
i
i

“thesis” — 2016/5/5 — 11:59 — page i — #1 i
i

i
i

i
i

UNIVERSITÀ DEGLI STUDI

ROMA

TRE
Roma Tre University

Doctoral School in Computer Science and Automation

Ciclo XXVIII

Doctoral dissertation:

Visual Analytics of Network
Routing Through Traceroute
Data: Models and Techniques

Author: Marco Di Bartolomeo

Advisors: Prof. Giuseppe Di Battista
Prof. Maurizio Patrignani

Spring 2016

i
i

“thesis” — 2016/5/5 — 11:59 — page ii — #2 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page iii — #3 i
i

i
i

i
i

Visual Analytics of Network Routing Through Traceroute Data:
Models and Techniques

A thesis presented by
Marco Di Bartolomeo

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Department of Engineering

Spring 2016

i
i

“thesis” — 2016/5/5 — 11:59 — page iv — #4 i
i

i
i

i
i

COMMITTEE:
Prof. Giuseppe Di Battista, Dept. of Engineering, Roma Tre University
Prof. Maurizio Patrignani, Dept. of Engineering, Roma Tre University

REVIEWERS:
Prof. Stephen G. Kobourov, Dept. of Computer Science, University of Arizona
Emden R. Gansner, Google Inc.

i
i

“thesis” — 2016/5/5 — 11:59 — page v — #5 i
i

i
i

i
i

“A good decision

is based on knowledge

and not on numbers.”

(Plato. Laches. 4th century B.C.)

i
i

“thesis” — 2016/5/5 — 11:59 — page vi — #6 i
i

i
i

i
i

Contents

Contents vi

1 Introduction 1

2 Preliminary Concepts and Definitions 7
2.1 Computer Networks . 7
2.2 Graph Drawing . 9

I Visualizing Routing from Detail to Overview 13

3 Visual Analysis of Routing Dynamics and Topology 15
3.1 Introduction . 15
3.2 Reference Scenario . 16
3.3 Related Work . 18
3.4 Terminology . 25
3.5 Analysis of Data . 26
3.6 User Interface . 31
3.7 Algorithms . 39
3.8 User Study . 46
3.9 Conclusions and Future Work . 51

4 Visualization of Network Metrics as Stacked Charts 53
4.1 Introduction . 53
4.2 Related Work . 55
4.3 Finding a Baseline via Wiggle Optimization 57
4.4 Layer Ordering . 61
4.5 Labeling of Layers . 65

vi

i
i

“thesis” — 2016/5/5 — 11:59 — page vii — #7 i
i

i
i

i
i

CONTENTS vii

4.6 Time Complexity of the Algorithms 66
4.7 Experiments . 67
4.8 Discussions . 73
4.9 Conclusions and Future Work . 74

II Abstract Representation of Routing 75

5 Automatic Discovery of High-Impact Routing Events 77
5.1 Introduction . 77
5.2 Related Work . 79
5.3 The Empathy Relationship . 79
5.4 Seeking Events: Methodology and Algorithm 82
5.5 Experimental Results . 87
5.6 Conclusions and Future Work . 91

6 Visual Analysis of Routing Events 93
6.1 Introduction . 93
6.2 Reference Scenario . 94
6.3 Related Work . 95
6.4 RoutingWatch: A Visual Event Analysis Tool 96
6.5 Evaluation . 103
6.6 Conclusions and Future Work . 108

III Interplay Between Routing and Geography 111

7 Planarity of Georeferenced Graphs 113
7.1 Introduction . 113
7.2 Problem Definition and Instances Classification 115
7.3 Polynomial-Time Algorithm . 117
7.4 Hardness Results . 122
7.5 Conclusions and Future Work . 129

8 Heuristics for Visualizing Georeferenced Graphs 131
8.1 Introduction . 131
8.2 Visualizing Networked and Geographic Data 133
8.3 Related Work . 138
8.4 The Retina Layout Algorithm . 139

i
i

“thesis” — 2016/5/5 — 11:59 — page viii — #8 i
i

i
i

i
i

viii CONTENTS

8.5 Experimental Evaluation . 140
8.6 Conclusions and Future Work . 145

Appendices 149

List of Publications 151

Bibliography 153

i
i

“thesis” — 2016/5/5 — 11:59 — page 1 — #9 i
i

i
i

i
i

Chapter 1

Introduction

The Internet has become a fundamental part of our life. Born as a network for sci-
entific purposes, it has grown in size and services to the point to become the back-
bone of many human daily activities. Studying, shopping, and banking, are examples
of activities in which the use of the Internet is nowadays well established. The ex-
traordinary diffusion of mobile devices (estimated in 2 billion of connected units in
2016 [Int16]) is greatly contributing in making people use online services. Multime-
dia services have an increasing importance in this framework, and, in fact, there is
a trend in the last years to offer multimedia products over the Internet to the general
public. Telephone, music, and movie streaming are examples of this trend, in which
names like e.g. Skype, Netflix, Youtube, and Spotify proved to be prominent players.
This phenomenon is advantageous for several stakeholders. Content providers can
exploit a robust and world-wide distributed network for distributing their contents,
easily reaching old and new customers at a fraction of the costs necessary for build-
ing and maintaining traditional, dedicated infrastructures. This has a direct impact
on customers, who receive more complete services at lower prices. Also, these ser-
vices are often more interactive than traditional ones, thanks to the digital nature of
the Internet, which enables a personalized user experience. Finally, Internet Service
Providers (ISPs) are the intermediary in this context. These organizations, tradition-
ally, have developed and hosted the physical networks that run the Internet, and today
they see new market opportunities in developing high-performance infrastructures for
multimedia Internet services.

Internet Service Providers are faced with the challenging task of developing and
maintaining networks that increase in size at a dramatic pace but, at the same time,
must support multimedia Internet services by providing acceptable performance. In

1

i
i

“thesis” — 2016/5/5 — 11:59 — page 2 — #10 i
i

i
i

i
i

2 CHAPTER 1. INTRODUCTION

this scenario, metrics are a fundamental tool. Measuring the performance of a network
allows for a continuous monitoring, supporting the discovery of faults and the tuning
of parameters. ISPs have always used some kind of local monitoring in their networks,
for example embedded in routers, which are intermediate devices. However, given the
size of modern networks, a local alert raised by a router does not necessarily represent
the experience of a user, whose packets traverse long paths in the network. He could
have a much worse perception of a fault, because of multiplicative effects along the
path. Or, it could not notice the fault at all, because he is far from it and the effect on
his connection is only negligible. Probe systems are a recent attempt to deal with this
problem, and are gathering a growing interest. Such a system distributes small de-
vices called probes across the Internet, which are always connected and continuously
perform standard network measurements towards selected targets. Some common
measurements that are performed are ping, traceroute, HTTP queries, etc. The results
of the measurements are collected in large repositories, which are available for further
analysis. The key feature of probes is that they are installed near to real users, often
in their houses, hence simulating the actual user experience through the metrics they
collect.

Among the measurements available in a probe system, traceroute is a standard
networking tool that records the path followed by data in the network, from the source
to the target. It also records the round-trip time between the source and each inter-
mediate node. Like other standard measurements, it is supported by default by any
IP-based network, like the Internet. Differently from other measurements, traceroute
data contain intrinsic topological information, since a traceroute basically represents
a path in the network. This means that they can reveal details on the structure of
the network, in addition to its performance. At any instant, a protocol decides the
routing of the network, which is a set of rules that establish what path is followed by
packets to go from a given source to a given destination. In this sense, traceroute is
a simple yet effective tool for sampling the status of the routing at a given instant.
If several traceroute paths are merged, the result is the traceroute graph, or routing
graph, which represents an approximation of the network topology and of the routing
on that network at a given instant.

However, the information richness of traceroutes makes them difficult to handle
and understand. In fact, most existing tools make only a partial use of traceroutes,
showing single paths and the relative round-trip times, without any attempt to process
and emphasize the topological information. This underuse can be explained by some
challenges, listed in the following, that are encountered when processing traceroutes
produced by a probe system.

Data Size A large probe system ensures a fine-grained sampling of the Internet, but

i
i

“thesis” — 2016/5/5 — 11:59 — page 3 — #11 i
i

i
i

i
i

3

can also produce a humongous amount of data. In fact, thousands of probes
can be operating at the same time, performing measurements every few min-
utes towards a same target for hours or days. The collected data can contain
many interesting insights on the network, but transforming that large amount of
data into useful information for human operators requires automatic processing
methods, and suitable visualizations. While this is rather easy for numerical
metrics, automatically processing and visualizing in a meaningful way topolog-
ical data is complex, with the large data size making the task harder.

Dynamics Routing is a dynamic entity. It continuously changes as a reaction to net-
work faults or to make an efficient use of the network, i.e. by distributing the
load over different nodes. Probe systems execute traceroutes periodically, and
for this reason produce a sampling of routing dynamics, as a sequence of snap-
shots. In some sense, dynamics is the most interesting aspect of routing, and
probe systems give an opportunity to study its evolution. But structured data
that change over time are hard to process and represent. In particular, dynamic
graphs are known to be very challenging to visualize in an effective way.

Relation To Metrics Routing changes require to be correlated to metrics to be un-
derstood. Indeed, if the path between two nodes as captured by two consecutive
traceroutes changed, it is hard to determine the reason for the change without
knowing how the value of some metric of interest changed at the same moment.
Traceroutes are naturally related to the round-trip time delay, but other met-
rics are possible. While visualizing metrics alone is relatively easy, there is not
a consensus on how to effectively correlate numerical values with topological
data in a dynamic setting.

Relation To Geography Traceroutes intrinsically contain geographical information.
Each node of a traceroute is represented with an IP addresses, which can be
roughly mapped to a geographical position by means of heuristics. This re-
lationship to geography is interesting for data analysis, since the relative geo-
graphical locations of two nodes can influence the routing between them. But,
at the same time, it represents a strong constraint for visualization. Indeed, the
most natural and effective way to display geographical positions is superimpos-
ing them on a geographical map, which prevents further optimizations of the
visualization. This becomes critical when positions are relative to nodes of a
computer network, since these data are subject to scale problems. For example,
a traceroute can have its endpoints in two large cities, where nodes are relatively
near to each other, and then traverse a long oceanic cable with few intermediate
nodes. If the path is shown in its full extent in a geographical visualization, the

i
i

“thesis” — 2016/5/5 — 11:59 — page 4 — #12 i
i

i
i

i
i

4 CHAPTER 1. INTRODUCTION

areas near to the endpoints show a lot of visual clutter. On the other hand, if
only an endpoint is shown so to reduce the clutter, the global view is lost.

As a result of the described problems, nowadays large amounts of traceroutes are
collected without their full potential is exploited for data analysis. This thesis has the
objective of supporting ISPs in making use of massive traceroute data for managing
their networks. The products of the study are interactive tools, that implement novel
processing algorithms and visualization metaphors for traceroutes. These tools pro-
vide human users with a simplified but flexible view of data, supporting tasks like
network debugging and design. The framework is that of visual analytics, a research
field that combines automated analysis techniques with interactive visualizations for
an effective understanding, reasoning and decision making on the basis of very large
and complex data sets [KAF+08]. For reaching the objective, the methodology of this
study deals with the aforementioned challenges by applying several approaches.

Multiple Abstraction Levels The Internet is partitioned in large subnetworks called
Autonomous Systems, or ASes, each belonging to a single administration. Since
every node corresponds to exactly one AS, it is possible to convert a traceroute
path to a shorter path of traversed ASes. The partitioning in ASes is an exam-
ple that gives the intuition that traceroutes can be studied at different levels of
abstraction. While abstracting data is a way to mitigate their size, in the con-
text of network management the user still needs to see the details, i.e. single
traceroute paths. The reason is that not only it is not predictable the specific set
of details the user wants to see, but once he has spotted a macroscopic network
behavior, he also wants to know the low level causes, to be able to intervene on
the network. Therefore, tools must allow the user to look at the data at different
abstraction levels, and to easily compare them.

Routing Events Often an ISP has some initial information from which to start the
analysis of a network problem. A date and a time at which an issue manifested,
or a set of nodes that were updated in a recent maintenance action, are exam-
ples of input for deeper data analysis. In these situations, switching between
abstraction levels helps circumscribe and understand the problem. But some-
times there are no initial information available, because the ISP was not aware
of the existence of a problem. The large amount of traceroutes collected by
probes could have discovered an unnoticed problem, but it is too hard to find it
by looking at the data in detail. For this reason, data must be automatically pro-
cessed for finding macroscopic routing behaviors that could start the analysis.
Such macroscopic behaviors are here introduced and studied as routing events.

i
i

“thesis” — 2016/5/5 — 11:59 — page 5 — #13 i
i

i
i

i
i

5

Methodologies

Multiple
Abstraction

Levels Routing Events
Topology

+
Geography

Data Size 3 3
Dynamics 3 3
Relation To Metrics 3

C
ha

lle
ng

es

Relation To Geography 3 3

Table 1.1: Impacted challenges regarding the analysis of traceroute data produced by a probe
system, for each of the methodologies of this thesis.

Topology + Geography As discussed, geographical visualizations of topological data
suffer from visual clutter, and a reduced possibility to optimize the visualization.
On the other hand, correlating routing dynamics to the geographical positions of
the involved nodes could outline further insights on the causes of those dynam-
ics. For this reasons, tools must support geography, in a hybrid visualization
that allows the user to compare it to the topological information.

Fig. 1.1 briefly shows which challenges are met by the methodologies described
in this study.

The thesis is structured in three Parts, each discussing the application of one
methodology and each divided in two chapters. Chapter 2 introduces preliminary
concepts and definitions that are used through the rest of the thesis. Chapter 3 de-
scribes the application of multiple abstraction levels for visualizing the dynamics and
the structure of the routing graph. Chapter 4 applies multiple abstraction levels to
metrics, showing how a set of time series can be visually arranged to allow an easy
comparison of each of them to their global trend. Chapter 5 introduces the concept of
routing event as a model of high-level routing dynamics, and describes an algorithm
for efficiently discovering routing events in a large set of traceroutes. Chapter 6 de-
scribes a visual approach for analyzing routing events, enabling the user to visually
discover patterns of events that are hard to detect automatically. Chapter 7 studies a
graph planarity problem related to drawing a graph whose nodes have a geographical
position, in such a way that the drawing has a good readability without being too dif-
ferent from a pure geographical visualization. Finally, Chapter 8 describes a heuristic
approach for drawing a graph whose nodes have a geographical position.

i
i

“thesis” — 2016/5/5 — 11:59 — page 6 — #14 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 7 — #15 i
i

i
i

i
i

Chapter 2

Preliminary Concepts and Definitions

This chapter introduces the basic concepts and terminology used through the rest of
the thesis, and related to the two fields of interest: computer networks, and graph
drawing.

2.1 Computer Networks

Routing in the Internet

The Internet is a large, distributed network of computers and other devices. Among
these, routers are intermediate devices that have the task to route traffic across the net-
work, i.e. to decide what path data should follow to go from a given source to a given
destination. This activity is also called routing and is executed by routers one link at
the time, that is, a router chooses which is the next node (or “hop”) to traverse among
its closest neighbors. Routing is a dynamic entity. A routing protocol is continuously
executed on the network to compute the best path between each pair of nodes, on the
basis of their availability and performance. For example, if a given node experiences
a fault, the routing protocol could replace it with an alternative node in every path that
traverses it. Load balancing is another reason for which routing changes. Namely,
particular nodes of the network called load balancers distribute traffic across several
alternative devices, following some policy. Traceroute is a standard networking tool
that reports the path followed by data to reach a destination, and it is executed by the
source. The reported sequence of routers is called traceroute path. Network devices
are labeled with an IP address, so a traceroute path is a sequence of IP addresses. For
each node, a traceroute also reports the round-trip time (RTT), which is the length of
time it takes for a signal to be sent plus the length of time it takes for an acknowledg-

7

i
i

“thesis” — 2016/5/5 — 11:59 — page 8 — #16 i
i

i
i

i
i

8 CHAPTER 2. PRELIMINARY CONCEPTS AND DEFINITIONS

ment of that signal to be received. Network devices can be configured to not respond
to traceroutes for security reasons, in such a case the traceroute tool reports an asterisk
(“*”) in place of the missing node. Several traceroute paths can be merged to form
a reticular structure (or graph) that is a partial view of the actual topology of the tra-
versed network as seen by routing, and is called routing graph, or traceroute graph.
Two consecutive traceroutes between the same pair of nodes reporting two different
paths are an evidence that routing changed at some time instant between the two mea-
surements. Traceroutes periodically performed from several observation points of the
network effectively sample the evolution of the routing graph over time. If the tracer-
outes were collected all at the same time, the resulting graph is an approximation of
the instantaneous state of routing. Otherwise, it represents several routing states, that
is, it contains several paths that had been available from a source to a destination at
different times.

Deciding all paths to follow in a network requires the knowledge of the entire net-
work, which is impractical for the size of the Internet, so this activity is performed
only at a local level on partitions of the network called Autonomous Systems, or ASes.
An AS belongs to a single administrative authority, like an Internet Service Provider
(ISP), a company, a university, etc, and is globally identified with a number called
AS Number (ASN). ASes are inter-connected and form a more abstract view of the
Internet. Routing protocols do not cross the boundary of an AS, so to make ASes ex-
change their traffic a specific protocol exists, called Border Gateway Protocol (BGP).
It is a policy-based protocol implemented by ASes by exchanging special messages
called announcements. An announcement basically tells the world either “I own these
IP addresses” or “I know a path to reach these IP addresses”. Usually ASes establish
links to exchange their traffic on the basis of commercial agreements, which assigns
a “customer-provider” meaning to the link. Since BGP announcements are publicly
available, organizations collect them to infer the links between ASes, and the AS to
which an IP address belongs. With a map from an IP address to its AS, it is possible
to convert a traceroute path into a shorter path of traversed ASes, and a routing graph
into a more abstract graph of ASes.

Probe Systems

Network operators like Internet Service Providers, Content Delivery Networks (CDN),
and cloud providers are strongly committed to offer reliable and efficient services to
their customers. Besides being a way to keep a prominent position on the market, this
is also a requirement encoded in Service Level Agreements (SLAs), whose violation
can cause financial penalties. Achieving this requires facilities to monitor the net-
work infrastructure for timely detection of possible problems and to help operators in

i
i

“thesis” — 2016/5/5 — 11:59 — page 9 — #17 i
i

i
i

i
i

2.2. GRAPH DRAWING 9

troubleshooting. Network management suites usually deal with numeric metrics (e.g.,
round-trip delay, error rate) and with status information (e.g., interface status). They
rarely consider end-to-end information, and, if so, it is limited to devices under direct
control of the operator.

A probe system is a set of interconnected network devices called probes, that pe-
riodically perform traceroutes (and other measurements) towards fixed destinations.
The collected traceroute paths are stored in huge databases and represent a sampling
of how the routing, as controlled by routing protocols, evolved over time on a portion
of the Internet. Probes are often installed near to the home of users, so to perform
end-to-end measurements of the access towards critical Internet services.

There are several organizations that distribute probes in the Internet with the aim
of monitoring the status of the network and of measuring its performance. A few
examples of such organizations follow. SamKnows [sam15] probes (tens of thou-
sands) are distributed world-wide to get broadband performance data for consumers,
governments, and Internet Service Providers. BISmark [SdDF+11] uses probes for
measuring the performance of ISPs. RIPE Atlas [atl15] is an open project of RIPE-
NCC whose probes (almost ten thousand) can be used to conduct customized mea-
surements by anyone willing to host a RIPE Atlas probe. MisuraInternet [agc] is a
probe-based project of the Italian Authority for Telecommunications that measures
the quality of broadband access. Other notable examples are CAIDA Ark [ark15],
and M-Lab [mla15], that use probes to continuously perform measurements towards
several targets.

2.2 Graph Drawing

Concepts of Graph Theory

A graph G = (V,E) is a mathematical structure composed of a set V of vertices (or
nodes) and a set E of pairs of vertices called edges (or arcs). We assume that (v,v) /∈
E∀v ∈V . A graph is said directed if each pair of vertices in E is ordered, and it is said
undirected otherwise. Given an edge e = (u,v) ∈ E, we say that u and v are incident
to e and that e is incident to u and v. Two vertices are adjacent, or neighbors, if they
are incident to a common edge. Two edges are adjacent if they are incident to the
same vertex. The degree of a vertex is the number of edges incident to it. A path
in a graph G is a sequence of adjacent edges with no repeated vertices. A graph is
connected if a path exists between every pair of vertices, and disconnected otherwise.
It is also said biconnected (triconnected) if there exist two (three) paths between every
pair of nodes, with no common vertices but the endpoints. A cycle is a path where the
endpoint vertices are coincident. A tree is a maximal connected acyclic graph, and it

i
i

“thesis” — 2016/5/5 — 11:59 — page 10 — #18 i
i

i
i

i
i

10 CHAPTER 2. PRELIMINARY CONCEPTS AND DEFINITIONS

is rooted if one vertex is designated to be the root. A vertex with degree equal to 1 in
a tree is called a leaf. A graph G = (V,E) is complete, or a clique, if there is an edge
(u,v) ∈ E for each pair of vertices u,v ∈V . A graph G0 = (V0,E0) is a subgraph of a
graph G = (V,E) if V0 ⊆V and E0 ⊆ E. A graph G = (V,E) is planar if |E|≤ 3|V |−6.
The density of a graph G = (V,E) is the |E|/|V | ratio. A graph with only few edges is
said sparse, while a graph with a number of edges near to the maximum is said dense.
The distinction between sparse and dense graphs is rather vague, and depends on the
context. We assume that a graph with |V | vertices is sparse if it has a number of edges
near to or lower than that of a planar graph with |V | vertices, and dense if it has a
number of edges near to that of the complete graph with |V | vertices. A combinatorial
embedding of a graph G is a set of ordered lists of adjacent vertices, one for each
vertex in G. A clustered graph is a graph G = (V,E) together with a hierarchical
grouping of the vertices in V .

Methods for Drawing Graphs

In its simplest form, a drawing Σ of a graph G = (V,E) is a function that maps each
vertex v to a distinct point Γ(v) and each edge (u,v) to an open Jordan curve Γ(u,v)
with endpoints Γ(u) and Γ(v). More elaborated definitions are possible, for example
vertices can be mapped to non-overlapping geometric shapes, and edges interconnect
the boundaries of the shapes. However, the basic definition covers a large set of cases
of interest, and it is often an intermediate step of methods for more elaborated draw-
ing styles, so we will assume it in what follows. Edges are commonly represented
as curved lines, polylines, or straight lines, and are depicted as arrows in directed
graphs. Also, clusters of a clustered graph are commonly represented as nested boxes
containing vertices.

Drawing a graph, in the context of this thesis, means to apply an algorithm for au-
tomatically produce a graphical representation of a graph with desired visual proper-
ties. Aesthetic criteria are often applied, some notable examples are the minimization
of the number of edge crossings, the minimization of the drawing area, the minimiza-
tion of the number of edge bends (if edges are visualized as polylines), the mini-
mization of the variance of the lengths of the edges, the display of symmetries in the
graph structure. Aesthetic criteria improve the readability of a drawing from different
points of view but can be in contrast between them. For this reason, different drawing
methods tend to privilege different criteria.

Constraints can also be applied to drawing algorithms, to enforce graphical prop-
erties that are specific of some domain. Differently from aesthetic criteria, which are
general and apply to the entire graph, constraints operate on specific subgraphs. For
example, an algorithm for drawing non-clustered graph could be modified and con-

i
i

“thesis” — 2016/5/5 — 11:59 — page 11 — #19 i
i

i
i

i
i

2.2. GRAPH DRAWING 11

strained to draw nodes of a clustered graph near to each other, if they belong to a same
cluster. Some paths could be constrained to appear as a straight sequence of edges,
avoiding bends. Some nodes could have an assigned position, that must be preserved
in the layout. Georeferenced graphs are a notable example of this latter case, in which
nodes have a geographical position. Depending on the application, algorithms can
have some flexibility in applying constraints, fulfilling them only partially if this is
necessary to obtain a layout.

There exist several approaches for producing a drawing of a graph. In the follow-
ing we review some cases that are of interest for this thesis, more details can be found
in [TDBET98].

Planarity oriented methods exploit properties of planar graphs. These graphs ad-
mit drawings without edge crossings, or plane drawings. A plane drawing subdivides
the plane in topologically connected regions called faces, of which one, the external
face, is unbounded. A combinatorial embedding of a graph is an equivalence class of
its drawings, and plane drawings are grouped in planar embeddings. Efficient algo-
rithms exist for finding a planar embedding of a planar graph, and a planarity oriented
algorithm computes a drawing starting from a planar embedding. Planarization is
an approach in which a non-planar graph is transformed into a planar graph, and an
embedding is found for this graph. The final drawing of the original graph contains
edge crossings. Planarity oriented methods work well for graphs that are planar or
at least sparse. Constraints can be applied, but they can make finding an embedding
and a drawing harder. For example, at the time of writing, it is not known the time
complexity for computing a planar embedding of a clustered graph such that edges do
not cross and avoid unnecessary crossings of clusters.

Hierarchical methods apply to acyclic directed graphs, and produce layered draw-
ings. In this kind of drawing, vertices are displaced along parallel horizontal layers,
and edges monotonically flow in one vertical direction. Layered drawings are some-
times referred to as Sugiyama drawings. This style clearly outlines hierarchies of
nodes, hence the name, and it is often used for engineering diagrams (e.g. PERT,
UML, Petri nets), where edges represent dependencies between nodes like prece-
dences or requirements. Algorithms for layered drawings are composed of three
phases. First, nodes are assigned to layers so that every edge is directed towards
increasing layers. Then, each layer is ordered to reduce the number of edge crossings.
With clustered graphs, the orderings must be constrained so that nodes belonging to a
same cluster are consecutive. Finally, geometric positions along each layer are com-
puted for vertices, such that the layer ordering is preserved and aesthetic properties,
like spacing between nodes, are enforced. Finding layer orderings that minimize the
number of edge crossings is a NP-hard problem, so often heuristics are used. Also,
hierarchical methods only apply to acyclic graphs, therefore generic directed graphs

i
i

“thesis” — 2016/5/5 — 11:59 — page 12 — #20 i
i

i
i

i
i

12 CHAPTER 2. PRELIMINARY CONCEPTS AND DEFINITIONS

must be preprocessed for removing cycles. This usually means finding a small set of
edges to remove or invert before making a drawing, and then restoring the modified
edges.

Force-directed methods use a physical analogy to draw graphs. A graph is seen as
a system of bodies with forces acting between them, and the resultant of this system
of forces changes the positions of nodes. Algorithms iteratively update the positions,
leaving the system converge at a configuration with locally minimal energy. A fa-
mous example of such an algorithm is the spring embedder. In this method, nodes
are modeled as electrically charged particles, that repulse each other according to
a force that decreases when their pairwise distance increases. Edges are modeled
as springs, which attract pairwise connected vertices until a natural spring length is
reached. Force-directed methods are among the most used for drawing graphs, for
several reasons. First, they do not pose restrictions on the input and thus work on
generic graphs. Second, they have a good scalability, and efficient implementations
can draw graphs with thousands or even millions of vertices. Third, physical analo-
gies are easy to understand, and algorithms are easy to implement. Fourth, it is easy
to introduce constraints, by modeling them as additional forces that act on vertices
and edges. Finally, these methods tend to produce aesthetically pleasant drawings,
outlining symmetries in the graph structure and separating dense subgraphs from each
other. Although their versatility, a drawback of force-directed methods is that a system
of forces is a complex entity, and algorithms have only limited control on its evolu-
tion. The result is also very dependent on the initial configuration, for finding which
there is not any general approach. These characteristics makes it hard to predict with
accuracy the aesthetic properties of drawings produced with force-directed methods.

i
i

“thesis” — 2016/5/5 — 11:59 — page 13 — #21 i
i

i
i

i
i

Part I

Visualizing Routing from Detail to
Overview

13

i
i

“thesis” — 2016/5/5 — 11:59 — page 14 — #22 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 15 — #23 i
i

i
i

i
i

Chapter 3

Visual Analysis of Routing Dynamics
and Topology

This chapter describes an approach based on Multiple Abstraction Levels (see Chap-
ter 1) for visualizing the structure and the dynamics of the routing graph produced
by a selection of traceroutes. The tackled challenges are Data Size, Dynamics, and
Relation To Metrics. The visualization approach exploits the fact that Autonomous
Systems can aggregate parts of the network to furnish a more abstract view, and that
consecutive snapshots of routing captured by a probe system can be used to show the
evolution of routing over time with an animation. The work was based on experiments
conducted on data from RIPE Atlas [atl15], and ended with the production of a pro-
totypical tool, Radian, which was evaluated by users with an expertise in networking.
A demonstrative version of Radian is available online [Rom]. A preliminary version
of this chapter was published in [CDDS13].

3.1 Introduction

We present a tool, called Radian, for the visualization of traceroute data collected by a
system of probes. The requirements of Radian were gathered interacting with several
ISPs, within the Leone FP7 EC Project.

Radian works as follows. The user selects a set S of probes of a certain Inter-
net measurement project (all the experiments described have been conducted using
RIPE Atlas [atl15] probes), a target IP address τ , and a time interval T , and obtains a
visualization of how the traceroutes issued by the probes in S reach τ during T .

A snapshot of Radian is in Fig. 3.1.

15

i
i

“thesis” — 2016/5/5 — 11:59 — page 16 — #24 i
i

i
i

i
i

16 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

Figure 3.1: The main interface of Radian.

The chapter is organized as follows. Section 3.2 describes the scenario that orig-
inated Radian. In Section 3.3 we discuss how our contribution relates with the state
of the art. Section 3.4 introduces basic terminology. Section 3.5 presents experi-
ments that analyze the data visualized by Radian, discussing the results. Section 3.6
describes the adopted visual metaphor and the user interface of Radian. Section 3.7
illustrates the algorithmic apparatus devised for Radian. Section 3.8 describes a user
study. Finally, conclusions are in Section 3.9.

3.2 Reference Scenario

There are several types of users who could be interested in monitoring the evolution
of routing as seen by a system of probes. Network operators are interested to check
the proper operation of their networks. Government authorities of a country need to

i
i

“thesis” — 2016/5/5 — 11:59 — page 17 — #25 i
i

i
i

i
i

3.2. REFERENCE SCENARIO 17

verify the quality of the Internet connection offered to the citizens. Cyber-security
agencies look for abuses of the Internet that may implicate cyber attacks towards or
from specific countries. Finally, researchers are interested to study the Internet routing
because it is a complex, only partially understood system. Though this list of potential
users who may benefit from a tool to monitor the evolution of routing, we focus our
attention on Internet Service Providers (ISP), because we could outline clear user re-
quirements by interacting with a few ISPs within the Leone FP7 EC Project. Among
the activities of an ISP, we focus on three use cases that resulted from the discus-
sion with our partner ISPs, and that could require to check the status of the routing:
troubleshooting, upgrade verification, and inter-domain consistency check.

Troubleshooting copes with any unexpected dynamics that disrupted the normal
operation of the network. For example, a router could stop forwarding packets due
to an overload or a damage, making some network services unreachable or slow to
respond. Or, a wrong configuration due to a human mistake could make the network
be used in an inefficient way, letting many paths traverse a same node and overload
it, while alternative nodes were available. Among the use cases we collected, trou-
bleshooting is the one with less initial information, because the activity could have
been started by a customer complain giving only partial and imprecise indications.
The ISP may need to explore the data and look for some interesting pattern that is
related to the problem, in order to find a subset of the network that was possibly the
cause. Network devices are usually equipped with an alert system, which however is
only capable to report the specific device where something anomalous was detected;
the origin of the failure may be far from there, and understanding the full dynamics
of how data flowed in the network could help better locate the cause. From this per-
spective, following traceroute paths link by link is a routing analogous of low-level
debugging for a software application. Further, the traceroute becomes one of the very
few analysis tool when a problem is originated in an external network, which is not
under the control of the ISP and thus alert systems can not be of help. When trou-
bleshooting a problem, it is often useful to compare routing changes to the variations
of some metric of interest (e.g. the round-trip time), because it helps assign meaning
to routing changes. For example, a sudden increment of the latency of a link could
explain why many paths abandoned that link almost at the same time, right after the
metric increment. Also, the path length is a parameter to consider, since longer paths
tend to have higher latency.

An upgrade is any modification made to the network by the ISP to improve the
existing services or to add new ones. When the action modifies the routing with
the aim of improving the performance of one or more services, it is more precisely
called traffic engineering. New routers and links could be added to extend the current
network, or to add redundancy and make the network more resistant to failures and

i
i

“thesis” — 2016/5/5 — 11:59 — page 18 — #26 i
i

i
i

i
i

18 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

high loads. Also, an upgrade can involve the configuration of a device. For example, a
router could get configured to distribute the incoming traffic by following some load-
balancing criteria (e.g. per-source, per-destination). After an upgrade the ISP needs to
verify that the desired effect was obtained. Similarly to troubleshooting, this activity
benefits from analysing the dynamics of the routing. By inspecting the paths followed
by packets it is possible to check if a router was traversed by traceroutes issued by
selected probes when it was expected. Also, metrics associated to the paths helps
assess the outcome of the upgrade. For example, a sudden drop of the latency right
after the transition from an old to a new path tells that the change was beneficial.

Inter-domain consistency check consists of verifying the relationship between the
intended routing established by BGP announcements and the actual routing reported
by traceroutes. The path of traversed ASes, obtained by associating the IP addresses
of a traceroute path to their ASNs, tells whether the announced BGP policies were
fulfilled. Checking the consistency between BGP and IP routing can be useful in a
few cases. First, a change in the commercial relationships with other providers could
require a change in the BGP links active with them, and the ISP must check that
the modification was correctly implemented by the other parties. For example, the
ISP could want to check the correct operation of a backup link towards another AS
during an outage of the primary one. The ISP also needs to discover errors in the BGP
policies themselves, which are usually set manually to let human operators supervise
the process. Another interesting use case involves probes located outside the ISP
network. The ISP could want to verify that a BGP announcement that it had sent was
correctly received by the rest of the Internet, by seeing what paths the external probes
followed to reach the ISP network.

3.3 Related Work

Tools for Traceroute Visualization

Because of its simplicity and effectiveness, the traceroute command attracted the in-
terest of several researchers and practitioners that developed services for visualizing
the traceroute paths discovered by executing one or more traceroutes. Broadly speak-
ing, there are two groups of traceroute visualization systems: tools developed for local
technical debugging purposes and tools that aim at reconstructing and displaying large
portions of the Internet topology.

Several tools of the first group visualize a single traceroute and display the path
on a map, showing the geo-location of the traversed routers. A few examples fol-
low. Xtraceroute [Aug] displays individual routes on an interactive rotating globe
as a series of yellow lines between sites, shown as small spheres of different colors.

i
i

“thesis” — 2016/5/5 — 11:59 — page 19 — #27 i
i

i
i

i
i

3.3. RELATED WORK 19

GTrace [PN99] and VisualRoute [Vis] are traceroute and network diagnostic tools
that provide a 2D geographical visualization of paths. The latter also features more
abstract representations taking into account other information, e.g. the round-trip time
between intermediate hops.

Tools of this kind are useful when the user wants to debug the path followed by
a specific source-destination pair. In such a case, the visualization can help making
sense of variations in some observed metric like the latency, by comparing it to the
geographical positions of routers. However, this kind of approach does not support the
exploration of data as collected from several sources at different instants, which could
be exploited to find interesting routing dynamics that involved several paths. Also, as
discussed in detail in Part III of this thesis, drawing geolocalized graphs is particularly
challenging. Indeed, this kind of visualization gets easily cluttered as, for example, a
traceroute can connect two dense metropolitan networks composed of many, relatively
close network devices, through a long oceanic cable. Using the geographical positions
to draw nodes poses strict restrictions on the layout, which cannot be further optimized
for readability. In addition, Autonomous Systems tend to be highly distributed, so
plotting hops at their geographical positions does not give a clear representation of the
AS-structure of the portion of network traversed by traceroutes.

In the second group there are several tools that merge the paths generated by mul-
tiple traceroutes into directed graphs and show them in some type of drawing. The
focus is on the topology of the traversed network, rather than the geographical po-
sitions of the nodes. In Argus [QoS], the length of an edge connecting two nodes
reflects the one-way delay between those nodes. Also, nodes belonging to a same
AS tend to be visualized close to each other. Similarly to what happens with a geo-
graphical visualization, relating the edge length to the values of a metric can produce
a large amount of visual cluttering. In ThousandEys [Tho], paths are oriented from
left to right, and nodes are positioned at fixed distances so that topological distances
are explicit. Although the routing dynamics is not expressed in the visualization, the
user can navigate time through an historical chart of a metric, and see the traceroute
graphs obtained at a given instant. Several paths for the same source-target pair can be
visualized at once, since the tool makes three attempts to perform traceroutes which
could follow a different path each. Great emphasis is put on user interaction, with the
possibility to collapse parts of the topology that are not of interest, or to outline ele-
ments that experienced a degradation in performance under a metric. The information
available for a node include the AS to which the node belongs. Finally, Zenmap [Lyo]
gives a radial view of the graph, with one focal node (e.g. the source of traceroutes
towards several destinations, or the target of traceroutes from several sources) at the
center of the drawing. Nodes are placed on concentric circles so to explicitly encode
topological distances, and the thickness of an edge represents the value of latency.

i
i

“thesis” — 2016/5/5 — 11:59 — page 20 — #28 i
i

i
i

i
i

20 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

Similarly to ThousandEys, the visualization can include several paths for the same
source-destination pair, but the routing dynamics are not shown. The user can col-
lapse the “children” of a node, that is, the nodes that reach the focal node through
it.

Tools in this category present many desired characteristics that help users execute
the use cases described in Section 3.2. First, merging traceroute paths into a graph
gives users an approximated view of the network under test, which is useful to spot
network behaviors that impacted several points of observation. Also, these tools in-
clude a graph layout that enhance the readability of the topology, the capability to
reduce the visual complexity by hiding some parts of the visualization that are not of
interest for a specific task, and a method to correlate the traceroute graph to the time
trend of some metric. Some useful features, however, have been overlooked in current
tools. Routing is a dynamic entity and traceroute graphs change over time, but tools
present traceroute graphs more or less like static entities. Also, ASes are considered
more as metadata attached to nodes, while they are a natural clustering of nodes and
offer a way to look at the routing at a higher level of abstraction. Finally, the used
algorithms to layout graphs are often general purpose and do not exploit the charac-
teristics of traceroute data for improving the visualization, for example for reducing
the number of edge crossings that make the topology harder to understand.

Visualization of Dynamic Graphs

Merging several traceroute paths together produces a graph. If the traceroutes are
collected at different time instants, the resulting graph evolves over time and is called
a dynamic graph. This model is particularly relevant for our work, because to the
user it looks like an approximation of the real network on which the traceroutes were
executed, and explicitly encoding the dynamics in the visualization helps him reason
about how routing affected different parts of the network.

There exists a large amount of literature on the visualization of dynamic graphs,
which is well summarized in a recent review paper [BBDW14]. According to that
work, methods for visualizing dynamic graphs can be classified under these coordi-
nates: (i) visualization metaphor; (ii) span of knowledge on data; (iii) representation
of time; (iv) layout algorithm; and (v) modeling of transitions.

The two principal visual metaphors used for static graphs, node-link and matrices,
are also applicable to dynamic graphs. However, we focus on the node-link style for
an important domain reason: traceroutes are paths, and following paths is notoriously
easier in the node-link representation. Also, this kind of diagram is intuitive for users
in the computer network domain. Therefore, in the following we assume to work with
this style.

i
i

“thesis” — 2016/5/5 — 11:59 — page 21 — #29 i
i

i
i

i
i

3.3. RELATED WORK 21

Visualization methods for dynamic graphs are said offline if, at any time instant,
future data are known and can be used to compose the current layout. Otherwise
they are said online. The online setting is more versatile, because it can be applied
to scenarios where data are known only up to the current instant (e.g. monitoring
systems). On the other hand, the offline setting offers better opportunities to optimize
the layout, by taking into account future data. Here we focus on the offline setting,
because the use cases described in Section 3.2 only need past data.

