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Abstract 

Activity of daily living (ADL) recognition has great importance in the field of rehabilitation, 

physical monitoring and ubiquitous computing. Recognition of ADL is essential because of the 

connection between physical inactivity and common health problems, like osteoporosis, 

cardiovascular disease, diabetes, obesity. This study is motivated by the fact that it is important 

to monitor the activities of a person in daily routines, so as to associate the day-by-day motor 

performance with the recommendations given by the physicians. A set of aerobic activities 

(walking, stairs walking, running, sitting, standing) which are considered useful to promote the 

well-being of a person are used to design the activity recognition system.  

Inertial measurement units including accelerometer and gyroscope represent a promising 

technology in long term physical activity monitoring. This work aims to design a physical activity 

recognition system intended to classify motor activities from an inertial sensor, which can be 

profitably used in real-time applications. To achieve this goal, the system is designed and 

evaluated on different parameters of the algorithm: pre-processing steps involved in signal 

processing, segmentation of the signal to minimize delays associated with further processing, 

determination of the best feature set for classification, and training of the classification scheme 

based on both subject-dependent and subject-independent validation to maximize recognition 

accuracy. It is believed that the accuracy of systems able to recognize daily living activities in 

real time heavily depends on the processing steps for signal segmentation. This study presented 

a modified event-based segmentation algorithm that introduces a much reduced temporal 

delay between activity occurrence and its detection and recognition. 

The system is capable of distinguishing those activities which are considered hard to 

differentiate in the previous studies, such as walking, stairs ascending and stairs descending. 

The presented scheme is not only capable to classify these activities, but it can also be helpful 

in ambulatory gait analysis, where on-time processing may be needed, and spaces for motion 

capture systems are not at hand. Finally, the availability of the inertial data flows coming from 

mobile phones and smart bracelets makes it possible to include the detection and recognition 
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algorithms presented in this thesis into these commodities, thus expanding their use also for 

daily living activity long term monitoring for fitness, active ageing, and “active growing” 

applications.  

KEYWORDS: Inertial sensor, Physical activity recognition, Gait-event detection, Segmentation, 

Machine learning, Classification, Real-time processing. 
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1 
1.1 Introduction 

 

 

1.1 Motivation  

Activity of daily living (ADL) recognition has been an active area of research, with applications 

ranging from medicine to education and sociology and to sport analysis, and its improving trend 

is associated with advancements in the area of ubiquitous computing and machine learning. 

Among the application fields, healthcare, assistance and wellness are possibly the areas that 

can most profitably take advantage from research in the area of human behavior monitoring, in 

view of the necessity to improve healthcare by promoting different forms of active behavior, 

including outdoor exercising [1] and changing lifestyle [2]. In this field, ICT is already playing a 

major role, developing tools to detect falls [3], to measure postural adjustments [4] and to 

monitor mobility activities [5] [6].  

There are various recommendations about physical active daily life style. According to the 

Haskell et al [7] recommendation statement, to promote and maintain health, all healthy adults 

aged 18 65 yr need moderate-intensity aerobic physical activity for a minimum of 30 min on 

five days each week or vigorous-intensity aerobic activity for a minimum of 30 min on five days 

each week or vigorous-intensity aerobic activity for a minimum of 20 min on three days each 

week. Also, combinations of moderate- and vigorous-intensity activity can be performed to 

meet this recommendation.” A list of light, moderate and vigorous activities is also presented in 
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the study. Apart from these recommendations, physicians could also recommend some 

exercise plan to the patients.  However, it is important to monitor the activities of the person in 

daily routine, so as to associate the performance with the recommendations. This is the main 

motivation of this work, focusing on recognizing the daily living activities including aerobic 

activities. For the sake of availability and easiness, I focused on those daily living activities that 

are more important in terms of energy expenditure, thus walking, stairs walking and running 

were included, along with postural activities that are frequent in daily life, such as standing and 

sitting. Therefore, this thesis deals with the recognition of these activities which are essential 

for health monitoring. 

Automatic recognition of activities is a crucial task in the area of assisted living and 

healthcare, as it involves the system to sense, learn and interpret the human behavior in real 

time. In terms of technology, video-based sensors to wearable sensors based approaches have 

been deployed. Video [8] and environmental sensor-based systems [9] work well in a controlled 

environment, and do not need devices to be worn by a person – thus making them very useful 

in surveillance applications. While, wearable sensors including accelerometers and gyroscopes 

have received the highest attention in this area, when long term and personal monitoring is 

sought: when combined together in an inertial sensor unit, they can be used to automatically 

and robustly recognize the activities in both laboratory and home settings.  

In this study a single inertial sensor comprising one tri-axial accelerometer and one tri-axial 

gyroscope is used to recognize the mentioned activities. In the following, the term inertial 

sensor word will be used to denote units including a combination of accelerometers and 

gyroscopes.  

1.2 Challenges in activity recognition  

Automatic recognition of daily living activities from inertial sensors data is a challenging 

research area. When dealing with a physical activity recognition problem, several challenges 

exists which may significantly affect the complexity of the recognition system, such as; the 

number of sensors and their location on the body, number and types of activities and data 
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collection. Following are the factors which contribute to the complexity of the recognition 

system: 

Number of sensors: Using a small number of sensors makes a system more feasible for the 

long time daily living monitoring. Moreover, it also aids to the lower computational 

requirements. However, small number of sensors may decrease the system accuracy as 

compared to the larger number of sensors, due to the reduction in available information. 

Location of sensors: signals coming from the inertial sensors depend on their location over 

the body, and can vary among different positions. Choice of the sensor position over the body 

should be acceptable for the long-term monitoring and still be able to generate high 

recognition accuracy.  

Number of activities: A good recognition system should be the one which can recognize the 

numerous numbers of daily living activities. Recognizing a small number of activities is easier 

than recognizing a large number of activities, as a fact, increase in the number of activities 

makes harder for the classifier to discriminate among them. 

Types of activities: Recognizing the static activities like sitting and standing is easier than the 

dynamic activities, which involves the movement of the limbs such as walking and running. Also 

the transitions between the sitting and standing are difficult to discriminate. Moreover, 

activities which share similar pattern during movement are hard to recognize, such as walking, 

stairs ascending and stairs descending.   

Data collected for the activities: Data collection is a crucial step in the designing of the 

activity recognition system. The algorithm which is trained on the laboratory restrict data might 

be failed to recognize activities over the data collected during free living conditions.  In the 

laboratory conditions activities are performed with same speed and limited amount of time, 

while in free living conditions participants might perform activities differently. Unsupervised 

monitoring is the one way to collect the data with fewer restrictions, inside or outside the lab. 

This might face some challenges: 
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 Under such settings, subjects perform activities without researcher’s supervision. This 

might cause unreliable labeling of the data, which leads to degrade the system accuracy. 

 As subject has to perform activities in his/her own manner, this might lead to variability 

in movement patterns among the subjects. For example, one person can walk on stairs 

at slow speed, whereas other can walk fast and this could become hard for the 

algorithm to categorize the activity.  

1.3 Limitations of Previous Systems 

In a number of studies, automatic activity recognition is usually performed through multiple 

inertial sensors attached at different locations of the body [10]-[16]. Though recognition is 

higher in this case, carrying multiple sensors on the body may not be advisable if easiness of 

use is pursued [17]. The studies in which only one accelerometer is suggested have pointed out 

the waist/sternum location as the best location for activity detection [18]-[21], but there is a 

variation in the accuracy results, among different activities. 

 Most of the previous studies have excluded the transitions (i.e. dynamic  activities that are 

associated with the change of a steady motor activity or posture, such as sit-to-stand acts 

,gait initiations/termination, first and last steps on stairs, direction changes when walking) 

to minimize data misclassifications [11] [13] [22] [23]. Such systems have produced good 

classification accuracy even if the small size of time window is used to segment the signal, 

as the fact of data generalization. 

 In the case of locomotion activities, most of the studies have used fixed length time window 

to segment the data, lengths lie in the range (1-10) s [11] [15] [24] [25] [26], and the 

presence of overlapping between consecutive windows is usually limited to 50%. One 

limitation of this approach is that problems can arise if an activity lasts for shorter or longer 

time periods than the pre-defined window length. 

 Moreover, studies have suggested that removing noise from the accelerometer and 

gyroscope signals can enhance the classification accuracy of the system [27]-[30] and 
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segmentation of the gait patterns [31] [32] [33] [34] respectively. While it increases the 

complexity of the system for online applications: if the filtering used is composed of just 

two taps, at least 2 × (1000/sampling frequency) milliseconds will be needed as the waiting 

time, to have the preceding samples available for the processing. 

 Additionally, an ideal activity classification system should work off-the-shelf. In other words, 

it should be able to use the data from a range of previous subjects to identify activities from 

an unseen individual. However, most of the times this is not possible and an intra-subject 

classification scheme is currently all that can be achieved for some problems. With this 

approach, sample training data are required for a given individual before classification can 

be performed. Although the literature supports the fact that accelerometry has emerged as 

an effective and inexpensive mean to recognize physical activities, little work has been done 

to validate the idea under unsupervised real-world circumstances. Majority of the prior 

work on physical activity recognition using acceleration signals relies on the data collected 

in supervised controlled laboratory settings. The studies have shown high success in 

recognizing the most prevalent everyday physical activities, such as sitting, lying, walking 

and running. However, when tested for long-term out-of-lab monitoring the recognition 

accuracy of these systems decreased significantly. 

1.4 Study Goal  

An efficient physical activity recognition system using body-worn inertial sensors should be 

composed of some main requirements. 

(1) The system should recognize activities in real-time. This means that the need of 

preprocessing steps including inclination removal and noise removal should be checked, if it has 

no significant effect on the recognition accuracy then it might be excluded as its presence could 

contribute to the system complexity. Moreover, selection of segmentation technique must 

avoid delay response; it could be a short time window length or dynamic window which works 

in real time. Finally, the extracted features and classification algorithms should be simple, light-

weight and computationally inexpensive to be able to support real time applications. (2) The 
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number of sensors attached on the body must be fewer, preferably one. (3) The recognition 

system should be robust. It should perform well on the new subjects, without doing training 

again. This is very challenging as people perform the same activities differently, thus huge 

amount of variations could exist in their activity patterns. (4) Lastly, variations in the activity 

patterns should not affect the classification accuracy of the recognition system. This is also very 

hard to achieve as humans can perform the same activities in infinite different ways and it is 

difficult to collect enough training data to fulfill this need. 

The aim of this study was to implement a physical activity recognition system by using 

single inertial sensor. The system efficiently segments the inertial sensor data based on 

dynamic segmentation technique without any delay time which is faced in fixed length window 

based segmentation. It provides the best solution for real-time implementation. Both 

supervised and unsupervised data collection methods are used to validate the system, in order 

to keep variations among inter and intra subjects.  

1.5 Contributions  

This section briefly highlights the study contributions presented in chapter 5 of the thesis.  

Section 5.1 addresses the neglected point of window length choice for the segmentation of 

the static and dynamic activities and also its impact on the recognition. Furthermore, the effect 

of the subject-dependent (with different percentage splits of training and testing data) and 

subject-independent learning is also evaluated on different machine learning classifiers.  

Section 5.2 addresses the use of event-based segmentation technique for the classification of 

locomotor activities. A modification to a standard gait segmentation criterion is done in such a 

way that no window is used to detect the events of the physical activities. In this way, we are 

able to also evaluate the effect of a event-based segmentation on the ability to classify human 

physical activities (that were not limited to level walking, but included stair negotiation). 

Subject independent evaluation is take in to account, where algorithm is trained on one dataset 

and validation is performed on another dataset. This section also analyses and compares the 

classification accuracy obtained through an event-based segmentation against different fixed 
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window lengths, on the classification of daily living activities. Additionally, a benchmark dataset 

(PAMAP2) has been also used to validate the event-based segmentation technique. Different 

features sets were also used to compare their performance on activity recognition. This chapter 

describes how dynamic segmentation could be a choice for an efficient and effective 

recognition system. 

Section 5.3 investigates whether, and to what extent, de-noising and inclination correction 

pre-processing has an effect on the event-based segmentation of activities and on the 

subsequent classification accuracy. In particular, since the goal is to assist the researcher in 

building real-time applications, the monitored pre-processing operations will be considered, 

taking into account the computational complexity associated with their implementation. 

Section 5.4 compares the different feature selection techniques and classification schemes 

with respect to their processing time on the daily living activities.   

1.6 Thesis outline  

This thesis is organized in to six different chapters (see Figure 1-1 for Dissertation schema). This 

chapter has presented the motivation of the research work in the field of activity recognition, 

challenges faced in this field and lists the contributions of this work. The rest of the thesis is 

organized as follow: 

Chapter 2: gives an overview of the related work in the area of the activity recognition, a brief 

description of the sensing technologies used in the activity recognition systems, applications 

which have been motivated by the activity monitoring and finally the commonly used 

components of the activity recognition chain.   

Chapter 3: describes the sensor technologies used in this thesis to collect the activity data, 

addresses the design of the data collection experiments and software tools used to collect and 

process the inertial sensor data. 
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Chapter 4: presents the overview of the design of the activity recognition system implemented 

in this thesis, including: preprocessing steps, signal segmentation, feature extraction & 

selection and classification schemes.  

Chapter 5: presents the implementation and evaluation of the presented activity recognition 

algorithms on the daily living activities datasets.  

Chapter 6: summarizes the thesis, concludes the research novel contribution and gives some 

ideas for future research directions. 
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2 

2.1 Literature  

 

 

With recent advances in wearable sensing and ubiquitous and pervasive computing, 

tremendous research has been done for the application of this technology in a variety of fields, 

benefiting various everyday life applications. This chapter gives an overview of the research 

that has been carried out in the past regarding the use of this technology for activity monitoring 

applications.  Section 2.1 describes the type of sensing approaches used in activity monitoring. 

An overview of the applications which have been motivated by the activity monitoring by using 

wearable sensors is outlined in section 2.2. Section 2.3 reviews commonly used components of 

the activity recognition chain and then finally a conclusion section narrates the considerations 

which are drawn from the literature studies. 

2.1 Technologies for activity recognition 

Different types of technologies and approaches have been used in the human activity 

recognition related problems. The selection of the sensing technology strongly depends on the 

type of the application, and possible choices include wearable sensors and home based video 

tracking.  Several aspects need to be considered before choosing the sensing technology: 

i. Cost of the system 

ii. Privacy  

iii. Comfort ability 
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iv. Maintenance 

v. Usage 

This section describes the approaches which have been commonly used in the activity 

recognition problems: video-based systems, environmental sensors-based systems, and 

wearable sensors. 

2.1.1 Vision-based approach 

This approach employs the installment of cameras inside the laboratory or home to recognize 

activity of daily living (ADL). While marker-based systems are very accurate in quantifying and 

describing movements, in home-based scenarios or uncontrolled indoor conditions, markerless 

systems may represent a viable alternative: in [35] video cameras are employed for marker less 

vision-based human motion analysis; a Microsoft Kinect depth camera is used in [8] to 

recognize the daily living activities of elderly people in a smart indoor environment; moreover, 

in [36], a Microsoft Kinect's depth camera is used as an ambient sensor for position and 

orientation tracking for an indoor monitoring system for Parkinson's disease (PD) patients. 

Vision-based activity recognition techniques provide very detailed context information. 

