
UNIVERSITA’ DEGLI STUDI ROMA TRE

Facoltà di Scienze Matematiche, Fisiche e Naturali

Dipartimento di Matematica

Trace Zero Varieties
in Pairing-based Cryptography

Relatori:
Prof. Antonio LIOY

Prof. Roberto M. AVANZI

Coordinatore:
Prof. Renato SPIGLER

Tesi di Dottorato di:

Emanuele CESENA

XXI ciclo

Anno Accademico 2009–2010

Introduction

The term cryptography, by etymology or simply by association of ideas, suggests its
connection with secret messages and this is made clear from the definition that we find
in Wikipedia: “The practice and study of hiding information”.

In light of the results of the fundamental article of Diffie and Hellman New Direc-
tions in Cryptography [DH76] this simple definition of cryptography seems to require a
supplement: nowadays states, public organizations and private individuals can not only
exchange information in secrecy, but also sign electronic documents so that the digital
signature is easily verifiable, but not falsifiable. To make this possible, Diffie and Hell-
man introduce the concept of public-key cryptosystem: the use of public keys allows us
to exchange secret keys without having to meet in person (for instance, using channels
in clear on the network) or generate/verify digital signatures.

The first example of a public key cryptosystem is proposed in 1978 by Rivest, Shamir
and Adleman [RSA78]. Diffie and Hellman also advance the idea of establishing a
cryptographic system on the discrete logarithm problem (DLP) in a finite field, an idea
which they attribute to Prof. Gill of Stanford University, and carried out for the first
time in 1985 by ElGamal [ElG85].

In the same year Miller and Koblitz [Mil86a, Kob87] propose to use the group of
rational points of an elliptic curve over a finite field. Compared to those already men-
tioned, elliptic curves allow greater flexibility in building the group and the use of smaller
keys at the same level of security. Four years later Koblitz [Kob89] indicates the Jaco-
bian variety of hyperelliptic curves as another possible candidate for the construction of
cryptosystems.

In 1998 Frey [Fre98, Fre01] suggests to use Trace Zero Varieties (TZV) for cryptosys-
tems based on the DLP. The starting point of Frey’s construction is, in the simplest case,
an elliptic curve E defined over a finite field Fq. Let Fqr/Fq be a finite extension. The
group E(Fqr) contains E(Fq) and the Frobenius automorphism Fqr/Fq extends to E(Fqr)
in a natural way. The TZV is a subgroup of E(Fqr) (more precisely, a subvariety of the
Weil restriction of scalars of E(Fqr) from Fqr to Fq) which is globally invariant under
the action of the Frobenius and isomorphic to the quotient E(Fqr)/E(Fq). It is exactly
such action of the Frobenius to make the computation of scalar multiplication on TZV
particularly efficient.

Several authors address the study of TZV: Naumann [Nau99] and Blady [Bla02]
consider TZV of elliptic curves over extension fields of degree 3 (r = 3); Weimer-
skirch [Wei01] analyzes the case for extension fields of degree 5; finally Lange [Lan01,
Lan04] builds TZV from the Jacobian variety of hyperelliptic curves of genus two, over
extension fields of degree 3. Avanzi and Lange [AL04] compare the performance of these
three kinds of TZV over fields of odd characteristic. Avanzi and Cesena [Ces04, AC08b]
compare the same three types of TZV defined over binary fields, underlining similarities

I

II

and main differences between TZV defined over fields of even and odd characteristic.
The performance of an elliptic curve cryptosystem depends mainly on two aspects

that one needs to consider when implementing the scalar multiplication: the first is
the choice of the coordinate system used to represent points, such as classical affine
coordinates where a point is represented by the pair (x, y), and the second is the use or
not of precomputation.

In this work we extend the results of [AC08b] over binary fields, by taking into
account different types of coordinate systems and evaluating the effect of using or not
precomputation (the latter has already been considered in literature).

For elliptic curves several coordinate systems are available. The basic idea is to avoid
inversions in the field (typically expensive) and to speed up the operation of doubling
a point on the curve, which is the one with the major impact on scalar multiplication,
especially when using precomputation. Among the proposed coordinate systems for bi-
nary elliptic curves, we mention projective coordinates in which a point is represented
by the tuple (X,Y, Z) that corresponds to (x, y) = (X/Z, Y/Z) and López-Dahab coor-
dinates where (X,Y, Z) corresponds to (x, y) = (X/Z, Y/Z2) (in Section 4.2 we extend
the discussion to other coordinate systems).

The main result of our analysis – reported in Section 4.2.4, Tables 4.3, C.4, C.5
and C.6 – is that TZV of elliptic curves over extensions of degree 5 are the most efficient
groups suitable to build cryptographic systems based on the DLP. On our Intel platform
(32-bit), at 80-bit security they are about 10% faster (20% using precomputation) and
at 96-bit security they are about 22% faster (30% using precomputation) than elliptic
curves with López-Dahab coordinates (extended, to be precise). For TZV, the affine
coordinates appear to be the most efficient. This is because we work in extension fields,
where the bad impact of inversions is reduced (an inversion in a extension only requires
a single inversion in the ground field).

Nowadays it is easy to be blinded by the incredible amount of memory and com-
putational power which is available in laptops and personal computers. However, it is
important to stress that there are countless applications – where cryptography is im-
portant and often overlooked – that are or need to be deployed on devices with limited
resources, like mobile phones or wireless sensors.

In such cases using affine coordinates and avoiding precomputation can be the only
way to cope with the constrains imposed by the scenario and TZV turn out to be
an excellent solution to improve performance. Indeed, if we limit to consider affine
coordinates, we confirm the results in [AC08b] that TZV of elliptic curves are always
much more efficient than elliptic curves themselves (by factors about 1.5 for extension
of degree 3 and more than 2 for degree 5).

To further assess the validity of our results, we perform experiments also on a Pow-
erPC machine, still a relatively powerful server, but the idea is to have a comparison
also with an architecture more similar to what can be found in many embedded devices.
Here the advantage of TZV is even more accentuated.

Finally, following an idea of [HKA06], in Section 4.2.2 we develop for TZV a new
coordinate system, the compressed López-Dahab coordinates, in which a Fqr -rational
point is represented by the tuple (X,Y, z) ∈ Fqr × Fqr × Fq that corresponds to (x, y) =
(X/z, Y/z2). The difference with López-Dahab coordinates is therefore that the coordi-
nate z is in Fq, thus smaller. This is made possible by a particular operation available in
extensions, called pseudo-inversion (see Section 4.1.2), that does not involve inversions
in the ground field.

III

This new coordinate system turns out to be on average 8÷ 10% faster than López-
Dahab coordinates, and generally presents similar performance to affine coordinates. We
want to remark that, since they do not require inversions in the ground field, compressed
coordinates become so much more effective as worst the inversion is, thus they are
attractive for devices with constrained resources.

Returning to the history of public-key cryptography, a big step forward has been
made with the introduction of pairing-based cryptography. Pairing, from the math-
ematical point of view, is a non-degenerate, bilinear map and to use it in practical
applications, we additionally require that it is efficiently computable. Algebraic geom-
etry gives us two examples of pairing that meet the above definition: the Weil pairing
and the Lichtenbaum-Tate pairing, that we shall simply call Tate pairing. The lat-
ter is particularly interesting for cryptography because it has better qualities from the
computational point of view, at least for moderate security levels.

The first use of pairing in cryptography dates back to 1993, when it is exploited
by Menezes, Okamoto and Vanstone [MOV93] to attack cryptosystems by reducing the
DLP in the group of rational points of an elliptic curve to the DLP in a finite field. This
attack is called the MOV attack.

We have to wait until 2000 to see authors rediscover pairing and use it “for good”,
starting to develop cryptographic protocols and schemes based on pairing: Sakai, Ohgishi
and Kasahara introduce the first pairing-based key-agreement and signature schemes,
and Joux [Jou00] extends the Diffie-Hellman key agreement protocol to a three-party,
one-round protocol.

Another fundamental construction is the first Identiy-Based Encryption (IBE) scheme
realized in 2001 by Boneh and Franklin [BF01]. In IBE, user’s public key is derived from
some known aspects of her identity, such as her name or e-mail address and this elimi-
nates the key distribution or certification problems. The construction of a workable and
provably secure scheme was an open problem posed by Shamir and dating back to 1984.

These key contributions have been the trigger for an actual explosion of interest in
pairing-based cryptography, which led in recent years the definition of many protocols
and schemes and motivated the research for ever more efficient implementations.

Pairing meets TZV in 2002, when Rubin and Silverberg [RS02] propose to use
supersingular abelian varieties of dimension greater than one to improve the security
of pairing-based cryptosystems. Besides Jacobian varieties of hyperelliptic curves, the
other significant example is the class of TZV (called primitive subgroups in that paper),
which can be constructed from elliptic curves.

The original work of Rubin and Silverberg and their more recent results presented
in [RS09] constitute the motivation of our research. Notably, supersingular TZV of
elliptic curves allow to achieve higher “security per bit” than supersingular elliptic curves
themselves: in characteristic 3 (r = 5) TZV represent the first example of supersingular
abelian varieties with security parameter greater than 6 (in fact 7.5); in characteristic
2 (r = 3) TZV present an alternative to supersingular elliptic curves over F3m which is
more efficient, simpler to implement and with equivalent security properties.

The computation of pairing over TZV is already taken into account by Barreto
et al. [BK+02, BG+07], who define the η and ηT pairings on supersingular abelian
varieties. Other pairings, such as the (twisted) Ate pairing [HSV06] and its extended
versions [MK+07, LLP09, Ver08] can be naturally defined on TZV too. However no
work in literature considered using the Frobenius available in TZV to speed-up the

IV

computation of pairing.
The focus of the present work is exactly that: develop a new algorithm to compute

the Tate pairing on TZV exploiting the action of the Frobenius. Our result applies to
supersingular TZV in characteristic 2, 3 and p > 3, that are described respectively in
Lemmas 3.9, 3.10 and 3.11.

In Theorem 3.14 we derive a new formula for the Tate pairing t̂(P,Q):

t̂(P,Q) =

(
r−1∏
i=0

fq,P (Qσi)q
i(r+1)

)M a
r
qa−1

,

where fq,P is the Miller function, σi is proper power of the Frobenius endomorphism, a
and M are constants depending on the curve.

The previous formula yields a new method to compute the Tate pairing over su-
persingular TZV. We evaluate fq,P at the r points Qσi (raising each evaluation to the
proper power qi(r+1)). At the end we compute the final exponentiation to M a

r q
a−1. This

is summarized in Algorithm 3.2.
The algorithm is suitable for a parallel implementation, requiring r processors and

achieving a Miller loop of “length” q. Moreover, both in a parallel and in a sequential
model, an implementation with precomputation of the multiples of P requires the storage
of only log2 q points. Implementation details are given in Section 4.3, where we also
propose a variant of the point compression algorithm of Rubin and Silverber [RS02] in
characteristic 2 which is more efficient and requires no inversion in the field.

Experimental results presented in Section 4.3.5 and Tables 4.6, C.10, C.11 and C.12
show that the parallel version of our new algorithm is on average 25÷ 30% faster than
any previous pairing algorithm – notably the ηT described in [BG+07].

Besides the computation of pairing, in Section 4.2.6 we also analyze the performance
of scalar multiplication on supersingular elliptic curves and TZV. Experimental results
are reported in Tables 4.5, C.7, C.8 and C.9. Supersingular TZV are much faster than
the corresponding elliptic curves and, as we already mentioned, they also allow to achieve
higher security per bit. For instance, if we look data on Intel platform (32-bit), scalar
multiplication on the supersingular TZV over F2103 (r = 3) is 4 times faster than on the
corresponding elliptic curve defined over F2307 , pairing can be up to 30% faster exploiting
the parallel version of the new algorithm and finally points can be compressed to 208
bits, allowing a reduction of storage or bandwidth by a factor about 3/2.

In conclusion we have seen that TZV, ordinary and supersingular, have many inter-
esting features that make them attractive for building cryptosystems based on DLP as
well as pairing-based cryptosystems. They are also well suited for implementations on
devices with constrained resources at moderate security levels.

Foundation

The following publications and pre-prints form the foundation of this thesis:

• R. M. Avanzi and E. Cesena. Pairing on Supersingular Trace Zero Varieties.
Cryptology ePrint Archive, Report 2008/404, 2008.
http://eprint.iacr.org/2008/404
A preliminary version of this work was presented at Eurocrypt 2009 poster session
(cf. Appendix A).

http://eprint.iacr.org/2008/404

V

• R. M. Avanzi and E. Cesena. Trace Zero Varieties over Fields of Character-
istic 2 for Cryptographic Applications. In J. Hirschfeld, J. Chaumine, and
R. Rolland, editors, Algebraic geometry and its applications, volume 5 of Number
Theory and Its Applications, pp. 188–215. World Scientific, 2008. Proceedings of
the first SAGA conference, Papeete, 7-11 May 2007.

• E. Cesena, H. Löhr, G. Ramunno, A.-R. Sadeghi, and D. Vernizzi. Anonymous
Authentication with TLS and DAA. Submitted to TRUST 2010.

• E. Cesena, G. Ramunno, and D. Vernizzi. Towards Trusted Broadcast En-
cryption. TrustCom 2008: The 2008 International Symposium on Trusted Com-
puting. Zhang Jia Jie (Hunan, China), 18-20 November 2008, pp. 2125–2130.

Organization

The remainder of this dissertation is organized as follows.
Chapter 1 introduces pairing-based cryptography with a few relevant cryptographic

schemes taken from the literature; this serves as a practical motivation and we will
return to the schemes during the course of the dissertation.

In Chapter 2 we arrange the mathematical background with particular focus on
the Lichtenbaum-Tate pairing. Most of this chapter is taken from two interventions of
Prof. Frey at the first Symposium on Algebraic Geometry and its Applications (SAGA
2007) and at the GTEM Workshop on Pairings (Essen, 2009). We adapt the theory to
better fit the case of TZV.

Chapter 3 is the core of this dissertation. We take a more computational oriented
approach: we discuss the arithmetic in the ideal class group of a TZV, we review tech-
niques for pairing computation taken from the literature and we develop a new algorithm
for the computation of the Tate pairing over supersingular TZV which exploits the ac-
tion of the qth power Frobenius endomorphism. In the end of the chapter we discuss
the security of TZV and we provide explicit examples of curves that are used in the
experiments.

In Chapter 4 we deal with the implementation details and we provide experimental
results. For emotional reasons most of this chapter is devoted to the implementation
in characteristic two. Notably, in this chapter we define new compressed López-Dahab
coordinates for ordinary TZV of elliptic curves, we analyze the performance of scalar
multiplication both on ordinary and supersingular TZV, we detail the parallel and the
sequential versions of the new algorithm for the Tate pairing, including experimental
results.

Finally, Chapter 5 is devoted to real-world applications and notably to the Trusted
Computing technology: due to my personal and somehow atypical research experience
at Politecnico di Torino, I have known a more applied way to do research and I wish to
include in the dissertation some results obtained in this area. Pairing here is used as a
black-box toolkit and actually these topics originated my interest in pairing computation.
Unfortunately, due to technical details that will be clarified at proper time, the algorithm
for pairing computation developed in this dissertation is probably not the best candidate
for such applications, but the hope is to continue my research and let these two routes
converge.

VI

Reading Threads

Assuming that someone else other than reviewers could be interested in reading this
work, I think is useful – because of the wide range of topics treated – to provide some
reading threads, at least for the two main figures that I guess may never be interested
in my thesis, that for simplicity I shall call mathematician and engineer.

Chapter 1 is thought for everyone, even non-technical people with a “small” back-
ground (to know what is cryptography for, what is a group, maybe an elliptic curve).

Then the mathematician hopefully will find interesting Chapter 2 (mostly thanks to
Prof. Frey) and is encouraged to read Chapter 3. Finally, in Chapter 4 she may find
some curiosities about technical details, like compressed López-Dahab coordinates or the
new algorithm for the Tate pairing, or even some numbers coming from experimental
results. Chapter 5 can be ignored at all.

On his side, the engineer must absolutely skip Chapter 2 and perhaps also Chapter 3.
I hope he will find useful Chapter 4 for reference material and for the explicit algorithms
for compressed López-Dahab coordinates and for Tate pairing in several flavours, as well
as experimental data supporting the strength of TZV. Finally he is encouraged to read
Chapter 5 about Trusted Computing technology, even if he doesn’t trust it.

Whatever will be your reading thread (and your maybe-forced motivation in reading
this work) let me wish you a good reading... and of course a Merry Christmas and a
Happy New Year!

21st of December 2009
Emanuele Cesena

Notation

In the following we present the notation and conventions adopted:

Z, Q, R, C Ring of integers; rational, real, complex fields

q Power of prime, usually 2m or 3m with m prime, or p prime

Fq Galois field of order q

r, Fqr Degree of the extension to build TZV, extension field

k, Fqk Embedding degree, extension field to compute pairing

K In Chapter 2: perfect field – In Chapter 3: either Fq or Fqr
K∗, K Multiplicative group, algebraic closure of K

GK , G(L/K) Absolute Galois group of K, Galois group of the extension L/K

C Complete, non-singular and absolutely irriducible curve

E Elliptic curve

CO, O Non-singular, affine curve and its ring of holomorphic functions

P = (xP , yP) Affine point of a curve, with coordinates (xP , yP)

C(K) Set of K-rationals points of the curve C
F = K(C) Field of functions of the curve C
Pic0(C) Picard group of the curve C
JC Jacobian variety of the curve C
D, D, 〈u(x), v(x)〉 A divisor D, the class of D, and the class represented by

polynomials u(x), v(x) (cf. Mumford representation)

σ qth power Frobenius automorphism of the field and
qth power Frobenius endomorphism of the curve

π (qr)th power Frobenius automorphism of the field and
(qr)th power Frobenius endomorphism of the curve

Id, Tr Identity map, trace map (of the field or of the curve)

G, G1, G2, GT Groups (usually additive notation, except GT)

` Prime number, usually the size of the group(s)

e : G1 ×G2 → GT Pairing, i.e. non-degenerate, bilinear map

W (·, ·), T (·, ·), t̂(·, ·) Weil, Tate and reduced Tate pairings

fn,P (·) Miller function

VIII

Contents

1 Pairing-based Cryptography 1
1.1 Applications of Pairing-based Cryptography 2
1.2 Diffie–Hellman and Tripartite Diffie–Hellman 4
1.3 The Group G: Elliptic Curves and Pairings 5
1.4 Types of Pairings . 6
1.5 Cryptographic Schemes Based on Pairing 8

1.5.1 Short Signature . 8
1.5.2 Broadcast Encryption . 9

1.6 Trace Zero Varieties in Cryptography . 10

2 Background 12
2.1 Hyperelliptic Curve in Cryptography . 12
2.2 Jacobian and Trace Zero Variety . 14
2.3 Duality in Arithmetic Geometry . 17
2.4 The Lichtenbaum-Tate Pairing . 21
2.5 The Local Lichtenbaum-Tate Pairing . 25
2.6 Algorithmic Description of the Tate Pairing 28

3 Pairing on Supersingular Trace Zero Varieties 31
3.1 Hyperelliptic Curves and Trace Zero Varieties 31

3.1.1 Hyperelliptic Curves . 31
3.1.2 Trace Zero Varieties . 33

3.2 Arithmetic in G1 . 34
3.2.1 Scalar Splitting . 35
3.2.2 Multi–scalar Generation . 36

3.3 Supersingular Trace Zero Varieties and Tate Pairing 37
3.4 The Miller Function and Miller’s Algorithm 39
3.5 A Survey of Pairings . 41

3.5.1 Ate Pairing . 42
3.5.2 Eta and EtaT Pairings . 42
3.5.3 Optimal (Twisted) Ate Pairing 44

3.6 Pairing on Supersingular Trace Zero Varieties 45
3.6.1 Preliminaries . 45
3.6.2 A New Algorithm for the Tate Pairing 47
3.6.3 Pairing Compression . 50

3.7 Construction of Varieties and Generators 51
3.8 Security Considerations . 53

IX

CONTENTS X

4 Implementation 55
4.1 Finite Fields . 55

4.1.1 Base Fields . 55
4.1.2 Small Degree Extensions of Binary Fields 56
4.1.3 Experimental Results . 57

4.2 Scalar Multiplication on TZV in Characteristic 2 58
4.2.1 Coordinate Systems . 58
4.2.2 Compressed López-Dahab Coordinates 59
4.2.3 Scalar Multiplication Techniques 60
4.2.4 Comparison Between Ordinary Curves and TZV 61
4.2.5 Comparison Between Even and Odd Characteristic 63
4.2.6 Comparison Between Supersingular Elliptic Curves and TZV . . 63

4.3 Pairing on Supersingular TZV in Characteristic 2 65
4.3.1 Parallel Computation . 66
4.3.2 Sequential Computation . 66
4.3.3 Point Compression on TZV . 67
4.3.4 Extension Fields of Degree 4 for Pairing Computation 69
4.3.5 Experimental Results . 69

5 Real-world Applications 72
5.1 Trusted Computing and OpenTC . 72
5.2 Trusted Broadcast Encryption . 74

5.2.1 Broadcast Encryption . 74
5.2.2 Issues and Motivations . 75
5.2.3 Applying TC Techniques to BE 76
5.2.4 New TC Techniques . 78
5.2.5 Open Issues . 80

5.3 Direct Anonymous Attestation . 81
5.3.1 Anonymous Authentication . 81
5.3.2 Background . 84
5.3.3 TLS-Based Anonymous Authentication Scheme 85
5.3.4 Security Analysis . 89
5.3.5 Implementation and Experimental Results 90

A Poster (Eurocrypt 2009) 103

B Explicit Examples of Curves and Trace Zero Varieties 104
B.1 Binary Fields . 104
B.2 80-bit Security Level Groups . 105
B.3 96-bit Security Level Groups . 106

C Additional Experimental Results 107
C.1 Comparison Among Operations in Finite Fields 107
C.2 Comparison Between Ordinary Curves and TZV 108
C.3 Comparison Between Supersingular Curves and TZV 109
C.4 Comparison Among Pairings . 111

List of Tables, Figures and
Algorithms

List of Tables

3.1 Security levels and related key-size equivalence 52
3.2 Explicit curves and related security parameters 52
4.1 Costs of operations in Fqr in terms of operations in Fq 57
4.2 Comparison among operations in finite fields – Intel (32-bit) 57
4.3 Comparison between ordinary curves and TZV – Intel (32-bit) 62
4.4 Comparison on ordinary curves and TZV between characteristic 2 and

p > 3 – Intel (32-bit) . 63
4.5 Comparison between supersingular curves and TZV – Intel (32-bit) . . . 64
4.6 Comparison among pairings – Intel (32-bit) 71
B.1 Binary fields and their defining polynomials 104
C.1 Comparison among operations in finite fields – Intel (64-bit) 107
C.2 Comparison among operations in finite fields – PowerPC (32-bit) 107
C.3 Comparison among operations in finite fields – PowerPC (64-bit) 107
C.4 Comparison between ordinary curves and TZV – Intel (64-bit) 108
C.5 Comparison between ordinary curves and TZV – PowerPC (32-bit) . . . 108
C.6 Comparison between ordinary curves and TZV – PowerPC (64-bit) . . . 109
C.7 Comparison between supersingular curves and TZV – Intel (64-bit) . . . 109
C.8 Comparison between supersingular curves and TZV – PowerPC (32-bit) 110
C.9 Comparison between supersingular curves and TZV – PowerPC (64-bit) 110
C.10 Comparison among pairings – Intel (64-bit) 111
C.11 Comparison among pairings – PowerPC (32-bit) 111
C.12 Comparison among pairings – PowerPC (64-bit) 111

List of Figures

3.1 Ingredients for the construction of a TZV 32
3.2 Bilinear (reduced) Tate pairing t̂(·, ·) . 38
3.3 Reduced Tate pairing t̂(·, ·) over supersingular TZV 48
5.1 Architecture for anonymous authentication based on TLS and DAA . . 83
5.2 Join protocol with a TPM as security module 86
5.3 The anonymous authentication protocol based on TLS and DAA 87
5.4 Implementation design for anonymous authentication based on TLS and

DAA . 90
5.5 (Left) Number of connections per second for TLS and TLS enhanced

with DAA: new connections and session resumed. (Right) Total number
of bytes transmitted during a handshake: client and server side. 92

XI

LIST OF ALGORITHMS XII

List of Algorithms

3.1 Miller’s algorithm for elliptic curves . 39
3.2 Computing tTZV on Er . 49
4.1 Doubling in Compressed López-Dahab Coordinates 60
4.2 Addition in Compressed López-Dahab Coordinates 61
4.3 Computing tE3 on E3/F2m . 67
4.4 Computing tTZV on E3/F2m . 67
4.5 Computing (g0 + g1s+ t) · (f0 + f1s+ f2t+ f3st) 70

Chapter 1

Pairing-based Cryptography

Cryptographers love tradition.
If we were to use “Andy” and “Barbara” as the principals,

no one would believe anything in this chapter.

Until the ’70s, cryptographic algorithms were what today we define symmetric-key
based and the purpose of cryptography was essentially to allow two people, which for us
will be Alice and Bob, of exchanging private messages without a third person, the evil
Eve, could decipher them once intercepted.

The term symmetric-key means that the information necessary to encrypt a message
– the key – is also sufficient to decrypt a ciphertext and thus it must be kept secret.
Furthermore, if Alice and Bob want to communicate in private, they have to exchange
in a secure way such a key.

The state of affairs has been radically transformed by Diffie and Hellman, with the
invention of public-key cryptography.

The key point is that if Bob wants to send a message to Alice, the latter shall publicly
describe an algorithm for encryption, including her public key. So, even Eve is aware
of how to encrypt a message, but this information is insufficient to decipher intercepted
ciphertexts.

We must however point out that symmetric-key cryptography is not exceeded by
public-key, rather it is still widely used because it is fairly more efficient.

A major step forward in public-key cryptography is the introduction of pairing-
based cryptography. In 2000, several authors show that the Weil pairing can be used
for “good” and start building cryptographic schemes based on pairing: Sakai, Ohgishi
and Kasahara introduce the first pairing-based key-agreement and signature schemes,
and Joux extends the Diffie-Hellman key agreement protocol to a three-party, one-round
protocol.

Again, pairing is not a final solution by itself, but requires to operate with other
cryptographic primitives, mainly due to efficiency reasons. Roughly speaking, if public-
key cryptography is one order of magnitude slower than symmetric-key cryptography,
then pairing looses another order of magnitude in performance with respect to public-key
cryptography.

It is therefore important to restrict the use of pairing to the early and most critical
stages of a protocol deployed in a real-world application and, at the same time, this
motivates the research for ever more efficient implementations.

1

CHAPTER 1. PAIRING-BASED CRYPTOGRAPHY 2

1.1 Applications of Pairing-based Cryptography

Public-key cryptography extended the application of cryptography, which originally was
the sole protection of messages confidentiality through encryption, by introducing two
new fundamental primitives: key agreement, to share symmetric keys, and digital signa-
ture, to protect the integrity, authenticate and provide non-repudiation of messages.

Pairing-based cryptography enhances the possibilities of public-key cryptography, by
allowing efficient construction of several protocols for identity-based encryption, homo-
morphic encryption, group signatures, key sharing, signcryption, etc.

Inspired by Dutta et al. [DBS04], we give the following classification of these proto-
cols. Another source of reference is The Pairing-Based Crypto Lounge [Bar].

Encryption.

– Identity-based encryption (IBE): In IBE, the public key distribution problem is elim-
inated by making each user’s public key derivable from some known aspect of his
identity. When Bob wants to send a message to Alice, he encrypts the message using
Alice’s public key which is derived from her identity (e.g. her name “Alice” or her e-
mail address alice@paesedellemeraviglie.it). Alice obtains her private key from
a third party called a Private Key generator (PKG) and, on receiving the encrypted
message, she can decrypt it. Alice’s private key that PKG generates is a function of
a master key and Alice’s identity. The PKG has the capability of key escrow, in the
sense that it can generate any private key, and hence decrypt any ciphertext. Hierar-
chical IBE was proposed to limit the scope of key escrow in applications where it is
not desirable.

– Homomorphic encryption: This is a form of encryption where one can perform a
specific algebraic operation on the plaintext by performing a (possibly different) op-
eration on the ciphertext. Homomorphic encryption schemes are malleable by design
and are thus unsuited for secure data transmission. On the other hand, the homo-
morphic property of various cryptosystems can be used to create secure storage in
database with (limited) search capabilities, secure voting systems, collision-resistant
hash functions and private information retrieval schemes.

– (Public-key) Broadcast encryption (BE): It provides an efficient solution to broadcast
encrypted information to many users. In a BE scheme, a center set-up the system,
distribute keys to users and broadcast encrypted messages to a subset of authorized
users. A public-key scheme allows anyone knowing the center and users’ public keys
to send messages to users, thus the center is no longer the sole source of broadcast
messages.

Signature.

– Short Signature: Pairing allows the construction of signature schemes that produce
shorter signatures than usual, around half of the size for equivalent security strength.
These are required in environments with space and bandwidth constraints or when a
human is asked to manually key in the signature.

– Aggregate Signature: Consider n users, each one having a public-private key pair
and signing a (possibly different) message. A public aggregation algorithm outputs
a compressed short signature on input all the users’ signatures. This aggregation of

alice@paesedellemeraviglie.it

CHAPTER 1. PAIRING-BASED CRYPTOGRAPHY 3

n signatures can be done by anyone. Additionally, there is an aggregate verification
algorithm all the public keys, all the messages and the aggregate signature as input
and decides whether the aggregate signature is valid. Aggregate signature schemes
are used in secure border gateway protocols for compressing the list of signatures on
distinct messages issued by distinct parties.

– Group Signature: Group signature permits any member of a group to sign on behalf of
the group. Anyone can verify the signature with a group public key while no one can
know the identity of the signer except a special entity called group manager. Group
signature provides anonymity of users with the property that the group manager (or
revocation authority) can identify the signer. In general, it is computationally hard
to decide whether two different signatures were issued by the same member. This
property, referred as partial anonymity or pseudonimity, is a feature of specific group
signature schemes.

– Proxy Signature: A proxy signature allows an entity, called the delegator, to delegate
its signing rights to another entity, called a proxy signer. The proxy signer signs
messages on behalf of the delegator, in case of temporal absence, lack of time or
computational power. Proxy signatures have found numerous practical applications
where delegation of rights is quite common, particularly in distributed systems, grid
computing, mobile agent applications, distributed shared object systems and mobile
communications.

Key agreement.

Key agreement is required in situations where two or more parties want to commu-
nicate securely among themselves. The situation where three or more parties share
a common key is often called conference keying. In this situation, the parties can
securely send and receive messages among each other based on the agreed key.

Threshold.

Threshold cryptography approach is useful to remove single point failure or to avoid
the centralization of the power. In a (t, n)-threshold scheme, t ≤ n, a secret informa-
tion is distributed among n users such that any subset of t or more users is allowed to
reconstruct it. The computation is performed preserving security even in the presence
of an active adversary that can corrupt up to t− 1 users.

Miscellaneous.

– Chameleon Hash: This is a hash function associated with a pair of public-private
keys. Anyone who knows the public key can compute the associated hash function
and, without the knowledge of associated private key, the chameleon hash function is
collision resistant. However, the private key allows the holder to easily find collisions
for every given input. Chameleon hashing is basically a non-interactive commitment
scheme and find applications in constructing chameleon signatures, where the recipient
can verify that the signature of a certain message M is valid, but can not prove that
the signer actually signed M and not another message.

– Signcryption: It combines the functionality of signature and encryption in a more
efficient manner than a straightforward composition of an encryption scheme with a

CHAPTER 1. PAIRING-BASED CRYPTOGRAPHY 4

signature scheme: the idea of signcryption scheme is to perform encryption and signa-
ture in a single logical step in order to obtain confidentiality, integrity, authentication
and non-repudiation more efficiently than the sign-then-encrypt approach.

1.2 Diffie–Hellman and Tripartite Diffie–Hellman

In 1976, Diffie and Hellman describe a protocol that allows Alice and Bob to share a
common secret key [DH76]. This protocol is extended in 2000 by Joux to a three-parties,
one-round key agreement protocol [Jou00].

Let (G,+) be a group of order ` and fix a generator P ∈ G.

(setup) Publicly describe G and P ∈ G.

1. A and B select random integers a and b (mod `).

2. They exchange respectively aP and bP .

3. They each obtain K = abP , by computing respectively a(bP) and b(aP).

Alice and Bob now share the secret element K ∈ G.
Let us go back to Eve, so far left behind the scene. Her task is to reconstruct abP

given P , aP and bP . This problem is known as the Diffie-Hellman problem (DHP).
Note that if Eve could (efficiently) compute a given P and aP , she would solve DHP.
This second problem is called the discrete logarithm problem (DLP).

In fact, significant progress has been made towards showing that over many groups
the DHP is almost as hard as the DLP, but there is no proof to date that either the
DHP (or the DLP) is a hard problem, except in generic groups.

A possible variation of DHP is the computational Diffie-Hellman problem (CDHP),
i.e. given P , aP , bP and cP decide whether cP = abP or not. Clearly solving DHP
allows to solve CDHP. In the end of this section, we are going to show that these two
problems are not equivalent in general.

Without going into further details, for a secure and efficient implementation, we
require:

• For efficiency, the group operation in G must be computable in polynomial time.

• For security, the discrete logarithm in G should have higher complexity, possibly
exponential.

Hence, we want a group G where the scalar multiplication is a so-called one-way function,
that is to say a function easy to compute, but whose inverse is not.

It is worth noting that if G has order `, given the factorization of ` and thanks to
the Pohlig-Hellman algorithm [PH78], the DLP in G can be reduced in polynomial time
to the DLP is the subgroups of prime order of G. Hence we can assume ` is prime.

We now let pairing come into the game and describe Joux’s three-parties, one-round
key agreement protocol. Let (GT , ·) be a group of order ` and suppose there exists an
efficiently computable map:

e : G×G→ GT ,

with the following properties:

CHAPTER 1. PAIRING-BASED CRYPTOGRAPHY 5

1. (Non-degeneracy) there exist P, Q ∈ G such that e(P,Q) 6= 1GT .

2. (Bilinearity) for every P, Q ∈ G: e(aP, bQ) = e(P,Q)ab for all a, b ∈ Z.

Alice, Bob and Charlie want to set up a common key. Without pairing, they can
use a conference keying protocol (e.g. Burmester and Desmedt’s protocol [BD95]) which
requires two rounds of interaction. With pairing a single round is sufficient:

(setup) Publicly describe G, P ∈ G, GT and e(·, ·).
1. A, B and C select random integers a, b and c (mod `).

2. They respectively broadcast aP , bP and cP .

3. They each obtain k = e(P, P)abc, by computing respectively e(bP, cP)a, e(aP, cP)b

and e(aP, bP)c.

The element k ∈ GT is used as common secret.
To break the protocol security, Eve should compute e(P, P)abc given P , aP , bP and

cP . This is called the bilinear Diffie-Hellman problem (BDHP). It is easy to show that
solving DHP allows to solve BDHP: if one can compute abP given P , aP and bP , then
she can pair e(abP, cP) = e(P, P)abc. Currently the equivalence between BDHP and
DHP is unknown.

Since in this work we will also discuss real-world applications, it is important to
remark that Joux’s protocol is only secure against passive attackers, while it is vulner-
able to man-in-the-middle attack conducted by an active adversary because it is not
authenticated: the purpose of this introductory description is just to warm up and get
familiar with pairing.

Before concluding this section, we show that pairing allows to easily solve the de-
cisional Diffie-Hellman problem: given P , aP , bP and cP , one can decide whether
cP = abP by checking if e(P, cP) = e(aP, bP), which holds if and only if c = ab. Thus
we have a group G where we can assume that the DHP is hard, while the DDHP is easy
to solve. In Section 1.5.1 we will show that such a group allows an efficient signature
scheme. But before continuing with applications, it is important to present in more
detail the group G, its history and pairing as well.

1.3 The Group G: Elliptic Curves and Pairings

We now turn the attention to the group G. The most simple choice (the same proposed
by Diffie and Hellman) is to select the multiplicative group of a finite field Fq.

In 1985, Miller and Koblitz [Mil86a, Kob87] propose to use the group of rational
points of an elliptic curve E/Fq. They identify two advantages: (1) a greater flexibility
in the choice of the group (in the sense that, fixed q a power of a prime, there exists a
unique multiplicative group F∗q , but many elliptic curves E/Fq) and (2) the absence of a
sub-exponential algorithm for DLP, provided that E and q are properly chosen.

Working with elliptic curves allows to reduce the size of the field; to give a comparison
the security provided by the multiplicative group of a field of 1248 bits is equivalent to
that of an elliptic curve defined over a field of 160 bits (cf. [ECR09] and Section 3.7).

Originally cryptosystems based on elliptic curves were defined on supersingular
curves. This was mainly due to the difficulty of constructing ordinary curves with a

CHAPTER 1. PAIRING-BASED CRYPTOGRAPHY 6

number of points of the required size, and to the more efficient arithmetic that super-
singular curves provide with respect to ordinary ones.

In 1993, Menezes, Okamoto and Vanstone [MOV93] found an attack, called the MOV
attack, which reduces the DLP on an elliptic curve to the DLP in a finite field. More
precisely, if E is an elliptic curve over a field Fq, the DLP in E(Fq) can be reduced to
the DLP in (the multiplicative group of) an appropriate extension of Fq. The degree of
such an extension is called embedding degree and usually denoted by k.

Let us try to understand with an example the importance of the embedding degree
k for the security of a cryptosystem. Consider a field Fq with q ≈ 2160 and an elliptic
curve E/Fq. As already mentioned, this provides a security equivalent to that of a finite
field Fq′ , with q′ ≈ 21248. Exploiting the MOV attack, the DLP in E(Fq) can be reduced
to the DLP in F∗

qk
. So, if Fq has order 2160, the extension order has 2160×k and to ensure

the security of our system we must have 160× k > 1248, i.e. about k > 6.
The MOV attack exploits the Weil pairing (for the definition see, e.g., [Sil86, see

Section III.8]) which is a bilinear, non-degenerate map W (·, ·) that can be efficiently
computed with Miller’s algorithm [Mil86b, Mil04]. Suppose one has to compute a, given
P and aP . Fixed a point Q such that W (P,Q) 6= 1, she can compute α = W (P,Q) and
β = W (aP,Q). Hence α, β ∈ F∗

qk
and, by bilinearity, β = αa: by solving the DLP in

F∗
qk

one can find a, i.e. solve the DLP on the elliptic curve.
In 1994, Frey and Ruck [FR94] show that the Lichtenbaum-Tate pairing, which is

another bilinear and non-degenerate map, provides an alternative to the Weil pairing
particularly interesting from the computational point of view.

In summary, the MOV attack exploits the Weil (or the Tate) pairing to reduce the
DLP from E(Fq) to F∗

qk
, and k must be large enough, so that this attack does not lead

to security losses.
Luckily, for a “random” elliptic curve E/Fq, k is approximately q, hence the MOV

attack is not an issue. On the contrary, for supersingular elliptic curves it is known that
k ≤ 6, and for this reason supersingular curves were soon abandoned, because considered
less secure. The abandonment was also supported by the research on point counting on
elliptic curves: the Schoof’s algorithm [Sch95] and subsequent variants have helped to
efficiently build ordinary elliptic curves suitable for cryptographic applications.

The birth of pairing-based cryptography represents the revenge of supersingular
elliptic curves: again, the research has originated in the supersingular world, which is
more efficient and in some sense easier to deal with.

Next, the research developed in several directions: generalizing elliptic curves to
Jacobians of hyperelliptic curves or abelian varieties [RS02, BK+02], and extending the
definition of pairing to ordinary curves [HSV06]. We can observe a similar development
as for the history of cryptography based on DLP.

The definition of pairing on ordinary curves has opened an important chapter of
research on the construction of pairing-friendly curves, i.e. curves with a prescribed and
relatively small embedding degree [FST06].

1.4 Types of Pairings

In Section 1.2 we gave a first definition of pairing, i.e. a bilinear, non-degenerate and
efficiently computable map e : G × G → GT . Such a definition is usually referred as
symmetric pairing, because pairing takes both arguments in G.

CHAPTER 1. PAIRING-BASED CRYPTOGRAPHY 7

In practice, symmetric pairings can be instantiated by using suitable supersingular
curves or abelian varieties. However, in order to allow a wider range of curves to be
used, the definition must be enhanced.

According to Galbraith et al. [GPS08], we define pairing as a map:

e : G1 ×G2 → GT ,

where G1, G2 and GT are three groups of prime order `, and we require:

1. (Non-degeneracy) e(P,Q) 6= 1GT for all Q ∈ G2 if and only if P = 0G1 , and
similarly e(P,Q) 6= 1GT for all P ∈ G1 if and only if Q = 0G2 .

2. (Bilinearity) for every P ∈ G1 and Q ∈ G2: e(aP, bQ) = e(P,Q)ab for all a, b ∈ Z.

Note we do not consider here pairings defined on groups with composite order, e.g.
RSA moduli.

Finally, we classify pairings in three types:

Type 1: G1 = G2, i.e. symmetric pairing.

Type 2: G1 6= G2, but there is an efficiently computable homomorphism φ : G2 → G1.

Type 3: G1 6= G2, and there are not efficiently computable homomorphisms between
G1 and G2.

