :=
{

S ∈ Over(R) : I ⊆ JbS

}
,

where I, J are finitely generated R-submodules of K, and bS denotes the integral
closure of J in S.

We will see in Section 1.3 that such a bS belongs to a large class of applications
that generalize star operations, namely semistar operations.

Proposition 1.2.6. ([40, Proposition 2.5]) Let R be an integrally closed domain.
The mapping

h : Over(R) −→ Over(Kr(R, b))
S "−→ Kr(S, b)

is a homeomorphism of Over(R) onto its image in Over(Kr(S, b)) with respect to the
b-topology.

Proposition 1.2.7. ([40, Corollary 2.8]) If R is an integrally closed domain, then
the subspace topology on Zar(R) induced by the b-topology on Over(R) is the same
as the Zariski topology on Zar(R).

Moreover the Zariski topology and the b-topology coincide on Over(R) when R

is a Prüfer domain (cf. [40, (2.2)]).

Definition 1.2.8. Let R be an integral domain. A semigroup ideal is a subset J of
R such that for all x ∈ R, xJ ⊆ J . A semigroup ideal J is prime if whenever x, y

are elements of R such that xy ∈ J , then x ∈ J or y ∈ J .
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As observed in [40, (2.3)] a nonempty subset P of R is a prime semigroup ideal
if and only if R \ P is a saturated multiplicatively closed subset of R. Hence, P is a
prime semigroup ideal of R if and only if P is a union of prime ideals of R.

Definition 1.2.9. Let R be an integral domain. The space of prime semigroup
ideals of R is the set S(R) of prime semigroup ideals of R together with the topology
obtained by declaring as basic open sets:

DR(x1, . . . , xn) := {P ∈ S(R) : xi &∈ P, ∀i = 1, . . . , n} ,

where x1, . . . , xn ∈ R.

Given an integrally closed overring S of the integral domain R, it is easily seen
that the following set is a prime semigroup ideal of R:

PS := {x ∈ R : xS &= S} .

Recall that an integral domain R is a QR-domain if every overring S &= K of R

is a quotient ring of R, namely, S = RPS (cf. [22, Section 27]). A QR-domain is
necessarily Prüfer and Bézout domains are QR-domains (cf. [22, Theorem 27.5]).

Lemma 1.2.10. ([40, Lemma 2.10]) If R is a QR-domain, then the mapping:

g : Over(R) −→ S(R)
S "−→ PS

is a homeomorphism with respect to the b-topology.

Hence, by means of Proposition 1.2.6 and Lemma 1.2.10, we have:

Theorem 1.2.11. ([40, Theorem 2.11]) If R is an integrally closed domain, then
the mapping:

Ψ : Over(R) −→ S(Kr(R, b))
S "−→ PKr(S,b)

is a homeomorphism of Over(R) onto its image in S(Kr(R, b)) with respect to the
b-topology on Over(R).

The previous result will be used in Section 2.3 (precisely in Proposition 2.3.7) to
characterize integrally closed domains having a unique Kronecker function ring and
such that each integrally closed overring has a unique Kronecker function ring too
(we will call such domains totally vacant domains).
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1.3 Semistar operations and generalizations of Kronecker
function rings

The notions of star operation and Kronecker function ring led to two major devel-
opements. On one side A. Okabe and R. Matsuda introduced in [37, 38] the more
general concept of a semistar operation. This approach was followed afterwards by
many authors and, in particular, by M. Fontana and K. A. Loper. In [15, 16, 18]
they associated a more general kind of Kronecker function ring to semistar opera-
tions and the classical Kronecker function rings are completely included in the class
introduced by Fontana and Loper.

On the other hand, F. Halter-Koch axiomatized two main properties of Kronecker
function rings and defined the notion of F -function ring (cf. [24]). We will give an
overview on F. Halter-Koch’s generalization, since the concept of F -function ring is
crucial for our results in Chapter 3. We will recall also the main definitions and
properties of semistar operations. In fact, even if this work is focused basically on
star operations, we will apply some of the results on semistar operations to the more
restrictive case we consider.

It is worth observing that both of the approaches we just mentioned allow to
build a function ring for every domain, hence, not necessarily integrally closed, and
the operation associated to the function ring is not anymore required to be e.a.b..
The original purpose that motivated these new constructions, in fact, was precisely
to overcome those restrictions on the chosen domain and the star operation.

Let R be an integral domain with quotient field K. Let F(R) denote the set of
nonzero R-modules contained in K.

Definition 1.3.1. A semistar operation on R is an application: ∗ : F(R) → F(R);
E "→ E∗ satisfying for all E,F ∈ F(R) and x ∈ K \ {0} the following conditions:

(∗1) (xE)∗ = xE∗;

(∗2) E ⊆ E∗, and E ⊆ F ⇒ E∗ ⊆ F ∗;

(∗3) E∗∗ := (E∗)∗ = E∗.

Remark 1.3.2. A star operation ! can always be lifted to a semistar operation ∗,
by defining E∗ := E! if E ∈ F(R), and E∗ := K otherwise. Conversely a semistar
operation ∗ such that R∗ = R can be restricted to the set of nonzero fractional
ideals, i.e. its restriction to F(R) is well-defined, and induces a star operation on
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R. Because of this property such a semistar operation is often called a (semi)star
operation.

Definition 1.3.3. Given a star operation ! on R, an ideal I of R such that I! = I

is called a !-ideal. A !-prime is a !-ideal which is also prime and a !-maximal ideal
is a maximal element for the set of !-primes.

To each semistar operation ∗ on R (and in particular to each star operation) it
is always possible to associate:

(a) a semistar operation of finite type, denoted by ∗f :

J∗f :=
⋃

{F ∗ : F ⊆ J, F ∈ F(R) finitely generated} ,

for all J ∈ F(R). If ! is a star operation of finite type, an application of Zorn’s
lemma shows that the set of !-maximal ideals of R, denoted by !−Max(R), is
nonempty.

(b) A stable semistar operation of finite type, denoted by ∗̃:

J ∗̃ :=
⋃

{(J : I) : I ⊆ R, I∗ = R, I finitely generated}

for all J ∈ F(R) (see [16, Remark 2.8]).

(A semistar operation ∗ is called stable if for each pair I, J ∈ F(R) we have that
(I ∩ J)∗ = I∗ ∩ J∗).

(c) An e.a.b. semistar operation of finite type, denoted by ∗a:

I∗a =
⋃

{((IH)∗ : H∗) : H ∈ F(R) finitely generated} ,

if I is finitely generated, and then, for each nonzero R-module J contained in
K:

J∗a :=
⋃

{F ∗a : F ⊆ J, F ∈ F(R) finitely generated} .

(see [16, § 4]).

Definition 1.3.4. A star (resp., semistar) operation ! (resp., ∗) on an integral
domain R is of finite type if !f = ! (resp., ∗f = ∗).

It is easily seen that (!f )f = !f so that !f is always of finite type.
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Remark 1.3.5. It is worth observing that starting from a star operation !, !f and !̃

are star operations too, whilst !a may not be a star operation, but a proper semistar
operation. For an example of such situation, suppose R is an integrally closed domain
which is not a v-domain. We claim that va is not a star operation. Suppose by way
of contradiction that Rva = R. This is equivalent to (Iv : Iv) = R, for each I finitely
generated (by definition of va), and, by [22, Theorem 34.6], this holds if and only if
R is a v-domain. Hence Rva ! R and va is a proper semistar operation.

Furthermore, for each J ∈ F(R), the following equality holds:

J !̃ =
⋂

P∈!f−Max(R)

JRP .

(cf. [16, Corollary 2.7 and Remark 2.8]).

Examples 1.3.6. Let R be an integral domain, not necessarily integrally closed.
Let K be the quotient field of R.

1. The mapping d : J "→ J , for every J ∈ F(R) is the identity semistar operation.

2. The mapping b : J "→ Jb :=
⋂

V ∈Zar(R) JV , for each J ∈ F(R) is a semistar
operation, called the b-operation. If R denotes the integral closure of R, we
have Rb = R. If R is integrally closed the restriction of the semistar operation
b to the set F(R) coincides with the star operation b considered in Examples
1.1.17 (b). Moreover, it is not hard to prove that b = da, hence b is e.a.b. and
of finite type.

3. The mapping v : J "→ Jv := (R : (R : J)), for each J ∈ F(R), defines a semistar
operation, called the v-operation. Since Rv = R the semistar operation v

restricts naturally to the set F(R) and the restriction coincides with the star
operation v considered in Examples 1.1.17 (c).

4. The mapping t : J "→ J t :=
⋃
{F v : F ⊆ J, F ∈ F(R) finitely generated}, for

each J ∈ F(R) is the semistar operation of finite type associated to the semistar
operation v, and is called the t-operation. According to Remark 1.3.5, the
restriction of the semistar operation t to the set of fractional ideals of R is a
star operation (of finite type).

5. The mapping w : J "→ Jw :=
⋃
{(J : I) : I ⊆ R, Iv = R, I finitely generated},

for each J ∈ F(R) is a semistar operation called the w-operation. the w-
operation is the stable semistar operation associated to the semistar opera-
tion v. Also in this case, as observed in Remark 1.3.5, the restriction of w
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to the set F(R) is a (stable) star operation and, for each J ∈ F(R), Jw =
⋂

P∈t−Max(R) JRP .

It is possible to give to the set of star (resp., semistar) operations on an integral
domain a structure of a partially ordered set:

Definition 1.3.7. Given !1 and !2 star (resp., semistar) operations on R we say
that !1 is coarser than !2, or, equivalently, that !2 is finer than !1, (and we write
!1 ≤ !2) if the following equivalent conditions hold for any nonzero (fractional) ideal
I of R (resp. R-submodule of K):

(a) I!1 ⊆ I!2 .

(b) (I!1)!2 = I!2 .

(c) (I!2)!1 = I!2 .

In particular, given a star operation ! on the domain R, we have: ! ≤ v, !f ≤ t

and !̃ ≤ w (cf. Theorem 1.1.20).

Remark 1.3.8. Recall that the equivalence between two star operations !1 and !2

on the integral domain R holds if for every I ∈ F(R) finitely generated, I!1 = I!2 . So
if we consider the finite type star operations (!1)f and (!2)f , associated to !1 and !2

respectively, it is easily seen that !1 ∼ !2 if and only if (!1)f = (!2)f . Furthermore
every star operation ! on R is equivalent to the finite type star operation !f .

As mentioned earlier, semistar operations were introduced to generalize the the-
ory of star operations holding for integrally closed domains to arbitrary domains.
Recall that an integral domain R is integrally closed if and only if (I : I) = R for
each nonzero finitely generated ideal I of R (cf. [22, Proposition 34.7]).

Definition 1.3.9. Let R be an integral domain, and ∗ a semistar operation on R.
The semistar integral closure of R with respect to ∗ is the domain:

R[∗] :=
⋃

{(I∗ : I∗) | I ∈ F(R) finitely generated} .

As remarked in [10] for any semistar operation ∗, R∗ ⊆ R[∗] and R∗a = R[∗] (see
[15, Proposition 4.5]).

Definition 1.3.10. Let R be an integral domain and ∗ a semistar operation on R.

(a) R is quasi-∗-integrally closed if R∗ = R[∗].

24



(b) R is ∗-integrally closed if R = R[∗].

Proposition 1.3.11. ([10, Lemma 4.13]) Let R be an integral domain and ∗ a
semistar operation on R.

(a) If ∗ is e.a.b., then R∗ = R[∗] (i.e. R is quasi-∗-integrally closed).

(b) R is quasi-∗̃-integrally closed if and only if R∗̃ is integrally closed.

More details on semistar integral closures and Kronecker function rings with
respect to semistar operations can be found, for instance, in [10, 15, 16, 18].

As pointed out in Section 1.1, a Kronecker function ring is a Bézout domain,
with good additional properties, that can be associated to a given integrally closed
domain. F. Halter-Koch considered the opposite point of view. More precisely he
studied domains having the good properties of Kronecker function rings, by axiom-
atizing two properties enjoyed by each Kronecker function ring, and he obtained a
larger class of domains. This class does not depend on a base domain, but just on a
field, that, in the classical case, coincides with the quotient field of the base domain
R.

Definition 1.3.12. Let F be a field and X an indeterminate for F . An F -function
ring is a domain H ⊆ F (X) such that:
(Ax1) X and X−1 ∈ H;
(Ax2) for each f ∈ F [X], f(0) ∈ fH.
If R = H ∩ F , then H is called a function ring of R.

Remark 1.3.13. It is easily seen that if H is an F -function ring then (cf. [24,
Remarks 1]):

1. If F0 ⊆ F is a subfield, then H ∩ F0(X) is an F0-function ring.

2. Every ring H ′, with H ⊆ H ′ ⊆ F (X) is also an F -function ring.

3. The intersection of any family of F -function rings is again an F -function ring.
Furthermore, if the chosen family consists of F -function rings of R, the inter-
section is again an F -function ring of R.

4. Every F -function ring of R is contained in a maximal F -function ring of R (by
Zorn’s Lemma) and contains a (unique) smallest F -function ring of R (namely,
the intersection of all of them).
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Conditions (Ax1) and (Ax2) are enough to obtain, for each F -function ring, all
the properties enjoyed by Kronecker function rings. Thus Kronecker function rings
associated to star operations become a subclass of Halter-Koch’s F -function rings.

Theorem 1.3.14. ([24, Theorem 2.2]) Let H ⊆ F (X) be an F -function ring and
R := H ∩ F .

(a) If f = a0 + a1X + · · ·+ anXn ∈ F [X], then fH = a0H + a1H + · · ·+ anH.

(b) H is a Bézout domain with quotient field F (X).

(c) R is integrally closed in F . In particular R is an integrally closed domain, and
the quotient field of R is relatively algebraically closed in F .

The same thorough classification made for valuation overrings of a Kronecker
function ring (cf. Theorem 1.1.11), can be found for F -function rings.

Proposition 1.3.15. Let F be a field and H ⊆ F (X) be an F -function ring. If
V ∈ Zar(F (X)/H) then V = (V ∩ F )b.

Proof. The proof goes exactly as the one for Kronecker function rings.
Let V be a valuation overring of H. Denote by v the valuation associated to V ,

by w the restriction v |F and by vb the Gaussian extension of w to F (X). We want
to prove that v = vb. It is enough to show that if α := f0+f1X + · · ·+fnXn ∈ F [X],
we have v(α) = vb(α) (= (inf0≤i≤n(w(fi))). Since X and X−1 are in H ⊆ V , then
v(X) = 0. Thus, for each f ∈ F , v(fXi) = v(f) = w(f). Therefore v(α) ≥ vb(α).

For each i = 0, . . . , n, by (Ax2), fi/α ∈ H. Hence v(α) ≤ v(fi) = w(fi), for each
i = 0, . . . , n. Thus v(α) ≤ vb(α) and equality holds.

Next we want to point out the greater generality of an F -function ring compared
to Kronecker function rings. For this purpose we propose the example that motivated
mostly our study on F -function rings (cf. Chapter 3).

Example 1.3.16. Let K ⊆ F be a field extension which is not algebraic. Consider
the Zariski space Zar(F/K). Since K ⊆ F is not algebraic, the algebraic closure
of K in F is strictly contained in F . The domain H :=

⋂
V ∈Zar(F/K) V b is an F -

function ring. The intersection H ∩ F is the algebraic closure K
F of K in F . It

is straightforward to observe that, in this case, it is not possible to build a star
operation ! on K

F such that H is a Kronecker function ring of K
F in the sense of

Section 1.1. In fact, K
F being a field, it has just one nonzero ideal, and only a trivial

star operation (i.e., the identity).
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1.4 Basic properties of domains of classical ideal theory

Part of this work is devoted to a wide ranging study of a new class of domains,
namely integrally closed domains having a unique Kronecker function ring. So we
thought it was something natural to compare the class we were interested in with
distinguished classes of domains, well-known in classical ideal theory. We give here
a synthetic overview on these classes and their main properties.

In the literature there can be found a large amount of characterizations for the
domains we are going to mention. Hence, in our presentation, we just wish to point
out those properties which are relevant for our purpose. For deeper overviews we
added some references, which however might not be exhaustive either.

Proposition 1.4.1. ([22, Theorem 22.1]) For an integral domain R the following
conditions are equivalent:

(a) Every nonzero finitely generated ideal of R is invertible.

(b) For each maximal ideal M of R, RM is a valuation domain.

(c) For each prime ideal P of R, RP is a valuation domain.

An integral domain is a Prüfer domain if it satisfies one of (equivalently, all) the
conditions in Proposition 1.4.1.

Proposition 1.4.2. ([22, Theorem 24.7 and Theorem 26.2]) For an integrally closed
domain R the following are equivalent:

(a) R is a Prüfer domain.

(b) Each overring S of R is integrally closed.

(c) Each overring S of R is a Prüfer domain.

(d) Each ideal of R is integrally closed.

From the point of view of star operations, Prüfer domains have a very simple
structure, as shown in the next results.

Proposition 1.4.3. ([22, Proposition 32.18]) Let R be a Prüfer domain. Each star
operation on R is a.b., hence e.a.b., and any two star operations on R are equivalent.