However, these types of systems present some disadvantages: they have difficulty to trace the 

person in natural settings, where more than one person is present in the scene. Moreover, 

vision-based systems are not pervasive, as the monitoring of the activities is confined to the 

infrastructure where cameras are installed. Then, these systems face privacy concerns due to 

the video recording, as they are able to capture information coming also from un-cooperative 

people; in many cases, some people don’t want to be monitored by the cameras throughout 

the day. The last issue would be complexity, since video processing techniques are relatively 

computationally expensive, so this fact makes a real time activity recognition system to be less 

scalable. 

2.1.2 Environmental sensors-based approach 

In this approach, ADL are monitored through the interaction of the person with the home 

environment. Different sensors are installed inside the home and activities are usually 
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monitored based on the condition of the object(s) with which a person interacts. Common 

examples of environmental sensing systems are the intelligent homes [37] [38] [9] [39] [40]. 

These systems can fairly recognize complex activities (e.g., sleeping, eating, washing dishes, 

vacuuming, taking a shower, preparing food, etc.), because they rely on data coming from the 

instrumented objects which people are supposed to interact with (e.g., stove, washing 

machine, vacuum, shower, etc.). 

These sensors have fewer restrictions than video based sensors. Functionality of these 

types of systems is limited, as activities can’t be tracked if a person comes outside the deployed 

environment. Moreover, the installation and maintenance of the sensors usually require high 

costs. Plus, since the recognition of activity is basically indirect (as it is associated with the 

environment, and not with the subjects), in presence of more than one person, it may be 

difficult to associate an activity to one person. 

2.1.3 Wearable sensors-based approach 

Wearable sensors are the most commonly used sensors for the activity recognition. These 

sensors are placed over the body to recognize ADL with no restriction to the infrastructure. 

Wearable sensors can collect daily physical activity data patterns over a long period of time as 

they can worn as wearable devices, integrated into jewelry [41] [42] or clothing [43] [44]. 

Among the range of body-attached sensors, accelerometers, gyroscopes, foot switches, 

magnetometers and pedometers are most commonly used to capture and analyze ADL in free-

living environment. Examples are sitting, standing, walking, cycling, running, and exercising.  

Moreover, such sensors are low-cost, light weight, small in size and unlike video sensors 

they are not considered as a threat to people’s privacy. Inspire to these qualities, in this thesis, 

an inertial measurement unit (IMU) comprising a tri-axial accelerometer and a tri-axial 

gyroscope is used to recognize the daily living activities.  
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2.2 Use of wearable sensors for activity recognition 

This section describes the different applications used in activity recognition related problems. In 

wearable technology, both accelerometers and gyroscopes have been used separately or 

together to analyze the movement. The location and number of sensors is usually dependent 

on the type of the activities and the problem to be studied. In [13] [19], multiple 

accelerometers are used to examine different daily living and household activities. Some of the 

studies found that placing a tri-axial accelerometer in proximity of the chest or waist is the best 

position to study whole body movements [26] [17] [5]. Accelerometers or gyroscopes attached 

to the lower limb are more often used to analyze gait patterns [21] [45] [46].  

Therefore, the following subsections will give a list and short description of the different 

application areas. 

2.2.1 Fall detection 

Falls are a common problem in the elderly population: approximately 20-40 % of people aged 

65 and over living at home fall each year. While about a half to two-thirds of the falls result in 

some type of injury, up to 10 % of these falls result in a fracture [47] [48] [49] [50]. Wearable 

inertial sensors are widely used for fall risk assessment and detection [51] [52]. Since it is 

considered that fall is often followed by a lying posture, thresholding on the signal magnitude 

vector (SVM) peaks is a common way to identify the falls [53]. In [54] a detailed survey on fall 

detection approaches is given. 

2.2.2 Fitness and sports 

In sport, accelerometers, gyroscopes   or   global   positioning   system [GPS] receivers are used 

to monitor the ongoing activities. These sensors are usually attached to the athlete’s body or to 

the sports equipment to measure different physical quantities, such as acceleration, position 

and velocity.  

Inertial sensor-based sports applications vary from aquatic to non-aquatic conditions. 

Ermes et al. [55] presented a method to recognize sports activities such as playing football, 
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running, exercising with a rowing machine and cycling. Montoye et al. [56] and Parkka et al. 

[57] use inertial sensors to recognize the daily living and sports activities such as walking, 

treadmill walking/running, ergometer and calculate the energy expenditure. In aquatic sports, 

rowing and swimming strokes characteristics and performance are measured by [58] and [59]. 

2.2.3 Gait analysis 

Accurate identification of the initial foot contact and terminal contact times are generally 

considered to be useful to capture the correlation between the normal gait and pathological 

gait [60]. In gait analysis, gyroscopes have been extensively used to calculate the initial contact 

(IC) and terminal contact (TC) times of the foot and their results are compared to either motion 

analysis systems and force plates [61] [62] [63], or foot switches [64] [65]. It has been found 

that gyroscopes can accurately detect gait events, if compared to reference systems, with 

negligible errors. Pappas et al. [66] use a shoe mounted gyroscope to calculate the four gait 

cycle phases: stance, heel-off, swing, and heel-strike. They validated their results against those 

obtained with motion capture. The GaitShoe system consisting of three uni-axial 

accelerometers, three uni-axial gyroscopes, two bi-directional bend sensors, two pressure 

sensors, four force sensors and electric field height sensors was used to detect the heel-strike 

and toe-off events [67]. 

2.2.4 Sit/stand transitions 

The ability to perform sit-to-stand and stand-to-sit transitions are inversely associated with fall 

risk in elderly and PD patients [68]. The assessment of these transitions has thus significant 

importance in clinical studies. To this aim, a tri-axial accelerometer is used to recognize the 

different postural transitions including sit-to-stand and stand-to-sit transitions [18] [17]. Sit-to-

stand and stand-to-sit transitions can be automatically identified as periods of activity [69], and 

they can be recognized by identifying the preceding and succeeding postures as sitting and 

standing [70] [71]. 
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In clinical settings, Timed Up and Go (TUG) test is a very common test used to assess a 

person's mobility, and it requires both static and dynamic balance. In this test, both sit-to-stand 

and stand-to-sit postures are present [72].  

2.2.5 Locomotion 

Inertial sensors have also been used to identify and classify the different daily living and sports 

activities. In a variety of studies, multiple sensors have been used, with number ranging from 1 

to 7 on different body locations. The most common locations are the thigh and the waist or 

chest [73] [70] [71] [74] [75]. 

The majority of the studies have investigated walking, stairs ascending, stairs descending 

and running activities as these are the most frequent occurring activities in daily life [17] [21] 

[12]. It is reported that accurate classification among walking and stairs walking activity is a 

challenging task, because these activities share very similar patterns of the lower limb 

movement among subjects [76]. Although existing systems have reported 13 excellent 

classification accuracy results, there is still room to allow accurate automatic identification and 

classification of these activities in real time scenarios. 

2.3 Activity recognition system components 

In activity recognition problem, different methods have been used to identify the physical 

activity from raw inertial sensor data. However, the common flow chart of the recognition 

system is divided into five main components: preprocessing, segmentation, feature extraction 

and selection, classification. This section elaborates on the most commonly used methods for 

each block. Figure 1 shows the work flow of the activity recognition system. 

2.3.1 Pre-processing - De-noising  

When dealing with a physical activity recognition problem, it has been argued that denoising 

inertial sensor data is necessary in order to be able both to extract the relevant information 

[27] [28] [29] [30] [17] and to identify the gait events from smooth signals [77] [31] [32] [33] 

[34] [78]. De-noising can be considered as the combination of the preprocessing steps that are 
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performed to minimize the effect of noise (e.g., by filtering) and sensor misplacements (e.g., by 

considering a reference position for the sensor). For this second source of error, in previous 

works, it has been assumed that the correction of acceleration and angular velocity is necessary 

due to the inclination correction of the sensor and the effect of the gravity on the signal [34] 

[79]. 

2.3.2 Segmentation  

On-body sensors are collecting and continuously outputting streams of data and one important 

task is to divide this incoming data stream into segments, in order to be able to associate, to 

each segment, some relevant information associated with the activity that is monitored within 

that segment. In the past, various methods have been applied to divide the signal into 

segments, the most common ones among them being the use of fixed window length and the 

application of event-based windows. 

2.3.2.1  Window-based segmentation 

In this technique, the data stream is divided into consecutive windows of fixed length. In the 

case of physical activity recognition, different window lengths have been used in the past 

studies: 1s [53] [11], 2s [80] [22], 3s [17], 4s [15], 5s [81], 6.7s [13] 10s [12] [5] [26] up to 30s 

[82]. Time windows can be overlapping [82] [13] [83] [81], or disjoint [84]. One limitation of this 

approach is that problems can arise if an activity lasts for shorter or longer time periods than 

the pre-defined window length.  

2.3.2.2  Event-based segmentation 

In terms of gait event detection, a gyroscope placed at the shank has been proven to be 

acceptably accurate in healthy gait walking up and down an incline [77] and in pathological [63] 

[62] and in healthy gait when walking on level ground [63] [64]. Gyroscope placed on the foot 

and on the shank has been used for locomotion pattern classification, including descending and 

ascending stairs [31] [85] [32], and it was concluded that it is possible to detect gait events from 

the locomotion activities performed by the subjects. With an event-based segmentation, foot-
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off or foot strike events are used to dynamically define the length of the successive windows: 

the size of the windows thus depends on the type and duration of the activity. 

A number of different approaches have been proposed for identifying either foot strike or 

foot-off (or possibly both events) from body-worn sensor signals. Chen et al. extracted all peaks 

(mid-swing) from the accelerometer anterior-posterior component, and used the center of two 

consecutive peaks to identify the flat-foot event within a search window that is a part of the 

estimated gait cycle [31]. In [86], each foot-off event was detected based on the local minimum 

search from the expected foot-off point to zero-crossing of the next swing phase. 

2.3.3 Features extraction  

Extracting useful information from the raw segmented data facilitates to construct an effective 

and efficient activity recognition system, both computationally and performance-wise.  In 

general, standard classification algorithms are not directly applied to raw time-series data. 

Instead, we first transform the raw time series data into useful information [87]. To accomplish 

this different time domain, frequency domain and heuristic features have been calculated from 

the segmented data in the activity recognition problems.  

2.3.3.1  Time domain features  

Time-domain features are simple statistical measures which are derived from the segmented 

data. Most commonly used time-domain features in activity monitoring are the variance, 

median, kurtosis, mean, skewness [88] [20], standard deviation [12] and interquartile range 

[76]. 

2.3.3.2  Frequency domain features  

Frequency-domain features are the coefficients derived from the coefficients of the Fourier 

transform, normally using the fast Fourier transform (FFT). These coefficients represent the 

amplitudes of the frequency components of the signal thus giving information on the frequency 

distribution of the signal energy. Different methods can then be used to characterize the 

spectral distribution from these coefficients.  
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For example, a subset of the different FFT coefficients can be used [22] [25]. Alternatively, 

information from a number of coefficients can be combined to give a single feature. Examples 

include spectral energy, which is the sum of the squared FFT coefficients within a specific 

frequency range [89] [11] and the frequency-domain entropy, which is the normalized 

information entropy of the FFT components [13]. 

2.3.3.3 Other features  

Different methods have been used to derive certain heuristic features to quantify the 

amplitude of the data. Before these features are derived, a high pass filter is applied to the 

signal to remove any baseline offset. These features include the signal magnitude area [69], 

peak-to-peak acceleration [90], mean rectified value [91] and root mean square [73]. This type 

of feature is often used to differentiate between static and dynamic activity [69]. 

2.3.4 Features selection and dimensionality reduction 

Each individual has its own way of carrying out movement, which results in the variety of 

different patterns under the same movement type. Even the variation in the same movement 

may occur in an individual over a long period of time. Thus, this behavior leads to variability in 

the features calculated from body-worn sensor data [92]. Hence, it is a need to identify the 

robust features set which can effectively differentiate among different activities, but should 

show little variation among the different subjects and the same movements [93]. Moreover, it 

is important to minimize the redundant features as this can reduce accuracy with some 

classification methods and unnecessarily increase the computational cost [94]. 

A number of different feature selection techniques have been used to identify the useful 

features for activity classification. These methods are generally divided in to three groups, 

wrapper methods, filter methods and embedded methods. Zheng et al [95] compare the 

performance of one filter method: Relief-F and two wrapper methods: Wrapper Method based 

on Single Feature Classification (SFC) and Wrapper Method based on Sequential Forward 

Feature Selection (SFFS) on the classification of the physical activity. In [84] dimensionality 

reduction method: Principle component analysis (PCA) method and wrapper methods: 
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Sequential Backward Feature Selection (SBFS) and SFFS method has been used to compare their 

performance on the activity recognition. Both studies come up with the better performance of 

the SFFS method. 

2.3.5 Learning  

In ADL recognition systems, the appropriate feature vector which has been calculated from a 

segmented sensor data is forwarded to a classification algorithm. These techniques usually fall 

under the Machine Learning term, where classification algorithm interprets, analyzes and 

associates each feature vector to one activity class. Learning methods are usually divided in to 

three classes:  supervised, unsupervised and semi-supervised. In supervised learning, target 

class (e.g. walking, standing, running) against the feature vector is provided to the classifier, so 

that the algorithm is correctly trained and associates the feature vector to the corresponding 

class. While in unsupervised learning, the algorithm assigns the feature vector to a cluster 

based on some similarity criteria among them, without having the prior knowledge of the target 

class of the feature vector. The clusters assigned by the algorithm represent the activity classes 

e.g. walking, standing, running. Semi supervised methods combine a usually small amount of 

labeled data with large amounts of unlabeled data to train the classifier.  

Supervised learning methods have been commonly used in the literature of activity 

recognition problems. As of now, no agreed method is universally considered as performing 

best in this context, since their behavior and performance vary depending on the type of 

activities to be monitored. Commonly used supervised classification methods in the field of 

human activity monitoring are the following: 

 Decision tree is commonly used in classification problems using the concept of information 

gain or Gini gain [96]. Various decision tree classifiers including C4.5 [13] [81], J48 [12] [97] 

[89] and decision table [97] [13] and best first tree [24] have been used in activity 

monitoring. 

 K-nearest Neighbours (kNN) is an instance-based learning algorithm which classifies the 

instances by comparing them with pre-learned training samples [97] [89] [22] [24]. 
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 Nave Bayes is a supervised approach that uses probabilistic knowledge to assign the test 

sample to a class [97] [16] [81]. 

 Support Vector Machines (SVM) is based on the statistical learning theory introduced by 

Vapnik in the early 1990s [98]. [99] [16] [85] [81]. 

 Artificial neural networks (ANN) including Multi-Layer Perceptron neural networks [100] 

[21] [24] [11]. 

 Markov models, including hidden Markov models (HMM) [101] [102] [103]. 

 Threshold based classifiers [53] 

Unsupervised learning approaches are by far less commonly used for activity monitoring. 

These methods construct models directly from unlabeled data, using e.g. density estimation or 

clustering. Examples of unsupervised learning of different activities are presented e.g. in [104] 

[105]. Finally, some of the studies find promising results with semi supervised learning methods 

applied for human activity monitoring. Semi supervised approaches for activity recognition are 

used in [106] [107] [108] [109]. 