In Type 1 we include the case where an efficiently computable homomorphism exists
between G2 and G1 and also its inverse is efficiently computable. This is in fact the
case for supersingular elliptic curves. Let E/Fq be an elliptic curve and let G1 be the
subgroup of E(Fq) of order `. It is known that the `-torsion group E [`] ' Z/`Z× Z/`Z
and, without loss of generality, we can take the first component to be G1. Let G2 be
the other component1. If E is supersingular, a distortion map ψ : G1 → G2 allows to
identify the two components of the `-torsion group, and hence a symmetric pairing can
be defined:

e(P,Q) = W (P,ψ(Q)) ,

where W is the Weil pairing. Note that, without the intervention of the distortion map,
the Weil pairing restricted to G1 ×G1 would be degenerate. A similar construction can
be done with the Tate pairing as well.

Type 2 pairings have been introduced as they allow a greater variety of pairings to
be used, notably those constructed on ordinary curves. Additionally, because of the
map φ, security proofs usually require only minimal changes with respect to symmetric
pairings. Unfortunately, it turns out that there is no efficient and known method to
hash to an element of G2, and this may be required in some practical applications.

Finally, Type 3 pairings permit hashing to any element of any group including G2.
Additionally, their more flexible nature allows a greater number of assumptions which in
turn allow more cryptosystems to be built. Furthermore, there exist optimal construc-
tions of pairing-friendly elliptic curves, for instance Barreto-Naehrig curves [BN05].

In this work we concentrate on symmetric pairing defined on supersingular abelian
varieties, but we shall in fact distinguish between G1 and G2 – even if a distortion map
allows to identify the two groups – to give a better understanding of what the two groups
precisely are.

1In the sequel, we are going to describe these two components in more detail.

CHAPTER 1. PAIRING-BASED CRYPTOGRAPHY 8

1.5 Cryptographic Schemes Based on Pairing

This section provides a bridge between the mathematical notion of pairing that will be
the core of this dissertation and real-world applications presented in Chapter 5.

We present two concrete schemes built on pairing: the Boneh, Lynn and Shacham’s
short signature scheme [BLS02] and the Boneh, Gentry and Waters’ broadcast encryp-
tion scheme [BGW05].

The former, together with identity-based encryption [BF01], is probably the most
significant advance in cryptography due to the pairing: it allows to halve the size of a
digital signature and it is the foundation for several variant of signature schemes. Among
all, group signatures can be used as a building block for an anonymous authentication
system; in Section 5.3 we present a concrete implementation of an anonymous authen-
tication system based on the Transport Layer Security [DR08] and Direct Anonymous
Attestation [BCC04] protocols.

Broadcast encryption provides an efficient solution to broadcast encrypted informa-
tion to many users and pairing is the toolkit that allowed the migration from symmetric
to public-key cryptography: the use of identity-based encryption was initially proposed
for such a migration by Dodis and Fazio [DF03], then several scheme built on pairing
were defined. Here we describe a quite basic construction, which has been improved in
recent years (e.g. [BW06, AKS09]). The cryptographic solution provided by broadcast
encryption protects information on the communication channel, but in actual applica-
tion the users’ platforms represent a major issue. In Section 5.2 we propose a solution
based on Trusted Computing and we use the scheme presented here as a reference.

1.5.1 Short Signature

We have seen in the end of Section 1.2 that if a cyclic group G is endowed with a bilinear
map, then we have a group where the DHP is thought to be hard, yet the DDHP variant
is easy to solve. This group implies a signature scheme, often referred to as the BLS
(short) signature scheme [BLS02]:

(setup) Choose a group G of prime order `. Publish a generator P ∈ G.

(key gen.) Choose a random a (mod `). Output the public key A = aP and the private key
a.

(sign) Given a message H ∈ G, output σ = aH.

(verify) Given a message-signature pair (H,σ) and public key A, check that e(P, σ) =
e(A,H).

The simple abstract definition of pairing allows to proof that this signature scheme
is secure against existential forgery under a chosen-message attack in the random oracle
model, assuming DHP problem is hard in G.

The major contribution of this scheme is however the size of the signature, that
requires a concrete description of the pairing to be understood.

Let G be the set of rational points of an elliptic curve E/Fq. Hence the signature
σ is a Fq-rational point of E , that can be represented by its x-coordinate (plus 1 bit
to distinguish between σ and −σ). On the contrary, in other signature schemes like
ECDSA [ANS05] a signature is a pair of elements of the field, thus double in length.

CHAPTER 1. PAIRING-BASED CRYPTOGRAPHY 9

This signature scheme in fact has other useful properties, including batched verifi-
cation, and allows the simple construction of aggregate, group and verifiably-encrypted
signatures [BG+03]. Among these, group signatures are an interesting tool to build
anonymous authentication systems.

1.5.2 Broadcast Encryption

Broadcast encryption allows to efficiently and securely send a plaintext M to many users.
The corresponding ciphertext usually looks like a pair (Hdr, {M}K): the plaintext is
encrypted by means of symmetric-key cryptography with a session key K and a header
Hdr is put before allowing legitimate users to recover the key K and hence to decrypt
the message.

A trivial way to set up a broadcast encryption scheme is to provide each user i with a
symmetric key ki and to form Hdr by encrypting the session key K for each user allowed
to receive the message. The header in this case is quite large and, even bad, its size
grows linearly with the number of users n. Several works in literature face the problem
to limit the size of the header, for instance by increasing the number of keys assigned
to each user. We refer, e.g., to [NP00, HS02].

Pairing allows a very efficient construction, where both the header and the private
key of each user have constant size [BGW05]:

(setup) This algorithm gets in input the number of users n and proceeds as follows.

Choose a group G of prime order `. Pick a random generator P ∈ G and a
random integer α (mod `). Compute Pi = αiP for i = 1, 2, . . . , n, n + 2, . . . , 2n.
Next choose a random γ (mod `) and set V = γP . The public key is

PK = (P, P1, . . . , Pn, Pn+2, . . . , P2n, V) ∈ G2n+1 .

The private key for user i ∈ {1, . . . , n} is Di = γPi. Note that Di = αiV .
The algorithm outputs the public key PK and the n private keys D1, . . . , Dn.

(encrypt) Given a subset of users S and a public key PK, pick a random integer t (mod `)
and set K = e(Pn+1, P)t. Next set:

Hdr =

tP , t(V +
∑
j∈S

Pn+1−j)

 ∈ G2 .

Output the pair (Hdr,K): Hdr is the header of the message and K is the (sym-
metric) key to encypt the plaintext.

(decrypt) Given a user i ∈ S with private key Pi, given the public key PK and a message
header Hdr = (C0, C1), output the (symmetric) key:

K = e(Pi, C1) / e

Di +
∑

j∈S,j 6=i
Pn+1−j+i , C0

 .

This scheme is correct and fully collusion resistant against chosen-ciphertext attacks
(i.e. non-adaptive adversaries), assuming the bilinear Diffie-Hellman Exponent problem
is hard: given as input a vector of 2n+ 1 elements(

Q,P, αP, α2P, . . . , αnP, αn+2P, . . . , α2nP
) ∈ G2n+1 ,

CHAPTER 1. PAIRING-BASED CRYPTOGRAPHY 10

output e(P,Q)α
n+1

. Note that the input vector lacks the term αn+1P , so that the
bilinear map seems to be of little help in computing the required value.

We can see that private keys are only 1 group element and the header Hdr has
constant size (2 elements in G). The drawback is that the size of the public key is O(n).

We note that, in the encryption algorithm, e(Pn+1, P) can be computed as e(Pn, P1)
and stored, so encryption requires no pairing. Furthermore, if the set of legitimate users
S is quite large, the computation time is dominated by the large number of operations
in G needed to compute the sum (both in the encryption and decryption). However it is
possible to cache some partial sums and speed up the overall computation. For further
details we refer to the original paper [BGW05].

As already mentioned, this is the first example of broadcast encryption scheme with
short ciphertext and private keys, but the price is to have a very big public key. In
recent years several extensions were proposed, for instance [BW06, AKS09].

1.6 Trace Zero Varieties in Cryptography

In this section we introduce in a quite informal way Trace Zero Varieties (TZV) and we
present the main reasons motivating the research on this field. Before concluding – the
section and the chapter – we will be ready to state the objectives of the present work.

In 1998 Frey [Fre98, Fre01] suggests to use TZV for cryptographic applications be-
cause their properties can be exploited to implement fast arithmetic, while the hardness
of the DLP can be reduced to the hardness of the DLP in other known groups which
are used in practice.

Roughly speaking, if C is a hyperelliptic curve of genus g defined over a finite field
of q elements Fq, the trace zero (sub)subgroup of C over a field extension of degree r
is a subgroup G of the Jacobian variety JC(Fqr) of C over Fqr , which is isomorphic to
the quotient group JC(Fqr)/JC(Fq). It is possible to prove that it is a codimension g
subvariety of the Weil restriction of scalars of JC from Fqr to Fq, whence the name Trace
Zero Variety.

The group used for cryptographic applications is a subgroup G1 of G of large prime
order ` and of small index in G. We can assume that G1 is the only subgroup of order ` of
G, thus the Frobenius endomorphism σ of the Jacobian induced by the relative Frobenius
automorphism of the field extension Fqr/Fq acts on G1 as a group automorphism. Since
G1 is cyclic, σ acts as a scalar multiplier, i.e. for each D ∈ G1 we have σ(D) = sD for
some s ∈ Z (that depends on G1). Similarly to the setting of Koblitz curves [Kob91,
Sol00], the Frobenius endomorphism can be used to speed up the scalar multiplication
in G1. Another advantage that TZV share with Koblitz curves is that it is quite easy
(from a computational point of view) to determine the cardinality of the group of rational
points.

Several authors address the study of TZV: Naumann [Nau99] and Blady [Bla02]
consider TZV of elliptic curves over extension fields of degree 3 (r = 3); Weimer-
skirch [Wei01] analyzes the case for extension fields of degree 5; finally Lange [Lan01,
Lan04] builds TZV from the Jacobian variety of hyperelliptic curves of genus two, over
extension fields of degree 3. From a cryptographic point of view, these are the only rele-
vant cases, since for higher extension or higher genus the groups obtained are susceptible
to Weil descent attacks [Lan01].

Avanzi and Lange [AL04] compare the performance of these three kinds of TZV over

CHAPTER 1. PAIRING-BASED CRYPTOGRAPHY 11

fields of odd characteristic. Avanzi and Cesena [Ces04, AC08b] compare the same three
types of TZV defined over binary fields, underlining similarities and main differences
between TZV defined over fields of even and odd characteristic.

As early as 2002, Rubin and Silverberg [RS02] propose to use supersingular abelian
varieties of dimension greater than one to improve the security of pairing-based cryp-
tosystems. Besides Jacobian varieties of hyperelliptic curves of genus greater than one,
the other significant example is the class of TZV (called primitive subgroups in that
paper), which can be constructed from elliptic curves.

The original work of Rubin and Silverberg and their more recent results presented
in [RS09] constitute the motivation of our research. Notably, supersingular TZV of
elliptic curves allow to achieve higher “security per bit” than supersingular elliptic curves
themselves: in characteristic 3 (r = 5) TZV represent the first example of supersingular
abelian varieties with security parameter greater than 6 (in fact 7.5); in characteristic
2 (r = 3) TZV present an alternative to supersingular elliptic curves over F3m which is
more efficient, simpler to implement and with equivalent security properties.

The computation of pairing over TZV is already taken into account by Barreto
et al. [BK+02, BG+07], who define the η and ηT pairings on supersingular abelian
varieties. Other pairings, such as the (twisted) Ate pairing [HSV06] and its extended
versions [MK+07, LLP09, Ver08] can be naturally defined on TZV too. All these pairings
exploit the action of the (qr)th power Frobenius endomorphism π and they can in fact
be defined not only on the TZV, but on the whole J (Fqr).

The main purpose of this work is to derive a new algorithm for computing the Tate
pairing over supersingular TZV that exploits the action of the qth power Frobenius en-
domorphism σ, allowing for a finer “splitting” of the computation in several independent
execution threads.

This work not only focus on pairing, but also reviews results on “classical” DLP-
based cryptography, notably to achieve two objectives: extend the work to supersingular
TZV, showing that they outperform elliptic curves in actual applications also because
of a more efficient arithmetic in G1; update previous results obtained in the settings of
ordinary curves, by analyzing better coordinates systems than the sole affine coordinates.
In this context we also introduce a new coordinate system: the compressed López-Dahab
coordinates.

Beside the theoretical discussion, implementation takes a relevant place: in fact a
new system, no matter how clever it is, will not attract the attention of the cryptographic
community unless it achieves better performance, for a comparable security level, than
already established systems.

Chapter 2

Background

In this chapter we introduce the Lichtenbaum-Tate pairing on Jacobian varieties of
hyperelliptic curves.

The core of the chapter is inspired by two interventions by prof. Frey at the first
SAGA conference (Papeete, 2007) [Fre08] and at the GTEM Workshop on Pairings
(Essen, 2009). The material was supplemented with the Handbook of Elliptic and
Hyperelliptic Curve Cryptography [AC+05]. For background on curves, we adopt the
notation of Lorenzini [Lor96] and we refer to Lange’s Ph.D. dissertation [Lan01] for an
extended discussion.

Through this chapter, K will be a perfect field, K its algebraic (and separable)
closure and GK = AutK(K) the absolute Galois group. We will focus on a complete
(often projective), non-singular and absolutely irreducible curve C/K, with at least one
K-rational point. We denote with K(C) its function field.

Our destination point will be the definition of the Lichtenbaum-Tate pairing on the
Jacobian of a curve CO defined over a finite field Fq, but to achieve our purpose we need
to consider its lift C over a local field K with residue field Fq. Since this is our direction,
we additionally assume that C has good reduction, i.e. CO is also non-singular.

It is important to make a clarification regarding the Frobenius endomorphism: in
this, but especially in the next chapter, we are dealing with two instances of the Frobe-
nius, the qth power Frobenius σ and the (qr)th power Frobenius π (where r is a small
prime number). The former is specifically used to build trace zero varieties and, if we
just consider this chapter, it will be used in Sections 2.1 and 2.2. In the remainder of
the chapter, we will make use of π but, with abuse of notation, we shall call it the qth

power Frobenius endomorphism too. This allows us to introduce the Lichtenbaum-Tate
pairing – without unduly complicating the notation – on the Jacobian of CO/Fq. Soon
thereafter we shall change such a Jacobian in a trace zero variety, so π will honestly be-
come the (qr)th power Frobenius endomorphism. That is the reason to have two distinct
names for, at least in this chapter, the same object, i.e. the Frobenius.

2.1 Hyperelliptic Curve in Cryptography

Let K be a perfect field. A curve C/K is called hyperelliptic curve if it is not the
projective line and the corresponding function field K(C) contains at least an element x
such that K(C)/K(x) is a Galois extension of degree 2.

If L/K is a field extension, we denote with G(L/K) the Galois group of L/K and with

12

CHAPTER 2. BACKGROUND 13

CL/L the extension of scalars of C/K to L/K. In particular we denote C/K := CK/K.
The free abelian group generated by the L-rational points of CL/L is called divisors

group of C over L/K and denoted by Div(CL/L). It is possible to associate to every
function f ∈ L(C) a divisor denoted (f). Divisors coming from a function are called
principal divisors and their set Princ(CL/L) is a normal subgroup of Div(CL/L). The
Picard group or divisors class group is the quotient group of the divisors group modulo
the subgroup of principal divisors and it is denoted by Pic(CL/L).

To simplify the notation, we shall omit the field of definition when it is clear, so
Pic(C) refers to Pic(C/K), Pic(CL) refers to Pic(CL/L), Pic(C) refers to Pic(CK/K) and
similarly for other groups as Div and Princ.

In cryptography, we are interested in the subgroup Pic0(C) of the divisors with degree
0 modulo principal divisors. If K is a finite field, then Pic0(C) is a finite group and its
order is called class number of C/K.

Denote with OP the ring of K-rational functions defined in P , with maximal ideal
MP . Let B be a Dedekind domain and assume K ⊂ B. Denote with Div(B) the group
of divisors of B, i.e. the group of divisors of its quotient field over K. Let Cl(B) be the
group of ideal class of B. Define U = {P ∈ C(K) | OP ⊂ B}.

We have the following commutative diagram with exact rows:

(1) −→ K∗ −→ K(C)∗ div−−→ Div0(C) −→ Pic0(C) −→ (0)
↓ ‖ ↓ res ↓ ϕ

(1) −→ B∗ −→ K(C)∗ divB−−−→ Div(B) −→ Cl(B) −→ (0)

Where we denoted with ϕ the map between Pic0(C) and Cl(B), explicitly given by:

ϕ : Pic0(C)→ Cl(B), class of
∑

P∈C(K)

aPP 7→
∏
P∈U

(class of MP ∩B)aP .

If ϕ is bijective, we can identify the two groups. This is the most interesting case
for applications and we simply note that the curves we shall consider belong to this
situation. We will use such a correspondence between Pic0(C) and Cl(B) to obtain an
efficient arithmetic, since the operation of multiplication of ideals can be made explicit
by operations in the ring of polynomials K[X,Y].

From the Riemann-Roch theorem we can define the genus of C, denoted with g.
A complete, non-singular curve of genus 1 is called an elliptic curve. An important
property of the genus is that it is invariant with respect to extension of scalars.

Let now K = Fq be a finite field. The qth power Frobenius automorphism

GK 3 σ : K → K, a 7→ aq

induces an endomorphism of C of degree q that we shall also call Frobenius endomorphism
and denote with σ. It extends to C, as well as to the Picard group Pic0(C).

The Frobenius endomorphism satisfies its characteristic polynomial χ(T) ∈ Z[T] and
the Hasse-Weil theorem relates the complex roots of χ with the class number of C over
any extension Fqr/Fq. In the following theorem we resume some important properties
of χ.

Theorem 2.1. Let the factorization of χ(T) over C be: χ(T) =
∏2g
i=1(T − τi). Then:

1. The roots of χ satisfy |τi| = √q.

CHAPTER 2. BACKGROUND 14

2. For every integer r, denoted Mr the number of Fqr -rational points of C, we have:

Mr = qr + 1−
2g∑
i=1

τ ri and |Mr − (qr + 1)| ≤ gb2qr/2c .

3. χ(T) has the following form:

T 2g + a1T
2g−1 + a2T

2g−2 + · · ·+ agT
g + qag−1T

g−1 + · · ·+ qg−1a1T + qg .

Setting a0 = 1,

aj =
∑j

i=1

(
Mi − (qi + 1)

)
aj−i

j
, for 1 ≤ j ≤ g .

4. For every integer r, we have:

Nr :=
∣∣Pic0(CFqr /Fqr)

∣∣ =
2g∏
i=1

(1− τ ri) and (qr/2 − 1)2g ≤ Nr ≤ (qr/2 + 1)2g .

Hence, knowing the first g numbers Mj we can obtain the full polynomial χ(T) and
thus the class number Nr over any extension, in particular N1 = χ(1).

2.2 Jacobian and Trace Zero Variety

Let K be a perfect field and let C/K be a complete, non-singular curve of genus g ≥ 1.
If C(K) is not empty, the choice of a point P0 ∈ C(K) allows to define an injective

map C(K)→ Pic0(C), sending P into the ideal class of P − P0.
Such a map is a bijection if g = 1, hence we can identify the group Pic0(C) with

the points of an algebraic variety, the curve C itself. In general, for every curve C, the
group Pic0(C) can be identified in a functorial way with the set of K-rational points of
an abelian variety.

More precisely, it is possible to associate to a curve C/K, in a functorial way, an
abelian variety JC/K (or J /K for short) of dimension g, defined over K and called
Jacobian Variety of C/K, or simply Jacobian of C/K, such that:

1. If K ⊆ L ⊆ K, the set of L-rational points of the Jacobian J (L) is in bijection
with Pic0(C)GL .

2. Given P0 ∈ C(K), there exists a morphism of algebraic varieties C → J , defined
over K, sending P0 into the neutral element of J . This morphism induces the
map P 7→ class of (P − P0), over the set of K-rational points.

In the sequel, with a slightly abuse of notation, we shall indistinctly refer to the
group Pic0(CL) or the Jacobian J (L).

We now define an endomorphism which will be fundamental for our purposes. Let
us fix an extension L = Fqr of degree r over K and denote with σ the (restriction of
the) qth power Frobenius endomorphism in C(L). In this case σr = Id.

CHAPTER 2. BACKGROUND 15

Definition 2.2. The trace Tr = TrL : C(L)→ C(L) is the map given by

Tr :=
r−1∑
i=0

σi = Id +σ+ · · ·+ σr−1 .

As direct consequence of the definition, the trace extends to the Picard group
Pic0(CL). The kernel of the trace map G := Ker Tr is a subgroup of the Picard group,
the trace zero subgroup.

Actually, from the implementation perspective, this definition would be enough be-
cause the arithmetic in the trace zero subgroup is performed with the arithmetic in the
full Picard group. It is an open problem to find explicit formulae for the arithmetic in the
trace zero subgroup, which are more efficient than the ones available for the full Picard
group. For completeness, in the sequel we are going to show that G is also (isomorphic
to) a variety, whence the name “Trace Zero Variety”.

Let J /L a variety on L. Clearly, we are particularly interested in the case where J
is the Jacobian of a curve C/L. We restrict ourselves to the case of affine varieties, but
all the discussion can be easily extended to projective varieties.

Definition 2.3. The restriction of scalars, or Weil descent, ResL/K(J) is a variety
defined over K with the following properties:

(W1) For every field K ′ ⊂ K such that [L ·K ′ : K ′] = r (i.e. K ′ is linearly disjoint to
L), we have the natural identification:

(
ResL/K(J)

)
(K ′) −→ J (L ·K ′).

(W2) The variety
(
ResL/K(J)

)
L
/L obtained by ResL/K(J) through extension of scalars

is isomorphic to J r, the cartesian product of J with itself r times.

We consider the Galois group G(L/K) and recall it is isomorphic to G
(
L(J)/K(J)

)
.

For φ ∈ G(L/K), and for f ∈ L(J), let consider the function φ ◦ f ∈ L(J)φ. We define
the image of the variety J with respect to φ as the variety J φ corresponding to the
field of functions L(J)φ/L.

We now construct the following variety:

W :=
∏

φ∈G(L/K)

J φ .

We shall denote a point of WK/K with P := (. . . , Pφ, . . .), where Pφ ∈ J φ(K).
Moreover, let τ ∈ GK and denote with τ its restriction to L. Then:

τ(P) := (. . . , Qφ, . . .) , with Qφ = τ(Pτ−1◦φ) .

Theorem 2.4. The variety W is the restriction of scalars ResL/K(J) of J .

We now explicitly construct the restriction of scalars of an affine variety J /L em-
bedded in the affine space An

L and given as the set of zeros of a system of m equations:

Fi(x1, . . . , xn) = 0 i = 1, . . . ,m ,

with Fi(x) ∈ L[x1, . . . , xn].
Let {u1, . . . , ur} be a base of L, seen as vector space over K. Define the nr variables

yij as
xj = u1y1j + · · ·+ uryrj j = 1, . . . , n .

CHAPTER 2. BACKGROUND 16

Now substitute the variables xj in the relationships that define J , obtaining:

Fi(y) = gi1(y)u1 + · · ·+ gir(y)ur i = 1, . . . ,m ,

where gij ∈ L[y11, . . . , ynr]. Since the ui are linearly independent, we define W through
the mr equations:

gij(y) = 0 .

One can proof that W build in this way is the restriction of scalars of the variety J .

Example 2.5. Let K = F2, L = K(α), with α2 +α+1 = 0. Let us consider the elliptic
curve E/L

E : y2 + xy + x3 + 1 = 0 .

Substitute x = x0 + x1α+ x2α
2 and y = y0 + y1α+ y2α

2:

(y0 + y1α+ y2α
2)2 + (x0 + x1α+ x2α

2)(y0 + y1α+ y2α
2) + (x0 + x1α+ x2α

2)3 + 1 .

Expanding, we obtain the following system of equations:

y2
0 + x0y0 + x1y2 + x2y1 + x3

0 + x3
1 + x3

2 + 1 = 0

y2
2 + x0y1 + x1y0 + x2y2 + x0x

2
2 + x1x

2
0 + x2x

2
1 = 0

y2
1 + x0y2 + x1y1 + x2y0 + x0x

2
1 + x1x

2
2 + x2x

2
0 = 0

which defines the restriction of scalars ResL/K(E) of E.

The restriction of scalars is a variety of dimension greater than J . For instance, if
C/L is a complete, non-singular curve of genus g, its Jacobian J is a variety of dimension
g and if L/K is an extension of degree r, then ResL/K(J) has dimension rg. It is easy
to guess that we can define subvarieties in ResL/K(J) that we could not define in J .

Example 2.6. Recall the elliptic curve E from Example 2.5. We can construct subva-
rieties of ResL/K(E) by intersecting with the hyperplanes xi = 0 or yi = 0 (i = 1, 2, 3).
These subvarieties, called sections, have dimension 5 over K. Clearly these are not
subvarieties of E since it is an elliptic curve, hence it has dimension 1 (over L).

Let now, for simplicity, K = Fq and L = Fqr . Let J be a variety defined over
K, for instance the Jacobian of a complete, non-singular curve C/K of genus g. Let
σ ∈ G(L/K) be the Frobenius automorphism.

Since J is defined over K, we have J σ = J . Note, however, that ResL/K(J) is not
Fq-isomorphic to J r, because of the action of the Galois group.

We can however embed J into ResL/K(J) “diagonally”:

δ : J (K)→ (
ResL/K(J)

)
(K), P 7→ (. . . , σi(P), . . .) ∈

r−1∏
i=0

J .

The map δ allows to identify J with a subvariety of ResL/K(J).
Let now suppose that J is an abelian variety. Then we find an abelian subvariety

complementary to J , in ResL/K(J).
We use the existence of an automorphism γ of order r in ResL/K(J), defined by

P = (. . . , Pi, . . .) 7→ γ(P) := (. . . , Pi−1 mod r, . . .).

CHAPTER 2. BACKGROUND 17

This map is an automorphism and it is defined over Fq since it permutes with σ.
Denote with Jr the kernel of the endomorphism

∑r−1
i=0 γ

i. This is an abelian subva-
riety of ResL/K(J), called the trace zero subvariety.

We point out some of its properties in the following proposition.

Proposition 2.7. Let J be an abelian variety defined over Fq. We shall use the rep-
resentation with product of ResFqr/Fq(J) and define γ as the automorphism induced by
the cyclic permutation of the factors. Then we have:

1. J can be embedded (diagonally) in ResFqr/Fq(J) or, equivalently, J = Ker(γ−Id).

2. The image of γ − Id is the trace zero subvariety Jr.
3. The Fq-rational points of Jr are the points P ∈ J (Fqr) with Tr(P) = 0,

4. J and Jr generate ResFqr/Fq(J), and intersect in the r-torsion subgroup.

2.3 Duality in Arithmetic Geometry

Let S be a (non-empty) set and C an abelian group. The set CS of the functions from S
to C becomes in a natural way an abelian group. In many contexts S and C are endowed
with a topology and in this case we tacitly assume that the functions are continuous.

The evaluation map:
S × CS → C

is non-degenerate and Z-linear in the second argument.
Let C(S) be the set of all functions g with the property that g(s) = 0C for all but

finitely many s ∈ S. Obviously C(S) is a subgroup of CS .

Example 2.8. Take C = Z. Z(S) is the free abelian group generated by S. Its elements
are functions g : S → Z which have value different from 0 only for finitely many elements
in S.

We can define the degree deg(g) :=
∑

s∈S g(s). The elements of degree 0 form a

subgroup denoted Z(S)0
.

Furthermore, we can embed S in Z(S) by sending s ∈ S to the function gs such that
gs(s) = 1 and gs(s′) = 0 for s′ 6= s.

A function f from S to C can be extended linearly, i.e. it becomes an homomorphism
from Z(S) to C denoted again by f :

f : g 7→
∑
s∈S

g(s) · f(s) .

In this way CS is identified with Hom
(
Z(S), C

)
. We get a non-degenerate evaluation

pairing :
E : Z(S) × CS → C

by
(g, f) 7→

∑
s∈S

g(s) · f(s) .

CHAPTER 2. BACKGROUND 18

An important special case is that of C = Z. For a fixed f ∈ ZS , we define:

degf : Z(S) → Z

by
degf (g) := E(g, f) =

∑
s∈S

g(s) · f(s) .

Take f ≡ 1. In this case we denote degf by deg and its kernel by Z(S)0
, the subgroup of

elements of degree 0. This definition is equivalent to the one presented in Example 2.8.
Now assume that S is a group. By restricting the evaluation map from CS to

Hom(S,C), the group of homomorphisms from S to C, we get:

E0 : S ×Hom(S,C)→ C .

E0 is a pairing, non-degenerate in the second argument: it is linear and non-degenerate
in the second argument as evaluation map, and it is a group homomorphism as function
of the first argument.

Since C is assumed to be abelian, every homomorphism vanishes on the derivative
subgroup S′ of S, i.e. the subgroup generated by the commutators. This gives rise to a
pairing:

E : S/S′ ×Hom(S,C)→ C .

Example 2.9. Take C = R/Z with the discrete topology and S a topological group. The
(topological) group Hom(S,R/Z) of continuous homomorphisms is called the Pontryagin
dual S∗ of S.

Since R/Z is an injective Z-module, the pairing

E : S/S′ × S∗ → R/Z

is non-degenerate in both variables.

Let K be a perfect field of characteristic p ≥ 0. For simplicity we assume that
group orders are prime to p. The absolute Galois group GK is a topological group with
profinite topology and hence it is compact.

A Galois module M is a discrete Z-module with continuous GK-action. In particular
this implies that

M =
⋃
U

MU ,

where U < GK with finite index.
The Galois module M determines a functor

M : { fields between K and K } 7→ { Abelian groups }
sending a field L to MGL .

Example 2.10. Take M = K
∗. The corresponding functor is denoted by Gm.

There is a scheme, also denoted Gm, defined over K such that for commutative
algebras R over K we have:

Gm(R) = R∗ ,

the group of invertible elements in (R, ·) and so Gm(L) = K
∗GL = L∗.

It is the spectrum of the coordinate ring K[X,Y]/(XY − 1).

CHAPTER 2. BACKGROUND 19

This example is generalized as follows. Assume that A is a commutative group
scheme defined over K. Then A = A(K) is a GK-module.

In generalA is not determined by A(K), but this is so if A is smooth or, in particular,
étale. If A is a finite commutative group scheme with order prime to p, then it is étale
over K.

Remark 2.11. A finite Galois module is always represented by an (affine) étale commu-
tative group scheme, and conversely, the K-rational points of a finite étale commutative
group scheme are a finite Galois module.

Definition 2.12. Let A,B,C be Galois modules and let

Q : A×B → C

be a pairing.
Q is a Galois pairing iff for all (a, b) ∈ A×B and ζ ∈ GK we have:

Q(ζ ◦ a, ζ ◦ b) = ζ ◦Q(a, b) .

Let S be a set endowed with the discrete topology with continuous GK-action, and let
C be a Galois module. Then CS becomes a Galois module by the action f ζ := ζ ◦f ◦ζ−1.

If we apply this definition to Z(S), where Z seen as Galois module with trivial action,
we can verify that the evaluation pairing

E : Z(S) × CS → C

is a Galois pairing.
When S is also a GK-module, restricting to homomorphisms we endow Hom(S,C)

with a natural GK-module structure and the pairing

E : S ×Hom(S,C)→ C

is a Galois pairing.
A key example from the arithmetical point of view is to take C = K

∗. For a finite
GK-module A, we call Cartier dual the GK-module Â := Hom(A,K∗).

Theorem 2.13. Let A be a finite GK-module and Â its Cartier dual.

1. The evaluation pairing E : A× Â→ K
∗ is a non-degenerate Galois pairing.

2. If A is a finite commutative group scheme with order prime to char(K) then Â :=

Hom(A, Gm) is an étale group scheme (the Cartier dual of A) and Â(K) = Â(K).
In particular the Cartier dual of Â is A.

We now present two foundamental examples.

Example 2.14. Take A = µn, the group of the roots of unity with order dividing n. As
always, we assume n prime to p.

Then A = Ker(n · IdGm) =: Gm[n] and we have the Kummer sequence:

1→ Gm[n]→ Gm → Gm → 1

CHAPTER 2. BACKGROUND 20

of group schemes, yielding the exact sequence of Galois modules

1→ µn → K
∗ → K

∗ → 1 .

The Cartier dual of Gm[n] is the constant group scheme Z/nZ (with trivial Galois
action) since every endomorphism of µn is an exponentiation.

Conversely, if A = Z/nZ, its Cartier dual is µn. Note the Pontryagin dual of Z/nZ
is Z/nZ itself. So as Z-modules we get the same groups, but the Galois action differs as
soon as K does not contain all the nth roots of unity.

Example 2.15. Let A be an abelian variety defined over K. Take A[n] := Ker(n · IdA).
Again we have a Kummer sequence

0→ A[n]→ A→ A→ 0

yielding the exact sequence of Galois modules

0→ A(K)[n]→ A(K)→ A(K)→ 0 .

There is an abelian variety Â dual to A such that, in a canonical way, Â[n] is
isomorphic to Â[n]. In particular we get a non-degenerate Galois pairing between the
points of order dividing n of A(K) and Â(K).

An important special case is that A is principally polarized, e.g. A is the Jacobian
of a projective, absolutely irreducible, non-singular curve, and then it is isomorphic to
Â. In this case A[n] is self-dual. This evaluation pairing

Wn : A(K)[n]×A(K)[n]→ K
∗

is called Weil pairing.

Let A,B be two GK-modules. The tensor product A ⊗ B (over Z) becomes in a
natural way a GK-module. We have a natural (and functorial) homomorphism:

∪0,0 : AGK ⊗BGK → (A⊗B)GK ,

which induces a unique family of homomorphisms:

∪p,q : Hp(GK , A)×Hq(GK , B)→ Hp+q(GK , A⊗B) ,

with functorial properties with respect to cohomology functors.
∪p,q is called the cup product.

Now assume there is a pairing Q : A×B → C.
Q defines a GK-homomorphism φQ from A ⊗ B to C, by sending a ⊗ b to Q(a, b). We
also get induced homomorphisms φ(n)

Q on the nth cohomology groups.
We can then define a bilinear pairing:

Qp,q : Hp(GK , A)×Hq(GK , B)→ Hp+q(GK , C)

by
Qp,q = φ

(p+q)
Q ◦ ∪p,q .

Example 2.16. Let p, q be non-negative integers with p+q = 2. The evaluation pairing
induces pairings:

Ep,q : Hp(GK , A)×Hq(GK , Â)→ H2(GK ,K
∗) .

The cohomology group H2(GK ,K
∗) is an important object to study the arithmetic

of K. It is called the Brauer group of K and denoted by Br(K).

CHAPTER 2. BACKGROUND 21

2.4 The Lichtenbaum-Tate Pairing

Let J be a principally polarized abelian variety defined over K, e.g. the Jacobian of
a projective, non-singular and absolutely irreducible curve. Let, as always, n ∈ N be
prime to p = char(K).

The assumption that n is prime to p implies that the Kummer sequence:

0→ J (K)[n]→ J (K) n−→ J (K)→ 0

is an exact sequence of GK-modules.
We can therefore apply Galois cohomology and obtain the exact sequence:

0→ J (K)/nJ (K) δ−→ H1
(
GK ,J [n](K)

) α−→ H1
(
GK ,J (K)

)
[n]→ 0 .

This sequence is particular important both in theory and in practice and we describe
it in more detail. Recall that for a GK module M , the group Hq(GK ,M) is a quotient
of the group of q-cocycles modulo the subgroup of q-coboundaries.

We begin by describing the map δ. Let P ∈ J (K). Since the multiplication times n
is surjective, there exists a point Q ∈ J (K) such that nQ = P . Define:

δ′(P) : GK → J (K)[n]
ζ 7→ ζ(Q)−Q .

It is easy to check that δ′(P) is a 1-cocycle with image in J (K)[n] and that another
choice of Q′ with nQ′ = P chances this cocycle by a coboundary, and so we get a well
defined map from J (K) to H1

(
GK ,J [n](K)

)
. Another immediate check shows that

the kernel of this map is exactly nJ (K).
We now turn the attention to α. Using the injection of J (K)[n] into J (K) we may

interpret cocycles with values in J (K)[n] as cocycles with values in J (K). The map
α is obtained going to the quotient modulo coboundaries. Since the arguments of the
induced cocycles are points of order n, it follows that the image of α is contained in the
subgroup H1

(
GK ,J (K)

)
[n].

Finally one can check, either directly or by using properties of cohomology, that α
is surjective and that the kernel of α is equal to the image of δ.

As seen in the previous section, we have an evaluation pairing:

E1,1 : H1
(
GK ,J [n](K)

)×H1
(
GK ,J [n](K)

)→ Br(K)[n] ,

where we used that J [n](K) is self-dual (cf. Example 2.15).

Definition 2.17. With the notation as above, the Tate pairing

Tn : J (K)/nJ (K)×H1
(
GK ,J (K)

)
[n]→ Br(K)[n]

is given by:
Tn
(
P + nJ (K), γ

)
= E1,1

(
δ(P + nJ (K)), α−1(γ)) .

It is easy to check that Tn is well defined and bilinear.

Remark 2.18. The Tate pairing relates three very interesting groups occurring in Arith-
metic Geometry: the Morder-Weil group of J , the first cohomology group of J and the
Brauer group of the ground field K.

CHAPTER 2. BACKGROUND 22

We now want to introduce another pairing, the Lichtenbaum pairing, which is es-
sentially an evaluation pairing defined on a curve. Let C be a projective, non-singular
and absolutely irreducible curve defined over K with function field F = K(C) and, for
simplicity, a K-rational point.

We denote by C the curve obtained from C by extending the scalars to K. The
function field of C is F = F ·K and GK acts in a natural way on F and C(K), fixing
respectively the sets F and C(K).

We consider subsets T ⊂ C(K) which are GK-invariant. We denote F T ⊂ F the
group of functions on C without zeros and poles in T . We can also interpret F T as
Galois invariant subset of (K∗)

T
, the set of all the maps from T to K∗.

The evaluation pairing
ET : Z(T) × F T → K

is a Galois pairing and induces (for p+ q = 2) a pairing

Ep,qT : Hp
(
GK ,Z(T)

)×Hq
(
GK , F T

)→ Br(K) .

Since C is assumed to be regular (actually non-singular) we can identify Z(T) with
the group DivT (C) of divisors on C with support in T .

It is possible to see that H1
(
GK ,DivT (C)) = 0, hence the case p = q = 1 is not

interesting. In the following we will concentrate on

ET := E0,2
T : DT ×H2

(
GK , F T

)→ Br(K) ,

where DT = H0
(
GK ,Z(T)

)
can be identified with DivT (C), the group of K-rational

divisors on C with support in T .
We would like to extend the pairing ET to a pairing with F

∗ as domain for the
second argument.

Begin with γ ∈ H2
(
GK , F

∗). We represent γ by a cocycle c determined by finitely
many functions fσ1,σ2 as values. This is possible since, because of continuity, there
is a finite Galois extension L/K such that γ is the inflation of an element γL ∈
H2
(
G(L/K), F · L).
Given a K-rational divisor D, we wish to evaluate each function fσ1,σ2 on D, but we

have to pay attention to the zeros and poles of fσ1,σ2 . Let S be the finite set of points
on C which occur as zeros or poles of the functions fσ1,σ2 , and take T = C \ S.

Next, choose a function h ∈ F such that Dh := D + (h) is prime to S. So Dh ∈ DT
and ET (Dh, γ) is an element in Br(K). Unfortunately this elements may depend on the
choice of h.

Let h′ ∈ F such that Dh′ := D+(h′) is prime to S. We want to evaluate the difference
ET (Dh−Dh′ , γ), which means to evaluate fσ1,σ2 on the divisor (h̃), where F 3 h̃ = h−h′.
If the evaluation is trivial, we can conclude that the element ET (Dh, γ) ∈ Br(K) does
not depend upon the choice of h. Of course we can not expect that the evaluation is
always trivial, but we aim to find conditions on γ that make this happen.

By Weil’s reciprocity we have:

fσ1,σ2

(
(h̃)
)

= h̃
(
(fσ1,σ2)

)
,

and, since h̃ is GK-invariant, the above expression is trivial if the class of the following
cocycle c′L ∈ H2(GK ,Div(C)) is trivial:

c′L : G(L/K)×G(L/K)→ Div(C)
σ1, σ2 7→ (fσ1,σ2) .

CHAPTER 2. BACKGROUND 23

This motivate the following:

Definition 2.19. The Brauer group Br(C) of C is the kernel of the map

H2(GK , F
∗)→ H2(GK ,Div(C))

induced by sending a function f on C to its principal divisor (f).

By the discussion above we see that we can define a pairing from Div(C)×Br(C) in
Br(K) by using appropriate pairing ET and changing elements in Div(C) by principal
divisors. By definition, the resulting pairing only depends on the divisor class of the
K-rational divisors on C.
Proposition 2.20. Let C be a projective, non-singular and absolutely irreducible curve
defined over K with divisor class group Pic(C).

Then the evaluation pairing induces a pairing

E : Pic(C)× Br(C)→ Br(K) .

In many cases one is interested to work in Pic0(C). As this group consists of classes
of divisors on C of degree 0 modulo the group of principal divisors, we observe that the
evaluation of a function f at a divisor of degree 0 depends only on (f), and so E induces
a pairing, also denoted by E, from Pic0(C)× Br(C), where Br(C) is the image of Br(C)
in H2

(
GK ,Princ(C)) induced by the map f 7→ (f).

Corollary 2.21. The evaluation pairing induces a pairing

E : Pic0(C)× Br(C)→ Br(K) .

