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Introduction

Engineering problems are seldom solved by exact solutions.

Even simple tasks like direct measurement of a quantity involves interaction

with complex nonlinear systems that can strive very quickly from the ideal

representation given by theory. For this reason, several techniques (based

on numerical approaches) have been developed to give an approximate solu-

tion to engineering problems that cannot be solved (either for their nature

or for practical reasons) by exact techniques. These techniques falls under

the name of “Soft Computing”. A notable example that can be used to

introduce the concept behind Soft Computing is the representation of sys-

tems through numerical models. Creation, identification and simulation of

models are three tasks that are often faced in all engineering fields. Since

models are a representation of reality, it is difficult to classify them a priori

regardless of the object that they are representing. However, a meaningful

classification of lies in the black-white box models. A white box model is a

mathematical representation of a phenomena, or system, completely based

on theoretical knowledge. Laws determining this model behavior are exact,

and usually, comes from physics considerations. These models are defined

by a low number of parameters, where each parameter can be interpreted in
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physical terms. For this reason, these models are often identified by physical

measurements. However, since knowledge of physical laws is indeed limited,

this model can only be used to represent ideal systems. A black box model,

on the other hand, completely disregard the knowledge of the inner mecha-

nisms that regulates the system, and aims at emulating its behavior through

data observation. This kind of model features a high number of parame-

ters, has higher computational costs, and to be identified, requires a large

quantity of data from the system itself. Moreover, by observing the model

parameters no knowledge can be acquired on the system, and for this reason,

they are determined through numerical techniques. The real advantage of

black-box models over white-box ones is that this technique can be used on

the majority of real engineering problems where the complexity of the sys-

tem makes a white box model unusable. A very common black-box model is

an Artificial Neural Network (ANN). This technique will be deeply analyzed

in this work, but for now, we will just describe it as a black box featuring

an input-output architecture, which can be internally tuned by numerical

algorithms to emulate a system behavior.

This very versatile tool has a range of collateral research topics that has

shown the interest of the academic community in the last decades. The most

common application is, indeed, mathematical modeling of numerical data

coming from observations of phenomenons, but more complex ANN have

been created for tasks that go beyond their original scope. Among these

tasks we find clustering and classification, decision making, signal processing,

forecasting and optimum predictors.

Apart from very peculiar ANN that are based on uncommon operations
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(e.g. the Convolutional Deep Neural Networks used by Google for image clas-

sification [Krizhevsky et al., 2012]) the intrinsic nature of the ANNs proposed

in literature is similar. Numerical input data is processed by a combination

of linear and non-linear operations, that can be either static or dynamic (i.e.

representable as a input-state-output non-linear dynamic system) to produce

a numerical output. These operations may carry an onerous computational

cost, but from the complexity point of view, are in general trivial. In the

majority of the cases, it will reduce to simple matrix-based operations and

few non-linear function evaluations. On the other hand, the ”tuning” of this

black-box model is rather complex. This process, addressed as ”training”,

can be classified as a non-linear optimization problem. The number of tech-

niques used for training an ANN is very high, and in this work, a selection

of the most interesting ones has been proposed. On the matter of non-linear

optimization, a full chapter will be dedicated to analyze inverse problems

and the most common techniques used in literature for the solution of these

problems. All these techniques can be combined for the training of an ANN

(a very common technique is the use of a Genetic Algorithm to precondition

an ANN [Leung et al., 2003]).

The second part of this work will be centered on the problem of ANNs

implementation in embedded environments. This is of great interest to the

engineer since an ANN can be used for several tasks that are usually posed in

embedded systems: filtering, control, prediction and simulation. The study

of the implementation for such a general-purpose tool on embedded plat-

forms must start from the environment itself. Several platforms with different

characteristics are interesting for the implementation of this technique. The
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platforms differs from each other in terms of raw computational capabilities,

cost, programming tools and functionalities implemented (i.e. networking,

interfaces, AD/DA conversion). Indeed, computational capabilities are lim-

ited on an embedded unit, as is the memory available. Smart management

of available resources is paramount for a successful implementation of these

techniques in such environment. This can be done in several ways, but as

will be shown, a great deal of the computational costs associated to the ANN

lies in its non-linear component. Several techniques to tame such problem

will be shown in this part of work.

The last part of this work will present the applications that have been

implemented. The first one is a control-based application, focused on solv-

ing the problem of Maximum Power Point Tracking found in Photovoltaic

devices. The second one regards the estimation and prediction of the solar

irradiance, a quantity critical for energy generation assessment and storage

management. The third one is a Biomechanics problem, involving the es-

timation of the muscular forces of a cyclist during the cycling activity. All

the applications will be analyzed in terms of chosen platform, implemented

algorithms and code, computational costs and techniques used for the opti-

mization of the performance.

Following this last part, conclusions and final remarks on future develop-

ments will close this work.
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Part I

Soft-computing for Engineering

Applications
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Chapter 1

Neural Networks and Data

Processing

1.1 Supervised Artificial Neural Networks

In machine learning theory, supervised learning is defined as the inference

of a function from organized training data. The training data (also known

in ANN literature as training set) comes from examples from the function

that needs to be inferred. Generally, each sample from the set is a pair of

input object (that can be either a vector or a scalar) and a desired output

(that can be as well either a vector or a scalar). Through an algorithm the

ANN is tuned, and in an optimal scenario, the tuned ANN will be able to

generalize the function correctly. According to the vector/scalar nature of

the input/output, ANN can be defined as SISO (Single Input Single Output),

MISO (Multiple Input Multiple Output) and MIMO (Multiple Input Multiple

Output). SIMO ANN are seldom used (it is more practical to train separate

12
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Figure 1.1: The Artificial Neuron

networks for each output). In this section, several aspects of this kind of

ANN will be analyzed: the basic theory, a selection of useful architectures,

the most important training algorithms available.

1.1.1 What is an Artificial Neural Network

An ANN is a mathematical model able to represent nonlinear relationships

for systems whose inputs and outputs can be represented as a numerical

quantity. The paradigm at the base of an ANN is of biological inspiration.

The neural system of most of the evolved mammals is composed by elemen-

tary units called neurons. Each neuron has a small computational capability,

limited to consider the cumulative effect of all the impulses coming from other

neurons, and according to a particular threshold, fire (or not) an impulse to

the other neurons itself. A neural system for a primate is composed, approxi-

matively, by 1013 neurons and 60×1018 connections. The extreme complexity

of this network allows an advanced routing for signals that creates complex
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behaviors like the ones present in a sentient being. This concept is at the

base of the connectivism hypothesis, stating that “knowledge is distributed

across a network of connections, and therefore learning consists of the ability

to construct and traverse those networks” (Downes, Stephen). Inspired by

such system, the mathematical tool known as ANN mimics the elementary

behavior of a biological neuron, and tries to expand its computational capa-

bilities by creating a complex network of connections between the neurons.

The mathematical unit of an ANN is the Artificial Neuron, which is shown

in Figure 1.1. The input-output relation of the k-th neuron of the network

is given by:

uk =
m∑
j=1

wkjxj (1.1)

yk = φ(uk + bk) (1.2)

Where xj are the input signals, wkj represent the weight of the j-th input,

bk is a bias term for the k-th neuron. With φ a generic function that maps

the “weighted sum of inputs” (i.e. uk, also referred in literature as net) to

the output of the neuron is expressed. This is called the Activation Function

(or AF), and extended research on different proposals for this function can

be found in literature. In the simplest case, this function is a purely lin-

ear relationship, propagating the net value directly in output. However, if a

neural network were composed only by units featuring linear AFs, the mod-

eling capabilities of an ANN would be limited to linear systems. To expand

these capabilities, usually the φ function is a non-linear squashing function.

Commonly used functions are the hyperbolic tangent, or the sigmoid:
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Figure 1.2: A Feed Forward Artificial Neural Network

φ(v) =
1

1 + exp(−av)
(1.3)

Given this definition of artificial neuron, an ANN is a set of different

neurons connected according to some criterion. The simplest criterion for

connection that gives useful results is the Feed Forward (FF) connection,

which will be explained in the following paragraph.

1.1.2 The Feed Forward Architecture and the Univer-

sal Approximation Theorem

The paradigm is structured with the following rules:

• Neurons are organized in layers.
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• Each layer contains a finite number of neurons.

• Each neuron in the network is connected to all (and only) neurons of

the subsequent layer.

In a FF network all the connections points towards the exit of the network.

No connection bypass the layers, and no connection goes backwards. An

example can be seen in Figure 1.2. Neurons in the input layer are dummy

units (they perform no action) but are usually represented in literature to

express the “number of inputs” of the network. Neurons in the Hidden

Layer are the ones featuring the non-linear AF, and are the one responsible

for the non-linear mapping capabilities of the ANN. More than a hidden

layer can be present. Neurons in the output layer are usually linear, and

provide a normalization for the Hidden Layer output. This is needed because

the squashing function has bounded outputs. The degrees of freedom of an

ANN are the weights and the biases of its neurons. An ANN with a higher

number of neuron will have more degrees of freedom than one with fewer

neurons. By changing the values of these quantities, an ANN is able to behave

differently. By considering an arbitrarily large ANN, thus with arbitrarily

numerous degrees of freedom, it is intuitive that it could approximate any

given function. This concept was formally proven in 1989 by Cybenko FF

networks. The proof itself is beyond the scope of this work, however, the

conditions required for an ANN to be an universal approximator include some

assumptions on the AF for the neurons in the hidden layer: the function

should be bounded, monotonically increasing and continuous. Under this

assumption, it can be proved that the superposition of such functions (i.e.
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Figure 1.3: Difference between an initialized (left) and a trained (right) ANN.

the output of the ANN itself) can approximate a function with an arbitrarily

low error:

F (x) =
N∑
i=1

viφ(wTi x+ b) (1.4)

|F (x)− f(x)| < ε (1.5)

Where F (x) is the linear superposition of the i-th weighted (vi) activa-

tion function (φ) centered in b and scaled by wi , and f(x) is the desired

interpolated function. The assumptions on the AF, as will be described in

the following chapters, will be very important when different AFs will be

considered for alternative implementations.
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Figure 1.4: An over-fitted ANN

1.1.3 Training and Generalization

Weights and biases for the neurons of an ANN cannot be set directly. An

ANN is a black box model, thus there is no explicit connection between the

phenomenon and the model parameters. For this reason, algorithmic tech-

niques were developed to modify automatically the weights and the biases of

the neurons according to an error minimization criterion. These algorithms

are called “Training Algorithms”, and are based on a process defined as “Su-

pervised Learning”. This process involves gathering a wide set of examples,

defined as couples of input and output quantities for a specific system,

called training set. The output samples are often defined as targets, since

they represent the desired behavioral response for the ANN. The procedure

goes as follows:

1. The ANN is initialized with a defined architecture and random weight-

s/biases.
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Figure 1.5: Generalization capabilities of an ANN according to the network size

and the training set size

2. An input sample from the training set is sent into the ANN, and the

output is computed.

3. The error between the output and the target relative to that input is

computed.

4. Using the error, the training algorithm create a correction matrix for

the weights and the biases of the ANN.

5. Accumulate both error and the correction matrix.

6. If available, a new sample is chosen (go to 2), else, go to 7.

7. Update the weights and biases with the accumulated correction matrix.
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Figure 1.6: Filtering properties of a properly sized ANN

An epoch has passed.

8. If convergence is reached, (i.e. the accumulated error is low enough) or

the number of epochs (i.e. full sweeps of the training sets) reached the

maximum value, exit, else, repeat from 2.

As the ANN is initialized with random weights and biases, the output

for a given input is meaningless and random. After the training procedure

is over, the output for a given sample has been optimized to be as close as

possible to the target. An example of this behavioral change can be seen in

Figure 1.3. In this case, the input vector is composed by 100 samples linearly

spaced between 0 and 1. The target vector is composed by 100 samples of

the function y(x) = x sin(6πx) where x is a sample of the input vector. In

Figure 1.3 (left), the target vector and the untrained ANN output is shown.

As it can be seen, the output is completely random. In Figure 1.3 (right), the

output of the trained ANN is shown. After 659 epochs (i.e. after showing the
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training algorithm all the 100 samples from the training set for 659 times)

convergence was reached. This particular ANN featured 10 neurons in the

hidden layer. An apparent misconception on the size of an ANN is that

the only upper boundary in it lies in the computational capabilities required

to train the network and compute the output. The idea is that the larger

the ANN, the better modelling capabilities will exhibit. This idea is well

supported by the evidence that, given a generic problem (i.e. a traning set

the ANN has to train on using a training algorithm), the larger the ANN is,

the quicker convergence is reached. However, reaching convergence quickly

by increasing the size of an ANN comes to a cost in terms of generalization

capabilities. Generalization is the capability of an ANN to exhibit correct

behaviour when new inputs (i.e. inputs that do not belong to the training

set) are presented to the network itself. Indeed, generalization is the real

desired characteristic of the ANN. Data from the training set is already

known. What the ANN is useful for is filling the gaps between this data,

providing a consistent behaviour with what was shown during the training

procedure. Unfortunately, when an ANN is over-sized (i.e. too many neurons

are included) the large number of degrees of freedom causes the undesired

effect of “overfitting”. An over fitted ANN is a network where the training

procedure managed to tune the weights of the ANN towards a solution that

allows a fine representation of the training set points. However, if some of

these points are removed from the training set before the training procedure,

and are shown to the ANN afterwards as a validation set, the error on these

points is very high. This is because the ANN aims at reducing the error on

the training set at the limit, by exploiting all the degrees of freedom that are
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given by the large number of neurons. This, at the cost of introducing strong

distortions outside the training set points. This problem is especially true if

the training set size is small. The behaviour can be seen in Figure 1.4. In

this case, an ANN with a large number of neurons (40) is used on a rather

small dataset (20 points) belonging the same sinusoidal function used before.

The desired output is shown with the full blue line. The network output

after the training is shown with the dotted black line. The training set is

shown with the red dots. The ANN behaviour on the training set points is

perfect (in fact, after just 10 epochs, an error of 10−18 was reached), however

as soon as the input deviates from the points used in training, the modelling

performance drops rapidly. This is due to a simple concept:

• The training of an ANN is a multimodal non-linear optimization prob-

lem.

• The number of local minima in this problem is proportional to the

number of degrees of freedom given to the ANN.

Demonstrating this statement formally is beyond the purpose of this work,

however it can be seen by studying the surface of the error function that, for

every added degree of freedom, a new local minimum appears. This means

that an oversized ANN could reach a global optimum where it would model

correctly the behavior of the system. However, the restricted knowledge

given by the small traning set makes it impossible to recognize a local min-

imum from a global optimum. Since the enlargement of the training set is

not always an option, the rule of thumb to size an ANN that preserves gen-

eralization capabilities, is to use as few neurons as possible. Indeed, given a
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particular problem, a minimum number of neurons to represent the behavior

correctly is needed. Below that number of neurons, the network is just too

small to represent the relationship. However, as soon as that critical number

of neuron is reached, increasing the numbers of neurons further will only

apparently reduce the complexity of the training procedure, at the cost of

losing generalization capabilities. If the training procedure is too difficult,

and the number of neurons needs to be increased, the only way to maintain

the generalization capabilities of the ANN is to increase the size of the train-

ing set as well. A schematic representation of the different scenarios that can

be faced when training an ANN can be found in Figure 1.5. The figure rep-

resent four possible scenarios, according to the size of the ANN and the size

of the training set. The grey area in the left represent a network too small to

model the system correctly. In this case, increasing the training set will not

yield any advantage: the number of neuron must be increased. The red area

represent an example of over fitted network: the number of neurons has been

increased too much and the size of the training set is too small to discern

the global optimum from the local optima efficiently. The yellow area is an

acceptable area, where the error on the validation set is slightly higher than

the one on the training set. The green area is the desired one, where the two

error are comparable. An ANN trained to lie in the green area will provide

the best generalization capabilities at the lowest computational costs. The

obvious drawback is that, compared to a network lying in the yellow area,

this network takes much more time to be trained, both because the training

set is larger, and because there are fewer convergence minima. A side ad-

vantage of a smaller network, compared to a larger one, is noise rejection.
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The lower the number of hidden neurons, the greater the ANN capability to

erase the input noise. The reason lies in the degrees of freedom that would

be required to represent noise. A smaller ANN will be able to follow the

general trend of a function, discarding the high frequency noise. A bigger

ANN will try to learn the noise as well, with undesired results. In Figure 1.6,

two examples of training are shown for the same training set. The function

is always the same, y(x) = x sin(6πx) with 300 samples between 0 and 1, but

this time a white Gaussian noise was added, with a Signal to Noise Ratio of

15dB. As can be seen, the complex ANN to the left gives poor results since

the additional degrees of freedom favors the ANN in following the noise. On

the other hand, the simpler ANN to the right discards the noise in favor of

following the function general trend. Indeed, correctly sizing an ANN will

give the added benefit of restricting the band of the signal to the useful and

meaningful one.

1.1.4 Fields of Application

Supervised ANN fields of application are very wide due to the flexibility of

such technique. A very common use is to exploit their generalization capabil-

ities for control purposes: an ANN can be used in place of a feedback loop to

control a particular non-linear system in a direct way. This is very useful in

embedded systems. As shown in Figure 1.7, a classic feedback control system

measure the output of the system through a Sensor, compares it with the

Reference, and adjusts the controller output until the error is minimum. An

ANN can be trained to predict the correct system input for each reference,

thus removing the need for a feedback loop and simplifying the control sys-
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Figure 1.7: Using an ANN as forward controller

Figure 1.8: Using an ANN as an optimum predictor
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tem. The drawback, of course, is that this ANN controller is specific for the

particular system, and must be re-trained if the system itself changes. Neural

Networks can also be used as simple interpolators for acquired data. In this

case, the advantage over classic interpolation techniques lies in the robust-

ness of the ANN towards noisy and unevenly spaced data. A particular set

of ANN features delayed connections that creates a dynamic behavior for the

network. This can be useful both for non-linear filtering of data, and for time

series prediction. Particular classes of ANN are used for this last task, with

extraordinary results even on difficult dynamic problems like chaotic time

series prediction. Artificial Neural Networks can be also useful as optimum

solution predictor for optimization problems. As will be shown in the next

chapters, non-linear optimization problem requires complex algorithms to be

solved. To be solved, a problem must be representable through a functional

f that express the goodness of the solution found so far.

Fitness = f(solution, parameters) (1.6)

The fitness is a numerical value expressing the goodness of the solution.

The functional depends on both the solution and the parameters of the prob-

lem. The parameters of the problem are assigned, and for that particular

problem, the best solution must be found. Classically, the solution is found

through a trial-and-error approach performed by the optimizer. However,

once the problem has been solved several times, a set of different parame-

ters, with relative optimal solution, can be accumulated. Such database can

be used to train an ANN, as shown in Figure 1.8. Such network will be able

to predict the optimal solution to an optimization problem given the prob-
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Figure 1.9: Feed Forward Neural Network

lem parameters. This is very useful in embedded systems because an ANN

computation time is known and defined, whereas an optimization algorithm

is generally an iterative approach.

1.1.5 Practical Architectures

This subsection will examine several architectures that are interesting for

practical applications in engineering problems. Indeed, the number of ar-

chitectures for ANN that can be found in literature is very high. However,

often these architectures are mainly thought for theoretical purposes, and

are rather difficult to use in practical scenarios. Each architecture has ad-

vantages and drawbacks, and the proper one should be chosen according to

the problem at hand.
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Feed Forward (Multilayer Perceptron)

Although it has been described earlier, this architecture is recalled here for

the sake of completeness. The connection criterion is based on the assump-

tion that every neuron of a layer is connected to ALL and ONLY the neurons

of the next layer.The architecture is simple, computation is fast and memory

footprint is acceptably small. Due to the simple nature of the connections,

computing the gradient of the error with respect to the network weights is

very easy (i.e. can be done with simple backpropagation). Considering an

arbitrarily large number of neurons, the network has been proven a universal

interpolator. However, a drawback for this architecture lies in its efficiency.

Indeed complex problem can be solved by increasing the number of neurons,

but this comes with a cost of increased memory footprint and computational

time. For this particular architecture, the number of neurons required for a

specific problem is, in general, higher than other architectures. A very com-

mon benchmark can be the classic parity-N problem: N Boolean inputs are

sent in a XOR logic port that gives the output. Even the simple second order

problem is not linearly separable, thus making it a suitable test bench for a

non-linear classifier like an ANN. It has been seen that a parity-N problem,

to be solved by a Feed Forward network requires at least N + 1 neurons.

Bridged Neural Networks

Several problems involve an output that is the linear combination of the

input and an unknown additional signal that can be, indeed, function of the

signal itself.

F (x) = a× x+ b× g(x) (1.7)
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Figure 1.10: Bridge Neural Network

Interpolating such problem with a Feed Forward ANN can be rather in-

efficient, since the input is always going through the hidden layer where it is

“distorted” by the Activation Function. An efficient solution to this problem

would be to create a bypass connection directly from the input to the out-

put layer, which performs a linear combination. This architecture is called a

Bridged Neural Network. This architecture can be rather problem-specific,

and since the connections are less regular than the Feed Forward, comput-

ing the gradient in this case can be rather difficult, and advanced training

algorithms that are not architecture specific (e.g. the Neuron-by-Neuron, or

the modified Levemberg-Marquardt) are needed. This architecture can be

tested as well against the parity-N problem. For this particular network, the

problem is solved with N/2 + 1 neurons.
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Figure 1.11: Fully Connected Cascade

Fully Connected Cascade

A particular case of Bridged Neural Network is the Fully Connected Cascade,

or FCC. Such network is composed by an arbitrarily long series of hidden

layers, each with a SINGLE neuron inside. Each neuron is connected to EV-

ERY subsequent layer, thus creating a “cascade” from input to output.Apart

from the advantages coming from the direct bridge from input to output (as

in ordinary Bridged ANN), the FCC solves the parity-N problem with the

lowest number of neuron when compared with both the MLP and the Bridged

ANN. The solution can be obtained with log2(N + 1) neurons. As can be

seen from Figure 1.12 and 1.13, the number of neurons for a FCC is lower,

and rises more slowly, than the Bridged ANN and the MLP. A low number of

neurons is very important to reduce computational costs if the FCC is to be
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Figure 1.12: Neurons required for a parity-N problem

Figure 1.13: Weights required for parity-N problem

implemented in an embedded environment, since fewer neurons means fewer

evaluation of the Activation Function. However, analogously as the Bridged

ANN, training algorithms for this kind of ANN are more difficult than the

ones available for the MLP.
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Figure 1.14: Radial Basis Function

Radial Basis Function Network

Radial Basis Function, or Radial Basis Neural Networks, often shorted as

RBF, are not a particular architecture, but rather a Feed Forward Neural

Network using a very specific kind of neuron in the hidden layer. These neu-

rons features three differences from classic ones: the inputs are not linearly

combined (in fact, all weights are unitary), the AF is a radial function, and

the argument of the AF is the norm of the distance between the vector of the

inputs and the vector of the AF center. The distinctive quality of a radial

function is that it decrease (or increase) monotonically as the argument di-

verges from a central value. The function is characterized by the center, the

shape of the curve, and a scale factor that express the width of the curve. A

classic example, often used in literature, is the Gaussian function:

AF (x̄) = exp

( ||x̄− c̄||
r2

)
(1.8)
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Figure 1.15: Time Delay Neural Network

Where ¯(x)is the input vector (the same for all the neurons of the RBF),

¯(c) the centrum for the specific neuron, and r2 is the squared radious of the

gaussian curve. In fact, this particular ANN maps a set of gaussian curves

(one for each neuron) in the multi-dimensional space of the input vector, and

combines them linearly in the output layer. To train an RBF it is critical

to choose the right number of neurons in the hidden layer. For this reason,

sizing of the network is considered part of the training procedure as well.

Techniques like incremental building and pruning are often used to size the

RBF correctly. Then, the neurons are centered and scaled accordingly using

classic backpropagation based algorithms.

Time Delay Neural Networks

The architectures shown by now shares the characteristic of being static,

or in other words, constitute models where the present output(s) depends
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solely on the present input(s). As it is well known, several systems needs

to be represented by dynamic models, where the output is dependent on

both the present inputs and the history of either past inputs or past outputs

(also known as “state” of the system). To introduce this behavior to ANN,

some kind of memory must be introduced in the architecture. The simplest

possible form of memory is introducing a delayed propagation of the signal.

This delay can appear either in form of feedback loops (internal or external),

or in front of the ANN, between the inputs and the network. This second

case is very useful due to the simplicity of implementation, and is commonly

referred as Time Delay Neural Networks (TDNN). As shown in figure, the

input entering the ANN goes through a delay line (slashed), and delayed

replicas of inputs are sent to the ANN as independent ones. The network

itself has no dynamic properties (in fact, often simple MLP are used), and

the dynamic capabilities are reliant on the length of the delay line. The main

advantage of the TDNN is that since the delay lines are present at the input

only, every training algorithm compatible with a static ANN can be used to

train a TDNN as well. This is because there are no weights that needs to be

updated between the delay lines.

Fully-Recurrent Neural Network

If the delay line is inside the ANN, rather the in front of it, the ANN is by

definition, dynamic. Several architectures have been proposed for a dynamic

ANN, yet the simplest are usually the most useful in practical applications.

A possible connection criterion is to connect the output of every neuron of the

ANN to the input of all the neurons of the ANN (including the same neuron,



CHAPTER 1. NEURAL NETWORKS AND DATA PROCESSING 35

Figure 1.16: Fully Recurrent Neural Network

thus creating a self-feedback). This architecture is called Fully-Recurrent

NN (FRNN) and features extreme dynamic flexibility. A known variation

of such architecture is the Hopfield Network, which differs from this one

since it lacks the self-feedback property. The dynamic propagation of the

signal inside the FRNN (and in any other dynamic ANN) advances in time

on a discrete scale: the output of all neurons is computed at a particular

time step, and that output is used as input for the connected units at the

following one. Training of a FRNN, and in general, of a dynamic ANN,

is a complex task that requires specific algorithms. Simper network can be

computed through a dynamic expansion of the classic Error Backpropagation

algorithm (called Backpropagation through Time), but a FRNN should be

trained with advanced techniques, like for instance the Real-Time Recurrent

Learning algorithm. Both algorithms will be thoroughly explained in the
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Figure 1.17: Echo-State Network

relative sections.

Echo-State Neural Networks

The dynamic capabilities of an ANN lies in the memory created by the delay

lines found in the network connections. Analogously as the TDNN, it has

been seen that the delayed connections can be useful even if unweighted.

Still, the TDNN dynamic capabilities are very limited. An evolution of such

architecture is the Echo-State Neural Network (ESN). This architecture is

composed by two sections. The first one is called reservoir, and is composed

by a set of neurons with the following characteristics: neurons are randomly

connected, connections are sparse (about 1%), neurons are non-linear, a ran-

dom quota of connections are delayed, and a random quota of neurons is
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sent to the next section. The second section is an output layer composed

by linear neurons. During usage, an ESN behaves analogously to a recurrent

ANN with a particular connection criterion. The main difference however lies

in the training of such network. Training experience on FRNN shown that

the most important weight change, towards error minimization, happens in

the output neurons (i.e. the linear ones). An ESN exploits such idea and

leave open for change only the weights of the second section (i.e. the output

neurons, also referred in literature as read-outs). Since the neurons under

training are all linear, algorithms for ESN training are all based on linear

regression techniques. This is very useful in case of online training. The

network dynamic capabilities are proportional to the reservoir size. Practi-

cal implementation of such network in embedded systems benefits from the

reduced computational costs in terms of training. The main drawback how-

ever, is the very high memory cost associated to the reservoir. Compared to a

FRNN, an ESN need a larger number of neurons due to the sparse connection

criterion.

1.2 Training Algorithms

Different algorithms are available in literature to train ANNs. The final goal

of a training algorithm is to modify the ANN configuration (i.e. weights and

biases) towards the maximum similarity with the function generating the

training set. This is done by minimizing the error on a set of sample points

that are called, conveniently, training set. Thus, training is a minimization

problem: weights and biases are changed with the goal of getting an error as
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low as possible on a set of points. This is a classic Non Linear Least Squares

Problem. Solving such problem involves, generally, two major stages. The

first one is to identify some kind of derivative of the error with respect to

the network weights. Either this can be the simple gradient, a second-degree

Hessian matrix, or the Jacobian matrix where the error is considered in vector

form Rn where n is the size, in samples, of the training set. The second one

is the update rule, which can go from simple gradient descent techniques to

hybrid approaches like to one used in the Levemberg Marquardt algorithm.

As for the architectures, the number of training algorithms in literature is

high, and in this section, a selection of practical-oriented techniques will be

described.

1.2.1 Error Backpropagation with Gradient Descent

The most intuitive way of minimizing the error operating on the network

weights consist in expressing the derivative of the network error with respect

to weight changes. Computing such derivative (and in general, the gradient)

requires a major fundamental property that is enforced for ANN training:

the transparency of the weight changes with respect to the ANN output.

A perturbation on the weights must be visible in the output of the ANN.

This concept, straightforward at first sight, implies that the ANN activation

function must be soft. Computation of the error derivative for an ANN is a

generalization of the computation for a single layer network.

• n neurons in the layer.

• m inputs to the layer.
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Figure 1.18: A FFNN with multiple hidden layers. Hidden neurons are connected

undirectly to the output of the ANN through a generic non-linear function F (z)
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• j is the index for the neurons.

• i is the index for the inputs.

netj =
m∑
i=1

wi,jxi (1.9)

oj = f(netj) = tanh(
knetj

2
) (1.10)

f ′(oj) = 0.5k(1− o2j) (1.11)

where k is the slope of the activation function for null net values, the

error for the j-th neuron can e expressed as:

Error =
1

2
(oj − dj)2 (1.12)

Where dj is the desired j-th output, and oj j-th neuron output. The

derivative of such error with respect to the weights of the neuron is:

∂Error

∂wij
= (oj − dj)

∂f(netj)

∂netj
xi (1.13)

Then for each weight of the neuron, a derivative of the error with respect

to weight change has been determined. Combined, this information gives the

gradient of the error. The simplest approach to minimize the error would be

to move in the direction of gradient descent. Thus updating the w̄ as follows:

w̄k+1 = w̄k − (α∇w) = w̄k + ∆w (1.14)
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Where α is a learning constant, and the components of the term ∆w are,

in fact:

∆wij = αxi(dj − oj)f ′j = αxiδj (1.15)

The term δj, expressing the product of the error and the slope of the AF,

gives the name to this training algorithm for single neurons, and is called

delta learning rule. This rule can be used as is for ANN composed by a

single layer of neurons (thus with no connections between themselves). In

practical cases however, the simplest structure interesting to be trained are

ANN composed by three layers (input, hidden and output). This requires a

generalization of the delta rule to multilayer architectures. The basic process

consist in calculating the error at the output of the ANN, and then, back-

propagating it through the network weights to every neuron in the network.

