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Abstract

Simulation-based design optimization methods integrate computer simulations, design modification tools, and op-
timization algorithms. In hydrodynamic applications, often objective functions are computationally expensive and
noisy, their derivatives are not directly provided, and the existence of local minima cannot be excluded a priori,
which motivates the use of deterministic derivative-free global optimization algorithms. DPSO (Deterministic Par-
ticle Swarm Optimization), DIRECT (DIviding RECTangles), two well-known derivative-free global optimization
algorithms, and FSA (Fish Shoal Algorithm), a novel metaheuristic introduced herein, are described in the present
work. Moreover, the enhancement of DIRECT and DPSO is presented based on global/local hybridization with
derivative-free line search methods. DPSO, DIRECT, FSA, and three hybrid algorithms (LS-DF PSO, DIRMIN,
and DIRMIN-2) are introduced, and assessed on a benchmark of seventy-three analytical functions, providing
an effective and efficient guideline for their use in the simulation-based shape design optimization context. The
suggested guidelines are applied on ten hull-form optimization problems, using potential flow and RANS solvers,
supported by metamodels. The optimizations pertain the high-speed Delft catamaran and an USS Arleigh Burke-
class destroyer ship, namely the DTMB 5415 model, an early and open-to-public version of the DDG-51. Three
shape modification techniques, specifically the free-form deformation and the orthogonal basis functions expansion
over 2D and 3D subdomains, are introduced, along with the design-space dimensionality reduction by generalized
Karhunen-Loève expansion. Hybrid algorithms show a faster convergence towards the global minimum than the
original global methods and therefore represent a viable option for shape design optimization. Moreover, FSA
shows a better effectiveness compared to the other global algorithm (DPSO and DIRECT), allowing for good
expectations for its further improvement with a local hybridization, for the future work.
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Nomenclature

n ∈ N+ algorithm iteration counter
N ∈ N+ number of (design) variable
Nmax ∈ N+ maximum number of function evaluations
Np ∈ N+ number of particles (for PSO-based algorithm)
Ns ∈ N+ number of individuals (for FSA algorithm)
x ∈ RN design variable vector
l ∈ RN x lower bound
u ∈ RN x upper bound
f (x) ∈ R objective function
h(x) ∈ R equality constraint
g(x) ∈ R inequality constraint
δδδ s ∈ R shape design modification vector
∇ ∈ R displacement
B ∈ R beam overall
Fr ∈ R Froude number
Hw ∈ R wave height
Kxx ∈ R roll radius of gyration
Kyy ∈ R pitch radius of gyration
Kzz ∈ R yaw radius of gyration
LCG ∈ R longitudinal center of gravity
LBP ∈ R length between perpendicular
LOA ∈ R length overall
Re ∈ R Reynolds number
T ∈ R draft
Tw ∈ R wave period
VCG ∈ R vertical center of gravity
A-DPSO asynchronous deterministic particle swarm optimization
CFD computational fluid dynamics
DM Dawson (double model) linearization
DC Delft catamaran
DIRECT dividing rectangle
DOF degrees of freedom
DPSO deterministic particle swarm optimization
DTMB David-Taylor model basin
EFD experimental fluid dynamics
EW elastic wall
FEM finite element method
FFD free-form deformation
FSA fish shoal algorithm
HSS Hammersley sequence sampling
IW inelastic wall
KLE Karhunen-Loève expansion
LS-DF PSO line-search derivative-free particle swarm optimization
NK Neumann-Kelvin linearization
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A. Serani NOMENCLATURE

OBFE orthogonal basis functions expansion
PF potential flow
PSO particle swarm optimization
PSS positively spanning set
RANS Reynolds-averaged Navier-Stokes
S-DPSO synchronous deterministic particle swarm optimization
SBDO simulation-based design optimization
SEW semi-elastic wall
URANS unsteady Reynolds-averaged Navier-Stokes
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Introduction

“No, no! The adventures first, explanations take
such a dreadful time.”

— Lewis Carroll, Through the Looking-Glass

In the last decades, engineering design practices have experienced a paradigm shift, moving from the traditional
build-and-test approach to more efficient, effective and versatile simulation-based design (SBD) methodologies.
The integration of optimization algorithms with computer simulations has led to simulation-based design optimiza-
tion (SBDO) procedures, with the aim of assisting and, if possible, guiding the designer in the the decision making
process of complex engineering applications. The complexity of the systems along with the need of accurate per-
formance analyses have led to the development and application of high-fidelity simulation codes, based on prime
principles. Systems of partial differential equations are generally solved by computationally expensive black-box
tools, such as those used in computational fluid dynamics (CFD) or structural finite element methods (FEM). The
ever-increasing demand for accuracy and the complexity of structures and systems results to be more and more
time consuming, in the simulation process. In several engineering fields, the evaluation of a single design can take
as long as many days or even weeks. For this reason, new methods that can speed up the simulation time and the
optimization process, saving time and money, are sought-after. SBD optimization procedures have been developed
in order to integrate, efficiently and effectively, numerical simulations, design modification tools, and optimization
algorithms (see Fig. 1). For this reason, SBDO is actually an essential part of the design of complex engineer-
ing systems since the conceptual and early design stages. Despite dramatic advances in computer hardware and
software performance, the goal of fast, flexible and accurate simulation and optimization is yet to be achieved.
Creating a system that has acceptable performance and provides useful results is a significant challenge.

There are plenty of challenging real applications in sciences where optimization is naturally involved, and so-
phisticated minimization techniques are definitely necessary in order to allocate resources. SBD optimization for
shape design has been widely applied to several engineering fields, such as aerospace [1, 2, 3, 4, 5], automotive
[6, 7, 8, 9], structural [10, 11] and naval [12, 13, 14, 15, 16] engineering, where the shape design is of primary
importance for the vehicle performance (e.g., aerodynamic, aeroelasticity, flight mechanics, hydrodynamics, sea-
keeping, structures, heat transfer). SBDO methodologies generally require large computational simulations to
assess the performance of a design and evaluate the relative merit of design alternatives. In this context, an auto-
mated SBDO needs to integrate (i) simulation tools (for structures, fluids, etc.) and (ii) minimization algorithms
with (iii) geometry modification and automatic meshing algorithms. To obtain an automated process this three
fundamental elements have to be linked together in a robust, efficient, and effective way (see Fig. 1).

Despite their importance, there are no satisfactory rules or guidelines for such issues. Obviously, the actual
efficiency of an algorithm depends on many factors such as the inner working of an algorithm, the information
needed (such as objective functions and their derivatives), and implementation details. The efficiency of a solver
is even more complicated, depending on the actual numerical methods used and the complexity of the problem of
interest. As for choosing the right algorithms for the right problems, there are many empirical observations, but no
agreed guidelines. In fact, there is no universally efficient algorithms for all types of problems [17]. Therefore, the
choice depends on several factors and is sometimes subject to the personal preferences of researchers and decision
makers.

Within SBDO, a nonconvex nonlinear programming problem is solved, where the objective function represents
the performance of the engineering system under analysis and is usually of the black-box type, with values provided
by computationally-expensive computer simulations. Up to 15-20 years ago, to a large extent, the main interest
of theoreticians in optimization was for methods based on the use of derivatives. This was basically due to the
following three strong reasons:

- in several cases derivatives are available when solving computational problems. In particular, they are always
‘analytically’ available if the nonlinear functions involved are known in closed form [18]), and they can be
exactly computed (not simply approximated) at reasonable cost in small-medium scale problems [19, 20];
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A. Serani INTRODUCTION

Figure 1: Simulation-based design optimization framework

- strong theoretical results have been developed, both in terms of convergence and computational performance,
for optimization methods where derivatives (say of first/second order) are available;

- the use of machine resources at a cheaper cost has allowed the solution of problems where derivatives can
be suitably approximated by finite differences, using either coarse or fine techniques.

On the other hand, engineering design offers a huge number of real-world problems where scientists are contin-
uously asked to apply robust methods, using the most recent theoretical advances. In particular, design problems
often include functions which are non-differentiable or where the use of derivatives is possibly discouraged. The
following issues motivate the latter statement and give more precise guidelines for analyzing and improving opti-
mization procedures not involving derivatives.

• For ‘large scale’ problems, computing derivatives by finite differences might be prohibitively costly, and also
Automatic Differentiation [18] might be of difficult application. Furthermore, the computation of derivatives
by finite differences proved to be very harmful when the scale of the problem increases. Potential design
improvements significantly depend on dimension and extension of the design space: high dimension and
variability spaces are more difficult and expensive to explore but, at the same time, potentially allow for
bigger improvements.

• Most of the codes for complex design problems are ‘parameter dependent’, and the parameters need to be
properly assessed. Their correct choice in practice implies that the overall performance of the code needs to
be optimized with respect to those parameters. Thus, an implicit optimization problem with respect to these
parameters requires a solution, and surely the derivatives of the functions involved are unavailable, being the
output of a non-differentiable code.

• Most of the design problems need solution procedures where expensive simulations are performed. Typ-
ically, simulations are affected by ‘noise’, systematic errors arise and stochastic parameters are used, so
that derivatives are essentially unavailable or their use may lead to completely destroy the robustness of
procedures [21].

The aforementioned issues contribute to motivate the use of efficient and effective derivative-free global methods,
in order to solve a wide range of challenging problems. Derivative-free global optimization algorithms have been
developed and effectively applied to SBD optimization, providing global approximate solutions to the design
problem [22, 23, 24]. Moreover, shape optimization research has focused on shape and topology parameterizations,
as a critical issue to achieve the desired level of design variability, and some recent research focused on research
space variability and dimensionality reduction for efficient analysis and optimization procedures [5, 25].
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When global techniques are used with CPU-time expensive solvers, the optimization process is computationally
expensive and its effectiveness and efficiency remain an algorithmic and technological challenge. Although com-
plex SBD applications are often solved by metamodels [26, 27], their development and assessment require bench-
mark solutions, with simulations directly connected to the optimization algorithm. These solutions are achieved
only if affordable and effective optimization algorithms are available. Several global optimization algorithm, such
as simulated annealing (SA) [28, 29], particle swarm optimization (PSO) [30], ant colony optimization (ACO)
[31], and genetic algorithms (GA) [32] have been deeply investigated in the last years [33, 34], and several new
algorithms appeared recently, such as artificial fish-swarm algorithm (AFSA) [35], mesh adaptive direct search
(MADS) [36, 37], firefly algorithm (FA) [38], cuckoo search (CS) [39], and bat algorithm (BA) [40]. Derivative-
free global optimization approaches are often preferred to local approaches when objectives are non-convex and/or
noisy, and when multiple local optima cannot be excluded, as often encountered in SBDO. Although global op-
timization approaches are a good compromise between exploration and exploitation of the research space, they
could still get trapped in local minima and the convergence to a global minimum cannot be proven. If the re-
search region to explore is known a priori, local optimization approaches can give an accurate approximation of
the local minimum. Nevertheless, their convergence may be computationally expensive, and the information is
usually not available a priori. For these reasons, the hybridization of global optimization algorithms with local
search methods is an interesting research field, especially if CPU-time expensive black-box functions are involved,
where the qualities of both methods can be efficiently and robustly coupled. It is worth noting that a large variety
of derivative-free global and local methods available in the literature are stochastic/probabilistic. These methods
make use of random coefficients and have been developed to the aim of sustaining the variety of the search for
an optimum. This property implies that statistically significant results can be obtained only through extensive nu-
merical campaigns. Such an approach can be too expensive (often almost unaffordable) in SBD optimization for
industrial applications, when CPU-time expensive computer simulations are used directly as analysis tools. For
this reason, deterministic approaches have been successfully developed and applied to SBD optimization.

The objective of the present work is introduce, assess, and apply several optimization and geometry modifi-
cation techniques for an efficient and effective use in the SBDO context. Chapter 1 introduce six derivative-free
global and global/local optimization algorithms, suitable for an efficient and effective application in the SBDO
context. Chapter 2 defines the three shape deformation methodologies used herein and the dimensionality reduc-
tion concept. The numerical solvers used for naval engineering application are presented in Chapter. 3. Chapter
4 presents the optimization algorithm parameters to be assess on seventy-three analytical test function, in order to
define a useful guideline for each algorithm, and the naval engineering SBDO benchmark problem, used to verify
and compare the algorithms performance. The results obtained on the test functions and the naval SBDO problems
are presented and discussed in Chapter 5. Finally, Chapter 6 is devoted to the conclusions remark and the possible
future work related to this thesis.
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Chapter 1

Optimization algorithms

“Begin at the beginning” the King said gravely,
“and go on till you come to the end: then stop”

— Lewis Carroll, Alice in Wonderland

Optimization problems can be formulated in several ways. The best-known formulation is to write a nonlinear
optimization problem as

Minimize fi(x), i = 1, . . . ,M
subject to h j(x) = 0, j = 1, . . . ,J

and to gk(x)≤ 0, k = 1, . . . ,K
(1.1)

where fi, h j, and gk are general nonlinear functions. Here, the design vector x= [x1,x2, . . . ,xN ]
T can be continuous,

discrete, or mixed in N-dimensional space. The functions fi are the objective or cost functions, whereas h j and
gk are equality and inequality constraints, respectively. When M > 1, the optimization is multi-objective or multi-
criteria. It is possible to combine different objectives into a single objective, though multi-objective optimization
can give far more information and insight into the problem. The present work deals only with single-objective
optimization algorithm.

Equation 1.1 represents in general a Non-deterministic polynomial-time hard (NP-hard) problem and no ef-
ficient (in the polynomial sense) solutions exist for a given problem. Thus, the challenges of research in com-
putational optimization and applications are to find the most suitable algorithms for a given problem in order to
obtain good solutions (perhaps also the best solutions globally), in a reasonable timescale with a limited amount
of resources.

An efficient optimizer is very important to ensure the optimal solutions are reachable. There are several op-
timization algorithms in the literature, and no single algorithm is suitable for all problems, as dictated by the No
Free Lunch Theorems [17].

Optimization algorithms can be classified in many ways, depending on the characteristics that are compared.
Algorithms can be classified as gradient-based (or derivative-based) and gradient-free (or derivative-free). The
classic methods of steepest descent and the Gauss-Newton methods are gradient-based, as they use the derivative
information in the algorithm, whereas the Nelder-Mead downhill simplex method [41] is a derivative-free method
because it uses only the values of the objective, not any derivatives. Algorithms can also be classified as determin-
istic or stochastic. If an algorithm works in a mechanically deterministic manner without any random nature, it is
called deterministic. For such an algorithm (i.e. downhill simplex methods), it will reach the same final solution if
it starts with the same initial point. On the other hand, if there is some randomness in the algorithm, the algorithm
will usually reach a different point every time it is run, even starting with the same initial point (i.e. genetic algo-
rithms). This property implies that statistically significant results can be obtained only through extensive numerical
campaigns.

From the mobility point of view, algorithms can be classified as local or global. Local search algorithms
typically converge toward a local optimum, not necessarily the global optimum, and such algorithms are often
deterministic and have no ability of escaping local optima. On the other hand, the optimization procedure always
try to find the global optimum for a given problem, and if this global optimality is robust, it is often the best, though
it is not always possible to find such global optimality [42]. For global optimization [43], local search algorithms
are usually not suitable. Modern metaheuristic algorithms, in most cases, are intended for global optimization.

Although global optimization approaches are a good compromise between exploration and exploitation of the
research space, they could still get trapped in local minima and the convergence to a global minimum cannot be
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proven. If the research region to explore is known a priori, local optimization approaches can give an accurate
approximation of the local minimum, nevertheless, their convergence may be computationally expensive, and the
information is usually not available a priori. Global/local hybrid algorithms tries to couple efficiently and robustly
the qualities of both this methods.

From the optimization point of view, the choice of the right optimizer or algorithm for a given problem is
crucially important. The algorithm chosen for an optimization task will largely depend on the type of the problem,
the nature of an algorithm, the desired quality of solutions, the available computing resource, the time limit, the
availability of the algorithm implementation, and the expertise of the decision makers. The nature of an algorithm
often determines if it is suitable for a particular type of problem. For example, gradient-based algorithms are
not suitable for an optimization problem with a discontinuous objective. Generally, if the objective function of
an optimization problem at hand is highly nonlinear and multimodal, gradient-based algorithm are inappropriate,
whereas global optimizers are more suitable.

This chapter provide a brief description of six single-objective deterministic derivative-free global and hy-
brid global/local optimization algorithm suitable for SBD global optimization problem in ship hydrodynamics.
Two algorithms are well-known global optimization approaches, specifically a deterministic version of the particle
swarm optimization method (DPSO) [44] and the DIviding RECTangles (DIRECT) algorithm [45]. Other three
algorithms are hybrid global/local techniques integrated in DPSO and DIRECT enhancing the global methods with
proved stationarity of the final solution; a hybrid DPSO coupled with line search-based derivative-free optimiza-
tion (LS-DF PSO) [23], two hybrid DIRECT method coupled with line search-based derivative-free optimization
(DIRMIN and DIRMIN-2) [24]. The last one is a novel metaheuristic based on the dynamics a fish shoal in search
for food, namely the fish shoal algorithm (FSA) [46].

1.1 Particle Swarm Optimization algorithm
Particle Swarm Optimization (PSO) was originally introduced in Ref. [30], based on the social-behavior metaphor
of a flock of birds or a swarm of bees searching for food. PSO belongs to the class of heuristic algorithms for
single-objective evolutionary derivative-free global optimization.

The original PSO makes use of random coefficients, aiming at sustaining the variety of the swarm’s dynam-
ics. This property implies that statistically significant results can be obtained only through extensive numerical
campaigns. Such an approach can be too expensive in SBD optimization for industrial applications, when CPU-
time expensive (high-fidelity) computer simulations are used directly as analysis tools. For these reasons efficient
deterministic approaches (such as deterministic PSO, DPSO) have been developed, and their effectiveness and ef-
ficiency in industrial applications in ship hydrodynamics problems have been shown, including comparisons with
local methods [22] and random PSO [47]. Moreover, the availability of parallel architectures and high performance
computing (HPC) systems has offered the opportunity to extend the original synchronous implementation of DPSO
(S-DPSO) to CPU-time efficient asynchronous methods (A-DPSO) [48, 49].

1.1.1 PSO formulation
The original formulation of the PSO algorithm, as presented in [50], reads{

vn+1
j = wvn

j + c1rn
1, j(x j,pb−xn

j)+ c2rn
2, j(xgb−xn

j)

xn+1
j = xn

j +vn+1
j

(1.2)

The above equations update velocity and position of the j-th particle at the n-th iteration, where w is the inertia
weight; c1 and c2 are the social and cognitive learning rate; rn

1, j and rn
2, j are uniformly distributed random numbers

in [0,1]; x j,pb is the personal best position ever found by the j-th particle and xgb is global best position ever found
considering all particles.

An overall constriction factor χ is used in [51, 52, 53, 54, 55], instead of the inertia weight w. Accordingly,
the system in Eq. 1.2 is recast in the following equivalent form{

vn+1
j = χ

[
vn

j + c1rn
1, j(x j,pb−xn

j)+ c2rn
2, j(xgb−xn

j)
]

xn+1
j = xn

j +vn+1
j

(1.3)

In order to provide necessary (but possibly not sufficient) conditions which avoid divergence of particles trajecto-
ries, the following condition:

χ = 2∣∣∣∣√2−ϕ−
√

ϕ2−4ϕ

∣∣∣∣ , where ϕ = c1 + c2, ϕ > 4
(1.4)
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is indicated in [52], where setting the value of ϕ to 4.1, with χ = 0.729, c1 = c2 = 1.494 is suggested. Note that
PSO schemes including both the parameters w and χ have been also proposed in the literature.

1.1.2 DPSO formulation
In order to make PSO more efficient and repeatable for use within SBD, a deterministic version of the algorithm
(DPSO) was formulated in [22] by setting rn

1, j = rn
2, j = 1 in Eq. 1.3, which become{

vn+1
j = χ

[
vn

j + c1(x j,pb−xn
j)+ c2(xgb−xn

j)
]

xn+1
j = xn

j +vn+1
j

(1.5)

In the context of SBD for ship design optimization, as mentioned before, the formulation of Eq. 1.5 was
compared to the original in [47]. DPSO is therefore used for all the subsequent analyses.

Using the above formulation, it is possible to prove that the necessary (but possibly not sufficient) conditions
which ensure that the trajectory of each particle does not diverge [56], is{

0 < |χ|< 1
0 < ω < 2(χ +1)

(1.6)

where ω = χ(c1 + c2). Introducing

β =
ω

2(χ +1)
(1.7)

and assuming χ > 0 as usually in the literature, the conditions of Eq. 1.6 reduce to{
0 < χ < 1
0 < β < 1

(1.8)

1.1.3 Synchronous and asynchronous implementations
The synchronous implementation of DPSO (S-DPSO) updates the personal bests {x j,pb} and the global best xgb,
along with particles velocity and position, at the end of each iteration. S-DPSO is presented as a pseudo-code in
Alg. 1, and as a block diagram in Fig. 1.1a.

Algorithm 1 S-DPSO pseudo-code

1: Initialize a swarm of Np particles
2: while (n < Max number of iterations) do
3: for j = 1,Np do
4: Evaluate f (xn

j)
5: end for
6: Update {x j,pb}, xgb

7: Update particle positions and velocities {xn+1
j }, {v

n+1
j }

8: end while
9: Output the best solution found

In parallel architectures, if the amount of time required to evaluate the objective function at each iteration is not
uniform (e.g., due to iterative process/convergence of analysis tools), the wall-clock time and CPU-time reservation
of S-DPSO may significantly increase. In contrast to S-DPSO, the asynchronous implementation A-DPSO updates
personal and global bests, along with particles velocity and position, as soon as the information required for their
update is available, and a particle is ready for a new analysis. A-DPSO is presented as a pseudo-code in Alg. 2, and
as a block diagram in Fig. 1.1b, where it can be seen the different CPU-time required for each objective function
evaluation.
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Algorithm 2 A-DPSO pseudo-code

1: Initialize a swarm of Np particles
2: while (n < Max number of iterations) do
3: for j = 1,Np do
4: Evaluate f (xn

j)
5: Update {x j,pb}, xgb

6: Update particle positions and velocities {xn+1
j }, {v

n+1
j }

7: end for
8: end while
9: Output the best solution found
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Figure 1.1: Block diagrams for parallel (a) S-DPSO and (b) A-DPSO: the green boxes represent the first set of
particles evaluated by the algorithm

1.2 Hybrid global/local DPSO algorithm
In the framework of derivative-free optimization, combining heuristic procedures and exact methods could be
amenable, provided that:

• the overall hybridized scheme is efficient, i.e. it is possibly not too expensive. A legitimate expectation is
that the overall computational cost of the combined scheme is in-between the cost of (not combined) DPSO
and the cost of the exact method;

• the results provided by the combined procedure are endowed with some theoretical properties, which are
guaranteed by an effective combination of DPSO and the exact method. Typical theoretical properties char-
acterize both the convergence of sequences of points, and the stationarity of limit points of the sequences
generated by the hybridized scheme.

Herein, the focus is on some modifications of DPSO, where converging subsequences of iterates are generated. The
modifications proposed for DPSO guarantee that the generated sequences of iterates have subsequences converging
to stationary points of the objective function (see also [57, 58, 59, 60]). In particular, since there are in the literature
theoretical results for several exact derivative-free methods [21, 61], DPSO is combined with a line search-based
derivative-free algorithm, which still an unexplored issue, apart from the analysis in [22].

The aim is to provide robust methods to force the convergence of subsequences of points toward a stationary
point, which satisfies first order optimality conditions for f (x).

1.2.1 Line-search method
The last two decades have seen in particular the blow up of a remarkably effective class of optimization methods,
endowed with complete convergence analysis and competitive performance: namely direct search methods. The
latter class (see [21]) counts several optimization methods, which do not use derivatives but basically rely on “the
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ranks of a countable set of function values” [21], i.e. on comparing the objective function values in specific points
of the search space.

Among direct search methods, herein, the focus is on a subclass of iterative techniques, which is usually
addressed in the literature as Generating Set Search (GSS). In the latter class, the main idea is that of decreasing
the objective function at each iteration, on a cone in RN generated by suitable search directions. Pattern search
methods are in the GSS class, and have the distinguishing feature of enforcing, at each iteration, a simple decrease
of the objective function. Conversely, also line search-based derivative-free methods are iterative schemes in GSS
class, however they impose at each iteration a so called sufficient reduction of f (x).

In literature, there is plenty of examples where evolutionary strategies are combined with GSS schemes and
yield globally convergent algorithms [57, 62, 63]. In particular, in the last reference PSO is hybridized within
a pattern search framework, and a resulting method converging to stationary points is given. Observe that in
the literature of derivative-free methods it can be also find PSO-based approaches combined with a trust-region
framework [62, 63], in order to provide again globally convergent methods to stationary points.

The following very preliminary results [61] can help the reader grasp the importance of the GSS class, in order
to ensure convergence to stationary points.

Given the set of vectors D = {d1, . . . ,dm} of RN , D is defined as Positively Spanning Set (PSS) if for any vector
u ∈ RN

u =
m

∑
i=1

αidi, αi ≥ 0 (1.9)

i.e. any vector u of RN can be expressed as the weighted sum of the vectors in D, using nonnegative weights.
Thus, a PSS substantially provides a set of vectors which positively span the space RN . It can be easily proved

that if D is a PSS of RN , then its cardinality must be at least N +1. It is very easy to define PSSs; simple examples
of them in R2 are given in Fig. 4.3, where m = 4 (top and bottom) and m = 3 (middle).
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Figure 1.2: Examples of PSSs in R2. The subscript ‘⊕’ in the uppermost PSS means that the vectors in the set are
the coordinate unit vectors ±ei, i = 1, . . . ,N.