2.4 Conclusion 

In this chapter a general overview of recent approaches related to physical activity recognition 

has been presented. A wide range of technologies, methods and solutions have been 

highlighted for the different components of activity recognition systems. Four major topics 

have been discussed in this chapter, the type of sensing approaches, activity recognition 

systems inspired applications, and finally different machine learning methodologies. The rest of 

this thesis will only focus on a fraction of the here presented approaches, which is specified in 

this section.  

The goal of the study is to check the physical active status of an individual in daily routine. 

So over the wide range of activities recognized in the previous studies, this thesis focuses on 

the most common daily living activities with significant energy expenditure, thus focusing on 

locomotion: walking, sitting, standing, running etc. These activities are associated with the 

wellbeing of a person and could be helpful to find the health status. A complete list of the 
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activities used in this work is based on the study being carried out and is described in section 

3.3. 

From the above-mentioned sensing technologies, an inertial sensor including 

accelerometer and gyroscope has been used to identify and classify the daily living activities. 

Therefore, as suggested by various related works, the combination of them will be beneficial for 

recognizing the physical activities. 

Considering machine learning methods, Chapter 3 will present a complete data processing 

chain for physical activity recognition. This includes the evaluation of preprocessing, 

segmentation techniques, feature extraction and selection and learning methods for activity 

recognition.  

Finally, as discussed in Section 1.1, the main motivation for developing different methods in 

this thesis is to be used in healthcare applications. With the precise monitoring of physical 

activities, the here presented solutions can tell how strictly individuals follow general or custom 

recommendations given by physicians and regarding daily mobility. Moreover, the proposed 

approaches can also be directly used in general fitness applications, where detailed information 

about the intensity, quality, and duration of the performed physical activities is of interest for 

the user. 
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3 

3.1 Recording tools, experimental design, datasets 

 

 

This section describes the sensor technologies used to collect the activity data, and illustrates 

the design of the experiments performed in the different studies. A brief description of the 

software tools used to collect and process the inertial sensor data is also discussed in the 

respective sections of this chapter. Finally, the datasets used in the different studies will be 

described.  

3.1 MEMS-Inertial measurement unit (IMU) 

The acronym MEMS (Micro-Electro-Mechanical Systems) refers to microscopic devices with 

sizes between 1 micron and 1 mm. This technology enables to combine, in a single silicon chip, 

electrical and electronic components with mechanical elements, optical, or fluidic. The inertial 

sensors are composed of mechanical and electronic elements and measure acceleration and 

angular velocity with respect to one or more axes in a reference three-dimensional space.  

3.1.1 Accelerometers 

The most widespread MEMS accelerometers fall into two categories: piezoresistive and 

capacitive [110].  
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Capacitive accelerometer  

Figure 3-1 shows the principle of operation of a very simple capacitive accelerometer. The 

device can be schematized as a second order mechanical system, composed by a mass, a spring 

and a damper. 

When the external acceleration is acting on the system, the mass moves relative to the 

system in the opposite direction, and the displacement is then detected by a capacitive system. 

This is formed by a series of electrodes connected to the mass, which are free to move, and 

others are fixed to the substrate. The displacement of the mass causes a change in the 

capacitance which is measured by the electrostatic system. So by the direct measurement of 

this change it is possible to calculate the value of external acceleration. 

 

 

Figure 3-1 Schematic of Capacitive accelerometer 

 

Piezoresistive accelerometer 

The mechanism of a piezoresistive accelerometer is very similar to the one of a piezoresistive 

pressure sensor. Some piezoresistors (shown as black dashes in figure 3-2) are located on the 

upper surface of the device and electrically connected so as to form a Wheatstone bridge. 
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When an acceleration acts on the system, the proof mass reacts by moving and then deforming 

the thin foil placed over it to which it is connected. This deformation causes the change in 

resistance of the piezoresistors. The electronic circuit detects the resistance change and 

calculates the amplitude and direction of acceleration of the electric signal. 

 

Figure 3-2 Schematic of piezoresistive accelerometer 

3.1.2 Gyroscope 

Most MEMS gyroscopes are based on energy transfer between two vibratory modes of a 

structure, caused by the acceleration of Coriolis. The Coriolis acceleration is the result of 

Newton's laws applied in a rotating frame. The gyroscope converts the angular velocity input in 

a shift of its mass test, using the Coriolis acceleration [111]. In Figure 3-3 shows the principle of 

a simple gyro scheme. 
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Figure 3-3 Schematic of MEMS gyroscope 

The gyroscopes, therefore, are based on a mechanical flow into resonance structure 

(Driven mode) that excites secondary oscillation (Sense mode), via the Coriolis acceleration, 

caused by the rotation. The amplitude of this secondary oscillation is directly proportional to 

the angular signal to be measured.  

An obstacle to this technology is the small amplitude of the Coriolis force (Force Sense) 

than that which is applied in the orthogonal direction (Driven Force). One way to counter this 

problem is to use structures with a high output/input ratio, such as for example vibrating 

structures in resonance, the Sense mode. 

The continuous and rapid technological development has allowed us to produce high-

performance MEMS inertial sensors and reliable [112] allowing its use in different areas of 

technology at a relatively low cost. The use of these sensors is widely spread and can be found 

in the field of automobiles (for example, used as support to the GPS survey, in airbag systems, 

in control systems for safety belts, of the active suspensions and more) or in the field consumer 

electronics (image stabilizers, tilt-sensor, free-fall detection). In the medical field you will have 

applications in the control of assistive devices [66] [113], activity monitoring [114] and 

measures of posture and movement [115] [116]. 
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In this work an inertial sensor consisting of a tri-axial accelerometer and tri-axial gyroscope 

is used to construct the activity datasets.   

3.2 Device – BiolabIMU 

BiolabIMU is a self-built-in wireless device consisting of a tri-axial accelerometer and a tri-axial 

gyroscope interfaced with Bluetooth, and equipped with a microcontroller, shown in figure 3-4. 

An ADXL345 tri-axial accelerometer measures acceleration in a selectable range of ± 4 g with a 

fixed resolution of 10 bits (Analog Devices Inc., 2011). The ITG3200 gyroscope is composed of 

three independent gyros, which measure the angular velocity around the X axis (roll), y (pitch), 

and Z (yaw) (InvenSense Inc., 2010). It provides a digital output in a range of ± 2,000 deg / s 

with a resolution of 16 bits. The sensitivity is 14,375 LSB for deg / s. The WT - 12 is a Bluetooth + 

EDR (Enhanced Data Rate) class 2 with data transfer speeds up to 2.3 Mbps and firmware 

iWRAP (Bluegiga, 2009). It has an integrated antenna and operates in the ISM band (Industrial 

Scientific and Medical) at 2.4 GHz, which allows communicating with the remote computer. The 

ATMEGA328 microcontroller is a C - MOS 8 bit ultra-low power based on the AVR RISC 

architecture produced by Atmel (Atmel Corporation, 2011). This unit has been used in most of 

the studies described in this thesis. 

 

Figure 3-4 Biolab IMU front and back view 
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3.3 Data collection 

Three different datasets were collected over different daily living activities. A brief description 

of each dataset is given below, together with the experimental design associated with the 

dataset. 

3.3.1 BioLab1 dataset 

3.3.1.1  Device  

Experiments were performed by using a BiolabIMU attached to the waist of the subjects with 

axes along anterior posterior, vertical and medio-lateral directions. Data were transmitted to 

the system through Bluetooth connection with a sampling rate of 100 samples/s (range of the 

sensor ± 4g).  

3.3.1.2  Participants 

Nine younger adults (5 females and 4 males, ages 22 to 34 years, height 171.4 ± 6.7, weight 

68.37 ± 14.4) were recruited for the experimentation. All subjects were healthy without any 

pathological disorder. Each subject was pre-informed about the activities and path by giving a 

written note.  

3.3.1.3  Protocol 

Subjects were asked to follow a path of different physical activities at their own selected speed. 

The whole path was organized inside a building: the circuit involved standing (with random 

durations in the range 2–6 s), stand-sit, sitting (2–6s), walking (approximately 115 m path, with 

three 90° different turns), stair descending (48 steps, with landing on 12th, 24th and 36th step), 

brief walking (4 or 5 steps), standing (2–6s), stand-sit, sitting (2–6s), stair ascending (same 

flights of stairs) and then walking. Sitting activity was performed on two different seat heights 

(44cm and 36cm). Each time, transitions between sit and stand were performed 4 times, and 

the time taken by the participant during sitting and standing varied between 2 to 6 s, to check 

the ability to identify activities lasting for few seconds. 
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3.3.2 BioLab2 dataset  

3.3.2.1  Device  

Experiments were performed by using a BiolabIMU fixed on the shank (lateral position) of the 

dominant leg. The accelerometer x-axis was positioned in the anterior-posterior direction, the 

y-axis in the inferior-superior direction and the z-axis in the lateral-medial direction. The 

gyroscope rotations were defined as follows: x-axis (coronal plane); y-axis (transverse plane); z-

axis (sagittal plane). 

3.3.2.2  Participants  

Nine healthy adults (5 females and 4 males, ages 29 ± 5 years, height 171.4 ± 6.7, weight 68.37 

± 14.4) were recruited for the experimentations.  

3.3.2.3  Protocol  

Experiments were carried out in the university building, except running, which was performed 

outside the campus building. All participants were asked to carry out activities at their self-

selected speed and had to walk on a predefined route. During the first 5 s of the experiment, 

the subjects stood still in an upright position to initialize the offset; then, they followed a route, 

including a walking path of 50 m, opening and closing a door, stairs ascent (SA, staircase of 46 

steps), a few walking steps, opening and closing a door, running (outside the building along the 

path of about 150 m), opening and closing a door, stairs descent (SD), opening and closing a 

door, and walking. At the end/start of each activity, subjects stood still for few seconds in order 

to label the data correctly. Data were collected at a sampling rate of 100 Hz. Labeling was done 

by visual inspection by one experimenter. 

3.3.3 BioLab3 dataset  

In this dataset, data were recorded from seven healthy adults with the same sensor settings as 

mentioned above. Subjects participated in this dataset were different from other datasets. 

Three physical activities were performed by the participants; walking, stairs ascending and 
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stairs descending. In this dataset, thus, no running activity was performed and is used in the 

studies as validation data along BioLab2dataset.  

3.4 Software tools 

In this study two software tools; Matlab and Weka are used for signal processing and 

classification of daily living activities.  

3.4.1 Kinematic Data Viewer App  

A java based Kinematic Data Viewer App was developed to streaming data from inertial sensor 

to laptop (See Appendix B for further details).    

3.4.2 MATLAB 

Matlab is a high-level language for scientific and engineering computing, used for curve fitting, 

data classification, signal analysis, and many other domain-specific tasks. It provides a graphical 

interface for visualizing data and tools for creating custom plots. In this study, signal 

preprocessing, segmentation and feature computation are performed by using Matlab 

environment.  

3.4.3 WEKA 

Weka (Waikato Environment for Knowledge Analysis) is a free machine learning software 

written in Java. It provides a tool to implement a large number of data mining algorithms and a 

user friendly graphical interface to manipulate and visualize the output results. A great 

description of the Weka toolkit can be found in [117], includes the machine learning concepts 

the toolkit uses, and practical guide for using the different tools and algorithms. In this study for 

the training and evaluation of all classifiers, the Weka toolkit is used [118].  
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4 

4.1 Activity recognition approach 

 

 

This section introduces the overview of the design of the activity recognition system 

implemented in this thesis. A brief description of the methodologies used to evaluate the 

activity data is discussed in the respective sections of this chapter.  

4.1 Overview of the approach 

The proposed approach examined in this study is to automatically recognize human activities 

using a single inertial sensor, and it is composed of some main steps: a systemic analysis was 

performed on the collected datasets which facilitates to implement those parameters which 

makes the system light weight, implementable in the real time and meanwhile maintains the 

accuracy of the activity recognition; this means the consideration of de-noising steps, 

implementation of possible low computational segmentation approaches, and then feature set 

and the classification. A benchmark dataset PAMAP2 is also used to validate the proposed 

approach.  

4.2 Activity recognition approach components 

Activity recognition process from sensor data can be divided into four main steps: 1) signal 

preprocessing, 2) segmentation, 3) feature extraction and selection and 4) classification.  
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4.2.1 Preprocessing 

Signal preprocessing usually includes the band-pass filtering of the signal to remove the 

undesirable noise from the signal. The work presented here focuses on the effect of the most 

common pre-processing steps used when gathering inertial sensor data for activity recognition, 

i.e., inclination correction and filtering. 

4.2.1.1 Inclination Correction 

Due to the nature of the monitored physical activities, the sensor attached to the body is prone 

to move with respect to the body segment, thus producing an unintended bias in data 

recording. To minimize the influence of sensor inclination, each data channel value was 

removed from the average value obtained when standing still for 5 s before starting the activity 

path. Further detail is given in section 5.4.  

4.2.1.2 Signal Filtering 

To remove the noise from the signal, an online filter was also implemented to smooth the 

current sample by applying the following Equation (4.1): 

                                            

                                                     ∑       
 
     ∑       

 
        (4.1) 

 

where   is the filtered output of the input  , and   and   are the coefficients of the first 

order low pass filter that were computed by considering a cut-off frequency of 10 Hz, as a cut-

off frequency of 10 Hz is motivated by previous works [31] [85]. We have applied different 

orders of low-pass filtering (i.e., choosing different values for N and M) and chose N = M = 2, as 

this configuration offers pretty low complexity for the implementation, still giving fair values in 

terms of selectivity (−15 dB at twice the corner frequency, set at 10 Hz). Further detail is given 

in section 5.2. 
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4.2.2 Segmentation  

Two segmentation techniques have been used in this work: static segmentation and dynamic 

segmentation. 

4.2.2.1  Fixed length window segmentation (Static) 

The length of the window introduces a real-time recognition delay equivalent to the duration of 

the window. The longer the window duration is, the longer the real-time recognition delay will 

be. In this study, data were segmented using sliding windows of different size (0.5 s, 1 s, 1.5 s, 2 

s, 2.5 s and 3 s) to find out their effect on the daily living activity classification. Windowed data 

were labeled based on the ground truth knowledge of the activities: when dealing with more 

than one activity within a window, this was labeled by considering the activity that was more 

present within that window. Use of static segmentation technique can be found in section 5.1 

and 5.3. 

4.2.2.2  Event-based segmentation (Dynamic) 

In dynamic segmentation, gait events were identified from the locomotion activities data to 

segment the signal into a gait cycle. Angular velocity in the sagittal plane    was used for the 

gait cycle detection, based on the identification of the foot-off events. To achieve this task, local 

minima and maxima were updated and the foot-off event was identified when specific 

conditions were met, as it will be shown in the following. 

The algorithm starts to find two successive zero-crossings (a negative zero-cross followed 

by a positive zero-cross), that are hypothesized as characteristic of the swing phase: the swing 

phase is thus segmented if the maximum value of the angular velocity in that direction is 

greater than 1.8 rad/s; under this circumstance, its location is hypothesized as the mid-swing 

position. Once the swing phase is identified, the algorithm starts searching for the following 

minimum value, as it corresponds to the foot strike event. Once the foot strike event is found 

(and located at    ), the algorithm searches for the local maximum      and local 

minimum     , and then verifies the following condition:  
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If the equation is satisfied,       is saved as the estimated location of the foot-off event. If 

this condition is not satisfied within 1.3 s (as it may happen in the case of transitions, or when 

the person is resting), then the algorithm discards the current saved swing phase and starts the 

search for the next swing phase. Each activity cycle – which represents one segmented window 

over which the features will be extracted – is thus defined by using two consecutive foot-off 

events. Dynamic segmentation methodology is outlined in Figure 4-1 and is adopted in section 

5.2. 

