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Foreword

The theory of orthogonal polynomials has seen many remarkable devel-
opments during the last two decades, due to its connections with integrable
systems, spectral theory and random matrices. Indeed, in recent years the
interest for this theory has often arisen from outside the orthogonal polyno-
mial community after their connection with integrable systems was found.
In this thesis the study has been restricted to classical integrable dynamical
systems and a new connection with orthogonal polynomials is presented.

In fact, we have considered several many-body systems that have the
fundamental property to be integrable. The main results in this thesis are
related to Diophantine findings obtained from an important class of inte-
grable systems: Isochronous systems. The most famous of these systems is
the harmonic oscillator. The first remarkable Diophantine conjecture has
been presented over a century and half ago by Sylvester [45] and revisited
and proven recently by Askey [2] and Holtz [38]. An extension of it is pre-
sented in [12] . In the first chapter we explain in detail the properties of these
systems and how we can construct isochronous systems from a large class of
integrable systems. To clarify this issue we will present one example of this
procedure in the case of the Toda system. In chapter 2, we take one Diophan-
tine conjecture and we give the proof, so we will see the connection of the
Diophantine properties with orthogonal polynomials and their complete fac-
torization. The aim of chapter 3 is the identifications of classes of orthogonal
polynomials defined by three term recursion relations depending on a param-
eter ν, which satisfy also a second recursion involving that parameter, and
some of which feature zeros given by formulas involving integers. In chapter
4 we apply the machinery developed in chapter 3 to all the polynomials of
the Askey scheme. For these polynomials we identify other, new, additional
recursion relations involving a shift of some parameters that they feature.
For several of these polynomials we obtain factorization formulas for special
values of their parameters. In chapter 6 we connect our machinery with the
discrete integrability. We compare the three term recursion relation with a
spectral problem involving a discrete Schrödinger operator, and the second
recursion with a discrete time evolution for the eigenfunctions. Following the
Lax technique developed in the last three decades we will construct an entire
hierarchy of equations, and we will see the relation of this hierarchy with the
hierarchy of the discrete time Toda lattice.

In the last chapter we present another approach of the our machinery
applied to integrable ODE. We consider the stationary KdV’s hierarchy, but
this general procedure could be extended to various soliton hierarchies.
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The results reported and discussed in this thesis have been obtained work-
ing in collaboration with Prof. F. Calogero and Prof. M. Bruschi of Roma
University ”La Sapienza” and under the supervision of Prof.O. Ragnisco.
They describe the research activity that I have carried out in the last three
years, during my Ph.D. at the Rome 3 University.
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Chapter 1

From Isochronous System to Diophantine

properties and related Orthogonal

Polynomials.

A classical dynamical system is called isochronous if exists in its phase space
an open set of fully dimensionality, called ”the isochrony region”, where all
solutions are periodic in all their degrees of freedom with the same, fixed pe-
riod, independently on the initial data provided. A well-known isochronous
N -body system is the Calogero-Moser model characterized by the Hamilto-
nian

H(z
¯
, p
¯
) =

1

2

N
∑

n=1

[

p2
n +

(ω

2

)2

z2
n

]

+
1

4

N
∑

m,n=1;m6=n

g2

(zn − zm)2 , (1.1)

and correspondingly by the Newtonian equations of motion

z̈n +
(ω

2

)2

zn =
N
∑

m=1;m6=n

g2

(zn − zm)3 , (1.2)

where ω is a positive constant, ω > 0.
Indeed, in the real domain, all the solutions of these equations of motion

are isochronous, namely completely periodic:

zn (t+ T ) = zn (t)

with

T =
2π

ω
provided g 6= 0.

We call entirely isochronous the dynamical systems which are isochronous
in their entire (natural) phase space- possibly up to a lower dimensional set
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of singular solutions, and possibly featuring a finite (generally small) number
of different periods- all of them integer multiples of a basic one- in different,
fully dimensional, regions of their phase space, separated from each other by
the lower dimensional set of data yielding singular solutions.

Now we will introduce a trick that modifies a integrable dynamical system
into a new system, again integrable, which exhibits the remarkable property
of been isochronous. This trick is a complex transformation of the depen-
dent and independent variables. It contains a positive, real parameter ω: the
”ω-modified” model yielded by this transformation is isochronous because it
possesses an open set of full dimensionality in its phase space where all so-
lutions are completely periodic, i.e. periodic in all degree of freedom with
the same period T̃ which is a finite multiple of the basic period T = 2π

ω
.

The ω−modified system manufactured in this manner can be generally made
autonomous: this being indeed the case we deem more interesting hence on
which we focus hereafter. It obtains from (possibly nonautonomous) dy-
namical systems belonging to a quite large class, restricted mainly by the
condition that it makes sense to extend by analytic continuation its time
evolution to complex time, and moreover by a scaling requirement.

We take into account a quite general dynamical system possibly non au-
tonomous, which we write

ζ ′ = F (ζ; τ) . (1.3)

Here, ζ = ζ(τ) = (ζ1(τ), ζ2(τ), ..., ζn(τ)) is the dependent variable which
might be a scalar, a vector, a tensor, etc. The independent variable is τ and
we assume that it is permissible to consider as complex. This requires that the
derivative with respect to this complex variable τ appearing in the left-hand
side of this evolution equation (1.3) makes sense, namely that the dynamical
system (1.3) is analytic entailing in turn that the dependent variable ζ is
an analytic function of the complex variable τ . Notice, however, that this
does not require ζ(τ) to be a holomorphic or a meromorphic function of
τ ; ζ(τ) might feature all sorts of singularities, including branch points, in
the complex τ -plane, indeed this will generally happen since we assume the
evolution equation (1.3) to be nonlinear.

Now we introduce the following transformations of the dependent and
independent variables:

z(t) = exp(iλωt)ζ(τ) ; (1.4a)

τ ≡ τ(t) =
exp(iωt) − 1

iω
. (1.4b)

This transformation is called ”The trick” (It was first introduced in [8]).
The essential part of it is the change of independent variable (1.4b): and let
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us emphasize that the new independent variable t is considered as the real,
”physical” time variable.

Note that (1.4) implies

τ(0) = 0 , z(0) = ζ(0) , ż(0) − iλω z(0) = ζ ′(0) , (1.5)

(where the symbol ′ = d
dτ

, and the dot symbol · = d
dt

) and most importantly,
that τ(t) is a periodic function of t with period T . As the time t increase
from zero onward, the complex variable τ(t) travels counterclockwise making
a full tour in the time T on the circle C, whose diameter of length 2

ω
lies on

the imaginary axis in the complex τ -plane with one extreme at the origin
τ = 0 and the other at the point τ = 2i

ω
. Hence, if ζ(τ) is holomorphic in τ

in the disk D encircled by the circle C, then the trick relation implies that
z(t) is ”λ-periodic,”

z(t+ T ) = exp(2πiλ) z(t) . (1.6)

The ”ω- modified” dynamical system is the one that obtains from (1.3) via
the trick (1.4). The new equations of motion are

ż(t)−iλω z(t) = exp [i(λ+ 1)ωt]F

(

exp(−iλωt) z;
exp(iωt) − 1

iω

)

. (1.7)

We are interested at the case of autonomous dynamical systems. Indeed, if
(1.3) is autonomous ζ ′ = F (ζ) and F satisfy the scaling property

F (cζ) = cγF (ζ) (1.8)

where c is a scalar and with γ a rational number (γ 6= 1), the ”ω- modi-
fied” dynamical system (1.7) remain autonomous and we have the following
equations of motion

ż(t) − iλω z(t) = F (z ) , (1.9)

if the parameter λ satisfies the condition

λ =
1

γ − 1
,

hence, we see that also the parameter λ is a rational number, because γ is a
rational number.

Now we identify, if there exist, the equilibrium configurations of the sys-
tem. The equilibrium positions are

z(t) = z̄ ; (1.10)

ż(t) = 0; (1.11)
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and we compute these positions by the following stationary equation:

−iλω z̄ = F ( z̄) . (1.12)

After this step, we investigate the small oscillations of this system in the
neighbourhood of its equilibrium configurations. We consider:

z(t) = z̄ + ǫ x(t) , (1.13)

where z̄ is the equilibrium position, ǫ is a small parameter ǫ << 1, and
inserting it into the equation (1.9), we obtain the following equation

ǫẋ(t) − ǫiλω x(t) − iλωz̄ = F ( z̄ + ǫ x(t)) . (1.14)

If F is analytic then ∃ R such that for |ǫx| < R ; F ( z̄ + ǫ x(t)) can be writ-
ten in Taylor series respect to the parameter ǫ, and it converges uniformly in
this domain. The value of R depends by the field F and by the equilibrium
positions z̄. By construction, the zero order in ǫ gives the equilibrium con-
dition (1.12). At first order in ǫ we have the linearized equations of motion
for the ”ω-modified” system

ẋn(t) − iλωxn(t) −
n
∑

m=1

∂Fn

∂zm
|z=z̄ xm(t) = 0 . (1.15)

It is possible write the linearized equations only if the autonomous vectorial
field F is analytic in the variables z. The general solution of the ODE (1.15)
is provided by formula

xn(t) = an exp(ipωt) x̃n , (1.16)

where a is a constant and p is the solution of the determinantal equation

det[(ipω − iλω) I − F] = 0, (1.17)

F being the matrix defined componentwise as

(F)n,m=
∂Fn

∂zm

|z=z̄ .

But we already known that the solution of the isochronous model (1.9) are
completely periodic with period T . The same periodicity property must,
therefore, characterize the behaviour of solution (1.16) describing the be-
haviour of the system in the neighbourhood of its equilibrium configuration.
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We thus arrive at the following Diophantine property: the roots p of the
equation (1.17) are all integers.

The original strategy to arrive at the Diophantine findings that provided
the motivation for the developments reported in this thesis can be outlined
as follows. (i) Identify an integrable dynamical system. (ii) Modify it so
that it becomes isochronous. (iii) Identify an equilibrium configuration of
the isochronous system. (iv) Investigate, via the standard linearization tech-
nique (”the theory of small oscillations around equilibria”) the behavior of
the isochronous system near its equilibrium configuration, which is then char-
acterized by a set of basic oscillation frequencies whose values are provided
by the eigenvalues of a matrix obtained from the equations of motion and
evaluated at the equilibrium values of the dependent variables. (v) Observe
that – because the isochronous nature of the dynamical system under con-
sideration must also characterize its behavior around equilibrium – all these
basic frequencies of oscillation must be integer multiples of a basic frequency.
(vi) Infer that all the eigenvalues of the matrix characterizing the behavior
around equilibrium must be integers (up to a common rescaling). This fact
– that all the eigenvalues of a matrix, of arbitrary order and of reasonably
neat appearance, are integers – constitute the Diophantine finding (which is
nontrivial provided the similarity transformation diagonalizing the matrix in
question is not obvious).

In the follows we provide – quite tersely – an example of this procedure.
An integrable dynamical system:

η′n = ξn − ξn−1 , ξ′n = ξn(ηn+1 − ηn) n = 1, ..., N. (1.18)

These are the equations of motion (in the version more convenient for our
purposes) of the classical Toda model [35] [36], whose integrability was noted
by H. Henon [37] and demonstrated by H. Flaschka [39] [40] and by S. Man-
akov [42].

Free-end boundary conditions:

ξ0 = ηN+1 = 0 . (1.19)

The trick :

yn(t) = exp(it)ηn (τ) , xn(t) = exp(2it)ξn (τ) , τ = i [1 − exp (it)] .
(1.20)

The isochronous version:

ẏn−iωẏn = xn−xn−1 , ẋn−2iωxn = xn(yn+1−yn) , x0 = yN+1 = 0 . (1.21)
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Equilibrium configuration (satisfying the free-end boundary conditions):

xn (t) = x̄n = n (2N + 1 − n) , yn (t) = ȳn = 2i (N + 1 − n) . (1.22)

Small oscillations around equilibrium:

xn (t) = x̄n + ǫun (t) , yn (t) = ȳn + ǫwn (t) , ǫ ≈ 0 . (1.23)

The linearized equations of motion:

ẇn − iwn = un − un−1 , u0 = 0 , (1.24a)

u̇n = n (2N + 1 − n) (wn+1 − wn) , wN+1 = 0 , (1.24b)

ẅn − iẇn − n (2N + 1 − n)wn+1 + 2 [N(2n− 1) − n+ 1)]wn

− (n− 1) (2N − n+ 2)wn−1 = 0 , wN+1 = 0 . (1.24c)

The basic oscillations :

wn (t) = w̃n exp (iλt) . (1.25)

The eigenvalue problem determining the eigenfrequencies λ:

λ (λ− 1) w̃n + n (2N + 1 − n) w̃n+1 − 2 [N(2n− 1) − n+ 1)] w̃n

+ (n− 1) (2N − n+ 2) w̃n−1 = 0 , w̃N+1 = 0 . (1.26)

Diophantine finding: setting N = µ, defining the n × n matrix L(µ) as
follows,

L(µ)
m,m = m(2µ−m + 1) + (m− 1)(2µ−m+ 2) ] , (1.27a)

L
(µ)
m,m−1 = −(m− 1)(2µ−m+ 2) , (1.27b)

L
(µ)
m,m+1 = −m(2µ−m+ 1) , (1.27c)

one concludes that the solution of the following polynomial equation of degree
2n in λ must have rational solutions:.

det[λ (λ− 1) − L(n)] = 0 . (1.28)

Hence, setting z = λ (λ− 1) so that λ =
(

1 ±
√

1 + 4z
)

/2, one infers that

1+4z must be the square of a rational number, say 1+4z = (4m− 1)2 hence
z = 2m (2m− 1) with m rational. Indeed one finds by direct calculation

∣

∣

∣

∣

z − 4 4
4 q − 10

∣

∣

∣

∣

= (z − 2)(z − 12) , (1.29a)
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∣

∣

∣

∣

∣

∣

z − 6 6 0
6 z − 16 10
0 10 z − 22

∣

∣

∣

∣

∣

∣

= (z − 2)(z − 12)(z − 30) , (1.29b)

∣

∣

∣

∣

∣

∣

∣

∣

z − 8 8 0 0
8 z − 22 14 0
0 14 z − 32 18
0 0 18 z − 38

∣

∣

∣

∣

∣

∣

∣

∣

= (z − 2)(z − 12)(z − 30)(z − 56) , (1.29c)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z − 10 10 0 0 0
10 z − 28 18 0 0
0 18 z − 42 24 0
0 0 24 z − 52 28
0 0 0 28 z − 58

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (z − 2)(z − 12)(z − 30)(z − 56)(z − 90) . (1.29d)

One therefore sees that the numbers m are in fact integers, and infers that,
if one defines the family of polynomials P

(µ)
n (z) , of degree n, via the formula

det
[

z − L(µ)
]

= P (µ)
n (z) , (1.30)

there holds the Diophantine property

P (n)
n (z) =

n
∏

m=1

[z − 2m (2m− 1)] . (1.31)

Indeed the tridiagonal character of the n× n matrix L(µ), see (1.27), entails
that the family of (monic, orthogonal) polynomials (1.30) are characterized
by the recursion relation

P
(µ)
n+1(x) = (x− 2n2 + 4nµ+ 2µ) P (µ)

n (x)−n2(2µ−n+ 1)2 P
(µ)
n−1(z) , (1.32a)

P
(ν)
−1 (x) = 0 , P

(ν)
0 (x) = 1 , (1.32b)

and it is therefore immediately seen that they coincide with the polynomials
p

(ν)
n (x) of [12] up to the identification ν = 2µ + 1, so that the Diophantine

factorization (1.31) coincides with the Smet formula (see eq. (59) of [12])

p(2n+1)
n (x) =

n
∏

m=1

[x− 2m (2m− 1)] . (1.33)

We can see by the three terms recursion relation (1.32a) that the poly-

nomials P
(µ)
n (x) are included into the class of Dual Hahn polynomial for

determined values of its parameters.
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Chapter 2

Proof of Diophantine Conjectures and

Connection with classes of Orthogonal

Polynomials.

In this chapter we want to give a proof of certain Diophantine conjectures
studied in my Laurea thesis. They were suggested, as we have seen in the
Chapter 1 , by the investigation of the behaviour of certain isochronous many-
body problems in the neighbourhood of their equilibrium configurations.
In this case the integrable lattice investigated was the so called Bruschi-
Ragnisco-Ruijsenaars-Toda (see Ref. [19] ). In order to do so we identify a
class of polynomials satisfying three-term recursion relations (hence belong-
ing to an orthogonal class) which seems of interest in their own right, at
least inasmuch as they also yield additional Diophantine findings.

The first of these conjectures (see Ref. [19] ) states that the tridiagonal
N ×N matrix U (N) defined componentwise as follows,

Un,n (N) = N (N − 1) − (n− 1) 2 − (N − n) 2 = −2n2 + (N + 1) (2n− 1) ,

n = 1, ..., N , (2.1a)

Un,n−1 (N) = (n− 1) 2 , n = 2, ..., N , (2.1b)

Un,n+1 (N) = (N − n) 2 , n = 1, ..., N − 1 , (2.1c)

(of course with all other elements vanishing) has the N eigenvalues n (n− 1),
n = 1, ..., N, i. e.

det [x− U (N)] =
N
∏

n=1

[x− n (n− 1)] . (2.2)

Note the symmetry property of this N×N matrix U (N) under the exchange
n⇐⇒ N + 1− n. And, more importantly, also note that the argument N of
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this matrix U (N) plays a double role in its definition: it denotes the order
of this matrix, and moreover it appears as a parameter in its definition.

To prove this conjecture we firstly introduce the (more general) tridiago-
nal M ×M matrix V (M, ν) defined componentwise as follows:

Vm,m (M, ν) = ν (ν − 1) − (m− 1) 2 − (ν −m) 2 = −2m2 + (ν + 1) (2m− 1) ,

m = 1, ...,M , (2.3a)

Vm,m−1 (M, ν) = (m− 1) 2 , m = 2, ...,M , (2.3b)

Vm,m+1 (M, ν) = (ν −m) 2 , m = 1, ...,M − 1 , (2.3c)

(of course with all other elements vanishing), and the class of polynomials

p(ν)
n (x) = det [x− V (n, ν)] . (2.4)

It is easily seen that p
(ν)
n (x) is a monic polynomial of degree n in the variable

x and it is also a polynomial of degree n in the (a priori arbitrary) parameter
ν, and that

p
(ν)
1 (x) = x−ν+1 , p

(ν)
2 (x) = x 2−2 (2 ν − 3) x+2 (ν − 1) (ν − 2) . (2.5)

It is as well plain (see (2.1) and (2.3)) that

V (n, n) = U(n) , (2.6)

hence that the conjecture reported above, see (2.2), amounts to the formula
(see (2.4) and (2.6))

p(n)
n (x) =

n
∏

m=1

[x−m (m− 1)] , (2.7a)

which for future reference is complemented by the assignment

p
(0)
0 (x) = 1 . (2.7b)

We will show that the polynomials p
(ν)
n (x) satisfy (and are in fact defined

by) the three-term recursion relation

p
(ν)
n+1(x) =

[

x + 2n2 − 2 (ν − 1)n− ν + 1
]

p(ν)
n (x)

−n 2 (n− ν) 2 p
(ν)
n−1(x) , n = 1, 2, ... (2.8a)

with the ”initial assignments”

p
(ν)
−1 (x) = 0 , p

(ν)
0 (x) = 1 . (2.8b)
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This is in fact a rather trivial consequence of their definition (2.4) with (2.3)
– and, as we show in the following section, it entails for these polynomials
the rather explicit representation

p(ν)
n (x) = p(n)

n (x) +

n−1
∑

m=0

{

(

n!

m!

) 2
p

(m)
m (x)

(n−m)!

n
∏

ℓ=m+1

(ℓ− ν)

}

. (2.9)

In the right hand side of this formula the expressions p
(n)
n (x) (and of course

likewise p
(m)
m (x)) are a priori given by (2.7) (see the derivation of this formula

in the following section), but clearly setting ν = n in this formula (2.9) this
notation gets validated because the sum in the right-hand side of this formula
disappears due to the vanishing of the product appearing in it: namely the
conjecture (2.7a) is thereby proven.

Clearly this expression, (2.9) with (2.7), of the polynomial p
(ν)
n (x), which

is valid when n is a positive integer and ν is an arbitrary number, entails the
relation

p(j)
n (x) = p(n)

n (x) +
n−1
∑

m=j

{

(

n!

m!

) 2
p

(m)
m (x)

(n−m)!

n
∏

ℓ=m+1

(ℓ− j)

}

, (2.10)

provided j is a positive integer not exceeding n, j ≤ n (since the last product
in the right-hand side of (2.9) vanishes for m ≤ j ≤ n). Moreover, since
clearly (see (2.7a))

p(m)
m [k (k − 1)] = 0 for k = 1, 2, ..., m , (2.11)

(2.9) with (2.7) entail (provided k is a positive integer)

p(ν)
n [k (k − 1)] = p(n)

n [k (k − 1)]

+

min[n−1,k−1]
∑

m=0

{

(

n!

m!

) 2
p

(m)
m [k (k − 1)]

(n−m)!

n
∏

ℓ=m+1

(ℓ− ν)

}

(2.12a)

and (see (2.10))

p(j)
n [k (k − 1)] = pn [k (k − 1), n]+

min[n−1,k−1]
∑

m=j

(

n!

m!

) 2
p

(m)
m [k(k − 1)]

(n−m)!

n
∏

ℓ=m+1

(ℓ− j) .

(2.12b)
Hence (see (2.11), and note that the sum in the right-hand side of (2.12b)
vanishes if its lower limit exceeds its upper limit)

p(j)
n [k (k − 1)] = 0 if k = 1, 2, ..., j , j = 1, 2, ..., n . (2.13)
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In words: the polynomial (of degree n) p
(j)
n (x) with j any positive integer

not exceeding n (j = 1, ..., n) has the j zeros k (k − 1) with k = 1, ..., j.
This is a remarkable Diophantine property associated with the family of
orthogonal polynomials characterized by the three-term recursion relation
(2.8); it includes the result (2.7), which is reproduced for j = n.

Note that these j zeros of the polynomial p
(j)
n (x) are indipendent of its

order n.
It is moreover easily seen that (2.10) with (2.7) entails

p(n−1)
n (x) = (x + n) p

(n−1)
n−1 (x) = (x+ n)

n−1
∏

m=1

[x−m (m− 1)] , (2.14)

p(n−2)
n (x) =

[

x 2 + 2 (2n− 1) x + 2n (n− 1)
]

p
(n−2)
n−2 (x)

= [x− x+(n)] [x− x−(n)]

n−2
∏

m=1

[x−m (m− 1)] , (2.15a)

of course with

x± (n) = −2n + 1 ±
[

n 2 + (n− 1) 2] 1/2
. (2.15b)

It is thus seen that, in addition to the n− 1 integer zeros k (k − 1) implied

by (2.13), the polynomial p
(n−1)
n (x) also vanishes at x = −n,

p(n−1)
n (−n) = 0 ; (2.16)

hence also this polynomial p
(n−1)
n (x), as well as the polynomial p

(n)
n (x), has the

remarkable Diophantine property that all its n zeros are integer numbers (see
(2.14)). On the other hand, as shown by (2.15), for a generic (positive integer)

value of n ≥ 3 the polynomial p
(n−2)
n (x) has n− 2 integer zeros (see (2.13)),

but its remaining 2 zeros are not integer numbers (see (2.15b)), except for n
is the second entry in the sequence A001652 [33] of twin pythagorean triples.
This confirms that the search for integer zeros of orthogonal polynomials
is connected to the existence of perfect codes, and that in this context the
results in [31] might point towards further applications of our results.

Note that the recursion relations (2.8a) entail that exist a weight func-

tion and an interval where the polynomials p
(ν)
n (x) are orthogonal (Spectral

theorem for the orthogonal polynomials: see [26], or the ”Favard theorem”:
see [24], and, for instance, p. 159 of ref. [23]).