In addition, there is the following nice property of PSSs: if the point x ∈ RN is not stationary for f in Eq.
1.1 (i.e. ∇ f (x) 6= 0), given the PSS D in RN , there exists at least one vector, say d̂ ∈ D, such that ∇ f (x)T d̂ < 0,
meaning that the direction d̂ is of descent for f (x) at x. The latter fact ensures that if the current point is not
stationary, and a PSS is available, roughly speaking there is at least one direction of descent for f (x) in the PSS.
Consequently, if the PSS D is available and the value f (x) cannot be decreased on points along all the directions
in D, then it means that the iterate x is a stationary point.

Detail of mathematical assumption and theorems can be found in [23].
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1.2.2 LS-DF PSO formulation
The hybrid algorithm, proposed herein, is obtained by coupling the DPSO scheme described in Sec. 1.1.2 with
the derivative-free line-search method based on a PSS, where the set of search directions (D) is defined by the unit
vectors ±ei, i = 1, . . . ,N, as shown in the following equation

D =

{(
0
1

)
,

(
−1
0

)
,

(
0
−1

)
,

(
1
0

)}
(1.10)

This hybrid algorithm, namely LS-DF PSO is endowed with both the local convergence properties of line-search
algorithm and the global strategies of exploration of DPSO. The LS-DF PSO algorithm is described in Alg. 3,
where ς0 is the initial step size for line-search, proportional to search space dimension, µ is a tolerance imposed
to stop the local searches, ϑ is ratio of reduction of the step at each line-search iteration, and Di is local searches
direction vector as per Eq. 1.10.

Algorithm 3 LS-DF PSO pseudo-code

1: Initialize a swarm of Np particles
2: Set line-search step ς = ς0 · (max(u)−min(l))
3: while (n < Max number of iterations) do
4: for j = 1,Np do
5: Evaluate f (xn

j)
6: end for
7: Update {x j,pb}, xgb

8: Update particle positions and velocities {xn+1
j }, {v

n+1
j }

9: if xgb is not improved, start the local searches then
10: while ς > µ and (n < Max number of iterations) do
11: for i = 1,2N do
12: Evaluate f (xn) in xgb + ς ·Di
13: end for
14: if xgb is improved then
15: go to (4)
16: else
17: ς = ς ·ϑ
18: end if
19: end while
20: end if
21: end while
22: Output the best solution found

1.3 DIviding RECTangle algorithm
DIRECT is a sampling deterministic global derivative-free optimization algorithm and a modification of the Lips-
chitizian optimization method [45]. It starts the optimization by transforming the search domain D of the problem
into the unit hyper-cube U . At the first step of DIRECT, f (x) is evaluated at the center (c) of U ; the hyper-cube is
then partitioned into a set of smaller hyper-rectangles and f (x) is evaluated at their centers. Let the partition of U
at iteration n be defined as

Hn = {U j : j ∈ J n}, with
U j = {x ∈ RN : `( j)

i ≤ xi ≤ u( j)
i , i = 1, . . . ,N, ∀ j ∈ J n}

(1.11)

where N is the number of design variables, `( j)
i and u( j)

i ∈ [0,1], with j ∈ J n, are the lower and upper bounds
defining the hyper-rectangle U j, and J n is the set of indices identifying the subsets defining the current partition.
At a generic n-th iteration of the algorithm, starting from the current partition Hn of U , a new partition, Hn+1,
is built by subdividing a set of promising hyper-rectangles of the previous one. The identification of “potentially
optimized” hyper-rectangles is based on some measure of the hyper-rectangle itself and on the value of f (x) at
its center c j. The refinement of the partition continues until a prescribed number of function evaluations have
been performed, or another stopping criterion is satisfied. The minimum of f (x) over all the centers of the final
partition, and the corresponding centers, provide an approximate solution to the problem. It may be noted that the
box constraints are automatically satisfied.
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Figure 1.3 shows several iterations of the DIRECT algorithm: each row represents a new iteration; the transition
from the first column to the second represents the identifying process of the potentially optimal hyper-rectangles;
the shaded rectangles in the second column are the potentially optimal hyper-rectangles as identified by DIRECT;
the third column shows the domain after these potentially optimal rectangles have been divided.

Figure 1.3: Sketch of DIRECT iterations [64]

The DIRECT algorithm is reported in Alg. 4 [65], where Cn are the centers of the hyper-rectangles Hn at the
n-th iteration.

Algorithm 4 DIRECT pseudo-code

1: Hn = {U}, with n = 0, c = center of U , fmin = f (c), xmin = {c}, Nmax ≥ 0
2: repeat
3: Set n = n+1, identify the set of indices J n

? ⊆ J n of the potentially optimal hyper-rectangles inHn

4: For each j ∈ J n
? subdivide U j (generate the new partitionHn+1

5: Evaluate f in the centers of the new hyper-rectangles
6: fmin = min{ f (c) : c ∈Cn}, xmin ∈ {c ∈Cn : f (c) = fmin}
7: until function evaluations > Nmax
8: return fmin, xmin

1.4 Hybrid global/local DIRECT-type algorithm
The original DIRECT algorithm has some known weaknesses. First of all, in practice, it is hard to develop some
efficient stopping condition other than, e.g., exhaustion of some preset computational resources. Furthermore,
DIRECT is typically quite fast in getting close to the global optimum, but it can be slow to converge to the solution
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with an high accuracy. In fact, it can often waste a lot of time exploring uninteresting regions of the feasible
domain, thereby delaying the discovery of global minima.

Various attempts have been done in the literature to overcome this latter source of inefficiency. For example,
different techniques for adaptive setting the DIRECT balancing parameter can be applied as reviewed [66]; trans-
formations of the search domain can be considered [67, 68, 69]; smart schemes for balancing local and global
information within the same global optimization procedure can be introduced [66, 70, 71, 72]; hybridization of a
DIRECT-type method by cleverly invoking separate local optimizers during the global optimization process is also
very useful [67, 73, 74]. The two latter approaches are particularly beneficial for solving multiextremal large-scale
problems.

In the following two local hybridization by derivative-free line-search technique are presented.

1.4.1 DIRMIN formulation
DIRMIN is a hybridization of the DIRECT algorithm with a derivative-free local search algorithm. The derivative-
free local searches are performed starting form the centers c j of the “potentially optimal” hyper-rectangles identi-
fied by DIRECT methods. The DIRMIN algorithm, recalled from [65], is reported in Alg. 5.

Algorithm 5 DIRMIN pseudo-code

1: Hn = {U}, with n = 0, c = center of U , fmin = f (c), xmin = {c}, β > 0, γ ∈ [0,1], Nmax ≥ 0
2: repeat
3: Set n = n+1, identify the potentially optimal hyper-rectangles Pn inHn−1 and set fmold = fmin
4: if function evaluations ≥ γ ·Nmax then
5: for all centroids c j of hyper-rectangles in Pn perform a local minimization until the maximum step-length

becomes smaller than the tolerance β , and record the best function value fml
6: else
7: set fml =+∞

8: end if
9: subdivide the potentially optimal hyper-rectangles to buildHn

10: evaluate f at the centers of the new hyper-rectangles
11: fmin = min

{
fmold, fml,min{ f (c) : c ∈Cn}

}
, xmin ∈ {x ∈ U : f (x) = fmin}, where Cn is the set of centroids

c of the hyper-rectangles inHn

12: until function evaluations > Nmax
13: return fmin, xmin

Here, U represents the unit hyper-cube, β is the tolerance used in the stopping criterion of the derivative-free
local minimizations, γ is the activation trigger defining the starting point of the derivative-free local searches as
ratio of the maximum number of function evaluation Nmax, and fml is the minimum value found by the derivative-
free local searches. At each iteration n, every hyper-rectangle in Hn is characterized by the length of its diagonal
and the value of the objective function at its centroid. Hence, provided that the Lipschitz constant is known, for
every hyper-rectangle it is possible to compute a lower bound. An hyper-rectangle is declared potentially optimal
(Pn) and then selected for further subdivision if an estimate L > 0 of the Lipschitz constant exists such that it yields
the best estimated lower bound among all the hyper-rectangles. The subdivision performed in Step (9) is carried
out by dividing the hyper-rectangles along the longest edges, thus guaranteeing that the hyper-rectangles shrink on
every dimension in a sufficiently balanced way.

The local minimizations at Step (4) are performed by using the derivative-free local optimization algorithm for
bound constrained problems proposed in Ref. [75]. It performs derivative-free line searches along the coordinate
directions. At every iteration, the maximum of the step-lengths gives a measure of stationarity of the current iterate
(see e.g. [21]) and motivates the stopping criterion adopted at Step (4) of DIRMIN. As shown by [65], the DIRMIN
algorithm can be efficient, in terms of function evaluations, with respect to the original DIRECT algorithm. The
maximum number of function evaluations is used as stopping criterion of DIRMIN. It should be noted that the
DIRECT algorithm is obtained from DIRMIN by simply replacing Step (4) with the assignment fml =+∞.

1.4.2 DIRMIN-2 formulation
DIRMIN-2 is a modification of DIRMIN. Rather than performing the derivative-free local minimizations starting
from the centroids of all the potentially optimal hyper-rectangles Pn, a single derivative-free local minimization
is performed starting from the best point produced by dividing the potentially optimal hyper-rectangles. The
derivative-free local optimization algorithm proposed in Ref. [75] is used. Details of DIRMIN-2 are given Alg. 6
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Algorithm 6 DIRMIN-2 pseudo-code

1: Hn = {U}, with n = 0, c = center of U , fmin = f (c), xmin = {c}, β > 0, γ ∈ [0,1], Nmax ≥ 0
2: repeat
3: Set n = n+1, identify the potentially optimal hyper-rectangles Pn inHn−1 and set fmold = fmin
4: subdivide the potentially optimal hyper-rectangles to buildHn

5: evaluate f at the centers of the new hyper-rectangles
6: let c̃ ∈ argmin{ f (c) : c ∈Cn}, where Cn the set of the centers of the hyper-rectanglesHn

7: if function evaluations ≥ γ ·Nmax then
8: perform a local minimization starting from c̃ until the maximum step-length becomes smaller than the

tolerance β , and let fml be the best function value found
9: else

10: set fml =+∞

11: end if
12: fmin = min

{
fmold, fml,min{ f (c) : c ∈Cn}

}
, xmin ∈ {x ∈ U : f (x) = fmin}

13: until function evaluations > Nmax
14: return fmin, xmin

Note that, when argmin{ f (c) : c ∈Cn} is not a singleton, c̃ is the centroid of the first hyperectangle (among
those produced at step 4) for which f (c̃) = min{ f (c) : c ∈Cn}. The rationale behind the definition of DIRMIN-2
hinges on considering the subdivision of potentially optimal hyper-rectangles as a crude kind of local search, which
can be improved by the use of a more sophisticated and efficient local minimization algorithm.

Also in this case, the DIRECT algorithm is obtained from DIRMIN-2 by simply replacing Step (6) and (7)
with the assignment fml =+∞.

1.5 Fish Shoal Algorithm
The fish shoal algorithm (FSA) is a deterministic derivative-free global optimization algorithm, introduced and
developed in [46, 76], for solving engineering optimization problems with costly objective functions. The method
is intended for unconstrained single-objective maximization and is based on a simplified social model of a fish
shoal in search for food. FSA is formulated starting from the dynamics of a single individual belonging to a fish
shoal in search for food, and subject to a shoal attraction force and a food-related attraction force. This formulation
differentiates FSA from the artificial fish-swarm algorithm [77] and other metaheuristics such as PSO, for the direct
use of the objective function value (food-related attraction force).

1.5.1 A brief overview of fish shoal behavior
In biology, fishes that stay in group for social reasons are shoaling. Shoaling offers numerous benefits to individual
fish, including increased success in finding food, access to potential mates, and increased protection from predators.
Fish shoals might be a group of mixed species and sizes that have gathered randomly near some local resource.
Although shoaling fish can relate to each other in a loose way, with each fish swimming and foraging somewhat
independently, they are nonetheless aware of the other members of the group as shown by the way they adjust
behavior such as swimming, so as to remain close to the other fish in the group. If the shoal becomes more tightly
organised, with the fish synchronising their swimming so they all move at the same speed and in the same direction
in a coordinated manner, they are schooling. Shoaling fish can shift into a disciplined and coordinated school, then
shift back to an amorphous shoal within seconds. Such shifts are triggered by changes of activity from feeding,
resting, travelling or avoiding predators.

Pitcher et al. [78], in their study of foraging behavior in shoaling cyprinids, have proven that swimming in
groups enhances foraging success. In this study, the time it took for groups of minnows and goldfish to find a patch
of food was quantified. The number of fishes in the groups was varied, and a statistically significant decrease in
the amount of time necessary for larger groups to find food was established. This is directly related to the presence
of many eyes searching for the food, because fishes in shoal share information by monitoring each others behavior
closely. Feeding behavior in one fish quickly stimulates food-searching behavior in others [79]. Observations on
the foraging behavior of captive golden shiner found they formed shoals, which were led by a small number of
experienced individuals who knew when and where food was available [80]. If all golden shiners in a shoal have
similar knowledge of food availability, there are few individuals that still emerge as natural leaders and behavioral
tests suggest they are naturally bolder. Fish generally prefer larger shoals [81]. Larger shoals may find food
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faster, though that food would have to be shared amongst more individuals. Competition may mean that hungry
individuals might prefer smaller shoals or exhibit a less preference for very large shoals.

Such foraging behavior of fish shoal can be formulated in such a way that it can be associated with the objective
function to be optimized, and this makes possible to formulate novel optimization algorithms.

1.5.2 FSA formulation
Consider an optimization problem of the type

Maximize f (x)
subject to l≤ x≤ u (1.12)

where f is the objective function, x∈RN is the variable vectorD normalized into a unit hyper-cuber U , with lower
and upper bounds equal to l and u respectively.

Now consider a foraging shoal of individuals x j, exploring the research space with the aim of finding an
approximate solution for problem in Eq. 1.12. The shoal is modelled as a dynamical system and the dynamics of
the j-th individual depends on a shoal attraction force δδδ j (Fig. 1.4a), and a food-related attraction force ϕϕϕ j (Fig.
1.4b), as

mẍ j +ξ ẋ j + kδδδ j = hϕϕϕ j (1.13)

where

δδδ j =−
Ns

∑
i=1

(xi−x j) (1.14)

and

ϕϕϕ j =
Ns

∑
i=1

2∆ f (bi,x j)

1+‖bi−x j‖α
e(bi,x j) (1.15)

with

∆ f (bi,x j) =
f (bi)− f (x j)

ρ
, e =

bi−x j

‖bi−x j‖
(1.16)

In the above equations, m, ξ , k and h ∈R+ define the shoal dynamics; Ns ∈N+ is the shoal size; α ∈R+ tunes the
food-related attraction force (see Fig. 1.4b); x j ∈RN is the vector-valued position of the j-th individual; f (x)∈R is
the objective function (representing the food distribution); bi is the best position ever visited by the i-th individual;
ρ = f (b)− f (wn) is a dynamic normalization term for f , with b the best position ever visited by the shoal and wn

the worst position occupied by the shoal individuals at the current iteration n.
Using the explicit Euler integration scheme, the FSA iteration become

m
vn+1

j −vn
j

∆t
=−ξ vn

j − kδδδ j +hϕϕϕ j (1.17)

which yields

vn+1
j = vn

j +
∆t
m

(
−ξ vn

j − kδδδ j +hϕϕϕ j

)
(1.18)

Setting m = 1 finally gives  vn+1
j = (1−ξ ∆t)vn

j +∆t(−kδδδ j +hϕϕϕ j)

xn+1
j = xn

j +vn+1
j ∆t

(1.19)

where xn
j and vn

j represent the individual position and velocity vector of the j-th individual at the n-th iteration,
respectively.
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Figure 1.4: Shoal (a) and food-related (b) attraction forces, for Ns = 2 and ∆ f = 1

In Eq. 1.19, the integration step ∆t must guarantee the stability of the explicit Euler scheme, at least for the free
dynamics. To this aim, consider the free dynamics of the k-th component of x (or k-th variable), say a. Consider
the dynamics of a for the j-th individual

ä j +ξ ȧ j + kδ j = 0 (1.20)

and finally for the entire shoal (
ȧ
ċ

)
=

(
0 I
−K −G

)(
a
c

)
= A

(
a
c

)
(1.21)

where

K =−k


Ns−1 −1 −1 · · · −1
−1 Ns−1 −1 · · · −1

...
...

. . .
...

...
−1 · · · −1 Ns−1 −1
−1 · · · −1 −1 Ns−1

 , G = ξ I (1.22)

and I is the [Ns×Ns] identity matrix.
The solution of Eq. 1.21 is stable if

Re(λ )≤ 0 (1.23)

where λ =−γ± iω are eigenvalues of A. This yields

∆t ≤ 2γ

γ2 +ω2

∣∣∣∣
min

= ∆tmax (1.24)

Equation 1.19 represents a fully informed formulation, where each individual knows the story of the whole
shoal. The FSA pseudo-code is shown in Alg. 7.

Algorithm 7 FSA pseudo-code

1: Normalize x into a unit hypercube U
2: Initialize a shoal of Ns individuals
3: Evaluate the ∆tmax by the linear system’s eigenvalues (Eq. 1.21)
4: while n < Max number of iterations do
5: for j = 1,Ns do
6: Evaluate f (x j)
7: end for
8: Update x jb , f (x jb) and the attraction forces
9: Update vn+1

j and xn+1
j

10: end while
11: Output the best solution found
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Chapter 2

Shape design modification

“I – I hardly know, sir, just at present – at least I
know who I WAS when I got up this morning, but I
think I must have been changed several times
since then.”

— Lewis Carroll, Alice in Wonderland

Shape design optimization finds the optimum shape for a given structural layout [82]. Obviously, the choice
of the shape parametrization technique has a large impact on the practical implementation and often also on the
success of the optimization process. Shape deformation methods have been an area of continuous and extensive re-
search within the fields of computer graphics and geometry modelling. Consequently, a wide variety of techniques
has been proposed during recent years [83]. The parametrization techniques can be divided into the following cat-
egories [82]: basis vector, domain element, partial different equation, discrete, polynomial and spline, CAD-based,
analytical, and free-form deformation (FFD). In the context of SBDO, to be successful, the parametrization model
must yield a compact and effective set of design variables so the solution time would be feasible. As a general
statement it can be said that, in principle, the number (and the type) of parameters implicitly defines the diversity of
the admissible shapes: since the larger the variety of potential designs, the larger the improvements it can be hope
to find (starting from the original design), the importance of a proper choice of the design parameters is evident
[84].

Starting from an initial design, so that all the details of the original shape are known, the adaptation of an
existing surface/volumetric simulation grid according to an updated CAD geometry is a key component for per-
forming the optimization in a fully automatic procedure. The importance of such a component further increase
when dealing with complex geometry that prohibit automatic mesh generation or when using population-based
optimization algorithm, i.e. evolutionary algorithm, which typically require the creation and evaluation of a large
number of design variations in order to find a feasible solution [85]. Another issue that has to be addressed is
that the computational grid adopted in the analysis must be regenerated or deformed each time there is the need
to evaluate a new perturbed design, and this operation has to be performed in background, without any guarantee
about the quality of the new mesh. When this has to be done in conjunction with CFD solvers, the regridding issues
may become extremely relevant to the performance and the final result of the optimization [84]. In order to avoid
the costly mesh generation process for each design variation created during the optimization, one typically aims at
adapting an initial simulation mesh alongside with the surface.

A type of deformation methods that naturally fulfils the above requirements are so-called space deformations.
Deformation (more than regeneration) of the computational grid represents a good approach to the problem: (1)
one doesn’t need to regenerate the whole volume grid each time the hull shape is perturbed, (2) the initial hull
shape is preserved and (3) one can deform some part of the hull with a prescribed degree of continuity. The
fundamental idea behind these methods is to deform the embedding space around an object, thereby deforming the
object implicitly. From a mathematical point of view a space deformation is a function

δδδ s : R3 −→ R3 (2.1)

that maps each point in space to a certain displacement. Given a deformation function, a geometry G can be
transformed to a deformed geometry G′ by computing updated point locations

x′ = x+δδδ s(x) (2.2)
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for each original point x ∈ G [83].
The following subsections show three different shape modification technique used in the present work, that

satisfied the requirements described above. Specifically, free-form deformation (FFD), and orthogonal expansion
over 2D and 3D subdomains are presented and described for using in simulation-based shape design optimization
in naval engineering.

Finally, since the use of the present (and also other) techniques allows the use of a possibly infinite number of
variables causing an increase in the optimization costs, a design-space dimensionality reduction technique based
on generalized Karhunen-Loève expansion [16, 86] is presented, in order to define a more effective and efficient
(from the optimization point of view) design modification space.

2.1 Free-form deformation
Free-form deformation (FFD) is a geometry deformation technique used to model simple deformations of rigid
objects, widely used in both academia and industry for SBDO [16, 47, 84, 87]. The technique was first described
in [88], and is based on an earlier technique described in [89]. It is based on the idea of embedding an object
to be deformed within a parallelepiped/cube lattice (see Fig. 2.1) or another shell object, and transforming the
object within the cube as the lattice is deformed. Deformation of the lattice is based on the concept of so-called
hyper-patches, which are three-dimensional analogues of parametric curves such as Bézier curves, B-Splines, or
NURBS (Non Uniform Rational Basis-Splines). The deformation procedure can be divided in several step: (1) a
control lattice point has to be generated and adapted to the deformation scenario, (2) the local coordinates with
respect to the control lattice have to be computed for each point to be deformed, (3) express each object point x∈ G
as a linear combination of lattice control points ci jk and basis function Bi so that

x =
l

∑
i=0

m

∑
j=0

n

∑
k=0

ci jkBi(u)B j(v)Bk(w) (2.3)

where (u,v,w) are the local coordinates of x with respect to the control lattice, and l, m, n are the numbers of
control points in each direction. Defining

u(x) := (u,v,w), Bp(u(x)) := Bi(u)B j(v)Bk(w) (2.4)

as well as
δδδcp := δδδci jk = c′i jk− ci jk (2.5)

where c′i jk denotes an updated control point location, the FFD space deformation function can be expressed by

δδδ s(x) = ∑
p

δδδcpBp(u(x)) (2.6)

Finally, the deformation is performed by moving the control point and computing the updated object point loca-
tions.

Figure 2.1: Example of FFD parallelepiped lattice on the Delft catamaran demi-hull [16]

The FFD formulation is independent of grid topology and that independence makes it suitable for a variety of
analysis codes, such as low- and high-fidelity analysis tool. On the other hand, the FFD variables may have little or
no physical significance for the design engineers, thereby making it difficult to establish an effective and compact
set of design variables.
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2.2 Orthogonal basis functions expansion over 2D subdomains
An effective and efficient shape design modification method in the context of SBDO is introduced in [90]. The
shape deformation is performed by the superposition, on the original shape/grid, of bi-dimensional orthogonal
basis functions expansion (OBFE 2D). The orthogonal basis functions are linearly independent and are directly
defined on the curvilinear coordinates ξ and η of the object (computational grid)

ψψψ i(ξ ,η) : G = [0,Lξ ]× [0,Lη ] ∈ R2 −→ R3, i = 1, ...,N (2.7)

as

δδδ s(ξ ,η) =
N

∑
i=1

αi ψψψ i(ξ ,η) (2.8)

where the coefficients αi ∈ R (i = 1, . . . ,N) are the design variables,

ψψψ i(ξ ,η) := sin
(

riπξ

Lξ

+φi

)
sin
(

tiπη

Lη

+χi

)
eq(i) (2.9)

and the following orthogonality property is imposed:∫∫
G

ψψψ i(ξ ,η) ·ψψψ j(ξ ,η)dξ dη = δi j (2.10)

In Eq. 2.9, ri and ti ∈ R define the order of the function in ξ and η direction respectively; φi and χi ∈ R are
the corresponding spatial phases; Lξ and Lη ∈ R define the domain size; eq(i) is a unit vector, so that the design
modifications may be applied in x, y or z direction, with q(i) = 1, 2, or 3 respectively. An example of OBFE 2D is
shown in Fig. 2.2.
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Figure 2.2: Example of 2D orthogonal functions ψψψ i(ξ ,η)

This kind of technique can be applied on the whole object or a part of it, and the OBFE 2D design variables
can be related to a physical meaning, e.g. Fig. 2.2a shows the movement of volumes from a side to another of the
object conditional to the zone of application and the direction of the patch. On the other hand, the limit of this
approach is in the direct use of the curvilinear coordinates corresponding to the object grid: the same orthogonal
function corresponds to different shape modifications, dependently to grid discretization.
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2.3 Orthogonal basis functions expansion over 3D subdomains
The OBFE 2D method has been extended to three-dimensional orthogonal basis functions expansion (OBFE 3D)
[91], to release the shape modification method from the computational grid topology and to be more effective
and efficient in the context of SBDO. The shape deformation is performed by the superposition, on the original
shape/grid, of OBFE 3D defined on the Cartesian coordinates x, y, z over a hyper-rectangle

ϕϕϕ i(x,y,z) : G = [0,Lx]× [0,Ly]× [0,Lz] ∈ R3 −→ R3, i = 1, ...,N (2.11)

as

δδδ s(x,y,z) =
N

∑
i=1

βi ϕϕϕ i(x,y,z) (2.12)

where the coefficients βi ∈ R (i = 1, . . . ,N) are the design variables,

ϕϕϕ i(x,y,z) := sin
(

niπx
Lx

+φi

)
sin
(

miπy
Ly

+χi

)
sin
(

liπz
Lz

+θi

)
eq(i) (2.13)

and the following orthogonality property is imposed:∫∫∫
G

ϕϕϕ i(x,y,z) ·ϕϕϕ j(x,y,z)dxdydz = δi j (2.14)

In Eq. 2.13, ni, mi and li ∈ R define the order of the function in x, y and z direction respectively; φi, χi and
θi ∈R are the corresponding spatial phases; Lx, Ly and Lz ∈R define the hyper-rectangle dimensions; eq(i) is a unit
vector. Modifications may be applied in x, y or z direction, with q(i) = 1, 2, or 3 respectively.