 

Figure 4-1 Event-based segmentation algorithm work flow. 
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4.2.3 Feature computation  

4.2.3.1  Feature extraction 

For each segment, a set of features must be extracted to identify the activity. In this study, 

different time and frequency domain features that are used in the literature for the activity 

recognition problem were derived from each axis and magnitude of the inertial sensor signal 

[25] [29]. 

Signal magnitude is considered as orientation independent and is useful in solving the 

sensor orientation inconsistency problem, and it is calculated as 

     √  
     

     
        √  

    
    

  
 

where      is the magnitude of the  acceleration signals and      is the magnitude of the 

gyroscope signals. Table 4-1 shows the list of features used in this study. 

Table 4-1 Features description 

No.  Features  

1 Mean value along each axis (x, y and z) and magnitude 

2 Median value along each axis (x, y and z) and magnitude 

3 Skewness value along each axis (x, y and z) and magnitude 

4 Kurtosis value along each axis (x, y and z) and magnitude 

5 Standard deviation value along each axis (x, y and z) and magnitude 

7 Correlation between axes (x_y, x_z, y_z, x_mag, y_mag, z_mag) 

8 Energy value along each axis (x, y and z) and magnitude 

9 1
st

 five FFT coefficients  
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Time domain features 

Time domain features which are derived in this study are mean, median, skewness, kurtosis, 

standard deviation and correlation-coefficients. 

Mean and median: Mean is the average value of the signal over the segment. It is useful to 

differentiate among static and dynamic activities. Mean is calculated as 

    
∑   

 
   

 
 

 

Median for even and odd n is calculated as 
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Standard deviation: Standard deviation has been extensively used in activity recognition studies 

and is calculated as 

      √
∑          

 
   

 
 

Skewness: Skewness is calculated as: 

           
∑        

  
   

   
 

where   is the standard deviation. 

Kurtosis: Kurtosis is calculated as: 

           
∑        

  
   

   
 

Correlation: Correlation has been considered to improve activity recognition, when activities 

involve movement of multiple body parts [88]. It is also considered helpful for differentiating 
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among activities that involve translation in just one dimension [81]. For instance, with 

correlation between axes it is possible to differentiate walking and jogging activity from stairs 

ascending and descending. Correlation is the ratio between the covariance and the product of 

the standard deviation between each pair of axes, as shown in the equation below: 

           
        

    
 

where          is the ratio of covariance between the   and   axis of acceleration and 

     is the product of the standard deviations. 

Frequency domain features  

To obtain the frequency domain features, signal was first transformed into frequency domain, 

using a Fast Fourier Transform (FFT). To extract useful information from FFT signal, following 

features are used. 

Energy: The periodicity in the data is reflected in the frequency domain. To capture data 

periodicity, the energy feature was calculated. Energy is the sum of the squared discrete FFT 

component magnitudes of the signal. The sum was divided by the window length for 

normalization. If   ,      ... are the FFT components of the window then; 

        
∑      

    
   

   
 

where     are the FFT components of the window for the x axis and w is the length of the 

window. 

FFT coefficients: The first five FFT coefficients (as calculated over each segment) were used, as 

these contain the main frequency components (up to 5 Hz). 

4.2.4  Feature selection 

Linear forward feature selection (LFFS) and SVM based feature selection techniques are used to 

obtain the most appropriate features to reduce the complexity and computational of algorithm.  
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These techniques are discussed in sections 5.2 and 5.3. 

4.2.5 Classification  

We tested the recognition performance of the five different classifiers; Naïve bayes (NB), k-

nearest neighbor (k-NN), Decision tree (DT), artificial neural networks (ANN) and support vector 

machine (SVM) classifier on the selected features. Some studies pointed out the positive 

performance of these classifiers in the activity recognition problem [16] [13] [22] [11] [21] 

[119]. 

4.2.5.1  k-Nearest neighborhood 

Instance-based classifiers such as the k-NN classifier, classification of unknown instances can be 

done by relating the unknown object to the known according to some distance/similarity 

function. Those instances which are less apart from each other by applying some appropriate 

distance function have more chances to put in a similar class as compared to those having more 

distance (Figure 4-2).  

k-NN is a “lazy” algorithm; it does not use the training data objects to do any generalization. 

In other words, the training phase in k-NN is too short or quick that it is considered to be no 

real training in k-NN. So this type of classifier has less work to do at start but when actual 

classification is performed then these classifiers become more expensive.  

 

 

 

 

 

 

? 

Figure 4-2 K-nearest neighborhood 
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Parameters selection: In the k-NN algorithm, one problem is the best choice of K number of 

nearest neighbors. In this study, 5 nearest neighbors have been chosen.  

In the k-NN classifier, different distance metrics are used to classify between a test sample 

and the specified training samples. Euclidean distance is used in this study. Let xi be an input 

sample with k features                   , n is the total number of input vector (i=1,2,…,n) and 

k the total number of features (j=1,2,…,k) . The Euclidean distance between two samples is 

defined as 

 
                                    √         

           
                                                                                 

4.2.5.2  Support vector machine 

This approach of classification is considered as a good candidate due to its high generalization 

performance as it does not require any addition of prior knowledge, even when the input 

dimension is very high. It is a kernel based classifier which was initially developed for linear 

separation to classify the data in to two classes only.  

The main idea behind this technique is that it maps the input features vector into a high-

dimensional space to construct a maximal separating hyper-plane as the decision-making 

surface. Utilizing this decision boundary, the algorithm decides whether a new instance falls 

into one class or the other. Figure 4.2 shows the simple linear support vector machine. Major 

task of SVM is to maximize the margins between two classes of the hyper plane [120]. 

Linear classifiers using support vector machines: In linear classification, SVM divides the 

data among two classes by constructing a straight line hyperplane (Figure 4-3). Consider a set 

‘a’ of training samples                                      is the class label to which 

xi belongs. Generalized form of linear classification function is             which draws a 

separating hyper plane        . To satisfy         | for all xi, to maximize the distance 

between the hyperplane and the closest point we have to normalize g(x). 
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Among the separating hyperplanes, optimal separating hyperplanes (OSH) is the one for 

which the distance to the closest point is maximal [121]. Since the distance to the closest point 

is l/ ||w||, to find the OSH amounts to minimizing ||w|| then the objective function will be: 

           
  ⁄       

 ⁄                                                                                

 

 

 

 

 

 

 

 

 

Nonlinear classifiers using support vector machines: In nonlinear problem where data is 

not separated by a straight line, a penalty factor and slack variables are encountered and the 

objective function would be modified to 

        
 

 
        (∑  

 

 

)                                                                                 

On the other hand, in nonlinear problem the input data can be mapped to high dimension 

feature space by applying nonlinear function, so that the resultant feature space can be easily 

separated by constructing hyper plane (Figure 4-4). As a result dot product in the linear kernel 

is represented as  

          (         )                                                                                                    

Class A2 Class A1 

xw= γ+1 xw= γ-1 

xw= γ 

Figure 4-3 Linear support vector machine 
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Equation below shows the final classification function for nonlinear problem. 

 

 

 

 

 

 

 

 

 

Inner dot product (         ) defined the kernel function          

SVM parameters: In the present study, the multi-class problem was solved by using pairwise 

classification (1-vs-1) [122]. Different kernel methods with varying complexity parameters were 

tested, and a polynomial kernel with complexity value of 1 performed best on the problem. The 

Kernel function used in this study is: 

Polynomial kernel function                  (     )  (    
    )

 
                                 

4.2.5.3  Naive bayes classifier 

Bayesian classifiers (Naïve Bayes, NB) are statistical classifiers that calculate the probability of a 

given sample to belong to a corresponding class. This classifier works on Bayes’ theorem. In NB 

classifiers attributes are independent from each other on a given class. This assumption is 

known as class conditional independence [123]. 

Bayes theorem 

Figure 4-4 Non-linear support vector machine 
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Let X = {x1, x2    xn} are total number of samples having some attributes and each sample 

belong to a specific class. In Bayesian terminology, X is considered as “evidence”. Let H is a 

hypothesis and our objective is to find out P(H|X) which is the probability of hypothesis H 

given the X. In other words, we can say that it is the probability that sample X belongs to class 

C. P(H) is the prior probability of H  and P(H|X) is a posterior probability of H conditioned on 

X.  

Classifier working 

The naive Bayesian classifier works in the following way: let S be considered as a training set of 

samples, each of which are labeled with class labels. There is a total of k classes, C1,C2, . . . ,Ck 

and n is the total number of samples X = {x1, x2, . . . , xn}. Consider an unseen sample X, the 

classifier will assign it to a class, to whom its posterior probability will be highest. In below 

mentioned condition, X belongs to Ci if,                  for any j different from i. 

Thus the class that maximizes P(Ci|X) will be selected as predicted class. The class Ci for 

which P(Ci |X) is maximized is called the maximum posterior probability. By using Bayes 

theorem 

                        ⁄                                                                                                                                

OR                
                

        
                                                                                               

If the prior probability of class, P(Ci), are unknown, then we take each class as equal, that is, 

P(C1) = P(C2)= ... = P(Ck), and our goal will be to maximize the        . Rather we maximize 

the             . Class prior probability may be calculated by  

                   ⁄  

For a given problem to calculate the         following formula is applied 

        
 

√    
   (

       

   )                                                                          
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Where σ2 and μ are the variance and mean of the sample belongs to class Ci and x is the 

value of test sample attributes.  The probabilities P(x1|C1), P(x2|C2), . . . , P(xn|Ck) can be 

calculated from equation 3.14.  

Naive bayes parameters: In this work, the NB method included a supervised discretization, to 

convert numeric attributes to nominal ones, as it considerably increased the performance of 

the algorithm [12]. 

4.2.5.4  Artificial Neural Network 

An artificial neural network (ANN), a system of exploitation of the biological basis of neural 

networks is, in other words, an emulation of a biological neural system. The key objective of the 

development of an ANN is to develop a computation model which work like human brain and 

be able to solve hard problems in less computation time than traditional approaches [124].  

 
Figure 4-5 Biological Neuron 

Neural networks show a remarkable ability to understand the meaning of complex or 

imprecise data, and can be used to extract patterns and detect trends that are too complex to 

be noticed by humans or other computer techniques. The first artificial neuron in 1943 

produced by the neurophysiologist Warren McCulloch and the logician Walter Pits [124]. 
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Figure 4-6 Structure of Perceptron 

Artificial neural networks are useful to solve various problems like data clustering, 

optimization, pattern matching and classification. The structure of a neural network is like a 

directed graph in which different nodes, called neurons, in layers are connected to each other 

with some associated weights. Output of the neuron is determined through an activation 

function which is the sum of the product of inputs with their associated weight to that neuron 

[125]. ANNs are classified based on the number of layers: they can be single-layer or multilayer. 

Difference between single layer and multilayer networks is that in single layer networks the 

input layer neurons are directly connected to output layer neurons whereas in multilayer 

networks a few intermediate layers (named hidden layers) of neurons are present between 

input and output layers.   
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Figure 4-7 Multilayer ANN 

Feed forward back propagation artificial neural network (FP-ANN) is one kind of multilayer 

ANN which is used for classification purposes using supervised learning. Training of network 

involves three phases. First is the feed forward of the training input pattern. Second phase is 

the calculation and back propagation of the associated error and third step is the adjustment of 

the weights such that reduced the classification errors. Once the network gets train it can be 

used for testing purpose [126]. 

ANN parameters: In the present work, a back propagation neural network with one hidden 

layer with 14 neurons and 500 training epochs provided the best results.  

4.2.5.5  Decision Tree 

Decision Trees (DT) are commonly used in classification problems using the concept of 

information gain or Gini gain [96]. A decision tree is a flow-chart-like structure, where each 

internal (non-leaf) node denotes a test on an attribute, each branch represents the outcome of 

a test, and each leaf (or terminal) node holds a class label. The topmost node in a tree is the 

root node. Training data in the tree is assumed to split on the basis of values of features that 

give maximum information gain.  

DT parameters: In this study DT is implemented by using the best first tree (BFTree) learner 

where the best node is expanded first. The best node is the node whose split leads to the 
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maximum reduction of impurity (Gini index) among all nodes available for splitting [96]. In this 

case, BFTree was evaluated by applying post pruning and a minimal number of 2 instances in 

the terminal node.  

4.3 Conclusion 

This chapter presented the state of the art in the activity recognition based on inertial sensors. 

Low computational preprocessing and segmentation techniques have been presented. Both 

time-domain and frequency-domain features were considered due to their high usability and 

performance in activity recognition studies. A variety of classification models including DT, NB, 

k-NN, SVM and ANN were selected. Use of these methodologies and their performance on the 

activity recognition studies are presented in the next coming Chapter 5. 
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5 
5.1 Evaluation 

 

 

This section presents the summary of the standard procedures that have been used to evaluate 

the accuracy of the activity recognition algorithms described in the previous chapter. Useful 

parameters which are important to consider but are usually neglected when evaluating the 

activity recognition algorithm are considered in this study. The first section of the chapter will 

present the measures used to evaluate the activity recognition algorithms. Results on the 

different methodologies adapted to recognize the daily living activities will be presented in the 

remaining sections.  

5.1 Reporting and analyzing activity recognition results 

This section describes which performance measures will be useful to evaluate the activity 

recognition algorithms implemented in this thesis.  

5.1.1 Training and testing data requirement 

It is believed that performance of the classification scheme depends on the amount and type 

(both subject-independent and subject-dependent) of the training data used. Both of them will 

be described in the following. 

Subject-dependent validation 

Previous studies in activity recognition suggested that many algorithms can perform well by 

using subject-specific training data. There are two commonly used ways to perform a subject-

dependent validation. 1) One way is to perform n-fold cross validation; data from all 

participants were divided into n subsets, algorithms were trained on n-1 folds and tested on the 
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remaining fold. This procedure is repeated n times, until all folds went through testing phase. 

Accuracy results are then generally calculated as the average over these n repetitions. The 

division of data into n folds is motivated by previous studies [12] [21]. 2) An alternative way is 

to divide a dataset into train and test sets, and assign data to either the training or to the 

testing, according to a specific percent split, usually set at 70 or 80 percent for training data and 

the remaining for test data. This procedure can be repeated by repeating the random 

assignment a number of times, and results from all iterations are averaged to obtain the final 

performance of the algorithms. The selection of the percentage spilt is tricky, as it depends on 

the size of the data samples.   

Subject-independent validation 

In the leave-one-subject-out cross validation, which is used to test the performance in the 

subject-independent case, the classifiers were trained on all the subjects except one, which was 

used for testing, and the procedure was repeated until all the subjects were used in the testing. 

This thesis will evaluate the performance of the developed algorithms on both subject-

dependent and subject-independent validation. Performance on validation techniques will be 

reported in terms of overall accuracy across multiple activities, and in terms of accuracy per 

activity. Additionally, in subject-dependent validation different percentages of the training data 

will be used to find the appropriate percentage that needs to be used to optimize classification 

performance. 

5.1.2 Algorithm efficiency constraints 

Some other constraints related to the efficiency of the recognition algorithms to be considered 

in the study are associated with the possibility to have a real-time classification of activities, 

instead of offline processing. In these conditions, the following are the points to be taken into 

account: 

Real-time recognition delay: Some real-time recognition algorithms introduce delay between 

activity occurrence and detection. Shorter recognition delays may allow for better point of 

decision interventions.  
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Real-time recognition of activities: An algorithm capable of recognizing activities in real-

time, must be light in terms of computational complexity, in such a way that it may be run on 

reduced resources for computing (mobile phones, smartwatches, bracelets, …). 