It would of course be sufficient at this stage to simply verify that the
polynomials given by the formulas (2.9) satisfy the recursion relations (2.8) ;
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but it seems more appropriate to prove these formulas via a route that makes
clear how they were obtained.

The diligent reader will verify that these polynomials, as given by (2.9) ,
can be identified with generalized hypergeometric functions [23] as follows:

p(ν)
n (x) = n! (1 − ν)n 3F2 (−n,m+ (x) , m− (x) ; 1, 1 − ν; 1) , (2.17a)

m± (x) =
1 ± (1 + 4 x) 1/2

2
, (2.17b)

Here and below the hypergeometric function is of course defined in the stan-
dard manner [23]:

nFm [a1, ..., an; c1, ..., cm; z] =

∞
∑

ℓ=0

(a1)ℓ · · · (an)ℓ z
ℓ

(c1)ℓ · · · (cm)ℓ ℓ!
, (2.18a)

with the Pochhammer symbol (a)ℓ defined as follows,

(a)ℓ =
Γ (a+ ℓ)

Γ (a)
, (2.19)

where Γ denotes the standard gamma function [23].
Hence, when the parameter ν is a positive integer larger than n, ν =

N + 1, N ≥ n, our polynomials p
(ν)
n (x) can be related to the ”Dual Hahn

polynomials” Rn [x; γ, δ, N ] (see for instance [32]) via the formulas

p(N+1)
n (x) = n! (−N)n Rn [x ; 0, 0, N ] (2.20)

Note that instead our Diophantine results (see (2.10) and the formulae fol-
lowing this equation) refer to the case when n and N are indeed non-negative
integers but N + 1 ≤ n; and that in these cases these formulas must be
interpreted with appropriate care.

Additional remark. Christophe Smet pointed out- on the basic of numer-
ical evidences- that

p(2n+1)
n (x) =

n
∏

m=1

[x− 2m(2m− 1)] , (2.21)

so that also these polynomials p
(2n+1)
n (x) only feature integer zeros.

Now we want prove the results reported previously.
Let us consider firstly the findings connected with the first conjecture [19].

As stated above, the fact that the polynomials defined by (2.4) with (2.3)

16



satisfy the recursion relation (2.8) is an easy consequence of the determinan-
tal definition (2.4) with (2.3): to verify it compute det [x− V (n + 1, ν)] by
multiplying the (only two nonvanishing) elements of the last line (or equiva-
lently of the last column) of this determinant by their adjoint determinants,
obtaining thereby the recursion (2.8a), and then check if need be that, for
n = 0 and n = 1, (2.8) yields (2.5).

It is then convenient to renormalize the polynomials p
(ν)
n (x) via the defi-

nition
p(ν)

n (x) = (n!) 2 q(ν)
n (x) , (2.22)

entailing that the polynomials q
(ν)
n (x) satisfy the three-term recursion relation

(n+ 1) 2 q
(ν)
n+1(x) =

[

x+ 2n2 − 2 (ν − 1)n− (ν − 1)
]

q(ν)
n (x)

− (ν − n) 2 q
(ν)
n−1(x) , n = 1, 2, ... , (2.23a)

q
(ν)
−1 (x) = 0 , q

(ν)
0 (x) = 1 , q

(ν)
1 (x) = x− ν + 1 . (2.23b)

The purpose of this step is to obtain a recursion relation, see (2.23a), in which
the index n only enters quadratically (rather than quartically, see (2.8a)).

Next, we introduce the generating function

Q(x, ν; z) =
∞
∑

n=0

(z + 1)−n q(ν)
n (x) . (2.24)

It is then rather easy to verify that the recursion relation (2.23) entails that
this generating function satisfies the second-order ODE

(z + 1) 2 z 2 Q′′ + (z + 2 − 2 ν) (z + 1) z Q′

+ [(ν − 1 − x) z + ν (ν − 1) − x] Q = 0 , (2.25)

where (just above, and always below) the appended primes denote differen-
tiations with respect to z. It is also plain that, at large values of |z| , via
(2.23b) we get from (2.24)

Q(x, ν; z) = 1 +
x− ν + 1

z
+O

(

1

|z| 2
)

. (2.26)

To solve the ODE (2.25) and thereby identify the generating function
Q(x, ν; z), it is convenient to set

Q(x, ν; z) = (z + 1) 1−ν z ν−1 F (x, ν; z) , (2.27)
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entailing that F (x, ν; z) satisfies the ODE

(z + 1) z 2 F ′′ + z 2 F ′ − xF = 0 . (2.28)

It is then plain that, by setting

F (x, ν; z) =

∞
∑

n=0

Cn (x, ν) z−n , (2.29)

one gets for the quantities Cn (x, ν) the recursion relation

Cn (x, ν) =
x− n (n− 1)

n 2
Cn−1 (x, ν) (2.30a)

entailing

Cn (x, ν) =
p

(n)
n (x)

(n!) 2
C0 (x, ν) . (2.30b)

Here and hereafter p
(n)
n (x) is defined by (2.7).

Hence we conclude that a solution of (2.28) is provided by the formula

F (x, ν; z) = C0 (x, ν)
∞
∑

n=0

p
(n)
n (x)

(n!) 2 z−n (2.31)

with C0 (x, ν) an arbitrary function of its two arguments. Via (2.27) this
yields for the generating function Q(x, ν; z) the expression

Q(x, ν; z) = C0 (x, ν)

(

1 +
1

z

) 1−ν ∞
∑

n=0

p
(n)
n (x)

(n!) 2 z−n , (2.32)

entailing at large value of |z| (via (2.7))

Q(x, ν; z) = C0 (x, ν)

(

1 +
x+ 1 − ν

z

)

+O

(

1

|z| 2
)

. (2.33)

Comparing with (2.26) we therefore conclude that C0 (x, ν) = 1, yielding for
Q(x, ν; z) the final expression

Q(x, ν; z) =

(

1 +
1

z

) 1−ν ∞
∑

n=0

p
(n)
n (x)

(n!) 2 z−n . (2.34)

It is clear that (2.24) entails the following integral expression for the

polynomials q
(ν)
n (x):

q(ν)
n (x) = (2 π i)−1

∮

dz (z + 1)n−1 Q(x, ν; z) , (2.35)

18



with the integral
∮

(see just above and always below) being performed, in the
complex z-plane, counterclockwise on a closed contour encircling the point
z = −1 (and not the point z = 0). Hence, via (2.34),

q(ν)
n (x) =

∞
∑

m=0

p
(m)
m (x)

(m!) 2 (2 π i)−1

∮

dz zν−1−m (z + 1)n−ν . (2.36)

We now use the formula

(2 π i)−1

∮

dz z ν−1−m (z + 1)n−ν =

∏n
ℓ=m+1 (ℓ− ν)

(n−m)!
, (2.37)

which is easily proven by expanding z ν−1−m in inverse powers of (z + 1) ,

z ν−1−m = (z + 1) ν−1−m

(

1 − 1

z + 1

) ν−1−m

=

∞
∑

j=0

(−) j

(

ν − 1 −m

j

)

(z + 1)−j . (2.38)

We thereby obtain the following expression of the polynomials q
(ν)
n (x):

q(ν)
n (x) =

p
(n)
n (x)

(n!) 2 +

n−1
∑

m=0

(

1

m!

) 2
p

(m)
m (x)

(n−m)!

n
∏

ℓ=m+1

(ℓ− ν) . (2.39)

Via (2.22) this yields (2.9). Q. E. D.
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Chapter 3

Tridiagonal Matrices, Orthogonal

Polynomials and Diophantine relations.

3.1 Main results

As we have seen in the previous chapter (and we can see in [12]) , these
Diophantine conjectures entailed the identification of certain classes of or-
thogonal polynomials p

(ν)
n (x), of degree n in the variable x and depending

(also polynomially) on a parameter ν, which feature zeros given by simple
formulae involving integers (and join to sequence of integers: see [33]) when
the parameter ν takes appropriate integer values.

Our results consist in the identification of classes, defined by three-term
recursion relations (see (3.1)), of orthogonal polynomials some of which – of
arbitrary degree n – feature zeros given by neat formulas involving integers,
or equivalently in the identification of ”remarkable” tridiagonal matrices –
of arbitrary order n, see (3.3) – whose eigenvalues are likewise given by neat
formulas involving integers. Another finding – which is instrumental to get
our Diophantine results, but seems of interest in its own right (indeed, might
possibly be deemed the most interesting finding of this paper) – identifies
classes of orthogonal polynomials, defined by three-term recursion relations
and depending on a parameter ν (see (3.1)), which moreover also satisfy a
second recursion involving that parameter (see (3.6)) and possibly as well
some remarkable factorization properties.

We now present our main results. Let the class of monic polynomials
p

(ν)
n (x), of degree n in the variable x and depending on the parameter ν, be

defined by the three-term recursion relation

p
(ν)
n+1(x) =

(

x+ a(ν)
n

)

p(ν)
n (x) + b(ν)

n p
(ν)
n−1(x) (3.1a)
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with the ”initial” assignment

p
(ν)
−1 (x) = 0 , p

(ν)
0 (x) = 1 , (3.1b)

clearly entailing

p
(ν)
1 (x) = x+ a

(ν)
0 , p

(ν)
2 (x) =

(

x + a
(ν)
1

)(

x + a
(ν)
0

)

+ b
(ν)
1 (3.1c)

and so on.
Notation: hereafter the index n is a nonnegative integer (but some of the

formulas written below might make little sense for n = 0, requiring a – gen-
erally quite obvious – special interpretation), and a

(ν)
n , b

(ν)
n are functions of

this index n and of the parameter ν. These functions are hereafter assumed
to be independent of the variable x; although a linear dependence of a

(ν)
n on

x and a quadratic dependence of b
(ν)
n on x would not spoil the polynomial

character (of degree n) of p
(ν)
n (x). They might also depend on other parame-

ters besides ν (see below); but ν plays a special role, because in the following
we shall mainly focus on special values of this parameter (generally simply
related to the index n).

Remark 3.1. The polynomials p
(ν)
n (x) are generally orthogonal (”Favard

theorem” [24] [23]) but this feature plays no role in the following.

Remark 3.2. The (monic, orthogonal) polynomials p
(ν)
n (x) defined by the

three-term recursion relation (3.1) are related to tridiagonal matrices via the
well-known formula

p(ν)
n (x) = det

[

x−M (ν)
]

(3.2)

with the tridiagonal n× n matrix M (ν) defined componentwise as follows,

M
(ν)
m,m+1 =

b
(ν)
m

c
(ν)
m

, m = 1, ..., n− 1 , (3.3a)

M (ν)
m,m = −a(ν)

m−1 , m = 1, ..., n , (3.3b)

M
(ν)
m,m−1 = −c(ν)

m−1 , m = 2, ..., n , (3.3c)

with all other elements vanishing. Here the n − 1 quantities c
(ν)
m , m =

1, ..., n− 1 are arbitrary (of course nonvanishing, c
(ν)
m 6= 0, see (3.3a)). These

formulas entail that the n zeros of the polynomial p
(ν)
n (x) defined by the

three-term recursion relation (3.1) coincide with the n eigenvalues of the
tridiagonal n× n matrix M (ν), see (3.3). ⊡

Hence the Diophantine findings reported below, identifying polynomials
belonging to orthogonal families that feature zeros given by neat formulas
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involving integers, might as well be reformulated as identifying tridiagonal
matrices that are remarkable inasmuch as they feature eigenvalues given by
neat formulas involving integers.

Second recursion relation

We now report a result concerning the (monic, orthogonal) polynomials

p
(ν)
n (x) defined by the three-term recursion relations (3.1). This finding is

instrumental to obtain the Diophantine results detailed in the following, but
– as already mentioned above – it seems of interest in itself.

Proposition 3.3. Assume that the quantities A
(ν)
n and α(ν) satisfy the

nonlinear recursion relation
[

A
(ν)
n−1 − A

(ν−1)
n−1

] [

A(ν)
n − A

(ν−1)
n−1 + α(ν)

]

=
[

A
(ν−1)
n−1 − A

(ν−2)
n−1

] [

A
(ν−1)
n−1 −A

(ν−2)
n−2 + α(ν−1)

]

(3.4a)

with the boundary condition
A

(ν)
0 = A (3.4b)

where A is an arbitrary constant (independent of ν), and that the coefficients

a
(ν)
n and b

(ν)
n are defined in terms of these quantities by the following formulas:

a(ν)
n = A

(ν)
n+1 −A(ν)

n , (3.5a)

b(ν)
n =

[

A(ν)
n −A(ν−1)

n

]

[

A(ν)
n − A

(ν−1)
n−1 + α(ν)

]

. (3.5b)

Then the polynomials p
(ν)
n (x) identified by the recursion relation (3.1) satisfy

the following additional recursion relation (involving a shift both in the order
n of the polynomials and in the parameter ν):

p(ν)
n (x) = p(ν−1)

n (x) + g(ν)
n p

(ν−1)
n−1 (x) , (3.6)

with
g(ν)

n = A(ν)
n − A(ν−1)

n . ⊡ (3.7)

A more general version of this Proposition 3.3 can be formulated, but
since we did not (yet) find any interesting application of it we relegate it to
the end of the chapter.

Now we obtain some relations satisfied by the quantities a
(ν)
n , b

(ν)
n , g

(ν)
n ,

as entailed by relations (3.5) and (3.7) with (3.4). These formulae are used
in section 3.3 to prove these main results.
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The main relations read as follows:

a(ν)
n − a(ν−1)

n = g
(ν)
n+1 − g(ν)

n , (3.8a)

b
(ν−1)
n−1 g(ν)

n − b(ν)
n g

(ν)
n−1 = 0 , (3.8b)

with

g(ν)
n = − b

(ν)
n − b

(ν−1)
n

a
(ν)
n − a

(ν−1)
n−1

, (3.8c)

and the ”initial” condition

g
(ν)
1 = a

(ν)
0 − a

(ν−1)
0 (3.8d)

entailing via (3.8c) (with n = 1)

b
(ν)
1 − b

(ν−1)
1 +

(

a
(ν)
0 − a

(ν−1)
0

) (

a
(ν)
1 − a

(ν−1)
0

)

= 0 (3.8e)

and via (3.8a) (with n = 0)

g
(ν)
0 = 0 . (3.8f)

The fact that these relations correspond to (3.5) and (3.7) with (3.4) is
plain: indeed (3.8a) follows immediately from (3.5a) and (3.7), while (3.8b)
follows from (3.5b) and (3.7) via (3.4a).

It would be interesting to find the general solution of the nonlinear re-
lations (3.4a) with (or possibly without) (3.4b). We have not (yet) been

able to do so, but nontrivial classes of quantities A
(ν)
n and α(ν) satisfying the

nonlinear relations (3.4) are provided in the follows – as well as the corre-

sponding coefficients a
(ν)
n and b

(ν)
n (see (3.5)) and g

(ν)
n (see (3.7)) defining,

via the recursion relations (3.1), families of (monic, orthogonal) polynomials

p
(ν)
n (x) satisfying – as entailed by this Proposition 3.3 – also the second class

of recursion relations (3.6).
Proposition 3.4. Assume that the class of (monic, orthogonal) polynomi-

als p
(ν)
n (x) defined by the recursion (3.1) satisfies Proposition 3.3, hence that

they also obey the (”second”) recursion relation (3.6). Then there also holds
the relations

p(ν)
n (x) =

[

x− x(1,ν)
n

]

p
(ν−1)
n−1 (x) + b

(ν−1)
n−1 p

(ν−1)
n−2 (x) , (3.9a)

x(1,ν)
n = −

[

a
(ν−1)
n−1 + g(ν)

n

]

, (3.9b)

as well as

p(ν)
n (x) =

[

x− x(2,ν)
n

]

p
(ν−2)
n−1 (x) + c(ν)

n p
(ν−2)
n−2 (x) , (3.10a)
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x(2,ν)
n = −

[

a
(ν−2)
n−1 + g(ν)

n + g(ν−1)
n

]

, (3.10b)

c(ν)
n = b

(ν−2)
n−1 + g(ν)

n g
(ν−1)
n−1 , (3.10c)

as well as

p(ν)
n (x) =

[

x− x(3,ν)
n

]

p
(ν−3)
n−1 (x) + d(ν)

n p
(ν−3)
n−2 (x) + e(ν)

n p
(ν−3)
n−3 (x) , (3.11a)

x(3,ν)
n = −

[

a
(ν−3)
n−1 + g(ν)

n + g(ν−1)
n + g(ν−2)

n

]

, (3.11b)

d(ν)
n = b

(ν−3)
n−1 + g(ν)

n g
(ν−2)
n−1 + g(ν−1)

n g
(ν−2)
n−1 + g(ν)

n g
(ν−1)
n−1 , (3.11c)

e(ν)
n = g(ν)

n g
(ν−1)
n−1 g

(ν−2)
n−2 . ⊡ (3.11d)

These findings correspond to Proposition 1 of Ref. [14].

Factorization

In the following we introduce a second parameter µ, but for notational
simplicity we do not emphasize explicitly the dependence of the various quan-
tities on this parameter.

Proposition 3.5. If the (monic, orthogonal) polynomials p
(ν)
n (x) are de-

fined by the recursion relation (3.1) and the coefficients b
(ν)
n satisfy the rela-

tion
b(n+µ)
n = 0 , (3.12)

entailing that, for ν = n+ µ, the recursion relation (3.1a) reads

p
(n+µ)
n+1 (x) =

(

x+ a(n+µ)
n

)

p(n+µ)
n (x) , (3.13)

then there holds the factorization

p(m+µ)
n (x) = p̃

(−m)
n−m (x) p(m+µ)

m (x) , m = 0, 1, ..., n , (3.14)

with the ”complementary” polynomials p̃
(−m)
n (x) (of course of degree n) de-

fined by the following three-term recursion relation analogous (but not iden-
tical) to (3.1):

p̃
(−m)
n+1 (x) =

(

x+ a
(m+µ)
n+m

)

p̃(−m)
n (x) + b

(m+µ)
n+m p̃

(−m)
n−1 (x) , (3.15a)

p̃
(−m)
−1 (x) = 0 , p̃

(−m)
0 (x) = 1 , (3.15b)

entailing
p̃

(−m)
1 (x) = x+ a(m+µ)

m , (3.15c)
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p̃
(−m)
2 (x) =

(

x + a
(m+µ)
m+1

)

(

x + a(m+µ)
m

)

+ b
(m+µ)
m+1

=
(

x− x(+)
m

) (

x− x(−)
m

)

(3.15d)

with

x(±)
m =

1

2

{

−a(m+µ)
m − a

(m+µ)
m+1 ±

[

(

a(m+µ)
m − a

(m+µ)
m+1

) 2

− 4 b
(m+µ)
m+1

] 1/2
}

,

(3.15e)
and so on. ⊡

Note incidentally that also the complementary polynomials p̃
(−m)
n (x), be-

ing defined by three-terms recursion relations, see (3.15a), belong to orthog-
onal families, hence they shall have to be eventually investigated in such a
context, perhaps applying also to them the kind of findings reported in this
paper and in others of this series.

The following two results are immediate consequences of this Proposition
3.5.

Corollary 3.6. If (3.12) holds – entailing (3.13) and (3.14) with (3.15) –

the polynomial p
(n−1)
n (x) has the zero −a(n−1)

n−1 ,

p(n−1+µ)
n

(

−a(n−1+µ)
n−1

)

= 0 , (3.16a)

and the polynomial p
(n−2+µ)
n (x) has the two zeros x

(±)
n−2, see (3.15e),

p(n−2+µ)
n

(

x
(±)
n−2

)

= 0 . (3.16b)

The first of these results is a trivial consequence of (3.13); the second is
evident from (3.14) and (3.15d). Note moreover that from the factorization

formula (3.14) one can likewise find explicitly 3 zeros of p
(n−3+µ)
n (x) and 4

zeros of p
(n−4+µ)
n (x) , by evaluating from (3.15) p̃

(−m)
3 (x) and p̃

(−m)
4 (x) and by

taking advantage of the explicit solvability of algebraic equations of degree 3
and 4. ⊡

These findings often have a Diophantine connotation, due to the neat
expressions of the zeros −a(n−1+µ)

n−1 and x
(±)
n−2 in terms of integers.

Corollary 3.7. If (3.12) holds – entailing (3.13) and (3.14) with (3.15) –

and moreover the quantities a
(m)
n and b

(m)
n satisfy the properties

a
(−m+µ)
n−m

(

ρ
)

= a(m+µ̃)
n

(

ρ̃
)

, b
(−m+µ)
n−m

(

ρ
)

= b(m+µ̃)
n

(

ρ̃
)

, (3.17)

then clearly
p̃(m)

n

(

x; ρ
)

= p(m+µ̃)
n

(

x; ρ̃
)

, (3.18)
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entailing that the factorization (3.14) takes the neat form

p(m+µ)
n

(

x; ρ
)

= p
(−m+µ̃)
n−m

(

x; ρ̃
)

p(m+µ)
m

(

x; ρ
)

, m = 0, 1, ..., n . (3.19)

Note that – for future convenience, see below – we have emphasized explicitly
the possibility that the polynomials depend on additional parameters (indi-
cated with the vector variables ρ respectively ρ̃; these additional parameters
must of course be independent of n, but they might depend on m). ⊡

The following remark is relevant when both Propositions 3.3 and 3.4 hold.
Remark 3.8 . As implied by (3.5b), the condition (3.12) can be enforced

via the assignment
α(ν) = A

(ν−1+µ)
ν−1 −A(ν+µ)

ν , (3.20)

entailing that the nonlinear recursion relation (3.5a) reads

[

A
(ν)
n−1 − A

(ν−1)
n−1

] [

A(ν)
n − A

(ν−1)
n−1 + A

(ν−1+µ)
ν−1 − A(ν+µ)

ν

]

=
[

A
(ν−1)
n−1 − A

(ν−2)
n−1

] [

A
(ν−1)
n−1 − A

(ν−2)
n−2 + A

(ν−2+µ)
ν−2 − A

(ν−1+µ)
ν−1

]

. ⊡(3.21)

Diophantine findings

The Diophantine character of the findings reported below is due to the
generally neat expressions of the following zeros in term of integers.

Proposition 3.9. If the (monic, orthogonal) polynomials p
(ν)
n (x) are de-

fined by the three-term recursion relations (3.1) with coefficients a
(ν)
n and b

(ν)
n

satisfying the requirements sufficient for the validity of both Propositions 3.3
and Proposition 3.4 (namely (3.5), with (3.4) and (3.12), or just with (3.21)),
then

p(n+µ)
n (x) =

n
∏

m=1

[

x− x(1,m+µ)
m

]

, (3.22a)

with the expressions (3.9b) of the zeros x
(1,ν)
m and the standard convention

according to which a product equals unity when its lower limit exceeds its
upper limit. Note that these n zeros are n-independent (except for their
number). In particular

p
(µ)
0 (x) = 1 , p

(1+µ)
1 (x) = x−x(1,1+µ)

1 , p
(2+µ)
2 (x) =

[

x− x
(1,2+µ)
1

] [

x− x
(1,2+µ)
2

]

,

(3.22b)
and so on. ⊡

The following results are immediate consequences of this Proposition 3.9
and of Corollary 3.6.
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Corollary 3.10. If proposition 3.9 holds, then also the polynomials p
(n−1+µ)
n (x)

and p
(n−2+µ)
n (x) (in addition to p

(n+µ)
n (x), see (3.22)) can be written in the

following completely factorized form (see (3.9b) and (3.15e)):

p(n−1+µ)
n (x) =

[

x+ a
(n−1)
n−1

]

n−1
∏

m=1

[

x− x(1,m+µ)
m

]

, (3.23a)

p(n−2+µ)
n (x) =

[

x− x(+)
m

] [

x− x(−)
m

]

n−2
∏

m=1

[

x− x(1,m+µ)
m

]

. (3.23b)

Analogously complete factorizations can clearly be written for the poly-
nomials p

(n−3+µ)
n (x) and p

(n−4+µ)
n (x), see the last part of Corollary 3.6.