Time is usually discrete for dynamic graphs and is represented as a sequence of
instants or time slots. A different version of the graph, with different edges and nodes,
is associated with each instant. Animation is a technique for representing the flowing
of time that has been applied to dynamic graphs [EH00a], [DG02], [BS08], [BPF14],
[BHJ+09]. It transforms the visualization of the graph from a given time instant (or
frame) to another one, and is also called a time-to-time mapping. In its simplest form,
an animation shows the evolution of a dynamic graph as a movie. The strengths of this
approach are the intuitiveness, which users tend to like, and the implicit compactness
of the representation, since the amount of used screen space does not depend on the
number of graph updates. The main drawback is the difficulty for users to trace the
history of an object across a long sequence of frames, because this requires him to
rely on his memory of past frames [SLN05]. Also, the time consumed by an animation
increases the time necessary to perform user tasks [APP11a]. In the timeline approach,
time is represented through a spatial coordinate, and is thus a time-to-space mapping.
Commonly this is done by juxtaposing several versions of the graph, one for each
time instant, or by superimposing them along a fictitious z-axis towards the user. The
juxtaposed style is also called small multiples. The timeline approach has been applied
to the visualization of dynamic graphs in several forms [PRB08] [FAM+11] [FHQ11]
[DE02]. The strength of this approach is the ease of following the evolution of an
object along time, since time instants can be visually compared. On the other hand,
discovering differences between two frames can be hard for users [BBDW14]. Also,
the scalability of the technique is limited and depends on the number of shown frames,
which is a trade-off between two parameters: the detail level of the frames, and the
time granularity [BPF14].

It is still uncertain which of the two techniques, animation and timeline, is the best
for representing dynamic graphs. Past studies gave contrasting results, depending on
the experimental setting and the specific tasks. [SLN05] suggested to use animation
for tasks involving the comparison of one or two time instants, and timeline other-
wise. [FQ11] reported general better performance of timeline for both error rate and
response time. [APP11a] found quicker response times for the timeline conditions, but
higher accuracy of animation for tasks related to the appearance of entities. [BBL12]
concluded that animation tends to reveal more findings on adjacent time steps, while

i
i

“thesis” — 2016/5/5 — 11:59 — page 22 — #30 i
i

i
i

i
i

22 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

small multiples support the discovery of patterns lasting over long periods. In [BPF14]
the two techniques are mixed, with small multiples used as a preview and a navigation
system of an animated graph.

The layout algorithm adopted for positioning the graph elements has a big impact
on the preservation of the so called user’s mental map, which is the image that users
have of the information. Preserving it requires to reduce the number of changes made
to the visualization over time. The preservation of the mental map has been cited,
since early stages, as a desired and fundamental property of a visualization of a dy-
namic graph [MELS95]. The intuition behind is that the cognitive load of the user
for tracking the graph evolution is reduced by using an external visual representation,
instead of relying solely on his memory. Researchers do not seem to have reached a
consensus on the topic yet, since the results are mixed. While some works reported
better user performance under the mental map condition [PHG07] [GEY12] [AP13b],
others do not report significant differences [AP12] or even report negative perfor-
mance [PS08] [SP08]. In [BBDW14], the authors conclude that the importance of
preserving the mental map may have been overestimated in the past. However, a recent
review paper [AP13a] suggests that preserving the mental map may actually support
users in executing specific tasks. These must involve: (i) large graphs, with too many
elements to be remembered; (ii) revisitation of past time frames; (iii) identification of
the same elements in different frames; and (iv) navigation in the graph, for example
for finding paths through specified elements. Depending on the layout strategy, the
mental map can be preserved to various degrees. At one extreme, a global optimiza-
tion strategy fixes the positions of all graph elements across time, perfectly preserving
the mental map but possibly at the expense of a suboptimal space utilization within
each frame. At the other extreme, a local optimization strategy changes the positions
at every frame, optimizing the layout of single frames but possibly prejudicing the
mental map.

Users can be helped in comparing different time instants of a dynamic graph by
explicitly encoding transitions, i.e. by outlining the differences between two or more
frames. If all time instants are aggregated in an unique image, the age of nodes and
edges can be encoded by using colors or stippled lines [CKN+03]. However this
greatly increases the visual complexity of the graph, and prevents the use of colors
to encode other graph metrics. When only few frames are considered, this technique
is also called difference graph and was applied in the timeline approach [AWW09]
[ABHR+13] [HD12]. However, [APP11b] reports only marginal advantages in using
difference graphs for outlining differences in a dynamic graph. In the animation ap-
proach, differences can be encoded with staged transitions, i.e. by executing changes
in different groups depending on their type [FE01] [FE02] [BW04]. However, even
when staged, many changes at the same time can be hard to follow [BPF14].

i
i

“thesis” — 2016/5/5 — 11:59 — page 23 — #31 i
i

i
i

i
i

3.3. RELATED WORK 23

We conclude that many aspects of the visualization of dynamic graphs are not well
understood yet, and none of the known techniques resulted significantly better than the
others. Some works suggest to mix several techniques so to get their advantages and
mitigate their disadvantages [RM13] [BPF14].

Layout Algorithms for Dynamic Clustered Graphs

As introduced in Section 2.1, each node in the Internet belongs to an Autonomous
System (AS), and the network results partitioned into ASes. For this reason, algo-
rithms for drawing graphs produced by traceroutes must deal with both dynamics and
node clustering. There are several definitions of a graph that has a clustering on its
nodes. In a compound graph clusters can be nested, and edges can be adjacent to both
nodes and clusters. A clustered graph is a restriction in which edges are allowed only
between nodes. Finally, a clustered graph whose clusters are not nested is called a flat
clustered graph. Graphs produced by traceroutes fall in this last category.

Common aesthetic principles for drawing graphs like avoiding edge crossings and
edge-node crossings also apply to graphs with a clustering. In addition, these graphs
introduce the principle of avoiding unnecessary overlaps between clusters, avoiding
unnecessary crossings between edges and clusters, and visualizing clusters as com-
pact entities, so that the node partition is clearly represented. A drawing with such
features is said planar, and testing the planarity of a clustered graph implies deciding
if it admits a planar drawing [CD05]. The time complexity of the planarity test for
clustered graph is still unknown, but several heuristic algorithms exist for producing
a drawing. We focus on the case of dynamic graphs, which in addition to nodes and
edges, require visual stability across changes also for clusters [BBDW14].

The two algorithmic styles that were experimented most in this domain are force
directed and layered algorithms. The latter are sometimes also called algorithms for
hierarchical layouts. Force directed algorithms produce a drawing by applying a sys-
tem of attractive and repulsive forces to the graph elements, letting the system iterate
until an equilibrium is reached at a point of local minimum. These algorithms are
known to have good performance on large graphs, work on undirected graphs, and
tend to produce drawings in which dense subgraphs are well separated. Algorithms for
layered drawings work by first assigning vertices to ordered levels, or layers, so that
the direction of edges is monotone with respect to the layer ordering. Then, the nodes
of each layer are ordered for reducing edge crossings and putting near graph elements
that are topologically related. Since the problem of finding an optimum ordering of
a layer is NP-hard [TDBET98], often heuristics are applied. Finally, coordinates are
produced that satisfy the assignment of nodes to layers and the ordering of each layer.
These algorithm have lower scalability than force directed, but on sparse graphs pro-

i
i

“thesis” — 2016/5/5 — 11:59 — page 24 — #32 i
i

i
i

i
i

24 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

duce drawings with fewer edge crossings. Also, hierarchical relationships between
nodes are explicitly represented in the layering. For flat clustered graphs, [FT04] in-
troduces a force directed algorithm that exploits virtual nodes and cohesive forces so
to keep clusters compact and well separated. In [PB08], the approach of [DG02] is
extended to compound graphs. In particular, the stability of the cluster structure over
time is obtained by merging the cluster hierarchies corresponding to all considered
time instants. This aggregated information is used to produce a super-layout of the
graph through a force directed algorithm, which works as a template for drawing the
single time instants. In [RPD09] a similar approach is used, but an algorithm for lay-
ered layouts is used instead of a force directed one. Algorithms for layered layouts
work by assigning vertices to parallel levels, or layers, Also, during the animation
from a frame to the next one, clusters that remain unchanged are collapsed so to focus
on the parts of the graph subject to some dynamics.

General algorithms for dynamic compound and clustered graphs tend to be com-
plex, because they try to ensure the visual stability of both graph elements and clusters
over time. Often, these techniques exploit existing algorithms for drawing static com-
pound and clustered graphs as underlying components to create the layout of single
time instants. Several works exist on the problem of drawing a static graph with a clus-
tering. Force directed approaches were designed for both clustered [WM96] [EH00b]
[BAM07] and compound graphs [BM99], often applying the system of forces in a
multi-level fashion across the hierarchy of clusters. For layered drawings, [SM91]
first assigns nodes and clusters to levels, then orders elements on the layers through
heuristics for reducing edges crossings, edge-cluster crossings, and maintaining clus-
ters compact. It uses a so called local layering, in the sense that every cluster in the
hierarchy has its own set of layers. [Rai05] presents a method for efficiently expand or
contract clusters in a drawing with local layering without the need to redraw the whole
graph. In [San96,San99] is described a technique for drawing compound graphs in a
layered fashion that exploits a global layering for all nodes and clusters, producing
more compact drawings than [SM91]. Finally, [FB04] studies the planarity problem
for clustered graphs in a layered setting, showing that it is polynomial in specific cases.

In relation to the problem of drawing graphs produced from traceroutes, some
considerations are required when choosing between force directed and layered algo-
rithms. While the former pose few or no constraints on the input graph, they are
iterative algorithms that converge at a local minimum, giving few guarantees on the
quality of the produced drawing. Also, the direction of edges is usually not used
in the process. On the other hand, layered drawings exploit edge directions and use
them to make node hierarchies explicit, which can support user tasks. Also, layering
gives an explicit visualization of topological distances in a network, making it pos-
sible, to some extent, to compare the length of different paths. But these algorithms

i
i

“thesis” — 2016/5/5 — 11:59 — page 25 — #33 i
i

i
i

i
i

3.4. TERMINOLOGY 25

are also known to have lower scalability than force directed ones, and require the in-
put graph to be acyclic. When this is not the case, the graph must be transformed to
become acyclic, which may negatively influence the representation of hierarchies. In
conclusion, when choosing between the two classes of drawing algorithms, the visual
properties of produced drawings, the typical graph size, and the presence of cycles in
graphs need to be evaluated.

3.4 Terminology

This section introduces some formal notation that will be used in the rest of the chap-
ter. Also, the data of interest is characterized, by showing how we constructed graphs
from raw traceroute paths.

Consider a time interval T and a set of probes S. During T each probe peri-
odically issues a traceroute towards a target IP address τ . A traceroute from probe
σ ∈ S outputs a directed path on the Internet from σ to τ , called traceroute path or
simply traceroute. Most of the times, a traceroute path is simple. However, there
exist traceroute paths that are not simple and contain cycles. These correspond mostly
to routing anomalies or to measurement anomalies. The origin and the incidence of
those anomalies will be discussed in Section 3.5. Moreover, Section 3.7 describes
an algorithm to deal with cycles in traceroute data. From now on, unless otherwise
specified, we assume that traceroute paths are simple.

Each vertex of a traceroute originated from σ ∈ S is either a router or a computer.
Vertices are identified as follows: (1) σ has an identifier assigned by the RIPE NCC;
(2) vertices with a public IP address [rfc] are identified by such an address; (3) vertices
with a private IP address [rfc] are identified by a pair composed of their address and
the identifier of σ ; (4) the remaining vertices are labeled with a “*” (i.e. an unknown
IP address). For the sake of simplicity, consecutive vertices labeled with “*” are
merged into one vertex. A vertex labeled with “*” is identified by the concatenation
of the identifiers of its neighbors in the traceroute.

If a traceroute is available in Internet at time t ∈ T , then it is valid at time t. A
digraph Gt is defined at each instant t ∈ T as the union of all the traceroute paths valid
at t produced by the traceroutes issued by the probes of S. A digraph GT is defined
as the union of all graphs Gt with t ∈ T .

Each vertex of GT is assigned to a cluster, i.e. a label. The set of all clusters
assigned in GT is denoted by C(GT), or simply C when there are no ambiguities. A
vertex is assigned to a cluster as follows. (1) Each probe is assigned to the cluster
that corresponds to the AS where it is hosted. (2) Each vertex identified by a public IP
address is assigned to a cluster that corresponds to the AS announcing that address on

i
i

“thesis” — 2016/5/5 — 11:59 — page 26 — #34 i
i

i
i

i
i

26 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

the Internet. This information is extracted from the RIPEstat [RIP] database and for
some public IP addresses may occasionally be missing. (3) Each vertex v that is not
assigned to a cluster after the previous steps is managed as follows. Consider the set Pv
of all traceroute paths containing v. Denote by Cv a set of candidate clusters for v and
initialize Cv to the empty set. For each traceroute p ∈ Pv let µ (resp., ν) be the cluster
assigned to the nearest predecessor (resp., successor) of v in p with an assigned cluster.
If µ = ν then µ is added to Cv. If after considering all p ∈ Pv set Cv has exactly one
cluster, v is assigned to it. If Cv contains more than one candidate, an inconsistency
is detected and the procedure terminates prematurely. This corresponds to a nesting
of ASes that is not meaningful in Internet. If Cv is empty, then v is not assigned to a
cluster in this step. (4) Each remaining vertex is assigned to a corresponding fictitious
cluster. We define Vµ as the set of vertices assigned to cluster µ .

For any t ∈ T Gt can be visualized at different abstraction levels. Namely, the
user can select a set E of clusters that are fully visualized and each cluster that is in
the complement Ē of E is contracted into one vertex. More formally, given the pair
Gt ,E the visualized graph Gt,E(V,E) is defined as follows. V is the union of the Vµ

for all clusters µ ∈ E , plus one vertex for each cluster in Ē . E contains the following
edges. Consider edge (u,v) of Gt and clusters µ and ν , with u∈ µ and v∈ ν . If µ 6= ν ,
µ ∈ E , and ν ∈ E , then add edge (u,v). If both µ and ν are in Ē then add edge (µ,ν).
If µ ∈ E (µ ∈ Ē) and ν ∈ Ē (ν ∈ E) then add edge (u,ν) ((µ,v)). We define Gµ,t as
the subgraph of Gt induced by Vµ . Analogously, we define Gµ,T as the subgraph of
GT induced by Vµ . We define GT ,E as the union of the Gt,E for each t ∈ T . Note that
GT , /0 denotes the graph in which all clusters are contracted, while GT ,C denotes the
graph in which all clusters are expanded and it is equivalent to GT .

3.5 Analysis of Data

This section describes the type of data that Radian visualizes, and some preliminary
experiments that we conducted on such data. The results of these experiments influ-
enced the design of our tool.

We selected traceroutes executed in nine months (from March 20th, 2012 to De-
cember 20th, 2012) by about 200 world-wide distributed RIPE Atlas probes towards
5 public targets. The probes performed measurements for the whole period, with vari-
able frequencies for the execution of traceroutes ranging between one every minute
and one every 30 minutes. Short-time disconnections were ignored. To perform our
experiments, we preprocessed the data and generated 12,500 random visualization
scenarios of the kind to be displayed by Radian. Each visualization scenario is iden-
tified by a tuple

〈
τ j,Si, ti,dk

〉
, where τ j is a target, Si is a set of 50 probes, ti is a

i
i

“thesis” — 2016/5/5 — 11:59 — page 27 — #35 i
i

i
i

i
i

3.5. ANALYSIS OF DATA 27

time instant, and dk is a time duration expressed as an integer number of hours. Such
a tuple identifies a set of traceroute paths collected by probes Si towards target τ j,
starting from instant ti and for a period of dk hours. We constructed the visualiza-
tion scenarios as follows. We selected uniformly at random: 100 sets Si i = 1 . . .100
each consising of 50 probes, and 100 time instants ti i = 1 . . .100 in the above nine
months interval. By repeating these objects for the five targets τ j and for durations
dk = k−1,k = 1 . . .25, we obtained the 12,500 visualization scenarios. A visualiza-
tion scenario of this type is an overestimation of real use cases, in terms of number of
probes and length of the analyzed time interval. Often an ISP owns sufficient infor-
mation collected from other sources that allow to restrict the length of the analyzed
time interval. Also, at the time of writing, the number of probes deployed by the
RIPE Atlas project in Italy is about 100. For each scenario we also computed graphs
GT ,C and GT , /0 (see Section 3.4). In this analysis we will refer to GT ,C simply as the
graph, and to GT , /0 as the contracted graph. Note that graphs with a duration equal
to 0 have special semantics, since they approximate the state of the routing at a fixed
time instant. On the other hand, graphs with a duration greater than 0 are composed
of several states.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

%
 tr

ac
er

ou
te

s

hops

Distribution of traceroute lengths

CDF

(a)

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 4 8 12 16 20 24

ed

ge
s

/ #
 v

er
tic

es

length of the considered time interval (hours)

Edge density of a graph

avg
min

max

(b)

Figure 3.2: (a) Cumulative distribution function (CDF) of the length of traceroute paths in our
dataset. (b) Edge density of a graph in our dataset. Error bars report the standard deviation.

In Fig. 3.2a we plot a cumulative distribution function of the length of the tracer-
oute paths of the dataset. That gives us a rough indication on the maximum distance
between a probe in S and τ . The plot shows that traceroutes with more than 15 ver-
tices are rare, which implies that a traceroute path can reasonably be visualized on the
screen in its full extent.

i
i

“thesis” — 2016/5/5 — 11:59 — page 28 — #36 i
i

i
i

i
i

28 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

Figs. 3.2b, 3.3, and 3.4 are related to the graphs computed for our visualization
scenarios. On the x axis there is the time duration dk ranging from 0 to 24 hours,
while the y axis shows the value of a metric averaged over all graphs.

Fig. 3.2b shows that our graphs are quite sparse, even for large durations. In
particular, graphs with duration equal to 0 are almost trees (density ∼ 1), which was
expected, since routing protocols forward data through a network by computing a
spanning tree.

 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 4 8 12 16 20 24

ve

rt
ic

es

length of the considered time interval (hours)

Number of vertices of a graph

avg
min

max

(a)

 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0 4 8 12 16 20 24

A

S
es

length of the considered time interval (hours)

Number of ASes of a graph

avg
min

max

(b)

Figure 3.3: (a) Number of vertices of a graph in our dataset. (b) Number of ASes of a graph in
our dataset. Error bars report the standard deviation.

Figs. 3.3a and 3.3b show, respectively, the number of vertices and the number of
ASes in a graph. It is easy to see that these amounts are functions of the number of
probes in our tests and the average length of a traceroute path. Visualizing a network
with hundred of vertices and ASes on a screen is challenging. Even if the amount
of screen space is enough to avoid clutter in the visualization, understanding such a
network is a demanding cognitive task for a user. Therefore, an effective visualization
requires a way to reduce the amount of details shown on the screen. From Fig. 3.3 we
also draw conclusions on the impact that dynamics has on the size of a graph. We can
see that the size of a graph increases with time, but such increment is not dramatic.
Namely, passing from a duration of 0 hours to 24 hours increases the average number
of vertices from about 400 to about 500.

When dealing with routing data one typically expects to find acyclic graphs, since
cycles would prevent a correct routing in an IP network. One surprising result of
our analysis is that, in graphs produced from traceroutes, cycles exist with quite a
high probability. Fig. 3.4a shows that, in our dataset, 20% of graphs with dk = 0

i
i

“thesis” — 2016/5/5 — 11:59 — page 29 — #37 i
i

i
i

i
i

3.5. ANALYSIS OF DATA 29

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20 24

%
 g

ra
ph

s

length of the considered time interval (hours)

Percentage of graphs containing SCCs

graphs w/ SCCs
graphs w/ contraction-SCCs

(a)

-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 4 8 12 16 20 24

S

C
C

s

length of the considered time interval (hours)

Number of SCCs of a graph

avg
max

(b)

Figure 3.4: (a) Percentage of graphs that contain SCCs, and that contain contraction-SCCs
when they are contracted. (b) Number of SCCs in a graph. Error bars report the standard
deviation. The plot for minimum values is not shown, it is always equal to 0.

(i.e. almost static routing graphs) contain cycles. The percentage goes up to 60% for
graphs with dk = 24. Note that Fig. 3.4 refers to the strongly connected components
(SCC) of a graph, which imply the existence of cycles in a graph but can computed
in a more efficient way. A SCC is a subset of the vertices of a graph such that there
exists a directed path between any pair of them. Even if a graph has a high probability
to contain a cycle, Fig.3.4b shows that cycles in a graph are few. While cycles in a
graph with some dynamics are somehow expected, since they can result from merging
several routing states, finding cycles in a static graph is surprising. By analysing our
dataset we discovered that such cycles are due to two factors. First, a static graph
is only an approximation of the routing at a given time instant, since for each probe
we select the latest measurement available and therefore the graph can actually span
several time instants. Second, measurement errors can happen. The execution of the
traceroute command is a process that takes a time in the order of seconds, and the
routing can change right in the middle of the execution. A reported traceroute path
can therefore be the fusion of two unrelated paths, which do not exist at the same time
and induce the presence of a cycle. One additional property of SCCs in our dataset is
that even if they are small on average, outliers can be large, up to 180 vertices. Such
big numbers are due to the fact that SCCs are formed by interconnecting traceroute
paths, whose length can reach 30 vertices. Interconnecting a few of them is sufficient
to create large SCCs.

It is easy to see that a SCC that spans more than one AS induces a SCC also in

i
i

“thesis” — 2016/5/5 — 11:59 — page 30 — #38 i
i

i
i

i
i

30 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

the contracted graph. What is less immediate is that the contracted graph can have
its own SCCs. That is, there can exist a cycle in the contracted graph without that
an identical cycle can be produced by contracting the ASes traversed by a cycle of
the graph. We call contraction SCCs these SCCs of the contracted graph. BGP is a
policy-based protocol that does not enforce the realization of a tree between the ASes,
so loops between ASes are technically possible. However, one still expects not to
find cycles, because commercially there is no point in letting data flow back and forth
between two ASes, and customer-provider relationships between ASes are well known
to exist in the Internet. On the other hand, Fig. 3.4a shows that contraction SCCs exist
in the 90% of graphs in our dataset. Differently from the case of the graph, we do
not consider the presence of contraction SCCs only a measurement error, because
the policy-based nature of BGP actually allows for cycles. Also, an administrative
authority (e.g. a company) can own more than one AS, for example by buying them
from other companies. In that case the authority could configure its internal routing
to allow traffic to flow through its ASes, since it does not have to pay anyone.

We draw several conclusions from the analysis in this section. First, the average
length of a traceroute allows to visualize it on the screen in its full extent. The size of
a routing graph depends mainly on the number of selected probes, and in a realistic
setting it can be large enough to make cognitive tasks hard. For this reason, an ef-
fective visualization must allow to reduce the amount of details shown on the screen.
On the other hand, the maximum level of detail is still required by the use cases that
we considered in Section 3.2 for analyze specific parts of the network. Therefore, the
user must be able to increment the amount of displayed details on specific parts of the
visualization. Second, the sparsity of the graphs supports the use of graph drawing al-
gorithms for layered layouts. With respect to the options described in Section 3.3, this
kind of layout seems more adapt for visualizing traceroute graphs. We performed pre-
liminary experiments with algorithms for layered layouts, discovering that crossing-
reduction heuristics like those in [San96,San99] are quite effective. However, in our
case the graph density is so low that often graphs are planar or quasi-planar, and hence
planarity-based methods are more attractive. One drawback of algorithms for layered
layouts is that they cannot handle cycles, which need to be treated first in order to
produce a layout. Graphs produced from traceroutes have cycles with high probabil-
ity, and present specific characteristics: cycles are few, large, and often look to the
user like anomalies with respect to the natural direction of traceroutes. An algorithm
for making traceroute graphs acyclic can exploit these properties for producing better
layouts.

i
i

“thesis” — 2016/5/5 — 11:59 — page 31 — #39 i
i

i
i

i
i

3.6. USER INTERFACE 31

3.6 User Interface

This section presents the user interface of Radian, along with the motivations behind
the design. Also, the supported user tasks are described.

Overview of the Interface

The user interface is shown in Fig. 3.1. It is composed of four main elements: the
graph panel, the timeline panel, the controller panel, and the info panel. Through a
sliding panel located in the upper right corner, the user can select the data to visualize,
identified by a target τ , a set of probes S, and a time interval T . The interface presents
at any moment the state of the data at a given time instant t ∈ T , and with a set
of expanded clusters E . We detail the functionalities of the various panels in the
following.

The graph panel displays the graph Gt,E . Precisely, for each probe, the latest
traceroute available before t is displayed. The graph is presented with a radial drawing
centered in τ . All vertices and clusters that appear in at least one traceroute in T are
in the drawing, including those that are not traversed by any traceroute at time t.
Probes in S are represented as blue circles and labeled with their identifier. Vertices
are represented as white rounded rectangles and labeled with the last byte of their IP
address, or with a “*”. Nodes are placed on concentric circles, with probes located at
the periphery of the drawing and traceroutes directed towards the center. Clusters are
represented as annular sectors and labeled with their AS number. Clusters in E enclose
the nodes that are assigned to that AS, while clusters not in E are empty and have a
fixed size. The light red cluster contains τ , clusters containing probes in S are light
blue, and the remaining clusters are light yellow. Fictitious clusters are not displayed.
Each traceroute path from a probe σ ∈ S to τ is represented as a colored curve from
σ to τ passing through all intermediate vertices. Each curve, in fact, corresponds to
a path in the graph GT . Traceroute paths are not simply merged and displayed in an
aggregate fashion, since each of them has its own informative value and can change
over time independently. For this reason, we explicitly represent all paths adopting a
metro-line metaphor [Rob12], and draw them using different colors. Paths that change
in T are represented with solid lines. For paths that do not change and thus represent
static routes, we borrow a technique from [CDM+05a]. These paths are partitioned
into sets such that each set determines a tree on the graph, and each tree is depicted
with dashed lines and a distinctive color. This has the effect of reducing the number
of lines in the drawing, while preserving the routing information of each probe. The
user can interact with the graph in several ways. First, he can change the current time
instant t that is visualized. Path differences between the two instants are shown with an

i
i

“thesis” — 2016/5/5 — 11:59 — page 32 — #40 i
i

i
i

i
i

32 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

animation, which continuously morphs each path from its initial position to the final
one. Morphing path are outlined with a thicker curve during the animation, so to be
more visible. A new route that was previously unavailable is shown in the animation
with a gradually appearing path, while a disconnection is shown with a gradually
fading path. A path is also outlined when the pointer hovers on it, and, similarly,
hovering on a vertex outlines all paths passing through it. Finally, the user can change
the set E of expanded clusters. Double-clicking an expanded cluster collapses it and
removes if from E , and vice versa. Vertices in a collapsed cluster are removed from
the visualization.

The timeline panel is in the lower part of the window and provides an overview of
the trend in the number of route changes over time. It features a red cursor that points
at the current time instant. The timeline panel and the graph panel are linked views,
and the visualized graph corresponds to the time instant selected in the timeline. The
user can move the cursor to change the current time instant. Additional timelines can
be added below the main one, each regarding the trend in the value of a metric with
respect to a probe. The user can add and remove the metric timeline of a probe by
double-clicking on that probe in the graph panel. All timelines have the same width
and represent the same time interval T , allowing for direct comparison.

The controller panel is located in the upper right corner of the interface and is used
to control the animation. It is modeled following the metaphor of a video recorder,
and presents buttons that activate the typical functions play, pause, step-backward,
and step-forward. During an animation the user is presented with a sequence of ani-
mation steps, each regarding a single path change and with a short pause between two
changes. The cursor in the timeline panel moves accordingly, which also continuously
updates the visualization in the graph panel. The duration of an animation between
two time instants t1 and t2 is proportional to the logarithm of the elapsed time be-
tween the two instants, which gives an approximate perception of elapsed time while
limiting the overhead on the total animation time.

Finally, the info panel is in the upper part of the window. When the cursor hovers
on an element of the graph, the info panel shows all the available information about
that element, i.e. an AS, a vertex, or a path.

Our choice to make a topological visualization, discarding geographical visual-
izations of traceroute data, comes from the conclusions drawn in Section 3.3. Our
use cases require a graph visualization, which get easily cluttered when geographical
positions for nodes are applied. Also, understanding the structure of the network at
the AS level is more interesting for understanding routing policies, and this would be
disrupted by a geographical visualization since AS are usually distributed. Finally,
anycast addresses are assigned to more than one physical device and could not be
mapped to a single location. The node-link metaphor was chosen for representing the

i
i

“thesis” — 2016/5/5 — 11:59 — page 33 — #41 i
i

i
i

i
i

3.6. USER INTERFACE 33

graph because, as explained in Section 3.3, it is intuitive to networking users, since
it looks like the real network on which traceroutes were performed. The graph is vi-
sualized with a radial layered layout because it is sparse (see Section 3.5), and this
style of drawing is notably effective for visualizing sparse hierarchical graphs (see,
e.g., [YFDH01]). Also, in our visualization the focus is correctly put on the target,
preventing the risk of giving too much importance to specific probes due to a privi-
leged geometric position. Finally, having all traceroutes flowing in a same direction
helps comparing their lengths. The choice of animations, instead, was less immediate.
Although users generally like them, Section 3.3 outlined how a limit of this technique
is that users needs to rely on their visual memory in order to track graph updates.
On the other hand, the main alternative consisting of small multiples suffers from too
low scalability to support our use cases. In a time span of a few hours hundreds of
route changes can happen depending on the size of the network, which would produce
too many small multiples to fit in the screen. For this reason we adopted animations,
which support very long time spans. We applied several techniques to mitigate the
limits of animations. First, we chose to enforce the preservation of the mental map
(see Section 3.3 for a discussion). In particular, vertices preserve their relative order-
ings along and across layers, which is similar to the preservation of horizontal and
vertical orderings of [MELS95]. Section 3.7 describes in detail the algorithms for
obtaining such property. With this constraint, the user can easily identify vertices in
different time frames, focusing his attention only on edge updates and how tracer-
oute changed their paths over time. Visualizing also nodes that are not traversed by a
traceroute at a given time instant (but that are traversed at some different instants) is
consistent with this choice, and also furnishes to the user hints on the fact that a given
part of the network is subject to dynamics at some time instant. Finally, outlining with
thicker lines traceroute paths that change during an animation is a form of transition
encoding. The visualization of ASes as boxes that enclose vertices satisfies the user
expectation that ASes represent a partition of the network. Also, this organization
offers an AS-level view of the network, which is an abstraction useful in all use cases
described in Section 3.2. Finally, we exploited this representation to let the user col-
lapse an AS and hide its content. This allows to focus the attention on the detailed
dynamic of only few ASes of interest, while maintaining a high level overview of the
rest. The results is a reduction of the cognitive load for understanding graphs that, how
showed in Section 3.5, can be relatively large. The possibility to arbitrarily collapse
and expand ASes poses challenges in the preservation of the user mental map. Indeed,
if the ordering in which clusters are expanded or collapsed impacts the layout in an
uncontrollable way, the layout stability is compromised. There is no practical way to
check all the possible sequences of expansions and contractions, since their number
is factorial in the number of clusters. For this reason, the algorithm in Section 3.7 en-

i
i

“thesis” — 2016/5/5 — 11:59 — page 34 — #42 i
i

i
i

i
i

34 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

forces that Gt,E has the same layout independently from the ordering in which clusters
are inserted in E .

(a) (b)

(c) (d)

Figure 3.5: Details of the interactive features of our visualization. (a) A graph GT ′ relative to
a target τ , a set of probes S, and a time interval T ′. All paths in GT ′ are static and all clusters
contracted. (b) A graph GT ′′ relative to τ , S, and T ′′ (|T ′′|> |T ′|). Some paths are dynamic
and all clusters are contracted. (c) GT ′′ with an expanded cluster. (d) GT ′′ at a different time
instant.

Fig. 3.5 contains various details on how the interaction with the visualization
works. A graph with static paths and no expanded clusters is presented in Fig. 3.5(a).
It is related to a target τ , a set of probes S, and a small time interval T ′. Note that
some vertices are not enclosed in any cluster: they belong to fictitious clusters. From
this figure we can see what ASes provide connectivity to reach the target, namely
1200 and 20965. A graph for τ , S and T ′′ (|T ′′|> |T ′|) is presented in Fig. 3.5(b).
Some dynamic paths are visible. The same graph is presented in Fig. 3.5(c) with one
expanded cluster. Note how the ordering of clusters and vertices on the radial layers

i
i

“thesis” — 2016/5/5 — 11:59 — page 35 — #43 i
i

i
i

i
i

3.6. USER INTERFACE 35

is preserved. In this figure the length and structure of the paths from each of the three
probes 619, 602, and 265 is clearly visible. Fig. 3.5(d) shows the same expanded
graph at a different time instant. The intermediate vertices of two paths are different,
that is, we can see how the route changes affected the paths of probes 619 and 602.

User Tasks

This section describes the tasks that a user can execute through the interface of Radian.
Analyzing the use cases outlined in Section 3.2, we found out that they could be
supported by executing simpler user tasks, that are classified in two groups: tasks
devoted to understanding the structure of the routing and of the network at a given
time instant, and tasks devoted to understanding how the routing evolved over time
in a given interval. The first group of tasks are executed on the routing as captured
at a single time instant. The user may know the time instant in advance from other
sources (e.g. customer tickets), or he may be analyzing several instants by sampling in
an interval that is an approximation of the desired instant. The second group requires
the user to compare different time instants and make use of animations. Also, the
comparison of routing changes with network metrics is often involved. For brevity, we
will refer to the two groups as topology tasks and dynamics tasks, respectively. Also,
we will refer to use cases Troubleshooting, Upgrade Verification, and Inter-domain
Consistency Check as UCT, UCV, UCC, respectively.

The list of the topology tasks follows.

Find what nodes are traversed by a probe This task is fundamental for all use cases,
since it implies discovering the route followed by a probe at a given instant to
reach the target, which is the final product of the routing. The task is accom-
plished by following the colored curve across the graph, from the probe to the
target, and see what nodes are intersected.

Find the topological distance to the target This tasks implies to discover the num-
ber of nodes to traverse to reach the target. Intuitively, shorter paths can pro-
vide better performance, and the length can be exploited to compare alternative
paths. This is useful in UCT and UCV, either to find out the reason for expe-
rienced bad performance, or to spot in advance long paths that could be future
causes of issues.

Decide if a node is reachable This task supports UCT and UCV. A node is reachable
from a probe if the curve from that probe intersects it. An unreachability can
have different meanings. When referred to the target, the task has the funda-
mental objective to discover if the services of the target were accessible from

i
i

“thesis” — 2016/5/5 — 11:59 — page 36 — #44 i
i

i
i

i
i

36 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

other parts of the network. Depending on how far from the target paths are
interrupted, it could either mean that the routing was wrong or the target was
not working properly. When referred to an intermediate node, this can either
appear in the drawing or not. If it does, it means that it is reachable at least
in some instant, otherwise a “*” node appears in its place. In UCV, the task is
executed after a routing configuration setup to check if paths are traversing a
node that was supposed to be. In UCT, an unreachability could mean that the
node is experiencing a fault. Note that an unreachability does not necessarily
imply a fault, since routers can be configured to not respond to traceroutes, for
security reasons. An ISP usually knows, in its own AS, which routers respond
and which do not.

Find what probes traverse a node This task is useful to understand what parts of
the network depend on a node for reaching the target. In UCV this is to check
if the designed node for connecting a subset of probes is actually doing it. In
UCT, a node shared by several probes that experienced reduced efficiency is
possibly the cause, and a start point for a deeper analysis. The task is executed
by following all curves traversing the node, from that node back to the probes.

Find single points of failure This task is somewhat in the middle between UCT and
UCV. The objective is to find in advance nodes that, in cause of a fault or an
overload, would impact a large part of the network. The task is executed by
finding nodes with many traversing paths, that is, with many incoming graph
edges.

Find load balancers Even if load balancers are more related to dynamics tasks, their
presence can be spotted from a single time instant with Radian. A load balancer
induces many nodes near to each other on a same layer, with only one of them
traversed by a path. This happens because the interface always shows all nodes
that are traversed by some path in some time instant, which is a hint that the
path may be throttling between the available alternatives during time. Finding
load balancers is important in UCT and UCV for discovering if a load balancer
that was known to exist is actually working.

Decide if two probes are treated equally In UCT, the ISP may receive contradicting
feedbacks from its customers regarding the use of a remote service. While some
could experience low performance or even an outage, others could not. By
comparing the paths of different probes towards the target, the ISP may discover
that intermediate nodes treat probes differently, for example depending on their
estimated geographical location. If this happened in another AS, it could imply

i
i

“thesis” — 2016/5/5 — 11:59 — page 37 — #45 i
i

i
i

i
i

3.6. USER INTERFACE 37

that a service-level agreement between the two providers was violated. In UCV
the difference could be desired for providing different levels of service to the
customers, and the ISP need to check if premium customers are privileged by
following paths to the target with higher performance.

Find the ASes that connect the target Understanding what ASes are traversed by a
probe to reach the target means to reason about the routing and the network at
a higher abstraction level, and it is the fundamental task behind UCC. It is ac-
complished by checking the AS to which each of the traversed node of a path
belongs. As a result of this task, from a traceroute path, the user can induce a
corresponding path of ASes. Such path can be compared to the BGP announce-
ments to check if all the providers on the path are fulfilling them. Finding the
traversed ASes has also important security implications. For example, an ISP
could want to check if security critical data generated by its AS are routed by
mistake through the ASes of extra-national organizations.

Find cyclic relationships between ASes As discussed in Section 3.5, cycles between
ASes are unusual but possible. If there is a cycle between two ASes, the user
concludes that they probably belong to a same organization. In case of perfor-
mance issue in one of the ASes forming the cycle, this information helps assign
the responsibility to a specific organization.

The list of the dynamics tasks follows.

Find probes with path changes As described in Section 3.6, routes that are not sub-
ject to dynamics in the selected time interval are depicted with dashed lines.
That is, from a single frame, the interface of Radian tells whether a probe
changed its path at some time instant. This is a general feature supporting all
use cases in which it is necessary to understand the routing evolution.

Find failing nodes The paths of several probes could abandon a specific node at the
same time. This is clearly outlined in the graph panel, which with an animation
shows the corresponding paths morph and stop traversing that node. In UCT,
this could be the sign of a hardware failure on that node. In UCV, the node could
have been turned off for maintenance, and the probes redistributed on different
paths for keeping the service.

Find high routing activity In UCT, it is necessary to discover when the routing changed,
first or after that a known event happened. For example, this is the case when
the user is working on a customer ticket that complained about degraded per-
formance or lack of service starting from a given hour of the day. In UCV, the

i
i

“thesis” — 2016/5/5 — 11:59 — page 38 — #46 i
i

i
i

i
i

38 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

same analysis is done to check if the routing changed in correspondence of a
configuration change on the devices. The timeline panel gives an overview of
the distribution of path changes within the selected time interval. The user, for
example, may find out that nothing happened until a given instant, and therefore
focus on what happened after. Also, from the chart periods with a high level of
activity are easily spotted and represent a starting point for a deeper analysis.

Find repetitive phenomena Repetitive routing dynamics are shown in the timeline
panel as spikes of activity happened with a certain regularity. In UCT, the user
could start the analysis from a given time instant were suspect dynamics hap-
pened, and then discover that more activity is present in the hours before or after
that instant with regularity. For example, the network of an ISP could be not
able to respond with acceptable performance to a traffic load in the early night
hours, caused by many customers connecting after work from their homes. This
would be the cause of many path changes happening around that time for several
days, as the result of intense load balancing.

Check if a BGP backup link is operational An ISP can be connected to the Internet
through several BGP links for redundancy, either with a same partner ISP or
with several ISPs. BGP policies can be set in such a way that, in case of a
fault on a link, a redundant and usually unused link becomes operational. In
UCC, the user can follow the evolution of paths traversing a failing BGP link
and check that, in correspondence of the failure, all of them started traversing
the backup link.

Decide if a path change improved the performance After the user has spotted a path
change of interest in the timeline panel, this usually is not enough to decide if it
was positive or not. In all use cases, the user is interested to check the value of
metrics in correspondence of the change, to see if there was an improvement.
This is done by selecting one or more probes in the graph panel, which makes
to appear a line chart with the metric trend along time for each probe.

Decide if there is a correlation between routing and metrics Several probes could
change their paths in a similar way, for example by stopping traversing a specific
node in favor of an alternative. Since the involved probes do not all follow
the exact same path, they could respond to the change in different ways with
respect to metrics. The user can check the metric charts of the involved probes in
correspondence of the routing change, and see if the impact was similar for all or
most of them. For example, a sudden improvement could mean that the failing
node was overloaded, and the routing decided to replace it with alternatives that
have better performance.

i
i

“thesis” — 2016/5/5 — 11:59 — page 39 — #47 i
i

i
i

i
i

3.7. ALGORITHMS 39

3.7 Algorithms

This section is devoted to the algorithms that Radian uses for visualizing traceroute
graphs. In particular, the first described algorithm produces a layout of a traceroute
graph. This algorithm assumes the graph to be acyclic. The second described algo-
rithm removes cycles from a traceroute graph, so that the layout algorithm can be
applied.

In what follows, we make these assumptions:

• Every traceroute path contains the target vertex. When missing, it is artificially
added to it.