5.1.3 Performance measures  

The performance of the activity recognition algorithms will be evaluated by calculating 

commonly used evaluation matrices in activity recognition, such as: average accuracy, 

confusion matrix, sensitivity and specificity of each activity class. These are calculated as: 

          
                   

 
 

              
   

       
  

            
   

       
 

Where N is the total number of samples, TPi is the true positive or truly classified samples 

of the class, FNi indicates the false negative or misclassified samples of the class i, FPi indicates 

the false positive or wrong predictions. Sensitivity and specificity represents the recall and 

precision of the class. 

5.2 Sliding window based segmentation on the classification of daily 

living activities including transition activities 

5.2.1 Study contribution 

This study will investigate the impact of different window sizes on activity recognition, some 

activities that had short time duration (sit to stand, sitting, stand to sit and standing, all in the 

range 1-6 s) will be considered. In this way, a total of six different classes are defined: Stair 

descending, Stair ascending, Walking, Sitting, Standing, and one class is including all transitions 

between the previous five activities. Recognizing these activities is challenging when a single 

sensor is placed at the waist level, as they are highly similar in postural patterns (sit and stand) 
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and movement patterns (walking and stairs walking). By including transitions, it will be possible 

to determine whether the natural increase in accuracy corresponding to higher window size is 

counteracted by a decline in performance associated with transition misclassification. However, 

literature is scarce on the investigation of the effect of window size on classification accuracy of 

activities including transitions. The study will also evaluate the different percentages of training 

data splits to access the classifiers performance and hence suggests the desirable amount of 

percentage to be considered. 

5.2.2 Signal segmentation and feature extraction 

At first, the acceleration data stream underwent low-pass filtering (Butterworth, fifth order, 

cutoff frequency 18 Hz). Then, data are segmented using sliding windows of different size (0.5 s, 

1s, 1.5 s, 2 s, 2.5 s and 3 s) to find out its effect on the daily living activity classification. 

Windowed data are labeled based on the ground truth knowledge of the activities: when 

dealing with more than one activity within a window, this is labeled by considering the activity 

that was more present within that window.   

For each windowed data, a feature vector is calculated, with the following 22 time-based 

components:  

 Mean value along each axis, and average of mean values along the three axes 

 Standard deviation value along each axis, and average of the standard deviation 

values along the three axes 

 Skewness for each axis, and average of the skewness values along the three axes;  

 Kurtosis for each axis, and average of the kurtoses along the three axes 

 Correlation at zero lag between each axis pair, and between each axis and the 

magnitude acceleration.  

These features are chosen based on the consideration that computational complexity 

associated with their extraction is not demanding, thus making them easier to be used in a real-

time scenario, as compared to frequency domain features.  
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5.2.3 Classification models and performance evaluation 

In this work, five different classification methods; DT, k-NN, NB, SVM and ANN are used, to 

check the behavior of the classifiers among different window sizes. The parameters of each 

classifier are configured heuristically to achieve the highest recognition rate, as mentioned in 

section 4.2. 

The classifiers performance is evaluated through both subject-dependent and subject-

independent formulations. In the subject-dependent case, two different criteria to split the 

dataset into training and test are considered and independently tested: 

1) To perform the training of each classifier on the same amount of data samples across 

different window sizes, different percentages of the overall dataset are considered 

(12%, 23%, 35%, 46%, 58% and 70% of training data for 0.5, 1, 1.5, 2, 2.5 and 3 seconds 

of windows, respectively). In this way, it is possible to minimize the bias associated 

with having classifiers trained on different set sizes. 

2) To evaluate the accuracy of the classifiers on a balanced share between test and 

training, the training set is fixed at 70% of the overall dataset for each window size. 

In both cases, average accuracy is calculated both with Cohen’s kappa coefficient. Analysis 

of variance (ANOVA) and post-hoc Bonferroni tests are then performed to check for significance 

in classification accuracy differences among window size pairs.  

5.2.4 Results  

For each of the classifiers, results are reported in terms of the overall accuracy obtained for the 

proposed 6 different window sizes: 0.5 s, 1 s, 1.5 s, 2 s, 2.5 s and 3 s. Values are reported for the 

subject-dependent case first, and then for the subject-independent validation one. 

5.2.4.1  Subject-dependent validation with different percentage split  

Figure 5-1 shows the average classification accuracy for the different classifiers across the 

different window sizes, both for the same training sample size criterion, and for the 70%-30% 

split criterion. For each classifier-window size configuration, 10 randomized iterations were run. 
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In the subject-dependent case, a very reduced variation in accuracy appeared among the 

window sizes (1-3 s) and among classifiers, when the same amount of data for training is used. 

By using the 70%-30% split criterion, the accuracy of all the classifiers increased, especially for 

the smaller window size (0.5 s). To better understand the accuracy of the classifiers and the 

effect of the window size, Cohen’s kappa coefficient is also reported in figure 5-2. 

 

 
Figure 5-1 Average classification accuracy (and standard deviation) for the subject-dependent case: (a) Same 

sample size for training criterion, and (b) 70–30% split. 
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Figure 5-2 Cohen’s kappa coefficient: classifier VS window size. 

 

From the kappa statistics results of the subject-dependent case, it has seen that the 

majority of the classifiers reached their peak accuracy with the 1.5 s window sizes, with a 

negligible difference in accuracy between 1 s and 1.5 s in most of them. In general terms, SVM 

performance is the highest, with MLP and NB very close. 
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Table 5-1 Analysis of variance in response to different window sizes and training split settings. 

SAME SAMPLE SIZE 

 

70% - 30% SPLIT 

SVM  k-NN SVM  k-NN 

 0.5 1 1.5 2 2.5 3 

 

0.5 1 1.5 2 2.5 3 

 

0.5 1 1.5 2 2.5 3 

 

0.5 1 1.5 2 2.5 3 

0.5                         

1 +      +      +      +      

1.5 + ns     + ns     + ns     +  ns     

2 + ns ns    + + ns    + - -    + - -    

2.5 + ns - ns   + + ns ns   + - - ns   + - ns ns   

3 + ns ns ns +  + + ns ns ns  + - - ns ns  + - ns ns ns  

NB MLP NB MLP 

 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 

0.5                         

1 +      +      +      +      

1.5 + +     + +     + ns     + ns     

2 + + ns    + ns -    + ns -    + ns -    

2.5 + ns ns ns   + ns - ns   + ns - ns   + - - -   

3 + ns - - -  + ns ns ns ns  + - - ns -  + ns - ns +  

DT  DT  

 0.5 1 1.5 2 2.5 3 

 

0.5 1 1.5 2 2.5 3 

 

0.5             

1 +      +      

1.5 + ns     + ns     

2 + ns ns    + ns -    

2.5 + ns ns ns   ns - - ns   

 + ns ns ns ns  ns - - ns ns  
ns, not significant difference (p  _ 0.05); +, positive significant difference (i.e. the classification accuracy of the window size defined in 

the row is significantly higher than that in the column, p < 0.05); −, negative significant difference (i.e. the classification accuracy of the 

window size defined in the row is significantly lower than that in the column, p < 0.05). 

Table 5-1 shows the results of the ANOVA analysis for both criteria. 0.5s window size 

performs significantly worse than any other window size for virtually every classifier-splitting 

criterion. 1.5s window size is never significantly worse than any other window size for every 

classifier splitting criterion, and it is significantly better than 1.0s in both NB-same sample size 

and MLP-same sample size combinations (for the other combinations, there is no significant 

difference between 1.0s and 1.5s). When a difference appeared, larger window sizes resulted 

significantly worse than 1.5s in a number of different combinations: 70%-30% for both k-NN, 

SVM, and DT; same sample size for MLP. 1.0s window had, on average, mixed results, as 

compared to window sizes larger than 1.5s: it performed significantly better for a number of 

different combinations (70%-30% for SVM , k-NN, and DT), and worse for some other ones in 

the same sample size splitting (k-NN and NB as compared to 2s). 
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Table 5-2 Confusion matrices obtained for the different window sizes for the SVM classifier. Values in bracket 
represent the number of records. 

Stairs Descending (SD), Stairs Ascending (SA), Walking (Walk), Sitting (Sit), Standing (Stand), Transitions (Trans) 

 

To check where misclassifications appeared most frequently, Table 5-2 reports the 

normalized values of the confusion matrices for the classifier that performed best across the 

different window sizes. As expected, variations in accuracy appeared among different window 

sizes, with transitions being most often misclassified. Choosing a 1 to 2 s window size 

represents a good trade-off, as with these window sizes misclassifications among transition and 

other dynamic activities are reduced, and their percentage roughly corresponds to the 

percentage of the first and last occurrence steps of each activity. With higher window sizes, the 

performance decreases, misclassifying short duration activities for transitions, while with 0.5 s 

many transitions are misclassified for a variety of different static and dynamic activities. 

 
 

 

Confusion Matrix 

0.5 s 1 s 

     Predicted 
 
Actual   

 
SD% 

 
SA 
% 

 
Walk 
%  

 
Sit 
%  

 
Stan
d 
%  

 
Trans 
% 

  
SD 
% 

 
SA 
% 

 
Walk 

%  

 
Sit 
%  

 
Stand 

%  

 
Trans 

%  

SD       (563) 68.4 3.9 20.1 0 2.1 5.5 →(182) 93.9 1.1 4.4 0 0 0.6 

SA        (609) 1.8 76.5 15.1 0 0.7 5.9 →(210) 0.9 92.4 6.2 0 0 0.5 

Walk    (721) 9.0 6.1 78.5 0 0.3 6.1 →(397) 6.0 7.1 83.1 0 0 3.8 

Sit        (286) 2.4 0 3.2 89.5 0 4.9 →(113) 0 0 0 97.3 0 2.7 

Stand   (321) 0 0 0 0 99.1     0.9 →(138) 0 0 0 0.7 96.4 2.9 

Trans   (516) 8.2 11.4 3.9 2.3 6.9 67.3 →(220) 1.4 3.6 2.3 5 6.8 80.9 

 1.5 s 2 s 

SD       (107) 91.6 0.9 5.6 0 0 1.9 →(56) 89.3 1.8 7.1 0 0 18 

SA        (140) 2.1 90.8 5.7 0 0 1.4 →(76) 0 93.4 5.3 0 0 1.3 

Walk    (198) 6.1 6.6 82.3 0 0 5.0  (139) 5.8 4.3 88.5 0 0 1.4 

Sit          (56) 0 0 0 89.3 0 10.7 →(21) 0 0 0 90.5 0 9.5 

Stand     (69) 0 0 0 1.4 89.9 8.7 →(47) 0 0 2.1 0 89.4 8.5 

Trans   (144) 2.8 0.7 0.6 2.8 0.7 92.4 →(96) 3.1 1.1 6.2 7.3 3.1 79.2 

 2.5 s 3 s 

SD         (42) 88.1 2.4 9.5 0 0 0 →(29) 89.6 3.4 6.9 0 0 0 

SA          (44) 0 88.6 11.4 0 0 0 →(27) 0 96.3 3.7 0 0 0 

Walk      (79) 3.8 2.5 89.9 0 0 3.8 →(42) 0 4.8 92.8 0 0 2.4 

Sit          (14) 0 0 0 78.6 0 21.4   →(8) 0 0 0 62.5 0 37.5 

Stand     (23) 0 0 0 0 69.6 30.4 →(18) 0 0 0 0 61.1 38.9 

Trans     (69) 0 0 0 10.2 2.9 86.9 →(37) 0 0 0 13.5 10.8 75.7 
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Figure 5-3 exemplifies the effect of the segmentation obtained with a 1 s and a 3 s sliding 

window over a short duration activity signal sample: in this case, with a 3 s window size the 

transition activity is classified as a static activity due to the uneven window data distribution. 

While looking at 1 s window performance, misclassification chance is virtually limited to 

conditions when an activity starts or ends. As the size of the 1 s window is small compared to 

the window activity durations, there is higher chance of having the window falling between the 

start and the end of an activity. 

 

 

Figure 5-3 Sample of acceleration data corresponding to a sequence of activities, together with target 
activities (black), and SVM classification outputs (red), for both 1s window size (upper line), and 3s window size 

(lower line). 4 corresponds to sitting, 5 to standing and 6 to transitions. 

 

5.2.4.2  Subject-independent validation 

Figure 5-4 shows the classification accuracy for the different window sizes, across the different 

classifiers, as averaged across the 9 iterations corresponding to the subjects left out in the 

subject-independent case. 
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Figure 5-4 Average classification accuracy (%) on subject-independent validation. Standard deviation is also 

reported. 

Here all classifiers consistently reached their highest accuracy with a 1.5 s window size, 

followed by 1 s and 3 s, respectively. In the 3 s window size, accuracy among the subjects 

varies, with an increase in the standard deviation. Among the classifiers, SVM performance 

performed best, followed by k-NN and MLP in 1.5 and 1 s of window, whereas MLP classifier 

shows an increased variability in accuracy among the subjects. 

5.2.5 Discussion and conclusion 

The impact of window size on the activity recognition problem was investigated to identify a 

window size that may prove optimal in real-time recognition of human activities. While 

considering this aspect, combinations of static, dynamic, and short duration activities were 

included. The use of longer windows might be a good choice to classify among long duration 

activities, but the behavior varies if short duration activities are considered, and transitions, 

which were here considered as a separate class to be detected, and not discarded. 

Most classifiers reached their peak accuracy with either 1 or 1.5 s window size, with 1.5 s 

appearing most often. With these window sizes, in subject-dependent validation, the highest 
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accuracy was achieved by SVM (accuracies > 90%) followed by MLP and NB, with accuracies just 

a few percentage points lower. In subject-independent validation, the performance of 

classifiers varied from subject to subject, with the average performance of SVM being high 

(values > 87.5%) and better than the other classifiers (both for 1 s and 1.5 s), with kNN and MLP 

respectively following. These latter results are in accordance with Cleland et al [12] who 

showed that SVM performs most accurately with data coming from a single location.  

It can be also speculated that, in subject-independent validation, SVM and kNN are better 

able to deal with variability in activity durations, as the participants of this experimental testing 

were asked to perform activities at their self-defined speed, and some participants chose a very 

high speed. It is here to be highlighted that, in other studies, results were different: in [21] MLP 

achieved highest accuracy while applying 10-fold cross-validation technique; while in [81] SVM 

achieved highest accuracy where subject-independent validation was applied. 

While the focus of this work was not that of finding the best performing classification 

technique, overall accuracy results achieved in this study are in line, in some cases lower than 

those obtained in previous similar studies: this may be due to the type and duration of the 

activities investigated in the study, where the data were collected and labeled with a specific 

class associated with transitions. This was done also to verify whether it was possible to identify 

a window size for segmentation that provided optimal results in a real-time scenario. A number 

of limitations for this study are: first, the amount of participants prevented us from capturing 

inter-individual differences associated with different posture and locomotion styles. In these 

regards, the leave-one-subject out approach was specifically chosen to take this into account. 

Then, the recruited participants were young adults, and it might be possible that elderly people, 

who may choose reduced speeds, might lead to differences in classification accuracy.  