Proposition 1.4.4. ([22, Proposition 34.12]) Let R be an integrally closed domain.
Then R is a Prüfer domain if and only if I = It for each nonzero ideal I of R.

27



Therefore Prüfer domains are characterized, amongst integrally closed domains,
by the condition that the star operation t is the identity.

Recall that Dedekind domains are integral domains in which each nonzero ideal is
invertible. So Dedekind domains are (one-dimensional, Noetherian) Prüfer domains
(cf. [22, Theorem 37.1] or [32, Theorem 96]).

More details on Prüfer domains can be found, for instance, in [13, 22, 39].

Since invertibility of ideals has an important role in characterizing domains from
an ideal-theoretic point of view, it is natural to ask what may happen when general-
izing invertibility: so, what if invertibility with respect to the identity star operation
d is replaced by invertibility with respect to a star (resp., semistar) operation? A
first answer is given in [22, Section 34] for the special case of the v-operation. Then,
in [14] and [20], the case of an arbitrary semistar operation is examined.

Definition 1.4.5. Let R be an integral domain and ! (resp., ∗) a star (resp., semis-
tar) operation on R. A nonzero ideal I of R is called !-invertible if (II−1)! = R

(resp., (II−1)∗ = R∗).

It turns out that, by means of !-invertibility it is possible to define a new class
of Prüfer-like domains, i.e. Prüfer !-multiplication domains.

Definition 1.4.6. Let ! be a star operation (resp., a semistar operation) on a
domain R; R is a Prüfer !-multiplication domain (in brief, a P!MD) if each finitely
generated ideal I of R, is !f -invertible. (cf. for instance [14] and [20]).

So Definition 1.4.6 includes, in the special case ! = v, the well-known class of
PvMD’s (cf. for instance [22, Section 34]) and, in the case ! = d, one has back the
definition of Prüfer domain. Furthermore, because of the fact that the set of star
(more generally semistar) operations on an integral domain is a poset having v as
maximum, if R is a P!MD, then it is also a PvMD (the proof is straightforward, and
will be given in more details in the proof of Proposition 2.2.8).

Definition 1.4.7. An integral domain R is a finite conductor domain (in brief,
an FC-domain) if for each a, b ∈ R the intersection aR ∩ bR is finitely generated
(cf. [47]).

Definition 1.4.8. An integral domain R is a generalized GCD-domain (in brief, a
gGCD-domain) if the intersection of two integral invertible ideals is invertible, or,
equivalently, if the intersection of two principal ideals is invertible (cf. [2]).
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It is clear by definition that a gGCD-domain is an FC-domain.

Remark 1.4.9. In [47, Theorem 2] is shown that an integrally closed FC-domain is
a PvMD, hence also an integrally closed gGCD-domain is a PvMD. So, dealing with
integrally closed domains, we can reduce to the case of a PvMD in each of the three
cases above.

Prüfer domains generalize valuation domains by globalization, i.e. a Prüfer do-
main is locally a valuation domain. A different generalization is given by pseudo-
valuation domains. This class of domains shares many properties with valuation
domains and each pseudo-valuation domain is associated, in a sense that will be
clarified later, to a valuation domain.

Definition 1.4.10. Let R be a domain with quotient field K. A prime ideal P of R

is called strongly prime if whenever xy ∈ P for x, y ∈ K then either x ∈ P or y ∈ P .

Definition 1.4.11. An integral domain R is called a pseudo-valuation domain, (in
brief, PVD) if every prime ideal of R is strongly prime.

A PVD is quasi-local, more precisely its prime spectrum is linearly ordered
(cf. [25, Corollary 1.3]). Furthermore it is easily seen that each valuation domain is
a PVD. For suppose V is a valuation domain, P is a prime ideal of V , and xy ∈ P ,
with x, y in the quotient field of V . Then, if x and y are in V , either x or y is in P ,
because P is prime. If x /∈ V , then x−1 ∈ V , and y = (xy)x−1 ∈ P .

Theorem 1.4.12. ([25, Theorem 2.7]) For a quasi-local domain (R,MR) the follow-
ing conditions are equivalent:

(a) (R,MR) is a PVD;

(b) R has a (unique) valuation overring V with maximal ideal MR;

(c) There exists a valuation overring V in which every prime ideal of R is also a
prime ideal of V .

It is not hard to see that, even though, given a PVD R, the valuation domain
V associated to R is unique, the converse is not true. So, starting form a valuation
domain V , we can possibly have many different PVD’s with V as associated valuation
domain. In fact, by following the same argument proposed in [25, Example 2.1], if
V = F + MV is a valuation domain and K is a proper subfield of F , the domain
R := K + MV is a PVD and V is its associated valuation domain. Hence, a proper
subfield K ′ of F , K ′ &= K, yields K ′ + MV as another PVD associated to V .
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Proposition 1.4.13. ([25, Proposition 2.6]) Let R be a PVD with maximal ideal
M . If P is a nonmaximal prime ideal of R, then RP is a valuation domain.

Another way to characterize PVD’s is by means of pullback constructions (cf. [12]).
In fact, every PVD arises as the pullback of a valuation ring V with a subfield F of
the residue field kV of V over kV :

R := π−1(F )! "

!!

"" "" F! "

!!
V

π "" "" kV

In fact if R is a PVD with maximal ideal M , then by Theorem 1.4.12, V = End(M)
is the unique valuation overring of R having M as maximal ideal. Then, by choosing
F := R/M we have the desired pullback diagram. Conversely if R is the pullback
π−1(F ) then R is quasi-local with maximal ideal M (cf. [12, Proposition 2.1]). So,
by Theorem 1.4.12 (b), R is a PVD.

The analogues of Prüfer domains for PVD’s are given by those domains which
are locally PVD. These domains have been studied by D. Dobbs and M. Fontana in
[6].

Definition 1.4.14. An integral domain R is a locally pseudo-valuation domain (in
brief an LPVD) if RM is a PVD for each maximal ideal M of R.

In [6, Proposition 2.2] is shown that an integral domain R is an LPVD if and only
if every prime ideal of R is locally strongly prime, namely, for each P ∈ Spec(R),
PRP is strongly prime in RP .

To conclude we recall that, following H. Matsumura (cf. [35, Section 12]):

Definition 1.4.15. A domain R with quotient field K is a Krull domain if R =
⋂

λ∈Λ Rλ, where each Rλ is a DVR and the family {Rλ}λ∈Λ has finite character
(i.e. each nonzero x ∈ K is invertible in all but finitely many Rλ). The family
{Rλ}λ∈Λ is called a defining family for R.

Remark 1.4.16. It is worth remarking that sometimes the definition of Krull do-
main includes also the condition that each Rλ is a localization of R at a height-one
prime ideal. Actually this additional requirement is not restrictive, in fact, as shown
in [35, Theorem 12.3], a Krull domain always admits a defining family consisting
of localizations at height-one primes. The reason for including the existence in the
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definition is because such a defining family is uniquely determined and is a mini-
mal defining family, so that it is sometimes called the defining family for the Krull
domain R.

A Krull domain, being an intersection of completely integrally closed domains,
is itself completely integrally closed. In particular each Krull domain is a v-domain.
Moreover the following characterization will be very useful:

Proposition 1.4.17. ([31]) An integral domain R is a Krull domain if and only if
(II−1)t = R for each nonzero ideal I of R.
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Chapter 2

Integral domains having a unique
Kronecker function ring

2.1 Representations of an integrally closed domain

Definition 2.1.1. Let R be an integrally closed domain with quotient field K. Let
Σ be a subset of Zar(R), such that:

R =
⋂

V ∈Σ

V.

Then we say that Σ is a representation of R.

For some classes of domains the possible (or, in some cases, effective) representa-
tions admitted has been completely characterized, but it is still of interest to know
what happens in the general case. Evidently the more complicated is the set of
valuation overrings of the domain, the more varied are representations that can be
generated. We will focus on irredundant representations, as we mean in the following
definition. In general, representations are involved also in different kinds of problems,
for instance, to determine the domains in between a given domain and the quotient
field, or related to topological properties of the Zariski spaces (cf. [23, 34, 40, 41, 42]).

Definition 2.1.2. Let Σ be a representation of an integrally closed domain R. An
element W ∈ Σ such that

⋂
{V ∈ Σ : V &= W} ! R is called irredundant for the

representation Σ. If each W ∈ Σ is irredundant, we say that Σ is an irredundant
representation of R.

It is well-known that a Krull domain R has always an irredundant representation.
This representation is obtained by intersecting the members of the defining family of
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R (cf. Remark 1.4.16). Even Krull domains, for which the existence of an irredundant
representation is guaranteed, may fail the uniqueness of such representation. For
instance a 2-dimensional UFD is a Krull domain and has infinitely many irredundant
representations (to generate such representations it is enough to replace one of the
DVR’s W , with a 2-dimensional valuation domain V " W ).

Prüfer domains have a sort of the opposite property. A Prüfer domain may not
have any irredundant representation, but if it does, the representation is unique and
the valuation overrings it consists of are characterized in the following way.

Let R be a Prüfer domain. Let F denote the set of the maximal ideals M of R

having the following property: there is a finitely generated ideal I of R such that M

is the unique maximal ideal of R containing I.

Theorem 2.1.3. ([23, Theorem 1.7]) Let R be a Prüfer domain, and let {Pα} be
a collection of prime ideals of R such that R =

⋂
α RPα. If the representation R =

⋂
α RPα is irredundant, then {Pα} = F .

Corollary 2.1.4. ([23, Corollary 1.8]) A Prüfer domain R has an irredundant rep-
resentation if and only if R =

⋂
M∈F RM .

Corollary 2.1.5. ([23, Corollary 1.9]) If a Prüfer domain R has an irredundant
representation, then it is unique.

Examples 2.1.6. (a) A very easy example of a Prüfer domain having an irredun-
dant representation is given by the integers Z =

⋂
p∈Z Z(p), where p ranges over

the prime numbers. This is in fact also a Krull domain.

(b) Another example of a Prüfer (in fact a Bézout) domain having an irredundant
representation is given by the domain E consisting of the entire functions over C
(i.e., complex functions which are analytic in the whole plane). In this case the
family F consists of those maximal ideals associated to the points of C, called
fixed maximal ideals. Precisely, for each z ∈ C, Mz = (Z− z) is a maximal ideal
having height one. By [13, Proposition 8.1.1], E is a Bézout domain having
infinite dimension and E =

⋂
z∈C EMz . Now it is not hard to see that this

representation is irredundant. For, observe that, given any α ∈ C, the function
f(Z) := 1/(Z − α) belongs to all EMz with z &= α, so that f ∈

(⋂
α &=z∈C EMz

)
.

On the other hand f is not analytic in α, hence f &∈ E. By the generality of the
coiche of α ∈ C, it follows that the representation E =

⋂
z∈C EMz is irredundant.

(c) Let F be a field which is not algebraically closed, and let F [X1, . . . , Xn] be
the polynomial ring in n ≥ 2 indeterminates over F . Let Σ be the subset of
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Zar(F [X1, . . . , Xn]) consisting of all the valuation domains having residue field
F . Then, by [33, Theorem 1.2], the domain R :=

⋂
V ∈Σ V is a Prüfer domain

with quotient field F (X1, . . . , Xn).

In [41, Example 6.4], B. Olberding proves that such a Prüfer domain has no
irredundant representatives. Precisely, each nonzero proper finitely generated
ideal I of R is contained in at least two distinct maximal ideals of R, so that the
family F is empty. The assumption that the field F is not algebraically closed
is essential.

The Prüfer case has strong consequences also in the case of arbitrary integrally
closed domains. In fact, each representation Σ of an integrally closed domain R, can
be lifted to a representation of a Prüfer domain, namely the Kronecker function ring
Kr(R, !Σ).

Proposition 2.1.7. ([23, Proposition 2.1]) Let R be an integrally closed domain. If
R has an irredundant representation Σ, then R has a Kronecker function ring having
an irredundant representation, namely Kr(R, !Σ).

Proposition 2.1.8. ([23, Proposition 2.3]) Let S be a maximal Kronecker function
ring of the integrally closed domain R. If S has an irredundant representation then
R has an irredundant representation.

Although each representation Σ of an integrally closed domain R is associated
to a Kronecker function ring of R by means of the star operation !Σ, in general
two different representations of the same domain may or may not induce the same
Kronecker function ring. An interesting case is given by assuming that the integrally
closed domain R has a unique Kronecker function ring. In fact, in this case, each
representation of R lifts to a representation of the unique Kronecker function ring
Kr(R, b) of R, which is, of course, a Prüfer domain.

Therefore, an integrally closed domain having a unique Kronecker function ring
behaves just like a Prüfer domain from the point of view of representations. More
precisely:

Corollary 2.1.9. ([23, p. 310]) Let R be an integrally closed domain having a unique
Kronecker function ring. Then R has an irredundant representation if and only if
Kr(R, b) has an irredundant representation. Such a representation, if it exists, is
unique.
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Remark 2.1.10. More generally, an integrally closed domain R has at least as many
Kronecker function rings as the number of its irredundant representations as inter-
section of valuation overrings. Thus the number of irredundant representations of an
integrally closed domain gives a lower bound for the number of Kronecker function
rings the domain has. For, if R does not have any irredundant representation, it
has anyway Kr(R, b) as a Kronecker function ring. So that the number of Kronecker
function rings of R is always bigger than or equal to 1.

Suppose R has n irredundant representations, with n not necessarily finite. Then,
by Proposition 2.1.7, each such representation of R corresponds to an irredundant
representation of a Kronecker function ring of R. Now it is enough to observe
that since a Kronecker function ring is a Bézout domain, if it has an irredundant
representation, then it is unique. Hence each irredundant representation of R is
associated to one and only one Kronecker function ring of R. Therefore, the number
of Kronecker function rings of R is bigger than or equal to the number of irredundant
representations of the domain R.

We will need to refer to the property of having a unique Kronecker function ring
repeatedly throughout this work. Hence we thought it was useful to have a name for
the property. Recently, K. A. Loper referred to domains having a unique Kronecker
function ring as vacant domains.

Definition 2.1.11. Let R be an integrally closed domain. Then R is a vacant
domain if it has a unique Kronecker function ring.

A reason to justify the term vacant is that the Zariski space of a domain having
a unique function ring is rather simple. So, unlike the large variety of valuation
overrings that can be found in the Zariski space of an arbitrary integrally closed
domain, domains having a unique Kronecker function ring have a lack from this
point of view.

2.2 Vacant domains and domains of classical ideal theory

First of all, we wish to compare the class of vacant domains with other classical
classes of integral domains. It is clear that Dedekind domains (and, more in general,
generalized Dedekind domains), Bézout domains and Prüfer domains are vacant.
We shall see that many distinguished classes of domains, not included in the class
of Prüfer domains (e.g., UFD’s, Krull domains, GCD-domains, PvMD’s and more
generally P!MD’s), when provided with the additional property of being vacant, fall
into the class of Prüfer domains.
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We start by remarking the well-known fact that Prüfer domains are vacant.

Remark 2.2.1. Suppose ! is a star operation on an integral domain R and I is an
invertible ideal of R. Then, by [22, Lemma 32.17], for each J ∈ F(R) (IJ)! = IJ!.
Therefore, in a Prüfer domain, since every finitely generated ideal is invertible, each
star operation is e.a.b. and there is a unique equivalence class of star operations,
including the identity star operation d (see [22, Proposition 32.18]). So, Prüfer
domains have a unique Kronecker function ring.

Since their introduction, star operations first, and semistar operations later, were
widely used to characterize whole classes of domains. For instance, as we saw earlier,
Prüfer domains can be characterized, amongst integrally closed domains, by the fact
that for each nonzero ideal I, It = I (cf. Proposition 1.4.4).

Other examples are given by those domains in which the v-operation coincide
with the identity, called divisorial domains and studied by W. Heinzer in [26]. Or by
domains in which the w-operation is the indentity called DW-domains (see [36, 44]).

A vacant domain has a unique Kronecker function ring, hence, for such a domain,
there is a unique equivalence class of star operation that can be represented by the
star operation b. This condition on equivalence classes is not as restrictive as it
looks like. The main obstacle is that we cannot say, for an arbitrary vacant domain,
how many star operations the equivalence class consists of. Even worse we cannot
say which star operations, other than b, are in the class. Nevertheless we can use
the technique of comparing star operations to study whether or not given classes of
domains, characterized by special behaviors of their ideals under distinguished star
operations, are vacant.

However, in the very general case, it is hard to characterize vacant domains by
means of star operations.

Proposition 2.2.2. Let R be an integrally closed domain. If R is vacant then R is
a DW-domain.

Proof. By Proposition 1.3.11 (b) we have that R = Rw is integrally closed if and
only if R is quasi-w-integrally closed. Hence R = Rw = R[w] = Rwa so we have
that Rwa = R and (wa)|F(R) is an e.a.b. star operation on R. With a little abuse of
notation, we will still write wa instead of its restriction. Since R is vacant necessarily
wa ∼ b and, being star operations of finite type, wa = b. By [16, Corollary 4.5],
w ≤ w̃a = (̃wa)f . Hence w = b̃ = d.