This kind of method can be applied on the whole object or a part of it, and it is independent of grid topology.
On the other hand, there isn’t a direct physical meaning of the object surface modification because the OBFE 3D
are non linear on the object surface.

2.4 Automatic grid modification
The shape modification, performed by the techniques previously presented, can be directly reflected in the body
surface grid deformation, for this reason they are also suitable in the optimization problems involving solvers that
need only a surface grid (e.g. potential flow). On the contrary, when the optimization problem involves volume
grid solvers (e.g. RANS or FEM), the surface grid modifications need to be transposed also to the volume grid:
the methodology used in the present work is presented in the following.

2.4.1 Volume grid modification
The volume grid (e.g. boundary layer grid) is automatically modified, in order to reflect the shape modification
applied to the the body (surface) grid. Assume that the body surface grid is defined with index J = 1 and spanned
by indices I = 1, . . . , Imax and K = 1, . . . ,Kmax. Accordingly, the volume grid is spanned by I = 1, . . . , Imax, J =
1, . . . ,Jmax, and K = 1, . . . ,Kmax, with J = Jmax corresponding to the outer surface. Once the grid nodes of the
body surface at J = 1 are modified following the shape modification vector δδδ s (e.g. defined by FFD, OBFE 2D, or
OBFE 3D), any arbitrary inner node of the volume grid (J = 2, . . . ,Jmax−1) is modified similarly to Eq. 2.2, as

x = x0 +δδδ (2.15)

with
δδδ =

l∗− l
l∗

δδδ s +
l
l∗

δδδ
∗
s (2.16)

where l is the distance between (original) inner and body surface nodes, with arbitrary J and J = 1 respectively
(and same I and K indices); l∗ is the distance between (original) outer and body surface nodes, with J = Jmax and
J = 1 respectively (and same I and K indices); δδδ

∗
s is the modification of the outer surface (J = Jmax):

δδδ
∗
s = cδδδ s (2.17)

with c ∈ R+
0 .

The distance l (and l∗) may be evaluated in the simplest form as the Euclidean distance l̄:

l = l̄ = ‖x0−xs,0‖ (2.18)
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Alternatively, the approximate curvilinear distance l̂ along the grid line at constant I and K may be used [92]:

l = l̂ =
J−1

∑
j=1
‖x( j+1)

0 −x( j)
0 ‖ (2.19)

where superscripts indicate grid indices, limited to J for the sake of compactness (since I and K are constant).

2.5 Design-space dimensionality reduction by generalized Karhunen-Loève
expansion

Shape optimization research has focused on shape and topology parameterizations, as a critical issue to achieve
the desired level of design variability [93, 94, 95]. Some recent research focused on research space variability
and dimensionality reduction for efficient analysis and optimization procedures [5, 25]. A quantitative approach
based on the Karhunen-Loève expansion (KLE, also known as proper orthogonal decomposition, POD) has been
formulated for a pre-optimization assessment of the shape modification variability (see the left box of Fig. 2.3)
and the definition of a reduced-dimensionality global model of the design space [16, 96, 97]. The mathematical
properties of the dimensionality-reduction by KLE are described in the following.

Shape 
modification and 

automatic 
meshing 

Single/multi-
disciplinary 

analysis 
(CFD, FEM, etc.) 

Optimization 
algorithm 

KLE-based 
dimensionality 

reduction 

Shape 
modification 

tool 

Pre-optimization design space 
dimensionality reduction Single/multi-disciplinary shape optimization loop 

Figure 2.3: Scheme for single/multi-disciplinary shape optimization, including pre-optimization design-space di-
mensionality reduction

Consider a geometric domain of interest G, which identifies the initial shape, and a set of coordinates x ∈ G.
Assume that u ∈ U is the design variable vector, which defines a shape modification vector δδδ s. Consider the vector
space of all possible square-integrable modifications of the initial shape, δδδ s(x,u) ∈ L2

ρ(G), where L2
ρ(G) is the

Hilbert space defined by a generalized inner product

(f,g)ρ =
∫
G

ρ(x)f(x) ·g(x)dx (2.20)

with associated norm ‖f‖ρ = (f, f)
1
2
ρ , where ρ(x) ∈ R is a weight function. Generally, x ∈ Rm with m = 1,2,3,

u ∈ RN with N number of design variables, and δδδ s ∈ Rl with l = 1,2,3 (with l not necessarily equal to m).
Consider the design vector u as belonging to a stochastic space S with associated probability density function
f (u). The associated mean shape modification is evaluated as

〈δδδ s〉=
∫
U

ρ(x)δδδ s(x,u) f (u)du (2.21)

whereas the variance associated to the shape modification vector (geometric variance) is defined as

σ
2 =

〈
‖δ̂δδ s‖2

〉
=
∫
U

∫
G

ρ(x)δ̂δδ s(x,u) · δ̂δδ s(x,u) f (u)dxdu (2.22)

where δ̂δδ s = δδδ s−〈δδδ s〉, and 〈·〉 denotes the ensemble average over u ∈ S . If the design shape is defined such that
the mean shape corresponds to the original design, then 〈δδδ s〉= 0, ∀x, and therefore δ̂δδ s = δδδ s.

The aim of the KLE is to find an optimal basis of orthonormal functions, for the linear representation of the
deviation from the mean shape modification vector, expressed by

δ̂δδ s(x,u) =
∞

∑
k=1

αk(u)ΦΦΦk(x)dx (2.23)
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Figure 2.4: Scheme and notation for the current formulation, showing an example for m = 1 and l = 2.

where
αk(x) = (δ̂δδ s,ΦΦΦk)ρ =

∫
G

ρ(x)δ̂δδ s(x,u) ·ΦΦΦk(x)dx (2.24)

are the basis-functions component, used hereafter as new design variables.
The optimality condition associated to the KLE refers to the geometric variance retained by the basis functions

through Eq. 2.23. Combining Eqs. 2.22–2.24 yields

σ
2 =

∞

∑
k=1

∞

∑
j=1

〈
αkα j

〉
(ΦΦΦk,ΦΦΦ j)ρ =

∞

∑
j=1

〈
α

2
j
〉
=

∞

∑
j=1

〈
(δ̂δδ ,ΦΦΦ j)

2
ρ

〉
(2.25)

The basis retaining the maximum variance is so formed by those ΦΦΦ that are solutions of the variational problem

max
ΦΦΦ∈L2

ρ (G) J(ΦΦΦ) =
〈
(δ̂δδ s,ΦΦΦ j)

2
ρ

〉
subject to (ΦΦΦ,ΦΦΦ)2

ρ = 1
(2.26)

which yields to

LΦΦΦ(x) =
∫
G

ρ(y)
〈

δ̂δδ s(x,u)⊗ δ̂δδ s(y,u)
〉

ΦΦΦ(y)dy = λΦΦΦ(x) (2.27)

where L is the selfadjoint integral operator whose eigensolutions define the optimal basis functions for the linear
representation of Eq. 2.23. Therefore, its eigenfunctions (KL modes) {ΦΦΦk}∞

k=1 are orthogonal and form a complete
basis for L2

ρ(G). Additionally, it may be proven [16] that

σ
2 =

∞

∑
j=1

λ j (2.28)

where the eigenvalues λ j (KL values) represent the variance retained by the associated basis function ΦΦΦ j, through
its component α j in Eq. 2.23.

Finally, the solutions {ΦΦΦk}∞
k=1 of Eq. 2.27 are used to build a reduced-dimensionality space for the shape mod-

ification. Assume that n, with 0 < n ≤ 1, is the desired level of confidence for the shape modification variability,
Eq. 2.23 may be truncated to the N-th order, provided that

N

∑
k=1

λk ≥ n
∞

∑
k=1

λk = nσ
2 (2.29)

with λk ≥ λk+1. Details of equations and numerical implementations are given in Ref. [16].
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Chapter 3

Hydrodynamic solvers

“Contrariwise,” continued Tweedledee, “if it was
so, it might be; and if it were so, it would be; but
as it isn’t, it ain’t. That’s logic.”

— Lewis Carroll, Alice in Wonderland

The prediction of ship hydrodynamics performance can be broken down into three general areas: (1) resistance
and propulsion, (2) seakeeping, and (3) manoeuvring. There are several basic approaches to predict the hydrody-
namics performance of a vessel, and they can be classified as: empirical/statistical, experimental (either in model-
or full-scale), and numerical (either rather analytical or using computational fluid dynamics (CFD)).

In the simulation-based design optimization context, the “simulation” role is performed by the numerical ap-
proaches, specifically by low- and high-fidelity CFD solvers.

For ship resistance, CFD has become increasingly important and is now an indispensable part of the design
process. Typically inviscid free-surface methods based on the boundary element approach are used to analyse the
forebody, especially the interaction of bulbous bow and forward shoulder. Viscous flow codes focus on the aftbody
or appendages. Flow codes modeling both viscosity and the wave-making are widely applied for flows involving
breaking waves. So far CFD has been used to gain insight into local flow details and derive recommendation on
how to improve a given design or select a most promising candidate design for model testing [98].

For seakeeping, simple strip methods are used to analyze the seakeeping properties. These usually employ
boundary element methods to solve a succession of two-dimensional problems and integrate the results into a
quasi-three-dimensional result with usually good accuracy.

Although a model of the final ship design is still tested in a towing tank, the testing sequence and content have
changed significantly over time. Traditionally, unless the new ship design was close to an experimental series or
a known parent ship, the design process incorporated many model tests. The process has been one of design, test,
redesign, test, etc., sometimes involving more than ten models, each with slight variations. This is no longer fea-
sible due to time-to-market requirements from shipowners and no longer necessary thanks to CFD developments.
Combining CAD (computer-aided design) to generate new hull shapes in concert with CFD to analyze these hull
shapes allows for rapid design explorations without model testing. With massive parallel computing and progress
in optimization strategies, formal optimization of hulls, propellers, and appendages has drifted into industrial ap-
plications. CFD is increasingly used for the actual design of hull and propellers. Then often only the final design is
actually tested to validate the intended performance features and to get a power prediction accepted in practice as
highly accurate. As a consequence of this practice, model tests for shipyard customers have declined considerably
since the 1980s. This was partially compensated for by more sophisticated and detailed tests funded from research
projects to validate and calibrate CFD methods.

3.1 Fluid mechanics equations
For the velocities involved in ship flows, water can be regarded as incompressible, i.e. the density ρ is constant.
Therefore we will limit ourselves here to incompressible flows. All equations are given in a Cartesian coordinate
system with z pointing downwards. The continuity equation states that any amount flowing into a control volume
also flows out of the control volume at the same time. Consider an infinitely small control volume (see Fig. 3.1)
for the two-dimensional case, where u and v are the velocity components in x and y direction, respectively. The
indices denote partial derivatives, e.g. ux = ∂u/∂x. Positive mass flux leaves the control volume; negative mass
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Figure 3.1: Control volume to derive continuity equation in two dimensions

flux enters the control volume. The total mass flux has to fulfill:

−ρdy u+ρdy(u+uxdx)−ρdx v+ρdx(v+ vydy) = 0 (3.1)

ux + vy = 0 (3.2)

The continuity equation in three dimensions can be derived correspondingly to:

ux + vy +wz = 0 (3.3)

where w is the velocity component in z direction.
The Navier–Stokes equations together with the continuity equation suffice to describe all real flow physics for

ship flows. The Navier–Stokes equations describe conservation of momentum in the flow:

ρ(ut +uux + vuy +wuz) = ρ f1− px +µ(uxx +uyy +uzz)
ρ(vt +uvx + vvy +wvz) = ρ f2− py +µ(vxx + vyy + vzz)

ρ(wt +uwx + vwy +wwz) = ρ f3− pz +µ(wxx +wyy +wzz)
(3.4)

where fi is an acceleration due to a volumetric force, p the pressure, µ the viscosity, and t the time. Often
the volumetric forces are neglected, but gravity can be included by setting f3 =g. The left hand side of the
Navier–Stokes equations without the time derivative describes convection, the time derivative describes the rate
of change (source term), the last term on the right hand side describes diffusion. The Navier–Stokes equations
in the above form contain on the light hand side products of the velocities and their derivatives. This is a non-
conservative formulation of the Navier–Stokes equations. A conservative formulation contains unknown functions
(here velocities) only as first derivatives. Using the product rule for differentiation and the continuity equation (Eq.
3.3), the non-conservative formulation can be transformed into a conservative formulation, e.g. for the first of the
Navier–Stokes equations above:

(u2)x +(uv)y +(uw)z = 2uux +uyv+uvy +uzw+uwz
= uux + vuy +wuz +u(ux + vy +wz)
= uux + vuy +wuz

(3.5)

Navier–Stokes equations and the continuity equation form a system of coupled, nonlinear partial differential equa-
tions. An analytical solution of this system is impossible for ship flows. Even if the influence of the free surface
(waves) is neglected, todays computers are not powerful enough to allow a numerical solution either. Even if such
a solution may become feasible in the future, it is questionable if it is really necessary for engineering purposes in
naval architecture.

Velocities and pressure may be divided into a time average and a fluctuation part to bring the Navier–Stokes
equations closer to a form where a numerical solution is possible. Time averaging yields the Reynolds-averaged
Navier–Stokes (RANS) equations, therefore u, v, w, and p are from now on time averages, whereas u′, v′, and
w′ denote the fluctuation parts. For unsteady flows, high-frequency fluctuations are averaged over a chosen time
interval (assembly average). This time interval is small compared to the global motions, but large compared to the
turbulent fluctuations. Most computations for ship flows are limited to steady flows where the terms ut , vt , and wt
vanish.

The RANS equations have a similar form to the Navier–Stokes equations:

ρ(ut +uux + vuy +wuz) = ρ f1− px +µ(uxx +uyy +uzz)−ρ((u′u′)x +(u′v′)y +(u′w′)z)

ρ(vt +uvx + vvy +wvz) = ρ f2− py +µ(vxx + vyy + vzz)−ρ((u′v′)x +(v′v′)y +(v′w′)z)

ρ(wt +uwx + vwy +wwz) = ρ f3− pz +µ(wxx +wyy +wzz)−ρ((u′w′)x +(v′w′)y +(w′w′)z)

(3.6)
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including the derivatives of the Reynolds stresses (last term on the right hand side of Eq. 3.6). The time averaging
eliminated the turbulent fluctuations in all terms except the Reynolds stresses. The RANS equations require a
turbulence model that couples the Reynolds stresses to the average velocities.

Neglecting viscosity and all turbulence effects turns the RANS equations into the Euler equations, which still
have to be solved together with the continuity equations:

ρ(ut +uux + vuy +wuz) = ρ f1− px
ρ(vt +uvx + vvy +wvz) = ρ f2− py

ρ(wt +uwx + vwy +wwz) = ρ f3− pz

(3.7)

Euler solvers allow coarser grids and are numerically more robust than RANS solvers. They are suited for com-
putation of flows about lifting surfaces (foils) and are thus popular in aerospace applications. They are not so
well suited for ship flows and generally not recommended because they combine the disadvantages of RANS and
Laplace solvers without being able to realize their major advantages: programming is almost as complicated as for
RANS solvers, but the physical model offers hardly any improvements over simple potential flow codes (Laplace
solvers) [98].

A further simplification is the assumption of irrotational flow:

∇×v = 0 (3.8)

A flow that is irrotational, inviscid and incompressible is called potential flow. In potential flows the components of
the velocity vector are no longer independent from each other. They are coupled by the potential φ . The derivative
of the potential in arbitrary direction gives the velocity component in this direction:

v = ∇φ (3.9)

Three unknowns (the velocity components) are thus reduced to one unknown (the potential). This leads to a
considerable simplification of the computation.

The continuity equation simplifies to Laplaces equation for potential flow:

∆φ = φxx +φyy +φzz = 0 (3.10)

If the volumetric forces are limited to gravity forces, the Euler equations can be written as:

∇

(
φt +

1
2
(∇φ)2−gz+

p
ρ

)
= 0 (3.11)

Integration gives Bernoullis equation:

φt +
1
2
(∇φ)2−gz+

p
ρ
= const. (3.12)

The Laplace equation is sufficient to solve for the unknown velocities. The Laplace equation is linear. This offers
the big advantage of combining elementary solutions (so-called sources, sinks, dipoles, vortices) to arbitrarily
complex solutions. Potential flow (PF) codes are still largely used tools in ship and propeller design.

3.2 Hydrodynamic tools
In the present work, the simulation-based design optimization problems, used as benchmark to test and assess the
performance of the optimization algorithm, pertain the hull-form optimization for calm-water resistance reduction
and improved seakeeping performance of two different kind of vessels. The analysis tools used both low- and
high-fidelity solvers, and they are briefly introduced in the following subsections.

3.2.1 WAve Resistance Program
The WAve Resistance Program (WARP) is a code developed at CNR-INSEAN. The mathematical model is ap-
proximated by a Boundary Element Method, in which the integral equation on the boundary is approximated by a
piecewise constant distribution of source density on quadrilateral plane panels. Wave resistance computations are
based on the linear PF theory [99]. The simplest linear formulation (Kelvin linearization) is obtained by assuming
that the actual flow is slightly perturbed from the free stream, and its potential function is given by φ = Ux+ ϕ̃ ,
which provides the Neumann-Kelvin (NK) problem for the Laplace equation. A further linearization, suggested
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by Dawson [100], is based on the assumption that the flow near the body is perturbed around the double model
(DM) flow, and its potential function is given by φ = Ux+ϕd + ϕ̃ . NK is usually reasonable for slender bodies
and high speeds, whereas DM is usually more suitable for wider bodies and low speeds. The wave resistance can
be evaluated by both a pressure integral over the body surface and the transverse wave cut method [101], whereas
the frictional resistance is estimated using a flat-plate approximation, based on the local Reynolds number [102].
The steady 2DOF (sinkage and trim) equilibrium is achieved by iteration of the flow solver and the body equation
of motion.

3.2.2 Ship Motion Program
The Standard Ship Motion program (SMP) was developed at the David Taylor Naval Ship Research and Develop-
ment Center in 1981, as a prediction tool for use in the Navys ship design process. SMP is a potential flow code
based on linearized strip theory. It provides a predictions of the motions, i.e., displacements, velocities, and accel-
erations, for a ship advancing at constant speed, with arbitrary heading in both regular waves and irregular seas.
The irregular seas are modelled using a two-parameter Bretschneider wave spectral model. Both long-crested and
short-crested results are provided. In addition to the 6DOF responses, the absolute motion, velocity, acceleration,
as well as the relative motion and velocity for various locations on the ship can also be obtained. The probabilities
and frequencies of submergence, emergence, and/or slamming occurrence for various locations on the ship, are
also available. Vertical shears and bending moments due to the ship motions can be produced [103].

3.2.3 CFDShip-Iowa
CFDShip-Iowa is a general-purpose unsteady Reynolds-averaged Navier-Stokes (URANS) CFD code that has been
developed at the University of Iowa, IIHR-Hydroscience & Engineering, over the past 25 years, to handle a broad
range of ship hydrodynamics problems. Originally designed to support both thesis and project research in the
areas of resistance and propulsion, it has been successfully transitioned to Navy and university laboratories and
industry, and has recently been extended to unsteady applications such as seakeeping and maneuvering. It was
developed following a modern software-development philosophy, which was based upon open source, revision
control, modular coding using Fortran 90/95, liberal use of comments, and an easy to understand architecture that
enables model development by users.

The equations are solved in an inertial coordinate system, either fixed to a ship or other frame moving at
constant speed or in the earth system. The free surface is modelled with a single-phase capturing approach, which
means that only the water flow is solved, enforcing kinematic and dynamic free surface boundary conditions
on the interface. Arbitrary free surface topologies can be predicted, with the limitation that pressurized closed
air/water packets (bubbles) cannot be simulated. It uses structured multiblock grids, and has overset capabilities.
Capabilities include 6DOF motions, several turbulence models, moving control surface, multi-objects, advanced
controllers, propulsion models, incoming waves and wind, bubbly flow, and fluid-structure interaction.

Details of equations, numerical implementations and validation of the numerical solver are given in [104].
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Chapter 4

Optimization problems

“The time has come,” the walrus said,“to talk of
many things: Of shoes and ships - and sealing
wax - of cabbages and kings”

— Lewis Carroll, Alice in Wonderland

4.1 Analytical test functions
A benchmark of seventy-three well-known analytical test functions [24, 44, 65, 105, 106, 107], including simple
unimodal (i.e., those denoted by a superscript “*” in Tab. 4.1), highly complex multimodal, and not differentiable
problems, has been used in order to assess the algorithms performance. Table 4.1 summarizes the test functions
used herein, and the algorithm applied on each one. The analytical expressions of the test functions are reported in
Appendix A.

In the following, DPSO, LS-DF PSO, DIRMIN, DIRMIN-2, and FSA setting parameters are presented and
discussed. The different setups have been used to verify and assess the algorithm performances. The results are
presented in the next chapter.

4.1.1 DPSO setting parameters
The effectiveness and efficiency of DPSO for box constrained optimization are significantly influenced by four
main setting parameters: (a) the number of swarm particles interacting during the optimization, (b) the initializa-
tion of the particles in terms of initial location and velocity, (c) the set of coefficients defining the personal or
social behavior of the swarm dynamics, and (d) the method to handle the box constraints. These parameters and
their effects on PSO have been studied by a number of authors [33, 50, 59] and a preliminary assessment of the
performances of DPSO, varying (a), (b) and (c), is presented in Ref. [44].

In order to identify of the most effective and efficient parameters for both synchronous and asynchronous
deterministic particle swarm optimization (S-DPSO and A-DPSO), for their use in SBD procedures, the DPSO
parameters are defined in the following, and applied on 60 test functions (see Tab. 4.1), with dimensionality
ranging from two to twenty. Their full-factorial combination is considered, resulting in a total of 420 DPSO
setups. The simulation budget (maximum number of objective function evaluations) is studied up to 4096 times
the number of variables.

Number of particles

The number of particles used (Np) is defined as

Np = 2mN , with m ∈ N [1,7] (4.1)

therefore ranging from 2N to 128N, where N is the number of design variables.
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Table 4.1: Analytical test functions

fp Name N DPSO LS-DF PSO DIRECT DIRMIN DIRMIN-2 FSA

f1 Ackley 2 X X X X X X
f2 Ackley 10 – – X X X –
f3 Ackley 30 – – X X X –
f4 Ackley 50 – – X X X –
f5 Alpine 2 X X X X X X
f6 Alpine 5 X X X X X X
f7 Alpine 10 X X X X X X
f8 Alpine 20 X X X X X X
f9 Beale 2 X X X X X X
f10 Booth* 2 X X X X X X
f11 Bukin n.6 2 X X X X X X
f12 Colville 4 X X X X X X
f13 Cosine Mixture 2 X X X X X X
f14 Cosine Mixture 4 X X X X X X
f15 Dixon-Price∗ 2 X X X X X X
f16 Dixon-Price∗ 5 X X X X X X
f17 Dixon-Price∗ 10 X X X X X X
f18 Dixon-Price∗ 20 X X X – – X
f19 Dixon-Price∗ 25 – – X X X –
f20 Dixon-Price∗ 50 – – X X X –
f21 Easom 2 X X X X X X
f22 Exponential 2 X X X X X X
f23 Exponential 4 X X X X X X
f24 Freudenstein-Roth 2 X X X X X X
f25 Goldstein-Price 2 X X X X X X
f26 Griewank 2 X X X X X X
f27 Griewank 5 X X X X X X
f28 Griewank 10 X X X X X X
f29 Griewank 20 X X X X X X
f30 Hartman n.3 3 X X X X X X
f31 Hartman n.6 6 X X X X X X
f32 Levy 5n 2 X X X X X X
f33 Levy 5n 5 X X X X X X
f34 Levy 5n 10 X X X X X X
f35 Levy 5n 20 X X X X X X
f36 Levy 10n 2 X X X X X X
f37 Levy 10n 5 X X X X X X
f38 Levy 10n 10 X X X X X X
f39 Levy 10n 20 X X X X X X
f40 Levy 15n 2 X X X X X X
f41 Levy 15n 5 X X X X X X
f42 Levy 15n 10 X X X X X X
f43 Levy 15n 20 X X X X X X
f44 Matyas∗ 2 X X X X X X
f45 Multi Modal 2 X X X X X X
f46 Multi Modal 5 X X X X X X
f47 Multi Modal 10 X X X X X X
f48 Multi Modal 20 X X X X X X
f49 Powell∗ 8 – – X X X –
f50 Powell∗ 16 – – X X X –
f51 Powell∗ 24 – – X X X –
f52 Quartic∗ 2 X X X X X X
f53 Rastrigin 10 – – X X X –
f54 Rastrigin 30 – – X X X –
f55 Rastrigin 50 – – X X X –
f56 Rosenbrock∗ 2 X X X X X X
f57 Schaffer n.2 2 X X X X X X
f58 Schaffer n.6 2 X X X X X X
f59 Schwefel 10 – – X X X –
f60 Schwefel 20 – – X X X –
f61 Shekel n.5 4 X X X X X X
f62 Shekel n.7 4 X X X X X X
f63 Shekel n.10 4 X X X X X X
f64 Shubert penalty 1 2 X X X X X X
f65 Shubert penalty 2 2 X X X X X X
f66 Six-Hump Camel Back 2 X X X X X X
f67 Sphere∗ 2 X X X X X X
f68 Styblinski-Tang 2 X X X X X X
f69 Styblinski-Tang 4 X X X X X X
f70 Test Tube Holder 2 X X X X X X
f71 Three-Hump Camel Back 2 X X X X X X
f72 Treccani∗ 2 X X X X X X
f73 Tripod 2 X X X X X X

Total 60 60 73 72 72 60
* Denotes unimodal functions

30



A. Serani CHAPTER 4. OPTIMIZATION PROBLEMS

Particles initialization

The initialization of particles’ location and velocity is performed using a deterministic and homogeneous distribu-
tion, following the Hammersley sequence sampling (HSS) [108]. Specifically, let p = {p1, . . . , pN−1} be a vector
of prime numbers with p j 6= pi, ∀ j 6= i. Any positive integer i can be expressed using the sequence {pi} by

j =
r

∑
k=0

ak pk
i (4.2)

where r is a suitable integer and ak is an integer in [0, pi−1]. Finally, the j-th particle location is defined as

x j =

{
j

Np
, φp1( j), · · · , φpN−1( j)

}
for j = 0,1,2, ...,Np−1 (4.3)

where φpi( j) = ∑
r
k=0 ak/pk+1

i . The Eq. 4.3 is applied to three different sub-domains, defined as:

A. entire domain D (red dots in Fig. 4.1a)

B. domain bounds (blu triangles in Fig. 4.1b)

C. domain and bounds (red dots and blue triangles in Fig. 4.1c)

On the other hand, the initial velocity is defined by either the following:

• null velocity:
v0

j = 0, ∀ j ∈ [1, Np] (4.4)

• non-null velocity, based on initial particle position:

v0
j =

2√
N

(
x0

j −
l+u

2

)
(4.5)

where l and u represent the lower and upper bound for x, respectively [47].