• Paths in a graph have the reversed direction with respect to traceroutes, that is,
they go from the target to a source. This complies to a convention commonly
used by algorithms for layered layouts.

• A layering of a graph is a mapping from vertices to integer number, called
layers. The target is assigned to the layer with the lowest number, and edges are
directed towards increasing layer numbers.

Layout Algorithm

According to the conclusions of the analysis in Section 3.5, the layout algorithm of
Radian produces layered layouts and is planarity oriented. For our purposes an inter-
esting reference is [Bac07], which constructs radial drawings adapting techniques of
the Sugiyama Framework. Unfortunately, it does not deal with clusters. The algorithm
in [FB04], which extends the one described in [DBN88], inspired part of our work.
However, it proposes a clustered planarity testing algorithm, while we rather need an
algorithm for clustered graph planarization, and [FB04] is not easily extensible for
this purpose (neither is the algorithm in [BDM02] that is not suitable for hierarchical
drawings). For these reasons we devised a new algorithm to produce clustered hierar-
chical drawings, as a planarization-oriented variation of [FB04]. In [Rai05] an algo-
rithm is proposed for the expansion/contraction of clusters of hierarchical drawings,
building on [SM91]. Unfortunately it uses local layering for vertices, while global
layering [San96,San99] is more suitable for our needs because it produces more com-
pact drawings. For this reason we devised a new algorithm for expanding/contracting
clusters that is based on global layering. Differently from [Rai05] it is not a local
update scheme, i.e. it computes a new drawing for the whole graph at each interac-
tion. The lower time efficiency is negligible because the graphs commonly handled
by Radian are small, from the point of view of computation.

i
i

“thesis” — 2016/5/5 — 11:59 — page 40 — #48 i
i

i
i

i
i

40 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

At a high level, our algorithm works as follows. We pre-compute a hierarchical
drawing Γ0 of GT that integrates all the traceroutes in T . In that drawing all clusters
are expanded. The layout is computed in such a way to have few crossings involving
connections between clusters. The quality of the layout inside the clusters is consid-
ered with lower priority. Moreover, the quality of the drawing of edges that are part of
many traceroutes in T is privileged among the edges of GT . The drawing computed
for each cluster is stored and reused in any drawing where that cluster is expanded.
The hierarchical drawing is mapped to a radial drawing with a suitable coordinate
transformation. Changes in the drawing due to an expansion or contraction of a clus-
ter or a change in traceroutes are visualized with an animation. At any instant t ∈ T
only the traceroutes that are valid in t are displayed.

What follows gives more details on our the algorithmic framework.
In a preprocessing step several information are computed on GT that will be used

for actual drawings. Given any Gµ,T , a vertex is a source (sink) of Gµ,T if it is the
last (first) vertex of Gµ,T encountered in some traceroute path. Each graph Gµ,T is
augmented with extra vertices and edges so that all the longest paths from a source
to a sink have the same length. The added vertices are called fictitious vertices of µ

and ensure that, given an edge (u,v) ∈ GT , u ∈ µ , v ∈ ν , µ 6= ν , clusters µ and ν

do not share a layer in any drawing of Gt,E . Moreover, they force edges that leave
a cluster by spanning several layers to be routed inside that cluster. A µ-drawing is
pre-computed for each Gµ,T . It consists of (i) assigning vertices to layers so that all
edges are between consecutive layers and (ii) computing a total order for the vertices
of each layer. A partial order≺ is computed for clusters, such that for any two clusters
µ and ν with µ ≺ ν , the vertices of µ appear to the left of the vertices of ν for any
drawing Γ where µ and ν share one or more layers. This helps preserve the mental
map during expansions/contractions. The preprocessing step requires to compute a
drawing Γ0 of GT with all clusters expanded. Γ0 gives the information needed to
compute a µ-drawing for each cluster and a partial order≺ for clusters. The algorithm
to compute Γ0 is similar to that in [FB04], where a PQ-tree [BL76] is used to order
vertices along the layers of the drawing. Our PQ-tree is initialized with a spanning
tree of GT and incrementally updated with the remaining edges that induce ordering
constraints. An edge is added only if it does not produce a crossing (i.e. the PQ-tree
does not return the null tree). A rejected edge will produce crossings in Γ0. Edges
are added with priority given by their aesthetic importance: namely, they are weighted
by the number of traceroutes that traverse them in T . As an implementation detail,
we actually compute a total order for clusters to represent a partial order ≺. Such
order is produced by a DFS visit of the embedded spanning tree of GT . The tree has
an embedding induced by the layer orders produced by the PQ-tree algorithm, and
the children of a vertex are visited in clockwise order. Intuitively, we preserve the

i
i

“thesis” — 2016/5/5 — 11:59 — page 41 — #49 i
i

i
i

i
i

3.7. ALGORITHMS 41

geometric left-to-right order for clusters from Γ0, and reuse it to produce a drawing of
any Gt,E .

The result of the preprocessing is used to compute a drawing ΓT ,E of GT ,E , as
detailed in the following. First, note that once ΓT ,E is computed, we display, for any
t ∈ T all the vertices of GT ,E but only the edges of Gt,E . This is done to preserve
the mental map of the user, using ΓT ,E as a “framework” that “hosts” the drawings of
each instant. First, a layering of GT ,E is computed such that for each vertex the dis-
tance from τ is minimized. Also, dummy vertices, called fictitious vertices of GT ,E ,
are added so that each edge spans two consecutive layers. Vertices are horizontally
ordered on each layer such that: (i) ≺ is enforced; (ii) for each cluster µ of E , the
orders on the layers of its µ-drawing are enforced; (iii) the fictitious vertices of GT ,E
are placed in such a way to have few crossings. In particular, they must not be in-
terleaved with the vertices of any cluster, that is, the vertices of each cluster must be
consecutive on every layer. For this reason, each fictitious vertex is assigned to a new
fictitious cluster, which is inserted in the partial order ≺ in an intermediate position
between the endpoints of the edge it belongs to. Finally, the ordered layers are used to
assign geometric coordinates to vertices. The width of each cluster µ is computed as
follows. Consider the layer containing the largest number of vertices assigned to µ .
The cluster is assigned a width proportional to this number. Vertices of µ are assigned
horizontal coordinates such that they can be enclosed by a rectangle with height pro-
portional to the number of layers assigned to the vertices of µ and width equal to the
width of µ . We avoid intersections between enclosing rectangles by means of an aux-
iliary directed acyclic graph where vertices are clusters of GT ,E and edges are selected
from ≺ depending on which pairs of clusters share a layer in the current layering of
GT ,E . Edges are weighted based on the widths of the clusters they are incident to.
The total width of the drawing is given by the longest path in this graph. The above is
applied recursively to compute the horizontal spacing among all clusters. The vertical
coordinate of a vertex is equal to the one assigned to its layer, which is proportional
to the index of that layer in the total order of layers.

Going back to the state-of-the-art, concerning restrictions R1, R2 and R3, de-
scribed in [FB04], that a planar clustered hierarchical drawing must obey, drawings
produced by our algorithm satisfy R1 and R2, while we consider R3 too restrictive for
our application. Restriction R1 is satisfied in the preprocessing step by merging, for
each cluster, all sources into one vertex. At the end of the algorithm, the PQ-tree con-
tains a spanning tree of the graph with merged sources, which has the effect to keep
the vertices of each cluster consecutive on any layer. However. although effective,
a drawback of this technique is that it can create edge crossings even if the instance
admits a planar drawing. The reason is that, for a vertex resulting from merging the
sources of a cluster, the PQ-tree does not preserve the consistency between the orders

i
i

“thesis” — 2016/5/5 — 11:59 — page 42 — #50 i
i

i
i

i
i

42 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

of its incoming and outgoing edges. When the vertex is split again in the embedded
graph to reconstruct the original sources, crossings can result in the layer that precedes
or follows the one of the sources. We mitigate this effect by post-processing the em-
bedding produced by the PQ-tree. Namely, the position in each layer of the vertices
that represent probes is preserved, while the position of any other vertex is computed
by a single bottom-up sweep of the layers that uses a barycentric positioning. The
technique is inspired by those commonly used in algorithms for Sugiyama-like lay-
outs [TDBET98]. Restriction R2, as shown in [FB04], is automatically satisfied for
the initial drawing Γ0, and is satisfied for any drawing of Gt,E by exploiting the partial
order ≺.

To obtain a radial drawing, the geometric coordinates of vertices so computed are
transformed as follows. Each vertex is placed on the perimeter of a circle centered
in an arbitrary fixed point and having radius equal to the vertical coordinate of the
vertex. Then the horizontal coordinate of the vertex is mapped to a circular coordinate
on the perimeter of that circle. The perimeters of clusters are mapped with a similar
radial transformation. An edge (u,v) is drawn either as a straight segment or a curved
arc, depending on the angle it must sweep to connect vertices u and v. Note that in
our setting each edge connects only vertices in two consecutive layers, hence a curved
edge can be drawn only in the space between these layers.

Handling Cyclic Graphs

As pointed out in Section 3.5, the contraction of clusters in a graph can create cycles.
Namely, the graph GT ,E2 that is produced by contracting a cluster in graph GT ,E1
can contain a cycle that does not exist in GT ,E1 . For this reason, given a graph GT
with clusters C, an algorithm for removing cycles must ensure that GT ,E is acyclic
for any set of expanded clusters E ⊆ C. A naive approach like checking all possible
sets of expansions is unsuitable, since it requires to check a number of graphs that is
exponential in the number of clusters. However, Theorem 1 states that it is sufficient
to check a limited number of graphs.

Theorem 1. There exists a cycle in GT ,X for some X ⊆ C if and only if there exists a
cycle either in GT , /0 or GT ,C .

Proof: The proof in one direction is trivial: /0 and C are sets of expanded clusters,
therefore if GT , /0 or GT ,C contains a cycle then some GT ,X does. For the other di-
rection, assume that GT ,X , with X 6= /0 and X 6= C, contains a cycle. If all vertices of
the cycle belong to a same cluster then that cycle also exists in GT ,C and the theorem
holds, so assume that it spans more than one cluster. We proceed by induction on the
number of expanded clusters (i.e. the number of clusters µ ∈ X) that are traversed by

i
i

“thesis” — 2016/5/5 — 11:59 — page 43 — #51 i
i

i
i

i
i

3.7. ALGORITHMS 43

the cycle. If every vertex µ of the cycle represents a contracted cluster then that cycle
also exists in GT , /0 and the theorem holds. Then, assume that the cycle traverses n
expanded clusters, while the other traversed clusters are contracted. Let µ be one of
the traversed expanded clusters. The directed cycle intersects the boundary of µ an
even number of times, half of the times entering it and half leaving it. Given a pair
of entering and leaving intersections that are consecutive along the cycle, let path π

be the part of the cycle that goes from the entering intersection to the leaving one and
that traverses only vertices of µ . We identify the entering and the leaving intersections
respectively with the first vertex ie and the last vertex il of π . There exists a path π̂

from il to ie that is part of the cycle and traverses only vertices not in µ , or the cycle
would not exist. Contracting µ replaces it with a single vertex µ , which has an in-
coming edge and an outgoing edge for each pair of entering and leaving intersections
(ie, il), that is, the number of intersections of the cycle with µ is preserved after the
contraction. Together with the aforementioned paths π̂ , these edges form a cycle in
the graph after the contraction of µ . Such cycle traverses n− 1 expanded clusters,
therefore the theorem holds by the inductive hypothesis. 2

The result of Theorem 1 is that, to make a graph GT acyclic, it is sufficient to
make acyclic the corresponding graph with all clusters expanded and the correspond-
ing graph with all clusters contracted, called in the following respectively the graph
and the contracted graph.

Two techniques exist to remove cycles from a directed graph: deleting edges from
the graph or reversing their directions. Reversing edges is more correct for our ap-
plication, because all edges must be visualized by Radian but removed edges would
not influence the layout. Also, it is desiderable to reverse few edges, so to preserve
the original graph as much as possible. Finding the minimum number of edges to
reverse to make a directed graph acyclic is equivalent to the well known feedback
arc set problem, which is NP-complete, and several heuristics exist to find a small
set of edges to reverse [TDBET98]. However, existing heuristics for cycle removal
give little or no control on which edges are reversed and this can lead to undesider-
able effects on the layouts produced by Radian, which are based on layering. In this
style of drawing edges have monotone directions, e.g. they go from higher layers to
lower layers, and a choice of edges to reverse can significantly impact the drawing.
For example, Fig. 3.6(a) shows a graph with a cycle. Vertex 1 is the source, vertex
8 is the target, and the edges that close the cycle are dashed. Figure 3.6(b) shows a
layered layouts resulting from reversing edge (5,6). The drawing is slightly distorted,
and vertex 6 is on a higher level than the source, which does not correctly represent
their natural hierarchy. Figure 3.6(c) shows a different layout, where edge (3,4) is
reversed. The layout is very distorted, and the source is even on a lower layer than

i
i

“thesis” — 2016/5/5 — 11:59 — page 44 — #52 i
i

i
i

i
i

44 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

(a) (b) (c) (d)

Figure 3.6: Layouts induced by different choices of edges reversed for removing cycles. The
edges that close the cycles are dashed, the reversed edges are dotted. (a) A cyclic graph. (b)
Layered layout induced by reversing edge (5,6). (c) Layered layout induced by reversing edge
(3,4). (d) Layered layout induced by reversing the path from vertex 5 to vertex 2.

the target. Intuition suggests that the correct path in the graph goes from vertex 1 to
vertex 8, while the entire path that goes from 5 to 2 is “going back” and is the cause of
the cycle. Figure 3.6(d) shows a drawing that follows this intuition, by reversing the
entire subpath from 5 to 2.

In the following we describe an algorithm to remove cycles from a directed graph
that builds on the fact that the graph is produced from traceroute paths. At a very
high level, the algorithm first finds a maximal subset of traceroutes that induce an
acyclic graph, and computes a layering for it. Then the remaining paths are added,
reversing those that violate the existing hierarchy. Edges are weighted by the number
of traceroutes that traverse them, and paths that traverse light edges are preferred for
reversing.

Given a graph GT with clusters C, let T be the set of traceroutes that induce it.
Assume that, when referred to GT , /0, traceroute paths are contracted, that is, each path
is a sequence of clusters. The algorithm starts by assigning a weight to each edge of
GT , /0 that is equal to the number of traceroutes in T that traverse it. Each occurrence

i
i

“thesis” — 2016/5/5 — 11:59 — page 45 — #53 i
i

i
i

i
i

3.7. ALGORITHMS 45

of a path is counted as one, that is, traceroutes paths repeated over time increase the
weight of the edges they traverse. Then the strongly connected components (SCCs) of
GT , /0 are computed. For each SCC, its edges are iteratively removed from the graph in
increasing order of weight, until the vertices of the SCC induce an acyclic subgraph.
Each time an edge is removed, the traceroutes that traverse it are put in a set T1. At
the end of the process there are no cycles in the graph. The algorithm merges the
traceroutes in set T2 = T \ T1, obtaining an acyclic graph G′T , /0 ⊆ GT , /0. If it is the
empty graph, then the target vertex is added to it. A layering is computed for this
graph. All traceroutes in T1 are added to G′T , /0 as follows. Traceroute paths that do not
contain cycles are processed first. A path is split in maximal subpaths such that the
two extremal vertices of a subpath either have a layer assigned or are a source vertex.
Each subpath is added to G′T , /0, reversing its direction if it goes towards decreasing
layer numbers (i.e. it violates the current layering). If an edge with a given direction
already exists then it is skipped, since multi-edges are not allowed. The layering is
updated accordingly every time a subpath is added. Then cyclic traceroutes in T1 are
processed. Assume that they follow the same convention as the graph, going from the
target vertex τ to a source vertex σ . For each traceroute π ∈ T1:

(i) The graph Gπ that represents π is computed.

(ii) Let a = τ and b = σ .

(iii) The following steps are executed iteratively, until all edges of π have been added
to G′T , /0.

(iv) An acylic path π1 from a to b is selected in Gπ by a DFS visit. If a = b, then
the last edge traversed by the visit is returned as a distinct acyclic path.

(v) π1 is added to G′T , /0 following the rules for acyclic paths.

(vi) The edges of π1 are removed from π and from Gπ . Note that π can contain
several copies of an edge, which are all removed.

(vii) Find a maximal path in π , let a and b be its first and last vertices.

The procedure described so far computes a graph G′T , /0 which is an acyclic ver-
sion of GT , /0. Namely, it contains the same vertices and the same edges, with some
edges possibly reversed. The same procedure is applied also to GT ,C , with the follow-
ing constraint: inter-cluster edges must have the same direction established in G′T , /0.
Namely, let e = (v1,v2) be an edge of GT ,C such that v1 ∈ C1 and v2 ∈ C2. The di-
rection of e is (v1,v2) if (C1,C2) ∈ G′T , /0, otherwise it is (v2,v1). The constraint keeps

i
i

“thesis” — 2016/5/5 — 11:59 — page 46 — #54 i
i

i
i

i
i

46 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

G′T , /0 and G′T ,C consistent, however it can create source vertices (i.e. vertices with
no incoming edges) other than the target. Note that this does not happen for G′T , /0.
The layout algorithm requires exactly one source vertex, so an incoming edge must
be added to each source vertex vs in G′T ,C that is not the target. Let vs ∈Cs, then in
cluster Cs there exists a vertex vc that is not a source (otherwise cluster C would be a
source also in G′T , /0), and it is used to add a new edge (vc,vs) in G′T ,C . Finally, G′T ,C
is the acyclic graph to be processed by the layout algorithm.

3.8 User Study

We conducted an informal user study at the end of the development of our tool, in
order to gather expert opinions on its soundness and effectiveness. We interviewed 6
selected employees of the R&D division of a prominent Italian ISP. Their areas of ex-
pertise covered IP edge innovation, cyber security threat evolution, security solutions
analysis, and video & multimedia platforms. Such heterogeneous set of expertise cov-
ers a wide spectrum of the actual needs and challenges of the ISP. The interviews were
held in the context of the Leone FP7 EC research project. We had only one chance to
do a user study with them before the end of the research project. The general objective
of the study was to receive feedbacks about the motivations of our work, and to assess
whether the functionalities offered by Radian supported the typical needs of an ISP.
Namely, we wanted expert opinions on how useful the tasks described in Section 3.6
were for solving the use cases described in Section 3.2, and how effective Radian was
in supporting those tasks. The users were informed on the supported tasks and their
classification into two classes: tasks aimed at understanding the topology of the net-
work as seen by the routing, and tasks aimed at understanding the routing evolution
over time. We also wanted opinions on the perceived utility of simplifying the visu-
alization by contracting ASes. A the time the study was conducted, Radian did not
support the visualization of metrics.

The interview had three parts. 1) A presentation of the tool, to explain the moti-
vations, the input data, and the functionalities. 2) A supervised session of usage of the
tool, in which we proposed a real-life scenario and they were asked to argue on the dy-
namics of the routing. The focus was not to actually give complete explanations, but
to get an initial sense of the logic and interactions of the system. 3) A questionnaire
that the users were asked to anonymously fill out with their opinions.

The questionnaire contained several statements, each representing a hypothesis we
made that a given feature of Radian was useful or effective. The users were requested
to rank each statement between 1 (completely disagree) and 5 (completely agree), and
to write a short comment with the motivation for each given rank. Table 3.1 contains

i
i

“thesis” — 2016/5/5 — 11:59 — page 47 — #55 i
i

i
i

i
i

3.8. USER STUDY 47

Table 3.1: Results from the questionnaire presented in the user study For each statement, the
minimum, the average, and the maximum ranking given by the users are shown.

Statement min avg max

S1
Traceroute data produced by a probe system, be-
cause of the magnitude, are hard to exploit without
a visualization tool.

4 4.83 5

S2a

The topology of a part of a network as deduced
from traceroute data, both at router and AS level,
provides reasonable information to understand the
state of the routing in that part of the network and
in a given instant.

3 3.33 4

S2b
Radian represents the topology of a network in a
comprehensible way. 3 3.83 4

S3a

Traceroutes performed periodically in a part of a
network provide sufficient information to under-
stand the dynamics of routing in that part of the
network.

2 3.17 5

S3b
Radian represents routing changes in a comprehen-
sible way. 3 4.2 5

S4a
There exist cases in which it is necessary to focus
on the routing of a specific AS, keeping at the same
time an overview of the routing at AS level.

3 3.6 4

S4b
Radian supports focusing the attention on a specific
AS, maintaining at the same time an overview of
the neighbour ASes.

3 3.83 5

S5a

Understanding the topology of a network and the
dynamics of the routing supports typical activities
of network administration and monitoring, includ-
ing the study of complex scenarios otherwise diffi-
cult to analyze.

3 4.5 5

S5b Analyzing traceroute data with Radian supports the
study of complex scenarios.

3 4.33 5

the statements of the questionnaire, together with the minimum, the average, and the
maximum ranking given by the users. The statements after the first can be considered
in pairs: each statement ending with an “a” is about a motivational matter, and has
a corresponding statement ending with a “b” which is about how good Radian was

i
i

“thesis” — 2016/5/5 — 11:59 — page 48 — #56 i
i

i
i

i
i

48 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

considered with respect with that motivation.
Statement S1 is about the original motivation of our work, and asked the users

whether visualization is actually useful in this domain. It received very high rank-
ings, the highest in the study. The users were already familiar with the analysis of
traceroutes, and in the comments they confirmed that understanding large amount of
traceroutes, like those produced by a system of probes, is challenging. Visualization
was considered a fundamental tool for this kind of task. Some keywords that fre-
quently appeared in the comments as desiderable properties of a visualization were
“dynamics”, “aggregation”, and “overview”. Radian has interface elements to sup-
port all of these. Namely, the dynamics of routing is represented with animations.
Data are aggregated from two different points of view: first, several traceroutes col-
lected over time are merged into a graph, which highly reduces the amount of data to
watch. Also, the user can expand and collapse ASes, to further reduce the amount of
displayed data and focus only on a portion of interest. A temporal overview of rout-
ing changes is furnished by the event timeline. Finally, the graph itself is a form of
overview, since all vertices traversed by a traceroute in some time instant are always
part of the visualization.

Statements S2a and S2b regard the capability of the traceroute graph to recon-
struct a reasonable and comprehensible snapshot of the routing in a given instant. The
opinions were mixed. The users were not completely convinced of S2a, because of
some known limitations of the traceroute itself. 1) Some routers of the Internet could
be configured, for security reasons, not to respond to measurements like traceroutes.
2) Even if configured to respond, an overloaded node could decide to discard some
requests. 3) A reported traceroute path could be a simplified version of the real path,
because packets transit inside tunnels that are invisible to traceroutes. 4) Finally, a
traceroute path could report non-existing links between some nodes, because of the
presence of load balancers in the traversed network. This kind of problem is tackled
by a special version of the traceroute tool (see [ACO+06a]), which however could be
not installed on the probes used for the measurements. For these reasons, many of the
users suggested to integrate traceroute data with the decisions taken by routing pro-
tocols, which are known to an ISP for its own network. On the other hand, all users
admitted that these limitations of traceroutes are hardly avoidable, and that when mea-
suring a network belonging to someone else, the traceroute (with its limitations) is one
of the very few, if not the only, tools available. The average ranking, even if not that
bad (it is greater than 3), is relatively low. We believe that this was due to the strong
statement we made: it would have been probably higher if we stressed more the fact
that the graph reconstructed from traceroutes is only an approximation of the topol-
ogy of the traversed network and of its routing. Surprisingly, Statement S2b received
higher rankings: this means that, apart from the reported limitations of the traceroute

i
i

“thesis” — 2016/5/5 — 11:59 — page 49 — #57 i
i

i
i

i
i

3.8. USER STUDY 49

tool, the graph metaphor implemented in Radian was considered clear and effective.
This was also confirmed in the comments.

Statements S3a and S3b regard the effectiveness of periodically performed tracer-
outes to sample the dynamics of the routing, and the effectiveness of the animations
implemented in Radian to represent such dynamics. Statement S3a received a partic-
ularly low average ranking and was subject to criticisms similar to S2a: traceroutes
were considered too poor in information to let the user to fully understand the rout-
ing dynamics. The statement, in our intentions, expressed the capability of periodic
traceroutes to report a sampling of the routing changes happened in the network, so
that the user becomes aware of them and has the possibility to make deductions from
their comparison. However, similarly to S2a, we believe that the statement was too
strong and that was interpreted by the users. Their written comments were fundamen-
tal to understand the reasons behind the answers: they complained that simply seeing
the routing changes is not enough to understand the reasons behind them, which re-
quires the usage of additional data sources like information on the routing protocols.
Two of them were very specific in these terms, saying that traceroutes do not allow
a “root-cause analysis” of the routing events, and that they do not help “understand
why”. We are obviously aware of these limitations, and never intended to present Ra-
dian as a tool for root-cause analysis, which is a challenging task that requires specific
tools. All that Radian is capable of is to report the sequence of routing changes hap-
pened over time, so that the user can precisely tell what changed and when, and then
draw some conclusions. The reported events are possibly starting points for a deeper
analysis. And, indeed, the very high ranking of Statement S3b confirmed that Radian
is effective in this task. The written comments pointed out that the users appreciated
the usage of animations, and considered them an effective an intuitive way to repre-
sent changes in a traceroute path. Some very interesting comments to Statement S3a
and S3b regarded the possibility of comparing routing changes to other metrics, like
the round-trip time. The user considered useful, to understand the reason of a routing
change, to know if some metric of interest changed at the same time. For example,
a sudden improvement of the round-trip time in correspondence of a routing change
may imply that some node was overloaded, and the routing protocol changed the rout-
ing to avoid that node and restore acceptable performance. A feature of this kind was
indeed missing in Radian, and its conceiving is an important outcome of this user
study. Hence, we labelled traceroute paths with round-trip time information. How-
ever, integrating networked data with more network metrics into one visualization is
an interesting challenge, also, and we will work on it in the future.

Statements S4a and S4b regard the usefulness of looking at the network at different
abstraction levels, exploiting the clustering of nodes into the ASes they belong to, and
the effectiveness of Radian in supporting this feature. Despite the good rankings,

i
i

“thesis” — 2016/5/5 — 11:59 — page 50 — #58 i
i

i
i

i
i

50 CHAPTER 3. ANALYSIS OF ROUTING DYNAMICS AND TOPOLOGY

these were the only Statements for which no significant written comments were given
by the users. We believe that, more than for the previous statements, S4a was too
abstract and was not understood completely. Therefore, the users may have given
rankings similar to those of the previous statements. However, we observed them
during the usage session of Radian, to spot interesting patterns of use, and noticed
that all of them made use of the possibility of keeping collapsed the ASes that were
not involved in any dynamics. This makes perfectly sense to us, since some ASes
with static routing were very large and caused cluttering on the screen, while the
interesting part of that instance was the very particular inter-AS routing dynamics.
This observation indirectly confirms our expectation that, if available, users gladly
use a feature to simplify the current visualization by abstracting those parts that are
not of interest for a given task.

Finally, Statements S5a regards the general functionalities offered by Radian, con-
sisting in supporting the comprehension of the topology of a network and the dynam-
ics of its routing, as inferred from periodic traceroute data. Statement S5b asks how
good Radian is at implementing these features. The average ranking is quite high for
both, which is a strong confirmation of the quality of our work. In the written com-
ments, the users considered Radian very effective for the tasks it was designed for, and
said that it could help “debugging problems” and “refine future strategies”, referring
to the administration of a network. Differently from before, the Statement regarding
the implementation received slightly lower rankings than the motivations behind it. In
the comments the users explained that the possibility of comparing routing changes to
other kind of metrics is an important, missing feature of Radian, which would enable
a much deeper analysis of the routing. This influenced their general opinion on the
tool. See the comments to Statements S3a and S3b.

In conclusion, the users considered Radian a very useful tool for supporting their
everyday work in the administration of a network. The kind of functionalities and our
implementation were well appreciated. The main complaints were for the intrinsic
limits of traceroutes. On the other hand, the users admitted that these limitations are
unavoidable and that traceroutes are one of the few sources of data available when
analysing a network administrated by someone else, on which there is no control nor
information available on the routing protocols. The possibility of visually comparing
routing changes to other kind of metrics is considered a fundamental, missing feature
of Radian, which motivates the changes discussed above.

i
i

“thesis” — 2016/5/5 — 11:59 — page 51 — #59 i
i

i
i

i
i

3.9. CONCLUSIONS AND FUTURE WORK 51

3.9 Conclusions and Future Work

We presented a metaphor for the visualization of traceroute measurements towards
specific targets on the Internet. It consists of a radial drawing of a clustered graph
where vertices are routers or computers and clusters are administrative authorities
that control them. Our metaphor allows the user to interact with the visualization,
both exploring the content of individual clusters and animating the graph to see how
traceroute paths change over a time interval of interest. The visual metaphor and the
relative algorithms were implemented as a tool, Radian.

In the future we will take into account the DNS resolution of selected targets in
the visualization. That means that some targets may be represented by more than one
vertex, giving rise to an anycast behavior of the target, depending on the policies im-
plemented at the DNS level. We will also explore the possibility to process streams
of incoming data, adding or removing elements in the visualization incrementally. Fi-
nally, we will improve the visualization of network metrics presented by Radian. The
current solution supports the user tasks that we considered, but it could be improved in
two ways. First, metrics should be integrated with the graph visualization, besides be
presented with temporal charts. Second, the system should allow an easy comparison
between metrics of different probes, and of single probes with respect to the global
trend.

i
i

“thesis” — 2016/5/5 — 11:59 — page 52 — #60 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 53 — #61 i
i

i
i

i
i

Chapter 4

Visualization of Network Metrics as
Stacked Charts

This chapter describes an approach based on Multiple Abstraction Levels (see Chap-
ter 1) for visualizing network metrics, like the round-trip delay reported by the tracer-
oute tool. The approach deals with the Relation To Metrics challenge. Metrics are time
series, that is, sequences of numeric values that depend on time. Visualizing this kind
of data is a problem of general interest, so the approach in this chapter is presented in
the more general context of time series visualization. Streamgraph is a technique for
representing time series as stacked charts. It allows one to visually compare the trend
of single time series to the global trend, that is, the trend of the sum, which results in
a comparison of two different abstraction levels of this kind of data. The state of the
art on this technique, when applied to network metrics, can produce drawings with
noticeable distortions that reduce the readability. The solution described in this chap-
ter deals with this limit, and also introduces an efficient algorithm for automatically
labeling time series in a streamgraph. Experiments were conducted on a number of
real data sets. A preliminary version of this chapter was published in [DH].

4.1 Introduction

A time series is a sequence of numeric values each labeled with a temporal reference,
and ordered by time. A standard way to visualize time series is to plot them on a
cartesian chart that has time on the x-axis and the numeric values on the y-axis. This
chart clearly shows how the series evolve over time. Plotting multiple time series in
the same chart allow easy comparison among them. However it is not effective at

53

i
i

“thesis” — 2016/5/5 — 11:59 — page 54 — #62 i
i

i
i

i
i

54 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

showing the evolution of their sum.
Stacked graphs, or stacked charts, are a representation that mitigate this limit. In

a stacked graph, time series are shown as colored stripes (or layers) that flow in the
direction of the x-axis, whose thickness represents at each time instant the numeric
value. Layers are stacked one on top of another without gaps. The results is a diagram
in which it is easy to compare single layers with the total, at the expense of harder
comparisons between pairs of layers.

Given a stacked graph, the baseline is its bottommost curve. The simplest way
to make a stacked graph is to stack layers on a straight line that corresponds to the
x-axis. However, different baselines are possible, and may be preferred because it
offers a way to reduce the amount of fluctuation in the layers. First introduced by
ThemeRiver [HHWN02], stacked graphs with curved baselines were popularized in
2008 by an article on The New York Times, which used them to visualize box office
revenues for 7500 movies over 21 years. The visualization become immediately pop-
ular and controversial, gathering comments ranging from “fantastic” to “unsavory”.
Later on, a paper by Byron and Wattenberg [BW08] described the technique used in
The New York Times visualization, calling it streamgraphs. The article outlined how
the aesthetic of a streamgraph is controlled by three components: the ordering of lay-
ers, the shape of the baseline, and the labeling of the layers. The solutions used by
the Times were described. In addition, the authors explained how stacked graphs with
a flat baseline, ThemeRiver-like graphs and their streamgraphs all fitted in a general
mathematical framework, and that each of these had different aesthetic properties. For
this reason, in this chapter we will refer to any kind of stacked graph as a streamgraph.

At the time of writing this thesis, the paper of Byron and Wattenberg [BW08]
is still the most authoritative work on streamgraphs, and other works are mostly im-
plementations or minor variations of the original concepts. The algorithmic pipeline
of Byron and Wattenberg [BW08], and that of this thesis, consists of three distinct
steps: layers are first ordered; a baseline is then computed that minimizes fluctuation
of layers; finally, labels are computed and superimposed to the streamgraph. How-
ever, in each of these steps, the solutions in [BW08] have limitations that have not
been documented in the literature. First, the layer ordering algorithm exploited statis-
tical properties of the data of interest, box office revenues, that may not hold in other
data. Second, the algorithm to compute a baseline is based on a 2-norm measurement
of the fluctuation of layers, called wiggle, which works well for relatively smooth
time series, but suffers from unpleasant distortions when a layer has sudden changes
in thickness (or jumps, see Fig. 4.1). Third, in [BW08] a brute-force layer labeling
algorithm was used that does not scale well with the size of the data.

We resolve each of these limitations by proposing better ordering, baseline calcu-
lation and layer labeling algorithms, and verified the effectiveness of our solutions by

i
i

“thesis” — 2016/5/5 — 11:59 — page 55 — #63 i
i

i
i

i
i

4.2. RELATED WORK 55

performing experiments that compared our algorithm with the current state of the art.
Our contributions are

• a new ordering algorithm that works effectively on general time series data.

• an alternative definition of wiggle based on 1-norm that gives visually calmer
layer arrangements even for time series with sudden jumps, and a solution pro-
cess for the 1-norm minimization problem.

• an efficient layer labeling algorithm that scales linearly to the size of the time
series data.

Together these represent a new algorithmic pipeline that significantly advance the
state of the art in the creation of streamgraphs.

4.2 Related Work

The first work to introduce streamgraphs was ThemeRiver [HHWN02], a tool to visu-
alize the time evolution of topics extracted from large collections of text documents.
The thickness of a layer represented the popularity of a topic between the selected
documents. The baseline was computed so that the drawing was symmetric with re-
spect to the x-axis. No specific layer ordering algorithm were described, however
the authors discussed about the possibility of letting the user decide the ordering or
putting related layers close.

The paper from Byron and Wattenberg [BW08] formally introduced streamgraphs.
It described the mathematical technique and design considerations behind the stream
graphs in a 2008 New York Times article showing box office revenues for 7500 movies
over 21 years. The authors introduced the concept of wiggle as a measure of distor-
tion of all the layers. Minimizing this measure (see also Section 4.3 for a description)
aimed at both making layers more readable, and at avoiding the artificial look of The-
meRiver drawings which are symmetric with respect to the x-axis, in favor of a more
natural, river-alike flowing. For ordering of layers, the authors outlined how layers
with high wiggle values should not be at the center of the drawing to avoid distorting
the other layers around them. Layers produced by box office revenues tend to have
a sudden increase in the first weeks out, then they rapidly decrease as the interest in
the movies declines. For this reason, layers were ordered by their “on-set” time, with
older movies at the center of the drawing and newer movies at the edges. It was left
as future work to study how layers can be ordered by using the wiggle as a measure
of quality. Other aspects were also discussed, like layer coloring and labeling.

i
i

“thesis” — 2016/5/5 — 11:59 — page 56 — #64 i
i

i
i

i
i

56 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

Several other works used streamgraphs, but most of them are applications of the
concepts of [HHWN02] and [BW08], which were extended to work on specific ap-
plicative contexts.

TIARA [LZP+12] is a system that visualizes topics extracted from text documents.
Layers represent topics and are enhanced by adding keyword clouds inside them. The
ordering of layers is chosen on the basis of several, contrasting, criteria, which include
the on-set approach of [BW08] and a new measure of the volatility of a layer, to
estimate its wiggle. Although the paper does not completely describe how to combine
these criteria, their solution is one of the few attempts to order layers with an approach
different from [BW08].

TextFlow [CLT+11] is a system for visualizing the evolution patterns of topics
extracted from text documents. The visualization has some similarity with stream-
graphs, since topics are shown as stripes (or “rivers”) flowing in one direction, and
whose thickness represents a measure of magnitude. Moreover, TextFlow computes
its layout starting from a stacked graph. However, unlike streamgraphs, topics can
merge and split over time, and rivers in the visualization split and merge into branches
accordingly.

TripVista [GWY+11] is a system that visualizes traffic trajectory data. Layers
represent traffic volume information, while the layout is first computed with the The-
meRiver algorithm and then enhanced by adding to the layers glyphs for representing
trajectory directions. In this way, directions and volume statistics on traffic are com-
bined.

Another work dealing with the visualization of topics is the system described
in [DGWC10]. The system supports the visualization of dynamic data, which the
user can navigate by panning the current time interval. Layers are totally ordered by
a global measure of “newness”, that it the time of first appearance of a topic. A topic
never changes its position in the ordering. The on-set approach of [BW08] resulted
ineffective in a dynamic setting.

TouchWave [BLC12] is a system that exploits multi-touch interfaces for interact-
ing with streamgraphs. With standard interactions, layers can be scaled and extracted
from a stack to improve their legibility. If the user touches a point on the x-axis, lay-
ers are dynamically reordered in increasing ordering of the values they have at that x
coordinate. Additionally, the user can manually rearrange the ordering. Hierarchies
of layers are supported, by expanding and collapsing layers.

Other areas of visualization studied problems similar to that of streamgraphs,
namely, optimal ordering and sloping of lines to minimize the wiggle. In Storyline
visualization [TM12,LWW+13], this is achieved by genetic algorithms [TM12], or
by quadratic programming [LWW+13]. In directed graph visualization [GKNpV93],

i
i

“thesis” — 2016/5/5 — 11:59 — page 57 — #65 i
i

i
i

i
i

4.3. FINDING A BASELINE VIA WIGGLE OPTIMIZATION 57

polyline edges across multiple layers are kept as parallel to the vertical direction as
possible by linear programming.

4.3 Finding a Baseline via Wiggle Optimization

In this section we define the concept of wiggle for a streamgraph, and show how
to compute a baseline for a streamgraph such that the wiggle is minimized. After
discussing the limits of the existing techniques, we describe our solution, which en-
compasses a new definition of wiggle and an optimization method.

Basic Concepts

We assume to work with discrete data, that is, a time series is a sequence of m numbers.
Given an ordered list of time series, we assume that the layer ordering of a streamgraph
of them follow the ordering of the list. We denote fi as the i-th time series, where
i = 1,2, . . . ,n. Given a streamgraphs of series fi, we denote gi as the sequence of
y-coordinates corresponding to the points of series fi. As a particular case, g0 denotes
the baseline of the streamgraph. Also, note that gi = g0 +∑

i
j=1 f j for i = 1,2, . . . ,n.

Wiggle is a metric introduced in [BW08] to measure the aesthetics of a stream-
graph. Intuitively, the wiggle of a streamgraph can be thought of as a indication
of how much the top and bottom boundaries of its layers fluctuate. For example, a
streamgraph with only flat layers has wiggle equal to 0. Wiggle is a measure of the
visual complexity of a streamgraph, since distorted layers are harder to understand,
e.g., an increasing trend in the thickness of a layer could be hidden by a visual distor-
tion that visualizes the layer as a steep descent. In [BW08] two different definitions
of wiggle are given.
The “weighted wiggle”, which gives more importance to layers with higher thickness
and is thus consider better, is defined as

ww2(g0) =
n

∑
i=1

fi

(
g
′
i +g

′
i−1

2

)2

(4.1)

By definition, wiggle is a function which returns a number (wiggle value) for
each x-coordinate of a streamgraph. However, with a slight abuse of notation, we
also define the wiggle value of a streamgraph as the sum of the wiggle values of the
streamgraph over all x-coordinates. Further, the wiggle value of a layer is the wiggle
value of a streamgraph composed only of that layer and having a flat baseline. Finally,

i
i

“thesis” — 2016/5/5 — 11:59 — page 58 — #66 i
i

i
i

i
i

58 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

the wiggle value of a list of ordered layers is the wiggle value of the streamgraph that
has that layer ordering and a baseline that minimizes the wiggle.

With a fixed layer ordering, the wiggle of a streamgraph depends on the baseline.
A method to find a baseline g0 that minimizes the wiggle is described in [BW08], and
consists of taking the derivatives of (4.1) with regard to g

′
0, and set them to zero. The

optimization problem can be solved with a per-value approach, restricting (4.1) to a
single x-coordinate of the streamgraph. Derivatives in the equations can be computed
with the backward finite differences.