This generalization of the delta rule is called Error Backpropagation (EBP).

In a multilayer ANN like the one shown in Figure 1.18 all the hidden neurons

are connected to the output through the rest of the network in front of them.

For this reason, the error computed by Eq. 1.15 is valid only for the output

neurons. Inner neurons see in front of themselves a generic non-linear func-

tion composed by the path towards the output. For the sake of simplicity,

we will consider an ANN with a single output, and a single pattern.

The error for this ANN is:

E =
1

2
(o− d)2 (1.16)

The derivative of the error E with respect to the weight connecting the

i-th neuron output to the j-th neuron input is:
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∂E

∂wij
=
∂E(oj)

∂oj
× ∂oj
∂netj

× ∂netj
∂wij

= (d− o)F ′ × f ′ × oi = δjoi (1.17)

The computation of the δj term involves the evaluation of the (d−o)F ′×f ′

term that is not very straightforward. However, expressing it as the derivative

product:

δj =
∂E(oj)

∂oj
× ∂oj
∂netj

(1.18)

And considering the total derivative:

dE(oj)

doj
=
∑
l∈L

(
∂E

∂netl

∂netl
∂oj

)
=
∑
l∈L

(
∂E

∂ol

∂ol
∂netl

wjl

)
=
∑
l∈L

(δlwjl) (1.19)

Where L is the set of neurons in front of the j-th one. The third term of

this recursive equation express the fundamental EBP equation: the δ term

for a particular inner neuron can be computed by knowing the δ terms of the

neurons in front of it. Thus, by starting from the output of the ANN, it is

possible to propagate the δ term by combining Eq. 1.18 and Eq. 1.19:

δj =
∑
l∈L

(δlwjl)× f ′ (1.20)

Analogously as the delta rule training for single neurons, the update rule

is given by Eq. 1.15.

By now, two main assumptions have been made.

• The ANN has a single output.

• The ANN is trained by a single element from the dataset.
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The first assumption is not mandatory, but is a general good practice to

keep the ANN with single outputs. The EBP by its nature is scalable to

multiple outputs by combining delta terms from different outputs linearly.

On the other hand, the second assumption requires more attention. Updat-

ing the weights after each sample, in the way described in this paragraph, is

defined as online training. A different, and more converging approach, would

be to compute a cumulative weight change matrix ∆wT obtained by combin-

ing the partial weight change matrices ∆wp computed for each p-th sample

in the dataset, and only after the final sample has been used, compute the

weight update. Thus, over a dataset of P samples:

∆wT =
P∑
p=1

∆wp (1.21)

This approach is defined as batch training. Both approaches have advan-

tages and drawbacks. On-line learning is used for dynamic environments that

provide a continuous stream of new patterns, and is useful if the ANN is sup-

posed to learn continuously an unknown function that changes over time. In

general, on-line training does not converge to a single point in weight space,

but oscillates around the minimum of the error function. Batch learning on

the other hand will converge more stably to a local minimum since each up-

date is performed based on all patterns. The two methods are not mutually

exclusive. An ANN could be previously trained in batch mode, and then it

can be updated on the run through on-line training. Or small segments of

live acquired data could be packed in a single ”mini-batch”.
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Figure 1.19: Effect of momentum on training of a ANN. Trajectory oscillates

without momentum (left) and converges much faster with momentum (right)

Figure 1.20: Possible combinations of α and γ for the minimization of a kx2

function.
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Momentum

A very common setup that may happen during error minimization is an error

function shaped like a narrow valley. A bidimensional example (thus with

only 2 parameters to be optimized) can be seen in Figure 1.19. Indeed, the

optimal approach would be to point the search direction near the center of

the ellipsoid, however the search direction pointed by the gradient is differ-

ent. A solution to this problem is to introduce an inertial coefficient called

momentum. At every iteration the correction matrix for weights is com-

puted, but instead of being applied directly, it is averaged with the values

of the previous directions. Since the step-size is proportional to the learning

constant α, so will be the amplitude of the oscillations, as can be seen from

Figure 1.19 (left). An inertial component can be added simply to the weight

update procedure:

∆wk+1 = (1− γ)∆wk + γ∆wk−1 (1.22)

The γ term is called momentum constant. Fine tuning the learning con-

stant α and the momentum constant γ can yield faster convergence rate as

shown in Figure 1.19 (right). The optimal combination between learning

and momentum is problem specific and is generally found by trial and er-

ror. However [Rojas, 2013] propose an analysis of a simple quadratic function

minimization of the family kx2, which is representative of the error minimiza-

tion for a linear neuron. Indeed, as can be seen in Figure 1.20, an optimal

combination of the two constants exist, and learning rates too elevated can

not be compensated by any momentum constant, causing divergence.
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Weigths Initialization

Common sense suggest that weight initialization can be a critical stage in

ANN training. A common technique when using sigmoidal AF is to set the

weigts of the ANN with uniform probability in an interval [−a, a]. Since the

expected value of such weights is zero, it is sensible to assume that the total

input of each node of the network will be zero as well. The derivative of

the sigmoid AF reaches the maximum value of 0.25 in this point. From a

first analysis, this is a good thing, since the backpropagation of the delta

parameter is proportional to the derivative of the AF f ′ (as in Eq. 1.20).

However, if the weights are zero, or very small, this will lead to a reduction

of the backpropagated error from the output to the hidden layers. Thus, a

very small value of a can lead to very slow convergence. On the other hand,

large values can quickly drive the AF near the saturation points where the

derivative is zero. An almost unitary value can give a good trade-off between

minimizing the two factors [Rojas, 2013].

Resilient Backpropagation

A modified version of the EBP, referred as Resilient Backpropagation (or

Rprop) was proposed by [Riedmiller and Rprop, 1994,Riedmiller and Braun,

1992]. Each weight has a correction factor associated to it, which is randomly

initialized in the beginning of the training procedure. After each epoch, the

gradient is computed, and the sign of the partial derivative for each weight

is noted. For each weight, if the sign of the partial derivative is the same of

the previous iteration, the correction factor is multiplied by η+ > 1, else, by

η− < 1. The correction factor is carried on epoch by epoch, and is applied to
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the weights after being multiplied by the sign of the partial derivative. This

approach has the great advantage of not suffering from learning slow-down

due to elevated net values (i.e low AF derivatives). Empirical values for η+

and η− are, respectively, 1.2 and 0.5.

Weights Decay

Sizing an ANN correctly yields the best generalization capabilities, as shown

in previous chapters of this work. Indeed, obtaining such delicate balance is

difficult considering the strong influence that the specific problem has on the

training outcome. Limiting the number of neurons through an algorithmic

approach [Hassibi and Stork, 1993,LeCun et al., 1989] is a technique referred

as pruning the ANN, but it’s not the only approach possible. A possible way

to contain the network complexity (and thus maximizing the generalization

capabilities) is to limit the magnitude of the weights [Moody et al., 1995].

This can be achieved by adding a decay term that can prevent the weights

from growing too large unless that trend presents itself regularly. Adding a

cost function that penalizes large weights can perform such task easily:

E(w) = E0(w) +
1

2
λ
∑
i

w2
i (1.23)

Where E0 is a user choice way of measuring error (e.g. sum of squared

errors) and λ is a parameter proportional to the penalization for large weights,

and w is of course the weight vector/matrix. If the gradient descent is used as

learning rule, the time trend of the weights will be expressed by the following

differential relationship:
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ẇi ∝ −
∂E0

∂wi
− λwi (1.24)

The term ẇi is expressed as a derivative over time of the network weights.

It has been shown in [Moody et al., 1995] that weight decay can suppress

irrelevant components of the weight vector, and minimize the effect of added

noise on the target vector (effectively exploiting at full ANN noise filtering

capabilities).

1.2.2 Conjugate-Gradient-Method based Algorithms

Classic EBP based approaches uses gradient descent as learning rule. Al-

though this approach can be refined with several tweaks to reduce oscillation

and increase convergence rate, this is not the best strategy to achieve fast

convergence. In fact, even if the direction for fastest function decrease is

the negative gradient, this is seldom the optimal route to the minimum.

An example of such behavior has been already presented in Figure 1.19.

Indeed, it is theoretically possible to move towards the optimum direction

with a reduced set of A-orthogonal, or conjugate directions. In this section

the Conjugate-Gradient-Method (CGM) for ANN training will be explained.

However, to fully understand how it works on a non-linear problem, an in-

troduction on how this method works on linear problems is mandatory.

Conjugate Gradient on Linear Problems

A very intuitive introduction to this method is given in [Shewchuk, 1994],

where the Conjugate-Gradient-Method (CGM) is used to solve a simple linear

problem:
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Ax = b (1.25)

The solution of the problem can be found, assuming that A is positive-

definite and symmetric, through the scalar quadratic function:

f(x) =
1

2
xTAx− bTx+ c (1.26)

Some quantities must be defined for the following explanation: the error

ei = xi−x express the distance from the solution. The residual ri = b−Axi

is the projected error in the b space. It can be seen that ri = −Aei = −f ′(xi)
where f ′(xi) is the gradient of the function in the xi point. Minimizing Eq.

1.26 consist in finding a series of x(i) that converges to the function minimum

(which will be unique if A is not singular). Each new point is found by adding

a movement vector to the previous one. The vector is composed by two parts:

the direction and the step size. Solution through gradient descent would use

the gradient as the direction (that, for a linear problem, points in the same

direction of the residuals), and the step size necessary to zero the directional

derivative of the error:

αi =
rTi ri
rTi Ari

(1.27)

xi+1 = xi + αiri (1.28)

This approach, as shown in Fig. 1.19, can give several oscillations. A

better combination of search direction and step size is to use Conjugate Di-

rections Method (CDM). Two conditions are imposed:

• The directions are A− orthogonal, thus dTi Adj = 0 for i 6= j
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• The step size alpha will ensure A− orthogonality between the current

direction and the vector at the next iteration, thus dTi Aei+1 = 0. This is

equivalent to imposing a line search in the direction di for the minimum

vale of the function.

A set of conjugate directions can be obtained by Gram-Schmidt Conju-

gation. Given a set of linearly independent vectors u0, u1, ..., un−1, the i-th

direction di can be constructed from ui and subtracting any components that

are not A-orthogonal to the previous directions.

di = ui +
i−1∑
k=1

βikdk (1.29)

bij = −u
T
i Adj
dTj Adj

(1.30)

The step size α, on the other hand, can be obtained by:

αi =
dTi ri
dTi Adi

(1.31)

This algorithm can be consistently improved on the front of computa-

tional costs by using the residuals as Gram-Schmidt base for direction con-

jugation (thus using ui = ri). The reasons of this choice are several. First,

the residuals are, by definition, orthogonal to the previous search direction,

and for this reason, they will produce a new direction unless the residual is

zero (i.e. the problem is solved.) Moreover, each residual is a combination

of the previous residual and the former search direction. In other words, the

space Di where the previous search direction di−1 lies can be combined with

the transformed subspace ADi to create the subspace of the next search di-
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rection Di+1. A subspace obtained by repeatedly applying a matrix is called

a Krylov Subspace.

Since ADi ∈ Di+1, the fact that ri+1 is perpendicular to Di+1 implies that

it is A-orthogonal to Di: the base for the new search direction to be used in

Gram-Schmidt conjugation is already A-orthogonal to all former directions

(the space Di ) except the actual one di. It is no longer necessary to store

all the previous search vectors to ensure A-orthogonality. This reduce the

complexity per iteration fromO(n2) toO(m), where m is the non-zero entries

of A. The final relations defining this algorithm then are:

d0 = r0 = b−Ax0 (1.32)

αi =
rTi ri
dTi Adi

(1.33)

xi+1 = xi + αidi (1.34)

ri+1 = ri − αiAdi (1.35)

And Gram-Schmidt reduction is performed via:

βi+1 =
rTi+1ri+1

rTi ri
(1.36)

di+1 = ri+1 + βi+1di (1.37)

This algorithm is commonly referred as Conjugate-Gradients-Method, or,

CGM.
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Figure 1.21: Convergence of the CGM on a non-linear problem. a) Fletcher-Reeves

b) Polak-Riebere c) Powell

Non-Linear CGM

By now the use of CGM to solve a linear problem Ax = b through the

minimization of the quadratic expression Eq. 1.26 has been examined. This

method can be used to solve non-linear problems as well, by modifying some

key concepts.

• The residual is always set as the negation of the gradient: ri = −f ′(xi)

• Direction search is performed through modified Gram-Schmidt conju-

gation.

• The step size is found through numerical line search methods.

Several solutions exist for the first point. The most common one, known

as Fletcher-Reeves formula [Dai and YUAN, 1996,Fletcher and Reeves, 1964],

suggest to find β as:

βi+1 =
rTi+1ri+1

rTi ri
(1.38)
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and converges if the starting point is sufficiently closed to the desired

minimum. A faster convergence, although at risk of stability, can be obtained

with the Polak-Riebere formula [Polak, 1971] (and modified in [Zhang et al.,

2006,Grippo and Lucidi, 1997]):

βi+1 =
rTi+1 (ri+1 − ri)

rTi ri
(1.39)

One last improvement that can be applied to CGM for non-linear prob-

lems is the periodic restart. Indeed, CGM can only generate n conjugate

directions in a n-dimensional space. So it makes sens to restart it every

n iterations, especially if n is small. Restarting the algorithm means reset

the actual search direction as the negative of the gradient. A quantitative

method to decide when the restart should occour was proposed by [Powell,

1977]. The restart will occour if there is little orthogonality between the

current and the former residuals, or:

|rTk−1rk| ≥ 0.2||rk||2 (1.40)

If this condition is satisfied, the search direction is reset to the negative

gradient.

1.2.3 Weight Perturbation & Node Perturbation

A very straightforward strategy to avoid analytic computation of the gradient

function is weight perturbation [Flower and Jabri, 1993, Jabri and Flower,

1992]. An ANN is initialized with an initial weight matrix w. The error for

that particular weight configuration E(w) is computed. A small perturbation
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β is then applied to the (i,j)-th weight, chosen at random, creating the a new

point in the weight space w’. Error in the new point E(w’) is computed,

again. The update rule for the i-th weight is:

∆wi,j = −αE(w’)− E(w)

β
(1.41)

This discrete approximation can be very useful in embedded applications,

since the learning algorithm can be implemented with very low computational

complexity. An interesting alternative, known as node perturbation, proposed

by [Rojas, 2013] is to perturb the output oi of the i-th neuron by ∆oi instead

of a random weight. It is possible then to compute the difference E − E ′

between the old and the new error. If the difference is positive (i.e. E ′ < E)

then the new output of the neuron oi + ∆oi is desirable to train the network.

In case of sigmoid AF, the weighted neuron input to achieve such output is:

m∑
k=1

w′kxk = s−1(oi + ∆oi) (1.42)

Where s−1 is the inverse AF. The new weights can be obtained from the

following equation:

w′k = wk
s−1(oi + ∆oi)∑m

k=1wkxk
(1.43)

Weights are updated in proportion to their relative size. To break this sys-

tematic symmetry, a stochastic factor can be included, or the two techniques

(weight perturbation and node perturbation) can be applied alternatively.
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1.2.4 Levenberg–Marquardt

The Levenberg–Marquardt algorithm, proposed in [Marquardt, 1963] aims to

solve non-linear least squares problems through a stable and fast approach.

This algorithm is extremely popular in ANN training since it is very well

suited for small and medium sized networks, and the partial derivatives of

the gradient can be found analytically through the EBP technique. Differ-

ently from the EBP training however, this algorithm merges the first order

approach of the steepest descent with the quadratic approximation of the

Gauss-Newton algorithm. The Gauss-Newton algorithm approximates the

error function with a quadratic one, and if such approximation is accurate,

can converge quite rapidly. However, this is seldom the case, and afar from

such approximation the Gauss-Newton algorithm can be very unstable. The

steepest descent on the other hand features a slower yet more stable conver-

gence. This algorithm merges the two approaches and try to take advantage

of both by using a combined training process: when the search is being per-

formed in areas with complex curvatures the method use a steepest descent

approach, and as soon as a quadratic approximation is suitable, it switches

to Gauss-Newton for faster convergence. Few definitions are needed to follow

the non-linear least square problem at hand:

• p is the index for the points of the training set, from 1 to P.

• m is the index of output neurons, from 1 to M.

• i and j are both used as weights indexes, from 1 to N.

• k is the index for the epochs.



CHAPTER 1. NEURAL NETWORKS AND DATA PROCESSING 56

We recall the definition of total error on multiple points as:

E =
1

2

P∑
p=1

M∑
m=1

e2p,m (1.44)

Where:

ep,m = dp,m − op,m (1.45)

The error ep,m is expressed as difference between desired dp,m and actual

op,m output, on the p− th point for the m− th output neuron. The gradient

of such error with respect to the network weights is:

g =

[
∂E

∂w1

∂E

∂w2

...
∂E

∂wN

]T
(1.46)

Newton & Gauss-Newton algorithms

The Newton algorithm search the minimum of a function through quadratic

approximation. The formal proof of this algorithm is beyond the scope of this

work, and only the operative formulas will be given. The Newton algorithm

requires the computation of the Hessian matrix H, whose entries are the

mixed second derivatives of the total error Eq. 1.44 with respect to different

weights:

H =


∂2E
∂w2

1

∂2E
∂w1∂w2

... ∂2E
∂w1∂wN

∂2E
∂w2∂w1

∂2E
∂w2

2
... ∂2E

∂w2∂wN

... ... ... ...

∂2E
∂wN∂w1

∂2E
∂wN∂w2

... ∂2E
∂w2

N

 (1.47)

The update rule for the Newton algorithm is:
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wk+1 = wk −H−1k gk (1.48)

This requires the computation of the inverse Hessian matrix, whose ele-

ments are very complicate to obtain. Indeed, it is possible to approximate the

Hessian matrix and simplify the procedure. We define the Jacobian matrix

J as:

J =



∂e1,1
∂w1

∂e1,1
∂w2

... ∂e1,1
∂wN

∂e1,2
∂w1

∂e1,2
∂w2

... ∂e1,2
∂wN

... ... ... ...

∂e1,M
∂w1

∂e1,M
∂w2

...
∂e1,M
∂wN

... ... ... ...

∂eP,1

∂w1

∂eP,1

∂w2
...

∂eP,1

∂wN

∂eP,2

∂w1

∂eP,2

∂w2
...

∂eP,2

∂wN

... ... ... ...

∂eP,M

∂w1

∂eP,M

∂w2
...

∂eP,M

∂wN



(1.49)

The J takes into account the partial derivatives of the error, for each out-

put, and for each pattern, with respect to the weight changes. Indeed it can

be seen, by applying Eq. 1.46 to Eq. 1.44 that g = Je. The approximation

proposed by Newton-Gauss method is:

H ≈ JTJ (1.50)

That involves considering as zero some mixed derivatives from the Newton

method. Then, the update rule of the Newton method Eq. 1.48 can be

modified into:
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wk+1 = wk − (JTk Jk)
−1Jkek (1.51)

Which is the update rule of the Newton-Gauss algorithm. The great

advantage of this algorithm is that only first order partial derivatives must

be computed. Still, this algorithm is limited to quadratically approximate

functions, and tends to diverge when more functions more complexly shaped

are involved. In mathematical terms, this manifests as a non-invertible JTJ

matrix.

Levenberg–Marquardt Algorithm

In order to ensure that the JTJ matrix is invertible, a modification to the

Hessian approximation is performed:

H ≈ JTJ + µI (1.52)

Where I is an identity matrix and µ is a called combination coefficient.

Indeed, the diagonal elements of the approximated H are now all greater

than zero, thus the inversion is always possible. The new update rule for the

Levemberg-Marquardt (LM) is then:

wk+1 = wk − (JTk Jk + µI)−1Jkek (1.53)

The µ coefficient is responsible from switching from Steepest Descent to

Newton-Gauss behavior. Large values of µ approximate the update towards

simple steepest descent (the term JTJ is negligible) and is used in the first

part of the solution search. Gradually µ is reduced during the training to
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Figure 1.22: A simple multi-layer Feed Forward ANN

speed up convergence in the proximity of the solution. In practical algo-

rithms, a check on the error trend is performed: if the error goes down from

one iteration to the other, the quadratic approximation on the total error

is accurate and the coefficient µ can be reduced. On the other hand, if the

error increases, it means that the curvature of the function is not efficiently

approximated by a quadratic, and the µ coefficient is increased to steer the

direction towards gradient descent.

Jacobian Computation

Analogously as gradient based methods, all the work revolves around calcu-

lating the partial derivatives of the error with respect to the network weights.
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In EBP it used to compute the gradient of the total error, in LM is used to

compute the Jacobian (which takes into account all the patterns at the same

time). The elements of the Jacobian can be computed through:

∂em
∂wi,j

= yjδm,j (1.54)

The term δm,j is defined at the output of the ANN and is back-propagated

through a simple iterative process. Take into account the ANN shown in

Fig. 1.22. During forward propagation, the outputs yj and the slopes sj

of all neurons are calculated. For output m, the error and the initial δ is

computed:

em = dm − om (1.55)

δ3m,j = s3j (1.56)

The superscript 3 is used to identify the layer (in this case the third,

output one). The δ is then propagated, through the weights, to the previous

layers:

δ2m,j = s2j ×
nn3∑
i=1

δ3m,iwj,i (1.57)

δ1m,j = s1j ×
nn2∑
i=1

δ2m,iwj,i (1.58)

Where nn2 and nn3 are the neurons in the second and third layer re-

spectively. Put in words, Eq. 1.57 and 1.58 express that: the δ parameter is

characteristic of a neuron, for a given m-th output. It is propagated backward
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Figure 1.23: Schematic representation of a Neuron and the concept of node. It

can be either yj,i, meaning the i − th input of neuron j − th, or yj , meaning the

output of neuron j − th. The Fm,j(yj) is the non-linear relationship between the

neuron output yj and the network output om

.

to the previous neurons by multiplying it by the network weights. Converg-

ing connections are summed, and the δ of the neuron is found by multiplying

the value by the slope. Once all δ values of the ANN have been computed,

the Jacobian elements can be computed by Eq. 1.54.

1.2.5 Neuron-by-Neuron Algorithm

The recently developed Neuron-by-Neuron Algorithm (NBN) [Wilamowski,

2009, Wilamowski et al., 2008] is based on the LM algorithm, but tries to

overcome some bottlenecks that are present in it. Two main difference are

found: first, the back-propagation procedure is generalized for arbitrarily

connected ANN. Second, an alternative forward-only training with critical
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optimizations in terms of computational costs is introduced. An extract of

the work presented in [Wilamowski, 2009] is discussed in this section. First,

let us introduce some indices that are necessary for the discussion.

• p is the index of patterns, from 1 to np, were np is the number of

patterns (i.e. data points in the training set).

• m is the index of output neurons, from 1 to no, where no is the number

of output neurons.

• j and k are the index of neurons, from 1 to nn, where nn is the number

of neurons.

• i is the index of neuron inputs, from 1 to ni, where ni is the number

of inputs and may vary for different neurons.

The total error over the training set is:

E =
1

2

np∑
p=1

no∑
m=1

e2p,m (1.59)

Where, as for the LM algorithm:

ep,m = op,m − dp,m (1.60)

To understand the following discussion correctly, the concept of node

must be introduced. Given a Neuron as the one shown in Figure 1.23 it

can be seen that with yj,i and yj we can either refer to one of the specific

inputs of the neuron, or the output of it. Indeed, such neuron can exist

anywhere inside the ANN. It could be in the input layer (and in this case,
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its inputs would be the network inputs) or in the output layer (and in this

case, its outputs would be the network outputs). The update rule for the

NBN algorithm is the same used for the LM (Eq. 1.53), thus is necessary

to define all the elements of the Jacobian matrix J (Eq. 1.49). In the NBN

Algorithm, a different concept is introduced to define δm,j. This quantity

could be interpreted as the gain between the net input of neuron j and the

network output m. Indeed this concept could be extended, and the notation

δk,j, as the gain between neurons j and k :

δk,j =
∂Fk,j(yj)

∂netj
=
∂Fk,j(yj)

∂yj

∂yj
∂netj

= F ′k,jsj (1.61)

Where k and j are neuron index, and the term Fk,j(yi) is the non-linear

function between the output nodes of neurons k and j. Of course, δk,k = sk.

All the δk,j can be organized in a δ matrix. If no backward connections exist

in the network, the matrix will be triangular. The procedure to define δ will

be initially given for a Fully Connected Network. It can be seen that any

arbitrarily connected ANN can be seen as such by removing some connections

(i.e. setting to zero some weights). The procedure goes as follows: For each

j-th neuron, set δj,j = sj. For connections between neurons, use the following

equation:

δk,j = δk,k

k−1∑
i=j

wi,kδi,j (1.62)

In case the ANN has 4 neurons, the δ could be as follows:
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Figure 1.24: Different ways to perform matrix-matrix multiplication for the

JTJproduct

.

δ =


s1 0 0 0

δ2,1 s2 0 0

δ3,1 δ3,2 s3 0

δ4,1 δ4,2 δ4,3 s4

 (1.63)

The δ is directly used to compute the J. The last no rows of the matrix

are used for computation. Supposed that the ANN has two outputs (no = 2).

The last two rows of δ are processed in te following way:

 δ3,1 × y1 δ3,2 × y2 s3 × y3 0× y4
δ4,1 × y1 δ4,2 × y2 δ4,3 × y3 s4 × y4

 (1.64)
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Where yj is the vector of j-th neuron inputs (variable width according to

the specific neuron). The matrix shown in Eq. 1.64 covers no of the no× np
rows of J. This procedure can be repeated for each p-th pattern to compute

the full Jacobian. Computing the Jacobian row-wise has a major advantage

that is exploited by the NBN algorithm. The JTJ, necessary to approximate

the Hessian matrix, can be carried on in two ways. The first one is the classic

row-by-column, shown in Figure 1.24 (a), where basically a single element

of H is computed. Since the Jacobian must be computed row-wise, and a

complete column is necessary to compute the product, a complete Jacobian

is needed to start computing the product. On the other hand, computing

the product column-by-row, as shown in Figure 1.24 (b), generates a partial

matrix q, that must be summed element-wise to the other partial matrices to

obtain the final Hessian. In the end, the number of operations is the same.

However, column-by-row product requires a single row, and rows starts to

be available as soon as the Jacobian matrix starts to be computed. Two

advantages comes from this. First, the computation is faster. Second, the

Jacobian rows relative to previous patterns does not need to be stored. In

fact, this algorithm can be virtually used with an arbitrarily large training

set without memory issues.

1.2.6 Real-Time Recurrent Learning

All the training algorithms shown so far are useful to train static ANN. If for

some reasons the ANN features a dynamic behavior (i.e. feedback ando/or

delayed connections are present inside the architecture) specific algorithms

to train recurrent ANN should be used. Indeed, it is possible to represent
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Figure 1.25: Weight matrix W of a recurrent ANN to be trained with RTRL

Algorithm.

.
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any dynamic ANN by a larger, unfolded, static ANN. This is the base of the

Backpropagation Through Time algorithm (BTT), that allows to extend the

previously shown algorithms to the dynamic case [Werbos, 1990]. The prob-

lem involved in such technique however is to define an optimal depth for the

network unfolding (i.e. how many times replicate the recurrent layers), that

is arbitrary. A shallow unfolding yields scarce long-term learning, whereas

a too deep one is affected by cumbersome computational costs and gradient

vanishing problems. A different approach, proposed by [Williams and Zipser,

1989], allows an online training for a generic dynamic ANN without need to

unfold it into a static one. The idea at the base of the Real-Time Recurrent

Learning algorithm (RTRL) is to compute, over a period of time, the gradi-

ent of the error with respect to the network weights, for each time step. In

concept, it is very similar to a EBP approach. However in this case, the par-

tial derivatives of the error must take into account the effect of weight change

over a period of time. Some basic declarations must be done to understand

the discussion: the network has n units arbitrarily connected, and m of these

units are connected to external independent inputs. The vector y(t) denotes

the outputs of the units at time t, and x(t) the external input signals to the

network at time t. The concatenation of these two vectors gives zk, where

k ∈ U ∪ I. The set I denotes indices k for which zk is an external input, and

U the ones for which it is the output of a network unit. The weights of the

ANN are in the matrix W, with a unique weight between every pair of units

and to the input lines. The weight matrix has dimensions n × (n + m + 1)

and is shown in Figure 1.25. Given the net value at a time t as:
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netk(t) =
∑
l∈U∪I

wk,lzl(t) (1.65)

The output for the k-th unit at the next time-step is:

yk(t+ 1) = fk(netk(t)) (1.66)

We now define the error of the network for specific units (i.e. the output

ones) for which a desired value is defined at a particular time. Note that the

output units are not bound to be the same over time. The set of index for

which the unit is an output is denoted by T (t).

ek(t) =

dk(t)− yk(t) k ∈ T (t)

0 otherwise.

(1.67)

Then, the error at a particular time is:

E(t) =
1

2

∑
k∈U

ek(t)
2 (1.68)

And the error over a period of time from t0 to t1 is:

ETOT (t0, t1) =

t1∑
t=t0

E(t) (1.69)

The goal is to adjust the weight matrix W over this trajectory to min-

imize the error, thus, towards the negative gradient ∇WETOT . Since the

error accumulates linearly, so does the gradients and the weight adjustment

matrices.
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∆wi,j =
∑t1

t=t0
∆wi,j(t)

∆wi,j(t) = −α∂E(t)
∂wi,j

(1.70)

Where α is a learning rate. The partial derivative of the error can be

computed from Eq. 1.68:

−∂E(t)

∂wi,j
=
∑
k∈U

ek(t)
∂yk(t)

∂wi,j
(1.71)

The partial derivative in the sum can be obtained by differentiating Eq.