And of course the factorization (3.14) together with (3.22a) entails the

(generally Diophantine) finding that the polynomial p
(m+µ)
n (x) with m =

1, ..., n features the m zeros x
(1,ℓ+µ)
ℓ , ℓ = 1, ..., m, see (3.9b):

p(m+µ)
n

(

x
(1,ℓ+µ)
ℓ

)

= 0 , ℓ = 1, ..., m , m = 1, ..., n . ⊡ (3.24)

Proposition 3.11. Assume that for the class of polynomials p
(ν)
n (x) there

holds the preceding Proposition 3.3, and moreover that, for some value of
the parameter µ (and of course for all nonnegative integer values of n), the

coefficients c
(2n+µ)
n vanish (see (3.10a) and (3.10c)),

c(2n+µ)
n = b

(2n+µ−2)
n−1 + g(2n+µ)

n g
(2n+µ−1)
n−1 = 0 , (3.25a)

then the polynomials p
(2n+µ)
n (x) factorize as follows:

p(2n+µ)
n (x) =

n
∏

m=1

[

x− x(2,2m+µ)
m

]

, (3.25b)

entailing

p
(µ)
0 (x) = 1 , p

(2+µ)
1 (x) = x−x(2,2+µ)

1 , p
(4+µ)
2 (x) =

[

x− x
(2,2+µ)
1

] [

x− x
(2,4+µ)
2

]

,

(3.25c)
and so on.

Likewise, if for all nonnegative integer values of n, the following two
properties hold (see (3.11a), (3.11c) and (3.11d)),

d(3n+µ)
n = b

(3n+µ−3)
n−1 +g(3n+µ)

n g
(3n+µ−2)
n−1 +g(3n+µ−1)

n g
(3n+µ−2)
n−1 +g(3n+µ)

n g
(3n+µ−1)
n−1 = 0 ,

(3.26a)
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e(3n+µ)
n = 0 i.e. g(3n+µ)

n = 0 or g
(3n+µ−1)
n−1 = 0 or g

(3n+µ−2)
n−2 = 0 ,

(3.26b)

then the polynomials p
(3n+µ)
n (x) factorize as follows:

p(3n+µ)
n (x) =

n
∏

m=1

[

x− x(3,3m+µ)
m

]

, (3.26c)

entailing

p
(µ)
0 (x) = 1 , p

(3+µ)
1 (x) = x−x(3,3+µ)

1 , p
(6+µ)
2 (x) =

[

x− x
(3,3+µ)
1

] [

x− x
(3,6+µ)
2

]

,

(3.26d)
and so on.

Here of course the n (n-independent!) zeros x
(2,2m+µ)
m respectively x

(3,3m+µ)
m

are defined by (3.10b) respectively (3.11b). ⊡

3.2 Examples

In this Section we report some assignments of the quantities A
(ν)
n , α(ν) –

hence correspondingly of the coefficients a
(ν)
n , b

(ν)
n and g

(ν)
n , see (3.5) and

(3.7) – guaranteeing the validity of Proposition 3.3, and often as well of the
other results reported in the preceding section when µ = 0; and whenever
appropriate we tersely discuss the corresponding polynomials, which are often
related to known (”named”) ones. But before delving into the exhibition of
various examples, let us report the following, rather obvious

Remark 3.12. If a set of coefficients a
(ν)
n , b

(ν)
n and g

(ν)
n satisfy the re-

quirements sufficient to guarantee the validity of the results reported on the
previous section, the following extension of it,

ǎ(ν)
n = γa(ν)

n + δ , b̌(ν)
n = γ2b(ν)

n , ǧ(ν)
n = γg(ν)

n (3.27a)

with δ and γ two arbitrary parameters, also satisfy the same conditions,
this extension being clearly related to the following transformation of the
corresponding polynomials:

p̌(ν)
n (x) = γn p(ν)

n

(

x+ δ

γ

)

. (3.27b)

Note that the polynomials p̌
(ν)
n (x) are as well monic. ⊡

In the examples presented below we generally refrain from reducing the
number of free parameters by exploiting systematically this Remark 3.12,
since this might obfuscate rather than highlight the transparency of our
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findings. The diligent reader is welcome to verify the consistency of all the
findings reported below with the validity of this Remark 3.12.

Polynomial solution of (3.4)

The following assignment satisfies the nonlinear conditions (3.4):

A(ν)
n = k0 + k1n+ k2n

2 + k3n
3 +

(

k4n− 3

2
k3n

2

)

ν , (3.28a)

with

α(ν) = −k1 + k2 +
1

2
k3 + k4 + k5 −

(

2k2 +
3

2
k3 + 2k4

)

ν +
3

2
k3ν

2 , (3.28b)

A = k0 . (3.28c)

Here the 5 parameters kj , j = 1, .., 5 are arbitrary.

The corresponding expressions of the coefficients a
(ν)
n , b

(ν)
n and g

(ν)
n read

a(ν)
n = k1 +k2 +k3 +

(

−3

2
k3 + k4

)

ν+[2k2 + 3k3 (1 − ν)]n+3k3n
2 , (3.28d)

b(ν)
n = −1

4
n (3k3n− 2k4)

[

2k5 + 2 (2k2 + k4) (n− ν) + 3k3 (n− ν)2] ,

(3.28e)

g(ν)
n = −1

2
n (3k3n− 2k4) . (3.28f)

Hereafter we identify our polynomials p
(ν)
n (x) belonging to this class –

hence satisfying Proposition 3.3 – as p
(ν)
n (x; k1, k2,k3,k4,k5).

Remark 3.13. It is plain (see (3.28e) and (3.12)) that the subclass p
(ν)
n (x; k1, k2,k3,k4,0)

of these polynomials also satisfy Propositions 3.5 and 3.9 when µ = 0, en-
tailing the factorization

p(n)
n (x; k1, k2,k3,k4,0) =

n
∏

m=1

(

x− x(1,m)
m

)

(3.29a)

with

x(1,m)
m = α(m) = −k1+k2+

1

2
k3+k4−

(

2k2 +
3

2
k3 + 2k4

)

m+
3

2
k3m

2 , (3.29b)
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as well as

p(n−1)
n (x; k1, k2,k3,k4,0) = (x− x̂n)

n−1
∏

m=1

(

x− x(1,m)
m

)

(3.30a)

with

x̂n = −k1 + k2 +
1

2
k3 + k4 −

(

2k2 +
3

2
k3 + k4

)

n , (3.30b)

and

p(n−2)
n (x; k1, k2,k3,k4,0) =

(

x− x̂(+)
n

) (

x− x̂(−)
n

)

n−2
∏

m=1

(

x− x(1,m)
m

)

(3.31a)

with

x̂(±)
n = −k1 + 2 (k2 + k3 + k4) − (2k2 + 3k3 + k4)n ± 1

2

√
zn) (3.32)

where

zn = (2k2 + 3k3 + 2k4)
2 − 2 (3k3 + 2k4) (2k2 + 3k3 + k4)n

+6k3 (2k2 + 3k3 + k4)n2 . (3.33)

Obviously there are many special cases in which zn becomes a perfect square,
for instance

k3 = 0 , k4 = −2k2, zn = (2k2)
2 (3.34a)

yielding
x̂(+)

n = −k1 − k2 , x̂
(−)
n = −k1 − 3k2 ; (3.34b)

k2 = 0, k4 = −3

2
k3 , zn = (3k3n)2 (3.35a)

yielding
x̂(+)

n = −k1 − k3 , x̂
(−)
n = −k1 − k3 − 3k3n; (3.35b)

k2 = −1

2
k , k3 =

1

3
, k4 = −1

2
+ k , zn = (n− k)2 (3.36a)

yielding

x̂(+)
n = −k1 −

1

3
+

1

2
k , x̂(−)

n = −k1 −
1

3
+

3

2
k − n ; (3.36b)

k2 =
k (2k − 3)

2 (2k − 1)
, k3 =

1

3 (2k − 1)
, k4 =

1

2
, zn = (n− k)2 (3.37a)
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yielding

x̂(±)
n = −k1 +

(2 ± 1)

2
k − 1

3 (2k − 1)
+

(

1 ± 1

2
− k

)

n . (3.37b)

There moreover holds the factorization (3.14) and, for the subclass of

polynomials p
(ν)
n (x; k1, k2,k3, − k2,0), the factorization (3.19),

p(m)
n (x; k1, k2,k3, − k2,0) = p

(−m)
n−m (x; k1, k2,k3, − k2,0) p(m)

m (x; k1, k2,k3, − k2,0) ,

m = 0, 1, ..., n . ⊡ (3.38)

In the following subsections we report a few specific examples involving
”named” polynomials; examples involving other named polynomials are in
hand and they are presented in the next chapter.

Laguerre polynomials

The ”normalized Laguerre polynomials” £
(α)
n (x) – related to the usual

generalized Laguerre polynomials L
(α)
n (x) by the formula

L(α)
n (x) =

(−1)n

n!
£(α)

n (x) (3.39)

– are the following special case of the polynomials p
(ν)
n (x; k1, k2,k3,k4,k5),

£(α)
n (x) = p(−α)

n (x; 0,−1, 0, 1, 0) , (3.40)

as seen by comparing the recursion relation (1.11.4) of
http://aw.twi.tudelft.nl/˜koekoek/askey/ch1/par11/par11.html [32]

with our recursion relation (3.1) with (3.28d) and (3.28e). Note that it was
actually unnecessary to set k5 = 0 in the right-hand side of this formula,
(3.40), since – as can be easily seen – any value of k5 yields in this case the
same outcome; by setting k5 = 0 we made it evident that these polynomials
satisfy not only Proposition 3.3, but as well Propositions 3.5 and 3.10. Hence
the normalized Laguerre polynomials £

(α)
n (x) satisfy the second recursion

relation (see (3.7))

£(α)
n (x) = £(α+1)

n (x) + n£
(α+1)
n−1 , (3.41a)

and correspondingly the generalized Laguerre polynomials L
(α)
n (x) satisfy the

(well-known) second recursion relation

L(α)
n (x) = L(α+1)

n (x) − L
(α+1)
n−1 . (3.41b)
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Likewise the normalized Laguerre polynomials satisfy the factorization

£(−m)
n (x) = £

(m)
n−m(x)£(−m)

m (x)

= xm£
(m)
n−m(x) , m = 0, 1, .., n , (3.42a)

entailing for the generalized Laguerre polynomials the formula

L(−m)
n (x) =

m! (n−m)!

n!
xmL

(m)
n−m(x) , m = 0, 1, .., n . (3.42b)

And the previous findings entail that the generalized Laguerre polynomials
L

(−m)
n (x) satisfy the following properties (displaying the Diophantine char-

acter of their zeros):

L(−n)
n (x) =

(−1)n

n!
xn , (3.43a)

L(−n+1))
n (x) =

(−1)n

n!
xn−1 (x− n) , (3.43b)

L(−n+2))
n (x) =

(−1)n

n!

(

x− n−
√
n
) (

x− n+
√
n
)

xn−2 , (3.43c)

implying, for instance, the additional Diophantine finding

L
(−n2+2))
n2 (x) =

(−1)n2

n2!
[x− n(n+ 1)] [x− n(n− 1)] xn2−2 . (3.43d)

Some (but not all) of these formulas are reported in the standard compilations
[23] [25] [1] [32].

Meixner polynomials

The ”normalized Meixner polynomials” M̃n(x; β, c) – related to the usual

Meixner polynomials M
(α)
n (x; β, c) by the formula

Mn(x; β, c) =
1

(β)n

(

c− 1

c

)n

M̃n(x; β, c) (3.44)

– are the following special case of the polynomials p
(ν)
n (x; k1, k2,k3,k4,k5),

M̃n(x; β, c) = p(−β)
n (x;−1

2

c+ 1

c− 1
,

1

2

c + 1

c− 1
, 0,− c

c− 1
,− 1

c− 1
) , (3.45)

as seen by comparing the recursion relation (1.9.4) of
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http://aw.twi.tudelft.nl/˜koekoek/askey/ch1/par9/par9.html [32]
with our recursion relation (3.1) (with (3.28d) and (3.28e)). Note that in this
case the condition k5 = 0 cannot be enforced (except for c = ∞), so these
polynomials satisfy Proposition 3.3 but not Propositions 3.5 and 3.9. Hence
the normalized Meixner polynomials M̃n(x; β, c) satisfy the second recursion
relation (see (3.7))

M̃n(x; β, c) = M̃n(x; β + 1, c) − c

c− 1
n M̃n−1(x; β + 1, c) , (3.46a)

and correspondingly the usual Meixner polynomials Mn(x; β, c) satisfy the
second recursion relation

βMn(x; β, c) = (β + n)Mn(x; β+1, c)−n (β + n)Mn−1(x; β+1, c) , (3.46b)

which is not reported in the standard compilations [23] [25] [1] [32].

Askey’s B polynomials
Let us introduce the following modified version of the polynomials Bn (x; a, η)

introduced by R. Askey [2], via the position

B̂n(x; a, η) = Bn(x+ aη; a, η) . (3.47)

The motivation for modifying in this manner Askey’s B-polynomials will be
clear below. Let us moreover emphasize that we allow the parameter η to be
an arbitrary number (while it was restricted to be an integer in Ref. [2]).

It is easily seen that these polynomials B̂n(x; a, η) are a subclass of our

polynomials p
(ν)
n (x; k1, k2, k3, k4, k5):

B̂n(x; a, η) = p(η+1+k)
n

[

x;−a(1 + k) +
1

2
,−1

2
, 0, a, k (a− 1)

]

. (3.48a)

It is moreover plain that the parameter k appearing in the right-hand side
of this formula plays no role, hence hereafter we set it to zero:

B̂n(x; a, η) = p(η+1)
n (x;−a +

1

2
,−1

2
, 0, a, 0) . (3.48b)

It is thereby clear that these polynomials satisfy the condition (3.12) hence
satisfy Proposition 3.5 (see Remark 3.13 ), in addition of course to Propo-
sitions 3.3 and 3.9 (while clearly the factorization (3.19) only holds for
a = 1/2).

Hence these polynomials satisfy the second recurrence relation,

B̂n(x; a, η) = B̂n (x; a, η − 1) + anB̂n−1 (x; a, η − 1) , (3.49)
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and there holds for their subclass with a = 1/2 the factorization

B̂n(x;
1

2
, m− 1) = B̂n−m(x;

1

2
,−m− 1)) · B̂m(x;

1

2
, m− 1) ,

m = 1, 2, ..n . (3.50)

Let us emphasize that, due to the definition (3.47), a shift in the parameter
η of the polynomials B̂n(x; a, η) also entails a shift in the variable x for the
polynomials Bn(x; a, η).

Moreover for these polynomials there hold the Diophantine factorizations

B̂n(x; a, n− 1) =

n
∏

m=1

(

x− x(1,m)
m

)

, (3.51a)

x(1,m)
m = (2a− 1) (1 −m) ; (3.51b)

B̂n(x; a, n− 2) = (x− x̂n)
n−1
∏

m=1

(

x− x(1,m)
m

)

, (3.52a)

x̂n = a− (1 − a) (1 − n) ; (3.52b)

B̂n(x; a, n− 3) =
(

x− x̂(+)
n

) (

x− x̂(−)
n

)

n−2
∏

m=1

(

x− x(1,m)
m

)

, (3.53a)

x̂(±)
n = 3

(

a− 1

2

)

+ (1 − a)n± 1

2

√

(1 − 2a)2 + 4a (1 − a)n . (3.53b)

Hence, in addition to the (already known [2]) simple cases (a = 0, a = 1)
when the original three-term relation becomes a two-term relation, additional
Diophantine (i.e., integer respectively rational) zeros occur, for instance, for

n = m2, a = 1/2 entailing x̂
(±)
n = m(m ± 1)/2 respectively for n = m2, a =

(4m2 − 1) / [2 (2m2 − 1)] entailing x̂
(±)
n = m (5m± 1) / [2 (2m2 − 1)].

Rational solution of (3.4)

The following assignment satisfies the nonlinear conditions (3.4):

A(ν)
n =

n (c0c1 + (c1 − c2 + c0c3 + 3c20c4)ν + (c2 + c3ν)n + c4(2c0 − 2ν + n)n2))

(c0 + 2n− ν)
,

(3.54a)
with

α(ν) = −c1 + c3 + c4 (1 + 3c0) − (2c3 + 3c4 (1 + 2c0)) ν + 3c4ν
2 , (3.54b)
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A = 0 . (3.54c)

Here the 5 parameters cj , j = 0, ..., 4 are arbitrary.

The corresponding expressions of the coefficients a
(ν)
n , b

(ν)
n and g

(ν)
n read

a(ν)
n =

a (n, ν)

(c0 + 2n− ν) (c0 + 2 + 2n− ν)
, (3.55a)

a (n, ν) = c0 [c2 + c4 + c0 (c1 + 2c4)]

− (1 + c0) {c2 + c4 − c0 [c3 + 3c4 (c0 − 1)]} ν
− [c0 (c3 + 3c0c4) + c1 − c2 + c3 − 2c4] ν

2

+ (1 + c0) [c2 + c4 (1 + 3c0)]n

+2 [c0 (c3 − 6c4) − c2 + c3 − 4c4]nν

−2 (c3 − 3c4)nν
2

+2
[

c2 + c4
(

4 + 9c0 + 3c20
)]

n2

+2 [c3 − 3c4 (3 + 2c0)]n
2ν + 6c4n

2ν2

+12 (1 + c0) c4n
3 − 12c4n

3ν + 6c4n
4 ; (3.55b)

b(ν)
n =

n(n− ν) (c0 + n) (c0 + n− ν) b̃ (n, ν) b̂ (n, ν)

(c0 + 2n− ν)2 (c0 + 1 + 2n− ν) (c0 − 1 + 2n− ν)
, (3.56a)

b̃ (n, ν) = c0 (c3 + 3c0c4) + 2c1 − c2 + (2c3 + 3c0c4)n− 3c4n
2 , (3.56b)

b̂ (n, ν) = c0 (c3 + 3c0c4) − 2c1 + c2 + 3c4ν
2

+ (2c3 + 9c0c4) (n− ν) − 6c4νn + 3c4n
2 , (3.56c)

g(ν)
n =

n (c0 + n) (c0 (c3 + 3c0c4) + 2c1 − c2 + (2c3 + 3c0c4)n− 3c4n
2)

(c0 + 2n− ν) (c0 + 1 + 2n− ν)
.

(3.57)

Hereafter we identify our polynomials p
(ν)
n (x) belonging to this class –

hence satisfying Proposition 3.3 – as p
(ν)
n (x; c0, c1, c2, c3, c4). Of course they

should not be confused with the polynomials solution introduced in the pre-
ceding subsection.

It is plain (see (3.56a) and (3.12)) that these polynomials also satisfy
Propositions 3.5 and 3.9 when µ = 0, entailing the factorizations

p(n)
n (x; c0, c1, c2, c3, c4) =

n
∏

m=1

(

x− x(1,m)
m

)

, (3.58a)
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x(1,m)
m = α(m) = −c1 + c3 + c4 (1 + 3c0) − [2c3 + 3c4 (1 + 2c0)]m+ 3c4m

2 ;
(3.58b)

p(n−1)
n (x; c0, c1, c2, c3, c4) = (x− x̂n)

n−1
∏

m=1

(

x− x(1,m)
m

)

, (3.59a)

x̂n = −(1 + c0) [c1 − c3 − c4 (1 + 3c0)] + [c0(c3 + 3c4 (2 + c0)) − c1 + c2 + c3 + 2c4]n

1 + c0 + n
.

(3.59b)
Three interesting cases that deserve to be highlighted read as follows:

p(n−1)
n (x;−1, c1, c2, c3, c4) = (x− x̂n)

n−1
∏

m=1

(

x− x(1,m)
m

)

, (3.60a)

x̂n = c1 − c2 + c4 , (3.60b)

x(1,m)
m = −c1 + c3 − 2c4 − (2c3 − 3c4)m+ 3c4m

2 ; (3.60c)

p(n−1)
n (x; 0, c2 + c3 + 2c4, c2, c3, c4) = (x− x̂n)

n−1
∏

m=1

(

x− x(1,m)
m

)

, (3.61a)

x̂n = −c2 + c4
n + 1

, (3.61b)

x(1,m)
m = −

(

c2 + c4 + (2c3 + 3c4)m− 3c4m
2
)

; (3.61c)

p(n−1)
n (x; 0,−1 + 3σ

2
c4,−c4−ρ,−

3

2
(1 + σ) c4, c4) = (x− x̂n)

n−1
∏

m=1

(

x− x(1,m)
m

)

,

(3.62a)

x̂n = ρ
n

n+ 1
, (3.62b)

x(1,m)
m = 3c4m(m + σ) . (3.62c)

Moreover

p(n−2)
n (x; c0, c1, c2, c3, c4) =

(

x− x̂(+)
n

) (

x− x̂(−)
n

)

n−2
∏

m=1

(

x− x(1,m)
m

)

. (3.63)

We do not report the (rather complicated) expressions of the two zeros x̂
(±)
n ,

except in the following special cases:

p(n−2)
n (x;−1, c1, c2, c3, c4) =

(

x− x̂(+)
n

) (

x− x̂(−)
n

)

n−2
∏

m=1

(

x− x(1,m)
m

)

, (3.64a)
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x̂(+)
n =

−3c1 + c2 + 4c3 − 5c4 + (c1 − c2 − 2c3 + c4)n

n + 1
, (3.64b)

x̂(−)
n = c1 − c2 + c4 , (3.64c)

with the zeros x
(1,m)
m given by (3.60c);

p(n−2)
n (x;−2, c1, c2, c3, 0) =

(

x− x̂(+)
n

) (

x− x̂(−)
n

)

n−2
∏

m=1

(

x− x(1,m)
m

)

, (3.65a)

x̂(±)
n = c1 − c2 ± c3 , (3.65b)

x(1,m)
m = −c1 + c3 − 2c3m . (3.65c)

The enterprising reader will surely identify several other remarkable cases.
Moreover there holds the factorization (3.14) and, for the subclass of

polynomials with
c3 = −3c0c4 (3.66a)

the factorization (3.19):

p(m)
n (x; c0, c1, c2,−3c0c4, c4)

= p
(−m)
n−m (x; c0, c1, c2,−3c0c4, c4) p

(m)
m (x; c0, c1, c2,−3c0c4, c4) ,

m = 0, 1, ..., n . (3.66b)

Jacobi polynomials

The ”normalized Jacobi polynomials” P̃
(α,β)
n (x) – related to the usual

Jacobi polynomials P
(α,β)
n (x) by the formula

P (α,β)
n (x) =

(n+ α + β + 1)n

2nn!
P̃ (α,β)

n (x) (3.67)

– are the following special case of the polynomials p
(ν)
n (x; c0, c1, c2, c3, c4):

P̃ (α,β)
n (x) = p(−β)

n (x;α, 1, 0, 0, 0) , (3.68)

as seen by comparing the recursion relation (1.8.4) of
http://aw.twi.tudelft.nl/˜koekoek/askey/ch1/par8/par8.html#par1 [32]

with our recursion relation (3.1). Here, and always in the following, addi-
tional relations are implied by the well-known symmetry of Jacobi polyno-
mials under the exchange of the two parameters they feature,

P (α,β)
n (x) = P (β,α)

n (−x) , P̃ (α,β)
n (x) = P̃ (β,α)

n (−x) . (3.69)
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It is evident that these polynomials (see (3.68)) satisfy Propositions 3.3,

3.5 and 3.9. Hence the normalized Jacobi polynomials P̃
(α,β)
n (x) satisfy the

second recursion relation (see (3.7))

P̃ (α,β)
n (x) = P̃ (α,β+1)

n (x) +
2n (n+ α)

(2n+ α + β) (2n+ α + β + 1)
P̃ (α,β+1)

n (x) ,

(3.70a)

and correspondingly the Jacobi polynomials P
(α,β)
n (x) satisfy the (well-known)

second recursion relation

(2n+α+β+1)P (α,β)
n (x) = (n+α+β+1)P (α,β+1)

n (x) +(n+α)P
(α,β+1)
n−1 (x) .