It remains to describe the elements of Br(C). We use the exact sequence:

0→ Princ(C)→ Div0(C)→ Pic0(C)→ 0 ,

and get:

0 = H1
(
GK ,Div0(C))→ H1

(
GK ,Pic0(C)) δ−→ H2

(
GK ,Princ(C))→ H2

(
GK ,Div0(C)) ,

where δ is the connecting homomorphism resulting from cohomology, which associates
to γ ∈ H1

(
GK ,Pic0(C)) a 2-cocycle from G2

K to Princ(C). In other words, given γ we
find for each pair (σ1, σ2) ∈ G2

K a function fσ1,σ2 ∈ F such that δ(γ) is equal to the
class of the 2-cocycle sending (σ1, σ2) to the principal divisor (fσ1,σ2). Moreover since

H1
(
GK ,Div0(C)) = 0, δ is injective and Br(C) = δ

(
H1
(
GK ,Pic0(C))).

Definition 2.22. Let D ∈ Pic0(C) be a K-rational class of degree 0 with divisor D ∈ D.
The Lichtenbaum pairing

TL : Pic0(C)×H1
(
GK ,Pic0(C))→ Br(K)

maps (D, γ) to the class of the 2-cocycles from G2
K to K∗ given by:

(σ1, σ2) 7→ fσ1,σ2(D) .

(Here D has to be chosen such that it is prime to the set of zeros and poles of fσ1,σ2,
which is always possible.)

CHAPTER 2. BACKGROUND 24

We now give an explicit description of the Lichtenbaum pairing.
Take γ ∈ H1

(
GK ,Pic0(C)) represented by a cocycle

c : GK → Pic0(C)
ζ 7→ Dζ

and choose Dζ ∈ Dζ .
We have already seen that given γ we find for each pair (σ1, σ2) ∈ G2

K a function
fσ1,σ2 ∈ F such that δ(γ) is equal to the class of the 2-cocycle sending (σ1, σ2) to the
principal divisor (fσ1,σ2). Explicitly, the principal divisor is given by:

(fσ1,σ2) := σ1(Dσ2) +Dσ1 −Dσ1σ2 .

Now, choose a divisor D0 :=
∑

P∈C(K) zPP ∈ D0 ∈ Pic0(C), such that D0 is prime
to (fσ1,σ2). Then TL(D0, γ) is the cohomology class of the cocycle:

(σ1, σ2) 7→
∑

P∈C(K)

fσ1,σ2(P)zP ∈ Br(K) .

Example 2.23. Let L/K be a cyclic extension of degree n and let G(L/K) = 〈τ〉.
Because of Hilbert’s Theorem 90, the inflation map from H2

(
G(L/K), F · L) to

H2(GK , F) is injective. We have the following explicit description of H2
(
G(L/K), F · L):

every cohomology class γ contains a cocycle given by:

cb(τ i, τ j) =

{
b if i+ j ≥ n
1 if i+ j < n

with b ∈ F . The cocycles cb, cb′ lie in the same class if and only if bb′−1 ∈ NF ·L/F (F ·L).
We now turn the attention to H1

(
G(L/K),Pic0(CL)

)
. Let γ be the class of a cocycle

c : G(L/K) → Pic0(CL). Then c is completely determined by the value Dτ := c(τ).
In fact, the cocycle condition implies that c(τ j) =

∑j−1
i=0 τ

i(Dτ). In particular we get
TrL/K(Dτ) =

∑n−1
i=0 τ

i(Dτ) = c(τn) = 0.
Choose a divisor D ∈ Dτ . Then:

TrL/K(D) = (fD) , with fD ∈ F .

Hence δ(γ) is represented by the 2-cocycle:

(τ i, τ j) 7→
{

(fD) if i+ j ≥ n
1 if i+ j < n

Next choose a divisor D0 :=
∑

P∈C(K) zPP ∈ D0 ∈ Pic0(C), such that D0 is prime
to the set of zeros and poles of fD. Then TL(D0, γ) ∈ H2

(
G(L/K), L∗

)
is represented

by the 2-cocycle:

(τ i, τ j) 7→
{∏

P∈C(K) fD(P)zP if i+ j ≥ n
1 if i+ j < n

This is a cocycle defining a cyclic algebra with center K and splitting field L.

CHAPTER 2. BACKGROUND 25

So far we have defined two pairings attached to the Jacobian variety of an hyperel-
liptic curve, namely the Tate pairing Tn which crucially uses the Weil pairing on torsion
points of the Jacobian of order n, and the Lichtenbaum pairing TL which uses evaluation
of functions on the curve. A priori the Lichtenbaum pairing is a universal object, but
we can look at it modulo n and get for all natural number prime to char(K)

TL,n : Pic0(C)/nPic0(C)×H1
(
GK ,Pic0(C))[n]→ Br(K)[n] .

Lichtenbaum proves:

Theorem 2.24. Up to a sign, the pairing TL,n is equal to Tn.

We shall call Tn the Lichtenbaum-Tate pairing. For most purpose its interpretation
as evaluation of functions on C is useful: we have a description of the Tate pairing on the
Jacobian that only uses objects directly defined by the underlying curve. In particular
the Weil pairing has completely disappeared.

2.5 The Local Lichtenbaum-Tate Pairing

A fascinating object in number theory is class field theory, whose essentials are formu-
lated in a very elegant fundamental duality theorem involving étale cohomology.

Let O be a ring of integers of a number field and X = Spec(O), let F be a con-
structible abelian sheaf, i.e. there are finitely many points {x1, . . . , xn} such that the
pullbacks of F to X \ {x1, . . . , xn} and to {x1, . . . , xn} are locally constant. Denote Gm
the group scheme attached to the multiplicative group.

Theorem 2.25. For 0 ≤ i ≤ 3 we have a perfect pairing

H i
et(X,F)× Ext3−i

X (F,Gm)→ H3
et(X,Gm) ∼= Q/Z

of finite groups.

From this pairing we get duality theorems both for local fields, e.g. finite algebraic
extensions of p-adic fields, and for global fields, which however we shall omit from this
dissertation.

We now apply Theorem 2.25 to a finite Galois module A over a local field K with
residue field Fq. We assume that the order of A is prime to q.

We interpret OK , the ring of integers of K, as localization of the ring of integers of
a number field, and look at abelian sheaves F trivial outside Spec(OK).

We get the Duality Theorem of Tate.

Theorem 2.26.

1. H3
et(X,Gm) is isomorphic (in a natural way) to Br(K) = H2(GK ,K

∗) and hence
this group is isomorphic to Q/Z.

2. Let A be a finite GK-module with Cartier dual Â.

Then for 0 ≤ i ≤ 2 the cohomology groups H i(GK , A) are finite and the evaluation
pairing induces non-degenerate pairings:

H i(GK , A)×H2−i(GK , Â)→ Br(K) .

CHAPTER 2. BACKGROUND 26

As a consequence of this duality theorem, Tate proves:

Theorem 2.27. Let J be an abelian variety (for simplicity principally polarized).
The Tate pairing

Tn : J (K)/nJ (K)×H1
(
GK ,J (K)

)
[n]→ Br(K)[n]

is a non-degenerate pairing.

Motivated by Theorems 2.24 and 2.27 we aim to obtain an explicit description of a
non-degenerate, bilinear pairing defined over an affine, non-singular curve. Further, as
already mentioned in Section 2.1, we would like to exploit the correspondence between
the Picard group of the curve and an ideal class group (that will be introduced in a
while) to obtain a description of the pairing which is also efficiently computable.

Let K be a local field with residue field Fq. Let CO be an affine, non-singular curve
over K with function field F and let O be the ring of holomorphic functions on CO.
Since CO is non-singular, O is a Dedekind domain (non-singularity of CO is related to
the integral closure of O). Following [Fre08], we denote with Pic(O) the ideal class group
Cl(O).

Now, there exists a unique projective, irreducible and regular curve C with function
field F and containing CO as affine part. Let J be the Jacobian variety of C.

We would like to relate Pic(O) and the Jacobian of C. For this, we enlarge the
ground field to K. The integral closure of O in F is denoted by O and it is the ring of
holomorphic functions of the curve CO, the extension of scalars of CO to K. It is easy to
proof that J (K) is isomorphic to Pic(O) and we can thus mimic the construction made
in the previous section.

It is worthwhile to state again the fundamental result following from the local duality
theorem.

Corollary 2.28 (Lichtenbaum-Tate). Let K be a local field with residue field Fq, CO an
affine, non-singular curve over K with ring of holomorphic functions O.

For every natural number n prime to q, the Lichtenbaum-Tate pairing

TL,n : Pic(O)/nPic(O)×H1
(
GK ,Pic(O)

)
[n]→ Br(K)[n]

is a non-degenerate pairing.

We now discuss the groups occurring in this pairing, both from the theoretical and
algorithmic point of view.

As already noted, we can replace Pic(O) by J (K). Furthermore we suppose J has
good reduction, i.e. we find equations for J with coefficients in the ring of integers of
K whose reduction modulo the valuation ideal of K defines an abelian variety over Fq.

We remark that all these assumptions perfectly match with the applications that we
have in mind. In fact we shall begin with an abelian variety J over Fq and lift it to an
abelian variety over K.

Let us consider the first group in Tate duality. Using Hensel’s lemma we get:

J (K)/nJ (K) ∼= J (Fq)/nJ (Fq) ,

where with a slight abuse of notation we denoted by J both the abelian variety over K
and its reduction over Fq.

CHAPTER 2. BACKGROUND 27

Remark 2.29. Assume that n = ` is a prime and that J (Fq) has no points of order `2.
Then J (Fq)/`J (Fq) is isomorphic to J (Fq)[`] in a natural way.

We now come to the discussion of H1
(
GK ,Pic(O)

)
[n]. Since unramified extensions

of K do not split elements in this group we can use an inflation-restriction sequence
to change our base field from K to the maximal unramified extension Knr of K and
compute the cohomology group over this larger field. We then look for elements which
are invariant under the Galois group of Knr/K, which is (topologically) generated by a
canonical lift of the Frobenius automorphism π of Fq.

We assume that n is prime to the number of connected components of the special
fiber of J . It follows that

H1
(
G(Knr/K),Pic(O)

)
= 0 .

Via restriction we embed H1
(
GK ,Pic(O)

)
into H1

(
GKnr ,Pic(O)

)
. The image is equal

to the subgroup of elements which are π-invariant as π acts by conjugation on GKnr .
Let Ln the unique extension of Knr of degree n which is totally ramified.
Since J by assumption has good reduction, J (Knr)[n] = J (Ln)[n] = J (K)[n] and

hence:
H1
(
GK ,Pic(O)

)
[n] = Hom

(
G(Ln/Kns),J [n]

)
.

By fixing a generator τ of G(Ln/Knr), we can identify Hom
(
G(Ln/Knr),J [n]

)
with

J [n] via the map:
ϕ 7→ ϕ(τ−1) =: Qτ .

In general this identification is not compatible with Galois action. Let ξ be an
uniformizing element of K and Knr = K(ξ1/n). Since τ(ξ1/n) = ζnξ

1/n for an nth root
of unity ζn and π maps ζn to ζqn, we can deduce that π operates on 〈τ〉 by conjugation,
sending τ to τ−q.

Definition 2.30. Let J (K)[n](q) be the subgroup of J (K)[n] consisting of elements Q
with π(Q) = qQ.

Proposition 2.31. Let n be prime to q. Then H1
(
GK ,Pic(O)

)
[n] is isomorphic to

Hom
(
G(Ln/Knr),J [n]

)
and hence, non-canonically since it depends on the choice of τ ,

to J (K)[n](q).

Corollary 2.32.

1. If ζn ∈ K then H1
(
GK ,Pic(O)

)
[n] is isomorphic to Pic(O)[n].

2. Let L any extension of K totally ramified of degree n. The H1
(
GK ,Pic(O)

)
[n] is

equal to the kernel of the restriction map from GK to GL.

Finally, we sketch some details about the Brauer group. By definition, Br(K) consists
of the classes of 2-cocycles of GK with values in K modulo 2-coboundaries.

One can interpret these classes as classes of simple K-algebras with center K. The
addition in the cohomology group corresponds to the tensor product of algebras and
the unit element in Br(K) corresponds to the class of full matrix algebras. Moreover, if
L/K is a separable extension and A is an algebra representing an element a ∈ Br(K),
then A⊗K L represents a class aL ∈ Br(L) and aL = resK/L(a).

CHAPTER 2. BACKGROUND 28

We remark that as a consequence of Hilbert’s Theorem 90, for a Galois extension
L/K the inflation map from H2(G(L/K), L∗) to Br(K) is injective, and the kernel of
the restriction map resK/L is H2(G(L/K), L∗). So we can study the Brauer group of K
by looking at classes of simple K-algebras A with center K and with A ⊗K L being a
full matrix algebra for Galois extensions L/K.

It is especially interesting to look at the case that L/K is a cyclic extension of degree
n (this is the case we have encountered in Example 2.23). So, from now on, we assume
L/K is cyclic of degree n. Algebras corresponding to elements in H2(G(L/K), L∗) are
called cyclic algebras. It is a general fact that Tate cohomology groups of cyclic groups
are periodic with period 2 and so H2(G(L/K), L∗) ∼= K∗/NL/KL

∗. Such an isomorphism
is made explicit in the following way: let τ be the generator of G(L/K) and take b ∈ K∗.
The map fτ,b : G(L/K)×G(L/K)→ L∗ given by

fτ,b(τ i, τ j) =

{
b if i+ j ≥ n
1 if i+ j < n

is a 2-cocycle and its class determines an element in Br(K)[n]. For two elements b, b′ the
cocycles fτ,b and fτ,b′ are in the same cohomology class if and only if bb′−1 ∈ NL/KL

∗.
We denote the corresponding class of cyclic algebras by (L, τ, b ·NL/KL

∗).
The most important case for applications is that of L totally ramified of degree n.

We assume L/K is Galois. It follows that L/K is cyclic and K ⊃ µn, the set of nth

roots of unity.
Let, as always, τ be a generator of G(L/K). We have:

K∗/NL/KL
∗ ∼= F∗q/

(
F∗q
)n

.

Thus an element fτ,b ∈ H2(G(L/K), L∗) is determined by the triple:(
L, τ, b · (F∗q)n) .

Similarly as in Remark 2.29, if n = ` is prime, the map:

b · (F∗q)` 7→ b
q−1
`

produces an isomorphism between F∗q/
(
F∗q
)` and µ` ⊂ F∗q . It is desirable for practical

applications to exploit this isomorphism because it allows a unique representation of the
elements in Br(K)[`].

So far we have assumed that µn ⊂ K, but we remark that often, in practice, this
is not the case. A description useful for algorithmic purposes is, at the moment, only
available if one extends the field K so that it contains the roots of unity and then uses
the results presented above. Unfortunately this requires to work in a field which is, in
general, much larger than K. It is a challenge to do better.

2.6 Algorithmic Description of the Tate Pairing

As before, we assume that K is a local field with residue field Fq.
We recall the notation introduced in previous section. Let CO be an affine, non-

singular curve over K and let C be the unique projective, irreducible and regular curve
with the same function field and containing CO as affine part. Let J be the Jacobian

CHAPTER 2. BACKGROUND 29

variety of C. We simplify the situation and we assume that C has good reduction, hence
it is the lift of a non-singular curve defined over Fq. Moreover, we suppose that only
one point at infinity is missing on CO.

So we have a non-degenerate pairing:

TL,n : J (K)/nJ (K)×H1
(
GK ,J (K)

)
[n]→ Br(K)[n] .

Definition 2.33. The embedding degree k is the smallest number with qk ≡ 1 mod n.
Equivalently, k is the degree of the smallest extension of K containing the nth roots of
unity.

Let ζn be a nth root of unity and define Kn := K(ζn). It is a local field with residue
field Fqk . As above, we choose an uniformizing element ξ ∈ K, define L := Kn(ξ1/n)
and take a generator τ of G(L/Kn).

As seen in Section 2.5, we can identify H1
(
GK ,J (K)

)
[n] with the group of homo-

morphisms:{
ϕ ∈ Hom

(
G(L/Kn),J (Kn)[n]

)
with ϕ(τ−1) = Q and π(Q) = qQ

}
.

We use the explicit description of the Lichtenbaum-Tate pairing given in Exam-
ple 2.23 – but for simplicity we do not distinguish between divisors on the curve and
points on the Jacobian, i.e. divisors classes. Take γ ∈ H1

(
GK ,J (K)

)
[n] corresponding

to ϕ with ϕ(τ−1) = Q and nQ = (fQ). Take P ∈ J (K) (represented by a divisor) prime
to (fQ). Then TL,n(P, γ) is the class of cyclic algebra (L, τ, fQ(P) ·NL/KnL

∗).
Hence we get a non-degenerate pairing:

Tn,0 : J (K)/nJ (K)× J (K)[n](q) → F∗qk/
(
F∗qk
)n

,

given by evaluation modulo the maximal ideal p ⊂ OK of a functions fQ with (fQ) = nQ
and Q ∈ J (K)[n](q) in P ∈ J (K).

We now want to apply these results to a curve defined over a finite field Fq.
Unfortunately, a straightforward application is not possible: in fact, if C is a curve de-

fined over Fq, then both H1
(
GFq ,J (Fq)

)
[n] and Br(Fq) are trivial, so the Lichtenbaum-

Tate pairing is always degenerate.
The way to get it out is to start from a curve CO defined over Fq (q = pm) and

consider its p-adic lifting.
Let O be the ring of holomorphic functions of an affine, non-singular curve CO/Fq,

with corresponding projective curve C. Let J be the Jacobian variety of C.
Let K be a local field with residue field Fq. We can lift CO to an affine, non-singular

curve ClO defined over K, embedded in the projective curve Cl which is a lift of C, such
that all relevant data are preserved. In particular, for n prime to q, Pic(Ol)/nPic(Ol)
is canonically isomorphic to Pic(O)/nPic(O).

Now, we can evaluate functions on Cl modulo the maximal ideal p ⊂ OK and get
an explicit description of the Lichtenbaum-Tate pairing in the case of good reduction
which only uses objects attached to the curve CO.

We can generalize the result stated in Corollary 2.28. For the sake of completeness,
we report this final result in its complete form (cf. [Fre08]).

Theorem 2.34. Assume that CO is an affine curve with one singular point over Fq
whose conductor is square free. Let O be the ring of holomorphic functions. Take n
prime to q (and satisfying some “innocent” extra conditions).

CHAPTER 2. BACKGROUND 30

Then we get a non-degenerate pairing:

Tn : Pic(O)/nPic(O)× JCl(K)[n](q) → F∗qk/
(
F∗qk
)n

,

given by evaluation modulo p of a function fQ with (fQ) = nQ and Q ∈ JCl(K)[n](q) in
P ∈ Pic(O).

If CO is regular, Q and fQ can be replaced by their reduction modulo p, i.e. by points
and functions over Fq, and we get a pairing:

Tn,0 : Pic(O)/nPic(O)× J (Fq)[n](q) → F∗qk/
(
F∗qk
)n

.

Before concluding this section and the chapter, it is important to make some addi-
tional considerations.

First, to get a bilinear structure on Jacobians of curves defined over Fq – or more
precisely on the class group of rings of holomorphic functions of such curves – one has
to show that the computation of the pairing is efficient. Because of high degrees n
needed in practical applications, a naive approach to evaluate the function fQ(P) is not
possible. The solution was provided by Miller [Mil86b, Mil04] for elliptic curves, later
generalized. We will discuss in detail Miller’s algorithm in Section 3.4.

Next, we need to bind the notation introduced in this chapter to the one previously
seen in Section 1.4, that will be used in the next chapters too. Starting from the last
description of the Lichtenbaum-Tate pairing in Theorem 2.34, we have already seen that
if n = ` is prime, then Pic(O)/`Pic(O) is isomorphic to J (Fq)[`]. Furthermore:

J (Fq)[`] ⊂ J (Fqk)[`] ∼= J (Fq)[`]× J (Fqk)[`](q) .

Note that, by definition, the Frobenius endomorphism π acts on the two components
of the `-torsion group respectively as identity and multiplication times q. So, we can
define G := J (Fqk)[`],

G1 := J (Fq)[`] = G ∩Ker(π − [1]) ,

G2 := J (Fqk)[`](q) = G ∩Ker(π − [q]) .

Moreover, F∗
qk
/(F∗

qk
)` is isomorphic to the set of `th roots of unity µ` ⊂ F∗

qk
. Recall that

the isomorphism, realized with an exponentiation, also has the side effect to guarantee
a unique representation of the elements, which is desirable for practical applications.
Thus we get a non-degenerate (reduced) Lichtenbaum-Tate pairing – that from now on
we shall simply call Tate pairing:

t̂ : G1 ×G2 → GT = µ` .

It is worth noticing that for practical applications it may be useful to exploit Weil’s
reciprocity and compute fP (Q) in place of fQ(P) as P is a Fq-rational divisor class.

Last, but not least, we want to apply the construction of the Tate pairing to a TZV.
From the theoretical perspective this is straightforward as a TZV Jr is isomorphic to a
subgroup of J (Fqr), hence the only change one has to made to the whole discussion is to
replace C with its extension of scalars CFqr to Fqr/Fq that obviously poses no problems.
The only tricky point is the computation of the embedding degree. It is known for
supersingular abelian varieties that the embedding degree is invariant under extension
of scalars. Unfortunately no technique has been developed to manage the embedding
degree of ordinary TZV, and construction of a pairing-friendly (i.e. with constrained
embedding degree) family of ordinary TZV is still an open problem.

Chapter 3

Pairing on Supersingular Trace
Zero Varieties

Geometry is the art of correct reasoning
on incorrect figures.

In this chapter we review Trace Zero Varieties from a more application-oriented
point of view and we discuss their efficient arithmetic that can be achieved exploiting
the action of the Frobenius endomorphism. The core of the chapter is however related
to pairing: we present a new algorithm to compute the Tate pairing over supersingular
TZV that also makes use of the Frobenius endomorphism to improve on performance.

This chapter and the following are essentially built from [AC08a] and [AC08b]. Fig-
ures along the chapter come from a poster presented at Eurocrypt 2009, and available
in Appendix A.

3.1 Hyperelliptic Curves and Trace Zero Varieties

In this section we introduce the necessary background on hyperelliptic curves, elliptic
curves and their trace zero varieties. There are several books on the subject of elliptic
and hyperelliptic curves. For reference material within the perspective of cryptographic
of applications we refer to [AC+05]. We mention here only a few facts.

Throughout this chapter, Fq shall denote the Galois field of order q.

3.1.1 Hyperelliptic Curves

A hyperelliptic curve C of genus g over Fq having an Fq-rational Weierstraß point is a
non singular curve defined by the equation:

y2 + h(x)y = f(x), f monic, deg f = 2g + 1, deg h ≤ g . (3.1)

A hyperelliptic curve of genus 1 is called an elliptic curve. It can be written in the
following form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 , with ai ∈ Fq . (3.2)

For every finite extension L/Fq, the Jacobian variety JC(L) of C over L is isomorphic
(as group) to the ideal class group over L. Hence we can represent the elements of JC(L)

31

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 32

by a pair of polynomials with coefficients in L (Mumford’s representation, [MWZ98])
and compute the group law using Cantor’s algorithm [Can87, Kob89].

The Frobenius endomorphism σ operates on a element of JC(L), represented by a
pair of polynomials [u, v], by raising each coefficient of u and v to the power of q.

Jacobian variety and Frobenius endomorphism are the main ingredients for the con-
struction of TZV. We give a pictorial representation in Figure 3.1.

P
σ(P)

σr−1(P)

Fq

L

JC(Fq)

JC(L)

Figure 3.1: Ingredients for the construction of a TZV

The Frobenius endomorphism σ satisfies the characteristic polynomial:

χ(T) = T 2g + a1T
2g−1 + · · ·+ agT

g + · · ·+ a1q
g−1T + qg , (3.3)

where ai ∈ Z. The Hasse–Weil theorem states that from the complex roots τi of χ(T)
we can obtain the group order over any extension:

|JC(Fqn)| =
2g∏
i=1

(1− τni) ,

in particular |JC(Fq)| = χ(1).
If E is an elliptic curve over Fq, we have:

|E(Fqn)| = (1− τn1)(1− τn2) = qn + 1− tn , (3.4)

where the sequence (tn)n∈Z satisfies t0 = 2, t1 = t and tn+1 = ttn − qtn−1, for n ≥ 1.

Ordinary Elliptic Curves Over Binary Fields

An ordinary (i.e. non supersingular) elliptic curve E over a binary field Fq can always
be brought to the following Weierstraß form:

y2 + xy = x3 + ax2 + b, with a ∈ F2, b ∈ Fq . (3.5)

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 33

Supersingular Elliptic Curves

Supersingular elliptic curves represent a small set among all elliptic curves on a given
field Fq. In characteristic 2 or 3 they are precisely the curves with j-invariant equals
to 0 = 1728, and in characteristic p > 3 we have supersingular curves with j = 0 if
p 6≡ 1 mod 3 and with j = 1728 if p 6≡ 1 mod 4 (see [Sch87] for more details).

This means that we can have only a few (1 or 2) isomorphism classes of supersingular
curves over the algebraic closure of Fq or, in other words, we have only a few twists of a
single supersingular curve over Fq. For this reason, the equations of supersingular elliptic
curves contains only a few parameters. For instance, over binary fields supersingular
elliptic curves have equation:

y2 + y = x3 + x+ b, with b ∈ F2 .

In this work we work with supersingular elliptic curve already considered in [BK+02],
whose equations will be given in Lemmas 3.9, 3.10 and 3.11 below.

Ordinary Genus 2 HEC Over Binary Fields

In [CY02, BD04, LS04], ordinary genus 2 hyperelliptic curves over binary fields with a
fixed rational point at infinity are classified in terms of the degree of the polynomial
h(x). In order to be able to use the Lange–Stevens’ doubling formulae [LS04] we shall
consider the so-called curves of Type II (cf. [LS04] or see Section 14.5 of [AC+05]), which
have an equation of the form:

y2 + xy = x5 + f3x
3 + εx2 + f0, ε ∈ F2, f0, f3 ∈ Fq . (3.6)

3.1.2 Trace Zero Varieties

Let C be a hyperelliptic curve of genus g over a finite field Fq, given by equation (3.1);
let r be a (small) prime number, let JC(Fqr) be the Jacobian variety of C over Fqr and
let D ∈ JC(Fqr).

We can formally define the trace of D, as for fields:

Tr(D) = D + σ(D) + · · ·+ σr−1(D) .

It is clearly an endomorphism of JC(Fqr).
The trace zero subgroup of JC(Fqr) is the kernel of this endomorphism

G := Ker Tr = {P ∈ JC(Fqr) | Tr(P) = O} ,
where O is the neutral element in JC(Fqr), and as such it is a group. This is isomorphic
to a codimension g subvariety Jr of the Weil restriction of scalars of JC from Fqr to Fq,
whence the name Trace Zero Variety (TZV).

Now, the intersection of G and JC(Fq) is formed by the r-torsion elements of JC(Fq).
Let v = gcd(r, |JC(Fq)|). If v = 1 then this intersection is empty and we can compute
the group order as follows:

|G| = |JC(Fqr)||JC(Fq)| .

If v 6= 1 then G∩JC(Fq)[r] 6= ∅, but, being interested in subgroups of large prime order,
we could still take a subgroup of G not intersecting the r-torsion. However, we can
restrict ourselves to the case v = 1 in what follows.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 34

From the cryptographic point of view, only the following cases are relevant: g =
1, r = 3; g = 1, r = 5 and g = 2, r = 3, namely TZV of elliptic curves over extensions
of degree 3 and 5, and TZV of genus 2 hyperelliptic curves over extensions of degree 3
(cf. Section 3.8).

The following proposition (cf. [AL04]) gives us the group orders and useful bounds.

Proposition 3.1. For the group order of TZV in the considered cases we have:

1. For g = 1 and r = 3:

|G| = q2 − q(1 + a1) + a2
1 − a1 + 1 (3.7)

and
|G| ≤ q2 + 2q3/2 + 3q + 2q1/2 + 1 ; (3.8)

2. For g = 1 and r = 5:

|G| = q4−(a1+1)q3+(a1+1)2q2 +
(
5a1−(a1+1)3

)
q−(5a1(a2

1+a1+1)−(a1+1)4
)

and
|G| ≤ qq + 2q7/2 + 3q3 + 4q5/2 + 5q2 + 4q3/2 + 3q + 2q1/2 + 1 ;

3. For g = 2 and r = 3:

|G| = q4−a1q
3+(a2

1+2a1−a2−1)q2 +(−a2
1−a1a2+2a1)q+a2

1+a2
2−a1a2−a1−a2+1

and

|G| ≤ q4 + 4q7/2 + 10q3 + 16q5/2 + 19q2 + 16q3/2 + 10q + 4q1/2 + 1 .

Here, the integers a1, a2 are coefficients of the characteristic polynomial of the Frobenius
endomophism (3.3).

We can already see an advantage in using TZV: to count the number of points on
such a variety we need to determine the characteristic polynomial of a curve defined over
a smaller field than we would have considering plain elliptic and hyperelliptic curves with
similar group size. This makes counting points on trace zero varieties much faster and
allows a faster generation of cryptographically suitable curves.

Moreover, in characteristic 2 the group of rational points of an ordinary elliptic curve
always has even order, requiring to work in a subgroup of small index (usually 2 or 4).
TZV (as well as Jacobians of higher genus ordinary hyperelliptic curves) do not suffer
this problem, since their order can be prime.

For cryptographic applications, we want to work in a subgroup G1 of G of large
prime order ` (that may be G itself).

3.2 Arithmetic in G1

Arithmetic in G1 is performed using formulae for the whole group JC(Fqr). We may
however speed up the scalar multiplication by making use of the Frobenius operation σ.
It is still an open problem to find explicit (and faster) formulae for TZV.

If G1 is generated by D of order ` prime, then σ(D) = sD, for some integer s, that
can be computed as T − s = gcd(T r − 1, χ(T)) in F`[T] (cf. [AL04, AC08b]):

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 35

1. For g = 1 and r = 3: s ≡ q − 1
1− a1

mod ` ;

2. For g = 1 and r = 5: s ≡ q2 − q − a2
1q + a1q + 1

q − 2a1q + a3
1 − a2

1 + a1 − 1
mod ` ;

3. For g = 2 and r = 3: s ≡ − q
2 − a2 + a1

a1q − a2 + 1
mod ` ,

where the integers a1, a2 are coefficients of the characteristic polynomial of the Frobenius
endomophism (3.3).

Using this result we want to replace any scalar multiplication mD (|m| ≤ `/2) with
the computation of

m0D +m1σ(D) + · · ·+mr−1σ
r−1(D) ,

where mi = O(`1/(r−1)) = O(qg). In this way we are reducing the size of the scalars, and
hence the number of “doubling” operations in a double-and-add scalar multiplication
algorithm.

Since in cryptographic algorithms m is usually random, we can achieve the reduction
following two ways: generate a random integer m, then split it in opportune mi; or
directly generate some mi, by making sure to avoid collisions, i.e. different sequences of
mi give different elements of G1.

The second approach has the advantage to save the time necessary to split the scalar,
but in some context (for instance for digital signature verification) it is not applicable.
Hence we are going to describe both.

3.2.1 Scalar Splitting

Given an integer m with, without loss of generality, |m| ≤ `
2 = |G1|

2 , we want to compute
some mi of bounded size, such that:

mD = m0D +m1σ(D) + · · ·+mr−1σ
r−1(D) .

First we write m = n0 + k1q
g, with |n0| ≤ qg/2. Then we use the fact that σ operate in

G1 as multiplication by s and the following relations modulo the group size `:

χ(s) ≡ 0 mod ` and sr−1 + · · ·+ s+ 1 ≡ 0 mod ` .

Proceeding in this direction we can expand m as desired, bounding each mi to O(qg).

Theorem 3.2. For the three cases we consider, there exists an efficient technique for
expressing a scalar m in the form m ≡∑r−2

i=0 mis
i mod ` where mi = O(qg). We have:

1. For g = 1 and r = 3, we have |mi| < 4q if k ≥ 7;

2. For g = 1 and r = 5, we have |mi| < 2q if k ≥ 17;

3. For g = 2 and r = 3, we have |mi| < 4q2 if k ≥ 23.

Proof. The proof is essentially the same as in odd characteristic, as reported in [AL04],
and so we limit here ourselves to sketch the approach for g = 1, r = 3 and to briefly
remark the differences in the other two cases.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 36

Let g = 1 and r = 3. Write first m = n0+k1q, with |n0| ≤ q/2. Now use the fact that
χ(s) ≡ 0 mod `, i.e. that s2 + a1s+ q ≡ 0 mod ` to get: m ≡ n0 + k1(−a1s− s2) mod `.
The term−a1k1 is O(q3/2), which is still too big, hence we need to reduce again: −a1k1 =
n1 + k2q, with |n1| ≤ q/2. Then

m ≡ n0 + n1s+ k2(−a1s
2 − s3)− k1s

2 mod ` .

All the coefficients are now O(q).
At this time, we need to reduce the terms in s2 and s3, using the trace relation

s2 + s+ 1 ≡ 0 mod `. We obtain:

m ≡ m0 +m1s mod ` ,

with m0 = n0 + k1 − k2 + a1k2 = O(q) and m1 = n1 + k1 + a1k2 = O(q). We may now
explicitly bound m0,m1 using the estimation on the group size `, given by (3.8), and
finally obtain that |m0| and |m1| are both lower than 4q if q > 73, i.e. k ≥ 7.

For g = 1, r = 5 we continue to reduce ni ≡ −a1ki − ki−1 mod q, ki+1 :=
−a1ki−ki−1−ni

q , for 1 ≤ i ≤ 5 (assuming k0 = 0); The relation χ(s) ≡ 0 mod ` is the
same as above, and to reduce the powers of s greater than 4 the trace zero relation is
s4 + s3 + s2 + s+ 1 ≡ 0 mod `. Proceeding as in the case g = 1, r = 3, we get a relation
m ≡ m0 +m1s+m2s

2 +m3s
3 mod ` where |m1| < 91q. In order to get the sharp bounds

stated in the theorem, we reduce m1 again once m1 = m′1 + k′2(−a1s− s2) and thus we
consider the coefficients m0,m

′
1,m2 − a1k

′
2 and m3 − k′2.

For g = 2, r = 3, since the constant term of the characteristic polynomial is q2 we
reduce as in the previous cases, but by taking quotients and rests by q2. In order to get
the sharp bounds m1 must be reduced again as in the case g = 1, r = 5.

As already mentioned, to construct the mi one computes quotients and takes remain-
ders modulo qg, and for trace zero varieties in characteristic 2 this amounts to simple
bit shifting or masking operations, which are very efficient.

3.2.2 Multi–scalar Generation

We consider now the technique of beginning with (r−1)-tuples of scalars, instead of de-
riving them from a single scalar. To avoid collisions, i.e. in order to ensure that different
tuples (m0, ...,mr−2) and (m′0, ...,m

′
r−2) yield different elements of G1, or equivalently∑r−2

i=0 mis
i 6≡ ∑r−2

i=0 m
′
is
i mod `, we use the following theorem to bound the size of the

scalars. The proofs of the three cases are immediate adaptations of the proofs found
respectively in [Nau99, AL04, Lan01] for the case where the definition field has odd
characteristic.

Theorem 3.3. Let D be a generator of G1. Then the Br−1 elements b0D + · · · +
br−2σ

r−2(D) are pairwise distinct for bi < B, where:

1. For g = 1 and r = 3,

B := min
{

`

q − a1

, q − 1
gcd(q − 1, a1 − 1)

}
;

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 37

2. For g = 1 and r = 5,

B := min
{

`

(1 + q + |a1|q)M
, |q2 − a2

1q + a1q − q + 1|
γ

}
,

where M = max
{|q2−a2

1q+3a1q−2q−a3
1+a2

1−a1+2|, |q2−a2
1q−a1q+a3

1−a2
1+a1|

}
and γ = gcd(q2 − a2

1q − q + 1, 2a1q − q − a3
1 + a2

1 − a1 + 1);

3. For g = 2 and r = 3,

B := min
{
`

M
, q2 − a2 + a1

gcd(q2 − a2 + a1, a1q − a2 + 1)

}
,

where M = max
{|q2 + a1q − 2a2 + a1 + 1|, |q2 + a1 − a1q − 1|}.

Here, the integers a1, a2 are coefficients of the characteristic polynomial of the Frobenius
endomophism (3.3).

Once a (r−1)-tuple (m0, ...,mr−2) has been generated whose components are smaller
than B, scalar multiplication can be performed by multi-exponentiation techniques. The
problems arise when generating the curves for cryptographic purposes. In fact, we want
B to be O(qg) with the implied constant as close to 1 as possible, and this requires
testing more curves. If B is too small, less points on the curve can be generated than
desired. We want to remark that in the case g = 1, r = 5 the parameter B is of the
order of

√
q, which means that TZV on extensions of degree 5 are not “good” from this

point of view.
In odd characteristic, the search for a proper parameter B makes generating good

curves even more difficult, but scalar splitting is slower than generating the multi-scalars
directly, so this can be the preferred way. On the contrary, in characteristic 2 scalar
splitting is much faster and thus probably the preferred way: note, however, that it
requires the implementation of a simple multiprecision integer library besides the binary
arithmetic.

3.3 Supersingular Trace Zero Varieties and Tate Pairing

From now on, we assume E is an elliptic curve over Fq, given by the equation (3.2). Let
h be the embedding degree1of E , i.e. the multiplicative order of q modulo |E(Fq)|.

Let k be the multiplicative order of q modulo `. Rubin and Silverberg (cf. [RS09,
Theorem 9.2]) show that if E is supersingular and gcd(r, 2qh) = 1, then k = rh and k is
the embedding degree of Er. Moreover, they show (but see also [Nau99] and Section 4.3.3)
that points of G can be compressed to elements of (Fq)r−1, allowing for a boost of the
effective “security multiplier” by a factor r/(r − 1).

This motivates the use of supersingular TZV for pairing computation. For this, we
need to also consider points of the TZV defined over Fqk . Let G be the subgroup of
E(Fqk) whose points have trace O and order ` – from a geometrical point of view this is
isomorphic to Er[`].

1Rubin and Silverberg [RS09] define the cryptographic exponent and prove that it is a finer invariant
than the embedding degree; however for the cases of our interest (see Lemmas 3.9, 3.10 and 3.11 below)
the two measures coincide.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 38

From Frey and Rück [FR94] (see also [AC+05, Prop. 6.12]) it follows that the Tate
pairing induces a pairing

T : G×G→ F∗qk/(F
∗
qk)`

which is non-degenerate on the left, i.e., if T (P,Q) = 1 for all Q ∈ G then P = O.
Now, an alternative definition for G1 is to set G1 = G ∩Ker(π − [1]), where π = σr

is the (qr)th power Frobenius endomorphism; let G2 = G ∩ Ker(π − [qr]) and let µ` be
the set of `th roots of unity in F∗

qk
.

Then there is a non-degenerate, bilinear (reduced) Tate pairing:

t̂ : G1 ×G2 → µ` ⊂ F∗qk .

P

[a]P

Q[b]Q

t̂(P,Q)

t̂(P,Q)ab

Figure 3.2: Bilinear (reduced) Tate pairing t̂(·, ·)
Figure 3.2 depicts the Tate pairing map, for simplicity over an elliptic curve. The

point P is usually taken from the group G1, i.e. a subgroup of the group of rational points
over the ground field. The point Q must be selected in the full `-torsion group (otherwise
the two points would be linearly dependent, and the pairing degenerates), i.e. on the
group of rational points over the extension field, whose degree is given by the embedding
degree. Finally, the pairing takes values in the subgroup of the `th roots of unity of the
multiplicative group of the extension field. By bilinearity, t̂ ([a]P, [b]Q) = t̂(P,Q)ab.

Most improvements in the pairing computation rely on the action of π in the two
groups G1 and G2, namely identity and multiplication by qr. We will present the most
important ones in Section 3.5.

For TZV however another efficient endomorphism exists, σ, which acts in G1 as
scalar multiplication by s.

It can easily be shown that σ acts on G2 as scalar multiplication by an integer S
that can be computed as T − S = gcd(T r − qr, χ(T)) in F`[T]:

1. For r = 3 : S ≡ q − q2

q + t
mod ` ;

2. For r = 5 : S ≡ − q4 − q3 + (1 + t)q2 − t2q
q3 + (1 + t)q2 − (t2 + 2t)q + t3

mod ` .

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 39

3.4 The Miller Function and Miller’s Algorithm

Let K/Fq be a finite extension field and let E/Fq be an elliptic curve. Here we shall set
K = Fq to get results on E , and K = Fqr to obtain results that, by restriction, apply to
Er.

For P ∈ E(K) and n ∈ Z, the Miller function fn,P is a K-rational function with
divisor:

(fn,P) = n(P)− ([n]P)− (n− 1)O .

The Miller function is defined up to a constant c ∈ K∗. For every point Q 6= P , [n]P ,
O, we have fn,P (Q) ∈ K∗. Let ` be a (large) prime dividing |E(K)|. It is a known fact
that, upon putting fP := f`,P , the function W (P,Q) = fP (Q)/fQ(P) defines a non-
degenerate, anti-symmetric bilinear pairing on E [`]. Since this function for our purposes
has a huge degree, to evaluate it efficiently Miller suggested an iterative approach.

For every λ, µ ∈ Z the following properties hold:

fλ+µ,P = fλ,P · fµ,P ·
l[λ]P,[µ]P

v[λ+µ]P
(3.9)

fλµ,P = fµλ,P · fµ,[λ]P , (3.10)

where l[λ]P,[µ]P and v[λ+µ]P are resp. the line through [λ]P , [µ]P and the vertical line
through [λ+ µ]P .

From these properties it is then easy to derive Miller’s algorithm [Mil86b, Mil04],
which we present as Algorithm 3.1.