1.65 and Eq. 1.66:

∂yk(t+ 1)

∂wi,j
= f ′k(netk(t))

[∑
l∈U

wk,l
∂yl(t)

∂wi,j
+ δi,kzj(t)

]
(1.72)

Where δi,k is equal to 1 for i = k and 0 otherwise. Since the initial state

of the network is independent from the weights, we can assume:

∂yk(t0)

∂wi,j
= 0 (1.73)

This term express the sensitivity of the output of the k-th neuron with

respect to a change in the value of wi,j, at a time t, taking into account the

effect of such a change in the weight over the entire network trajectory from

t0 to t. The weight wi,j does not have to be connected to unit k. Thus this

algorithm is non-local. Eq.1.72 is obviously recursive, and with the initial

conditions given by Eq.1.73 the problem can be formulated in terms of a

dynamic system evolution:
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∂yk(t0)

∂wi,j
= pki,j(t) (1.74)

p
k
i,j(t+ 1) = f ′k(netk(t))

[∑
l∈U wk,lp

l
i,j(t) + δi,kzj(t)

]
pki,j(t0) = 0

(1.75)

Thus the algorithm computes, at each time step, the quantities pki,j(t),

and then through the error ek(t) te weight correction factor:

∆wi,j(t) = α
∑
k∈U

ek(t)p
k
i,j(t) (1.76)

Analogously to EBP, in this algorithm the corrections can be made either

by accumulating several weight correction matrices (batch) or in real time

(on-line). Indeed the training will not follow directly the negative gradient

of the error, but this may be an advantage if the phenomenon under study

changes dynamically.



Chapter 2

Inverse Problems and

Optimization

This chapter will explain the concept of Inverse Problem in engineering ap-

plications (although the discussion given here is easily applicable to other

scientific areas) and how these problems can be solved through a process

called Optimization. The concepts common to all optimization techniques

will be shortly presented, and then, an overview of the most important tech-

niques found in literature will be examined.

2.1 What is, and how can we solve, an Inverse

Problem

To understand what an Inverse Problem is, it is better to understand first

what is a Direct Problem. A Direct Problem is the estimate of the measure-

ment of a phenomenon given the knowledge of its model. Suppose our idea

71
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is to estimate the electric field in three dimensional space by knowing the

charge distribution. If the charge distribution is known, we can of course use

the simple Coulomb’s Law in its vector form:

E(r, ρ) =
1

4πε0

∫
r − r′
|r − r′|3ρ(r′)dV ′ (2.1)

This allows us to define the electric field E(r) in all space. Suppose now,

that the charge distribution ρ(r′) is unknown, but a set of {Ek, rk}, k =

1, 2...n field values in points rk are known from experimental measurement.

An Inverse Problem starts from such knowledge and tries to estimate the

generating model (i.e. the charge distribution). An important difference

that arise quickly is that the direct problem has a single solution, whereas

the inverse one has several. This is intuitive: a charge distribution will give

a definite and unique field, but the same field can be generated by several

equivalent charge distributions. Indeed it is possible to assume a distribution

charge given some observations on the experimental measurements. With this

assumed distribution, that we will call ρ̃(r′), we can compute the Electric

Field in the same points where we have the measurements E(rk, ρ̃). Then we

can compute the cost function:

f(ρ̃) =
1

n

n∑
k=1

(E(rk, ρ̃)− Ek)2 (2.2)

This cost function is a merit figure of the error: the lower, the better our

model represent the system. However, this does not implies that when the

error is zero we have ρ̃(r′) = ρ(r′), because we could have found one of the

several charge distributions that generates an equivalent electric field. Still

we found a model that we can use to compute directly the electric field, and
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Vertex

Constrain

Figure 2.1: A simplex for a problem in 3 variables

.

this is an optimal solution. To find such solution, the only information that

we have is how low is the error of the current one. The process of refining the

current solution (i.e. moving it in the solution space) towards better ones by

following a criterion of error minimization is called optimization. Finding the

minimum of Eq. 2.2 can be very difficult if the nature of f(ρ̃) is non linear,

as will be shown in the next sections.

2.1.1 A glimpse of Linear Optimization - The Simplex

Algorithm

To understand the implications of non-linear optimization, some basic prop-

erties of linear optimization should be given. The simplex theorem is a

numerical method to solve linear optimization problems, like the following:
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
maximize (cTx)

with Ax ≤ b

and x ≥ 0

(2.3)

Where x represents the vector of variables (to be determined), c and b

are vectors of (known) coefficients and A is a (known) matrix of coefficients.

The expression to be maximized is called the objective function. The inequal-

ities define a convex polytope over which the objective function needs to be

optimized, like the one shown in 2.1. It can be proved that if the function

and the constraints are linear, the solution will lie on one of the vertex of the

polytope. For this reason, the algorithm will start from a random vertex of

the simplex and will check, every time, if it is the optimal one. To find the

vertex of the simplex, we search for the so called admissible base solutions

(ABS). Suppose we have a problem with m constraints and n variables. The

coefficient matrix A will be m×n. First, a base for matrix A must be found.

• Bm×m is a sub-matrix of Am×n composed by random m columns lin-

early independent.

• Nm×(n−m) is the matrix obtained with the remainders.

Thus we can represent the original matrix as:

A = [B|N] (2.4)

In other words we have rewritten the matrix with m independent column

on the left. Of course, the unknowns vector should be rewritten as well:
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x =

[
xB
xN

]
(2.5)

Where xB and xN are the in-base and out-of-base unknowns. By putting

to zero the out-of-base unknowns, the system is now satisfied for a set of base

solutions. We rewrite the system as:

xB = B−1 × b

xN = 0

(2.6)

If B−1b > 0 then B is an admissible base, since it ensure the non-

negativity of the unknowns. We then proceed to discard all solutions out-

side the admissibility set. The remaining solutions
[
xB
[0]

]
are the admissible

solutions, and corresponds to the vertex of the polytope. Indeed, if the di-

mensionality of the problem was low, an exhaustive search of all the possible

solutions could quickly yield the optimal one. However, the number of vertex

is proportional to both the number of variables and the number of constraints.

For this reason, an exhaustive search is generally unadvised. The simplex

algorithm propose a method to move from one vertex to the other and check

if the solution is optimal. The linear problem, rewritten with the matrix split

is:


maximize (cTBxB + cTNxN)

with xB = B−1b−B−1Nxn ≥ 0;

and xn ≥ 0

(2.7)

By substituting the second equation into the cost function we have:
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(
cTBB−1b− cTBB−1NxN + cTNxN

)
(2.8)

And by isolating xN we have:


maximize

(
cTBB−1b+ (cTN − cTBB−1N)xN

)
with xB = B−1b−B−1Nxn ≥ 0;

and xn ≥ 0

(2.9)

We now define a reduced cost vector function:

γ = (cTN − cTBB−1N) (2.10)

In the hypothesis of being on a ABS, we have:

xB = B−1b

xN = 0

(2.11)

To understand if the ABS is the optimal one, it is sufficient to check the

sign of γ. By moving slightly from the ABS, we perturb the out-of-base

variables. The variation of the cost function is going to be γ × xN . If γ

is positive, the variation of the functional will be as well. This means that

the perturbed solution is better than the actual one, and for this reason, the

actual one is not the global optimum. The algorithm proceed to move to the

next solution by incrementing an out-of-base unknown. Indeed, the in-base

unknowns will vary as well since they are linked by the relation:

xB = B−1b−B−1Nxn (2.12)
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Figure 2.2: Bird Function: f(x, y) = sin(x)e(1−cos(y))
2
+cos(y)e(1−sin(x))

2
+(x−y)2

.

The increment continues until one of the in-base unknowns reaches zero.

Geometrically, this is equivalent to moving on one of the edges of the poly-

tope. Once the unknown reaches zero, it is switched with the out-of-base

unknown, and the procedure to check if it is an optimal one is repeated.

2.1.2 Global Optimization

In literature the term Global Optimization is used to identify the research

area involving the development of techniques for minimization of non-linear

functions. The term global points out the most obvious problem involved in

non-linear minimization: the possibility of multiple minima existence. A non-

linear function like the one shown in Figure 2.2 features multiple local minima
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that may be very far from the optimal solution. Several complications may

arise when non-linear functions are involved:

• The function may be non-convex, thus multiple minima may exist.

• There is no way to determine if the solution found is the global mini-

mum.

• The function may diverge for some values, or its derivative may become

zero (flat areas) in a region, or may present discontinuities.

• If a priori knowledge of the problem is unavailable, the search domain

for the minimum is unbounded.

Indeed, searching for the minima of a function with such premises is very

difficult. The non-convexity of the function limits the use of simple gradi-

ent/Jacobian based approaches, since if initialized near a local minima, the

optimization procedure will converge there, instead of searching the domain

for the global optimum. The solution space for a non-linear problem is a

large and difficult area to explore, due to discontinuities and divergences.

For this reason, a set of robust search techniques have been developed specif-

ically for non-linear problems. These techniques are often inspired to natural

phenomenons, and for this reasons, several are addressed as meta-heuristics.

A complete and exhaustive discussion on all the global optimization tech-

niques found in literature is beyond the purpose of this work. However, the

techniques with the highest practical implementability will be analyzed in

this chapter.



CHAPTER 2. INVERSE PROBLEMS AND OPTIMIZATION 79

2.1.3 Exploration vs Exploitation

The choice of a particular algorithm to solve a problem over one other is,

indeed, dependent on the nature of the problem itself. A not so intuitive

evolution of such concept is that, given the totality of problems, any elevated

performance over one class of problems is offset by performance over another

class, for a given algorithm. This is the enunciate of the No Free Lunch The-

orem, and was formally put in a mathematical framework by [Wolpert and

Macready, 1997]. The practical implication of this theorem is that, given a

fixed computational resource, there is no algorithm able to solve efficiently all

optimization problems. This is because every algorithm search capabilities

features two mutually exclusive characteristics: exploration and exploita-

tion. Explorative algorithms (i.e. that features an high exploration) have a

very large mobility in the solution space. They are able to investigate sev-

eral areas at once, and are thought to avoid being trapped into local minima.

Highly explorative algorithms can investigate the whole domain and give an

approximation of the optimal solution easily. However, the convergence of

these algorithms is very slow, if not absent at all. On the other hand, ex-

ploitation algorithms (also known as local search algorithms) are less resilient

to avoid local minima, but converge rapidly towards the solution. To solve

a difficult optimization problem correctly, both characteristics are needed.

The No Free Lunch Theorem prove that both traits can not be found in the

same algorithm, and for this reason, hybrid ones are being used for practical

optimization problems.
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2.2 Evolutionary Algorithms

Evolutionary Algorithms are a subset of Global Optimization Algorithms

that borrows some concepts directly from natural evolution theory. All algo-

rithms represent the current solution(s) as an individual (population). Such

individual is subject to several mechanisms (often named ”operators” in lit-

erature) like reproduction, selection, and mutation. The basic idea is to

mimic the natural evolution in its ability to solve problems. Evolutionary

Algorithms exhibit very high exploration capabilities, and are well suited for

parallel implementation.

2.2.1 Genetic Algorithms

Genetic Algorithms (GA) are the most common Evolutionary Algorithm that

is found in literature. The mechanism at the base of a GA is the natural

selection. Each k-th individual represent a solution sk to the non-linear

problem at hand, with cost function f(sk). To each solution, we can associate

the relative cost function of the problem. The inverse of such cost function

is the fitness of the individual g . The algorithm goes as follows:

1. An initial population of individuals is created randomly.

2. Each individual is evaluated for his fitness.

3. According to a selection criterion, a set of individuals is extracted from

the population, with probability of extraction proportional to the fit-

ness.



CHAPTER 2. INVERSE PROBLEMS AND OPTIMIZATION 81

4. Extracted individuals are coupled in pairs. From each pair, two new

individuals are born with mixed traits from the original ones.

5. A low percentage of the population is randomly mutated.

6. Repeat from 2 until convergence or halt criterion is reached.

We will now explain in detail the steps. First, the concept of individ-

ual must be discussed. Indeed each element of the population is nothing

more than a solution. However, the way this solution is expressed influences

strongly the cross-over and mutation steps. Several codings techniques are

possible for a GA, however the two most used in literature are binary and

continuous.

Binary GA

Suppose the solution space is RN . Each solution has N parameters (addresed

as chromosomes). In binary GA, each solution is coded in binary with M

digits (addressed as alleles). The k-th individual of the population is then:

sk =

0 1 1 1 0 1 1 0 (Chromosome1)

1 0 0 0 1 0 1 0 (Chromosome2)

0 1 1 0 0 1 0 0 (Chromosome3)

(2.13)

In this case, we used a 8-bit coding precision for the variables. This means

that each variable of the problem can assume values between 0 and 255. This

may be inconvenient, especially if the problem is real-valued. For this reason,

for fitness evaluation the chromosomes are normalized to the search domain

of the problem. Addressing with suk the u-th parameter of the problem,
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GENETIC POOL

Figure 2.3: Genetic pool for selection. Each individual has a chance to be extracted

from the pool proportional to its fitness.

.

nsuk = loweru +
suk

255
(upperu − loweru) (2.14)

Where nsuk is a normalized, real-valued parameter, that can be passed

to the cost function, and upperu and loweru are the u-th boundaries for the

search domain in the solution space. As it can be seen, if suk is zero, the

normalized parameter will assume the lowest admissible value. If it is 255,

it will assume the highest admissible value. The fitness gk(nsk) is computed

for each k-th individual. Then, the selection process begins. The idea at the

base of this stage is to choose individuals with a better fitness to create the

next generation of individuals. However, choosing only the best individuals

and discarding the worst one would reduce the exploration capabilities of the
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Figure 2.4: Two-Point crossover operator.

.

algorithm, and force it to converge, sooner or later, on the current optimum.

Natural selection on the other hand does not exclude, a priori, the worst

individuals, it just makes it unlikely that they will reproduce. This behavior

is included in the GA as well. As can be seen in Figure 2.3 each individual is

included in a roulette-like system, where the probability of being extracted

is proportional to its fitness. This means that even individuals with very low

fitness can be extracted for the next stage of the algorithm. A number of

couples are created (the same individual can be extracted more than once,

but not twice in the same couple). Each couple generate offsprings according

to some crossover operator. Several techniques exist in literature, but the

two-point operator is the most common. The technique is shown in Figure

2.4. Two random points are used split both parents chromosomes. The three



CHAPTER 2. INVERSE PROBLEMS AND OPTIMIZATION 84

segments are then switched, and the offspring is created. After crossover is

completed, the new population is subject to random occurrences of mutation.

This ensure to maintain genetic diversity from a generation to the next one,

and is crucial to evolve the solution. The probability of mutation however

should be low, to avoid turning the algorithm in a random search one. The

most used technique for mutation is the bitswitch:

0 1 1 1 0 1 1 0

0 1 0 1 0 1 1 0
(2.15)

Each individual has a probability of having one of its alleles switched.

Mutation is the last stage of the algorithm, after which, it is repeated from

the selection until the stop criterion (either convergence or maximum number

of iterations) is reached. Indeed, it is not guaranteed that, from a generation

to the next one, the algorithm will evolve toward better solutions. For this

reason, practical implementations always keep note of the best solution found

so far, even if by chance such individual was removed from the genetic pool.

Real-Coded GA

Real-coded genetic algorithms are less common and more difficult to treat

than Binary Coded ones. Still, it is much more intuitive to see a chromosome

as a vector of floating point numbers that points to the solution in the solution

space. An example of individual is:
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sk =


s1k

s2k

...

sNk

 =


2.145928e+ 0

1.112341e+ 3

...

1.302941e− 2

 (2.16)

Indeed, the use of real coding for the chromosomes avoid the requirement

to define a search space through lower and upper boundaries (although it is

still strongly advisable). It is possible to explore the solution space taking

into advantage the variable resolution of floating point coding, instead of

being stuck with the uniform sampling of the binary coding. In a Real-Coded

GA the selection operator is identical to the one used in the binary version.

The crossover between parents however is different, because using floating-

point coding, it is meaningless to operate at bit level. The operations are

then carried out at chromosome level. The most common crossover technique

is an arithmetic combination:


suk = λsuw + (1− λ)suv

with k ∈ offsprings

and w, v ∈ parents

(2.17)

The term λ is a random factor between 0 and 1. Mutation in this case is

a random number added (or subtracted) to one of the chromosomes. A very

detailed discussion on the topic can be found in [Herrera et al., 1998].
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Elitism and Adaptive GA

Since the goal of an optimization algorithm is to find the fittest solution

to a problem, it is intuitive that conserving the best solution found so far

has sense. Indeed, for a GA, this does not force the algorithm to actually

conserve the individuals. However, doing so, is an interesting strategy that

has advantages and drawbacks. The term elitism define a technique involving

the direct copy, in the next generation, of the fittest candidates. Those

individuals undergo the selection operator, and if selected, contribute through

crossover to the individuals in the next generation. However,along generating

offspring, they are copied in the next generation as well. This process has a

very strong effect of keeping the solution in the neighborhood of the current

optimum, thus enhancing convergence. The opposite strategy is possible as

well: the worst individuals of the population are carried on. In this case,

the elitism try to conserve the greater genetic diversity through iterations,

keeping intact an attraction factor very far from where the solutions are

already clustering. Another strategy to maximize the efficiency of GA is

to introduce variable probabilities for crossover and mutation according to

the state of advancement of the algorithm. [Zhang et al., 2007] propose an

Adaptive GA that adjust the two probabilities according to the degree of

clustering of the solutions around the best and the worst individuals in the

search domain, using a Fuzzy Logic controller.
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2.2.2 Differential Evolution

Differential Evolution [Storn and Price, 1997] is similar to a Real-Coded GA

with simpler rules for recombination of individuals. Each k-th individual sk

is a solution in the RN space. In general, the suk parameters of the solutions

are coded with floating-point precision, thus individuals of the population

are the same as in Real Coded GA (Eq. 2.16). The population is initialized

randomly in the search space. Then, the algorithm goes as follows:

• For each i-th individual of the population, pick three other individuals

j-th, k-th and p-th. The four individuals must be different.

• Pick a random parameter index R ∈ 1, ..., N

• For each q-th parameter different from the R-th, check against a crossover

rate CR. If crossover happens, the new parameter is sqj +F × (sqk−sqp),
else, is the original sqi one.

• For the q-th parameter euqal to the R-th, perform the previous oper-

ation without the crossover rate (i.e. will always occur for at least a

parameter).

• Check if the new position for i-th individual is better than the previous

one. If it is, update it, else, discard it.

The choice for the F and CR parameters is, in general, empirical. Authors

[Storn and Price, 1997] suggest to choose a population NP between 5N and

10N, with at least 4 individuals to ensure a high enough number of vector to

combine. The factor F can start at 0.5, and may be increased if convergence

is too fast. The CR should be around 10%.



CHAPTER 2. INVERSE PROBLEMS AND OPTIMIZATION 88

2.3 Swarm Intelligence

Swarm intelligence is a class of meta-heuristics algorithm that mimics some

social mechanics found in nature. In nature, swarms are a set of individuals

that through independent and collective behavior manage to solve a par-

ticular problem. The most notable example is the search for food. Swarm

algorithms observe and imitate such mechanics. Similar to evolutionary algo-

rithms, the solutions are still represented by individuals (this time, addressed

differently according to the specific algorithm). In this case however, the rules

for position updating are less abstract than genetic operators, and are easier

to visualize like mechanical interactions or a social behavior. As a rule of

thumb, Swarm Intelligence algorithm are less explorative than evolutionary

algorithms, but more than local search ones.

2.3.1 Particle Swarm Optimization

Analogously to the GA for Evolutionary Algorithms, the Particle Swarm

Optimization (PSO) is the most commonly known swarm intelligence algo-

rithm. The original algorithm proposed in [Eberhart et al., 1995] is based

on a population of particles that are characterized by a position (i.e. the

current solution represented by the individual) and a speed, representing the

movement vector that will be applied to the particle at the next iteration.

Three factors influence the speed:

• The former velocity of the particle, through an inertial parameter ω.

• The attraction towards the best solution found by the particle so far,

through the cognitive parameter λ.



CHAPTER 2. INVERSE PROBLEMS AND OPTIMIZATION 89

• The attraction towards the best solution found by the swarm so far,

through the social parameter γ

For each k-th individual, position xk and speed vk is given by:

vk[t] = ωvk[t] + λ (pbk[t]− xk[t]) + γ (gb[t]− xk[t]) (2.18)

xk[t+ 1] = xk[t] + vk[t] (2.19)

Where pbk[t], gb[t] are the positions of the best solution found by the k-

th particle so far (addressed as personal best) and the position of the best

solution found by the swarm so far (addressed as global best). Indeed, positive

values for λ, γ will exhibit an attraction of the particles towards their personal

best and global best. In general, the three parameters are not constant, but

are rather defined as a random number between minimum and maximum

values.


ω ∈ [ωmin, ωmax]

λ ∈ [λmin, λmax]

γ ∈ [γmin, γmax]

(2.20)

The randomness in the parameters grants local minima escape capabilities

to the algorithm.

2.3.2 Flock Of Starlings Optimization

An interesting evolution of the classic PSO was introduced in [Fulginei and

Salvini, 2010], by including to the dynamics of the algorithm some obser-

vations made in ornithology. It has been observed that particular flocks of
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birds (starlings) moves in an organized pattern that is able to explore very

large areas yet keeping the flock compact. The reason is that every member

of the flock observe a set of about 7 other birds in the flock, and mimic their

movements. Including this behavior to the PSO is very simple. It is sufficient

to add one last addend to the vk[t]:

vk[t] = ωvk[t] + λ (pbk[t]− xk[t]) + γ (gb[t]− xk[t]) +
∑
i∈Fk

hk,ivi[t] (2.21)

In the last term, the set Fk is the set of indexes correspondent to the

birds observed by the k-th bird, and hk,i are the coupling coefficients with

their velocity. Indeed, the size of Fk can be as small as another bird, and

as large as the whole flock. Compared to the PSO, the FSO presents better

exploration capabilities for very large solution spaces.

2.3.3 Continous Flock Of Starlings Optimization

Despite the exploration capabilities, the FSO is still a discrete algorithm

whose behavior is controlled by coefficients in a way that is not directly

apparent. Indeed, by modifying the ω, λ, γ, h parameters it is possible to

influence the algorithm general conduct, but strict control of convergence,

divergence and oscillation is impossible. A big novelty on this behalf was

introduced with the Continuous Flock of Starlings algorithm (CFSO). In

this algorithm, the update equations for the FSO were considered as state

equations for a dynamic system, and were integrated in the Laplace domain.
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s

V(s)

X(s)

 =

A1,1 A1,2

1 0

V(s)

X(s)

+

F(s)

0

+

v(0)

x(0)

 (2.22)

X(s) = (s21−A1,1s−A1,2)
−1 · {(s1−A1,1) · x + v + F} (2.23)

A1,1 = ω · 1 + H (2.24)

A1,2 = −µ · 1 (2.25)

=jk(t) = λ× pbjk(t) + γ × gbj(t) (2.26)

In Eq. 2.22, V and X are two vectors expressing the velocities and posi-

tions for the different members of the flock. The F is a forcing term that takes

into account both the personal and the global bests. The sub-matrix A1,1

combines the contribution for both inertia (ω) and the particle-to-particle

interaction (H). The sub-matrix A1,2 accounts the cognitive and social co-

efficients (given that µ = λ+ γ). The integration in Laplace domain for this

system can be done under some assumptions for the H matrix. However,

expressing the vector F as a Laplace transform can be rather tricky. Indeed,

in Eq. 2.26 we can see the forcing vector in the time domain. The pbjk(t)

and gbj(t) functions are not known a priori, since they change according to

the different points found by the algorithm during the exploration. For this

reason, it is not possible to express them as Laplace transform. To solve this
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problem, the approach proposed in the algorithm suggests evaluating these

two functions on a time-window (TW) reference. Each time window has a

τ length. Inside the time-window, it is possible to assume that the value

assumed by the global and personal best for each particle does not change,

and is equal to the one evaluated at the beginning of the time-window. Un-

der this assumption, it is possible to perform the Laplace integration on a

time-window basis, thus effectively tracing the trajectory for the particles

in closed form for each TW. Updating the particle position by using closed

forms for trajectories has major advantages in terms of supervising the algo-

rithm global behavior. Indeed, the set of particles is now a dynamic system

completely defined in the Laplace domain. t is then possible to analyze the

poles of the system to understand its stability conditions.

s1,2 =
1

2
(ω̃ − h̃±

√(
ω̃ − h̃

)2
− 4µ̃ (2.27)

s3,4 =
1

2
(ω̃ + (N − 1)h̃±

√(
ω̃ + (N − 1)h̃

)2
− 4µ̃ (2.28)

Equations 2.27 and 2.28 express the poles for the X(s) for a particular

case of H where all the birds are connected (Fully Connected CFSO). The

∼ symbol on the ω, µ, h parameters expresses a parameter that is valid only

under the current time window. Under the assumption that
(
ω̃ − h̃

)2
−4µ̃ 6=

0 and
(
ω̃ + (N − 1)h̃

)2
−4µ̃ 6= 0 all poles are simple (either complex or real)

with single multiplicity. We can thus apply the inverse Laplace Transform

and obtain the expression for the single particle trajectory. Stability analysis

can be performed by observing the real and imaginary parts of the poles:



CHAPTER 2. INVERSE PROBLEMS AND OPTIMIZATION 93

ω̃ < h̃ < − ω̃

N − 1
or µ̃ > 0 (2.29)

−2
√
µ̃+ ω̃ < h̃ < 2

√
µ̃+ ω̃ or h̃ <

2
√
µ̃− ω̃

N − 1
(2.30)

Asymptotic stability can be obtained by condition Eq. 2.29, whereas

oscillation can be obtained by condition Eq. 2.30. Indeed, if the poles are

real part negative, the resulting trajectories in the time domain will tend to

a convergence towards an equilibrium point. If poles are real part positive, a

fast divergence will occur. In both cases, if the poles are complex conjugates,

the behaviors will be combined with oscillations.

2.3.4 Firefly Algorithm and Glowworm Swarm Algo-

rithm

The firefly algorithm (FA) is a swarm intelligence algorithm especially suited

for multiobjective optimization problems [Yang, 2010]. A multi-objective op-

timization problem, put in simple terms, is a problem where multiple cost

function are defined. The algorithm is based on the mating process of fireflies.

Fireflies are attracted to other ones (regardless of gender) on a brightness

based criterion: a firefly is attracted to its brighter mates, and will move to-

wards them. However, perceived brightness from a fly to the other decreases

with distance: this creates the tendency to organize individuals in clusters.

If the brightness of the individual is related to the cost function, the clusters

will lie in optima.

The pseudoalgorithm goes as follows:
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Figure 2.5: Starting conditions for the Firefly algorithm.

.

1. A random population is created, and the brightness for each individual

is computed through cost function evaluation.

2. Each individual observe his mates one by one: if the perceived bright-

ness (i.e. scaled by the distance) is higher than his, he moves towards

him.

3. If no individual has a higher brightness, it moves randomly.

The resulting behavior can be seen in Fig 2.5 and 2.6. Individuals starts

scattered and then creates groups in regions where minima are found. The

position update equation used in step 2 is the following, for a couple of j and

i fly (i moving towards j ).

xi[t+ 1] = xi[t] + βe−γri,j × (xj[t]− xi[t]) + α[t]ε[t] (2.31)
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Figure 2.6: Ending conditions for the Firefly algorithm. Individuals clustered in

the various minima

.

where α[t] is a parameter controlling the step size, while ε[t] is a vector

drawn from a Gaussian or other distribution. The γ should be related to

the scales of design variables. Ideally, the β term should be order one, which

requires that γ should be linked with scales. For example, one possible choice

is to use γ = 1/
√
L where L is the average scale of the problem. In case of

scales vary significantly, γ can be considered as a vector to suit different

scales in different dimensions. Similarly, α[t] should also be linked with

scales. For example, α[t] ← 0.01Lα[t]. in actual implementation by most

researchers, the motion of the fireflies is gradually reduced by an annealing-

like randomness reduction via α[t] = α0δ[t] where 0 < δ < 1 (e.g., δ = 0.97)

, though this value may depend on the number of iterations.[2] In some

difficult problem, it may be helpful if you increase α[t] at some stages, then

reduce it when necessary. This non-monotonic variation of α[t] will enable
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the algorithm to escape any local optima when in the unlikely case it might

get stuck if randomness is reduced too quickly. An interesting variation of

the AF algorithm is the Glow Worm Optimization (GWO) [Krishnanand and

Ghose, 2005]. This algorithm shares basically the same movement principle

of the AF: brighter worms attract darker ones, and the brightness is related

to the cost function. However, a concept of neighborhood is introduced: a

worm will not be attracted by distant individuals if he is surrounded by

enough other worms. The practical difference with AF is that fireflies are

clustered by distance, glow worms by density.

2.4 Local Search Techniques

Local search techniques are used for problems with a very narrow search do-

main. These techniques can converge quickly to the optimum, but if used in

the wrong way, may suffer from local minima entrapment. These techniques

should never be used if it is suspected that the cost function, in the search

domain, is strongly non-convex.

2.4.1 Linear Techniques

Indeed, all linear techniques proposed by now (GD, CGM, LM) can be used

as optimization tools for a non-linear problem. This freedom of course should

be limited only to local searches, where a complex non-linear function can

be safely approximated as linear or quadratic. The advantage of linear tech-

niques is the degree of convergence, which can be faster than any meta-

heuristic. However, most of these techniques requires the computation of the
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cost function derivative (either to compute the gradient, or the jacobian/hes-

sian). It is pretty common for non-linear optimization problem to be defined

with a non-analytical cost function. It is then impossible to compute its

derivative. In these cases, the gradient and the jacobian are computed itera-

tively by approximating the cost function with a linear one (computing the

2-point derivative).