(3.70b)
There holds moreover the following (well known) Diophantine factoriza-

tion formula
P̃ (α,−n)

n (x) = (x + 1)n , (3.71)

as well as (see (3.59b))

P̃ (α,−n+1)
n (x) =

(

x +
α + 1 − n

α + 1 + n

)

(x + 1)n−1 , (3.72)

P̃ (α,−n+2)
n (x) =

(

x− x̂(+)
n

) (

x− x̂(−)
n

)

(x+ 1)n−2 , (3.73a)

x̂(±)
n =

n (n− 1) − (α + 1) (α + 2) ± 2
√

(α + 2)n (n+ α + 1)

n (n + 2α+ 3) + (α + 1) (α + 2)
. (3.73b)

In particular for α = −2

P̃ (−2,−n+2)
n (x) = (x− 1)2 (x+ 1)n−2 , (3.73c)

and for α = −1

P̃ (−1,−n+2)
n (x) =

(

x− n− 3

n+ 1

)

(x− 1) (x+ 1)n−2 . (3.73d)

And clearly there are additional Diophantine zeros whenever (α + 2)n (n + α+ 1)
is a perfect square, for instance

P̃ (α,−n+2)
n (x) =

[

x− n− δ (2δ + 1)

n+ δ

]

·

·
[

x− n2 − (2δ2 + 3δ + 3)n− δ

n2 + (3δ + 1)n + δ (2δ + 1)

]

(x+ 1)n−2 , (3.73e)

α =
(δ2 + 2δ − 1)n + 2δ2

n− δ2
, (3.73f)
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P̃
(α,β)
1+2k(k−1) (x) =

(

x− 2k − 1

4k(k − 1) + 1

)2

(x+ 1)−1+2k(k−1) ,(3.73g)

α = −1 + 2k(k − 1) , β = −1 − 2k(k − 1) , k = 2, 3, ... . (3.73h)

Perhaps (some of) these formulas deserve to be included in the standard
compilations.

Remark 3.14. We report a solution, involving an arbitrary function f(z),
of conditions (3.8a) and (3.8b) with (3.8c), which also satisfies the symmetry
property (3.17):

a(ν)
n = f (2n− ν) + f (2n− ν + 1) , (3.74a)

b(ν)
n = −f (2n− ν) f (2n− ν − 1) , (3.74b)

g(ν)
n = −f (2n− ν) . (3.74c)

But it is plain that this solution disappears altogether (”f (z) = 0”) if one
requires it to satisfy either the additional ”initial” condition (3.8d) (or equiva-
lently (3.8f)) also required for the validity of Proposition 3.3 or the hypothesis
(3.12) required for the validity of Corollary 3.7.

3.3 Proofs

In this section we prove the three Propositions reported in the preceding
Section 3.1.

The proof of Proposition 3.3 (i. e. of (3.6)) is by induction. Clearly this
relation holds for n = 1 (via (3.1c) and (3.8d)). Let us assume that it holds
up to n, and prove that it then holds for n + 1. Indeed using (3.6) in the
right-hand side of the recursion relation (3.1a) we get

p
(ν)
n+1(x) =

(

x+ a(ν)
n

)

[

p(ν−1)
n (x) + g(ν)

n p
(ν−1)
n−1 (x)

]

+b(ν)
n

[

p
(ν−1)
n−1 (x) + g

(ν)
n−1 p

(ν−1)
n−2 (x)

]

. (3.75)

We then note that the recursion relation (3.1a) entails the formulas

p
(ν−1)
n−1 (x) =

p
(ν−1)
n+1 (x) −

(

x + a
(ν−1)
n

)

p
(ν−1)
n (x)

b
(ν−1)
n

, (3.76a)
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p
(ν−1)
n−2 (x) =

[

b
(ν−1)
n +

(

x + a
(ν−1)
n−1

) (

x+ a
(ν−1)
n

)]

p
(ν−1)
n (x)

b
(ν−1)
n b

(ν−1)
n−1

−

(

x + a
(ν−1)
n−1

)

p
(ν−1)
n+1 (x)

b
(ν−1)
n b

(ν−1)
n−1

. (3.76b)

The second, (3.76b), of these two formulas is of course obtained by replacing
n with n−1 in the first, (3.76a), and then by using again (3.76a) to eliminate

p
(ν−1)
n−1 (x).

The proof of Proposition 3.5 (i. e., of the factorization formula (3.14)) is
again by induction. Clearly (3.14) holds for n = 0 (hence m = 0), see (3.1b)
and (3.15b). Let us now assume that it holds up to n, and show that it then
holds for n + 1. Indeed, by using it in the right-hand side of the relation
(3.1a) with ν = m we get

p
(m)
n+1(x) =

[

(

x + a(m)
n

)

p̃
(−m)
n−m (x) + b(m)

n p̃
(−m)
n−1−m (x)

]

p(m)
m (x) ,

m = 0, 1, ..., n− 1 , (3.77a)

and clearly using the recursion relation (3.15a) the square bracket in the

right-hand side of this equation can be replaced by p̃
(−m)
n+1−m (x) , yielding

p
(m)
n+1 (x) = p̃

(−m)
n+1−m (x) p(m)

m (x) , m = 0, 1, ..., n+ 1 . (3.77b)

Note that for m = n + 1 this formula is an identity, since p̃
(−m)
0 (x) = 1, see

(3.15b); likewise, this formula clearly also holds for m = n, provided (3.12)
holds, see (3.1a) with m = n and (3.15c).

But this is just the formula (3.14) with n replaced by n + 1. Q. E. D.
Remark 3.15. The hypothesis (3.12) has been used above, in the proof

of Proposition 3.5, only to prove the validity of the final formula, (3.77b),
for m = n. Hence one might wonder whether this hypothesis, (3.12), was
redundant, since the validity of the final formula (3.77b) for m = n seems to
be implied by (3.77a) with (3.15c) and (3.15b), without the need to invoke
(3.12). But in fact, by setting m = n in the basic recurrence relation (3.1a)
it is clear that (3.15c) and (3.15b) hold only provided (3.12) also holds. ⊡

Finally, let us prove Proposition 3.9, namely the validity of the factoriza-
tion formula (3.22). For ν = n the relation (3.6) yields

p(n)
n (x) = p(n−1)

n (x) + g(n)
n p

(n−1)
n−1 (x) , (3.78)

and via (3.13) (with n replaced by n− 1) this can be rewritten as follows:

p(n)
n (x) =

(

x+ a
(n−1)
n−1 + g(n)

n

)

p
(n−1)
n−1 (x) , (3.79)
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clearly entailing (together with the initial condition p
(0)
0 (x) = 1, see (3.1b)),

the factorization formula (3.22). Q. E. D.
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Chapter 4

Factorizations and Diophantine properties

associated with the polynomials of the

Askey-Scheme.

In this chapter we apply to (almost) all the ”named” polynomials of the
Askey scheme, as defined by their standard three-term recursion relations, the
machinery developed in chapter 3. For each of these polynomials we identify
at least one additional recursion relation involving a shift in some of the
parameters they feature, and for several of these polynomials characterized
by special values of their parameters factorizations are identified yielding
some or all of their zeros – generally given by simple expressions in terms of
integers (Diophantine relations). We then apply this theoretical machinery
to the ”named” polynomials of the Askey scheme [32], as defined by the basic
three-term recursion relation they satisfy: this entails the identification of the
parameter ν- which can often be done in more than one way, especially for the
named polynomials involving several parameters- and yields the identification
of additional recursion relations satisfied by (most of) these polynomials.
These our results could also be obtained by other routes- for instance, by
exploiting the relations of these polynomials with hypergeometric functions:
as we will see in the next chapter.

Again, most of these results seem new and deserving to be eventually
recorder in the standard compilations although they generally require that
the parameters of the named polynomials did not satisfy the standard re-
strictions required for the orthogonality property. To clarify this restriction
let us remark that an elementary example of such factorizations- which night
be considered the prototype of formulas reported below for many of the poly-
nomials of the Askey scheme- reads as follows:

L(−n)
n (x) =

(−x)n

n!
, n = 0, 1, 2, ..., (4.1a)
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where L
(−n)
n (x) is the standard (generalized) Laguerre polynomial of order n,

for whose orthogonality,

∫ ∞

0

dx xα exp(−x)L(α)
n (x)L(α)

m (x) = δnm
Γ(n+ α + 1)

n!
, (4.2a)

it is, however, generally required that R(α) > −1. This formula (4.1a) is
well known and it is indeed displayed in some of the standard compilations
reporting results for classical orthogonal polynomials (see, e.g., page 109
of the classical book by Magnus and Oberhettinger [43] or [25], Equation
8.973.4). And this remark applies as well to the following neat generalization
of this formula, reading

L(−m)
n (x) = (−1)m (n−m)!

n!
xmL

(m)
n−m(x) , m = 0, 1, ..., n, n = 0, 1, 2, ...,

(4.3a)
which qualifies as well as the prototype of formulas reported below for many
of the polynomials of the Askey scheme. Note that this formula can be
inserted without difficulty in the standard orthogonality relation for gener-
alized Laguerre polynomials, (4.2a), reproducing the standard relation: the
singularity of the weight function gets indeed compensated by the term xm

appearing in the right-hand side of (4.3a). Presumably, this property- and
the analogous version for Jacobi polynomials- is well known to most experts
on orthogonal polynomials. Most of the formulas (analogous to (4.3a) and
(4.1a)) for the named polynomials of the Askey scheme that are reported
below are instead, to the best of our knowledge, new. And let us also note
that, as it is generally done in the standard treatments of ”named” polyno-
mials, we have treated separately each of the differently ”named” classes of
these polynomials, even though ” in principle” it would be sufficient to only
treat the most general class of them- Wilson polynomials- that encompasses
all the other classes via appropriate assignments (including limiting ones) of
the 4 parameters it features.

4.1 Results for the polynomials of the Askey

scheme

In this section we apply to the polynomials of the Askey scheme [32] the
results reviewed in the previous chapter. This class of polynomials (includ-
ing the classical polynomials) may be introduced in various manners: via
generating functions, Rodriguez-type formulas, their connections with hy-
pergeometric formulas,... . In order to apply our machinery, as described
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in the preceding section, we introduce them via the three-term recursion
relation they satisfy:

pn+1

(

x; η
)

=
[

x+ an

(

η
)]

pn

(

x; η
)

+ bn
(

η
)

pn−1

(

x; η
)

(4.4a)

with the ”initial” assignments

p−1

(

x; η
)

= 0 , p0

(

x; η
)

= 1 , (4.4b)

clearly entailing

p1(x; η) = x+a0

(

η
)

, p2

(

x; η
)

=
[

x + a1

(

η
)] [

x + a0

(

η
)]

+b1
(

η
)

(4.4c)

and so on. Here the components of the vector η denote the additional pa-
rameters generally featured by these polynomials.

Let us emphasize that in this manner we introduced the monic (or ”nor-
malized” [32]) version of these polynomials: below we always also display the
relation of this version with the more standard version [32].

To apply our machinery we must identify, among the parameters charac-
terizing these polynomials, the single parameter ν playing a special role in
our approach. This can be generally done in several ways (even for the same
class of polynomials, see below). Once such identification has been made, i.
e. the assignment η ≡ η (ν), the recursion relations (4.4) coincide with the
relations (3.1) via the self-evident notational identification

p(ν)
n (x) ≡ pn

(

x; η (ν)
)

, a(ν)
n ≡ an

(

η (ν)
)

, b(ν)
n ≡ bn

(

η (ν)
)

. (4.5)

Before proceeding with the report of our results, let us also emphasize
that, when the polynomials considered below feature symmetries regarding
the dependence on their parameters – for instance they are invariant under
exchanges of some of them – obviously all the properties of these polynomials
reported below can be duplicated by using such symmetry properties; but it
would be a waste of space for us to report explicitly the corresponding for-
mulae, hence such duplications are hereafter omitted (except that sometimes
results arrived at by different routes can be recognized as trivially related
via such symmetries: when this happens this fact is explicitly noted). We
will use systematically the notation of [32] – up to obvious changes made
whenever necessary in order to avoid interferences with our previous nota-
tion. When we obtain a result that we deem interesting but is not reported
in the standard compilations [32] [23] [25] [1] we identify it as new. And
let us reiterate that, even though we performed an extensive search for such
results, this investigation cannot be considered ”exhaustive”: additional re-
sults might for instance be found via assignments of the ν-dependence η (ν)
different from those considered below.
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4.1.1 Wilson

The monic Wilson polynomials (see [32], and note the notational replacement
of the 4 parameters a, b, c, d used there with α, β, γ, δ)

pn (x;α, β, γ, δ) ≡ pn

(

x; η
)

(4.6a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

= α2 − Ãn − C̃n , bn
(

η
)

= −Ãn−1C̃n , (4.6b)

where

Ãn =
(n+ α + β) (n+ α + γ) (n+ α + δ) (n− 1 + α + σ)

(2n− 1 + α + σ) (2n+ α + σ)
, (4.6c)

C̃n =
n (n− 1 + β + γ) (n− 1 + β + δ) (n− 1 + γ + δ)

(2n− 2 + α + σ) (2n− 1 + α+ σ)
, (4.6d)

σ ≡ β + γ + δ , ρ ≡ β γ + β δ + γ δ , τ ≡ β γ δ . (4.6e)

The standard version of these polynomials reads (see [32]):

Wn (x;α, β, γ, δ) = (−1)n (n− 1 + α + β + γ + δ)n pn (x;α, β, γ, δ) . (4.7)

Let us also recall that these polynomials pn (x;α, β, γ, δ) are invariant
under any permutation of the 4 parameters α, β, γ, δ.

As for the identification of the parameter ν, see (4.5), several possibilities
are listed in the following subsections.

First assignment

α = −ν . (4.8)

With this assignment one can set, consistently with our previous treat-
ment,

A(ν)
n = [6 (2n− 2 − ν + σ)]−1 n {4 − 5 σ + 6 ρ− 6 τ

+ (5 − 6 σ + 6 ρ) ν + [−10 + 9 σ − 6 ρ+ (−9 + 6 σ) ν] n

+ (8 − 4 σ + 4 ν) n2 − 2n3
}

, (4.9a)

ω(ν) = −ν2 , (4.9b)
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implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Wilson
polynomials (4.6):

p(ν)
n (x) = pn (x;−ν, β, γ, δ) . (4.10)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these normalized Wilson polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n =

n (n− 1 + β + γ) (n− 1 + β + δ) (n− 1 + γ + δ)

(2n− 2 − ν + σ) (2n− 1 − ν + σ)
. (4.11)

Note that this finding is obtained without requiring any limitation on the 4
parameters of the Wilson polynomials pn (x;α, β, γ, δ).

It is moreover plain that, with the assignment

ν = n− 1 + β namely α = −n + 1 − β , (4.12)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = β − 1. These are new findings.
As for the additional findings entailed by Corollary 3.7, they are reported in
subsection Factorizations And Proposition 3.9 becomes as well applicable,
entailing (new finding!) the remarkable Diophantine factorization

pn (x;−n + 1 − β, β, γ, δ) =

n
∏

m=1

[

x+ (m− 1 + β)2] , (4.13)

while Corollary 3.10 entails even more general properties, such as (new
finding!)

pn

[

− (ℓ− 1 + β)2 ;−m + 1 − β, β, γ, δ
]

= 0 , ℓ = 1, ..., m , m = 1, ..., n .
(4.14)

Remark 4.1. A look at the formulae (4.6) suggests other possible assign-
ments of the parameter ν satisfying (3.12), such as, say, ν = n−2+σ namely
α = 2 − n − σ. But these assignments actually fail to satisfy (3.12) for all
values of n, because for this to happen it is not sufficient that the numerator
in the expression of b

(ν+µ)
n vanish, it is moreover required that the denomina-

tor in that expression never vanish. In the following we shall consider only
assignments of the parameter ν in terms of n that satisfy these requirements.
⊡
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Second assignment

α = −ν
2
, β =

1 − ν

2
. (4.15)

With this assignment one can set, consistently with our previous treat-
ment,

A(ν)
n = [6 (4n− 3 − 2 ν + 2 γ + 2 δ)]−1 n {3 − 4 γ − 4 δ + 6 γ δ

+ (7 − 9 γ − 9 δ + 12 γ δ) ν + 3 (1 − γ − δ) ν2

−
[

11 − 12 γ − 12 δ + 12 γ δ + 3 (5 − 4 γ − 4 δ) ν + 3 ν2
]

n

+4 (3 + 2 ν − 2 γ − 2 δ) n2 − 4n3
}

, (4.16a)

ω(ν) = −ν
2

4
, (4.16b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Wilson
polynomials (4.6):

p(ν)
n (x) = pn

(

x;−ν
2
,
1 − ν

2
, γ, δ

)

. (4.17)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these normalized Wilson polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n =

n (n− 1 + γ + δ) (2n− 1 − ν + 2 γ) (2n− 1 − ν + 2 δ)

(4n− 3 − 2 ν + 2 γ + 2 δ) (4n− 1 − 2 ν + 2 γ + 2 δ)
. (4.18)

Note that this assignment entails now the (single) restriction β = α+ 1/2 on
the 4 parameters of the Wilson polynomials pn (x;α, β, γ, δ).

It is moreover plain that, with the assignments

ν = n− 1

2
, hence α = −n

2
+

1

4
, β = −n

2
+

3

4
, (4.19a)

ν = n−2+2δ , γ = δ− 1

2
, α = −n

2
+1−δ , β = −n

2
+

3

2
−δ , (4.19b)

respectively

ν = n−1+2δ , γ = δ+
1

2
, α = −n

2
+

1

2
−δ , β = −n

2
+1−δ , (4.19c)
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the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = −1/2, µ = −2 + 2δ respectively
µ = −1 + 2δ. These are new findings. As for the additional findings en-
tailed by Corollary 3.7, they are reported in Subsection Factorizations. And
Proposition 3.9 becomes as well applicable, entailing (new findings!) the
remarkable Diophantine factorizations

pn

(

x;−n
2

+
1

4
,−n

2
+

3

4
, γ, δ

)

=
n
∏

m=1

[

x +

(

2m− 1

4

)2
]

, (4.20a)

pn

(

x;−n
2

+ 1 − δ,−n
2

+
3

2
− δ, δ − 1

2
, δ

)

=

n
∏

m=1

[

x +

(

m− 2 + 2δ

2

)2
]

,

(4.20b)
respectively

pn

(

x;−n
2

+
1

2
− δ,−n

2
+ 1 − δ, δ +

1

2
, δ

)

=
n
∏

m=1

[

x+

(

m− 1 + 2δ

2

)2
]

.

(4.20c)
And Corollary 3.10 entails even more general properties, such as (new find-
ing!)

pn

[

−
(

2ℓ− 1

4

)2

;−m
2

+
1

4
,−m

2
+

3

4
, γ, δ

]

= 0 ,

ℓ = 1, ..., m , m = 1, ..., n , (4.21a)

pn

[

−
(

ℓ− 2 + 2δ

2

)2

;−m
2

+ 1 − δ,−m
2

+
3

2
− δ, δ − 1

2
, δ

]

= 0 ,

ℓ = 1, ..., m , m = 1, ..., n , (4.21b)

respectively

pn

[

−
(

ℓ− 1 + 2δ

2

)2

;−m
2

+
1

2
− δ,−m

2
+ 1 − δ, δ +

1

2
, δ

]

= 0 ,

ℓ = 1, ..., m , m = 1, ..., n . (4.21c)

Moreover, with the assignments

ν = 2n− 2 + 2δ , α = −n + 1 − δ , β = −n +
3

2
− δ , (4.22a)
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respectively

ν = 2n− 1 + 2δ , α = −n +
1

2
− δ , β = −n + 1 − δ , (4.22b)

Proposition 3.11 becomes applicable, entailing (new findings!) the remark-
able Diophantine factorizations

pn

(

x;−n + 1 − δ,−n +
3

2
− δ, γ, δ

)

=
n
∏

m=1

[

x+ (m− 1 + δ)2] , (4.23a)

respectively

pn

(

x;−n +
1

2
− δ,−n + 1 − δ, γ, δ

)

=
n
∏

m=1

[

x+ (m− 1 + δ)2] , (4.23b)

obviously implying the relation

pn

(

x;−n + 1 − δ,−n +
3

2
− δ, γ, δ

)

= pn

(

x;−n +
1

2
− δ,−n + 1 − δ, γ, δ

)

.

(4.23c)

Factorizations

The following new relations among monic Wilson polynomials are implied
by Proposition 3.5 with Corollary 3.7 :

pn (x;−m + 1 − β, β, γ, δ)

= pn−m (x;m+ β, γ, 1 − β, δ) pm (x;−m + 1 − β, β, γ, δ) ,

m = 0, 1, ..., n , (4.24a)

pn

(

x;−m
2

+ 1 − δ,−m
2

+
3

2
− δ, δ − 1

2
, δ

)

= pn−m

(

x;
m

2
− 1

2
+ δ,

m

2
+ δ, 1 − δ,−δ +

3

2

)

·

·pm

(

x;−m
2

+ 1 − δ,−m
2

+
3

2
− δ, δ − 1

2
, δ

)

,

m = 0, 1, ..., n . (4.24b)
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4.1.2 Racah

The Racah polynomials are a family of orthogonal polynomials introduced by
James Wilson in 1978. He used this name in onour of Giulio Racah (a italian
mathematical physicist, with israelian origin), by the fact that the orthog-
onality relations for these polynomials are equivalent to the orthogonality
relations for the Racah coefficients.

The monic Racah polynomials (see [32])

pn (x;α, β, γ, δ) ≡ pn

(

x; η
)

(4.25a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

= Ãn + C̃n , bn
(

η
)

= −Ãn−1C̃n , (4.25b)

where

Ãn =
(n+ 1 + α) (n+ 1 + α + β) (n + 1 + β + δ) (n+ 1 + γ)

(2n+ 1 + α + β) (2n+ 2 + α + β)
, (4.25c)

C̃n =
n (n + α+ β − γ) (n + α− δ) (n+ β)

(2n+ α + β) (2n+ 1 + α + β)
. (4.25d)

The standard version of these polynomials reads (see [32]):

Rn (x;α, β, γ, δ) =
(n + α+ β + 1)n

(α+ 1)n (β + δ + 1)n (γ + 1)n

pn (x;α, β, γ, δ) . (4.26a)

Note however that in the following we do not restrict the parameters of
these polynomials to satisfy one of the restrictions α = −N or β + δ = −N
or γ = −N, with N a positive integer and n = 0, 1, ..., N, whose validity is
instead required for the standard Racah polynomials [32].

Let us recall that these polynomials are invariant under various shufflings
of their parameters:

pn (x;α, β, γ, δ) = pn (x;α, β, β + δ, γ − β)

= pn (x; β + δ, α− δ, γ, δ)

= pn (x; γ, α + β − γ, α,−α + γ + δ) . (4.26b)

Let us now proceed and provide various identifications of the parameter
ν, see (4.5).
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First assignment

α = −ν . (4.27)

With this assignment one can set, consistently with our previous treat-
ment,

A(ν)
n = [6 (2n− ν + β)]−1 n {β (2 + 3 γ + 3 δ) − [2 + 3 (γ + δ) + 6 γ (β + δ)] ν

+ [4 + 6 (γ + δ) + 3 (βγ − βδ + 2γδ) − 3 (2 β + γ + δ) ν] n

+4 (−ν + β) n2 + 2n3
}

, (4.28a)

ω(ν) = (ν − 1) (ν + γ + δ) , (4.28b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Racah
polynomials (4.25):

p(ν)
n (x) = pn (x;−ν, β, γ, δ) . (4.29)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these normalized Racah polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n = − n (n + β) (n+ β + δ) (n + γ)

(2n− ν + β) (2n+ 1 − ν + β)
. (4.30)

Note that this finding is obtained without requiring any limitation on the 4
parameters of the Racah polynomials pn (x;α, β, γ, δ).