5.2.5.1  Final considerations for training data amount 

Results reported above were based on two different percentage splits for training data; in first 

case, to avoid any biasness, classifiers were trained over the same amount of data (SAD) (i.e. 

12%, 23%, 35%, 46%, 58% and 70% for 0.5s, 1s, 1.5s, 2s, 2.5s and 3s windows respectively), 
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whereas in second case, classifiers were trained over the same amount of percentage split for 

each window size that is 70% of the data. Based on these settings, it has been found that 

accuracy over 0.5s, 1s and 1.5s windows increases when moving from SAD split to 70% split, 

this happens because, for these windows, a training set composed of 12%, 23% and 35% of 

overall data to train classifiers is not a sufficient amount as compared to other windows which 

is around 50% to 70%. To check at which percentage split point the accuracy doesn’t increase 

sufficiently, another split of 50% is added to 0.5s, 1s, 1.5s and 3s of windows which is close 

enough to 46% and 58% for 2s and 2.5s of window for comparison. Table 5-3 elaborates the 

results on different training data splits over three best classifiers ranked by Cohen’s Kappa 

results. 

Table 5-3 Comparison of classification accuracy obtained on different training data splits. 

Classifiers  
Window size 

(s) 
Training data splits 

SAD 50% 70% 

SVM 

0.5 
1 
1.5 
2 
2.5 
3 

77.6 
87.9 
88.67 
87.34 
86.12 
88.53 

82.5 
90.87 
89.75 
87.34 
86.12 
86.9 

81.44 
91.15 
91.1 
88.73 
88.29 
88.53 

NB 

0.5 
1 
1.5 
2 
2.5 
3 

76.6 
85.6 
88.5 
87.3 
87.1 
85.17 

79.2 
87.7 
89.2 
87.3 
87.1 
84.8 

80.09 
88.9 
90.32 
87.2 
87.5 
85.17 

MLP 

0.5 
1 
1.5 
2 
2.5 
3 

75.6 
87.1 
89.5 
87.37 
87.07 
88.92 

82.4 
89.2 
90.2 
89.26 
86.8 
87.47 

82.9 
89.9 
91.3 
89.26 
86.8 
88.92 

SAD: 12%, 23%, 35%, 46%, 58% and 70% for 0.5s, 1s, 1.5s, 2s, 2.5s and 3s windows respectively 

Results reported in the table show that the increase in accuracy from 50% to 70% is 

negligible over all the windows. Whereas for 0.5s and 1s windows accuracy increases from SAD 

split to 50% split. In 1.5s and 3s windows there is no significant difference between SAD split 

and 50% split. Difference between SAD split and 70% split is negligible in 2s and 2.5s windows 
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and hence doesn’t produces much increase in accuracy. It is found that the amount of data 

used to train classifiers should be 50% to 70%, depending on the size of the overall data. 

5.2.5.2  Final considerations for window size 

Results of the study suggest that the use of 1.5 s (and in some cases, 1.0 s) window can 

accurately classify static, dynamic, and transitions activities considering both short and long 

duration ones. Shorter window sizes might be helpful in classifying between static and dynamic 

activities, but fail if it is required to distinguish among dynamic activities: in effect, this 

temporal support does not sufficiently capture data differences coming from the varying 

behavior of the dynamic activities. Longer window sizes respond well on long duration dynamic 

activities, but this is counteracted by an increased misclassification rate for short duration 

activities. Also, larger window sizes provide decreased accuracy when dealing with transitions, 

and the delay in real-time human activity recognition may be relevant.  

In conclusion, the findings of this work suggest some guidelines for window size selection to 

classify daily living activities: 1.5 s time window could be considered for timely detection over 

short and long duration dynamic activities and static activities. Further work may be required: 

1) to find additional features to increase the accuracy of the system on the chosen window size; 

2) to check whether it would be possible to have a time-varying window size to increase 

accuracy; and 3) to apply meta-level classification methods to improve classifier behavior. 
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5.3 Comparison between event-based and sliding window segmentation 

on locomotion activity classification 

5.3.1 Contribution  

This study presents the implementation of an event-based dynamic segmentation algorithm to 

identify the gait events of locomotion activities from a shank mounted inertial sensor. It then 

analyses and compares the classification accuracy obtained through the proposed event-based 

dynamic segmentation against different fixed window lengths, on the classification of daily 

living activities, including walking, stair ascent, stair descent and running. In order to tune the 

event detection to these locomotion activities (that were not limited to level walking, but 

included stair negotiation), the gait detection criterion is modified in such a way that no 

window is explicitly used to detect the events. Then these events are used to define a signal 

segment that represents the whole gait cycle, to be used for the classification of locomotion 

activities. A benchmark dataset has been also used to validate the segmentation technique. For 

the details regarding the dataset, please refer to [127]. 

5.3.2 Event-based signal segmentation 

The event-based signal segmentation algorithm that is described in section 4.2 has been used in 

this study to segment the gait cycle. Different locomotion activities: walking, stairs descent, 

stairs ascent and running have some common characteristics like swing phase, stance phase 

etc. The shape of the swing phase (maximum peak) in the gyroscope signal has consistency 

throughout the signal followed by the lower peak of the stance phase. Each activity cycle for 

this activity subset is composed of a swing phase and a stance phase, and they can be identified 

by considering mid-swing (MS), initial contact (IC), and end contact (EC) events. There is mutual 

agreement that foot-off event can be detected by identifying the minimum value of the 

negative peak before swing phase peak and this foot-off event is used to identify the start and 

end of the gait cycle [62].  

In this study, the algorithm detected these three events to find a single cycle from the raw 

gyroscope angular component along the sagittal plane. The segmentation is called real-time as 



 

 

61 

 

it is done by sample by sample evaluation to detect the gait events. The whole procedure for 

event detection is defined in Table 5-4 and the outcome of the algorithm over the signal is 

shown in figure 5-5. 

Each activity cycle (segment) is then defined by using consecutive EC events. For 

comparison, also fixed length widows were considered (with values of the window length equal 

to 1, 1.25 and 1.5 s, respectively). 

Table 5-4 Heuristic rules for the activity event detection 
Activity 

Events 
                                                             Rules 

Mid-

swing (MS) 

MS detection is based on four conditions 

i. Find zero crossing when the signal is ascending (negative-cross) 

ii. Update maximum value just after the above condition meet 

iii. Find zero crossing when signal is descending (positive-cross) 

If Maximum value between two crossing ≥ 2 rad/s then 

save negative-cross, positive-cross (current value) and mid-swing (maximum value) 

else search zero cross in ascending 

Initial 

contact (IC) 

IC is detected as the minimum just after the positive-cross  

When current value fulfill this condition: 

i.             

Then,         

End 

contact (EC) 

First minimum value is min_value = IC 

Algorithm starts searching for max_value and min_value. 

Max_value condition: 

                                       

                     

Min_value condition: 

            

                     

If the current value      is min_value then algorithm goto  

EC condition: 

     [                      ]         

                        

        [                              ]    

If above condition is satisfied then  

        

else update local minimum & maximum and meet the EC condition. 

y(j) is the current value of the gyroscope, min_index and max_index are the indices of min & max values, min_index_array(1) is the index of 

the 1st minimum value, representing IC. 
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Figure 5-5 Segmentation algorithm detection for a walking step, where black and red triangles are tmax and 
tmin, red asterisks are foot strike and pink circles are foot off events. 

5.3.3 Feature set based on Linear Forward Feature Selection (LFFS) technique 

Segments identified with the above-mentioned rules are taken as the reference for all the 

remaining inertial data. For each segment, a set of time and frequency domain features that are 

used in the literature for the activity recognition problem are derived from each axis and 

magnitude of the accelerometer and gyroscope raw signal. A total number of 138 features are 

then extracted.  

LFFS technique is used to remove the redundant features from the whole feature space. 

Algorithm starts from the empty set and sequentially adds the feature x to the set which 

maximizes the objective function of the previously added features. Selected features are 

mentioned in Table 5-5. A total number of 30 features (FS1) have been selected by the 

algorithm from BioLab³ dataset, and 24 features (FS2) from PAMAP2 dataset. 
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Table 5-5 Selected features from accelerometer (a) and gyroscope (g) for the two feature sets. 

Features FS1 FS2 

Time domain 

Mean A (x, y, mag) A (y, mag), G (mag) 

Median A (y), G (y, z)  

St. deviation A (x, y), G (z) G (z) 

Skewness A (z), G (z) A (y), G (z) 

Kurtosis   

Correlation 
A (x_z, x_mag), 

G (x_mag, y_mag, z_mag) 

A (y_mag), G (x_z, x_mag,  

z_mag) 

Inverse cosine  G (x) 

Interquartile 

range 
 A (y), G (x) 

Frequency domain 

Mean A (mag) A (mag), G (mag) 

Median   

St. deviation A (x, y), G (mag) A (mag), G (mag) 

Skewness G (x) G (mag) 

Kurtosis G (z) A (mag) 

Energy A (x) G (z) 

1st five FFT 

components 

Ax (2), Ay (2,5), Gy (4), Gz (1, 

2, 4) 
Gz (2, 3, 4, 5) 

In this study, two feature sets FS1 and FS2 for each dataset are selected. The purpose of 

selecting features from different datasets is to check whether the selection on one dataset 

would affect the classification accuracy rate of the other dataset respectively, as the position of 

the sensors in the two datasets was slightly different. 

Features extracted from each segment are passed to the MLP to classify the activity, where 

each segment (gait cycle) is classified as either walking, stairs ascend, stairs descend or running 

activity. A leave-one-subject-out cross-validation criterion is used to evaluate the performance 

of the classifier. 

5.3.4 Use of benchmark dataset (PAMAP2 dataset) 

The PAMAP2 benchmark dataset is also used to check the validity of the method. This dataset is 

composed of different activities from 9 participants. For the purposes of this study, only those 
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activities have been selected that could be compared with the other database of interest 

(walking, stair ascent, stair descent and running). Data coming from the ankle-mounted sensor 

(a tri-axial accelerometer and a tri-axial gyroscope) is used, which is at a slightly lower position 

as compared to the sensor position used in the BioLab³ dataset. Further information about the 

dataset is available [127]. 

5.3.5 Results  

5.3.5.1  Performance of dynamic segmentation technique 

Figure 5-6 shows a sample of the results of the event-based segmentation algorithm over 

walking, stairs ascend, stairs descend and running activities. As it can be seen, events are 

detected accurately, with a limited variation depending on the activity type. 

Walking Stairs descending 

  

           Stairs ascending Running 

  
 
 

Figure 5-6 Gait events detection over four locomotors activities, where green, pink and red points represent 
MS, IC and EC respectively. 

In particular, the algorithm mis-detected only 5 activity cycles (out of 1752): among them, 

one walking and one stairs ascend cycle is not identified because of lower MS; in one walking, 
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stairs ascend and stairs descend cycle EC are not identified. All the running activity cycles are 

correctly identified. 

 

5.3.5.2  Classification accuracy on static and dynamic segmentation 

 

Choice of the fixed length window for comparison 

In order to understand the performance of the dynamic window (gait cycle), the activity 

classification accuracy obtained from features extracted with the event-based segmentation 

technique are compared with the ones extracted with different sizes of the fixed length 

window. For a fair comparison, sizes of the fixed length window are selected on the basis of the 

average activity cycle duration, and in such a way that the overall number of records would be 

similar to the number of records extracted from the event-based segmentation technique. 

Table 5-6 reports the average activity cycle duration as estimated with the segmentation 

technique, and the number of records that are used with the event-based segmentation and 

the different fixed length segmentation values. 

Table 5-6 Activity cycle duration over different activities. 

Measures   Activity cycle duration (s) 

 Walk SD SA Run 

Mean 1.165 1.134 1.24 0.719 

St. deviation 0.101 0.143 0.158 0.035 

 Windows 

 1 s 1.25 s 1.5 s Dynamic  

No. of records 1994 1583 1320 1752 

Readings show variations in activity cycle duration within the activities and within the 

subjects and none of the activity last for 1.5 s (100 samples /s). On the basis of the number of 

records (extracted window), comparison between the dynamic, 1 s and 1.25 s windows would 
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be more interesting, as the number of records is similar to the ones of the dynamic 

segmentation. 

Activity classification accuracy results will be reported into two different sections, 

corresponding to the two different datasets. 

Performance on BioLab³ dataset 

Figure 5-7 shows that the average performance of the dynamic window is higher than all static 

windows in both cases.  

Classification performance of the dynamic window on FS1 and FS2 is pretty high (> 95% and 

> 90%, respectively), with less variation among the subjects. Whereas, accuracy obtained on 1s 

and 1.25 s windows is less than 90%, giving high variation among the subjects. 1.5 s window 

performance is high from the rest of the static windows but a significant difference from 

dynamic window.   

 
Figure 5-7 Classification accuracy for BioLab³ dataset. 

Performance on PAMAP2 dataset 

For the benchmark dataset, performance on different segmentation methods is less than 90% 

on FS1 while on FS2 accuracy increases significantly. Figure 5-8 shows the classification 

accuracy on PAMAP2 dataset. 
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Event-based dynamic segmentation performs slightly better than 1.5 s fixed window size 

window with both feature sets, and it is associated with a slightly higher variability than 1.5 s 

window size for FS1. 

 
Figure 5-8 Classification accuracy for PAMAP2 dataset. 

In regards to the datasets, classification accuracy was shown to depend on the feature set. 

As the sensor position is different in the two used datasets, feature set obtained on one dataset 

might be not good enough to represent the information for the other one. In the BioLab³ 

dataset, however, the average accuracy obtained with both feature sets has been shown to be 

higher than 90% for the event-based segmentation. 

5.3.6 Discussion and conclusion 

We evaluated the activity recognition performance on two datasets with different 

segmentation methods and feature sets. Four different locomotion activities are targeted in the 

dataset that are also present in the benchmark dataset. 

It is found that the proposed event-based dynamic segmentation technique correctly 

identifies almost all the activity events (> 99% in both datasets). Catalfamo et al. algorithm 

detected more than 98% correct events in level and incline walking [77] and Formento et al. 

obtained values higher than 93% in stairs walking [128]. Salarian et al. found 100% correct gait 

events in walking activity, where algorithm detects swing phase peak and find initial and end 

contact events within backward and forward windows from swing peak [62] and similar method 
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is used in [31]. All mentioned studies detect the events based on small windows and only Chen 

et al classified the activities and reported average accuracy higher than 93% [31]. Regarding the 

classification results, performance of the neural network on the proposed event-based dynamic 

segmentation is higher (> 95%) than that obtained with the relevant fixed window sizes. While a 

number of studies encouraged the use of fixed window size segmentation for activity 

recognition problem, the results obtained in this work seem to go in the other direction, as 

these results are better than the ones obtained by Hong et al. [15] (93.78%), Lee et al. [26] (86-

92%, with 10 s of window size) and Wang et al. (93.3%) [129]. Fixed window size can thus be 

sub-optimal when activities last for significantly shorter or longer time periods than the window 

length, or when activity durations vary over time. To compensate for this problem, event-based 

dynamic segmentation is a viable solution, if it is sufficiently accurate in detecting events. 