2.4.2 Bacterial Chemotaxis Algorithm

The BCA has been proposed in [Müller et al., 2002] and is an evolutionary

algorithm based on the emulation of the motion of a real bacterium looking

for food (i.e. the optimum of a cost function). A mathematical description

of a 2D bacterium motion can be developed by assuming an assigned speed v

and by the determination of suitable probabilistic distributions of the motion

duration τ and of the direction φ shown by each individual. The virtual

bacterium motion follows the following rules:

• The path of a bacterium is a sequence of straight-line trajectories joined

by instantaneous turns, each trajectory being characterized by speed,

direction, and duration.

• All trajectories have the same constant speed.

• When a bacterium turns, its choice of a new direction is governed by

a probability distribution, which is azimuthally symmetric about the

previous direction. In two dimensions, this means that the probability

to turn left or right is the same.
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• The angle between two successive trajectories is governed by a proba-

bility distribution.

• The duration of a trajectory is governed by an exponentially decaying

probability distribution.

• The probability distributions for both the angle and the duration are

independent of parameters of the previous trajectory.

The velocity, as stated above, is constant and assigned: v = const. The

step size is determined by τ . The duration of the trajectory can be computed

from the distribution of a random variable with an exponential probability

density function:

P (X = τ) =
1

T
e−τ/T (2.32)

Where the expected value is µ = E(X) = T and the variance σ2 = T 2.

The time T is given by:

T =

T0, for fpr
lpr
≥ 0

T0

(
1 + b

∣∣∣fprlpr ∣∣∣) , for fpr
lpr

< 0

(2.33)

Where T0 is the minimal mean time, f is the cost function, fpr is dif-

ference between the actual and the previous function value, lpr is the vector

connecting the previous and the actual position in the parameter space and

b is a dimensionless parameter. The new direction for left or right turning

can be computed by:

P (X = α, v = µ) =
1

σ
√

2π
exp

[
−(α− v)2

2σ2

]
(2.34)
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P (X = α, v = −µ) =
1

σ
√

2π
exp

[
−(α− v)2

2σ2

]
(2.35)

Given an expected value µ(degrees) = E(X) = 62, a std. deviation

σ(degrees) =
√
V ar(X) = 26 and α ∈ [0, 180]. The choice of a right or left

direction as referring to the previous trajectory is determined using a uni-

form probability density distribution, thereby yielding a probability density

distribution for the angle α.

P (X = α) =
1

2
[P (X = α, v = µ) + P (X = α, v = µ)] (2.36)

The new position can now be computed. Indeed, this algorithm was

presented in a 2-D domain, but can be generalized to a higher dimensionality

easily.

2.4.3 Simplex Downhill Algorithm

The method developed by [Nelder and Mead, 1965], known as Simplex Down-

hill (SD) is based on a geometrical evaluation of the cost function, defined

in RN , in N + 1 points that forms the vertex of a N-dimensional simplex.

The simplex adapts itself to the local landscape, and contracts on to the final

minimum. It is a derivative-free method for local search that exhibit a fast

convergence and a considerable resistance to local minima entrapment. The

algorithm can be implemented very easily:

1. A set of at least N+1 xk vertex are randomly initialized in the solution

space.
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Figure 2.7: From left to right, the various operations of the SD algorithm: Reflec-

tion, Expansion, Contraction, Reduction.

.

2. The cost function is evaluated in each xk position, and the indexes k

are re-ordered so that x1 is the best solution, and xN+1 is the worst.

3. The centroid xo(geometric mean) position of all points, except xN+1 is

computed.

4. Compute reflected point xr = xo + α(xo − xn+1)(α > 0)

5. If the reflected point is better than the second worst, but not better

than the best, i.e.:f(x1) ≤ f(xr) < f(xn), then obtain a new simplex

by replacing the worst point xn+1 with the reflected point xr, and go

to step 2.

6. If the reflected point is the best point so far, f(xr) < f(x1), then com-

pute the expanded point xe = xr+γ(xr−xo)(γ > 0). If the expanded

point is better than the reflected point, f(xe) < f(xr) then obtain a

new simplex by replacing the worst point xn+1 with the expanded point

xe, and go to step 2. Else obtain a new simplex by replacing the worst

point xn+1 with the reflected point xr, and go to step 1. Else (i.e.
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reflected point is not better than second worst) continue at step 5.

7. Here, it is certain that f(xr) ≥ f(xn). Compute contracted point

xc = xo + ρ(xn+1 − xo))(0 < ρ < 0.5). If the contracted point is better

than the worst point, i.e. f(xc) < f(xn+1) then obtain a new simplex

by replacing the worst point xn+1 with the contracted point xc, and go

to step 2. Else go to step 8.

8. For all but the best point, replace the point with xi = x1 + σ(xi −
x1) for all i ∈ {2, . . . , n+ 1}. Go to step 2.

Indeed, the size of the original simplex can influence dramatically the final

outcome of the problem. The algorithm lacks effective qualities to escape a

local minima (being deterministic by nature), and for this reason it is listed

in this work as a ”local search” technique. Launching this algorithm in the

neighborhood of a good solution is critical to ensure the correct convergence

towards the optimum.

2.4.4 Simulated Annealing

The Simulated Annealing (SA) algorithm [Aarts and Korst, 1988, Hwang,

1988] is included in this work for the sake of completeness, although it can

not be considered the best approach for a local search. In general, (SA) is

similar to a Random Walk method: the solutions are progressively found by

a random movement in their neighborhood. What characterize the SA is

the decision process of moving to the next candidate solution or not. The

algorithm is inspired by the natural process of annealing that exist in crystal

lattice. This process ”heals” the defects that naturally occurs in crystal
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lattice through successive heating and cooling stages. The fewer the defects,

the better the solution. Initially, the heating/cooling process is performed

at high temperature, and it is probable that the new lattice configuration

(i.e. the new solution) may be worse than the previous one. Gradually, the

temperature is lowered, and the reconfiguration occurs with progressively

increasing selectivity (i.e. the algorithm becomes more greedy). The pseudo-

algorithm goes as follows:

1. Create a set of randomly distributed solutions sk

2. Evaluate the fitness f(sk) for each solution.

3. Generate, for each solution, a neighbor solution snk and compute its

fitness f(snk).

4. According to the switch probability P (f(sk), f(snk), T ), move to the

candidate solution or not.

5. Decrease the temperature T . Go to 2.

The core of the algorithms are, indeed, the choice of the probability func-

tion P (f(sk), f(snk), T ) and the method to generate the neighbor solution snk .

Indeed, the probability of switching states should be proportional to the tem-

perature T , so that the algorithm will progressively become more and more

convergent. It should be related as well to the cost function evaluations. Yet,

as long as the temperature is high, the probability of an inconvenient move

should be greater than zero. In this way, we can ensure that the algorithm

will not be stuck in local minima. The choice of the neighbor is very prob-

lem specific, but a common practice is to reduce the distance between sk, s
n
k
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Figure 2.8: From left to right: MeTEO, r-MeTEO and CFSO3 parallel strategies.

Wider blocks indicate the Master node, smaller square the Slave nodes.

.

with the temperature, thus emphasizing the gradual convergence even fur-

ther. Indeed the SA can exhibit, by dimensioning its parameter accordingly,

either exploration or exploitation capabilities. However, using this algorithm

to explore the solution space can be rather costly since no information is

exchanged from one solution to the other. On the other hand however, this

algorithm very easy to implement, and can be an interesting simple alterna-

tive to more complex local search techniques.

2.5 Hybrid Algorithms

Practical non-linear optimization problems can not be solved by a single

algorithm. Several strategies have been proposed (and reviewed in this work)

to make explorative algorithms more convergent and local search algorithm

less prone to local minima entrapment. The best results however are achieved

by combining different algorithms altogether, creating an hybrid algorithm.

The basic strategy for a working hybrid algorithm is to follow a 2-3 stage

approach:
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• Candidate Region Identification: Use an algorithm with high ex-

ploration capabilities to identify areas were minimum (both local and

global) may exist.

• Local Search Pre-Positioning (optional): Use an intermediate al-

gorithm in the region to find an optimal starting position for the local

search, where the cost function is as convex as possible.

• Local Search Exploitation: Use a powerful local algorithm (even lin-

ear), initialized in the region previously identified, to converge towards

optimum.

A dramatic advantage of hybrid algorithms lies in their natural predis-

position for parallel implementation. Indeed, it is possible to use a single

Master node to explore coarsely the solution space and perform region iden-

tification, and then deploy through Slave nodes local search algorithms that

work in parallel in the candidate regions. Three strategies will be discussed

in the following: MeTEO, r-MeTEO and CFSO3. The three strategies are

summarized in Fig 2.8.

2.5.1 MeTEO and r-MeTEO

The algorithm proposed in [Fulginei et al., 2012] has been called MeTEO to

point out its Metric-T opological and Evolutionary inspiration. In fact, it is

based on a hybridization of two heuristics coming from swarm intelligence:

the FSO (topological swarm), the PSO (metric swarm) and the BCA, that

although not having a collective behavior that shows its better performances
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in local searches. The present approach uses the FSO to explore the solu-

tion space, the PSO to investigate subspaces in which the global optimum

could be present and finally the BCA to refine solutions. A parallel strategy

is implemented: the FSO is permanently running, and each time it finds a

possible solution, the PSO is launched. After that, it is transformed in BCA,

and so on. A final important computational strategy completes the present

approach: the fitness function is deliberately made worse just in those suit-

able narrow regions in which the FSO has decided to launch PSO–BCA.

This fitness modification (FM) aims to prevent FSO from coming back in an

already explored subspace. The FM is inspired to the famous Tabu-search

algorithm [Glover, 1989] and in particular to the Tabu list. Since the global

optimum is coincident with the smallest value achievable for the fitness func-

tions, the FM has to ensure that the new fitness function must never indicate

again a suspected regions if it has been already detected by the FSO. In fact,

the FM consists in adding to the past fitness function a positive Gaussian

function centered into the best co-ordinates found by FSO at the current it-

eration. It is important to remark that the effect of the FM acts just on the

Master node, i.e. it is valid just for FSO, whereas the fitness function holds

the original starting expression for both PSO and BCA working on the Slave

nodes. A reduced version of this parallel hybrid strategy was implemented

in [Lozito and Salvini, 2014] for a problem of model identification that did

not require all the computational power of the original algorithm. This new

strategy, called r-MeTEO, is composed by three algorithms: the first one is a

GA, running on a Master, used for region identification. Then, on the slaves,

two algorithms in cascade are used: the Trust-Region Reflective (TRR) and
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Figure 2.9: Conceptual representation of the CFSO3 algorithm: the original do-

main for the solution space (yellow) is explored by the master using a CFSOpi

algorithm. Once a candidate area is found by a particle, a slave is dispatched to

explore the subdomain (light blue) using CFSOas algorithm.

.

the Levemberg-Marquardt. The former is a simple algorithm to pre-position

the LM in a suitable area. The LM on the other hand is specifically thought

for nonlinear least squares, and performs the final optimization task. Indeed

r-MeTEO is more exploitation-oriented than exploration-oriented, but for

the problem at hand (i.e. the model identification), where the search domain

was pretty much well known, a robust and deep convergence was the most

desirable attribute for the optimizer.

2.5.2 CFSO3

It is understandable that the CFSO can exhibit both exploration and ex-

ploitation capabilities according to the poles of the flock. Both divergence,
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oscillation and convergence can be obtained. Each of these behaviors can be

used to create a hybrid strategy that features both exploration and exploita-

tion capabilities.This strategy is thought to run on parallel architecture by

the algorithm called CFSO3 [Laudani et al., 2013b]. The CFSO3 algorithm

runs on master-slave parallel cluster. The master runs the CFSO configured

to exhibit oscillating behaviors (CFSOpi). Its purpose is to explore the so-

lution space and find candidate areas where a further investigation can be

performed by the slaves. They run the CFSO with asymptotically convergent

particles (CFSOas) that is initialized near the candidate area identified by

the master. Each time the master identifies a new area, a slave is assigned

to explore it. In the meantime, to increase the exploration capabilities of the

master algorithm further, the poles are temporarily switched to an unsta-

ble configuration (CFSOus) to escape from the local minimum (the found

candidate area). The strategy is depicted in Fig 2.9.
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Chapter 3

Embedded Soft Computing:

Platforms

Several soft computing techniques can be used with great advantage in engi-

neering applications featuring embedded devices. Indeed, the computational

costs involved in the use of a Soft Computing technique can be rather con-

venient if compared, for example, to hard computing one in applications

like modeling and control. However, embedded applications usually require

a real-time approach to the problem (also known as ”time critical”). Sev-

eral embedded devices have very limited computational capabilities (if com-

pared to high-level environments like a PC) and for this reason, the imple-

mentability of the aforementioned techniques is strictly limited to its ability

in solving the problem at hand in an acceptable time frame.This concept is,

of course, common to hard-computing techniques as well. But whereas for

hard-computing techniques any possible tweak or speed-up is going to be

strictly related to the problem at hand (since white-box models are specific),

109
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soft-computing techniques shares their advantages across different scenarios.

A faster, more accurate, or less memory-occupying algorithm can usually be

used on several different problems. This flexibility is especially present for

ANN, that are the main focus of the following work. When embedded imple-

mentation is involved, three possible environments can be considered. The

first one are devices running an operative system like the Intel MiniPC or the

linux based Raspberry Pi. The second ones are microcontroller units running

a real-time OS or no operative system at all. The third ones are complex

digital circuits implemented on a Field-Programmable Gate Array (FPGA).

The three solutions will be discussed in this chapter, with advantages and

disadvantages.

3.1 High Level Devices

High level devices are all-in-one boards generally mounting a powerful mi-

croprocessor unit, defined System-on-Chip. The boards may rely on external

memory for boot and non-volatile storage, or may present an on-board flash

as well. Since most of these devices are used as single board computers,

they usually feature convenient interfaces like USB, HDMI for video output

and Ethernet/Wi-Fi networking. The implementation capabilities for this

devices are the closest to the one that can be achieved on a standard PC. In

terms of raw computational speed, the resources of these systems are very

high, almost close to a low-end PC. However, most of these resources are

used for OS management, and code execution is subject to kernel distribu-

tion of computational resources. It is not possible to grant the real-time
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execution of code. For this reason, the choice of this class of devices is only

used if there is a strong necessity for accessory resources (networking, USB

interfacing) that would make the implementation on a lower level device in-

convenient. Coding on these platforms can be performed using (almost) all

the options available on a normal PC. Algorithms can be implemented at low

level if a C compiler is available for the CPU architecture (and usually is),

or more powerful interpreted languages can be used. Matlab is still mostly

a prerogative of personal computers, however it is possible to compute .exe

binaries that runs natively on specific boards. Mathematica code requires

its specific kernel to run, however, it has been recently included in the OS

distribution ”New Out Of Box Software” or NOOBS for the Raspberry Pi (see

below). One last very common programming language that is widely used

for embedded computation is Python. This is a very simple and readable

interpreted language that allows the creation of complex programs with few

code lines thanks to the powerful libraries included in it. Indeed, the Python

interpreter must be installed on the device. Regardless of the coding platform

used, several interesting options exists in terms of board choice. A compre-

hensive discussion on all the possible devices is beyond the purpose of this

work, thus, a selection of the most interesting ones is going to be presented.

3.1.1 Raspberry Pi

Raspberry Pi is a small, cheap ARM-based PC for education and hobby-

ists that Runs Debian GNU/Linux from an SD card. The size of the board

(schematic can be seen in Figure 3.1) is about the one of a credit card, al-

though some smaller releases have been proposed. Most recent releases are
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Table 3.1: Raspberry Pi Characteristics

Operating System Linux (e.g. Raspbian), RISC OS, FreeBSD,

NetBSD, Plan 9, Inferno, AROS

CPU 700 MHz single-core ARM1176JZF-S (model A,

A+, B, B+, CM)

Memory 256 MB (model A, A+, B rev 1) 512 MB (model

B rev 2, B+, CM) 1GB (Pi 2)

Storage SDHC slot (model A and B), MicroSDHC slot

(model A+ and B+), 4 GB eMMC IC chip (model

CM)

Graphics Broadcom VideoCore IV

Power 1.5 W (model A), 1.0 W (model A+), 3.5 W (model

B), 3.0 W (model B+) or 0.8 W (model Zero)

Price US$25 (model A, B+), US$20 (model A+), US$35

(RPi 1 model B, RPi 2 model B), US$30 (CM)
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Figure 3.1: Raspberry Pi 2 Board Overview.

.

based on the ARMv7 quad core processor, and mount up to 1GB of RAM

on board (see Table 3.1 for details). The performances of the Raspberry Pi

are comparable to the one of an old Pentium II PC. The default operative

frequency is 700MHz, and by benchmark analysis, the first generation of the

Pi had an equivalent performance of 0.041 GFLOPS.By itself, the CPU per-

formance is comparable to a 300MHz Pentium II processor. The GPU has

1Gpixel/s with 24GFLOPS processing capabilities. These can be used for

parallel computing using CUDA/OpenCL programming language. This de-

vice is very well suited for implementation of parallel clusters, especially due

to the very low power consumption. A cluster of 64 Raspberry Pi Model-B

achieved a result of 1.14 GFLOPS with a total consumption of 216W. For sci-

entific computation, a very important advantage related to this board is that

the Mathematica environment from Wolfram is natively installed in the OS.

The Mathematica language is completely embedded with the device, and it is
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possible to control directly low level functions of the board (e.g. the GPIO in-

terface) from inside the Mathematica environment itself. Computation can

be performed efficiently using Python scripts as well. The libraries NumPy

and SciPy contains functions to efficiently implement linear algebra (useful

for ANN implementation) and several algorithms for numerical computation.

Packages in SciPy includes:

• Clustering algorithms

• Physical and mathematical constants

• Fast Fourier Transform routines

• Integration and ordinary differential equation solvers

• Interpolation and smoothing splines

• Input and Output

• Linear algebra

• N-dimensional image processing

• Orthogonal distance regression

• Optimization and root-finding routines

• Signal processing

• Sparse matrices and associated routines

• Spatial data structures and algorithms
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Figure 3.2: BeagleBone Black Overview.

.

• Special functions

• Statistical distributions and functions

• C/C++ integration

3.1.2 BeagleBoard

BeagleBoard is the name of a family of devices based on the Texas Instru-

ments microprocessor SitaraTMARM Cortex-A8 processor. Sitara processors

acts as bridges between the peripheral richness of a microcontroller unit

and the speed and performance of a microprocessor. The A8 series includes

among its peripherals an LCD controller, CAN, Gb EMAC switch, 2x USB

w/PHY, integrated industrial protocols and touch screen control while re-

taining a clock speed up to 1GHz. A co-processor is present as well to

manage real-time tasks. The Programmable Real-Time Unit Subsystem

and Industrial Communication SubSystem (PRU-ICSS) consists of dual 32-
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bit RISC cores (Programmable Real-Time Units, or PRUs), data and in-

struction memories, internal peripheral modules, and an interrupt controller

(INTC). The programmable nature of the PRU-ICSS, along with their ac-

cess to pins, events and all SoC resources, provides flexibility in implement-

ing fast real-time responses, specialized data handling operations, custom

peripheral interfaces, and in offloading tasks from the other processor cores

of the system-on-chip (SoC). Several operating systems are compatible with

the Sitara processor: Linux, Android, Windows CE, StarterWare and RT-OS

from Texas Instruments. By default, BeagleBoards mount a Linux distribu-

tion (Debian) out of the box. Numerical computation is aided by the presence

of the NEON floating-point accelerator, which is a particular family of SIMD

(Single Instruction Multiple Data) processor. SIMD processors where intro-

duced to accommodate the need of processing large amounts of data that is

less than word-sized. 16-bit data is common in audio applications, and 8-bit

data is common in graphics and video. Most of the embedded MCU operates

on 32-bit microprocessors, and for this reason, part of the computation units

remains unused when processing this kind of data. Still, even if unused, they

continue to consume power. SIMD technology try to make a better use of

the available resources by using a particular architecture that supports an

instruction set able to operate on multiple data elements of the same type

and size at the same time. To give a quantitative example, an hardware

that would normally add two 32-bit values, is able to perform four parallel

additions of 8-bit values in the same amount of time as well. The ARMv7

architecture introduced the Advanced SIMD extension that defines groups

of instructions that operates on vectors stored in 64-bit D, doubleword, reg-
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Table 3.2: BeagleBoard Characteristics

Operating System Linux, Minix, FreeBSD, OpenBSD, RISC OS,

Symbian, Android

CPU Sitara ARM Cortex-A8 with frequency 600 MHz

to 1 GHz

Memory 128 MB to 512 MB

Storage SDHC slot , MicroSDHC slot

Graphics PowerVR SGX

Power 2.0 W

Price US$95 to $149

isters and 128-bit Q, quadword, vector registers. The implementation of the

Advanced SIMD extension used in ARM processors is called NEON, and this

is the common terminology used outside architecture specifications. NEON

technology is implemented on all current ARM Cortex-A series processors.

NEON instructions are executed as part of the ARM or Thumb instruction

stream. This simplifies software development, debugging, and integration

compared to using an external accelerator. Traditional ARM or Thumb in-

structions manage all program flow and synchronization. Analogously to the

Raspberry Pi, several options are available in terms of OS (with multiple unix

distributions) and coding platforms. A breakout of the main characteristics

for the board can be found in Table 3.2.
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Figure 3.3: Intel Edison Overview.

.

3.1.3 Intel Edison

Intel Edison is an interesting alternative for high level programming since it

features a processor (Intel Atom) compatible with x86 instruction set. The

board is extremely small as can be seen from Fig. 3.3 and has been thought

for a direct integration with the Arduino Uno microcontroller envinronment

through specific breakout boards. Intel Edison’s small compute package en-

ables connectivity with Wi-Fi and Bluetooth LE, and also has LPDDR2 and

NAND flash storage, as well as a wide array of flexible and expandable I/O

capabilities. The board’s main SoC is a 22 nm Intel Atom ”Tangier” (Z34XX)

that includes two Atom Silvermont cores running at 500 MHz and one Intel

Quark core at 100 MHz (for executing RTOS ViperOS). The SoC has 1 GB

RAM integrated on package. There is also 4 GB eMMC flash on board, Wi-

Fi, Bluetooth 4 and USB controllers. The board has 70-pin dense connector

(Hirose DF40) with USB, SD, UARTs, GPIOs. The price of the device is

around 50$. It runs Yocto Linux with development support for Arduino IDE,
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Eclipse (C, C++, Python), Intel XDK (NodeJS, HTML5), and Wolfram. If

the module is not to be embedded on an Arduino Uno board, Intel release a

breakout-board for easy access to the IO array and USB connectors.

3.2 Microcontrollers

Microcontroller units (MCUs) are highly integrated devices that enclose in

a single chip a CPU and all the important sub-system needed for its opera-

tion. A MCU usually feature a CPU, several storage elements (RAM, ROM,

FLASH, EEPROM), efficient digital I/O arrays, ADC and (seldom) DAC sys-

tems, timer modules and communication interfaces. The idea behind a MCU

is to embed as much electronics as possible in a single device to increase sys-

tem integration and reduce power consumptions. In general, CPU mounted

on MCU are not as fast as the ones present on single-boards computer, and

architectures are either RISC (ARM) based. Some CISC based MCUs exist

(a notable example are the PIC series from Microchip Technologies) but the

complexity of the instruction supported is still very low if compared to a

x86 architecture. MCU do not run, natively, with an Operative System. It

can be implemented, and there are some notable examples of very efficient

Real-Time Operative Systems. However, since the operations required by a

MCU are, in general, of lower-level, direct sequential execution of a program

is, in general, the preferred method of MCU programming. This requires the

use, in general, of a low-level programming language. Even if this may be a

drawback in terms of easiness of programmability, it gives a direct control on

the device real-time behavior. The most common languages used to program
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a MCU are ASSEMBLY and C. ASSEMLBY is the lowest level program-

ming language available, since each line of code has, in general, a one-to-one

correspondence with a CPU instruction. This makes ASSEMLBY language

architecture-specific (a RISC machine will have a completely different in-

struction set from a CISC machine). The main advantage of ASSEMLBY

programming is, obviously, the complete control over the CPU operations.

The disadvantage is the verbosity of the programs. Mathematical opera-

tions and memory structures are non-existent at CPU instruction level, and

must be implemented by the programmer on the fly. Programming in C on

the other hand has almost all the advantages of a low-level programming

language, but with the bare minimum facilities introduced by the ANSI li-

brary. Indeed, programming a MCU in C requires a specific compiler for

that architecture, and a set of libraries that makes addressing the MCU re-

sources (peripherals, memory areas, system configuration strings) easily. In

general, all the MCU adopt a memory-map approach for their peripherals.

This means that, for example, to enable a particular function on the de-

vice ADC, a n-bit word will need to be written in a specific memory area

of the MCU. This memory area is non-existent in fact, and is just used to

give the programmers a mnemonic reference to enable and disable digital

circuits. This reference is often given by #define directives in some header

libraries given by the MCU producers. Those libraries are fundamental for

a comfortable programming of the device, since modern MCU packs a very

high number of peripherals with a 32-bit address space. The advantage of

programming in C is the level of abstraction introduced by the libraries and

the complex functions and structures that are inherently implemented in it.
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This is the main disadvantage as well, since the abstraction layer makes it

difficult to control directly the CPU behavior at instruction level. In prac-

tical terms, this is seldom a problem, however, for some very time-critical

applications this issue may arise. Fortunately, modern compilers fully sup-

port inline assembler. This is a feature that allows ASSEMLBY code to be

directly embedded in C code, allowing the programmer to use directly pro-

cessor instructions when needed. As we did in the previous chapter, we are

going to cover some examples of MCU boards suitable for implementation of

soft-computing techniques for practical engineering applications.

3.2.1 High-End Microcontroller Units

High-end devices MCU are general purpose controllers based on an ARM

CPU. Among different producers the CPU may be similar (at the moment

of the redaction of this work, Cortex M4 are very diffused) and what makes

a substantial difference is the quantity and the quality of the peripherals in-

cluded in the MCU. Another key concept is the availability of development

boards. Historically MCU programming required a stand-alone JTAG in-

terface and some accessory electronics (a quartz/RC oscillator and a power

supply, at least). Modern high-end MCU are sold with self-sufficient develop-

ment boards that can be connected to a PC through USB out of the box. A

very versatile family of development boards mounting high-end MCUs is the

one proposed by Texas Instruments. These boards mounts the TM4C129 mi-

cro controller units with different peripherals added according to the model

of the board. Both the MCU and the boards mounting it (referred as Launch-

padsTM) are thought for Internet-of-Things (IoT) applications and real-time
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control. The TM4C129 family are based on a Cortex M4-F CPU that in-

tegrates Ethernet MAC and physical (PHY) interface. Clock frequency is

up to 120MHz and several peripherals for communication and control are

available, as shown in Fig. 3.4. The device is extremely well suited for appli-

cations that involves heavy computational costs, due to the generous SRAM

present and the complementary Floating Point Unit embedded in the CPU.

An important addition are worth of note for this MCU (other aspects will

be mentioned in the application sections) is the presence of a factory ROM

where all the libraries involving the control functions for the MCU peripher-

als are stored. This ROM is used to avoid writing in the program memory

of the MCU the routines needed to interact with the unit architecture, thus

saving space for the program itself. This is a very precious characteristic

since often soft-computing based algorithms have large memory footprints

(e.g. the weights for the ANN). Different Launchpads model exists, with

different optional characteristics: the most interesting ones are the connected

models that includes Ethernet or Wi-Fi connectivity directly on board. All

the Launchpad form factor is very small, making it simple to use it both as

a development board to test code, and as a prototype board to include in

a larger circuit. Several IDE are available for the Launchpad systems. All

includes an editor, a compiler and a debugger environment. Texas Instru-

ments provides its IDE as well, Code Composer Studio (CCS), that is based

on a modified version of the Eclipse environment. CCS is free to download

and can be used for free on Launchpads (and other development boards from

Texas Instruments). For stand-alone devices (i.e. not on Launchpads) CCS

has a memory limit (64kbytes) or requires a pay license.
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Figure 3.4: TM4C129 family MCU overview.

.

3.2.2 Digital Signal Processors

DSP are microcontroller units that sacrifices some versatility in terms of

peripherals and interfaces in spite of a higher performance in real-time ap-

plications. They are architecturally designed to excel at mathematical op-

erations and data movement. DSP for more demanding applications are, in

general, multi-cores with high-speed interfaces and efficient internal fabrics

allowing many devices to work together effectively. Low-end DSP have single

cores, but with architectures engineered to work in conjunction with power-

ful libraries that speeds up numerical computations. A notable example is

the C28x architecture from Texas Instruments, used for TMS320C28x DSP

chips. For these devices, the IQmath library is used to speed up difficult

arithmetic operations. Several of these DSPs mounts a CPU with added
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FPU that speeds up the computation of floating point operations. Still, for

control applications sometimes speed is more desirable than precision, and

moving to a Fixed-Point arithmetic may be desirable. The IQmath library

is collection of highly optimized and high precision mathematical Function

Library for C/C++ programmers to seamlessly port the floating-point algo-

rithm into fixed point code. IQmath uses the internal hardware of the DSP

in the most efficient way to operate with 32 bit fixed-point numbers. Taking

into account that all process data usually do not exceed a resolution of 16

bits, the library gives enough headroom for advanced numerical calculations.

3.2.3 Low-End Microcontroller Units

Low-End devices feature processors with low computational capabilities, but

counterbalance this with reduced costs, smaller size and lower power con-

sumption. Two interesting devices will be presented. The first one is the

PIC18F6627 Microcontroller mounted on the SBC65EC Modtronix board as

shown in Figure 3.5. The MCU belongs to the lowcost low-power PIC18/8-

bit family, featuring a 4 kB RAM memory and a 96 kB reprogrammable flash

memory; 12 AD converters; and SPI, I2C, and RS232/RS485 interfaces. The

computational capabilities of this device are very limited, but the high reso-

lution AD converter, coupled with the very low power consumption (as low as

0.2 µA in sleep mode) makes it suitable for battery-powered applications. In

particular, the SBC65EC Modtronix board allows to communicate with the

MCU through a web-server interface. The second device is the MSP430FRxx

by Texax Instruments. This is an Ultra-Low Power device that is based on

the use of FRAM (Ferroelectric RAM) for memory and storage. FRAM is a
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Figure 3.5: SBC65EC Modtronix prototype board, mounting a PIC18F6627 Mi-

crocontroller Unit.