Limits of Existing Techniques

x1 x2
(a)

x1 x2
(b)

Figure 4.1: Different baselines: (a) with weighted 2-norm minimization, notice the wiggle on
all layers; (b) with 1-norm minimization: only the green layer has a wiggle.

Equation 4.1 was used to produce aesthetically pleasant streamgraphs of box of-
fice revenues in The New York Times article. It is effective in visualizing relatively
smooth time series, but suffers from unpleasant distortions when a layer has sudden
changes in thickness, or jumps. In Fig. 4.1 two possible drawings of four ordered
layers are depicted, where one layer is shorter than the others. It is easy to see that the
streamgraph in Fig.4.1a is affected by distortions at x1 and x2, that is, in correspon-
dence of the first non-zero value of the short layer at x2. Much of these are avoidable,
as shown in Fig. 4.1b. Equation 4.1 gives a lower wiggle value for Fig. 4.1a than
Fig. 4.1b. For example, assume that the short layer has thickness equal to 4 and the
others have thickness equal to 1. Also, assume x2− x1 = 1. In Fig. 4.1a, from bot-
tom to top, values g

′
i, with i = 0 . . .4, at x2 are −2, −2, −2, −2, and 2, respectively,

therefore ww2 = 12. In Fig. 4.1b, with a similar reasoning, we obtain ww2 = 16. This
means that, when minimizing (4.1), a baseline like Fig. 4.1a is preferred over that of
Fig. 4.1b. In real data, the presence of many layers can amortize the distortion due to
a jumping layer, however it is still noticeable and unpleasant, see Fig.4.2a.

i
i

“thesis” — 2016/5/5 — 11:59 — page 59 — #67 i
i

i
i

i
i

4.3. FINDING A BASELINE VIA WIGGLE OPTIMIZATION 59

(a)

(b)

Figure 4.2: Different baselines: (a) with 2-norm, distortions are present; (b) with 1-norm, all
layers are smooth.

There are two reasons for the unappealing distortions made by a baseline com-
puted by minimizing (4.1). First, consecutive wiggle pairs (g

′
i,g
′
i−1) are cancelled if

the two terms have equal absolute value and opposite sign. Such pairs are ignored
in the minimization process, independently of the amount of distortion they cause to
other layers. In Fig. 4.1a, this happens with g

′
3 (light green) and g

′
4 (dark green). Also,

the wiggle is defined based on 2-norm, which tends to favour many small “wiggles”
to a large one, as seen in Fig. 4.1a and Fig. 4.2a.

i
i

“thesis” — 2016/5/5 — 11:59 — page 60 — #68 i
i

i
i

i
i

60 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

Optimal Weighted Wiggle Under 1-norm

Mathematically, the quadratic function involved in the 2-norm based definition of wig-
gle is smooth and easier to optimize, which may be part of the reason why Byron and
Wattenberg choose to define wiggle that way. However in the follow we show that
1-norm based definition, though non-smooth, can also be solved easily, but does not
suffer from the issue with distortion due to sudden jumps.

We define the 1-norm based weighted wiggle as follows:

wwa
1(g0) =

n

∑
i=1

fi

∣∣∣g′i∣∣∣+ ∣∣∣g′i−1

∣∣∣
2

=
n

∑
i=0

wi

∣∣∣g′i∣∣∣
=

n

∑
i=0

wi

∣∣∣∣∣g′0 + i

∑
j=1

f
′
i

∣∣∣∣∣= n

∑
i=0

wi

∣∣∣g′0− pi

∣∣∣ .
(4.2)

Similarly to (4.1), we assume to work on a per-value basis, that is, at a fixed x-
coordinate of the streamgraph. We denote wi =

1
2 (fi + fi+1) (we assume f0 = fn+1 =

0), and pi = −∑
i
j=1 f

′
i (we assume p0 = 0). The wiggle is based on 1-norm, which

avoids uniform small jumps across the layers, a problem discussed in Section 4.3 that
affects the 2-norm wiggle, in favour of a few larger jumps. This sparsifying effect is
similar to the use of 1-norm for regularization in regression, known as lasso [Tib94].
Also, the norm is computed for each g′i term, which avoids the cancelling of terms
with equal absolute value and opposite sign.

To minimize (4.2), we first observe some properties of its derivative with respect
to g

′
0, which is d(g

′
0) = ∑

n
i=0 wi sgn

(
g
′
0− pi

)
. With a slight abuse of notation, we

reorder the p′s from small to large and still denote them as p, in such a way that
p0 ≤ p1 . . . ≤ pn. When looking at the n+ 2 intervals defined by this sequence from
left to right, the derivative of the wiggle, when g

′
0 ∈ (−∞, p0), is d−1 =−∑

n
i=0 wi. The

derivative when g
′
0 ∈ (p0, p1) is d0 = d−1 +2w0, the derivative when g

′
0 ∈ (p1, p2) is

d1 = d0 + 2w1, etc. That is, the derivative of the wiggle is negative for g
′
0 < p0, it

increases as g
′
0 increases, and it is positive for g

′
0 > pn. Therefore, the minimum

wiggle is achieved at the point where the derivative changes from negative to non-
negative. Fig. 4.3 shows an algorithm for finding the optimal g

′
0. The returned value

can be numerically integrated to obtain g0, that is, a baseline value that minimizes
(4.2).

Fig. 4.2 compares the effect of computing a baseline with 2-norm minimization,
and with this technique. The baseline in Fig. 4.2a is computed by minimizing (4.1),

i
i

“thesis” — 2016/5/5 — 11:59 — page 61 — #69 i
i

i
i

i
i

4.4. LAYER ORDERING 61

1: function OPTIMALBASELINEDERIVATIVE(w, p)
2: d←−∑

n
i=0 wi

3: for i = 0,1, . . . ,n do
4: d← d +2wi
5: If d ≥ 0 return pi
6: end for
7: end function

Figure 4.3: The optimal baseline algorithm

and it is affected by distortion near the boundaries of short layers. The baseline in
Fig. 4.2b is computed by minimizing (4.2), resulting in a smoother drawing.

4.4 Layer Ordering

In [BW08] an algorithm is proposed for ordering layers. Layers produced by box of-
fice revenues tend to have a sudden increase in the first weeks out, then they rapidly
decrease as the interest in the movies declines. For this reason, layers were sorted by
their “on-set” time, defined as the x-coordinate of the first non-zero value. Ordering
was done with an “inside-out” approach, which stacks the sorted layers by alterna-
tively putting them above or below the two edges of the drawing. As a result older
movies appear at the center of the drawing and newer movies at the outskirt, and the
overall effect is visually appealing. Different implementations are possible, for exam-
ple the D3 library [Bos] implements streamgraphs ordering layers by the x-coordinate
of their maximum value. These approaches work well for movie data but are not ap-
propriate for general data. For example, Fig. 4.5a is an ordering produced with the
on-set method of [BW08]. Although layer 10 has an early on-set time, it cannot be
placed at the center of the drawing without distorting other layers. As an alternative,
more general approach, [BW08] suggested that layers with high wiggle values should
not be at the center of the drawing to avoid distorting the other layers around them,
but did not implement this idea.

This section describes an algorithm for ordering the layers of a streamgraph that
is effective for general time series. This involved generating an initial good ordering,
and subsequent iterative refinement of the ordering.

The initial ordering is based on the intuition, introduced in [BW08], that layers
with a large amount of wiggle must be as far from the center of the drawing as possible,
so not to perturb the other layers around them. On the other hand, putting calm layers
at the center gives a good support for stacking other layers on top of them. Our

i
i

“thesis” — 2016/5/5 — 11:59 — page 62 — #70 i
i

i
i

i
i

62 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

BestFirst initial ordering algorithm exploits this idea. The algorithm starts from an
empty ordering and iteratively adds layers, choosing the one with the best wiggle at
each iteration. More specifically, the algorithm starts with a straight line, whose two
sides are labeled as current top baseline and current bottom baseline and are defined
as two sequences of 0’s. Then, all layers still to insert are tested. Each of them is
stacked on both the current top and bottom baseline, computing the wiggle produced
by each choice. Finally, the layer-baseline pair with the lowest wiggle is selected for
insertion. The chosen current baseline is then updated by adding the thickness of the
inserted layer. An iteration is performed for each layer to insert.

BestFirst is effective at keeping “calm” layers inside the drawing and putting the
others outside. However, on some instances it can produce aesthetically unpleasant
orderings, such as in Fig. 4.5b, where it is easy to see that layer 24 and layer 6 should
be switched (see Fig. 4.4), and that layer 30 should be on top of them. The reason for
the wrong decisions is that BestFirst computes the wiggle of a layer as an integral
along the layer. Parts of a layer that have thickness equal to zero do not contribute
to the wiggle, and this could mitigate the sudden increment in value (despite the high
derivative) that is present at the boundaries of the zero intervals. As a result, a short
layer tends to have much smaller wiggle that a long layer, and is more likely to appear
closer to the center of the streamgraph, distorting any other layers on top of it. This is
a critical limit of BestFirst. Given that data with jumps is common in the real world
(e.g., demographic data could have been collected starting from different dates for
different countries), we propose a refinement algorithm, TwoOpt, to further improve
the initial ordering.

(a) (b)

Figure 4.4: Two orderings of two layers on a flat baseline. Case (b) produces a distortion, case
(a) is preferred.

In TwoOpt, the wiggle of a layer is evaluated also with respect to the impact it has
on the layer above. For example, Fig. 4.4a is a better ordering than Fig. 4.4b, since
in the latter the bottom layer does not properly “support” the top one, and distorts

i
i

“thesis” — 2016/5/5 — 11:59 — page 63 — #71 i
i

i
i

i
i

4.4. LAYER ORDERING 63

it. Starting from an initial ordering, the algorithm iteratively compares two neighbor-
ing layers and decides which of the two possible orderings gives the lowest wiggle.
Specifically, the two orderings are stacked on a flat baseline, then their respective wig-
gles are computed and compared. Note that the reason we compare the orderings of
two layers on a flat baseline, instead of evaluate using the total wiggle on the best base-
line each time, is that the former is computationally cheaper, and that a good ordering
tends to give relatively flat middle layers, hence using a flat baseline is reasonable.

30
24

31
17
12

10
6

(a)

10 30
31

12
17

24
6

(b)

10
31

12
17

6
24 30

(c)

Figure 4.5: Layer orderings produced by different algorithms: (a) on-set; (b) BestFirst; (c)
TwoOpt. The first two have layer distortions. Labels identify layers and were positioned with
the algorithm described in Section 4.5.

Fig. 4.6 gives the pseudo code for TwoOpt. It starts with the initial ordering from
BestFirst. Then, from the center of the ordering, it performs several inside-out scans
towards the top and the bottom. Each scan uses the wiggle heuristic to compare every
pair of adjacent layers, and decides whether swapping them decreases their wiggle.
The scans are repeated the given number of times and each repetition produces a new
ordering, which is evaluated through the wiggle heuristic. To do this, the ordered
layers are stacked with a baseline such that the center of the drawing, i.e. the start

i
i

“thesis” — 2016/5/5 — 11:59 — page 64 — #72 i
i

i
i

i
i

64 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

1: function TWOOPT(init,m,nr,ns,wig)
2: . init: initial ordering; m: the center of the drawing; nr: the number of repeats; ns: the

number of scans; wig: the wiggle heuristic.
3: ordering← init,bestWiggle← ∞,bestOrdering← nil
4: . Do random executions and take the best result
5: for r← 1..nr do
6: . Do not discard the initial ordering
7: If r > 1 shuffle the ordering
8: . Execute several inside-out scans
9: for s← 1..ns do

10: for j← m..lenght(ordering)−1 do
11: . Compare the wiggle of j, j+1 and j+1, j
12: res← cmp(j, j+1,ordering,wig)
13: if res > 0 then
14: swap(j, j+1,ordering)
15: end if
16: end for
17: Scan in the other direction, with j← m−1..2
18: end for
19: . Evaluate the produced ordering
20: graph← midlineGraph(ordering,m−1,m)
21: currWiggle← wig(graph)
22: if currWiggle < bestWiggle then
23: bestWiggle← currWiggle
24: bestOrdering← ordering
25: end if
26: end for
27: return bestOrdering
28: end function

Figure 4.6: The algorithm to order layers

point of the inside-out scan, is a straight line. Then the wiggle of this streamgraph is
computed. After every repetition, the current ordering is shuffled for escaping local
minima. Finally, the ordering with the lowest wiggle is returned as result. Shuffling
avoids situations like Fig. 4.5b, in which layer 10 and layer 30 are at the same side of
the central reference line, and swapping them does not improve their wiggle. Fig. 4.5c
is a drawing with an ordering produced by TwoOpt, which does not have the distortions
of the on-set and BestFirst versions (see respectively Figures 4.5a and 4.5a).

i
i

“thesis” — 2016/5/5 — 11:59 — page 65 — #73 i
i

i
i

i
i

4.5. LABELING OF LAYERS 65

4.5 Labeling of Layers

An important part of the design of a streamgraph is the placement of labels for the
layers. Ideally a label is visually associated with the data it represents.

Byron and Wattenberg [BW08] placed labels within the layers themselves, rather
than using a call-out line. The font size of the labels is adjusted to fit each layer.
The labels are located to maximize the font size. They adopted a brute-force algo-
rithm, but noted that “the online interactive piece does not use this proposed label
placement strategy because of the poor real-time performance of the brute-force algo-
rithm.” Based on their description, we suspect that the computational complexity of
their algorithm may be quadratic to the data size. In this section we propose a faster
label placement algorithm that scales linear to the data size, and logarithmic to the
ratio between the largest and smallest desirable font size.

We assume that the top and bottom layers for which we need to place the label
is defined by the sequence {ti|i = 0, ...,m−1} and {bi|i = 0, ...,m−1}, respectively,
with ti > bi.

Suppose we have a label with width w and aspect ratio σ (defined as the ratio
between width and height of the label) to be placed in this layer such that it is centered
at x = i. Then the lower boundary of this label much be greater than b j for all j =
i−w/2, . . . , i+w/2. Thus the lowest the label could reach along the y-direction is
the top most point of the bottom sequence within the x-window size of w centered
at i, namely Bi = maxi−w/2≤ j≤i+w/2 b j. Similarly the highest it can reach along the
y-direction is the bottom most point of the top sequence within the x-window of size
w centered at i, or Ti = mini−w/2≤ j≤i+w/2 t j. Fig. 4.7 shows a layer with m = 10 points
and w = 4. On the left side, the shaded area shows the case with i = 2. Here we have
B2 = 1 and T2 = 2. On the right side, when i = 7, we have B7 = 1 and T7 = 3.

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

à

à à

à

à à à

à

à à

2 4 6 8

1

2

3

4

i=7i=2

Figure 4.7: Lower and upper bounds for a label with width w = 4. Left:streamgraphs- i = 2.
Lower/upper bounds B2 = 1 and T2 = 2. Right: i = 7. Lower/upper bounds B7 = 1 and T7 = 3

Therefore to place a label with the largest possible font size, we can start from a

i
i

“thesis” — 2016/5/5 — 11:59 — page 66 — #74 i
i

i
i

i
i

66 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

large label width w based on the largest font size to use and the number of characters,
then vary i from w/2 to n−1−w/2, and check whether the achievable height of the
label, Hi = Ti−Bi, satisfied the aspect ratio requirement w/Hi ≤ σ . If it is true, we can
define the center of the label as (i, 0.5 ∗ (Bi +Ti)). If not, we shrink w by a constant
factor (e.g., 10%), and repeat the process until a feasible solution is found. We know
this process will finish in the number of steps logarithmic to the the ratio between the
largest font size, and largest feasible font size, because after that many step, w will be
smaller enough to allow a feasible solution.

To compute Bi (or Ti) for w/2 ≤ i ≤ m−1−w/2, a naive way would be to com-
pute the maximum (or minimum) of a sliding x-window of width w over the sequences
b (or t). However this would take time O(wm). Instead we can use a faster sliding
window min/max algorithm that compute all mins or maxes in time O(m). This fast
labeling algorithm is given in Fig. 4.8. In the algorithm, the slidingWindowMin and
slidingWindowMax functions implement the faster sliding window min/max algo-
rithm (see, e.g., http://articles.leetcode.com/2011/01/sliding-window-maximum.html).

1: function LABELING(t,b,minFontWidth,maxFontWidth,
label,sigma)

2: w← round(maxFontWidth∗ length(label))
3: wmin← round(minFontWidth∗ length(label))
4: while w > wmin do
5: T = slidingWindowMin(t,w)
6: B = slidingWindowMax(b,w)
7: imax← argmaxi{Bi−Ti|i = 0,1, ...,m−w−1}
8: hmax← Bimax−Timax
9: center = (1

2 w+ imax, 1
2 (Timax +Bimax))

10: if w≤ σ ∗hmax then
11: render label at center with width w and height w/σ

12: return
13: end if
14: w← w−max(1,round(0.1∗w))
15: end while
16: end function

Figure 4.8: The algorithm for layer labeling

4.6 Time Complexity of the Algorithms

Like the 2-norm baseline algorithm [BW08], the proposed weighted 1-norm baseline
algorithm works on a per-x-value basis. It takes O(n) operations to find the baseline

i
i

“thesis” — 2016/5/5 — 11:59 — page 67 — #75 i
i

i
i

i
i

4.7. EXPERIMENTS 67

derivative using Algorithm 4.3 per x-value. Thus overall complexity is O(nm), i.e.,
linear to the data size.

We analyse the complexity of the proposed algorithm in the following. Recall that
we assume that each time series is a sequence of m numbers, and there are n time
series.

Our ordering algorithms execute as subprocedures the operations of constructing a
streamgraph by stacking a set of layers on a baseline, and computing its wiggle value.
Both these operations can be executed in O(nm) time.

BestFirst executes one iteration for each time series to add to the streamgraph,
so there are O(n) iterations. In turn, each iteration tests every time series that has not
be added to the streamgraph, requiring another O(n) factor. A time series is tested
by stacking it on each of the two current baselines, and evaluating its wiggle. These
two operations, executed on a single time series, takes O(m) time. Therefore, the total
time complexity of BestFirst is O(n2m).

TwoOpt depends on two parameters: the number of repeats r and the number of
scans s. Refer to Fig. 4.6. First, the initial layer ordering is shuffled, which can be done
in O(n) time with the Fisher-Yates method. Then s inside-out scans are executed. For
each of them, time series are pairwise compared and O(n) comparisons are performed.
Comparing two time series means stacking them on a flat baseline in one of the two
possible orderings. Constructing these two streamgraphs and computing their wiggles
takes O(nm) time. After the scans, a baseline for the ordered series is computed, such
that the center of the resulting streamgraph, i.e. the start point of the inside-out scan,
is a straight line. This requires to sum at each time point all series that appear in the
ordering before than the position representing the center of the drawing, which is given
in input. So, computing the baseline takes O(nm) time. Finally, stacking the ordered
layers on this baseline and computing its wiggle takes O(nm) time. Since the entire
procedure is repeated r times, the time complexity of TwoOpt is O(r(n+snm+nm)) =
O(rsnm).

The layer labeling algorithm finds the largest possible height for a fixed width of
the label in time linear to m per layer. The overall complexity is O(nmlog(r)), where
r is the ratio between the largest font size to try out and the largest feasible font size.

4.7 Experiments

We performed numerical evaluation to compare the effectiveness and the efficiency
of our layer ordering algorithm to the state of the art. The quality of an ordering is
measured using the 1-norm (4.2) and the 2-norm (4.1) wiggle values. The hypothesis

i
i

“thesis” — 2016/5/5 — 11:59 — page 68 — #76 i
i

i
i

i
i

68 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

tested in these experiments is that ordering algorithms designed specifically to reduce
the wiggle produce drawings with a lower wiggle than other algorithms.

The experiments were conducted on a number of datasets, which we collected
from real applications. These are:

• Unemployment: unemployment statistics [datb] for 31 European countries, from
1983 to 2013. 371 time points.

• Movies: box office revenues in the U.S. [data] of 161 movies which were on
screen in the first six months of 2015. 28 time points.

• Sandy: number of calls to the NYC 311 [date] in the days before and after
hurricane Sandy hit New York City, i.e. from 10/14/12 to 11/17/12, for 158
topics. 35 time points.

• Stocks: stock prices of 662 companies listed on the NASDAQ [datf] from 2005
to 2015. 121 time points.

• Marketcap: market capitalization of 662 companies listed on the NASDAQ [datg]
from 1995 to 2015. 241 time points.

• Google: relative variations in volume of Google search traffic in the U.S. [datc]
across 27 sectors of the economy from 2014 to 2015. 365 time points.

• Linux: volume of commits on GitHub for the Linux kernel project [datd] for
786 contributors from 2013 to 2015. 24 time points.

The algorithms evaluated in the experiments were: Optimum, TwoOpt, TwoOptR,
BestFirst, Onset, D3 and Random. TwoOpt and TwoOptR both implements the al-
gorithm in Fig. 4.6, with the difference that TwoOpt applies BestFirst to produce an
initial layer permutation, while TwoOptR starts from a random permutation. Optimum
is a brute-force ordering algorithm that explores all layer permutations, and selects the
one that minimizes the wiggle. Finally, algorithm Random orders the layers randomly.
All algorithms were implemented in Javascript and the experiments were executed on
a machine with this setting: (a) Mac OSX 10.9.5; (b) 2.3 GHZ Core i7; (c) 16 GB
RAM; (d) Node.js 0.12.2.

To allow comparison of the effect of the number of layers on the result of the algo-
rithms, we executed two families of experiments. In the first family, for each dataset
we randomly selected 8 layers, and ordered them using each algorithm. Then, for
each ordering we computed a streamgraph with a baseline that minimizes the wiggle
(either 1-norm or 2-norm) and computed its wiggle value. This process is repeated

i
i

“thesis” — 2016/5/5 — 11:59 — page 69 — #77 i
i

i
i

i
i

4.7. EXPERIMENTS 69

dataset TwoOpt TwoOptR BestFirst OnSet D3 Random
unemp. 0.16/0.05 0.17/0.01 0.22/0.23 0.26/0.25 1.00/1.00 0.56/0.42
movies 0.06/0.15 0.06/0.19 0.72/0.91 0.27/0.97 0.34/1.00 1.00/0.88
sandy 0.21/0.44 0.14/0.28 0.15/0.62 0.11/0.50 0.25/0.77 1.00/1.00
stocks 0.17/0.07 0.18/0.12 0.64/0.55 0.64/0.53 0.90/0.88 1.00/1.00

marketcap 0.03/0.02 0.02/0.02 0.17/0.07 0.31/0.40 0.70/0.55 1.00/1.00
google 0.13/0.17 0.14/0.20 0.59/0.44 0.82/0.84 1.00/1.00 0.71/0.74
linux 0.26/0.16 0.32/0.24 0.33/0.34 0.57/0.71 0.52/0.56 1.00/1.00

Table 4.1: Normalized wiggles of algorithms on 8 randomly sampled layers, averaged over 20
iterations. Each entry shows 1-norm/2-norm wiggles. Lower values are better.

dataset TwoOpt TwoOptR BestFirst OnSet D3 Random
unemp. 0.00/0.00 0.00/0.02 0.34/0.25 0.14/0.10 1.00/1.00 0.71/0.60
movies 0.00/0.00 0.39/0.07 0.10/0.08 0.10/0.42 0.27/0.46 1.00/1.00
sandy 0.00/0.00 0.32/0.22 0.04/0.06 0.59/0.60 0.30/0.33 1.00/1.00
stocks 0.00/0.00 0.00/0.00 0.76/0.46 0.38/0.50 1.00/0.96 0.91/1.00

marketcap 0.00/0.00 0.19/0.17 0.15/0.32 0.12/0.30 0.58/1.00 1.00/0.99
google 0.00/0.00 0.02/0.05 0.74/0.23 0.93/1.00 1.00/0.88 0.72/0.75
linux 0.00/0.00 0.43/0.33 0.05/0.02 0.83/0.81 0.66/0.57 1.00/1.00

Table 4.2: Normalized wiggles of algorithms on 50 randomly sampled layers, averaged over
20 iterations. Each entry shows 1-norm/2-norm wiggles. Lower values are better.

20 times and the average wiggle value is taken. The second family of experiments is
similar to the first, but at every repetition we randomly selected 50 layers. The only
exceptions are dataset Unemployment and Google, for which we selected 20 layers
because the datasets contained fewer than 50 layers. Algorithm Optimum was not
executed, because it would have taken too much time to execute on that number of
layers.

Tables 4.1 and 4.2 show the results of the first and the second family of exper-
iments, respectively. Values are normalized by replacing each value x with x′ =

x−min
max−min , where min and max are the minimum and the maximum wiggle value in
the same table row as x. In Table 4.1, min was always the wiggle value of algorithm
Optimum. This algorithm is not shown, since its normalized wiggle was always 0.

Both tables outline that TwoOpt had the best performance, with the exception of
dataset Sandy in Table 4.1. This confirms our hypothesis that an ordering algorithm
specifically designed to reduce the wiggle produces drawings with a lower wiggle
than other algorithms. TwoOptR had variable performance depending on the dataset,

i
i

“thesis” — 2016/5/5 — 11:59 — page 70 — #78 i
i

i
i

i
i

70 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

dataset TwoOpt TwoOptR BestFirst OnSet D3 random ww1a ww2 labeling
unempl. 205.04 190.28 18.25 0.91 3.89 0.02 5.34 2.03 15.86
movies 38.05 32.24 8.57 0.26 1.03 0.02 0.92 0.49 23.05
sandy 64.93 58.85 9.91 0.28 1.23 0.02 1.11 0.67 28.54
stocks 378.25 365.74 30.78 0.69 2.83 0.02 3.64 1.34 48.10

marketcap 688.67 682.19 63.68 1.29 5.48 0.02 7.47 3.20 112.41
google 174.98 165.79 15.71 0.78 2.52 0.02 4.28 0.89 24.35
linux 46.81 36.93 8.04 0.23 0.96 0.02 0.86 0.44 30.99

Table 4.3: Running times (in milliseconds) of algorithms on 50 randomly sampled layers,
averaged over 20 iterations.

which suggests that executing TwoOpt starting from a BestFirst layer ordering give
better results with respect to a random ordering.

While Table 4.1 shows that the wiggle of TwoOpt is close to the optimum, the re-
sults in Table 4.2 are more representative of a realistic scenario and we further discuss
them. Refer also to the figures in the additional material, which represent the drawings
produced by the various algorithms on one instance for each dataset in Table 4.2. Best-
First had very poor performance on datasets Stocks and Google. In these examples,
some thick layers were put at the two edges of the drawing because they presented
relatively high level of wiggle on specific parts due to their thickness. However, they
were impacted by the cumulated wiggle of the underlying thinner layers, which caused
distortions along the entire layer extent. The greedy approach of BestFirst could not
foresee this type of situations, which were adjusted by TwoOpt by moving the thick
layers slightly towards the center of the ordering. Dataset Stocks also contained some
jumps, for which BestFirst was not designed. OnSet had excellent performance on
dataset Movies, which was expected. Good results were obtained also for datasets
Unemployment and Marketcap, where many layers contained on-set points. Correctly
handling these allowed OnSet to avoid orderings with high values of wiggle. On the
other hand, in absence of on-set points, OnSet had poor performance (Sandy, Stocks)
which at times are close to that of randomly ordering the layers (Google, Linux).

We illustrate the effect of ordering and baseline algorithms in Fig. 4.9. Clearly D3
(top) has a drifting medium line due to the 2-norm baseline algorithm. In addition the
peaks seen in “SAP” caused significant distortion in other layers. Likewise, a drift of
medium line is seen in Fig. 4.10. Fig. 4.11 shows the top 20 companies from the same
dataset Marketcap, but from Jun 2001 to Jun 2011. In this figure, the effect of the
ordering is more visible, because the lightgreen (“SAP”) layer in Fig. 4.11a is placed
by D3 at the center of the drawing, distorting the other layers.

Table 4.3 shows the running time of the various algorithms, averaged over all in-
stances of Table 4.2. Our ordering algorithms, by nature of trying to optimize, are

i
i

“thesis” — 2016/5/5 — 11:59 — page 71 — #79 i
i

i
i

i
i

4.7. EXPERIMENTS 71

GOOG

FB

GOOGL

INTC

CSCO

IBM

MSFT

ORCL

SAP

AAPL

AAPL

GOOGL

FBINTC

MSFT

IBM

NOK

CSCO
ORCL

ATE

SAP GOOG

Figure 4.9: Marketcap data for top 50 companies from 1995-2015. Top: D3’s implementation
of Byron and Wattenberg [BW08]. Bottom: with TwoOpt ordering and a baseline algorithm that
minimizes weighted 1-norm wiggle.

much slower than the state of the art, namely TwoOpt and BestFirst are slower than
OnSet, D3, and Random. TwoOpt had is the slowest. Because of its iterative nature,
it scanned all layers several times. Also, we configured it to do a number of layer
scans equal to the number of layers, and a constant number of repeats. The num-
ber of time points in data greatly contributed to the running time of our algorithms.
This is noticeable for datasets Unemployment, Stocks, Marketcap, and Google, which
contained many time points. When the number of layers and the number of time
points are comparable, our algorithms resulted cubic in the size of the input (see Sec-
tion 4.6 for a description of the time complexity). The good performance of OnSet

i
i

“thesis” — 2016/5/5 — 11:59 — page 72 — #80 i
i

i
i

i
i

72 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

Street	 light	 condition

Damaged	 tree
Street	 condition

Noise

Traffic	 signal	 condition

Heating

Damaged	 tree

Street	 light	 condition

Street	 condition
Noise Sewer

Traffic	 signal	 condition

Heating

Figure 4.10: Number of calls on 50 topics to the NYC 311 for the days before and after hurri-
cane Sandy hit New York City. Top: D3’s implementation of Byron and Wattenberg [BW08].
Bottom: with TwoOpt ordering and the 1-norm baseline algorithm. Notice that the top stream-
graph has an up-drift of the median line, which is remedied on the bottom with the new baseline
algorithm.

and D3 were mainly due to the simplicity of their logic, which allowed for very ef-
ficient implementations. OnSet performed better than D3 because it stops scanning
a layer at the first non-zero value, while D3 performs a full scan. We conclude that
considering the wiggle for ordering the layer requires complex algorithms with non
negligible running times. However, it is worth pointing out that running time in each
of the ordering algorithm is below 1 second, which is acceptable for real uses. The
1-norm and 2-norm baseline algorithms (ww1a and ww2) both take very little time.
The labeling algorithm is also very fast. We did not compare with the labeling algo-

i
i

“thesis” — 2016/5/5 — 11:59 — page 73 — #81 i
i

i
i

i
i

4.8. DISCUSSIONS 73

(a) on-set ordering, 2-norm baseline (b) on-set ordering, 1-norm baseline

(c) TwoOpt ordering, 2-norm baseline (d) TwoOpt ordering, 1-norm baseline

Figure 4.11: Top 20 companies from dataset Marketcap, from Jun 2001 to Jun 2011, with
different layer orderings and baselines. (a) The light-green layer is at the center of the drawing,
distorting the other layers. (b) Because of the 1-norm baseline, the distortion caused by a wrong
ordering of the light-green layer is limited to the lower half of the drawing. (c) The light-green
layer “pushes” up the other layers because of the 2-norm baseline, creating an upward-going
drawing. (d) None of the previous issues are present.

rithm of [BW08] since the latter was described as a brute-force algorithm with “poor
real-time performance”, too brief a description to allow a proper implementation.

4.8 Discussions

We proposed a 1-norm based baseline algorithm which overcomes the distortion asso-
ciated with 2-norm based baseline algorithm. We note that both definitions of wiggle
are reasonable to use when there are not sudden jumps. Compared with the 2-norm
baseline algorithm, the 1-norm based baseline algorithm tend to give relatively flat
middle layers. It is not clear to us which definition, or an alternative definition, corre-
lates best with our visual perception of wiggle. For example, in the current definitions,

i
i

“thesis” — 2016/5/5 — 11:59 — page 74 — #82 i
i

i
i

i
i

74 CHAPTER 4. NETWORK METRICS AS STACKED CHARTS

wiggles are additive over time. A time series {y,y+1,y+2} is considered to have the
same wiggle as {y,y+ 1,y}, but perceptually the former is smoother, while the lat-
ter represent a spike. Thus a wiggle definition based on both first- and second-order
derivatives may be more expressive.

In the presentation of our fast layer labeling algorithm, for simplicity we assumes
that labels have integer width. This is reasonable for time series with hundreds or more
points, for which integer width is fine grain enough. For time series with few points,
if a feasible position for a label is not found, our algorithm adaptively interpolate the
time series by doubling the number of points, and apply the layer labeling procedure
to the new time series, until a feasible position for the label is found. This effectively
make the label width a floating point number.

4.9 Conclusions and Future Work

The aesthetics of a streamgraph is affected by the ordering of the layers, the shape
of the baseline of the drawing, and the labeling for the layers. This chapter advances
the state of the art for streamgraphs by proposing an ordering algorithm that works
well regardless of the properties of the input data, a 1-norm baseline procedure that
overcomes the distortion associated with the existing baseline algorithm, particularly
when there are sharp changes in the time series, and an efficient layer labeling al-
gorithm that scales linearly to the data size. We demonstrate both qualitatively and
quantitatively the advantage of our algorithms over existing techniques on a number
of real world data sets.

For future work, we like to conduct a user study to measure how the user’s per-
ception of the smoothness of a streamgraph correlates with the various measure of
wiggles. In addition we are investigating possible ways to use streamgraphs to visual-
ize time series with both positive and negative values.

i
i

“thesis” — 2016/5/5 — 11:59 — page 75 — #83 i
i

i
i

i
i

Part II

Abstract Representation of Routing

75

i
i

“thesis” — 2016/5/5 — 11:59 — page 76 — #84 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 77 — #85 i
i

i
i

i
i

Chapter 5

Automatic Discovery of High-Impact
Routing Events

This chapter describes an approach based on Routing Events (see Chapter 1) for au-
tomatically inferring high-level routing dynamics from a large set of traceroute data.
The tackled challenges are Data Size and Dynamics. Events are an abstraction of the
dynamics of routing. This work first gives a precise definition of what a routing event
is, and then describes an algorithm for finding events with high-impact, that is, whose
effects on routing impacted many probes of a probe system. Experiments were con-
ducted on real data related to the ASes of two European ISPs. A preliminary version
of this chapter was published in [DDP+15b].

5.1 Introduction

One of the primary goals of a network operator is to ensure its network works as ex-
pected. Since misbehaviors can happen for a variety of reasons, constant monitoring
is performed by operators to timely detect problems and limit users complaints. Di-
rectly monitoring the health of each network element works in many situations, but
may fall short when the element itself lacks the necessary agent support or is not under
the operator’s control. Also, there are cases in which network elements are reported
as working despite end-to-end communication being impaired by misconfigurations
or subtle hardware failures (the silent failures in [KYGS]).

A large corpus of research works has focused on methodologies to detect and
locate faults using information collected by hardware or software elements (called
monitors or probes) deployed throughout the network, possibly far away from the

77

i
i

“thesis” — 2016/5/5 — 11:59 — page 78 — #86 i
i

i
i

i
i

78 CHAPTER 5. DISCOVERY OF HIGH-IMPACT ROUTING EVENTS

problem. Indeed, large probing networks are already running to ease the assessment
of service levels by regulators (e.g., [sam15]) or for management and scientific pur-
poses (e.g., [atl15,ark15,mla15]). A widely discussed approach to localize the faults
on a network consists in correlating end-to-end measurements from a large number of
probes using a technique called binary tomography [Duf06,DTDD07,KYGS]. How-
ever, several problems hinder the application of this approach in a production environ-
ment [CTFD09,HFT08]: false positives in the detection phase, the failure to accom-
modate network dynamics, and the need for a complete knowledge of the topology
and for a synchronization among the probes. Other approaches take advantage of con-
trol plane information [JCC+13,FMM+04], which may require a complex collecting
infrastructure or may just not be available to the operator for the part of the network
that is not under his control.

We introduce a novel methodology and an algorithm that enable the analysis of
large collections of traceroute measurements in search of significant changes, thus
easing management and troubleshooting. Our methodology takes as input only a set
of traceroutes, identifies paths that evolve similarly over time, and reports them ag-
gregated into inferred events (e.g., routing changes, loss of connectivity), augmented
with an impact estimate and a restricted set of IP addresses that are likely close to the
cause of the event (a piece of information similar to those provided by tomography-
based techniques). The methodology, as well as its correctness, are founded on the
notion of empathy, a relation that binds similarly behaving traceroutes, which are
therefore a good evidence of the same network event. Our approach does not need a-
priori knowledge of the network topology, does not assume a stable routing state, and
does not impose restrictions on the schedule of traceroutes, which may be collected
asynchronously and at arbitrary intervals. Instead, it takes advantage of asynchronous
measurements to improve the timeliness and precision of event detection, and is al-
most unaffected by measurement errors (e.g., due to software errors or routing anoma-
lies), which in most cases only generate fictitious events with a small impact.

We provide experimental evidence of the effectiveness of our approach by running
our algorithm on data collected by large-scale measurement infrastructures such as
RIPE Atlas, and by comparing the inferred events with ground truth derived from
induced routing changes or third-party information.

The rest of the chapter is organized as follows. In Section 5.2 we review related
contributions. In Section 5.3 we describe our network model and the fundamental
properties of empathy. In Section 5.4 we introduce a methodology and an algorithm,
based on empathy, to infer events and report relevant data about them. In Section 5.5
we analyze the results of the application of our methodology to real-world data. In
Section 5.6 we draw conclusions and present ideas for future work.

i
i

“thesis” — 2016/5/5 — 11:59 — page 79 — #87 i
i

i
i

i
i

5.2. RELATED WORK 79

5.2 Related Work

There are many large-scale platforms that collect traceroute measurements (e.g., [ark15,
atl15,sam15]), and a standardization effort is also ongoing [BEB+13]. As a con-
sequence, there is a growing interest in finding patterns in such measurements, as
confirmed, for example, in [Bro14]: in this paper the authors search for events by
clustering data from [atl15] according to distance metrics that determine the amount
of difference between subsequent traceroutes. While we also aim at grouping tracer-
oute changes into events, our approach is based on the novel concept of empathy and
is provably correct and complete.

A large number of contributions focus on identifying the location or the root
cause of a fault based on data gathered by measurement networks. The binary to-
mography approach, firstly proposed for trees [Duf06] and then extended to general
topologies [DTDD07,KYGS], has applicability problems which have been discussed
in [CTFD09,HFT08,MHS+14]. Most notably, the authors assume at least a partial
knowledge of the network topology (which must often be inferred from input data).
Similar approaches to root cause analysis have also been described for interdomain
routing data [FMM+04,JCC+13]. A number of systems combine control plane in-
formation with data plane measurements: for example, Hubble [KBMJ+08], LIFE-
GUARD [KBSC+12], NetDiagnoser [DTDD07], as well as [KYGS]. Our approach
relies on traceroutes only, does not assume any knowledge of the network topology,
and does not impose restrictions on the schedule of traceroutes.

5.3 The Empathy Relationship

In this section we describe the model we use to analyze traceroute paths and we intro-
duce the concept of empathy, which is at the basis of our event inference method.

Let G = (V,E) be a graph that models an IP network: vertices in V are network
devices (routers or end systems), and edges in E are links between devices. Some de-
vices in V , called network probes or sources, periodically perform traceroutes towards
a predefined set of destinations. We assume that each traceroute is acyclic (otherwise
there is evidence of a network anomaly) and instantaneous (reasonable because in the
vast majority of cases traceroutes terminate within a smaller time scale than that of
routing changes).

Let i = (s,d), where s∈V is a source and d ∈V is a destination. A traceroute path
pi(t) measured at time t by s towards d is a sequence 〈v1 v2 . . . vn〉 such that v1 = s,
v j ∈V for j = 1, . . . ,n, and there is an edge in E for each pair (vk,vk+1), k = 1, . . . ,n−
1. While we include the source in pi(t), the destination may not appear because a

i
i

“thesis” — 2016/5/5 — 11:59 — page 80 — #88 i
i

i
i

i
i

80 CHAPTER 5. DISCOVERY OF HIGH-IMPACT ROUTING EVENTS

pi(t)
pi(t

′)1 2

3 4 5

6 7

8 9

v1

v3 v4 v5

v′3 v′4

v′1 v′2

v2

s d

v6 v7

v′5 v′6

Figure 5.1: An example of two traceroute paths from s to d collected at different time instants
t and t ′. Gray lines represent network links.

traceroute may end at an unintended vertex different from d. For convenience, let
V (p) be the set of vertices of path p.