By Remark 2.2.1 and Proposition 2.2.2, it follows that, if R is an integrally closed
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domain, the following implications hold:

R is a Prüfer domain =⇒ R is a vacant domain =⇒ R is a DW-domain.

None of the implications above can be reversed. An example of a vacant domain
which is not Prüfer is [22, Example 12, p. 409], whilst a DW-domain which is not
vacant will be presented at the end of this chapter (Example 2.6.8).

Corollary 2.2.3. Let R be an integrally closed domain, X an indeterminate for R.
Then R [X] is vacant if and only if R is a field.

Proof. If R is a field the assertion is trivial. Conversely if R is not a field then R[X]
is not a DW-domain (see [36, Proposition 2.12]), so by Proposition 2.2.2, R[X] is
not vacant.

Remark 2.2.4. In [44, Theorem 3.7], G. Picozza and F. Tartarone proved that an
integrally closed DW-domain is a Prüfer domain if and only if it is an FC-domain.
This follows from the fact that an integrally closed finite conductor domain is a
PvMD, according to [47, Theorem 2]. Thus, by Proposition 2.2.2, a finite conductor
vacant domain is a Prüfer domain, and a vacant PvMD is a Prüfer domain.

Remark 2.2.5. It is worth observing that a domain R for which the v-operation is
e.a.b., i.e. a v-domain, is vacant if and only if b = t. First of all, note that a v-domain
is necessarily integrally closed, having v as an e.a.b. star operation (cf. Corollary
1.1.10).

Suppose R is vacant, then the b-operation is the unique e.a.b. star operation of
finite type and t has to be equal to b. Conversely if b = t and ! is any e.a.b. star
operation on R, then b ≤ !f ≤ t, hence b = !f = t and b ∼ !. Therefore R is vacant.

Proposition 2.2.6. If R is a vacant Krull domain (in particular a vacant UFD, or
a vacant integrally closed Noetherian domain), then R is a Dedekind domain.

Proof. By Proposition 1.4.17, R is a Krull domain if and only if (II−1)t = R for
each nonzero ideal I of R, and the t-operation is e.a.b.. So if R is vacant b = t and
we have that R = (II−1)t = (II−1)b. Therefore R = II−1 for any nonzero ideal I

of R. In fact, suppose by way of contradiction II−1 " R, then II−1 ⊆ M for some
maximal ideal M of R. So that (II−1)b ⊆ M b = M " R, a contradiction. Thus
every nonzero ideal of R is invertible and R is a Dedekind domain.

Proposition 2.2.7. If R is a vacant generalized GCD-domain (in particular, a
vacant GCD-domain), then R is a Prüfer domain.

37



Proof. A generalized GCD-domain is finite conductor, then R is a finite conductor
vacant domain, which is Prüfer by the discussion in Remark 2.2.4.

Proposition 2.2.8. If R is a vacant P!MD, for some star operation ! on R, then
R is a Prüfer domain.

Proof. It is easily seen that if R is a P!MD, for some star operation ! on R, then R is
also a PvMD. (For suppose I is a finitely generated ideal of R such that (II−1)!f = R,
then R = (II−1)!f ⊆ (II−1)t ⊆ R, so that (II−1)t = R and R is a PvMD.)
Therefore, by Remark 2.2.4, a vacant P!MD is a Prüfer domain.

2.3 Characterizations of vacant domains

Theorem 2.3.1. Let R be an integrally closed domain with quotient field K. The
following are equivalent:

(a) R is vacant.

(b) Whenever R = R1 ∩ · · · ∩ Rn, with Ri integrally closed overrings of R, then
Zar(R) =

⋃n
i=1 Zar(Ri).

(c) Whenever R = R1 ∩ · · · ∩ Rn, with Ri integrally closed overrings of R, then
Kr(R, b) = Kr(R1, b) ∩ · · · ∩ Kr(Rn, b) (where the b-operation is taken with
respect to the appropriate domain).

(d) Whenever R = R1 ∩ · · · ∩ Rn, with Ri integrally closed overrings of R, then
Ib = (IR1)b ∩ · · · ∩ (IRn)b for all finitely generated ideals I of R (where the
b-operation is taken with respect to the appropriate domain).

We will prove that (a)⇒(c)⇒(d)⇒(c)⇒(b)⇒(a).
The equivalence of (a) and (b) is an unpublished result of B. Olberding.

Proof. (a)⇒(c). Observe that since Kr(Ri, b) ∩ K = Ri, then Kr(R1, b) ∩ · · · ∩
Kr(Rn, b)∩K = R1 ∩ · · ·∩Rn = R. Hence Kr(R1, b)∩ · · ·∩Kr(Rn, b) is a Kronecker
function ring of R. Since R is vacant by hypothesis, Kr(R1, b) ∩ · · · ∩ Kr(Rn, b) =
Kr(R, b).

(c)⇒(d). Suppose whenever R1 ∩ · · · ∩ Rn = R for integrally closed overrings
R1, . . . , Rn of R, then Kr(R, b) = Kr(R1, b)∩· · ·∩Kr(Rn, b). If I is a finitely generated
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ideal of R then Ib = IKr(R, b)∩K. Furthermore, since Kr(R, b) is a Bézout domain,
IKr(R, b) is a principal ideal fKr(R, b), for some f ∈ IKr(R, b). Hence:

Ib = IKr(R, b) ∩K = fKr(R, b) ∩K =

= f (Kr(R1, b) ∩ · · · ∩Kr(Rn, b)) ∩K =

= fKr(R1, b) ∩ · · · ∩ fKr(Rn, b) ∩K =

= (IKr(R1, b) ∩K) ∩ · · · ∩ (IKr(Rn, b) ∩K) =

= (IR1)b ∩ · · · ∩ (IRn)b.

Therefore Ib = (IR1)b ∩ · · · ∩ (IRn)b.
(d)⇒(c). It is enough to apply (d) to the ideal I = R.
(c)⇒(b). Suppose that Kr(R, b) = Kr(R1, b) ∩ · · · ∩ Kr(Rn, b), whenever R =

R1 ∩ · · · ∩ Rn, with Ri integrally closed overrings of R. Let V ∈ Zar(R), then
V b = (Kr(R1, b) ∩ · · · ∩Kr(Rn, b))P for some prime ideal P of Kr(R, b). Therefore,
denoting by S := Kr(R, b) \ P :

V b = Kr(R1, b)S ∩ · · · ∩Kr(Rn, b)S ⇒ V b = Kr(Ri, b)S , for some i,

then V = V b ∩K ⊇ Kr(Ri, b) ∩K = Ri and V ∈
⋃n

i=1 Zar(Ri).
(b)⇒(a). Suppose by way of contradiction that R is not vacant. Then there exists

an e.a.b. star operation ! on R, such that Kr(R, !) is a Kronecker function ring of R

distinct from Kr(R, b). Let α ∈ Kr(R, !) \Kr(R, b). Therefore Kr(R, b)[α]∩K = R.
Let Ub(α) be the open subset of Zar(Kr(R, b)) consisting of the valuation overrings
of Kr(R, b)[α]. By Proposition 1.2.3, the preimage σ−1(Ub(α)) is a finite union of
open sets of the form U(A1) ∪ · · · ∪ U(An) in Zar(R) and

Ub(α) = σ(U(A1) ∪ · · · ∪ U(An)) = Ub(A1) ∪ · · · ∪ Ub(An).

Denoting by Si := R[Ai], it is easily seen that, for each i, Si ⊆
⋂

V ∈U(Ai)
V , so that:

S1 ∩ · · · ∩ Sn ⊆ Kr(R, b)[α] ∩K = R ⇒ S1 ∩ · · · ∩ Sn = R.

By assumption Zar(R) =
⋃n

i=1 Zar(Si) =
⋃n

i=1 U(Ai). Therefore, by using the fact
that σ is a homeomorphism:

Zar(Kr(R, b)) = σ(Zar(R)) =
n⋃

i=1

Ub(Ai),

so that α ∈ Kr(R, b), which is a contradiction.
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A natural question arising from Theorem 2.3.1 is whether is possible to handle
the number of overrings intersecting to R in such characterization. As we are about
to see, this is closely related to a more general question, namely: given a vacant
domain R, is every integrally closed overring of R vacant too?

Definition 2.3.2. An integrally closed domain R is m-vacant if whenever there
exist m integrally closed overrings R1, . . . , Rm such that R = R1 ∩ · · · ∩ Rm, then
the Zariski space Zar(R) =

⋃m
i=1 Zar(Ri).

As an easy Corollary of Theorem 2.3.1 we have that:

Corollary 2.3.3. An integrally closed domain R is vacant if and only if it is m-
vacant for each m ≥ 2.

Definition 2.3.4. An integrally closed domain R is totally vacant if every integrally
closed overring of R is vacant.

Remark 2.3.5. It is easily seen that for an integrally closed domain R n-vacant
always implies (n − 1)-vacant. For if R = S1 ∩ · · · ∩ Sn−1 with Si integrally closed
overrings of R, let V be any valuation overring of S1, then R = S1 ∩ · · ·∩ Sn−1 ∩ V .
By assumption R is n-vacant so if W ∈ Zar(R) is not a valuation overring of Si

for all i = 1, . . . , n − 1, necessarily W ⊇ V . Hence W ⊇ V ⊇ S1, and Zar(R) =
⋃n−1

i=1 Zar(Si).

Although we were not able to prove the converse of the previous statement,
we will see that it reverses when we consider the whole space of integrally closed
overrings of a given integrally closed domain R. We will also give a topological
characterization of totally vacant domains. Recall that Over(R) denotes the set of
integrally closed overrings of R. We have the following:

Proposition 2.3.6. Let R be an integrally closed domain. Then R is totally vacant
if and only if every S ∈ Over(R) is 2-vacant.

Proof. (⇒). This is clear since every integrally closed overring of R is vacant and
vacant implies 2-vacant.

(⇐). Denote by (Pn) the property: “every element in Over(R) is n-vacant”. We
will prove then the Proposition by induction on n. The basis (P2) of the induction is
given by the hypothesis. Suppose (Pn) is true, so that every element of Over(R) is
n-vacant. We will show that then every element in Over(R) is (n + 1)-vacant. For,
let S ∈ Over(R) and suppose S = T1 ∩ · · · ∩ Tn+1. If V is an element of Zar(S)
we need to show that V ∈ Zar(Ti) for some i ∈ {1, . . . , n + 1}. If V ∈ Zar(T1)
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we are done, so suppose V &∈ Zar(T1). By (P2) it follows that V ∈ Zar(T ) where
T := T2 ∩ · · · ∩ Tn+1. Since we assumed (Pn) to be true we have V ∈ Zar(Ti) for
some i ∈ {2, . . . , n + 1}, which proves the proposition.

Let Ψ be the mapping considered in Theorem 1.2.11. A topological characteri-
zation of totally vacant domains follows.

Proposition 2.3.7. Let R be an integrally closed domain. Then R is totally vacant
if and only if Ψ is a homeomorphism with respect to the b-topology.

Proof. The mapping Ψ is obtained as the composition g ◦ h, where:

h : Over(R) −→ Over(Kr(R, b)) g : Over(Kr(R, b)) −→ S(Kr(R, b))

S "−→ Kr(S, b) T "−→ PT

Since Kr(R, b) is a Bézout domain, hence a QR-domain, g is a homeomorphism (see
Lemma 1.2.10). On the other hand, according to Proposition 1.2.6, h is a homeomor-
phism of Over(R), with respect to the b-topology, onto its image in Over(Kr(R, b)).
We need to show that h is surjective if and only if R is totally vacant.

Suppose R is totally vacant and let T be an overring of Kr(R, b). Note that T is
necessarily integrally closed since Kr(R, b) is a Bézout domain. The integrally closed
overring S := T ∩K of R is vacant since R is totally vacant. Hence T = Kr(S, b) =
h(S).

If h is surjective the conclusion is straightforward.

To conclude this section, we can give the following characterization of Prüfer
domains.

Proposition 2.3.8. The following are equivalent for an integral domain R:

(a) R is a Prüfer domain.

(b) For each finitely generated ideal I of R, Ib is flat (as an R-module).

Proof. (a)⇒(b). This is clear because in a Prüfer domain each ideal is flat.
(b)⇒(a). In [48, Corollary 6] Zafrullah characterized generalized GCD-domains

with the following property: for each finitely generated ideal I there exists a star
operation !, such that I! is flat. Hence, if (b) holds, R is a gGCD-domain, which is
finite conductor. We prove that the property stated in (b) implies vacant, so that R

is a finite conductor vacant domain, and then a Prüfer domain by Remark 2.2.4.
In a recent paper by G. Picozza and F. Tartarone, [43, Theorem 1.4], it is shown

that every flat ideal of an integral domain R is a t-ideal. It follows directly that,
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assuming (b), then for every finitely generated ideal I of R, Ib = (Ib)t = It, so that
R is vacant, according to Remark 2.2.5. Thus R is a vacant FC-domain, which is a
Prüfer domain.

2.4 Vacant pseudo-valuation domains

The only example in the literature of a vacant domain which is not a Prüfer domain
is given in [22, Example 12, Section 32] and is a pseudo-valuation domain. So we
wish to characterize pseudo-valuation domains with respect to the property of being
vacant.

Lemma 2.4.1. Let k ⊆ F be a field extension and let α,β, γ ∈ F be transcendental
over k. If γ is algebraic over both k(α) and k(β), then α and β are algebraically
dependent.

Proof. α,β and γ are supposed to be transcendental over k, then γ is algebraic over
k(α) (resp. k(β)) if and only if α (resp. β) is algebraic over k(γ). The field extension
k(α) ⊆ k(α, γ) ⊆ k(α, γ, β) is algebraic, being a composition of two algebraic exten-
sions. Hence k(α) ⊆ k(α,β) is algebraic too, indeed it is contained in the algebraic
extension k(α) ⊆ k(α, γ, β).

Lemma 2.4.2. Let R be an integrally closed domain and P ∈ Spec(R). Suppose
V := End(P ) is a valuation ring with maximal ideal MV = P . Then for every
W ∈ Zar(R) either W ⊆ V or V ⊆W .

Proof. Consider the two cases: either PW = W or PW &= W . If PW = W then
V = End(P ) ⊆ End(PW ) = W .

Let PW &= W and suppose W &⊆ V . Then there exists x ∈ W \ V . So x−1 ∈
MV = P . But x, x−1 ∈ W and so 1 = x · x−1 ∈ PW &= W , a contradiction. Hence
W ⊆ V .

Remark 2.4.3. By Lemma 2.4.2 if End(P ) is a valuation overring of R with maximal
ideal P and S is an integrally closed overring of R which is not a valuation domain,
necessarily S ⊂ V := End(P ). For if Zar(S) is the Zariski space of S, then clearly
Zar(S) ⊆ Zar(R), hence every valuation overring of S is comparable to V . So only
two cases are possible: every valuation overring of S contains V , or there exists
W ∈ Zar(S) such that W ⊆ V . In the first case S is an overring of V , and then is a
valuation domain. In the second case S ⊆W ⊆ V as required.
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Notation 2.4.4. Let F and R be domains (possibly fields) with R ⊆ F . We shall
denote by R

F the integral closure of R in F . If R and F are fields, with the same
notation we mean the algebraic closure of R in F .

Proposition 2.4.5. Let R = (R,MR) be a quasi-local integrally closed domain
and let kR := R/MR. Suppose D := End(MR)/MR is an integral domain and
End(MR) &= R. If there exist X, Y ∈ D transcendental and algebraically independent
over kR, then R is not vacant.

Proof. R is quasi-local with maximal ideal MR, then we can write R as the pullback
of the following diagram:

R! "

!!

"" "" R
MR

= k
! "

!!

End(MR) "" "" End(MR)
MR

= D

with X and Y in End(MR)/MR algebraically independent over kR. Since R is
integrally closed, kR must be integrally closed in D and kR = kR(X)

D ∩ kR(Y )
D (it

follows combining Lemma 2.4.1 and the fact that if an element γ is integer over kR,
then it is, obviously, algebraic over kR).

It follows that kR = kR[X]
D ∩ kR[Y ]

D this intersection being between the two
members of the previous equality. By pulling kR[X]

D and kR[Y ]
D back we obtain

two integrally closed overrings of R, namely R[x] and R[y] where x and y belong to
V \R and map onto X and Y respectively. Moreover R = R[x]∩R[y] = R[x]∩R[y].
To prove that R[x] (resp. R[y]) is the pullback of kR[X]

D (resp. kR[Y ]
D), let x be

an element of V that maps onto X, so that X = x + MR, then it is clear that R[x]
is contained in the pullback of kR[X]. For the reverse containment it is enough to
prove that the preimage of X is all contained in R[x]. Suppose t ∈ End(MR) is
another element that maps onto X, then t + MR = x + MR and t − x = m ∈ MR.
Now we can conlcude that t is in R[x] because m ∈ MR ⊆ R ⊆ R[x] and x ∈ R[x].
Then the integral closure of R[x] is the pullback of the integral closure of kR[X] in
K.