Combining initial position and velocity settings results in six different initializations, summarized in Tab. 4.5.

Table 4.2: DPSO, particles initialization

HSS, sub-domain v = 0 v 6= 0

Domain A.0 A.1
Bounds B.0 B.1

Domain and bounds C.0 C.1

-0.5

 0

 0.5

-0.5  0  0.5

-0.5

 0

 0.5

-0.5  0  0.5

-0.5

 0

 0.5

-0.5  0  0.5

(a) Domain (b) Bounds (c) Domain and bounds

Figure 4.1: Examples of initializations in D = [−0.5,0.5]× [−0.5,0.5] with 32 individuals
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Coefficients set

Five coefficients sets are taken from literature, as proposed by several authors. The first set is the original by Shi
and Eberhart [50], the second was suggested by Carlisle and Dozier [109], the third was proposed by Trelea [59],
the fourth is a further suggestion by Clerc [110], whereas the fifth was suggested by Peri and Tinti [111]. The
associated numerical values are included in Tab. 4.3, and they all satisfy Eq. 1.8.

Table 4.3: DPSO, coefficient set

Set ID Name χ c1 c2 β

1 Shi and Eberhart (1998) 0.729 2.050 2.050 0.864
2 Carlisle and Dozier (2001) 0.729 2.300 1.800 0.864
3 Trelea (2003) 0.600 1.700 1.700 0.638
4 Clerc (2006) 0.721 1.655 1.655 0.693
5 Peri and Tinti (2012) 0.754 2.837 1.597 0.953

Box constraints

The original PSO [30] provides an update of position and velocity of particles for unconstrained problems. Thus,
in case possible constraints are present, the original formulation might be inadequate, even in case simple box
constraints on the unknowns are considered. This implies that, during the evolution of the swarm, simply using
Eq. 1.5 the particles can travel outside the domain bounds. This can be a critical issue in SBD problems, when
the domain bounds cannot be violated due to physical/geometrical/grids constraints. A barrier (wall) or a penalty
approach can be used on the bounds of the research space, in order to confine the particles [112, 113]. Herein, the
approach presented in [114] is applied.

Specifically, the particles are confined within D using an inelastic wall-type approach (IW). If the j-th particle
is found to violate one of the bounds in the transition from n-th to (n+1)-th DPSO iteration, it is placed on the bound
setting to zero the associated velocity component (see Fig.4.2a). This approach helps the algorithm to explore the
domain bounds. The IW approach is implemented in Alg. 8.

Algorithm 8 DPSO, Inelastic wall-type approach

1: for j = 1, number of particles do
2: for i = 1, number of variables do
3: if xn

j,i > ui then
4: xn

j,i = ui, vn
j,i = 0

5: else {xn
j,i < li}

6: xn
j,i = li, vn

j,i = 0
7: end if
8: end for
9: end for

feasible unfeasible 

𝐱n vi1
n+1 

vi2
n+1 

𝐯n+1 

𝐱n+1 𝐱n+1 

𝐯n+1 

i1-bound 

i1 

i2 

feasible unfeasible 

𝐱n 

𝐯n+1 

𝐱n+1 
𝐱n+1 

−𝐯n+1 

i1-bound 

i1 

i2 

vi2
n+1 

−vi1
n+1

𝜒(𝑐1 + 𝑐2)
 

vi2
n+1 

vi1
n+1 

(a) IW (b) SEW

Figure 4.2: Wall-type approaches applied to the j-th particle in the transition from n-th to (n+1)-th DPSO iteration
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The use of IW has some limitations: in the unlikely event that all the particles tend to leave the domain from
the same hyper-corner, the IW sets all velocities to zero and the DPSO progress may stop prematurely. For this
reason, a semi-elastic wall-type approach (SEW) is also used in this work. Specifically, in case the particle position
violates a bound constraint, then the particle position is modified in order to make that constraint active (i.e. the
particle is moved on the boundary of that constraint), while the associated velocity component is defined as follows
(see also Fig. 4.2b):

Algorithm 9 DPSO, Semi-elastic wall-type approach

1: for j = 1, number of particles do
2: for i = 1, number of variables do
3: if xn

j,i > ui then

4: vn
j,i =−

vn
j,i

χ(c1+c2)

5: else {xn
j,i < li}

6: vn
j,i =−

vn
j,i

χ(c1+c2)

7: end if
8: end for
9: end for

Observe that the damping factor [χ(c1 + c2)]
−1 in Alg. 9 is used to confine the particle in the feasible domain.

Number of function evaluations and DPSO iterations

The number of function evaluations Nmax (evaluations budget) is defined as

Nmax = 2cN, where c ∈ N [7,12] (4.6)

and therefore ranges from 128N to 4096N. Similarly to the setting in Eq. 4.9, the number of DPSO iterations Niter
is set as

Niter =
Nmax

Np
=

2cN
2mN

= 2c−m (4.7)

4.1.2 LS-DF PSO setting parameters
Global convergence properties of a modified DPSO scheme may be obtained by properly combining DPSO with
a line search-based derivative-free method, so that convergence to stationary points can be forced at a reasonable
cost. Ref. [23] provides a robust method to force the convergence of a subsequence of points toward a stationary
point, which satisfies first order optimality conditions for the objective function. The method, namely LS-DF PSO,
starts by coupling the DPSO scheme with a line search-based method. Specifically, a Positively Spanning Set (PSS)
is used, where the set of search directions (D⊕) is defined by the unit vectors ±ei, i = 1, . . . ,N, as shown in the
following equation (i.e., N = 2) and in Fig. 4.3.

. 
d1 

d2 

d3 

d4 

Figure 4.3: Example of PSS in R2

D⊕ =

{(
0
1

)
,

(
−1
0

)
,

(
0
−1

)
,

(
1
0

)}
(4.8)

After each DPSO iteration, the local search is performed, from the best particle, if the swarm has not find a new
global minimum. The initial step size (ς k) for the local search is set equal to 0.25 times the variable domain range,
and it is reduced by ϑ = 0.5 at each local search iteration. Local searches continue in each direction until the step
size is greater than µ = 10−3. If the local search stops without providing a new global minimum, the actual global
minimum is declared as a stationary point. The line search method is not allowed to violate the box constraints.

The method is applied on 60 analytical test function (see Tab. 4.1) with dimensionality ranging from two
to twenty, and a limit to the maximum number of function evaluations is set equal to 800 times the number of
variables.
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4.1.3 DIRMIN and DIRMIN-2 setting parameters
Seventy-two analytical test functions, with N ranging from 2 to 50, have been used to assess the algorithms perfor-
mances. A limit on the maximum number of function evaluations Nmax is imposed equal to 256N. The derivative-
free local minimizations in DIRMIN and DIRMIN-2 start when the number of function evaluations reaches the
activation trigger γNmax, where γ ∈ [0,1]. The local minimizations proceed until either the number of function eval-
uations exceeds Nmax or the stepsize falls below the given tolerance β > 0. The values that can be assumed by the
parameters γ and β are summarized in Tab. 4.4. The algorithms with the respective parameter value combinations
are numbered from 1 to 25.

Table 4.4: DIRMIN and DIRMIN-2 setup ID

β\γ 0.00 0.25 0.50 0.75 1.00

1e-5 1 2 3 4 5
1e-4 6 7 8 9 10
1e-3 11 12 13 14 15
1e-2 16 17 18 19 20
1e-1 21 22 23 24 25

4.1.4 FSA setting parameters
The effectiveness and efficiency of FSA are influenced, as DPSO, by the choice of four main parameters: (a)
the number of individuals interacting during the optimization, (b) the initialization of the shoal in terms of initial
location and speed, (c) the set of coefficients controlling the shoal dynamics, and (d) the method to handle the box
constraints.

The approach for the analysis includes a parametric study using 60 analytical test functions (see Tab. 4.1)
characterized by different degrees of nonlinearities and number of local minima, with full-factorial combination
of: (a) number of individuals, using power of two per number of design variables, (b) initialization of the shoal,
in terms of initial position and velocity, by Hammersley distributions [108], (c) twenty-seven different set of
coefficients, and (d) the method to handle the box constraints.

The FSA parameters used in the current analysis are defined in the following subsection. Their full-factorial
combination is considered, resulting in a total of 486 FSA setups. The simulation budget is studied up to 4096
times the number of variables.

Fish shoal size

The number of individuals used (Ns) is defined as

Ns = 2mN , with m ∈ N [2,4] (4.9)

therefore ranging from 4N to 16N.

Shoal initialization

The initialization of individuals’ location and velocity is performed using a deterministic and homogeneous distri-
bution, following the Hammersley sequence sampling (HSS) [108], as for DPSO (see Sec. 4.1.1).

The Eq. 4.3 is applied to three different unit sub-domains, defined as:

A. domain U (red squares in Fig. 4.1a)

B. domain bounds (blu dots in Fig. 4.1b)

C. domain and bounds (red squares and blue dots in Fig. 4.1c)

On the other hand a non-null initial velocity is used and defined by the following

v0
j =

2√
N

(
x0

j −
l+u

2

)
(4.10)

where l and u represent the lower and upper bound for x respectively [47], resulting in three different initializations,
summarized in Tab. 4.5.

34



A. Serani CHAPTER 4. OPTIMIZATION PROBLEMS

Table 4.5: FSA, individuals initialization

HSS, sub-domain ID

Domain A
Bounds B

Domain and bounds C

Shoal dynamics controlling coefficients

Provided that all the variables are normalized such that the research space D is confined in a unit hyper-cube U
(i.e. −0.5≤ x≤ 0.5), the following positions are used for the coefficients controlling the shoal dynamics

ξ ∆t < 1, k = h =
q
Ns

, ∆t =
∆tmax

p
(4.11)

where q∈R+ is the weight for the shoal attraction force (δδδ j) and the food-related attraction force (ϕϕϕ j), and p∈R+

define the time step of the integration scheme. This two parameters within the damping factor ξ correspond to the
FSA coefficients set. Table 4.6 summarizes the coefficient sets used herein.

Table 4.6: FSA, coefficients set

ID ξ q p

1 0.01 0.10 2.00
2 0.10 1.00 4.00
3 1.00 10.0 8.00

Box constraints

The FSA formulation proposed herein provides an update of position and velocity of individuals for unconstrained
problems. This implies that, during the evolution of the shoal, the individuals can travel outside the domain
bounds. This can be a critical issue in SBD problems, when the domain bounds cannot be violated due to physi-
cal/geometrical/grids constraints. A barrier (wall) or a penalty approach can be used on the bounds of the research
space, in order to confine the individuals. Herein, the approach presented for DPSO (see Sec. 4.1.1) is applied.

Specifically, the individuals are confined within U using an inelastic wall-type approach (IW) as in Alg. 10. If
an individual is found to violate one of the bounds in the transition from n-th to (n+1)-th FSA iteration, it is placed
on the bound setting to zero the associated velocity component (see Fig. 4.4a). This approach helps the algorithm
to explore the domain bounds.

Algorithm 10 FSA, Inelastic wall-type approach

1: for j = 1, number of individuals do
2: for i = 1, number of variables do
3: if xn

j,i > ui then
4: xn

j,i = ui, vn
j,i = 0

5: else {xn
j,i < li}

6: xn
j,i = li, vn

j,i = 0
7: end if
8: end for
9: end for

The use of IW has some limitations: in the unlikely event that all the particles tend to leave the domain from the
same hyper-corner, the IW sets all velocities to zero and the FSA progress may stop prematurely. For this reason,
an elastic wall-type approach (EW) is also used in this work. Specifically, in case the individual position violates a
bound constraint, then the individual position is modified in order to make that constraint active (i.e. the individual
is moved on the boundary of that constraint), while the associated velocity component is defined as follows (see
also Fig. 4.4b):
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Algorithm 11 FSA, Elastic wall-type approach

1: for j = 1, number of individuals do
2: for i = 1, number of variables do
3: if xn

j,i > ui then
4: xn

j,i = ui, vn
j,i =−vn

j,i
5: else {xn

j,i < li}
6: xn

j,i = li, vn
j,i =−vn

j,i
7: end if
8: end for
9: end for
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(a) Inelastic wall-type approach (b) Elastic wall-type approach

Figure 4.4: Wall-type approaches applied for the j-th individual in the transition from n-th to (n+ 1)-th FSA
iteration

Number of function evaluations and FSA iterations

The number of function evaluations Nmax (evaluations budget) is defined as

Nmax = 2cN, where c ∈ N [7,12] (4.12)

and therefore ranges from 128N to 4096N. As per Eq. 4.9, the number of FSA iterations Niter is

Niter =
Nmax

Ns
=

2cN
2mN

= 2c−m (4.13)

4.1.5 Evaluation metrics
The metrics used to assess the algorithms performance and identify the most promising setup for DPSO, DIRMIN,
DIRMIN-2, and FSA are presented in the following.

Absolute metrics

Three absolute performance criteria are used to assess the algorithms’ performances and defined as follows [44]:

∆x =

√√√√ 1
N

N

∑
i=1

(xi,min− x?i,min

Ri

)2

, ∆ f =
fmin− f ?min
f ?max− f ?min

, ∆t =

√
∆2

x +∆2
f

2
(4.14)

∆x is a normalized Euclidean distance between the minimum position found by the algorithm (xmin) and the ana-
lytical minimum position (x?min), where Ri = |ui− li| is the range of the i-th design variable. ∆ f is the associated
normalized distance in the image space, fmin is the minimum found by the algorithm, f ?min is the analytical mini-
mum, and f ?max is the analytical maximum of the function f (x) in the search domain D. ∆t is a combination of ∆x
and ∆ f and used for an overall assessment.
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Additionally, the relative variability σ2
r,k [24] for each metric ∆x, ∆ f , ∆t (Eq. 4.14) is used to assess the impact

of each tuning parameter sk on the algorithms’ performance. Defining the algorithm’s tuning parameter vector as
s = [s1,s2, . . . ,sS]

T ∈ RS, the relative performance variability associated to its k-th component is

σ
2
r,k =

σ2
k

∑
S
k=1 σ2

k

(4.15)

where

σ
2
k =

1
|Ω| ∑

ω∈Ω

[
∆̂k(ω)

]2−[ 1
|Ω| ∑

ω∈Ω

∆̂k(ω)

]2

(4.16)

with Ω containing the positions ω assumed by the parameter sk,

∆̂k(ω) =
1
|B| ∑s∈B

∆̄(s), B = {s : sk = ω} (4.17)

and
∆̄(s) =

1
|P| ∑

p∈P
[∆(s)]p (4.18)

Performance and data profiles

In order to evaluate the relative performance of DIRMIN and DIRMIN-2, the procedure proposed by [115] is also
used. The following convergence condition is applied:

f (x0)− f (xn)≥ (1− τ)( f (x0)− fL) (4.19)

where:

- f (x0) is the objective function value at the starting point, namely the function value at the center of the unit
hyper-cube U ;

- f (xn) is the objective function value at the n-th evaluation;

- 0≤ τ ≤ 1 is a suitably chosen tolerance;

- fL is the smallest function value obtained by any solver within the same maximum computational budget.

The main concepts needed to formally define data and performance profiles are recalled in the following. Let
A be a set of |A| algorithms, and P a set of |P| problems and a performance measure mp,a. In this work, mp,a
is the number of function evaluations needed for algorithm a to satisfy (4.19) on problem p. The performance
on problem p by algorithm a is compared with the best performance by any algorithm on this problem, using the
following performance ratio:

rp,a =
mp,a

min{mp,a : a ∈ A}
(4.20)

Thus, a first measure of the performance of algorithm a is defined by the performance profile:

ρa(α) =
1
|P|

size{p ∈ P : rp,a ≤ α} (4.21)

which approximates the probability for algorithm a ∈ A that the performance ratio rp,a is within a factor α ∈ R
of the best possible ratio. The convention rp,a = ∞ is used when algorithm a fails to satisfy the convergence test
(4.19) for problem p ∈ P . We remark that performance profiles are plotted for values of the performance ration α

such that
1≤ α ≤ 1.1 max

p∈P,a∈A
rp,a.

A further measure of the algorithms’ performance is given by the percentage of problems that can be solved
(for a given tolerance τ) within a certain number of ν simplex gradient evaluations. Namely, the so called data
profile is defined as:

da(ν) =
1
|P|

size{p ∈ P :
mp,a

np +1
≤ ν} (4.22)

where np is the number of variables in p ∈ P . If the convergence test (4.19) cannot be satisfied within the assigned
computational budget, mp,a is set equal to ∞. We again remark that data profiles are plotted for values of ν such
that

0≤ ν ≤ 1.1 max
p∈P,a∈A

mp,a

np +1
.
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4.2 Ship design problems
The following subsections present the ten SBD optimization applications pertaining the hull-form optimization of
the high-speed Delft catamaran (DC) [15] and the USS Arleigh Burke-class destroyer (DTMB 5415) [116]. Table
4.7 summarized the algorithms applied on the problems described in the following subsections.

Table 4.7: SBDO problems

Problem Hull N DPSO LS-DF PSO DIRECT DIRMIN DIRMIN-2 FSA

I* DC 4 X – – – – –
II* DC 6 X – – – – –
III DC 4 X X – – – –
IV DC 4 X X – – – –
V DTMB 5415 8 – – X X X –
VI DTMB 5415 6 X X X – X –
VII DTMB 5415 11 X X X – X –
VIII DTMB 5415 1÷6 – X – – – –
IX DTMB 5415 6 X – X – – X
X DTMB 5415 6 X – X – – X

* In this case DPSO includes S-DPSO and A-DPSO, where is not specified DPSO stay for S-DPSO

4.2.1 Delft catamaran
The high-speed Delft catamaran (DC) [15] is an international benchmark geometry, which has been used for
CFD and EFD studies. Earlier research on the Delft catamaran includes seakeeping CFD [117] and EFD [118],
steady drift CFD [119] and EFD [120] for the onset and progression of vortices, CFD [121, 122] and EFD [123]
interference factor studies, and CFD waterjet/maneuvering studies [124] and deterministic design optimization
[16, 47, 125].

A sketch of the Delft catamaran model is shown in Fig. 4.5a. Figure 4.5b shows the DC model used for towing
tank experiments at CNR-INSEAN. The hull main particulars and test conditions are summarized in Tab. 4.8.

(a) (b)

Figure 4.5: Delft catamaran (a) model sketch [26] and (b) model for the towing tank experiments at CNR-INSEAN

Four SBD problems (see Tab. 4.7) are used to study and verify the performance of the optimization algo-
rithms. Specifically, problem I and II are used to assess S-DPSO and A-DPSO, whereas problem III and IV are
used to compare DPSO with its global/local hybrid LS-DF PSO. The problems details pertaining the hull-form
optimization of the Delft catamaran are described in the following.
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Table 4.8: Delft catamaran main particulars and simulation conditions

Main particular/condition Symbol Value, stochastic-speed Value, stochastic-wave Units

Length overall LOA 3.822 105.4 m
Length between perpendiculars LBP 3.627 100.0 m
Beam overall B/LBP 0.313 0.313 –
Beam demi-hull b/LBP 0.080 0.080 –
Draft at mid-ship T/LBP 0.050 0.050 –
Distance between center of demi-hulls H/LBP 0.234 0.234 –
Longitudinal center of gravity LCG/LBP 0.527 0.527 –
Vertical center of gravity VCG/LBP 0.074 0.113 –
Pitch radius of gyration Kyy/LBP not used 0.261 –

Froude number Fr [0.402;0.598] 0.5 –
Reynolds number Re 1.019e7 7.144e6 –
Wave period Tw not used [2.2;17.7] s
Wave height Hw not used [0.5;6.4] m

Problem I

The single-objective optimization of DC [47] is formulated as:

Minimize f = RT (x)/W (x)
subject to LOA(x)≤ LOA0

B(x)≤ B0
T (x)≤ T0

(4.23)

where RT is the total resistance at Fr=0.5 in calm water, and W is the weight force modulus. Geometry mod-
ifications have to fit in a box, defined by maximum overall length (LOA0), beam (B0) and draught (T0), where
subscript “0” is referred to the parent hull value. A four design variables space (N = 4) is used and includes overall
dimension bounds. Modifications of the parent hull are performed using high-dimensional FFD (see Sec. 2.1) and
95%-confidence dimensionality reduction based on KLE (see Sec. 2.5) [16]. New designs g are produced as

g(x) =

(
1−

N

∑
i=1

xi

)
g0 +

N

∑
i=1

xi gi (4.24)

where −1≤ xi ≤ 1,∀i ∈ [1,N] are the design variables; g0 is the original geometry and gi are the geometries asso-
ciated to the design space principal directions (or eigenmodes), as provided by KLE for dimensionality reduction.

X
Y

Z

hull body

X
Y

Z

outer hull

outer upstream

outer downstream

inner downstream

inner hull

inner upstream

Figure 4.6: Panel-grid for the CNR-INSEAN WARP potential-flow code.

Simulations are conducted using the code WARP. Wave resistance computations are based on linear potential
flow theory using NK linearization. The wave resistance is evaluated with a standard pressure integral, whereas
the frictional resistance is estimated using a flat-plate approximation, based on the local Reynolds number [102].
The steady 2DOF (sinkage and trim) equilibrium is achieved by iteration of the flow solver and the body equation
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of motion. Simulations are performed for the right demi-hull, since the problem is symmetrical with respect to the
xz-plane. The free surface is discretized as follows: 20×1 panels on the inner-upstream sub-domain, 20×40 on
the outer-upstream, 20×1 on the inner-hull, 20×40 on the outer-hull, 80×1 on the inner-dowstream, 80×2 on
the transom-downstream, 80× 40 on the outer-downstream; the body is discretized by 125× 50 panels (see Fig.
4.6). Domain bounds are defined by 1LBP upstream, 4LBP downstream and 2LBP sideways.

Problem II

The single-objective optimization of DC is formulated as:

Minimize f = RT (x)/W (x)
subject to LBP(x) = LBP0

and to LOA(x)≤ LOA0
B(x)≤ B0
T (x)≤ T0

(4.25)

Differently from problem I, in this case a six design variables space (N = 6) is used, including constant length
between perpendiculars as equality constraint. Subscript “0” is referred to the parent hull value. Geometry modi-
fication method, numerical solver and computational grid are the same of problem I.

Problem III

The design optimization of DC is formulated as:

Minimize f = RT (x)/∇(x) (4.26)

the minimization of the total resistance over displacement (∇) in calm water at Fr=0.5 [47]. A four design variables
(N = 4) control global shape modifications, based on the KLE of the shape modification vector [16], is used. The
problem is solved using a stochastic radial-basis functions metamodel (details may be found in Ref. [26]) trained
by high-fidelity URANS simulations.

Problem IV

The design optimization of DC is formulated as:

Minimize f = EV [RT (x)]SS,U (4.27)

the reduction of the expected value (EV ) of the mean resistance (RT ) in head waves, taking into account stochastic
sea state (SS) in the North Pacific ocean and variable speed (U) [97]. A four design variables (N = 4) control global
shape modifications, based on the KLE of the shape modification vector [16], is used. The problem is solved by
means of stochastic radial-basis functions interpolation [26] of high-fidelity URANS simulations.

4.2.2 DTMB 5415
The SBD application presented is the hydrodynamic hull-form optimization of a USS Arleigh Burke-class de-
stroyer, namely the DTMB 5415 model, an early and open to public version of the DDG-51. The DTMB 5415
model has been widely investigated through towing tank experiments [126, 127] and SBD studies, including hull-
form optimization [128]. Recently, the DTMB 5415 model has been selected as the test case for the SBD activities
within the NATO AVT-204, aimed at a multi-objective design optimization for multi-speed reduced resistance and
improved seakeeping performance [116], and AVT-252 for stochastic design optimization.

Figure 4.7: A 5.720 m length model of the DTMB 5415 (CNR-INSEAN model 2340)

Figure 4.7 shows the geometry of the CNR-INSEAN 2340 model, a geosym replica of the DTMB 5415 model
used for towing tank experiments, as seen in [126]. The main particulars of the full/model scale and tests conditions
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are summarized in Tab. 4.9. Since no rudder is considered here, the length between perpendiculars (LBP) is
calculated from the fore perpendicular to the transom bottom edge.

Table 4.9: DTMB 5415 main particulars and test conditions

Description Symbol Full scale Model scale Unit

Displacement ∇ 8,636 0.549 tonnes
Length between perpendiculars LBP 142.0 5.720 m
Beam B 18.90 0.760 m
Draft T 6.160 0.248 m
Longitudinal center of gravity LCG 71.60 2.884 m
Vertical center of gravity VCG 1.390 0.056 m
Roll radius of gyration Kxx/B 0.400 0.400 –
Pitch radius of gyration Kyy/LBP 0.250 0.250 –
Yaw radius of gyration Kzz/LBP 0.250 0.250 –

Froude number Fr [0.250;0.410]* 0.250 –
Reynolds number Re 1.215e9 9.824e6 –
Water density ρ 998.5 998.5 kg/m3

Kinematic viscosity ν 1.09e-6 1.09e-6 m2/s
Gravity acceleration g 9.803 9.803 m/s2

Wave period Tw 9.700 not used s
Wave height Hw 3.250 not used m
* Fr=0.41 is used only for seakeeping optimization

Six SBD problems (see Tab. 4.7) are used to study and verify the performance of the optimization algorithms.
Specifically, problem V is used to compare the performance of DIRECT and its global/local hybridization, problem
VI and VII compare DPSO and DIRECT to LS-DF PSO and DIRMIN-2, problem VIII is used to show the benefits
of dimensionality reduction applying LS-DF PSO as optimization algorithm, and finally problems IX and X com-
pare the performance of DPSO, DIRECT and FSA. The problems details pertaining the hull-form optimization of
the DTMB 5415 are described in the following subsections.