Algorithm 3.1: Miller’s algorithm for elliptic curves

Input: P,Q ∈ E [`] , n =
∑L

i=0 ni2
i ∈ N (P 6= Q, ni ∈ {0, 1}, nL = 1)

Output: fn,P (Q)

T ← P , f ← 11

for j = L− 1 downto 0 do2

f ← f2 · lT,T (Q)/v[2]T (Q)3

T ← [2]T4

if nj = 1 then5

f ← f · lT,P (Q)/vT+P (Q)6

T ← T + P7

end8

end9

return f10

The property stated by equation (3.10) is simple to understand if we refer to Miller’s
algorithm: suppose we are calculating fn,P (Q) with n = λµ and we already computed
fλ,P (Q); then we still need to perform a loop on µ, starting from the point [λ]P , i.e.
we still need fµ,[λ]P (Q); moreover the quantity fλ,P (Q) will be iteratively accumulated
during the loop, thus raising it to the power of µ.

Hence a single loop on n = λµ can be “reduced” onto two independent loops on λ
and µ (plus one exponentiation to µ). However, this property alone does not allow to
reduce the complexity of the Miller’s algorithm, since the two loops require to work with
distinct points, resp. P and [λ]P .

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 40

For every k ∈ N, from (3.10) one easily derives (cf. [BG+07, HSV06, both in Lemma
2]):

fλk,P = fλ
k−1

λ,P · fλk−2

λ,[λ]P · · · fλ,[λk−1]P . (3.11)

We now want to introduce the effect of the Frobenius endomorphism on the compu-
tation of the Miller function. Let σ ∈ GalK̄/K . Clearly we have fn,Pσ = fσn,P and hence
the Miller function is Galois invariant in the following sense:

fn,Pσ (Qσ) = (fn,P (Q))σ . (3.12)

The next proposition describes the relationship between endomorphisms and the
Miller function. The proof is included for completeness.

Proposition 3.4. Let φ ∈ EndK(E) with Kerφ = {O}. Then, up to a factor in K∗:

fn,φ(P) ◦ φ = (fn,P)deg φ , (3.13)

In particular:

(i) If φ is purely inseparable of degree q, fn,φ(P) ◦ φ = f qn,P .

(ii) If φ is an automorphism, fn,φ(P) = fn,P ◦ φ−1 .

Proof. The left hand side of (3.13) is the pullback φ∗fn,φ(P). The equality up to elements
in K∗ holds because (φ∗f) = φ∗(f), for every f ∈ K(E) [Sil86, Ch. II, Prop. 3.6(b)].
Since Kerφ = {O}, P = φ−1 (φ(P)) is unique and the pullback of (fn,φ(P)) is:

φ∗
(
n(φ(P))− ([n]φ(P))− (n− 1)(O)

)
= deg φ

(
n(P)− ([n]P)− (n− 1)(O)

)
,

([n] commutes with φ). The first statement holds. If φ is an automorphism, the right-
side composition of (3.13) with φ−1 gives the second statement.

Remarks 3.5.

1. With a slightly misleading notation, Prop. 3.4.ii provides a way to compute fn,φ(P)(Q)
based on fn,P , at the price of evaluating it in φ−1(Q); the misleading notation is
because if φ : E → E, then P is naturally taken from the “left” E, while the point
Q from the right one.

2. If φ(Q) = Q, then Prop. 3.4.i allows to reduce fn,φ(P) to a power of fn,P . This
has been used to define the twisted Ate pairing (see [HSV06] and Section 3.5.1).

To round off this section, we go back to the notation previously introduced and let
K = Fqr . We have:

t̂ : G1 ×G2 → µ` ⊂ F∗qk with t̂(P,Q) = f`,P (Q)
qk−1
` ,

where f`,P (Q) can be computed with Miller’s algorithm, and the final exponentiation to
qk−1
` allows a unique representation of the result, useful for practical applications.

Several improvements to the basic algorithm are possible (see, e.g., [BG+07]). For
instance, for every integer n such that ` | n | qk − 1, we have:

t̂(P,Q) = fn,P (Q)
qk−1
n . (3.14)

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 41

Hence, one can compute the Tate pairing choosing a multiple of ` with lower Hamming
weight, to reduce the number of additions in the Miller loop.

For future reference we also describe another improvement, the denominator elimina-
tion [BK+02]: note that the final exponentiation eliminates terms defined over subfields,
and hence these can be omitted from the calculations. Since we are dealing with su-
persingular varieties, there exists a distorsion map ψ : G1 → G2 which can be used to
transfer points in the first group to the second one2. If such a distortion map is chosen
so that the x-coordinates always lies in a subfield, then all terms v(Q) in Algorithm 3.1
may be eliminated. As a result, we no longer have any division in Miller’s algorithm.

3.5 A Survey of Pairings

In this section we survey different algorithms to compute bilinear pairings. All of them
require to compute fa,X(Y)b for some integer a, b and some points X, Y . For the purpose
of comparing them, we will refer to a as the (Miller) loop length. At least for moderate
security levels, the exponentiation to b is negligible with respect to the computation of
fa,X(Y) (cf. [KM05]). We note that Hess [Hes08] recently proposes a new framework
which encompasses all known pairing functions based on the Tate and Weil pairings,
including the ones mentioned here.

We begin by defining tn as the algorithm that computes the Tate pairing as in (3.14);
the key point is that we run a Miller loop on n or, rephrasing, this algorithm has a loop
length of n.

Example 3.6. Let q = 2m and E/Fq : y2 + y = x3 + x+ b, with b ∈ F2.
Let E3 be the TZV built upon E and an extension of degree r = 3, whose order

according to (3.7) is:

N = q2 − q(1− t) + t2 + t+ 1 , with t = ±
√

2q .

Let ` be a large prime dividing N , i.e. N = `c, where c is a small cofactor. A real
example is with m = 103 and b = 1, having ` a 192-bit prime (cf. [RS09]).

Let σ the qth power Frobenius endomorphism; we have π = σ3. Given a point
P ′ ∈ E(F23m), P = c (P ′ − σ(P ′)) is either O or, as we assume, a generator of G1.
E has embedding degree h = 4, so the embedding degree of E3 is k = rh = 12. For

every Q̃ ∈ G1, Q = ψ(Q̃) ∈ G2 where ψ is a distortion map (an actual example is given
in [BG+07] and in Section 4.3).

We define two algorithms for computing the Tate pairing:

tN (P,Q) := fN,P (Q)
qk−1
N t`(P,Q) := f`,P (Q)

qk−1
` .

The first one looks promising, since N has a low Hamming weight, at least in NAF
representation; for both, the loop length is O(q2).

2Although on supersingular curves the distortion map allows to define a symmetric pairing, we prefer
to keep distinct the two groups G1 and G2, in order to have a better understanding of the two components
of the `-torsion group.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 42

3.5.1 Ate Pairing

The Ate pairing was defined in [HSV06]; we introduce it in a similar fashion as in [Ver08].
For every L ∈ Z such that ` - L,

f`L,P (Q)
qk−1
` = t̂(P,Q)L (3.15)

is a non-degenerate, bilinear pairing.
Let λ ≡ qr mod `, e.g. λ = tr − 1 with the notation of (3.4). Then ` | λk − 1 since

` | qk − 1. Let L such that `L = λk − 1 and note ` - L:

t̂(P,Q)L = f`L,P (Q)
qk−1
` = fλk−1,P (Q)

qk−1
` = fλk,P (Q)

qk−1
` . (3.16)

Using (3.11) and [λi]P = [qir]P :

fλk,P = fλ
k−1

λ,P · fλk−2

λ,[qr]P · · · fλ,[q(k−1)r]P .

In order to achieve a better algorithm for computing a bilinear pairing, we would
like to reduce the computation of fλ,[qir]P to the computation of fλ,P . Unfortunately
this is not possible for a general curve.

By exchanging the roles of P and Q, it is instead possible to exploit the Miller
function Galois-invariance (3.12) against the (qr)th power Frobenius π:

fn,[qir]Q(P) = fn,πi(Q)

(
πi(P)

)
= f

n,Qπi

(
P π

i
)

= (fn,Q(P))π
i

= (fn,Q(P))q
ir

.

In conclusion we have:

t̂(Q,P)L = fλk,Q(P)
qk−1
` = fλ,Q(P)

qk−1
`

Pk−1
i=0 λ

k−1−iqir ,

and we define the algorithm:

aλ(Q,P) := fλ,Q(P)
qk−1
` .

It computes a non-degenerate bilinear pairing, which is a fixed power of the Tate pairing.
Such an algorithm, however, requires to perform a Miller loop on Q ∈ E(Fqk), which
is fairly less efficient than working with P ∈ E(K) (the latter is sometimes referred as
Miller lite loop/algorithm).

By further generalization, we can take λ ≡ qir mod `, for any 1 ≤ i < k; we refer
to [ZZH07] for more details.

3.5.2 Eta and EtaT Pairings

As already noted, the Ate pairing requires to switch between P and Q, which is not a
good choice from the implementation perspective.

The twisted Ate pairing [HSV06] has been defined to overcome this problem for
ordinary curves.

Supersingular curves allow to swap Q and P in a more natural way, and this in fact
was described before the introduction of the Ate pairing, by defining the Eta and EtaT
pairings (cf. [BG+07]). We prefer to introduce them, however, from an a-posteriori point
of view.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 43

Let E be supersingular. Denote π̂ the dual of the (qr)th power Frobenius π, also
called Verschiebung. Since E is supersingular, E [qr] = {O} and π̂ is purely inseparable.
Since π ◦ π̂ = [qr], π̂ acts on G1, resp. G2, as π acts on G2, resp. G1.

We fit into the hypothesis of Prop. 3.4.i (setting φ = π̂i), so we have:

fn,[qir]P (Q) = fn,π̂i(P)

(
π̂i(Q)

)
= fn,π̂i(P) ◦ π̂i (Q) = (fn,P (Q))q

ir

,

and repeating the arguments of the previous section, we can define the algorithm:

at
λ(P,Q) := fλ,P (Q)

qk−1
` ,

which computes a non-degenerate, bilinear pairing.
The Eta and EtaT pairings were defined in [BG+07]. The point of view is slightly

different, but the final result almost coincides with the one we just achieved. We repeat
the original argument, since we are going to use a similar approach in the proof of
Theorem 3.14.

The starting point is a supersingular elliptic curve E with even embedding degree k
and a distortion map ψ that admits denominator elimination [Sco04]. Let T such that
T a + 1 = `L, for some positive integers a and L, and T ≡ qr mod `. Suppose there
exists an automorphism γ of E such that γ(P) = [T]P and γ ◦ ψπ = ψ, or equivalently
γ−1 ◦ ψ = ψπ. We have:

t̂(P,Q)L = f`L,P (Q)
qk−1
` = fTa+1,P (Q)

qk−1
` = fTa,P (Q)

qk−1
` .

Compare the last equality with the similar derivation done for the Ate pairing in (3.16):
let [n]P = O; for Ate we used fn,P = fn+1,P , which is always true; here fn,P = fn−1,P ·vP
holds, where vP is the vertical line through P , whose contribution cancels out assuming
the distortion map permits denominator elimination.

Again using (3.11) we reduce the computation of fTa,P to powers of fT,[T i]P for
0 ≤ i < a. We have [T i]P = γi(P) and by using Prop. 3.4.ii and Galois invariance
(3.12):

fT,γi(P) (Q) = fT,P ◦ γ−i (Q) =

= fT,P ◦ γ−i (Q) = fT,P

(
ψπ

i
(Q̃)
)

= fT,P

(
Qπi

)
=

= f
T,Pπi

(Qπ
i
) = (fT,P (Q))π

i

= (fT,P (Q))q
ir

.

Finally, T ≡ qr mod ` allows to replace the last exponent with T i when raising to the
power of qk−1

` . In conclusion we have:

t̂(P,Q)L = fTa,P (Q)
qk−1
` = fT,P (Q)

qk−1
`

aTa−1
,

and we define the algorithms:

ηT (P,Q) := fT,P (Q)
qk−1
` and η(P,Q) := ηqr(P,Q) .

For T = λ = tr − 1 (and a = k/2), the algorithms ηT and at
λ coincide.

Example 3.7. Let E3 be defined as in Example 3.6 and η, ηT as before. The loop length
of η is 23m, which is worse than a direct computation from the definition of Tate pairing
using tN . The loop length of ηT is T , in particular for T = t3 − 1 = ∓2(3m+1)/2 − 1, we
have an algorithm with a loop length O(q3/2).

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 44

3.5.3 Optimal (Twisted) Ate Pairing

Vercauteren [Ver08] defines the concept of optimal pairing and describes an algorithm
to compute optimal Ate pairings. Hess [Hes08] extends this framework by (i) allowing
for more general pairing functions and (ii) applying it to the Weil pairing; however no
better explicit algorithm is given than in [Ver08].

The starting point is again (3.15). Let λ = `L and write λ =
∑a

i=0 ciq
i. Given the

vector [c0, . . . , ca], define the following algorithm:

at
[c0,...,ca](P,Q) :=

(
a∏
i=0

fci,P (Q)q
i · C(P,Q)

) qk−1
`

,

where C(P,Q) plays the role of a “correction” term and is given by:

C(P,Q) =
a−1∏
i=0

l[si+1]P,[ciqi]P (Q)
v[si]P (Q)

, with si =
a∑
j=i

cjq
j .

Theorem 1 in [Ver08] shows that at
[c0,...,ca](P,Q) computes a bilinear pairing and states

a condition for non-degeneracy. Furthermore, an algorithm to explicitly derive useful
vectors [c0, . . . , ca] is given, based on finding short vectors in a proper lattice. Given
such a small vector V , we define the algorithm3:

aopt(P,Q) := at
V (P,Q) .

We illustrate it through an explicit example.

Example 3.8. This example is similar to the one presented in [Ver08, Section 4],
related to supersingular elliptic curves over F3m, with k = 6. Let E3 be defined as in
Example 3.6.

The shortest vector is V = [v0, v1] = [2(3m−1)/2, 2(3m−1)/2 ∓ 1], and “another nice
choice” is W = [2(3m+1)/2,−1] that gives the ηT pairing.

We have ` | v0 + v1q
3 = 2(3m−1)/2 · ∣∣E(Fq3)

∣∣. We consider the algorithm:

aopt := aV = fv0,P (Q) · fv1,P (Q)q
3 · l[v0]P,[v1q3]P (Q) ;

we note that [v0]P = −[v1q
3]P , so l[v0]P,[v1q3]P is actually the vertical line through [v0]P

and we can ignore it because the distortion map admits denominator elimination.
It remains to show how to efficiently compute the product of the two Miller functions:

since v1 = v0 − 1, by (3.9) we have fv1,P (Q)q
3

= fv0,P (Q)q
3 · l[v0]P,[v0−1]P ; here we can

not avoid the final multiplication because [v0]P 6= O. In conclusion

aopt = l[v0]P,[v0−1]P · fv0,P (Q)1+q3 , where v0 = 2(3m−1)/2 .

The loop length is O(2(3m−1)/2), but a final correction term is required, thus this algo-
rithm is essentially equivalent to ηT .

3Actually the property for V to be small is only a necessary condition for the related Ate pairing to
be optimal; a detailed discussion is out of the scope of this work and we refer to the original paper for
further details.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 45

3.6 Pairing on Supersingular Trace Zero Varieties

We already presented through examples how to apply the current literature to a partic-
ular TZV. We stress the following facts:

• The presented pairings make use of the (qr)th power Frobenius π. They apply not
only to points of the TZV, but to the whole E(Fqr).

• The supersingular TZV in the examples is perfectly equivalent from a security
perspective to the supersingular elliptic curve in characteristic 3 (small character-
istic field, effective security multiplier of 6, see also Lemma 3.9). Furthermore,
since q = 2m and t = 2(m+1)/2, most of the algorithms come with a very efficient
(i.e. low Hamming weight) Miller loop; the two pairings ηT and aopt achieve the
shortest loops.

3.6.1 Preliminaries

We begin by looking at how to exploit the action of the qth power Frobenius endomor-
phism σ. From previous sections we already know that σ acts on G1, resp. G2, as the
scalar multiplication by an integer s, resp. S.

The next lemmas introduce three relevant families of supersingular TZV and shows
that, in this context, the action of σ can be better made explicit and s, S are indeed
very close to powers of q.

The starting point to build these TZV are the supersingular curves considered
in [BK+02], for which there exist distortion maps that permit denominator elimina-
tion.

Lemma 3.9 (Supersingular E3 over F2m). Let E/F2m (m prime) be a supersingular
elliptic curve defined by the Weierstraß equation:

y2 + y = x3 + x+ b , b ∈ F2 ,

with embedding degree h = 4.
Let E3 be the TZV built upon E and an extension of degree r = 3, with embedding

degree k = rh = 12. As already mentioned, P ∈ G1 can be compressed to two elements in
Fq (see also Section 4.3.3), hence E3 provides an effective security multiplier of 12/2 = 6.

For every P ∈ G1 and Q ∈ G2, we have:

σ(P) = −
[
q
r+1
2

]
P = − [q2

]
P , σ(Q) =

[
q
r2+1

2

]
Q =

[
q5
]
Q .

Proof. We have to prove that s ≡ −q r+1
2 and S ≡ q r

2+1
2 satisfy their respective defining

polynomials, i.e. sr ≡ 1 and χ(s) ≡ 0, resp. Sr ≡ qr and χ(S) ≡ 0 (all the equivalences
are intended modulo ` if not otherwise specified).

Note h is exactly r + 1: this, togheter with the relationship k = rh, allows us to
work out the expressions of s, resp. S, and to exploit the definition of embedding degree.
Another key remark is that since k is the smallest integer such that qk ≡ 1 and it is
even, we have qk/2 ≡ −1 or equivalently −qk/2 ≡ 1.

By substituting s ≡ −q r+1
2 into sr, we have sr ≡ −qrh/2 = −qk/2 ≡ 1. To prove

Sr ≡ qr, observe that r ≡ −1 mod h, hence r2+1
2 ≡ 1 mod h, or equivalently r2+1

2 =
1 + ch for some integer c. Thus Sr ≡ q(1+ch)r = qr+ck ≡ qr.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 46

We now prove that both s and S are roots of χ(T). Write

χ(s) ≡
(
qr + tq

r−1
2 + 1

)
q , χ(S) ≡

(
qr

2 − tq r
2−1
2 + 1

)
q . (3.17)

Using (3.4), we can compute tr = −tq r−1
2 , resp. tr2 = tq

r2−1
2 (for r = 3, starting with

t =
√

2q). By this, the expressions in parentheses in (3.17) are |E(Fqr)|, resp.
∣∣∣E(F

qr2
)
∣∣∣.

Since ` | |E(Fq)| | |E(Fqr)| |
∣∣∣E(F

qr2
)
∣∣∣, both expressions vanish modulo ` and χ(s) ≡ 0,

resp. χ(S) ≡ 0.

Lemma 3.10 (Supersingular E5 over F3m). Let E/F3m (m prime) be a supersingular
elliptic curve defined by the Weierstraß equation:

y2 = x3 − x± 1 ,

with embedding degree h = 6.
Let E3 be the TZV built upon E and an extension of degree r = 5, with embedding

degree k = 30 and effective security multiplier 7.5.
For every P ∈ G1 and Q ∈ G2, we have:

σ(P) = −
[
q
r+1
2

]
P = − [q3

]
P , σ(Q) =

[
q
r2+1

2

]
Q =

[
q13
]
Q .

Proof. The proof proceeds exactly as in Lemma 3.9. Here again h = r + 1, χ(s) ≡
q · |E(Fqr)| and χ(S) ≡ q ·

∣∣∣E(F
qr2

)
∣∣∣ mod `.

Lemma 3.11 (Supersingular E3 over Fp). Let E/Fp (p > 3 prime) be a supersingular
elliptic curve with embedding degree h = 2.

Let E3 be the TZV built upon E and an extension of degree r = 3, with embedding
degree k = 6 and effective security multiplier 3.

For every P ∈ G1 and Q ∈ G2, we have: Then:

σ(P) =
[
p
r+1
2

]
P =

[
p2
]
P , σ(Q) =

[
p
r2+1

2

]
Q =

[
p5
]
Q .

Proof. Since t = 0 we proceed by direct computation:

s ≡ p− 1 ≡ p2 = p
r+1
2 , S ≡ (p− p2)/p ≡ 1− p ≡ p5 = p

r2+1
2 .

In what follows, we assume that E is one of the curves defined in Lemma 3.9, 3.10
or 3.11 and put Σ = r2+1

2 . This allows to adopt the following common notation:

σ(P) = [s]P =
[
±q r+1

2

]
P , σ(Q) = [S]Q =

[
qΣ
]
Q .

The next lemma describes the action of σ̂, the dual of the Frobenius endomorphism σ,
called the Verschiebung. Our main theorem will then follow.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 47

Lemma 3.12. Let Er be a TZV as in Lemma 3.9, 3.10 or 3.11. Let σ̂ be the dual of
the Frobenius endomorphism σ. Then:

σ̂i(P) =
[(
qs−1

)i]
P , σ̂i(Q) =

[
qi(1−Σ)

]
Q .

Moreover σ̂r+2(P) = [q]P .

Proof. Let X ∈ E [`], let z ∈ Zt, 0 < z < ` and suppose σ(X) = [z]X. As immediate
consequence of σ̂σ = [deg σ], we obtain σ̂(X) =

[
qz−1

]
X and thus σ̂i(X) =

[(
qz−1

)i]
X.

This proves the first result on σ̂i(P), resp. σ̂i(Q), setting X = P, z = s, resp. X =
Q, z = S = qΣ.

By this, we have σ̂r+2(P) = [q]P if and only if
(
qs−1

)r+2 ≡ q mod ` if and only if
qr+1 ≡ sr+2 ≡ s2 mod `, and this holds by Lemma 3.9, 3.10 and 3.11.

Theorem 3.13. Let Er be a TZV as in Lemma 3.9, 3.10 or 3.11. Then there exist an
integer j, 0 ≤ j < k, such that:(

σ̂r+2 ◦ σj) (Q) = Q for every Q ∈ G2 ,

and:

fn,[s]P (Q) = fn,P

(
Qσ
−1
)σ

= fn,P

([
qk−Σ

]
Q
)q

(3.18)

fn,[q]P (Q) = fn,P

(
Qσ

j
)qr+2

= fn,P
([
qjΣ
]
Q
)qr+2

(3.19)

for every P ∈ G1 and Q ∈ G2.

Proof. Equation (3.18) comes from [s]P = P σ and (3.12).
For (3.19) we have:

fn,[q]P (Q) = fn,σ̂r+2(P)

(
(σ̂r+2 ◦ σj)(Q)

)
= fn,σ̂r+2(P) ◦ σ̂r+2

(
Qσ

j
)

=

= fn,P

(
Qσ

j
)qr+2

= fn,P
([
qjΣ
]
Q
)qr+2

,

where the first equality follows by Lemma 3.12 and the third by repeatedly applying
Prop. 3.4 (i), setting φ = σ̂.

We now proceed to explicitly compute the integer j. Using the previous lemmas, we
can rewrite

(
σ̂r+2 ◦ σj) (Q) = Q as: q(r+2)(1−Σ) · qjΣ ≡ 1 mod `, which holds if and only

if (r + 2)(1 − Σ) + jΣ ≡ 0 mod k (here we are tacitly assuming that k is the effective
embedding degree, i.e. `th roots of unity are not defined over a smaller extension of Fq
than Fqk ; this is always true for supersingular curves).

In our setting Σ is invertible modulo k and thus such a j can be found. Explicitly
we get j ≡ 4 mod k when r = 3 resp. j ≡ 18 mod k when r = 5.

3.6.2 A New Algorithm for the Tate Pairing

We now use the last result to derive a new formula for the Tate pairing. Figure 3.3
gives a graphical representation of the setting of Theorem 3.14: we build a TZV on a
supersingular elliptic curve and over an extension of degree r; it has embedding degree
k = rh, where h is the embedding degree of the underlying curve. As the curve is

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 48

r

ψh k = rh

P
Q̃

Q

t̂(P,Q)

Figure 3.3: Reduced Tate pairing t̂(·, ·) over supersingular TZV

supersingular, there exists a distortion map ψ : G1 → G2, Q̃ 7→ Q and we further
assume the distortion map admits denominator elimination (cf. Section 3.4). We want
to efficiently compute the Tate pairing t̂(P,Q), exploiting the action of the qth power
Frobenius endomorphism σ, available on the TZV (see also Figure 3.1).

Theorem 3.14. Let Er be a TZV as in Lemma 3.9, 3.10 or 3.11. In particular the
embedding degree k is even and there exists a distortion map ψ that admits denominator
elimination (cf. Section 3.4).

Then, for every P ∈ G1 and Q ∈ G2, the Tate pairing can be computed as:

t̂(P,Q) =

(
r−1∏
i=0

fq,P (Qσi)q
i(r+1)

)M a
r
qa−1

, (3.20)

where σi = σij (where j is given in Theorem 3.13), a = k/2 and M = qk/2 − 1.

Proof. We proceed by proving the following two equalities:

t̂(P,Q) = fqa,P (Q)M =

(
r−1∏
i=0

fq,[qi]P (Q)q
−i

)M a
r
qa−1

, (3.21)

then we will exploit Theorem 3.13 and thus the action of the qth power Frobenius σ to
prove the thesis.

We note that the first part of the proof has many similarities with the proof of
Theorem 1 in [BG+07]. First, we use the special form of the curve to reduce t̂(P,Q) to
the evaluation of fqa,P : the scalar is now a power of q. Then we use the action of the
(qr)th power Frobenius π to change fqa,P into a product of functions fq,[qi]P .

We begin by the first equality in (3.21). Since k is even, we have ` | qk − 1 =
(qk/2 − 1)(qk/2 + 1) and, by the minimality of k, ` | qk/2 + 1. Hence:

t̂(P,Q) = f`,P (Q)(qk−1)/` = fqk/2+1,P (Q)q
k/2−1 = fqk/2,P (Q)q

k/2−1 .

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 49

The last equality deserves more attention (see also [BG+07, Lemma 3]): we know that[
qk/2 + 1

]
P = O, which implies

[
qk/2

]
P = −P ; by (3.9) we have

fqk/2+1,P = fqk/2,P · vP ,

where vP is the vertical line through P (and −P). Let Q̃ ∈ G1 such that Q = ψ(Q̃).
Since ψ admits denominator elimination, vP (ψ(Q̃)) ∈ F∗

qk/2
, thus its contribution is

canceled by raising to the power of qk/2 − 1.
Set a = k/2, M = qk/2 − 1. We now prove the second equality in (3.21). Exploiting

(3.11) we change fqa,P in the product of a functions
{
fq,[qi]P

}a−1

i=0
; moreover, the action of

the (qr)th power Frobenius π allows to group together the functions fq,[qi]P and fq,[qi+r]P ,
since fq,[qi+r]P (Q)M = fq,[qi]P (Q)Mqr (use Prop. 3.4 (i) with φ = π̂, the dual of π; see
also [BG+07, Lemma 1]). In detail:

fqa,P (Q)M =
(
fq,P (Q)q

a−1 · fq,[q]P (Q)q
a−2 · · · fq,[qa−1]P (Q)

)M
=

=
(
fq,P (Q)

a
r
q(a−1) · fq,[q]P (Q)

a
r
q(a−2) · · · fq,[qr−1]P (Q)

a
r
q(a−r)

)M
=

=
(
fq,P (Q) · fq,[q]P (Q)q

−1 · · · fq,[qr−1]P (Q)q
−(r−1)

)M a
r
qa−1

.

So far we have proved (3.21). Now, using (3.19) with qi instead of q, from Theo-
rem 3.13 we have:

fq,[qi]P (Q)q
−i

= fq,P

(
Qσ

ij
)q−i+i(r+2)

= fq,P (Qσi)q
i(r+1)

,

and the result follows.

The previous theorem yields a new method to compute the Tate pairing over super-
singular TZV.

We first perform a single Miller loop from P to [q]P and evaluate it at the r points
Qσi (raising each evaluation to the proper power qi(r+1)). At the end compute the final
exponentiation to M a

r q
a−1. This is summarized in Algorithm 3.2.

Algorithm 3.2: Computing tTZV on Er
Input: P ∈ G1 , Q ∈ G2

Output: tTZV(P,Q)

f ← 11

for i = 0 to r − 1 do2

f ← f · (fq,P (Qσi)
)qi(r+1)

3

end4

f ← (f
a
r)
qa−1

5

return fM+1/f6

Each iteration in the Miller loop requires: (i) a point doubling – and possibly an
addition – in E(Fqr); (ii) r evaluations at Qσi ; (iii) accumulating the r results, i.e. r
multiplications in Fqk ; we omit from this operation count the exponentiations, which
are computed by Frobenius operations and thus essentially negligible.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 50

We now deal with the final exponentiation to M a
r q
a−1. (i) Powering to the M is

computed as a power of the (rth power of the) Frobenius followed by a division (whose
cost is small with respect to the cost of the Miller loop); (ii) Raising to the power of qa−1

is again done exploiting the Frobenius; (iii) Exponentiation to a
r is also efficient, since

it is resp. 2, 3, 1 for the TZV of our interest. If we avoid the two last exponentiations,
we still get a bilinear pairing.

A number of techniques have been described to carry out efficiently these operations,
see for instance [BG+07, BB+08] and Section 4.3.

The algorithm is suitable for a parallel implementation, requiring r processors and
achieving a Miller loop of length q. Moreover, both in a parallel and in a sequential
model, an implementation with precomputation of the multiples of P requires the storage
of only log2 q points.

Remark 3.15. Equation (3.18) might also be exploited to derive an algorithm reducing
a loop on sr−1 + · · · + s + 1 in r − 1 loops on s. The result is similar to the use of
the endomorphism in the so-called NSS curves [Sco05]. This approach does not seem
interesting for TZV because s is generally too big. The best case is in characteristic 2
for r = 3: s = O

(
q3/2

)
, and the resulting algorithm (even assuming the two loops can

be “packed” in some way) cannot be better, for instance, than ηT (cf. [BG+07], see also
Section 4.3.5).

3.6.3 Pairing Compression

To reduce storage or bandwidth requirements, the values of pairing can be compressed
using traces or working on algebraic tori [GPS06b, SB04]. For an elliptic curve E/Fq
with embedding degree h, pairing takes values in the algebraic torus Th over Fq, and
these values can be compressed – at least in theory – to Fqϕ(h) ; however, finding explicit
and optimal compression algorithms for general h and in all characteristics is still an
open problem [vDG+05]. Besides compression, the direct computation of compressed
pairing is an interesting topic, in particular for constrained environments [NBS08].

For TZV, pairing compression is particular interesting in force of a result presented
in [MRS07, Section 5]. Roughly speaking, Er can be seen as a twist of the underlying
E and pairing preserves twisting. Hence, pairing takes values in an algebraic torus Tk
of dimension k over Fq. Clearly, to achieve compression, one can restrict the attention
to any torus Tk/d over Fqd , and for d = r we get back results of the underlying elliptic
curve, namely compression on the torus Th over Fqr , i.e. onto Fqr×ϕ(h) .

Thus, in general with TZV we can expect to achieve additional compression of the
pairing values than only considering the underlying curve, in the best case by a factor
r/ϕ(r).

For TZV in characteristic p > 3 (cf. Lemma 3.11), we can consider the full torus T6

over Fp and compress pairing values to Fp2 [GPS06b] (or directly compute compressed
values as in [NBS08]), and this improves of the näıf use of T2 over Fp3 , whose elements
can be compressed to Fp3 .

Characteristic 3 (cf. Lemma 3.10) is an interesting case, since it is represent another
actual application of the torus T30, already considered in literature for torus-based cryp-
tography [vDG+05]. Unfortunately, the best available result for compressing elements
of T30 maps them onto Fq10 (see [vDG+05], for characteristic p), but for TZV the same
compression can be easily achieved by considering the torus T6 over Fq5 .

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 51

Finally, for TZV in characteristic 2 (cf. Lemma 3.9) the algebraic torus T12 over
Fq, or T6 over Fq2 could be exploited, in theory to compress to Fq4 . However we were
not able to find any explicit compression better than the one achieved with T2 over Fq6 ,
hence onto Fq6 , that can be easily achieved by computing the trace of the pairing result
(cf. [BG+07]).

3.7 Construction of Varieties and Generators

For cryptographic applications we need to be able to construct:

• TZV whose order is prime or almost prime, and

• A generator of the subgroup G1 of large group order.

For ordinary curves, in order to find a good curve we generate random ones with
random coefficients until we find one with the correct order. By the Hasse-Weil Theorem,
we thus need only to fix the field size in order to get groups whose orders are in a
relatively narrow interval. To compute the characteristic polynomial of an elliptic curve
we use MAGMA, and to find good curves of genus two we modified a software package
written by Vercauteren.

For supersingular curves, because of the constrained embedding degree, the security
of the field where the pairing takes values is fundamental in force of the MOV attack.
Hence, we select a field big enough for the security we wish to obtain, then we search
for a curve with a large prime order subgroup, that in general has quite a big index in
G.

We need to distinguish between two cases: characteristic 2 or 3, and characteristic
p > 3. The former case is straightforward: we have two curves for every field by selecting
the parameter b in their equation (cf. Lemmas 3.9 and 3.10) and we check if at least
one is suitable for cryptography, i.e. its order is divisible by a large prime.

In characteristic p > 3, for elliptic curves we select a prime `, then search for a
random cofactor c such that p = c` − 1 is a prime of the desired size (c` = p + 1 is
the order of the curve). On the contrary, for TZV (over an extension of degree r = 3)
we select a prime p, compute the order of the TZV according to (3.7), and check if it
is divisible by a large prime `. The order of the TZV is in general quite big, so the
factorization, and thus this search method, is not really efficient.

Once a curve has been found, we need only to take a random divisor D′ on it and
observe that D = D′ − σ(D′) lies in the TZV. To ensure that it has the right order we
replace D by its multiple by the index of G1 in G: if the result is the neutral element of
the group, we try with another choice of D′.

We now present examples of curves (ordinary and supersingular) suitable for cryp-
tographic application. We select two distinct levels of security, namely 80 and 96-bit
symmetric security.

For supersingular curves, 70-bit security was also considered in [BK+02, BG+07]. A
security level of 70 bits is really poor, but we add it for comparison purposes. As noted
in [BK+02], the supersingular elliptic curves over F3127 are not secure (i.e. their group
orders are not divisible by large enough primes). For this reason we also introduced the
96-bit security level, according to other works in literature (e.g. [KAT08]).

The equivalent security levels for finite fields and curves, according to ECRYPT II
recommendations [ECR09, Table 7.2 and Section 6.2.1], are presented in Table 3.1.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 52

Security (bits) RSA
DLOG

EC
Field Size Subfield

70 960 960 141 141
80 1248 1248 160 160
96 1776 1776 192 192
128 3248 3248 256 256
256 15424 15424 512 512

Table 3.1: Security levels and related key-size equivalence

In Appendix B we give explicit examples of ordinary curves suitable for cryptographic
applications, also used in our experiments in Chapter 4.

In Table 3.2 we give examples of supersingular elliptic curves and TZV suitable for
pairing-based cryptography.

Curve equation Field of def. Order (bits) FF Security (bits) Point (bits)
E : y2 = x3 + x FpA , pA ≈ 2480 140 480× 2 = 960 481
E3 : y2 = x3 + x FpB , pB ≈ 2160 140 160× 6 = 960 322
E : y2 + y = x3 + x+ b , b = 0 F2239 200 239× 4 = 956 239
E3 : y2 + y = x3 + x+ b , b = 0 F279 141 79× 12 = 948 160
E : y2 = x3 − x+ b , b = 1 F397 151 log2(397×6) = 922 155÷ 195
E5 : y2 = x3 − x+ b , b = −1 F319 112 ∗ log2(319×30) = 903 insecure
E : y2 = x3 + x FpC , pC ≈ 2624 160 624× 2 = 1248 625
E3 : y2 = x3 + x FpD , pD ≈ 2208 160 208× 6 = 1248 418
E : y2 + y = x3 + x+ b , b = 0 F2307 268 307× 4 = 1228 307
E3 : y2 + y = x3 + x+ b , b = 1 F2103 192 103× 12 = 1236 208
E : y2 = x3 − x+ b , b = −1 F3127 83 ∗ log2(3127×6) = 1208 insecure
E5 : y2 = x3 − x+ b , b = −1 F329 104 ∗ log2(329×30) = 1379 insecure
E : y2 = x3 + x FpE , pE ≈ 2888 192 888× 2 = 1776 889
E3 : y2 = x3 + x FpF , pF ≈ 2296 192 296× 3 = 1776 594
E : y2 + y = x3 + x+ b , b = 1 F2457 457 457× 4 = 1828 457
E3 : y2 + y = x3 + x+ b , b = 1 F2157 203 157× 12 = 1884 316
E : y2 = x3 − x+ b , b = 1 F3193 272 log2(3193×6) = 1835 307÷ 387
E5 : y2 = x3 − x+ b , b = −1 F343 265 log2(343×30) = 2044 279÷ 347

* Insecure: Order too small w.r.t. Finite Field Security

Table 3.2: Explicit curves and related security parameters

The column Order refers to the size of a prime ` dividing the full group order, while
FF Security refers to the size of the finite field where the pairing takes values.

For a fixed field, both in characteristic 2 and 3, two curves are available by choosing
the parameter b in the curve equation. In case both curves are suitable for cryptography,
we selected the one with the smallest `.

We marked as insecure the curves whose order ` is too small, if compared with the
security provided by the finite field where the pairing takes values.

The last column, Point, contains the number of bits required to store or transmit
a point of the curve, where we took into account compression techniques. For curves
in characteristic 3 we provide a range of bits, since the actual size depends upon the
binary representation of elements in F3m . The lower bound is the information theoretical
log2(3m), while the upper bound is 2m, obtained by representing each element in F3 by
2 bits. Probably the best trade-off is to store a 5-tuple of F3 elements in 1 byte.

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 53

We draw attention to the following remarks:

• In all cases, TZV improve on elliptic curves as they allows a smaller field of defini-
tion. This is a direct consequence of the boost of the effective security multiplier
(cf. [RS09]).

• The TZV in characteristic 2 is defined over a field which is twice as small as the
TZV in characteristic p > 3 and 3 times smaller than the elliptic curves; this
clearly implies smaller storage or transmission costs. Curves in characteristic 3
are even better in this sense, but unfortunately they are weak at 80-bit security.

3.8 Security Considerations

In this section we make some considerations about the security of the proposed varieties.
To prevent Weil Descent attacks [GHS02b, GHS02a] on the elliptic and hyperelliptic

curves which we use to construct the TZV, the degree m of the definition field Fq over
F2 must be chosen to be a prime.

We now turn the attention to the security of TZV. The case g = 1, r = 3 is simple: a
consideration on the dimension shows that the group of rational points of a TZV defined
over a field Fq with r = 3 could be contained in the Jacobian of a curve of genus at least
2 (in fact, the first step of the Weil descent attack is done by the construction of the
TZV itself), which means that the best known attack has complexity not worse than
O(q) and this meets the square-root bound.

Let us consider now the case of dimension 4, i.e. g = 1, r = 5 and g = 2, r = 3. By
the arguments developed in [Lan04], and in small characteristic under the pessimistic
assumption that the results in [DS03] can also be adapted to fields of characteristic
2 and 3 (or that similar results hold), we cannot exclude that G is contained (up to
isomorphism) in the Jacobian of a hyperelliptic curve of genus 6. In this case the fastest
known attack is the double large prime variation of the index calculus algorithm [GT+07,
iN04], that has complexity Õ(q5/3). Thus we have an asymptotic reduction of the
security of at most 1/6 of the bit length. Note that these algorithms compute in the
whole Jacobian and the size of the latter determines the complexity. However the
estimated loss is asymptotic, and in case of high security applications |G| ∼ 2256 we can
estimate that the security is reduced by at most 6 bits.

At this point it is important to observe that the situation is different than in the
case of low genus hyperelliptic curves. In [ATW08], the group sizes for the Jacobians of
hyperelliptic curves of genus 3 and 4 had to be increased in order to correctly compare
to curves of genus 1 and 2. In fact, for curves of genus 3 and 4, the fastest known attack
is the already mentioned double large prime variation of the index calculus algorithm.
Ignoring logarithmic terms, this attack requires O(q2−2/g) group operations for a genus
g over Fq. For a curve of genus 3, resp. 4 over Fq, this means O(q4/3), resp. O(q3/2)
group operations. Ignoring also the constants, we see that to compare with an elliptic
curve over a field of m bits, we need a field of m/2 bits for genus two, 3m/8 bits for
genus three and m/3 bits for genus four. At the current state of research, such losses do
not seem to affect TZV.

Finally, the group G may be also contained in the Jacobian of a non-hyperelliptic
curve, the worst case being a C3,5 curve, in which case one may want to apply Diem’s
attack on planar curves, that has a complexity Õ(q4/3). A counting argument shows that

CHAPTER 3. PAIRING ON SUPERSINGULAR TRACE ZERO VARIETIES 54

G will be contained in Jacobian of a non-hyperelliptic planar curve only with probability
O(1/q2), so in practically all cases this attack can not be applied.

Furthermore, when we consider supersingular TZV for pairing applications we are
using larger groups anyway and the complexity of an attack is dominated by the com-
plexity of attacking the system in the finite field in which the pairing function takes its
values.

For instance, take E5/F343 from Table 3.2. The order is divisible by a 265-bit prime,
hence because of the Pollard’s ρ attack its security is 132.5 bits. With the index calculus
attack the security is reduced to log2(343×5/3) = 113 bits. However E5 is still secure,
since it has been chosen to provide 96-bit security. To be more accurate, the pairing
take values in F343×30 , which offers 2044-bit security and the corresponding security level
according to [ECR09] is 103 bits.