Now, consider two traceroute paths pi(t)= 〈v1 v2 . . . vn〉 and pi(t ′)= 〈v′1 v′2 . . . v′m〉
between the same source-destination pair i = (s,d), with t ′ > t, and assume that
pi(t) 6= pi(t ′). Fig. 5.1 shows two such paths: i = (1,9), pi(t) = 〈1 2 3 4 5 8 9〉, and
pi(t ′) = 〈1 2 6 7 8 9〉. Since the path from s to d has changed between t and t ′, we
call the pair consisting of pi(t) and pi(t ′) a transition, indicated by τi, and say that it
is active at any time between the endpoints t and t ′, excluding t ′. To analyze the path
change, we focus on the portion of the two paths that has changed in the transition:
let δ pre(τi) indicate the shortest subpath of pi(t) that goes from a vertex u to a vertex
v such that all the vertices between s and u and between v and the end of the path are
unchanged in pi(t ′). If there is no such v (for example because the destination is un-
reachable at t or t ′), δ pre(τi) goes from u to the end of pi(t). Referring to the example
in Fig. 5.1, it is δ pre(τi) = 〈2 3 4 5 8〉. We define δ post(τi) as an analogous subpath
of pi(t ′). Referring again to Fig. 5.1, it is δ post(τi) = 〈2 6 7 8〉. In principle, δ pre(τi)
may have several vertices in common with δ post(τi) besides the first and the last one:
we still consider δ pre(τi) as a single continuous subpath, with negligible impact on the
effectiveness of our methodology. The same applies to δ post(τi).

We can now introduce the concept of empathy, that determines when two tracer-
oute paths exhibit a similar behavior over time. Consider two transitions τ1, with
source s1 and destination d1, and τ2, with source s2 and destination d2, such that both
transitions are active between t and t ′, t ′ > t, at least one has an endpoint in t, and
at least one has an endpoint in t ′. We say that (s1,d1) and (s2,d2) are pre-empathic
at any time t ≤ t̂ < t ′ if the portions of p1(t) and p2(t) that change during τ1 and τ2
overlap, namely V (δ pre(τ1))∩V (δ pre(τ2)) 6= /0. Intuitively, traceroute paths relative
to pre-empathic sd-pairs stop traversing a network portion that they shared before an
event occurred. Similarly, we say that (s1,d1) and (s2,d2) are post-empathic at any
time t ≤ t̂ < t ′ if V (δ post(τ1))∩V (δ post(τ2)) 6= /0. Post-empathy captures a differ-
ent kind of path change: traceroute paths of post-empathic sd-pairs start traversing

i
i

“thesis” — 2016/5/5 — 11:59 — page 81 — #89 i
i

i
i

i
i

5.3. THE EMPATHY RELATIONSHIP 81

p1(t)

p2(t)

1s1

4 5

s2

d1

3

d2102

6

7

8 d2

9

p1(t
′)

p2(t
′)

Figure 5.2: An example showing empathy relations. In this scenario link (5,6) fails, and we

have (s1,d1)
pre
∼t (s2,d2) but (s1,d1) 6

post
∼t (s2,d2).

a common portion that they did not use before the event occurred. Fig. 5.2 shows
two traceroute paths p1, from s1 to d1, and p2, from s2 to d2, that change between
t and t ′ due to the failure of link (5,6). Considering the corresponding transitions
τ1 and τ2, we have δ pre(τ1) = 〈5 6〉, δ post(τ1) = 〈5 9 6〉, δ pre(τ2) = 〈4 5 6 8〉, and
δ post(τ2) = 〈4 10 8〉. Since δ pre(τ1) and δ pre(τ2) share vertices 5 and 6, (s1,d1) and
(s2,d2) are pre-empathic between t and t ′, whereas (s1,d1) and (s2,d2) are not post-
empathic despite the fact that p1(t ′) and p2(t ′) share a subpath. Indeed, p1 and p2
behave similarly before the link fails and change to two independent routes after-
wards.

In order to understand how empathy is useful to infer network events, we need to
formally introduce the notion of event, qualifying it as physical to distinguish it from
events inferred by our algorithm. We call physical event at time t̄ the simultaneous
disappearance of a set E↓ of links from E (down event) or the simultaneous appearance
of a set E↑ of links in E (up event), such that:

• either E↓ = /0 or E↑ = /0 (a physical event is either the disappearance or the
appearance of links, not both);

• E↓ ⊆ E (only existing links can disappear);

• E↑∩E = /0 (only new links can appear);

• ∃v ∈ V | ∀(u,w) ∈ E↓ : u = v or w = v, and the same holds for E↑ (all disap-
peared/appeared edges have one endpoint vertex in common). Vertex v is called
hub of the event (an event involving a single edge (u,v) has two hubs: u and v;
any other event has a unique hub).

When the type of an event is not relevant, we indicate it as E↓↑. This event model
captures the circumstance in which one or more links attached to a network device fail
or are brought up, including the case in which a whole device fails or is activated. Such

i
i

“thesis” — 2016/5/5 — 11:59 — page 82 — #90 i
i

i
i

i
i

82 CHAPTER 5. DISCOVERY OF HIGH-IMPACT ROUTING EVENTS

events may be caused, for example, by failures of network interface cards, line cards,
or routers, by accidental link cuts, by provisioning processes, and by administrative
reconfigurations. Congestion is normally not among these causes, but may be detected
as an event if it makes a balancer shift traffic away from a set of links. Failures
or activations of links that do not have a vertex in common are considered distinct
events. We only consider visible physical events, namely those that cause at least a
transition to occur. Moreover, we assume that every transition comprises at least one
edge involved in an event, an assumption that is long-argued in the literature about
root-cause analysis (see, e.g., [JCC+13]) and yet we deem reasonable because our
goal is to detect events, not reconstruct their original cause. Given a physical event
E↓↑ occurred at time t̄, we define the scope S(E↓↑) of E↓↑ as the set of sd-pairs i= (s,d)
involved in the transitions that are active at t̄. We also call impact of E↓↑ the cardinality
of S(E↓↑).

Intuitively, our algorithm infers network events based on observed transitions and
on empathy relationships that bind the involved sd-pairs: empathies are considered a
good evidence of path changes that are due to the same physical event.

5.4 Seeking Events: Methodology and Algorithm

In this section, we describe our inference algorithm for detecting routing events. The
algorithm takes as input a set of traceroute paths, and produces as result a list of
inferred events, each equipped with the following information: i) an interval of time
in which the event is supposed to have occurred, ii) a set of sd-pairs affected by the
event (the scope), iii) the type (up, down) of the event (when inferred), and iv) a set
of IP addresses that, after the event has occurred, (dis)appeared in all the traceroutes
performed between sd-pairs in its scope (these IPs are good hints for identifying the
cause of the event).

We refer to the model illustrated in the previous section, considering the general
case of non-synchronized traceroute measurements. That is, for an sd-pair i = (s,d)
traceroute paths pi(t) are only available at specific time instants t ∈ R that depend on
s (if probes are synchronized via NTP, whose precision is high enough for our needs,
we can refer to a universal clock). As we will show later, unsynchronized traceroutes
can improve the accuracy of the interval reported by our algorithm for an inferred
event. For convenience, for a transition τi we define the changed set ∆(τi) consisting
of extended addresses, namely IP addresses in V (δ pre(τi)) labeled with a tag pre and
IP addresses in V (δ post(τi)) labeled with a tag post.

Our algorithm consists of three phases.
Phase 1 – Identification of transitions: in this phase, for each sd-pair i, input

i
i

“thesis” — 2016/5/5 — 11:59 — page 83 — #91 i
i

i
i

i
i

5.4. SEEKING EVENTS: METHODOLOGY AND ALGORITHM 83

Figure 5.3: Sample outputs of the various phases of our algorithm.

samples pi(t) are scanned and all transitions τi, with the corresponding ∆(τi), are
identified. The upper part of Fig. 5.3 shows an example with 3 transitions τa, τb, and
τc, represented as segments terminating at the transitions’ endpoints, and the corre-
sponding changed sets (IP addresses are represented as numbers). The transitions in
the figure can be the consequence of a physical down event with hub 1.

Phase 2 – Construction of candidate events: in this phase, the algorithm tracks
the evolution of empathy relationships between sd-pairs involved in transitions. As
detailed in Fig. 5.4, the algorithm linearly sweeps on time instants corresponding to
transition endpoints and, for every instant t and every extended address A (lines 2
and 3), updates a set SA of sd-pairs i corresponding to active transitions that are em-
pathic with each other because they haveA in their changed set ∆(τi) (line 6). Sets SA,
as well as the time instants tA at which they are updated, are kept in special variables
which allow access to the last 2 assigned values using operators prev() and pprev().
When the size of each SA reaches a local maximum at time t (line 7), the algorithm
reports a candidate event. This corresponds to seeking for the time instant at which
the highest number of sd-pairs have seen IP address A (dis)appear in their traceroute
paths. The interval [prev(tA), tA] of validity of the local maximum (line 8) is a good

i
i

“thesis” — 2016/5/5 — 11:59 — page 84 — #92 i
i

i
i

i
i

84 CHAPTER 5. DISCOVERY OF HIGH-IMPACT ROUTING EVENTS

Input: a set T of transitions
Output: a set CEvents of candidate events, namely tuples (t1, t2,S,A) indicating time intervals in which

all the sd-pairs in S are pre-empathic or post-empathic with each other and all the corresponding
transitions τi have extended address A in their changed set ∆(τi).
. SA and tA are special variables for which the last two assigned values can be accessed by prev()

and pprev() (if unset, they are /0 and −∞).
1: E = /0
2: for every endpoint t of transitions in T , in order of time do
3: for every address A in the changed set of any transitions do
4: TA = set of transitions τi active at t such that A ∈ ∆(τi)
5: sd p = the union of sd-pairs of transitions in TA
6: if SA 6= sd p then SA = sd p; tA = t
7: if |pprev(SA)|≤ |prev(SA)| and |prev(SA)|> |SA| then
8: add (prev(tA), tA, prev(SA),A) to CEvents
9: end if

10: end for
11: end for
12: return CEvents

Figure 5.4: Phase 2 of our algorithm: it computes candidate events by finding sets of sd-pairs
that are all pre-empathic or post-empathic with each other.

candidate for being the time window within which an event has occurred. The middle
part of Fig. 5.3 shows a sample output of this phase, where each segment represents
a candidate event: for each extended address appearing in the changed sets of τa, τb,
and τc, the corresponding sets of sd-pairs S1pre , S2post , and S3post that involved that ad-
dress are constructed and updated. In particular, set S1pre reaches its maximum size
at time t3, when extended address 1pre is in the changed set of τa, τb, and τc, namely
IP address 1 has disappeared for sd-pairs a, b, and c. The reported candidate event
ends at t4, when the size of S1pre is again reduced: it is therefore (t3, t4,{a,b,c},1pre).
Similar considerations apply for the construction of the other two candidate events
(t3, t5,{a,b},2post) and (t2, t4,{b,c},3post).

Phase 3 – Event inference: in this phase, detailed in Fig. 5.5, candidate events
are sieved to build a set of inferred events, each consisting of a time window, a
scope, a set of involved IP addresses (which contains the hub of the event), and a
type (up/down/unknown). As a first clean-up step, all candidate events whose set of
sd-pairs is properly contained in the set of sd-pairs of another candidate event that
overlaps in time are discarded (lines 2-6). In this way, only events with maximal
impact are reported. Afterwards, the algorithm considers groups CEvents(S, t1, t2) of
candidate events spanning the same time interval [t1, t2] and having S as set of sd-
pairs (line 7), and constructs an inferred event for every set S whose size exceeds
a configured threshold: this filters out events with negligible impact. The inferred

i
i

“thesis” — 2016/5/5 — 11:59 — page 85 — #93 i
i

i
i

i
i

5.4. SEEKING EVENTS: METHODOLOGY AND ALGORITHM 85

Input: a set CEvents of candidate events produced in phase 2 (see Fig. 5.4)
Output: a set Events of tuples (t1, t2,S,Π, type), each representing an inferred event occurred between t1

and t2, whose scope is S, which involved the IP addresses in Π, and whose type is type.
1: Events = /0
2: for every pair e = (t1, t2,S,A), ẽ = (t̃1, t̃2, S̃,Ã) in CEvents do
3: if e and ẽ overlap in time and S̃⊂ S then
4: remove ẽ from CEvents
5: end if
6: end for
7: group candidate events (t1, t2,S,A) in CEvents by S, t1, and t2
8: for every computed group CEvents(S, t1, t2) do
9: if |S|> threshold then

10: eaddr =
⋃
(t1 ,t2 ,S,A)∈CEvents(S)A

11: Π = eaddr (without labels)
12: type = unknown
13: type = down if all addresses in eaddr are tagged as pre
14: type = up if all addresses in eaddr are tagged as post
15: add (t1, t2,S,Π, type) to Events
16: end if
17: end for
18: return Events

Figure 5.5: Phase 3 of our algorithm: it reports inferred events starting from a set of candidate
events produced in Phase 2.

event has the following structure (lines 10-14): the time interval is [t1, t2]; the scope
is S; the involved IP addresses are the union of the addresses of candidate events in
CEvents(S, t1, t2); and the type is inferred based on the labels of the extended addresses
of candidate events in CEvents(S, t1, t2) (lines 12-14). A sample result of the applica-
tion of this phase is in the lower part of Fig. 5.3: candidate events (t3, t5,{a,b},2post)
and (t2, t4,{b,c},3post) (segments in the second and third row of phase 2, respectively)
are discarded because their sets of sd-pairs are contained in the one of the overlapping
candidate event (t3, t4,{a,b,c},1pre). At this point, there is only one set of sd-pairs
left, {a,b,c}: assuming no threshold, the only candidate event having such set is re-
ported as an event, which affected IP address 1 (that is also the hub of the event) and
whose type is down because of the label of 1pre.

Our algorithm is correct and complete, as stated by the following theorems.

Theorem 2 (Correctness). Each event inferred by our algorithm corresponds to a
physical event.

Proof: Let (t1, t2,S,Π, type) be an inferred event. By construction, every address
π in Π has (dis)appeared in all transitions τi for every i ∈ S, and S has maximal size:
therefore π is a candidate for being the hub of a physical event. Moreover, since

i
i

“thesis” — 2016/5/5 — 11:59 — page 86 — #94 i
i

i
i

i
i

86 CHAPTER 5. DISCOVERY OF HIGH-IMPACT ROUTING EVENTS

π (dis)appears in traceroutes in the interval in which transitions τi intersect, namely
between t1 and t2, this is also the time window in which the event has occurred. 2

Theorem 3 (Completeness). For every visible physical event, an inferred event is
reported by our algorithm.

Proof: Suppose a physical event E↓ with hub h occurs at time t̄: the traceroutes for
all sd-pairs i that are in the scope S(E↓) of E↓ will therefore change after t̄, and phase 1
of the algorithm constructs transitions τi whose intervals contain t̄. All such transitions
must intersect at a common interval [t1, t2] comprising t̄ and have hpre ∈ ∆(τi). By the
definition of scope, the cardinality of set Shpre reaches a local maximum between t1
and t2 in phase 2 of the algorithm, and a candidate event e = (t1, t2,S(E↓),hpre) is thus
constructed. Set S(E↓) is the largest possible set of sd-pairs affected by E↓, therefore
e is not filtered in phase 3 and an event (t1, t2,S(E↓),Π, type) with h ∈ Π is reported.
Analogous arguments can be applied to the case of an event E↑. 2

The computational complexity of our inference algorithm is O(|T |+|CEevents|2·I),
where T is the set of transitions and I is the maximum impact. In fact, phase 1 takes
O(|T |). Since the size of the changed set of every transition is bounded by the maxi-
mum length of traceroute paths and sets TA and sd p can be updated during the sweep,
phase 2 also takes O(|T |). Phase 3 takes O(|CEvents|2·I) because of the overlap check
at lines 2-6 (the following event construction can be performed efficiently by scanning
candidate events).

Several issues are inherent in using real-world traceroute data, but our model and
algorithm can effectively cope with them, as also confirmed by experimental results.
First of all, a single network device equipped with multiple network interfaces (e.g., a
router) may reply with different IP addresses in different traceroutes, a phenomenon
known as aliasing [MPP13]. As a consequence, detection of some empathies may
fail, causing our algorithm to infer multiple small events rather than a single larger
one in the worst case. Delays in the propagation of routing changes (for example
due to routing protocol timers) have a similar effect on the algorithm’s output, which
may include multiple copies of the same event with slightly different time intervals
and scopes. On the other hand, multiple simultaneous events can interfere with each
other, namely the corresponding transitions may overlap and their changed sets may
have elements in common. Such events can still be detected by our algorithm, even if
their scope can only be identified with a limited precision. Under rare circumstances,
some fictitious or improperly time-skewed events may also be inferred. In practice,
none of these cases prevents our algorithm from reporting events, and their incidence
was negligible in our experiments.

i
i

“thesis” — 2016/5/5 — 11:59 — page 87 — #95 i
i

i
i

i
i

5.5. EXPERIMENTAL RESULTS 87

One aspect that may indeed taint the output of our algorithm is that the vast ma-
jority of Internet paths traverse load balancers [AFT07]: they are the cause of a high
number of apparent routing changes which may be improperly reported as physical
events. Compensating this issue requires knowledge of the load balancers, which is
realistic for an Internet Service Provider that wants to apply our methodology, and
can otherwise be constructed by applying discovery techniques such as Paris Tracer-
oute [ACO+06b]. Unfortunately, this technique was not yet available in the mea-
surement networks we considered, therefore we preprocessed traceroutes by using a
simple heuristic that cleaned up most of the noise introduced by load balancers: we
analyzed all the input traceroutes in their time order and, for each destination, we
tracked the evolution over time of the routing (actually the next hop) of every node
along the traceroute paths. Nodes with unstable routing (i.e., that change the next hop
in more than 20% of the samples) are considered to belong to a load balancer and their
next hops are replaced by a single arbitrarily chosen representative IP address.

5.5 Experimental Results

We executed our algorithm on several sets of traceroute paths collected by currently
active measurement networks, with the intent to verify that the inferred events matched
physical events. We first considered traceroutes affected by a sequence of routing
changes injected with a known schedule, used as ground truth. We then used our al-
gorithm to detect spontaneous events happened in the network of a European operator.

Induced Event Analysis

For this experiment we partnered with an Italian ISP that has BGP peerings with
three main upstream providers and with a number of ASes at three Internet eXchange
Points (IXPs), i.e. MIX, NaMeX (the main IXPs in Italy), and AMS-IX1. An IP
subnet reserved for the experiment was announced via BGP to different subsets of
peers, according to the schedule in Table 5.1. During the experiment, 89 RIPE At-
las probes located in Italy were instructed to perform traceroutes every 10 minutes
(between 2014-05-02 13:00 UTC and 2014-05-03 15:00 UTC) targeting a host inside
the reserved subnet. After applying the load balancers cleanup heuristic described in
Section 5.4, we fed our algorithm with the collected traceroute measurements.

The produced output, which took only a few seconds to compute, is plotted in
Fig. 5.6: each inferred event (t1, t2,S,Π, type) is represented by a point whose coor-

1NaMeX and AMS-IX are connected by a link. However, it was not used by any means in our specific
setting.

i
i

“thesis” — 2016/5/5 — 11:59 — page 88 — #96 i
i

i
i

i
i

88 CHAPTER 5. DISCOVERY OF HIGH-IMPACT ROUTING EVENTS

 0

 10

 20

 30

 40

 50

 60

 70

May 02
15:00

May 02
20:00

May 03
01:00

May 03
06:00

May 03
11:00

Im
p
a
ct

 (
#

 o
f

sd
-p

a
ir

s)

#1 #2 #3 #4 #5 #6

Figure 5.6: Impacts of the events inferred during experiment 1 (induced events).

dinates are the center of interval [t1, t2] (X axis) and the event’s impact |S| (Y axis),
and whose color identifies a specific set Π of involved IP addresses. Out of all the
inferred events, 23 exceeded the impact threshold of 10 (dashed horizontal line in the
figure), which clearly separates them from background noise. It is evident that these
23 events tend to concentrate (red boxes) around the time instants of BGP announce-
ments (vertical gray lines numbered according to the rows of Table 5.1), and indeed
the center of the time interval of each event falls within seconds from the correspond-
ing announcement. In addition, the maximum extension of each interval [t1, t2] was 2
minutes, confirming that our methodology can detect an event very quickly after the
instant in which it actually happened. Set Π consisted of a single IP address for 87%
of the events and of at most 4 IP addresses for 2 events, demonstrating a high precision
in pointing out possible event causes.

For at least one announcement change (#3) the detection was optimal, namely
we inferred a single event where all the 29 involved sd-pairs switched from MIX to
NaMeX. Multiple events were instead inferred in the other cases, due to asterisks in
traceroutes or interference between routing changes happening close in time to each
other. One of the inferred events even allowed us to discover an undeclared backup
peering whose existence was later confirmed by the ISP. Further details can be found
in [DDP+14].

i
i

“thesis” — 2016/5/5 — 11:59 — page 89 — #97 i
i

i
i

i
i

5.5. EXPERIMENTAL RESULTS 89

Table 5.1: Schedule of BGP announcements for the controlled experiment in Section 5.5.

Time Upstreams MIX NaMeX AMS-IX
May 02, before 14:22 X X X X

#1 May 02, 14:22 X
#2 May 02, 18:22 X X
#3 May 02, 22:22 X
#4 May 03, 02:22 X
#5 May 03, 06:22 X
#6 May 03, 10:22 X X X X

Spontaneous Event Analysis

For the second experiment, we considered traceroute paths collected every 8 hours
by 3320 probes distributed within the network of a European operator, called EOp in
the following for privacy reasons. Traceroutes were performed towards destinations
located both inside and outside EOp’s network. In a private communication EOp
informed us about a “routing failure” in one of its ASes occurred on day D, therefore
we focused on traceroutes collected in a 9-days time window comprising this day. We
applied our load balancers cleanup heuristic on a slightly richer data set consisting of
almost 260.000 traceroutes collected over 15 days. Our algorithm then took about 3
minutes to completely process the cleaned set of traceroutes, computing almost 60.000
transitions in phase 1. We separately ascertained that the load balancers heuristic
reduced the number of transitions by almost a factor of 3 and the number of inferred
events by almost a factor of 20. For an improved accuracy, we filtered out inferred
events that did not involve (in Π) any IP addresses within EOp’s network, obtaining
the events in Fig. 5.7.

Considering the average impact of the inferred events, we set the threshold at 100
(dashed horizontal line in the figure). The figure shows that events exceeding this
threshold are mainly concentrated within a time window whose center falls within
24 hours from Day D, and are followed by some less impactful events occurring up
to 2 days later (red box in the figure), totaling 199 events involving 838 unique sd-
pairs. Our algorithm also singled out their candidate causes pretty accurately, given
that the union of all sets Π consisted of as few as 7 IP addresses. Considering the
frequency of traceroutes, these events were also somewhat precisely located in time:
the length of their time intervals ranged from about 10 hours to as low as 1 second
(due to traceroutes not being synchronized), with a standard deviation of 30 minutes.

As it can be seen from the figure, reported events are rather fragmented despite

i
i

“thesis” — 2016/5/5 — 11:59 — page 90 — #98 i
i

i
i

i
i

90 CHAPTER 5. DISCOVERY OF HIGH-IMPACT ROUTING EVENTS

 0

 100

 200

 300

 400

 500

 600

Day
D-2

Day
D-1

Day
D

Day
D+1

Day
D+2

Day
D+3

Day
D+4

Im
p
a
ct

 (
#

 o
f

sd
-p

a
ir

s)

Figure 5.7: Impacts of the events inferred in experiment 2 (spontaneous events).

affecting the same set of IP addresses (points with the same colors in the figure): this
is due to the fact that routing propagation delays caused many non-overlapping tran-
sitions to be constructed in phase 1. Interestingly, the two events with impact higher
than 550 (indicated by an arrow in the figure) were of type down and up, indicat-
ing that all the traceroute paths of the involved sd-pairs switched to alternate routes
sharing some common IP addresses (all within EOp’s network). Events whose time
window is centered between D+1 and D+2 are likely due to configuration changes
undertaken to restore a working routing.

After submitting our results to EOp, they confirmed that inferred events with out-
standing impacts had very good match with the incident, and subsequent events cor-
responded to actions aimed at restoring the full operational state.

We believe these experiments highlight the effectiveness of our methodology in
detecting events, regardless of whether they are induced and recurring (experiment 1)
or spontaneous and isolated (experiment 2), and there is evidence that detection can
happen very quickly after the occurrence of an event.

i
i

“thesis” — 2016/5/5 — 11:59 — page 91 — #99 i
i

i
i

i
i

5.6. CONCLUSIONS AND FUTURE WORK 91

5.6 Conclusions and Future Work

We have presented a model and methodology for the identification and analysis of
network events based on the notion of empathic traceroute measurements. We have
translated our theoretical approach into an algorithm and applied it to real-world data,
proving the effectiveness of our methodology.

We plan to further validate our approach with other measurement platforms (see
Section 5.2 for examples), topologies, and network events. We will focus in particular
on intra-domain routing events as opposed to BGP routing changes. Further, we will
study heuristics to merge two or more inferred events that are likely to represent one
single network event, and work on devising an on-line version of our algorithm, which
could effectively integrate the core of an alerting system.

i
i

“thesis” — 2016/5/5 — 11:59 — page 92 — #100 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 93 — #101 i
i

i
i

i
i

Chapter 6

Visual Analysis of Routing Events

This chapter describes an approach based on Routing Events (see Chapter 1) for visu-
ally analyzing events of the type introduced in Chapter 5. The tackled challenges are
Data Size, Dynamics, and Relation To Geography. Events are an abstraction of routing
dynamics and are multivariate entities. The algorithm in Chapter 5 can automatically
detect events from a set of traceroutes, thus reporting that some routing activity hap-
pened at a given moment, impacting some given probes, and involving some given
intermediate nodes. However, events are treated as single objects, while the relation-
ships between them can reveal patterns that shed further light on the routing dynamics.
The described visualization approach allows the user to compare events according to
a subset of their coordinates, and discover clusters of events. Also, the user can dy-
namically change the compared coordinates and see if the distribution of clusters is
preserved under different points of view. The work ended with the production of a
prototypical tool, RoutingWatch, which was evaluated by users with an expertise in
networking. A preliminary version of this chapter was published in [CDD+16].

6.1 Introduction

Chapter 5 introduced routing events, namely high-level descriptions of significant net-
work path changes. Also, an inference algorithm was described for discovering events
from a large set of traceroutes collected by a probe system. This approach has several
interesting characteristics and might become a valid complement of other classical
tools for network monitoring, since: i) it exploits traceroutes performed by large net-
works of probes whose diffusion is rapidly growing, ii) to a certain extent, it enables
investigation of events occurring in networks that are not under the direct control of

93

i
i

“thesis” — 2016/5/5 — 11:59 — page 94 — #102 i
i

i
i

i
i

94 CHAPTER 6. VISUAL ANALYSIS OF ROUTING EVENTS

the network operator, easing responsibility assignment of incidents, and iii) it does
not require special agents on network devices. However, many routing events can be
ascribed to non-anomalous behaviour or to non-significant incidents, hence a tool to
support further analysis of inferred routing events would be beneficial.

In this chapter we describe RoutingWatch, a visual tool to explore and analyze a
large set of routing events. RoutingWatch aims at complementing existing monitor-
ing and management tools, and has the following characteristics: i) it is conceived
to display routing events, as opposed to low-level metrics (bandwidth, delay, etc.);
ii) it provides the user with a combined view of spatial, temporal, and abstract at-
tributes of the events; iii) it offers several selection and filtering tools that realize a
continuous user interaction (as opposed to a query followed by a visualization), thus
supporting the investigation of incidents based limited information; iv) it displays
relationships between events based on a customizable notion of similarity, thus en-
abling quick recognition of patterns (e.g., similar impact on customers or devices, or
recurring events). The target users of RoutingWatch are high-level administrators and
technicians operating inside a Network Operations Center (NOC) of an ISP, who have
a broad view of the network and would benefit from looking at highly informative
aggregate reports rather than raw measurements. We assume that their main activities
involve checking that a network is operating correctly and carrying out troubleshoot-
ing tasks for hard problems that a customer-facing help desk could not directly solve.
Interactions with network experts helped us design RoutingWatch in such a way to
effectively support at least the above activities. We also conducted a preliminary user
study that confirmed this effectiveness.

The rest of this chapter is organized as follows. In Section 6.2 we describe our
reference scenario in terms of input data, activities, and tasks. In Section 6.3 we
review other visual network analysis techniques and tools. In Section 6.4 we describe
the architecture of RoutingWatch, including the technique to infer routing events, as
well as its user interface. In Section 6.5 we evaluate the effectiveness of the tool by
illustrating use cases and by presenting the outcome of a preliminary user study. In
Section 6.6 we draw conclusions and directions for future work.

6.2 Reference Scenario

We believe that a NOC high-level technician is more inclined to look at events, namely
few high-level and informative concepts, rather than at the unmanageable amount of
routing paths (or other information) they derive from. As a side benefit, inferring
events from traceroute paths enables visibility of changes that span arbitrary geo-
graphical areas, thus allowing an operator to determine that the responsibility of a

i
i

“thesis” — 2016/5/5 — 11:59 — page 95 — #103 i
i

i
i

i
i

6.3. RELATED WORK 95

fault is probably to be sought for in a third-party network.
RoutingWatch takes inferred routing events as input, and provides operators with

a visual interface designed to support at least the following activities:
Monitoring – Checking the normal operational status of a network and ensuring that
no unexpected events occurred.
Verification – Assessing the impact of applied changes and checking that planned
variations to the topology or the configuration (e.g., due to infrastructure upgrades or
network engineering) had the desired outcome.
Troubleshooting – Investigating a user-reported issue, assuming that the report in-
cludes a time and the customer’s geographic location, besides a description of the
experienced issue.

In order to better outline the application context, we describe the main kinds of
interaction that we expect a user should have with RoutingWatch, in the form of tasks:
T1: Circumscribe the set of events – For all the considered activities, the user needs
to isolate a subset of the routing events that is most relevant for his investigation. This
task is more difficult to support when only approximate coordinates (e.g., time, geog-
raphy) to look at are known (like it may happen during troubleshooting sessions).
T2: Compare event distributions – The user should be able to select some events
based on one dimension (e.g., geography) and check how the selected events are dis-
tributed in other dimensions (e.g., time). This is mostly involved in verification and
troubleshooting activities.
T3: Find similar events – The user may want to look for sets of related events (e.g.,
close or recurring in time, or with the same causes), especially during troubleshooting
sessions.

6.3 Related Work

Detecting and analyzing network events is a perpetual need for network operators, and
several methodologies and tools have been introduced to aid in accomplishing these
tasks. We now review the main contributions related with the exploration of routing
events.

First of all, events need to be singled out. Network management and monitor-
ing tools such as [MG-15,Cis15,Nag15] usually raise event notifications based on
unexpected changes in network performance metrics (e.g., bandwidth), device health
flags (e.g., interface status), or configuration contents (e.g., parameter changes via the
CLI). Therefore, they require polling devices or running agents on top of them, and
they must be explicitly designed to support a wide range of technologies. On the
other hand, event inference methodologies, such as [CGC13,CC14], exploit more so-

i
i

“thesis” — 2016/5/5 — 11:59 — page 96 — #104 i
i

i
i

i
i

96 CHAPTER 6. VISUAL ANALYSIS OF ROUTING EVENTS

phisticated techniques to extract events from massive sets of publicly available data
(e.g., routing tables), without the need to access devices. However, they are de-
signed for long-term observations of the evolution of the Internet and they provide
little information about each specific event. This gap is filled by other methodologies,
such as [KYGS,DTDD07,DDP+15b], which extract high-level descriptions of rout-
ing events starting from simple low-level measurements (e.g., traceroutes). However,
since they are also applied at Internet scale, the number of events that they infer is of-
ten too high to be handled by a network operator without the support of an additional
tool.

To ease the exploration of large sets of detected routing events, several visual-
ization systems have been introduced. A selection of visualization techniques is
proposed in [TMW03] to aid in finding outliers and recurring patterns of interdo-
main routing changes. However, the limited integration between the various pro-
posed visualizations can make the identification of events difficult. Some tools, such
as [CDM+05b,LMZ06,CDDS13,COZ08,Tho], enable the exploration of dynamic as-
pects of network routing using animations and graph transformations, with the goal
of helping the user in finding and investigating anomalous behaviors. However, the
notion of event is rarely formalized in these contributions, and the input of these tools
consists of raw routing and performance data. Conversely, RoutingWatch is specifi-
cally designed to display highly informative and soundly defined events that are in-
ferred from such data. To the best of our knowledge, it is the first tool that supports
a visual exploration of such information, and in doing so it also quite meets the re-
search directions stated in [CGC13]: a combined investigation of space and time,
an assessment of the type of routing change, and the application of event inference
methodologies to router-level topologies.

6.4 RoutingWatch: A Visual Event Analysis Tool

In this section we describe RoutingWatch, a visual exploration and analysis tool that
allows an operator to investigate a large number of routing events. RoutingWatch
is meant to integrate other visual tools, like Radian (see Chapter 3), and network
management systems, which are more focused on digging into the details and finding
the root cause of single events. The design of RoutingWatch was devised by keeping
in mind the scenario, activities, and tasks in Section 6.2, as well some requirements
gathered by interaction with network operators (see Section 6.5).

i
i

“thesis” — 2016/5/5 — 11:59 — page 97 — #105 i
i

i
i

i
i

6.4. ROUTINGWATCH: A VISUAL EVENT ANALYSIS TOOL 97

Data Source

Traceroute

Database

Measurement
Infrastructure

Inference

MetadataAlgorithm

Event
Database

RoutingWatch

UI
Geographic

View

Similarity

View

Event

Cache

Similarity

Algorithm

Figure 6.1: Architecture at the basis of RoutingWatch, showing the data processing steps. The
dashed box surrounds steps that are accomplished by a third-party organization.

Architecture

The complete architecture at the basis of RoutingWatch is depicted in Fig. 6.1. It
consists of three main components, which are meant to be distributed on different ma-
chines: a Data Source module, which is used to gather the traceroute paths collected
from the probes, an Inference module, which extracts events from the paths, and Rout-
ingWatch itself, which embodies the algorithms and user interface that make up our
tool. We assume that the Data Source module is implemented by an organization
that runs a distributed measurement infrastructure. The Inference module exploits the
technique for inferring events described in Chapter 5. A large part of this chapter fo-
cus on the design, implementation, and evaluation of the RoutingWatch module which
is our main novel contribution.

In this architecture, data are processed along a pipeline that is outlined by the
arrows in Fig. 6.1. First of all, traceroute paths are collected by the probes in a
distributed measurement infrastructure, such as [atl15] or [sam15], and stored in a
database to support later batch retrieval.

Then, we run the inference algorithm on the traceroute paths in order to extract
routing events, which in turn we store in an event database. Detecting events is com-

i
i

“thesis” — 2016/5/5 — 11:59 — page 98 — #106 i
i

i
i

i
i

98 CHAPTER 6. VISUAL ANALYSIS OF ROUTING EVENTS

putationally expensive. Therefore, in our system the inference process is scheduled
to run periodically, for example once per day, on data chunks consisting of the latest
unprocessed traceroutes. As explained in Section 6.2, events are labeled with addi-
tional metadata that will be used by RoutingWatch: the geographic location of probes
(administratively entered) and a mapping from IP addresses to the ASes they belong
to (obtained from [Max15]), which is applied to the public IP addresses of probes and
to the reported causes of each event.

Finally, RoutingWatch is a JavaScript-based tool that runs in a Web browser and
visualizes the inferred events. When invoked by the user, the tool fetches data from
the event database in a user-specified time window and, possibly, relative to a specific
set of probes. To ensure prompt interaction, the resulting set of events is temporar-
ily stored in the user browser’s local memory (event cache). Moreover, to support
task T3, the tool executes an algorithm to compute similarities among events. The
visual interface, as well as the method to compute the similarity, are illustrated in the
following subsections.

Overview of the User Interface

One of the first challenges in designing RoutingWatch was to integrate in a single
dashboard the intuitive spatio-temporal attributes of events (geography and time) and
their abstract attributes (cause IPs, targets, set of probes, Autonomous Systems, etc.),
which are harder to interpret and convey visually. We opted for two coordinated
views [NS00,Rob07] put side by side, which we call space-time view and similar-
ity view. The latter is meant to support Task T3. In accordance with the usability
principles in [Rob07], these views support continuous interaction between the user
and the tool, as opposed to an approach where a query is followed by a visualization.
Figure 6.2 shows an overview of the user interface of the tool, where these two views
are prominently visible (1 and 2).

Both views display the same set of events, called current event set. This set can
easily be altered by specifying general matching criteria using visual controls in a
filtering panel (3): they restrict events in the current set to those with a minimum
impact, recorded by at least one probe in a specified AS (“Impacted AS”), affecting
the reachability of at least a specified target, and whose causes comprise at least an
IP address in a specified AS. These filtering actions support Task T1. Finally, an
additional similarity panel (4) can be used to tune the computation of similarities
among events, influencing the associated view (2).

The effect of any user interactions is immediately applied to both views, thus re-
alizing the data analysis approach known as brushing-and-linking (see, e.g., [NS00]).

i
i

“thesis” — 2016/5/5 — 11:59 — page 99 — #107 i
i

i
i

i
i

6.4. ROUTINGWATCH: A VISUAL EVENT ANALYSIS TOOL 99

Figure 6.2: User interface of RoutingWatch, with its main components: 1 space-time view;
2 similarity view; 3 filtering panel; 4 similarity panel.

Space-Time View of the Events

The space-time view (Figure 6.3) consists of a geographic map (obtained from [Goo15]),
that displays the location of the probes (1) involved in the current event set1, sur-
rounded by an annulus (2) that represents the extent of the time window of the ob-
served events (also shown in 3). The user can zoom and pan the map enclosed in the
annulus using standard interactions. A message (4) warns the user if any probes are
off-screen. Time advances clockwise in the annulus, similarly to a watch. Each event
in the current set is represented by a black marker in the annulus placed at its time of
occurrence (which is displayed in a tooltip 5); its impact is shown by the length and
color of a bar placed outside the annulus (6); its type is represented by a circle at
the base of the marker, black-colored for down events and white-colored for up events
(lack of the circle indicates unknown type). To support Task T1, the time window of
the current event set can be dynamically changed by “zooming” in the annulus using
the mouse wheel. Clicking on a marker adds or removes an event from the current

1The location of the targets may be impossible to establish (for example for anycast IP addresses),
therefore they are not displayed on the map.

i
i

“thesis” — 2016/5/5 — 11:59 — page 100 — #108 i
i

i
i

i
i

100 CHAPTER 6. VISUAL ANALYSIS OF ROUTING EVENTS

selection, causing it to be selected or deselected in the similarity view as well. This
allows the user to focus on a set of events of interest, which remains unchanged even
when the current event set is altered (for example by filters). Clicking on a probe
(de)selects all the events recorded by that probe.

Each event in the current event set which is also in the current selection is high-
lighted in red in both views (see, e.g., Figure 6.2), so that events displayed in the two
views can be easily matched. Moreover, such an event is also linked with lines (7
in Figure 6.3) called leaders [Tam07] to all the probes that recorded it. This makes it
also clear why we chose the annulus shape: on one hand it allows us to display wide
time intervals without consuming too much space on the screen, while on the other
hand it makes events more or less equally close to probes, making the leaders more
readable.

Hovering with the mouse cursor on an event temporarily highlights it in orange
both in the space-time view and in the similarity view, and reveals its leaders and
timestamp. Similarly, hovering on a probe temporarily reveals leaders connecting it to
all the events it recorded. This enables a user to quickly explore events, for example
to check the geographic area affected by the current event set.