Low- and high-fidelity simulations are performed for the right demi-hull, taking advantage of symmetry about
the xz-plane. The potential flow (PF) computational domain for the free surface is defined within 1LBP upstream,
3LBP downstream and 1.5LBP sideways, as shown in Fig. 4.8a. The associated panel grid used (Fig. 4.8b) is sum-
marized in Tab. 4.10 and guarantee solution convergence. Table 4.11 summarizes the associated background and
boundary layer volume grids used for the RANS solver, designed to have y+ = 0.3 at Fr=0.25. The computational
domain and grids are shown in Figs. 4.9.

Table 4.10: Computationel panel grid for PF solver (WARP)

Hull Free surface Total
Upstream Hull side Downstream

150 × 30 30 × 44 30 × 44 90 × 44 11k

(a) Free-surface (b) Hull

Figure 4.8: Computational panel grid for WARP
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Table 4.11: Computational volume grid for RANS solver (CFDShip-Iowa)

Background Boundary layer Total

227 × 155 × 115 243 × 71 × 115 6M

(a) Background (b) Boundary layer

Figure 4.9: Computational volume grid for CFDShip-Iowa

The validation of the PF and RANS analyses performed by WARP and CFDShip-Iowa, respectively, for the
original hull is shown in Fig. 4.10 versus experimental (EFD) data collected at CNR-INSEAN [129], showing a
reasonable agreement especially for low speeds; CT = RT/0.5ρU2Sw,stat , σ/LBP, and τ are shown, where U is the
undisturbed flow speed, Sw,stat is the static wetted surface area, σ is the sinkage (positive if the center of gravity
sinks), and τ is the trim angle (positive if the bow sinks). Error bars indicate the grid uncertainty, evaluated using
the factor of safety method [130].
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Figure 4.10: Total resistance coefficient CT = RT/0.5ρU2Sw,stat (a), non-dimensional sinkage (b), and trim (c) in
calm water versus Fr, for the model scale DTMB 5415 (LBP=5.72 m)

Problem V

The single-objective optimization of DTMB 5415 is formulated as:

Minimize f = RT (x)
subject to LBP(x) = LBP0

∇(x) = ∇0
and to |∆B(x)| ≤ 0.05B0

|∆T (x)| ≤ 0.05T0

(4.28)
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where RT is the total resistance in calm water at Fr equal to 0.25 in full scale. Geometrical constraints include fixed
length between perpendiculars (LBP) and fixed displacement (∇), with beam (B) and draft (T ) varying between
±5% of the original value. The OBFE 2D ψψψ i ∈ R3 ( j = 1, ...,8) (see Sec. 2.2) are applied for the modification of
the hull shape, controlled by N = 8 design variables αi ∈ R (i = 1, . . . ,8), as

δδδ s(ξ ,η) =
8

∑
i=1

αi ψψψ i(ξ ,η) (4.29)

Specifically, six orthogonal functions and design variables are used for the hull, whereas two functions/variables
are used for the sonar dome. The corresponding functions are shown in Fig. 4.11. Table 4.12 summarized the
parameters used herein, including upper and lower bounds used for the dimensional design variables αi. The
results will be presented in the following in terms of non-dimensional design variables xi ∈ [−1,1].
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Figure 4.11: Problem V, 2D orthogonal functions ψψψ i(ξ ,η)

Table 4.12: Problem V, 2D orthogonal functions parameters, for shape modification

Description i ri φi ti χi q(i) αi,min [m] αi,max [m]

1 2.0 0 1.0 0 2 -1.0 1.0
2 3.0 0 1.0 0 2 -1.0 1.0

Hull 3 4.0 0 1.0 0 2 -1.0 1.0
modification 4 1.0 0 2.0 0 2 -0.5 0.5

5 1.0 0 3.0 0 2 -0.5 0.5
6 1.0 0 4.0 0 2 -0.5 0.5

Sonar dome 7 1.0 0 1.0 0 2 -0.3 0.3
modification 8 0.5 π/2 0.5 0 3 -0.5 0.5

The solver used is the potential flow code WARP, based on the NK linearization [99]. The wave resistance
is evaluated with the transverse wave cut method [101], whereas the friction resistance is estimated by a local
approximation based on flat-plate theory [102]. The steady 2DOF (sinkage and trim) equilibrium is achieved by
iteration of the flow solver and the body equation of motion.

Problem VI

The single-objective optimization of DTMB 5415 is formulated as:

Minimize f = RT (x)
subject to LBP(x) = LBP0

∇(x) = ∇0
and to |∆B(x)| ≤ 0.05B0

|∆T (x)| ≤ 0.05T0

(4.30)
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where RT is the total resistance in calm water at Fr equal to 0.25 in full scale. Geometrical constraints include fixed
length between perpendiculars (LBP) and fixed displacement (∇), with beam (B) and draft (T ) varying between
±5% of the original value.

Shape modifications δδδ s are produced directly on the Cartesian coordinates xs of the computational body surface
grid, as per

xs(ααα) = xs,0 +δδδ s(ααα) (4.31)

where ααα is the design variable vector and xs,0 represents the original body surface grid. The shape modification δδδ s
is defined using N = 6 OBFE 2D (see Sec. 2.2) of the curvilinear coordinates ξ and η over the (demi) hull

ψψψ i(ξ ,η) : G = [0,Lξ ]× [0,Lη ] ∈ R2 −→ R3, i = 1, ...,6 (4.32)

as

δδδ s(ξ ,η) =
6

∑
i=1

αi ψψψ i(ξ ,η) (4.33)

Four functions and design variables are used for the hull, whereas two functions/variables are used for the sonar
dome, as summarized in Tab. 4.13. The corresponding basis functions are shown in Fig. 4.12. Upper and lower
bounds used for the design variables αi are included in Tab. 4.13.

Table 4.13: Problem VI, OBFE 2D parameters for shape modification

Description i ri φi ti χi q(i) αi,min [m] αi,max [m]

1 2.0 0 1.0 0 2 -2.0 2.0
Hull 2 3.0 0 1.0 0 2 -2.0 2.0

modification 3 1.0 0 2.0 0 2 -1.0 1.0
4 1.0 0 3.0 0 2 -1.0 1.0

Sonar dome 5 1.0 0 1.0 0 2 -0.6 0.6
modification 6 0.5 π/2 0.5 0 3 -1.0 1.0

(i = 1) (i = 2) (i = 5)

(i = 3) (i = 4) (i = 6)
(a) Hull modification (b) Sonar dome modification

Figure 4.12: Problem VI, 2D orthogonal functions ψψψ i(ξ ,η)

Fixed LBP and ∇ are satisfied by automatic geometric scaling, while constraints for B and T are handled using
a penalty function method. This is used here, since the relationship between beam/draft variations and design
variables is not explicitly provided by the orthogonal expansion and geometric scaling.

Simulations are conducted using the code WARP. Wave resistance computations are based on linear potential
flow theory using NK linearization. The wave resistance is evaluated with the transverse wave cut method [101,
131], whereas the frictional resistance is estimated using a flat-plate approximation, based on the local Reynolds
number [102]. The steady 2DOF (sinkage and trim) equilibrium is achieved by iteration of the flow solver and the
body equation of motion.

For the hull form optimization process, a limit to the number of function evaluations is set equal to 1536, i.e.
256N.
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Problem VII

The single-objective optimization of DTMB 5415 is formulated as:

Minimize f =CT (x)
subject to LBP(x) = LBP0

and to |∆B(x)| ≤ 0.05B0
|∆T (x)| ≤ 0.05T0

(4.34)

where CT is the total resistance coefficient in calm water at Fr equal to 0.25 in model scale. Geometrical constraints
include fixed length between perpendiculars (LBP), with beam (B) and draft (T ) varying between ±5% of the
original value.

The shape modification δδδ s is defined using M = 27 OBFE 3D of the Cartesian coordinates x, y, z over a
hyper-rectangle

ϕϕϕ i(x,y,z) : G = [0,Lx]× [0,Ly]× [0,Lz] ∈ R3 −→ R3, j = i, ...,M (4.35)

as

δδδ s(x,y,z) =
M

∑
i=1

βi ϕϕϕ i(x,y,z) (4.36)

where the coefficients βi ∈R (i = 1, . . . ,M) are the design variables, and ϕϕϕ i are the OBFE 3D (see Sec. 2.3). Table
4.14 summarizes the parameters used herein.

Table 4.14: Problem VII, OBFE 3D parameters for shape modification

i ni φi mi χi li θi q(i) βi,min [m] βi,max [m]

1 1.0 0 1.0 0 1.0 0 2 -1.0 1.0
2 1.0 0 1.0 0 2.0 0 2 -1.0 1.0
3 1.0 0 2.0 0 1.0 0 2 -1.0 1.0
4 2.0 0 1.0 0 1.0 0 2 -1.0 1.0
5 1.0 0 2.0 0 2.0 0 2 -1.0 1.0
6 2.0 0 1.0 0 2.0 0 2 -1.0 1.0
7 2.0 0 2.0 0 1.0 0 2 -1.0 1.0
8 2.0 0 2.0 0 2.0 0 2 -1.0 1.0
9 1.0 0 1.0 0 3.0 0 2 -1.0 1.0
10 1.0 0 3.0 0 1.0 0 2 -1.0 1.0
11 3.0 0 1.0 0 1.0 0 2 -1.0 1.0
12 1.0 0 2.0 0 3.0 0 2 -1.0 1.0
13 2.0 0 1.0 0 3.0 0 2 -1.0 1.0
14 1.0 0 3.0 0 2.0 0 2 -1.0 1.0
15 2.0 0 3.0 0 1.0 0 2 -1.0 1.0
16 3.0 0 1.0 0 2.0 0 2 -1.0 1.0
17 3.0 0 2.0 0 1.0 0 2 -1.0 1.0
18 2.0 0 2.0 0 3.0 0 2 -1.0 1.0
19 2.0 0 3.0 0 2.0 0 2 -1.0 1.0
20 3.0 0 2.0 0 2.0 0 2 -1.0 1.0
21 1.0 0 3.0 0 3.0 0 2 -1.0 1.0
22 3.0 0 1.0 0 3.0 0 2 -1.0 1.0
23 3.0 0 3.0 0 1.0 0 2 -1.0 1.0
24 2.0 0 3.0 0 3.0 0 2 -1.0 1.0
25 3.0 0 2.0 0 3.0 0 2 -1.0 1.0
26 3.0 0 3.0 0 2.0 0 2 -1.0 1.0
27 3.0 0 3.0 0 3.0 0 2 -1.0 1.0

The design space defined by Eq. 4.36 is reduced in dimensionality using the generalized KLE method presented
Sec. 2.5 and in Ref. [16]:

δδδ s(ξ ,η)≈
N

∑
i=1

αi ΦΦΦi(ξ ,η) (4.37)
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where ξ and η are curvilinear coordinates over the (demi) hull, αi ∈R (i = 1, . . . ,N) are new design variables and
ΦΦΦi are the solutions of the eigenproblem∫∫

G
ρ(ξ ′,η ′)〈δδδ s(ξ ,η)⊗δδδ s(ξ ′,η ′)〉 (4.38)

ΦΦΦi(ξ ′,η ′)dξ ′dη ′= λiΦΦΦi(ξ ,η)

provided that 〈δδδ s(ξ ,η ,ααα)〉= 0, ∀(x,y,z) ∈ G. The brackets 〈·〉 indicate ensemble average over the realizations of
the design variable vector βββ = {βi} ∈ D, which is assessed here using 10,000 uniform random samples (each of
them resulting in a modified hull form). The weight ρ ∈R+ defines a generalized inner product and is used to give
more emphasis to submerged grid nodes. The following orthogonality property holds [132, 133]∫∫

G
ρ(ξ ,η)ΦΦΦi(ξ ,η) ·ΦΦΦ j(ξ ,η)dxdydz = δi j (4.39)

Finally, the reduced dimension N is selected in order to retain the 90% of the original geometric variance, as

N

∑
i=1

λi ≥ 0.90
∞

∑
k=1

λk (4.40)

provided that λ1 ≥ λ2 ≥ . . . ≥ λi ≥ λi+1. For the current problem, N = 11 and the corresponding eigenfunctions
(represented on the hull) are shown in Fig. 4.13. Details of the formulation and numerical implementation of the
design space dimensionality reduction technique may be found in [16]. Details of the application to the hull form
optimization of the DTMB 5415 may be found in [86].

( j = 1) ( j = 2) ( j = 3)

( j = 4) ( j = 5) ( j = 6)

( j = 7) ( j = 8) ( j = 9)

( j = 10) ( j = 11)

Figure 4.13: Problem VII, KLE solutions ΦΦΦ j(x,y,z)

The boundary layer grid is modified as presented in Sec. 2.4.1, setting c = 0 in Eq. 2.17 and l = l̄ in Eq.
2.16. During the metamodel training, each modified grid is assessed for quality by means of y+, determinant of
the Jacobian matrix and skewness.

Simulations are performed with the RANS code CFDShip-Iowa V4.5 [104]. The SST blended k− ε/k−ω

turbulent model is used. The free-surface location is predicted by a single phase level set method. A second order
upwind scheme is used to discretize the convective terms of momentum equations. For a high performance parallel
computing, an MPI-based domain decomposition approach is used, where each decomposed block is mapped
to one processor. The code SUGGAR runs as a separate process from the flow solver to compute interpolation
coefficients for the overset grid, which enables CFDShip-Iowa to take care of 6DOF with a motion controller at
every time step. Only 2DOFs are considered in the current study.
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The optimization problem is solved using a metamodel (see Appendix B), trained by 71 RANS simulations
defined using a sequential sampling procedure [27]. The metamodel used is a first order polyharmonic spline,
which is a special case of radial basis function (RBF) interpolation [26].

For the hull form optimization process, a limit to the number of metamodel-based function evaluations is set
equal to 8800, i.e. 800N.

Problem VIII

A single-objective shape optimization is formulated as:

Minimize f = RT (x)
subject to LBP(x) = LBP0

∇(x) = ∇0
and to |∆B(x)| ≤ 0.05B0

|∆T (x)| ≤ 0.05T0
V (x)≥V0

(4.41)

where x is the design variable vector, RT is the resistance in calm water at 18 kn (corresponding to Fr = 0.25), LBP
is the length between perpendiculars, ∇ is the displacement, B is the beam, T is the draft, and V is the volume
reserved for the sonar in the dome. Subscript ‘0’ indicates parent hull values.

A linear expansion of the shape modification vector δδδ s ∈ R3 is used [90]. Specifically, M = 9 OBFE 2D
ψψψ i ∈ R3 (i = 1, ...,M) are applied for the modification of the hull shape (see Sec. 2.2), controlled by nine design
variables αi ∈ R (i = 1, . . . ,M), as

δδδ s(ξ ,η) =
M

∑
i=1

α j ψψψ i(ξ ,η) (4.42)

The corresponding functions are shown in Fig. 4.14. Table 4.15 summarized the parameters used for the current
study.

(a) i = 1 (b) i = 2 (c) i = 3

(d) i = 4 (e) i = 5 (f) i = 6

(g) i = 7 (h) i = 8 (i) i = 9

Figure 4.14: Problem VIII, 2D orthogonal functions ψψψ i(ξ ,η)

The equality constraints for LBP and ∇ are automatically satisfied by the geometry modification tool, through
scaling along x (for LBP), y and z (for ∇). This introduces nonlinearities in the representation of Eq. 4.42.
Inequality (geometric) constraints are treated by a penalty function method.

After design-space dimensionality reduction is performed, shape modification are produced directly on the
computational grid g, so that

g(α1, . . . ,αN) = g0 +
N

∑
i=1

sup{αi}ϕϕϕ i (4.43)

where g is the modified-shape grid, g0 is the grid associated to the mean shape (corresponding to the original hull)
and αi are the new design variable. The term sup{αi} is used only for normalization.

47



A. Serani CHAPTER 4. OPTIMIZATION PROBLEMS

Table 4.15: Problem VIII, OBFE 2D parameters for shape modification

i ri φi ti χi q(i)

1 1.0 0 1.0 0 2
2 1.0 0 2.0 0 2
3 1.0 0 3.0 0 2
4 2.0 0 1.0 0 2
5 2.0 0 2.0 0 2
6 2.0 0 3.0 0 2
7 3.0 0 1.0 0 2
8 3.0 0 2.0 0 2
9 3.0 0 3.0 0 2

The weight function ρ(x), for the dimensionality reduction procedure, is defined so as to give more emphasis
to submerged nodes (in water), so that {

ρ(x) = 1, if z≤ zWL

ρ(x) = 0, if z > zWL
(4.44)

where zWL represent the location of the water line. The design space define by the M = 9 orthogonal function is
sampled using a uniform random distribution of S = 2500, 5000, and 10000 items. The KL values cumulative
sum, (corresponding to the geometric variance retained by a N-dimensional design space), is shown in Fig. 4.15a.
Results are found convergent versus S. The reduced-dimensionality spaces, are formed by choosing N = 1, . . . ,6,
retaining approximately the 27%, 48%, 67%, 81%, 87% and 92% of the original geometric variance, respectively.
The KL modes and the corresponding hull shapes are shown in Fig. 4.16.

Simulations are conducted using the code WARP (Wave Resistance Program). Wave resistance computations
are based on the DM linear PF theory [100]. The wave resistance is evaluated with the standard pressure integral,
whereas the frictional resistance is estimated using a flat-plate approximation, based on the local Reynolds number
[102].
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Figure 4.15: Problem VIII, geometric variance retained by a reduced-dimensionality space of dimension N: (a)
absolute and (b) percent values
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(d) k = i (e) i = 5 (f) i = 6

Figure 4.16: Problem VIII, KL modes (i = 1, . . . ,6)
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Problem IX

A single-objective shape optimization is formulated as:

Minimize f =
RT

∇

∇0

RT0
subject to LBP(x) = LBP0

and to |∆B(x)| ≤ 0.05B0
|∆T (x)| ≤ 0.05T0
V (x)≥V0

(4.45)

where, the objective function is the normalized total resistance RT over displacement ∇ ratio in calm water at
18 kn (Fr=0.25). Geometrical equality constraints include fixed length between perpendicular (LBP), whereas
geometrical inequality constraints include limited variation of beam and draught (±5%) and reserved volume (V )
for the sonar in the dome, corresponding to 4.9 m diameter and 1.7 m length (cylinder). A N = 6 design space is
used, corresponding to that used and described for Problem VIII.

The SBDO problem is solved using the code WARP. Wave resistance computations are based on the DM
linear PF theory [100]. The wave resistance is evaluated with the standard pressure integral, whereas the frictional
resistance is estimated using a flat-plate approximation, based on the local Reynolds number [102].

Problem X

A single-objective shape optimization is formulated as:

Minimize f = 0.5
RMS(az)

RMS(az0)

∣∣∣∣30kn

0
+0.5

RMS(ϕ)
RMS(ϕ0)

∣∣∣∣18kn

150
subject to LBP(x) = LBP0

and to |∆B(x)| ≤ 0.05B0
|∆T (x)| ≤ 0.05T0
V (x)≥V0

(4.46)

where RMS represents the root mean square, az is the vertical acceleration of the bridge (located 27 m forward
amidships and 24.75 m above keel) at 30 kn (Fr=0.41) in head wave (0 deg), and ϕ is the roll angle at 18
kn (Fr=0.25) in stern long-crested wave (150 deg). The wave conditions corresponds to sea state 5, using the
Bretschneider spectrum with a significant wave height of 3.25 m and modal period of 9.7 s. Subscript ‘0’ is
referred to the parent hull value.

Geometrical equality constraints include fixed length between perpendicular, whereas geometrical inequality
constraints include limited variation of beam and draught (±5%) and reserved volume for the sonar in the dome,
corresponding to 4.9 m diameter and 1.7 m length (cylinder). A N = 6 design space is used, corresponding to that
used and described for Problem VIII and IX.

Simulations are performed using the code SMP, that provides a potential flow solution based on linearized strip
theory. The 6DOF response is given, advancing at constant forward speed with arbitrary heading in both regular
waves and irregular seas, as well as the longitudinal, lateral, and vertical responses at specified location of the ship
[103]. The associated hull grid is the same used for the other DTMB 5415 problems described before, and the
validation versus the experimental data collected at the IIHR [134] is shown in Fig. 4.17, showing a reasonable
agreement.
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Figure 4.17: Problem X, seakeeping solver validation in head waves at 30 kn
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Chapter 5

Numerical results

“Where should I go” - Alice.“That depends on
where you want to end up” - The Cheshire Cat.

— Lewis Carroll, Alice in Wonderland

5.1 Analytical test functions
Test-function results are presented in the following and used to define the guidelines for DPSO, DIRMIN, DIRMIN-
2, and FSA adopted later for the SBD problem.

5.1.1 DPSO
Figures 5.1 and 5.3, show the performances of SD-PSO versus the budget of function evaluations, in terms of
∆x, ∆ f , ∆t , for N < 10 and ≥ 10 respectively. Average values are presented, conditional to number of particles,
particles initialization, coefficient set and wall-type approach, respectively.

Figures 5.2 and 5.4 show the relative variance σ2
r of ∆x, ∆ f , ∆t for N < 10 and ≥ 10 respectively, retained

by each of the aforementioned parameter. The particles initialization is found the most significant parameter to
affect S-DPSO performance, especially for N ≥ 10, whereas the coefficient set (selected herein) and the wall-type
approach are shown to be the least important.

Tables 5.1 and 5.2 show the five best performing setups for each ∆x, ∆ f , and ∆t , for N < 10 and ≥ 10 re-
spectively, varying the budget of function evaluations Nmax. Average values and standard deviations (STD) for all
S-DPSO setups are also provided.

Generally, A-DPSO results are found similar to S-DPSO. Specifically, Figs. 5.5 and 5.7, show the performances
of A-DPSO versus the budget of function evaluations, in terms of ∆x, ∆ f , ∆t , for N < 10 and ≥ 10 respectively.
Average values are presented, conditional to number of particles, particles initialization, coefficient set and wall-
type approach respectively.

Figures 5.6 and 5.8 show the relative variance σ2
r of ∆x, ∆ f , ∆t for N < 10 and ≥ 10 respectively, retained

by each of the aforementioned parameters. The particles initialization is again the most significant parameter to
affect A-DPSO performance, especially for low budgets and N ≥ 10. The coefficient set (selected herein) and the
wall-type approach are shown to have a limited effect on the performance, compared to other parameters.

Tables 5.3 and 5.4 summarize the five best performing setups for each ∆x, ∆ f , and ∆t , for N < 10 and ≥ 10,
respectively, varying the budget of function evaluations. Overall averages and standard deviations for all A-DPSO
setups are also included

The most frequent setups are selected from Tabs. 5.1, 5.2, 5.3 and 5.4, in order to define a reasonable and
robust guideline for the use of S-DPSO and A-DPSO. These are summarized in Tab. 5.5.

Figures 5.9 and 5.10 show the performance of the suggested setups, for S-DPSO and A-DPSO and N < 10 and
≥ 10, respectively. Average performance, standard deviation and best performing setup among all combinations
is also shown for each budget. The guideline setups (“Guide”) are found always very close or coincident to the
“Best”. In addition, it may be noted how A-DPSO is always equivalent or slightly better than S-DPSO.
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Figure 5.1: S-DPSO average performance for N < 10
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Table 5.1: Best performing setups for S-DPSO, N < 10

Nmax/N
Average Best S-DPSO
(STD)

∆x ∆ f ∆t
Np
N Init Coef Wall ∆x

Np
N Init Coef Wall ∆ f

Np
N Init Coef Wall ∆t

128

4 C.1 4 SEW 0.081 4 C.1 4 IW 0.015 4 C.1 4 SEW 0.064
0.177 0.146 0.192 4 C.1 3 IW 0.084 2 A.1 4 SEW 0.017 4 C.1 4 IW 0.066

4 C.1 4 IW 0.086 4 C.0 4 SEW 0.017 2 A.1 4 SEW 0.069
(0.080) (0.084) (0.085) 32 A.1 3 SEW 0.088 4 C.1 4 SEW 0.018 4 C.0 4 SEW 0.076

16 A.1 3 SEW 0.089 2 A.1 4 IW 0.030 2 A.1 4 IW 0.078

256

32 A.1 3 SEW 0.071 4 C.1 4 SEW 0.013 4 C.1 4 SEW 0.060
0.162 0.124 0.171 64 A.1 3 SEW 0.071 4 C.1 4 IW 0.014 4 C.1 4 IW 0.062

4 C.1 4 SEW 0.078 4 C.0 4 SEW 0.015 16 A.1 3 SEW 0.066
(0.077) (0.084) (0.084) 16 A.1 3 SEW 0.079 2 A.1 4 SEW 0.017 2 A.1 4 SEW 0.069

4 C.1 4 IW 0.081 16 A.1 3 SEW 0.024 4 C.0 4 SEW 0.072

512

64 A.1 4 IW 0.053 4 C.1 4 SEW 0.013 32 A.1 3 SEW 0.055
0.151 0.108 0.156 64 A.1 2 IW 0.060 4 C.1 4 IW 0.014 64 A.1 3 IW 0.057

32 A.1 3 SEW 0.062 4 C.0 4 SEW 0.015 64 A.1 3 SEW 0.058
(0.077) (0.085) (0.085) 64 A.1 3 IW 0.063 2 A.1 4 SEW 0.017 4 C.1 4 SEW 0.059

64 A.1 3 SEW 0.064 32 A.1 3 SEW 0.018 4 C.1 4 IW 0.061

1024

64 A.1 4 IW 0.047 64 A.1 3 SEW 0.002 64 A.1 3 SEW 0.035
0.145 0.097 0.145 64 A.1 3 SEW 0.049 32 A.1 3 SEW 0.002 64 A.1 4 IW 0.036

64 A.1 2 IW 0.053 64 A.0 4 IW 0.003 64 A.1 3 IW 0.041
(0.079) (0.088) (0.089) 64 A.1 2 SEW 0.055 64 A.1 3 IW 0.004 32 A.1 3 SEW 0.042

64 A.1 3 IW 0.057 32 A.0 4 SEW 0.004 64 A.1 4 SEW 0.046

2048

64 A.1 2 IW 0.042 64 A.1 3 SEW 0.001 64 A.1 2 IW 0.030
0.141 0.090 0.138 64 A.1 4 IW 0.045 64 A.1 4 SEW 0.001 64 A.1 4 IW 0.032

64 A.1 3 SEW 0.047 64 A.1 4 IW 0.001 64 A.1 3 SEW 0.033
(0.080) (0.091) (0.091) 64 A.1 2 SEW 0.053 64 A.0 4 SEW 0.001 64 A.1 2 SEW 0.038

64 A.1 3 IW 0.055 64 A.0 4 IW 0.002 64 A.1 3 IW 0.039

4096

64 A.1 2 IW 0.039 128 A.1 3 IW 0.000 64 A.1 2 IW 0.027
0.140 0.087 0.136 64 A.1 4 IW 0.044 128 C.1 3 SEW 0.001 64 A.1 4 IW 0.031

64 A.1 3 SEW 0.047 64 A.1 2 IW 0.001 64 A.1 3 SEW 0.033
(0.081) (0.092) (0.092) 64 A.1 2 SEW 0.050 128 C.1 4 SEW 0.001 64 A.1 2 SEW 0.035

128 C.1 4 IW 0.051 64 C.0 4 SEW 0.001 128 C.1 4 IW 0.036

Av.