Chapter 4

Implementation

Two is a very odd number.

In this chapter we discuss implementation details, starting from the lower level of
finite fields (ground fields and extensions) up to Jacobians, TZV and pairing.

The key-word of this chapter is “the rule of the two”.
We pursue essentially 2 goals: to speed-up the arithmetic in the ideal class group of

a TZV, and to efficiently compute the Tate pairing over supersingular TZV. The former
was started in [Ces04], further developed in [AC08b] and extended in this work by taking
into account several coordinate systems, for ordinary and supersingular TZV. The latter
is described in [AC08a]. For both, we make use of the Frobenius endomorphism which
is available for TZV and, for emotional reasons, most of the chapter is devoted to the
case of characteristic 2.

Our implementation supports 2 compilers, the GNU Compiler Collection (gcc) and
the Intel C/C++ Compiler (icc), and 2 architectures at 32 and 64-bits.

We perform experiments on 2 different platforms:

Intel: Intel quad-core 2.8 GHz, OS Fedora GNU/Linux 2.6.30 x86 64, with compiler
gcc ver. 4.3.2.

PowerPC: Twin dual-core 2.7 GHz G5 PowerMac, OS Darwin Kernel 8.11.0, with
compiler gcc ver. 4.2.1.

Through the chapter, we shall denote operations in finite fields as follows:

• In the base field Fq: square (s), square root (r), multiplication (m), double mul-
tiplication (m2, see Section 4.1.1), inversion (i), solution of quadratic equation of
the form y2 + y + c = 0, i.e. a half-trace computation (h).

• In the extension field Fqr : square (S), multiplication (M), vector and double mul-
tiplications (V, M2, see Section 4.1.1), inversion (I), pseudo-inversion (P, see Sec-
tion 4.1.2), solution of quadratic equation (H).

4.1 Finite Fields

4.1.1 Base Fields

Our implementation of binary fields is the one described in the paper [AT07] (see also
[ATW08]). Binary fields are represented in polynomial basis and explicit polynomials

55

CHAPTER 4. IMPLEMENTATION 56

are given in Appendix B. These polynomials are so-called “square root friendly” and
allow efficient algorithms for square root extraction [Ava07].

Another relevant aspect of our implementation is the availability of sequential multi-
plications (cf. [AT07]), i.e. sets of multiplications with a common operand. In particular,
in the sequel we shall exploit double multiplications (denoted by m2, respectively M2 in
extensions), i.e. the concurrent computation of r1 = ab1 and r2 = ab2, and vector
multiplications in extension fields (denoted by V), i.e. the multiplication of an element
B ∈ Fqr , seen as a vector over Fq, by an element a in the ground field Fq.

For prime fields, the implementation is described in [Ava04], which is used also
in [AL04].

4.1.2 Small Degree Extensions of Binary Fields

For binary fields the construction of small extensions follows a different approach with
respect to the odd characteristic case, as described for instance in [AL04].

If α is an algebraic element of degree r over F2, it is also an algebraic element of
degree r over F2m for every m prime to r. This is our case, m is prime (to avoid Weil
descent attacks) and we need extensions of degree 3 and 5 to build TZV and extensions
of degree 4 to compute pairings.

Hence we can construct Fqr with an irreducible polynomial over F2, which is fixed
and independent from the ground field Fq. We used f(X) = X3 + X + 1 for r = 3,
f(X) = X4 + X + 1 for r = 4 and f(X) = X5 + X2 + 1 for r = 5. In other words, we
construct Fqr as the composite of the two fields Fq and F2r over F2. Since the polynomial
is fixed, we can derive explicit formulae for modular reduction, which in the end requires
only to perform a few additions in Fq, and no multiplications.

For multiplications, we considered three algorithms: the näıve (schoolbook), the
Karatsuba and, for r = 3, the Toom-Cook [Too63] (see also [Bod07]). We did not
take into account the Schönhage-Strassen [SS71, Sch77] nor the newer algorithm by
Fürer [F0̈7] since these are especially designed to be asymptotically fast and become
useful only for very big operand sizes.

For inversion, we considered two methods: Kobayashi et al. [KM+99] and Itoh-Tsujii
[IT88, GP02]. Both methods reduce the computation of an inversion in Fqr to a single
inversion in Fq.

By omitting such inversion in Fq, instead of the inverse of an element a ∈ Fqr we
obtain a pseudo-inverse ι(a) ∈ Fqr and a co-pseudo-inverse c(a) ∈ F∗q , such that:

a−1 =
ι(a)
c(a)

.

We denote by P the pseudo-inversion, thought as an operation that returns both ι(a)
and c(a). Thinking to computational costs, we have that 1I is equivalent to 1i+1V+1P
where V, we recall, is a vector multiplication, i.e. the multiplication of an element in
Fqr – the pseudo-inverse – by an element in Fq – the inverse of the co-pseudo-inverse.
We are going to use pseudo-inversion in Section 4.2.2 to build compressed López-Dahab
coordinates for TZV.

In Table 4.1 we point out the cost of operations in the extension field in terms of
operations in the base field, both in even and odd characteristic and for the degrees of
our interest. In this work extensions of degree 4 are only relevant in characteristic 2 (for
pairing computation).

CHAPTER 4. IMPLEMENTATION 57

r = 3
q = 2m q = p > 3

S 3s 3s + 3m
M 5÷ 6m 5÷ 6m
I 3s + 9m + 1i 3s + 9m + 1i
σ negl. 2m

r = 4
q = 2m

S 4s
M 9m
I 25m + 1i
σ negl.

r = 5
q = 2m q = p > 3

S 5s 5s + 10m
M 14m 14m
I 39m + 1i 50m + 1i
σ negl. 4m

Table 4.1: Costs of operations in Fqr in terms of operations in Fq. Operations considered
are square (S), multiplication (M), inversion (I) and Frobenius automorphism (σ).

We refer to [AC08b] for details about the implementation of extensions of degree 3
and 5. For extensions of degree 4 we used Karatsuba for multiplication and we derive
an explicit version of the method by Kobayashi et al. for inversion, that saves one
multiplication with respect to Itoh-Tsujii method and also allows to exploit sequential
multiplications for further gains. Since inversion is not particularly relevant for pairing
computation, we omit further details.

4.1.3 Experimental Results

In this section we present some experimental results related to the implementation of
binary fields, including small degree extensions.

The focus is not to discuss which is the better algorithm for a specific operation
(this, of course, has been done), but to compare performance in finite fields that will be
used to build cryptographic primitives, notably scalar multiplication and pairing.

The results are summarized in Tables 4.2, C.1, C.2 and C.3, timings are in mi-
croseconds. We compared small extensions and base fields performance: the row Field
denotes the degree m or m× r respectively of the base field F2m or the extension F2m×r .
Operations considered are Frobenius automorphism (σ), square (S), multiplication (M),
double-multiplication (M2) and inversion (I).

80-bit security 96-bit security
Curve: ord. g = 1 ord. g = 2 supers. ord. g = 1 ord. g = 2 supers.
Field: 163 83× 3 41× 5 83 41× 3 307 103× 3 191 97× 3 47× 5 97 47× 3 457 157× 3
σ – 0.01 0.01 – 0.01 – 0.01 – 0.01 0.01 – 0.01 – 0.02
S 0.03 0.05 0.04 0.02 0.03 0.05 0.05 0.03 0.04 0.04 0.01 0.03 0.19 0.10
M 0.22 0.52 0.48 0.09 0.20 0.71 0.69 0.28 0.54 0.51 0.09 0.21 1.90 1.24
M2 0.38 0.97 0.95 0.16 0.37 1.17 1.21 0.56 0.92 1.01 0.15 0.40 3.79 2.26
I 1.60 1.30 1.44 0.54 0.48 4.93 1.77 1.97 1.36 1.57 0.60 0.55 11.87 3.38
M2/M 1.77 1.88 2.00 1.80 1.83 1.66 1.75 2.00 1.70 2.00 1.68 1.88 2.00 1.83
I/M 7.37 2.52 3.03 6.00 2.39 7.00 2.55 6.97 2.50 3.09 6.77 2.54 6.24 2.73

Table 4.2: Comparison among operations in finite fields – Intel (32-bit), timings in µs.
Operations considered are Frobenius automorphism (σ), square (S), multiplication (M),
double-multiplication (M2) and inversion (I).

We have grouped together fields suitable to define curves or TZV with the same
characteristics. First, we distinguish in terms of security provided (80 or 96-bit security).
Then, we regroup by geometrical properties: ord. g = 1 refers to ordinary elliptic curves
and TZV with g = 1, r = 3 and r = 5; ord. g = 2 refers to ordinary genus 2 hyperelliptic
curves and TZV with g = 2, r = 3; supers. refers to supersingular elliptic curves and
TZV with g = 1, r = 3.

CHAPTER 4. IMPLEMENTATION 58

We make the following remarks:

• Double-multiplication is 10% faster on average than two independent multiplica-
tions. In some fields (e.g. extensions of degree 5) the ratio is exactly 2.00, which
means double-multiplication is not implemented.

• In the extensions, the ratio I/M is really low. This suggests that affine coordinates
for TZV defined over such extensions could outperform more sophisticate coor-
dinate systems. In practical applications, extensions (and TZV) may be used to
reduce the loss of performance due to inversion, which is often a critical operation
in particular on constrained devices.

• If we consider fields related to ordinary curves, in each group extensions are bigger
than the corresponding base field by a factor r/(r−1). This clearly has an impact
on multiplication, which is always slower in a extension than in the corresponding
base field. On the contrary inversion is usually faster, at least comparable for
small fields (i.e. the g = 2 cases).

• Fields related to supersingular curves, on the contrary, have comparable sizes
(fixed the security level) and this reflects on timings of multiplication, which are
now quite close each others. In some cases, e.g. for 32-bit implementations,
multiplication in extensions is even faster. Clearly the same benefit is also evident
for inversion.

4.2 Scalar Multiplication on TZV in Characteristic 2

4.2.1 Coordinate Systems

The first thing to take into account in the implementation of curve-based cryptography
is the choice of the coordinate system, and usually the balance is the cost of the inversion
in the ground field.

In Section 4.1.3 we have seen that for TZV the ratio I/M is very low and this moti-
vated us, in previous works [Ces04, AC08b], to only consider affine coordinates for TZV.
However several alternative coordinate systems have been proposed in literature and in
the sequel we are going to provide a detailed comparison.

In this section we introduce coordinate systems with focus on ordinary elliptic curves.
An excellent source on this topic is the Explicit-Formulas Database [BL07], which now
covers characteristic 2. We shall make some considerations about supersingular elliptic
curves in Section 4.2.6, while for genus 2 curves we still considered only affine coordi-
nates.

Let E/Fq be an ordinary elliptic curve given by equation 3.5. In affine coordinates
(A) a point is represented by two coordinates (x, y) ∈ Fq × Fq and the formulae for
doubling and addition require one inversion. For instance, let P1 = (x1, y1) and P3 =
2P1 = (x3, y3). The explicit formulae for doubling are:

λ = x1 + y1/x1

x3 = λ2 + λ+ a2

y3 = λ(x1 + x3) + y1 + x3 .

(4.1)

CHAPTER 4. IMPLEMENTATION 59

In projective coordinates (P) a point is represented by the homogeneous coordinates
(X,Y, Z) that correspond to (x, y) = (X/Z, Y/Z). Formulae for doubling and addition
no longer require inversions, at the price of an additional coordinate – and several
multiplications.

To achieve formulae faster than the projective and still without inversions one has to
move to weighted projective coordinates. In Jacobian coordinates (J) the tuple (X,Y, Z)
corresponds to (x, y) = (X/Z2, Y/Z3) [AC+05] and in López-Dahab coordinates (LD)
to (x, y) = (X/Z, Y/Z2) [LD99, AC+05]. In these systems, additions are a bit more
expensive but doublings get considerably cheaper.

Finally, if memory occupation is not a concern, one can store within the coordinates
some computation done during an operation that is reused for next operations. In
extended López-Dahab coordinates (eLD) a point is represented by (X,Y, Z, Z2) if a = 1
in the curve equation and by (X,Y, Z, Z2, XZ) if a = 0 [KK07, BLF08].

Explicit algorithms for all these coordinates systems can be found in the Explicit-
Formulas Database. As an example, we show how to derive López-Dahab doubling
formulae. By substituting (xi, yi) = (Xi/Zi, Yi/Z

2
i), i ∈ {1, 3}, into (4.1), one get

λ = X2
1+Y1

X1Z1
and by properly defining Z3 and Λ:

Z3 = (X1Z1)2 Λ = X2
1 + Y1 (4.2a)

X3 = Λ2 + Λ(X1Z1) + a2Z3 (4.2b)

= X4
1 + Y 2

1 +X3
1Z1 +X1Y1Z1 + a2X

2
1Z

2
1 (4.2c)

= X4
1 + a6Z

4
1 = (X2

1 +
√
a6Z

2
1)2 (4.2d)

Y3 = Λ(X1Z1)
(
X2

1 (X1Z1) +X3

)
+ Y1X

2
1Z3 +X3Z3 (4.2e)

= X4
1 (X1Z1)2 + (Λ(X1Z1) + Z3)X3 (4.2f)

= X4
1 (X1Z1)2 + (X1Y1Z1 +X3

1Z1 +X2
1Z

2
1)X3 (4.2g)

=
(
X2

1 (X1Z1) + (Y1 +
√
a6Z

2
1)(X2

1 +
√
a6Z

2
1)
)2 if a2 = 1 (4.2h)

=
(√
a6Z

2
1 (X1Z1) + (Y1 +

√
a6Z

2
1)(X2

1 +
√
a6Z

2
1)
)2 if a2 = 0 (4.2i)

We note that this derivation, i.e. equations (4.2a), (4.2d), (4.2h) and (4.2i), is useful
only if the multiplication times

√
a6 is faster than a multiplication in the field. This

holds, for instance, if r > 1 (e.g. for TZV) or if
√
a6 is known to have low Hamming

weight. If this is not the case, then using (4.2a), (4.2b) and (4.2f) results in a slightly
faster algorithm.

4.2.2 Compressed López-Dahab Coordinates

In this section we introduce compressed López-Dahab coordinates for ordinary elliptic
curves over binary fields, that are the corresponding of compressed Jacobian coordinates
in characteristic p, firstly proposed by Hoshino et al. [HKA06] (see also [AL04]).

Compressed coordinate systems apply when dealing with curves over extension fields,
so for instance TZV. The idea is to use weighted projective coordinates and to exploit
pseudo-inversion to continue avoiding inversion in the ground field (for performance)
but reducing the size of the Z-coordinate (for memory consumption).

Let E/Fq be an elliptic curve given by equation 3.5. We focus on points of E(Fqr).
In compressed López-Dahab coordinates (cLD) a Fqr -rational point is represented by

the tuple (X,Y, z) ∈ Fqr × Fqr × Fq that corresponds to (x, y) = (X/z, Y/z2).

CHAPTER 4. IMPLEMENTATION 60

Similarly as for LD in (4.2), we substitute (xi, yi) = (Xi/zi, Yi/z
2
i), i ∈ {1, 3},

into (4.1), and get λ = X2
1+Y1

X1z1
. Now we want to define z3 such that it is in Fq but still

cancels out the denominator in λ. The idea is to use pseudo-inversion: define X1 = ι(X1)
and x1 = c(X1). Then

λ =
X1(X2

1 + Y1)
x1z1

and hence:

z3 = (x1z1)2 Λ = X1(X2
1 + Y1) (4.3a)

X3 = Λ2 + Λ(x1z1) + a2z3 (4.3b)

Y3 = Λ(x1z1)
(
X1x1(x1z1) +X3

)
+ Y1x

2
1z3 +X3z3 (4.3c)

= X2
1x

2
1(x1z1)2 + (Λ(x1z1) + z3)X3 (4.3d)

We note that these new formulae contain two additional operations: one is pseudo-
inversion, which is also quite expensive, the other one is the “correction” of Λ via
multiplication by X1. The good is that now some multiplications become vector multi-
plications, i.e. by elements in Fq, or even better multiplications in Fq. In Section 4.2.4
we shall experimentally compare cLD with the other coordinate systems.

From (4.3a), (4.3b) and (4.3d) – that corresponds to (4.2a), (4.2b) and (4.2f) – we
can derive an algorithm to compute doubling in compressed López-Dahab coordinates,
that we report as Algorithm 4.1. In a similar way one can derive an algorithm for
addition. We omit details and present it as Algorithm 4.2. In this algorithm, we put in
evidence the optimization in case z2 = 1, i.e. the second input is an affine point.

Algorithm 4.1: Doubling in Compressed López-Dahab Coordinates
Input: P1 = (X1 : Y1 : z1) ∈ E(Frq)
Output: P3 = 2P1 = (X3 : Y3 : z3)

X1 ← ι(X1) x1 ← c(X1) 1P1

a← x1z1 1m2

B ← X2
1 1S3

Λ← X1(B + Y1) 1M4

C ← Λa 1V5

z3 ← a2 1s6

X3 ← Λ2 + C + a2z3 1S7

Y3 ← Bx2
1z3 + (C + z3)X3 1s + 1m + 1V + 1M8

Total: 2s + 2m + 2S + 2V + 2M + 1P

4.2.3 Scalar Multiplication Techniques

The basic algorithm to compute a scalar multiplication, i.e. to evaluate mD, is the well
known left-to-right double-and-add algorithm.

Advanced techniques consist in writing the scalar m in the form m =
∑r

i=0 di2
i,

where the digits di belong to a suitable digit set D, and in the evaluation of mD as
the sum

∑r
i=0 di2

iD via a Horner scheme. The recodings of the scalar (which differ in

CHAPTER 4. IMPLEMENTATION 61

Algorithm 4.2: Addition in Compressed López-Dahab Coordinates
Input: P1 = (X1 : Y1 : z1) , P1 = (X2 : Y2 : z2) ∈ E(Frq)
Output: P3 = P1 + P2 = (X3 : Y3 : z3)

o1 ← z2
1 ; o2 ← z2

2 2s (-1s)1

(X ′1, Y
′

1)← (X1z2, Y1o2) 2V (-2V)2

(X ′2, Y
′

2)← (X2z1, Y2o1) 2V3

∆← X ′1 +X ′24

∆← ι(∆) δ ← c(∆) 1P5

Λ← ∆(Y ′1 + Y ′2) 1M6

a← z1z2δ ; b← aδ 3m (-1m)7

C ← Λa 1V8

z3 ← a2 1s9

X3 ← Λ2 + C + ∆b+ a2z3 1S + 1V10

(X ′′2 , Y
′′

2)← (X ′2b, Y
′

2b
2) 1s + 2V11

Y3 ← C(X ′′2 +X3) + Y ′′2 +X3z3 1V + 1M12

Total: 4s + 3m + 1S + 9V + 2M + 1P
3s + 2m + 1S + 7V + 2M + 1P

the digit set and in the algorithm used to generate the expansion) are the binary repre-
sentation of the scalar, the Non-Adjacent Form (NAF) [Rei62], and signed windowing
methods (w-NAF) [MOC97].

For TZV we also split the scalar using the method described in Theorem 3.2, and
performed the multiplication mD by computing

∑n−2
i=0 mis

i mod ` via interleaved scalar
multiplications (described by Möller in [Möl01], but in fact an older idea which has been
rediscovered several times: see [Lim00], a two base case appears in [SL00], and indeed
the principles can be traced back to the work of Pippenger [Pip76]; see also [Ber]). To
recode the smaller scalars mi we used the NAF and w-NAF representations, and in the
case of curves with r = 3 also Solinas’ Joint Sparse Form (JSF) [Sol01].

4.2.4 Comparison Between Ordinary Curves and TZV

In this section we compare performance between ordinary curve and TZV and we extend
the results described in [AC08b].

In Tables 4.3, C.4, C.5 and C.6 we report timings of basic operations and scalar
multiplication in different groups, all from ordinary curves: for g = 1 we have elliptic
curves over F2m (EC) and TZV over F2m×r ; for g = 2 we have genus 2 hyperelliptic
curves over F2m (HEC) and TZV over F2m×r . Explicit curves are given in Appendix B.
Operations considered are negation (−), Frobenius endomorphism (σ), doubling (2) and
addition (+). Scalar multiplication is performed in affine or López-Dahab (original,
extended and compressed) coordinates, without (bin, NAF/JSF) or with (w-NAF) pre-
computation. In case of w-NAF, the default windows size is w = 4 and the best size for
each experiment, if different, is reported in brackets. The scalar splitting technique (cf.
Theorem 3.2) is used for TZV, except for affine/bin. For each curve, the best timings
are put in bold.

From the results, we can do the following remarks:

• TZV with g = 1, r = 5 are the fastest groups. On Intel (32-bit) at 80-bit security

CHAPTER 4. IMPLEMENTATION 62

80-bit security 96-bit security
g = 1 g = 2 g = 1 g = 2

Curve: EC TZV TZV HEC TZV EC TZV TZV HEC TZV
Field: 163 83× 3 41× 5 83 41× 3 191 97× 3 47× 5 97 47× 3
− 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02
σ – 0.01 0.02 – 0.02 – 0.02 0.02 – 0.02
2 2.13 2.45 2.48 1.07 1.65 2.58 2.92 2.68 1.29 1.77

o
p

er
a
ti

o
n

+ 2.13 2.45 2.48 2.34 4.72 2.58 2.92 2.68 2.73 5.03
bin 660.9 747.1 721.2 426.5 672.6 920.7 1021.1 965.8 640.9 823.3
NAF/JSF 601.2 337.7 253.0 364.0 351.6 858.9 512.9 311.4 539.5 415.1

a
ffi

n
e

w-NAF (4) 542.5 318.8 200.1 309.7 313.5 771.4 474.2 242.0 451.7 370.4
NAF/JSF 287.4 351.9 302.6 – – 410.0 529.0 364.0 – –
w-NAF (4) 251.0 (5) 309.4 209.7 – – 357.2 454.8 248.3 – –
NAF/JSF 282.4 344.8 312.2 – – 403.1 483.9 376.6 – –
w-NAF (4) 244.9 300.0 208.1 – – 354.4 409.7 248.3 – –
NAF/JSF – 323.6 275.4 – – – 487.1 336.6 – –L

o
p

ez
-D

a
h

a
b

w-NAF (4) – 297.6 209.7 – – – 435.5 252.5 – –

Table 4.3: Comparison between ordinary curves and TZV – Intel (32-bit), timings in
µs. Operations considered are negation (−), Frobenius endomorphism (σ), doubling (2)
and addition (+). Scalar multiplication is performed in affine or Lopez-Dahab (origi-
nal, extended and compressed) coordinates, without (bin, NAF/JSF) or with (w-NAF)
precomputation. The scalar splitting technique is used for TZV, except for affine/bin.

they are about 10% faster (20% using precomputation) and at 96-bit security
they are about 22% faster (30% using precomputation) than elliptic curves with
extended López-Dahab coordinates. On PowerPC (32-bit) we observe even better
speedups, while on 64-bit platforms performance are worse because the ground
field size in less than a single machine word.

• If we limit to consider affine coordinates, TZV with g = 1 are always faster than
elliptic curves (by factors about 1.5 for r = 3 and more than 2 for r = 5), while
TZV with g = 2 are faster than genus 2 hyperelliptic curves only on Intel platform
and with small gain. This last result on Intel is however an improvement with
respect to [AC08b].

• The row affine/bin – that we recall is the sole without scalar splitting for TZV–
shows that, because of the poor multiplication available in extensions, TZV can
not compete with curves without exploiting the Frobenius endomorphism or, in
other words, the good performance previously observed are due to the Frobenius
and the scalar splitting technique.

• Affine coordinates are very bad for elliptic curves, but for TZV they are close to
the best coordinates, or even the best ones e.g. in the case g = 1, r = 5. Choosing
to work in affine coordinates simplifies the implementation and also requires less
memory when performing the computation.

• The new cLD coordinates are on average 8÷ 10% faster than LD. In case of TZV
with g = 1, r = 3, these are even better than affine coordinates – despite such TZV
are not the fastest group. We want to also observe that compressed coordinates
become so much more effective as worst the inversion is, thus they are attractive
for devices with constrained resources

CHAPTER 4. IMPLEMENTATION 63

4.2.5 Comparison Between Even and Odd Characteristic

In this section we make a comparison among ordinary curves and TZV defined over
binary fields and over fields of characteristic p > 3, as described in [AL04].

Besides affine coordinates, in characteristic p we considered the followings: Jaco-
bian (J), Chudnovsky Jacobian (C) and Cohen’s modified Jacobian (mJ) for elliptic
curves [CMO98], weighted (W) for genus 2 hyperelliptic curves [Lan05, referred as “new
coordinates”] and compressed Jacobian (cJ) for TZV with g = 1 [HKA06, AL04].
The code in characteristic p is a courtesy of Avanzi and original results are reported
in [Ava04, AL04]. Here we simply run the code on Intel (32-bit) platform for the sake
of comparison.

In Table 4.4 we report timings. Scalar multiplication is performed in affine or the best
available coordinates, without (bin, NAF/JSF) or with (w-NAF) precomputation. The
scalar splitting technique is used for TZV, except for affine/bin. We skip (–) coordinates
if they are not better than affine ones.

80-bit security 96-bit security
g = 1 g = 2 g = 1 g = 2

Curve: EC TZV TZV HEC TZV EC TZV TZV HEC TZV
Field: 160 80× 3 40× 5 80 40× 3 192 96× 3 48× 5 96 48× 3
bin 660.9 747.1 721.2 426.5 672.6 920.7 1021.1 965.8 640.9 823.3
NAF/JSF 601.2 337.7 253.0 364.0 351.6 828.9 512.9 311.4 539.5 415.1

ch
a
r

2

w-NAF (4) 542.5 318.8 200.1 309.7 313.5 771.4 474.2 242.0 451.7 370.4
bin 889.9 842.5 944.6 667.4 1961.9 1427.6 1173.0 1164.3 856.4 2379.3
NAF/JSF 784.1 424.8 463.4 596.9 988.4 1277.7 589.9 568.2 765.1 1195.5

affi
n

e

ch
a
r
p

w-NAF (4) 721.4 409.7 361.6 544.6 939.8 1153.2 561.1 435.5 693.1 1117.8
eLD cLD eLD eLD

NAF/JSF 282.4 323.6 – – – 403.1 483.9 – – –

ch
a
r

2

w-NAF (4) 244.9 297.6 – – – 354.4 409.7 – – –
mJ cJ W mJ cJ W

NAF/JSF 340.4 386.8 – 540.7 – 603.7 503.8 – 668.0 –

b
es

t

ch
a
r
p

w-NAF (4) (3) 309.9 371.1 – 490.8 – 535.1 481.3 – 601.8 –

Table 4.4: Comparison on ordinary curves and TZV between characteristic 2 and p > 3
– Intel (32-bit), timings in µs. Scalar multiplication is performed in affine or the best
available coordinates, without (bin, NAF/JSF) or with (w-NAF) precomputation. The
scalar splitting technique is used for TZV, except for affine/bin.

From the data we can observe similar results for the curves, both over binary or prime
fields. Surprisingly, the new code in characteristic 2 outperforms prime fields on Intel
(32-bit), while our previous results presented in [AC08b] reported better performance on
Intel-like platforms for odd characteristic (this is still the case with 64-bit code, whose
results however are not included here).

4.2.6 Comparison Between Supersingular Elliptic Curves and TZV

In this section we apply scalar multiplication techniques to supersingular elliptic curves
and TZV with g = 1, r = 3. These will be the subject of study in next sections where
we will focus on pairing.

However actual protocols and applications based on pairing can not be reduced to the
sole computation of the pairing itself, but the operations in the group of rational points
remain of paramount importance. For instance, in the broadcast encryption scheme

CHAPTER 4. IMPLEMENTATION 64

presented in Section 1.5.2 we have seen that the computation time both to encrypt and
to decrypt messages is dominated by operations in the group.

The main difference between ordinary and supersingular elliptic curves is that for
the latter doubling is almost for free, requiring only a few squares (no multiplications
nor inversions) in the field. Thus scalar multiplication is, at least in principle, extremely
faster. The penalty is that, because of pairing and the MOV attack, they require bigger
definition fields. Furthermore, supersingular curves are rare, so their group size may be
a bit bigger than the strict necessary, and clearly this slow down scalar multiplication
because scalars grow. For instance, referring to Table 3.2 the supersingular TZV E3/F2103

offers the same 80-bit security of an ordinary TZV with g = 1, r = 3 over F283 , but it is
defined over a bigger field and its group order is a 192-bit prime.

All these considerations motivate an in-depth analysis of scalar multiplication on
supersingular curves. Besides affine coordinates, we considered using Jacobian and
López-Dahab coordinates also for supersingular curves (deriving explicit formulae is an
exercise, we omit details here), but these require a multiplication in doubling formulae.

We used the three sets of curves defined in Table 3.2. The first one includes an
elliptic curve over F2239 and a TZV over F279 , offering 70-bit security1. In the second
set we have an elliptic curve over F2307 and a TZV over F2103 , providing 80-bit security.
Finally, the third set includes an elliptic curve over F2457 and a TZV over F2157 , offering
96-bit security.

Experimental results are given in Tables 4.5, C.7, C.8 and C.9. Operations considered
are negation (−), Frobenius endomorphism (σ), doubling (2) and addition (+). Scalar
multiplication is performed in affine or other (Jacobian and López-Dahab) coordinates,
without (bin, NAF/JSF) or with (w-NAF) precomputation. In case of w-NAF, the
default windows size is w = 4 and the best size for each experiment, if different, is
reported in brackets. The scalar splitting technique (cf. Theorem 3.2) is used for TZV,
except for affine/bin. For each curve, the best timings are put in bold.

70-bit security 80-bit security 96-bit security
Curve: EC TZV EC TZV EC TZV
Field: 239 79× 3 307 103× 3 457 157× 3
− 0.01 0.01 0.01 0.02 0.02 0.02
σ – 0.01 – 0.02 – 0.02
2 0.13 0.15 0.21 0.20 0.81 0.40

o
p

er
a
ti

o
n

+ 4.36 2.11 6.40 3.27 16.11 5.94
bin 528.7 188.3 1030.5 378.3 4073.2 701.0
NAF/JSF 376.4 96.3 757.6 189.2 2911.7 380.1

a
ffi

n
e

w-NAF (4) 237.2 83.5 456.0 160.1 (5) 1702.5 (3) 320.9
NAF/JSF 500.4 194.7 843.8 385.6 4208.4 768.6
w-NAF (4) 367.7 164.8 617.6 320.1 (5) 2887.8 (5) 625.0
NAF/JSF 563.5 214.0 933.6 432.9 4391.4 853.0o

th
er

w-NAF (4) 393.8 175.5 649.9 (5) 345.6 (5) 2927.6 (5) 667.2

Table 4.5: Comparison between supersingular curves and TZV – Intel (32-bit), timings
in µs. Operations considered are negation (−), Frobenius endomorphism (σ), doubling
(2) and addition (+). Scalar multiplication is performed in affine or other (Jacobian and
Lopez-Dahab) coordinates, without (bin, NAF/JSF) or with (w-NAF) precomputation.
The scalar splitting technique is used for TZV, except for affine/bin.

1As already mentioned, this is really poor security, but we kept it for comparison with literature.

CHAPTER 4. IMPLEMENTATION 65

We make the following remarks:

• Comparing supersingular elliptic curve with the corresponding TZV, already look-
ing at row affine/bin (which is without scalar splitting for TZV), we note a con-
sistent difference: TZV are 2, 3 or even more time faster. The reason is twofold:
first, we have already noted that definition fields are similar in size, therefore we
no longer see a loss of performance for TZV due to the slow multiplication (as for
ordinary curves). Second, by Table 3.2 we know that the order of the group for
TZV is less than for elliptic curves, then smaller are scalars.

• Jacobian and López-Dahab coordinates are really slower than affine coordinates,
since they both require a multiplication in doubling formulae.

• Comparing supersingular with ordinary TZV (cf. Section 4.2.4) we see that super-
singular TZV outperform ordinary ones (about 25% without precomputation) at
80-bit security on Intel (32-bit), but this is no longer true at 96-bit security or on
other platforms. As already discussed, this is the contributory cause of a bigger
definition field and a bigger group size.

4.3 Pairing on Supersingular TZV in Characteristic 2

In this section we detail the new algorithm for the Tate pairing in the case of super-
singular curves over binary fields (cf. Lemma 3.9). We first discuss the benefits of
parallelization then sketch some tricks that can be applied to the serial algorithm. We
also show an improvement over the point compression algorithm of Rubin and Silver-
berg [Sil05, RS09].

Beuchat et al. [BB+08] make an in-depth analysis of the ηT algorithm in even char-
acteristic. Most of their results can be applied to the general Miller’s algorithm. Here we
specialize them to the case of Algorithm 3.2. For simplicity we only consider the direct
approach without square root computation (but we will compare the new algorithm also
with the fastest ηT in Section 4.3.5).

Let E3/F2m be the supersingular TZV where E : y2 + y = x3 + x + b, b ∈ F2. As
in [BG+07] and [BB+08] we represent Fq12 as Fq3(s, t) with s2 = s + 1, t2 = t + s.
In the implementation we also use a more conventional polynomial basis and we found
that switching between the two representations allows some further optimizations (see
Section 4.3.4 for more details).

Let P = (xP , yP), Q̃ = (xQ̃, yQ̃) ∈ G1. Let the distortion map ψ : Fq3 → Fq12 be
given by Q̃ 7→ Q = (xQ, yQ) = (xQ̃ + s2, yQ̃ + sxQ̃ + t).

We discuss here the computation of fq,P (Qi), which is the core of Algorithm 3.2:
since we perform a loop on q = 2m, the only group operations in the Miller loop are
doublings. This is in clear contrast with the case of odd characteristic, where the loop
on the prime p also requires point additions. In characteristic 3 one can perform a triple-
and-add variant of the Miller loop, which, in analogy with characteristic 2, requires only
point triplings.

Let T = (xT , yT) ∈ G1 be the point which is accumulated during the loop. Let λ
be the slope of the line lT,T (for the curve of interest, λ = x2

T + 1). Point doubling
is done as [2]T = (λ2, y4

T + x[2]T + 1). At each iteration we also compute lT,T (Qi) =
λ(xT +xi)+yT +yi, where (xi, yi) = ψ

(
Q̃σ

i)
. As noted in [BB+08], replacing λ and using

CHAPTER 4. IMPLEMENTATION 66

the curve equation we can rewrite lT,T (Qi) = λxi + y2
T + yi + b which costs essentially

1m (note that y2
T is already computed in the doubling of T). Due to the special choice

of the distortion map, lT,T (Qi) = ai + bis + t for some ai, bi ∈ Fq3 . The multiplication
f ← f2 · lT,T (Q) is the core of the computation and can be performed with 6m as shown
by Beuchat et al. [BB+08, Algorithm 12]. In Section 4.3.4 we give a slightly improved
version of this algorithm.

4.3.1 Parallel Computation

We already noted that Algorithm 3.2 is very suitable for parallelization, by simply per-
forming the r computations of

(
fq,P (Qσi)

)qi(r+1)

independently (cf. line 3). Actually the
accumulation of the r partial results and the final exponentiation need to be computed
sequentially.

In the following we detail some features of the parallel algorithm and compare it
with an alternative approach available for E3/F2m .

We remark that Qσ = (xqQ, y
q
Q) = [q5]Q = ψ(xq

Q̃
+ 1, yq

Q̃
+ xq

Q̃
+ 1), hence the

computation of Qσi only requires 2 applications of the Frobenius automorphism and
one addition in Fqr . Similarly the computation of the power to qi(r+1) is obtained by
applying the Frobenius in Fqk , i.e. 4 Frobenius operations in Fqr and a few additions.

Apart from a few operations for computing Qσi and for raising the result to the
qi(r+1) power, the parallel threads carry out exactly the same operations, namely eval-
uations of fq,P at some point. This algorithm is hence suitable not only for a parallel
implementation, but could also be implemented using SIMD operations.

One can also exploit the special form (3.7) of the order N of E3/F2m to achieve a
dual-core computer friendly algorithm which requires only 2 = r − 1 processors. Since
t2 = 2q, we have N = (q + 1)(q + t) + 1 and thus:

fN,P (Q)M = fN−1,P (Q)M = fq+1,P (Q)(q+t)M · fq+t,[q+1]P (Q)M ,

where M = (q12− 1)/N = (q6− 1)(q2 + 1)
(
q2 + q+ 1 + t(q+ 1)

)
: the first equality holds

because the distortion map admits denominator elimination (cf. proof of Theorem 3.14)
and the second one comes from (3.10).

It is then possible to compute the evaluations of the two different Miller functions
in parallel. This is summarized in Algorithm 4.3.

We note that [q + 1]P can be computed exploiting Koblitz curve techniques (see,
e.g., [BG+07]), in fact [q]P = φk

(
(σ2(P)

)
, where φ(P) = (xP + 1, yP + xP). More,

the final exponentiation can be computed with a single division even if t is negative.
With respect to Algorithm 3.2, the drawback of this algorithm is that the two parallel
computations carry out different tasks.

4.3.2 Sequential Computation

As an alternative to parallel evaluation, computing the r Miller loops in a sequential
way allows to share some variables and reuse some intermediate computations. Notably
only one copy of the points T and Q̃ is needed, and the point doubling computation
can be shared. For supersingular curves in general this is not a great advantage, since
the doubling formulae are quite simple. However, in very constrained environments
the precomputation of the multiples of T might be competitive with respect to their

CHAPTER 4. IMPLEMENTATION 67

Algorithm 4.3: Computing tE3 on E3/F2m

Input: P ∈ G1 , Q ∈ G2

Output: tE3(P,Q)
(

= tTZV(P,Q)
)

f0 ←
(
fq+1,P (Q)

)q+t
1

f1 ← fq+t,[q+1]P (Q)2

f ← f0 · f13

f ← f q
2+q+1+t(q+1)4

return f (q6−1)(q2+1)5

repeated computation: in this case Algorithm 3.2 improves over previous algorithms,
requiring to store only log2 q points.

The details of the computation have already been discussed, and Algorithm 4.4
represents the sequential version of Algorithm 3.2 for E3/F2m .

Algorithm 4.4: Computing tTZV on E3/F2m

Input: P, Q̃ ∈ E3[`](F2m)
Output: tTZV(P,Q)

T ← P , f ← 11

for j = m− 1 downto 0 do2

f ← f23

λ← x2
T + 1 ; ȳT ← y2

T4

for i = 0 to 2 do5

ai ← λ
(
xq

i

Q̃
+ 1
)

+ ȳT + yq
i

Q̃
+ b6

bi ← λ+ xq
i

Q̃

gi ← aq
i

i + bq
i

i s+ t7

f ← f · gi8

end9

xT ← λ2 ; yT ← ȳ2
T + xT + 110

end11

f ← (f2)q
5

12

return f q
6
/f13

It is worth noting that the computation of ai on line 6 requires the multiplication
of a fixed λ times several different values xq

i

Q̃
+ 1. Hence, unrolling the loop allows to

use a sequential multiplication, which is usually faster than several multiplications, or
in other words to store the precomputations associated to λ in the comb-based binary
polynomial multiplication, and possibly use a larger comb.

4.3.3 Point Compression on TZV

In [RS02], Rubin and Silverberg describe an algorithm for point compression over TZV,
which is detailed by Silverberg in [Sil05]. Naumann already considered point compression
for TZV in odd characteristic [Nau99].

CHAPTER 4. IMPLEMENTATION 68

Classical point compression over elliptic curves compresses a point P = (xP , yP)
by dropping the y-coordinate and then recovers it by solving a quadratic equation.
For supersingular curves in characteristic 2 (cf. Lemma 3.9), this requires to compute
C = x3

P + xP + b and solve y2
P + yP = C for yP (one additional bit of information may

be necessary to determine the right solution). The total cost is 1S + 1M + 1H.
For a TZV, P ∈ G1 ⊂ E(Fqr). So xP ∈ Fqr can be seen as a vector in Frq, whose

coordinates are not independent; it is possible to exploit such a dependency to compress
xP to a vector in Fϕ(r)

q . We briefly introduce the algorithm of Rubin and Silverberg (see
[Sil05, RS09] for more details) and then analyze it in characteristic 2, leading to our
improvement.

Since P + σ(P) + · · ·+ σr−1(P) = O, there exists a function F (X,Y) with zeros of
order 1 in P, σ(P), . . . , σr−1(P) and a pole of order r at O. Let F̃ (X,Y) = −F (−P).
The function

∏r−1
i=0

(
X − σi(s)) vanishes at ±P,±σ(P), . . . , ±σr−1(P), hence we have:

γF (X,Y)F̃ (X,Y) =
r−1∏
i=0

(
X − σi(s)) , γ ∈ F∗q . (4.4)

We can make (4.4) explicit for a TZV constructed from an elliptic curve given by an
equation of the form (3.2) and r = 3, choosing a representation of Fq3 as Fq[T]/(T 3 +
T + 1). The following system of three equations results:

α2
1 + a1α1 + a2 = s0

a1α0 + a3α1 + a4 = s2
0 + s2

1 + s1s2 + s2
2

α2
0 + a3α0 + a6 = s3

0 +
(
s2

1 + s1s2 + s2
2

)
s0 + s3

1 + s1s
2
2 + s3

2 .

(4.5)

After some manipulations and taking into account that the curve is supersingular,
hence a1 = a2 = 0, (4.5) becomes:

s4
0 + s0a

2
3 + s4

1 + s2
1s

2
2 + s4

2 + a2
4 = 0 ,

which is a bi-quadratic equation in s1 (or s2).
Now Rubin and Silverberg [Sil05] consider s1 as an unknown and solve

s2
1 + s2s1 +K , with K = (s0 + s2)2 + a3

√
s0 + a4 for K .