Define R′ := R[x−1, y−1], then R " R′ " V since kR " kR[X−1, Y −1] " D.
Observe that since R is quasi-local we can choose exactly x−1 (resp. y−1) as the
element of End(MR) that maps onto X−1 (resp. Y −1). For suppose x′ and y′ are
such that x′ "→ X−1 and y′ "→ Y −1, then xx′ "→ XX−1 = 1, hence xx′ = 1 + m,
m ∈ MR and MR coincides with the Jacobson radical Jac(R). Thus xx′ = u is
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invertible in R. Then R[x′] = R[ux−1] = R[x−1], and the same holds for y. Also
x−1, y−1 ∈ End(MR) since MR ⊆ Jac(End(MR)). For suppose that x ∈ End(MR)
and End(MR) = xEnd(MR) + MR. Then there exists y ∈ End(MR) and m ∈ MR

such that 1 = xy + m. But then xy = 1 −m is invertible in R (since m ∈ MR), so
x is invertible in End(MR).

Let P be the preimage of the ideal (X−1, Y −1) of k[X−1, Y −1]. P is a prime
ideal of R′ since its image is a prime ideal of kR[X−1, Y −1]. Then there exists a
valuation overring W of R′ centered on P , that is such that x−1, y−1 ∈MW . Hence
by taking the representation of R = R[x] ∩ R[y], W ⊇ R (since W ⊇ R′ ⊇ R), but
W &⊇ R[x] and W &⊇ R[y]. Thus R is not vacant by Theorem 2.3.1.

As a direct consequence of Proposition 2.4.5, we have the following:

Corollary 2.4.6. Let R = (R,MR) be an integrally closed PVD which is not a
valuation domain. Let V := End(MR). If trdeg(V/MR, R/MR) ≥ 2 then R is not
vacant.

Definition 2.4.7. Let R,S be integrally closed domains with quotient field K, we
denote by ZarS(R) := {W ∈ Zar(R) |S &⊆W }.

We proceed now with a characterization of PVD’s with respect to the property
of being vacant. The following lemma will be crucial for the proof of main theorem.

Lemma 2.4.8. ([41, Lemma 4.1]) Let K be a field, and let F be a finitely generated
field extension of K of transcendence degree 1. Let A be a proper K-subalgebra of
F having quotient field F , and let Σ be a collection of valuation rings containing K

and having quotient field F . Suppose that there is a valuation ring U containing K

and having quotient field F such that
(⋂

V ∈Σ V
)
∩A ⊆ U . Then U ∈ Σ or A ⊆ U .

Theorem 2.4.9. Let R be an integrally closed PVD, not a valuation domain, with
maximal ideal M and let V := End(M). Suppose End(M)/M is finite over a tran-
scendental extension of R/M , then the following are equivalent:

(a) R is not vacant;

(b) trdeg(V/M, R/M) ≥ 2;

(c) R has uncountably many Kronecker function rings.
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Proof. Since R is a PVD, then V = End(M) is a valuation overring of R, and R is
the pullback of the following diagram:

R! "

!!

"" "" R
M = k

! "

!!

V
π"" "" V

M = kV

In such a diagram R is integrally closed if and only if k is algebraically closed in kV ,
more generally every intermedate ring T between R and V is integrally closed if and
only if π(T ) is integrally closed in kV = π(V ) (see [21, Theorem 1.2] and observe
that since V is a valuation ring the integral closure of R (resp. T ) in V coincides
with the integral closure of R (resp. T ) in its quotient field).

(a)⇒(b). Observe first that when applying Lemma 2.3.1 in this situation, by
Remark 2.4.3 it follows that if some W ∈ Zar(R) \ (

⋃n
i=1 Zar(Si)), then W ⊆ V .

Without loss of generality we can in fact reduce to the case Si ⊆ V , for each i =
1, . . . , n. For suppose that R is not vacant, hence, by Theorem 2.3.1, R = S1∩· · ·∩Sn

for integrally closed overrings Si of R.
By Remark 2.4.3 each Si is comparable to V . In particular it is not possible that

V ⊆ Si for each i, because in this case the intersection of the Si’s would contain V .
Furthermore if some Sj contains V it can be cancelled from the intersection. Then
we can reduce to an intersection R = Si1 ∩ · · · ∩ Sik , with each Sij ⊂ V .

Assume, by way of contradiciton, that trdeg(kV /k) = 1. Our strategy will be to
show that every W ⊂ V is necessary for any representation of R. So that, whenever
R = S1 ∩ · · · ∩ Sn, once we have reduced, as explained above, to Si ⊆ V for each i,
necessarily Zar(R) =

⋃n
i=1 Zar(Si), and the conclusion will follow by Theorem 2.3.1.

Hence, we will focus on just the elements of ZarV (R), which correspond, by [12,
Theorem 2.4], to the valuation rings of kV containing k.

Suppose then kV = k(X, α1, . . . ,αn), where X is transcendental over k and,
for each i = 1, . . . , n, αi is algebraic over k(X). In particular if U ∈ Zar(kV /k),
then U extends some element U ′ ∈ Zar(k(X)/k), and U and U ′ have the same
rank (see [22, Theorem 19.16]) so that U is rank one (discrete). Hence π−1(U)
has dimension 1 + dim(V ), and given any two distinct W1, W2 ∈ ZarV (R) they
are incomparable because they have the same dimension. In fact, by [12, Theorem
2.4], there exist U1, U2 ∈ Zar(k(X)/k) such that Wi = π−1(Ui) for i = 1, 2, and
dim(U1) = dim(U2) = 1, so that dim(W1) = 1 + dim(V ) = dim(W2).

Thanks to the bijection established in [12, Theorem 2.4], between Zar(kV /k) and
ZarV (R), it is enough to show that the representation of k = k

kV given by all the
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valuation rings of K is irredundant. Suppose by way of contradiction that there
exists U ∈ Zar(kV /k) which is redundant, then U ⊇

⋂
V ∈Zar(kV /k)\{U} V . Let W be

any element of Zar(kV /k) \ {U} and denote by ΣW := Zar(kV /k) \ {U, W}. Then
by Lemma 2.4.8 we have that:

U ⊇




⋂

V ∈ΣW

V



 ∩W =⇒ U ⊇W or U ∈ ΣW .

Since U and W have the same dimension the containment cannot hold, but by
assumption U /∈ ΣW , hence we have a contradiction. We can conclude that R is
vacant, since the unique possible representation of R is given by intersecting all the
elements of Zar(kV /k) and it is possible to generate just one Kronecker function
ring.

(b)⇒(c). Suppose now the transcendence degree of End(M)/M over R/M is
strictly greater than 1.

Denote by X := {Xi}i∈I a transcendence basis of End(M)/M = kV over R/M =
k, hence kV = k(X, α1, . . . ,αn) where α1 is algebraic over k(X), and αj is algebraic
over kV (X, α1, . . . ,αj−1) for each j = 2, . . . , n.

To prove this implication we will build uncountably many irredundant represen-
tations of k of the form k[X]∩Vγ , where γ is a positive irrational real number. This
is possible because the transcendence degree of the field extension V/M ⊇ R/M is
strictly greater than 1, in fact, as we are about to see, the construction needs at least
two distinct fixed variables.

Let γ be a positive irrational real number. Let G :=
⊕

i∈I R, ordered lexico-
graphically. Let X1, X2 be fixed elements in X. We define vγ as a valuation such
that:

vγ(X1) := (−1, 0, . . . , 0, . . . )

vγ(X2) := (−γ, 0 . . . , 0, . . . )

vγ(Xi) := (0, . . . , 0,
i−th
−γ , 0, . . . ), for each i ∈ I, i &= 1, 2.

Note that, since γ is irrational, the value of vγ can be easily determined for each
f ∈ k[X] (and, more generally f ∈ k(X)), because, for each pair n1, n2 ∈ Z there is
always a strict inequality between n1 and γn2. Hence:

vγ(f) = (min {−ordX1(f),−γ · ordX2(f)} , 0,−γ · ordX3(f), . . . ) .

We have that k = k[X] ∩ Vγ , where k[X] =
⋂

k[X](f) and f ranges over the
irreducible polynomials of k[X]. It is well-known that the above representation of
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k[X] is irredundant (recall that k[X] is a UFD) and that Vγ is irredundant in that
representation of k. For instance, for each i ∈ I, Xi ∈ k[X], but Xi /∈ Vγ . We need
to prove that for each f irreducible polynomial of k[X], the valuation ring k[X](f) is
irredundant.

Suppose by way of contradiction that for some f ∈ k[X]:

k[X](f) ⊇
⋂

g &=f

k[X](g) ∩ Vγ = k.

In this case we have that 1/f ∈ k[X](g) for each g &= f , as both f and g are irreducible.
Since f is a polynomial only a finite number of indeterminates appear in f , hence
without loss of generality we can assume that the only indeterminates appearing in
f are X1, . . . , Xm, for some m ≥ 1. Denoting by ni = ordXi(f), we have:

vγ(f) = (min {−n1,−γn2} , 0,−γn3, . . . ,−γnm, 0 . . . ) ,

Therefore f /∈ Vγ and f−1 ∈ Vγ , that is f−1 ∈ k which is a contradiction.
We can now extend the previous representation of k to a representation in val-

uation rings of kV . Clearly we have k = k[X]
kV ∩ V (1)

γ ∩ · · · ∩ V (t)
γ where V (j)

γ are
all the possible extensions of Vγ to kV . All the possible extensions of Vγ to kV are
finitely many because kV is a finite extension of k(X), hence by [11, Corollary 3.2.3]
t is less than or equal to the degree of the extension kV ⊇ k(X).

By [22, Theorem 43.13] we have that k[X]
kV is a Krull domain. Moreover its

defining family is given by the extensions of the members in the defining family of
k[X]. Therefore, no elements in the extended defining family are redundant, so we
could possibly have that some of the V (j)

γ is redundant. In any case, we cannot omit
all of the V (j)

γ to represent k, otherwise when contracting in k(X) we would have
k = k[X] which is clearly not possible. Hence, we have the irredundant representation
required.

When γ ranges over the possible positive irrational real numbers, we get uncount-
ably many irredundant representations and uncountably many Kronecker function
rings. For, if γ and α are two distinct positive irrational numbers, there exists a
rational number q = r

s such that γ < q < α, because Q is dense in R. Then

vγ

(
Xr

1

Xs
2

)
= γ · s− r < 0, vα

(
Xr

1

Xs
2

)
= α · s− r > 0.

Thus Xr
1

Xs
2
∈ Vα \ Vγ and Xs

2
Xr

1
∈ Vγ \ Vα.

(c)⇒(a). If R has uncountably many Kronecker function rings, clearly R has
more than one Kronecker function ring and it is not vacant.
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2.5 Pullbacks of vacant domains

As a matter of fact pullback constructions have always been very useful to build
examples. So we aim to characterize how the property of being vacant is preserved in
some kind of pullback diagrams in order to provide new examples of vacant domains.

Recall that if V is a valuation domain with maximal ideal MV , then V =
End(MV ). Hence if P is a divided prime ideal of R and RP is a valuation do-
main, then, by Remark 2.4.3, every integrally closed overring of R is comparable to
RP = End(P ). In particular every integrally closed overring of R which is not a
valuation domain is contained in RP . So, we have the following:

Theorem 2.5.1. Let R be an integrally closed domain such that RP is a valuation
domain for some nonmaximal divided prime ideal P of R. Then R is n-vacant if and
only if R/P is n-vacant. In particular, R is vacant if and only if R/P is vacant.

Proof. By hypothesis it follows that V := RP = End(P ) and the domain R is the
pullback of the following diagram:

R! "

!!

"" "" R/P! "

!!
V := End(P ) π "" "" kV

where we set, as usual, kV := RP /P .
By Lemma 2.4.2 every valuation overring of R is comparable to V . As observed

in Remark 2.4.3 this means that every integrally closed overring of R is comparable
to V .

(⇒). Suppose, by way of contradiction, that R/P is not n-vacant. Then, by
Theorem 2.3.1, there exist integrally closed overrings T1, . . . , Tn of R/P and W ∈
Zar(R/P ) such that R/P = T1 ∩ · · · ∩ Tn and W &⊇ Ti, for each i = 1, . . . , n. By
[21, Theorem 1.2] we have that Si := π−1(Ti), i = 1, . . . , n are integrally closed
overrings of R and S1 ∩ · · · ∩ Sn = R. Since V = End(P ) is a valuation domain and
the quotient field of W is kV , then W ′ := π−1(W ) is a valuation domain too (see
[12, Theorem 2.4]). Then W = π(π−1(W )) = π(W ′) ⊇ π(Si) = π(π−1(Ti)) = Ti, a
contradiction. Therefore R is not n-vacant.

(⇐). Suppose, by way of contradiction, that R is not n-vacant. Then, by Theorem
2.3.1, there exist S1, . . . , Sn ⊆ V , integrally closed overrings of R, and W ∈ Zar(R)
such that R = S1 ∩ · · · ∩ Sn and W &⊇ Si, for all i = 1, . . . , n. It follows by Lemma
2.4.2 that W ⊆ V since V contains each Si. Hence P is a prime ideal of W and
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W/P is a valuation overring of R/P contained in kV ; that is, W/P is a valuation
ring of kV .

Clearly, for each i, P is a prime ideal of Si, as Si ⊆ End(P ), and since Si is
integrally closed so is Si/P (by [21, Theorem 1.2]). In particular R/P = (S1/P ) ∩
· · · ∩ (Si/P ) and W/P &⊇ Si/P , for each i = 1, . . . , n. For suppose x ∈ S1 \ W ,
then π(x) ∈ (S1/P ) \ (W/P ). Since x &∈ W then x−1 ∈ MW and π(x−1) ∈ MW /P

which is the maximal ideal of the valuation ring W/P . Since π(x−1) = π(x)−1 then
π(x) &∈W/P .

With the same argument, we can prove that for xi ∈ Si \ W , π(xi) ∈ (Si/P ) \
(W/P ). Thus there exist integrally closed overrings S1/P, . . . , Sn/P of R/P and
a valuation overring W/P of R/P such that R/P = (S1/P ) ∩ · · · ∩ (Sn/P ) and
W/P &⊇ Si/P , for each i, and R/P is not n-vacant.

Corollary 2.5.2. Let R be an integral domain, P a nonmaximal divided prime ideal
of R such that RP is a valuation domain. Then every integrally closed overring of
R is vacant if and only if every integrally closed overring of R/P is vacant.

Proof. For each integrally closed overring T of R/P , T = π(S) = S/P for some
integrally closed overring S of R. By applying Theorem 2.5.1 to the diagram:

S! "

!!

"" "" S/P! "

!!
End(P ) π "" "" End(P )/P

S is vacant if and only if S/P is vacant. It is straightforward that the overrings of R

which are also overrings of End(P ) are vacant, as they are valuation domains.

Though we could not generalize Theorem 2.5.1 to the case in which RP is not
a valuation domain, we give the following description of the Zariski space of an
integrally closed domain R having a divided prime ideal P . We shall see that the
correspondence for Zariski spaces is not as good as in the case of prime spectra.

Let R and S be integrally closed domains, with S an overring of R. The Zariski
space of R can always be split into the disjoint union Zar(S) ∪ ZarS(R). Given
an integrally closed domain R with a nonmaximal divided prime ideal P , we will
describe ZarRP (R) in terms of Zar(R/P ). We will see that, in general, there is not a
bijection, unlike the case of prime spectra (see [4, 12] for details), between Zar(R/P )
and ZarRP (R).
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Lemma 2.5.3. Let R be an integrally closed domain and P a divided prime ideal of
R, let V ∈ Zar(R). V ∈ Zar(RP ) if and only if one (and only one) of the following
holds:

(a) PV = V ;

(b) MV ∩R = P .

Proof. Let V ∈ Zar(R). If PV = V then RP ⊆ End(P ) ⊆ End(PV ) = V . Suppose
PV &= V , then PV is an ideal of V so that PV ⊆ MV and MV ∩ R ⊇ P . Thus
MV ∩R = MV ∩RP ∩R ⊆ P ∩R = P .

For the converse, it is enough to observe that if V ∈ Zar(RP ) then MV ∩R = MV ∩
RP ∩R ⊆ P . If MV ∩R = P there is nothing to prove, so suppose MV ∩R = Q " P .
Then MV ∩ R ⊇ PV ∩ R ⊇ P which is a contradiction, hence PV = V . Therefore
if V ∈ Zar(RP ) then either (a) or (b) holds.

Proposition 2.5.4. Let R be an integrally closed domain and P a divided prime
ideal of R. Then the following statements hold:

(a) if V ∈ ZarRP (R) then V ∩RP
P ∈ Zar(R/P );

(b) if W ∈ Zar(R/P ) there exists V ∈ ZarRP (R) such that W = V ∩RP
P .

In particular Zar(R/P ) =
{

V ∩RP
P |V ∈ ZarRP (R)

}
.