.

random access memory, meaning that each bit is read and written individu-

ally. This non-volatile memory is similar in structure to DRAM, which uses

one transistor and one capacitor (1T-1C), but FRAM stores data as a polar-

ization of a ferroelectric material (Lead-Zirkonate-Titanate). As an electric

field is applied, dipoles shift in a crystalline structure to store information.

The use of crystal polarization as opposed to charge storage enables state

retention, lower voltage requirements (as low as 1.5V) and fast write speeds

when compared against Flash, EEPROM and SRAM technologies used in

typical MCUs. For this device, power consumptions can get as low as 0.02

µA.

3.3 FPGA

Field Programmable Gate Arrays, or FPGA, are re-arrangeable digital cir-

cuits. An FPGA is composed by a large quantity of programmable logic

blocks that can be configured and arranged with different connections to
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Figure 3.6: An example logic cell for an FPGA.

.

create a logic circuit that performs the desired operation. The blocks are

flexible and can be used for different purpose. They are in general com-

posed by a variable number of logic cells, like the one shown in Fig. 3.6.

The configuration is dynamic, and is performed through a hierarchical set of

connection that forms a matrix wiring the blocks together. Modern FPGA

devices embed some ”hard blocks” inside their architecture. These blocks

are non-editable and are usually reserved for standard interfaces, processor

cores, memory controllers and sometimes even ADC/DAC units to imple-

ment a mixed/signal (analog and digital) application.

3.3.1 HDL Languages Flow

FPGAs are not ”programmed” in the classical sense of the term, since there

is no processing unit performing operations in an FPGA. By the term ”pro-

gramming”, when referred to an FPGA, the process of describing the imple-

mented logic function is intended. The complexity of the logic function that

can be implemented in an FPGA depends on the size of the FPGA itself.

It can be as simple as a combinatorial function and as complex as a fully

functioning CPU with added blocks for memory. The FPGA configuration

is generally specified using a hardware description language (HDL), that is a
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specialized computer language used to describe the structure and behavior of

electronic circuits, and most commonly, digital logic circuits. Programming

the FPGA through graphical interface is very common as well, especially

when standard digital circuits and configurations are involved, or when the

design requires a direct visualization. The most common HDL programming

languages for FPGA are VHDL and Verilog. Both are widely supported by

hardware producers in their IDE up to a point where the choice of the lan-

guage is merely a matter of preference. For this work, all codes have been

written in VHDL. VHDL programs does not describe directly the hardware

that is going to be implemented on the FPGA, but it rather describe the

desired ”behaviour” that should occur in the device. To do this, it uses two

constructs: entities and architectures. An entity is hollow box that can con-

tain a logic circuit that should behave in some way: inputs and outputs of

the box are defined. An example entity suitable for a 2-input combinatorial

logic circuit can be:

entity MY COMBINATORIAL i s

port (

A : in s t d l o g i c ; −− F i r s t input

B : in s t d l o g i c ; −− Second input

O : out s t d l o g i c ) ; −− Output

end entity MY COMBINATORIAL;

After the hollow box has been created, it is necessary to define the

”wiring” that connects the interfaces to achieve the desired behavior. This

is defined in the architecture:

architecture LOGIC of MY COMBINATORIAL i s
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begin

O <= A and B; −− O = A and B.

end architecture LOGIC;

The behavior described in the architecture is a simple AND port. When

this VHDL code is compiled, this entity is translated into a Register Transfer

Level (RTL) representation. RTL is a level of abstraction where a behavioral

code is translated in a logic circuit composed by combinational logic and/or

registers. This circuit can be simulated like any other logic circuit. To be

implemented on silicon however, two more steps needs to be performed. The

first one is the translation at GDL (Gate Description Level), where the RTL

circuit is implemented using the logic components available in the FPGA

(i.e. the one present in the logic blocks). This step, differently from the RTL

translation, is device-specific. The RTL translation, along with the GDL

one, are referred as Synthesis. The result is a netlist that describes a set of

real components and their connection. Last step to be performed is the Place

and Route. This steps maps the netlist in the FPGA internal circuitry. This

last step is critical for two reasons. The first one is that a poor place and

route strategy may result in a poor use of the FPGA resources (i.e. it is a

problem very similar to PCB layout routing). The second one is related to

signal propagation in the circuit. Gate delays should be accounted to ensure

synchronous propagation of signals and clocks in the circuit.

3.3.2 Soft Processors

Modern FPGAs have enough resources to implement fully functional micro-

processors as part of their architecture, along with the memory required to
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run software. A microprocessor implemented inside an FPGA is usually re-

ferred as Soft Processor. The cost to implement this core in terms of FPGA

resources is, in general, high. However the advantages of having an object

able to process complex instructions sequentially simplify the application

development considerably. Without a processor, the only way to create a

circuit able to perform an ”algorithm” (which is the principal task found in

Soft Computing) is to implement, from zero, a Finite State Machine. This

machine can be implemented to be extremely fast, however, it will lack the

flexibility of a CPU executing C code. As we will see in the next sections,

the software nature of Soft Processors makes them eligible for architectural

tweaking, by adding or modifying processor instructions to better suit the

application needs.



Chapter 4

Computational Costs of an

ANN

In this chapter, the problem of the computational costs associated to the

embedded implementation of an ANN are going to be analyzed. Two aspects

are going to be covered. The first aspect is going to be the optimal choice of

the AF of an ANN. This will be analyzed in spite of two aspects, the easiness

of training and the reduction of the computational costs associated with the

calculus of the ANN output. The second aspect is going to be the use of

hardware accelerators, implemented in FPGA, to compute the ANN output.

4.1 The choice for a suitable AF

The mapping capabilities of a ANN are strictly related to the nonlinear com-

ponent found in the AF of the neurons. Indeed, without the presence of a

nonlinear activation function, the ANN would be a simple linear interpolator.

130
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The nonlinear part of a NN is completely separated from the linear combi-

nation of the weighted inputs, thus opening a large number of possibilities

for the choice of an activation function. The choice of a suitable activation

function for a Feed Forward ANN, and in general, for a ANN, is subject

to different criterions. The most common considered criterion are training

efficiency and computational cost. The former is especially important in the

occurrence that a ANN is trained in a general-purpose computing environ-

ment (e.g., using Matlab); the latter is critical in embedded systems (e.g.,

microcontrollers and FPGA) where computational resources are inherently

limited. The following sections will be an extract from the work [Laudani

et al., 2015], which is a comprehensive review on the topic. More details on

the AFs presented, including a comparison of the results given by the cited

authors in their works, can be found in the original paper.

4.1.1 AF for Easy Training

The commonly used back-propagation algorithm for ANN training suffers

from slow learning speed. One of the reasons for this drawback lies in the

rule for the computation of the ANN’s weights correction matrix, which is

calculated using the derivative of the activation function for the ANN’s neu-

rons. The universal approximation theorem [Cybenko, 1989] states that one

of the conditions for the ANN to be a universal approximator is for the ac-

tivation function to be bounded. For these reasons, most of the activation

functions show a high derivative near the origin and a progressive flatten-

ing moving towards infinity. This means that, for neurons having a sum of

weighted inputs very large in magnitude, learning rate will be very slow. A
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detailed comparison between different simple activation functions based on

exponentials and logarithms can be found in [Kamruzzaman and Aziz, 2002],

where the authors investigate the learning rate and convergence speed on a

character recognition problem and the classic XOR classification problem,

proposing the use of the inverse tangent as a fast-learning activation func-

tion. The authors compare the training performance, in terms of Epochs

required to learn the task, of the proposed inverse tangent function, against

the classic sigmoid and hyperbolic tangent functions, and the novel loga-

rithmic activation function finding a considerable performance gain. In [Ma

and Khorasani, 2005], the proposed activation function is derived by Her-

mite orthonormal polynomials. The criterion is that every neuron in the

hidden layer is characterized by a different AF, which is more complex for

every neuron added. Through extensive simulations, the authors prove that

such network shows great performance in comparison to analogous ANN with

identical sigmoid AFs. In [Hara and Nakayamma, 1994], the authors suggest

the combination of sigmoid and sinusoidal and Gaussian activation function,

to exploit their independent space division properties. The authors com-

pare the hybrid structure in a multifrequency signal classification problem,

concluding that even if the combination of the three activation functions

performs better than the sigmoid (in terms of convergence speed) and the

Gaussian (in terms of noise rejection), the sinusoidal activation function by

itself still achieves better results. Another work investigating an activation

function based on sinusoidal modulation can be found in [Lee and Moraga,

1996], where the authors propose a cosine modulated Gaussian function. The

use of sinusoidal activation function is deeply investigated and the authors
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present a comprehensive comparison between eight different activation func-

tions on eight different problems. Among other results, the Sinc activation

function is proved as a valid alternative to the hyperbolic tangent, and the

sinusoidal activation function has good training performance on small ANNs.

Fuzzy and Adaptive techniques

Other strategies adopted for fast convergence involve the use of Fuzzy Logic.

In [Soria-Olivas et al., 2003], the authors define the hyperbolic tangent trans-

fer using three different membership functions, defining in fact the classical

activation function by means of the fuzzy logic methodology. The main ad-

vantage during the training phase is a low computational cost, achieved since

weight updating is not always necessary.

One last strategy that is used to achieve fast convergence is based on

adaptive AF, which requires for some assumptions on it to be overlooked in

favor of a more efficient training procedure. Indeed, it has been seen that a

spectral similarity between the activation function and the desired mapping

gives improved performance in terms of training. The extreme version of this

approach consists in having an activation function that is modified during

the training procedure itself, creating in fact an ad hoc transfer function for

neurons. The training algorithm for such networks requires taking into con-

sideration the activation function adaptation, as well as the weights tuning.

The authors in [Wu et al., 1997] propose a simple BP-like algorithm to train

a NN with trainable AF and compare the training performance with a classic

sigmoid activation function on both XOR problem and a nonlinear mapping.
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4.1.2 AF for Fast Computation

The computational cost of an ANN can be split into two main contributions.

The first one is a linear cost, deriving from the operations needed to perform

the sum of the weighted inputs of each neuron. The second one, nonlinear,

is related to the computation of the activation function. In a computational

environment, those operations are carried out considering a particular pre-

cision format for numbers. Given that the AF is usually limited to a small

co-domain, the use of integer arithmetic is unrecommended. Fixed-point

and floating-point arithmetic are the most commonly used to compute the

ANN elementary operations. The linear part of the ANN is straightforward:

operations of products and sums are carried out by multipliers and adders

(usually found in the floating-point unit (FPU) of an embedded device). The

nonlinear part, featuring transcendental expressions, is carried out through

complex arithmetic evaluations (IEEE 754 is the reference standard) that, in

the end, still use elementary computational blocks like adders and multipli-

ers. Addition and product with floating-point precision are complex and long

operations, and the computational block that executes these operations often

features pipeline architectures to speed up the arithmetic process. Although

a careful optimization of the linear part is required to completely exploit

pipeline capabilities, the ratio between the two costs shows, usually, that the

linear quota of the operations is negligible when compared to the nonlin-

ear part. In embedded environment, computational resources are scarce, in

terms of both raw operations per second and available memory (or resources,

for synthesizable digital circuits like FPGAs and ASICs). Since embedded

applications usually require real-time interaction, the development of NN
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applications in embedded environments shows the largest contributions in

terms of fast and light solutions for AFs computation. Three branches of

approaches can be found in literature: PWL (piecewise linear) interpolation,

LUT (Lookup-Table) interpolation, and higher order/hybrid techniques.

Zero Order (LUT) Techniques

Approximation by LUT is the simplest approach that can be used to reduce

the computational cost of a complex function. The idea is to store inside the

memory (i.e., a table) samples from a subdomain of the function and access

those instead of calculating the function. The table either can be preloaded in

the embedded device (e.g., in the flash memory of a microcontroller) or could

be calculated at run-time with values stored in the heap. Both alternatives

are valid, and the choice is strictly application dependent. In the first case,

the static approach occupies a memory section that is usually more available.

In the second case, the LUT is saved in the RAM memory, which is generally

smaller than the flash; however, in this case the LUT is adjustable in case a

finer (or coarser) version is needed. A variation of the simple LUT is the RA-

LUT (Range Addressable LUT), where each sample corresponds not only to

a specific point in the domain, but to a neighborhood of the point.

First Order (PWL) Techniques

Approximation through linear segments of a function can be easily carried

out in embedded environment since, for every segment, the approximated

value can be computed by one multiplication and one addition. In [Tisan

et al., 2009] four different PWL techniques (three linear and one quadratic
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that will be discussed shortly) are analyzed considering the hardware re-

sources required for implementation, the errors caused by the approxima-

tion, the processing speed, and the power consumption. The techniques are

all implemented using the System Generator, a Simulink/Matlab toolbox re-

leased by Xilinx. The first technique implemented by the authors is called

A-Law approximation, which is based on a PWL approximation where ev-

ery segment has a gradient expressed as a power of two, thus making it

possible to replace multipliers with adders [Myers and Hutchinson, 1989].

The second technique is the Alippi and Storti-Gajani approximation [Alippi

and Storti-Gajani, 1991], based on a segmentation of the function in specific

breakpoints where the value can be expressed as sum of power of two num-

bers. The third technique, called PLAN (Piecewise Linear Approximation

of a Nonlinear Function), uses simple digital gate design to perform a direct

transformation from input to output [Amin et al., 1997]. In this case, the

shift/add operations, replacing the multiplications, were implemented with

simple gate design that maps directly the input values to sigmoidal outputs.

All the three techniques are compared together and against the classic LUT

approach. The authors conclude that, overall, the best results are obtained

through PLAN approximation.

Higher Order Techniques

Hybrid techniques try to combine both LUT and PWL approximations to

obtain a solution that yields a compromise between the accuracy of the PWL

approximation and the speed of the LUT. Higher order techniques push the

boundaries and try to represent the AF through higher order approxima-
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tion (e.g., polynomial fitting). In [Lozito et al., 2014b] authors propose a

piecewise II-degree polynomial approximation of the activation function for

both the sigmoid and the hyperbolic tangent AFs. Performance, resources

required, and precision degradation are compared to full-precision and RA-

LUT solutions. In [Kwan, 1992] a simple 2nd-order AF, which features an

origin transition similar to the hyperbolic tangent, is proposed. The digital

complexity of this function is in the order of a binary product, since one of

the two products required to obtain a 2nd-order function is performed by a

binary shift. A similar 2nd-order approximation is proposed in [Zhang et al.,

1996].

4.1.3 Weights Transformation

Different papers shown in this survey pointed out advantages and drawbacks

of using an AF instead of another one. Two very common AFs that are found

in almost any comparison are the sigmoid activation function and the hyper-

bolic tangent activation function. Considering an embedded application, as

the one suggested in [Lozito et al., 2014b], where the activation function is

directly computed by a floating-point arithmetic chain of blocks, using a sig-

moid AF instead of a hyperbolic tangent AF allows synthesizing the chain

with less arithmetic units. However, as shown in several papers, the low

derivative of the sigmoid AF makes it a poor candidate for training purposes

when compared to the hyperbolic tangent. In this final note of the section,

a set of transformation rules, for a single layer ANN with arbitrary inputs

and outputs, is proposed. The rules allow modifying weights and biases of a

NN so that changing the hidden layer AF does not change the NN output.
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Tanh to Sigmoid
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(4.2)

Eq. 4.1 and 4.2 allow an easy translation of weights and biases to switch

between sigmoid and hyperbolic function AFs ([1] denotes a 1−by−N vector,

where N is the number of output neurons). A possible strategy to exploit

these relations would be to create a tanh based ANN in a general-purpose

environment, like Matlab. Then, after the ANN has been trained, translate

the weights in sigmoid form to obtain a ANN that features a simpler AF.

4.2 Hardware Accelerators

As shown in the previous section, it is imperative to optimize the computation

of the AF. Of the several approaches presented investigated, two different

implementations are investigated: a high level solution to create a neural

network on a soft processor design, with different strategies for enhancing
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the performance of the process; a low level solution, achieved by a cascade of

floating point arithmetic elements. Comparisons of the achieved performance

in terms of both time consumptions and FPGA resources employed for the

architectures are presented. The following is an extract from the work [Lozito

et al., 2014b], additional details can be found in the original paper.

4.2.1 Nios II/f Soft Processor with Custom Instruction

The first solution attempted to implement the network on FPGA makes usage

of the soft core processor Nios II/f, released by Altera as a crypted core. This

core can be synthesized with as low as 1600 logic elements (LE) and supports

a maximum frequency of 140 MHz. After synthesis and programming on

the FPGA device, the soft core itself can be programmed and debugged in

C using a JTAG tool chain running inside an Eclipse environment. This

soft core processor supports hardware integer multiplication and division,

and up to 255 custom instructions definable by the designer. These custom

instructions can be defined at RTL level using VHDL or Verilog code, and

are synthesized as parallel blocks of the internal Nios II Arithmetic Logic

Unit (ALU) as shown in Fig. 4.1.

When a custom instruction is called from the instruction memory of the

Nios II, the operands are transferred in the custom logic and, according to the

type of custom instruction (combinatorial or sequential) the result is collected

after a definite number of clock cycles. The design is based on the Nios II/f

core, modified to have a Floating Point ALU and two Custom Instructions.

The system works with a 100MHz clock, which is replicated by means of a

PLL with a phase shift of 3 ns to control an external 8 Mb SDRAM. As shown
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Figure 4.1: Synthesis of a custom logic instruction in parallel to the Nios II ALU.

in Fig. 4.2, the processor was equipped with a standard JTAG interface for

programming and a Performance Counter to determine the execution time

of the implemented code. The Floating Point ALU was the standard block

from the library released by Altera as a part of the Quartus II environment.

Two Activation Function LUT(s) were created in VHDL (one for the Tansig

and one for the Logsig) and imported into the design as user-made custom

instructions.

For the LUT implementation, the AF was not sampled with a uniform and

constant spacing between the sampling points. This is because the activation

function assumes almost constant values near the saturation points, making

it wasteful to choose a fine sampling in their proximity. On the other hand,

near the origin, the slope of the function is very high, and a finer sampling

may help in reducing quantization error. In different works, only two kinds

of spacing are used: a fine one, near the origin, and a wide one, near the

saturation branches. In this approach, a different technique is used: the
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Figure 4.2: Implemented Soft Processor and Peripherals.

distance between a sample and the following one is inversely proportional to

the slope of the function in the sampled point. This yields a finer sampling

near the origin, gradually getting wider near the saturation points. The

Logsig function was sampled with 256 values between 16 and +16, while

the Tansig, being an odd function, was sampled for positive arguments only,

with 256 values between 0,2 and. Using these values, a VHDL combinatorial

code was written and simulated in Altera ModelSim environment for RTL

analysis. The implemented block has a single floating point input, that is

split in sign, exponent and mantissa. Through the use of a suitable IF-

THEN-ELSE chain the input value addresses a specific entry in the LUT,

that is propagated as output. If the input value magnitude is bigger than the

saturation values, a suitable constant value is propagated as output. Since

the Tansig, near the origin, can be approximated to the bisector of the first
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quadrant, values smaller than 0.2 are directly propagated in output (thus

approximating the function linearly). The synthesis result of this IF-THEN-

ELSE structure is a very long chain of comparators. Propagation of the

signal through this chain can be long, so a tunable delay of 4 clock cycles

was introduced to ensure result stability (the delay is controlled by a simple

counter that can be modified to suit the size of the LUT). As a term of

comparison with this hardware based technique, a polynomial interpolator

was implemented as well. Indeed, The basic operations of floating point

math are greatly fastened by the presence of a Floating Point ALU, and

other than speeding up the Multiplier-Accumulation part of the FFNN, this

hardware module can be used to compute a polynomial approximation of the

activation function A group of second-degree polynomials was chosen to fit

the activation functions. The coefficients of the polynomials were determined

in Matlab environment through the use of the Curve Fitting Tool. Both the

functions were fitted only for positive arguments. For the Logsig polynomial

fitting, a function (denoted as 5PY-L) composed by the superposition of

5 second-degree polynomials, has been implemented. Even if the Logsig

function is not odd, a partial symmetry is present. This was exploited for its

negative arguments: first, the value of the function is calculated considering

the absolute value of the input; then, if the input is negative, the calculated

value is subtracted by the value of 1. For the Tansig polynomial fitting,

two functions, composed by 4 and 5 second-degree polynomials have been

implemented, respectively denoted as 4PY-T and 5PY-T. This time, since

the Tansig is an odd function, the argument is considered in absolute value,

and the sign is directly propagated to the output.
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Table 4.1: Nios II/f test results on FFNN with Logsig activation functions.

Function MSE Average time/sample

Floating Point 0.0000 (ref) 650µs

LUT (Logsig) 0.1598 17.5µs

5PY-L 0.0075 185µs

Table 4.2: Nios II/f test results on FFNN with Tansig activation functions.

Function MSE Average time/sample

Floating Point 0.0000 (ref) 715µs

LUT (Tansig) 0.0053 17.5µs

4PY-T 0.0039 142µs

5PY-T 0.0018 174µs

The design was used to simulate a FFNN trained on the function y = x2,

and was tested on a vector of 2048 linearly spaced inputs between 5 and

+5. The results in Tab. 4.1 and Tab. 4.2 show the performance in terms

of mean squared error (MSE) and execution time of the different solutions

proposed above. As a reference for execution time, the performance of a

FFNN featuring a full precision software implementation of the activation

function is shown in both tables.

4.2.2 NN Core Implementation

In the following section a solution based on low level architecture is pre-

sented. The proposed design was used for the implementation of the same
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Figure 4.3: NN Core schematic diagram.

FFNN previously described. The proposed design (shown in Fig. 4.3 ) is

an arithmetic core composed by high performance floating point arithmetic

blocks developed by Altera, whose data flow is controlled by a Finite States

Machine (FSM) written in VHDL.

The arithmetic core is composed by 3 blocks: a multiplier-accumulator

(MAC), an activation function, and a feedback RAM. These three blocks con-

stitute a suitable base to build a Neural Network. The first block computes,

for each neuron, the weighted sum of the inputs. The second block has the

results of the first block as inputs, and computes the activation values for the

hidden layer. The third block, receiving the output from the activation func-

tion block, stores the values from the hidden layer. These values are then sent

through a MUX back into the MAC block for the output layer computation.

Both input and output data of the FFNN are stored in RAM blocks that are

accessible through JTAG interface using the Quartus II software. The whole
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Figure 4.4: MAC block diagram.

Core and the data banks are controlled by a free running 2-Process Finite

State Machine “Time Machine” using data flow control signals and address

registers. Internal data flow of the core is regulated by a number of 32-bit

wide MUXes and DType Flip Flops (DFFs). The design was implemented

on a EP2C20F484C7 Cyclone II FPGA mounted on a DE2 – Development

Board. After synthesis and fitting the full design occupied about 5000 logic

elements (LE) and all the 52 hardware multipliers present on the FPGA.

The computation of the arithmetic core begins by loading the first sample

from the Input Data Bank into the MAC block. The core contains into

its internal memory the weights and biases of the FFNN. This memory is

addressed directly by the Time Machine control block. Since the MAC is

computing the hidden layer, each neuron will have a bias value that must

be added to the weighted input. This bias value is preloaded into the 32-bit

DFF accumulator using the Bias MUX. Inputs and weights are multiplied

and the results are added to the preloaded bias, as shown in Fig. 4.4.
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Figure 4.5: Logsig block diagram.

Since the hidden layer has only one input, the MAC is done for the first

neuron, and the result is propagated to the next block, where the activation

function is computed. In this section, a logical not is operated on the MSB of

the input, changing its sign. The result is sent to an exponential arithmetic

block whose output is connected to an adder that sums the result to the

constant value of 1 (see Fig. 4.5). The result is then inverted and the

activation value of the first neuron is finally written in the Feedback RAM.

This operation is repeated for the 10 neurons, filling the RAM with the

activation values of the hidden layer. Then, the Time Machine switches the

Layer Select MUX so that the MAC block is now connected to the Feedback

RAM. The bias of the output neuron is preloaded in the accumulator, and

the MAC computes the weighted sum of all the activation values from the

hidden layer. This is the output result of the network, and is saved in the

Output Data Bank.

Data processing from input to output needs to be managed by some sort of

control block, responsible for synchronizing the data-flow and, were needed,

perform memory addressing. In a traditional programming language, like C,

a popular approach to create such controller is to use a finite state machine

(FSM). In its simplest form, a FSM is a set of code blocks, each identifying a
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particular function (e.g. ”load data from RAM”, ”sum input A and input B”,

”transpose array C”), inside a switch/case structure. If the FSM is the sole

controller of the system, the switch/case structure is confined in an endless

loop. The variable controlling the switch is updated at the end of each code

block, ensuring that every time the switch/case is evaluated the FSM will

execute a specific code block (i.e. will be in a known and definite state).

This rather simple approach is not as straightforward in HDL languages,

since the code is not executed by a processor, thus not inherently sequential.

Hardware, emulating the processor sequential behaviour, must be created.

A possible approach is to create an instruction counter whose value is

increased at every clock edge. By using a net of comparators, when a par-

ticular value is assumed by the instruction counter, specific logic functions

(states) are executed. Creating the FSM in this way grant an important

advantage: since the instruction counter is updated on clock edge, the FSM

can work synchronously with the other elements in the design. This is very

important when some blocks in the design have definite input-output delays,

since the FSM can be programmed to remain in a ”wait” state until the out-

put is ready to be propagated to the next block. In VHDL this architecture

can be defined by the use of two code blocks (processes), one sequential and

one combinatorial. The first one is responsible for the instruction counter

increase at every clock edge, and is synthesized with a counter register. The

second one is responsible for decoding the instruction counter into actual

logic signals, and is synthesized with a network of comparators. The cycle of

operations performed by the FSM is obviously limited, once the last opera-

tion is performed (i.e. the last output value has been loaded in the Output
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Table 4.3: Best performance comparison.

Function MSE Avg.

time/sample

F.Time (2048

Samples)

NN Core (50 MHz

clock)

0.0000 (ref) 154µs 315.4ms

NN Core (100

MHz clock)

0.0000 78µs 159.8ms

5PY-L 0.0075 185µs 378.8ms

LUT (Tansig) 0.0054 17.5µs 35.79ms

Data Bank), the FSM will reset and start over. With a 50 MHz clock, the

computation of a single sample takes about 150µs.

4.2.3 Solution Comparison

In the Tab. 4.3, a comparison of the best performances among solutions

is presented. At full precision, the NN Core design provides a quite lower

computation time than the Nios II design. Moreover, by doubling the clock

frequency through a PLL (thus using the same frequency used for the Nios

II designs, 100 MHz) the computation time drops at 78µs/sample. However,

if full precision is not needed (and the choice of a particular activation func-

tion is not mandatory), implementing a FFNN based on a Tansig activation

function yields the lowest computation time, using the Nios II design. In

particular, implementing a LUT yields the best results in terms of precision

over computation time.
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Table 4.4: Nios II/f design main resources usage by entity.

Entity LC Comb. LC Reg. DSP

Nios II CPU 2382 1799 4

FPU 5125 3783 7

LUT (Tansig) 1815 4 0

LUT (Logsig) 1617 4 0

Table 4.5: NN Core design main resources usage by entity.

Entity LC Comb. LC Reg. DSP

MAC Block 1015 620 7

Logsig Block 2784 1874 45

FSM 205 130 0

In Tab. 4.4 and Tab. 5 the resources, in terms of dedicated Combinatorial

and Register logics (LC Comb. and LC Reg.) are shown. The high level

solution is expensive in terms of resources usage, peaking with 15098 logic

elements (LE) if both the LUT(s) are implemented as custom instructions.

This is generally not necessary, since only one of the activation functions is

used in the network. By excluding the Logsig LUT from the synthesis the

LE usage drops to 12699 LE. The low level solution, although completely

saturating the DSP blocks of the FPGA, is contained in 5037 LE.
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4.3 Linear Acceleration for MISO ANN

In this section an efficient approach to compute the result from a multiple-

input-single-output Neural Network using floating-point arithmetic on FPGA

is described. The following is an extract of [Laudani et al., 2014d]. More

details can be found in the original paper. The proposed algorithm focus

on optimizing pipeline delays by splitting the “Multiply and accumulate”

algorithm into separate steps using partial products. It is a revisit of the

classical algorithm for NN computation, able to overcome the main com-

putation bottleneck in FPGA environment. The proposed algorithm can be

implemented into an architecture that fully exploits the pipeline performance

of the floating-point arithmetic blocks, thus allowing a very fast computa-

tion for the neural network. Consider the implementation on an embedded

system of a simple SISO Feed Forward Neural Network, the performance of

the system has two main bottlenecks. The first one lies in the number of

floating point multiply-and-accumulate (MAC) operations. The second one

in the complexity of the non-linear activation function. The latter prob-

lem has been addressed throughly in this work, focusing on optimizing the

performance of a NN in embedded system by reducing the complexity of

the activation function. The optimization of the MAC operations however

is often overlooked. On a low-end microcontroller unit, the floating-point

operations are carried out in software, leaving the code performance to the

capacity of the assembly compiler libraries. Many high-end microcontrollers

on the other hand figure a Floating Point Unit with dedicated multipliers

that can speed up the MAC part of the neural network computation. Sev-

eral comparative studies have been made on this topic, however, few options
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are available to the programmer to optimize the code itself.

Working on a FPGA embedded system a different approach can be fol-

lowed to enhance the Neural Network performance. The MAC algorithm is

usually carried out by using a multiplier, an adder and a one-word register to

store the partial MAC results . Since floating-point arithmetic is more com-

plex than integer arithmetic, computation blocks usually trade performance

for footprint (in terms of logic elements used) by adding a pipeline. Since the

process of multiply-and-accumulate is inherently sequential, the adder must

wait for a new multiplication result each time it updates the cumulative sum,

yielding poor results in terms of throughput. The burden of this problem

grows exponentially if the Neural Network has multiple inputs (MISO) or

more hidden layers

4.3.1 Understanding the MAC Bottleneck

In HDL language, the multiplier and adder for floating point numbers are

usually implemented with an arithmetic logic block that shows a pipeline

delay. The delay of the blocks is the time (expressed in clock cycles) between

the first input getting in and the firstoutput going out. After this initial

delay has expired, the data will output with the same cadence (even clock-

wise) it was input. Suppose a multiplier block with 3 clock cycles delay. If

data is presented at t = 0, 1, 2, 3, 4, the result of the multiplication can be

collected at t = 3, 4, 5, 6, 7. Now suppose a “multiply-and-accumulate” block

as the one shown in Fig. 4.6, where the multiplier and the adder have both

10 clock cycles delay. The first two factors are loaded in the multiplier at

t = 0. At t = 10, the output is available at the input of the adder, which
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Figure 4.6: A “multiply-and-accumulate” block with input, weights and biases.

can start the computation and complete it after 10 cycles (t = 20). Once

the computation is completed, the adder can update the 32-Bit accumulator.