 

5.4 Pre-Processing Effect on the Accuracy of Event-Based Activity 

Segmentation and Classification through Inertial Sensors 

 

5.4.1 Contribution 

This study analyzes and compares the classification accuracy obtained through an event-based 

dynamic segmentation on different pre-processing operations. In particular, since the goal of 

this work is to assist the researcher in building real-time applications, the monitored pre-

processing operations will be considered, taking into account the computational complexity 

associated with their implementation. The main contribution of the study is thus: 

• to investigate whether, and to what extent, de-noising and inclination correction pre-

processing has an effect on the dynamic segmentation of activities and on the subsequent 

classification accuracy. 
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5.4.2 Study design   

In order to evaluate the segmentation accuracy across different datasets, Biolab2 and Biolab3 

datasets are used. Flowchart of the activity recognition algorithm is shown in figure 5-9. 

 

Figure 5-9 Work flow of the activity recognition chain. 

5.4.2.1  Feature set used for classification 

A total number of 152 features are thus extracted from the segments obtained from dynamic 

segmentation algorithm (section 4.2). Feature selection is done through the SVM classifier, 

where attributes are ranked by the square of the weight assigned by the SVM [130], and the 

first 20 features are selected based on the experiments to classify the activities. The selected 

features are listed in Table 5-7. 

Table 5-7 SVM selected features. 

Features  Time domain  Frequency domain 

Mean  ax, ay  

Median  ay, gz, gmag  

Skewness  az gz 

Standard deviation  ax, ay   

Correlation  gz,mag  

Interquartile  gz  

Energy   ax 

FFT coefficients  ax(2), ay(1,2,3,5), amag(1,2),  gz(3) 

Angular 

velocity 

Feature 
extraction & 

Selection 

Activity 

classification 

Inclination/N
oise removal 

Inclination/N
oise removal 

Segmentation  
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The first five FFT coefficients (as calculated over 100 samples) are used, as these contain the 

main frequency components (up to 5 Hz). The features selected by the algorithm are also used 

in other studies [25] [131] and are considered useful for running on smartphones, as they have 

very low to low computational and storage complexity.  

Figure 5-10 shows the activity cluster representation for a subset of the extracted features. 

 

Figure 5-10 An example of activities clusters distribution over features selected by SVM, where pink, red, 
green and blue colors represents running, SA, SD and walking activities respectively. 

5.4.3 Results and Discussion 

5.4.3.1  Signal segmentation on pre-processing configurations 

Signal segmentation is carried out on six different configurations of pre-processing to be tested:  

1. Segmentation performed on raw signals (no further processing). 

2. Segmentation performed on signals corrected for inclination (no further processing).  

3. Segmentation performed on raw signal (then filtering applied on segmented 

windows). 

4. Segmentation performed on signals corrected for inclination (then filtering applied 

on segmented windows). 
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5. Segmentation performed on filtered signals (no correction for inclination). 

6. Segmentation performed on filtered signals (corrected for inclination). 

The position of the inclination correction in the processing flow diagram does not have an 

effect on the segmentation quality, since the criteria based on absolute values for the angular 

velocity in the processing steps for segmentation are not affected by inclination correction. 

Conversely, some earlier detections of foot-off events appeared on raw signals in some 

subjects, as compared to filtered signals. These differences are sometimes present in walking 

and stairs descend activities as shown in figure 5-11 (a) and (b) columns. 

(a) (b) (c) (d) 

   
 

  
  

 
 

  

 
 

  
Figure 5-11 Signal segmentation based on gait events, zero circles are foot strike events and red asterisks are 

foot-off events; (a) walking; (b) stairs descending; (c) stairs ascending; (d) running. 
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Foot-off events are detected 40 ± 20 ms and 90 ± 40 ms before the actual events in walking and 

stairs descend activities respectively. Moreover, these early detections are mostly located 

between the heel-off (negative fall in signal) and toe-off (negative peak) points, so these 

windows also maintained the gait cycle information (swing and stance phase).  In spite of these 

small differences, overall performance of the segmentation algorithm was quite good, as it 

detected 99.6% (2555 out of 2565) and 99.77% (2559 out of 2565) gait cycles from raw and 

filtered signals, respectively. Among them, 2 walking steps and 1 stairs ascents are not 

identified, 2 stairs descents and 2 stairs ascents are incorrectly identified (foot strike as foot-off) 

and there is no error in running activity identification. 

5.4.3.2  Classification Results  

Segments obtained from the six different pre-processing settings are fed to SVM to classify the 

ongoing activity. Leave-one-subject-out cross-validation criterion is used on the Biolab2 dataset 

to evaluate the performance of the classifier. In the case of the Biolab3 dataset, the classifier is 

trained on the overall data of the Biolab2 dataset, and testing is performed on the Biolab3. The 

final results represent the average accuracy over all subjects and specificity and sensitivity of 

each activity. Figure 5-12 illustrates the average classification accuracy on both datasets. 

Classification performance of the event-based segmentation on the Biolab³ dataset is pretty 

high (Average accuracy > 98% percent for all settings), with less variation among the pre-

processing settings. In the Biolab³ dataset, accuracy obtained with different settings has shown 

a higher (still not relevant) variation: as expected, average performance decreased for all the 

configurations. In both datasets, classification obtained with the raw signal resulted slightly 

higher than all the other configurations. Standard deviation (obtained by considering the 

different runs of the leave-one-subject-out approach) bars show that variation in performance 

among subjects performance rises when inclination is removed from the signal, as compared to 

the other configurations. To compare the results with previous studies, performance of each 

activity on raw data is shown in Table 5-8.  
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Figure 5-12 Average classification accuracy over; (a) Biolab2 dataset; (b) Biolab3 dataset. 

 

The main idea of this study is the analysis of the gait inertial signal. There are number of 

studies confined to the signal segmentation and activity recognition but all of them are 

following the trend of the signal de-noising and window based segmentation. However these 

preprocessing steps may increase the system time and space complexity, when the problem is 

associated with the real time applications. 
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Table 5-8 Activities performance evaluation over raw data. 

Activities Confusion matrix Performance measures (%) 

 WK SD SA RUN Specificity  Sensitivity  Step detection  

WK 99.3 0.3 0.3 0.1 98.03 99.3 99.75 (1244/1247) 

SD 3.4 96.6 0 0 98.53 96.6 98.9 (369/373) 

SA 2.8 0 97.2 0 98.6 97.2 99.2 (372/376) 

RUN  0.4 0.2 0.1 99.3 99.82 99.3 100 (570/570) 

WK: walking, SD: stairs descending, SA: stairs ascending, RUN: running 

5.4.4 Discussion and conclusion 

5.4.4.1  The role of segmentation 

The signal segmentation algorithm proposed in this study is based on heuristic rules and 

sequentially evaluates each sample. Also, it has been reported that a rule–based algorithm 

performed nine times faster than wavelets analysis based algorithms [63] [77], and this 

represents an advantage for real-time systems. Identification of the gait events is performed by 

considering timely detection, without using any window for backward or forward search for 

events. In the study, differences in the detection of the gait cycles from the raw gyroscope (z-

axis) signal and from other pre-processing settings are not very significant, since all 

configurations reached an average detection accuracy > 99 percent, which is in accordance with 

other studies. For example,  

Formento et al., [128] reported 95 percent event detection in stairs walking; Faracarro et 

al., [34] work achieved 92.5 percent walking event detection; Catalfamo et al., [77] achieved 98 

percent gait event detection accuracy during ground walking and slope waking. In the 

mentioned studies, event detection was performed on the filtered signal and the window size 

of 80 ms to 250 ms was used to detect the foot-off event and additional 50 ms to 135 ms of 

event location difference was found.  
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5.4.4.2  The role of de-noising on classification 

Foot-off events detected by the segmentation algorithm were taken as the reference point for 

the start and end of each activity cycle over which the features were extracted. Referring to the 

classification accuracy among pre-processing settings, performance obtained with the raw 

signal is consistent in both datasets, but not significantly different from other settings. In this 

study, feature set which is used to classify the activities is optimal; the information retrieved by 

these features was not affected by the presence or absence of the noise in the signal. 

Classification accuracy obtained from raw and filtered data is > 98%, which is higher than the 

previous studies where Chen et al. [31] achieved 94% accuracy, Panahandeh et al., [132] 95%, 

Coley et al., [32] 92.5% to classify between stairs ascent and other (walking and stairs descent), 

Ngo et al., [133] 94% and Chen et al., [33] reported 10.78 percent error with single stance, 

3.42% error with double stance and 5.6% error with swing phase based recognition. All of these 

studies carried out classification on de-noised and event-based segmented data except Ngo et 

al. [133]. 

5.4.4.3  Final considerations  

Different gait event detection algorithms have been used in the literature; rule-based 

segmentation [62] [77] [128], Hidden Markov Model [132], and wavelet analysis [32] [64]. All 

these studies validated their results on de-noised accelerometer/gyroscope signals and 

considered small windows for event detection. The performance of these algorithms show 

sufficient reliability from 92-99 percent to detect gait events but when it implies to the 

classification of the activities from those segmented events the highest achieved accuracy is 95 

percent. While the segmentation detections achieved by the algorithm on raw gyroscope signal 

are in accordance with these studies and the classification results are higher (> 98 percent) than 

previous studies. 

Our findings show that the pre-processing operators; inclination removal and signal de-

noising has no significant impact on the segmentation and average classification of the physical 

activities. However there is a little difference in the earlier detection of the gait events among 

raw and filtered signals but the results show that this difference doesn’t affect the classification 
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performance. One might consider the use of raw inertial sensor data for the dynamic 

segmentation and classification of the daily locomotion activities from the shank mounted 

inertial sensor, as the use of noise removal steps has no significant effect on the segmentation 

and classification of the activities while it increases the complexity of the system for online 

applications: if the filtering used is composed of just 2 taps, at least 2*10 ms will be needed as 

waiting time, to have the preceding samples available for the processing. 

5.5 Which feature selection technique provides best features for 

activity classification? 

Studies presented in section 5.3 and 5.4 for activity recognition have been evaluated on the 

feature sets computed over two different feature selection techniques. A simple linear forward 

feature selection technique is used in one of the study to rank the most relevant features. 

Different combinations of the features are evaluated and based on the MLP classifier 

performance on all subjects and activities, 30 features produced best results. While in second 

study (section 5.4), SVM classifier based on ranker method is used to select the most relevant 

features and 20 features produced the best performance. Selected features from two different 

methods and their performance on classifiers are listed in Table 5-9 and Figure 5-13 

respectively. 

Table 5-9 Feature sets obtained from LFFS and SVM based feature selection technique. 

 Selected features (LFFS) Selected features  (SVM ) 
Time domain 
Mean ax, ay ax, ay, amag 
Median ay, gz, gmag ay, gy, gz  
St. deviation ax, ay ax, ay, gz 
Skewness az az, gz 
Correlation gz,mag ax,z, ax,mag, gx,mag, gy,mag, gz,mag 
Interquartile 
range 

gz  

Frequency domain 
Mean  amag 
St. deviation  Ax, ay, gmag 
Skewness gz gx 
Kurtosis  gz 
Energy ax ax 
1st five FFT 
components 

ax(2), ay(1,2,3,5), amag(1,2), gz(3) ax(2), ay(2,5), gy(4), gz(1,2,4) 
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Figure 5-13 Recognition accuracy using different number of features over different classification schemes. 

 

Classification results shown in above figure are obtained on the subject independent 

validation. As it can be inferred from Figure 5-14, SVM-FS has the best recognition accuracy 

over the classification schemes. Table 5-10 lists the amount of time required to train the 

classifiers over the 35 minutes of data. 

Table 5-10 Comparison of time required to train the classifier over different feature sets. 

                   Time (s) 

Classifiers  LFFS  SVM_FS 

SVM 

MLP 

NB 

kNN 

DT 

0.21 

6.41 

0.08 

0.01 

0.1 

0.7 

37 

0.18 

0.09 

0.48 

Model learning time increases three times in most of the classifiers with the larger feature 

set. Although SVM classifier requires more computational time as compared to NB and kNN, it 

produces less recognition variation among the subjects and activities as validated by Cohen’s 

Kappa statistics in section 5.2. It is thus recommended to use SVM-based feature selection 
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technique to get those features which show high discrimination among the classes but less 

among the subjects. Additionally, the features obtained from SVM-FS produce the highest 

accuracy among classifiers as well. 
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6 

6.1 Conclusion  

 

 

The aim of this thesis was to design a physical activity recognition system intended to classify 

motor activities from inertial sensors, which can be profitably used in real-time applications. 

The study was motivated by the fact that it is important to monitor the activities of a person in 

daily routines, so as to associate the performance with the recommendations given by the 

physicians. A set of aerobic activities which are considered useful to promote the well-being of 

a person were used to design the activity recognition system. To achieve this goal, the system 

was designed and evaluated by considering the following four main steps: 1) pre-processing 

steps involved in signal processing, 2) segmentation of the signal to minimize delays associated 

with further processing, 3) determination of the best feature set for classification, and 4) 

training of the classification scheme based on both subject-dependent and subject-independent 

validation to maximize recognition accuracy. All these issues were addressed in the studies 

drawn in sections 5.2, 5.3 and 5.4.  

Activity recognition algorithms presented in this thesis are based on two different sensor 

set-ups: 1) classification of daily living physical activities including sitting, standing, walking, 

stairs ascending, stairs descending and transitions between the activities, using a waist-worn 

accelerometer – study 1; 2) identification of gait events and their classification as walking, stairs 

ascending, stairs descending and running through a shank-located inertial sensor – studies 2 

and 3.   
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This section draws the conclusion on the results obtained in these studies. 

 

Figure 6-1 Evaluation chapter overview. 

6.1 Conclusion  

Conclusions on study 1 

This study contributes to define the following elements: 1) choice of the best window length to 

be used for segmentation on both short and long duration activities, 2) amount of training data 

required to build the classification model, 3) evaluation on different classifiers performance.  

Experiments demonstrate that the use of 1.5 s (and in some cases, 1 s) window can 

accurately classify static, dynamic, and transitions activities, considering both short and long 

duration ones. Shorter window sizes might be helpful in classifying between static and dynamic 

activities, but fail if it is required to distinguish among dynamic activities: in effect, this 

temporal support does not sufficiently capture data differences coming from the varying 

behavior of the dynamic activities. Longer window sizes respond well on long duration dynamic 

activities, but this is counteracted by an increased misclassification rate for short duration 

• inclusion of short and long duration activities 

• using different window sizes, classifiers 

• training and testing data requirements 

Study 1 Sliding window based 
segmentation on the 

classification of daily living 
activities including transition 

activities 

• development of real-time  dynamic segmentation 
algorithm 

• comparison among window based and dynamic 
segmentation 

• validating algorithm on benchmark dataset 

Study 2 Activity classification 
based on event-based dynamic 

segmentation  

• investigating  de-noising and inclination removal  
preprocessing steps on segmentation  and classification 

• evaluating feature selection technique  

Study 3 Preprocessing effect 
on the activity identification 

and classification 
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activities. Also, larger window sizes provide decreased accuracy when dealing with transitions, 

and the delay in real-time human activity recognition may be relevant.  

Evaluating the training data splits and classifiers, in subject dependent validation different 

percentage splits for training data were analyzed and found that 50% and 70% of the training 

data achieved an overall accuracy of the 90.87 % and 91.15 % on 1.5 s window respectively. 

Most classifiers reached their peak accuracy with either 1 or 1.5 s window size, with 1.5 s 

appearing most often. With these window sizes, in subject-dependent validation, the highest 

accuracy was achieved by SVM (accuracies > 90%) followed by MLP and NB, with accuracies just 

a few percentage points lower. In subject-independent validation, the performance of 

classifiers varied from subject to subject, with the average performance of SVM being high 

(values > 87.5%) and better than the other classifiers (both for 1 s and 1.5 s), with kNN and MLP 

respectively following. 