64 A.1 4 IW 0.064 4 C.1 4 SEW 0.013 4 C.1 4 SEW 0.060
0.153 0.109 0.156 64 A.1 3 SEW 0.065 4 C.1 4 IW 0.014 32 A.1 3 SEW 0.060

64 A.1 2 IW 0.065 4 C.0 4 SEW 0.015 4 C.1 4 IW 0.062
(0.077) (0.084) (0.085) 32 A.1 3 SEW 0.066 2 A.1 4 SEW 0.017 64 A.1 3 SEW 0.066

64 A.1 3 IW 0.070 32 A.1 3 SEW 0.023 64 A.1 4 IW 0.069
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100  1000

∆
x
  
[-

]

Nmax/N [-]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100  1000

∆
f 
 [
-]

Nmax/N [-]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100  1000

∆
t 
 [
-]

Nmax/N [-]

Set 1
Set 2
Set 3
Set 4
Set 5

(c) Average performance, conditional to coefficient set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100  1000

∆
x
  
[-

]

Nmax/N [-]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100  1000

∆
f 
 [
-]

Nmax/N [-]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100  1000

∆
t 
 [
-]

Nmax/N [-]

IW
SEW

(d) Average performance, conditional to wall-type approach

Figure 5.3: S-DPSO average performance for N ≥ 10
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Table 5.2: Best performing setups for S-DPSO, N ≥ 10

Nmax/N
Average Best S-DPSO
(STD)

∆x ∆ f ∆t
Np
N Init Coef Wall ∆x

Np
N Init Coef Wall ∆ f

Np
N Init Coef Wall ∆t

128

16 A.1 3 SEW 0.181 4 A.1 4 SEW 0.024 4 A.1 4 SEW 0.143
0.349 0.177 0.301 2 A.1 4 SEW 0.192 4 A.1 4 IW 0.028 2 A.1 4 SEW 0.147

16 A.1 2 IW 0.193 8 A.1 3 SEW 0.034 16 A.1 3 SEW 0.150
(0.134) (0.137) (0.133) 4 A.1 4 SEW 0.197 8 A.1 3 IW 0.035 4 A.1 4 IW 0.151

4 C.1 4 SEW 0.198 4 A.0 3 SEW 0.036 2 A.1 2 IW 0.151

256

16 A.1 3 SEW 0.174 4 A.1 4 SEW 0.016 16 A.1 3 SEW 0.136
0.337 0.158 0.286 16 A.1 4 SEW 0.181 8 A.1 3 SEW 0.017 8 C.1 4 SEW 0.138

16 A.1 4 IW 0.182 4 A.1 4 IW 0.020 4 A.1 4 SEW 0.139
(0.134) (0.134) (0.132) 32 A.1 3 SEW 0.187 8 A.1 3 IW 0.021 8 A.1 2 IW 0.139

8 A.1 2 IW 0.190 8 C.1 4 SEW 0.022 4 C.1 4 SEW 0.143

512

16 A.1 3 SEW 0.170 16 A.1 3 SEW 0.008 16 A.1 3 SEW 0.122
0.324 0.143 0.273 16 A.1 4 SEW 0.173 8 C.1 4 SEW 0.015 16 A.1 4 IW 0.130

16 A.1 4 IW 0.173 8 A.1 3 SEW 0.015 16 A.1 4 SEW 0.131
(0.133) (0.133) (0.131) 32 A.1 3 SEW 0.174 4 A.1 4 SEW 0.016 32 A.1 3 SEW 0.131

32 A.1 4 SEW 0.176 16 A.1 3 IW 0.016 8 C.1 4 SEW 0.132

1024

32 A.1 4 SEW 0.164 32 A.1 3 SEW 0.004 16 A.1 3 SEW 0.120
0.317 0.133 0.264 16 A.1 3 SEW 0.168 16 A.1 3 SEW 0.005 32 A.1 3 SEW 0.120

16 A.1 4 SEW 0.168 32 C.1 3 SEW 0.007 16 A.1 2 IW 0.123
(0.133) (0.134) (0.132) 32 A.1 3 SEW 0.168 64 A.1 3 SEW 0.011 32 A.1 4 SEW 0.123

16 A.1 4 IW 0.170 32 A.1 3 IW 0.013 16 A.1 4 IW 0.123

2048

32 A.1 4 SEW 0.160 32 A.1 3 SEW 0.003 32 A.1 4 SEW 0.116
0.312 0.127 0.259 16 A.1 2 IW 0.164 64 A.1 3 SEW 0.004 16 A.1 2 IW 0.117

64 A.1 4 IW 0.165 32 C.1 3 SEW 0.005 32 A.1 3 SEW 0.118
(0.134) (0.136) (0.133) 32 A.1 3 SEW 0.166 16 A.1 3 SEW 0.005 16 A.1 3 SEW 0.120

16 A.1 3 SEW 0.168 64 C.1 3 IW 0.010 16 C.1 2 IW 0.120

4096

32 A.1 4 SEW 0.159 64 A.1 3 SEW 0.002 32 A.1 4 SEW 0.115
0.310 0.123 0.256 64 A.1 4 IW 0.160 32 A.1 3 SEW 0.003 64 A.1 4 IW 0.115

128 A.1 4 SEW 0.163 32 C.1 3 SEW 0.005 16 A.1 2 IW 0.117
(0.134) (0.137) (0.135) 16 A.1 2 IW 0.163 16 A.1 3 SEW 0.005 32 A.1 3 SEW 0.118

32 A.1 3 SEW 0.166 64 C.1 3 IW 0.008 128 A.1 4 SEW 0.118

Av.

16 A.1 3 SEW 0.171 4 A.1 4 SEW 0.017 16 A.1 3 SEW 0.128
0.325 0.143 0.273 32 A.1 4 SEW 0.177 16 A.1 3 SEW 0.017 32 A.1 3 SEW 0.136

16 A.1 2 IW 0.177 8 A.1 3 SEW 0.019 16 A.1 2 IW 0.136
(0.133) (0.133) (0.132) 16 A.1 4 IW 0.178 8 C.1 4 SEW 0.020 8 C.1 4 SEW 0.137

32 A.1 3 SEW 0.178 4 A.1 4 IW 0.021 16 A.1 4 IW 0.137
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Figure 5.5: A-DPSO average performance for N < 10
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Figure 5.6: Relative variance σ2
r (%) of A-DPSO setting parameters for N < 10

Table 5.3: Best performing setups for A-DPSO, N < 10

Nmax/N
Average Best A-DPSO
(STD)

∆x ∆ f ∆t
Np
N Init Coef Wall ∆x

Np
N Init Coef Wall ∆ f

Np
N Init Coef Wall ∆t

128

4 C.1 4 SEW 0.076 4 C.1 3 IW 0.004 4 C.1 4 IW 0.058
0.175 0.146 0.192 4 C.1 4 IW 0.081 4 C.1 4 IW 0.005 4 C.1 4 SEW 0.062

8 A.1 3 IW 0.085 4 C.0 3 IW 0.015 4 C.1 3 IW 0.069
(0.080) (0.082) (0.084) 2 A.0 4 SEW 0.092 4 C.0 4 SEW 0.021 4 C.0 3 IW 0.074

16 A.1 3 SEW 0.092 4 C.0 4 IW 0.022 4 C.0 4 SEW 0.075

256

4 C.1 4 IW 0.072 4 C.1 4 IW 0.002 4 C.1 4 IW 0.051
0.160 0.124 0.171 4 C.1 4 SEW 0.074 4 C.1 3 IW 0.004 4 C.1 4 SEW 0.060

16 A.1 2 SEW 0.076 4 C.0 3 IW 0.014 4 C.0 4 SEW 0.066
(0.076) (0.081) (0.082) 16 A.0 4 IW 0.077 4 C.0 4 IW 0.014 4 C.1 3 IW 0.067

32 A.1 3 SEW 0.078 4 C.0 4 SEW 0.017 4 C.0 3 IW 0.071

512

32 A.1 4 IW 0.064 4 C.1 4 IW 0.001 4 C.1 4 IW 0.046
0.148 0.106 0.154 4 C.1 4 IW 0.065 4 C.1 3 IW 0.004 16 A.0 4 IW 0.051

32 C.1 4 IW 0.066 16 A.0 4 IW 0.005 4 C.1 4 SEW 0.059
(0.074) (0.082) (0.081) 32 A.1 2 IW 0.069 4 C.0 4 IW 0.014 32 A.1 3 SEW 0.063

32 A.0 4 SEW 0.070 4 C.0 3 IW 0.014 16 A.1 3 SEW 0.065

1024

32 A.1 4 IW 0.055 4 C.1 4 IW 0.001 4 C.1 4 IW 0.044
0.140 0.095 0.142 64 A.1 4 SEW 0.059 16 A.0 4 IW 0.002 32 A.1 4 IW 0.044

32 A.1 2 IW 0.061 4 C.1 3 IW 0.004 64 A.1 3 SEW 0.045
(0.075) (0.084) (0.084) 32 A.0 4 SEW 0.061 64 A.1 3 SEW 0.005 16 A.0 4 IW 0.049

32 C.1 4 IW 0.061 64 A.0 3 SEW 0.005 64 A.0 4 SEW 0.051

2048

64 A.1 4 SEW 0.051 4 C.1 4 IW 0.001 64 A.1 4 SEW 0.037
0.136 0.087 0.135 32 A.1 4 IW 0.055 32 C.1 4 SEW 0.002 32 A.1 2 IW 0.040

32 A.1 2 IW 0.056 16 A.0 4 IW 0.002 64 A.1 3 SEW 0.042
(0.076) (0.087) (0.087) 64 A.1 3 SEW 0.059 64 A.0 4 IW 0.003 32 A.1 4 IW 0.043

64 A.1 1 IW 0.059 32 A.1 2 IW 0.003 4 C.1 4 IW 0.044

4096

64 A.1 4 SEW 0.051 128 A.1 4 SEW 0.001 64 A.1 4 SEW 0.036
0.134 0.084 0.132 32 A.1 2 IW 0.055 4 C.1 4 IW 0.001 32 A.1 2 IW 0.039

32 A.1 4 IW 0.055 32 A.1 2 IW 0.002 64 A.1 1 IW 0.040
(0.077) (0.088) (0.088) 64 A.1 1 IW 0.057 32 C.1 4 SEW 0.002 64 A.1 3 SEW 0.041

64 A.1 3 SEW 0.057 16 A.0 4 IW 0.002 32 A.1 4 IW 0.043

Av.

4 C.1 4 IW 0.067 4 C.1 4 IW 0.002 4 C.1 4 IW 0.048
0.149 0.107 0.155 32 A.1 4 IW 0.070 4 C.1 3 IW 0.004 4 C.1 4 SEW 0.060

4 C.1 4 SEW 0.073 4 C.0 3 IW 0.014 4 C.0 4 SEW 0.067
(0.074) (0.081) (0.081) 32 C.1 4 IW 0.074 4 C.0 4 IW 0.015 4 C.1 3 IW 0.067

32 A.1 2 IW 0.074 4 C.0 4 SEW 0.018 16 A.0 4 IW 0.069
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(b) Average performance, conditional to swarm initialization
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(d) Average performance, conditional to wall-type approach

Figure 5.7: A-DPSO average performance for N ≥ 10
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Figure 5.8: Relative variance σ2
r (%) of A-DPSO setting parameters for N ≥ 10

Table 5.4: Best performing setups for A-DPSO, N ≥ 10

Nmax/N
Average Best A-DPSO
(STD)

∆x ∆ f ∆t
Np
N Init Coef Wall ∆x

Np
N Init Coef Wall ∆ f

Np
N Init Coef Wall ∆t

128

4 A.1 4 SEW 0.180 2 A.1 1 IW 0.026 4 A.1 4 SEW 0.136
0.345 0.172 0.297 8 C.1 4 SEW 0.183 4 A.1 3 SEW 0.027 4 C.1 3 SEW 0.144

4 C.1 3 SEW 0.187 2 C.1 3 SEW 0.028 2 A.1 1 IW 0.146
(0.132) (0.132) (0.130) 2 A.1 4 SEW 0.190 4 A.1 3 IW 0.030 4 A.1 4 IW 0.146

8 A.1 3 SEW 0.191 4 A.1 4 SEW 0.032 2 A.1 4 SEW 0.147

256

16 A.1 4 SEW 0.172 8 A.1 4 IW 0.018 8 A.1 4 IW 0.127
0.331 0.152 0.280 8 A.1 4 IW 0.176 16 A.1 3 SEW 0.019 4 A.1 4 SEW 0.127

4 A.1 4 SEW 0.176 8 A.1 4 SEW 0.019 8 A.1 4 SEW 0.135
(0.131) (0.127) (0.125) 32 A.1 3 SEW 0.179 4 A.1 4 SEW 0.019 8 C.1 4 SEW 0.138

16 A.1 4 IW 0.181 8 C.1 3 SEW 0.023 8 A.1 3 SEW 0.138

512

16 A.1 4 SEW 0.165 16 A.1 3 SEW 0.010 16 A.1 4 SEW 0.120
0.316 0.135 0.265 16 A.1 4 IW 0.166 8 A.1 4 IW 0.014 16 A.1 4 IW 0.121

32 A.1 3 SEW 0.168 8 A.1 4 SEW 0.014 8 A.1 4 IW 0.123
(0.128) (0.124) (0.125) 8 A.1 4 IW 0.172 16 A.1 3 IW 0.015 4 A.1 4 SEW 0.127

8 C.1 4 SEW 0.175 16 A.1 4 IW 0.018 8 C.1 4 SEW 0.127

1024

16 A.1 4 SEW 0.157 32 C.1 3 SEW 0.006 16 A.1 4 SEW 0.112
0.309 0.124 0.256 16 A.1 4 IW 0.162 16 A.1 3 SEW 0.007 16 A.1 4 IW 0.116

32 A.1 3 SEW 0.163 32 A.1 3 SEW 0.011 32 A.1 3 SEW 0.118
(0.127) (0.125) (0.125) 32 A.1 4 SEW 0.163 64 A.1 3 SEW 0.012 8 A.1 4 IW 0.123

32 A.0 4 SEW 0.166 16 A.1 4 IW 0.012 16 C.1 4 SEW 0.123

2048

32 A.0 4 SEW 0.155 64 A.1 3 SEW 0.002 16 A.1 4 SEW 0.112
0.304 0.118 0.250 16 A.1 4 SEW 0.156 32 C.1 3 SEW 0.005 32 A.1 4 SEW 0.113

32 A.1 4 SEW 0.156 64 C.1 3 SEW 0.006 64 A.1 3 SEW 0.114
(0.128) (0.127) (0.127) 16 A.1 2 IW 0.157 16 A.1 3 SEW 0.007 16 A.1 2 IW 0.114

64 A.1 3 SEW 0.160 32 A.1 3 SEW 0.008 16 A.1 4 IW 0.115

4096

32 A.0 4 SEW 0.154 64 A.1 3 SEW 0.001 32 A.1 4 SEW 0.111
0.301 0.114 0.246 32 A.1 4 SEW 0.155 32 C.1 3 SEW 0.005 16 A.1 4 SEW 0.111

16 A.1 4 SEW 0.156 64 C.1 3 SEW 0.005 64 A.1 3 SEW 0.112
(0.128) (0.128) (0.127) 16 A.1 2 IW 0.157 64 A.0 4 SEW 0.006 16 A.1 2 IW 0.113

64 A.1 3 SEW 0.159 16 A.1 3 SEW 0.007 16 A.1 4 IW 0.115

Av.

16 A.1 4 SEW 0.167 8 A.1 4 SEW 0.018 16 A.1 4 SEW 0.127
0.317 0.136 0.265 16 A.1 4 IW 0.172 8 A.1 4 IW 0.018 8 A.1 4 IW 0.128

32 A.1 3 SEW 0.173 16 A.1 3 SEW 0.020 4 A.1 4 SEW 0.129
(0.128) (0.125) (0.125) 8 A.1 4 IW 0.176 4 A.1 4 SEW 0.021 16 A.1 4 IW 0.131

8 C.1 4 SEW 0.177 8 C.1 3 SEW 0.023 8 C.1 4 SEW .132
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Figure 5.9: Performance of suggested guidelines using S-DPSO
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Figure 5.10: Performance of suggested guidelines using A-DPSO
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Table 5.5: Suggested guideline for S-DPSO and A-DPSO

N Np/N Initialization* Coefficient set§ Wall-type

S-DPSO < 10 4 C.1 4 SEW
≥ 10 16 A.1 3 SEW

A-DPSO < 10 4 C.1 4 IW/SEW
≥ 10 16 A.1 4 SEW

* See Tab. 4.2
§ See Tab. 4.3

5.1.2 LS-DF PSO
Numerical results are presented for the Rosenbrock function. The deterministic implementation of DPSO sug-
gested as guideline in Sec. 5.1.1 and presented in [44] is used for the extension to the hybrid LS-DF PSO. Specif-
ically, a number of particles equal to 4N is used, with initialization over the variables domain by Hammersely
sequence sampling, and DPSO coefficients given by Clerc [110], i.e., χ = 0.721, c1 = c2 = 1.655.

Specifically, the minimization in R2 of the Rosenbrock function,

f (x) = (a− x1)
2 +b(x2− x2

1)
2 (5.1)

with a = 1, b = 100, −20≤ x≤ 20, is used as an explanatory test problem.
Figure 5.11 (a) shows the convergence of the LS-DF PSO algorithm, compared to the standard DPSO. Black

squares indicates LS-DF PSO iterations where the line-search (LS) is used to improve the optimum location.
Figure 5.11 (b) shows a comparison of the algorithms’ convergence in a close up of the variables domain. The
global-optimum location history is depicted, along with the real minimum ( fmin), which is located at x = {1,1}.
The beneficial effects of using DPSO with LS are evident, providing a faster and more effective convergence to the
optimum, along with the identification of the proper region of the global optimum.
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5.1.3 DIRMIN and DIRMIN-2
Figure 5.12 shows the areas under (a) data and (b) performance profile curves of DIRMIN and DIRMIN-2, for
the test problem with N ≤ 6. Note that the higher bar correspond to the better algorithm. The most promising
algorithms’ setup, for both DIRMIN and DIRMIN-2, appears to be setup 6, corresponding to β = 10−4 and γ = 0.
Figures 5.13a and 5.13b, show the performances of DIRMIN and DIRMIN-2 in terms of the absolute metrics ∆x, ∆ f
and ∆t , conditional to β and γ , respectively. These results suggest starting the derivative-free local minimizations
from the very beginning (γ = 0) of the optimization procedure. Furthermore, for small problems (N ≤ 6) a quite
strict tolerance (β = 10−4) for each derivative-free local minimization is advisable. Figure 5.13c shows the relative
variability σ2

r for ∆x, ∆ f and ∆t respectively, associated to β and γ; γ is found the most significant parameter for
both DIRMIN and DIRMIN-2. The performances of the whole set of DIRMIN and DIRMIN-2’s setups, in terms
of ∆x, ∆ f and ∆t are shown in Fig. 5.13d and 5.13e (note that the lower bar correspond to the better algorithm),
respectively. For current cases, the most promising setups based on the absolute metrics are DIRMIN(21) (i.e.,
β = 10−1, γ = 0) and DIRMIN-2(12) (i.e., β = 10−3, γ = 0.25).
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Figure 5.12: DIRMIN and DIRMIN-2 areas under the data and performance profiles for N ≤ 6
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Figure 5.13: DIRMIN and DIRMIN-2 performance for test problem with N ≤ 6
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Figure 5.14 shows the areas under (a) data and (b) performance profile curves of DIRMIN and DIRMIN-2, for
the test problem with N > 6. The most promising algorithms’ setups appear to be number 21 (i.e., β = 10−1 and
γ = 0 ) and 11 (i.e., β = 10−3 and γ = 0) for DIRMIN and DIRMIN-2, respectively. Figures 5.15a and 5.15b,
show the performance of DIRMIN and DIRMIN-2 in terms of the absolute metrics ∆x, ∆ f and ∆t , conditional to β

and γ , respectively. In this case, similarly to the small problems, it is beneficial to start the local minimizations at
the very beginning of the optimization procedure, whereas higher β values are more advisable, even if the relative
variability (see Fig. 5.15c) associated with β is almost equal to zero. Also for large problems (N > 6), γ is found
the most significant parameter. Finally, the performances of the whole set of DIRMIN and DIRMIN-2’s setups, in
terms of ∆x, ∆ f and ∆t are shown in Fig. 5.15d and 5.15e, respectively. For current cases, the most promising setups
based on the absolute metrics are DIRMIN(21) (i.e., β = 10−1 and γ = 0) and DIRMIN-2(16) (i.e., β = 10−2 and
γ = 0).

The rationale behind the difference between the β s’ results could be that when N ≤ 6 some function evaluations
can be devoted to achieving high precisions. This is not the case for large problems especially when considering
that the adopted derivative-free local minimizations perform a sampling along the coordinate directions thus being
potentially very costly when the number of variables is large.

Finally, Tab. 5.6 summarized the DIRMIN and DIRMIN-2 suggested setup for problem with less and more
than six variables.
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Figure 5.14: DIRMIN and DIRMIN-2 areas under the data and performance profiles for N > 6

Table 5.6: DIRMIN and DIRMIN-2 suggested setup

N Algorithm β γ

≤ 6 DIRMIN 0.100 0.000
DRIMIN-2 0.001 0.250

> 6 DIRMIN 0.100 0.000
DRIMIN-2 0.010 0.000
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Figure 5.15: DIRMIN and DIRMIN-2 performance for test problem with N > 6

64



A. Serani CHAPTER 5. NUMERICAL RESULTS

5.1.4 FSA
Figure 5.16 shows the performances of FSA in terms of the absolute metrics ∆x, ∆ f , and ∆t , for N < 10. Average
values are presented, conditional to number of individuals (Fig. 5.16a), shoal initialization (Fig. 5.16b), coefficients
ξ (Fig. 5.16c), q (Fig. 5.16d), and p (Fig. 5.16e), and wall-type approach (Fig. 5.16f), with α = 0.5. Figure 5.17
shows the relative variability σ2

r for ∆x, ∆ f , and ∆t , respectively, associated to the FSA tuning parameters; the
coefficient q (weight of the attraction forces) and the shoal initialization are the most significant parameters for
low budget of function evaluations, whereas all the tuning parameters tend to have a similar importance with the
increasing of the budget of function evaluations. Table 5.7 shows the five best performing setups for each ∆x, ∆ f ,
and ∆t , varying the budget of function evaluations. Average values and standard deviation for all FSA setups are
also provided.

Similarly, the performances of FSA for the test functions with N ≥ 10, are shown in Figs. 5.18 and 5.19, and
summarized in Tab. 5.8. In particular, looking at the relative variability (Fig. 5.19), it can be seen how the shoal
initialization become the most significant parameters for problem with a greater number of variables, for each
budget of function evaluations.

The average value, with respect to the budget of function evaluations (Tab. 5.7 and 5.8), are used to define
a reasonable guideline for the use of FSA in SBD optimization. The suggested guideline is summarized in Tab.
5.9. Figures 5.20a and 5.20b show the performances of the suggested setup, for N < 10 and N ≥ 10, respectively.
Average performance, standard deviation (STD) and best performing setup among all combinations are also shown
for each budget. The guideline setup (“Guide”) are found close or coincident to the “Best”.

Finally, Figs. 5.21a and 5.21b show a comparison between the suggested FSA setups, DPSO [44], and DIRECT
[45] for N < 10 and N ≥ 10, respectively; FSA outperform DPSO and DIRECT, specially in terms of ∆x for N < 10.