Unfortunately this equation is not in the form y2 + y + C = 0, which would make
its solution very fast [FH+03, Ava07], but instead requires extra work to compute the
solutions. In fact the cost is 1s+ 1r+ 1m to compute the constant term K, 1s+ 1m+ 1i
to transform to an equation of the form y2 + y+C, 1h to solve the equation and finally
1m to recover the solution s1.

We can improve the algorithm, in particular avoid the inversion, by taking instead
s0 as unknown (denoted x), under the assumption that a3 = 1, satisfied for the curve
defined in Lemma 3.9. This leads to the equation:

x4 + x+ C , C =
(
s2

1 + s1s2 + s2
2 + a4

)2
, (4.6)

that can be reduced to a system of two quadratic equations: x2+x = y and y2+y+C = 0,
since x4 + x+C =

(
x2 + x

)2 + (x2 + x) +C. Note that in Fq, with q = 2m and m odd,
equation (4.6) only admits two solutions.

CHAPTER 4. IMPLEMENTATION 69

The compression of the point P = (s, t) is done by (i) dropping the coordinate s0 and
(ii) computing the extra bit needed to distinguish s0 from the other solution of (4.6): if
s0 is some solution of x4 + x+ C, then s0 + 1 is the other solution and as the extra bit
we can use LSB in the binary representation of s0. The compression algorithm is thus
for free.

Decompressing a pair (s1, s2) ∈ F2
q can be done by solving equation (4.6): first

compute a solution ȳ of y2 + y + C; then solve x2 + x + ȳ + Tr(ȳ) whose solutions are
the two candidates for s0; finally select the solution having the LSB equal to the extra
bit received. The total cost is 2s + 1m to compute the constant term C and 2h to solve
the quartic equation (reduced as two quadratic equations). We omit from the count the
computation of Tr(ȳ) since this is a negligible operation [FH+03, Ava07].

4.3.4 Extension Fields of Degree 4 for Pairing Computation

A natural representation for F24m , with (m, 4) = 1 is via the polynomial basis {αi}3i=0

with α4 = α+1. In [BG+07] the basis {1, s, t, st} with s2 = s+1, t2 = t+s is suggested
as an efficient alternative. Let F24n 3 x = a3α

3 +a2α
2 +a1α+a0 = x0 +x1s+x2t+x3st.

Basis change is easily done:

x0 = a0 + a1 a0 = x0 + x1 + x3

x1 = a1 + a3 a1 = x1 + x3

x2 = a2 + a1 a2 = x1 + x2 + x3

x3 = a3 a3 = x3

Since this change is linear, the two representations lead to multiplications in the exten-
sion field which require the same number of multiplications in the small field. But, the
number of field additions may vary, resulting in slight overall improvements. Beuchat
et al. [BB+08] show that the second basis is better for pairing computation. However
their focus is on building a cryptographic pairing accelerator, and we think that the first
basis can be more suitable for a software library which implements full arithmetic in an
extension of degree 4.

In our implementation we decided to use the basis {1, s, t, st} for the Miller loop
computation but we prefer to return a result in basis {αi}3i=0. Since squarings require
two additions less in the latter basis, in some algorithms, like ηT we perform the basis
change before finishing the final exponentiation, saving around m additions.

We conclude with the following remark concerning [BB+08]. In the Miller loop, the
core of the computation is the product of a generic element f = f0+f1s+f2t+f3st for an
element of the particular form g0+g1s+t. Beuchat et al. describe it in Algorithm 12. We
point out that: (i) the 6 multiplications in lines 2 and 3 can be computed as 3 sequential
multiplications [AT07], which leads to performance improvements since one operand is
common in two multiplications; (ii) in line 5 the sum f2 + f3 can be substituted by the
previously computed a2; (iii) as the result is computed, it is not possible to directly
accumulate it in f , while an additional copy is necessary. Algorithm 4.5 below fixes
these problems.

4.3.5 Experimental Results

In order to put the performance of the new algorithm in a broader perspective, we
implemented it alongside all the algorithms available in the literature that are applicable

CHAPTER 4. IMPLEMENTATION 70

Algorithm 4.5: Computing (g0 + g1s+ t) · (f0 + f1s+ f2t+ f3st)
Input: g = g0 + g1s+ t ∈ F24m and f = f0 + f1s+ f2t+ f3st ∈ F24m

Output: w = f · g (w can be f)

a0 ← g0 + g1; a1 ← f0 + f1; a2 ← f2 + f3;1

[m0,m2]← g0 · [f0, f2]; [m1,m3]← g1 · [f1, f3];2

[m4,m5]← a0 · [a1, a2];3

w2 ← f0 + f2 +m2 +m3;4

w0 ← f3 +m0 +m1;5

w3 ← f1 + f3 +m2 +m5;6

w1 ← m0 +m4 + a2;7

return w0 + w1s+ w2t+ w3st8

to supersingular TZV E3/F2m , where E : y2 + y = x3 + x + b, b ∈ F2. This curve has
been chosen since it is the one used in [BG+07, RS09, BB+08].

We used the same curves presented in Section 4.2.6 and Table 3.2. The first two sets
are the same adopted in [BG+07].

We now describe the considered algorithms (see also Section 3.5).

• tN computes a straight Tate pairing with a Miller loop on an integer N which
is a low Hamming weight multiple of ` (cf. [BK+02]). For the TZV we used
N = q2 − q(1− t) + t2 + t+ 1 with t = ±√2q, whose NAF-representation is very
sparse.

• The η and ηT pairings [BG+07]; here for the TZV the parameter T = t3 − 1 =
∓2(3m+1)/2 has been chosen, with the notation of (3.4). For these two pairings
we provide two implementations: the first uses essentially the same Miller loop as
the other algorithms, while the second one, labeled (HLV), uses a point halving
based iteration in the Miller loop, exploiting the techniques described in [BG+07]
and [BB+08].

• aopt is the optimized (twisted) Ate pairing [Ver08]. For our varieties we adapt the
example of supersingular elliptic curves over F3m from [Ver08, Section 4] using the
shortest vector V = [2(3m−1)/2, 2(3m−1)/2 ∓ 1] instead; we note that the loop is
shorter than in ηT but, because of the ∓1 in the second component, an additional
final multiplication is required.

• tσ computes the Tate pairing exploiting the qth power Frobenius σ adapting the
approach from [Sco05] as explained in Remark 3.15.

• tTZV is the sequential version of our new algorithm (cf. Algorithm 4.4).

• tTZV (Par) is a parallel version of our algorithm, where the three evaluation of
fq,P (Qσi) (see Algorithm 3.2, line 3) are executed as three threads, each one run-
ning on a different core.

• tE3 (Par) is the dual-core computer friendly algorithm available for E3 (cf. Algo-
rithm 4.3).

All implementations except the ones labeled tTZV (Par) and tE3 (Par) run on a single
core. For parallel algorithms the OpenMP library has been used.

CHAPTER 4. IMPLEMENTATION 71

Tables 4.6, C.10, C.11 and C.12 show our experimental results compared with their
theoretical complexity given by the size of the iteration in the Miller loop (exponentia-
tions are almost always negligible for these algorithms).

70-bit security 80-bit security 96-bit security
EC TZV EC TZV EC TZV

Pairing Loop Length 239 79× 3 307 103× 3 457 157× 3
tN N = O(q2) 987.1 591.7 1576.4 1104.1 7250.2 3009.4
η q3 946.0 817.7 1513.3 1543.1 7094.7 4302.2
ηT 2(3m+1)/2 − 1 516.5 444.8 819.8 829.5 3785.2 2291.3
aopt 2(3m−1)/2 527.5 440.0 833.8 828.1 3788.1 2252.1
η (HLV) q3 1093.3 822.3 1696.4 1684.2 6690.2 4401.3
ηT (HLV) 2(3m+1)/2 − 1 506.3 428.2 791.9 798.9 3609.0 2195.1
tTZV 3× q – 751.3 – 1418.0 – 3985.8
tσ 2× s – 923.3 – 1749.3 – 4674.3
tTZV (Par) 3× q – 300.6 – 553.3 – 1494.7
tE3 (Par) 2×O(q) – 339.0 – 609.7 – 1643.6

Table 4.6: Comparison among pairings – Intel (32-bit), timings in µs

We conclude with the following remarks:

• As expected, our new algorithm tTZV in its sequential form has performance similar
to η (3 loops on q against a single loop on q3). As already noted, it has indeed
better properties for parallelization and/or storage requirements.

• The parallel version of tTZV is on average 25÷30% faster than any previous pairing
algorithm – notably ηT (HLV) – on the same curve.

• A comparison between tTZV and tE3 confirms the expectation that the SIMD-like
approach to the parallezation of the former produces a lower overhead (i.e. better
performance, about 10% on average, slightly more on PowerPC) than the latter,
but at the price of an additional computational unit.

• In general, with 32-bit code TZV performance are better than the corresponding
elliptic curve (the only exception is E3/F2103 on Intel, but with minimal loss). On
the contrary, 64-bit code suffer from less flexibility in the implementation caused
by the larger granularity.

Chapter 5

Real-world Applications

In theory there is no difference
between theory and practice.

In practice there is.

In this chapter we discuss real-world applications that often use pairing as a black-
box, to build efficient cryptographic primitives like broadcast encryption or anonymous
authentication schemes.

In the previous chapter we have seen practical examples of very efficient symmetric
pairings that can be useful to deploy applications in constrained environment. For
higher security requirements, asymmetric pairing over ordinary curves is probably a
better choice (cf. Section 1.4), and nowadays the best available solution is R-ate pairing
over Barreto-Naehrig curves [BN05]. Unfortunately it is still an open problem to find
pairing-friendly ordinary TZV, for instance “Barreto-Naehrig TZV”. It is quite easy to
find very small toy examples, but searching for curves of cryptographic size seems to be
infeasible, at least with currently available techniques [FST06].

Independently from the choice of the best pairing, the mathematical solution provides
security only in some critical phases of a real application, and it is increasingly com-
mon to observe that vulnerabilities come from poor implementations or from problems
related to users’/servers platforms. In this chapter we present the Trusted Computing
technology as a possible solution to mitigate some common security issues. We provide
two concrete examples of applications: Trusted Broadcast Encryption [CRV08b] and
an anonymous authentication system based on TLS and Direct Anonymous Attesta-
tion [CL+10].

5.1 Trusted Computing and OpenTC

Trusted Computing (TC) is a new emerging technology specified by the Trusted Comput-
ing Group [Tru09] aiming to enforce, by hardware and software, the specific behaviour
of a computer system. The core of this technology is a tamper-resistant chip called
Trusted Platform Module (TPM) that offers built-in cryptographic and core security
functions.

The TPM is a low-cost chip whose main goal is to provide three hardware Root
of Trusts: 1) for Storage (RTS) to securely store keys and data; 2) for Measurement
(RTM) to collect and store the integrity measurements (used to represent the system

72

CHAPTER 5. REAL-WORLD APPLICATIONS 73

configurations); 3) for Reporting (RTR) to allow remote verification of such integrity
measurements.

Integrity measures are securely kept by the TPM within the Platform Configuration
Registers (PCRs). PCRs are shielded locations able to accumulate the measurements of
the system components. TPM guarantees that the values of PCRs can only be updated
by adding a new measurement through the “PCR extend” operation:

PCRnew = SHA-1(PCRold||Measurement) ,

where Measurement is typically the hash value of the component’s binary or configura-
tion file.

In the context of TC, virtualization is used to enforce strong isolation (i.e. memory
isolation and communications subject to flow control policy) among components with
different security requirements that run on a system. Two paradigms have emerged:
full virtualization and para-virtualization. The former implies hardware emulation to
run an unmodified guest Operating System (OS). The latter requires a modified guest
OS, but exhibits better performance: indeed the virtual resources can be implemented
in a more efficient way than barely emulate the hardware. Many virtualization engines,
also called Virtual Machine Monitors (VMMs) or hypervisors, are available for PC class
platforms: for example VMware, VirtualBox, QEmu offer full virtualization, Fiasco, a
micro-kernel of L4 family, provides para-virtualization while Xen [BD+03] offers both.

Virtualization has been used as enabling technology to ensure strong isolation in
different research projects like Terra [GP+03], EMSCB [SSP04] and OpenTC [Ope].

Particularly, OpenTC is a research project funded by the European Commission
and aiming at the development of an open-source security framework built upon TCG’s
security concepts. OpenTC has a layered architecture that consists of: 1) a virtualiza-
tion layer capable of running multiple Virtual Machines – also called domains or com-
partments – ensuring strong isolation among them; 2) a layer that implements trusted
services; 3) an application layer. Services and applications run in different compart-
ments. Currently OpenTC distributes a proof-of-concept implementation that supports
two different virtualization engines: Xen and L4/Fiasco.

Coming back to the TPM, among the new functionality introduced and now currently
available, sealing and remote attestation deserve more attention.

Sealing provides secure storage and allows to cryptographically bind confidential data
to a specific system configuration in a way that data can only be accessed (unsealed)
if the system runs on the same configuration the data was sealed for. One of the main
issues of sealing is that once a piece of data is sealed against a system state, it is not
possible to update that system – thus changing the values of PCRs – without loosing
availability of the data. While undesirable from a design perspective, this is also true
if the system after the update exhibits better security properties than the ones owned
at sealing time, for instance when the update fixes some vulnerabilities. A solution to
overcome this problem using a Sealing-Proxy has been presented in [CRV08a].

Remote attestation is a procedure to report integrity measurements to an exter-
nal entity, called verifier. The measurements can be reported through a specific TPM
command that generates a RSA digital signature over a subset of PCR values (and a
nonce) by means of an Attestation Identity Key (AIK). The AIK is protected by TPM
and can be certified by a special Certification Authority (Privacy CA), or through the
Direct Anonymous Attestation (DAA) protocol, whose implementation is embedded in
the TPM since version 1.2.

CHAPTER 5. REAL-WORLD APPLICATIONS 74

5.2 Trusted Broadcast Encryption

A Broadcast Encryption (BE) system allows a center to send encrypted messages over
a public broadcast channel towards many users. The use of BE has been proposed for
different scenarios: multimedia broadcasting, encrypted file systems, secure mailing lists
and peer-to-peer applications.

The notion of BE was formally defined by Fiat and Naor [FN94], and the first
practical BE scheme, called Subset Difference, was proposed by Naor et al. [NNL02].
This scheme is based on symmetric encryption and has been improved by many authors
(e.g. [HS02, GST04, JY+05]) to achieve smaller broadcast messages or keys on the
receivers. The transition to public-key cryptography was initially done by Dodis and
Fazio [DF03], then improved by Boneh et al. [BGW05].

BE protects the communication channel, but not the platforms where the contents
are created, distributed or received; in this section we outline a system where the protec-
tion of the communication channel offered by the BE is extended to the platforms using
Trusted Computing (TC) techniques. We call such coupling of TC and BE Trusted
Broadcast Encryption (TBE).

5.2.1 Broadcast Encryption

In this section we review the main aspects of BE, defining the involved actors, describing
a generic BE system and presenting some scenarios. To simplify the exposition, we limit
our discussion to the asymmetric BE; we follow the notation presented in [BGW05].

Actors

In classical BE the actors are a set of N users and a center. With abuse of language we
will often refer to actors meaning their platforms.

Users are the receivers of broadcast messages; each message is addressed only to a
subset S of legitimate users. Users removed from S are called revoked.

Center is the entity responsible for 1) issuing users’ credentials, 2) creating and 3)
delivering messages to the users. This definition is not suitable for real scenarios; we
hence map the three center’s functionalities onto three distinct roles: issuer, content
provider and sender.

Notation

A BE system is composed of three phases.
Setup. The issuer creates N private keys SK1, . . . , SKN and one public key PK.

Each user i is provided with his own private key1 SKi.
Encryption. The sender needs (from the content provider) the message M and the

set of legitimate users S as input. It creates the broadcast message (Hdr, CM) where
Hdr is called header and CM body.

CM is the encryption of M under a symmetric session key K. Hdr contains a
description of S and the encryption of K with the public key PK; the details of the
header generation are the core of the papers on BE and are out of our scope.

1In symmetric BE the issuer must send the keys also to the sender.

CHAPTER 5. REAL-WORLD APPLICATIONS 75

Decryption. An user i ∈ S takes as input the broadcast message (Hdr, CM). Using
his private key SKi and the public key, he retrieves K from the header (again this is
the core of a BE algorithm). Finally, he decrypts M from CM using K.

Examples

BE literature describes four main scenarios that we will use as examples in our discussion.
In the following, we briefly give an overview of the scenarios.

Multimedia broadcasting. A video producer wants to broadcast its content to a
set of customers. Here, the video producer is the center and the customers are the users
of the BE system. The scenario can be extended by distinguishing the three roles of the
center as three distinct services.

Encrypted file system. An user of an operating system (OS user for short) wants
to securely store a file so that only a set of authorized OS users may access it. In
this scenario, the OS user is the content provider (because he provides the file to be
encrypted) and the others are the users of the BE system; the OS plays the role of
issuer and “sender”.

Secure mailing list. The subscribers of a mailing list want to securely exchange
e-mails relying on a mail server. The writer acts as content provider, while the recipients
are the users; the mail server is issuer and sender.

Peer-to-peer application. The peers of a peer-to-peer application (e.g. video
conferencing or file sharing) want to communicate in a secure way and they use BE to
protect their messages; we assume the peers belonging to a predefined and closed group
of users. At each time, the peer who “speaks” is both content provider and sender, while
the listeners are the users. Moreover the system requires an external entity acting as
issuer.

5.2.2 Issues and Motivations

In this section we present the main issues arising in BE literature. We also introduce
new problems that are not covered in literature, but arise when thinking of real imple-
mentations; such points represent the motivation for our work and will be investigated
in the next section.

The goal of BE is to provide the confidentiality of a message broadcasted from a
center to many users. The message is created on the center, transmitted over an insecure
channel, then received and processed on the users’ platforms. We aim to extend the
protection that BE offers to the communication channel, by also including the platforms.
For instance, we will guarantee the confidentiality of the message on the users’ platforms
by enforcing their correct behaviour (applying TC technology).

BE has been analysed in the literature from a theoretical point of view, identifying
the following problems: efficiency of encryption and decryption algorithms, transmission
costs (i.e. size of the header), and size of public and private keys.

By focusing the attention onto real applications, other problems arise that are usually
not considered in literature. We cope with the followings.

Platforms for BE. Generally, applications are designed to perform the critical
tasks (e.g. storing and using keys) using a smart card. Its usage has some disadvantages:
distributing keys is done by delivering preconfigured smart cards, updating private keys
is usually not feasible and smart cards have limited storage and computational power.

CHAPTER 5. REAL-WORLD APPLICATIONS 76

These considerations apply to users’ platforms, while the center is considered as a
complex and powerful entity, hence its platform is not taken into account.

Trustworthiness of the user. In BE the most critical information is the user’s
private key, therefore the only attack that arises is private key extraction: the session
key is too short-lived to be critical and malicious handling of the decrypted content is
not considered because the focus is only on the communication channel. Therefore the
most critical point is the key storage on the user’s platform.

An orthogonal problem to BE is traitor tracing: a set of malicious users extract their
private keys and cooperate to build a pirate decoder; some BE algorithms (e.g. [NP00,
DF+05, BW06]) are designed to be able to identify and revoke traitors. Traitor tracing
is a countermeasure to the key exposure attack.

Trustworthiness of the center infrastructure. The first problem from the users’
perspective is the key escrow: the center, more precisely the role of the issuer, knows all
the secrets used to generate users’ keys2. Another problem arises when the users want to
have evidence of the correct behaviour of the sender (e.g. in the peer-to-peer application
scenario). Finally, the users have to trust the content provider: we do not consider this
problem from the technical point of view and we assume such trustworthiness being
provided in other ways (e.g. by contract).

We can also consider the relationships among the different roles of the center. We
limit our discussion to the relationship between the content provider and the sender: the
latter can modify or disclose the content3 compromising the integrity or confidentiality
of the message.

5.2.3 Applying TC Techniques to BE

In this section we show how to apply TC techniques to BE to face the problems discussed
in the previous section. We call the coupling of TC and BE as Trusted Broadcast
Encryption (TBE).

After presenting the relevant aspects of a suitable architecture, we define a simple
TBE system where we pursue the sole objective of extending the confidentiality of the
broadcast message up to the users’ platforms, by enforcing their correct behaviour. As
a next step, we outline an extended TBE system, where we also take into account the
trustworthiness of the center infrastructure.

Architecture

We base our design on TCG’s principles and OpenTC as a reference architecture: differ-
ent execution environments (often called compartments) run isolated on top of a Trusted
Computing Base (TCB) which offers basic security mechanism and services, including
TC primitives. For this purpose, a TC-enabled hardware provided with a TPM is re-
quired; we note that current platforms are not resistant to physical attacks, which are
out of the scope of TCG models. In addition, even if we are aware of the limits of the
current implementations, we assume the availability of a set of security services, includ-
ing: a trusted channel to establish secure channels among trusted parties (e.g. user
and issuer); secure paths between TCB, compartments and I/O devices (e.g. to display
contents preventing unauthorized disclosure); a run-time monitor capable of tracking

2This also applies in symmetric BE.
3Note that in symmetric BE, the sender also stores users’ keys, so it can also expose them.

CHAPTER 5. REAL-WORLD APPLICATIONS 77

changes to the platform configuration. We will come back to these issues in Section
5.2.5.

The isolation of compartments is suitable for building secure and modular applica-
tions. For instance, the user’s decoder application implementing the decryption phase
can be split into three different compartments that perform respectively: 1) session key
extraction, 2) content decryption and 3) content visualisation. The first compartment
is critical because directly accesses the user’s key, hence it should be placed within the
TCB. The other two do not deal with user’s key and they can be confined according to
policy enforced by the TCB, allowing flexibility: an user could run his preferred viewer
in a completely isolated domain that is only allowed to receive data from the content
decryptor and has no other network communication channel.

An advantage of the proposed architecture is to rely only on general-purpose hard-
ware as opposed as custom hardware using smart cards. The former overcomes the
limitation in storage and computational power. Furthermore, moving keys from smart
cards to TPMs allows on-line distribution, instead of physically delivering preconfig-
ured smart cards to a large number of users. Finally, going in the direction of an open
implementation naturally tends to avoid security through obscurity.

Trusted Broadcast Encryption

We begin by defining a basic version of a TBE system, where we focus on the confiden-
tiality of the message within the users’ platforms.

In this simple TBE system we limit our scope to the multimedia broadcasting sce-
nario where a single infrastructure plays all the roles of the center. We introduce TC
techniques in the setup and decryption phases, while encryption remains unchanged. In
the following, we describe the modifications of setup and decryption with respect to the
original phases (cf. Section 5.2.1).

Setup. Before sending the private key to a user, the issuer needs a guarantee about
the integrity of the user’s platform: this is usually done through remote attestation.
In some scenarios the trustworthiness of the user’s platform can be assumed, as in the
encrypted file system where the user’s platform is the same where the operating system
(i.e. the issuer) runs. If the user’s platform is considered untrusted, the issuer aborts
the setup phase.

When the user receives his private key, he seals it against the current configuration;
notice that the user can not prevent sealing, because the correct behaviour of his platform
is guaranteed by the integrity verification.

Decryption. In order to decrypt the message, the user needs to unseal his private
key. The unsealing, and hence the access to the content, is only possible if his platform
is in the same state the issuer judged trusted.

As already noted, this basic version only extends the confidentiality of the message
up to the users’ platforms, by guaranteeing their correct behaviour. Actually, in the
setup phase we used a scheme composed of remote attestation followed by sealing;
while this has already been exploited in the literature (e.g. [KS07]), to the best of
our knowledge it has never been properly designed nor implemented4; moreover, in

4 Exploiting TPM v1.2 sealing: 1) the scheme can be implemented as a module within the TCB; 2)
after remote attestation, sealing is done against the reported configuration Cr; 3) after unsealing, the
module verifies that the configuration at sealing time Cs is equal to the current one (which is Cr because
of successful unsealing), and aborts in case the check fails.

CHAPTER 5. REAL-WORLD APPLICATIONS 78

its current implementation sealing offers a protection that does not endure in time,
unless we assume a run-time monitor able to detect changes in the configuration of the
user’s platform and consequently able to deny the access to unsealed data; we further
investigate this aspect in Section 5.2.4.

We finally remark that in this simple system any consideration on the trust of the
center is trivial: it can be either assumed trustworthy as in BE literature, or subject to
integrity verification; the latter case is not realistic because the center as a whole is a
complex infrastructure.

We now turn the attention to a complete TBE system: we cover all the scenarios and
split the center into distinct roles to discuss its trustworthiness. To keep the treatment
simple and short, we introduce the improvements step-by-step.

First, we improve the concept of configuration of the user’s platform. In the setup
phase, the issuer can request the user to seal data against a different configuration than
the one reported; this allows the user’s platform to perform the decryption phase in a
distinct configuration (e.g. in the encrypted file system scenario, the setup phase may
happen during the installation, while the decryption during the life time of the system).

Next, we consider the relationship user-issuer. Unless the issuer is assumed trust-
worthy, the user needs to verify its integrity in the setup phase, before accepting his key.
In the encryption file system scenario, we consider the operating system a trustworthy
issuer if the setup phase occurs during the installation, because a freshly installed oper-
ating system is, by definition, in a good state. On the other hand, in the secure mailing
list scenario, the user may perform a remote attestation against the mail server before
joining the list.

We now continue with the relationship user-sender. For scalability reasons, we as-
sume no return-channel exists (i.e. it is not feasible for all the users to remotely attest
the sender). Nonetheless, the sender can convince the users of its good state by embed-
ding the attestation data in the broadcast message. This integrity report takes place in
the encryption phase and the verification in the decryption. Note that a mechanism for
freshness is needed to avoid reply attacks; we will provide further details in Section 5.2.4.

Finally, we consider the relationship sender-content provider. The content provider
needs to verify the integrity of the sender in the encryption phase, before providing its
content M . This can be done by exploiting remote attestation, e.g. in the secure mailing
list scenario. Applying the scheme composed of remote attestation followed by sealing
allows reducing the number of remote attestations, and notably the workload on the
content provider for the verifications. The sealed data can be a symmetric key that the
content provider will use to encrypt the message M ; in this case the amount of sealed
data on the sender grows with the number of content providers. This scheme is suitable,
for instance, in the multimedia broadcasting scenario.

Taking into account all the previous considerations, we covered the issues introduced
in Section 5.2.2.

5.2.4 New TC Techniques

In our TBE system, we applied sealing and remote attestation to protect critical data
and verify integrity of platforms. However, in their current implementations, these
techniques suffer from an important drawback: they assess trust only in the instant of
time in which they are performed, and if the platform turns into a bad state it is not
guaranteed that a proper countermeasure will be taken, e.g. access to unsealed data will

CHAPTER 5. REAL-WORLD APPLICATIONS 79

be denied, or the change in the configuration will be reported to the peer of a trusted
channel.

To keep the discussion simple when using TC primitives, in Section 5.2.3 we over-
passed these issues assuming the availability of a run-time monitor. In addition, we
supposed such monitor capable not only to track changes, but also to carry out coun-
termeasures (cf. Section 5.2.3, remarks after Decryption phase).

In this section we outline two new TC schemes, forward sealing and continual shared
attestation, which simplify the requirements of the run-time monitor, because they allow
countermeasures to be embodied within the protocol layer.

Before starting, it is worth to define the meaning of “platform turns into a bad
state”. For simplicity, we only focus on user’s platform and key exposure attack, which
is tracked by the run-time monitor as a change in the configuration. Our architecture
model considers the TCB trustworthy, therefore the configuration change may reflect
only a change within the TBE compartments. Note that in Section 5.2.3 we placed the
compartment handling the user’s key within the TCB (i.e. the TCB of a TBE system is
composed of a general purpose TCB plus a TBE-specific compartment); here we relax
the assumption on this compartment assuming it can be subject of the attack.

Forward Sealing

For simplicity, we restrict the discussion to the simpler multimedia broadcasting scenario.
Our goal is to extend the security provided by the sealing over time, by reducing the

time window within which the private key persists unsealed in memory.
We adopt the following notation: the total life time of the BE system is divided into

T windows and the attack happens at the beginning of window t ∈ {1 . . . T}.
In the setup phase, the center generates T secrets and N sets of T private keys

and sends (after integrity verification) the secrets and his set of private keys to every
user. Each user i seals his keys: every private key SK

(j)
i , j = 1 . . . T is sealed against

a configuration C = (Cnfi, S(j)), where Cnfi is the current (proved good) configuration,
and S(j) is the secret received from the center. After sealing, the user deletes all the
secrets.

At the beginning of a window j, the center distributes the secret S(j), the user i
unseals the new key SK

(j)
i and deletes the previous ones (both the sealed key and the

copy unsealed that persists in memory); note that the user can not unseal any future
user key until the center broadcasts the corresponding secret.

We turn now the attention on the properties that this scheme grants. First it offers
forward security, i.e. it is not possible to decrypt any content received before the attack.
Next, if the attack modifies the configuration, the TPM will not unseal any future key.
Finally, the scheme offers a partial protection even against attacks that do not modify
the configuration, but requires a time τ (comparable with the window length) to succeed:
at any new time window the attacker is forced to waste time to re-run the attack; note
that this assumption is realistic when thinking to collaborative attacks, like traitors’
attacks.

Continual Shared Attestation

The following scheme is suitable for the peer-to-peer application scenario.

CHAPTER 5. REAL-WORLD APPLICATIONS 80

Our goal is to allow peers to continually verify the configuration of the sender during
the application life time.

We recall that for simplicity we consider a single closed group, where each user
is provided with a broadcast channel towards the other users; furthermore we assume
the configurations of users’ platforms being not confidential, so that we can avoid any
consideration on their privacy.

In the encryption phase the sender embeds its attestation data within the broadcast
message, which is verified in the decryption phase by the receivers. Two important
issues must be considered: guarantee freshness of the integrity measurement and ensure
that the attested platform is exactly the sender’s platform.

We sketch possible solutions and let the detailed design as a future work. The first
problem is specific to this scheme: the integrity report requires a nonce for freshness that
we propose to be the previous attestation data5; such mechanism needs a starting nonce
that may be provided by the issuer (which is trusted by all users). On the contrary
the latter problem is common to all trusted channels, and it has already addressed in
literature [GPS06a].

We turn now the attention to the properties granted by the scheme. It allows to
continually attest the sender (which changes during the application life time), so that if
a peer becomes rogue, it is detected by all the other peers as soon as it sends a message,
and therefore revoked. Furthermore we exploit the broadcast channel to share a single
remote attestation within the group. This turns out to be an efficient and scalable
technique to lower the workload of the TPM.

Note that both forward sealing and continual shared attestation rely on a run-time
monitor that is only required to detect changes in the platform configuration, and not
to take any countermeasure.

5.2.5 Open Issues

As stated in Section 5.2.3, TBE allows using general-purpose hardware based on a
TPM, rather than custom based on smart cards, bringing advantages with respect to
key distribution and openess; however this architecture has still open issues related to
hardware attacks, mainly because the TCG model does not cover them. Among the
physical attacks, we claim that the most dangerous in the TBE context are the so
called “open-case” (cf. [KSP05, Kau07]) that allows breaking the security provided by
TPM and are relatively easy to mount having physical access to the platform; on the
contrary, more sophisticated attacks are affordable for a small number of users, and the
TBE already provides countermeasures through revocation and traitor tracing.

Despite the current issues, it is possible to foresee an actual TBE system. We
note in fact that hardware manufacturers are making efforts to mitigate these open-
case attacks (e.g. [Gro06]). Another simple solution, where possible, would be providing
users’ platforms with a tamper-resistant case protecting from physical attacks; this could
be particularly realistic in the multimedia broadcasting scenario where set-top-boxes are
alraedy shipped to the users.

Other critical points of our architecture are the software components we put in evi-
dence within the TCB, notably the trusted channel and the run-time monitor. Similarly

5 In principle any public and “random enough” data is suitable as nonce; we claim that the previously
exchanged attestation data that in the peer-to-peer application is easily to be provided by a different
peer, has both these characteristics.

CHAPTER 5. REAL-WORLD APPLICATIONS 81

to the hardware, there is ongoing work that allows foreseeing an actual implementation,
which is missing at the moment. The trusted channel is the most studied and mature, for
instance [AG+08] provides an implementation proposal that extends the TLS protocol.
Finally, for the run-time monitor, we have shown in Section 5.2.4 that its capabilities
may be simplified if suitable TC schemes carry out some of its requirements.

5.3 Direct Anonymous Attestation

Anonymous credential systems and other schemes for anonymous authentication provide
privacy-preserving solutions where authentication of users is required, but where it is not
necessary to identify individual users. In these systems, copying and sharing credentials
can be a serious issue. As this cannot be prevented in a software-only solution, these
problems form a major obstacle for the use of fully anonymous authentication systems
in practice.

In this section, we propose a solution for anonymous authentication that is based
on a hardware security module to prevent sharing of credentials. Our protocols are
based on the standard protocols Transport Layer Security (TLS) and Direct Anonymous
Attestation (DAA). We present a detailed description of our approach based on a Trusted
Platform Module (TPM) as hardware security module. Moreover, we discuss drawbacks
and alternatives, and present an implementation for the TPM-based solution, as well as
a pure software implementation.

Many credential systems (e.g. CL credentials [CL01]) have been proposed in the
scientific literature, and recently, idemix – a very flexible anonymous credential system –
has also been implemented [BB+09]. Comparing to idemix, we make use of a hardware
security module and we also provide report of client’s integrity. Beside, Amit et al.
[ALP05] provide pseudonymous authentication in peer-to-peer networks by employing
DAA with TLS and IPsec, but they only sketch how such results can be achieved. In
contrast, we provide a detailed design and implementation.

Bichsel et al. [BC+09] present an implementation of CL credentials that uses a JavaC-
ard as hardware module, providing portable credentials and multi-application support.
Particularly noteworthy are also smartphones that offer hardware security solutions
(e.g. Mobile Trusted Module (MTM), ARM TrustZone) which can be used to protect
credentials. Nokia On-board Credentials are an example of a (not necessarily anony-
mous) system protecting credentials in this way. Our framework is flexible enough to
accomodate different security modules.

Finally, we note that some vulnerabilities have been found in DAA which may lead
to privacy violation (e.g. [SRC07]), and fixes have been proposed. However, since we
focus on the design of a general framework that allows to use a generic DAA scheme
together with TLS, any improvement of DAA that fixes these vulnerabilities can be
included in our framework as well.

5.3.1 Anonymous Authentication

Scenarios.

Let us consider an online subscription service where users can access contents with their
computer at home and with a mobile phone while traveling. Examples for such a service
include news sites and services for real-time information about stock market prices.

CHAPTER 5. REAL-WORLD APPLICATIONS 82

Service provider and users have different objectives, which intuitively may seem to be in
conflict: the service provider requires that only authorized users (i.e. subscribed users)
access the service; the users want to be anonymous because details of content accesses
are personal and sensitive information (e.g. which articles they read, which stocks they
are interested in).

We aim to design a system that allows a content provider to collect payments from
users for subscription and enables only legitimate users to access the contents while
being anonymous. More, one legitimate user should not be able to share access to the
service with illegitimate users.

We also want to support a variant of this business where it is possible to trace
different accesses of the same users, while still protecting the actual identity of the
user. This can be useful, for instance, for offering targetted advertising in change of
a reduced price. To support this feature, our system must also support pseudonymity.
To completely achieve real user anonymity (or pseudonymity), traceability must be
prevented at all network layers, however this section only focuses on the transport layer.

Moreover, we want to handle the cases where the server wants to enforce the usage of
a particular software on the client (e.g. a specific viewer for the content that, for instance,
prevents non-authorized copies). For this, the clients must be capable of measuring and
reporting their integrity state.

Requirements.

To address the above scenarios, our solution provides authentication based on anony-
mous credentials. More specifically, we have to satisfy the following security require-
ments:

R1. Only clients that obtained a valid credential must be able to authenticate (anony-
mously) to the server.

R2. Users (both legitimate and illegitimate) must not be able to forge authentication
credentials.

R3. It must be possible to have unlinkable sessions (full anonymity).

R4. The solution must offer the possibility to link sessions (pseudonymity).

R5. Credentials must be unclonable (hardware TPM only).

R6. (optional requirement) Nodes must be able to provide evidence of the integrity of
their (hardware and software) state (i.e. PCR signature).

To obtain a realistic solution that can be readily deployed in practice, the protocols
should be based on well-established standards whenever possible implemented by means
of widely used software libraries.

Overview of our TLS-Based Solution.

Our solution is based on the usage of the TLS protocol together with DAA, and the
latter allows either for anonymous or pseudonymous authentication (see Section 5.3.2).

Figure 5.1 presents a high-level overview of our architecture which comprehends the
following roles: a client platform, an issuer and a verifier. In our scenario, the user owns

CHAPTER 5. REAL-WORLD APPLICATIONS 83

Platform

Issuer

Verifier

Join

Host

Security Module

Anonymous authentication

Figure 5.1: Architecture for anonymous authentication based on TLS and DAA

the client platform, and the service provider acts as issuer for credentials and as verifier
during authentication.

The issuer is in charge of collecting the payments and supplying a valid credential to
the user. This is referred to as Join protocol and done only when the client subscribes
to the service. Further details are provided in Section 5.3.3.

The verifier accepts user connections and delivers contents to the user’s platform.
To support the DAA protocol, the platform consists of two components: a host and a
security module. According to DAA design, the security module carries out the security
critical operations, while the host computes the CPU-intensive operations.

We designed our framework to be flexible enough to support different variants of
DAA and different security modules, both hardware and software. In the following we
give a conceptual overview, whereas the detailed protocols are specified in Section 5.3.3.
Solution 1. Our principal solution is based on a TPM as a hardware security module,
and fulfills requirements R1 to R5. The credentials can be used only within the TPM,
and are always encrypted when stored outside. This solution conforms to the TPM
specifications, and TLS is enhanced in accordance with the TLS specifications to use
DAA for authentication.

In principle, this solution is suitable for the online journal scenario since it provides
anonymity to the users and prevents sharing of credentials. More, if pseudonymity is
used within the DAA protocol, the service provider can trace different accesses from the
same user.

However this solution presents some drawbacks: TPM is not present in all potential
clients, the DAA implementation cannot be changed and it is slow. Alternative hardware
modules could be slow as well (e.g. smart cards) or expensive (e.g., crypto-accelerators).
These limitations can be addressed with pure software modules instead of the TPM; this
approach integrates well with existing web infrastructures, can be updated easily and
could be deployed immediately. Nonetheless, without countermeasures, this solution
only satisfies requirements R1 to R4, because copying of credentials cannot be prevented
by software alone.
Solution 2. When combined with integrity measurements reports (which are provided
by TCG-compliant platforms), Solution 1 can additionally ensure that only clients with
correct hard- and software configurations may establish the TLS channel (similar to, for
instance, TCG attestation). Here, we rely on a complete Trusted Computing infrastruc-
ture (hard- and software) including an integrity measurement and reporting architecture.
With this solution, the TPM is used as both Root of Trust for Reporting and security
module for DAA6.

6A variant of this approach can be using pure software Solution 1 and protecting the execution
environment of the security module by hardware means like virtualization, to prevent the cloning of the

CHAPTER 5. REAL-WORLD APPLICATIONS 84

This solution satisfies all the security requirements presented in Section 5.3.1 and
therefore is more suitable for a scenario with strong security requirements; however,
it requires a platform with a fully featured integrity measurement and reporting ar-
chitecture (cf. Section 5.3.3) and databases of reference measurements which implies
scalability and flexibility problems. Even if they are subject of research, these systems
are not yet available for mainstream.

5.3.2 Background

To let understand our proposal, we present some internals of the TLS protocol with its
enhancements and introduce the DAA protocol.

Transport Layer Security (TLS).

TLS [DR08] is a protocol that provides a secure channel (data authentication, integrity
and confidentiality) between two parties: a Client initiating the communication and a
Server listening for incoming connections. TLS is composed of five sub-protocols: the
Handshake to establish the secure channel, the Change Cipher to set the ciphersuite,
the Alert to exchange error messages and the Record to carry all previous protocols’
data: it provides fragmentation, encryption, integrity and optionally compression.

We will only focus on the Handshake. It consists of four ordered sets of messages:
(1) the Client sends messages to the Server, (2) the Server then replies, (3) again the
Client sends messages and (4) finally the Server concludes.

As an example an overview of two sets is given. (1) only includes the message
ClientHello: the Client initiates the Handshake and proposes some parameters to
the server (e.g. known ciphersuites). (2) contains: ServerHello returns the parameters
negotiated with Client (e.g. the ciphersuite to use); Certificate transports the Server’s
digital certificate for authentication; ServerKeyExchange provides additional material
for key exchange depending on the ciphersuite (e.g. group parameters for Ephemeral
Diffie-Hellman); (optional) CertificateRequest requires the Client authentication and
ServerHelloDone tells the Client that the server completed its part.

To let exchange additional data during the Handshake, Hello Extensions [BWN+06]
have been standardized. They are carried over Client and Server Hello messages. The
Client can propose one or more extensions and the Server may accept them or not.
Extensions are “backward compatible”, because the specification requires the Server
to ignore an Extension it does not know. Since hello extensions may deeply change
Handshake’s behavior and affect its security, the new ones must be defined via RFC
to be strongly validated. Unfortunately they can carry just a limited amount of data
and can be only exchanged at the beginning of the Handshake and in single two ways
Client-Server interaction.

To overcome these limits the new Handshake message Supplemental Data [San06]
has been standardized. On Server side, the new message belongs to set (2), sent soon
after ServerHello, while on Client side it is the first message of set (3).