Event Similarity View

Discussions with network experts underlined the importance of Tasks T2 and T3,
therefore we chose to support them with an additional view. The similarity view
(Figure 6.4) focuses on the relationships between events. It consists of a graph, whose
nodes represent elements in the current event set and whose edges connect events with
similar attributes. To ensure an optimal layout, the drawing is produced by the force-
directed algorithm implemented in the D3.js library [BOH11]. In order to support
diverse analytical purposes, the notion of similarity can be customized by the user:
different event attributes can contribute in user-configurable proportions to the com-
putation of the similarity between two events e1 and e2. In particular, it is possible to
consider the following normalized measures:

• the similarity Sp between the sets of probes that recorded the events, computed
using the Jaccard similarity coefficient: Sp =

|probes(e1)∩probes(e2)|
|probes(e1)∪probes(e2)|

• the similarity Sc between the sets of causes, again computed as Jaccard similar-
ity: Sc =

|causes(e1)∩causes(e2)|
|causes(e1)∪causes(e2)|

• the proximity St in time between e1 and e2, which is parametrized by a module
M. When M = absolute, the proximity is computed based on the time distance

i
i

“thesis” — 2016/5/5 — 11:59 — page 101 — #109 i
i

i
i

i
i

6.4. ROUTINGWATCH: A VISUAL EVENT ANALYSIS TOOL 101

Figure 6.3: Detail of the space-time view of RoutingWatch, with its main elements: 1 probes;
2 annulus with event markers; 3 time window of the current event set; 4 out-of-screen

warning message; 5 event timestamp tooltip; 6 event impact; 7 leaders connecting events
to probes.

between e1 and e2, relative to the time window T of the current event set: St =
1− abs(t(e1)− t(e2))/T .
When M ∈ {1 day,1 week}, the proximity considers the time distance modulo
M, so that St(M) is maximized when this time distance is equal to kM (k ∈ N)
and minimized when it is equal to (k+1/2)M:

i
i

“thesis” — 2016/5/5 — 11:59 — page 102 — #110 i
i

i
i

i
i

102 CHAPTER 6. VISUAL ANALYSIS OF ROUTING EVENTS

Figure 6.4: Detail of the similarity view of RoutingWatch, with its main elements: 1 selected
event; 2 event context menu; 3 selected connected component.

St(M) = 1− min((t(e1)−t(e2)) mod M,(t(e2)−t(e1)) mod M)
M/2

The overall similarity between two events e1 and e2 is computed as a normalized
linear combination of the above similarity measures: S=(cp ·Sp + cc ·Sc + ct ·St(M))/∑ci.
The coefficients cp, cc, ct , as well as the modulus M, can be tuned by using the controls
in the similarity panel (4 in Figure 6.2). In order to help the user in better isolating
related events, an additional control (“Similarity threshold”) establishes the minimum
value of the similarity S for which an edge between two events is displayed. Changes
in the position of all the controls in the similarity panel are immediately applied to the
similarity view.

With the goal of realizing Tasks T2 and T3, the similarity view supports various
kinds of interaction. Clicking on an event adds or removes it from the current selection

i
i

“thesis” — 2016/5/5 — 11:59 — page 103 — #111 i
i

i
i

i
i

6.5. EVALUATION 103

(1). Each event has a context menu (2) with several functions:

• Displaying the full details of the picked event (IP addresses and AS numbers
of probes and causes, as well as the IP addresses of the targets). These details
may include pre-cooked links that invoke external analysis tools for an in-depth
investigation of the set of involved traceroutes (in the current implementation
we generate links to [CDDS13]).

• Selection of a group of similar events, implemented by two functions: selection
of all the events that are similar to the picked one (namely its neighbors in the
similarity graph), or selection of events that are related with the picked one
even indirectly (namely those that are in the same connected component as the
picked event). The latter operation can be especially effective when searching
for recurring events, because it extends the selection even to those that are not
perfectly aligned in time. For example, in Figure 6.5 the similarity has been
tuned to only relate events occurring every 24 hours (cp = cc = 0, ct = 1, M =
1 day): selecting an entire connected component reveals groups of events that
happen roughly in the same time slot of the day, which are visible in the annulus
as clusters of red markers. A user can then verify, for example, whether these
events have impacted a specific geographic area (set of probes), confirming that
they are recurrent and deserve further investigation.

• Using the current selection (or its complement) as a filter, allowing the user to
define a custom event set (Task T1).

6.5 Evaluation

In this section we first illustrate some use cases that show how RoutingWatch can
support the activities described in Section 6.2. In all the use cases, we assume that the
users are technical operators in a NOC, who can access and explore event reports and,
if required, dig into the details of specific routing changes. After that, we describe
the organization and outcome of a preliminary user study that we conducted to gather
feedback on the tool from network operators.

Activity 1: Monitoring

During a monitoring session, Alice wants to verify whether a set of routing changes
occurred overnight are anomalous when compared with those happened in the last
week.

i
i

“thesis” — 2016/5/5 — 11:59 — page 104 — #112 i
i

i
i

i
i

104 CHAPTER 6. VISUAL ANALYSIS OF ROUTING EVENTS

Figure 6.5: Selection of a connected component in the similarity graph, where the overall
similarity is tuned to only consider the time distance modulo 24 hours.

(i) Alice launches RoutingWatch and loads the events spanning the last week. She
selects the events that occurred during the last hours and watches them in the
similarity view.

(ii) By tuning the sliders in the similarity panel, Alice sets up the similarity to only
consider the event causes. She then observes if some of the selected events form
a cluster of their own, showing that they have been attributed to causes that were
not common in last week’s events.

(iii) Analogously, by tuning the similarity to solely consider the sets of probes, Al-
ice assesses whether events occurred last night are unusual with respect to the
affected probes.

(iv) In both cases, by using the slider in the filtering panel, Alice can isolate events
with a major impact. If any such events occurred, she can further investigate
their nature by displaying their details in separate browser tabs.

Activity 2: Troubleshooting

Troubleshooting is the most challenging activity among the ones listed in Section 6.2.
For this example we invite the reader to consider Figure 6.6 as a reference. We assume
that the help desk of an ISP is collecting complaints from many customers in a limited

i
i

“thesis” — 2016/5/5 — 11:59 — page 105 — #113 i
i

i
i

i
i

6.5. EVALUATION 105

geographic area, reporting slow connection to all Web sites. The help desk passes this
information to Bob, a technical operator in the ISP’s NOC.

(i) Bob launches RoutingWatch, loading a set of events that span a time window
starting slightly before the time indicated by the help desk and ending at the
current time. Lots of events are displayed on the annulus (see Figure 6.6a),
therefore in the next steps Bob pans the map to focus on the geographic area
indicated by the help desk.

(ii) By moving the sliders in the similarity panel, Bob tunes the similarity to mostly
consider the sets of probes, and by adjusting the similarity threshold he sees that
there are groups of events forming clusters in the similarity view (A, B, C, D, E
in Figure 6.6b).

(iii) Bob selects, one after the other, every cluster in the similarity view, using the
“select connected component” function in the context menu (Figure 6.6b shows
a selected cluster). By doing so, he discovers that the probes associated with all
the events are located in the geographic region he is currently observing, with
the exception of events in cluster D (see Figure 6.6c, where most leaders point
to off-screen probes).

(iv) Bob selects events in cluster D and filters them out. The result is in Figure 6.6d.

(v) Bob raises the minimum impact threshold of displayed events, resulting in a
much reduced set of events to look at (see Figure 6.6e).

(vi) By selecting one of the connected components in the similarity view, Bob ver-
ifies the spatial and temporal attributes of the corresponding events (see Fig-
ure 6.6f).

(vii) Bob increases the weight of event causes in the computation of the similarity,
to understand how the clusters formed based on the sets of probes are related
with those causes. In addition, he raises the similarity threshold in order to hide
edges that represent poorly related events. Because of this, clusters A and B
split up into two parts each: A1, A2, B1, and B2 (see Figure 6.6g). The resulting
clusters can easily be matched with the previous A and B by looking at the
current selection. Each cluster is made of events that have a similar cause and
have been seen by a common set of probes.

(viii) By looking at some event details, Bob discovers that all the events in each clus-
ter had a single cause. He therefore identifies 5 IP addresses (one per cluster)
that are potential causes of the problems reported by the help desk.

i
i

“thesis” — 2016/5/5 — 11:59 — page 106 — #114 i
i

i
i

i
i

106 CHAPTER 6. VISUAL ANALYSIS OF ROUTING EVENTS

(a) (b) (c)

(d) (e)

(f) (g)

Figure 6.6: Event analysis steps during a troubleshooting session accomplished using Rout-
ingWatch. The letters close to each cluster in the similarity graph are annotations inserted for
clarity, and are not rendered by the tool.

i
i

“thesis” — 2016/5/5 — 11:59 — page 107 — #115 i
i

i
i

i
i

6.5. EVALUATION 107

(ix) Hence, Bob can deepen his analysis on these IP addresses, for example by
checking in the logs of the associated devices whether they underwent reboots
for planned maintenance. Bob can then ask for an inspection of the devices
to assess whether misbehaviors of their network cards could have led to fre-
quent routing switching, a potential cause of the user-reported poor quality of
experience.

After post-maintenance tests are passed, Bob can carry out a verification activity
to check that the correct operation of the devices has been restored: he selects cluster
C, filters out all the other events, and verifies on the annulus that the sequence of
events ends at the time when the faulty cards were repaired.

User Study

We conducted an informal user study during an intermediate stage of the development
of our system, in order to check whether it fitted the requirements of prospective users
and to gather ideas for improving its features. In the context of a research project
that was active at the time of the user study, we interviewed 6 selected employees of
the R&D section of a prominent Italian ISP. Their areas of expertise covered IP edge
innovation, cyber-security threat evolution, security solutions analysis, and video &
multimedia platforms, making them familiar with the actual needs and issues of the
ISP.

The interview lasted two hours and half and was split into three parts: 1) a presen-
tation of the tool, to explain the motivations, the input data, and the functionalities;
2) a supervised session of usage of the tool; 3) a questionnaire that the experts were
asked to fill out with their opinions about the motivations of our study and the ef-
fectiveness of the tool. During the supervised usage session, the experts could use
RoutingWatch with sample data and receive help from us. They were supposed to
hand in the filled questionnaires at the end of the interview, but the presentation and
the usage session took more time than expected, and a few of them did not make it in
time. For this reason we decided to let all the participants send us the results the day
after, by email. During this time we left the prototype remotely accessible.

In the questionnaire the experts were asked to rank between 1 (min) and 5 (max)
whether (min/avg/max assigned ranks in parentheses): a) events are a useful and
comprehensible aggregation of routing changes (3/3.83/5); b) comparing events by
probes, geography, and time is useful to find related events (3/3.67/4) and how good
the tool is at supporting it (2/3.33/5); c) finding related events is useful for the ac-
tivities of a network operator (3/3.83/4) and how good the tool is at supporting it
(3/3.67/4).

i
i

“thesis” — 2016/5/5 — 11:59 — page 108 — #116 i
i

i
i

i
i

108 CHAPTER 6. VISUAL ANALYSIS OF ROUTING EVENTS

User comments in the questionnaire confirmed the validity of our motivations, be-
cause measurement infrastructures collect massive amounts of traceroute data. The
abstraction of considering events and the visual interface were appreciated. Some-
body observed that some devices may not be revealed by a traceroute, for example
because a device is explicitly configured not to respond to measurements or because
of the encapsulation of packets into tunnels. However, they all agreed that for an ISP
traceroute paths are one of the few available sources of information about external
networks.

Since the first questions they posed, the experts defined RoutingWatch as “a tool
for mining traceroute data”, which we considered an appropriate description. The
geographic map, the circular displacement of events, and the usage of leaders were
all considered effective. Moreover, the users considered very important to have a set
of readily usable filters (e.g., by target or time of the day) to avoid seeing “too much
data” to be understood at a glance. The possibility to easily spot patterns of events
and similarities between them was very well evaluated. For example, when the node
causing a problem is known in advance, the user might want to know if it had already
caused other problems in the past. Also, they were interested in finding recurring
events, typically happening on the same day of the week or at the same time of the day
(e.g., the number of connected home users is much higher in the evening, potentially
causing load issues). The concept of similarity was missing from the version of the
tool we demonstrated to the experts. However, their feedback confirmed that events
can give additional fundamental information when they are compared to each other,
justifying the introduction of the similarity and its explicit visual representation.

6.6 Conclusions and Future Work

We presented RoutingWatch, a visual tool that allows Internet Service Providers to
analyze routing events using easy-to-understand controls and a continuous interac-
tion model. The tool encompasses a notion of similarity among events, which sup-
ports advanced use cases such as searching for recurring events. We implemented the
tool showing that its interaction model can be supported by currently available Web
browsers and we presented it to a few network operators obtaining good feedback. We
believe the approach pursued in the design of the visual interface is general enough to
support even other (i.e., not network-specific) notions of events, for example related
with security-sensitive contexts.

Further work is required: at the moment we do not allow the user to “reproduce”
a previously accomplished analysis session and we do not support any kind of session
history (e.g., to undo filters). Such operations would allow the user to share the results

i
i

“thesis” — 2016/5/5 — 11:59 — page 109 — #117 i
i

i
i

i
i

6.6. CONCLUSIONS AND FUTURE WORK 109

of problem investigations with other network experts, enabling the development of a
knowledge-based decision support system for tasks like troubleshooting. We still need
to solve some scalability issues affecting the user interface. For example, an excessive
number of displayed leaders can be confusing and can be avoided by dynamically
clustering probes, events, and the leaders themselves when they are too close to each
other. We also plan to extend the functionalities of the tool, for example by supporting
more flexible notions of similarity or real-time analysis (at the moment, data can only
be fetched from static data sources). This would obviously require redesigning the
back-end infrastructure.

i
i

“thesis” — 2016/5/5 — 11:59 — page 110 — #118 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 111 — #119 i
i

i
i

i
i

Part III

Interplay Between Routing and
Geography

111

i
i

“thesis” — 2016/5/5 — 11:59 — page 112 — #120 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 113 — #121 i
i

i
i

i
i

Chapter 7

Planarity of Georeferenced Graphs

This chapter describes an approach based on Topology + Geography (see Chapter 1)
for drawing graphs whose vertices have a geographical position, or georeferenced
graphs, which is the case of routing graphs. The approach deals with the Relation
To Geography challenge. The work is based on the intuition that vertices can be
moved within a limited span around their given positions to improve the readability
of the drawing. According to this intuition, a graph planarity problem is introduced
and studied under different distance metrics and drawing styles. A polynomial-time
algorithm is presented for one of the studied cases, while the others resulted NP-
hard, thus revealing an intrinsic difficulty to implement the intuition on georeferenced
graphs with a planarity-based approach. A preliminary version of this chapter was
published in [ADD+14].

7.1 Introduction

Several applications require drawing graphs whose vertices are constrained to be not
too much distant from specific points [AAHS05,LMR98]. As an example, consider
a graph whose vertices are cities and whose edges are relationships between cities. It
is conceivable that the user wants to draw the graph on a geographic map where ver-
tices have the coordinates of the corresponding cities. Unfortunately, depending on
the local density of the cities, the drawing may be cluttered or may contain crossings
between edges that might disappear if the vertices could move from their locations.
Hence, the user may be interested to trade precision for quality of the drawing, ac-
cepting that the vertices move of a certain distance from the location of the cities,
provided that the readability of the drawing increases. Problems in which the input

113

i
i

“thesis” — 2016/5/5 — 11:59 — page 114 — #122 i
i

i
i

i
i

114 CHAPTER 7. PLANARITY OF GEOREFERENCED GRAPHS

consists of a set of imprecise points have also been studied in Computational Geome-
try [DM03,LvK10].

In this chapter we consider the following problem, that we call ANCHORED GRAPH
DRAWING (AGD)1. Given a graph G = (V,E), an initial placement for its vertices,
and a distance δ , we ask whether there exists a planar drawing of G, according to a
certain drawing convention, such that each vertex v ∈V can move at distance at most
δ from its initial placement. Note that the problem can have different formulations
depending on how the concepts of “readability” and “distance” are defined.

We consider both straight-line planar drawings and rectilinear planar drawings.
Further, in addition to the traditional L2 Euclidean distance, we consider the L1 Man-
hattan distance and the L∞ ‘uniform’ distance. Note that, adopting L2 distance is
equivalent to allowing vertices to be placed into circular regions centered at their
original positions, and adopting L1 or L∞ distances is equivalent to allowing vertices
to be placed into diamond-shaped or square-shaped areas, respectively.

Observe that, if the regions of two vertices overlap, the positions of the two ver-
tices can be swapped with respect to their initial placement, which may be confusing
to a user of the drawing. Moreover, overlapping between vertex regions would make
problem AGD as difficult as known Clustered Planarity variants, such as the Strip
Planarity problem [ADDF13] in the straight-line setting, whose complexity is a non-
trivial open problem. Hence, we restrict to instances such that the regions of the
vertices do not overlap.

We remark that the version of the problem where each circle may have a different
size was shown to be NP-hard in [God95] by reducing Planar-(3,4)-SAT with variable
repetitions (where repeated occurrences of one variable in one clause are counted
repeatedly). The proof in [God95] uses disks with radius zero and disks with large
radii. Also, the reduction relies on overlapping disks.

Furthermore, we observe that the NP-hardness of the problem with different dis-
tances and overlapping areas trivially follows from the NP-hardness of extending a
planar straight-line drawing [Pat06] by setting δ (v) = 0 for each fixed vertex v and
allowing suitably large distances for vertices that have to be planarly added to the
drawing.

In this chapter we show that the ANCHORED GRAPH DRAWING problem is NP-
hard for any combination of metrics and drawing standards that we considered, with
the exception of rectilinear drawings and uniform distance metric (square-shaped re-
gions). These results, summarized in Table 7.1, were somehow unexpected, as com-
puting a planar rectilinear drawing of a graph, without any further constraint, is NP-
hard [GT01].

1We remark that the term ‘anchored graph’ was used within a different setting in [CM13].

i
i

“thesis” — 2016/5/5 — 11:59 — page 115 — #123 i
i

i
i

i
i

7.2. PROBLEM DEFINITION AND INSTANCES CLASSIFICATION 115

Metric Distance Region Shape Straight-line Rectilinear
L1 Manhattan 3 NP-hard NP-hard
L2 Euclidean # NP-hard NP-hard
L∞ Uniform � NP-hard Polynomial

Table 7.1: The complexity of the ANCHORED GRAPH DRAWING problem depending on the
metric and drawing style adopted when the areas of the vertices do not overlap.

The chapter is organized as follows. Section 7.2 contains basic definitions and
terminology. Section 7.3 describes a polynomial-time algorithm when the considered
distance is the uniform distance L∞ and edges are required to be drawn as either hori-
zontal or vertical segments. Section 7.4 is devoted to the NP-hardness proofs of all the
other considered settings of the problems. Finally, Section 7.5 discusses some open
problems.

7.2 Problem Definition and Instances Classification

A straight-line planar drawing of a graph G is a drawing of G where edges are
straight-line segments that do not intersect except at common end-points. A recti-
linear planar drawing is a straight-line planar drawing where edges are parallel to the
axes.

Given two points p and q in the plane, denote by dx(p,q) and dy(p,q) the differ-
ences of their coordinates, i.e., dx(p,q) = |x(p)− x(q)| and dy(p,q) = |y(p)− y(q)|,
where x(r) and y(r) are the x- and y-coordinate of a point r, respectively. The Eu-
clidean distance d2(p,q) of p and q is defined as d2(p,q) = (dx(p,q)2 +dy(p,q)2)

1
2 .

The Manhattan distance is defined as d1(p,q) = dx(p,q) + dy(p,q). The uniform
distance d∞(p,q) = limi→∞(dx(p,q)i +dy(p,q)i)

1
i = max(dx(p,q),dy(p,q)).

We define the ANCHORED GRAPH DRAWING problem parametrically in the met-
ric Lk and the drawing style X , which can be straight-line (X = S) or rectilinear
(X =R). Hence, for any Lk ∈ {L1,L2,L∞} and any X ∈ {S,R} we define: Problem:
ANCHORED GRAPH DRAWING-Lk-X (AGD-Lk-X). Instance: A graph G = (V,E),
an initial placement for its vertices α(v) : V →ℜ2, and a distance δ . Question: Does
there exist a planar drawing of G according to the X drawing convention such that
each vertex v ∈V is at distance Lk at most δ from α(v)?

We define anchored drawing as a planar drawing satisfying all the requirements
of the particular version of problem ANCHORED GRAPH DRAWING.

Given an instance 〈G,α,δ 〉 of the ANCHORED GRAPH DRAWING problem, each
vertex v identifies a region R(v) of the plane, called vertex region, that encloses the

i
i

“thesis” — 2016/5/5 — 11:59 — page 116 — #124 i
i

i
i

i
i

116 CHAPTER 7. PLANARITY OF GEOREFERENCED GRAPHS

Tr
ivi
all
y Y

ES
TriviallyNO

Property A:
no VV overlap

Property C:
no PP overlap

Property B:
no VP overlap

ly
YE

S

Figure 7.1: Venn diagram describing the logical relationships among Properties A–C.

initial position of the vertex and whose shape depends on the metric adopted for com-
puting the distance. In particular, for the Euclidean distance the vertex regions are
circles, for the Manhattan distance they are diamonds, and for the uniform distance
they are squares. Each edge (u,v) of the graph, instead, identifies a pipe P(u,v), de-
fined as follows. Consider the convex hull H of R(u) and R(v); pipe P(u,v) is the
closed region obtained by removing R(u) and R(v) from H.

Instances can be classified based on the intersections among vertex and pipe re-
gions. Namely, we can have instances satisfying the following properties:
Property A. No overlap between two vertex regions (VV-overlaps);
Property B. No overlap between a vertex region and a pipe (VP-overlaps);
Property C. No overlap between pipes (PP-overlaps) not incident to the same vertex.

The Venn diagram in Fig. 7.1 shows the logical relationships between the three
properties. The following observation is immediate.

Observation 1. If Properties A, B, and C are all satisfied, then the instance is trivially
positive, since choosing any point in the vertex region (including the initial placement
of the vertex) yields an anchored drawing of the input graph.

We always assume that Property A is satisfied. In fact, if vertex regions were
allowed to overlap, then it would be possible to reduce to this problem a variant of the
Clustered Planarity problem whose complexity is still unknown. In this variant, which
includes Strip Planarity [ADDF13] as a special case, the cluster regions are already
drawn and edges are straight-line.

Two further observations can be made which reduce the set of instances of interest.

Observation 2. An instance satisfying Property B but not satisfying Property C (i.e.,
with PP-overlaps but without VP-overlaps) is trivially false, as in this case any PP-

i
i

“thesis” — 2016/5/5 — 11:59 — page 117 — #125 i
i

i
i

i
i

7.3. POLYNOMIAL-TIME ALGORITHM 117

R(u) R(v) R(z)P (u, v)

xl(u) xr(u)
yt(u)

yb(u)

yt(P)
yb(P)

Figure 7.2: Geometric description of a region R(u) and of a pipe P(u,v), after procedure
PIPEEQUALIZER has been applied.

overlap would enforce a crossing between two edges for any placement of their end-
vertices in the corresponding vertex regions.

Observation 3. An instance satisfying Property C but not satisfying Property B (i.e.,
with VP-overlaps but without PP-overlaps) is trivially true.

Proof: Since Property C holds, no crossing can occur outside a vertex region.
First, suppose that regions are diamonds or squares. If the center of region R(v) of a
vertex v lies inside a pipe P(x,y), then at least two consecutive vertices, say a and b,
delimiting R(v) lie inside P(x,y). This implies that v has degree at most 1, as otherwise
there would be a PP-overlap between P(x,y) and a pipe P(v,w) delimited by either a
or b.

As for the case in which regions are circles, if the center of R(v) lies inside P(x,y),
then at least half of the circle delimiting R(v) lies inside P(x,y). Hence, a similar
argument applies to prove that deg(v)≤ 1.

In all the three cases, since deg(v) ≤ 1 and R(v) is not completely contained into
P(x,y), v can be placed on any point of R(v) outside P(x,y). Hence, placing each
other vertex at the center of its region yields an anchored drawing. 2

Due to the above properties and observations, the remaining part of this chapter
focuses on the instances for which Property A holds, while Properties B and C do not.
These instances correspond to the blue region at the top of Fig. 7.1.

7.3 Polynomial-Time Algorithm

In this section we describe an algorithm, called Algo-AGD-L∞-R, that decides in
polynomial time instances 〈G,α,δ 〉 of problem AGD-L∞-R such that G is connected.

For each vertex v ∈ V , denote by xl(v) and xr(v) the x-coordinate of the left and
right side of R(v), respectively. Similarly, denote by yt(v) and yb(v) the y-coordinate
of the top and bottom side of R(v), respectively. See region R(u) in Fig. 7.2.

i
i

“thesis” — 2016/5/5 — 11:59 — page 118 — #126 i
i

i
i

i
i

118 CHAPTER 7. PLANARITY OF GEOREFERENCED GRAPHS

First note that, for each edge (u,v) ∈ E, the relative placement of R(u) and R(v)
determines whether (u,v) has to be drawn as a vertical or a horizontal segment, or
(u,v) cannot be drawn neither horizontal nor vertical with its endpoints lying inside
their corresponding regions. In the latter case, instance I is negative. An edge that has
to be drawn as a horizontal (vertical) segment is a horizontal (vertical) edge. In the
following we assume w.l.o.g. that any horizontal edge (u,v) is such that xr(u)< xl(v),
while any vertical edge (u,v) is such that yt(u) < yb(v). A path composed only of
horizontal (vertical) edges is a horizontal (vertical) path. Given that each edge (u,v)
can be categorized as either horizontal or vertical, we can label its pipe P(u,v) as
either horizontal or vertical accordingly. Also, we can determine the minimum
and maximum y-coordinate (x-coordinate) that a horizontal (vertical) edge (u,v) can
assume while placing both its endvertices inside their regions. In the following we
describe pipe P(u,v) by means of these coordinates, which are denoted by yb(P) and
yt(P) (xl(P) and xr(P)), respectively. See horizontal pipe P(u,v) in Fig. 7.2.

Also note that, if a vertex v of degree 2 is incident to two horizontal (vertical) edges
(u,v) and (v,z), then replacing v and its incident edges with a horizontal (vertical) edge
(u,z) yields an equivalent instance. Hence, we assume that, if there exists a vertex of
degree 2, then it is incident to both a horizontal and a vertical edge.

As a preliminary step of the algorithm, we initialize the geometric description of
each pipe P(u,v) as follows. If P is vertical, then set xr(P) = min(xr(u),xr(v)) and
xl(P) = max(xl(u),xl(v)). If P is horizontal, then set yt(P) = min(yt(u),yt(v)) and
yb(P) = max(yb(u),yb(v)). Here and in the following, whenever a vertex region R(w)
(a pipe P(u,v)) is modified by the algorithm, we assume the pipes incident to w (the
regions R(u) and R(v)) to be modified accordingly.

In order to ensure that horizontal (vertical) pipes whose edges belong to the
same horizontal (vertical) path have the same geometric description, we refine the
pipes by applying the following procedure, that we call PIPEEQUALIZER. As long as
there exist two vertical pipes P′(u,v) and P′′(v,w) incident to the same vertex v such
that xl(P′) 6= xl(P′′) or xr(P′) 6= xr(P′′), set xl(P′) = xl(P′′) = max(xl(P′),xl(P′′)) and
xr(P′) = xr(P′′) = min(xr(P′),xr(P′′)). Analogously, as long as there exist two hor-
izontal pipes P′(u,v) and P′′(v,w) incident to the same vertex v such that yb(P′) 6=
yb(P′′) or yt(P′) 6= yt(P′′), set yb(P′) = yb(P′′) = max(yb(P′),yb(P′′)) and yt(P′) =
yt(P′′) = min(yt(P′),yt(P′′)). See pipe P(u,v) in Fig. 7.2 after the application of
PIPEEQUALIZER.

We then perform the following procedure, that we call PIPECHECKER. It first
checks whether there exists a pipe P such that xr(P)< xl(P) or yt(P)< yb(P). Then,
it checks whether there exists a PP-overlap between two pipes P(u,v) and P(w,z)
such that: (i) neither of R(u) or R(v) has a VP-overlap with P(w,z); and (ii) neither of
R(w) or R(z) has a VP-overlap with P(u,v). If one of the two checks succeeds, then

i
i

“thesis” — 2016/5/5 — 11:59 — page 119 — #127 i
i

i
i

i
i

7.3. POLYNOMIAL-TIME ALGORITHM 119

u v
P (u, v)

w

h

(a)

u w

w′

v z

(b)

u w z
v

w′ v′

(c)

Figure 7.3: Vertices exiting pipes. (a) Vertex w exits P(u,v) from below. The cut of P(u,v)
applied by procedure PIPEBLOCKCHECKER is described by a dashed line. (b) Vertex v exits
P(w,z) through w. The cut of R(w) and the consequent cut of P(w,z) applied by procedure
VERTEXCHECKER is described by a dashed line. (c) A situation recognized by procedure
PIPEINTERLEAVECHECKER.

we conclude that instance I is negative, otherwise we proceed with the algorithm.
In the following, every time a pipe is modified, we will apply procedure PIPEE-

QUALIZER to extend this modification to other pipes, and procedure PIPECHECKER
to test whether such modifications resulted in uncovering a negative instance.

The general strategy of the main part of the algorithm is to progressively reduce
the size of the pipes. In particular, at each step we consider the current instance Ii and
modify it to obtain an instance Ii+1 with smaller pipes than Ii that admits an anchored
drawing if and only if Ii admits an anchored drawing. Eventually, such a process will
lead either to an instance Im for which it is easy to construct an anchored drawing or
to conclude that instance I = I1 is negative.

Let P(u,v) be a horizontal pipe, and w be a vertex having a VP-overlap with
P(u,v). Refer to Fig. 7.3a. We say that w exits P from below if there exists a vertex h
such that: (i) yb(P) < yb(w) < yt(P) and xr(u) < xl(w) < xr(w) < xl(v); (ii) yt(h) <
yb(P) and xr(u) < xl(h) < xr(h) < xl(v); and (iii) there exists a path γ = (w, . . . ,h)
in G connecting w to h in which every internal vertex r is such that R(r) intersects P.
Symmetrically, we say that w exits P from above if there exists a vertex h with the same
properties as before, except for the fact that yb(P) < yt(w) < yt(P), yb(h) > yt(P).
Otherwise, we say that w exits P through a vertex, either u or v. In Fig. 7.3b, vertex
v exits pipe P(w,z) through w. Observe that, since G is connected and no VV-overlap
occurs in I, there always exists a path γ = (w, . . . ,h) in G connecting w to a vertex h
such that h does not have any VP-overlap with P; hence, w always exits P, either from
above or below, or through a vertex.

For the case of a vertical pipe P(u,v), we assume analogous definitions of ver-
tices exiting P from left, right or through a vertex, either u or v. As long as one of the
following conditions is satisfied, we apply one of the procedures described hereunder.

i
i

“thesis” — 2016/5/5 — 11:59 — page 120 — #128 i
i

i
i

i
i

120 CHAPTER 7. PLANARITY OF GEOREFERENCED GRAPHS

Procedure VERTEXCHECKER: Consider a vertex w having a VP-overlap with a
horizontal (vertical) pipe P(u,v) such that yb(w)≤ yb(P)< yt(P)≤ yt(w) (resp.,
xl(w) ≤ xl(P) < xr(P) ≤ xr(w)). If w is incident to two vertical (horizontal)
pipes, then we conclude that instance I is negative. Otherwise, if w is incident to
a vertical (horizontal) pipe P(w,w′), then set yb(w) = max(yb(w),yb(P)) (set
xl(w) = max(xl(w),xl(P)). See Fig. 7.3b. Analogously, if w is incident to a ver-
tical (horizontal) pipe P(w′,w), then set yt(w) = min(yt(w),yt(P) (set xr(w) =
min(xr(w),xr(P)).

Procedure PIPEBLOCKCHECKER: Consider a pipe P(u,v) having a VP-overlap
with a vertex w such that w does not exit through a vertex. If w exits P(u,v) both
from above and from below (a vertical pipe both from left and from right), then we
conclude that instance I is negative. Otherwise, if w exits P from (i) above, we set
yt(P) = yt(w); (ii) below, we set yb(P) = yb(w); (iii) left, we set xl(P) = xl(w); or
(iv) right, we set xr(P) = xr(w). See Fig. 7.3a.

Procedure PIPESIDECHECKER: Consider a horizontal (vertical) pipe P(u,v)
and a vertex w exiting P(u,v) both through vertex u and through vertex v. If u and v
are incident to vertical (horizontal) pipes, either P(u,u′) and P(v′,v), or P(u′,u)
and P(v,v′), respectively, then we conclude that instance I is negative.

Procedure PIPEINTERLEAVECHECKER: Suppose that there exist two horizon-
tal (vertical) pipes P(u,v) and P(w,z) such that v and P(w,z) have a VP-overlap,
and w and P(u,v) have a VP-overlap. If either v is incident to a vertical (horizon-
tal) pipe P(v,v′) and w is incident to a vertical (horizontal) pipe P(w,w′), or v
is incident to a vertical (horizontal) pipe P(v′,v) and w is incident to a verti-
cal (horizontal) pipe P(w′,w), then we conclude that instance I is negative. See
Fig. 7.3c.

If none of the above procedures can be applied, then we conclude that I is a posi-
tive instance.

Theorem 4. Let I = 〈G,α,δ 〉 be an instance of AGD-L∞-R such that G is connected.
Algorithm Algo-AGD-L∞-R decides in polynomial time whether 〈G,α,δ 〉 admits an
anchored drawing.

Proof: The initialization of the pipes and their refinement operated by procedure
PIPEEQUALIZER, both after the initialization and after each further modification, is
trivially necessary to meet the requirements that vertices are placed inside their regions
and edges are drawn as either horizontal or vertical segments.

i
i

“thesis” — 2016/5/5 — 11:59 — page 121 — #129 i
i

i
i

i
i

7.3. POLYNOMIAL-TIME ALGORITHM 121

Suppose that procedure PIPECHECKER concluded that instance I is negative at
some point of the algorithm. If xr(P)< xl(P) (if yt(P)< yb(P)), then there exist two
vertical (horizontal) pipes sharing a vertex that cannot be placed inside its region
while drawing both its incident edges as rectilinear segments. Otherwise, there exists
a PP-overlap between two pipes P(u,v) and P(w,z) not overlapping with regions R(u),
R(v), R(w), and R(z). By Observation 2, the instance is negative.

We prove that the modifications operated by VERTEXCHECKER, when a vertex
w has a VP-overlap with a horizontal (vertical) pipe P(u,v) and w is incident to
a vertical (horizontal) P(w,w′), do not restrict the possibility of constructing an
anchored drawing of 〈G,α,δ 〉. Refer to Fig. 7.3b. In fact, in this case, in any anchored
drawing of 〈G,α,δ 〉, edge (w,w′) cannot traverse P(u,v) from top to bottom. As for
the fact that an instance in which w is incident to two vertical (horizontal) pipes
is correctly recognized as negative, observe that in this case one of the two vertical
edges incident to w necessarily crosses edge (u,v).

We prove that the modifications operated by PIPEBLOCKCHECKER, when a ver-
tex w overlaps a pipe P(u,v) and does not exit through one of its vertices, do not
restrict the possibility of constructing an anchored drawing of 〈G,α,δ 〉. Suppose that
w exits P(u,v) from below, the other cases being analogous. Refer to Fig. 7.3a. The
statement follows from the fact that, in any anchored drawing of 〈G,α,δ 〉, the draw-
ing of path γ = (w, . . . ,h) blocks visibility from R(u) to R(v) inside P(u,v) at least for
all the y-coordinates in the range between the point where w is placed and the point
where h is placed. Since yt(h)< yb(P), the point where w is placed determines a new
lower bound for the value of yb(P). Since such a point cannot be below yb(w), the
statement follows. As for the fact that an instance containing a vertex w that exits a
horizontal pipe both from above and from below (a vertical pipe both from left
and from right) is correctly recognized as negative, observe that in this case the two
paths starting from w completely block visibility between from R(u) to R(v) inside
P(u,v).

We prove that an instance containing a vertex w that exits P(u,v) through both
of its vertices, and such that u and v are also incident to pipes P(u,u′) and P(v′,v),
or vice versa, reaching them from different sides, is correctly recognized as negative
by procedure PIPESIDECHECKER. Namely, observe that in this case path (u′,u,v,v′)
necessarily crosses one of the two paths starting from w.

Finally, suppose that procedure PIPEINTERLEAVECHECKER concluded that in-
stance I is negative. Refer to Fig. 7.3c. It is easy to observe that the fact that v and
w are reached from the same side is not compatible with an anchored drawing of
〈G,α,δ 〉.

We conclude the proof of the theorem by showing that, when none of the described
procedures can be applied, it is always possible to draw every edge (u,v) inside its pipe

i
i

“thesis” — 2016/5/5 — 11:59 — page 122 — #130 i
i

i
i

i
i

122 CHAPTER 7. PLANARITY OF GEOREFERENCED GRAPHS

u1 u2 u3v1

v2

(a)

u1
u2

u3

v2v1 w1 w2

(b)

Figure 7.4: Construction of the drawing when none of the procedures can be applied. (a) Two
maximal horizontal paths (u1,u2,u3) and (v1,v2) whose pipes have the same y-coordinates.
Path (v1,v2) is assigned a y-coordinate slightly larger than (u1,u2,u3). (b) Three maximal
horizontal paths (u1,u2,u3), (v1,v2), and (w1,w2)whose pipes have the same y-coordinates.
Path (v1,v2) is assigned a y-coordinate slightly larger than (w1,w2).

P(u,v), as follows.
Consider every maximal horizontal path (u1, . . . ,ur). Note that, each vertex ui,

with 1≤ i≤ r, is incident to at least a vertical pipe, either (ui,u′i) or (u′i,ui), as oth-
erwise edges (ui−1,ui) and (ui,ui+1) would have been replaced with edge (ui−1,ui+1).
If all the vertices ui are incident to a vertical (ui,u′i), then assign y-coordinate equal
to yt(ui) to ui, for i = 1, . . . ,r; if all the vertices ui are incident to a vertical (u′i,ui),
then assign y-coordinate equal to yb(ui) to ui, for i = 1, . . . ,r; finally, if there exists at
least a vertex ui incident to a vertical (ui,u′i) and at least a vertex u j incident to a
vertical (u′j,u j), then assign y-coordinate equal to yb(ui)+yt (ui)

2 to ui, for i = 1, . . . ,r.
Assign x-coordinates to vertices of every maximal vertical path equal to xl(ui), to
xr(ui), or to xl(ui)+xr(ui)

2 , in an analogous way.
With a straightforward case analysis, it is possible to observe that, since none of

the conditions activating the described procedures is satisfied, there exists no cross-
ing in the drawing, apart from possible overlaps between edges belonging to different
maximal horizontal (vertical) paths whose pipes have the same bottom and top y-
coordinates (the same left and right x-coordinates). However, these overlaps can be
always eliminated by increasing (decreasing) of an arbitrarily small amount the coor-
dinates of the overlapping paths (see two examples in Fig. 7.4a and 7.4b), again due
to the fact that none of the conditions activating the described procedures is satisfied.

2

7.4 Hardness Results

In this section we prove the hardness of the ANCHORED GRAPH DRAWING problem
in different settings. In particular, Theorem 5 is devoted to the hardness of the AGD-
L2-S problem, i.e., the problem of generating planar straight-line drawings of the input

i
i

“thesis” — 2016/5/5 — 11:59 — page 123 — #131 i
i

i
i

i
i

7.4. HARDNESS RESULTS 123

graph where the vertex regions are circles of radius δ . Theorem 6, instead, is devoted
to the hardness of the AGD-L2-R problem, where the regions are circles of radius δ

and edges are required to be drawn as horizontal or vertical segments.
The proofs of hardness for the remaining variants of the problem listed in Table

7.1 can be derived from these two and, thus, will not be explained in detail. Namely,
the reduction to AGD-L1-R is very similar to that used for AGD-L2-R, and can be
obtained by suitably replacing circles with diamond-shaped regions that ensure analo-
gous geometric visibility and obstruction properties. The same holds for the hardness
proof of AGD-L∞-S , that can be obtained from AGD-L2-S with small adaptations of
the gadgets. Finally, the reduction to AGD-L1-S is the same as the one for AGD-L∞-
S where all the geometric constructions are rotated by 45o, transforming the square-
shaped regions of AGD-L∞-S into the diamond-shaped regions of AGD-L1-S.

All our proofs are based on a reduction from the NP-complete problem PLANAR
3-SATISFIABILITY [Lic82], defined as follows. Problem: PLANAR 3-SATISFIABILITY
(P3SAT). Instance: A planar bipartite graph G = (Vv,Vc,E) where: (i) Vv is a set of
variables; (ii) Vc is a set of clauses, each consisting of exactly three literals represent-
ing variables in Vv; and (iii) E is a set of edges connecting each variable v ∈ Vv to
all the clauses containing a literal representing v. Question: Does there exist a truth
assignment to the variables so that each clause has at least one true literal?

For each of our problems, we describe gadgets that, given an instance φ of P3SAT,
can be combined to construct an instance γ of the considered problem. Namely, we
describe a gadget for each of the following: variable, not, turn, split, and clause.