Since only after the accumulator has been updated the next sum can begin,

exploiting the blocks pipeline is impossible: if two data were sent in the

multiplier at t = 0, 1 the second product would be ready at t = 11. At this

time, even if the adder could start a pipelined sum, one of the operands (the

one from the accumulator) would not be ready for another nine clock cycles.

In conclusion, the adder delay limits the throughput of the MAC.

4.3.2 A more efficient approach for MAC

The solution to this problem is twofold: first, the multiplier timing must be

decoupled from the adder; second, a particular approach for the adder must

be followed to allow a synchronization between the end of a sum and the

beginning of a new one. The first problem can be easily solved by storing

the partial products of the neurons in a buffer memory. Since the results



CHAPTER 4. COMPUTATIONAL COSTS OF AN ANN 153

are all stored, the data can be sent into and collected from the multiplier

at full speed. The synchronization of the adder is a more complex matter.

For each of the m neurons in the layer, a total of n partial products must

be summed. The total sum of n numbers requires n − 1 operations, with a

variable number of operations requiring the result of a previous sum. For

easiness, we will suppose the worst case where all the operations but the first

one will require a previous result.

• n1 + n2 = n12

• n12 + n3 = n123

• n123 + n4 = n1234

• ... and so on.

Supposing the adder has a 10 cycles delay, between each sum, at least

10 cycles must pass. However, during this delay the adder can compute the

sums for the other neurons.

• n1 + n2 = n12 Neuron1

• n1 + n2 = n12 Neuron2

• n1 + n2 = n12 Neuron3

• ...

• n1 + n2 = n12 Neuron9

• n1 + n2 = n12 Neuron10
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• n12 + n3 = n123 Neuron1

• n12 + n3 = n123 Neuron2

• ... and so on.

Obviously, this calls in some considerations on the pipeline delay size. If

the pipeline delay d is equal to m,the system will be inherently synchronized.

If d is larger than m, the computation time for the sum will be the same as

the one required for a layer of d neurons. If d is smaller than m, the system

could go out of synchrony, since the results from the previous computation

would arrive too early. It is possible however to increase the pipeline depth of

any block by adding a cascade of delay registers to the output. In conclusion,

the larger between d and m determines the computation time for the sum.

4.3.3 MISO NN Core

The algorithm proposed in the previous section was implemented in FPGA

environment. The architecture, shown in Fig. 4.7, is composed by a cascade

of high performance arithmetic blocks developed by Altera, whose dataflow

is controlled by a dedicated ControlBlock running a Finite State Machine

coded in VHDL. The proposed architecture can compute a 10 inputs MISO

NN with 10 neurons in the hidden layer. Four main blocks can be identified

in the architecture: the MAC block, the Activation Function, the Control

Block, and the Memory block. Each of these blocks will be discussed.

MAC The MAC block is responsible for the execution of the enhanced

“multiply-and-accumulate” algorithm previously show. Input data and weights
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Figure 4.7: The MISO NN Core as implemented on FPGA.

are fed to the multiplier, which stores the results in the 256x32-Bit RAM.

As it can be seen, whereas the connection between RAM and multiplier is

unidirectional, the connection with the adder is bidirectional. The reason

lies in the “-and-accumulate” optimization: the adder must be able to read

the partial products while writing the results in the RAM itself. Amongst

other reasons, this is why the RAM must be of dual access type. As it can

be seen, the Adder is isolated from the outside architecture even if the biases

for the neuron could be sent directly as input. Instead, when needed, the

biases are (pre)loaded in the RAM.

Activation Function This block computes the activation function of the

ANN. The first operation needed is a sign change, achieved through a logi-

cal not on the MSB of the input, representing the sign of the floating-point
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value. The result is fed to an exponential arithmetic block whose output

is connected to an adder that sums the result to the constant value of one.

The result of the sum is then inverted and the result (the activation value of

the neuron) is propagated to the output. Since in this case the operations

are independent, the three pipelines were used in simple cascade without the

need for a buffer RAM. A note on the choice for the activation function is

necessary: this particular function was chosen, instead of the more common

tansig activation function, for the easiness of implementation in FPGA envi-

ronment: the arithmetic for a tansig activation would require an additional

adder and multiplier. However, as shown before in this work, it is possible to

transform an ANN from tansig to logsig based by simple weight adaptation

relationships.

Memory The memory block is a set of 32-Bit RAM units. The blocks

holds the input values, the weights and the biases of the NN. These blocks

are accessible by JTAG interface for online programming. The Feedback

block is used to store the values from layer to layer: it is connected via

multiplexer to the multiplier along with the NN input. As the first layer

computing is completed, the second layer receives as input the results from

the previous layer.

Control Block A control block is required to manage data processing from

input to output. The block needs to synchronize the dataflow according to

the pipeline delays, thus sending and recovering data at specific times. Along

with this, it is responsible for memory addressing. The data flow of the entire

system is organized by the control block. The following routines are executed
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in overlap to maximize the throughput; The type of operation performed can

be of either loading a pipeline with operands, or recovering the results from

it. The only exception, beside the initialization, is the READ PP routine,

where the pipeline is loaded and unloaded continuously.

For the Hidden Layer we have:

• LOAD MULT F: The input RAM and the weights RAM are connected

to the multiplier. All the inputs and weights are sent to the multiplier

clock-wise.

• LOAD PP: The output of the multiplier is connected to Port A of the

dual access RAM. The partial products are stored in the RAM.

• READ PP: This routine computes the sum of the partial products.

Port A of the RAM is connected to the input of the Adder. Port B of

the RAM is connected to the outputof the Adder. The accumulated

result is written in base 10 memory positions: neuron 1 in 0x000, neuron

2 in 0x00A, neuron 3 in 0x014.

• LOAD BS: Port B of the RAM is connected to the biases RAM. The

biases are loaded in base 10+1 positions: neuron 1 in 0x001, neuron 2

in 0x00B, neuron 3 in 0x015.

• SUM BS: This routine sums the biases to the accumulated partial prod-

ucts. Note that after this routine is completed, the base 10 positions

of the dual access RAM will have the net values of the neurons.

• LOAD AF: Port A of the RAM is connected to the input of the acti-

vation function chain. The netvalues of the neurons are sent through
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the chain clock-wise.

• WRITE AF: The Feedback RAM is connected to the output of the

activation function chain. The results from the activation function are

stored in the RAM.

And, for the outut layer:

• LOAD MULT F2: Analogous to LOAD MULT F, but with the output

layer weights.

• LOAD PP: As above.

• READ PP: As above.

• LOAD BS F2: Analogous to LOAD BS, but with the output layer bi-

ases.

• SUM BS: As above.

4.3.4 SISO-MISO-MIMO scalability

It can be seen that the output layer routines are as time-consuming as the

hidden layer routines. This should be not expected if the network is a MISO

architecture. For example, a 10-10-1 network would require 100 products and

sums for the hidden layer, but only 10 products and sums for the output layer.

In this architecture, both the hidden layer and the output layer performs

the same number (100) of operations, but in the output layer, 90 of the

100 weights are null.This may appear as a waste of time resources, but two

aspects must be discussed. First, only the multiplier routines throughput
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Figure 4.8: Memory arrangement for architecture tuning.

could be increased. The adder routines throughput, as explained above, are

limited by the adder pipeline delay. The delay cannot be reduced because of

the hidden layer size. Another adder, with a specific pipeline delay for the

output layer could be implemented, but at the cost of incrementing the used

resources. Second, by computing the output layer with the same routines

used in the hidden layer, the architecture can be used for both a MISO NN

and a MIMO NN. In fact, by modifying the weights and biases null elements,

this architecture can work as a SISO, MISO or MIMO. In Fig. 4.8, three of

the possible configurations for the network are shown. Each couple of tables

represents the RAM containing the weights of the NN.
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The memory content was rearranged on rows of 10 elements. The red

elements are non-null values, the gray elements are null values. The Hidden

Layer table is filled analogously as the weight matrix (or column, in case of

single input), with the conceptual difference that the matrix size corresponds

to the size of the non-zero area in the table. In the Output Layer table, the

width of the non-zero area is bound to the height of the Hidden Layer table

(i.e. the number of hidden neurons), while its width is the number of outputs

desired for the network. The Bias memory arrangement is simpler and does

not require a graphic explanation. The column vector of the biases for the

Hidden Layer goes from 0x000 to 0x00A, while the one for the Output Layer

goes from 0x00B to 0x014.

4.3.5 Performance

To evaluate the performance of the proposed architecture, the three con-

figurations (SISO, MISO, and MIMO) were implemented in different envi-

ronments, profiling the code execution. All the networks had 10 neurons

in the hidden layer. The MISO architecture had 10 inputs and 1 output.

The MIMO architecture had 10 inputs and 10 outputs.Four different envi-

ronments were chosen for the validation: Matlab, an x86 architecture, Nios

II Soft Processor for FPGA and a Cortex M4A ARM Microcontroller.

Matlab The NNs were computed by taking advantage of the matrix arith-

metic functions implemented in Matlab language. Matlab was running on a

Windows 7 64-bit Core i3 machine with 2 GB of RAM.
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Figure 4.9: Performance comparison between different programming environments.

C code on x86 The network was implemented using nested for loops and

single precision floating point functions from the ANSI C library. The code

was compiled using Tiny GCC Compiler and was executed on the same ma-

chine as above.

FPGA Nios II Soft Processor This is the same soft-processor used in

the previous section for AF acceleration. The processor has both hardware

multipliers/dividers and a dedicated Floating Point Unit. The clock for this

processor was 100 MHz. The same C code used for x86 architecture was used

for this test.

Cortex M4A ARM Microcontroller The LM4F120XL microprocessor

by Texas Instruments was used as deployment platform. This microcontroller
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runs at 80MHz and, like the Nios II, has a dedicated Floating Point Unit.

As above, the same C code for the x86 architecture wasused.

MISO NN Core The computation time for the MISO NN Core is 17us

on a 50MHz clock. The computation time is the same for both SISO, MISO

and MIMO architectures. The resource footprint for the design is 5492 Logic

Elements, about 100kbit of memory, and 52 9-bit multipliers. The results

are shown as a comparative histogram in Fig. 4.9.



Part III

Applications

163



Chapter 5

MPPT for Photovoltaic Devices

The use of Photo-voltaic (PV) devices for centralized and/or distributed

power generation requires a control system to correctly and efficiently har-

vest the electrical power generated by the panels, because of the intrinsic non

linearity of the current-voltage characteristic (I/V ) of the panel. The max-

imum power point (MPP) on this curve (VMPP , IMPP ) lies near the knee of

the curve: from this point any higher voltage level causes a current dropping

and a lower power extraction, as a consequence. Then, the control system

device tries to keep the device working point as close as possible to the point

of maximum power. It performs this task by controlling the input resistance

of the DC/DC converter that is (usually) connected to the output of the PV

device. On the other hand, the calculation of the VMPP , IMPP point it is not

trivial since the I/V characteristic of a particular panel depends on (among

constructive parameters) environmental conditions such as temperature (T)

and irradiance (G) as shown in 5.1. The relationship between the I/V char-

acteristic of a panel and the parameters is still an open problem. Even if

164
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Figure 5.1: Current vs Voltage and Power vs Voltage characteristics with two

different environmental conditions (irradiance and temperature).

a circuital model of the device is currently adopted, the characteristic (and

the VMPP , IMPP point) can be calculated analytically, anyway. The model

generates a set of characteristics which are function of the environmental con-

ditions and, whereas the temperature is easy to be measured, the irradiance

is complex to be measured correctly.

Different approaches proposed both in scientific literature and in indus-

trial applications try to avoid the model identification by tracking the opti-

mum power point iteratively, changing the working point until an optimum

condition is reached. Common examples are the Perturb and Observe (PO)
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method and the Incremental Conductance (IC) method. Both of these meth-

ods do not require an a priori knowledge of the irradiance value. As a draw-

back, their step-like control causes bad convergence on the MPP, oscillations

and a non fixed computational time. A completely different approach can be

followed by using a NN (Neural Network) for the MPP traking (MPPT). This

approach, recently proposed in literature [Mahamad and Saon, 2014,Vincheh

et al., 2014,Liu et al., 2013,Punitha et al., 2013,Carrasco et al., 2013], uses

a set of different curves generated by the mathematical model for different

temperature and irradiance conditions. This set is used to train a NN. Also

this approach requires a temperature measurement, but needs just a single-

iteration for the solution to the MPPT problem. Moreover the solution is

robust versus abrupt changes in climatic conditions, whereas the iterative PO

and IC usually fail to converge. In this chapter, two approaches to implement

an ANN based MPPT controller will be presented. The first one is based on a

high-end device (an ARM microcontroller) and use both a MLP architecture

and a FCC. The second is implemented on a low-end 8-bit device.

5.1 The One-Diode Model for PV Devices

The basic component of a complex PV device is the PV cell. One of the most

commonly used model to represent it is a circuit composed by a single diode,

as the one shown in Fig. 5.2. Different models, with different parameters,

exists in literature. Among these, the one featuring a single diode and five

control parameters is by far the most used one. This model is addressed in

literature as One-Diode Model or Five Parameters Model. By com-
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Figure 5.2: Circuital ”one diode” model for a PV device.

bining a number of cells in series, a PV module is done. By connecting a

number of PV modules in series/parallel, a PV Array is obtained. The I/V

characteristic of the cell is shown in Eq. 5.1

I = IIrr − I0
[
exp

(
q (V + IRS)

nkT

)
− 1

]
− V + IRS

RSH

(5.1)

where IIRR is the irradiance current, I0 is the saturation reversal current of

the diode, RS is the series resistance, RSH is the shunt resistance, n is the

ideality factor, T is the temperature, k is the Boltzmann constant and V and

I are the current and voltage of the cell. Considering NS cells in series and

NP modules in parallel, a simple extension of this equation makes it valid for

modules and arrays.

I = I ′Irr − I ′0
[
exp

(
q (VA + IAR

′
S)

NSnkT

)
− 1

]
− VA + IAR

′
S

R′SH
(5.2)

Were the new parameters shown in Eq. 5.2 are defined in Table 5.1 and

VA and IA are the voltage and the current of the array respectively.

In Eq. 5.1, the variables n;RS; Iirr; I0, RSH can be expressed as a func-

tion of temperature, irradiance, and their reference value at SRC (Standard

Reference Conditions, Tref = 25◦C and Sref = 1000W/m2 ). The following
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Table 5.1: Symbol equivalence for PV Arrays

PV Module Parameter PV Array Parameter

NP IIRR I ′IRR

NP I0 I ′0

NSRS/NP R′S

NSRP/NP R′P

equations can be used to update the n;RS; Iirr; I0, RSH parameters by their

temperature and irradiance dependence.



n = nref

RS = RS,ref

Iirr = S
Sref

[Iirr,ref + αT (T − Tref )]

I0 = I0,ref

[
T
Tref

]3
exp

[
Eg,ref

kTref
− Eg

kT

]
Eg = 1.17− 4.73× 10−4 × T 2

T+636

RSH =
(
Sref

S

)
RSH,ref

(5.3)

where Eg,ref is the band gap energy at Tref = 298.16K.

5.1.1 Model Identification

The problem of identification for the circuital model of a PV device is an

actually open problem in the scientific community. The goal is, indeed, to

find a particular model behaving like the device it is representing. Two

strategies have been proposed in literature to solve such problem, one us-
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Figure 5.3: Identification of the 5 Parameters Model through experimental curves.
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ing experimental curves, the other using values from the device datasheet.

Identification from experimental curves basically consists in solving a Least

Squares problem, where we take into account the discrepancy between the

response (current) of the model given an excitation (voltage), and the corre-

sponding response from the experimental data. A schematic representation of

the problem can be seen in Fig. 5.3. The problem is non-linear, multi-modal,

and prone to finding non physical solutions. This means that the quintuplet

of parameters n;RS; Iirr; I0, RSH found by the optimization algorithm may

lack a physical meaning (i.e. they could be negative). Still, this technique

is widely used in literature. Indeed, either the experimental data is taken

at SRC, or the conditions of T and S should be known so that 5.3 can be

used to derive the SRC model. The second technique of identification make

use of datasheet values to create a system of non-linear implicit equations

constraining the model to a single quintuplet of parameters. The values used

by the datasheet are:

• Open circuit voltage VOC .

• Short circuit current ISC .

• Maximum power voltage and current VMPP , IMPP .

• Temperature coefficient α of open circuit voltage.

The first three values are used to impose, respectively, the passage of the

model curve by the three points of open circuit, short circuit and maximum

power. Then, a fourth equation is added, considering this time the power

versus voltage curve P (V ). In this equation, a null derivative for the power
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versus voltage curve is imposed in the point of maximum power. This equa-

tion is necessary because imposing that the model passes by VMPP , IMPP does

not guarantee that such point will be the one of maximum power. For the

last equation, several options are available. The curve may be constrained

to pass on an additional arbitrary point, or the derivative near open circuit

may be imposed. A common approach however is to use the temperature co-

efficient α to force a particular temperature behavior at open circuit. It has

been seen [Laudani et al., 2014b, Laudani et al., 2013a] that the first three

equations (Open Circuit, Short Circuit and Maximum Power Point passage)

can be re-formulated as explicit relationships expressing three of the param-

eters (Iirr; I0, RSH) in function of the other two (n;RS). The advantages are

several:

• The problem dimensionality is reduced to two parameters from the

original five.

• The problem becomes convex.

• The (n;RS) parameters can be searched in a closed domain (the original

five parameter problem had a semi-open domain {n;RS; Iirr; I0, RSH} ∈
R5 ≥ 0)

This method can be applied, with slight differences, to model identifica-

tion through experimental curves. More details can be found in [Laudani

et al., 2014a].
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5.2 MPPT through MLP and FCC Neural

Networks on ARM devices

The following is an extract of [Lozito et al., 2014a] where the problem of im-

plementing the MPPT control system through a Neural approach has been

discussed for high-end devices. For this work, two architectures have been

used and the obtained results compared in terms of accuracy and compu-

tational costs. The choice of a NN architecture usually falls on the most

common and simple network for non-linear classification and interpolation,

the Multi Layer Perceptron (MLP). As shown in previous section, in this ar-

chitecture, the neurons are organized in subsequent layers, with connections

made according to the Feed Forward configuration (no connections between

neurons of the same layer, and each neuron of a layer is connected to all

the units of the next one). By definition, the MLP can have an arbitrary

number of hidden layers. However, by choosing a to implement just a single

hidden layer, the structure of the NN is univocally determined by knowing

that layer size. Even if a MLP with a single hidden layer (arbitrarily large)

can interpolate any given function, complex problems may require a very

high number of neurons to be correctly solved, with risk of oversizing the

network and losing in generalization capabilities [Fulginei et al., 2013]. For

this reason, the problem at hand was approached with the FCC architecture

as well. As previously shown, the FCC is composed by a sequence of single-

neuron layers, and the output of each neuron is propagated both to the next

layer, and to all the subsequent layers down to the exit neuron. The FCC

enjoys the same property of the single hidden layer MLP: by knowing the
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Figure 5.4: Estimating the maximum power point by means of temperature and

irradiance.

number of neurons, the network architecture is univocally defined. Instead

of training this network with the classical EB (error backpropagation) or LM

(Levember-Marquardt) algorithms, the faster Neuron-by-Neuron algorithm

was used.

5.2.1 Training Dataset and Neural Network Genera-

tion

Since the purpose of the ANN is to predict an optimal value VOPT as close

as possible to VMPP for any given condition of G and T , the training pattern

for the network should ideally have as inputs G and T , and as output the

VMPP specific for those environmental conditions, as shown in Fig. 5.4.

This is because, for each G and T , a characteristic I/V curve exist, fea-

turing a specific VMPP , IMPP point. Such an approach is correct, but the
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Figure 5.5: Estimating the maximum power point by means of the actual work

point (V, I) and temperature (T).

network would require the irradiance measurement G, which is supposedly

unavailable. However, instead of using both environmental values, by know-

ing just the temperature and the actual working point, a specific I/V char-

acteristic (and thus, VMPP point) is still defined. By using this approach,

the NN configuration is composed by 3 inputs (the actual voltage, current

and temperature) and one output (the predicted optimal voltage VOPT ).

By using an identified model such as the One-Diode, a set of I/V curves

for different values of G and T were generated. Then, for each curve, the

VMPP point was calculated, and associated to each point of the I/V curve.

The resulting dataset was used to train a set of FCC and MLP networks,

with different numbers of neurons. Among all the trained NN, the smallest

networks yielding a training error of 1e − 6 were chosen. For the MLP, a

single hidden layer network with 20 Neurons in the hidden layer was chosen.
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Figure 5.6: MPPT system overview.

For the FCC, a network of 10 Neurons (that is 10 layers) achieved the same

results.

5.2.2 Functional Overview

The proposed system can be seen in Fig. 5.6 . The PV device is connected to

a DC/DC link via a CSM (Current Shunt Monitor) that allows a precise and

noise-free sensing of the load absorbed current. The voltage can be measured

directly at the output of the PV device (obviously a level adapter stage must

be considered to scale down the PV voltage to the ADC dynamic range).

For the temperature, an external thermometer DS18B20, mounted near the

PV device can be used to monitor in real time the panel temperature. This

particular thermometer communicates via 1-Wire interface, which is not im-

plemented as a standard interface on the LM4F120H5QR microcontroller.

However, a fast enough UART port (113kbps) can be configured to emulate
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the 1-Wire interface. The three digital values are processed inside the micro-

controller unit: the natural values of current, voltage and temperature are

calculated in floating point precision, they are scaled on a range between -1

and +1, and they are sent as input to the ANN. The output of the NN is

de-normalized, converted into an SPI control string and sent to the DAC.

The TLC5615CP is a 10-Bit SPI controlled DAC, and is used to generate

the voltage reference used by the DC/DC to modulate the input resistance

so that the PV module works near the MPP.

5.2.3 Microcontroller Code Implementation

The LM4F120H5QR Microcontroller, mounted on the Stellaris Launchpad

R©LM4F120XL board, can be programmed using CCS (Code Composer Stu-

dio) IDE via ICDI (In-Circuit-Debug-Interface). The CCS development en-

vironment allows an easy implementation of the Matlab algorithm in C lan-

guage, automatically translated and optimized by a dedicated compiler in

assembly language. The code is structured as a FSM (Finite State Machine)

featuring the following routines.

• Initialization: This routine configures the microcontroller central sys-

tem and enables the TIMER0, SPI, ADC, UART and FPU (Floating

Point Unit) peripherals.

• SenseInputs: This routine performs three tasks: first, it reads the ana-

log values of current and voltage from the ADC. Then, it interrogates

the DS18B20 thermometer for a temperature reading. Last, it converts

the sensors data into floating-point real values.
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• ProcessNN: This routine process the data through the neural network:

data is first normalized between +1/-1, then it is elaborated by the

NN, and the output is de-normalized.

• SPIControl: This routine performs a preliminary check on the data

generated by the ProcessNN routine to ensure the voltage is inside the

dynamic range of the DAC. Then, it translate the voltage value in a

control string and sends it through SPI interface to the DAC.

5.2.4 Neural Network Optimization

For the present work, both the FCC and the MLP architecture were imple-

mented on the microcontroller unit to understand which solution could give

the best results in terms of computational speed, occupied memory and pre-

diction accuracy. To retain a computational accuracy, the data going through

the ProcessNN is coded using floating-point precision. Then, all the network

weights and non linear functions must be calculated using this format. The

LM4F120H5QR microcontroller is built around a fast ARM Cortex M4F

that is capable of a great performance on integer arithmetics. However, to

achieve similar performances on floating-point arithmetics, a mathematical

co-processor must be used. The FPU (Floating-Point Unit) included in the

microcontroller performs 32-bit instructions for single precision (float) data-

processing operations. It supports add, subtract, multiply, divide, square

roots and multiply-accumulate in combined instructions (Fused MAC). The

computational cost of a Neural Network can be split in two main contributes.

The first contribute comes from the linear part of the network: the sum of the
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weighted inputs for each neuron. The second lies in the activation function,

which is usually non-linear. The Fused MAC allows a very quick computa-

tion for the linear part of both the FCC and the MLP. However, the non

linear part, even considering the FPU acceleration, can still build up to a

considerable quote of the computational time. Different solutions, with dif-

ferent advantages and drawbacks, were considered for the activation function

implementation:

• Full Precision: the activation function is computed explicitly, yielding

the slowest and most accurate result

• Polynomial Interpolation: By taking advantage of the hardware multi-

pliers present in the FPU, the activation function can be approximated

by a polynomial. This solution is faster than the Full Precision, but

less accurate.

• Lookup Table: A sampled version of the activation function is loaded in

the microcontroller memory, and is addressed as needed. This solution

is the fastest, and the precision can be scaled according to the memory

availability.

To determine the precision reduction introduced by the Polynomial and

LUT implementations, both the options were investigated prior implemen-

tation on the MCU. The two NN previously identified were implemented

in C code and compiled for x86 architecture, and thoroughly tested on all

their dynamic range. In table 5.2 the results from the precision comparison

between the Full Precision solution and the Polynomial / LUT options are

shown for both the MLP and FCC.
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Table 5.2: Precision degradation using different activation function.

Architecture Act.Function MSE [V]

MLP (20 Neurons)

F.Precision 0 (ref)

Polynomial 1.66e-4

LUT (256) 1.05e-2

FCC (10 Neurons)

F.Precision 0 (ref)

Polynomial 3.29e-4

LUT (256) 8.41e-3

5.2.5 Prototype implementation

To test the approach practical feasibility a prototype board, featuring a low

power solar cell was implemented. A schematic representation of the board

is shown if Figure 5.7. The circuit is powered by a 9V battery, and a sec-

ond 5V line is derived using a TPS7250Q LDO Voltage Regulator. This

secondary line powers the TLC5615CP DAC and a voltage reference branch

composed by two forward diodes and a current limiting resistance. The three

operational amplifiers LM258 are powered directly by the 9V line. The cir-

cuit is built around a low power Mono-Si solar cell KXOB22-01X83 rated

4V / 3.8mA. The two operational amplifiers shown on the right of the cell

in Figure 5.7 decouples the cell itself from the ADC input of the MCU. The

top unit gain is negative, since the LM4F120H5QR ADC voltage reference

is 3.3V, and the maximum rated output from the cell is 4.7V. The bottom
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Figure 5.7: Test prototype circuit.

unit gain on the other hand is positive: the maximum rated current from

the cell is 3.8mA, so the maximum voltage across the 10 Ω sensing resis-

tor is 38mV, which needs to be amplified to be correctly monitored by the

MCU’s ADC. On the left part of the circuit, the work point tracking system

is implemented. The temperature of the cell is monitored by the DS18B20

1-Wire Temperature Sensor, which is connected to the MCU GPIO. The

TLC5615CP DAC is directly connected to SPI interface, and uses as refer-

ence voltage the one generated across the two forward diodes in the reference

branch. The voltage output of the DAC is buffered and used to set the work

point on the KXOB22-01X83.
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Table 5.3: Code profiling and memory footprint for different implementations of

FCC and MLP Neural Networks.

NN Act.Function Memory Cycles

MLP

(20 Neurons)

F.Precision 4730 56770

Polynomial 3054 14179

LUT (256) 5010 4404

FCC

(10 Neurons)

F.Precision 4646 23052

Polynomial 3166 7890

LUT (256) 4822 2078
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Figure 5.8: A screenshot of web-server internet page, showing temperature, volt-

age, current measured and irradiance predicted by neural system. .

5.2.6 Code profiling and memory footprint

All the service routines for initialization and peripheral control were imple-

mented using the TI Peripheral Drivers Library. Since a pre-compiled version

of these routines exists in the LM4F120H5QR Read-Only Memory, the foot-

print for system control is negligible and below 2kb of memory. The NN

routine, on the other hand, is consistent on both the required memory and

the computational time. In table 5.3 the required memory and the clock cy-

cles per sample of both the FCC and the MLP architectures is shown. Both

architectures were implemented with full precision activation function, a II

degree five-pieces polynomial, and a 256 values Lookup Table.

5.3 MPPT on a low-cost device

The following section is an extract of [Laudani et al., 2014c] where the max-

imum power point tracking algorithm, based on the neural approach, is em-

bedded in a low-cost 8-bit microcontroller. The obtained device can correctly
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track the maximum power point even under abrupt changes in solar irradi-

ance and improves the dynamic performance of the power converter that

connects photovoltaic power plants into the ac grid. This neural system is at

the same time quick and low cost since it is implemented in a cheaper than

5$ microcontroller, but also evaluates the MPP by just one computational

step with a very high accuracy. The low cost micro-controller based system

also allows us to have direct interface with the neural system and provides for

a straightforward calibration and interfacing via RS232, RS485 or Ethernet

with the rest of control system of the PV power plant.

The approach followed is the same as shown in the previous section us-

ing a MLP network, but this time, it is implemented on a different, low-end

device. In particular, the NN algorithms, designed by using MATLAB pro-

gramming environment, have been adapted to run in an embedded system

(SBC 65 EC by Modtronix), built around the microcontroller PIC18F6627

(Microchip Technology Inc.). This microcontroller belongs to the low–cost

low–power PIC18/8–bit family, featuring a 4 kB RAM memory and a 96

kB reprogrammable flash memory; 12 10-bits AD converters; and SPI, I2C,

and RS232/RS485 interfaces. Furthermore, the microcontroller can be inter-

faced to a personal computer through a RS232/RS485 or an Ethernet cable.