It is moreover plain that, with the assignments

ν = n , hence α = −n , (4.31a)

ν = n− δ , hence α = −n + δ , (4.31b)

respectively

ν = n+ β − γ , hence α = −n− β + γ , (4.31c)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = 0, µ = −δ respectively µ = β−γ.
These are new findings. As for the additional findings entailed by Corol-
lary 3.7, they are reported in Subsection Factorizations. And Proposition
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3.9 becomes as well applicable, entailing (new findings!) the remarkable
Diophantine factorizations

pn (x;−n, β, γ, δ) =

n
∏

m=1

[x− (m− 1) (m+ γ + δ)] , (4.32a)

pn (x;−n + δ, β, γ, δ) =
n
∏

m=1

[x− (m+ γ) (m− δ − 1)] , (4.32b)

respectively

pn (x;−n− β + γ, β, γ, δ) =

n
∏

m=1

[x− (m− 1 + β − γ) (m + β + δ)] .

(4.32c)
And Corollary 3.10 entails even more general properties, such as (new find-
ings!)

pn [(ℓ− 1) (ℓ+ γ + δ) ;−m, β, γ, δ] = 0 , ℓ = 1, ..., m , m = 1, ..., n ,
(4.33a)

pn [(ℓ+ γ) (ℓ− δ − 1) ;−m + δ, β, γ, δ] = 0 , ℓ = 1, ..., m , m = 1, ..., n ,
(4.33b)

respectively

pn [(ℓ− 1 + β − γ) (ℓ+ β + δ) ;−m− β + γ, β, γ, δ] = 0 ,

ℓ = 1, ..., m , m = 1, ..., n . (4.33c)

Factorizations

The following new relations among Racah polynomials are implied by Propo-
sition 3.5 with Corollary 3.7 :

pn (x;−m, β,−1, 1) = pn−m (x;m, β,−1, 1) pm (x;−m, β,−1, 1) ,

m = 0, 1, ..., n , (4.34a)

pn (x;−m + δ, β,−δ, δ)
= pn−m (x;m− δ, 2δ + β, δ,−δ) pm (x;−m + δ, β,−δ, δ) ,

m = 0, 1, ..., n , (4.34b)
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pn (x;−m− β + γ, β, γ, c− γ) =

pn−m (x;m + β − γ + c,−β + 2γ − c, γ, c− γ) pm (x;−m− β + γ, β, γ, c− γ) ,

m = 0, 1, ..., n , (4.34c)

pn (x;α,−m, γ, δ) = pn−m (x;α,m, δ, γ) pm (x;α,−m, γ, δ) ,

m = 0, 1, ..., n , (4.34d)

pn (x, α,−m− α + η, η, δ)

= pn−m (x, η,m, η + δ − α, α) pm (x, α,−m− α + η, η, δ) ,

m = 0, 1, ..., n . (4.34e)

4.1.3 Continuous Dual Hahn (CDH)

The monic Continuous Dual Hahn (CDH) polynomials pn (x;α, β, γ) (see
[32], and note the notational replacement of the 3 parameters a, b, c used
there with α, β, γ),

pn (x;α, β, γ) ≡ pn

(

x; η
)

, (4.35a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

= α2 − (n+ α + β) (n + α + γ) − n (n− 1 + β + γ) , (4.35b)

bn
(

η
)

= −n (n− 1 + α+ β) (n− 1 + α + γ) (n− 1 + β + γ) . (4.35c)

The standard version of these polynomials reads (see [32]):

Sn (x;α, β, γ) = (−1)n pn (x;α, β, γ) . (4.36)

Let us recall that these polynomials pn (x;α, β, γ) are invariant under any
permutation of the three parameters α, β, γ.

Let us now proceed and provide various identifications of the parameter
ν, see (4.5).
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First assignment

α = −ν . (4.37)

With this assignment one can set, consistently with our previous treat-
ment,

A(ν)
n = n

[

−5

6
+ β + γ − β γ + (β + γ − 1) ν +

(

3

2
− β − γ + ν

)

n− 2

3
n2

]

,

(4.38a)
ω(ν) = −ν2 , (4.38b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized CDH poly-
nomials (4.35):

p(ν)
n (x) = pn (x;−ν, β, γ) . (4.39)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these normalized CDH polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n = n (n− 1 + β + γ) . (4.40)

Note that this finding is obtained without requiring any limitation on the 3
parameters of the CDH polynomials pn (x;α, β, γ).

It is moreover plain that, with the assignment

ν = n− 1 + β , hence α = −n + 1 − β , (4.41)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = −1 + β. These are new findings.
As for the additional findings entailed by Corollary 3.7, they are reported in
Subsection Factorizations. And Proposition 3.9 becomes as well applicable,
entailing (new findings!) the remarkable Diophantine factorization

pn (x;−n + 1 − β, β, γ) =

n
∏

m=1

[

x+ (m− 1 + β)2] . (4.42)

And Corollary 3.10 entails even more general properties, such as (new find-
ing!)

pn

[

− (ℓ− 1 + β)2 ;−m+ 1 − β, β, γ
]

= 0 , ℓ = 1, ..., m , m = 1, ..., n .
(4.43)
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Likewise, with the assignment

ν = 2n+ β , α = −2n− β , γ =
1

2
, (4.44)

Proposition 3.11 becomes applicable, entailing (new finding!) the remark-
able Diophantine factorization

pn

(

x;−2n− β, β,
1

2

)

=
n
∏

m=1

[

x + (2m− 1 + β)2] . (4.45)

Second assignment

α = −1

2
ν + c , β = −1

2
(ν + 1) + c (4.46)

where c is an a priori arbitrary parameter.
With this assignment one can set, consistently with our previous treat-

ment,

A(ν)
n = n

[

−4

3
+

3

2
γ +

5

2
c− c2 − 2 γ c+

(

−5

4
+ γ + c

)

ν − 1

4
ν2

+ (2 − γ − 2 c+ ν) n− 2

3
n2

]

, (4.47a)

ω(ν) = −1

4
(1 − 2c+ ν)2 , (4.47b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized CDH poly-
nomials (4.35):

p(ν)
n (x) = pn

(

x; c− ν

2
, c− ν

2
− 1

2
, γ

)

. (4.48)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these normalized CDH polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n = n

(

n− 1 − ν

2
+ γ + c

)

. (4.49)

Note that this assignment entails the (single) limitation β = α− 1/2 on the
parameters of the CDH polynomials.
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It is moreover plain that, with the assignment

ν = n+ 2c− 3

2
, hence α = −n

2
+

3

4
, β = −n

2
+

1

4
, (4.50)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = 2c−3/2. These are new findings.
As for the additional findings entailed by Corollary 3.7, they are reported in
Subsection Factorizations. And Proposition 3.9 becomes as well applicable,
entailing (new findings!) the remarkable Diophantine factorization

pn

(

x;−n
2

+
3

4
,−n

2
+

1

4
, γ

)

=
n
∏

m=1

[

x +

(

2m− 1

4

)2
]

. (4.51)

And Corollary 3.10 entails even more general properties, such as (new find-
ing!)

pn

[

−
(

2ℓ− 1

4

)2

;−m
2

+
3

4
,−m

2
+

1

4
, γ

]

= 0 , ℓ = 1, ..., m , m = 1, ..., n .

(4.52)
Likewise with the assignments

ν = 2 (n− 1 + c+ γ) , hence α = −n+1−γ , β = −n+
1

2
−γ , (4.53a)

respectively

ν = 2

(

n− 3

2
+ c + γ

)

, hence α = −n+
3

2
−γ , β = −n+1−γ , (4.53b)

Proposition 3.11 becomes applicable, entailing (new findings!) the remark-
able Diophantine factorizations

pn

(

x;−n + 1 − γ,−n +
1

2
− γ, γ

)

=
n
∏

m=1

[

x + (m− 1 + γ)2] , (4.54a)

respectively

pn

(

x;−n +
3

2
− γ,−n + 1 − γ, γ

)

=
n
∏

m=1

[

x + (m− 1 + γ)2] . (4.54b)

Note that the right-hand sides of the last two formulas coincide; this
implies (new finding!) that the left-hand side coincide as well.
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Factorizations

The following new relations among Continuous Dual Hahn polynomials are
implied by Proposition 3.5 with Corollary 3.7 :

pn (x;−m + 1 − β, β, γ)

= pn−m (x;m+ β, 1 − β, γ) pm (x;−m + 1 − β, β, γ) ,

m = 0, 1, ..., n . (4.55)

4.1.4 Continuous Hahn (CH)

The monic Continuous Hahn (CH) polynomials pn (x;α, β, γ, δ) (see [32], and
note the notational replacement of the 4 parameters a, b, c, d used there with
α, β, γ, δ),

pn (x;α, β, γ, δ) ≡ pn

(

x; η
)

, (4.56a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

= −i
(

α+ Ãn + C̃n

)

, bn
(

η
)

= Ãn−1C̃n , (4.56b)

where

Ãn = −(n− 1 + α+ β + γ + δ) (n+ α + γ) (n + α + δ)

(2n− 1 + α + β + γ + δ) (2n+ α + β + γ + δ)
, (4.56c)

C̃n =
n (n− 1 + β + γ) (n− 1 + β + δ)

(2n+ α + β + γ + δ − 1) (2n+ α + β + γ + δ − 2)
. (4.56d)

The standard version of these polynomials reads (see [32]):

Sn (x;α, β, γ, δ) = (−1)n pn (x;α, β, γ, δ) . (4.57a)

Let us recall that these polynomials are symmetrical under the exchange
of the first two and last two parameters,

pn (x;α, β, γ, δ) = pn (x; β, α, γ, δ) = pn (x;α, β, δ, γ) = pn (x; β, α, δ, γ) .
(4.57b)

Let us now proceed and provide various identifications of the parameter
ν, see (4.5).
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First assignment

α = −ν . (4.58)

With this assignment one can set, consistently with our previous treat-
ment,

A(ν)
n = i n

−β + γ + δ − 2γδ + (1 − 2β) ν + (β − γ − δ − ν)n

2 (2 − β − γ − δ + ν − 2n)
, (4.59a)

ω(ν) = −i ν , (4.59b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized CH poly-
nomials (4.56):

p(ν)
n (x) = pn (x;−ν, β, γ, δ) . (4.60)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these normalized CH polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n =

i n (n− 1 + β + γ) (n− 1 + β + δ)

(2n− 2 − ν + β + γ + δ) (2n− 1 − ν + β + γ + δ)
. (4.61)

Note that this assignment entails no restriction on the 4 parameters of the
CH polynomials pn (x;α, β, γ, δ).

It is moreover plain that, with the assignment

ν = n− 1 + γ , hence α = −n + 1 − γ , (4.62)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = −1 + γ. These are new findings.
And Proposition 3.9 becomes as well applicable, entailing (new findings!)
the remarkable Diophantine factorization

pn (x;−n + 1 − γ, β, γ, δ) =

n
∏

m=1

[x + i(m− 1 + γ)] . (4.63)

And Corollary 3.10 entails even more general properties, such as (new find-
ings!)

pn [−i(ℓ− 1 + γ);−m+ 1 − γ, β, γ, δ] = 0 , ℓ = 1, ..., m , m = 1, ..., n .
(4.64)
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Second assignment

Analogous results also obtain from the assignment

γ = −ν . (4.65)

With this assignment one can set, consistently with our previous treat-
ment,

A(ν)
n = −in [n (α + β − δ + ν) + (2δ − 1) ν + α (2β − 1) − β + δ]

2 (2n− 2 + α+ β + δ − ν)
, (4.66a)

ω(ν) = iν , (4.66b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized CH poly-
nomials (4.56):

p(ν)
n (x) = pn (x;α, β,−ν, δ) . (4.67)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these normalized CH polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n =

i n (n− 1 + α + β) (n− 1 + β + δ)

(2n− 2 − ν + α + β + δ) (2n− 1 − ν + α + β + δ)
. (4.68)

Note that this assignment entails no restriction on the 4 parameters of the
CH polynomials pn (x;α, β, γ, δ).

It is moreover plain that, with the assignment

ν = n− 1 + α , hence γ = −n + 1 − α , (4.69)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = −1 +α. These are new findings.
And Proposition 3.9 becomes as well applicable, entailing (new finding!) the
remarkable Diophantine factorization

pn (x;α, β,−n+ 1 − α, δ) =

n
∏

m=1

[x− i (m− 1 + α)] . (4.70)

And Corollary 3.10 entails even more general properties, such as (new find-
ing!)

pn [i (ℓ− 1 + α);α, β,−m+ 1 − α, δ] = 0 , ℓ = 1, ..., m , m = 1, ..., n .
(4.71)
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4.1.5 Hahn

In this subsection we introduce a somewhat generalized version of the stan-
dard (monic) Hahn polynomials. These (generalized) monic Hahn polynomi-
als pn (x;α, β, γ) (see [32], and note the replacement of the integer parameter
N with the arbitrary parameter γ: hence the standard Hahn polynomials are
only obtained for γ = N with N a positive integer and n = 1, 2, .., N),

pn (x;α, β, γ) ≡ pn

(

x; η
)

, (4.72a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

= −
(

Ãn + C̃n

)

, bn
(

η
)

= −Ãn−1C̃n , (4.72b)

where

Ãn =
(n + 1 + α) (n+ 1 + α + β) (−n + γ)

(2n+ 1 + α + β) (2n+ 2 + α + β)
, (4.72c)

C̃n =
n (n+ 1 + α + β + γ) (n + β)

(2n+ α + β) (2n+ 1 + α + β)
. (4.72d)

The standard version of these polynomials reads (see [32]):

Qn (x;α, β, γ) =
(n+ 1 + α + β)n

(1 + α)n (−γ)n

pn (x;α, β, γ) . (4.73)

Let us now proceed and provide various identifications of the parameter
ν, see (4.5).

First assignment

α = −ν . (4.74)

With this assignment one can set, consistently with our previous treat-
ment,

A(ν)
n =

n [β + (1 + 2 γ) ν − (β + 2 γ + ν) n]

2 (2n− ν + β)
, (4.75a)

ω(ν) = ν − 1 , (4.75b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Hahn poly-
nomials (4.72):

p(ν)
n (x) = pn (x;−ν, β, γ) . (4.76)

60



Hence, with this identification, Proposition 2.1 becomes applicable, entailing
(new finding!) that these normalized Hahn polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n = − n (n + β) (n− 1 − γ)

(2n− ν + β) (2n+ 1 − ν + β)
. (4.77)

Note that this assignment entails no restriction on the 3 parameters of the
Hahn polynomials pn (x;α, β, γ).

It is moreover plain that, with the assignments

ν = n (4.78a)

respectively
ν = n + 1 + β + γ , (4.78b)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = 1+β+γ. These are new findings.
And Proposition 3.9 becomes as well applicable, entailing (new findings!)
the remarkable Diophantine factorizations

pn (x;n, β, γ) =

n
∏

m=1

(x−m+ 1) , (4.79a)

respectively

pn (x;n+ 1 + β + γ, β, γ) =

n
∏

m=1

(x−m− β − γ) . (4.79b)

And Corollary 3.10 entails even more general properties, such as (new find-
ings!)

pn (ℓ− 1;m, β, γ) = 0 , ℓ = 1, ..., m , m = 1, ..., n , (4.80a)

respectively

pn (ℓ+ β + γ;m+ 1 + β + γ, β, γ) = 0 , ℓ = 1, ..., m , m = 1, ..., n .
(4.80b)
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Second assignment

β = −ν + γ + c , (4.81)

where c is an arbitrary parameter.
With this assignment one can set, consistently with our previous treat-

ment,

A(ν)
n = −nα − γ − c+ ν + 2αγ + (−α + c− ν + 3γ)n

2 (α + γ + c− ν + 2n)
, (4.82a)

ω(ν) = 1 − ν + 2γ + c , (4.82b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Hahn poly-
nomials (4.72):

p(ν)
n (x) = pn (x;α,−ν + γ + c, γ) . (4.83)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing
(new finding!) that these normalized Hahn polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n =

n (n+ α) (n− 1 − γ)

(2n− ν + α+ γ + c) (2n+ 1 − ν + α+ γ + c)
. (4.84)

Note that this assignment entails no restriction on the 3 parameters of the
Hahn polynomials pn (x;α, β, γ).

It is moreover plain that, with the assignments

ν = n + γ + c , hence β = −n , (4.85a)

respectively

ν = n+ 1 + α + 2γ + c , hence β = − (n+ 1 + α + γ) , (4.85b)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = γ+c respectively µ = 1+α+2γ+c.
These are new findings. And Proposition 3.9 becomes as well applicable,
entailing (new findings!) the remarkable Diophantine factorizations

pn (x;α,−n, γ) =

n
∏

m=1

(x +m− 1 − γ) , (4.86a)
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respectively

pn (x;α,−n− 1 − α− γ, γ) =
n
∏

m=1

(x+m + α) . (4.86b)

And Corollary 3.10 entails even more general properties, such as (new find-
ings!)

pn (−ℓ + 1 + γ;α,−m, γ) = 0 , ℓ = 1, ..., m , m = 1, ..., n , (4.87a)

respectively

pn (−ℓ− α;α,−m− 1 − α− γ, γ) = 0 , ℓ = 1, ..., m , m = 1, ..., n .
(4.87b)

Third assignment

β = −ν + c , γ = ν , (4.88)

where c is an arbitrary parameter.
With this assignment one can set, consistently with our previous treat-

ment,

A(ν)
n = − n [ν + α− c+ 2α ν + (ν − α + c) n]

2 (2n− ν + α + c)
, (4.89a)

ω(ν) = ν , (4.89b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Hahn poly-
nomials (4.72):

p(ν)
n (x) = pn (x;α,−ν + c, ν) . (4.90)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing
(new finding!) that these normalized Hahn polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n = − n (n+ α) (n + 1 + α + c)

(2n− ν + α+ c) (2n+ 1 − ν + α + c)
. (4.91)

Note that this assignment entails no restriction on the 4 parameters of the
Hahn polynomials pn (x;α, β, γ).

It is moreover plain that, with the assignment

ν = n+ c , β = −n , γ = n + c , (4.92)
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the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = c. These are new findings. And
Proposition 3.9 becomes as well applicable, entailing (new finding!) the
remarkable Diophantine factorization

pn (x;α,−n, n+ c) =
n
∏

m=1

(x−m− c) . (4.93)

And Corollary 3.10 entails even more general properties, such as (new find-
ing!)

pn (ℓ+ c;α,−m,m+ c) = 0 , ℓ = 1, ..., m , m = 1, ..., n . (4.94)

4.1.6 Dual Hahn

In this subsection, we introduce a somewhat generalized version of the stan-
dard (monic) Dual Hahn polynomials. These (generalized) monic Dual Hahn
polynomials pn (x; γ, δ, η) (see [32], and note the replacement of the integer
parameter N with the arbitrary parameter γ: hence the standard Hahn
polynomials are only obtained for η = N with N a positive integer and
n = 1, 2, .., N),

pn (x; γ, δ, η) ≡ pn

(

x; η
)

, (4.95a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

= Ãn + C̃n , bn
(

η
)

= −Ãn−1C̃n (4.95b)

where

Ãn = (n + 1 + γ) (n− η) , C̃n = n (n− 1 − δ − η) . (4.95c)

The standard version of these polynomials reads (see [32]):

Rn (x; γ, δ, η) =
1

(1 + γ)n (−η)n

pn (x; γ, δ, η) . (4.96)

Let us now proceed and provide various identifications of the parameter
ν.
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First assignment

η = ν . (4.97)

With this assignment one can set, consistently with our previous treat-
ment,

A(ν)
n = n

[

1

3
+

−γ + δ

2
− γ ν −

(

1 + ν +
−γ + δ

2

)

n+
2

3
n2

]

, (4.98a)

ω(ν) = ν (1 + ν + γ + δ) , (4.98b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Dual Hahn
polynomials (4.95):

p(ν)
n (x) = pn (x; γ, δ, ν) . (4.99)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing
(new finding!) that these normalized Dual Hahn polynomials satisfy the
second recursion relation (3.6) with

g(ν)
n = −n (n+ γ) . (4.100)

Note that this assignment entails no restriction on the 3 parameters of the
Dual Hahn polynomials pn (x; γ, δ, η).

It is moreover plain that, with the assignments

ν = n− 1 , hence η = n− 1 (4.101a)

(which is however incompatible with the requirement characterizing the stan-
dard Dual Hahn polynomials: η = N with N a positive integer and n =
1, 2, .., N), respectively

ν = n− 1 − δ , hence η = n− 1 − δ , (4.101b)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = −1 respectively µ = −1−δ. These
are new findings. As for the additional findings entailed by Corollary 3.7,
they are reported in Subsection Factorizations. And Proposition 3.9 becomes
as well applicable, entailing (new findings!) the remarkable Diophantine
factorizations

pn (x; γ, δ, n− 1) =
n
∏

m=1

[x− (m− 1) (m + γ + δ)] , (4.102a)
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respectively

pn (x; γ, δ, n− 1 − δ) =

n
∏

m=1

[x− (m+ γ) (m− 1 − δ)] . (4.102b)

And Corollary 3.10 entails even more general properties, such as (new find-
ings!)

pn [(ℓ− 1) (ℓ+ γ + δ) ; γ, δ,m− 1] = 0 , ℓ = 1, ..., m , m = 1, ..., n ,
(4.103a)

respectively

pn [(ℓ+ γ) (ℓ− 1 − δ) ; γ, δ,m− 1 − δ] = 0 , ℓ = 1, ..., m , m = 1, ..., n .
(4.103b)

While for

ν = 2n , hence η = 2n , and moreover δ = γ , (4.104a)

respectively

ν = 2n− δ , hence η = 2n− δ , and moreover δ = −γ , (4.104b)

Proposition 3.11 becomes applicable, entailing (new findings!) the remark-
able Diophantine factorizations

pn (x; γ, γ, 2n) =

n
∏

m=1

[x− 2 (2m− 1) (m + γ)] , (4.105a)

respectively

pn (x; γ,−γ, 2n+ γ) =

n
∏

m=1

[x− (2m− 1 + γ) (2m+ γ)] . (4.105b)

Second assignment

γ = −ν , δ = ν + c . (4.106)

With this assignment one can set, consistently with our previous treat-
ment,

A(ν)
n = n

[

1

3
+ (1 + η) ν +

1

2
c−

(

1 + ν + η +
1

2
c

)

n+
2

3
n2

]

, (4.107a)
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ω(ν) = (ν − 1) (ν + c) , (4.107b)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Dual Hahn
polynomials (4.95):

p(ν)
n (x) = pn (x;−ν, ν + c, η) . (4.108)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these normalized Dual Hahn polynomials satisfy the
second recursion relation (3.6) with

g(ν)
n = −n (n− 1 − η) . (4.109)

Note that this assignment entails no restriction on the 3 parameters of the
Dual Hahn polynomials pn (x; γ, δ, η).