The variable gadget has two families of planar drawings, corresponding to the
two truth values. The not gadget admits planar drawings that invert its input truth
value. The turn gadget admits planar drawings that propagate its input truth value
in a direction that is orthogonal to the original one. The split gadget admits planar
drawings that propagate its input truth value to two different directions. Finally, the
clause gadget is planar if and only if at least one of its input literals is true. The
gadgets are combined following the structure of a planar drawing of φ , so that any
planar drawing of γ corresponds to a truth assignment for the variables satisfying φ .
Similarly, given a truth assignment for the variables that satisfies φ , the gadgets for
variables can be drawn accordingly to obtain a planar drawing of γ .

i
i

“thesis” — 2016/5/5 — 11:59 — page 124 — #132 i
i

i
i

i
i

124 CHAPTER 7. PLANARITY OF GEOREFERENCED GRAPHS

R(v1)

R(v3) R(v4)

R(v2)

(a)

R(v1)

R(v3) R(v4)

R(v2)

(b) (c) (d)

Figure 7.5: Variable gadget for the reduction to the AGD-L2-S problem in its false (a) and
true (b) configurations. (c) Propagation of the true configuration of a variable gadget. (d) Turn
gadget in its false configuration.

Theorem 5. AGD-L2-S is NP-hard.

Proof: To prove hardness we reduce problem P3SAT to AGD-L2-S, under the
hypothesis that Property A is satisfied (no overlap among vertex regions).

Let φ be an instance of P3SAT with n variables and m clauses. We describe how
to construct an equivalent instance γ of AGD-L2-S . For each variable xi, i = 1, . . . ,n,
we create a variable gadget, whose two families of planar drawings are depicted in
Figs. 7.5a and 7.5b, consisting of four vertices v1,v2,v3, and v4 and edges (v1,v2) and
(v3,v4). The regions assigned to the vertices are placed as follows: (i) the centers of
R(v1) and of R(v2) lie on the same vertical line; (ii) the centers of R(v3) and of R(v4)
lie on the same horizontal line; (iii) pipe P(v1,v2) has an intersection of arbitrarily
small area with both R(v3) and R(v4); and (iv) pipe P(v3,v4) intersects neither R(v1)
nor R(v2). Hence, in any anchored drawing of γ , edge (v1,v2) is drawn either to
the left of v3 (as in Fig. 7.5a) or to the right of v4 (as in Fig. 7.5b). In both cases,
edge (v1,v2) is drawn almost vertical. We call these two configurations false and true
configurations for the variable gadget, respectively, and associate them with the false
and true values for the corresponding variable xi. The truth value of a variable can be
propagated by concatenating a sequence of variable gadgets µ1, . . . ,µk in which R(v1)
of µi is identified with R(v2) of µi+1, for each i = 1, . . . ,k−1. See Fig. 7.5c.

The turn gadget can be constructed by concatenating three variable gadgets, µ1,
µ2 and µ3, as depicted in Fig. 7.5d, in such a way that µ2 has a clockwise rotation of
45◦ with respect to µ1, and µ3 has a clockwise rotation of 90◦ with respect to µ1.

The split gadget can be constructed by combining two turn gadgets τL = 〈µL
1 ,µ

L
2 ,µ

L
3 〉

and τR = 〈µR
1 ,µ

R
2 ,µ

R
3 〉, with µL

1 = µR
1 and where τL is obtained from τR by a vertical

mirroring. See Fig. 7.6a.
The not gadget is constructed as follows. Consider two horizontally (vertically)

i
i

“thesis” — 2016/5/5 — 11:59 — page 125 — #133 i
i

i
i

i
i

7.4. HARDNESS RESULTS 125

(a)

R(va)

R(vb)

R(vc)

R(vd)

(b)

Figure 7.6: (a) Split gadget in its true configuration. (b) Not gadget.

R(v1)

R(v3)

R(v2)R(v4)

R(v6)

l r
R(v5)

(a)

F

F

F

R(v1)

R(v3)

R(v2)R(v4)

R(v6)
R(v5)

(b)

T

F

F

R(v1)

R(v3)

R(v2)R(v4)

R(v6)
R(v5)

(c)

Figure 7.7: Clause for the reduction to the AGD-L2-S problem. Vertices v1, v2, and v3 repre-
sent the three literals of the clause. For readability, we show only pipes P(v1,v2) and P(v5,v6).
(a) Arrangement of the regions. (b) All literals are assigned false, and edges (v5,v6) and
(v3,v4) cross. The darker wedge represents all the possible positions for edge (v3,v4) in this
truth assignment, which implies that the crossing is unavoidable. (c) Assigning true to any of
the literals allows for a planar drawing.

aligned variable gadgets µ1 and µ2. Add an edge connecting v2 of µ1 to v1 of µ2,
as in Fig. 7.6b. Place between µ1 and µ2 two pairs of adjacent vertices (va,vb) and
(vc,vd) whose regions are placed in such a way that: (i) any drawing of edge (va,vb)
blocks the visibility between the true configurations of µ1 and µ2; (ii) any drawing of
edge (vc,vd) blocks the visibility between the false configurations of µ1 and µ2; and
(iii) edges (va,vb) and (vc,vd) can be drawn in such a way that there exists visibility
between different truth configurations of µ1 and µ2. Hence, in any anchored drawing
of γ , the configurations of µ1 and µ2 are different.

The clause gadget is constructed as follows. Refer to Fig. 7.7a. Consider three
vertices v1, v2, and v3 whose regions are placed in such a way that their centers induce
a non-degenerated triangle T and the centers of R(v1) and of R(v2) lie on the same

i
i

“thesis” — 2016/5/5 — 11:59 — page 126 — #134 i
i

i
i

i
i

126 CHAPTER 7. PLANARITY OF GEOREFERENCED GRAPHS

R(v4)R(v1)

R(v2) TT

R(v5)

R(v3)

(a)

R(v4)R(v1)

R(v2)
FF

R(v5)

R(v3)

(b)

Figure 7.8: Variable gadget for the reduction to the AGD-L2-R problem in its true (a) and
false (b) configurations.

horizontal line. These three vertices represent the three literals of the clause. While
R(v2) and R(v3) maintain the usual convention to encode the truth value of the repre-
sented variable, for R(v1) it is inverted. It can be easily realized by negating the value
of the variable. The gadget contains three more vertices: v4, v5, and v6, and edges
(v1,v2), (v2,v3), (v1,v3), (v3,v4), and (v5,v6). The center of R(vi), with i = 4,5,6,
lies inside T . Region R(v4) is completely contained in pipe P(v1,v2), except for an
arbitrarily small part Π, which lies inside T . Consider the two points l and r in which
the boundary of R(v4) intersects P(v1,v2). The boundary of R(v5) is tangent to the
leftmost segment of the convex hull H of {l,r}∪R(v3). Region R(v6) completely lies
to the right of the rightmost segment of H, except for an arbitrarily small part. Neither
R(v5) nor R(v6) intersects P(v1,v2).

If all the literals are set to false, then v4 must lie below edge (v1,v2) (and hence in
Π). However, visibility between Π and R(v3) is prevented by edge (v5,v6) (Fig. 7.7b).
Otherwise, if at least one of the literals is set to true, then an anchored drawing of γ

can be realized (see Fig. 7.7c for an example). 2

Theorem 6. AGD-L2-R is NP-hard.

Proof: To prove hardness we reduce problem P3SAT to AGD-L2-R, under the
hypothesis that Property A is satisfied (no overlap among vertex regions).

Let φ be an instance of P3SAT with n variables and m clauses. We describe how
to construct an equivalent instance γ of AGD-L2-R.

For each variable x j, with j = 1,2, . . . ,n, we introduce a variable gadget µ j (see
Fig. 7.8) composed of vertices v1,v2, . . . ,v5 and edges (v1,v2), (v2,v4), and (v3,v5).
The regions R(vi) for the vertices of the gadget are placed as follows: (a) for i= 2,3,4
region R(vi) completely lies to the right of R(vi−1); (b) the centers of R(v5) and of

i
i

“thesis” — 2016/5/5 — 11:59 — page 127 — #135 i
i

i
i

i
i

7.4. HARDNESS RESULTS 127

T
R(v1)

R(v2)

T

input

output
R(v3)

R(v4)
R(v5)

(a)

R(v1)

R(v2)

input

output

F

F

R(v3)

R(v4)
R(v5)

(b)

Figure 7.9: Turn gadget for the reduction to the AGD-L2-R problem in its true (a) and false
(b) configurations.

R(v3) are vertically aligned; (c) the centers of R(v1) and of R(v4) are horizontally
aligned; (d) the centers of R(v2) and of R(v3) lies inside P(v1,v4); and (e) the projec-
tions of the centers of R(v3), R(v1), R(v2), and R(v5) appear bottom-up in this order.
In any anchored drawing, edge (v2,v4) is forced to pass either below (v3,v5) (true
configuration, Fig. 7.8a) or above (v3,v5) (false configuration, Fig. 7.8b).

In order to propagate the truth value of variable x j it is possible to concatenate a
sequence of variable gadgets µ1, . . . ,µk by identifying R(v4) of µi with R(v1) of µi+1,
for i = 1, . . . ,k−1.

The turn gadget (Fig. 7.9) is composed of vertices vi, for i = 1, . . . ,5, and edges
(v1,v3), (v2,v4), and (v3,v5). The regions of the vertices are placed in such a way
that:

(a) their centers appear left-to-right in this order: R(v2), R(v1), R(v4), and R(v5);
(b) their centers appear bottom-up in this order: R(v1), R(v4), R(v5) and R(v3);
(c) R(v2) and R(v4) are horizontally aligned; (d) R(v1) and R(v3) are vertically aligned;
(e) R(v2) lies outside P(v1,v3) except for an arbitrarily small part; and (f) R(v3) lies
outside P(v2,v4) except for an arbitrarily small part. In any anchored drawing, edge
(v3,v5) is enforced to lie either below (true configuration, Fig. 7.8a) or above (v2,v4)
(false configuration, Fig. 7.9b). The relative positions of these edges enforce the
correspondence of the positions of v1 and v5, and thus the transmission of the correct
truth value.

The not gadget (Fig. 7.10a) is composed of vertices vi, for i = 1, . . . ,6, and edges
(v1,v2), (v2,v6), (v5,v6), and (v3,v4). The regions of the vertices are placed in such
a way that: (a) their centers appear left-to-right in this order: R(v5), R(v3), R(v2),
R(v1), and R(v4); (b) their centers appear bottom-up in this order: R(v1), R(v2), R(v4),

i
i

“thesis” — 2016/5/5 — 11:59 — page 128 — #136 i
i

i
i

i
i

128 CHAPTER 7. PLANARITY OF GEOREFERENCED GRAPHS

R(v1)
input

R(v2)

R(v3) R(v4)

R(v6)R(v5)

output

F

T

(a)

NOT
gadget

input

output

output

R(v1)

R(v2)

R(v3) R(v4)

R(v5)

R(v6)

F

F

T

F

R(v1)

R(v5)

(b)

Figure 7.10: (a) Not gadget. (b) Split gadget in its true configuration.

R(v3), and R(v5); (c) R(v5) and R(v6) are horizontally aligned; and (d) R(v1) and
R(v6) are vertically aligned. If the input variable is false, edges (v1,v2) and (v2,v6)
are almost tangent to R(v1) and to R(v6), and edge (v3,v4) is below edge (v5,v6).
Hence, edge (v5,v6) is aligned with the centers of v5 and v6, giving raise to a true
value. If the input variable is true, edges (v1,v2) and (v2,v6) are vertically aligned
with the centers of R(v1) and R(v6), and edge (v5,v6) is below edge (v3,v4). Hence,
edge (v5,v6) is almost tangent to R(v5) and R(v6), giving raise to a false value.

The split gadget (Fig. 7.10b) is composed of vertices vi, for i = 1, . . . ,7, plus a
set of additional vertices v j, for j = 1, . . . ,6, belonging to a not gadget, and edges
(v1,v2), (v2,v5), (v5,v6), (v3,v4), and (v5,v1), plus the set of edges of the not gadget.
The regions of the vertices are places in such a way that: (a) their centers appear
left-to-right in this order: first all the vertices of the not gadget ending with v1, then
R(v3), R(v2), R(v1), R(v4), and R(v6); (b) their centers appear bottom-up in this order:
R(v1), R(v2), R(v4), R(v6), and R(v5); (c) the center of vertices R(v5) and R(v1) are
horizontally aligned; (d) R(v1) and R(v5) are vertically aligned; and (e) R(v3) and
R(v4) are horizontally aligned.

The clause gadget is illustrated in Fig. 7.11. The truth values of the input literals
completely determine the drawing of path (v1,v3,v6,v8). Edge (v5,v10) can always
be drawn as the short segment joining a point in R(v5) to a point in R(v10). Edge

i
i

“thesis” — 2016/5/5 — 11:59 — page 129 — #137 i
i

i
i

i
i

7.5. CONCLUSIONS AND FUTURE WORK 129

R(v3)

R(v1)

R(v2)

R(v4)

R(v5)

R(v6)

R(v7)

R(v8)

R(v9)
R(v10)

F F

T

(a)

R(v3)

R(v1)

R(v2)

R(v4)

R(v5)

R(v6)

R(v7)

R(v8)

R(v9)
R(v10)

F F

F

(b)

Figure 7.11: Clause gadget. The dashed lines represent the three input truth values.

(v4,v9) can be drawn as a segment tangent to R(v4) only if the literal attached to v3
is true. as in Fig. 7.11a. This allows drawing edge (v2,v7) as an horizontal segment
inserted between edges (v4,v9) and (v5,v10). Otherwise, if all the three literals are
false, the obstruction represented by edges (v4,v9) and (v5,v10) does not allow for a
crossing-free drawing of (v2,v7). If the literal attached to v1 is true, then edge (v2,v7)
can be drawn above edge (v5,v10). Finally, if the literal attached to v8 is true, then
edge (v2,v7) can be drawn below edge (v4,v9) which is drawn tangent to R(v9). 2

7.5 Conclusions and Future Work

We considered the ANCHORED GRAPH DRAWING problem in several settings, show-
ing that, provided that the input instance do not have overlaps between vertex regions
(Property A), the problem of producing planar drawings is NP-hard in most of the
settings. The only exception is for the case with rectilinear drawings and uniform dis-
tances (square-shaped regions), for which a polynomial-time algorithm is provided in
Section 7.3.

We leave open the following questions: (i) Does problem AGD belong to class
NP? (ii) The instances in our NP-hardness proofs can be augmented to equivalent in-
stances whose graphs are biconnected (we omit details for space reasons). In these
instances, different truth values correspond to different embeddings. What is the com-
plexity of AGD when the input graph is triconnected or has at least a fixed embedding?
(iii) What if we allow the vertex regions to (at least partially) overlap?

i
i

“thesis” — 2016/5/5 — 11:59 — page 130 — #138 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 131 — #139 i
i

i
i

i
i

Chapter 8

Heuristics for Visualizing
Georeferenced Graphs

This chapter describes an approach based on Topology + Geography (see Chapter 1)
for drawing graphs whose vertices have a geographical position, or georeferenced
graphs, which is the case of routing graphs. The approach deals with the Relation To
Geography challenge. The work is based on the intuition that vertices can be moved
within a limited span around their given positions to improve the readability of the
drawing. Chapter 7 studied a corresponding graph-planarity problem that resulted
NP-hard in many cases of interest, therefore this chapter deals with the visualization
of georeferenced graphs by means of heuristics. The work introduces a 2.5D visual
metaphor for georeferenced graphs, and describes a force-directed graph drawing al-
gorithm that considers geographical constraints. The work ends with the description
of a prototype tool, GeoGraph, which was tested through automated experiments with
both real and artificial data. A preliminary version of this chapter was published
in [DDP+15a].

8.1 Introduction

We address the problem of exploring a georeferenced graph, i.e., a graph with some
geographic information associated to it. Typical applications include for example,
visualizing Internet routing events, coordinating search and rescue teams, supervising
medical evacuation squads, monitoring ad-hoc networks, and, on a more familiar and
playful side, exploring location-based social networks.

The requirements of the interface are the following: the area of interest consists of

131

i
i

“thesis” — 2016/5/5 — 11:59 — page 132 — #140 i
i

i
i

i
i

132 CHAPTER 8. VISUALIZING GEOREFERENCED GRAPHS

Figure 8.1: A snapshot of the proposed 2.5D interface. The logical layer, above, shows the
networked data, while the geographic layer, below, displays actual locations of the entities
contained in the logical layer, whenever available.

a terrain where a number of entities are located, and possibly move. Their geographic
position may be declared by the entities themselves, tracked by radar stations, inferred
from their transmissions, or, in some cases, completely unknown. Entities have a
number of relationships, such as established connections, similarity, reachability, etc.
The purpose of the interface is to represent in the most intuitive and unambiguous
way both the relationships among the entities and their positions, conveying at the
same time the degree of uncertainty associated with the geographic information.

User’s tasks involve the analysis of both the networked and the geographic dimen-
sions of the information. Let’s suppose, for example, that the data represented come
from a social network. Typical queries may be: What is the shortest friendship chain
leading from a friend of mine living in London to anyone located in Berlin? Is it pos-
sible to find a friendship chain from London to Berlin without involving any person
living in Rome? How many friends of my friends are currently in the same location
as I am now?

We propose an innovative 2.5D paradigm to visually explore data with both a
relational and a geolocalized nature. Our proposal is based on first separating and
then integrating back again the networked and the geographic information. Namely,
the geographic information is shown within a map, called geographic layer, while a
second logical layer is devoted to the relational information. The two equally-sized
rectangular layers are placed one above the other, and viewed from a side in a 2.5D

i
i

“thesis” — 2016/5/5 — 11:59 — page 133 — #141 i
i

i
i

i
i

8.2. VISUALIZING NETWORKED AND GEOGRAPHIC DATA 133

fashion, so that there is no overlap among them, i.e., no ambiguity between the two
types of information (see Figure 8.1).

Entities are placed on the logical layer in such a way to reduce cluttering and to
make their relationships readable and clear, while leaders are used to relate each entity
on the logical layer to its known location on the geographic layer, whenever available.

All the screenshots in this chapter are taken from a JavaScript demonstrative pro-
totype, GeoGraph, implemented using the WebGL graphics library [The13], that runs
within any compatible web browser.

8.2 Visualizing Networked and Geographic Data

In this section we describe a visualization system, based on a novel graphical metaphor,
that overcomes the limitations of traditional solutions with respect to user tasks that
are typical of the visualization of georeferenced networks.

Problem Statement

Our visualization problem has two different inputs: the first one is from the user,
who controls a rectangular area on a map, which is the current area of interest to be
monitored and that can be translated, rotated, and zoomed. The second one comes
from the outside world and is, essentially, a set of relationships among the entities of
the considered domain. Each entity comes equipped with its type, its position, and the
degree of uncertainty of such geographic information, which is provided by specifying
the size of a geometric shape (usually a circle) that approximates the area where the
entity is assumed to be.

The available data defines a network, whose nodes are the entities and whose
edges are the relationships among entities. The purpose of the system is to show
both the networked and the geographic information, meeting the following high-level
requirements.

Effectiveness. The visualization should show in a clear and readable way the number
of entities located on the selected area, their current position, and their relationships.

Intuitiveness. The graphic metaphors and the interaction primitives should be natural
and intuitive, with low cognitive load.

Robustness. The visualization should support incomplete information, handling, in
particular, missing and uncertain geographic data.

Unambiguity. The representation should be accurate and unambiguous. For example,
the degree of uncertainty of the geographic information should be clear.

i
i

“thesis” — 2016/5/5 — 11:59 — page 134 — #142 i
i

i
i

i
i

134 CHAPTER 8. VISUALIZING GEOREFERENCED GRAPHS

User’s Tasks

When exploring a georeferenced graph, relevant user’s tasks involve both the net-
worked and the geographic dimensions of the information. Some of these tasks ad-
dress simple quantitative queries, as estimating what is the amount of entities that
share some target location, finding the location that hosts the most interconnected en-
tities, determining whether a specific location hosts unconnected clusters of entities,
etc.

We also identify more complex tasks that strongly rely on the analysis of the struc-
ture of the networked information. For example, finding the shortest chain of entities
leading from a source placed in location A to any target located in B; finding a chain
from location A to location B that does not involve any entity located in C; determining
how many entities are reachable with two edges and are placed in a specific location;
determining how strong are the connections among entities placed in location A and
entities placed in location B, etc.

All these high level tasks primarily require the ability of the user to explore the
structure of the relationships among the entities on the logical layer. Secondarily, the
user needs to quickly grasp the area that hosts a given entity or, conversely, the set of
entities that are located in a given area. These basic operations are complicated by the
fact that some entities may not have a location associated and that a number of entities
may share the same location.

Limitation of 2D Interfaces

The simple approach of placing icons on a 2D map based on the entities’ geographic
coordinates would not meet the requirements. In particular, since some entities share
the same location, any 2D map would fail to unambiguously show both the location
of the entities and their relationships. Also, entities on a geographic map are rarely
equispaced. Instead, it is often the case that they gather in specific points (e.g., cities).
Long and short distances among entities have to be simultaneously represented in the
same view. When some entities have very close locations, their icons overlap unless
the user zooms in on them. This zooming in and out has a dramatic effect on the
usability of the interface due to focus-and-context issues: when some specific details
are on focus the whole picture is no longer in sight and vice versa.

To complicate this scenario, some entities may have unknown geographic position.
For example, users of a geolocated social network may disallow their applications
to take advantage of GPS data; some devices of an ad-hoc network may not host a
ground positioning circuit; routers of a computer network may not have an associated
administrative site; end-points of a phone or radio conversation may be unknown; etc.

i
i

“thesis” — 2016/5/5 — 11:59 — page 135 — #143 i
i

i
i

i
i

8.2. VISUALIZING NETWORKED AND GEOGRAPHIC DATA 135

Wherever such entities would be placed on a 2D map, it would result in an ambiguous
representation since the user would assume that those positions are the actual positions
of the entities.

Finally, a 2D map does not convey in a natural way the degree of uncertainty of
the geographic information. Placing icons on the map at the center of the area where
the entity is supposed to be may result in the user’s false confidence about the actual
position of the entity. Drawing on the map some shadowed shapes, rectangles or cir-
cles, proportional to the degree of uncertainty on the position of the corresponding
entities yields a representation that is not self-evident and that is confusing when sev-
eral entities, with different shapes and different degree of uncertainty, are close one to
the other.

Exploiting a 2.5D Visualization

Our strategy is to separate and simultaneously visualize the networked and the geo-
graphic information of the input dataset. Namely, the geographic information is rep-
resented on the geographic layer, which is in the bottom part of the interface, while
the networked information is represented on the logical layer, which is parallel to the
geographic layer and placed in the upper part of the interface. Leaders among the two
layers relate nodes with their geographic locations, if any. The interface is shown in
Fig. 8.1. In order to avoid overlaps between the two layers, which would give occlu-
sion among the two types of information, we restrict their size to two equally-sized
rectangles and suitably place the point of view on the longest side of the rectangles as
shown in Fig. 8.2.

It has to be pointed out that the size and the orientation of the rectangles represent-
ing the logical and geographic layers are fixed with respect to the screen coordinates.
Panning, zooming and rotating will have the effect of changing what is represented
in the geographic and logical layers, but will not move the point of view with respect
to the layers themselves. This design choice allows for a very simple and intuitive
navigation of the scenario, that does not require the user to cope with fully 3D naviga-
tion primitives. Hence, in spite of its 3D flavor, our representation is a 2.5D one, both
because the graph is actually drawn on the 2D surface offered by the logical plane and
because the user interaction is limited to the 2D primitives of panning, zooming, and
rotating. From a practical perspective, this is realized with four clipping planes that
move together with the point of view and that cut out the world scene lying beyond
the prescribed area.

Nodes are placed on the logical layer with the purpose of conveying as effectively
as possible the structure of the graph, reducing cluttering and crossings among edges
(see Fig. 8.3). To this purpose, we devised a specialized force-directed algorithm,

i
i

“thesis” — 2016/5/5 — 11:59 — page 136 — #144 i
i

i
i

i
i

136 CHAPTER 8. VISUALIZING GEOREFERENCED GRAPHS

z

y
x

cz

lz

ly

lx

camera

cy

pz

(a)

Figure 8.2: The position of the geographic and logical layers with respect to the point of view
(we used lx = 1600, ly = 900, lz = 650, cy = 2000, cz = 1600, pz = 260).

described in Section 8.4. The computed layout tries to achieve both evenly-spaced
distribution of nodes and few crossings among edges, while seeking to minimize the
distance of each node from the corresponding position on the geographic layer. The
goal of the geographic layer, instead, is that of displaying the current position of each
node shown on the logical layer. Such a position is represented by means of a marker
on the map with a straight-line leader connecting it to the corresponding node on the
logical layer. When the position of the node is affected by uncertainty the marker on
the map is a geometric shape, usually a circle, enclosing the area where the corre-
sponding object is supposed to be, and the leader consists of a cone with its apex on
the node. Nodes with no geographic information associated have no marker on the
map (see Fig. 8.4).

Therefore, in our approach, we have two types of links: (i) the edges on the logical
layer and (ii) the leaders connecting the two layers. We privilege the readability of the
graph induced by the first type of links, by trying to reduce crossings on the logical
layer, which severely jeopardize the comprehension of the graph structure [PCJ97,
Pur00]. Crossings among leaders have lower impact on readability, since the structure
of the graph induced by them is of limited interest to the user. In fact, each leader
establishes a connection between an entity and a geographic location, and paths of
leaders are never considered by the user. Also, when the mouse hovers a vertex on the
logical layer, the interface highlights its incident leader to help the user identify the
leader endpoint on the geographic layer.

The graph represented in the logical layer is composed by all the entities inside

i
i

“thesis” — 2016/5/5 — 11:59 — page 137 — #145 i
i

i
i

i
i

8.2. VISUALIZING NETWORKED AND GEOGRAPHIC DATA 137

(a)

(b)

Figure 8.3: Two snapshots of the interface showing (a) crossings are reduced in the layout in
the logical layer (the edges on the geographic layer are drawn for comparison) and (b) entities
with common locations are clearly shown in the logical layer.

the area of interest of the user (in-sight entities) and all the entities that have links with
such entities (linked entities). When the user zooms, rotates, or translates the area of
interest (for example by pressing keyboard combinations or by dragging the mouse)
the system updates the graph. Appearing nodes are placed on the border of the logical

i
i

“thesis” — 2016/5/5 — 11:59 — page 138 — #146 i
i

i
i

i
i

138 CHAPTER 8. VISUALIZING GEOREFERENCED GRAPHS

Figure 8.4: A georeferenced graph where the position of some entities is unknown and the
position of other entities is known with some approximation.

layer, in the point which is nearer to their actual geographic position or in the point
which is nearer to the position of one of the nodes they are linked to (in case of linked
entities with no geographic position).

8.3 Related Work

Visual links in 2.5D visualizations. The use of visual links (i.e., edges) to high-
light relationships between multiple views has been pioneered in the two-dimensional
setting in [Wea05,AS07,SA06] and further explored in [SWS+11,HSS11]. The third
dimension has been often used to add extra information to a traditional 2D layout. In
particular, the use of inter-plane edges accounting for the relationships between nodes
of separate 2D visualizations of the same graph has been proposed by the authors of
VisLink [CC07]. The VisLink system allows the user to change the position of the
planes hosting the drawings of the graph, stacking them horizontally, placing them
side-by-side vertically, viewing them from the top, etc. In [SKKS08,LSKS10] a sim-
ilar approach has been used for the exploration of interconnected pathways. In this
case, the planes are usually more than two, and the system does not rely on the user
ability for arranging the planes and for efficiently using the available screen space.
Instead, the planes are placed on five sides of a cube and the user looks at them from
the remaining side.

Spatial and Non-Spatial Data in Cartography. Our target visualization problem can

i
i

“thesis” — 2016/5/5 — 11:59 — page 139 — #147 i
i

i
i

i
i

8.4. THE RETINA LAYOUT ALGORITHM 139

be viewed as a particular case of integrated spatial and non-spatial data visualization,
where the non-spatial data can be modeled as a graph composed of entities and rela-
tionships among pairs of entities. Providing an integrated visualization of spatial and
non-spatial data is a traditional topic in cartography where thematic maps are used to
visualize the distribution of statistical variables. The values associated with the points
on the maps can be represented, for example, by colors (choropleth maps), by the
sizes of suitable symbols (proportional symbols maps), by the density of dots (dotted
maps), etc. Although thematic maps may go so far as to represent a small chart for
each location [WSD11], usually the non-spatial data represented has a very simple
structure.

Reducing the Visual Clutter in Spatial Data. The problem of reducing the visual
clutter of symbols on interactive maps has been approached with different techniques.
Google Earth [Goo13] automatically collapses into a single symbol spatially coinci-
dent placemarks, which are exploded again in a cluster when clicked. Spatial dithering
and changes in symbology (e.g., colour, opacity, line thickness and size) can be used
to reflect the existence of unseen or coincident data [WDSC07].

8.4 The Retina Layout Algorithm

In this section we describe the algorithm that computes the network layout on the
logical layer. Spring embedders are natural candidates for our application, since they
grant, besides good quality results, the flexibility needed by our interactive system.

Although spring embedders are standard force-directed graph layout algorithms,
our visualization problem is somehow special, as the logical layer is viewed from a
side by the user, who, therefore, sees a picture distorted by the perspective. This has
the effect of increasing the cluttering of the objects in the background with respect
to those in the foreground. Hence, we conceived a variant of the spring embedder
algorithm that computes the layout directly on the view plane, which is essentially the
user’s retina. This is why we dubbed it Retina layout algorithm.

A spring embedder boils down to be a very simple iterative process that, given
the configuration at iteration i, computes the configuration at iteration i+ 1 by sum-
ming up, for each node, the forces acting on it, and then translating the node in the
direction of the resulting force and proportionally to its magnitude. Such process then
stops as soon as the sum of the forces acting on the nodes drops below a certain min-
imum threshold. Like (traditional) spring embedders, Algorithm Retina searches for
an equilibrium configuration of a physical model obtained by replacing nodes with
equally charged particles and edges with springs. On the one hand, since particles
have the same charge, the Coulomb force, decreasing with the square of their dis-

i
i

“thesis” — 2016/5/5 — 11:59 — page 140 — #148 i
i

i
i

i
i

140 CHAPTER 8. VISUALIZING GEOREFERENCED GRAPHS

tance, pushes them apart. On the other hand, as edges are replaced by springs, the
Hooke force tends to keep adjacent particles close together (our springs have natural
length zero and never exert a repulsive force). Further, in order “to keep the node
close” to its geographic position, we introduced a geographic force that attracts each
node to the point on the logical layer corresponding to the node geographic position.
The initial placement of each node on the logical layer is given by the vertical projec-
tion of its geographic coordinates on the map. Nodes with no geographic information
are initially placed in the barycenter of their neighbors, if any, or in a random point
inside the boundaries of the logical layer that is not occupied by any other node. The
sum of the forces acting on a node at a specific iteration i concides with the displace-
ment vector that is applied to the current position of the node to obtain its position at
iteration i+ 1. Boundary constraints are not implemented as forces, but rather as re-
strictions on the nodes’ translations. Namely, suppose that for a node n we computed
a translation vector vn that would bring n outside the logical layer. Let xn be the inter-
section between vn and boundary of the logical layer. If n does not lie already on xn,
we move n to xn. Otherwise, we replace vn with the projection of vn on the boundary
of the logical layer.

Algorithm Retina introduces a major, although conceptually simple, difference
with respect to standard spring embedders. The forces and their sums are computed on
the projections of the nodes’ positions on the view plane, so to avoid the perspective
distortion perceived by the user. Once the sum of the forces is computed for each
node projection, the translation vectors are unprojected again from screen to world
coordinates, yielding the new positions for the nodes.

Figure 8.5 shows a drawing of a 5× 4 grid graph with and without the Retina
algorithm. The perspective distortion of the traditional spring embedder that computes
the layout on the logical plane is apparent in Fig. 8.5a. Such distortion is reduced in
Fig. 8.5b.

8.5 Experimental Evaluation

We evaluated the effectiveness of the proposed 2.5D visualization and of Algorithm
Retina by contrasting them with “traditional 2D visualization” where entities are
place in their geographic position and the screen is fully devoted to a 2D representa-
tion of the area of interest. With respect to the problem requirements, we claim the
following statements.

(i) The interface allows us to unambiguously represent networked data enriched
with geographic information which may be missing or uncertain for some entity
(Req. Unambiguity, Robustness).

i
i

“thesis” — 2016/5/5 — 11:59 — page 141 — #149 i
i

i
i

i
i

8.5. EXPERIMENTAL EVALUATION 141

(a)

(b)

Figure 8.5: The effect of the Retina algorithm is apparent when grid graphs are represented.
(a) A grid graph drawn by a traditional spring embedder. The perspective distortion is apparent.
(b) A grid graph with the Retina algorithm.

(ii) The interface allows us to clearly represent entities that have coincident or very
close locations (Req. Unambiguity).

(iii) The logical and the geographic layers allow us to represent the networked in-
formation in a readable way (Req. Effectiveness, Unambiguity).

i
i

“thesis” — 2016/5/5 — 11:59 — page 142 — #150 i
i

i
i

i
i

142 CHAPTER 8. VISUALIZING GEOREFERENCED GRAPHS

(iv) Algorithm Retina improves the readability of the drawing with respect to a
traditional spring embedder run on the logical layer (Req. Effectiveness, Unam-
biguity).

The first claim, in our opinion, is self-evident, as we are not aware of alternative
visualization techniques to represent in an unambiguous way geolocated networks
where part of the entities have missing or uncertain geographic information. There-
fore, we will give evidence of the other three claims by assuming that all the entities
have a known position. To this end, we set up the experimental setting described in the
following subsections. In all the experiments we allowed the on-line layout algorithm
to reach an equilibrium configuration.

Quality Measures

To assess the effectiveness of the interface we adopted the following readability mea-
sures.
Crossings percent reduction (cpr). There is strong evidence in the literature that re-
ducing the number of edge crossings is by far the most important aesthetic to improve
the readability of a drawing [PCJ97,Pur00]. This metric estimates the ability of the in-
terface to reduce the number of edge crossings in the representation of the networked
data. In particular, we measured the average percent reduction of the number of cross-
ings on the logical layer with respect to the number of crossings that would occur if
the nodes were placed at their actual location, as in a traditional 2D visualization.
Homogeneous edge length (hel). This measure is based on the average percent devi-
ation of edge lengths using a mean central tendency [FK13]. We compute this metric
on the projections of the edges on the view plane:

hel= 1− 1
m

m

∑
j=1

∣∣∣∣ |e j|−|e|avg

max{|e|avg, |e|max−|e|avg}

∣∣∣∣
where m is the size of the edge-set of the graph, |e j| is the length of the jth edge,

|e|avg is the average edge length, and |e|max is the maximum edge length. Observe that
0≤ hel≤ 1. A value of hel= 0 could indicate that half of the edges have length zero
while the other half have length 2|e|avg. A value of hel= 1 indicates all the edges have
the same length.
Node separation (ns). Our purpose is to measure how well the interface is able to
separate close nodes. Metric ns is the minimum distance between the projections of
the nodes on the view plane divided by the length of the diagonal of the viewport.
In [FK13] a more sophisticated node separation measure has been proposed, which is

i
i

“thesis” — 2016/5/5 — 11:59 — page 143 — #151 i
i

i
i

i
i

8.5. EXPERIMENTAL EVALUATION 143

based on the perimeter of the largest empty rectangle enclosing each node. We chose
a simpler and rougher measure because the one proposed in [FK13] is unpractical for
our purposes, where 2D and 2.5D visualizations have to be contrasted, and would give
us very limited additional benefits (see the appendix at the end of this chapter for more
details).

We remark that our 2.5D visualization is unfavored by measures hel and ns as it
uses only a portion of the viewport to distribute nodes, whereas in a 2D visualization
the whole viewport is used by the map. We also observe that our readability measures
do not take into account the crossings among the edges that link the entities on the
logical layer to their geographic positions. Such crossings are due to the 3D perspec-
tive and remain in the background when the user explores the network on the logical
layer. Hence, they may have a reduced effect on the comprehension of the structure
of such a network.

Test Suite

For our experiments we adopted a mix of real-life and synthetic data. In particular,
we obtained real-life data about geolocalized entities from the maritime data collected
by the Automatic Identification System (AIS), which is an onboard navigation safety
device that broadcasts time-labeled messages with the location and characteristics of
vessels in real time. We used a historic dataset of AIS data collected by the U.S.
Bureau of Ocean Energy Management and by the U.S. National Oceanic and Atmo-
spheric Administration [NOA]. Precisely, we used the dataset relative to the Zone 14
of the Gulf of Mexico area, collected during January 2009. Starting from this dataset,
we produced 300 test instances of increasing size and density.

First, we chose an arbitrary rectangular region whose aspect ratio is 16:9. We
selected ten time instants uniformly distributed in the available time window. For
each time instant, we selected in the area of interest the last s vessels broadcasting
their position and considered their last update, with s ranging from 10 to 100 with
a step of 10. This produced 100 sets of geolocated entities with distinct geographic
positions.

AIS data are not provided with information about relationships between the ves-
sels. Therefore, we created graph instances with different edge densities as follows.
We randomly added edges to each set of n vertices, among all the possible n∗(n−1)

2
edges, until we reached the density of 5%, 10%, and 15%. This produced 300 geolo-
cated graphs, which compose the testsuite for our experiments.

i
i

“thesis” — 2016/5/5 — 11:59 — page 144 — #152 i
i

i
i

i
i

144 CHAPTER 8. VISUALIZING GEOREFERENCED GRAPHS

EDGE DENSITY = 5% EDGE DENSITY = 10% EDGE DENSITY = 15%

cp
r

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

h
el

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

n
s

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 20 40 60 80 100
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 20 40 60 80 100
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 20 40 60 80 100

Figure 8.6: Results of the experiments. Charts in the first row report cpr measure; the second
row is devoted to hel; and the third row to ns. The density of the graphs varies over the columns.
The x-axis shows the size of the graphs, while the y-axis reports the measure of interest. The
solid red line is the measure for the 2D visualization. The dashed green line is the measure for
Algorithm Retina. The dash-dotted blue line is the measure for the traditional spring embedder
with no Retina distorition.

Results and Discussion

Figure 8.6 shows the results of the experiments. Each dot corresponds to the av-
erage over ten values. Regarding measure cpr (Figs. 8.6, first row), crossings are
completely removed for sparser and smaller graphs and are greatly reduced both by
the traditional spring embedder and by Algorithm Retina, with the latter performing
negligibly worse for sparse graphs (see Fig. 8.6, first row, first column). Even for
bigger and denser instances of our dataset crossings are reduced of more than 40%.

i
i

“thesis” — 2016/5/5 — 11:59 — page 145 — #153 i
i

i
i

i
i

8.6. CONCLUSIONS AND FUTURE WORK 145

We remark that the number of crossings on the geographic map for the denser graphs
is huge (for example, the last point of Fig. 8.6, first row, last column, corresponds to
more than 6,000 crossings). The second row of Fig. 8.6 is devoted to metric hel. For
all the tested densities and sizes the readability of the layout is steadily improved both
by the traditional spring embedder and by Algorithm Retina, which appears to be-
have better for small graphs. The advantage of using a 2.5D interface is confirmed by
these charts. It should be also noted that georefenced graphs coming from many real-
life applications have the property that adjacencies are more likely among nodes that
are geographically close. However, in order to prove the effectiveness of Algorithm
Retina with respect to metric hel, we decided to perform our tests against unfavor-
able instances that do not exhibit this property. Algorithm Retina performs better
than the traditional spring embedder with respect to metric ns (see Fig. 8.6, last row),
while the 2D visualization has very unsatisfactory results. Denser graphs are more
effectively handled by Algorithm Retina. Overall, our experiments confirm that the
2.5D interface meets the system requirements. In particular, it allows us to represent
the networked information in way that is considerably more readable than a traditional
2D interface. The adoption of Algorithm Retina is justified by its improvement on
measures hel and ns at the expense of a negligible worsening of the cpr measure.
When the user focuses on smaller instances, the superiority of Algorithm Retina is
apparent.

8.6 Conclusions and Future Work

We described a 2.5D visualization technique for exploring networked data enriched
with geographic information, where the latter may have uncertain or missing values.
Adapting, to our knowledge, for the first time a force-directed algorithm to a 2.5D
setting, we conceived a variant of a spring embedder algorithm that directly computes
the layout on the view plane (i.e., on the user’s screen).

We measured the effectiveness of the proposed visualization and layout algorithm
by contrasting them with a traditional 2D visualization with respect to three relevant
readability measures. Both the experimentation and our experiences with the interface
support our confidence about the effectiveness of the proposed techniques for small
instances of geolocalized graphs. In fact, when the entities are more than a few dozens
the readability measures show very poor performances and the drawing on the logical
layer becomes too cluttered to be clearly readable (see Fig. 8.7).