Proof. (a). Suppose V ∈ ZarRP (R), then R ⊆ V ∩RP " RP and P is a prime ideal
of V ∩ RP . Let W := V ∩RP

P and x ∈ kP \ W , we claim that then x−1 ∈ W , so
that W ∈ Zar(R/P ). It is clear that kP is the quotient field of W , since kP is the
quotient field of R/P . Observe that x ∈ kP \ W if and only if π−1(x) &⊆ V ∩ RP .
Hence, by construction, π−1(x) ⊆ RP , so that if t ∈ π−1(x) then t &∈ V . Therefore
t−1 ∈ V and t−1 ∈ RP because t ∈ π−1(x) with x &= 0, hence t is a unit in RP . Now
it is enough to observe that π(t−1) = π(t)−1 = x−1.
(b). Let S := π−1(W ). Then S is quasi-local (integrally closed) and R ⊂ S ⊂ RP .
Since W &= kP , then S &= RP . Let V be a valuation overring of S centered on MS . We
claim that V ∈ ZarRP (R). For suppose by way of contradiction that V ∈ Zar(RP ),
then MV ∩ S = MV ∩RP ∩ S ⊆ P ⊂MS , a contradiction.

Now S ⊆ V ∩ RP ⊆ RP . We prove that S = V ∩ RP so that W = V ∩RP
P

for some V ∈ ZarRP (R). Suppose by way of contradiction that there exists some
t ∈ (V ∩RP ) \ S. Then π(t) &∈W implies π(t)−1 ∈MW so that π−1

(
π(t)−1

)
∈MS .

As observed in the proof of part (a) t−1 is in particular in π−1
(
π(t)−1

)
so that
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t−1 ∈ MS = MV ∩ S and t ∈ V , which is a contradiction. Thus S = V ∩ RP and
W = V ∩RP

P .

We give now an explicit example that shows how the correspondence for Zariski
spaces is quite far from being a bijection. We propose an integrally closed domain
R having a divided nonmaximal prime ideal P , such that:

(1) RP = End(P ) but is not a valuation domain.

(2) Each W ∈ Zar(R/P ) admits (at least) two valuation overrings of R, W1 and W2

such that W = Wi∩RP
P , for i = 1, 2.

Example 2.5.5. Let R be the pullback of the following diagram:

R := π−1(Z)! "

!!

"" "" Z! "

!!
Q[X, Y ](X,Y )

π "" "" Q

Since Q[X, Y ] is a Krull domain, then so is RP := Q[X, Y ](X,Y ). Hence Q[X, Y ](X,Y )

is completely integrally closed and End(I) = Q[X, Y ](X,Y ) for each nonzero ideal I of
Q[X, Y ](X,Y ) (see [22, Theorem 34.3]). By construction PRP := (X, Y )Q[X, Y ](X,Y )

is a divided nonmaximal prime ideal of R.
Consider the two following valuation overrings of Q[X, Y ] and their respective

maximal ideals:

V1 := Q[Y ](Y ) + XQ(Y )[X](X), MV1 = Y Q[Y ](Y ) + XQ(Y )[X](X)

V2 := Q[X](X) + Y Q(X)[Y ](Y ), MV2 = XQ[X](X) + Y Q(X)[Y ](Y )

It is easily seen that V1 and V2 are not comparable to each other by inclusion. For
instance X/Y ∈ V1 \ V2 and Y/X ∈ V2 \ V1. Furthermore they are centered on
the maximal ideal (X, Y )Q[X, Y ] of Q[X, Y ], so that Vi ∈ Zar(Q[X,Y ](X,Y )) and
MVi ∩Q[X, Y ](X,Y ) = (X, Y )Q[X, Y ](X,Y ).

Let p ∈ Z be a prime number. Let S be the quasi-local integrally closed overring
of R obtained as the pullback π−1(Z(p)). Then R ⊂ S ⊂ Q[X, Y ](X,Y ).

Consider, for i = 1, 2 the valuation domains:

W (p)
i := π−1

1 (Z(p))! "

!!

"" "" Z(p)! "

!!
Vi

π1 "" "" Q
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More precisely W (p)
i = Z(p) + MVi , and M

W
(p)
i

= pZ(p) + MVi .

Note that, for i = 1, 2, W (p)
i is a valuation overring of S. According to what

we proved in Proposition 2.5.4 (b), any valuation overring U of S centered on MS

is such that U ∩ RP = S. Hence if W (p)
i is also centered on the maximal ideal

MS of S, we can conclude that Proposition 2.5.4 (b) holds. But this is clear since
M

W
(p)
i

= pZ(p) + MVi , and MS = pZ(p) + (X, Y )Q[X, Y ](X,Y ) = pZ(p) + (MVi ∩ S).
This process can be done for each prime p ∈ Z, hence for each valuation domain

in Zar(Z) = Zar(R/P ) there exist at least two valuation overrings W (p)
1 and W (p)

2 in

ZarRP (R) such that W
(p)
i ∩RP

P = Z(p).

Observe that another example of the same kind can be built by choosing RP :=
k[X, Y, Z](X,Y ), R/P := k[Z], so that R = k[Z] + (X, Y )k[X, Y, Z](X,Y ). If k is
algebraically closed, the construction is then analogous to the one given in Example
2.5.5. It is enough to replace Q with k(Z) and p with Z − a, for a ∈ k.

2.6 Examples

In this section we build some examples of vacant domains. In particular, we give
an example of a quasi-local vacant domain which is neither a valuation domain nor
a PVD. Then we produce for any n ≥ 1 a semi-quasi-local vacant domain having
exactly n maximal ideals. Moreover the localization of the resulting domain at any
of its maximal ideal is not a valuation domain.

We start with some preliminary results which are needed for the subsequent
constructions.

Lemma 2.6.1. Let R be an integrally closed domain. If RM is vacant for every
M ∈ Max(R) then R is vacant.

Proof. Suppose R is not vacant. Then, by Theorem 2.3.1, there exist integrally closed
overrings Si, i = 1, . . . , n of R and V ∈ Zar(R) such that R = S1∩· · ·∩Sn and V &⊇ Si,
for each i = 1, . . . , n. Let P = MV ∩R. Then V ⊇ RP and, hence, V ⊇ RM for every
maximal ideal containing P . So let M be any maximal ideal of R which contains P .
We have V ∈ Zar(RM ) and RM = (S1∩· · ·∩Sn)R\M = (S1)R\M ∩· · ·∩(Sn)R\M with
(Si)R\M integrally closed overrings of RM for i = 1, . . . , n. Clearly V &⊇ (Si)R\M

since V &⊇ Si. But then RM is not vacant, which is a contradiction.

As a direct consequence of the Lemma above we have:
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Proposition 2.6.2. Let R be an integrally closed domain. The following are equiv-
alent:

(a) R is locally vacant;

(b) every flat overring of R is vacant.

Proof. By [45, Theorem 2], T is a flat overring of R if and only of for each maximal
ideal M of T , TM = RM∩R. Hence, if R is integrally closed, so is every flat overring
T of R.
(a)⇒(b). Suppose RP is vacant for any P ∈ Spec(R). Let T be a flat overring of R.
Then TM = RM∩R is vacant and, by Lemma 2.6.1, T is vacant.
(b)⇒(a). It is enough to observe that RP is a flat overring of R for each prime ideal
P of R.

Example 2.6.3 (Quasi-local vacant domain). Let V be a valuation domain with
maximal ideal MV such that its residue field kV has a valuation ring W of the form
F (X) + MW , where F is a subfield of kV and X is transcendental over F . Such
hypothesis are realized for instance if V = F [X, Y, Z](Z) so that kV = F (X, Y ).
Then, as shown in Theorem 2.4.9, the domain F +M is integrally closed and vacant.
In fact F + M is a PVD with purely transcendental residue fields extension having
transcendence degree 1. Moreover F + M has the same quotient field as W , namely
kV . Let R := π−1(F + M):

R! "

!!

"" "" F + M! "

!!

"" "" F! "

!!
W := F (X) + M "" ""

! "

!!

F (X)

V
π "" "" kV

It is easily seen that MV := Ker(π) is a prime ideal of R, and V = End(MV ). Hence
we can apply Theorem 2.5.1 to R and conclude that R is a quasi-local vacant domain
which is not a PVD. Furthermore R has a (necessarily unique) irredundant repre-
sentation as intersection of valuation overrings. This representation is the pullback
of the unique irredundant representation of F +M . Moreover every integrally closed
overring of R is vacant too, since every such overring of R is a Prüfer domain. In
fact, if S is an integrally closed overring of R either S is a valuation domain, or, by
Remark 2.4.3, S is the pullback of an integrally closed overring of F + M . Again
by Remark 2.4.3, any such overring of F + M is the pullback of an integrally closed
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domain in between F and F (X), which is necessarily a Prüfer domain. Now, it is
enough to apply [12, Theorem 2.4 (3)], to conclude that S is a Prüfer domain too.

So far, we characterized and gave examples of some class of vacant quasi-local
domains. In the following examples we build a semi-local vacant domain. We start
by constructing, in (a), a 1-dimensional semi-local vacant domain, then, in (b), we
use the same process of Example 2.6.3 to obtain a semi-local vacant domain of any
finite dimension.

It will be also pointed out that a vacant domain may have integrally closed
overrings which are not Prüfer domains. The example we propose first is a vacant
domain R having 2 maximal ideals M1 and M2. The localization of R at Mi, i = 1, 2,
is a PVD, which is not a valuation domain.

Recall that a domain T is a G-domain if the quotient field K of T is a finitely
generated ring extension of T , or, equivalently, if the nonzero prime ideals of T have
nonzero intersection ([32, p. 11-12]).

Let D and T be integral domains with quotient field K.

Proposition 2.6.4. [27, Proposition 1.19]. If D has nonzero Jacobson radical J ,
and T is a G-domain such that T is contained in only a finite number of rank one
valuation rings of K, say V1, . . . , Vn, and if moreover D &⊂ Vi for each i, then D is a
localization of R := D ∩ T .

Proposition 2.6.5. [27, Proposition 1.15]. If D has nonzero Jacobson radical J

and T is 1-dimensional quasi-local, R := D ∩ T is an irredundant intersection, and
D is a localization of R, then T is centered on a maximal ideal M of R and RM = T .

Example 2.6.6 (Semi-quasi-local vacant domain). (a) Let F ⊆ K be a transcen-
dental field extension, and let X be an element of K that is transcendental over
F . Suppose that K has two distinct rank one valuation domains of the form
V1 = F (X) + M1 and V2 = F (X) + M2. Let R1 = F + M1 and R2 = F + M2.
Observe that R1 and R2 are integrally closed PVD. By Theorem 2.4.9, R1 and
R2 are vacant.

Since Vi has rank one for i = 1, 2, by Lemma 2.4.2 we have that Vi is the only rank
one valuation ring of K containing Ri, i = 1, 2. Moreover the Jacobson radical
of Ri is Mi which is, of course, different from zero. Mi is the only nonzero prime
ideal of Ri, hence Ri is a G-domain. We can then apply Proposition 2.6.4 to
both R1 and R2 and conclude that each of them is a localization of R := R1∩R2.
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The intersection R = R1 ∩ R2 is irredundant since there are no containments
between V1 and V2, hence between R1 and R2. For suppose by way of contradic-
tion R1 ⊆ R2, then V2 ∈ Zar(R1). So that, by Lemma 2.4.2, V2 is comparable
to V1, a contradiction.

Since R1 and R2 were chosen 1-dimensional we are in the hypothesis of Propo-
sition 2.6.5 for both R1 and R2 playing the role of T so that there exist two
maximal ideals of R, P1 and P2, such that RP1 = R1 and RP2 = R2.

The last thing which remains to be shown is that P1 and P2 are the only maximal
ideals of R, but that is clear because if d ∈ R\(P1 ∪ P2) then d /∈M1 and d /∈M2

so that d−1 ∈ RP1 ∩RP2 = R1 ∩R2 = R. Thus every element of R not in P1 or
P2 is a unit, and hence P1 and P2 are the only maximal ideals of R.

(b) Combining the previous example with Example 2.6.3 we can increase the dimen-
sion of the semi-quasi-local domain just obtained. More precisely if R is the
semi-quasi-local domain built in (a) and V is a valuation domain with residue
field K = Qf(R) we can consider the following pullback diagram:

R′ := π−1(R)! "

!!

"" "" R! "

!!
V

π "" "" kV = K

then R′ is vacant (by Theorem 2.5.1), semi-quasi-local and dim(R′) = dim(V )+
dim(R) > 1, where the equality for dimensions holds by [12, Proposition 2.1].

We give next an example showing that, for each n ≥ 2, it is possible to build a
vacant domain R with exactly n maximal ideals, such that the localization of R at
any of its maximal ideals is not a valuation domain.

Example 2.6.7. Let K be a field and X1, . . . , Xn, Z algebraically independent vari-
ables over K. Let F = K(X1, . . . , Xn). Let f1, . . . , fn be distinct irreducible el-
ements of F [Z]. Then Vi := F [Z](fi) is a valuation domain, in fact a DVR, with
quotient field F (Z). Moreover if Mi denotes the maximal ideal of Vi, Vi/Mi is
isomorphic to F , that is Vi is of the form F + Mi for each i.

Let Fi := K(X1, . . . , Xi−1, Xi+1, . . . , Xn) and Ri the PVD obtained as the pull-
back of the following diagram:

Ri := π−1(Fi)! "

!!

"" "" Fi! "

!!
Vi

π "" "" F
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Each Ri is integrally closed because the field extension Fi ⊆ F is purely transcen-
dental, and hence Fi is algebraically closed in F .

For i &= j the valuation domains Vi and Vj are incomparable to each other (they
are both DVR’s); furthermore the residue field of each Vi is F and Fi &= Fj , so
{Fi}n

i=1 is a collection of distinct proper subfields of F . Then [6, Example 2.5] shows
that R :=

⋂n
i=1 Ri is an integrally closed LPVD with exactly n maximal ideals, say

Q1, . . . , Qn. Also RQi = Ri for each i = 1, . . . , n, which is vacant by Theorem 2.4.9.
Thus by Lemma 2.6.1 follows that R is a vacant domain having exactly n maximal
ideals.

To conclude we give the announced example showing that a DW-domain may
not be vacant. Recall that the inverse implication holds, thanks to Proposition 2.2.2

Example 2.6.8. Let X,Y and Z be algebraically independent variables over a field
k. The integrally closed domain:

R := π−1(k)! "

!!

"" "" k! "

!!
k(X, Y )[Z](Z)

π "" "" F := k(X, Y )

is not vacant by Theorem 2.4.9 but is a DW-domain as it is one-dimensional (see
[44, Proposition 2.9]).

2.7 Discussion and questions

There are still many open problems about vacant domains. Most of them are gen-
eral problems about intrinsic properties of being vacant. We start by asking what
happens in general to localizations and finite integral extensions of a vacant domain.

Question 2.7.1. Let R be a vacant domain and P a prime ideal of R. Is RP vacant?

Question 2.7.2. Let R be a vacant domain with quotient field K. Let F be a finite
field extension of K. Is the integral closure R

F of R in F vacant?

It is well-known that for a domain R the following characterization holds: R is
a Prüfer domain if and only if each overring of R is integrally closed, if and only if
each overring of R is a Prüfer domain ([22, Theorem 26.2]).

Hence we ask:

Question 2.7.3. Is every integrally closed overring of a vacant domain R vacant
too?

56



According to Proposition 2.3.7, the question above can be restated as in the
following conjecture.

Conjecture 2.7.4. Let R be an integrally closed domain. Then, for each n, R is
n-vacant if and only if R is 2-vacant.
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Chapter 3

Projective star operations and
graded rings

3.1 Projective models

We observed in Section 1.2 that the Zariski space Zar(R) of an integral domain R

is a spectral space. In a recent paper O. Heubo showed that each Zariski space
Zar(F/R), with R a subdomain of a field F , is spectral.

Proposition 3.1.1. ([29, Proposition 2.7]) Let F be a field and R a domain (possibly
a field) contained in F . Let H :=

⋂
V ∈Zar(F/R) V b. Then the mapping:

φ : Zar(F/R) −→ Zar(H)
V "−→ V b

is a homeomorphism with respect to the Zariski topology.

By Theorem 1.3.14 an F -function ring is a Bézout, hence a Prüfer, domain, so
that Zar(H) is homeomorphic to Spec(H). Therefore Zar(F/R) is a spectral space
too. In other words, the Zariski spaces Zar(F/K), for each choice of a field F and a
subdomain K of F , from a topological point of view, are just like the prime spectrum
of a ring.

We are going to see that, despite the fact that Zar(F/K) is spectral, we can
associate this topological space to a scheme, which is not in general affine. More
precisely, in the case we deal with, such a scheme is projective.

In the years around 1940, O. Zariski introduced a precursor to schemes theory
from an algebraic point of view. Afterwards his student S. Abhyankar used Zariski’s
setting to achieve results on resolution of singularities (cf. [1]).
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We give here a brief overview on models and ideals in models, which are the al-
gebraic objects corresponding to schemes and coherent sheaves of ideals respectively
in algebraic geometry.

Let F be a field and R a subdomain of F . For a quasi-local domain S, we denote
by MS its unique maximal ideal and by kS the residue field S/MS .