It is moreover plain that, with the assignments

ν = n , hence γ = −n , δ = n+ c , (4.110a)

respectively

ν = n− 1− η− c , hence γ = −n+ 1 + η+ c , δ = n− 1− η , (4.110b)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = 0 respectively µ = −1 − η − c.
These are new findings. As for the additional findings entailed by Corol-
lary 3.7, they are reported in Subsection Factorizations. And Proposition
3.9 becomes as well applicable, entailing (new findings!) the remarkable
Diophantine factorizations

pn (x;−n, n + c, η) =
n
∏

m=1

[x− (m− 1) (m + c)] , (4.111a)

respectively

pn (x;−n + 1 + η + c, n− 1 − η, η) =

n
∏

m=1

[x− (m− 1 − η) (m− 2 − η − c)] .

(4.111b)
And Corollary 3.10 entails even more general properties, such as (new find-
ings!)

pn [(ℓ− 1) (ℓ+ c) ;−m,m+ c, η] = 0 , ℓ = 1, ..., m , m = 1, ..., n ,
(4.112a)
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respectively

pn [(ℓ− 1 − η) (ℓ− 2 − η − c) ;−m + 1 + η + c,−m− 1 − η, η] = 0 ,

ℓ = 1, ..., m , m = 1, ..., n . (4.112b)

While for

ν = 2n− η , hence γ = −2n + η ,

and moreover c = 0 , hence δ = 2n− η , (4.113a)

respectively

ν = 2n+ 1 , hence γ = −2n− 1 ,

and moreover c = −2 (η + 1) , hence δ = 2n− 1 − 2η ,(4.113b)

Proposition 3.11 becomes applicable, entailing (new findings!) the remark-
able Diophantine factorizations

pn (x;−2n+ η, 2n− η, η) =

n
∏

m=1

[x− (2m− 2 − η) (2m− 1 − η)] , (4.114a)

respectively

pn (x;−2n− 1, 2n− 1 − 2η, η) =

n
∏

m=1

[x− 2 (2m− 1) (m− 1 − η)] .

(4.114b)

Factorizations

The following new relations among Dual Hahn polynomials are implied by
Proposition 3.5 with Corollary 3.7 :

pn (x; γ,−γ,m− 1)

= pn−m (x; γ,−γ,−m− 1) pm (x; γ,−γ,m− 1) ,

m = 0, 1, ..., n , (4.115a)

pn (x; γ, δ,m− 1 − δ)

= pn−m (x; δ, γ,−m− 1 − γ) pm (x; γ, δ,m− 1 − δ) ,

m = 0, 1, ..., n , (4.115b)
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pn (x;−m,m, η)

= pn−m (x;m,−m, η) pm (x;−m,m, η) ,

m = 0, 1, ..., n , (4.115c)

pn (x;−m + 1 + η + c,m− 1 − η, η) =

pn−m (x;m− 1 − η,−m + 1 + η + c,−η − c− 2) ·
·pm (x;−m + 1 + η + c,m− 1 − η, η) ,

m = 0, 1, ..., n . (4.115d)

4.1.7 Shifted Meixner-Pollaczek (sMP)

In this subsection we introduce and treat a modified version of the standard
(monic) Meixner-Pollaczek polynomials. The standard (monic) Meixner-
Pollaczek (MP) polynomials pn (x;α, λ) (see [32]),

pn (x;α, λ) ≡ pn

(

x; η
)

, (4.116a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

= α (n+ λ) =
n + λ

tanφ
, (4.116b)

bn
(

η
)

= −1

4

(

1 + α2
)

n (n− 1 + 2λ) = −n (n− 1 + 2λ)

4 sin2 φ
. (4.116c)

The standard version of these polynomials reads (see [32]):

P (λ)
n (x; tanφ) =

(2 sinφ)n

n!
pn (x;α, λ) , α ≡ 1

tanφ
. (4.117a)

But we have not found any assignment of the parameters α and λ in
terms of ν allowing the application of our machinery. We therefore consider
the (monic) ”shifted Meixner-Pollaczek” (sMP) polynomials

pn (x;α, λ, β) = pn (x + β;α, λ) , (4.118)
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defined of course via the three-term recursion relation (4.4) with

an

(

η
)

= α (n+ λ) + β =
n + λ

tanφ
+ β, (4.119a)

bn
(

η
)

= −1

4

(

1 + α2
)

n (n− 1 + 2λ) = −n (n− 1 + 2λ)

4 sin2 φ
. (4.119b)

Then with the assignment

λ = −1

2
(ν + c) , β = −1

2
i (ν + C) (4.120)

(entailing no restriction on the parameters α, λ, β, inasmuch as the two pa-
rameters c and C are arbitrary), one can set, consistently with our previous
treatment,

A(ν)
n =

1

2
n (αn− αν − iν − iC − αc− α) , ω(ν) =

1

2
i (2ν + c+ C) ,

(4.121)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized shifted
Meixner-Pollaczek polynomials:

p(ν)
n (x) = pn

(

x;α,−1

2
(ν + c) ,−1

2
i (ν + C)

)

. (4.122)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these (normalized) shifted Meixner-Pollaczek polynomi-
als satisfy the second recursion relation (3.6) with

g(ν)
n = −1

2
n (α + i) . (4.123)

It is moreover plain that, with the assignment

ν = n−1−c hence λ = −1

2
(n− 1) , β = −1

2
i (n− 1 − c+ C) , (4.124)

the factorizations implied by Proposition 3.5, and the properties implied
by Corollary 3.6, become applicable with µ = −1 − c. And Proposition
3.9 becomes as well applicable, entailing (new finding!) the remarkable
Diophantine factorization

pn

(

x;α,−1

2
(n− 1) ,−1

2
i (n− 1 − c+ C)

)

=

n
∏

m=1

[

x− i

(

m− 1 +
C − c

2

)]

.

(4.125)
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And Corollary 3.10 entails even more general properties, such as (new find-
ing!)

pn

[

i

(

l − 1 +
C − c

2

)

;α,−1

2
(m− 1) ,−1

2
i (m− 1 − c+ C)

]

= 0 , ℓ = 1, ..., m , m = 1, ..., n .

(4.126)

4.1.8 Meixner

Josef Meixner was a German theoretical physicist and the Meixner polyno-
mials, introduced in 1934, are a family of orthogonal polynomials that are
orthogonal with respect to a certain discrete measure .

The monic Meixner polynomials pn (x; β, c) (see [32]),

pn (x; β, c) ≡ pn

(

x; η
)

, (4.127a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

=
β c+ (1 + c) n

c− 1
, bn

(

η
)

= −c n (n− 1 + β)

(c− 1)2 . (4.127b)

The standard version of these polynomials reads (see [32]):

Mn (x; β, c) =
1

(β)n

(

c− 1

c

)n

pn (x; β, c) . (4.128a)

We now identify the parameter ν via the assignment

β = −ν . (4.129)

One can then set, consistently with our previous treatment,

A(ν)
n =

n [1 + c+ 2 c ν − (1 + c) n]

2 (1 − c)
, ω(ν) = ν , (4.130)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Meixner
polynomials (4.128):

p(ν)
n (x) = pn (x;−ν, c) . (4.131)
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Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these normalized Meixner polynomials satisfy the second
recursion relation (3.6) with

g(ν)
n =

cn

1 − c
. (4.132)

Note that this assignment entails no restriction on the 2 parameters of the
Meixner polynomials pn (x; β, c).

It is moreover plain that, with the assignment

ν = n− 1 , hence β = 1 − n , (4.133)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = −1. These are new findings.
And Proposition 3.9 becomes as well applicable, entailing (new finding!)
the remarkable Diophantine factorization

pn (x; 1 − n, c) =

n
∏

m=1

(x−m+ 1) . (4.134)

And Corollary 3.10 entails even more general properties, such as (new find-
ing!)

pn (ℓ− 1; 1 −m, c) = 0 , ℓ = 1, ..., m , m = 1, ..., n . (4.135)

Likewise for

ν = 2n hence β = −2n and moreover c = −1 , (4.136)

Proposition 3.11 becomes applicable, entailing (new finding!) the remark-
able Diophantine factorization

pn (x;−2n,−1) =
n
∏

m=1

(x− 2m + 1) . (4.137)

4.1.9 Krawtchouk

Mikhail Krawtchouk was a Ukraine mathematician. In 1929 published his
most famous work, Sur une generalisation des polynomes d’Hermite. In this
paper he introduced a new system of orthogonal polynomials now known
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as the Krawtchouk polynomials,which are polynomials associated with the
binomials distribution.

The monic Krawtchouk polynomials pn (x;α, β) (see [32]: and note the
notational replacement of the parameters p and N used there with the param-
eters α and β used here, implying that only when β = N and n = 1, 2, .., N
with N a positive integer these polynomials pn (x;α, β) coincide with the
standard Krawtchouk polynomials),

pn (x;α, β) ≡ pn

(

x; η
)

, (4.138a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

= −αβ +n (2α− 1) , bn
(

η
)

= α (1 − α) n (n− 1 − β) . (4.138b)

The standard version of these polynomials reads (see [32]):

Kn (x;α, β) =
1

αn (−β)n

pn (x;α, β) . (4.139a)

We now identify the parameter ν via the assignment

β = ν . (4.140)

One can then set, consistently with our previous treatment,

A(ν)
n = n

[

1

2
− α− α ν +

(

−1

2
+ α

)

n

]

, ω(ν) = ν , (4.141)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Krawtchouk
polynomials (4.138):

p(ν)
n (x) = pn (x;α, ν) . (4.142)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(new finding!) that these normalized Krawtchouk polynomials satisfy the
second recursion relation (3.6) with

g(ν)
n = −αn . (4.143)

Note that this assignment entails no restriction on the 2 parameters of the
Krawtchouk polynomials pn (x;α, β).

It is moreover plain that, with the assignment

ν = n− 1 , hence β = n− 1 (4.144)
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(which is however incompatible with the definition of the standard Krawtchouk
polynomials: β = N and n = 1, 2, .., N with N a positive integer), the factor-
izations implied by Proposition 3.5, and the properties implied by Corollary
3.6, become applicable with µ = −1. These are new findings. And Proposi-
tion 3.9 becomes as well applicable, entailing (new finding!) the remarkable
Diophantine factorization

pn (x;α, n− 1) =
n
∏

m=1

(x−m + 1) . (4.145)

And Corollary 3.10 entails even more general properties, such as (new find-
ings!)

pn (ℓ− 1;α,m− 1) = 0 , ℓ = 1, ..., m , m = 1, ..., n . (4.146)

Likewise for

ν = 2n hence β = 2n and moreover α =
1

2
(4.147)

(which is also incompatible with the definition of the standard Krawtchouk
polynomials: β = N and n = 1, 2, .., N with N a positive integer), Propo-
sition 3.11 becomes applicable, entailing (new finding!) the remarkable
Diophantine factorization

pn (x;−2n,−1) =

n
∏

m=1

(x− 2m + 1) . (4.148)

4.1.10 Jacobi

The monic Jacobi polynomials pn (x;α, β) (see [32]),

pn (x;α, β) ≡ pn

(

x; η
)

, (4.149a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

=
(α+ β) (α− β)

(2n+ α + β) (2n+ α+ β + 2)
, (4.149b)

bn
(

η
)

= − 4n (n+ α) (n+ β) (n+ α + β)

(2n+ α + β − 1) (2n+ α + β + 1) (2n+ α + β)2 . (4.149c)
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The standard version of these polynomials reads (see [32]):

P (α,β)
n (x) =

(n+ α + β + 1)n

2n n!
pn (x;α, β) . (4.150a)

Let us recall that for the Jacobi polynomials there holds the symmetry
relation

pn (−x; β, α) = pn (x;α, β) . (4.150b)

We now identify the parameter ν as follows:

α = −ν . (4.151)

With this assignment one can set, consistently with our previous treatment,

A(ν)
n = − n (ν + β)

2n− ν + β
, ω(ν) = 1 , (4.152)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Jacobi
polynomials (4.149):

p(ν)
n (x) = pn (x;−ν, β) . (4.153)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(well known result!) that these normalized Jacobi polynomials satisfy the
second recursion relation (3.6) with

g(ν)
n = − 2n (n+ β)

(2n− ν + β) (2n− ν + β + 1)
. (4.154)

It is moreover plain that, with the assignment

ν = n , hence α = −n , (4.155)

the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = 0. These seem new findings. As
for the additional findings entailed by Corollary 3.7, they are reported in
Subsection Factorizations. And Proposition 3.9 becomes as well applicable,
entailing (well known result!) the remarkable Diophantine factorization

pn (x;−n, β) = (x− 1)n . (4.156)

And Corollary 3.10 entails even more general properties, such as the fact
that the m Jacobi polynomials pn (x;−m, β) , m = 1, ..., n, feature x = 1 as
a zero of order m.
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Factorizations

The following (not new) relations among Jacobi polynomials are implied by
Proposition 3.5 with Corollary 3.7 :

pn (x;−m, β) = pn−m (x;m, β) pm (x;−m, β) , m = 0, 1, ..., n . (4.157)

4.1.11 Laguerre

The monic Laguerre polynomials pn (x;α) (see [32]),

pn (x;α) ≡ pn

(

x; η
)

, (4.158a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

= − (2n+ 1 + α) , bn
(

η
)

= −n (n + α) . (4.158b)

The standard version of these polynomials reads (see [32]):

L(α)
n (x) =

1

n!
pn (x;α) . (4.159a)

We now identify the parameter ν as follows:

α = −ν . (4.160)

With this assignment one can set, consistently with our previous treatment,

A(ν)
n = −n (n− ν) , ω(ν) = 0 , (4.161)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with the normalized Laguerre
polynomials (4.158):

p(ν)
n (x) = pn (x;−ν) . (4.162)

Hence, with this identification, Proposition 3.3 becomes applicable, entailing
(well known result!) that the normalized Laguerre polynomials satisfy the
second recursion relation (3.6) with

g(ν)
n = n . (4.163)

It is moreover plain that, with the assignment

ν = n , hence α = −n , (4.164)
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the factorizations implied by Proposition 3.5, and the properties implied by
Corollary 3.6, become applicable with µ = 0. These seem new findings. As
for the additional findings entailed by Corollary 3.7, they are reported in
Subsection Factorizations. And Proposition 3.9 becomes as well applicable,
entailing (well known result!) the remarkable formula

pn (x;−n) = xn . (4.165)

And Corollary 3.10 entails even more general properties, such as the fact
that the m Laguerre polynomials pn (x;−m) , m = 1, ..., n , feature x = 0 as
a zero of order m.

Factorizations

The following (not new) relations among Laguerre polynomials are implied
by Proposition 3.5 with Corollary 3.7 :

pn (x;−m) = pn−m (x;m) pm (x;−m) , m = 0, 1, ..., n . (4.166)

4.1.12 Modified Charlier

In this subsection we introduce and treat a modified version of the standard
(monic) Charlier polynomials. The standard (monic) Charlier polynomials
pn (x;α) (see [32]),

pn (x;α, λ) ≡ pn

(

x; η
)

, (4.167a)

are defined by the three-term recursion relations (4.4) with

an

(

η
)

= −n− α , bn
(

η
)

= −nα . (4.167b)

The standard version of these polynomials reads (see [32]):

Cn (x;α) = (−α)−n pn (x;α) . (4.168a)

But we have not found any assignment of the parameters α in terms of
ν allowing the application of our machinery. To nevertheless proceed we
introduce the class of (monic) ”modified Charlier” polynomials pn (x;α, β, γ)
characterized by the three-term recursion relation (4.4) with

an

(

η
)

= −γ (n+ α) + β , bn
(

η
)

= −γ2nα , (4.169)
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that obviously reduce to the monic Charlier polynomials for β = 0, γ = 1.
Assigning instead

β = −ν , γ = −1 , (4.170)

one can set, consistently with our previous treatment,

A(ν)
n =

1

2
n (n− 1 − 2ν + 2α) , ω(ν) = ν , (4.171)

implying, via (3.4) and (3.5), that the polynomials p
(ν)
n (x) defined by the

three-term recurrence relations (3.1) coincide with these (monic) modified
Charlier polynomials:

p(ν)
n (x) = pn (x;α,−ν,−1) . (4.172)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing
(new finding!) that these (monic) modified Charlier polynomials satisfy the
second recursion relation (3.6) with

g(ν)
n = −n . (4.173)

There does not seem to be any interesting results for the zeros of these
polynomials.
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Chapter 5

Hypergeometric Origin of Diophantine

properties.

When the polynomials treated are given in their usual hypergeometric repre-
sentation, some of the results given in the previous chapter are consequences
of transformation formula which date back the 19th century in some case and
the early twentieth century in others. Indeed, in a recent paper [21], M.E.H.
Ismail and Y.Chen have proved that the Diophantine property of certain
polynomials in the Askey scheme, reported in the previous chapters, is ex-
plained, with suitably chosen parameter value, in terms of the summation
theorem of hypergeometric series. They have also generalized this procedure
to polynomials arising from the basic hypergeometric series. They found,
with suitably chosen of parameters and certain q-analogue of the summation
theorems, zeros of these polynomials explicitly, which are no longer integer
valued. Probably almost all of the results on zeros can be extended to basic
hypergeometric polynomials when there is a need for them in physics.

We have considered polynomials defined by a secular equation

PN(x) = det(xN −AN ) (5.1)

where AN is a tridiagonal matrix of size N . Hence, PN(x) maybe interpreted
as orthogonal polynomials if the super-diagonal elements of AN are real and
none of them vanishes. The motivation, for Chen and Ismail, of considering
these Diophantine property is the fact that a hypergeometric polynomial of
degree n in the variable x, is factored as fm(x)gn−m(x), here fm(x) has degree
m, gn−m(x) has degree n −m in the variable x. Moreover the zeros of fm

are equispaced. This hold for all m, 1 ≤ m ≤ n. They are proved that all
Diophantine results in the previous chapters follow from summation theo-
rems for hypergeometric functions, and in their article they give q-analogues
version.
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In fact, in the Appendix A of [14] we have already considered the con-
nection of the polynomials obtained with the hypergeometric functions, and
we have mentioned that the factorizations are conseguence of Saalschütz for-
mula.
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Chapter 6

Connection with the discrete integrability.

The aim of this chapter is the connection of the study of the three term
recursion relation

p
(ν)
n+1(x) =

(

x+ a(ν)
n

)

p(ν)
n (x) + b(ν)

n p
(ν)
n−1(x) (6.1)

and the second recursion

p(ν)
n (x) = p(ν−1)

n (x) + g(ν)
n p

(ν−1)
n−1 (x) , (6.2)

with the theory of the integrable discrete systems developed in last three
decades. Indeed, we use the Lax technique developed in [18] in the discrete
case.

We consider the three term recursion as a spectral problem:

L̂ p(ν)
n (x) = x p(ν)

n (x) , (6.3)

where the operator L̂ has the form

L̂ = L̂(ν)
n = Ê+ − a(ν)

n Î − b(ν)
n Ê− , (6.4)

and the variable x is regarded as a n-independent spectral parameter.
The shift operators Ê± act on a generic function f = f

(ν)
n as

Ê± f (ν)
n = f

(ν)
n±1 .

Moreover, we will consider the second recursion as a discrete-time evolution
of the ”wave function”. For a general treatment we initially introduce the
discrete time evolution equation

T̂ p(ν)
n (x) =

(

Î + Ĥ [k]
)

p(ν)
n (x) ; (6.5)
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where the ”time-shift” operator T̂ acts on a generic function as

T̂ f (ν)
n = f (ν+1)

n ;

and Ĥ [k] = Ĥ
(ν) [k]
n will be determined. We will see later that the index k is

related to the maximum order of the operator Ê−.
The compatibility condition for the two linear problems (6.3),(6.5) reads:

T̂ L̂p(ν)
n (x) = L̂+T̂ p(ν)

n (x) = L̂+
(

Î + Ĥ [k]
)

p(ν)
n (x) = T̂ xp(ν)

n (x) = xT̂ p(ν)
n (x)

= x
(

Î + Ĥ [k]
)

p(ν)
n (x) =

(

Î + Ĥ [k]
)

xp(ν)
n (x) =

(

Î + Ĥ [k]
)

L̂p(ν)
n (x)

(6.6)

yelding the operator equation:

L̂+
(

Î + Ĥ [k]
)

−
(

Î + Ĥ [k]
)

L̂ = 0 , (6.7)

where L̂+is defined as

L̂+ = Ê+ − a(ν+1)
n Î − b(ν+1)

n Ê− . (6.8)

6.1 The complete hierarchy

In this section we will present a general procedure to construct a hierarchy
of nonlinear discrete-discrete equations by requiring that an operator

Ĥ [k] := Ĥ
(ν)[k]
n =

k
∑

l=1

h
(ν)[l,k]
n

(

Ê−

)l

, (6.9)

with
h

(ν)[l,k]
n = 0 if l ≤ 0 and l > k , (6.10)

and k + 1 scalar functions w
(ν)[l,k]
n l = 0, 1, ..., k satisfies the equation

L̂(+)Ĥ [k] − Ĥ [k]L̂ =
k
∑

l=0

w
(ν)[l,k]
n

(

Ê−

)l

. (6.11)
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Explicitly, we require:

(

Ê+ − a(ν+1)
n Î − b(ν+1)

n Ê−

)

[

k
∑

l=1

h
(ν)[l,k]
n

(

Ê−

)l
]

−
[

k
∑

l=1

h
(ν)[l,k]
n

(

Ê−

)l
]

(

Ê+ − a(ν)
n Î − b(ν)

n Ê−

)

=

=

k
∑

l=0

w
(ν)[l,k]
n

(

Ê−

)l

, (6.12)

so that the functions w
(ν)[l,k]
n take the form

w
(ν)[l,k]
n = h

(ν)[l+1,k]
n+1 − h

(ν)[l+1,k]
n −

(

a(ν+1)
n − a

(ν)
n−l

)

h
(ν)[l,k]
n

−b(ν+1)
n h

(ν)[l−1,k]
n−1 + b

(ν)
n−l+1h

(ν)[l−1,k]
n

l = 1, ..., k , (6.13)

with
w

(ν)[l,k]
n = 0 , for l < 0 and l > k + 1; (6.14)

w
(ν)[0,k]
n = h

(ν)[1,k]
n+1 − h

(ν)[1,k]
n ; (6.15)

−b(ν+1)
n h

(ν)[k,k]
n−1 + b

(ν)
n−kh

(ν)[k,k]
n = 0. (6.16)

We then construct a new operator Ĥ [k+1] using the following ansatz :

Ĥ [k+1] = Ĥ [k]L̂ +

k+1
∑

l=0

q
(ν)[l,k+1]
n

(

Ê−

)l

=

[

k
∑

l=1

h
(ν)[l,k]
n

(

Ê−

)l
]

(

Ê+ − a(ν)
n Î − b(ν)

n Ê−

)

+

k+1
∑

l=0

q
(ν)[l,k+1]
n

(

Ê−

)l

=
k+1
∑

l=1

h
(ν)[l,k+1]
n

(

Ê−

)l

, (6.17)

where the functions q
(ν)[l,k+1]
n must be determined.