Conclusion on Study 2 

This study was designed to contribute to the limitation of the static window-based 

segmentation approach, a problem that often arises if an activity lasts significantly shorter or 

longer than the pre-defined window length, or when a person shifts from one locomotion 

activity to other (shifts among walking, stairs walking, running). This study contributes to 

designing and implementing a segmentation algorithm which can accurately segment the 

locomotor activities based on the gait-events detection. The proposed algorithm was also 

investigated on the benchmark dataset PAMAP2. A comparison between dynamic 

segmentation and static segmentation was also presented in terms of classification accuracy.  

As an improvement to previous studies, a modification to a standard gait segmentation 

criterion was done in such a way that no explicit window segmentation was used to detect the 

events of the locomotor activities from raw gyroscope data. Based on the segmentation 

algorithm performance, it was found that event-based dynamic segmentation technique 

correctly identifies almost all the activity events (> 99% in both datasets), with misidentification 

of only 5 activity cycles (out of 1752): among them, one walking and one stairs ascent cycle was 

not identified because of lower mid-swing peak; in one walking, stairs ascent and stairs descent 
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cycle, foot-off were not identified. All the running activity cycles were correctly identified. Foot-

off events were identified 40 ± 20 ms and 90 ± 40 ms before the actual events in walking and 

stairs descend activities respectively.  

For comparison with static segmentation, different lengths of the static windows were 

selected based on the average time duration of the gait cycle, which were 1 s, 1.25 s and 1.5 s. 

In regards to the datasets, classification accuracy was shown to depend on the feature set. 

However, performance of the neural network on the proposed event-based dynamic 

segmentation was around 97 % on both datasets and was significantly higher than that 

obtained with the relevant fixed size windows, <90 % for 1s and 1.25 s windows and 92% for 1.5 

s window. 

Conclusion on Study 3 

The proposed event-based dynamic segmentation algorithm was implemented on the raw 

gyroscope signal, whereas literature arguments that preprocessing of the signal is necessary to 

identify and classify the gait events. Thus based on this argument, this study investigated the 

impact of preprocessing parameters (inclination removal and noise filtering) and six different 

configurations  of pre-processing were carried out: segmentation performed on raw signals (no 

further processing); segmentation performed on signals corrected for inclination (no further 

processing);  segmentation performed on raw signal (then filtering applied on segmented 

windows); segmentation performed on signals corrected for inclination (then filtering applied 

on segmented windows); segmentation performed on filtered signals (no correction for 

inclination); segmentation performed on filtered signals (corrected for inclination). 

It was found that, comparing the events identification among raw and preprocessed signal, 

inclination removal has no significant effect on the identifications. While some earlier 

detections of foot-off events that appeared on raw signal in some subjects (walking 40 ± 20 ms 

and stairs descending 90 ± 40 ms) are compensated in filtered signals in some cases).  In spite of 

these small differences, overall performance of the segmentation algorithm was quite good, as 

it detected 99.6% (2555 out of 2565) and 99.77% (2559 out of 2565) gait cycles from raw and 

filtered signals, respectively. 
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Classification performance was evaluated on the feature sets obtained from two feature 

selection methods: LFFS (30 features) and SVM-FS (20 features), and it was found that time 

taken by the classifiers to build a learning model was 3 times greater on LFFS feature set as 

compared to SVM_FS. Also the higher accuracy was achieved on the SVM-FS feature set with 

accuracy of 98.69%. 

Considering the classification results on two datasets, in Biolab2 dataset classification 

accuracy higher than 98% was achieved on all settings. Whereas in Biolab3 most of the settings 

produced accuracy higher than 97%. Still, in both datasets Biolab2 and Biolab3, classification 

obtained with the raw signal resulted slightly higher than all the other configurations, with 

accuracy.  

Findings show that the pre-processing operators; inclination removal and signal de-noising 

has no significant impact on the segmentation and average classification of the physical 

activities. However there is a little difference in the earlier detection of the gait events among 

raw and filtered signals but the results show that this difference doesn’t affect the classification 

performance. One might consider the use of raw inertial sensor data for the dynamic 

segmentation and classification of the daily locomotion activities from the shank mounted 

inertial sensor, as if the filtering used is composed of just 2 taps, at least 2*10 ms will be 

needed as waiting time, to have the preceding samples available for the processing. 

6.2 Research contributions 

With reference to the challenges faced in activity recognition systems addressed in the previous 

chapters, this section summarizes the contributions of this thesis addressing some of the 

challenges generally associated with the recognition of motor activities from inertial sensors. 

 The recognition of aerobic activities from a single inertial sensor which can help to verify 

one person’s ability to conform to the recommendations regarding physical activity.  
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 The location of the sensors in the investigated datasets was chosen in such a way that 

they can be easily integrated into mobile phones placed at the waist level, or into 

instrumented anklets. 

 To capture the variability in movement patterns during data collection, subjects were 

asked to perform activities by his/her own manner. 

 Different preprocessing measures were evaluated in terms of identification and 

classification of the activities. 

 The effect of window length segmentation was evaluated in terms of identification of 

the short and long duration activities. 

 Preprocessing was found to having no significant effect on the accuracy in gait-event 

identification and classification of activities. 

 Different feature selection techniques and classification schemes were compared with 

respect to their processing time. 

 A modified event-based segmentation algorithm was presented that introduces a very 

less delay between activity occurrence and detection. 

 The presented segmentation algorithm was not only capable to classify activities but can 

also be helpful in clinical gait analysis where on-time processing is concerned. 

 Accuracy of the recognition system was assessed on subject-independent validation. 

6.3 Future research directions  

Some research directions for future are outlined here, as possible improvements to the work 

done in this Ph.D. thesis.  

 Create some more data from other age groups and clinical pathologies. 

 Addition of other home and sports activity and different intensities. 

 Modification and adaptation of segmentation algorithm when new classes are 

introduced in the data. 
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APPENDIX A) ACTIVITY RECOGNITION LITERATURE 

 

Literature on Study 1 

Table A.1 Summary of past work on the activity recognition based on fixed window length 
segmentation 

Study 

N
o

. o
f 

Se
n

so
rs

 

Activities 
Segmentation 

/ Filtered 
Data 

generalization 
Data validation / 

Classifiers 

C
la

ss
if

ic
at

io
n

 

ac
cu

ra
cy

 

Mantyjarvi et 
al. (2001) 

[134] 
2 acc SA, SD, WK Fixed size (2 s)  

Cross validation / 
MLP 

83-
90% 

Bao and 
Iintille (2004) 

[13] 
5 

20 including 
ambulation and 
home activities 

6.7s (50% 
overlap) / n.a. 

 

Subject 
dependent and 
independent / 

DT, NB 

84.26
% 

Ravi, et al., 
(2005) [81] 

1 acc 
8 ambulation, 

Brushing teeth , 
Vacuuming 

5.12s (50% 
overlap) / raw 

10s discarded 
from start and 
end of activity 

Subject 
dependent 

83%-
90% 

Maurer et al. 
(2006) [76] 

6 acc 
RUN, SA, SD, Sit, Std, 

WK 
4s   87% 

Wang et al., 
(2007) [135] 

1 acc WK, SD, SA 
2.56(50% 

overlap) / raw 
 

70%-30% split, 
subject 

independent / 
wavelet 

decomposition & 
MLP 

92.5%, 
88.54

% 

Preece et al., 
(2009) [22] 

1 acc 
WK, SD, SA, RUN, 

Jog, Hopping, 
Jumping 

2s (50% 
overlap) / raw 

Excluding 
windows with 

transitions 

Subject 
independent / k-

NN 
95% 

Hong et al., 
(2010) [15] 

3 acc, 1 
RFID 

18 including 
Ambulation and 

instrumented 
activities 

4s (50% 
overlap) / n.a. 

 
Subject 

independent / 
DT 

95% 
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Khan et al., 
(2010) [17] 

1 acc 
WK, SA, SD, RUN, 
Sit, Std, Laying, 

transitions 

3.2 s (no 
overlap) / 

filtered 
 

Subject 
independent / 

hierarchical 
model 

97.6% 

Lee et al., 
(2011) [26] 

1 acc 
WK, SA, SD, Std, 
Laying, Driving 

10s (50% 
overlap) 

 

Subject 
dependent and 
independent / 

state 
classification 

using NN 

94.43
%, 

96.61
% 

Godfrey et 
al., (2011) 

[136] 
1 IMU 

Sit, Std, WK, 
postural Transitions 

n.a.  N.A / Rule based 
86%-
92% 

Ugulino et al., 
(2012) [137] 

4 acc 
Sit, Std, Sitting 

down, Std Up, WK 
1s (150ms 

overlap) / n.a. 
 

10- fold 
validation / DT 

 

Wang et al. 
(2012) [129] 

1 
smartp
hone 

WK, Jog, SA, SD 
Fixed size (0.5 

s, 0.8 s) 
  93.3% 

Banos et al., 
(2012) [16] 

5 acc 
WK, Sit, Std, Relax, 

RUN 

6.7s (50% 
overlap) / 

filtered 
 

10-fold 
validation / SVM, 

DT, NB 
>95% 

Dalton et al., 
(2013) [11] 

5 acc 

WK, SA, SD, RUN, 
Sit, Std, Laying, 

Transitions, 
Household 

0.25s, 0.5s, 1s, 
2s, 4s / 
filtered 

15s discarded 
from start and 
end of activity 

Subject 
dependent and 

independent 
90% 

Cleland et al., 
(2013) [12] 

6 acc 
WK, SA, SD, RUN, 

Sit, Std, Laying 
10s (50% 

overlap) / raw 
 

Subject 
dependent 

97% 

Chan et al., 
(2013) [21] 

1 IMU SD, SA n.a. / filtered  
10-fold 

validation / MLP 
95.7% 

Bayat et al., 
(2014) [30] 

1 acc 
WK, SD, SA, RUN, 

Dancing 

1.28s (50% 
overlap) / 

filtered 
 

10-fold 
validation  / 
SVM, MLP 

91.15
% 

Deng et al., 

(2014) [138] 
1 acc 

WK, SA, SD, Std, Sit, 

Laying 

2.56s (50% 

overlap) / 

filtered 

 
80%-20% split / 

SVM 
>90% 
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Shoaib et al., 

(2014) [25] 
5 IMU 

WK, SA, SD, RUN, 

Sit, Std, Jog, BK 

2s (50% 

overlap) 
 

10-fold 

validation  / 

SVM, MLP, K-NN, 

DT 

>90% 

Abbreviations: IMU(Accelerometers and Gyroscopes), acc (Accelerometer), gyro (Gyroscope), Jog (Jogging), BK (Biking) RUN 

(Running), SA (Stair Ascending), SD (Stair Descending), Sit (Sitting), Std (Standing), SW (Slope Walking), WK (Level Walking), 

DT (Decision tree), NB (Naïve bayes), SVM (Support vector machine), MLP (Multilayer perceptron), k-NN (k-Nearest 

neighbor), NN (Neural network). 
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Literature on Study 2 & 3 

Table A.2 Summary of past work on the event-based activity identification and classification 

Study/Sensors Sensors Activities Segmentation/filtering Classification 

accuracy / gait 

event detection 

Lau et al. (2008) [85] 2 IMUs WK, SA, SD, SW Event-based / filtered 85-100% / n.a. 

Chen et al. (2009) [31] 1 IMU WK, SA, SD 
Peak to peak event 

detection / filtered 
92-95% / n.a. 

Catalfamo et al., (2010) 

[77] 
1 gyro Level WK, SW 

Rule based event 

detection (120ms 

delay) / filtered 

n.a. / 98% 

Lee & Park (2011) [139] 1 gyro Slow, normal, fast WK 

Rule based event 

detection (320ms 

delay) / filtered 

n.a. / 100% 

Mannini & Sabatini (2012) 

[140] 
1 IMU WK, Jog 

HMM based event 

detection / filtered 
94% - 98% 

Barth et al., (2013) [141] 1 IMU WK, SD, SA 
DTW based event 

detection / 
n.a. / 86.7%-97.7% 

Panahandeh et al. (2013) 

[132] 
1 IMU RUN, SA, SD, Std, WK 

HMM based event 

detection / filtered 
95% / n.a. 

Fraccaro et al. (2014) [34] 1 acc, 1 gyro WK 
Rule based event 

detection  / filtered 
n.a. / 92.5% 

Formento et al. (2014) 

[128] 
1 gyro SA, SD 

Rule based event 

detection (120ms 

delay) /filtered 

n.a./93-95% 

Ngo et al. (2015) [133] 3 IMUs WK, SA, SD, SW 

Signal matching based 

event detection 

/filtered 

94% 

Chen et al. (2015) [33] 
2 IMUs and foot 

pressure 
WK, SA, SD, SW Event-based /raw n.a./90-100% 

Abbreviations: IMU(Accelerometers and Gyroscopes), acc (Accelerometer), gyro (Gyroscope), Jog (Jogging), SA (Stair 

Ascending), SD (Stair Descending), Std (Standing), SW (Slope Walking), WK (Level Walking), 



 

 

102 

 

APPENDIX B) KINEMATIC DATA ACQUISITION 

Kinematic Data Viewer App 

Kinematic data viewer App was developed in Java using the NetBeans Software Development 

Environment 7.0.1. This App allows the direct connection between the inertial sensor and the 

laptop system over a Bluetooth connection.  

Connecting device  

Running the app, a graphical panel opens which facilitates to select and connect the device(s) 

with the laptop, shown in Figure B.1. 

 

Figure B.1 Main (Kinematic Data Viewer) window for connecting BiolabIMU. 

In this window a user can choose the number of devices to acquire the data, name given to 

each of them and the COM port that has been associated with the pairing between the IMU 

and laptop over Bluetooth connection: 
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Number of devices: Select the number of devices to be scanned, up to four inertial units. 

Name: Select the name for the device. This will be the only reference to later identify the 

inertial unit in the graphics and text files.  

COM Port: Select the port associated with the device. Note that once selected is removed 

from the list. 

Selected: Here is a list of the devices to be scanned with the respective associated COM 

ports.  

Log: Here user can view the operations performed by the software, and all messages 

displayed for the user, including error identified from the header Warning!  

Clear Selected: Deletes the selected list and restores the window to its initial state. 

OK: The software opens the chosen ports and connects them; verification that each 

associated device responds to a reading start request; synchronizes all connected devices 

to obtain simultaneous data acquisition necessary for proper display in graphics.  

Data acquisition and viewing 

Once all devices are successfully connected, a new graphical window will appear. This window 

allows to acquiring and viewing the incoming data. Buttons on the bottom of the window are to 

controlling the device; calibration, get the data, pause and stop. The panel on the right side is to 

manage the charts of the devices; which device to display by selecting the name assigned by 

the user. Upper panel is for displaying accelerometer and gyroscope signal, “All in one” shows 

all axes of accelerometer and gyroscope in separate graphs,  “Acc + Gyro” displays two graphs, 

one containing three axes of the accelerometer and one containing all three axes of the 

gyroscope. And finally “Custom”, it displays a single chart and has different controls than those 

of previous panels. User can choose any channel of any device and add it to the chart. Figure 

B.2 shows the screenshot of the panel, showing incoming signals from two inertial sensors. 
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Figure B.2 Data acquisition and viewing Panel 