Consider the set L(F/R) := {S : R ⊆ S ⊆ F, S quasi-local}. The set of quasi-
local rings between R and F can be partially ordered by domination, as explained
in the following definition.

Definition 3.1.2. Let S1 and S2 be in L(F/R). We say that S1 dominates S2 if
S1 ⊇ S2 and MS1 = MS2 ∩ S1.

By using the relation of domination we can single out two important kinds of
subsets of L(F/R):

Definition 3.1.3. Let X be a subset of L(F/R). We say that X is irredundant if
for each V ∈ Zar(F/R), there exists at most one element S ∈ X dominated by V .

Reciprocally, we say X to be complete if for each V ∈ Zar(F/R), there exists at
least one element S ∈ X dominated by V .

Given X and X ′ subsets of L(F/R) we say that X dominates X ′ if every element
of X dominates at least one element of X ′.

It is clear that Zar(F/R) is a subset of L(F/R). We introduce now a topology on
L(F/R). We will keep denoting the basic open sets of this topology by U , because, as
it will be evident soon, the Zariski topology on Zar(F/R) coincides with the induced
topology. The Zariski topology on L(F/R) is given by declaring as an open basis
the following sets:

U(x1, . . . , xn) := {S ∈ L(F/R) : xi ∈ S, ∀i = 1, . . . , n} .

Notation 3.1.4. Given a domain D, such that R ⊆ D ⊆ F , we denote by V (D) :=
{DP : P ∈ Spec(D)}. As topological spaces we consider Spec(D) with the spectral
topology and the induced Zariski topology on V (D).

Proposition 3.1.5. ([49, Lemma 1, Ch. VI, § 17]) Let R be a domain contained in
a field F . Let D be a domain in between R and F . The mapping:

f : L(F/D) −→ Spec(D)
S "−→ MS ∩D

is continuous. The restriction of f to V (D) is a topological homeomorphism.
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We can define now the concept of a model.

Definition 3.1.6. Let F be a field and R a domain contained in F . An affine model
over R is a set of the form V (R[x1, . . . , xn]) with xi ∈ F , for each i = 1, . . . , n.

A model M is defined as an irredundant subset of L which is a finite union of
affine models, i.e. M =

⋃n
i=1 V (Ri), with each Ri ⊆ F and finitely generated as an

R-algebra.

Definition 3.1.7. Let F be a field and R a domain contained in F . Let x0, . . . , xn

be nonzero elements of F . A projective model over R is a model M =
⋃n

i=0 V (Ri)
whose underlying domains are Ri := R[x0

xi
, . . . , xn

xi
].

By [49, Lemma 5, Ch. VI, § 17] a projective model is complete. Therefore a
projective model over R is an irredundant and complete subset of L(F/R).

Consider now the following special case: let S := K[X0, . . . , Xn], with X0, . . . , Xn

algebraically independent indeterminates over K. Let the field F := K(X0
X1

, . . . , Xn
X1

) =
K(X0

Xi
, . . . , Xn

Xi
) = F (y1, . . . , yn). Denoting by Ri := K[X0

Xi
, . . . , Xn

Xi
], a projective

model of F over K is then:

M :=
n⋃

i=0

V (Ri).

Furthermore the Ri’s are integrally closed domains having quotient field F . Accord-
ing to Proposition 3.1.5 the model M just defined is homeomorphic, as a topological
space to:

n⋃

i=0

Spec(Ri).

It is immediately seen that this is the same topological space underlying the pro-
jective scheme Proj(S) =

⋃n
i=0 D+(Xi), where D+(Xi) is the set of homogeneous

prime ideals of S not containing Xi (for details cf. [9, III.2.1]).
Hence the model M defined above inherits, in a natural way, a structure of a

projective scheme, the same one defined for Proj(S). So, by identifying the model M

with the projective scheme Proj(S) we gain a very useful new setting. In particular,
over a scheme, we can consider sheaves of ideals, as we will see in the next section.

3.2 Homogenization, dehomogenization and saturation
of ideals

Let K be a field. Let S := K[X0, . . . , Xn], the ring in n + 1 indeterminates over K.
For i that ranges from 0 to n, we keep denoting by Ri the ring K[X0

Xi
, . . . , Xn

Xi
].
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Thus S is graded with the standard grading obtained by giving to each variable
degree 1. Hence:

S =
∞⊕

k=0

Sk, where S0 = K and SmSn ⊆ Sn+m.

Definition 3.2.1. An element f ∈ S is said to be homogeneous (of degree d) if
f ∈ Sd for some d.

An ideal I of S is homogeneous if I is generated by homogeneous elements, or,
equivalently, if for each f = f0 + · · · + fd ∈ I, with fi homogeneous of degree i, we
have fi ∈ I for all i = 0, . . . , d.

An ideal P of S is a homogeneous prime ideal if P is a homogeneous ideal which
is also prime.

Let f ∈ S. The dehomogenization of f in Ri is the element

aif := f(
X0

Xi
, . . . , 1, . . . ,

Xn

Xi
)

of Ri. The application ai is a ring homomorphism for each i = 0, . . . , n. Conversely
given an element g in Ri, its homogenization in S is the homogeneous element

hg := Xni
i g(

X0

Xi
, . . . ,

Xn

Xi
)

of S, where ni is the degree of g.
Before starting with all the properties of homogeneous and non-homogeneous

ideals from the algebraic point of view, we wish to give some details about the alge-
braic geometry behind our construction. In fact, the spirit we will use for definitions
and properties which seemed to be natural to us, when considered in the context of
scheme theory.

Keeping the notation above:

Proposition 3.2.2. ([9, Exercise III-13]) Let I be a homogeneous ideal of S. For
each open set Ui := Spec(Ri), let Ĩ(Ui) be the ideal I · S[X−1

i ] ∩Ri. This definition
can be extended in a unique way to other open sets in such a way that Ĩ becomes a
coherent sheaf of ideals.

So, a homogeneous ideal of S induces a coherent sheaf of ideals over Proj(S).
The process can be reversed to get a homogeneous ideal of S from a coherent sheaf
of ideals, as in [9, Exercise III-14]. The correspondence is not one-one in general.
We will get over this restriction by using the saturation of a homogeneous ideal of
S.
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Given a homogeneous ideal I of S, the dehomogenization of I:

aiI := {aif | f is homogeneous in I }

is an ideal of Ri. Observe that the dehomogenization in Ri of an ideal I of S coincides
with the ideal Ĩ(Ui) considered in Proposition 3.2.2 (cf. also [49, Ch. VII, § 5, p.
185]).

We note that using the fact that the operation ai is a ring homomorphism for
each i = 0, . . . , n and the fact that I is generated by homogeneous elements, it is
clear that aiI = {aif : f ∈ I}. So, for a homogeneous ideal I of S, we have x ∈ aiI

if and only if x = aif for some f ∈ I.
For each i = 0, . . . , n, the operation I "→ aiI is onto the set of all ideals of Ri

and preserves inclusion and the usual ideal-theoretic operations:

Theorem 3.2.3. ([49, Theorem 18, Ch. VII, § 5]) The operation I → aiI maps the
set of all homogeneous ideals in S onto the set of all ideals of Ri. It preserves inclu-
sions and the usual ideal-theoretic operations, i.e., it has the following properties:

(a) I ⊆ J implies aiI ⊆ aiJ .

(b) ai(I + J) = aiI + aiJ .

(c) ai(IJ) = aiIaiJ .

(d) ai(I ∩ J) = aiI ∩ aiJ .

(e) ai(I : J) = (aiI : aiJ).

(f) ai(
√

I) =
√

aiI.

The converse of dehomogenization for ideals is given by homogenization. Given
an ideal I of Ri, let C be the set of all the homogeneous polynomials Xm

i
hf (m ≥ 0,

f ∈ I). We denote by hI the homogeneous ideal in S which is generated by the
elements of C.

The operation I "→ hI is one-one and preserves inclusion and the usual ideal-
theoretic operations:

Theorem 3.2.4. ([49, Theorem 17, Ch. VII, § 5]) The operation J "→ hJ maps
distinct ideals of Ri into distinct ideals in S; it preserves inclusion and the usual
ideal-theoretic operations, i.e., it has the following properties:

(a) I ⊆ J implies hI ⊆ hJ .
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(b) h(I + J) = hI + hJ .

(c) h(IJ) = hIhJ .

(d) h(I ∩ J) = hI ∩ hJ .

(e) h(I : J) = (hI : hJ).

(f) h(
√

I) =
√

hI.

We note the properties of the composite operations aih and hai , for each i =
0, . . . , n (see [49, Ch. VII, § 5, p. 182]):

(H1) ai(hI) = I, for any ideal I in Ri;

(H2) h(aiI) ⊇ I, for any ideal I in S;

(H3) Xm
i (h(aiI)) ⊆ I, for some integer m ≥ 1.

A useful characterization of homogeneous prime ideals follows:

Proposition 3.2.5. ([8, Exercise 2.15 (c)]) Let S be a Z-graded ring. A homogeneous
ideal P of S is prime if and only if whenever fg ∈ P for homogeneous polynomials
f, g ∈ S then f ∈ P or g ∈ P .

Proof. (⇒). It follows by definition of a prime ideal.
(⇐). Let f, g be elements of S such that fg ∈ P . We assume without loss of
generality that S is graded positively. Then we can write f = F0 + · · · + Fn and
g = G0 + · · · + Gm where all Fi’s and Gj ’s are homogeneous elements of S. By
assumption the product fg ∈ P . Then every homogeneous component of fg ∈ P

as P is homogeneous. Observe that if for all i < k both Fi and Gi are in P , then
FkGk ∈ P . In fact,

(fg)2k = F0G2k + F1G2k−1 + · · ·+ FkGk + · · ·+ G1F2k−1 + G0F2k.

Thus FkGk = (fg)2k − (F0G2k + F1G2k−1 + · · ·+ G1F2k−1 + G0F2k) ∈ P.

Suppose d is the minimum such that Fd ∈ P and Gd &∈ P , and d′ is the minimum
for which Fd′ &∈ P and Gd′ ∈ P . If d and d′ do not exist we have that the element
with smaller degree between f and g is in P . So we can assume that the minimum
d does exist, and we have that:

(fg)2d+1 = F0G2d+1 + · · ·+ Fd+1Gd + Gd+1Fd + · · ·+ F2d+1G0.

Then Fd+1Gd ∈ P and Gd &∈ P implies Fd+1 ∈ P . With the same argument it follows
that Fd+k ∈ P for all k = 1, . . . (n− d), so that f ∈ P .
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Definition 3.2.6. Let I be an ideal of S, the saturation of I is the ideal:

satI := {y ∈ S
∣∣∀i = 0, . . . , n, ∃ti ≥ 0, yXti

i ∈ I }.

An ideal I of S is saturated if satI = I.

Proposition 3.2.7. ([9, Exercises III-14 and III-16]) There is a bijective correspon-
dence between homogeneous saturated ideals of S and coherent sheaves of ideals over
Proj(S).

In view of this correspondence, we will work with homogeneous saturated ideals
of S, but all our results can be applied to coherent sheaves of ideals over Proj(S) and
hence on ideals over the projective model M =

⋃n
i=0 V (Ri). It is worth remarking

that ideals can be defined for models also in the more general case (cf. [1, Chapter
2, § 6, (6.4)]).

Remark 3.2.8. Let I be an ideal of S. Then

y ∈ satI ⇐⇒ y ∈ IS[
1
Xi

] ∩ S for all i = 0, . . . , n.

⇐⇒ y ∈
(

IS

[
1

X0

]
∩ S

)
∩ · · · ∩

(
IS

[
1

Xn

]
∩ S

)

Thus
satI =

(
IS

[
1

X0

])
∩ · · · ∩

(
IS

[
1

Xn

])
.

Proposition 3.2.9. Let I be a homogeneous ideal of S. Then satI =
⋂n

i=0
haiI.

Proof. Let f ∈ satI. Then for each i = 0, . . . , n, there is a nonnegative integer n

such that Xn
i f ∈ I. Set g := Xn

i f . Then we have g = h(aig)Xm
i , where m is the

degree of Xi in the polynomial g. Clearly as f = X−n
i g ∈ S, we have m ≥ n. So

f = h(aig)Xm−n
i ∈ h(aiI) for each i = 0, . . . , n. Therefore satI ⊆

⋂n
i=0

haiI.
Now let f ∈

⋂n
i=0

haiI with f a homogeneous polynomial. Then for each
i = 0, . . . , n, we can assume without loss of generality that f = Xm

i (hgi) with
mi nonnegative integer and gi ∈ aiI (i.e., gi = aiϕ, ϕ ∈ I). Thus f = Xmi

i
h(aiϕ) =

Xmi
i X−m0i

i ϕ, where m0i is the highest power of Xi that divides ϕ. Therefore choose a
nonnegative integer s such that s ≥ m0i−mi to have Xs

i f = Xs+mi−m0i
i ϕ ∈ I, as ϕ ∈

I. Hence f ∈ satI. Since
⋂n

i=0
haiI is homogeneous, we have satI =

⋂n
i=0

haiI.

Proposition 3.2.10. Given I, J homogeneous ideals of S the following properties
hold:

64



(a) for each i = 0, . . . , n, aiI = aisatI;

(b) satI ⊆ satJ ⇐⇒ aiI ⊆ aiJ for all i = 0, . . . , n;

(c) satI is homogeneous

(d) for each (homogeneous) polynomial f ∈ S, sat(fI) = fsatI;

(e) I ⊆ satI and if I ⊆ J then satI ⊆ satJ ;

(f) sat(I ∩ J) = satI ∩ satJ .

Proof. (a) The inclusion aiI ⊆ aisatI is trivial since dehomogenization preserves
inclusions. For the converse, since ai commutes with intersections:

aisatI = ai




n⋂

j=0

hajI



 =
n⋂

j=0

aihajI ⊆ aiI.

(b) Suppose that satI ⊆ satJ . We have I ⊆ satI ⊆ satJ . Thus for each i = 0, . . . , n:
aiI ⊆ aisatJ = aiJ , by (a). Conversely, suppose aiI ⊆ aiJ for all i = 0, . . . , n.
Since the operation h preserves inclusion, we can conclude using Proposition
3.2.9 that satI ⊆ satJ .

(c) It is straightforward by Proposition 3.2.9 and the fact that a finite intersection
of homogeneous ideals is homogeneous.

(d) Let f be a polynomial in S.

sat(fI) =
(

(fI)S

[
1

X0

])
∩ · · · ∩

(
(fI) S

[
1

Xn

])

= f

((
IS

[
1

X0

])
∩ · · · ∩

(
IS

[
1

Xn

]))

= fsatI.

(e) This is clear by the definition of saturation or by Proposition 3.2.9.

(f) It is clear by combining Proposition 3.2.9 and the fact that the operations ai

and h preserve intersection.
By definition of star operations, i.e., Definition 1.1.1, it is easily seen that (d)

and (e) imply that sat is a star operation on S. Furthermore sat is a stable star
operation, as shown in (f).
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3.3 Star operations on homogeneous and non-homogeneous
ideals

Star operations work in general on nonzero fractional ideals. In our context we
want to apply the operations ai and h to the ideals transformed by a star operation.
Hence, we extend the concept of being homogeneous to fractional ideals and build
an application enjoying the same properties of star operations on such ideals.

Definition 3.3.1. A fractional ideal J of S is homogeneous (resp. saturated) if
there exists a homogeneous polynomial f ∈ S such that fJ is a homogeneous (resp.
saturated) ideal of S.

Definition 3.3.2. If J is a homogeneous fractional ideal of S, then the dehomoge-
nization of J is aiJ := 1

aif
ai(fJ), where f is a homogeneous element of S such that

fJ is a homogeneous ideal of S.
For each i = 0, . . . , n, if J is a fractional ideal of Ri i.e., J is an Ri-module in F

and there is a nonzero f ∈ Ri such that fJ is an ideal of Ri, then the homogenization
of J is hJ := 1

hf

h(fJ).

Remark 3.3.3. For each i = 0, . . . , n the operation ai is well-defined for homoge-
neous fractional ideals of S: let J be an homogeneous fractional ideal of S. Suppose
that there are homogeneous polynomials f and g such that fJ and gJ are homoge-
neous ideals of S. Then:

1
aif

ai(fJ) =
1

aig
ai(gJ)⇐⇒ aigai(fJ) = aifai(gJ)⇐⇒ai (gfJ) = ai(fgJ).

It is also clear by a similar argument that the operation h is well-defined for
fractional ideals of Ri, for all i = 0, . . . , n.

Observe that if J is a homogeneous fractional ideal of S, then aiJ is a fractional
ideal of Ri. Conversely given a fractional ideal I of Ri, hI is a homogeneous fractional
ideal of S. In fact, if f ∈ Ri is such that fI ⊆ Ri, then hfhI ⊆ hRi = S.