Supplemental Data are strongly constrained: they must be negotiated through an
Extension, i.e. there can not be a Supplemental Data message without an Extension;
moreover they can not interfere with the Handshake, so Supplemental Data must be
processed after the Handshake finishes.

credentials: the TPM would be only used to remotely attest the protection mechanisms.

CHAPTER 5. REAL-WORLD APPLICATIONS 85

Direct Anonymous Attestation (DAA).

DAA is a very flexible anonymous credential system that has been designed specifically to
encapsulate security-critical parts in a (low-cost, low-efficiency) secure hardware module.
DAA possesses many different features, such as tagging rogue participants. In this
presentation, we concentrate on the algorithms and protocols that are most relevant for
our purposes and omit the other features.

A DAA system consists of different parties: a DAA issuer who issues DAA cre-
dentials, clients who can generate DAA signatures usually from a RSA credential, and
verifiers who verify DAA signatures. A client is composed of a security module (TPM)
and the host software. In our scenario, the server plays the role of both issuer and veri-
fier. After the issuer set up a public/private key pair and generated parameters for the
system, DAA provides two main protocols: (1) The DAA Join between issuer, host and
TPM, used by the client to obtain a DAA credential from the issuer; and (2) the DAA
Sign/Verify between host, TPM and verifier used by the client to prove possession of
the DAA credential by computing a DAA signature. The latter protocol can be better
specified:

• (basename, nv)← DAA Verifier Init() is a two-party protocol between host and
verifier, executed to obtain the verifier’s nonce nv (used for freshness) and base-
name basename. The basename can be either fixed by the verifier for pseudonimity,
or the empty string for full anonymity.

• σDAA ← DAA Sign(CredDAA, basename,m) is a two-party protocol between host
and TPM, executed to obtain an anonymous (or pseudonymous) DAA signature
σDAA from the DAA credential7 CredDAA on a message m with respect to a base-
name basename.

• OK ← DAA Verify(σDAA, basename,m) is an algorithm executed by the verifier
to verify that a valid DAA signature σDAA on a message m has been generated
with respect to a given basename basename, using a DAA credential issued by a
given issuer.

Different DAA variants have been proposed. For the purpose of this papea,r two are
particularly relevant and will be considered in Section 5.3.5: the original DAA scheme
based on the strong RSA assumption [BCC04] – which has been standardized by the
TCG and implemented in TPM v1.2 – and the newer scheme based on asymmetric
bilinear maps [CMS08]8.

5.3.3 TLS-Based Anonymous Authentication Scheme

In this section, we describe the DAA enhancement to TLS based on TLS Hello Exten-
sions and Supplemental Data. We present the two protocols Join and Authenticate in
detail, using a TPM as security module. The behavior of issuer, host, and TPM for
DAA is exactly as specified by the TCG, however we present it in a simplified way in
this section.

7Note that in reality, CredDAA is distributed between host and TPM. For simplicity, we just show it
as one variable here.

8We are aware that security flaws have been noticed in this scheme, and a preprint of a fixed version
is available at eprint.iacr.org/2009/198. Currently our implementation is still based on [CMS08].

eprint.iacr.org/2009/198

CHAPTER 5. REAL-WORLD APPLICATIONS 86

Client platform

TPM Host Issuer

conventional TLS handshake (unmodified)

CredIssuer

initiate DAA join

generate DAAsec

Com ← commit(DAAsec)
Com Com, CertEK

CredDAA encrypted with EK

decrypt CredDAA

store CredDAA

OK

conventional DAA Join
(simplified)

conventional TLS session

check Com and CertEK

generate CredDAA

encrypt CredDAA with EK

verify CredIssuer

CredDAA encrypted with EK

Figure 5.2: Join protocol with a TPM as security module: a conventional TLS session
is used to protect the communication between client and issuer during the (unmodified)
DAA join protocol. For clarity, a simplified abstract version of DAA join is shown.

Join.

Join is a protocol between a client (in our scenario a customer) and DAA issuer (in our
scenario the service provider), where the client gets a DAA credential. This protocol
is executed only once, then multiple anonymous TLS sessions with possibly distinct
servers (e.g. different services provided by the same provider) can be based on this
credential. To protect the communication during the DAA join protocol, (e.g. to keep
the EK certificate confidential from eavesdroppers, and to ensure integrity of the DAA
join messages), we use a conventional TLS session, without any modification. Note that
in this phase anonymity is not required (in fact, for a subscription service, the user must
be identified and payments could be collected).

Our protocol is shown in Figure 5.2. First, a conventional TLS session is initiated
to protect all subsequent messages from outside adversaries (i.e. attackers that do not
compromise server or client). Then the client retrieves the issuer credential Cred Issuer

and verifies its validity.
Then, client and issuer execute the DAA join protocol (presented abstractly, in a

simplified way): the client generates a DAA credential request Com based on the DAA
secret of its TPM and sends it to the issuer, together with the TPM’s EK certificate
CertEK . The issuer checks the correctness of the request and of the EK certificate
and releases the DAA credential, encrypted with the endorsement key EK from the
certificate. The client receives the DAA credential, and the TPM decrypts it. Whenever
the DAA credential is stored outside the TPM, it is encrypted by a key that cannot be
accessed by the host software.
Remarks. During the join protocol, the issuer must verify that the client has a genuine
TPM that will provide unclonability of credential; this is done by verifying the endorse-
ment credential CertEK , and encrypting the DAA credential with EK , such that only
the TPM can decrypt it (cf. Section 5.3.2). Since EK is unique to a specific TPM, it
is privacy-sensitive data which must not be disclosed to outsiders. In our protocol, the
CertEK (which includes EK) is protected by TLS, as are all messages of the DAA join
protocol.

CHAPTER 5. REAL-WORLD APPLICATIONS 87

Client Anonymous Authentication.

For our solution, we combine DAA with the TLS protocol by defining appropriate TLS
Hello Extensions and Supplemental Data for client authentication. The TLS server plays
the role of the DAA verifier to anonymously authenticate the client.

At a high level, client and server negotiate the usage of the anonymous authentication
via TLS Hello Extentions, then the client authenticates itself by computing and sending
–through Supplemental Data– a DAA signature, which is verified by the server. The
anonymity (or pseudonymity) properties of a DAA signature lead to anonymity (or
pseudonymity) for the client in our protocol. The fact that the (secret part of the) DAA
credential is protected by the TPM, ensures that users cannot clone the credential.

In a standard TLS session, the client authenticates the messages exchanged based on
digital signatures (usually RSA signatures). To be compliant with the TLS specification,
we keep the client authentication using a conventional key pair, but to anonymize the
process, we generate a fresh key pair for each session. We use a DAA signature to
authenticate the X.509 certificate of the key pair used. This guarantees that it is not
possible to identify the client, but only to tell that it owns a valid DAA credential; using
a different key pair for each session prevents tracking of the user.

Our anonymous authentication protocol is shown in Figure 5.3. The client starts

Client platform

TPM Host VerifierClientHello, DAAAuthExt

ServerHello, DAAAuthExt[nv, basename]

Certificate[Certsess]

Certificate, ServerKeyExchange
CertificateRequest, ServerHelloDoneKeysess ← TLS KeyGen()

Certsess ← X509 CertIssue(Keysess)

σDAA DAAAuthSupplDataEntry[σDAA]
SupplementalData :

. . .

. . .
TLS Handshake continues as usual

Finished

Finished

Certsess, nv, basename

OK ← DAA Verify(σDAA, basename, (Certsess, nv))

σDAA ← DAA Sign(CredDAA, basename, (Certsess, nv))

(simplified)

(basename, nv)← DAA Verifier Init()

unmodified
DAA Sign

Figure 5.3: The anonymous authentication protocol based on TLS and DAA. TLS
enhancements for DAA authentication are highlighted. For clarity, the (conventional,
unmodified) DAA sign protocol is shown in a simplified abstract way.

the TLS handshake by sending a ClientHello message containing a TLS Hello Ex-
tension DAAAuthExt which informs the server to use DAA for anonymous authentica-
tion. The server uses the function DAA Verifier Init() to generate the nonce and the
basename (for pseudonymity) for DAA, which are sent to the client within the exten-
sion DAAAuthExt in the ServerHello message. For full anonymity, the basename is
left empty. Technically, DAAAuthExt is a TLS Hello Extension that contains one byte
reserved for the version and optional parameters, including the version of the DAA en-
hancement, the nonce, the basename or an error message. Moreover, the server requests
the TLS client authentication by sending a CertificateRequest message.

CHAPTER 5. REAL-WORLD APPLICATIONS 88

Then the client prepares for the anonymous authentication by generating a new
(RSA) key pair for TLS authentication, and issues a self-signed certificate Certsess for
Keysess (i.e. it signs the public key with the corresponding private key). Further,
the host runs the DAA Sign protocol9 with the TPM to obtain a signature σDAA on
Certsess , and sends σDAA to the server in a DAAAuthSupplDataEntry carried by the
client SupplementalData message. The client sends Certsess in a ClientCertificate
message (as in standard TLS).

After that, the TLS handshake continues as usual. In a TLS session, and hence in
our protocol, the client authenticates by computing a signature over all the messages
exchanged by the client and the server, in our case using Keysess .

After the Finished messages have been exchanged10, the server verifies the DAA
signature to validate the anonymous authentication using DAA Verify.
Remarks. Note that it is possible to precompute and store several keys Keysess with
their certificates Certsess for use in later sessions. If pseudonymity is in use, it is possible
to optimize the process by generating only one single Keysrvr and Certsrvr for each server
instead of for each session.

This protocol allows client anonymous authentication only. However, other scenarios
like peer to peer applications may require mutual anonymous authentication. Extending
this protocol to support server side anonymous authentication can be achieved similarly
to the client authentication, because of the symmetric behaviour of TLS Hello extensions
and supplemental data.

Software-Only Anonymous Authentication.

The same two protocols described above can also be implemented in software alone. For
this, the host software additionally performs the operations of the TPM. In Section 5.3.5,
we describe our pure software implementation based on a very efficient DAA version that
is not available in hardware TPM. However, without additional measures, a software
solution cannot prevent cloning of credentials, and thus fails to fulfill requirement R5.

Anonymous Trusted Channels.

A trusted channel is an extension of a secure channel like TLS (providing confidentiality
and integrity of data), where an endpoint can also get assurance about the integrity of
the other endpoint. To address requirement R6, we propose to enhance our TPM-based
anonymous authentication with attestation (cf. Section 5.3.2), such that the server can
verify the integrity of the client. We call the result an anonymous trusted channel.

The TCG specifications allow the client to measure the integrity state of the software
that is loaded during system boot and securely store these measurements in the PCRs
of the TPM, thus creating a chain of trust. Afterwards, the client state can be attested

9DAA Sign is an interactive protocol, which may take more than one round, and where both parties
input their portion of the DAA credential CredDAA (the details depend on the actual DAA scheme).
However, for the sake of clarity, we represent DAA Sign as a simple signature generated by the TPM,
because the essential property (besides anonymity) is that the host cannot create such a signature
without the TPM.

10The verification of σDAA is delayed until here to comply with RFC 4680: To prevent a modification
of the normal protocol flow, RFC 4680 mandates that the supplemental data are ignored until the TLS
handshake finishes, and any action involving the data carried by SupplementalData must be performed
after the handshake is completed.

CHAPTER 5. REAL-WORLD APPLICATIONS 89

by the TPM function TPM Quote: the TPM signs selected PCRs and a nonce with an
AIK.

Our anonymous trusted channel is based on the join protocol described above, while
the authentication protocol is modified as follows: In addition to the TLS key Keysess

and self-signed certificate Certsess , the client creates an AIK –within the TPM–, and
signs it with DAA (instead of signing Certsess) to get a DAA signature σ′DAA. After
that, the host computes a hash nH ← H(nv|Certsess), which is then used as the nonce
for TPM Quote. With this function, the TPM generates an RSA signature σQuote on nH
and a set of PCRs selected by the host, using the secret key of AIK . The public key of
AIK , σ′DAA, and σQuote are sent to the verifier using the SupplementalData message. At
the end of the handshake, the verifier checks σ′DAA and σQuote, and verifies that σQuote

is computed on a set of PCRs indicating an acceptable state of the client.
With this protocol, the server can verify the client’s integrity state, assuming that:

(1) the attestation includes all relevant software (e.g. bootloader, OS kernel, protocol
implementation), and (2) the software included in the attestation provides a secure
execution environment. For instance, it must not be possible for another application
to interfere with the protocol implementation, or replace/corrupt software at runtime
without changing the PCRs.

Developing a realistical software architecture suitable for attestation is an orthogonal
line of research and beyond the scope of this chapter. Recent efforts in this area include
the OpenTC project

Note that an AIK can only be used to sign PCR values, and cannot be used as a
TLS key. Furthermore, our protocol is compliant with TCG specifications and requires
the computation of only a single DAA signature.

5.3.4 Security Analysis

The security of our solutions is directly based on the security of DAA and TLS. For both
protocols, formal security proofs exist (see, e.g. [BCC04, GM+08]). In this section, we
give an informal analysis of our protocols with respect to the requirements listed in
Section 5.3.1, based on the assumption that DAA and TLS are secure. A formal proof
of security is left for future work.

Anonymous Authentication.

Our protocols fulfill requirements R1 and R2, because authentication is successful only
when the DAA signature can be verified correctly. The DAA signature is used to au-
thenticate the certificate used for TLS, hence it is bound to the TLS channel. Thus,
the unforgeability of DAA signatures implies that only clients with a valid DAA creden-
tial can authenticate successfully to the server (R1). Breaking requirement R2 implies
forging a DAA credential, which would also break the security of the underlying DAA
scheme.

Unlinkability (requirement R3) follows from the unlinkability of DAA signatures
and from the fact that freshly generated keys and certificates are used for distinct TLS
sessions and no other data that allows linking is transmitted.

The possibility of DAA to provide pseudonymity instead of full anonymity means
that, in that case, DAA signatures can be linked to a pseudonym. This implies that
our protocols offer the possibility to provide pseudonymous authentication (requirement
R4).

CHAPTER 5. REAL-WORLD APPLICATIONS 90

OpenSSL

Application layer

TSS MIRACL

Engine
TPM/TSS

Engine
ECC

DAA DAA

libcrypto DAA

s_client s_server Apache

libssl TLSEXT

TLS-DAA

Figure 5.4: Implementation design for anonymous authentication based on TLS and
DAA

Unclonability of credentials (requirement R5) is achieved by our solution based on a
hardware security module. When using a TPM, the DAA credential is protected by the
TPM (i.e. it is always encrypted when stored outside the chip), and unless the TPM
can be attacked successfully (e.g. by hardware attacks), the credential is never disclosed
to the user and thus cannot be copied. In a pure software based solution, copying of
credentials cannot be prevented, of course. Therefore, requirement R5 can be achieved
only by solutions that use a hardware module.

Anonymous Trusted Channel.

Requirements R1 to R5 are fulfilled similarly as above, except that the DAA signature
does not sign the TLS certificate directly, but signs a freshly generated AIK, which then
signs the TLS certificate via TPM Quote. This means that, although the authentication
procedure works differently now, the authentication is still based on DAA, and the
arguments above can be carried out analogously for the anonymous trusted channel.

In addition, requirement R6 can be fulfilled under the following assumption: the
platform must attest that it loaded a TCB capable to protect sensitive code and data;
this is done by providing a chain of trust from the RTM to the TCB and signing it via
the TPM Quote. For instance, the TCB must guarantees that an attacker cannot inject
false certificates from another platform as parameter to the TPM Quote – because this
would allow relay attacks. The chain of trust, the security of the TPM, DAA, and RSA
signatures (TPM Quote) imply that a server can securely verify the client integrity.

5.3.5 Implementation and Experimental Results

The implementation is based on OpenSSL: libssl and libcrypto have been extended
to support respectively DAA and the DAA enhancement to TLS. OpenSSL also supports
engines as a way to provide alternative implementations for a cryptographic primitive,
usually to exploit cryptographic hardware accelerators. We developed two engines to
provide two different implementations of the DAA protocol. Figure 5.4 presents the
overall architecture.

DAA: is an interface to implement the Sign and Verify algorithms of DAA within
the OpenSSL libcrypto. The interface is designed to provide DAA support in
any context libcrypto is available, not only for the DAA enhancement to TLS.

CHAPTER 5. REAL-WORLD APPLICATIONS 91

A default implementation is included and the use of engines allows to override
such default implementation. Currently this interface exposes three functions:
DAA Verifier Init, DAA Sign and DAA Verify, that are used by the DAA en-
hancement to TLS as detailed in Section 5.3.3.

TLSEXT: is a framework to support TLS Hello Extensions and Supplemental Data
into OpenSSL libssl, both needed for the DAA enhancement to TLS.

DAA-TLS: is the core of the implementation to enhance OpenSSL libssl. It is build
upon TLSEXT and uses primitives offered by DAA. It provides an interface
for applications that want to use anonymous authentication. Furthermore, we
provide a special compile-time option to build it in legacy mode, that allows also
unmodified applications to exploit the DAA enhancement; legacy applications may
change settings via environment variables or a configuration file.

Engine TPM/TSS: is an OpenSSL engine that implements the DAA interface ac-
cording to the TSS Specification [Tru], namely: Tspi DAA Verifier Init,
Tspi TPM DAA Sign, Tspi DAA VerifySignature. It requires a TSS capable of
supporting the DAA protocol and we used TrouSerS11, with a patch provided by
Finney [Fin09]. The engine is also in charge of the conversion between OpenSSL
data structures and TSS’ ones.

Engine ECC: is an OpenSSL engine that implements a purely software version of the
ECC-based DAA [CMS08]. According to the authors’ suggestion, our implementa-
tion uses asymmetric pairing over Barreto-Naehrig [BN05] elliptic curves at 256-bit
security. The engine relies on MIRACL12 as a software cryptographic accelerator
to compute pairing.

The implementation has been done with OpenSSL v0.9.9 TrouSerS v0.3.0 and MIRACL
v5.4, and it currently supports only client anonymous authentication.

Figure 5.4 also shows the application layer, that is the collection of software used to
demonstrate our solution: we provide modified versions of the OpenSSL tools s client
and s server (we stress that the modifications required are very small, only a few lines
of code), and we demonstrate the use with legacy applications running an unmodified
Apache web server (version 2.2.13).

We performed experiments on two HP Compaq DC7700 with Intel Core2 Duo
2.13GHz CPU and 2GB of RAM, using OpenSSL s server on the server and OpenSSL
s time on the client to measure the number of connections per second. We remark that
measures are taken from a client perspective and we are not benchmarking the server,
which is left as future work.

In Figure 5.5 we present two sets of data to support the feasibility of our solution:
the number of connections per second (table on the left) and the total number of bytes
transmitted during a handshake (chart on the right). We compare TLS without and
with client authentication and the DAA enhancement to TLS (TLS-DAA), using the
Engine ECC and the Engine TPM/TSS.

For the number of connections we distinguish between initiating new connections
(column new/s) and resuming previous TLS sessions (res/s). The DAA enhancement

11The open-source TCG Software Stack (http://trousers.sourceforge.net/)
12Multiprecision Integer and Rational Arithmetic C/C++ Library (www.shamus.ie)

http://trousers.sourceforge.net/
www.shamus.ie

CHAPTER 5. REAL-WORLD APPLICATIONS 92

Protocol
Connections

new/s res./s
TLS (no client auth.) 91.62 690.8
TLS (with client auth.) 80.23 495.3
TLS-DAA (ECC) 3.22 493.1
TLS-DAA (TPM/TSS) 0.03 456.3

Figure 5.5: (Left) Number of connections per second for TLS and TLS enhanced with
DAA: new connections and session resumed. (Right) Total number of bytes transmitted
during a handshake: client and server side.

introduces a considerable latency in the TLS handshake: the TPM is really slow as the
computation of a DAA signature takes about 37s; however the pure software implemen-
tation provides reasonable timings (around 30ms for a connection). Furthermore, the
use of session resumption guarantees almost no loose in performance for all the following
accesses.

We conclude with an analysis of the data transmitted during the handshake. As
we are performing only client anonymous authentication, the transmission on the server
is almost unchanged, compared to TLS with client authentication. On client side, the
TPM/TSS version implements the RSA-based DAA whose signature is 1225 bytes long,
and this has the effect to double the total number of bytes transmitted. We have to
notice that we performed experiments in a pessimistic case, where the client’s certificate
is only 512 bytes long, and no certificate chain is transmitted. Nevertheless, the ECC
version provides a very efficient solution, as the DAA signature in this case is only 256
bytes long.

Bibliography

[AC+05] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and
F. Vercauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography.
CRC Press, 2005.

[AC08a] R. M. Avanzi and E. Cesena. Pairing on supersingular trace zero varieties.
Cryptology ePrint Archive, Report 2008/404, 2008. http://eprint.iacr.
org/2008/404.

[AC08b] R. M. Avanzi and E. Cesena. Trace Zero Varieties over Fields of Character-
istic 2 for Cryptographic Applications. In J. Hirschfeld, J. Chaumine, and
R. Rolland, editors, Algebraic geometry and its applications, volume 5 of
Number Theory and Its Applications, pages 188–215. World Scientific, 2008.
Proceedings of the first SAGA conference, 2007, Papeete.

[AG+08] F. Armknecht, Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, G. Ramunno,
and D. Vernizzi. An efficient implementation of trusted channels based on
OpenSSL. In Proceedings of the 2008 ACM workshop on Scalable trusted
computing, pages 41–50, New York – USA, 2008. The Association for Com-
puting Machinery.

[AKS09] M. Ak, K. Kaya, and A. A. Selçuk. Optimal subset-difference broadcast
encryption with free riders. Inf. Sci., 179(20):3673–3684, 2009.

[AL04] R. M. Avanzi and T. Lange. Cryptographic Applications of Trace Zero
Varieties. Unpublished manuscript., 2004.

[ALP05] S. B. Amit, A. D. Lakhani, and K. G. Paterson. Securing Peer-to-Peer
Networks Using Trusted Computing, chapter 10, pages 271–298. IEEE Press,
2005.

[ANS05] ANSI X9.62. Public key cryptography for the financial services industry,
the elliptic curve digital signature algorithm (ECDSA). Technical report,
American National Standard Institute, 2005.

[AT07] R. M. Avanzi and N. Thériault. Effects of Optimizations for Software Im-
plementations of Small Binary Field Arithmetic. In WAIFI 2007, volume
4547, pages 69–84. Springer, 2007.

[ATW08] R. M. Avanzi, N. Thériault, and Z. Wang. Rethinking low genus hyperellip-
tic jacobian arithmetic over binary fields: Interplay of field arithmetic and
explicit formulae. Journal of Mathematical Cryptology, 2:227–255, 2008.

93

http://eprint.iacr.org/2008/404
http://eprint.iacr.org/2008/404

BIBLIOGRAPHY 94

[Ava04] R. M. Avanzi. Aspects of hyperelliptic curves over large prime fields in
software implementations. In M. Joye and J.-J. Quisquater, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2004, volume 3156 of
LNCS, pages 148–162. Springer, 2004.

[Ava07] R. M. Avanzi. Another look at square roots (and other less common oper-
ations) in fields of even characteristic. In Selected Areas in Cryptography,
volume 4876 of LNCS, pages 138–154, 2007.

[Bar] P. S. L. M. Barreto. The pairing-based crypto lounge. Available at http:
//www.larc.usp.br/~pbarreto/pblounge.html.

[BB+08] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. Rodŕıguez-
Henŕıquez. A comparison between hardware accelerators for the modified
tate pairing over F2m and F3m . Cryptology ePrint Archive, Report 2008/115,
extended version of the Pairings 2008 paper of the same name (Volume 5209
of Lecture Notes in Computer Science, Springer, 2008, 297–315), 2008.

[BB+09] P. Bichsel, C. Binding, J. Camenisch, T. Groß, T. Heydt-Benjamin, D. Som-
mer, and G. Zaverucha. Cryptographic protocols of the identity mixer li-
brary. Technical Report RZ 3730 (#99740), IBM Research, 2009.

[BC+09] P. Bichsel, J. Camenisch, T. Groß, and V. Shoup. Anonymous credentils
on a standard java card. In Proceedings of the 16th ACM Conference on
Computer and Communications Security (CCS’09). ACM Press, 2009.

[BCC04] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In
Proceedings of the 11th ACM Conference on Computer and Communications
Security (CCS’04). ACM Press, 2004.

[BD95] M. Burmester and Y. Desmedt. A secure and efficient conference key dis-
tribution system. In Advances in Cryptology – Eurocrypt 94, volume 950 of
LNCS, pages 275–286. Springer, Berlin, 1995.

[BD+03] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
ACM Symposium on Operating Systems Principles (ASOSP), pages 164–
177, Bolton Landing, New York, USA, 2003.

[BD04] B. Byramjee and S. Duquesne. Classification of genus 2 curves over F2n

and optimization of their arithmetic. Cryptology ePrint Archive, Report
2004/107, 2004. http://eprint.iacr.org/2004/107.

[Ber] D. J. Bernstein. Pippenger’s exponentiation algorithm. http://cr.yp.to/
papers.html. Note: to be incorporated into author’s High-speed cryptogra-
phy book.

[BF01] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing.
LNCS, 2139:213–??, 2001.

[BG+03] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and verifiably
encrypted signatures from bilinear maps. In Eurocrypt ’03, volume LNCS,
pages 416–432, 2003.

http://www.larc.usp.br/~pbarreto/pblounge.html
http://www.larc.usp.br/~pbarreto/pblounge.html
http://eprint.iacr.org/2004/107
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html

BIBLIOGRAPHY 95

[BG+07] P. S. Barreto, S. D. Galbraith, C. Ó’ Héigeartaigh, and M. Scott. Effi-
cient pairing computation on supersingular Abelian varieties. Des. Codes
Cryptography, 42(3):239–271, 2007.

[BGW05] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In Crypto ’05, volume LNCS,
pages 258–275, 2005.

[BK+02] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms
for pairing-based cryptosystems. In Advances in Cryptology - CRYPTO
2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings, volume 2442 of LNCS,
pages 354–368. Springer, 2002.

[BL07] D. J. Bernstein and T. Lange. Explicit-Formulas Database. Available at
http://www.hyperelliptic.org/EFD/, 2007.

[Bla02] G. Blady. Die Weil-Restriktion elliptischer Kurven in der Kryptographie.
Master’s thesis, Universität-Gesamthochschule Essen, 2002.

[BLF08] D. J. Bernstein, T. Lange, and R. R. Farashahi. Binary edwards curves.
Cryptology ePrint Archive, Report 2008/171, 2008. http://eprint.iacr.
org/2008/171.

[BLS02] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
In Advances in Cryptology – Asiacrypt 2001, volume 2248 of LNCS, pages
514–532. Springer, Berlin, 2002.

[BN05] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime
order. In Proceedings of SAC 2005, volume 3897 of LNCS, pages 319–331.
Springer, 2005.

[Bod07] M. Bodrato. Towards optimal Toom-Cook multiplication for univariate and
multivariate polynomials in characteristic 2 and 0. In WAIFI’07 proceedings,
volume 4547 of LNCS, pages 116–133. Springer, 2007.

[BW06] D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and
revoke system. In Eurocrypt ’06, volume LNCS, pages 573–592, 2006.

[BWN+06] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright.
Transport Layer Security (TLS) Extensions. RFC 4366 (Proposed Stan-
dard), 2006. Obsoleted by RFC 5246.

[Can87] D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math.
Comp., 48:95–101, 1987.

[Ces04] E. Cesena. Varietà a traccia zero su campi binari – applicazioni crit-
tografiche. Master’s thesis, Università degli Studi di Milano, 2004.

[CL01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Advances in
Cryptology – EUROCRYPT’01, number 2045 in LNCS. Springer, 2001.

http://www.hyperelliptic.org/EFD/
http://eprint.iacr.org/2008/171
http://eprint.iacr.org/2008/171

BIBLIOGRAPHY 96

[CL+10] E. Cesena, H. Löhr, G. Ramunno, A.-R. Sadeghi, and D. Vernizzi. Anony-
mous Authentication with TLS and DAA, 2010. Submitted to TRUST 2010.

[CMO98] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation
using mixed coordinates. In Advances in Cryptology – ASIACRYPT’98,
volume 1514 of LNCS, pages 51–65. Springer, 1998.

[CMS08] L. Chen, P. Morrissey, and N. Smart. Pairings in trusted computing. In
Proceedings of Pairing 2008, volume 5209 of LNCS, pages 1–17. Springer,
2008.

[CRV08a] E. Cesena, G. Ramunno, and D. Vernizzi. Secure storage using a sealing
proxy. In EUROSEC ’08: Proceedings of the 1st European workshop on
system security, pages 27–34, New York, NY, USA, 2008. ACM.

[CRV08b] E. Cesena, G. Ramunno, and D. Vernizzi. Towards trusted broadcast en-
cryption. Young Computer Scientists, International Conference for, 0:2125–
2130, 2008.

[CY02] Y. Choie and D. Yun. Isomorphism classes of hyperelliptic curves of genus
2 over Fq. In ACISP 2002, volume 2384 of LNCS, pages 190–202. Springer,
Berlin, 2002.

[DBS04] R. Dutta, R. Barua, and P. Sarkar. Pairing-based cryptographic protocols
: A survey. Cryptology ePrint Archive, Report 2004/064, 2004. http:
//eprint.iacr.org/2004/064.

[DF03] Y. Dodis and N. Fazio. Public key broadcast encryption for stateless re-
ceivers. Digital Rights Management, pages 61–80, 2003.

[DF+05] Y. Dodis, N. Fazio, A. Kiayias, and M. Yung. Scalable public-key tracing
and revoking. Distrib. Comput., 17(4):323–347, 2005.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), 2008.

[DS03] C. Diem and J. Scholten. Cover Attacks – A report for the AREHCC project,
2003.

[ECR09] ECRYPT II NoE. ECRYPT2 Yearly Report on Algorithms and Keysizes
(2008-2009). ECRYPT II deliverable D.SPA.7 revision 1.0, 2009.

[ElG85] T. ElGamal. A public key cryptosystem and signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, pages 473–
481, 1985.

[F0̈7] M. Fürer. Faster integer multiplication. In STOC ’07: Proceedings of the
thirty-ninth annual ACM symposium on Theory of computing, pages 57–66,
New York, NY, USA, 2007. ACM.

http://eprint.iacr.org/2004/064
http://eprint.iacr.org/2004/064

BIBLIOGRAPHY 97

[FH+03] K. Fong, D. Hankerson, J. Lopez, and A. Menezes. Field inversion and point
halving revisited. IEEE Transactions on Computers, 53:1047–1059, 2003.

[Fin09] H. Finney. Private communication, 2009.

[FN94] A. Fiat and M. Naor. Broadcast encryption. pages 480–491, 1994.

[FR94] G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Mathematics of Computation,
62(206):865–874, 1994.

[Fre98] G. Frey. How to disguise an elliptic curve. Talk at Waterloo workshop on
the ECDLP, 1998. http://www.cacr.math.uwaterloo.ca/conferences/
1998/ecc98/slides.html.

[Fre01] G. Frey. Applications of arithmetical geometry to cryptographic construc-
tions. In Finite fields and applications (Augsburg, 1999), pages 128–161.
Springer, Berlin, 2001.

[Fre08] G. Frey. Discrete logarithms, duality, and arithmetic in Brauer groups. In
J. Hirschfeld, J. Chaumine, and R. Rolland, editors, Algebraic geometry and
its applications, volume 5 of Number Theory and Its Applications, pages
241–272. World Scientific, 2008. Proceedings of the first SAGA conference,
2007, Papeete.

[FST06] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic
curves. Cryptology ePrint Archive, Report 2006/372, 2006. http://eprint.
iacr.org/2006/372 – To appear in Journal of Cryptology (2009).

[GHS02a] S. Galbraith, F. Hess, and N. Smart. Extending the GHS Weil-descent
attack. In Eurocrypt 2002, volume 2332 of LNCS, pages 29–44, Berlin,
2002. Springer.

[GHS02b] P. Gaudry, F. Hess, and N. P. Smart. Constructive and destructive facets
of Weil descent on elliptic curves. Journal of Cryptology, 15(1):19–46, 2002.
Online publication: 29 August 2001.

[GM+08] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and J. Schwenk. Univer-
sally composable security analysis of TLS. pages 313–327, 2008.

[GP02] J. Guajardo and C. Paar. Itoh-tsujii inversion in standard basis and its ap-
plication in cryptography and codes. Des., Codes and Cryptography, 25:207–
216, 2002.

[GP+03] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: a
virtual machine-based platform for trusted computing. In ACM Symposium
on Operating Systems Principles (ASOSP), pages 193–206, Bolton Landing,
New York, USA, 2003.

[GPS06a] K. Goldman, R. Perez, and R. Sailer. Linking remote attestation to secure
tunnel endpoints. In STC ’06: Proceedings of the first ACM workshop on
Scalable trusted computing, pages 21–24, 2006.

http://www.cacr.math.uwaterloo.ca/conferences/1998/ecc98/slides.html
http://www.cacr.math.uwaterloo.ca/conferences/1998/ecc98/slides.html
http://eprint.iacr.org/2006/372
http://eprint.iacr.org/2006/372

BIBLIOGRAPHY 98

[GPS06b] R. Granger, D. Page, and M. Stam. On small characteristic algebraic tori
in pairing-based cryptography. The LMS JCM, 9:64–85, 2006.

[GPS08] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptogra-
phers. Discrete Appl. Math., 156(16):3113–3121, 2008.

[Gro06] D. Growrock. The Intel Safer Computing Initiative – Building Blocks for
Trusted Computing. Intel press, 2006.

[GST04] M. T. Goodrich, J. Z. Sun, and R. Tamassia. Efficient tree-based revocation
in groups of low-state devices. Advances in Cryptology – CRYPTO 2004,
pages 511–527, 2004.

[GT+07] P. Gaudry, E. Thomé, N. Thériault, and C. Diem. A double large prime
variation for small genus hyperelliptic index calculus. Math. Comp., 76:475–
492, 2007.

[Hes08] F. Hess. Pairing Lattices. In S. D. Galbraith and K. G. Paterson, editors,
Pairing 2008, volume 5209 of LNCS, pages 211–224. Springer, 2008.

[HKA06] F. Hoshino, T. Kobayashi, and K. Aoki. Compressed jacobian coordinates
for OEF. In Progress in Cryptology - VIETCRYPT 2006, volume 4341 of
LNCS, pages 147–156. Springer, 2006.

[HS02] D. Halevy and A. Shamir. The lsd broadcast encryption scheme. Advances
in Cryptology - CRYPTO 2002: 22nd Annual International Cryptology Con-
ference Santa Barbara, California, USA, August 18-22, 2002. Proceedings,
pages 145–161, 2002.

[HSV06] F. Hess, N. P. Smart, and F. Vercauteren. The Eta Pairing Revisited. IEEE
Trans. Inform. Theory, 52:4595–4602, 2006.

[iN04] K. ichi Nagao. Improvement of thériault algorithm of index calculus for
jacobian of hyperelliptic curves of small genus. Cryptology ePrint Archive,
Report 2004/161, 2004. http://eprint.iacr.org/2004/161.

[IT88] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses
in GF(2m) using normal bases. Information and Computation, 78(3):171–
177, 1988.

[Jou00] A. Joux. A one round protocol for tripartite Diffie–Hellman. In Algorithmic
Number Theory, ANTS-IV, volume 1838 of LNCS, pages 385–394. Springer,
2000.

[JY+05] N.-S. Jho, E. S. Yoo, J. H. Cheon, and M.-H. Kim. New broadcast encryption
scheme using tree-based circle. pages 37–44, 2005.

[KAT08] Y. Kawahara, K. Aoki, and T. Takagi. Faster Implementation of ηT Pairing
over GF(3m) Using Minimum Number of Logical Instructions for GF(3)-
Addition. In Proceedings of Pairing 2008, volume 5209 of LNCS, pages
282–296, 2008.

http://eprint.iacr.org/2004/161

BIBLIOGRAPHY 99

[Kau07] B. Kauer. OSLO: Improving the security of Trusted Computing. In Proceed-
ings of the 16th USENIX Security Symposium, Boston, MA, USA, 2007.

[KK07] K. H. Kim and S. I. Kim. A new method for speeding up arithmetic on ellip-
tic curves over binary fields. Cryptology ePrint Archive, Report 2007/181,
2007. http://eprint.iacr.org/2007/181.

[KM+99] T. Kobayashi, H. Morita, K. Kobayashi, and F. Hoshino. Fast elliptic
curve algorithm combining Frobenius map and table reference to adapt to
higher characteristic. In Theory and Application of Cryptographic Tech-
niques, pages 176–189, 1999.

[KM05] N. Koblitz and A. Menezes. Pairing-based cryptography at high security
levels. Cryptography and Coding, pages 13–36, 2005.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209,
1987.

[Kob89] N. Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1:139–150,
1989.

[Kob91] N. Koblitz. Constructing elliptic curve cryptosystems in characteristic 2. In
Advances in Cryptology – Crypto 90, volume 537 of LNCS, pages 156–167.
Springer, Berlin, 1991.

[KS07] N. Kuntze and A. U. Schmidt. Protection of DVB Systems by Trusted
Computing. In IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting 2007, 28-29 March 2007 at the Orange County
Convention Center, Orlando, FL, USA, 2007.

[KSP05] K. Kursawe, D. Schellekens, and B. Preneel. Analyzing trusted platform
communication. In ECRYPT Workshop, CRASH - CRyptographic Advances
in Secure Hardware, 2005.

[Lan01] T. Lange. Efficient arithmetic on hyperelliptic curves. PhD thesis, University
Essen, 2001.

[Lan04] T. Lange. Trace zero subvarieties of genus 2 curves for cryptosystems. J.
Ramanujan. Math. Soc., 19:15–33, 2004.

[Lan05] T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Applica-
ble Algebra in Engineering, Communication and Computing, 15(5):295–328,
2005.

[LD99] J. López and R. Dahab. Improved algorithms for elliptic curve arithmetic
in gf(2n). In SAC ’98: Proceedings of the Selected Areas in Cryptography,
volume 1556 of LNCS, pages 201–212. Springer, 1999.

[Lim00] C. H. Lim. Efficient multi-exponentiation and application to batch verifica-
tion of digital signatures. Unpublished manuscript. http://dasan.sejong.
ac.kr/~chlim/english_pub.html, 2000.

http://eprint.iacr.org/2007/181
http://dasan.sejong.ac.kr/~chlim/english_pub.html
http://dasan.sejong.ac.kr/~chlim/english_pub.html

BIBLIOGRAPHY 100

[LLP09] E. Lee, H.-S. Lee, and C.-M. Park. Efficient and generalized pairing com-
putation on abelian varieties. IEEE Transactions on Information Theory,
55(4):1793–1803, 2009.

[Lor96] D. Lorenzini. An invitation to arithmetic geometry, volume 9 of Graduate
studies in mathematics. AMS, 1996.

[LS04] T. Lange and M. Stevens. Efficient doubling on genus two curves over binary
fields. In Selected Areas in Cryptography, pages 170–181, 2004.

[Mil86a] V. S. Miller. Use of elliptic curves in cryptography. In Advances in cryptology
– crypto ’85, volume 218 of LNCS, pages 417–426. Springer, Berlin, 1986.

[Mil86b] V. S. Miller. Short programs for functions on curves. Unpublished
manuscript. http://crypto.stanford.edu/miller/, 1986.

[Mil04] V. S. Miller. The weil pairing, and its efficient calculation. Journal of
Cryptology, 17(4):235–261, 2004.

[MK+07] S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto. Optimised versions
of the Ate and Twisted Ate Pairings. In The 11th IMA International Con-
ference on Cryptography and Coding, volume 4887 of LNCS, pages 302–312.
Springer, 2007.

[MOC97] A. Miyaji, T. Ono, and H. Cohen. Efficient elliptic curve exponentiation. In
ICICS ’97, LNCS 1334, pages 282–290, 1997.

[Möl01] B. Möller. Securing elliptic curve point multiplication against Side-Channel
Attacks. In Information Security – ISC 2001, pages 324–334. Springer, 2001.

[MOV93] A. J. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve log-
arithms to a finite field. IEEE Trans. on Inform. Theory, 39:1639–1646,
1993.

[MRS07] B. Mazur, K. Rubin, and A. Silverberg. Twisting commutative algebraic
groups. Journal of Algebra, 314(1):419 – 438, 2007.

[MWZ98] A. J. Menezes, Y.-H. Wu, and R. Zuccherato. An elementary introduction to
hyperelliptic curves. In N. Koblitz, editor, Algebraic aspects of cryptography,
pages 155–178. Springer, Berlin, 1998.

[Nau99] N. Naumann. Weil-Restriktion abelscher Varietäten. Master’s thesis, Uni-
versity Essen, 1999.

[NBS08] M. Naehrig, P. S. L. M. Barreto, and P. Schwabe. On compressible pairings
and their computation. In Progress in Cryptology – AFRICACRYPT 2008,
pages 371–388, 2008.

[NNL02] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for
stateless receivers. Advances in Cryptology - CRYPTO 2001: 21st Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 19-23, 2001, Proceedings, pages 41–, 2002.

http://crypto.stanford.edu/miller/

BIBLIOGRAPHY 101

[NP00] M. Naor and B. Pinkas. Efficient trace and revoke schemes. 2000.

[Ope] Open Trusted Computing (OpenTC). http://www.opentc.net/.

[PH78] S. Pohlig and M. Hellmann. An improved algorithm for computing loga-
rithms over GF(p) and its cryptographic significance. IEEE Trans. Inform.
Theory, IT-24:106–110, 1978.