Although the results are promising, our experiments only evaluate the static setting
and do not account for the dynamic scenario, where changes occur both in the area of
interest selected by the user and in the environment. An evaluation of the effectiveness

i
i

“thesis” — 2016/5/5 — 11:59 — page 146 — #154 i
i

i
i

i
i

146 CHAPTER 8. VISUALIZING GEOREFERENCED GRAPHS

Figure 8.7: A georeferenced graph with 76 entities and 96 edges. The size of the graph makes
cluttering hard to avoid.

of the dynamic scenario would be much more complex and could not leave aside a
thorough user study. An interesting evolution of the Retina algorithm could consider
additional forces to take into account crossings among leaders. One line of further
investigation is given by the possibility of representing on the logical layer further
information. A simple idea is to show a network that is wider than the area of interest
(we call it neighborhood visualization), so to enhance the situational awareness of the
user. Our preliminary experiments in this direction are encouraging.

Appendix

A measure for node separation alternative to measure ns adopted in this chapter was
proposed in [FK13]. Such a measure is based on the average percent deviation of
separating rectangles. Given a node vi on a plane, its separating rectangle is the
maximum-perimeter axis-aligned rectangle that is contained within the bounding box
of all nodes and that does not properly contain any other node in addition, possibly, to
vi (which may lay on the rectangle’s boundary).

A node separation metric ns′ based on separating rectangles could be defined as
follows ([FK13]):

ns′ = 1− 1
n

n

∑
i=1

∣∣∣∣ |vi|−|v|avg

max{|v|avg, |vmax|−|v|avg}

∣∣∣∣

i
i

“thesis” — 2016/5/5 — 11:59 — page 147 — #155 i
i

i
i

i
i

8.6. CONCLUSIONS AND FUTURE WORK 147

where n is the size of the vertex-set of the graph, |vi| is the perimeter of the sep-
arating rectangle of the ith node, |v|avg is the average over all nodes, and |v|max is the
maximum over all nodes.

Measure ns′ is more sophisticated than measure ns adopted in this chapter. How-
ever, we remark that it is difficult to efficiently compute the separating rectangles, un-
less the algorithm in [AS87] is adapted to this purpose. Also, there are configurations
where a better node separation yields a worse ns′ measure. Consider, for example,
Figure 8.8. Nodes in configuration (b) are better separated than nodes in configura-
tion (a), as they are further apart from each other. In configuration (a) the separating
rectangle is the same for all the four nodes (shaded area). This gives ns′ = 1, the high-
est possible value. Two of the separating rectangles of configuration (b) are shown
with light and dark shaded areas (the other two are symmetrical). The perimeter of
these two separating rectangles is 40 and 51, respectively, which gives a worse ns′

metric (ns′ = 0.88).

(a) (b)

Figure 8.8: The configuration in (a) has ns′ = 1, the highest possible value. The configuration
in (b) has ns′ = 0.88. The shaded areas represent the separating rectangles for some of the
nodes.

For the above reasons, we decided to use the metric ns based on the minimum
node distance on the view plane, which is easy to implement and allows us to contrast
2D and 2.5D visualizations.

i
i

“thesis” — 2016/5/5 — 11:59 — page 148 — #156 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 149 — #157 i
i

i
i

i
i

Appendices

149

i
i

“thesis” — 2016/5/5 — 11:59 — page 150 — #158 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 151 — #159 i
i

i
i

i
i

Appendix: List of Publications

The following papers were published or submitted with the results of this thesis.

• Marco Di Bartolomeo, Yifan Hu. There is More to Streamgraph Than Movies:
Better Aesthetics via Ordering and Lassoing. In Proc. 18th EG/VGTC Confer-
ence on Visualization (EuroVis ’16). Eurographics, 2016. To appear.

• Davide Ceneda, Marco Di Bartolomeo, Valentino Di Donato, Maurizio Patrig-
nani, Maurizio Pizzonia, Massimo Rimondini. RoutingWatch: Visual Explo-
ration and Analysis of Routing Events. In Proc. 15th IEEE/IFIP Network Oper-
ations and Management Symposium (NOMS ’16). IEEE, 2016. To appear.

• Marco Di Bartolomeo, Valentino Di Donato, Maurizio Pizzonia, Claudio Squar-
cella, Massimo Rimondini. Discovering High-Impact Routing Events Using
Traceroutes. In Proc. 20th IEEE Symposium on Computers and Communica-
tions (ISCC ’15). IEEE, 2015. Best International Paper Award.

• Giordano Da Lozzo, Marco Di Bartolomeo, Maurizio Patrignani, Giuseppe Di
Battista, Davide Cannone, Sergio Tortora. Drawing Georeferenced Graphs -
Combining Graph Drawing and Geographic Data. In Proc. 6th International
Conference on Information Visualization Theory and Applications (IVAPP ’15).
SciTePress, 2015.

• Patrizio Angelini, Giordano Da Lozzo, Marco Di Bartolomeo, Giuseppe Di
Battista, Seok-Hee Hong, Maurizio Patrignani, Vincenzo Roselli. Anchored
Drawings of Planar Graphs. In Proc. 22nd International Symposium on Graph
Drawing (GD ’14). Springer-Verlag, 2014.

• Massimo Candela, Marco Di Bartolomeo, Giuseppe Di Battista, Claudio Squar-
cella. Dynamic Traceroute Visualization at Multiple Abstraction Levels. In
Proc. 21st International Symposium on Graph Drawing (GD ’13). Springer-
Verlag, 2013.

151

i
i

“thesis” — 2016/5/5 — 11:59 — page 152 — #160 i
i

i
i

i
i

i
i

“thesis” — 2016/5/5 — 11:59 — page 153 — #161 i
i

i
i

i
i

Bibliography

[AAHS05] M. Abellanas, A. Aiello, G. Hernández, and R. I. Silveira. Network
drawing with geographical constraints on vertices. In Actas XI Encuen-
tros de Geom. Comput., pages 111–118, 2005.

[ABHR+13] Basak Alper, Benjamin Bach, Nathalie Henry Riche, Tobias Isenberg,
and Jean-Daniel Fekete. Weighted graph comparison techniques for
brain connectivity analysis. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’13, pages 483–492,
New York, NY, USA, 2013. ACM.

[ACO+06a] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,
Timur Friedman, Matthieu Latapy, Clémence Magnien, and Renata
Teixeira. Avoiding traceroute anomalies with paris traceroute. In Pro-
ceedings of the 6th ACM SIGCOMM Conference on Internet Measure-
ment, IMC ’06, pages 153–158, New York, NY, USA, 2006. ACM.

[ACO+06b] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,
Timur Friedman, Matthieu Latapy, Clémence Magnien, and Renata
Teixeira. Avoiding traceroute anomalies with paris traceroute. In Proc.
IMC, 2006.

[ADD+14] Patrizio Angelini, Giordano Da Lozzo, Marco Di Bartolomeo, Giuseppe
Di Battista, Seok-Hee Hong, Maurizio Patrignani, and Vincenzo
Roselli. Graph Drawing: 22nd International Symposium, GD 2014,
Würzburg, Germany, September 24-26, 2014, Revised Selected Papers,
chapter Anchored Drawings of Planar Graphs, pages 404–415. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[ADDF13] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, and Fab-
rizio Frati. Strip planarity testing. In Stephen K. Wismath and Alexan-

153

i
i

“thesis” — 2016/5/5 — 11:59 — page 154 — #162 i
i

i
i

i
i

154 BIBLIOGRAPHY

der Wolff, editors, Graph Drawing, volume 8242 of LNCS, pages 37–
48. Springer, 2013.

[AFT07] Brice Augustin, Timur Friedman, and Renata Teixeira. Measuring load-
balanced paths in the Internet. In Proc. IMC, 2007.

[agc] MisuraInternet. https://www.misurainternet.it/.

[AP12] D. Archambault and H.C. Purchase. The mental map and memorability
in dynamic graphs. In Visualization Symposium (PacificVis), 2012 IEEE
Pacific, pages 89–96, Feb 2012.

[AP13a] Daniel Archambault and Helen C. Purchase. ”the “map” in the mental
map: Experimental results in dynamic graph drawing”. International
Journal of Human-Computer Studies, 71(11):1044 – 1055, 2013.

[AP13b] Daniel Archambault and HelenC. Purchase. Mental map preservation
helps user orientation in dynamic graphs. In Walter Didimo and Maur-
izio Patrignani, editors, Graph Drawing, volume 7704 of Lecture Notes
in Computer Science, pages 475–486. Springer Berlin Heidelberg, 2013.

[APP11a] D. Archambault, H.C. Purchase, and B. Pinaud. Animation, small mul-
tiples, and the effect of mental map preservation in dynamic graphs. Vi-
sualization and Computer Graphics, IEEE Transactions on, 17(4):539–
552, April 2011.

[APP11b] Daniel Archambault, HelenC. Purchase, and Bruno Pinaud. Difference
map readability for dynamic graphs. In Ulrik Brandes and Sabine Cor-
nelsen, editors, Graph Drawing, volume 6502 of Lecture Notes in Com-
puter Science, pages 50–61. Springer Berlin Heidelberg, 2011.

[ark15] Ark. http://www.caida.org/projects/ark, 2015.

[AS87] A. Aggarwal and S. Suri. Fast algorithms for computing the largest
empty rectangle. SCG ’87, pages 278–290, New York, NY, USA, 1987.
ACM.

[AS07] Aleks Aris and Ben Shneiderman. Designing semantic substrates for
visual network exploration. Information Visualization, 6(4):281–300,
2007.

[atl15] RIPE Atlas. http://atlas.ripe.net, 2015.

i
i

“thesis” — 2016/5/5 — 11:59 — page 155 — #163 i
i

i
i

i
i

BIBLIOGRAPHY 155

[Aug] Bjorn Augustsson. Xtraceroute. http://www.dtek.chalmers.se/

˜d3august/xt/index.html.

[AWW09] K. Andrews, M. Wohlfahrt, and G. Wurzinger. Visual graph compari-
son. In Information Visualisation, 2009 13th International Conference,
pages 62–67, July 2009.

[Bac07] C. Bachmaier. A radial adaptation of the sugiyama framework for vi-
sualizing hierarchical information. IEEE Trans. on Visualization and
Computer Graphics, 13(3):583–594, 2007.

[BAM07] R. Bourqui, D. Auber, and P. Mary. How to draw clusteredweighted
graphs using a multilevel force-directed graph drawing algorithm. In
Information Visualization, 2007. IV ’07. 11th International Conference,
pages 757–764, July 2007.

[BBDW14] Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf. The
State of the Art in Visualizing Dynamic Graphs. In R. Borgo, R. Ma-
ciejewski, and I. Viola, editors, EuroVis - STARs. The Eurographics As-
sociation, 2014.

[BBL12] Ilya Boyandin, Enrico Bertini, and Denis Lalanne. A qualitative study
on the exploration of temporal changes in flow maps with animation
and small-multiples. Computer Graphics Forum, 31(3pt2):1005–1014,
2012.

[BDM02] Giuseppe Battista, Walter Didimo, and A. Marcandalli. Planarization
of clustered graphs. In Petra Mutzel, Michael Jünger, and Sebastian
Leipert, editors, Graph Drawing, volume 2265 of LNCS, pages 60–74.
Springer Berlin Heidelberg, 2002.

[BEB+13] Marcelo Bagnulo, Philip Eardley, Trevor Burbridge, Brian Tram-
mell, and Rolf Winter. Standardizing large-scale measurement plat-
forms. ACM SIGCOMM Computer Communication Review, 43(2):58–
63, 2013.

[BHJ+09] Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy, et al. Gephi:
an open source software for exploring and manipulating networks.
ICWSM, 8:361–362, 2009.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the consecutive
ones property, interval graphs, and graph planarity using pq-tree algo-
rithms. JCSS, 13(3):335 – 379, 1976.

http://www.dtek.chalmers.se/~d3august/xt/index.html
http://www.dtek.chalmers.se/~d3august/xt/index.html

i
i

“thesis” — 2016/5/5 — 11:59 — page 156 — #164 i
i

i
i

i
i

156 BIBLIOGRAPHY

[BLC12] Dominikus Baur, Bongshin Lee, and Sheelagh Carpendale. Touchwave:
Kinetic multi-touch manipulation for hierarchical stacked graphs. In
Proceedings of the 2012 ACM International Conference on Interactive
Tabletops and Surfaces, ITS ’12, pages 255–264, New York, NY, USA,
2012. ACM.

[BM99] François Bertault and Mirka Miller. Graph Drawing: 7th Interna-
tional Symposium, GD’99 Štiřı́n Castle, Czech Republic September 15–
19, 1999 Proceedings, chapter An Algorithm for Drawing Compound
Graphs, pages 197–204. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1999.

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven
documents. IEEE Trans. Vis. Comput. Graphics, 17(12):2301–2309,
December 2011.

[Bos] Mike Bostock. Data-driven documents. http://d3js.org/.

[BPF14] Benjamin Bach, Emmanuel Pietriga, and Jean-Daniel Fekete. Graph-
diaries: Animated transitions and temporal navigation for dynamic net-
works. IEEE Transactions on Visualization and Computer Graphics,
20(5):740–754, May 2014.

[Bro14] Nevil Brownlee. On searching for patterns in traceroute responses. In
Proc. PAM, 2014.

[BS08] Michael Baur and Thomas Schank. Dynamic graph drawing in visone.
Technical report, Fakultät für Informatik, Universität Karlsruhe, 2008.

[BW04] Ulrik Brandes and Dorothea Wagner. Visone - analysis and visualiza-
tion of social networks. In Michael Jünger and Petra Mutzel, editors,
Graph Drawing Software, Mathematics and Visualization, pages 321–
340. Springer Berlin Heidelberg, 2004.

[BW08] Lee Byron and Martin Wattenberg. Stacked graphs – geometry & aes-
thetics. IEEE Transactions on Visualization and Computer Graphics,
14(6):1245–1252, November 2008.

[CC07] C. Collins and S. Carpendale. VisLink: Revealing relationships amongst
visualizations. IEEE Trans. on Visual. and Comp. Graph., 13(6):1192–
1199, 2007.

i
i

“thesis” — 2016/5/5 — 11:59 — page 157 — #165 i
i

i
i

i
i

BIBLIOGRAPHY 157

[CC14] Giovanni Comarela and Mark Crovella. Identifying and analyzing high
impact routing events with PathMiner. In Proc. IMC, 2014.

[CD05] P. F. Cortese and G. Di Battista. Clustered planarity. In SCG ’05: Pro-
ceedings of the twenty-first annual symposium on Computational geom-
etry, pages 32–34, New York, NY, USA, 2005. ACM Press.

[CDD+16] D. Ceneda, M. Di Bartolomeo, V. Di Donato, M. Patrignani, M. Pizzo-
nia, and M. Rimondini. Routingwatch: Visual exploration and analysis
of routing events. In Network Operations and Management Symposium
(NOMS), 2016 IEEE, 2016.

[CDDS13] Massimo Candela, Marco Di Bartolomeo, Giuseppe Di Battista, and
Claudio Squarcella. Dynamic traceroute visualization at multiple ab-
straction levels. In Stephen Wismath and Alexander Wolff, editors,
Graph Drawing (Proc. GD ’13), volume 8242 of Lecture Notes in Com-
puter Science, pages 500–511, 2013.

[CDM+05a] Lorenzo Colitti, Giuseppe Di Battista, Federico Mariani, Maurizio Pa-
trignani, and Maurizio Pizzonia. Visualizing interdomain routing with
BGPlay. Journal of Graph Algorithms and Applications, Special Is-
sue on the 2003 Symposium on Graph Drawing, GD ’03, 9(1):117–148,
2005.

[CDM+05b] Lorenzo Colitti, Giuseppe Di Battista, Federico Mariani, Maurizio Pa-
trignani, and Maurizio Pizzonia. Visualizing interdomain routing with
BGPlay. J. Graph Alg. and App., 9(1):117–148, 2005.

[CGC13] Giovanni Comarela, Gonca Gürsun, and Mark Crovella. Studying inter-
domain routing over long timescales. In Proc. IMC, 2013.

[Cis15] Cisco Systems, Inc. IOS Embedded Event Manager. http:
//www.cisco.com/c/en/us/products/ios-nx-os-software/
ios-embedded-event-manager-eem/, 2015.

[CKN+03] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and
Kevin Wampler. A system for graph-based visualization of the evolution
of software. In Proceedings of the 2003 ACM Symposium on Software
Visualization, SoftVis ’03, pages 77–ff, New York, NY, USA, 2003.
ACM.

 http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-embedded-event-manager-eem/
 http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-embedded-event-manager-eem/
 http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-embedded-event-manager-eem/

i
i

“thesis” — 2016/5/5 — 11:59 — page 158 — #166 i
i

i
i

i
i

158 BIBLIOGRAPHY

[CLT+11] Weiwei Cui, Shixia Liu, Li Tan, Conglei Shi, Yangqiu Song, Zekai Gao,
Huamin Qu, and Xin Tong. Textflow: Towards better understanding of
evolving topics in text. Visualization and Computer Graphics, IEEE
Transactions on, 17(12):2412–2421, Dec 2011.

[CM13] Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs
makes crossing number and 1-planarity hard. SIAM J. Comput.,
42(5):1803–1829, 2013.

[COZ08] Ying-Ju Chi, Ricardo Oliveira, and Lixia Zhang. Cyclops: The AS-
level connectivity observatory. ACM SIGCOMM Comput. Commun.
Rev., 38(5):5–16, September 2008.

[CTFD09] Ítalo Cunha, Renata Teixeira, Nick Feamster, and Christophe Diot.
Measurement methods for fast and accurate blackhole identification
with binary tomography. In Proc. IMC, 2009.

[data] Box office mojo. http://www.boxofficemojo.com.

[datb] Eurostat. http://ec.europa.eu/eurostat/en/web/lfs.

[datc] Google domestic trends. https://www.google.com/finance/
domestic_trends.

[datd] Linux kernel. https://github.com/torvalds/linux.

[date] Nyc opendata. https://nycopendata.socrata.com/
Social-Services/311-Service-Requests-from-2010-to-Present/
erm2-nwe9.

[datf] Yahoo! finance. http://finance.yahoo.com.

[datg] Ycharts. https://www.ycharts.com.

[DBN88] G. Di Battista and E. Nardelli. Hierarchies and planarity theory. Sys-
tems, Man and Cybernetics, IEEE Transactions on, 18(6):1035–1046,
1988.

[DDP+14] Marco Di Bartolomeo, Valentino Di Donato, Maurizio Pizzonia, Clau-
dio Squarcella, and Massimo Rimondini. Mining network events using
traceroute empathy. Technical Report arXiv:1412.4074, Cornell Uni-
versity, Dec 2014.

http://www.boxofficemojo.com
http://ec.europa.eu/eurostat/en/web/lfs
https://www.google.com/finance/domestic_trends
https://www.google.com/finance/domestic_trends
https://github.com/torvalds/linux
https://nycopendata.socrata.com/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://nycopendata.socrata.com/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://nycopendata.socrata.com/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
http://finance.yahoo.com
https://www.ycharts.com

i
i

“thesis” — 2016/5/5 — 11:59 — page 159 — #167 i
i

i
i

i
i

BIBLIOGRAPHY 159

[DDP+15a] Giordano Da Lozzo, Marco Di Bartolomeo, Maurizio Patrignani,
Giuseppe Di Battista, Davide Cannone, and Sergio Tortora. Drawing
georeferenced graphs - combining graph drawing and geographic data.
In Lars Linsen, Andreas Kerren, and José Braz, editors, Proceedings of
the 6th International Conference on Information Visualization Theory
and Applications, IVAPP 2015, Berlin, Germany, 11-14 March, 2015.,
pages 109–116, 2015.

[DDP+15b] Marco Di Bartolomeo, Valentino Di Donato, Maurizio Pizzonia, Clau-
dio Squarcella, and Massimo Rimondini. Discovering high-impact rout-
ing events using traceroutes. In Computers and Communication (ISCC),
2015 IEEE Symposium on, 2015.

[DE02] T. Dwyer and P. Eades. Visualising a fund manager flow graph with
columns and worms. In Information Visualisation, 2002. Proceedings.
Sixth International Conference on, pages 147–152, 2002.

[DG02] Stephan Diehl and Carsten Görg. Graphs, they are changing. In
MichaelT. Goodrich and StephenG. Kobourov, editors, Graph Draw-
ing, volume 2528 of Lecture Notes in Computer Science, pages 23–31.
Springer Berlin Heidelberg, 2002.

[DGWC10] M. Dork, D. Gruen, C. Williamson, and S. Carpendale. A visual
backchannel for large-scale events. Visualization and Computer Graph-
ics, IEEE Transactions on, 16(6):1129–1138, Nov 2010.

[DH] Marco Di Bartolomeo and Yifan Hu. There is more to streamgraph
than movies: Better aesthetics via ordering and lassoing. In Proc. 18th
EG/VGTC Conference on Visualization (EuroVis ’16). To appear.

[DM03] Adrian Dumitrescu and Joseph S. B. Mitchell. Approximation al-
gorithms for TSP with neighborhoods in the plane. J. Algorithms,
48(1):135–159, 2003.

[DTDD07] Amogh Dhamdhere, Renata Teixeira, Constantine Dovrolis, and
Christophe Diot. Netdiagnoser: Troubleshooting network unreachabili-
ties using end-to-end probes and routing data. In Proc. CoNEXT, 2007.

[Duf06] Nick Duffield. Network tomography of binary network perfor-
mance characteristics. IEEE Transactions on Information Theory,
52(12):5373–5388, 2006.

i
i

“thesis” — 2016/5/5 — 11:59 — page 160 — #168 i
i

i
i

i
i

160 BIBLIOGRAPHY

[EH00a] Peter Eades and Mao Lin Huang. Navigating clustered graphs us-
ing force-directed methods. J. Graph Algorithms Appl., 4(3):157–181,
2000.

[EH00b] Peter Eades and Mao Lin Huang. Navigating clustered graphs us-
ing force-directed methods. J. Graph Algorithms Appl., 4(3):157–181,
2000.

[FAM+11] Paolo Federico, Wolfgang Aigner, Silvia Miksch, Florian Windhager,
and Lukas Zenk. A visual analytics approach to dynamic social net-
works. In Proceedings of the 11th International Conference on Knowl-
edge Management and Knowledge Technologies, i-KNOW ’11, pages
47:1–47:8, New York, NY, USA, 2011. ACM.

[FB04] Michael Forster and Christian Bachmaier. Clustered level planarity. In
Peter Emde Boas, Jaroslav Pokorný, Máriá Bieliková, and Július S̆tuller,
editors, SOFSEM 2004: Theory and Practice of Computer Science, vol-
ume 2932 of LNCS, pages 218–228. Springer Berlin Heidelberg, 2004.

[FE01] Carsten Friedrich and Peter Eades. The marey graph animation tool
demo. In Joe Marks, editor, Graph Drawing, volume 1984 of Lecture
Notes in Computer Science, pages 396–406. Springer Berlin Heidel-
berg, 2001.

[FE02] Carsten Friedrich and Peter Eades. Graph drawing in motion. Journal
of Graph Algorithms and Applications, 6(3):353–370, 2002.

[FHQ11] Michael Farrugia, Neil Hurley, and Aaron Quigley. Exploring temporal
ego networks using small multiples and tree-ring layouts. Proc. 4th In-
ternational Conference on Advances in Computer-Human Interactions
(ACHI 2011), 2011:23–28, 2011.

[FK13] J. Joseph Fowler and StephenG. Kobourov. Planar preprocessing for
spring embedders. In Graph Drawing GD ’12, volume 7704 of LNCS,
pages 388–399. Springer, 2013.

[FMM+04] Anja Feldmann, Olaf Maennel, Z. Morley Mao, Arthur Berger, and
Bruce Maggs. Locating Internet routing instabilities. ACM SIGCOMM
Computer Communication Review, 34(4):205–218, August 2004.

[FQ11] Michael Farrugia and Aaron Quigley. Effective temporal graph layout:
A comparative study of animation versus static display methods. Infor-
mation Visualization, 10(1):47–64, 2011.

i
i

“thesis” — 2016/5/5 — 11:59 — page 161 — #169 i
i

i
i

i
i

BIBLIOGRAPHY 161

[FT04] Y. Frishman and A. Tal. Dynamic drawing of clustered graphs. In IEEE
Symposium on Information Visualization, 2004. INFOVIS 2004, pages
191–198, 2004.

[GEY12] S. Ghani, N. Elmqvist, and J. S. Yi. Perception of animated node-
link diagrams for dynamic graphs. Computer Graphics Forum,
31(3pt3):1205–1214, 2012.

[GKNpV93] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem
phong Vo. A technique for drawing directed graphs. IEEE Transactions
On Software Engineering, 19(3):214–230, 1993.

[God95] Michael Godau. On the difficulty of embedding planar graphs with inac-
curacies. In Roberto Tamassia and Ioannis Tollis, editors, Graph Draw-
ing (GD ’94), volume 894 of LNCS, pages 254–261. Springer, 1995.

[Goo13] Google Inc. Google Earth, 2013. http://earth.google.com.

[Goo15] Google Inc. Google Maps. https://maps.google.com/, 2015.

[GT01] Ashim Garg and Roberto Tamassia. On the computational complexity of
upward and rectilinear planarity testing. SIAM J. Comput., 31(2):601–
625, 2001.

[GWY+11] Hanqi Guo, Zuchao Wang, Bowen Yu, Huijing Zhao, and Xiaoru Yuan.
Tripvista: Triple perspective visual trajectory analytics and its appli-
cation on microscopic traffic data at a road intersection. In Visualiza-
tion Symposium (PacificVis), 2011 IEEE Pacific, pages 163–170, March
2011.

[HD12] Mountaz Hascoët and Pierre Dragicevic. Interactive graph matching and
visual comparison of graphs and clustered graphs. In Proceedings of the
International Working Conference on Advanced Visual Interfaces, AVI
’12, pages 522–529, New York, NY, USA, 2012. ACM.

[HFT08] Yiyi Huang, Nick Feamster, and Renata Teixeira. Practical issues with
using network tomography for fault diagnosis. ACM SIGCOMM Com-
puter Communication Review, 38(5):53–58, 2008.

[HHWN02] Susan Havre, Elizabeth Hetzler, Paul Whitney, and Lucy Nowell. The-
meriver: Visualizing thematic changes in large document collections.
IEEE Transactions on Visualization and Computer Graphics, 8(1):9–
20, January 2002.

https://maps.google.com/

i
i

“thesis” — 2016/5/5 — 11:59 — page 162 — #170 i
i

i
i

i
i

162 BIBLIOGRAPHY

[HSS11] S. Hadlak, H. Schulz, and H. Schumann. In situ exploration of
large dynamic networks. IEEE Trans. on Visual. and Comp. Graph.,
17(12):2334–2343, Dec 2011.

[Int16] International Data Corporation. Mobile Internet Users to Top 2
Billion Worldwide in 2016. https://www.idc.com/getdoc.jsp?
containerId=prUS40855515, 2016.

[JCC+13] Umar Javed, Italo Cunha, David Choffnes, Ethan Katz-Bassett, Thomas
Anderson, and Arvind Krishnamurthy. Poiroot: Investigating the root
cause of interdomain path changes. ACM SIGCOMM Computer Com-
munication Review, 43(4):183–194, August 2013.

[KAF+08] Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg,
Jörn Kohlhammer, and Guy Melançon. Information Visualization:
Human-Centered Issues and Perspectives, chapter Visual Analytics:
Definition, Process, and Challenges, pages 154–175. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[KBMJ+08] Ethan Katz-Bassett, Harsha V Madhyastha, John P John, Arvind Krish-
namurthy, David Wetherall, and Thomas E Anderson. Studying black
holes in the Internet with Hubble. In Proc. NSDI, 2008.

[KBSC+12] Ethan Katz-Bassett, Colin Scott, David R Choffnes, Ítalo Cunha, Vytau-
tas Valancius, Nick Feamster, Harsha V Madhyastha, Thomas Ander-
son, and Arvind Krishnamurthy. Lifeguard: Practical repair of persistent
route failures. ACM SIGCOMM Comput. Commun. Review, 42(4):395–
406, 2012.

[KYGS] Ramana Rao Kompella, Jennifer Yates, Albert G Greenberg, and Alex C
Snoeren. Detection and localization of network black holes. In INFO-
COM ’07.

[Lic82] David Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11:185–225, 1982.

[LMR98] Kelly A. Lyons, Henk Meijer, and David Rappaport. Algorithms for
cluster busting in anchored graph drawing. J. Graph Algorithms Appl.,
2(1), 1998.

[LMZ06] Mohit Lad, Dan Massey, and Lixia Zhang. Visualizing internet routing
changes. IEEE Trans. Vis. Comput. Graphics, 12(6):1–11, 2006.

https://www.idc.com/getdoc.jsp?containerId=prUS40855515
https://www.idc.com/getdoc.jsp?containerId=prUS40855515

i
i

“thesis” — 2016/5/5 — 11:59 — page 163 — #171 i
i

i
i

i
i

BIBLIOGRAPHY 163

[LSKS10] A. Lex, M. Streit, E. Kruijff, and D. Schmalstieg. Caleydo: Design and
evaluation of a visual analysis framework for gene expression data in its
biological context. In PacificVis 2010, 2010.

[LvK10] Maarten Löffler and Marc J. van Kreveld. Largest and smallest convex
hulls for imprecise points. Algorithmica, 56(2):235–269, 2010.

[LWW+13] Shixia Liu, Yingcai Wu, Enxun Wei, Mengchen Liu, and Yang Liu.
Storyflow: Tracking the evolution of stories. IEEE Trans. Vis. Comput.
Graph., 19(12):2436–2445, 2013.

[Lyo] Gordon Lyon. Zenmap. https://nmap.org/zenmap.

[LZP+12] Shixia Liu, Michelle X. Zhou, Shimei Pan, Yangqiu Song, Weihong
Qian, Weijia Cai, and Xiaoxiao Lian. Tiara: Interactive, topic-based vi-
sual text summarization and analysis. ACM Trans. Intell. Syst. Technol.,
3(2):25:1–25:28, February 2012.

[Max15] MaxMind, Inc. Geoip2. https://www.maxmind.com/, 2015.

[MELS95] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout ad-
justment and the mental map. ”Journal of Visual Languages & Com-
puting”, 6(2):183 – 210, 1995.

[MG-15] MG-SOFT. Net Inspector. http://www.mg-soft.com/, 2015.

[MHS+14] Liang Ma, Ting He, Ananthram Swami, Don Towsley, Kin K Leung,
and Jessica Lowe. Node failure localization via network tomography.
In Proc. IMC, 2014.

[mla15] MLab. http://www.measurementlab.net, 2015.

[MPP13] Pietro Marchetta, Valerio Persico, and Antonio Pescapè. Pythia: yet
another active probing technique for alias resolution. In Proc. CoNEXT,
2013.

[Nag15] Nagios Enterprises, LLC. Nagios. https://www.nagios.org/, 2015.

[NOA] NOAA Coastal Services Center. http://www.marinecadastre.gov
(acc. 2014).

[NS00] Chris North and Ben Shneiderman. Snap-together visualization: can
users construct and operate coordinated visualizations? International
Journal of Human-Computer Studies, 53(5):715–739, 2000.

https://www.maxmind.com/
http://www.mg-soft.com/
https://www.nagios.org/

i
i

“thesis” — 2016/5/5 — 11:59 — page 164 — #172 i
i

i
i

i
i

164 BIBLIOGRAPHY

[Pat06] Maurizio Patrignani. On extending a partial straight-line drawing.
International Journal of Foundations of Computer Science (IJFCS),
17(5):1061–1069, 2006.

[PB08] Mathias Pohl and Peter Birke. Visual Information Systems. Web-Based
Visual Information Search and Management: 10th International Con-
ference, VISUAL 2008, Salerno, Italy, September 11-12, 2008. Pro-
ceedings, chapter Interactive Exploration of Large Dynamic Networks,
pages 56–67. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[PCJ97] H. C. Purchase, R. F. Cohen, and M. I. James. An experimental study of
the basis for graph drawing algorithms. J. Exp. Algorithmics, 2, 1997.

[PHG07] HelenC. Purchase, Eve Hoggan, and Carsten Görg. How important is
the “mental map”? – an empirical investigation of a dynamic graph
layout algorithm. In Michael Kaufmann and Dorothea Wagner, editors,
Graph Drawing, volume 4372 of Lecture Notes in Computer Science,
pages 184–195. Springer Berlin Heidelberg, 2007.

[PN99] Ram Periakaruppan and Evi Nemeth. Gtrace - a graphical traceroute
tool. In Proc. 13th USENIX conference on System administration, pages
69–78. USENIX Association, 1999.

[PRB08] Mathias Pohl, Florian Reitz, and Peter Birke. As time goes by: In-
tegrated visualization and analysis of dynamic networks. In Proceed-
ings of the Working Conference on Advanced Visual Interfaces, AVI
’08, pages 372–375, New York, NY, USA, 2008. ACM.

[PS08] HelenC. Purchase and Amanjit Samra. Extremes are better: Investi-
gating mental map preservation in dynamic graphs. In Gem Stapleton,
John Howse, and John Lee, editors, Diagrammatic Representation and
Inference, volume 5223 of Lecture Notes in Computer Science, pages
60–73. Springer Berlin Heidelberg, 2008.

[Pur00] Helen C. Purchase. Effective information visualisation: a study of
graph drawing aesthetics and algorithms. Interacting with Computers,
13(2):147–162, 2000.

[QoS] QoSient LLC. Argus. http://qosient.com/argus.

[Rai05] Marcus Raitner. Visual navigation of compound graphs. In János
Pach, editor, Graph Drawing, volume 3383 of LNCS, pages 403–413.
Springer Berlin Heidelberg, 2005.

i
i

“thesis” — 2016/5/5 — 11:59 — page 165 — #173 i
i

i
i

i
i

BIBLIOGRAPHY 165

[rfc] RFC 1918. address allocation for private internets.
http://www.ietf.org/rfc/rfc1918.txt.

[RIP] RIPE NCC. RIPEstat. https://stat.ripe.net/.

[RM13] S. Rufiange and M.J. McGuffin. Diffani: Visualizing dynamic graphs
with a hybrid of difference maps and animation. Visualization and Com-
puter Graphics, IEEE Transactions on, 19(12):2556–2565, Dec 2013.

[Rob07] Jonathan C. Roberts. State of the art: Coordinated multiple views in
exploratory visualization. In Proc. CMV, July 2007.

[Rob12] Maxwell J. Roberts. Underground Maps Unravelled - Explorations in
Information Design. 2012.

[Rom] Roma Tre University. Radian: Traceroute visualization. http://www.
dia.uniroma3.it/˜compunet/projects/radian/.

[RPD09] F. Reitz, M. Pohl, and S. Diehl. Focused animation of dynamic com-
pound graphs. In Information Visualisation, 2009 13th International
Conference, pages 679–684, July 2009.

[SA06] B. Shneiderman and A. Aris. Network visualization by semantic sub-
strates. IEEE Trans. on Visual. and Comp. Graph., 12(5):733–740,
2006.

[sam15] SamKnows. https://www.samknows.com, 2015.

[San96] Georg Sander. Layout of compound directed graphs. Technical report,
FB Informatik, Universitat Des Saarlandes, 1996.

[San99] G. Sander. Graph layout for applications in compiler construction. The-
oretical Computer Science, 217(2):175 – 214, 1999.

[SdDF+11] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford,
and A. Pescapè. Broadband internet performance: A view from the
gateway. In Proc. SIGCOMM, 2011.

[SKKS08] Marc Streit, Michael Kalkusch, Karl Kashofer, and Dieter Schmal-
stieg. Navigation and exploration of interconnected pathways. Comput.
Graph. Forum, 27(3):951–958, 2008.

http://www.dia.uniroma3.it/~compunet/projects/radian/
http://www.dia.uniroma3.it/~compunet/projects/radian/

i
i

“thesis” — 2016/5/5 — 11:59 — page 166 — #174 i
i

i
i

i
i

166 BIBLIOGRAPHY

[SLN05] P. Saraiya, P. Lee, and C. North. Visualization of graphs with associated
timeseries data. In Information Visualization, 2005. INFOVIS 2005.
IEEE Symposium on, pages 225–232, Oct 2005.

[SM91] K. Sugiyama and K. Misue. Visualization of structural information:
automatic drawing of compound digraphs. IEEE Trans. on Systems,
Man and Cybernetics, 21(4):876–892, 1991.

[SP08] Peter Saffrey and Helen Purchase. The ”mental map” versus ”static aes-
thetic” compromise in dynamic graphs: A user study. In Proceedings of
the Ninth Conference on Australasian User Interface - Volume 76, AUIC
’08, pages 85–93, Darlinghurst, Australia, Australia, 2008. Australian
Computer Society, Inc.

[SWS+11] M. Steinberger, M. Waldner, M. Streit, A Lex, and D. Schmalstieg.
Context-preserving visual links. IEEE Trans. on Visual. and Comp.
Graph., 17(12):2249–2258, Dec 2011.

[Tam07] Roberto Tamassia. Handbook of Graph Drawing and Visualization
(Discrete Mathematics and Its Applications). Chapman & Hall/CRC,
2007.

[TDBET98] Ioannis G. Tollis, Giuseppe Di Battista, Peter Eades, and Roberto
Tamassia. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice Hall, 1998.

[The13] The Khronos Group. WebGL, Web Graphic Library – OpenGL ES 2.0
for the Web, 2013. http://www.khronos.org/webgl/ (acc. 2014).

[Tho] ThousandEyes Inc. Network monitoring software. http://www.
thousandeyes.com/.

[Tib94] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58:267–288, 1994.

[TM12] Yuzuru Tanahashi and Kwan-Liu Ma. Design considerations for op-
timizing storyline visualizations. IEEE Trans. Vis. Comput. Graph.,
18(12):2679–2688, 2012.

[TMW03] Soon Tee Teoh, Kwan-Liu Ma, and S. Felix Wu. A visual exploration
process for the analysis of internet routing data. In Proc. IEEE Visual-
ization Conference (VIS ’03), 2003.

http://www.thousandeyes.com/
http://www.thousandeyes.com/

i
i

“thesis” — 2016/5/5 — 11:59 — page 167 — #175 i
i

i
i

i
i

BIBLIOGRAPHY 167

[Vis] Visualware. VisualRoute. http://www.visualroute.com.

[WDSC07] Jo Wood, Jason Dykes, Aidan Slingsby, and Keith Clarke. Interactive
visual exploration of a large spatio-temporal dataset: Reflections on a
geovisualization mashup. IEEE Trans. Vis. and C. Graph., 13(6):1176–
1183, 2007.

[Wea05] C. Weaver. Visualizing coordination in situ. In INFOVIS 2005, Oct
2005.

[WM96] Xiaobo Wang and Isao Miyamoto. Graph Drawing: Symposium on
Graph Drawing, GD ’95 Passau, Germany, September 20–22, 1995
Proceedings, chapter Generating customized layouts, pages 504–515.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[WSD11] J. Wood, A. Slingsby, and J. Dykes. Visualizing the dynamics of Lon-
don’s bicycle hire scheme. Cartographica, 46(4):239–251, 2011.

[YFDH01] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, and Marti Hearst. An-
imated exploration of dynamic graphs with radial layout. In Proc. IN-
FOVIS’01. IEEE Computer Society, 2001.

http://www.visualroute.com

	Contents
	Introduction
	Preliminary Concepts and Definitions
	Computer Networks
	Graph Drawing

	Visualizing Routing from Detail to Overview
	Visual Analysis of Routing Dynamics and Topology
	Introduction
	Reference Scenario
	Related Work
	Terminology
	Analysis of Data
	User Interface
	Algorithms
	User Study
	Conclusions and Future Work

	Visualization of Network Metrics as Stacked Charts
	Introduction
	Related Work
	Finding a Baseline via Wiggle Optimization
	Layer Ordering
	Labeling of Layers
	Time Complexity of the Algorithms
	Experiments
	Discussions
	Conclusions and Future Work

	Abstract Representation of Routing
	Automatic Discovery of High-Impact Routing Events
	Introduction
	Related Work
	The Empathy Relationship
	Seeking Events: Methodology and Algorithm
	Experimental Results
	Conclusions and Future Work

	Visual Analysis of Routing Events
	Introduction
	Reference Scenario
	Related Work
	RoutingWatch: A Visual Event Analysis Tool
	Evaluation
	Conclusions and Future Work

	Interplay Between Routing and Geography
	Planarity of Georeferenced Graphs
	Introduction
	Problem Definition and Instances Classification
	Polynomial-Time Algorithm
	Hardness Results
	Conclusions and Future Work

	Heuristics for Visualizing Georeferenced Graphs
	Introduction
	Visualizing Networked and Geographic Data
	Related Work
	The Retina Layout Algorithm
	Experimental Evaluation
	Conclusions and Future Work

	Appendices
	List of Publications
	Bibliography