Definition 3.3.4. Let H(S) denote the set of nonzero homogeneous fractional ideals
of S. A projective star operation on S is a mapping:

! : H(S) −→ H(S)
I "−→ I!

such that for every nonzero homogeneous rational function f (i.e., f = g
h with 0 &= h

and g homogeneous polynomials in S) in the quotient field of S and every I, J ∈ H(S)
the following conditions are satisfied:
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(a) (f)! = (f), (fI)! = fI!;

(b) I ⊆ I! and if I ⊆ J then I! ⊆ J!;

(c) I!! := (I!)! = I!.

Remark 3.3.5. If I "→ I! is a projective star operation on S, it is clear that
S = (1) = (1)! = S!, and if I is a homogeneous ideal of S, then I ⊆ I! ⊆ S! = S.
Hence each projective star operation on S induces a map I "→ I! from H(S), the
set of homogeneous ideals of S, into H(S) satisfying conditions (a), (b) and (c).
Moreover, for each operation ! from H(S) onto H(S) satisfying conditions (a), (b)
and (c), if J ∈ H(S), then there is a homogeneous element f ∈ S such that fJ =: I

is a homogeneous ideal of S. Set J! = 1
f I!. It is clear that ! is well-defined and is a

projective star operation on S. Therefore, from now on, we will consider a projective
star operation on S as a map from H(S) into H(S) satisfying conditions (a), (b) and
(c) (in condition (a), take f to be homogeneous element of S).

It is clear that a star operation on S which preserves homogeneous ideals is a
projective star operation, but, as expected, not every star operation on S is homoge-
neous preserving. We provide next some examples of projective star operations and
an example of a star operation on S that is not a projective star operation.

Example 3.3.6. (a) The identity is clearly by definition a projective star opera-
tion. The saturation sat is also a projective star operation (Proposition 3.2.10
(c), (d), (e) and (f), together with the fact that satS = S). We will see later
that the b-operation and the v-operation are projective star operations on S

as well.

(b) Let I be an ideal of S. Since S is a Noetherian integrally closed domain, S

is completely integrally closed, and so S = (I : I) for each nonzero ideal I of
S (see [22, Theorem 34.3]). Therefore, by Proposition 1.1.16, the application
v(I) : F(S)→ F(S), J "→ (I : (I : J)) is a star operation on S for each ideal I.

Consider the maximal ideal M := (X0 − 1, X1, . . . , Xn) of S and the homoge-
neous ideal I := (X1, . . . , Xn). We shall prove that Iv(M) := (M : (M : I))
is not homogeneous, and hence v(M) cannot be restricted to a projective
star operation. By [28, Lemma 3.1], Iv(M) =

⋂
I⊆qM qM with q in the quo-

tient field of S. First of all, we observe that Iv(M) ! I. Suppose by way
of contradiction that I = Iv(M). Then, since S is Noetherian, the ideal
(M : I) = (r1, . . . , rn)S for some finite set {r1, . . . , rn} of the quotient field
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of S, and (M : (M : I)) = (M : (r1, . . . , rn)S) =
⋂n

i=1 r−1
i M . By setting

qi := r−1
i :

I =
⋂

I⊆qM

qM =
n⋂

i=1

qiM =
n⋂

i=1

qiM ∩R ⊆
n⋂

i=1

qiR ∩R = R,

where the last equality holds because I is a prime ideal of height greater than
1 in an integrally closed Noetherian domain. Hence R = Iv by [22, Corollary
44.8], so that

R = Iv ⊆
n⋂

i=1

qiR ∩R ⊆ R.

Then, for each i, qiR ∩ R = R and ri := q−1
i ∈ R. Therefore I = 1

r1
M ∩ · · · ∩

1
rn

M∩R. We can assume without loss of generality that for all i, ri ∈ R\M . For
if ri ∈M for some i, 1

ri
M = R then there is no contribution in the intersection.

We have then that (r1 · · · rn)I = (r2 · · · rn)M∩· · ·∩(r1 · · · rn−1)M∩(r1 · · · rn)R.
Thus IM = MRM (∀i, ri &∈ M), which is a contradiction because I is a prime
ideal properly contained in M . So I " Iv(M) ⊆Mv(M) = M .

We prove now that I is maximal among the homogeneous ideals of S contained
in M . Since S is Noetherian the ACC on ideals holds and each chain in the
set:

F := {J : J is homogeneous and I ⊆ J " M} ,

has a maximal element P . Suppose P is not prime. Then by Proposition 3.2.5
there exist f, g ∈ S \ P homogeneous such that fg ∈ P . We can suppose
f is in M because M is prime, so we have P " (P, f) " M , because M is
not homogeneous, and this contradicts the maximality of P in F . Hence P is
prime and

(X0) " (X0, X1) " · · · " (X0, . . . , Xn−1) " P " M

is a chain of distinct primes of length n + 2 > dim(S) = n + 1, which is
impossible. Therefore I is maximal in F and, since I " Iv(M) ⊆ M , Iv(M) is
not homogeneous.

We next turn our attention to the “dehomogenization” of a projective star oper-
ation. In other words, we prove that a projective star operation ! on S, induces a
star operation !i on Ri for each i = 0, . . . , n.

Proposition 3.3.7. Let ! be a projective star operation on S. Then the mapping
!i : F(Ri) −→ F(Ri), I "−→ I!i := ai((hI)!), is a star operation on Ri for each
i = 0, . . . , n.
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Proof. It is enough to prove that conditions (!1), (!2) and (!3) of Definition 1.1.1
hold on (integral) ideals of Ri. Let g ∈ Ri and I an ideal of Ri;

(gI)!i = ai(h(gI))! = ai(hghI)! = gai(hI)! = gI!i .

Since hRi = S for each i, condition (!1) holds. Condition (!2) is straightforward.
The fact that (I!i)!i ⊇ I!i follows from (!2) and we prove that the reverse inclusion
holds too. By (H3) we have Xm

i
hai

(
(hI)!

)
⊆ (hI)! for some m ≥ 1. Since ! is a

projective star operation,

Xm
i

[
hai

(
(hI)!

)]!
=

[
Xm

i
hai

(
(hI)!

)]!
⊆ (hI)!! = (hI)!.

Now as ai preserves inclusion and ai(Xm
i ) = 1, we have

(I!i)!i = ai

([
hai

(
(hI)!

)]!)
= ai

(
Xm

i

[
hai

(
(hI)!

)]!)
⊆ ai(hI)! = I!i .

Then !i is a star operation on Ri for any i = 0, . . . , n.

Proposition 3.3.8. Let ! be a projective star operation on S and {!0, . . . , !n} the
set of star operations obtained as in Proposition 3.3.7. Then ai (I!) = (aiI)!i for
each homogeneous ideal I of S and each i = 0, . . . , n.

Proof. For each i = 0, . . . , n,
(
haiI

)! ⊇ I! =⇒ (aiI)!i = ai
(
haiI

)! ⊇ ai (I!).
Conversely, by (H3) there exists m ≥ 1 such that:

I! ⊇ Xm
i

(
haiI

)!
=⇒ ai (I!) ⊇ ai

(
Xm

i

(
haiI

)!)
= (aiXm

i ) ai

(
haiI

)!
=

= (aiI)!i for each i = 0, . . . , n.

Where the last equality holds by the definition of !i given in Proposition 3.3.7.

Corollary 3.3.9. Same hypothesis as Proposition 3.3.8. Then

sat(I!) = h ((a0I)!0) ∩ · · · ∩ h ((anI)!n).

Proof. By Proposition 3.2.9,

sat(I!) = ha0(I!) ∩ · · · ∩ han(I!)

= h ((a0I)!0) ∩ · · · ∩ h ((anI)!n).

The last equality is by Proposition 3.3.8.

Proposition 3.3.10. Let ! be a projective star operation on S and I be a homoge-
neous ideal of S. Then satI = sat(I!) if and only if (aiI)!i = aiI for every i = 0, . . . , n

(where !i are those built in Proposition 3.3.7).
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Proof. By Proposition 3.3.8 and Proposition 3.2.10, we have

(aiI)!i = aiI ⇐⇒ ai (I!) = aiI for all i = 0, . . . , n

⇐⇒ sat(I!) = satI

From a projective star operation ! on S, we built star operations !i on Ri,
i = 0, . . . , n. We want to consider the reverse process: how do we get a projective
star operation on S from the star operations on Ri, i = 0, . . . , n? We start by
observing how the star operations !i, built from a given projective star operation,
interact with one another. In fact, we do not expect to be able to build a projective
star operation by choosing arbitrarily the star operations !i.

Moreover, we want to reverse the process of dehomogenization, and then com-
pose homogenization and dehomogenization to go back and forth between the set of
projective star operations and (n+1)-tuples of star operations, each of them defined
on one of the Ri’s.

Lemma 3.3.11. Let ! be a projective star operation on S and {!0, . . . , !n} the set
of star operations on R0, . . . , Rn obtained as in Proposition 3.3.7. Then for each
homogeneous ideal I of S,

(i) (ajI)!j ⊆ aj [h((aiI)!i)] for all j = 0, . . . , n and i = 0, . . . , n.

(ii) For each i = 0, . . . , n there exists a nonnegative integer mi such that
Xmi

i
aj [h((aiI)!i)] ⊆ (ajI)!j for all j = 0, . . . , n.

Proof. For (i), For each i = 0, . . . , n,
(
haiI

)! ⊇ I!, i.e., for each j = 0, . . . , n, For
each i = 0, . . . , n, aj

[(
haiI

)!
]
⊇ a

j (I
!). By Proposition 3.3.8, (ajI)!j ⊆ aj [h((aiI)!i)]

for all j = 0, . . . , n and i = 0, . . . , n.
For (ii), a similar argument as for (i) works by using the inclusion Xmi

i
hai(I!) ⊆

I! for some mi ≥ 1 for each i = 0, . . . , n.

By homogenization and dehomogenization we can “move” an ideal of Ri to each
of the other Rj ’s. Condition (i) in Lemma 3.3.11 suggests that the behavior of an
ideal of Ri under the star operation !i reflects the behavior of that same ideal moved
into Rj under !j . Since a homogeneous ideal of S collects together the behaviors
of its dehomogenized components, if we want to glue together a collection of star
operations on different Ri’s, we define two star operations to be compatible if we
can move ideals from Ri to Rj , through S, preserving the behavior of the given star
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operations. This compatibility has to be satisfied by each pair of star operations
that we want to “glue” together into a projective star operation.

In particular it will not be possible to glue together star operations of very
different kinds.

Definition 3.3.12. Let !0, . . . , !n be star operations on R0, . . . , Rn respectively.
We say that !0, . . . , !n are pairwise compatible if (ajI)!j ⊆ aj [h((aiI)!i)] for all i, j =
0, . . . , n, and all homogeneous ideals I of S.

Proposition 3.3.13. Let {!0, . . . , !n} be a set of pairwise compatible star operations
on R0, . . . , Rn. Then the mapping:

! : H(S) −→ H(S)
I "−→ I! := sat[

⋂n
i=0

h ((aiI)!i)]

is a projective star operation on S. Moreover if {!0, . . . , !n} are built from a projec-
tive star operation !′ on S as in Proposition 3.3.7, then ! = sat ◦ !′.

Proof. We need to prove that ! satisfies the conditions (a), (b) and (c) of Defini-
tion 1.1.1. It is easily seen that S! = S. Moreover saturation, homogenization
and dehomogenization preserve inclusions. So I ⊆ I! and I ⊆ J ⇒ I! ⊆ J! are
straightforward.

Suppose now that f is a homogeneous element in S. We claim that (fI)! = fI!.
Now

aj [(fI)!] ⊆ ajsat
(

h[(ajfI)!j ]
)

, (by definition of !)

= ajh[(ajfI)!j ], (by Proposition 3.2.10, (a))

= aj (fI)!j

= ajf(ajI)!j , (since !j is a star operation)

⊆ ajfaj [h((aiI)!i)], (by the compatibility of the !i’s).

= aj [fh((aiI)!i)].

Hence by Proposition 3.2.10 (b), we have sat[(fI)!] ⊆ fsat[h((aiI)!i)] for all i =
0, . . . , n. Thus

(fI)! ⊆ sat[(fI)!] ⊆ fsat[
n⋂

i=0

h((aiI)!i)] = fI!.

For the other inclusion we have

aj (fI!) = ajfaj (I!) ⊆ ajfajh[(ajI)!j ] = ajf(ajI)!j = [aj (fI)]!j .
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By compatibility of the !i’s,

aj (fI!) ⊆ aj [h((aifI)!i)], for all i = 0, . . . , n,

i.e., sat(fI!) ⊆ sat
(
h((aifI)!i))

)
for all i = 0, . . . , n, by Proposition 3.2.10 (b). Hence

fI! = sat(fI!) ⊆
n⋂

i=0

sat
(

h((aifI)!i))
)

= (fI)!.

So (fI)! = fI!.
For the last condition (c) left, it is clear that I! ⊆ I!! on one hand. On the other

hand,

(I!)! = sat
n⋂

j=0

h ((aj (I!)!j )) ⊆ sat
n⋂

j=0

h ((ajI)!j!j ) = sat
n⋂

j=0

h ((ajI)!j ) = I!.

The last part of this proposition follows directly from Corollary 3.3.9.

To keep a standard notation and avoid confusion between star operations de-
fined on different domains, we shall denote on S the identity, the integral closure of
ideals and the divisorial closure of ideals by d, b and v respectively. The same star
operations referred to Ri will be denoted by di, bi and vi respectively (cf. Examples
1.1.17).

Example 3.3.14. 1. The identities di’s on the Ri’s satisfy the compatibility con-
ditions. In fact, for an arbitrary homogeneous ideal I of S, I ⊆ haiI for each
i = 0, . . . , n, i.e., ajI ⊆ aj (haiI). Then the projective star operation on S built
from the identities on the Ri’s is, by Proposition 3.2.9, the saturation sat.

2. Later (Proposition 3.4.3), we will see that the bi-operations on the Ri’s are
pairwise compatible and that the projective star operation ! on S built from
those is the composition of the saturation and the b-operation on S, i.e., ! =
sat ◦ b.

3. Also, we will see in Proposition 3.4.5 that the vi-operations on the Ri’s are
pairwise compatible and that the projective star operation on S built from
those is the v-operation on S.

Proposition 3.3.15. Let {!0, . . . , !n} be a set of pairwise compatible star operations
on R0, . . . , Rn and let ! be the projective star operation on S built in Proposition
3.3.13. Then for each i = 0, . . . , n and for each ideal I of Ri, we have I!i = ai [(hI)!].
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Proof. For each i = 0, . . . , n, and each ideal I of Ri, we do have

ai [(hI)!] = aisat[
n⋂

k=0

h(akhI)!k ] =
n⋂

k=0

aih(akhI)!k = I!i ∩
n⋂

k &=i,k=0

aih(akhI)!k .

Hence

I!i ⊇ I!i ∩
n⋂

k &=i,k=0

aih(akhI)!k ⊇ I!i ,

by compatibility of the !i’s. So I!i = ai [(hI)!].

Remark 3.3.16. Given a projective star operation ! on S, we can build star op-
erations !i on Ri for each i = 0, . . . , n. These star operations !i’s are pairwise
compatible. Therefore by applying Proposition 3.3.13 to the n + 1 star operations
obtained we get “almost” back the original projective star operation. Indeed we get
the projective star operation sat ◦ ! on S.

Reciprocally, if we start with a set {!0, . . . , !n} of pairwise compatible star op-
erations on R0, . . . , Rn, then we can build a projective star operation ! on S as in
Proposition 3.3.13. Then the star operations !′i built from ! coincides with !i for
each i = 0, . . . , n, by Proposition 3.3.15.

Furthermore we have that given any projective star operation ! in S, the compo-
sition sat◦! is a projective star operation. In particular the projective star operation
sat dehomogenizes to the identity on the domain Ri for all i = 0, . . . , n.

We next prove that the same property as in Proposition 3.3.8 holds when we
start with a set of pairwise compatible star operations.

Proposition 3.3.17. Let {!0, . . . , !n} be a set of pairwise compatible star operations
on R0, . . . , Rn and ! the projective star operation on S built in Proposition 3.3.13.
Then for any homogeneous ideal I of S, we have (aiI)!i = ai(I!) for all i = 0, . . . , n.

Proof. Let i ∈ {1, . . . , n}, by Proposition 3.3.15, we have (aiI)!i = ai [(haiI)!]. On
the other hand, (haiI)! ⊇ I!, which implies (aiI)!i = ai

(
haiI

)! ⊇ ai (I!).
Conversely

I! ⊇
(
(Xm

i )haiI
)!

= Xm
i

(
haiI

)!
⇒ ai (I!) ⊇ ai

(
Xm

i

(
haiI

)!)
= ai [(haiI)!],

where m is any integer for which (H3) is satisfied.
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3.4 The projective b- and v-operation

We first note that if I is a homogeneous ideal of S, then Ib is a homogeneous ideal
of S [46, Corollary 5.2.3]. So the b-operation is a projective star operation on S. A
natural question is which star operations do we get locally from the b-operation and
vice-versa?

Lemma 3.4.1. Let I be an homogeneous ideal of S. Then ai(Ib) is an integrally
closed ideal of Ri for all i = 0, . . . , n.