Choosing an inexpensive microcontroller is essential for a low–cost imple-

mentation, then an 8–bit microcontroller has been utilized. In addition, the

SBC 65 EC can be used also as web server, allowing to manage the opera-

tions of the system by means of a remote internet connection. Specifically,

the developed software for the microcontroller consists of a set of initializ-

ing functions and a main process. The latter controls the peripheral units,
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manages the communication protocols, acquires the input data (current and

voltage of PV array terminal by using analog/digital converter embedded in

microcontroller and temperature from an one–wire sensor Maxim Integrated

model DS18B20), executes the implemented NN routines, and outputs the

optimal voltage reference.

All the routines of the program have been written in C language, devel-

oped by means of MPLABX IDE and compiled by means of Microchip C

18 compiler. It returns a HEX code file that is downloaded into the micro-

controller by using a simple Ethernet connection. The routines have been

written taking care not to consume too memory and power of the micro-

controller, and also the neural network configuration has been studied in

order to be extremely efficient and accurate with a low number of layers and

neurons. The whole set of NN routines occupies less than 15kB in terms

of source code and less than 1.5k bytes for data. The results obtained by

using the microcontroller were compared to those returned by the MATLAB

implementation and none remarkable differences have been noted. Lastly, it

is important to emphasize that the aforementioned features of the embedded

system allows a very easy way to reprogram the microcontroller and also, if

needed, to change the weight and the biases of NN in order to recalibrate

the device or to include new customized features. In addition, the web server

implemented in SBC 65 EC allows remote controlling operations of the PV

plant. Indeed, it is possible to check the status of voltage, current, temper-

ature and predicted irradiance of the PV system and to store all these data

for further elaborations. An example of screenshot of the web server page is

shown in figure 6.



Chapter 6

Solar Irradiance Assessment

Solar irradiance is the power per unit area produced by the Sun in the form

of electromagnetic radiation. Irradiance may be measured in space or at the

Earth’s surface after atmospheric absorption and scattering. Total solar irra-

diance (TSI), is a measure of the solar radiative power per unit area normal

to the rays, incident on the Earth’s upper atmosphere, that accounts for an

average of 1366W/m2. Roughly half of this power lies in the infrared part

of the spectrum. The Sun’s rays are attenuated as they pass through the

atmosphere, leaving maximum normal surface irradiance at approximately

1000W/m2 at sea level on a clear day. When 1367W/m2 are arriving above

the atmosphere (as when the earth is one astronomical unit from the sun),

direct sun is about 1050W/m2, and global radiation on a horizontal surface at

ground level is about 1120W/m2. This quantity can be a theoretical assess-

ment for a clear day, unfortunately, climatic conditions (e.g. the movement of

clouds) makes the solar irradiance a difficult quantity to estimate in practical

scenarios. Indeed, solar irradiance is a critical quantity to assess in PV ap-

185
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plications. Knowing solar irradiance value allows an optimized management

of photovoltaic (PV) power plants in terms of produced energy. Indeed, the

operating point at which a PV array delivers its maximum power changes as

a function of the solar irradiance, temperature and shading conditions. As

shown in the previous chapter, if the solar irradiance and cell temperature

are sensed, one might theoretically compute the Maximum Power Point and

directly act on PV modules by forcing them to operate at that point. Un-

fortunately, although sensing temperature is easy, the measurement of solar

irradiance is expensive: for this reason, the irradiance sensors are seldom

utilized in photo-voltaic power plants. Instead, indirect methods are imple-

mented to maximize efficiency. PV modules are the main building blocks

of PV power plants, which usually span over a large geographical area with

non uniform irradiance. Indeed, one of the most important issues related to

a good working of a PV plant is the partial shading, a non-uniform irradi-

ance that significantly decreases the power delivered by solar photo-voltaic

arrays [Velasco-Quesada et al., 2009]. In addition, a sensor in situ mounted

on the PV panel can also account for its inclination and can generate real

time irradiance data for MPPT control algorithms. Obviously, as the solar

sensors on the market are not cheap, using these devices for each PV module

would be too much expensive for the energy producers.

In the following, an extract of the work [Oliveri et al., ] will be presented,

where two circuit architectures for the estimation of the solar irradiance based

on simple measurements are proposed. They are thought to be part of a

centralized system implemented on FPGA (Field Programmable Gate Array)

for sensing and monitoring of solar irradiance in a whole PV plant. The
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FPGA centralized architecture could allow for a real time irradiance mapping

by exploiting information coming from several low-cost measuring circuits

suitably allocated on the PV modules. Validations on real irradiance data

collected by the U.S. Department of Energy’s National Renewable Energy

Laboratory are presented. Following the presentation of this method for

the indirect estimation of solar irradiance, a method for prediction of this

quantity by means of a dynamic ANN will be briefly shown.

6.1 FPGA based Solar Irradiance Virtual Sen-

sors

In this section two circuit architectures implementing virtual sensors for the

estimation of the solar irradiance based on simple measurements are pro-

posed. Thanks to their small size and high speed, these architectures can

constitute the main building blocks of a centralized system implemented on

FPGA (Field Programmable Gate Array) for sensing and monitoring solar

irradiance in a whole PV plant. Indeed, owing to its high performance,

the FPGA centralized architecture could allow for a real time irradiance

mapping by exploiting information coming from several low-cost measuring

circuits suitably allocated on the PV modules (see Fig. 6.1 for a schematic

representation)

The first architecture implements a neural-network-based virtual sensor.

The neural network approach is widely adopted for virtual sensors for PV

applications. In this case the chosen architecture implements a recently pro-

posed low–cost and extremely accurate virtual solar sensor based on a neural
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Figure 6.1: Sketch of the centralized measurement of solar irradiance for a whole

PV plant by using suitable measuring circuits installed on PV modules.
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Figure 6.2: Schematic of the proposed solar irradiance measurement.

network (NN) algorithm [Mancilla-David et al., 2014], appositely tailored

for the estimation of the irradiance from the knowledge of voltage, current

and temperature of a PV cell. The second architecture implements a novel

virtual irradiance sensor, based on piecewise-affine functions defined over

uniform simplicial partitions (PWAS functions). This solution generally ex-

hibits a lower accuracy with respect to the NN-based approach, but allows

for a reduction of both circuit complexity and latency.

6.1.1 Measurement Circuit

The indirect measurement of the irradiance is based on the operating point

of the device (i.e. current and voltage) and its temperature. In order to

sense V , I and T , a suitable measuring circuit must be used. The solution

proposed in [Mancilla-David et al., 2014] (sketched in Fig. ) consists of a

low-cost PV element (composed by a series of few solar cells), a temperature

sensor and a known testing resistor Rtest , suitably chosen according to the

PV cell I – V characteristic. The aim of this circuit is to measure the current
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I , the voltage V across the cell terminals and the cell temperature, T. These

three quantities are fed through analog to digital converters (ADCs) into the

virtual sensor implemented in FPGA, which computes the estimated solar

irradiance.

6.1.2 Virtual Sensors

Two different irradiance virtual sensors are considered . The first one (which

relies on a NN) has been proposed and successfully applied in [16], but a

FPGA implementation was not available. The second one is a novel approach

based on PWAS functions. PWAS functions have been recently used for the

design of virtual sensors, being of interest for their very efficient circuit imple-

mentation. Both virtual sensors do not require the knowledge of a model, but

are fully dependent on measured data (i.e. they are both black-box models).

A training set must be therefore created to properly set the weights defining

the shape of the function that relates the virtual sensor inputs to its output.

The input pattern x = [V, I, T ]T of both proposed virtual sensors consists of

measurements of voltage, current and temperature, while the output y = Gm

is the estimated irradiance. The operating points {V ; I;T}, needed for the

training process, can be obtained by means of an analytical approach or by

using a set of suitable measurements. In the former case, the curves are

obtained on the basis of the One-Diode model identified through datasheet

values method. In this case the resistance Rtest is considered to be ideal. To

obtain a higher accuracy, a better calibration of the solar sensor is required.

In this case, the operating points {V ; I;T} should be experimentally gener-

ated in laboratory under controlled environmental conditions. This would
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guarantee a higher accuracy since the calibration procedure can take into

account also the effects of parasitic components, inaccurate datasheet infor-

mation, the dependence on temperature T of the whole measuring circuit,

variability in the components (e.g., Rtest ), etc. Here, the first strategy (suc-

cessfully applied in [Mancilla-David et al., 2014] with very accurate results)

is used, with the resistance Rtest equal to 921Ω. The five parameters used for

modeling the adopted solar cell (IXYS KXOB22-01X8, rated at 3.4V, 3.8mA

at MPP under standard testing conditions) and obtained by using datasheet

information, are the following: Iirr;ref = 4.50×10−3A, I0,ref = 8.14×10−15A,

RS,ref = 212.34Ω, Rsh,ref = 9kΩ and nref = 0.849. In any case, in NN and

PWAS approaches, the three quantities V , I , T are considered as indepen-

dent variables, even if I and V are proportional each other for each measur-

ing circuit. This makes the solution more general and easily adaptable if

experimental training data are used (where V and I are measured indepen-

dently). By using the I-V relation of the One-Diode model and considering

I = V/Rtest, a suitable training set is created with operating points {V ; I;T}
obtained by N different irradiance-dependent I–V curves for a constant tem-

perature (equally spaced in the range [260 − 310]K), and by M different

temperature-dependent I–V curves at a constant irradiance (equally spaced

in the range [200 − 1500]W/m2). In this way, ntrain = N × M training

patterns are created. Since each operating point {V ; I;T} corresponds to a

certain value of the irradiance G that lights up the solar cell, after the train-

ing procedure, the virtual sensor is able to generalize the existing relationship

between the current operating point and the corresponding irradiance G.
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NN-Based Sensor

The choice of using a NN for computing solar irradiance is due to its versa-

tility. Unlike other approaches requiring data distributed over regular grids,

NNs can perform multidimensional fitting by using any data distribution.

Moreover, the NN is a paradigm that can be realized by using simulation

software, analog circuits, optical microsystems and, as in our case, FPGA.

A feed–forward NN (FFNN) with a single hidden layer should be chosen in

order to decrease as much as possible the computational cost. For choos-

ing the architecture and for the training of the NN-based virtual sensor, the

procedure described in [Fulginei et al., 2013] was followed, by using Leven-

berg–Marquardt as training algorithm and by assuming satisfactory a target

MSE on the training set of 6× 10− 3. By following the theoretical approach

described in [Fulginei et al., 2013], starting from initial guessed values for nh

hidden layer neurons and ntrain training set size, the iterative process yielded

nh = 8 and ntrain = 50.

PWAS-Based Sensor

A PWAS function is a piecewise-affine function defined over a domain par-

titioned into simplices. Consider a hyper-rectangular domain D = {x ∈ Rn :

ai ≤ xi ≤ bi}, being xi, i = 1, . . . , n the components of point x. Given a set

of n+ 1 vertices v0, v1, . . . , vn ∈ Rn, a simplex in Rn is a convex combination

of the vertices, i.e. it is the set of points:{
x ∈ Rn : x =

n∑
i=0

µivi

}
(6.1)



CHAPTER 6. SOLAR IRRADIANCE ASSESSMENT 193

where 0 ≤ µi ≤ 1, i = 0, . . . , n and
∑n

i=0 µi = 1. For n = 1 a simplex is a

segment, for n = 2 a triangle and for n = 3 a tetrahedron. In a general case,

it is a n-dimensional hyper-triangle.

The main advantage of using PWAS functions is that they can be im-

plemented very efficiently in digital circuits (e.g., FPGAs), or application

specific integrated circuits, ASICs. Low-complexity virtual sensors based on

PWAS functions have been recently proposed in [?] along with a circuit ar-

chitecture suitable for FPGA implementation. Here this approach is applied

for the estimation of solar irradiance.

Any continuous PWAS function can be defined as a linear combination

of PWAS α-basis functions as follows

fPWAS(x) =
Nv∑
i=1

wiαi(x) (6.2)

being

αi(vj) =

1 if j = i

0 if j 6= i,

where vj, j = 1, . . . , Nv,
1 denote the vertices of the simplicial partition,

and the coefficients wi, i = 1, . . . , Nv, determine uniquely fPWAS. The

PWAS-based virtual sensor expresses the quantity to be estimated y ∈ R

as a PWAS function of the input variables x, i.e., y = fPWAS(x). In order to

train the virtual sensor (i.e., to find a suitable function fPWAS) a set of ntrain

noisy measurements x(k) and y(k) (k = 1, . . . , ntrain) of x and y, respectively,

is necessary. Starting from these measurements, an optimization problem

1Being α(x) a PWAS function, its value outside the partition vertices can be easily

obtained by linear interpolation.
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can be defined, whose solution provides the weights vector w. A possible

choice, based on the 2-norm, is the following:

min
w

{
ntrain∑
k=1

[
y(k) − fPWAS(x(k))

]2
+ σwTΓw

}
(6.3)

being σ and Γ the Tikhonov regularization parameter and matrix, respec-

tively, and fPWAS defined as in Eq. (6.2). The training process of the PWAS-

based virtual sensor consists in finding the weights vector w by minimizing

cost function (6.3), which results being a quadratic function of w. Prior to

this operation, it is necessary to choose the simplicial partition of the PWAS

function domain. The parameters to be set for training the PWAS-based vir-

tual sensor are the Nv weights wi. For this application a uniform simplicial

partition made up of Nv = 2592 vertices was employed, with 80 subdivisions

along V , 1 subdivision along I, and 15 subdivisions along T . A first-order

Tikhonov regularization has been employed with σ = 10−6. The dimension

of the training set is ntrain = 1500 (N = 50 and M = 30).

6.1.3 Circuit implementation

Two digital circuit architectures are described, suitable for the FPGA imple-

mentation of both NN- and PWAS-based virtual sensors. Since the proposed

circuits are thought to be part of a centralized system for sensing the irradi-

ance in a whole PV plant, the fastest the circuit computation, the higher the

number of panels that can be monitored per second. In order to maximize

speed, therefore, a fixed point data representation is used and computation

parallelism is exploited.
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Implementation of FFNN based virtual sensor

Several circuit architectures have been proposed in the literature for the

FPGA implementation of neural networks. These architectures mainly differ

in data representation (fixed/floating point) and computation of the activa-

tion function. The reader is referred to for a comprehensive survey. One

of the main issues related to the digital circuit implementation of neural

networks is the computation of the nonlinear activation function. Several

methods are adopted in the literature: polynomial approximations, CORDIC

(COordinate Rotation DIgital Computer algorithms), rational approxima-

tions, table-driven methods. For our application a look-up-table (LUT) was

combined with first-order polynomials. The values fi,j = fi(vj) have been

computed in 29 points vj, uniformly distributed over the range [0 6] (only

positive values are considered since fi is an odd function). The activation

function in a generic point v is then computed by linear interpolation as

follows:

fi(v) =



fi,j+1−fi,j
vj+1−vj (v − vj) + fi,j, if 0 ≤ v ≤ 6

woi , if v > 6

−woi , if v < −6

−
[
fi,j+1−fi,j
vj+1−vj (v − vj) + fi,j

]
, if − 6 ≤ v < 0

(6.4)

where vj ≤ |v| < vj+1. Samples fi,j are stored in a LUT.

All hidden neurons perform their computations at the same time. The

block scheme of the proposed circuit architecture is shown in Fig. 6.3.

A finite state machine CONTROL FSM receives the input pattern x
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Figure 6.3: Block scheme of the circuit architecture implementing the NN-based

virtual sensor.



CHAPTER 6. SOLAR IRRADIANCE ASSESSMENT 197

and is used to send the correct inputs and manage the outputs of 8 MAC

blocks, 8 LUTs and one adder. The MAC blocks evaluate in parallel the

expressions hi(x), i = 0, . . . , nh − 1. Based on the results of this computa-

tions, two addresses (j and j + 1) are generated for each neuron, to access a

corresponding LUT containing values fi,j and fi,j+1. Function fi(hi) can be

therefore computed by resorting to (6.4), evaluated again by the same MAC

blocks. Notice that a multiplication by the weights woi is not necessary, since

the samples fi,j stored in the LUTs already comprise the coefficients. A

final sum is performed by block ADDER in order to compute output y,

representing the estimated irradiance Gm.

Implementation of PWAS based virtual sensor

Two digital circuit architectures (a serial and a parallel one) are proposed

in [Storace and Poggi, 2011]. The architectures are described in VHDL lan-

guage, can be used for any PWAS function with uniform simplicial partition

and are suitable for FPGA implementation. In [Oliveri and Storace, 2012] the

architectures have been improved and modified in order to make them suit-

able for control applications, where a constant latency and a fixed sampling

time are needed. Moreover an arbitrary non-uniform simplicial partition can

be handled.

Equation (6.2) could be used, in principle, to evaluate the PWAS function

at any point x ∈ Rn. Nevertheless, a more efficient strategy, from a circuit

implementation standpoint, consists in (i) finding the n + 1 vertices of the

simplex containing x and (ii) linearly interpolating the values of the function

at these vertices, as follows:
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Figure 6.4: Block scheme of the circuit architecture implementing the PWAS-based

virtual sensor.

fPWAS(x) =
n+1∑
i=1

µifPWAS(vi) (6.5)

Interpolation coefficients µi (the same as in (6.1)) depend on the position

of x within the simplex [Storace and Poggi, 2011]. Due to the regularity of

the simplicial partition, the point location problem solution is trivial if Kuhn

lemmas are employed [Storace and Poggi, 2011].

A block scheme of the proposed architecture is shown in Fig. 6.4.

The circuit architecture consists of a memory storing the values of the

PWAS function at the partition vertices. Block MU GEN is responsible

of computing, based on input pattern x, the interpolation coefficients µi

in Eq. (6.5). Block ADDR GEN generates instead the addresses of the

memory cells storing the values of the function at the vertices of the simplex

containing x. Values fPWAS(vi) are therefore provided by the memory and

expression (6.5) can be finally evaluated by means of 4 multipliers and one

adder.

A detailed description of the architecture is available in [Oliveri and

Storace, 2012].
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6.1.4 Results

The proposed irradiance virtual sensors have been validated on a test set con-

stituted by real irradiance data collected by the U.S. Department of Energy’s

National Renewable Energy Laboratory at the Hawaii’s Honolulu Interna-

tional Airport in the island of Oahu. The solar irradiance data composing

the validation set is shown in Fig. 6.5. Data were collected over 698 seconds

taking measurements every second on a partially cloudy day. In particular,

the solar irradiance profile ranges between about 1100 W/m2 and 250 W/m2,

reaching this lower values in the last 150 seconds. Since no data was available

for the temperature profile of the PV modules, the arbitrary profile shown

in Fig. 6.6 has been used.

Figure 6.5: Actual irradiance at Hawaii’s Honolulu International Airport used for

the validation set.

It is worth noticing that this choice does not affect the performance. For

each pair T -G, indeed, there exists a unique I-V characteristic. Therefore,

once the model has been correctly identified, it can be used to generate,

for any T , different pairs I-V corresponding to the same value of irradiance
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G. Moreover, the use of an arbitrary temperature profile also constitutes an

effective validation procedure.

0 100 200 300 400 500 600 700
270

280

290
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310
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K

Figure 6.6: Arbitrary temperature profile used for validating the virtual sensor.

The circuit architectures for the implementation of the designed NN- and

PWAS-based virtual sensors have been implemented on a low-cost (about

10$) FPGA (Xilinx Spartan3 XC3S200). This device is equipped with 12

18× 18 bit multipliers, therefore a resolution of 18 bits has been chosen. Ta-

ble ?? summarizes the latency, number of operations per second (by consid-

ering a clock frequency of 50 MHz) and resources occupation of the proposed

architectures.

A post place and route simulation of the VHDL code has been performed,

which takes into account the effects of data quantization.

Fig. 6.7 shows the percentage relative error between the irradiance data

contained in the test set and the estimations performed with the NN- and

PWAS-based virtual sensors both in MATLAB (double precision) and by

VHDL simulation (18 bits fixed precision). Given y the actual irradiance

(contained in the test set) and ŷ the estimated one, the percentage relative

error has been computed as
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Table 6.1: Latency and resources occupation of the circuit architectures imple-

menting the NN- and the PWAS-based virtual sensors.

NN-based sensor PWAS-based sensor

latency (clock cycles) 10 3

% occupied slices 80 15

% block RAMs 66% 66%

mult. 8 4

computations per second 5 million 16 million

Table 6.2: Mean Squared Error.

NN-based sensor PWAS-based sensor

MATLAB 7.74 · 10−3 9.16 · 10−1

VHDL 6.38 · 10−2 9.60 · 10−1

e = 100
|y − ŷ|
|y| (6.6)

It can be noticed, from Tab. 6.1, that the PWAS-based architecture is

less resource-demanding and more than three times faster than the NN-based

solution, at the cost of a lower accuracy in the estimation.

Notice also (Fig. 6.7) that the accuracy of the PWAS-based sensor is very

high when estimating low values of irradiance (from about t = 500 seconds).

This happens because, when low values of solar radiation (lower than 300

W/m2) strike the PV cell, the dependence of G with respect to V, I and

T for the adopted cell is almost linear, as results from extrapolated data:

therefore a PWAS function is more suitable to approximate it, with respect
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Figure 6.7: Percentage relative error with both PWAS- and NN-based sensor, in

MATLAB and by VHDL post place and route simulation simulation.
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to a neural network with non-linear characteristics.

Table 6.2 shows also that the architecture implementing the NN-based

sensor is more sensitive to the quantization error, with respect to the PWAS-

based approach, for which the MSE is almost unchanged if double or fixed

precision is adopted. In order to perform a further comparison, the two pro-

posed virtual sensors have been implemented in the microcontroller LM4F120H5QR

by Texas Instruments, which has a cost and a clock frequency similar to the

XC3S200 FPGA. This microcontroller is built around an ARM Cortex M4F

that provides high performance for integer arithmetics. To achieve simi-

lar performances on floating-point arithmetics, a mathematical co-processor

must be used. The performances in terms of required memory and compu-

tation times are shown in Table 6.3, for a clock frequency of 50 MHz. The

number of computations per second is quite high also in this case, mainly for

PWAS, even if it is about a thousand times lower than for the FPGA imple-

mentation. It is worth noticing that the accuracy is the same as achieved with

MATLAB and an increment in the performance of the NN based virtual sen-

sor can be obtained if the nonlinear activation function is computed through

a polynomial approximation or a lookup table (in the current implementa-

tion it is evaluated exactly). In these cases the gain in computation time

is paid with a larger memory employment and entails lower accuracy. With

respect to the FPGA implementation, the main limitation of microcontroller

is not the computation time but instead its sequential management of the

operations, which makes almost impossible the interaction with more than

one physical sensor at a time. Indeed the bottleneck is not the response of the

microcontroller or FPGA in the computation of results but the management
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Table 6.3: Latency and resources occupation of the implementation of the virtual

sensors on TI LM4F120H5QR microcontroller.

NN-based sensor PWAS-based sensor

latency (clock cycles) 57965 1653

occupied Bytes 453 1324

Reserved Bytes SRAM 318 (0.99%) 1288 (4.02%)

computations per second 850 30250

and acquisition times of the sensors. For instance, the external thermometer

DS18B20, mounted close to the PV device, can be used to monitor in real

time the panel temperature. This device communicates with the main unit

by means of a one-wire interface extremely simple to implement, but it re-

quires about half a second to measure a temperature. Thus, it is not efficient

to manage a large amount of physical sensors by using microcontroller-based

virtual sensors.

This problem does not affect FPGA, since several circuit architectures

can be replicated in the same board (according to the circuit complexity

and the board size) or pipelined in order to increase parallelism. Of course

many other issues would arise in the implementation of the whole system,

such as, for example, the management of the communication between the

measuring circuits installed on the PV cells and the central FPGA. Moreover

the actual performances of the monitoring system will be influenced by the

delays in data acquisition and transmission, such as those previously cited

for the temperature sensors DS18B20 or for the analog to digital conversion

and trasmission of PV output voltage on a dedicated bus. With the very
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simple FPGA mentioned in this work, it is not possible to replicate the

architecture several times, since the RAM occupation of a single circuit is

66%; nevertheless, a pipeline can be created which allows computing the value

of the irradiance in one clock cycle (assuming that the pipeline is always full,

i.e., data are acquired at a frequency of 50MHz). A multiplexer can be

implemented in the FPGA so that many sensors can be connected to the

board and their outputs are read in sequence. The number of sensors which

can be managed by the same FPGA depends on many factors, such as the

size of the FPGA, the number of input pins, the analog to digital converters

(number of bits, serial/parallel output). Therefore it strongly depends on

the specific application.

6.2 Prediction of Solar Irradiance Trough Fully-

Recurrent ANN

For some applications having the information of the solar irradiance with

some anticipation (that might be in the order of hours or days) is critical.

Forecasting solar irradiance is strictly related to two different necessities: ne-

gotiation on the energy market and managing storage elements. The former

is related to the determination of the price for electricity on Day-Ahead and

Infra-Day markets, according to offer and demand price laws. The latter is

used in control systems to decide whether to store excess energy (i.e. not used

by the installation) in a storage device or re-inject it into the distribution

network to sell it back to the service provider. The choice can be done either

to achieve the maximum reliability of the system (this is especially true for
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scenarios where power distribution is irregular and unreliable) or minimum

energy cost. Regardless of the desired goal, it is clear that the knowledge of

the availability for the solar resource is critical for this kind of assessment.

Prediction of solar irradiance is a generic time-series forecasting problem.

G[t+M ] = f(G[t], G[t− 1], G[t− 2]...G[t−N ]) (6.7)

Where G[t] is the irradiance sampled at time t, f is a multivariate func-

tion, M is the forecast horizon and N is the forecast memory. Indeed, the

problem can be reduced to find the f relationship between the inputs and

the outputs data which allows the forecast of the quantity at the desired time

[t+M ] based on the observed data at the times [t− 1, t− 2, t− 3]. Numeri-

cal instruments like recurrent neural networks (RNN), wavelet-networks, and

wavelet-networks-fuzzy are very suitable for this kind of applications. This

model is also referred as auto-regressive, since the quantities used for the

estimation are previous values of the same quantity. This is the approach

followed in this application, but it is not the sole alternative. It is possible to

consider exhogenous inputs as well: i.e. quantities that are correlated to the

one predicted and may help the ANN in the prediction process. In [Mellit

and Pavan, 2010] the authors presents a very good applicative paper, ex-

plaining in detail how to predict irradiance by mean daily solar irradiance,

mean daily air temperature and the day of the month.

In the method herein proposed, the forecasting is obtained using a Re-

current Neural Network, trained through the use of the Real-Time Recurrent

Learning (RTRL) algorithm described in Sec. 1.2.6. This algorithm can train

a generic RNN, and was designed for optimal execution on serial machines.
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The final implementation of the RTRL algorithm was done in embedded en-

vironment, to explore the feasibility of a compact and economic solution for

irradiance forecasting. The algorithm, originally implemented in Matlab en-

vironment, was translated in C and compiled on both x64 architecture and

ARM. The embedded platform used was an ARM Cortex M4-F microcon-

troller by Texas Instruments, described in Sec. 3.2.1.

6.2.1 Implementation of RNN Architecture

For this forecast problem, a fully RNN was used: the basic rule for this

network is that every neuron has a weighted directed connection to every

other neuron and itself. Some nodes features an independent input (i.e. not

an output from another neuron), and are defined as input neurons. Other

neurons have a supervised value at given times, and are defined as output

neurons. All other neurons are hidden neurons. The network architecture

is the following:

• The network has n units, with (m+ 1) external input lines.

• Of the external input lines, the first m are independent inputs of the

RNN, and the last is a constant value used for neuron biasing.

• At any given time, we define the vector X(t) as the m-tuple of inputs,

the vector Y(t) as the n-tuple of units outputs. The concatenation of

X(t) and Y(t) is Z(t), a vector (n+m+ 1 long).
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X(t) =



x1

x2

...

xm

1


1,(m+1)

Y(t) =


y1

y2

...

ym


1,n

Z(t) =

 X(t)

Y(t)


1,n+m+1

(6.8)

Given the full connectivity of the architecture, thezk(t) vector represent

the input of every neuron in the network. The weights between the neurons

are described by the W matrix. The matrix has n rows and n + (m + 1)

columns. The generic element Wi,j represent the weigth of the connection

between the j-th element of zk(t) and the i-th neuron. The sum of the

weighted inputs of each i-th neuron is then computed by the product:

neti(t) =

(n+m+1)∑
j=1

Wi,jzj(t) (6.9)

or, in matrix form:

[net] = [W][Z] (6.10)

The output of the i-th neuron at the next time step is given by:

yi(t+ 1) = fi(neti(t)) (6.11)

Where fi is the neuron activation function, which can be either linear or

non-linear. Note that the input vector y is not updated until the next time

step. For the purpose of this work, we will assume a non-linear (tangent
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Figure 6.8: P Matrix for RTRL algorithm.

sigmoid) activation function for the hidden and input neurons, and a purely

linear activation function for the output neurons.

6.2.2 RTRL Implementation

In this section, the embedded implementation of the RTRL algorithm will

be explained. To better understand the following pseudo-code, a table sum-

marizing the different arrays used in the code will follow.

In order to enhance the dynamic capabilities of the RNN even further, two

tapped-delay lines were implemented. The first one creates delayed replicas

of the input, and sends it to the RNN as independent inputs. The second one

feedbacks delayed replicas of the output, and sends it as input to the RNN

as well. Both delay lines can be disabled independently. The bookkeeping
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Table 6.4: RTRL Pseudo-code arrays.

Name Size Description

E 1-by-n Error Vector

dFdY n-by-n Activation function derivative matrix,

rows are all equal, column elements

represent, for each neuron, the deriva-

tive of the activation function calcu-

lated for the neuron’s weighted inputs

W n-by-(n+m+1) Weight matrix

W N n-by-n Left part of the W matrix, rela-

tive only to the neuron connections

weights.

Z 1-by-(n+m+1) State vector

EYE Z n-by-n Matrix obtained by the product of an

unitary matrix and the scalar value of

Z[j]

P (n+m+1)-by-n-by-n Tri-dimensional matrix containing the

states of the dynamic system describ-

ing the weights changes. As shown in

Fig. 6.8, the matrix in the algorithm is

updated every iteration through hor-

izontal slicing, and is used for weight

update through vertical slicing.