 0

 0.1

 0.2

 100  1000

∆
x
  
[-

]

Nmax/N [-]

 0

 0.1

 0.2

 100  1000

∆
f 
 [
-]

Nmax/N [-]

 0

 0.1

 0.2

 100  1000

∆
t 
 [
-]

Nmax/N [-]

4N  
8N  
16N 

(a) Average performance, conditional to shoal size Ns

 0

 0.1

 0.2

 100  1000

∆
x
  
[-

]

Nmax/N [-]

 0

 0.1

 0.2

 100  1000

∆
f 
 [
-]

Nmax/N [-]

 0

 0.1

 0.2

 100  1000

∆
t 
 [
-]

Nmax/N [-]

A
B
C

(b) Average performance, conditional to shoal initialization

Figure 5.16: FSA average performance for N < 10
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Figure 5.16 (cont’d): FSA average performance for N < 10

66



A. Serani CHAPTER 5. NUMERICAL RESULTS

 0

 20

 40

 60

 80

 100

 100  1000

σ
r2
 [
%

]

Nmax/N [-]

 0

 20

 40

 60

 80

 100

 100  1000

σ
r2
 [
%

]

Nmax/N [-]

 0

 20

 40

 60

 80

 100

 100  1000

σ
r2
 [
%

]

Nmax/N [-]

Ns
Init

ξ
q
p

Wall

(a) ∆x (b) ∆ f (c) ∆t

Figure 5.17: Relative variance σ2
r (%) of FSA for N < 10

Table 5.7: Best performing setups for FSA, N < 10

Nmax/N
Average Best FSA
(STD)

∆x ∆ f ∆t
Ns
N Init ξ ,q,p Wall ∆x

Ns
N Init ξ ,q,p Wall ∆ f

Ns
N Init ξ ,q,p Wall ∆t

128

16 A 3,3,1 IW 0.346e-1 8 A 3,2,2 EW 0.180e-1 16 A 3,3,1 IW 0.448e-1
1.191e-1 1.108e-1 1.409e-1 4 A 2,1,2 IW 0.451e-1 16 A 3,2,1 EW 0.201e-1 16 A 3,3,1 EW 0.507e-1

16 A 3,3,1 EW 0.464e-1 16 A 3,2,1 IW 0.208e-1 8 A 3,3,2 IW 0.532e-1
(5.404e-2) (4.733e-2) (5.487e-2) 4 C 2,2,2 EW 0.471e-1 4 C 3,2,2 EW 0.250e-1 4 A 3,2,2 EW 0.551e-1

8 A 3,3,2 IW 0.477e-1 4 A 3,2,2 EW 0.258e-1 16 A 3,2,1 EW 0.552e-1

256

16 A 3,3,2 EW 0.324e-1 4 A 3,2,3 EW 0.165e-2 4 A 3,2,3 EW 0.259e-1
9.823e-2 8.537e-2 1.146e-2 16 A 2,3,3 EW 0.344e-1 8 A 3,2,2 EW 0.246e-2 8 A 3,3,2 IW 0.333e-1

4 A 3,2,3 EW 0.356e-1 8 A 3,3,2 EW 0.371e-2 4 A 2,1,2 IW 0.336e-1
(4.937e-2) (4.744e-2) (5.274e-2) 4 A 2,1,3 IW 0.371e-1 8 A 3,2,2 IW 0.575e-2 16 A 3,3,2 EW 0.345e-1

16 A 3,3,2 IW 0.391e-1 8 A 3,3,2 IW 0.628e-2 16 A 3,3,1 IW 0.357e-1

512

4 B 2,1,3 EW 0.243e-1 4 A 3,2,3 EW 0.706e-3 4 A 2,1,3 IW 0.190e-1
8.501e-2 6.620e-2 9.545e-2 4 A 2,1,3 IW 0.265e-1 8 A 3,2,3 EW 0.832e-3 16 A 3,3,2 IW 0.203e-1

16 A 3,3,2 IW 0.275e-1 8 A 3,2,2 EW 0.969e-3 16 A 3,3,2 EW 0.211e-1
(4.609e-2) (4.735e-2) (5.148e-2) 4 A 2,1,3 EW 0.277e-1 4 A 2,1,3 IW 0.123e-2 4 A 2,1,3 EW 0.214e-1

16 A 3,3,2 EW 0.287e-1 8 A 3,3,3 EW 0.134e-2 4 B 2,1,3 EW 0.214e-1

1024

16 A 2,1,3 EW 0.198e-1 8 A 3,3,3 IW 0.406e-3 4 A 2,1,3 IW 0.172e-1
7.724e-2 5.354e-2 8.303e-2 16 A 2,2,3 EW 0.209e-1 16 A 3,2,2 EW 0.480e-3 4 B 2,1,3 EW 0.176e-1

4 B 2,1,3 EW 0.215e-1 8 A 3,2,3 EW 0.480e-3 4 A 2,1,3 EW 0.190e-1
(4.434e-2) (4.596e-2) (5.001e-2) 16 A 2,2,3 IW 0.238e-1 8 A 3,3,3 EW 0.553e-3 16 A 3,3,2 IW 0.192e-1

4 A 2,1,3 IW 0.241e-1 8 A 2,1,3 IW 0.606e-3 16 A 3,2,3 IW 0.194e-1

2048

16 A 2,2,3 IW 0.123e-1 16 A 3,2,2 EW 0.179e-3 16 A 2,1,3 EW 0.116e-1
7.297e-2 4.524e-2 7.516e-2 16 A 2,1,3 EW 0.160e-1 16 A 3,2,3 IW 0.196e-3 8 C 2,2,3 EW 0.128e-1

8 C 2,2,3 EW 0.165e-1 8 A 3,3,3 IW 0.378e-3 16 A 2,2,3 IW 0.129e-1
(4.349e-2) (4.511e-2) (4.928e-2) 16 A 2,2,3 EW 0.181e-1 16 A 2,1,3 IW 0.444e-3 4 B 2,1,3 EW 0.161e-1

4 B 2,1,3 EW 0.214e-1 8 A 3,2,3 EW 0.466e-3 4 A 2,1,3 IW 0.171e-1

4096

8 C 2,2,3 EW 0.810e-2 16 A 3,2,2 EW 0.160e-3 8 C 2,2,3 EW 0.647e-2
7.046e-2 4.033e-2 7.041e-2 16 A 2,2,3 EW 0.983e-2 16 A 3,2,3 IW 0.170e-3 16 A 2,2,3 EW 0.722e-2

16 A 2,2,3 IW 0.102e-1 16 A 3,2,3 EW 0.314e-3 16 A 2,2,3 IW 0.778e-2
(4.329e-2) (4.499e-2) (4.934e-2) 16 A 2,1,3 EW 0.154e-1 16 A 3,2,2 IW 0.325e-3 16 A 2,1,3 EW 0.111e-1

16 A 1,2,2 IW 0.179e-1 8 A 3,3,3 IW 0.357e-3 4 B 2,1,3 EW 0.153e-1

Av.

4 A 2,1,2 IW 0.344e-1 8 A 3,2,2 EW 0.390e-2 4 A 3,2,3 EW 0.302e-1
8.716e-2 6.691e-2 9.659e-2 4 A 2,1,3 IW 0.348e-1 4 A 3,2,3 EW 0.510e-2 8 A 3,3,2 IW 0.310e-1

16 A 2,3,3 EW 0.352e-1 8 A 3,3,2 EW 0.638e-2 16 A 3,3,1 IW 0.321e-1
(4.455e-2) (4.310e-2) (4.825e-2) 16 A 3,3,1 IW 0.354e-1 8 A 3,3,2 IW 0.749e-2 4 A 2,1,2 IW 0.321e-1

4 B 2,1,3 EW 0.361e-1 16 A 3,2,1 EW 0.899e-2 4 A 2,1,3 IW 0.338e-1
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(a) Average performance, conditional to shoal size Ns
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Figure 5.18: FSA average performance for N ≥ 10
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(e) Average performance, conditional to coefficient p
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Figure 5.18 (cont’d): FSA average performance for N ≥ 10

 0

 20

 40

 60

 80

 100

 100  1000

σ
r2
 [
%

]

Nmax/N [-]

 0

 20

 40

 60

 80

 100

 100  1000

σ
r2
 [
%

]

Nmax/N [-]

 0

 20

 40

 60

 80

 100

 100  1000

σ
r2
 [
%

]

Nmax/N [-]

Ns
Init

ξ
q
p

Wall

(a) ∆x (b) ∆ f (c) ∆t

Figure 5.19: Relative variance σ2
r (%) of FSA for N ≥ 10
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Table 5.8: Best performing setups for FSA, N ≥ 10

Nmax/N
Average Best FSA
(STD)

∆x ∆ f ∆t
Ns
N Init ξ ,q,p Wall ∆x

Ns
N Init ξ ,q,p Wall ∆ f

Ns
N Init ξ ,q,p Wall ∆t

128

4 B 2,1,2 EW 0.339e-1 4 A 3,3,2 IW 0.316e-2 4 B 2,1,2 EW 0.270e-1
2.271e-1 1.109e-1 1.996e-1 8 A 2,1,3 EW 0.526e-1 4 A 3,3,2 EW 0.316e-2 8 A 2,1,3 EW 0.386e-1

16 A 2,1,3 EW 0.539e-1 4 A 2,1,1 EW 0.382e-2 16 A 2,1,3 EW 0.393e-1
(1.466e-1) (1.133e-1) (1.367e-1) 4 A 2,1,3 EW 0.565e-1 16 A 2,1,3 EW 0.394e-2 4 A 2,1,3 EW 0.422e-1

16 A 3,3,1 IW 0.625e-1 8 A 2,1,3 EW 0.482e-2 4 B 2,1,1 EW 0.453e-1

256

4 B 2,1,2 EW 0.271e-1 4 A 2,1,2 EW 0.454e-3 4 B 2,1,2 EW 0.192e-1
2.034e-1 8.556e-2 1.735e-1 4 B 2,1,3 EW 0.438e-1 4 A 3,3,2 EW 0.636e-3 4 B 2,1,3 EW 0.365e-1

8 B 2,1,2 EW 0.506e-1 4 A 3,3,2 IW 0.636e-3 8 A 2,1,3 EW 0.407e-1
(1.383e-1) (1.004e-1) (1.278e-1) 16 C 1,1,3 EW 0.546e-1 4 A 2,1,2 IW 0.707e-3 8 B 2,1,2 EW 0.407e-1

16 A 3,3,1 EW 0.555e-1 4 B 2,1,2 EW 0.114e-2 16 A 3,3,1 EW 0.428e-1

512

4 B 2,1,2 EW 0.277e-1 8 A 2,1,2 EW 0.155e-3 4 B 2,1,2 EW 0.196e-1
1.923e-1 7.169e-2 1.602e-2 8 B 2,1,3 EW 0.442e-1 4 C 2,1,2 EW 0.214e-3 16 A 2,1,3 EW 0.334e-1

16 A 2,1,3 EW 0.464e-1 4 A 2,1,3 EW 0.227e-3 4 B 2,1,3 EW 0.335e-1
(1.329e-1) (9.214e-2) (1.216e-2) 4 B 2,1,3 EW 0.474e-1 4 A 2,1,2 EW 0.278e-3 4 C 2,1,3 EW 0.346e-1

4 C 2,1,3 EW 0.488e-1 4 A 2,1,3 IW 0.292e-3 8 B 2,1,3 EW 0.347e-1

1024

4 B 2,1,2 EW 0.276e-1 8 A 2,1,2 EW 0.935e-4 4 B 2,1,2 EW 0.195e-1
1.861e-1 6.348e-2 1.524e-1 8 B 2,1,3 EW 0.313e-1 4 C 2,1,3 EW 0.100e-3 8 B 2,1,3 EW 0.222e-1

16 C 2,1,2 EW 0.430e-1 8 A 2,1,3 EW 0.116e-3 16 C 2,1,2 EW 0.305e-1
(1.296e-1) (8.676e-2) (1.175e-1) 4 B 2,1,3 EW 0.434e-1 8 A 2,1,2 IW 0.127e-3 4 B 2,1,3 EW 0.307e-1

4 C 2,1,3 EW 0.445e-1 4 A 2,1,3 EW 0.132e-3 4 C 2,1,3 EW 0.315e-1

2048

4 B 2,1,2 EW 0.275e-1 8 C 3,3,3 EW 0.412e-4 4 B 2,1,2 EW 0.194e-1
1.820e-1 5.904e-2 1.478e-1 8 B 2,1,3 EW 0.280e-1 8 C 2,1,3 EW 0.562e-4 8 B 2,1,3 EW 0.198e-1

16 C 2,1,2 EW 0.422e-1 16 A 2,1,2 EW 0.834e-4 16 C 2,1,2 EW 0.298e-1
(1.278e-1) (8.269e-2) (1.151e-1) 4 B 2,1,3 EW 0.429e-1 4 C 2,2,3 EW 0.874e-4 4 B 2,1,3 EW 0.303e-1

4 C 2,1,3 EW 0.429e-1 8 B 2,1,3 EW 0.888e-4 4 C 2,1,3 EW 0.303e-1

4096

4 B 2,1,2 EW 0.258e-1 16 C 3,3,3 EW 0.389e-4 4 B 2,1,2 EW 0.183e-1
1.796e-1 5.567e-2 1.447e-1 8 B 2,1,3 EW 0.278e-1 8 C 3,3,3 EW 0.390e-4 8 B 2,1,3 EW 0.197e-1

16 C 2,1,3 EW 0.419e-1 8 C 2,1,3 EW 0.537e-4 16 C 2,1,3 EW 0.296e-1
(1.256e-1) (7.954e-2) 1.126e-1 16 C 2,1,2 EW 0.421e-1 8 C 2,2,3 IW 0.561e-4 16 C 2,1,2 EW 0.298e-1

4 B 2,1,3 EW 0.428e-1 16 B 2,1,3 EW 0.620e-4 4 B 2,1,3 EW 0.303e-1

Av.

4 B 2,1,2 EW 0.283e-1 4 A 3,3,2 IW 0.834e-3 4 B 2,1,2 EW 0.205e-1
1.951e-1 7.438e-2 1.630e-1 4 B 2,1,3 EW 0.535e-1 4 A 3,3,2 EW 0.834e-3 4 B 2,1,3 EW 0.395e-1

8 B 2,1,3 EW 0.564e-1 4 A 2,1,2 IW 0.116e-2 8 A 2,1,3 EW 0.410e-1
(1.320e-1) (9.109e-2) 1.206e-1 4 B 2,2,2 EW 0.568e-1 4 A 2,1,2 EW 0.132e-2 8 B 2,1,3 EW 0.417e-1

8 A 2,1,3 EW 0.573e-1 16 A 2,1,3 EW 0.197e-2 16 A 2,1,3 EW 0.417e-1

Table 5.9: Suggested guideline for FSA

N Ns/N Initialization* α ξ q p Wall-type

< 10 4 A 0.50 1.00 1.00 8.00 EW
≥ 10 4 B 0.50 0.10 0.10 4.00 EW
* See Tab. 4.5
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Figure 5.20: Performance of suggested guideline for FSA
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Figure 5.21: FSA suggested setup versus DPSO and DIRECT
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An ex-post further study on the same 60 analytical test functions is used to identify the most promising food-
related attraction force coefficient for FSA and its influence on the algorithm performances. Three values are used
for the coefficient α , defining the food-related attraction force ϕϕϕ j (Eq. 1.15): α = 0.5, 1, and 2. The analysis
are presented setting a part the results obtained for functions with less and more than 10 variables, as in previous
subsection, using the guideline defined in Tab. 5.9.

Figure 5.22a and 5.22b shows the average values in terms of the absolute metrics ∆̄x, ∆̄ f , and ∆̄t , and the
corresponding standard deviations σx, σ f , and σt , conditional to α , for N < 10 and N ≥ 10, respectively. The use
of the coefficient α = 0.5 shows the most effective and efficient results in term of algorithm convergence, for both
test problems with less or more than 10 variables.
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Figure 5.22: FSA food-related attraction force coefficients results for the analytical test functions

72



A. Serani CHAPTER 5. NUMERICAL RESULTS

5.2 Simulation-based design problems

5.2.1 Delft catamaran
Problem I

A preliminary sensitivity analysis for each design variable is shown in Fig. 5.23, showing ∆ f % compared to the
parent hull. Changes in f are found significant in each direction, revealing a reduction of the objective function
close to 9%.

The optimization is performed with both S-DPSO and A-DPSO, as per the guideline suggested in Tab. 5.5.
S-DPSO and A-DPSO iterations are shown in Fig. 5.24, revealing a quite sudden convergence. Optimization
results, summarized in Tab. 5.10, show that S-DPSO and A-DPSO with both IW and SEW lead to a reduction of
the objective function close to 20%. There are not significant differences between the results obtained by S-DPSO
and A-DPSO, as shown in Figs. 5.25 and 5.26. The differences in optimal design variables are mainly due to IW
or SEW. Furthermore the optimum configuration leads to a considerable reduction of wave’s elevation compared
to the original shape (Figs. 5.27).

Finally, it may be noted that the final configuration is fairly close (except for the second variable) to that
obtained using metamodels and an URANS solver [47], used here for reference (Fig. 5.25).
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Figure 5.23: Problem I, sensitivity analysis
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Figure 5.25: Problem I, comparison between optimal design variables of S-DPSO, A-DPSO with IW and SEW by
PF and those obtained by metamodels with URANS [47].
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Table 5.10: Problem I, SBD results

Wall-type RT [N] W [N] f [−] ∆ f %

Original 50.15 852.5 5.88e-2 −

S-DPSO IW 39.92 850.9 4.69e-2 -20.24
SEW 40.36 850.6 4.67e-2 -20.57

A-DPSO IW 39.85 851.1 4.68e-2 -20.41
SEW 40.68 851.7 4.71e-2 -19.90

S-DPSO with IW S-DPSO with SEW

A-DPSO with IW A-DPSO with SEW

Figure 5.26: Problem I, comparison between optimized and original hull form

Original

S-DPSO with IW S-DPSO with SEW

A-DPSO with IW A-DPSO with SEW

Figure 5.27: Problem I, comparison between optimized and original wave elevation pattern at Fr=0.5
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Problem II

A preliminary sensitivity analysis for each design variable is shown in Fig. 5.28, showing ∆ f (%) compared to the
parent hull. Changes in f are found significant in each direction, revealing a reduction of the objective function
close to 10%.
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Figure 5.28: Problem II, sensitivity analysis
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Figure 5.29: Problem II, convergence of S-DPSO and
A-DPSO

The optimization is performed with both S-DPSO and A-DPSO, as per the guideline suggested in Tab. 5.5.
Optimization results in Tab. 5.11 show that S-DPSO and A-DPSO with both IW and SEW lead to a reduction of
the objective function greater than 20%. S-DPSO and A-DPSO iterations are shown in Fig. 5.29, revealing a quite
sudden convergence. There are not significant differences between the results obtained by S-DPSO and A-DPSO
except for S-DPSO with IW (see Figs. 5.30 and 5.31). In this case the IW approach induces the optimization to
stop after 6 iterations. As shown in Fig. 5.30, differences in optimal design variables are mainly due to IW or
SEW. Moreover, the optimum configuration leads to a considerable reduction of wave’s elevation compared to the
original shape (Figs. 5.32).

Finally, it may be noted that the final configuration is significantly different to that obtained using metamodels
and a URANS solver [47], used here for reference (Fig. 5.30).
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Figure 5.30: Problem II, comparison between optimal design variables of S-DPSO, A-DPSO with IW and SEW
by PF and those obtained by metamodels with URANS [47].
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Table 5.11: Problem II, SBD results

Wall-type RT [N] W [N] f [−] ∆ f %

Original 50.15 852.5 5.88e-2 −

S-DPSO IW 39.41 849.1 4.64e-2 -21.10
SEW 34.29 835.4 4.10e-2 -30.27

A-DPSO IW 34.31 835.5 4.11e-2 -30.10
SEW 34.08 830.8 4.09e-2 -30.30

S-DPSO with IW S-DPSO with SEW

A-DPSO with IW A-DPSO with SEW

Figure 5.31: Problem II, comparison between optimized and original hull form

Original

S-DPSO with IW S-DPSO with SEW

A-DPSO with IW A-DPSO with SEW

Figure 5.32: Problem II, comparison between optimized and original wave elevation pattern at Fr=0.5
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Problem III

Figure 5.33a shows the convergence of the minimization procedure, comparing DPSO with LS-DF PSO. The
line-search (LS) is required only 5 times, as indicated by the black squares, and the minima provided by the two
algorithms are extremely close, as shown in Figs 5.33b and 5.34. Nevertheless, it may be noted that, at very reduced
additional cost, LS-DF PSO provides a solution certified with stationarity properties. Table 5.12 summarized the
optimization results.
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Figure 5.33: Problem III, minimization of calm-water resistance for the Delft catamaran: (a) convergence of the
objective function and (b) global-optimum design variables

(a) DPSO (b) LS-DF PSO

Figure 5.34: Problem III, comparison between optimized and original hull form

Table 5.12: Problem III, summary of the optimization results

Design variable value (non-dimensional)
Algorithm x1 x2 x3 x4 ∆ f %

DPSO 1.000 0.535 0.193 0.333 -9.326
LS-DF PSO 1.000 0.536 0.192 0.332 -9.326
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Problem IV

Figure 5.35a shows the convergence of the minimization procedure, comparing DPSO with LS-DF PSO. LS is
required and applied 16 times and is essential to identify the global optimum, as shown in Fig. 5.35b. As a results,
optimal shape design provided by DPSO and LS-DF PSO are noticeably different (within the context of current
application’s variation), as shown in Fig. 5.36. Additionally, it may be noted that the solution given by LS-DF PSO
is also endowed with stationarity properties. Table 5.13 summarizes the optimization results.
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Figure 5.35: Problem IV, minimization of expected value of mean resistance in head waves for the Delft catamaran:
(a) convergence of the objective function and (b) global-optimum design variables

(a) DPSO (b) LS-DF PSO

Figure 5.36: Problem IV, comparison between optimized and original hull form

Table 5.13: Problem IV, summary of the optimization results

Design variable value (non-dimensional)
Algorithm x1 x2 x3 x4 ∆ f %

DPSO 1.000 0.389 0.034 0.228 -6.453
LS-DF PSO 0.849 0.374 0.043 0.192 -6.956
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5.2.2 DTMB 5415
Problem V

The SBDO procedure achieves a reduction of the objective function value by 12.04%, 13.38%, and 13.47% using
DIRECT, DIRMIN, and DIRMIN-2, respectively, as suggested in Sec. 5.1.3. The convergence history of the
objective function is shown in Fig. 5.37a, confirming the efficiency of the two global/local hybrid methods, for
a very limited budget of function evaluations (Nmax = 300). DIRMIN and DIRMIN-2 achieve almost the final
objective function reduction in the first 50 evaluations, whereas DIRECT is not able to reach the same value within
the imposed limit of 300 function evaluations.
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Figure 5.37: Problem V, (a) objective function convergence history and (b) optimal design variables

Figure 5.37b presents the values of the corresponding optimal design variables, showing appreciable differ-
ences for DIRECT, DIRMIN, and DIRMIN-2. Optimal design variable value and objective function reductions
are summarized in Tab. 5.14. Figure 5.38 shows the sections of the optimized hull compared to the original. The
reduction of the total resistance is consistent with the reduction of the wave elevation patterns, both in terms of
transverse and diverging Kelvin waves, as shown in Fig.5.39. Figure 5.39 shows also the pressure field on the
optimized hulls compared to the original, showing a slightly better pressure recovery towards the stern.

Finally, Tab. 5.15 summarizes the main parameters associated with the optimal DIRECT, DIRMIN, and
DIRMIN-2 designs. The resistance coefficients are defined as Cx = Rx/0.5ρU2Sw,stat , with Rw, R f , RT being
the wave, frictional and total resistance, respectively; Sw,stat and Sw,dyn are the static and dynamic wetted surface
areas.
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Figure 5.38: Problem V, optimal hull-form shapes compared with the original for Fr=0.25
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Table 5.14: Problem V, summary of optimization results for DTMB 5415 model

Design variables values (non-dimensional) RT (×105)[N]
Nmax Algorithm x1 x2 x3 x4 x5 x6 x7 x8 value ∆ f %

300
DIRECT 0.667 -0.667 0.000 -0.667 0.222 0.000 -0.889 0.667 3.021 -12.04
DIRMIN 1.000 -0.375 0.125 0.000 0.000 0.000 -1.000 -0.250 2.974 -13.38

DIRMIN-2 1.000 -0.379 0.094 0.059 0.000 -0.008 -1.000 -0.344 2.972 -13.47

Table 5.15: Problem V, summary of optimization results for DTMB 5415 hull form

Parameter Original Optimized ∆%orig
value unit DIRECT DIRMIN DIRMIN-2

Cw 1.04e-3 – -28.3 -33.2 -33.9
C f 1.60e-3 – 0.05 -0.06 -0.13
CT 2.64e-3 – -11.3 -13.2 -13.5

σ/LBP 9.42e-4 – 6.82 10.1 9.73
τ 8.99e-4 rad 105.4 150.2 144.7

Sw,stat/LBP2 1.48e-1 – -0.85 -0.19 0.03
Sw,dyn/LBP2 1.50e-1 – -0.80 -0.25 -0.02

(a) Original

(b) DIRECT

(c) DIRMIN

(d) DIRMIN-2

Figure 5.39: Problem V, wave elevation pattern (left) and pressure field distribution (right) of the optimized hulls,
compared to the original (a) for Fr=0.25
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Problem VI

A preliminary sensitivity analysis for each design variable is presented in Fig. 5.40, showing the associated percent
resistance reduction (∆ f %) with respect to the original hull. Non-dimensional design variables are shown in the
plots. Changes in f are found significant for all variables but x5 and x6, revealing a possible reduction of the total
resistance at Fr = 0.25 close to 10%. The analysis of the results is conducted setting apart results (i) for a low
budget of 192 function evaluations (which corresponds to 32N, an eighth of the full budget), and (ii) for the full
budget of 1536 function evaluations (which corresponds to 256N).
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Figure 5.40: Problem VI, sensitivity analysis of non-dimensional design variables
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Figure 5.41: Problem VI, (a) objective function convergence history and (b) detail after the first 100 function
evaluations
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For the case (i), the optimization procedure achieves a resistance reduction of 13.7% and 15.5% using DIRECT
and DIRMIN-2 respectively, and a reduction of 13.5% and 16.0% using DPSO and LS-DF PSO respectively. The
two global/local hybrid algorithms outperform their global version. In particular, LS-DF PSO is found the most
efficient algorithm for the present SBD problem, achieving the best design with the fastest convergence rate, as
shown in Fig. 5.41. Figure 5.42 presents the values of the optimized design variables, showing appreciable
differences, and illustrates the corresponding optimized shapes, compared to the original.
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Figure 5.42: Problem VI, 192 function evaluations
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For the case (ii), the optimization procedure achieves a resistance reduction of 16.0% and 16.2% using DIRECT
and DIRMIN-2 respectively, and a reduction of 16.2% using both DPSO and LS-DF PSO. The convergence history
of the objective function towards the minimum is shown in Fig. 5.41, confirming the efficiency and robustness of
the two hybrid global/local approaches DIRMIN-2 and LS-DF PSO. More in detail, LS-DF PSO achieves the
most significant reduction of the objective function overall, although all the solutions are very close in this case.
Figure 5.43 presents the values of the corresponding optimized design variables and shows the optimized shapes
compared to the original. The close agreement of the solutions obtained by the different algorithms indicates that
the global minimum region has been likely achieved. A summary of the optimization results is presented in Tab.
5.16.
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Figure 5.43: Problem VI, 1536 function evaluations
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The reduction of the wave elevation pattern of the final shape, both in terms of transverse and diverging stern
waves, is visible in Fig. 5.44. Finally, Fig. 5.45 presents the pressure field on the optimized hulls compared to the
original hull, showing a better pressure recovery towards the stern. Obviously, the solver is not able to predict flow
separations, which are likely to occur for such large design modifications.