[Pip76] N. Pippenger. On the evaluation of powers and related problems. In SFCS
’76: Proceedings of the 17th Annual Symposium on Foundations of Com-
puter Science, pages 258–263, Washington, DC, USA, 1976. IEEE Computer
Society.

[Rei62] G. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231–308, 1962.

[RS02] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology.
In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology
Conference on Advances in Cryptology, pages 336–353, London, UK, 2002.
Springer.

[RS09] K. Rubin and A. Silverberg. Using abelian varieties to improve pairing-based
cryptography. Journal of Cryptology, 22(3):330–364, 2009.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signature and public key cryptosystems. Comm. ACM, 21:120–126, 1978.

[San06] S. Santesson. TLS Handshake Message for Supplemental Data. RFC 4680
(Proposed Standard), 2006.

[SB04] M. Scott and P. S. L. M. Barreto. Compressed pairings. In Advances in
Cryptology – CRYPTO 2004, pages 140–156, 2004.

[Sch77] A. Schönhage. Schnelle multiplikation von polynomen über körpern der
charakteristik 2. Acta Informatica, 7:395–398, 1977.

[Sch87] R. Schoof. Nonsingular plane cubic curves. Journal of Combinatorial The-
ory, Series A, 46:183–211, 1987.

[Sch95] R. Schoof. Counting points on elliptic curves over finite fields. J. de Théo. des
Nombres de Bordeaux, 7:219–254, 1995.

[Sco04] M. Scott. Faster identity based encryption. Electronics Letters, 40(14), 2004.

[Sco05] M. Scott. Faster Pairings Using an Elliptic Curve with an Efficient Endo-
morphism. In INDOCRYPT 2005, volume 3797 of LNCS, pages 258–269.
Springer, 2005.

[Sil86] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate
texts in mathematics. Springer, 1986.

[Sil05] A. Silverberg. Compression for Trace Zero Subgroups of Elliptic Curves. In
Trends in Mathematics, volume 8, pages 93–100, 2005. Proceedings of the
Daewoo Workshop on Cryptography.

http://www.opentc.net/

BIBLIOGRAPHY 102

[SL00] S. G. Sim and P. J. Lee. An efficient implementation of two-term exponen-
tiation in elliptic curves. In Japan–Korea Joint Workshop on Information
Security and Cryptology (JW-ISC 2000), pages 61–68, 2000.

[Sol00] J. A. Solinas. Efficient arithmetic on Koblitz curves. Des. Codes Cryptogr.,
19:195–249, 2000.

[Sol01] J. A. Solinas. Low-weight binary representations for pairs of integers. Com-
binatorics and Optimization Research Report CORR 2001-41, University of
Waterloo, 2001.

[SRC07] B. Smyth, M. Ryan, and L. Chen. Direct anonymous attestation (daa):
Ensuring privacy with corrupt administrators. In ESAS, pages 218–231,
2007.

[SS71] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Com-
puting, 7:281–292, 1971.

[SSP04] A.-R. Sadeghi, C. Stüble, and N. Pohlmann. European multilateral secure
computing base, 2004.

[Too63] A. L. Toom. The complexity of a scheme of functional elements realizing
the multiplication of integers. Soviet Mathematics, 3:714–716, 1963.

[Tru] Trusted Computing Group. TCG Software Stack Specification Version 1.2,
Level 1, Errata A. Available at https://www.trustedcomputinggroup.
org/.

[Tru09] Trusted Computing Group. TCG website. https://www.
trustedcomputinggroup.org, last accessed Sep. 2009.

[vDG+05] M. van Dijk, R. Granger, D. Page, K. Rubin, A. Silverberg, M. Stam, and
D. Woodruff. Practical cryptography in high dimensional tori. In Advances
in Cryptology – EUROCRYPT 2005, pages 234–250, 2005.

[Ver08] F. Vercauteren. Optimal Pairings. Cryptology ePrint Archive, Report
2008/096, 2008. http://eprint.iacr.org/2008/096.

[Wei01] A. Weimerskirch. The application of the Mordell–Weil group to crypto-
graphic systems. Master’s thesis, Worchester Polytechnic Institute, 2001.

[ZZH07] C.-A. Zhao, F. Zhang, and J. Huang. A Note on the Ate Pairing. Cryptology
ePrint Archive, Report 2007/247, 2007. http://eprint.iacr.org/2007/
247.

https://www.trustedcomputinggroup.org/
https://www.trustedcomputinggroup.org/
https://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org
http://eprint.iacr.org/2008/096
http://eprint.iacr.org/2007/247
http://eprint.iacr.org/2007/247

Appendix A

Poster (Eurocrypt 2009)

P
ai

ri
ng

w
ith

S
up

er
si

ng
ul

ar
Tr

ac
e

Ze
ro

Va
ri

et
ie

s
R

ev
is

ite
d

E
m

an
ue

le
C

es
en

a
c
e
s
e
n
a
@
m
a
t
.
u
n
i
r
o
m
a
3
.
i
t

E
ur

oc
ry

pt
20

09

rk
rk

P

Q̃

Q
e(
P
,Q

)

M
ot

iv
at

io
n

W
ha

ta
re

Tr
ac

e
Ze

ro
Va

rie
tie

s?
W

hy
P

ai
rin

g
on

TZ
V

?
P

ro
po

se
d

by
G

er
ha

rd
Fr

ey
in

19
98

.
N

ow
in

tw
el

fth
ye

ar

S
ta

rt
w

ith
ge

nu
s
g

hy
pe

re
lli

pt
ic

cu
rv

e
Co

ve
rF

q

Tr
ac

e
Ze

ro
(s

ub
)V

ar
ie

ty
of
Co

ve
ra

fie
ld

ex
to

fd
eg

r:
S

ub
gr

ou
p

of
di

vi
so

rc
la

ss
gr

ou
p

C
l(
C/

F q
r
)

of
Co

ve
rF

qr

Is
om

or
ph

ic
to

qu
ot

ie
nt

gr
ou

p
C

l(
C/

F q
r
)/

C
l(
C/

F q
)

C
on

st
ru

ct
iv

e
ap

pl
ic

at
io

n
of

W
ei

ld
es

ce
nt

K
ar

lR
ub

in
an

d
A

lic
e

S
ilv

er
be

rg
in

20
02

,s
up

er
si

ng
ul

ar
TZ

V
:

A
llo

w
to

ob
ta

in
hi

gh
er

M
O

V
se

cu
rit

y
pe

rb
it

th
an

E
C

B
oo

st
th

e
se

cu
rit

y
pa

ra
m

et
er

by
a

fa
ct

or
of
r/
φ
(r

)

A
pp

lic
at

io
n

to
pa

iri
ng

-b
as

ed
cr

yp
to

gr
ap

hy
...

S
up

er
si

ng
ul

ar
is

N
O

T
in

se
cu

re
!

B
ou

nd
ed

em
be

dd
in

g
de

gr
ee

M
od

er
at

e
se

cu
rit

y
le

ve
l:
<

12
00

-b
it

IF
/D

L

S
ym

m
et

ric
pa

iri
ng

(d
is

to
rt

io
n

m
ap

)
M

uc
h

fa
st

er
th

an
as

ym
m

et
ric

pa
iri

ng

Tr
ac

e
Ze

ro
Va

rie
tie

s

P
σ
(P

)

σ
r−

1 (
P

)

F qF q
r

E
(F
q)

E
(F
qr

)
σ
∈

E
n
d
E

P
=

(x
,y

)
7→

(x
q ,
y
q)

Tr
ac

e-
ze

ro
su

bg
ro

up
of
E

(F
qr

)

E
r(

F q
)

=
K

er
T
r

=
{P
∈
E

(F
qr

):
T
r
P

=
O}

,

w
he

re
T
r

=
[1

]+
σ

+
··
·+

σ
r−

1
∈

E
n
d
E

(F
qr

)

E
r/

F q
:

su
bv

ar
ie

ty
of

th
e

W
ei

ld
es

ce
nt

R
es

F q
r
/F

q
E

W
hy

?
To

sp
ee

d
up

th
e

sc
al

ar
m

ul
tip

lic
at

io
n

N
ee

d
to

co
m

pu
te

[m
]P

m
in

te
ge

r,
P

po
in

t
D

ou
bl

e-
an

d-
ad

d
al

go
rit

hm
db

ls
:

lo
g
m

;a
dd

s:
1 2
lo

g
m

H
ow

?
U

si
ng

q-
Fr

ob
en

iu
s

en
do

m
or

ph
is

m
σ

(e
.g

.
r

=
3)

E
ffi

ci
en

tly
co

m
pu

te
σ
(P

)
=

[s
]P

s
de

pe
nd

s
on

th
e

cu
rv

e
S

ca
la

rs
pl

itt
in

g:
w

rit
e

[m
]P

=
[m

0+
m

1s
]P

m
0,
m

1
≈
√ m

C
om

pu
te

co
nc

ur
re

nt
ly

[m
0]
P

+
[m

1]
σ
(P

)
al

m
os

th
al

fd
bl

s

P
ric

e?
W

or
k

w
ith

bi
gg

er
co

or
di

na
te

s
Tr

an
sm

is
si

on
ov

er
he

ad
–

sm
al

l:
-)

Po
in

tc
om

pr
es

si
on

P
ai

rin
g

P

[a
]P

Q
[b

]Q

e(
P
,Q

)

e(
P
,Q

)a
b

A
ne

w
to

ol
fo

rc
ry

pt
og

ra
ph

er
s:

e
:
G

1
×

G
2
→

G
T

B
ili

ne
ar

:
e(

[a
]P
,[
b]
Q

)
=
e(
P
,Q

)a
b

N
on

de
ge

ne
ra

te
:

th
er

e
ex

is
tP
,Q

:
e(
P
,Q

)
6=

1

E
ffi

ci
en

tly
co

m
pu

ta
bl

e

Tw
o

ex
am

pl
es

fro
m

al
ge

br
ai

c
ge

om
et

ry
(e

lli
pt

ic
cu

rv
es

)
E
/F

q
be

an
el

lip
tic

cu
rv

e;
π
∈

E
n
d
E

be
th

e
q-

Fr
ob

en
iu

s
l
|#

E
(F
q)

be
a

bi
g

pr
im

e
E

m
be

dd
in

g
de

gr
ee

k
:

m
in

im
al

su
ch

th
at
E

[l
]
⊂
E

(F
qk

)

E
[l
]
'

Z/
Z l
×

Z/
Z l

=
E

[l
](

F q
)
×

E
[l
](

F q
k
)
\E

[l
](

F q
)

G
1

=
E

[l
]∩

K
er

(π
−

[1
])

,
G

2
=
E

[l
]∩

K
er

(π
−

[q
])

G
T

=
µ
l
∈

F∗ q
k

f P
∈

F q
(E

),
w

ith
di

vi
so

rl
(P

)
−
lO

W
ei

lp
ai

rin
g

w
(P
,Q

)
=
f P

(Q
)

f Q
(P

)

Ta
te

pa
iri

ng

t(
P
,Q

)
=
f P

(Q
)qk
−1 l

A
bs

tra
ct

P
ai

rin
g

w
ith

S
up

er
si

ng
ul

ar
TZ

V
E
r/

F q
be

a
su

pe
rs

in
gu

la
rT

ra
ce

Ze
ro

Va
rie

ty

A
ne

w
al

go
rit

hm
fo

rc
om

pu
tin

g
th

e
Ta

te
pa

iri
ng

t(
P
,Q

)
on

E
r

E
xp

lo
its

th
e

ac
tio

n
of

th
e
q-

Fr
ob

en
iu

s
σ

E
va

lu
at

es
th

e
M

ill
er

fu
nc

tio
n
f q
,P

at
r

co
nj

ug
at

es
of
Q

S
ui

ta
bl

e
fo

rp
ar

al
le

l/s
to

ra
ge

-fr
ie

nd
ly

im
pl

em
en

ta
tio

ns

S
ur

ve
y

of
av

ai
la

bl
e

al
go

rit
hm

s
in

lit
er

at
ur

e
(e

xt
en

de
d

ve
rs

io
n)

N
at

ur
al

ly
ap

pl
y

to
E

(F
qr

)
⊃
E
r

O
nl

y
co

ns
id

er
th

e
ac

tio
n

of
th

e
qr

-F
ro

be
ni

us
π

Th
re

e
re

le
va

nt
ca

se
s

(L
em

m
as

1,
2,

3)
:

S
up

er
si

ng
ul

ar
E

3
ov

er
F 2

m

E
ffi

ci
en

t
al

te
rn

at
iv

e
(w

ith
eq

ui
va

le
nt

se
cu

rit
y

pr
op

er
tie

s)
to

su
pe

rs
in

gu
la

re
lli

pt
ic

cu
rv

es
ov

er
F 3

m

S
up

er
si

ng
ul

ar
E

5
ov

er
F 3

m

Fi
rs

te
xa

m
pl

e
of

su
pe

rs
in

gu
la

ra
be

lia
n

va
rie

tie
s

w
ith

se
cu

rit
y

pa
ra

m
et

er
gr

ea
te

rt
ha

n
6

S
up

er
si

ng
ul

ar
E

3
ov

er
F p

,
p
>

3

M
ai

n
re

su
lt

[T
he

or
em

2]

Le
tE

r
be

a
su

pe
rs

in
gu

la
rT

ZV
w

ith
em

be
dd

in
g

de
gr

ee
k
.

S
up

po
se

k
is

ev
en

an
d

th
e

di
st

or
tio

n
m

ap
al

lo
w

s
fo

r
de

no
m

in
at

or
el

im
in

at
io

n.
Th

en
th

e
Ta

te
pa

iri
ng

ca
n

be
co

m
pu

te
d

as
:

t(
P
,Q

)
=

 r−
1 ∏ i=
0

f q
,P

(Q
σ
i)
qi

(r
+

1)

 M
a r
qa
−1

,

w
he

re
a

=
k
/2

,
M

=
qk
/2
−

1,
f n
,P

is
th

e
M

ill
er

fu
nc

tio
n

an
d
σ
i
=
σ
ij

is
a

pr
op

er
po

w
er

of
th

e
q-

Fr
ob

en
iu

s
σ

:
j

de
pe

nd
s

on
th

e
cu

rv
e

an
d

is
gi

ve
n

in
Th

eo
re

m
1.

A
N

ew
A

lg
or

ith
m

fo
r

th
e

Ta
te

P
ai

ri
ng

P
ar

al
le

liz
at

io
n

r
pr

oc
es

so
rs

lo
op

on
q

P
re

co
m

pu
ta

tio
n/

S
to

ra
ge

lo
g 2
q

po
in

ts

P
ai

rin
g

Lo
op

S
iz

e
X

eo
n

f q
,P

(Q
)

q
=

2m
0.

47
2

t l
l
=
O

(2
2m

)
1.

98
3

t N
N

=
O

(2
2m

)
1.

02
6

η
23
m

1.
43

8
η T

2(
3m

+
1)
/2
−

1
0.

77
5

t T
Z
V

3
×

2m
1.

37
5

t T
Z
V

(p
ar

)
3
×

2m
0.

69
8

Ti
m

in
gs

(m
s)

on
a

Q
ua

d-
co

re
X

eo
n

3.
2G

H
z

E
3/

F 2
10

3
:
y

2
+
y

=
x

3
+
x

+
1

R
ef

er
en

ce
s

E
xt

en
de

d
ve

rs
io

n
of

th
is

w
or

k:
h
t
t
p
:
/
/
e
p
r
i
n
t
.
i
a
c
r
.
o
r
g
/
2
0
0
8
/
4
0
4

N
au

m
an

n
[9

9]
an

d
B

la
dy

[0
2]

:
TZ

V
of

E
C

w
ith

r
=

3,
od

d
ch

ar

W
ei

m
er

sk
irc

h
[0

1]
:

TZ
V

of
E

C
w

ith
r

=
5,

od
d

ch
ar

La
ng

e
[0

3]
:

TZ
V

fro
m

ge
nu

s
2

H
E

C
an

d
r

=
3,

od
d

ch
ar

A
va

nz
i&

La
ng

e
[0

4–
07

]:
A

ll
th

re
e

ca
se

s
Im

pl
em

en
ta

tio
n

in
od

d
ch

ar

A
va

nz
i&

C
.[

04
–0

7]
:

A
ll

th
re

e
ca

se
s

Im
pl

em
en

ta
tio

n
in

ev
en

ch
ar

;N
ex

t:
U

se
of

ha
lv

in
g

B
ar

re
to

et
.

al
.

[0
2–

07
]:
η

an
d
η T

w
ith

su
pe

rs
in

gu
la

r(
H

)E
C

R
ub

in
&

S
ilv

er
be

rg
[0

2–
08

]:
su

pe
rs

in
gu

la
rA

V
(n

ot
ab

ly
TZ

V
)

S
co

tt
[0

5]
:

A
n

E
C

en
do

w
ed

w
ith

an
ef

fic
ie

nt
en

do
m

or
ph

is
m

H
es

s
et

.
al

.
[0

6]
:

A
te

an
d

tw
is

te
d–

A
te

w
ith

or
di

na
ry

(H
)E

C

...
va

rio
us

pe
op

le
[0

6-
08

]:
va

rio
us

op
tim

is
at

io
ns

;-)
Ve

rc
au

te
re

n
[0

8]
:

O
pt

im
al

pa
iri

ng
s

H
es

s
[0

8]
:

P
ai

rin
g

la
tti

ce
s

103

Appendix B

Explicit Examples of Curves and
Trace Zero Varieties

In this appendix we list the actual fields and curves used in our experiments. The
construction methodology is discussed in Section 3.7. Notice that, in all the examples,
finding good groups required only a few minutes of computation on old workstations.

Elliptic, respectively hyperelliptic, curves have equations of the form (3.2), respec-
tively (3.1). We denote with ` the group order, with c the cofactor and with s the
constant such that sD = σ(D) on the TZV.

Field elements are given in hexadecimal form, the least significant digits being to the
right. For instance, let K = F27 = F2(β) with β7 + β + 1 = 0. The hexadecimal string
0x23 is (0010 0011) in binary notation, and represents the field element β5 +β+1 = β19.

B.1 Binary Fields

In Table B.1 we list the polynomials defining the binary fields used in our experiments.
Some of them differs from NIST’s standard polynomials and are so-called square-

root friendly, in the sense that they allow fast computation of the square root opera-
tion [Ava07], that may be desirable for instance to implement point-halving techniques.

Binary field Defining polynomial
F241 X41 +X3 + 1
F247 X47 +X5 + 1
F279 X79 +X9 + 1
F283 X83 +X29 +X25 +X3 + 1
F297 X97 +X33 + 1
F2103 X103 +X9 + 1
F2157 X157 +X55 +X47 +X11 + 1
F2163 X163 +X57 +X49 +X29 + 1
F2191 X157 +X9 + 1
F2239 X239 +X36 + 1
F2307 X307 +X113 +X81 +X25 + 1
F2457 X457 +X61 + 1

Table B.1: Binary fields and their defining polynomials

104

APPENDIX B. EXPLICIT EXAMPLES OF CURVES AND TRACE ZERO VARIETIES105

B.2 80-bit Security Level Groups

Elliptic curve over F2163

a2 = 1

a6 = 0x3B4A2A47C6CF50931A85F1DF23A3E5501E4DDCF5D

` = 5846006549323611672814742442876390689256843201587 (162-bit prime)
c = 2

This elliptic curve is isomorphic to the standard SECG-163r2 curve.

TZV over F283 with parameters g = 1, r = 3

a2 = 0

a6 = 0x7E068A86F57E189F1579F

` = 93536104789211454038017047439473721230904196835799 (166-bit prime)
s = 52717605029603870685346358367337123607533507700722 (mod `)

TZV over F241 with parameters g = 1, r = 5

a2 = 0

a6 = 0x8200040000

` = 23384024072061117236215132194916117478003941329701 (164-bit prime)
s = 8596898397316878370683469747519719961741471215582 (mod `)

Genus 2 hyperelliptic curve over F283

f0 = 0x396F428E376D7A8890383

f2 = 1

f3 = 0x19DCA0E8D1C92F9264B24

` = 46768052394608457006025733480294790398034747555811 (165-bit prime)
c = 2

TZV over F241 with parameters g = 2, r = 3

f0 = 0x19A020B045

f2 = 1

f3 = 0x1FD89650906

` = 23384039272790760689682700973748651773762499208657 (164-bit prime)
s = 2891357468045729639561564946934067632888417875314 (mod `)

APPENDIX B. EXPLICIT EXAMPLES OF CURVES AND TRACE ZERO VARIETIES106

B.3 96-bit Security Level Groups

Elliptic curve over F2191

a2 = 1

a6 = 0x2F0F22E6C4915EDBE905DD0A0C714E1D1413EE7AF8AED970

` = 1569275433846670190958947355829117289761686103911895757549 (190-bit prime)
c = 2

TZV over F297 with parameters g = 1, r = 3

a2 = 1

a6 = 0x661CA973864F807D23C4CC09

` = 25108406941546760434751930836434834976964168002830535418893 (194-bit prime)
s = 10669767213033396095159100125257086651731213520935893527279 (mod `)

TZV over F247 with parameters g = 1, r = 5

a2 = 0

a6 = 0x20840001

` = 392318871423095243169862765890601877920346380738406349101 (188-bit prime)
s = 18386722678189359459415722030831321086956583776202353919 (mod `)

Genus 2 hyperelliptic curve over F297

f0 = 0x4E822D0AE44FEAEB13E11479

f2 = 1

f3 = 0x1A12EFA11ADD61DD3A24955D

` = 6277101735386666829310889747862416984303814218548215922379 (192-bit prime)
c = 4

TZV over F247 with parameters g = 2, r = 3

f0 = 0x3FC1AB44F431

f2 = 1

f3 = 0x52035DAC7331

` = 392318938973239036261891895279452669713699615804265346389 (188-bit prime)
s = 143307738370408000753254266660332591522050481755159582620 (mod `)

Appendix C

Additional Experimental Results

In this appendix we include additional experimental results that constitute the comple-
tion of those presented in Chapter 4.

C.1 Comparison Among Operations in Finite Fields

80-bit security 96-bit security
Curve: ord. g = 1 ord. g = 2 supers. ord. g = 1 ord. g = 2 supers.
Field: 163 83× 3 41× 5 83 41× 3 307 103× 3 191 97× 3 47× 5 97 47× 3 457 157× 3
σ – 0.01 0.01 – 0.01 – 0.01 – 0.01 0.01 – 0.01 – 0.01
S 0.03 0.05 0.05 0.02 0.03 0.04 0.05 0.02 0.05 0.04 0.01 0.03 0.06 0.07
M 0.14 0.41 0.29 0.07 0.13 0.36 0.48 0.15 0.42 0.32 0.07 0.14 0.85 0.80
M2 0.25 0.74 0.58 0.12 0.26 0.59 0.83 0.27 0.75 0.63 0.12 0.29 1.51 1.42
I 1.14 1.04 0.94 0.43 0.38 2.94 1.29 1.38 1.11 1.04 0.49 0.41 6.10 2.28
M2/M 1.86 1.80 2.00 1.75 2.00 1.64 1.72 1.80 1.77 2.00 1.70 2.00 1.79 1.77
I/M 8.34 2.56 3.21 6.21 2.86 8.23 2.69 9.08 2.61 3.26 6.82 2.91 7.20 2.84

Table C.1: Comparison among operations in finite fields – Intel (64-bit), timings in µs.
Operations considered are Frobenius automorphism (σ), square (S), multiplication (M),
double-multiplication (M2) and inversion (I). Refer to Section 4.1.3.

80-bit security 96-bit security
Curve: ord. g = 1 ord. g = 2 supers. ord. g = 1 ord. g = 2 supers.
Field: 163 83× 3 41× 5 83 41× 3 307 103× 3 191 97× 3 47× 5 97 47× 3 457 157× 3
σ – 0.02 0.02 – 0.02 – 0.02 – 0.02 0.02 – 0.02 – 0.02
S 0.05 0.09 0.07 0.04 0.05 0.09 0.08 0.05 0.07 0.07 0.04 0.05 0.27 0.13
M 0.35 0.68 0.67 0.12 0.28 1.18 0.81 0.40 0.89 0.69 0.14 0.29 2.18 1.84
M2 0.65 1.30 1.34 0.21 0.48 2.04 1.43 0.81 1.43 1.37 0.23 0.51 4.36 3.33
I 2.35 1.65 2.01 0.65 0.68 8.16 2.08 2.91 2.04 2.11 0.80 0.76 21.00 4.68
M2/M 1.86 1.92 2.00 1.83 1.69 1.73 1.76 2.00 1.60 2.00 1.62 1.75 2.00 1.80
I/M 6.70 2.44 3.01 5.51 2.39 6.94 2.56 7.28 2.28 3.07 5.69 2.62 9.62 2.54

Table C.2: Comparison among operations in finite fields – PowerPC (32-bit)

80-bit security 96-bit security
Curve: ord. g = 1 ord. g = 2 supers. ord. g = 1 ord. g = 2 supers.
Field: 163 83× 3 41× 5 83 41× 3 307 103× 3 191 97× 3 47× 5 97 47× 3 457 157× 3
σ – 0.02 0.02 – 0.02 – 0.02 – 0.02 0.02 – 0.02 – 0.02
S 0.05 0.08 0.08 0.04 0.05 0.08 0.09 0.05 0.09 0.08 0.04 0.05 0.12 0.12
M 0.17 0.46 0.47 0.08 0.21 0.48 0.53 0.22 0.50 0.48 0.09 0.22 1.04 0.98
M2 0.34 0.83 0.93 0.14 0.39 0.86 0.89 0.35 0.85 0.96 0.14 0.43 1.88 1.94
I 1.67 1.46 1.55 0.74 0.66 4.28 1.74 1.97 1.63 1.68 0.91 0.73 10.01 3.09
M2/M 2.00 1.79 2.00 1.72 1.85 1.80 1.68 1.60 1.69 2.00 1.58 2.00 1.80 1.97
I/M 9.70 3.14 3.29 8.87 3.11 8.95 3.30 9.06 3.26 3.41 9.95 3.35 9.61 3.15

Table C.3: Comparison among operations in finite fields – PowerPC (64-bit)

107

APPENDIX C. ADDITIONAL EXPERIMENTAL RESULTS 108

C.2 Comparison Between Ordinary Curves and TZV

80-bit security 96-bit security
g = 1 g = 2 g = 1 g = 2

Curve: EC TZV TZV HEC TZV EC TZV TZV HEC TZV
Field: 163 83× 3 41× 5 83 41× 3 191 97× 3 47× 5 97 47× 3
− 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
σ – 0.01 0.01 – 0.01 – 0.01 0.01 – 0.01
2 1.46 1.92 1.57 0.88 1.19 1.70 2.17 1.76 1.00 1.29

o
p

er
a
ti

o
n

+ 1.46 1.92 1.57 1.85 3.24 1.70 2.17 1.76 2.07 3.57
bin 451.4 519.6 468.9 331.7 474.4 621.3 683.9 639.2 445.6 591.5
NAF/JSF 399.8 262.2 166.5 283.2 246.1 551.8 351.6 199.9 373.2 309.0

a
ffi

n
e

w-NAF (4) 362.3 248.0 129.7 240.9 216.7 499.0 319.4 157.8 317.6 270.4
NAF/JSF 168.0 278.7 196.9 – – 218.2 361.3 229.3 – –
w-NAF (4) (3) 146.8 245.6 134.5 – – (3) 191.8 306.5 162.0 – –
NAF/JSF 167.0 274.0 201.7 – – 214.0 329.0 235.6 – –
w-NAF (4) (3) 147.8 236.2 132.9 – – (3) 189.0 277.4 159.9 – –
NAF/JSF – 255.1 176.1 – – – 332.3 210.4 – –L

o
p

ez
-D

a
h

a
b

w-NAF (4) – 233.8 132.9 – – – 296.8 162.0 – –

Table C.4: Comparison between ordinary curves and TZV – Intel (64-bit), timings in
µs. Operations considered are negation (−), Frobenius endomorphism (σ), doubling (2)
and addition (+). Scalar multiplication is performed in affine or Lopez-Dahab (origi-
nal, extended and compressed) coordinates, without (bin, NAF/JSF) or with (w-NAF)
precomputation. The scalar splitting technique is used for TZV, except for affine/bin.
Refer to Section 4.2.4.

80-bit security 96-bit security
g = 1 g = 2 g = 1 g = 2

Curve: EC TZV TZV HEC TZV EC TZV TZV HEC TZV
Field: 163 83× 3 41× 5 83 41× 3 191 97× 3 47× 5 97 47× 3
− 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.03 0.02 0.03
σ – 0.03 0.03 – 0.03 – 0.03 0.04 – 0.03
2 3.13 3.18 3.46 1.34 2.34 3.75 4.08 3.61 1.67 2.49

o
p

er
a
ti

o
n

+ 3.13 3.18 3.46 3.01 6.46 3.75 4.08 3.61 3.81 6.75
bin 781.4 786.5 854.9 486.1 903.7 1085.5 1177.4 1014.1 594.7 1105.1
NAF/JSF 712.6 406.2 341.0 411.0 476.7 982.6 612.9 416.6 492.5 571.1

a
ffi

n
e

w-NAF (4) 645.7 382.6 269.0 342.0 426.5 888.1 567.7 324.0 418.0 509.0
NAF/JSF 426.1 472.4 413.1 – – 558.7 722.6 507.0 – –
w-NAF(4) 426.1 (5) 408.6 288.2 – – 475.3 612.9 345.0 – –
NAF/JSF 424.1 460.6 429.1 – – 550.4 654.8 521.8 – –
w-NAF (4) 360.3 (5) 387.3 285.0 – – 475.3 (5) 551.6 342.9 – –
NAF/JSF – 432.2 379.4 – – – 654.8 462.9 – –L

o
p

ez
-D

a
h
a
b

w-NAF (4) – 394.4 288.2 – – – 587.1 345.0 – –

Table C.5: Comparison between ordinary curves and TZV – PowerPC (32-bit)

APPENDIX C. ADDITIONAL EXPERIMENTAL RESULTS 109

80-bit security 96-bit security
g = 1 g = 2 g = 1 g = 2

Curve: EC TZV TZV HEC TZV EC TZV TZV HEC TZV
Field: 163 83× 3 41× 5 83 41× 3 191 97× 3 47× 5 97 47× 3
− 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03
σ – 0.02 0.02 – 0.03 – 0.02 0.03 – 0.03
2 2.03 2.48 2.62 1.26 2.07 2.47 2.79 2.77 1.50 2.13

o
p

er
a
ti

o
n

+ 2.03 2.48 2.62 2.36 5.15 2.47 2.79 2.77 2.62 5.37
bin 515.2 628.2 635.6 413.6 763.1 713.0 809.7 770.0 360.6 918.7
NAF/JSF 458.5 318.8 259.4 350.6 387.3 643.5 409.7 324.0 305.1 464.3

a
ffi

n
e

w-NAF (4) 416.0 292.9 208.1 299.2 349.3 576.8 383.9 248.3 267.1 409.0
NAF/JSF 218.6 333.0 310.6 – – 307.2 416.1 385.0 – –
w-NAF (4) 191.3 285.8 219.3 – – 269.6 364.5 256.7 – –
NAF/JSF 213.6 328.3 317.0 – – 301.6 377.4 393.4 – –
w-NAF (4) 189.3 278.7 214.5 – – 265.5 332.3 254.6 – –
NAF/JSF – 302.3 273.8 – – – 383.9 342.9 – –L

o
p

ez
-D

a
h

a
b

w-NAF (4) – 274.0 212.9 – – – 348.4 252.5 – –

Table C.6: Comparison between ordinary curves and TZV – PowerPC (64-bit)

C.3 Comparison Between Supersingular Curves and TZV

70-bit security 80-bit security 96-bit security
Curve: EC TZV EC TZV EC TZV
Field: 239 79× 3 307 103× 3 457 157× 3
− 0.01 0.01 0.01 0.01 0.01 0.01
σ – 0.01 – 0.01 – 0.01
2 0.11 0.16 0.18 0.19 0.25 0.29

o
p

er
a
ti

o
n

+ 2.60 1.83 3.72 2.31 7.82 4.02
bin 332.9 158.4 667.9 272.8 2251.4 498.3
NAF/JSF 235.0 83.5 459.6 145.5 1511.5 253.4

a
ffi

n
e

w-NAF (4) 148.0 83.5 283.7 116.4 (5) 851.2 211.1
NAF/JSF 256.7 171.2 452.4 287.4 1710.4 489.9
w-NAF (4) 198.0 143.4 344.7 (5) 225.5 (5) 1209.2 405.4
NAF/JSF 372.1 190.5 484.7 309.2 1853.6 557.4o

th
er

w-NAF (4) 206.7 154.1 355.5 (5) 243.7 (5) 1257.0 439.2

Table C.7: Comparison between supersingular curves and TZV – Intel (64-bit), timings
in µs. Operations considered are negation (−), Frobenius endomorphism (σ), doubling
(2) and addition (+). Scalar multiplication is performed in affine or other (Jacobian
and Lopez-Dahab) coordinates, without (bin, NAF/JSF) or with (w-NAF) precompu-
tation. The scalar splitting technique is used for TZV, except for affine/bin. Refer to
Section 4.2.6.

APPENDIX C. ADDITIONAL EXPERIMENTAL RESULTS 110

70-bit security 80-bit security 96-bit security
Curve: EC TZV EC TZV EC TZV
Field: 239 79× 3 307 103× 3 457 157× 3
− 0.02 0.03 0.02 0.03 0.03 0.03
σ – 0.03 – 0.03 – 0.04
2 0.19 0.28 0.30 0.35 1.07 0.53

o
p

er
a
ti

o
n

+ 6.03 2.89 10.74 3.85 25.68 8.52
bin 644.0 235.4 1493.7 363.8 6157.5 929.1
NAF/JSF 450.4 128.4 1034.1 156.4 4343.7 498.3

a
ffi

n
e

w-NAF (4) 287.2 109.1 628.4 134.6 (5) 2521.9 413.9
NAF/JSF 578.8 278.2 1353.7 327.4 4932.4 1140.2
w-NAF (4) 428.6 229.0 983.8 276.5 (5) 3548.1 (5) 903.7
NAF/JSF 633.2 308.2 1436.3 363.8 5179.0 1258.4o

th
er

w-NAF (4) 450.4 244.0 1044.9 301.9 (5) 3580.0 (5) 945.9

Table C.8: Comparison between supersingular curves and TZV – PowerPC (32-bit)

70-bit security 80-bit security 96-bit security
Curve: EC TZV EC TZV EC TZV
Field: 239 79× 3 307 103× 3 457 157× 3
− 0.02 0.02 0.02 0.02 0.02 0.03
σ – 0.02 – 0.02 – 0.03
2 0.19 0.31 0.27 0.37 0.48 0.47

o
p

er
a
ti

o
n

+ 3.30 2.39 5.31 2.95 12.31 5.31
bin 374.2 214.0 764.8 229.2 2959.4 633.4
NAF/JSF 267.6 115.63 535.0 174.6 2052.5 329.4

a
ffi

n
e

w-NAF (4) 178.4 98.4 348.3 156.4 (5) 1177.4 (3) 270.3
NAF/JSF 313.3 222.6 624.8 341.9 2227.5 658.8
w-NAF (4) 243.7 186.2 477.6 (5) 283.7 1591.1 (5) 532.1
NAF/JSF 332.9 239.7 664.3 367.4 2330.9 726.4o

th
er

w-NAF (4) 248.0 194.7 488.3 (5) 298.3 (5) 1654.7 (5) 549.0

Table C.9: Comparison between supersingular curves and TZV – PowerPC (64-bit)

APPENDIX C. ADDITIONAL EXPERIMENTAL RESULTS 111

C.4 Comparison Among Pairings

70-bit security 80-bit security 96-bit security
EC TZV EC TZV EC TZV

Pairing Loop Length 239 79× 3 307 103× 3 457 157× 3
tN N = O(q2) 489.4 496.9 831.6 766.2 2890.5 1893.5
η q3 463.2 683.2 790.9 1069.7 2797.8 2707.0
ηT 2(3m+1)/2 − 1 258.8 377.0 438.3 582.0 1494.2 1451.7
aopt 2(3m−1)/2 263.8 369.7 447.4 573.6 1512.7 1418.7
η (HLV) q3 519.8 729.0 847.7 1104.7 2910.3 2865.2
ηT (HLV) 2(3m+1)/2 − 1 245.9 356.5 411.1 553.1 1435.7 1382.6
tTZV 3× q – 614.1 – 968.3 – 2466.8
tσ 2× s – 791.0 – 1185.4 – 2962.1
tTZV (Par) 3× q – 269.9 – 385.8 – 956.1
tE3 (Par) 2×O(q) – 289.1 – 423.6 – 1043.5

Table C.10: Comparison among pairings – Intel (64-bit), timings in µs. Refer to Sec-
tion 4.3.5.

70-bit security 80-bit security 96-bit security
EC TZV EC TZV EC TZV

Pairing Loop Length 239 79× 3 307 103× 3 457 157× 3
tN N = O(q2) 1148.2 782.9 2569.6 1340.5 8526.0 4325.4
η q3 1096.9 1080.5 2486.8 1871.8 8230.4 6240.4
ηT 2(3m+1)/2 − 1 619.8 601.1 1361.7 1022.6 4452.4 3311.6
aopt 2(3m−1)/2 633.8 585.1 1352.7 1003.2 4484.0 3290.7
η (HLV) q3 1196.9 1165.4 2728.4 1962.1 7787.7 6457.8
ηT (HLV) 2(3m+1)/2 − 1 583.5 567.1 1287.5 958.9 4219.4 3170.2
tTZV 3× q – 959.6 – 1716.1 – 5719.3
tσ 2× s – 1257.3 – 2081.9 – 6781.6
tTZV (Par) 3× q – 389.7 – 669.8 – 2154.0
tE3 (Par) 2×O(q) – 446.7 – 745.9 – 2406.9

Table C.11: Comparison among pairings – PowerPC (32-bit)

70-bit security 80-bit security 96-bit security
EC TZV EC TZV EC TZV

Pairing Loop Length 239 79× 3 307 103× 3 457 157× 3
tN N = O(q2) 613.9 581.3 1208.0 894.5 3654.1 2621.8
η q3 579.1 800.1 1133.0 1246.5 3511.3 3873.2
ηT 2(3m+1)/2 − 1 324.2 455.0 632.2 701.2 1916.6 2024.4
aopt 2(3m−1)/2 334.2 433.9 639.2 671.1 1928.8 1991.7
η (HLV) q3 569.9 840.2 1122.5 1263.5 3540.2 3661.9
ηT (HLV) 2(3m+1)/2 − 1 303.2 416.1 586.1 642.0 1788.7 1954.6
tTZV 3× q – 698.7 – 1095.4 – 3463.4
tσ 2× s – 930.1 – 1386.8 – 4065.0
tTZV (Par) 3× q – 290.3 – 445.6 – 1305.9
tE3 (Par) 2×O(q) – 337.1 – 507.3 – 1486.6

Table C.12: Comparison among pairings – PowerPC (64-bit)

	Pairing-based Cryptography
	Applications of Pairing-based Cryptography
	Diffie--Hellman and Tripartite Diffie--Hellman
	The Group G: Elliptic Curves and Pairings
	Types of Pairings
	Cryptographic Schemes Based on Pairing
	Short Signature
	Broadcast Encryption

	Trace Zero Varieties in Cryptography

	Background
	Hyperelliptic Curve in Cryptography
	Jacobian and Trace Zero Variety
	Duality in Arithmetic Geometry
	The Lichtenbaum-Tate Pairing
	The Local Lichtenbaum-Tate Pairing
	Algorithmic Description of the Tate Pairing

	Pairing on Supersingular Trace Zero Varieties
	Hyperelliptic Curves and Trace Zero Varieties
	Hyperelliptic Curves
	Trace Zero Varieties

	Arithmetic in G1
	Scalar Splitting
	Multi--scalar Generation

	Supersingular Trace Zero Varieties and Tate Pairing
	The Miller Function and Miller's Algorithm
	A Survey of Pairings
	Ate Pairing
	Eta and EtaT Pairings
	Optimal (Twisted) Ate Pairing

	Pairing on Supersingular Trace Zero Varieties
	Preliminaries
	A New Algorithm for the Tate Pairing
	Pairing Compression

	Construction of Varieties and Generators
	Security Considerations

	Implementation
	Finite Fields
	Base Fields
	Small Degree Extensions of Binary Fields
	Experimental Results

	Scalar Multiplication on TZV in Characteristic 2
	Coordinate Systems
	Compressed López-Dahab Coordinates
	Scalar Multiplication Techniques
	Comparison Between Ordinary Curves and TZV
	Comparison Between Even and Odd Characteristic
	Comparison Between Supersingular Elliptic Curves and TZV

	Pairing on Supersingular TZV in Characteristic 2
	Parallel Computation
	Sequential Computation
	Point Compression on TZV
	Extension Fields of Degree 4 for Pairing Computation
	Experimental Results

	Real-world Applications
	Trusted Computing and OpenTC
	Trusted Broadcast Encryption
	Broadcast Encryption
	Issues and Motivations
	Applying TC Techniques to BE
	New TC Techniques
	Open Issues

	Direct Anonymous Attestation
	Anonymous Authentication
	Background
	TLS-Based Anonymous Authentication Scheme
	Security Analysis
	Implementation and Experimental Results

	Poster (Eurocrypt 2009)
	Explicit Examples of Curves and Trace Zero Varieties
	Binary Fields
	80-bit Security Level Groups
	96-bit Security Level Groups

	Additional Experimental Results
	Comparison Among Operations in Finite Fields
	Comparison Between Ordinary Curves and TZV
	Comparison Between Supersingular Curves and TZV
	Comparison Among Pairings