DELTA W n-by-(m+n+1) Weights update matrix
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for the actual input vector requires a periodic shift, discarding the oldest

sample. The pseudo-code for the algorithm is the following:

• For every new input:

– Calculate RNN output.

– Create the dFdY matrix.

– Extract the W N matrix from the W matrix.

– For every j-th horizontal slice of P:

∗ Create the EYE Z matrix (n-by-n matrix).

∗ Multiply W N by the j-th slice of P.

∗ Sum the previous product to EYE Z, element-wise.

∗ Multiply the previous sum by dFdY, element-wise.

∗ Overwrite the j-th slice of P with the previous product result.

– For every k-th non-null value of E:

∗ Extract the k-th vertical slice of P

∗ Multiply the slice by the scalar value of E[k] and alpha.

∗ Accumulate the result in the weigth connection matrix DELTA W

– Sum DELTA W to W, element-wise.

– Bookkeep input vector.

The P matrix, that stores the sensitivities for all the weights of the RNN

for different time-steps, is represented in Fig.6.8.
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6.2.3 Simulation Performance

The pseudo-code proposed was implemented in Matlab and C programming

languages, and was used to create, train and validate a RNN for the 1-h

forecast of solar irradiance. Since no real-time elaboration of the ANN was

required (data is sent hour-wise), code profiling was limited to the occu-

pied memory. Indeed, allocation of the P matrix, and all the service arrays

shown in Tab 6.4 requires considerable memory, and for this reason, code

was implemented on a high level MCU. The LM4F120H5QR Microcontroller,

mounted on the Stellaris Launchpad LM4F120XL board was used. Since no

time-related optimization are required, all calculations have been performed

using full-precision Floating Point arithmetics. The full code occupy 10kB

of FLASH memory and 24kB of RAM with a network composed by 6 hidden

neurons and a delay-tapped input of 12 samples. Fig. 6.9 shows the error

magnitude and forecasting results for the RNN when used to predict solar

irradiance, hourly, on a monthly period.
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Chapter 7

Inverse Biomechanics

In biomechanics, internal forces exerted during the execution of motor tasks

can be estimated by combining a biomechanical model, able to predict the

forces acting on each involved joint, with the design of an optimization crite-

rion to determine the contribution of each muscle to the overall force. This

approach has been applied in a variety of application fields, ranging from

the analysis of gait and running, to the study of upper limb movements.

An particular segment of biomechanics is interested in the study of muscu-

lar forces exerted during athletic activity. In particular, in this section, the

work towards the implementation of an embedded system for the estimation

of muscular forces of a cyclist during cycling activity will be presented. In the

biomechanics of cycling it is important to evaluate how the athlete executes

the required motor task, in order to have objective parameters that quantify

the performance. This aspect can be analyzed in terms of power exerted

while cycling, using different techniques, or investigating the role of muscle

activity while performing the task. To this aim, it is possible to propose an

214
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inverse dynamics approach to predict muscle force patterns by the measure-

ment of the external forces exerted on the pedal. These predictions were

compared against muscle activity, as estimated from surface Electromyogra-

phy (sEMG) data. The use of standard optimization algorithms, to solve

the equations that describe the inverse dynamics of cycling, can represent a

limit to the development of a real time device. Being able to estimate muscle

forces in real time can be used on the field to assess and monitor athlete

performance. The purpose of this study was to develop a new optimization

algorithm based on artificial Neural Networks (NN), in order to reduce the

computational complexity of the deterministic one, while maintaining the

quality of estimation. The study was carried out on two levels. First, a

biomechanical model based on ANN was implemented in a high level envi-

ronment. Second, the model was implemented in C language and simulated

by a MCU for real time estimation of muscle forces. The following section are

extracts from the works [Cecchini et al., 2014] (the high level implementa-

tion) and [Lozito et al., 2015] (the MCU implementation). More information

and details can be found in the original papers.

7.1 Neural Networks for Muscle Forces Pre-

diction in Cycling

This section documents a system based on Artificial Neural Networks to pre-

dict muscle force patterns of an athlete during cycling. Two independent

inverse problems must be solved for the force estimation: evaluation of the

kinematic model and evaluation of the forces distribution along the limb. By
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solving repeatedly the two inverse problems for different subjects and condi-

tions, a training pattern for an Artificial Neural Network was created. Then,

the trained network was validated against an independent validation set, and

compared to evaluate agreement between the two alternative approaches us-

ing Bland-Altman method. The obtained neural network for the different

test patterns yields a normalized error well below 1% and the Bland-Altman

plot shows a considerable correlation between the two methods. The new ap-

proach proposed herein allows a direct and fast computation for the inverse

dynamics of a cyclist, opening the possibility of integrating such algorithm

in a real time environment such as an embedded application.

7.1.1 The biomechanical model

A biomechanical model was identified to reproduce the cycling task and used

for the muscle forces estimation of the lower limb. It has been modeled as a

three-joint (i.e.ankle, knee, and hip) system, actuated by nine muscles and

built in three steps:

1. Definition of a kinematic model to evaluate the position of every seg-

ment of the leg involved in the gesture;

2. Definition of the inverse dynamics to evaluate the muscular torque for

every joint;

3. Calculation of the muscular forces through the data obtained with the

two previous steps.

Regarding the third step, a cost function, based on a physiological crite-

rion, was minimized to predict muscular force patterns. This optimization
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Figure 7.1: Kinematic chain of lower limb and angle between body segment.

was obtained by using a feed forward NN. An additional one was used to solve

the equation associated with the first step, as described in the following.

Restricting the analysis to the sagittal plane, the kinematic model of the

lower limb is composed of constrained rigid elements and mechanical elements

of the bicycle, used to transmit the motion to the wheel. By modeling each

body segment and each mechanical element as a segment (Figure 7.1) it is

possible to define a kinematic chain with five elements and two degrees of

freedom,so the position of each member in the sagittal plane is determined

by the length of each segment and two of the following angles:

1. ΘC angle between the bicycle’s frame and the crank;

2. ΘP angle between the crank and the pedal;

3. ΘG knee angle identified as in Fig. 7.1;

4. ΘS hip-saddle angle identified as in Fig. 7.1.

The length of each segment of the model was determined by direct mea-

surement. Once kinematic data and pedal forces are obtained, ankle, knee
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and hip joint moments are calculated using the inverse dynamics. After-

wards, these data are used to implement the three equilibrium equations at

each joint, involving the following muscles, that represent the minimum set

to be involved in the model: (1) Tibialis anterior (TA); (2) Soleus (SO); (3)

Gastrocnemius (GA); (4) Vastii (VA); (5) Rectus femoris (RF); (6) Short

head of biceps femoris (BFs); (7) Long head of Biceps Femoris (BFl); (8) Ili-

acus (IL); (9) Gluteus Maximum (GLM). The relation between the muscular

moments and the muscular forces at each joint j is given by the equation:

Nj∑
i=1

Fj × di,j = Mj (7.1)

where Mj represents the muscular moment at the j-th joint, Nj is the

number of muscles acting on the j-th joint, Fi is the muscular force exerted

by the i-th muscle and di,j is the effective moment arm of the i-th muscle

from the j-th joint.As the number of equations is not sufficient to calculate

muscular force values, these were calculated by minimizing the cost function:

U =

p∑
i=1

(
Fi

PCSAi

)3

(7.2)

given the constraints:

0 < Fi < Fi,max (7.3)

here, given p total number of muscles, and being PCSAi and Fi,max re-

spectively the physiological cross sectional area and the maximum force value

for the i-th muscle. The cubic exponent used in the Eq. 7.2, guarantees the

best trade off between the muscular contractile force and the maximum du-
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ration of the contraction. This cost function relies on the co-activation of all

the muscles involved in the gesture.

7.1.2 The Neural Implementation

In this model, NNs are used in two critical steps:

1. Calculation of the relative rotational angle between the frame of the

bicycle and the thigh, ΘS;

2. Estimation of muscle forces.

In the first step, considering the coordinates of the points (A, B, C, D)

respect to the reference system centered in O, as reported in Fig. 7.1, the

neural network is necessary since the angle ΘS is defined in an implicit tran-

scendental equation:

X2 + Y 2 + t2 − s2
2t

= Xcos(ΘS) + Y sin(ΘS) (7.4)

given that:



X = XB +XD

Y = YB − YD

XB = XA − fsin(ΘC −ΘP )

YB = YA + fsin(ΘC −ΘP )

(7.5)

Both the segments t and s are constants, whereas the terms X and Y

are the time-varying unknowns. The equation can be solved for ΘS using

numerical methods (i.e. optimization algorithms), but even if this is an
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assessed solution that gives accurate results, it is iterative and consequently

slow. To solve this problem, for the calculation of the angle ΘS, a MISO

NN with two inputs, four hidden neurons and a single output, has been

used. The inputs were the angle between the frame of the bicycle and the

crank ΘC and the angle between the frame of the bicycle and the pedal ΘP .

For this first step, training data set was composed of 7050 samples from

three different subjects, and 118,000 samples from a different new subject

composed the testing dataset. It is important to highlight that since the

problem is analytical it is not necessary to use measured input data to train

the NN, as long as it belongs to a sensible function domain. In this work being

the measured data set oversampled with respect to its frequency content and

covering the whole angular domain, it was more practical to use it instead

of synthetic data. The comparison between the old method and the new one

was done through direct error estimation. This is justified considering in

this first phase the NN approach as an approximation of the quasi-analytical

solution.

The second step, relative to the estimation of muscle forces, can be ap-

proached by numerically solving the implicit non-linear system described by

the Eq. 7.1, while minimizing Eq. 7.2 considering the boundaries in Eq. 7.3.

This is done by solving an inverse problem of bounded function minimization,

which can be approached by numerical optimization techniques, such as the

ones shown in Sec. 2. Each time the problem must be solved, it has three

known parameters (the muscular moments) and nine unknowns (the muscle

forces). The problem was generalized using nine different MISO NNs, one for

each unknown. The inputs were the three parameters (muscular moments of
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Figure 7.2: Root Mean Square Error (solid) and Standard Deviation (dashed)

Error plot function of the number of neurons (from 1 to 10).

ankle, knee and hip), while the output was a specific unknown (a muscular

force). In this case, the training set was composed by 2360 samples from a

single subject. Test data was composed by 118,000 samples from a different

new subject.

The choice of the network size was made on statistical considerations: by

testing the NN repeatedly with increasing number of neurons in the hidden

layer, the error progressively diminished. However, over a specific number

of neurons, the differential increase in performance was negligible, so the

last point with relevant increase in performance was taken as the optimal

size. In Fig. 7.2, an example of mean and variance for network performance

(RMSE) can be seen. A low standard deviation for the chosen point confirms

that the performance of the network was not due to chance. The NNs were

trained by the LM algorithm. For this second step, results obtained using the

NN approach were compared to those obtained in the traditional approach

considering that both can be considered muscular forces estimators, neither
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of them being able to provide an exact solution. Indeed neither the former

nor the latter can be considered the gold standard. The comparison can thus

be performed through a Bland-Altman plot, considering the average between

the two estimates as the hypothesized true value. Details on such comparison

can be found in [Cecchini et al., 2014].

7.1.3 Experimental Validation

A previously acquired set of data was used to validate the approach pro-

posed in this section. These data were obtained by pedaling on a cycling

simulator for sessions about 50 minutes long with a pedaling cadence fixed

at 70 rounds per minute (rpm). The cycling simulator was equipped with

a system to control the power exerted by the participant. Force data were

acquired (2000Samples/s sampling frequency, 12-bit A/D converter) by a

homemade instrumented pedal mounted on the cycling simulator. With this

system, it was possible to measure force components exerted on the pedal,

the angular displacement of the pedal, ΘP , and the angular displacement of

the crank, ΘC . These data were used as input for the biomechanical model

described above. The experimental protocol was used for the estimation of

the muscular forces using the two different techniques and its validation was:

• Training and validation set of NNs using data obtained previously by

a deterministic optimization algorithm.

• Plot analysis between the signals obtained by NNs and signals obtained

by the optimization algorithm, and the evaluation of the RMSE and

RMSE Standard Deviation.
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Table 7.1: Parameters of Neural Networks (NN) used to obtain the results.

Output Topology Inputs Hidden

Neurons

Training

Set

Validation

Set

ΘS Angle 1 MISO 2 4 7050 118000

Muscle

Forces

9 MISO 3 15 2360 118000

Figure 7.3: Angle ΘS signals, obtained by the deterministic optimization algorithm

(solid gray) and by the neural network (dashed black).

• Validation of the experimental protocol analyzing Bland-Altman plots

extrapolating 1180 random samples from each muscle forces signals.

To obtain the results, two NN were implemented on the basis of the

parameters reported in Tab 7.1.

The ΘS angle estimated signals, for one of the subject, obtained using de-

terministic algorithm optimization and using neural network are both shown

in Fig. 7.3.
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Table 7.2: Results of RMS Error percentage and SD Error for the calculation of

ΘS angle.

Subject RMS Error % Std. Deviation Error

1 0.085 2.68× 10−4

2 0.134 7.35× 10−4

3 0.077 4.53× 10−4

In the Tab. 7.2 the correlation of the two signals, for three different

subjects, is shown in terms of Root Mean Square Error.

NN, for all the three subjects, makes a RMS error well below 1%, and

a SD error below 10−3, showing a good convergence in the research of the

optimal solution. Regarding the second step, 1180 random samples out of

118000 have been taken for the analysis of the results. In the Fig. 7.4, the

Bland-Altman plot for the Rectus Femoris is shown. While the 1.96σdiff

boundaries are not negligibly narrow, they can be reasonably attributed to

the intrinsic noise affecting the deterministic algorithm (more on this matter

will be discussed below). The distribution is acceptably symmetric around

the mean axis, excluding the possibility of a systematic measurement error.

There is no apparent pattern in the error distribution apart from a border

effect, consisting in a clustering of samples on the left side around the axis

origin.

This is due to boundary conditions used in the model: muscular forces

cannot have negative value, because of obvious physiological reasons. Aside

from the error, a consideration can be made on the networks performance

predicting muscular forces. Indeed, the number of unknowns in (2) is higher
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Figure 7.4: Bland-Altman Results for the rectus femoris muscle.

than the number of equations (9 unknowns for 3 equations), so the numerical

optimization of such problem is multi-modal, yielding a very noisy solution.

The NN however performs an average of the different solutions, smooth-

ing effectively the results. This effect is highlighted in Figure 7.5: the NN

completely filters unnatural “high” frequency components in the muscular

activity signals. In terms of computational complexity, the computational

time required to elaborate a full sample, thus to compute the nine muscular

forces starting from the pedals data, is about 26 ms on a Core i7 Machine,

against the 2,200 ms required to compute the deterministic original approach

on the same machine, yielding a considerable speed up.
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Figure 7.5: Muscle forces of rectus femoris obtained with the neural network

(dashed) and with the deterministic algorithm optimization (solid). Sampling

frequency 1000 Samples/s.

7.2 Embedded System for Real-time Estima-

tion of Muscle Forces

In this section, the possibility of implementing a neural solution in an em-

bedded environment for the muscular force estimation is investigated. When

implementing this algorithm in an embedded environment, the limited com-

putational capabilities calls for a trade-off among precision, memory foot-

print, and computational cost. As shown in Chapter 4, Different studies

tested the embedded implementation of NNs to achieve optimal results, ei-

ther by re-arranging the operations required to compute the linear part of

the NN to fully exploit pipelining, or by speeding up the costly non-linear

activation function through different numerical approximation.

Another issue worth being addressed in this implementation is the possi-

bility of solving in real time the unknowns. In the original proposed algorithm
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Figure 7.6: Kinematic chain (left) and correspondent muscular model (right) of

the lower limb while cycling.

data were processed in batch, allowing heavy filtering for noisy signals. In a

real-time approach, only a small time-window for the signal is available, thus

excluding the possibility of intensive filtering. The inverse model requires,

to be computed, several II order numerical differentiations, that naturally

introduce an amplification for high frequency noise. Different techniques are

used in the literature to obtain a noise-rejecting differentiator that can be

applied easily in embedded environment.

In the first part of this section, the real-time implementation of the model

will be explained from a systemic point of view, with special attention to

the neural estimator and the differentiation techniques. Then, the embed-

ded implementation will be presented along with the performance evaluators

considered.
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7.2.1 Real-Time Inverse Model Overview

In order to simplify its implementation and subsequent test-debug procedure,

the proposed model can be solved considering two different sections: the

first, addressed as “kinematic section”, is related to the determination of the

complete kinematics, considering as inputs the actual angles measured as

explained above; the second, addressed as “dynamic section”, aims to the

determination of the joint reactions and the joint moments, using current

and past data obtained from the kinematic section, and of the muscular

forces. As displayed in Figure 7.6, the input data provided to the whole

model are the angles ΘC and ΘP and the pedal force components Fn and

Ft. The kinematic section of the model receives as input only the angles

and, using trigonometric equations, computes the x, y positions for the leg

joints. For the computation of the other angles, instead of solving an inverse

trigonometry problem, a neural network was used. The input of the neural

network is the cosine of both ΘC and ΘP angles while the output is Θ3. The

other angles Θ1 and Θ2 are calculated as a function of Θ3. The network is

composed by a single neuron for reasons that will be explained in the next

section.

In the dynamic section, the joint reactions and the moments must be

computed to determine the muscular forces of the leg. The mechanical model,

summarized above, is a II order one, which requires a numerical solution for

the acceleration resolution of several elements composing it. To compute

the second derivative of a quantity with respect to time, at least the current

value, and the previous two samples of the actual quantity, must be known.

Since this is a real-time model, a buffer system that holds the previous values



CHAPTER 7. INVERSE BIOMECHANICS 229

K I N E M A T I C S E C T I O N

NEURAL 
NETWORK

A
N

G
LE

S

X
 P

O
S.

Y 
P

O
S.

Kinematic
Equations

Dynamic 
Equations

D Y N A M I C B U F F E R

θC

θp

FtFn

𝑑2

𝑑𝑡2
Noise Rejecting 

Differentiator

D Y N A M I C S E C T I O N

NN1 NN6

NN3 NN8

NN2 NN7

NN4

NN5

NN9

NEURAL SYSTEM

[F1 ... F9]

Figure 7.7: Inverse biomechanical model overview.

of the quantity must be interposed between the kinematic and the dynamic

parts of the model. The buffer system is composed by a set of three bi-

dimensional arrays, two for the x, y positions, and one for the angles. Every

time the model is computed, the array acts like a shift register, discarding

the oldest sample and replacing it with the new one.

Given the experimental nature of the data a noise-rejecting differentiator,

which works on more than 3 points, was implemented. More information

on the differentiator will follow. Once the joint reactions are computed,

the muscular moments can be easily calculated. The final computation of

muscular forces is demanded to the Neural System, which receives the three

muscular moments Mb, Mc and Md as inputs.
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7.2.2 Neural Estimator

The neural estimator implemented in the model was refined starting from the

one implemented in the previous section, and is composed by two parts: a

Multiple-Input-Single-Output (MISO) NN, to calculate the Θ3 angle, and a

Neural System of nine MISO NN, to assess the muscular forces (one for each

force). The main purpose of the original NNs in was to obtain the maximum

performance through heavily filtered signals, and for this reason, the crite-

rion to size the NNs was maximizing the accuracy with the smallest number

of neurons (to preserve generalization capabilities). Conceiving the problem

in an embedded environment, two considerations must be done: first, since

the computational capabilities of a MCU is limited, some accuracy should

be traded for performance, to ensure the real-time capabilities of the system;

then, as it will be shown, a serious problem affecting the embedded imple-

mentation of the model lies in the strong noise introduced by the process.

From this perspective, a simpler and less accurate NN, with less neurons,

can actually enhance the model performance by introducing a natural low-

pass filtering of data. For these reasons, the NNs used for the embedded

implementation of the model were reduced in complexity. The NN used to

compute the Θ3 angle has a single nonlinear (tangent sigmoid) neuron in the

hidden layer, and uses as input the cosine of ΘP and ΘC angles. All the

NNs used to compute the nine muscular forces have four nonlinear (tangent

sigmoid) neurons in the hidden layer, and use the three muscular moments

Mb, Mc and Md as inputs. Networks were trained and validated in Matlab R©
environment. To enhance the embedded performance of the NN, a speedup

for the activation function of the hidden neurons was obtained by computing
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it through a 2nd degree polynomial interpolating function, as suggested in

Chapter 4.

7.2.3 Noise-Rejecting Differentiator

The dynamic section of the model requires the computation of the second

derivative for unfiltered, noisy signals. The magnitude impulse response of an

ideal second degree differentiator is |H(ω)| = ω2 exalting the high frequency

components of the signal, and lowering the signal to noise ratio (SNR) for

signals affected by white Gaussian noise. In the high-level implementation

of the model, the problem of noise was solved by using heavy low-pass filters

on the signals. However, the filter lengths and the real-time nature of the

present implementation discourage the use of intermediate filtering during

the process. An alternative approach is to use differentiating filters, shaped

to have a response proportional to the low-pass filtered second derivative of

the excitation. The filters order N is variable, must be odd and larger than

5. From N, the coefficients and the equations for the filtering can be easily

derived through Eq. 7.6 and Eq. 7.7.

f(x0) ≈
1

2N−3h2

(
s0f−M +

M∑
k=1

sk(f−M+k + f−M−k)

)
(7.6)

Where M = (N − 1)/2 and the {s}Mk=0 coefficients can be calculated by

a recursive algorithm for k = [M − 1, ..., 0]
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
sM+1 = 0

sM = 1

sk = [(2N−10)sk+1−(N+2k+3)sk+2]

(N−2k−1)

(7.7)

The differentiator was implemented in the system in the form of a library,

where the coefficients are precomputed at the beginning of the program ex-

ecution using a separate function.

Theoretically, the order of the filter could be changed in real time by

re-computing the coefficients. However, the order of the filter determines the

length of the filter itself, i.e. the number of points needed in the dynamic

buffer to compute the second derivative.Since the memory for the buffer is

allocated statically (through a series of #define directives) the order of the

filter can be modified at compile time, not run-time. Obviously, increasing

the filter length yields a smoother signal at the cost of heavily degrading the

real-time algorithm performance.

7.2.4 Workbench

The model was initially developed in C and tested in x86 Windows envi-

ronment using the simple CodeBlocks IDE. In this environment, a set of

libraries was created for the model: the NNs and the noise-rejecting differ-

entiator. To implement the project in embedded environment, a powerful

Cortex M4-F ARM microcontroller was used, the LM4F120H5QR device,

mounted on the Stellaris LaunchPad (Texas Instruments). This microcon-

troller has a maximum clock frequency of 80MHz, 256KB of Flash / 32Kb

SRAM / 2KB EEPROM, dual 12-Bit ADC, a dedicated Floating Point Unit,
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Figure 7.8: Matlab interface and real-time control utility.

and the board implements a RS232 interface, through the programming port

(In-Circuit Debug Interface ICDI), that can be used for communication. The

free IDE Code Composer Studio was used to program the microcontroller

board. To test the real-time performance of the model, a control program

was created in Matlab, to send a stream of data to the MCU, to recover the

results, to assess the error introduced by the microcontroller, and to show

the results. The graphical interface of the Matlab utility is shown in Fig. 7.8.

Code profiling,however, had to be performed on the MCU itself: the RS232

interface implemented in Matlab library is a harsh bottleneck, introducing

a considerable delay between samples, which should not be accounted for

when evaluating code performance. For this reason, execution times were

measured by clock-cycles using the debug utility of Code Composer Studio.
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7.2.5 Performance

The algorithm was validated on the test bench previously illustrated and the

code was profiled both in terms of precision, memory footprint and clock

cycles required for computation. The code was built with different compile-

time parameters allowing fine-tuning of performance. In this investigation,

two parameters were changed:

• Order (i.e. number of samples used) of the II order differentiator;

• Activation function of the NNs.

In the following table, for differentiators of variable length, the computa-

tional cost of the algorithm, in terms of clock cycles and maximum sampling,

is shown. Indeed, the actual microcontroller works with a clock of 50MHz,

but the TM4C1294NCPDTI model, lately released by Texas Instruments, be-

longing to the same family of microcontrollers, has a 120MHz internal clock,

and yields higher performance.

As displayed in Tab. 7.3, the computational cost for the model rises

quickly as soon as the order of the differentiator grows. This is due to the

increased number of operations required to compute the dynamic section of

the model. However, in terms of overall error,the best results are obtained

with an order of 5 or 7. Even if a higher order filter better removes the noise

of the signal, the system responds slowly and in proximity of quick variations

the error is considerable. Indeed, an order higher than 9 should be considered

only if more data processing is needed for which noisiness is less desirable

than inaccuracy.
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Table 7.3: Computational cost for different filtering orders.

Order C.Cycles Period

(50MHz)

Period

(120MHz)

Max.Freq.

(50MHz)

Max.Freq.

(120MHz)

5 125632 0.002512 0.001046 397.988 955.171

7 172991 0.003459 0.001441 289.032 693.678

9 191415 0.003828 0.001595 261.213 626.910

11 212707 0.004254 0.001772 235.065 564.156

The second parameter that was investigated was the activation function

used for the hidden neurons of the NN. Two alternatives were used: the

full-precision activation function, computed using math.h C library, and a

polynomial interpolation of the activation function, pre-computed in Mat-

lab, composed by a fit of five 2nd order polynomials (see Section 4.1 for more

information). The second solution is obviously a trade-off between preci-

sion and performance. By the combination of this parameter and the order,

two final solutions are proposed, one for best performance, one for highest

precision. Percent Root Mean Square Error(%RMSE) was calculated as the

average RMSE (on the 9 forces) between the output in embedded environ-

ment and the output obtained from the original algorithm, on a set of 20.000

samples. This comparison shows, in quantitative terms, the degradation in-

troduced by transposing the algorithm from a batch Matlab implementation

to a real-time, embedded implementation.

As it can be seen in Tab. 7.4 and Tab. 7.5 , error for the Performance

configuration is almost 3 times higher than the Precision one, whereas the

speedup factor is less than 2. The Performance configuration should only be
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Table 7.4: Performance configuration.

2nd Degree Differentiator Order 5

Activation Function Polynomial

% RMSE 10.3%

Clock Cycles 125632

Cutoff Frequency (50MHz Clock) 397 Hz

Cutoff Frequency (120MHz Clock) 955 Hz

Flash Memory Occupation 4.13kB

Table 7.5: Precision configuration.

2nd Degree Differentiator Order 7

Activation Function Full-Precision

% RMSE 3.61%

Clock Cycles 212636

Cutoff Frequency (50MHz Clock) 235 Hz

Cutoff Frequency (120MHz Clock) 564 Hz

Flash Memory Occupation 3.59kB
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used if a coarse and rapid guess of the forces is needed. Both configurations

largely satisfy minimum requirements for frequency, since for the biomechan-

ics of the studied gesture, the force information is contained between 0 and

40 Hz. Such a large gap in terms of computational time can be used either

to increase precision further, through intermediate filtering, or to include

additional data elaboration, like sEMG correlation algorithms.



Conclusions and Future

Developments

The work proposed on this PhD thesis is composed by two contributions.

In the first one, an analysis of the most relevant soft-computing tech-

niques, and in particular, the ones involving embedded environments, was

analyzed. Of the very wide spectrum of techniques that are defined by the

name of Soft Computing, two where studied in depth: Optimization Algo-

rithms and Neural Networks. Both were studied considering the analytical

formulation of the techniques, implementations in a high-level programming

environment, and the practical implementation on embedded devices.

In the second one, the knowledge obtained by the state-of-the-art research

led to development and implementation of new methodologies to efficiently

implement those techniques in embedded environment. Most of the pro-

posed methods involve searching for optimal trade-offs between the scarce

computational resources available on devices, and the performance degrada-

tion coming from numerical approximations.

Some techniques developed in this work were implemented and/or tested

on real devices, but they were never used on a practical application (i.e.
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Section 4.2 and Section 4.3). Other techniques, on the other hand, were used

for real engineering problem scenarios. In the first case, the goal was simply

to obtain an efficient computational procedure to execute an algorithm. In

the second case on the other hand the algorithms implementations had to

be tuned to meet project specifications. This required an additional study,

concerning the engineering problem involved.

The engineering fields that have been studied for the application of SC

techniques are two. The first, and most important one, is the study of

Photovoltaic systems (i.e. Chapter 5 and Chapter 6): the circuital mod-

els that represent the PV devices, the problem of estimating and predicting

solar irradiance, and the issue of tracking the optimal work point under vari-

able environmental conditions. The second one is the study of the inverse

biomechanics models used for the force estimation in cycling (i.e. Chapter

7): a literature-known model was first modified by replacing some elements

with neural estimators, and was later implemented in real-time on a micro-

controller unit.

Several aspects remain open for future development. On the purely al-

gorithmic front, the optimized procedure for ANN computation presented in

Section 4.3 could benefit greatly from an integration of pruning techniques for

optimal network sizing [Hassibi and Stork, 1993,LeCun et al., 1989]. On the

matter of Maximum Power Point Tracking for PV devices, the actual chal-

lenge is to create a control system able to face the partial shading problem.

This can be done either by optimization algorithms like the ones proposed in

Chapter 2 [Kazmi et al., 2009] [Lei et al., 2011], or by active reconfiguration

of the solar array to exclude shaded panels. Both techniques requires opti-
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mization algorithms efficiently implemented for embedded devices. On the

matter of irradiance sensing and prediction, recent developments concern-

ing the circuital model of the PV device(s) propose an analytic approach to

compute the solar irradiance. For this reason, it becomes critical to imple-

ment the circuit model equations directly on the control device. Other than

creating very accurate and fast irradiance sensors, this can be used to imple-

ment tools like PV panel simulators and I-V curves tracers. On the matter

of biomechanics, the solution implemented by now is a gray-box approach,

combining the computational flexibility of an ANN with a very complex (and

heavy) dynamic system. A comparative analysis between this approach, and

the complete simulation of the system through a dynamic ANN could be

the critical step to achieve higher accuracy without increasing dramatically

the computational costs. Combining this approach with a real-time learning

algorithm, like the one proposed in Section 1.2.6, and on-line sEMG mea-

surements, could give a flexible tool that learns the muscle response of the

athlete during the activity itself.
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