Proof. For each i, we have Ri = SMi ∩ Ki where Mi is the multiplicatively closed
subset of S consisting of powers of Xi and Ki is the quotient field of Ri. Now
for I a homogeneous ideal of S, ai(Ib) = IbSMi ∩ Ki = (ISMi)b ∩ Ki ([49, VII. §
5.(10’)] and [46, Proposition 1.1.4]). Since (ISMi)b is an integrally closed ideal in
SMi , (ISMi)b∩Ki is integrally closed in SMi ∩Ki = Ri. So ai(Ib) is integrally closed
in Ri. Hence ai(Ib) is integrally closed in Ri for each i = 0, . . . , n.

Lemma 3.4.2. Let I be a homogeneous ideal of S. Then ai(Ib) = (aiI)bi for all
i = 0, . . . , n.

Proof. Let I be a homogeneous ideal of S. We have I ⊆ Ib. Since ai preserves
inclusion for each i, we have aiI ⊆ ai(Ib). But by Lemma 3.4.1, ai(Ib) is integrally
closed. Therefore (aiI)bi ⊆ ai(Ib).

For the reverse inclusion, let x ∈ ai(Ib). Then we can write x = air for some
element r ∈ Ib. Thus r satisfies an equation of integral independence of r over I of
the form rs + c1rs−1 + . . .+ cs−1r + cs = 0 for some positive integer s and cj ∈ Ij for
each j = 1, . . . , s. Since ai is a homomorphism, we have (air)s + aic1(air)s−1 + . . . +
aics−1

air + aics = 0 with aicj ∈ (aiI)j for each j = 1, . . . , s. Thus x = air ∈ (aiI)bi .
Hence ai(Ib) ⊆ (aiI)bi . So ai(Ib) = (aiI)bi .

The precedent Lemma says that if we start with the b-operation on S, then
the star operations !i obtained from it as in Proposition 3.3.7 are exactly the bi-
operations on the Ri’s.

Proposition 3.4.3. The bi-operations satisfy the compatibility condition, hence
(ajI)bj ⊆ aj [h((aiI)bi)] for any homogeneous ideal I of S and for all i, j = 0, . . . , n.

Proof. By Lemma 3.4.2, we have aj [h((aiI)bi)] = aj [hai(Ib)] ⊇ aj (Ib) = (ajI)bj .

Remark 3.4.4. By Lemma 3.4.2, it is clear that if we start with the b-operation
(as a projective star operation) on S and construct the star operations !i’s on Ri’s
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as before, then the !i’s are exactly the bi-operations on Ri’s. Conversely, if we start
with the bi-operations on the Ri’s, since those operations satisfy the compatibil-
ity conditions, they produce a projective star operation on S, which is sat ◦ b, by
Proposition 3.3.13.

Suppose I is a homogeneous ideal of S. Then Iv := (S : (S : I)) is homogeneous
too (see [49, VII. § 2. Theorem 8]), so if we restrict the divisorial closure in S to
H(S), we get a projective star operation on S. Let us denote by v this projective star
operation. Recall that the v-operation is bigger than or equal to each star operation
on S, in the sense of Definition 1.3.7. Hence we have that every star operation on
S, that can be restricted to H(S), is less than or equal to v.

Proposition 3.4.5. Let v be the v-operation on S. Then, for every i = 0, . . . , n

the star operation !i induced on Ri by v, as in Proposition 3.3.7, is the divisorial
closure vi. In particular vi and vj are pairwise compatible for each i, j = 0, . . . , n.
Furthermore the projective star operation sat ◦ v = v.

Proof. For each i = 0, . . . , n, let J be an ideal of Ri, and let J!i := ai((hJ)v). We
will prove that !i = vi.

J!i =ai((hJ)v) (by definition of !i)

=ai

(
S : (S : hJ)

)
(by definition of v)

=
(

aiS : (aiS : aihJ)
)

(ai commutes with colon)

=(Ri : (Ri : J)) (since aiS = Ri)

=Jvi (by definition of vi).

Hence !i = vi and {v0, . . . , vn} are pairwise compatible by Lemma 3.3.11 (i).
If ! is the projective star operation obtained from {v0, . . . , vn} as in Proposition
3.3.13 we have that ! = sat ◦ v, but as discussed before sat is less than or equal to
v. So for every I ∈ H(S), (satI)v = sat(Iv) = Iv, and ! = v.

Remark 3.4.6. From Proposition 3.4.5, it follows that v is a maximum also in the
set of projective star operations. For suppose ! is a projective star operation such
that v ≤ !, then sat ≤ v ≤ ! and sat ◦ ! = !. But for each i = 0, . . . , n, vi ≤ !i,
since v ≤ !. As vi is the biggest star operation on Ri it follows that vi = !i for each
i = 0, . . . , n. Thus ! = sat ◦ ! = sat ◦ v = v. In particular every divisorial ideal of S

is saturated because (Iv)sat = Iv.
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3.5 Projective Kronecker function rings

To introduce the concept of a Kronecker function ring associated to a projective
star operation, we need, first of all, to define the analogue of the e.a.b. property
(cf. Definition 1.1.7), for such operations. So we define an e.a.b. projective star
operation on S to be a projective star operation that yields e.a.b. star operations on
each Ri. Next we show that an e.a.b. projective star operation ! with sat ◦ ! = !

satisfies the cancellation property of the classical e.a.b. star operation.

Definition 3.5.1. A projective star operation ! on S is e.a.b. if the star operations
!i on Ri, i = 0, . . . , n, built in Proposition 3.3.7 from ! are all e.a.b. star operations.

From the definition above, we have in particular that sat◦b is an e.a.b. projective
star operation on S.

Lemma 3.5.2. Let ! be an e.a.b. projective star operation on S such that ! = sat◦!.
Then for any finitely generated homogenous ideals I, J and N of S,

(IN)! ⊆ (JN)! =⇒ I! ⊆ J!.

Proof. Let I, J, N be finitely generated ideals of S and suppose that (IN)sat◦! ⊆
(JN)sat◦!. Then we have by Proposition 3.2.10 (b): for each i = 0, . . . , n,

ai ((IN)!) ⊆ ai ((JN)!)⇐⇒ (aiIaiN)!i ⊆ (aiJaiN)!i

=⇒ (aiI)!i ⊆ (aiJ)!i

=⇒ ai(I!) ⊆ ai(J!).

Thus by Proposition 3.2.10 (b), Isat◦! ⊆ Jsat◦!. The result follows since ! = sat ◦
!.

Now, we want to build a ring (called later projective Kronecker function ring)
from an e.a.b. projective star operation ! on S that will behave like the classical
Kronecker function ring of an e.a.b. star operation and that will have a relationship
with the “affine” Kronecker function rings of the Ri’s with respect to the e.a.b. star
operations !i. We start by investigating some properties of the notion of the content
ideal of a homogeneous polynomial of S[T ], where T is a variable over S.

If f = f0 + f1T + . . . + fsT s ∈ S[T ], then the content of f , denoted C(f),
is the ideal of S generated by the coefficients f0, f1, . . . , fs of f . Note that if f

is a homogenous element of S[T ] = K[X0, . . . , Xn, T ] in n + 2 variables, then its
coefficients are homogeneous elements of S. Thus C(f) is a homogeneous ideal of S.
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Remark 3.5.3. Let f = f0 + f1T + . . . + fsT s be a homogeneous element of degree
m in K[X0, . . . , Xn, T ] = S[T ]. Then

f

Xm
i

=
f0

Xm
i

+
f1

Xm−1
i

T

Xi
+ . . . +

fs

Xm−s
i

(
T

Xi
)s ∈ Ri[

T

Xi
],

for each i = 0, . . . , n.
We also have, for each i = 0, . . . , n:

aiCS(f) = (aif0,
aif1, . . . ,

aifs) = CRi(
f

Xm
i

) (1)

Now set

L :=
{

f

g
: f, g homogeneous of same degree in S[T ] and g &= 0

}

It is clear that L is a field and it is not hard to see that L is in fact the field
K(X0

T , . . . , Xn
T ). Let ! be an e.a.b. projective star operation on S such that sat◦! = !.

Let

PKr(S, !) : =
{

f

g
: f, 0 &= g ∈ H(S[T ]), deg(f) = deg(g), and C(f)! ⊆ C(g)!

}

=
{

f

g
∈ L : C(f)! ⊆ C(g)!

}
.

We can immediately note by Lemma 3.5.2 that the set PKr(S, !) is well-defined using
the fact that for all f, g ∈ S[T ]\{0}, C(fg)! = (C(f)C(g))! ([22, Lemma 32.6]). We
also note that PKr(S, !) quite “looks” like the classical Kronecker function ring, but
contrary to the classical one S &⊆ PKr(S, !). In fact, Xi is not in PKr(S, !) for any
i = 0, . . . , n. A natural question is whether PKr(S, !) is a ring. We give an answer
in the next proposition:

Proposition 3.5.4. Let ! be an e.a.b. projective star operation on S such that
sat ◦ ! = !. Then PKr(S, !) is a domain with quotient field L = K(X0

T , . . . , Xn
T ) (We

do have, K[X0
T , . . . , Xn

T ] ⊆ PKr(S, !) ⊆ K(X0
T , . . . , Xn

T )).

Proof. The fact that PKr(S, !) is a domain is proved using the same argument as
the one of the classical Kronecker function ring (i.e., [22, Proof of Theorem 32.7
(a)]). It is clear that for each i = 0, . . . , n, T

Xi
∈ PKr(S, !) ⊆ K(X0

T , . . . , Xn
T ). Since

K ⊆ PKr(S, !), the result follows.

We next make a connection between the ring PKr(S, !) and the classical Kro-
necker function rings Kr(Ri, !i), 0 ≤ i ≤ n, when the !i’s are pairwise compatible
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e.a.b. star operations on Ri’s and ! is built from the !i’s as in Proposition 3.3.13.
Note in this case that ! is an e.a.b. projective star operation on S and sat ◦ ! = !

(Proposition 3.3.13).

Theorem 3.5.5. Let !0, . . . , !n be n + 1 pairwise compatible e.a.b star operations
on R0, . . . , Rn respectively. Let ! be the projective star operation on S built from the
!i’s in the sense of Proposition 3.3.13. Then PKr(S, !) =

⋂n
i=0 Kr(Ri, !i).

Proof. First we note that the quotient field of PKr(S, !) is L = K(X0
T , . . . , Xn

T )
and the quotient field of each Kr(Ri, !i), 0 ≤ i ≤ n, is K(X0

Xi
, . . . , Xn

Xi
, T

Xi
) =

K(X0
T , . . . , Xn

T ) = L. We recall that for any homogeneous element f ∈ S[T ] of
degree m, aiCS(f) = CRi(

f
Xm

i
), 0 ≤ i ≤ n (see relation (1) in Remark 3.5.3). Hence

we have:

X ∈ PKr(S, !)⇐⇒ X =
f

g
, f, g ∈ L, CS(f)! ⊆ CS(g)!

⇐⇒ X =
f

g
, f, g ∈ L, ai [CS(f)!] ⊆ ai [CS(g)!]

⇐⇒ X =
f

g
, f, g ∈ L, [aiCS(f)]!i ⊆ [aiCS(g)]!i , ∀i = 0, . . . , n

⇐⇒ X =
f

g
, f, g ∈ L, CRi(

f

Xm
i

)!i ⊆ CRi(
g

Xm
i

)!i , ∀i = 0, . . . , n

⇐⇒ X =
f

g
∈

n⋂

i=0

Kr(Ri, !i)

Our next goal is to prove that the projective Kronecker function ring of S with
respect to a projective star operation ! on S, which is built from n+1 pairwise com-
patible e.a.b. star operations !0, . . . , !n on R0, . . . , Rn respectively is an F -function
ring in the sense of Halter-Koch (cf. Definition 1.3.12).

Recall that for each i = 0, . . . , n Ri = K[X0
Xi

, . . . , Xn
Xi

] with quotient field F :=
K(X0

Xi
, . . . , Xn

Xi
) (the notation F for the quotient field of Ri is due to the fact that

it doesn’t depend on i). Since !i is an e.a.b. star operation on Ri, we can represent
the Kronecker function ring Kr(Ri, !i) of Ri in terms of valuations: Kr(Ri, !i) =
⋂

V ∈Σi
V b, where Σi is a suitable subset of Zar(Ri) (cf. Theorem 1.1.12 and Theorem

1.1.15).
By Theorem 3.5.5, we have:
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Corollary 3.5.6. Under the hypothesis of Theorem 3.5.5, PKr(S, !) is an F -function
ring.

Definition 3.5.7. If ! is a projective star operation on S built from compatible
e.a.b. star operations !0, . . . , !n on R0, . . . , Rn respectively, then PKr(S, !) is called
the projective Kronecker function ring of S with respect to !.

As we already observed, the rings of the form
⋂

V ∈Zar(F/K) V b where K ⊆ F

is a field extension, are F -function rings which cannot be always derived from the
classical star operations. When we consider the case in which F is a function field
of K, we will see that we can deduce such an F -function ring by using the notion of
projective star operation we introduced.

Recall that S = K[X0, . . . , Xn] and, for each i = 0, . . . , n, Ri = K[X0
Xi

, . . . , Xn
Xi

]
with quotient field F := K(X0

Xi
, . . . , Xn

Xi
). Set

H :=
⋂

V ∈Zar(F/K)

V b.

We want to prove that H is a projective Kronecker function ring PKr(S, !) of S,
where ! is an appropriate projective star operation on S.

Proposition 3.5.8. The F -function ring H =
⋂n

i=0 Kr(Ri, bi).

Proof. We remark first that Kr(Ri,bi)=
⋂

V ∈Zar(F/Ri)
V b. Let V ∈ Zar(F/Ri). Then

K ⊆ Ri ⊆ V ⊆ F . Hence V ∈ Zar(F/K). Thus H ⊆ Kr(Ri, bi) for all i = 0, . . . , n.
Hence H ⊆

⋂n
i=0 Kr(Ri, b).

Now let V ∈ Zar(F/K). We have F ⊆ L := K(X0, . . . , Xn). Let w be a
valuation that extends the valuation v to L. Pick j such that w(Xj)=min{w(Xi) :
0 ≤ i ≤ n}. Then w(Xi

Xj
) ≥ 0 for all i = 0, . . . , n. Hence Rj ⊆ W ∩ F = V ⊆ F .

So V ∈ Zar(F/Rj) for some j. Thus
⋂

V ∈Zar(F/Ri)
V b ⊆ Kr(Rj ,b)⊆ V b. Hence

⋂n
i=0 Kr(Ri, b) ⊆ H.

The same result can be proven by using models:

Proof. Recall that the model M =
⋃n

i=0 V (Ri) is complete, as a projective model.
Hence, each V ∈ Zar(F/K) dominates at least one domain of the form (Ri)Pi for
some i. Therefore V ∈ Zar(F/Ri) = Zar(Ri) because F is the quotient field of the
Ri’s. So V b ∈ Zar(Kr(Ri, bi)) and H ⊇

⋂
i=0 Kr(Ri, bi). The other inclusion is clear

since, for each i = 0, . . . , n, a valuation overring W of Kr(Ri, bi) is such that W ∩F ∈
Zar(Ri) and, in particular, W ∩ F ∈ Zar(F/K), so that W = (W ∩ F )b ⊇ H.
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By Proposition 3.4.3, the bi’s are pairwise compatible e.a.b. star operations on
the Ri’s and the projective star operation built from those is sat ◦ b, where b is the
b-operation on S. By Theorem 3.5.5, PKr(S, sat ◦ b) =

⋂n
i=0 Kr(Ri, bi) = H. Thus:

Corollary 3.5.9. The F -function ring H coincides with the projective Kronecker
function ring PKr(S, sat ◦ b).

3.6 Discussion and questions

These results on projective star operations are a work in progress with O. Heubo.
Although we could build a natural correspondence between the set of projective star
operations over S and classical star operations defined on the underlying domains
Ri’s, we are trying to generalize our work in the following directions:

Question 3.6.1. When S := K[X0, . . . , Xn]/P is the quotient of a polynomial ring
over a homogeneous prime ideal, is it possible to make a similar construction? (In
this case F can be chosen to be an algebraic function field of K, rather than a
function field).

The main obstacle for such a generalization is to define properly the operations
of dehomogenization and homogenization. The same problem occurs when going in
the following direction:

Question 3.6.2. A projective model is a topological space. In our case we cover it
with the n + 1 affine models V (Ri). Does a projective star operation depend on the
choice of the Ri’s? From the theory of projective schemes we know it should not,
since coherent sheaves of ideals are then defined on each open set. How could we
define for each open subset U of Proj(S) a star operation on O(U) (where O denotes
the structure sheaf of Proj(S))?

Even in our more restrictive case, we were not able to find an example of a
mapping behaving like a star operation, but just on homogeneous ideals. Hence we
could not answer to the following question.

Question 3.6.3. We presented in Example 3.3.6 a star operation on S that is not
a projective star operation. What about the reverse situation? Does there exist a
projective star operation on S that is not a star operation in the classical sense on
S? Or is it always possible to lift a projective star operation to a star operation?
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