In order that the coefficient of the identity operator Î vanishes, must hold
the equation:

h
(ν)[1,k]
n = −q(ν)[0,k+1]

n , (6.18)

and for the others order of the operator Ê− we have:

h
(ν)[l,k+1]
n = h

(ν)[l+1,k]
n − a

(ν)
n−lh

(ν)[l,k]
n − b

(ν)
n−l+1h

(ν)[l−1,k]
n + q

(ν)[l,k+1]
n . (6.19)
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For the iterated operator must be true the following equation containing new

functions w
(ν)[l,k+1]
n with l = 0, 1, ..., k + 1

L̂(+)Ĥ [k+1] − Ĥ [k+1]L̂ =

k+1
∑

l=0

w
(ν)[l,k+1]
n

(

Ê−

)l

, (6.20)

hence, explicitly
[

k
∑

l=0

w
(ν)[l,k]
n

(

Ê−

)l
]

(

Ê+ − a(ν)
n Î − b(ν)

n Ê−

)

+
(

Ê+ − a(ν+1)
n Î − b(ν+1)

n Ê−

)

[

k+1
∑

l=0

q
(ν)[l,k+1]
n

(

Ê−

)l
]

−
[

k+1
∑

l=0

q
(ν)[l,k+1]
n

(

Ê−

)l
]

(

Ê+ − a(ν)
n Î − b(ν)

n Ê−

)

=

(

k
∑

l=0

w
(ν)[l,k]
n −

k+1
∑

l=0

q
(ν)[l,k+1]
n

)

[

(

Ê−

)l−1

− a
(ν)
n−l

(

Ê−

)l

− b
(ν)
n−l

(

Ê−

)l+1
]

+

[

k+1
∑

l=0

q
(ν)[l,k+1]
n

(

Ê−

)l−1

−
k+1
∑

l=0

a(ν+1)
n q

(ν)[l,k+1]
n

(

Ê−

)l

−
k+1
∑

l=0

b(ν+1)
n q

(ν)[l,k+1]
n−1

(

Ê−

)l+1
]

=

k+1
∑

l=0

w
(ν)[l,k+1]
n

(

Ê−

)l

(6.21)

k
∑

l=0

{
[

w
(ν)[l,k]
n + q

(ν)[l,k+1]
n+1 − q

(ν)[l,k+1]
n

](

Ê−

)l−1

+
[(

a
(ν)
n−l − a(ν+1)

n

)

q
(ν)[l,k+1]
n − a

(ν)
n−lw

(ν)[l,k]
n

] (

Ê−

)l

+
[

b
(ν)
n−lq

(ν)[l,k+1]
n − b(ν+1)

n q
(ν)[l,k+1]
n−1 − b

(ν)
n−lw

(ν)[l,k+1]
n

] (

Ê−

)l+1

}

+{q(ν)[k+1,k+1]
n+1

(

Ê−

)k

− a(ν+1)
n q

(ν)[k+1,k+1]
n

(

Ê−

)k+1

−b(ν+1)
n q

(ν)[k+1,k+1]
n−1

(

Ê−

)k+2

−q(ν)[k+1,k+1]
n

[

(

Ê−

)k

− a
(ν)
n−k−1

(

Ê−

)k+1

− b
(ν)
n−k−1

(

Ê−

)k+2
]

}

=
k+1
∑

l=0

w
(ν)[l,k+1]
n

(

Ê−

)l

, (6.22)
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with the identity

w
(ν)[0,k]
n + q

(ν)[0,k+1]
n+1 − q

(ν)[0,k+1]
n = 0 ; (6.23)

and the equations

b
(ν)
n−k−1q

(ν)[k+1,k+1]
n − b(ν+1)

n q
(ν)[k+1,k+1]
n−1 = 0 (6.24)

w
(ν)[k+1,k+1]
n = −b(ν)

n−kw
(ν)[k,k]
n − b(ν+1)

n q
(ν)[k,k+1]
n−1 − b

(ν)
n−kq

(ν)[k,k+1]
n

−
(

a(ν+1)
n − a

(ν)
n−k−1

)

q
(ν)[k+1,k+1]
n (6.25a)

w
(ν)[k,k+1]
n = −a(ν)

n−kw
(ν)[k,k]
n + q

(ν)[k+1,k+1]
n+1 − q

(ν)[k+1,k+1]
n

−
(

a(ν+1)
n − a

(ν)
n−k

)

q
(ν)[k,k+1]
n (6.25b)

w
(ν)[l,k+1]
n = w

(ν)[l+1,k]
n − a

(ν)
n−lw

(ν)[l,k]
n + q

(ν)[l+1,k+1]
n+1 − q

(ν)[l+1,k+1]
n

−
(

a(ν+1)
n − a

(ν)
n−l

)

q
(ν)[l,k+1]
n − b

(ν)
n−l+1w

(ν)[l−1,k]
n

−b(ν+1)
n q

(ν)[l−1,k+1]
n−1 + b

(ν)
n−l+1q

(ν)[l−1,k+1]
n (6.25c)

for l = 0, 1, .., k − 1.

It is easily seen that

w
(ν)[0,k+1]
n = h

(ν)[1,k+1]
n+1 − h

(ν)[1,k+1]
n ; (6.26)

(i.e. after the iteration the fields w
(ν)[0,k+1]
n preserve the structure of differ-

ence).
Now we consider the operator (Î + Ĥ [k+1]) and the following equation

L̂(+)(Î + Ĥ [k+1]) − (Î + Ĥ [k+1])L̂ =

k+1
∑

l=0

r
(ν)[l,k+1]
n

(

Ê−

)l

, (6.27)

where Î is the identity operator.
Imposing the compatibility condition of equations (6.3), (6.5) and (6.27),

the fields r
(ν)[l,k+1]
n must be zeros for all values of l = 0, 1, ..., k + 1. So that

we obtain the following hierarchy of equations (k+ 4 equations for the k+ 4

unknown quantity a
(ν)
n , b

(ν)
n and q

(ν)[l,k+1]
n with l = 0, 1, ..., k + 1):

a(ν+1)
n − a(ν)

n = w(ν)[0,k+1]
n ; (6.28)
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b(ν+1)
n − b(ν)

n = w(ν)[1,k+1]
n ; (6.29)

w(ν)[l,k+1]
n = 0 for l = 2, ..., k + 1 ; (6.30)

and
q(ν)[0,k+1]
n + h(ν)[1,k]

n = 0 ; (6.31)

b
(ν)
n−k−1q

(ν)[k+1,k+1]
n − b(ν+1)

n q
(ν)[k+1,k+1]
n−1 = 0 . (6.32)

6.2 Case k = 0

In this section we will show the first equations of the hierarchy. The case
when k = 0. This case is related to the previous treatment of the chapter
3, and the compatibility equations are in some way the discrete-time Toda
equations (see [41]). A comparable procedure is given by Spiridonov and
Zhedanov considering discrete Darboux transformation for the discrete time
Toda lattice (see [44]).

We have by (6.9)
Ĥ [0] = 0. (6.33)

By (6.11) we obtain

w
(ν)[0,0]
n = 0 , (6.34)

By (6.17)

Ĥ [1] = q
(ν)[1,1]
n Ê− , (6.35)

imposing by (6.18)

q
(ν)[0,1]
n = 0.

The equations of the hierarchy (6.28),(6.29) become

a(ν+1)
n − a(ν)

n = w(ν)[0,1]
n ; (6.36)

b(ν+1)
n − b(ν)

n = w(ν)[1,1]
n , (6.37)

where by (6.25b)

w(ν)[0,1]
n = h

(ν)[1,1]
n+1 − h

(ν)[1,1]
n = q

(ν)[1,1]
n+1 − q

(ν)[1,1]
n , (6.38)

and by (6.25a)

w(ν)[1,1]
n = −

(

a(ν+1)
n − a

(ν)
n−1

)

q
(ν)[1,1]
n .
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Moreover, we have the other equation

b
(ν)
n−1q

(ν)[1,1]
n − b(ν+1)

n q
(ν)[1,1]
n−1 = 0 . (6.39)

Recapitulating,

a(ν+1)
n − a(ν)

n = q
(ν)[1,1]
n+1 − q

(ν)[1,1]
n , (6.40a)

b(ν+1)
n − b(ν)

n = −q(ν)[1,1]
n

(

a(ν+1)
n − a

(ν)
n−1

)

, (6.40b)

b
(ν)
n−1q

(ν)[1,1]
n = b(ν+1)

n q
(ν)[1,1]
n−1 . (6.40c)

are related to the equations of the discrete time Toda lattice (see [41]).
In this case,the second recursion relation (3.6) is related to I + Ĥ [1] when

q
(ν)[1,1]
n = g(ν+1)

n . (6.41)

And the equations (6.40) are the same of (3.8a), (3.8b) and (3.8c).

6.3 Appendix 6

In this appendix we show the connection between the spectral problem pre-
viously seen

pν
n+1(x) − aν

n p
ν
n(x) − bνn p

ν
n−1(x) = Lν

n p
ν
n(x) = x pν

n(x) , (6.42)

and the discrete Schrödinger spectral problem

ψn−1,m + an,mψn+1,m + bn,mψn,m = Ln,m ψn,m = x ψn,m . (6.43)

We make the following ansatz for the wave function:

ψn,m = qn,m pn,m ; (6.44)

and we substitute it in (6.43), moreover divide for qn,m

qn−1,m

qn,m
pn−1,m + an,m

qn+1,m

qn,m
pn+1,m + (bn,m − x) pn,m = 0 . (6.45)

We impose

an,m
qn+1,m

qn,m

= 1 , (6.46a)

qn−1,m

qn,m
= −b̃n,m , (6.46b)

bn,m = −ãn,m . (6.46c)
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where ãn,m, b̃n,m are two fields connected with the fields aν
n and bνn in the

case where the index m is not integer.
By (6.46a) we obtain

qn,m = q0,m

n−1
∏

l=0

1

al,m
.

(6.46b) and (6.46c) identify the fields ãn,m and b̃n,m :

ãn,m = −bn,m ;

b̃n,m = −an−1,m .
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Chapter 7

Diophantine relations from the Stationary

KdV Hierarchies.

Now we will consider isochronous systems obtained modifying the N -th ODE
of one stationary hierarchy of integrable equations. In our case we’ll investi-
gate the stationary KdV hierarchy. The complete integrability of this hierar-
chy is proved in the famous article of O.I. Bogoyavlenskij and S.P. Novikov
[11]. Further relevant results on integrable finite-dimensional dynamical sys-
tems related to soliton hierarchies have been derived in from [3] to [7] and
from [27] to [30].

The general approach to arrive at the findings reported in this chapter can
be described as follows (see for instance [9]). One starts from an integrable
ODE of (arbitrary) order N + 1, all solutions of which are meromorphic
functions of its independent (”time”) variable (the Painlevé property).
One then modifies it (via an appropriate change of dependent and indepen-
dent variables: the ”Trick” ) so that—thanks to the analyticity properties
in complex time of the solutions of the original integrable ODE—the mod-
ified ODE becomes entirely isochronous: its solutions are all periodic with
the same fixed period. One then use the technique developed in the first
chapter, i.e. identifies the equilibrium solutions of the isochronous ODE and
investigates their infinitesimally small oscillations. In this manner one arrives
at Diophantine relations: polynomials are identified which factorize in terms
of integer zeros.

Our route to arrive at these findings is not new, and it might appear con-
trived: indeed, in the context treated below, its formulation via an isochronous
ODE could be replaced by other, equivalent approaches of a more algebraico-
geometrical character. We prefer this route because its ”physical” significance
is quite transparent and its application has already yielded interesting find-
ings (for a review see [9], including its Appendix C entitled ”Diophantine
findings and conjectures”). The application of this approach to the inte-
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grable ODE treated herein is new, hence the corresponding findings are as
well new. And it is plain that analogous results are obtainable by applying
the same approach to other integrable ODEs, this being perhaps the most
interesting aspect of the findings reported below.

7.1 Results from the Stationary KdV equa-

tions: Main results

It is well-known that the following nonlinear ODE,

{ L [ζ ]}M · ζ ′ = 0 , (7.1)

of order
N = 2M + 1 , (7.2)

is integrable, and in particular that all its solutions ζ (τ) possess the (”Painlevé”)
property to be meromorphic functions of the independent variable τ , consid-
ered as a complex variable. Here and throughout the integro-differential
operator  L [ζ ] acts as follows on functions ϕ (τ):

 L [ζ ] · ϕ (τ) =
[

D2 − 4ζ − 2ζ ′D−1
]

· ϕ (τ)

= ϕ′′ (τ) − 4ζ (τ)ϕ (τ) − 2ζ ′ (τ)

∫ τ

dτ ′ ϕ (τ ′) . (7.3)

Here D ≡ d/dτ , primes appended to functions denote differentiations with
respect to the independent variable τ , and the integration is meant to be
performed omitting the contribution from the lower end of the integration
range. The notation { L [ζ ]}M · indicates of course the iterated application
M times of the operator  L [ζ ] ; accordingly, here M is a fixed positive integer,
and N is the corresponding odd positive integer, see (7.2). In the following
we will freely use N and M (sometimes even in the same formula, to write it
in neater form), on the understanding that they are always related by (7.2).

The fact that the ODE (7.1) is integrable—as well as the very fact that it
is indeed an ODE rather than an integro-differential equation, as it might at
first sight appear to be, see (7.3)—is of course well-known: this ODE is just
the stationary version of the M-th PDE of the KdV hierarchy of integrable
PDEs (with the ”spatial” independent variable denoted here as τ), see for
instance [10] [34].

For instance for M = 1, M = 2 respectively M = 3 the ODE (7.1) reads

ζ (3) = 6ζ (1)ζ , (7.4a)
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ζ (5) = 10
(

ζ (3)ζ + 2ζ (2)ζ (1) − 3ζ (1)ζ2
)

, (7.4b)

respectively

ζ (7) = 14
[

ζ (5)ζ + 3ζ (4)ζ (1) + 5ζ (3)ζ (2)

−5
(

ζ (3)ζ2 + 4ζ (2)ζ (1)ζ + ζ (1)3
)

+ 10ζ (1)ζ3
]

. (7.4c)

Here (and throughout) we use the notation

ζ (n) ≡
(

d

dτ

)n

ζ (τ) , n = 1, 2, 3, ... . (7.5a)

Via the convenient definition (entailing ζ1 (τ) = ζ (τ))

ζ (n−1) ≡
(

d

dτ

)n−1

ζ (τ) = ζn (τ) , (7.5b)

with, here and hereafter (unless otherwise indicated), n = 1, 2, 3, ..., N , the
single third-order ODE (7.4a) is seen to be equivalent to the system of 3
first-order ODEs

ζ ′1 = ζ2 , ζ ′2 = ζ3 , ζ ′3 = 6ζ2ζ1 , (7.6a)

the single fifth-order ODE (7.4b) is seen to be equivalent to the system of 5
first-order ODEs

ζ ′n = ζn+1 , n = 1, 2, 3, 4 ; ζ ′5 = 10
(

ζ4ζ1 + 2ζ3ζ2 − 3ζ2ζ
2
1

)

, (7.6b)

and the single seventh-order ODE (7.4c) is seen to be equivalent to the system
of 7 first-order ODEs

ζ ′n = ζn+1 , n = 1, 2, 3, 4, 5, 6 ;

ζ ′7 = 14 [ζ6ζ1 + 3ζ5ζ2 + 5ζ4ζ3

−5
(

ζ4ζ
2
1 + 4ζ3ζ2ζ1 + ζ3

2

)

+ 10ζ2ζ
3
1

]

. (7.6c)

Likewise, the single ODE, of order N, satisfied by the dependent variable
ζ (τ) , reading

ζ ′N = fN (ζN−1, ζN−2, ..., ζ1) (7.7)

with the polynomial function fN (ζN−1, ζN−2, ..., ζ1) defined by identifying via
(7.5b) this ODE with the N -th order ODE (7.1), is equivalent to the system
of N first-order ODEs

ζ ′n = ζn+1 , n = 1, 2, ..., N − 1 ; ζ ′N = fN (ζN−1, ζN−2, ..., ζ1) . (7.8)
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For instance this definition of fN (ζN−1, ζN−2, ..., ζ1) entails (see (7.4) or (7.6))

f3 (ζ2, ζ1) = 6ζ2ζ1 , (7.9a)

f5 (ζ4, ζ3, ζ2, ζ1) = 10
(

ζ4ζ1 + 2ζ3ζ2 − 3ζ2ζ
2
1

)

, (7.9b)

respectively

f7 (ζ6, ζ5, ζ4, ζ3, ζ2, ζ1) =

14
[

ζ6ζ1 + 3ζ5ζ2 + 5ζ4ζ3 − 5
(

ζ4ζ
2
1 + 4ζ3ζ2ζ1 + ζ3

2

)

+ 10ζ2ζ
3
1

]

.(7.9c)

The integrable dynamical system (7.8)—with the N functions ζn ≡ ζn (τ)
considered as N dependent variables—is our starting point. This choice
represents the main novelty of our treatment; the possibility of analogous
developments, using the same methodology, see below, but with different
points of departure (say, other hierarchies of integrable nonlinear PDEs), is
obvious.

The fact that this system of ODEs, (7.8), is integrable entails that it
possesses the Painlevé property: all its solutions ζn (τ) are meromorphic
functions of the complex variable τ (see for instance [34]).

It is moreover well-known—and in any case clear from its definition, see
(7.5b), (7.7) and (7.8)—that the function fN (ζN−1, ζN−2, ..., ζ1) features the
following scaling property :

fN

(

αNζN−1, α
N−1ζN−2, ..., α

2ζ1
)

= αN+2 fN (ζN−1, ζN−2, ..., ζ1) . (7.10)

It is therefore possible (see for instance [9]), via the following change of
dependent and independent variables,

zn (t) = exp [i (n+ 1) t] ζn (τ) , (7.11a)

τ = i [1 − exp (i t)] , (7.11b)

to transform the (autonomous and integrable) dynamical system (7.8) into
the following system,

żn − i (n+ 1) zn = zn+1 , n = 1, ..., N − 1 , (7.12a)

żN − i (N + 1) zN = fN (zN−1, zN−2, ..., z1) , (7.12b)

which is as well autonomous and of course integrable, and is moreover isochronous,
so that all its solutions feature the periodicity property

zn (t + 2π) = zn (t) . (7.13)
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Here and below i is the imaginary unit, i2 = −1, and a superimposed dot
denotes differentiation with respect to the independent, real ”time” variable
t, so that in particular τ̇ (t) = exp (i t) (see (7.11b), and note that this
relation also entails τ (0) = 0 hence, via (7.11a), zn (0) = ζn (0); this simplifies
the relation among the initial data of the two dynamical systems (7.8) and
(7.12), but plays no role in the following developments).

The fact that the system (7.12) is isochronous, see (7.13), is an obvious
consequence [9] of the change of variables (7.11) together with the meromor-
phic character of all the solutions ζn (τ) of the integrable dynamical system
(7.8).

Let now
zn (t) = z̄n (7.14)

denote an equilibrium configuration of the dynamical system (7.12), so that
the N (time-independent!) numbers z̄n satisfy the set of N algebraic equa-
tions

−i (n + 1) z̄n = z̄n+1 , n = 1, ..., N − 1 , (7.15a)

−i (N + 1) z̄N = fN (z̄N−1, z̄N−2, ..., z̄1) . (7.15b)

It is then clearly convenient to set

z̄n = n! (−i)n+1 y , (7.16)

which guarantees that the N − 1 equations (7.15a) are all automatically
satisfied, while, to also satisfy the remaining equation (7.15b), the number y
is required to be one of the M + 1 roots of the following polynomial equation
of order M + 1 = (N + 1) /2:

(N + 1)! y = fN ((N − 1)! y, (N − 2)! y, ..., 3! y, 2 y, y) . (7.17)

Note that, to write this equation in a neater way, we took advantage of the
scaling property (7.10). The fact that this is a polynomial equation of degree
M +1 = (N + 1) /2 in the unknown y is a clear consequence of the definition
of the function fN (zN−1, zN−2, ..., z1) , as given above: see for instance (7.9),
of course with (7.11), (7.14) and (7.16). Hence this polynomial equation has
M + 1 = (N + 1) /2 solutions, including the trivial solution y0 = 0 (which
clearly is always featured by this equation: see, for instance, again (7.9), or
below).

A simple calculation shows that for M = 1, N = 3, this equation, (7.17),
reads (see (7.9a))

4! y − f3 (2 y, y) = −12 y (y − 2) = 0 , (7.18)
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entailing for y the 2 values y0 = 0 and y1 = 2; likewise, it is easily seen that
for M = 2, N = 5 the 3 values of y are y0 = 0, y1 = 2 and y2 = 6, and for
M = 3, N = 7 the 4 values of y are y0 = 0, y1 = 2, y2 = 6 and y3 = 12. This
suggest the conjecture that, for arbitrary (positive integer) M , the M + 1
values of y satisfying (7.17) are

yk = k (k + 1) , k = 0, 1, ...,M , (7.19a)

implying the factorization

(N + 1)! y − fN ((N − 1)! y, (N − 2)! y, ..., 3! y, 2 y, y)

= KM

M
∏

k=0

[y − k (k + 1)] , (7.19b)

with KM an appropriate normalization constant (independent of y). This
conjecture is validated in the following Section. Hence the M + 1 equilibrium
configurations (7.16) are characterized by the relations

z̄(k)
n = n! (−i)n+1 k (k + 1) , n = 1, ..., N ; k = 0, 1, ...,M . (7.20)

Let us note that, in the context of the algebraico-geometrical approach
applied directly to the original dynamical system, this is a well-known result
(see for instance [34]).

The next step is to linearize the isochronous system of ODEs (7.12) near
these equilibria. Hence we set in (7.12)

zn (t) = z̄n + ε wn (t) , n = 1, ..., N , (7.21)

and in the limit of infinitesimal ε we obtain, for the N dependent variables
wn (t), the linear system of N ODEs

ẇn − i (n+ 1) wn = wn+1 , n = 1, ..., N − 1 , (7.22a)

ẇN − i (N + 1) wN =
N−1
∑

n=1

fN,n wn , (7.22b)

where clearly

fN,n =
∂ fN (zN−1, zN−2, ..., z1)

∂ zn

∣

∣

∣

∣

zN−1=z̄N−1, ..., z1=z̄1

. (7.23)

These formulas refer of course to a specific equilibrium configuration; in par-
ticular in (7.21) and (7.23) the quantities z̄n are given by (7.16) or (7.20). To
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emphasize this dependence we also use below, whenever appropriate, in place
of the notation fN,n the alternative notations fN,n (y) corresponding to (7.23)

with (7.16), or f
(k)
N,n corresponding to (7.23) with (7.20) (but, for notational

simplicity, we do not explicitly highlight the corresponding dependence on
y or k of the functions wn (t)). We also set, for notational convenience (see
below),

fN,n (y) = (i)n gN,n (y) , f
(k)
N,n = (i)n g

(k)
N,n . (7.24)

So, for instance, for M = 1, N = 3, from (7.9a) one easily gets

g3,1 (y) = 12 y , g3,2 (y) = 6 y , (7.25a)

and
g

(1)
3,1 = 24 , g

(1)
3,2 = 12 . (7.25b)

The N basic solutions of the linear system of ODEs (7.22) read of course

w(m) (t) = w̄(m) exp (−i xm t) , m = 1, ..., N , (7.26)

with w(m) (t) indicating the N -vector of components w
(m)
n (t) while the N

numbers xm, respectively the N constant N -vectors w̄(m), are the N eigen-
values, respectively the N corresponding eigenvectors, of the N ×N matrix
A defined componentwise as follows:

An,n = − (n + 1) , An,n+1 = i , n = 1, ..., N − 1 ; (7.27a)

AN,n = (i)n+1 gN,n , n = 1, ..., N − 1 ; AN,N = − (N + 1) , (7.27b)

with all other matrix elements vanishing. Note that, for notational simplic-
ity, we omit here (and, likewise, sometimes below) to indicate explicitly the
dependence on the specific equilibrium configuration under consideration,
namely on y (see (7.16)) or k (see (7.20)). Equivalently, the N numbers xn

are the N roots of the following N -th degree monic polynomial in x:

PN (x) = det
[

x I − Ã
]

, (7.28)

where of course I is the N × N identity matrix and we replaced the matrix
A with the matrix Ã defined componentwise as follows:

Ãn,n = − (n+ 1) , Ãn,n+1 = −1 , n = 1, ..., N − 1 ; (7.29a)

ÃN,n = (−1)n−M gN,n , n = 1, ..., N − 1 ; ÃN,N = − (N + 1) . (7.29b)

This matrix Ã is obtained from the matrix A by multiplying its nm-th matrix
element by im−n, an operation that does not affect the determinant in the
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right-hand side of (7.28) as it amounts to multiplying the matrix A from the
right by J =diag(in) and from the left by J−1.

Note that, by expanding the determinant in the right-hand side of (7.28)
along its last column one obtains the following expressions of the polynomial
PN (x) = PN (x; y) = P

(k)
N (x):

PN (x; y) ≡ P2M+1 (x; y) =

N+1
∏

ℓ=2

(x + ℓ) + (−1)M
N−1
∑

j=1

gN,j (y)

j
∏

ℓ=2

(x + ℓ) ,

(7.30)

P
(k)
N (x) ≡ P

(k)
2M+1 (x) =

N+1
∏

ℓ=2

(x + ℓ) + (−1)M
N−1
∑

j=1

g
(k)
N,j

j
∏

ℓ=2

(x + ℓ) . (7.31)

We trust the notation used here to be self-explanatory; clearly these two
formulas are equivalent via (7.19a). And note that, here and hereafter, we
use the usual convention according to which a sum vanishes if its upper limit
is smaller than its lower limit,

n
∑

ℓ=m

ϕℓ = 0 , if n < m , (7.32)

while a product takes unit value if its lower limit exceeds by one unit its
upper limit,

n
∏

ℓ=n+1

ϕℓ = 1 , (7.33a)

and gets redefined as follows if its lower limit exceeds by more than one unit
its upper limit,

n
∏

ℓ=m

ϕℓ =
m−1
∏

ℓ=n+1

1

ϕℓ

if m > n+ 1 . (7.33b)

In these formulas and throughout n and m are of course integers. Note that
the convention (7.33a) entails that the coefficient of gN,1 (y) in the right-

hand side of (7.30), and likewise of g
(k)
N,1 in the right-hand side of (7.31), is

just unity. The convention (7.33b) will play a role below.

Let us turn to the derivation of the expression of the coefficients g
(k)
N,n.

To this end we set, in (7.31), x = −p − 1 with p = 1, ..., N − 1, getting
thereby (recalling the convention (7.33)) the following recursive system for
these coefficients:

g
(k)
N,p =

(−1)p−1

(p− 1)!

{

p−1
∑

j=1

[

(−1)j (p− 1)!

(p− j)!
g

(k)
N,j

]

+ (−1)M P
(k)
N (−p− 1)

}

,

p = 1, 2, ..., N − 1 . (7.34)
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It is then easy to verify that the solution of this recursion reads as follows:

g
(k)
N,n = (−1)M

n−1
∑

m=0

[

(−1)m P
(k)
N (−2 −m)

m! (n− 1 −m)!

]

, n = 1, ..., N − 1 . (7.35a)

In the following section we obtain a more explicit representation of the
polynomials PN (x; y) respectively P

(k)
N (x) , reading

PN (x; y) = (x + 2)
M−1
∏

ℓ=0

[

(x+ 3 + 2ℓ) [(x + 4 + 2ℓ) (x + 2 + 2ℓ) − 4y]

x+ 2 + 2ℓ

]

−y
M−1
∑

m=0

{

2m+1 (x + 6 + 4m)

(m+ 1)

m−1
∏

ℓ=0

[

(3 + 2ℓ) [(ℓ+ 1) (ℓ+ 2) − y]

ℓ+ 1

]

·

·
M−m−2
∏

ℓ=0

[

(x + 5 + 2m+ 2ℓ) [(x + 6 + 2m+ 2ℓ) (x + 4 + 2m+ 2ℓ) − 4y]

(x + 4 + 2m + 2ℓ)

]

}

,

(7.36)

respectively (via (7.19a)),

P
(k)
N (x) = (x + 2)

M−1
∏

ℓ=0

[

(x+ 3 + 2ℓ) (x + 4 + 2ℓ+ 2k) (x + 2 + 2ℓ− 2k)

x + 2 + 2ℓ

]

+

k−1
∑

m=0

{

(−2)m+1 (x + 6 + 4m)
(2m + 1)!! (k + 2)m (1 − k)m

(m+ 1)!
·

·
M−m−2
∏

ℓ=0

[

(x + 5 + 2m+ 2ℓ) (x + 6 + 2m+ 2ℓ+ 2k) (x + 4 + 2m+ 2ℓ− 2k)

(x+ 4 + 2m + 2ℓ)

]

}

,

k = 0, 1, ...,M . (7.37)

Here and hereafter the symbols (m + 1)! ≡ ∏m
ℓ=0 (ℓ+ 1) and (2m+ 1)!! ≡

∏m
ℓ=0 (2ℓ+ 1) denote the standard factorial and double factorial, and the

Pochhammer symbol has the standard definition (see for instance page 56 of
[23])

(z)0 = 1 , (z)m = z (z + 1) · · · (z +m− 1) =
Γ (z +m)

Γ (z)
. (7.38)

And, via (7.33b), these formulas can be rewritten as follows:

PN (x; y) =

M
∑

m=0

2m (x + 4m+ 2)

m!

m−1
∏

ℓ=0

{(2ℓ+ 1) [ℓ (ℓ+ 1) − y]}

M
∏

ℓ=m+1

(x + 2ℓ+ 1) [(x+ 2ℓ+ 2) (x + 2ℓ) − 4y]

(x+ 2ℓ)
, (7.39)
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respectively

P
(k)
N (x) =

k
∑

m=0

{

2m (x + 4m+ 2)
(2m− 1)!! (−k)m (k + 1)m

m!

M
∏

ℓ=m+1

(x + 2ℓ+ 1) (x + 2ℓ− 2k) (x + 2ℓ+ 2k + 2)

(x+ 2ℓ)

}

.(7.40)

The fact that PN (x; y) is a polynomial in y of degree M is plain from its

definition (7.36); the fact that P
(k)
N (x) is a monic polynomial of degree N in

x is not immediately apparent from the formula (7.37) but is implied by the
following developments.

The above treatment entails the Diophantine observation that the N
zeros x

(k)
n of the polynomial P

(k)
N (x) , see (7.37), must all be integers, and

all different among themselves, for all the M + 1 = (N + 1) /2 values of the

integer k = 0, 1, ...,M . Indeed the fact that the N zeros x
(k)
n of the monic

polynomial P
(k)
N (x) are all integers is clearly implied by the observation that

all the solutions (7.26) must satisfy the isochrony property (7.13). And let
us note that this is trivially true for k = 0 entailing, see (7.37) and (7.32),

P
(0)
N (x) =

N+1
∏

m=2

(x +m) ≡ (x + 2)N , (7.41)

hence for k = 0 the N zeros are given by the simple rule x
(0)
n = − (n + 1)

with n = 1, 2, ..., N .
The main result of this chapter consists in the identification—for all values

of k in the range k = 0, 1, ...,M—of the (integer !) values of these N =

2M+1 zeros x
(k)
n , as displayed by the following factorization of the polynomial

P
(k)
N (x):

P
(k)
N (x) ≡ P

(k)
2M+1 (x) =

[

k−1
∏

ℓ=0

(x− 1 − 2ℓ)

][

M
∏

ℓ=k+1

(x + 1 + 2ℓ)

]

·

·
[

M−k
∏

ℓ=1

(x+ 2ℓ)

][

M+1+k
∏

ℓ=M+1

(x+ 2ℓ)

]

, k = 0, 1, ...,M , (7.42a)
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or, equivalently,

P
(k)
N (x) ≡ P

(k)
2M+1 (x) = (x + 2 + 2M + 2k) ·

·
[

k
∏

j=1

[(x + 2M + 2j) (x− 2j + 1)]

]

·

·
[

M−k
∏

j=1

[(x + 2j) (x + 1 + 2k + 2j)]

]

, k = 0, 1, ...,M . (7.42b)

Note that these formulas also hold for k = 0 and for k = M via the convention
(7.33a). The first version, (7.42a), shows clearly that M of the N = 2M + 1
zeros xn are odd integer numbers (k of which are positive integers and M−k
are negative integers), and the remaining M+1 are even integers (all of them
negative).

This formula is proven in the following section.

7.2 Proofs, and some interesting formulas

In this section (and Appendix B) we derive the main result reported in
the previous section. We also report and prove some additional results.

Our first step is to obtain the modified version of the ODE (7.1) that
only features isochronous solutions. To this end we set, consistently with
our previous treatment,

z (t) = exp (2it) ζ (τ) , τ = i [1 − exp (it)] , τ̇ (t) = exp (it) , (7.43a)

ż (t) = 2iz (t) + exp (3it) ζ ′ (τ) , ζ ′ (τ) = [ż (t) − 2iz (t)] exp (−3it) ,
(7.43b)

so that

d

dτ
= exp (−it) d

dt
,

d2

dτ 2
= exp (−2it)

(

d2

dt2
− i

d

dt

)

. (7.44)

The integro-differential operator (7.3) gets thereby reformulated to act as
follows on a generic function ϕ (t) of the independent variable t:

£ [z] · ϕ (t) = exp (−2it) ·

·
{

ϕ̈ (t) − iϕ̇ (t) − 4z (t)ϕ (t) − 2 [ż (t) − 2iz (t)] exp (−it)
∫ t

dt′ exp (it′) ϕ (t′)

}

,(7.45)

where of course superimposed dots denote differentiations with respect to
the independent variable t, and in the integration no contribution must be
inserted at the lower end of the integration range.

99



Next, we focus attention on the immediate neighborhood of an equilib-
rium configuration, via the assignment (again, consistent with our previous
treatment: see (7.16) and recall that z̄ = z̄1, see (7.43a) and (7.5)):

z (t) = −y + ε exp (−ixt) , ż (t) = −i x ε exp (−ixt) , (7.46)

entailing (see (7.43))

ζ (τ) = exp (2it) [−y + ε exp (−ixt)] , (7.47a)

ζ ′ (τ) = i [2y − ε (x+ 2)] exp (−3it) , (7.47b)

as well as
£ [−y + ε exp (−ixt)] = £0 + ε £1 , (7.48a)

with the following definitions:

£0 = exp (−2it)

{

d2

dt2
− i

d

dt
+ 4y

[

1 − i exp (−it)
∫ t

dt′ exp (it′)

]}

,

(7.48b)

£1 = −2 exp [− (x+ 2) it]

[

2 − i (x+ 2) exp (−it)
∫ t

dt′ exp (it′)

]

.

(7.48c)
Hence

{£ [−y + ε exp (−ixt)]}M = £M
0 + ε

M−1
∑

ℓ=0

£M−1−ℓ
0 £1 £ℓ

0 +O
(

ε2
)

, (7.49)

so that our basic ODE (7.1) now reads

{ L [ζ ]}M · ζ ′ = i {£ [−y + ε exp (−ixt)]}M · {2y exp (−3it) − ε (x + 2) exp [−i (x + 3) t]}
= 2iy£M

0 exp (−3it)

+ε

{

(x + 2) £M
0 exp [−i (x+ 3) t] + 2y

M−1
∑

ℓ=0

£M−1−ℓ
0 £1 £ℓ

0 exp (−3it)

}

+O
(

ε2
)

= 0 . (7.50)

We now note that the definition (7.48b) of £0 implies

£0 · exp (−iµt) = exp [−i (µ+ 2) t]
µ [4y − (µ+ 1) (µ− 1)]

µ− 1
, (7.51a)

where (here and below) µ is an arbitrary constant, hence (with m an arbitrary
nonnegative integer)

£m
0 · exp (−iµt) = exp [−i (µ+ 2m) t] ·

·
m−1
∏

ℓ=0

{

(µ+ 2ℓ) [4yk − (µ+ 2ℓ+ 1) (µ+ 2ℓ− 1)]

µ+ 2ℓ− 1

}

. (7.51b)
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Likewise the definition (7.48c) of £1 implies

£1 · exp (−iµt) = −2 exp [−i (µ+ x + 2) t]
2µ+ x

µ− 1
. (7.52)

Hence, to order ε0 = 1, our basic ODE, (7.50), reading

£M
0 · exp (−3it) = 0 , (7.53a)

entails, via (7.51b),
M
∏

m=0

[yk −m (m+ 1)] = 0 . (7.53b)

The expression (7.19a) of yk is thereby proven.
Next, to order ε, (7.50) yields the equation:

(x + 2) £M
0 ·exp [−i (x+ 3) t]+2y

M−1
∑

ℓ=0

£M−1−ℓ
0 £1 £ℓ

0 exp (−3it) = 0 , (7.54)

entailing (via (7.51), (7.52) and (7.19a))

PN (x; y) = 0 , (7.55a)

P
(k)
N (x) = 0 , k = 0, 1, ...,M , (7.55b)

with PN (x; y) respectively P
(k)
N (x) defined by (7.36) respectively (7.37). The

derivation of these expressions is thereby achieved.
Next, let us prove that the polynomial P

(k)
N (x) admits the factorization

(7.42). We take as starting point its formulation (7.40). It is then easy to
rewrite it as follows, by noting that in fact the upper limit k of the sum over
the index m may be replaced by ∞ since all terms with m > k vanish:

P
(k)
N (x) = 4M (x + 2)

(

x
2

+ 3
2

)

M

(

x
2

+ 1 − k
)

M

(

x
2

+ 2 + k
)

M
(

x
2

+ 1
)

M

·

·
∞
∑

m=0

(

1
2

)

m
(−k)m (k + 1)m

(

x
2

+ 1
)

m

(

x
4

+ 3
2

)

m

m!
(

x
4

+ 1
2

)

m

(

x
2

+ 3
2

)

m

(

x
2

+ 1 − k
)

m

(

x
2

+ 2 + k
)

m

. (7.56)

Here and below we use of course the Pochhammer notation, see (7.38).

Hence the polynomial P
(k)
N (x) can be rewritten as follows in terms of the

5F4 generalized hypergeometric series of unit argument (for the definition of
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the generalized hypergeometric series see page 182 of [23]):

P
(k)
N (x) = 4M (x + 2)

(

x
2

+ 3
2

)

M

(

x
2

+ 1 − k
)

M

(

x
2

+ 2 + k
)

M
(

x
2

+ 1
)

M

·

· 5F4

[

x
2

+ 1 , x
4

+ 3
2
, 1

2
, k + 1 , −k ; 1

x
4

+ 1
2
, x

2
+ 3

2
, x

2
+ 1 − k , x

2
+ 2 + k ,

]

. (7.57)

And it is then immediately seen, via the formula 4.5(6) on page 191 of [23],

5F4

[

a , 1 + a
2
, c , d , e ; 1

a
2
, 1 + a− c , 1 + a− d , 1 + a− e ,

]

=
Γ (1 + a− c) Γ (1 + a− d) Γ (1 + a− e) Γ (1 + a− c− d− e)

Γ (1 + a) Γ (1 + a− d− e) Γ (1 + a− c− e) Γ (1 + a− c− d)
,(7.58)

and a few standard manipulations, that the factorization (7.42) is proven.
Let us also note that the formulas (7.36) respectively (7.37) can be con-

veniently re-written as follows:

PN (x; y) = P2M+1 (x; y)

= (x + 2)
M−1
∏

ℓ=0

u (x; y; ℓ) +
M−1
∑

m=0

U (x; y;m)
M−m−2
∏

ℓ=0

u (x; y;m+ ℓ+ 1) ,(7.59a)

with

u (x; y;n) =
(x + 3 + 2n) [(x+ 4 + 2n) (x+ 2 + 2n) − 4y]

x + 2 + 2n
, (7.59b)

U (x; y;m) = (x+ 6 + 4m) V (y;m) , (7.59c)

V (y;m) = − 2m+1 y

(m+ 1)

m−1
∏

ℓ=0

[

(3 + 2ℓ) [(ℓ+ 1) (ℓ + 2) − y]

ℓ+ 1

]

, (7.59d)

respectively

P
(k)
N (x) = P

(k)
2M+1 (x)

= (x + 2)

M−1
∏

ℓ=0

u(k) (x; ℓ) +

k−1
∑

m=0

U (k) (x;m)

M−m−2
∏

ℓ=0

u(k) (x;m + ℓ+ 1) ,

k = 0, 1, ...,M , (7.60a)

with

u(k) (x;n) =
(x + 3 + 2n) (x + 4 + 2n+ 2k) (x + 2 + 2n− 2k)

x + 2 + 2n
, (7.60b)
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U (k) (x;m) = (x+ 6 + 4m) V (k)
m , (7.60c)

V (k)
m = k (k + 1) (−2)m+1 (2m+ 1)!! (k + 2)m (1 − k)m

(m + 1)!
for m < k ,

V (k)
m = 0 for m ≥ k . (7.60d)

It is then easily seen that the formula (7.59) entails the recursion

PN+2 (x; y) = u (x; y;M) PN (x; y) + U (x; y;M) , (7.61a)

and likewise the formula (7.60) entails the recursion

P
(k)
2M+3 (x) = u(k) (x;M) P

(k)
2M+1 (x) + U (k) (x;M) , (7.61b)

while there clearly holds the relation

U (k) (x;m) = 0 for m ≥ k . (7.62)

Note that this property, (7.62), entails that, for the standard set of values
k = 0, 1, ...,M, the relation (7.61b) becomes the two-term recursion relation

P
(k)
2M+3 (x) = u(k) (x;M) P

(k)
2M+1 (x) ; (7.63)

and in fact, although the quantity U (k) (x;m) does not vanish for k > M,
remarkably this two-term recursion relation also holds (via the convention
(7.33)) for k = M + 1,M + 2, ... .

7.3 Appendix 7

In this appendix—throughout which we assume M and N to be positive
integers, see (7.2)—we detail the transition from the formulations (7.36) and

(7.37) of the polynomials PN (x; y) and P
(k)
N (x) to their versions (7.39) and

(7.40). Hence our starting point is the formula (7.36),

PN (x; y) = (x + 2)

M−1
∏

ℓ=0

(x+ 3 + 2ℓ) [(x + 4 + 2ℓ) (x + 2 + 2ℓ) − 4y]

(x + 2 + 2ℓ)

−y
M−1
∑

m=0

2m+1 (x + 6 + 4m)

m + 1

m−1
∏

ℓ=0

(2ℓ+ 3) [(ℓ + 1) (ℓ+ 2) − y]

(ℓ+ 1)

M−m−2
∏

ℓ=0

(x + 2ℓ+ 2m + 5) [(x + 2ℓ+ 2m + 6) (x + 2ℓ+ 2m + 4) − 4y]

(x+ 2ℓ+ 2m + 4)
.

(7.64a)
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We then replace, in the first two products in the right-hand side of this
formula, the index ℓ with the index j by setting ℓ = j − 1, and in the third
product by setting ℓ = j −m− 2, getting thereby

PN (x; y) = (x + 2)

M
∏

j=1

(x + 2j + 1) [(x + 2j + 2) (x+ 2j) − 4y]

(x+ 2j)

−y
M−1
∑

m=0

2m+1 (x + 6 + 4m)

m + 1

m
∏

j=1

(2j + 1) [j (j + 1) − y]

j

M
∏

j=m+2

(x+ 2j + 1) [(x+ 2j + 2) (x + 2j) − 4y]

(x+ 2j)
. (7.64b)

Next, we replace the index m by setting m = r − 1, getting thereby

PN (x; y) = (x+ 2)
M
∏

j=1

(x + 2j + 1) [(x + 2j + 2) (x+ 2j) − 4y]

(x+ 2j)

−y
M
∑

r=1

2r (x+ 4r + 2)

r!

r−1
∏

j=1

{(2j + 1) [j (j + 1) − y]}

M
∏

j=r+1

(x + 2j + 1) [(x + 2j + 2) (x+ 2j) − 4y]

(x + 2j)
, (7.64c)

hence, via (7.33b) entailing

−1
∏

j=1

{(2j + 1) [j (j + 1) − y]} =
0
∏

j=0

{(2j + 1) [j (j + 1) − y]}−1 = −1/y ,

(7.65)
we obtain precisely the expression (7.39)—where we also replaced, for nota-
tional convenience, the index r with m and the index j with ℓ.

Via (7.19a) (with k a nonnegative integer) and via the two identities

ℓ (ℓ+ 1) − k (k + 1) = − (k − ℓ) (ℓ+ k + 1) , (7.66a)

(x+ 2ℓ+ 2) (x + 2ℓ) − 4k (k + 1) = (2ℓ+ 2k + x+ 2) (2ℓ− 2k + x) ,
(7.66b)

this formula becomes (7.40), where we replaced the upper limit of the sum
with k rather than M because clearly all terms with m > k vanish due to
the vanishing of the first product appearing in the right-hand side inside the
sum over the index m.
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Concluding remarks

During these last three years I have studied several isochronous dynam-
ical systems obtained by modifying integrable dynamical systems via the
”Trick”. We have seen that the isochrony of the system provide Diophan-
tine relations for the linearized system in the neighborhood of the equilib-
rium positions. Indeed, we obtain N × N matrices (where N can be un-
derstood as the number of particles of the system) with integer eigenval-
ues. In the proofs of these conjectures we have noticed a connection with
known classes of orthogonal polynomials. In fact, the determinantal equa-
tion satisfied from these matrices is, by construction, a three term recurrence

relation p
(ν)
n+1(x) =

(

x+ a
(ν)
n

)

p
(ν)
n (x)+b

(ν)
n p

(ν)
n−1(x) . Moreover, these polyno-

mials satisfy a second recursion relation p
(ν)
n (x) = p

(ν−1)
n (x)+g

(ν)
n p

(ν−1)
n−1 (x) ,

that involve a shift of a new parameter ν.
In addition, have seen a connection between the equilibrium positions of

the isochronous system and the recurrence coefficients a
(ν)
n , b

(ν)
n that define

the family of orthogonal polynomials. One of the remarkable properties im-
plied by this connection is that all orthogonal polynomials obtained from all
integrable systems of the Toda-type studied in the literature are included in
Dual Hahn family. A natural extension of this property could be the study
of systems whose equilibrium positions provide orthogonal polynomials in-
cluded in other classes of ”named” orthogonal polynomials . In collaboration
with O. Ragnisco and F. Calogero I have obtained interesting results in the
study of the isochronous version of the Relativistic Toda lattice (see [22]).
Indeed, the polynomials obtained are completely factorized, for all values of
their parameters.

The main results of this thesis are about the factorization formulae for the
family of orthogonal polynomials obtained. As we have seen, all the zeros
of these polynomials are integers. These factorizations, straight deriving by
the isochrony property of the system, have been generalized and applied to
the complete class of orthogonal polynomials included in the Askey-scheme,
obtaining in some case, new, factorizations which zeros are all integers. A
number of factorizations are new and not present in the literature. We hope
that such formulas will be inserted in future handbooks.

We can see in the work of Y. Chen and M.H. Ismail [21], that such proce-
dure can be extended to the q-polynomials, for example to the Askey-Wilson
polynomials. However in this case the zeros obtained are not integers. In
chapter 6 we have connected our machinery to the theory of the discrete in-
tegrability, and construct a whole hierarchy of integrable discrete equations.
Hence, by this iterative method we are able to generate new further recur-
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rence relations for these orthogonal polynomials. In Appendix 6 we have
presented the connection between the compatibility of the two recurrence
relations and the discrete time equations of motion for the Toda lattice. It
is very easy to see that the second equation of the hierarchy constructed, in
the case a

(ν)
n = 0, is related to the discrete time Volterra lattice.

Moreover, the compatibility between the two recurrence relation can be
rewritten removing one of the fields in the recurrence relation. We have
rewritten it using the quantity A

(ν)
n and ω(ν). This property for the compat-

ibility is already known from the theory of the discrete-time Toda lattice.
We can easily note that also for the second equation of the hierarchy we can
remove the dependence on one of the fields.

One future interesting development could be to prove the validity of this
property for all equations of the hierarchy.

Another important field of research arises from chapter 7. There we have
studied the isochronous version of the stationary KdV’s hierarchy obtaining
new Diophantine relations and further already known results. An interesting
perspective is the investigation of other hierarchies with the same machinery,
for example the Boussinesq’s hierarchy,the AKNS’s hierarchy etc. The study
of the stationary Burger’s hierarchy is now in progress with the collaboration
of F. Calogero and M.Bruschi.
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