Table 5.16: Problem VI, summary of the optimization results

Design variables values (non-dimensional) RT (×105) [N]
Nmax Algorithm x1 x2 x3 x4 x5 x6 value ∆ f %

192

DIRECT 0.89 -0.67 -0.67 0.00 -0.67 0.00 2.96 -13.7
DIRMIN-2 0.94 -0.83 -0.67 0.17 -1.00 0.67 2.92 -15.5

DPSO 1.00 -0.75 -1.00 0.52 1.00 0.56 2.96 -13.5
LS-DF PSO 1.00 -1.00 -1.00 0.16 -1.00 0.61 2.89 -16.0

1536

DIRECT 1.00 -0.92 -0.67 0.11 -1.00 0.31 2.88 -16.0
DIRMIN-2 1.00 -0.94 -0.77 0.17 -1.00 0.67 2.88 -16.2

DPSO 1.00 -0.99 -0.97 0.29 -1.00 0.69 2.88 -16.2
LS-DF PSO 1.00 -1.00 -0.86 0.16 -0.99 0.75 2.88 -16.2

Figure 5.44: Problem VI, wave patterns produced by LS-DF PSO optimized hull forms at Fr = 0.25 compared
with original

Figure 5.45: Problem VI, pressure field on LS-DF PSO optimized hull forms at Fr = 0.25 compared with original
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Problem VII

A preliminary sensitivity analysis for each design variable is presented in Fig. 5.46, showing the associated percent
resistance reduction (∆ f ) with respect to the original hull.
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Figure 5.46: Problem VII, sensitivity analysis of non-dimensional design variables
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The quality of the grids produced by the method presented in Sec. 4.2.2 is assessed for each modified design.
Figure 5.47b presents a modified grid laying on the boundary of the design space, showing an acceptable quality.

(a) Original hull

(b) Modified hull laying on the design space boundary (x1 = 1)

(c) Optimized hull

Figure 5.47: Close view of the boundary layer grid (sections at constant I)

Non-dimensional design variables are shown in the plots. Changes in f are found significant for all variables,
revealing a possible reduction of the total resistance at Fr = 0.25 close to 5%. Variations are smaller than Problem
VI, due to more realistic simulations by the RANS solver. The analysis of the results is conducted setting apart
results (i) for a low budget of 1100 function evaluations (which corresponds to 100N, an eighth of the full budget),
and (ii) for the full budget of 8800 function evaluations (which corresponds to 800N).

-6

-5

-4

-3

-2

-1

 0

 1  10  100  1000  10000

∆
f 

[%
]

N. of function evaluations

DIRECT
DIRMIN-2

DPSO
LS-DF_PSO

-6

-5

-4

 1000  10000

∆
f 

[%
]

N. of function evaluations

DIRECT
DIRMIN-2

DPSO
LS-DF_PSO

(a) (b)
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For the case (i), the optimization procedure achieves a total resistance coefficient reduction of 5.16% and
5.37% using DIRECT and DIRMIN-2 respectively, and a reduction of 4.98% using both DPSO and LS-DF PSO.
DIRMIN-2 outperform its global version, whereas DPSO and its hybrid reach the same result because non a local
search has been activated by LS-DF PSO. DIRMIN-2 is found the most efficient algorithm for the present SBD
problem, achieving the best design with the fastest convergence rate, as shown in Fig. 5.48. Figure 5.49 presents the
values of the optimized design variables, showing appreciable differences, and shows the corresponding optimized
shapes, compared to the original.
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Figure 5.49: Problem VII, 1100 function evaluations
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For the case (ii), the optimization procedure achieves a resistance reduction of 5.95% and 5.98% using DIRECT
and DIRMIN-2 respectively, and a reduction of 5.52% and 5.91% using DPSO and LS-DF PSO respectively. The
convergence history of the objective function towards the minimum is shown in Fig. 5.48, confirming the efficiency
and robustness of the two hybrid global/local approaches DIRMIN-2 and LS-DF PSO. More in detail, DIRMIN-2
achieves the most significant reduction of the objective function overall, although all the solutions are very close in
this case. Figure 5.50 presents the values of the corresponding optimized design variables and shows the optimized
shapes compared to the original. The close agreement of the solutions obtained by the different algorithms indicates
that the global minimum region has been likely achieved. A summary of the optimization results is presented in
Tab. 5.17.
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Figure 5.50: Problem VII, 8800 function evaluations
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The best design is finally assessed with RANS. The associated modified grid is assessed and presented in Fig.
5.47c, showing a good quality. The results are presented in Figs. 5.51 and 5.52, and Tab. 5.18. Figure 5.51 show a
significant reduction of the diverging bow wave and a small reduction of the diverging and transverse stern wave.
It may be also noted how the shoulder wave is cancelled. Specifically, the optimized shoulder shape induces a high
pressure region in correspondence of the first trough of the original hull, causing a phase shift with the reduction of
the diverging bow wave and the cancellation of the shoulder wave (well visible in Fig. 5.51). This effect has been
also shown in retrofitting studies by optimization of blisters attached to the original hull [135]. Moreover, a more
uniform pressure distribution along the hull and a slightly better pressure recovery at the stern for the optimized
hull (see Fig. 5.51). A longitudinal wave cut along the y = 0.1LBP plane is shown in Fig. 5.52, highlighting the
reduction of the wave elevation, especially at the bow.

The hydrodynamic coefficients for the original and the optimized hulls are finally compared in Tab. 5.18, con-
firming that a large part of the resistance reduction stems from the reduction of the piezometric pressure coefficient.

Table 5.17: Problem VII, summary of the optimization results

Design variables values (non-dimensional) CT (×10−3) [–]
Nmax Algorithm x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 value ∆ f %

1100

DIRECT -0.22 -0.07 0.00 -0.07 0.44 0.07 0.00 0.15 0.07 -0.07 0.07 4.00 -5.16
DIRMIN-2 -0.28 -0.03 0.03 -0.16 0.12 -0.03 -0.03 0.13 0.17 -0.09 0.40 3.99 -5.37

DPSO -0.30 0.11 0.09 -0.14 0.11 -0.05 -0.04 -0.10 -0.31 -0.08 -0.05 4.01 -4.98
LS-DF PSO -0.30 0.11 0.09 -0.14 0.11 -0.05 -0.04 -0.10 -0.31 -0.08 -0.05 4.01 -4.98

8800

DIRECT -0.15 -0.01 0.01 -0.11 0.05 -0.03 -0.01 0.02 -0.77 -0.03 0.01 3.97 -5.95
DIRMIN-2 -0.15 -0.01 0.01 -0.10 0.05 -0.03 -0.02 0.02 -0.77 -0.03 0.02 3.97 -5.98

DPSO -0.21 -0.02 0.04 -0.11 0.06 -0.05 -0.04 0.12 -0.61 -0.07 -0.03 3.99 -5.52
LS-DF PSO -0.15 -0.06 0.02 -0.09 0.06 -0.03 -0.03 0.03 -0.77 -0.04 -0.01 3.97 -5.91

Figure 5.51: Problem VII, bottom view of wave pattern and pressure distribution at Fr = 0.25 for optimized (left)
and original (right) hulls
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Figure 5.52: Problem VII, longitudinal wave cut on the y = 0.1LBP plane at Fr = 0.25 for original and optimized
hulls

Table 5.18: Problem VII, comparison between original and optimized DTMB 5415 hydrodynamic coefficients (Cpp
represent the piezometric pressure, Ch the hydrostatic pressure, C f the viscous shear stress, Cmg,x the component
of the weight force along the longitudinal axis, and CT the total resistance)

Parameter Unit Original Optimized ∆%

Cpp – 1.38e-3 9.08e-4 -34.0
Ch – 0.86e-3 1.24e-3 42.0
C f – 3.16e-3 3.18e-3 0.65

Cmg,x – -1.19e-3 -1.35e-3 -13.4
CT – 4.21e-3 3.97e-3 -6.00

σ/LBP – -1.31e-3 -1.35e-3 -3.29
τ deg -0.11 -0.12 -15.3

Sw,stat/LBP2 – 1.48e-2 1.50e-2 0.96
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Problem VIII

Figure 5.53 shows a preliminary sensitivity analysis, varying the design variables vector along each KL modes.
The direction associated with the first KL mode reveals the largest objective function reduction, close to 10%.
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Figure 5.53: Problem VIII, sensitivity analysis for the
objective function, along the KL modes
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Figure 5.54: Problem VIII, convergence of LS-DF PSO
to the optimal solution, using N-dimensional spaces
with N = 1, . . . ,6

The convergence of LS-DF PSO is shown in Fig. 5.54, using N-dimensional design space with N = 1, . . . ,6.
The best solution is found using N = 6 and provides an objective function reduction close to 13%. Moreover Fig.
5.54 shows the optimization convergence of the original nine-dimensional design space, which reaches about 13%
reduction of the objective function. The optimal values for the normalized design variables are shown in Fig. 5.55.
The optimal shapes and their associated normalized wave elevation (η/LBP) patterns are shown and compared to
the original in Figs. 5.56 and 5.57, respectively. Table 5.19 summarizes the optimization results achieved in the
current study.

Finally, the objective function reduction versus the geometric variance retained by each reduced-dimensionality
design-space is depicted in Fig. 5.58, showing the significant impact of the geometric variance on the optimization
achievements.
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Figure 5.55: Problem VIII, optimal design variables
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(a) N = 1 (b) N = 2 (c) N = 3

(a) N = 4 (b) N = 5 (c) N = 6

Figure 5.56: Problem VIII, optimized hulls compared to the original

(a) Original

(b) N = 1 (c) N = 2

(d) N = 3 (e) N = 4

(f) N = 5 (g) N = 6

Figure 5.57: Problem VIII, optimized wave patterns compared to the original
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Table 5.19: Problem VIII, summary of the DTMB 5415 opti-
mization results

N
RT (×105)

∆RT % ∇(×103)
∆∇% ∆ f %

[N] [tonnes]

1 2.897 -9.017 8.449 -0.005 -9.011
2 2.895 -9.075 8.449 -0.005 -9.070
3 2.895 -9.076 8.449 -0.005 -9.071
4 2.839 -10.85 8.449 -0.002 -10.84
5 2.838 -10.86 8.449 -0.002 -10.86
6 2.773 -12.92 8.433 -0.202 -12.74
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Problem IX

The preliminary sensitivity analysis for each design variables is the same of Problem VIII (see Fig. 5.53). Changes
in f reveal a possible reduction of the objective function close to 10%.

The optimizations are performed with both FSA, using the guideline suggested in Tab. 5.9, DPSO [44], and
DIRECT. Optimization results are summarized in Tab. 5.20. FSA, DPSO and DIRECT reaches an objective
function reduction close 13%. Specifically, FSA, DPSO, and DIRECT have a similar objective function reduction,
even if DPSO and DIRECT shows a faster convergence to the global minimum, as depicted in Fig. 5.59a. The final
configurations found by the three algorithms are very close in terms of design variables (see Fig. 5.59b) and show
almost the same differences compared to the original design, in terms of wave elevation pattern (see Fig. 5.60a,
5.60c, and 5.60e) and hull sections (see Fig. 5.60b, 5.60d, and 5.60f).
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Figure 5.59: Problem IX, optimization results
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Table 5.20: Problem IX, SBD optimization results

Algorithm x1 x2 x3 x4 x5 x6 ∆ f %

FSA 0.999 0.030 0.116 0.353 0.221 0.581 -12.73
DPSO 1.000 -0.044 0.069 0.370 0.229 0.579 -12.78

DIRECT 0.996 0.025 0.033 0.370 0.247 0.551 -12.68

(a) FSA, wave field (b) FSA, hull sections

(c) DPSO, wave field (d) DPSO, hull sections

(e) DIRECT, wave field (f) DIRECT, hull sections

Figure 5.60: Problem IX, optimization results compared to the original
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Problem X

A preliminary sensitivity analysis for each design variables is shown in Fig. 5.61, showing the variability of the
objective function (∆ f %). Changes in f are found significant, revealing a reduction of the objective function close
to 15%.
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Figure 5.61: Problem X, sensitivity analysis results

The optimizations are performed with both FSA, using the guideline suggested in Tab. 5.9, DPSO [44], and
DIRECT. Optimization results are summarized in Tab. 5.21. FSA, DPSO, and DIRECT reach an objective function
reduction close 32%, 31% and 27%, respectively.
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Figure 5.62: Problem X, optimization results

Specifically, results show a greater objective function improvement by FSA, compared with DPSO and spe-
cially DIRECT (see Fig. 5.62a), corresponding to different optimal design variables (see Fig. 5.62b).

The optimal design variables x1, x2, and x3 goes in different direction, whereas x4, x5, and x6 goes in the same
direction for both FSA, DPSO, and DIRECT, and this aspect reflect the small differences between FSA, DPSO
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and DIRECT optimal design, in terms of hull section (see Fig. 5.63) and response amplitude operator of heave,
pitch and roll motions (see Fig. 5.64). In particular, it can be seen how the DIRECT optimal design has a slightly
different behaviour, compared to FSA and DPSO, in the roll motion RAO (see Fig. 5.64c).

Table 5.21: Problem X, SBD optimization results

Algorithm x1 x2 x3 x4 x5 x6 ∆ f %

FSA -0.022 0.417 0.127 -0.421 0.874 -0.997 -32.20
DPSO 0.146 0.356 0.049 -0.545 0.884 -0.873 -31.31

DIRECT -0.173 -0.787 -0.140 -0.543 0.993 -0.993 -26.65

(a) FSA (b) DPSO (c) DIRECT

Figure 5.63: Problem X, optimized hull sections compared to the original
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Chapter 6

Conclusions and future work

“Tut, tut, child!” said the Duchess.“Everything’s
got a moral, if only you can find it.”

— Lewis Carroll, Through the Looking-Glass

The present work have introduced, assessed, and applied six deterministic derivative-free global and global/local
optimization algorithm, along with three shape modification techniques, for an efficient and effective use in the
SBDO context. The focus has been placed mainly on the optimization algorithms, describing the features and the
convenience of using global deterministic derivative-free approaches (see Chapter 1), and the possible improve-
ments of the local hybridization techniques. DPSO, LS-DF PSO, DIRECT, DIRMIN, DIRMIN-2, and FSA have
been tested on a benchmark of seventy-three analytical function, in order to assess the algorithms performance
and define guidelines for an effective and efficient use in a computational framework characterized by limited re-
sources. The most promising algorithms setups have been discussed, identified, and successfully applied to ten
ship SBDO problems, pertaining the hull-form optimization of the high-speed Delft catamaran (problems I÷IV,
see Sec. 4.2.1) and an USS Arleigh Burke-class destroyer ship, namely the DTMB 5415 model, an early and open-
to-public version of the DDG-51 (problems V÷X, see Sec. 4.2.2). The naval engineering optimization problems
are based on low- and high-fidelity solvers (see Chapter 3). The main outcomes are recalled in the following.

The parametric analysis (Sec. 5.1.1) for S-DPSO and A-DPSO has been performed varying the number of
particles, the initialization of the swarm, the set of coefficients and the wall-type approach for the box constraints.
The assessment is based on sixty analytical test functions (with dimensionality from two to twenty) and three
different absolute performance criteria. All possible combinations of DPSO parameters led to 420 optimizations
for each function. The particles initialization has been found the most significant parameter for the DPSO perfor-
mance, especially for a number of design variables N ≥ 10 and low budgets of function evaluations. Conversely,
the coefficient set and the wall-type approach have been found having a little influence on the DPSO performance,
compared to the other parameters. For problem with less then 10 variables, the suggested S-DPSO and A-DPSO
setups coincide except for the wall-type approach: (a) number of particles Np equal to 4 times the number of de-
sign variables; (b) particles initialization including HSS distribution on domain and bounds with non-null velocity;
(c) set of coefficient proposed in [110], i.e., χ = 0.721, c1 = c2 = 1.655; (d) semi-elastic wall-type approach, for
S-DPSO and inelastic or semi-elastic wall-type approach for A-DPSO. For problems with more then 10 design
variables, the suggested setups differ in the set of coefficients: (a) number of particles Np equal to 16 times the
number of design variables; (b) particles initialization including HSS distribution on domain with non-null veloc-
ity; (c) set of coefficient proposed in [59] for S-DPSO, i.e., χ = 0.600, c1 = c2 = 1.700, and in [110] for A-DPSO;
(d) semi-elastic wall-type approach. The performance of the suggested guideline for the test functions has been
found always very close or coincident to the best setup among all 420 available. The suggested S-DPSO and A-
DPSO guidelines have been proven to perform well for the N = 4 and N = 6 ship SBDO problems (namely problem
I and II). A-DPSO has been found having equivalent performance (in terms of number of objective function evalu-
ations and objective reduction) of the S-DPSO, providing opportunities for exploitation of parallel architectures in
high performance computing systems. Finally, the semi-elastic wall-type approach for box constraints should be
preferred to the inelastic wall-type, in order to avoid an early halt of the swarm particles dynamics. Moreover, the
synchronous implementation of DPSO has been used as reference for problems III, IV, VI, VII, IX, and X.

The globally convergent modifications of DPSO iteration, for the solution of the unconstrained global opti-
mization problem, have been detailed in Sec. 1.2. Under mild assumptions, it has been proven that at least a
subsequence of the iterates generated by the modified DPSO (LS-DF PSO), converges to a stationary point, which
is possibly a minimum point. The LS-DF PSO is also among the first attempts to couple DPSO with line search-

97



A. Serani CHAPTER 6. CONCLUSIONS AND FUTURE WORK

based derivative-free schemes. On the basis of the present results (see Sec. 5.1.2), a fruitful coupling of DPSO
with an iterative globally convergent derivative-free method, should yield a compromise, between the fast progress
of DPSO (global search) in the early iterations, and the capability to exploit (local search) the objective function.
In particular the results on the Ronsebronck function and problems III, IV, VI, and VII, confirm that LS-DF PSO
is more effective (and to a great extent equally efficient) than DPSO. Indeed, LS-DF PSO is able to achieve better
solution, and provides stationarity properties at the associated optimal points.

Two global/local hybrid algorithms, namely DIRMIN and DIRMIN-2, have been presented and tested on
seventy-two analytical test functions, separately considering problems with N ≤ 6 and N > 6 variables (Sec. 5.1.3).
The two algorithms differ in the derivative-free local search management. In particular, while DIRMIN executes
the local search starting from the centers of all the potentially optimal hyper-rectangles, DIRMIN-2 performs a sin-
gle local minimization starting from the best point produced by dividing the potentially optimal hyper-rectangles.
Twenty-five different setups of the algorithms have been investigated, varying the local search activation trigger γ

and the local search tolerance β . Data and performance profiles, along with absolute evaluation metrics, have been
used to identify the most promising setup for both DIRMIN and DIRMIN-2. The analytical test problem results
have revealed that, for both low and high dimensional problems, DIRMIN and DIRMIN-2 are mainly affected by
the local search activation trigger. Specifically, the numerical experiments suggest starting the derivative-free local
searches at the beginning of the optimization procedures. Furthermore, the two hybrid algorithms are found more
effective and efficient than the original DIRECT algorithm, with beneficial effects on the overall computational
cost, in view of SBDO. Regarding the DTMB 5415 hull-form optimization (problem V), DIRMIN and DIRMIN-2
have similar performances and show a significantly faster convergence than the original DIRECT algorithm. More-
over, DIRECT and DIRMIN-2 have been applied on problems VI and VII, showing the efficiency and effectiveness
of the local hybridization.

Furthermore, a novel fish shoal algorithm (FSA) for deterministic global derivative-free optimization has been
presented (see Sec. 1.5). FSA is based on a simplified social model of a fish shoal in search for food, and it
is intended for unconstrained single-objective maximization. A parametric analysis has been conducted using
sixty analytical test functions and three evaluation metrics, varying the number of individuals, their initialization,
the coefficient set controlling the shoal dynamics, and the box constraints method (see Sec. 5.1.4). All possible
combinations of FSA implementations led to 486 optimizations for each function. The coefficient q (weight of
the attraction forces) and the shoal initialization are the most significant parameters for low budget of function
evaluations and N < 10, while for N ≥ 10 the shoal initialization is found always the most significant. The most
promising FSA setup has been identified and corresponds to: a number of individuals Ns equal to 4 times the
number of design variables; a shoal initialization with a distribution over the whole design variables domain for
N < 10 and only on the domain boundary for N ≥ 10; a set of coefficient corresponding to: ξ = 1.00, q = 1.00 and
p= 8 for N < 10, and to ξ = 0.10, q= 0.10 and p= 4 for N ≥ 10; and an elastic wall-type approach. FSA has been
found slightly better than DPSO and DIRECT for N < 10 and always better for N ≥ 10, in term of effectiveness.
A further study on the use of the food-related attraction in FSA has been presented, varying the modeling of the
food-related attraction. The use of α = 0.5 results in the most efficient and effective modeling for the food-related
attraction. The best performing FSA has been applied to two six-dimensional ship SBDO problems (namely
problems IX and X), showing comparable results between FSA, DPSO, and DIRECT. In particular, problem X
shows the better effectiveness of FSA, compared to DPSO and DIRECT.

About the shape design modification methodologies, FFD, OBFE 2D, and OBFE 3D technique have presented
and discussed (Chapter 2), along with the investigation of a KLE-based dimensionality reduction method. The
mathematical derivation of the design-space dimensionality reduction has been presented, connected to a global
continuous representation of the shape modification vector. The associated structure and breakdown of the geo-
metric variance has been investigated through the eigenvalues and eigenmodes provided by the KLE. The dimen-
sionality reduction for the shape optimization problem is based on the eigenvalues, which represent the geometric
variance associated to the corresponding eigenmodes. The reduced-dimensionality design space is defined using
the eigenmodes, as new basis functions, and has been applied on problem VIII, where the results have shown the
KLE capability of reducing the design-space dimensionality, while retaining a prescribed level of design variability
and achieving the same optimization results of the original design space. The formulation presented goes beyond
the application and is suitable in all areas where the shape design is a critical issue and involves complex single-
and multi-disciplinary simulations.

In conclusion, the present research has firstly assessed the setups of the deterministic derivative-free optimiza-
tion algorithms (used herein) in the SBDO context, filling the gap of this field; secondly, has introduced a novel
global metaheuristic (FSA) capable to compete effectively with two well-known algorithms, as PSO and DIRECT;
finally, has shown how global/local hybridization methods, LS-DF PSO, DIRMIN, and DIRMIN-2, outperform
their original global algorithms, DPSO and DIRECT, especially for low budgets of function evaluations. Hybrid
algorithms have shown their capability to combine effectively the characteristics of global and local approaches,
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resulting in a faster (and computationally less expensive) convergence towards the global minimum. This, along
with their derivative-free formulation and implementation, makes the present local hybridization methods a viable
and effective option for SBDO, especially when computationally expensive objective functions (such as RANS)
are involved.

Future work includes the extension of global/local hybridization methods to multi-objective problems along
with metamodel-based optimization by adaptive sampling procedures [26], as well as the local hybridizations of
FSA. This last algorithm, originally introduced in this work, will be further extended including the possibility of
using two different coefficients for the two attraction forces, as well as dynamically varying mass and damping co-
efficient. Moreover, since the present FSA formulation is intended as fully informed, a “less informed” formulation
could be investigated to improve the FSA performances in terms of efficiency.
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Appendix A

Test functions

“Now, here, you see, it takes all the running you
can do, to keep in the same place. If you want to
get somewhere else, you must run at least twice as
fast as that!”

— Lewis Carroll, Through the Looking Glass

This appendix provides the analytical formulation used for the test functions of Tab. 4.1.

Ackley function

f (x) =−20e−0.2
√

1
N ∑

N
i=1 x2

i − e
1
N ∑

N
i=1 cos(2πxi)+20+ e (A.1)

Alpine function

f (x) =
N

∑
i=1
|xi sin(xi)+0.1xi| (A.2)

Beale function
f (x) = (1.5+ x1 + x1x2)

2 +(2.25− x1 + x1x2
2)

2 +(2.625− x1 + x1x3
2)

2 (A.3)

Booth function
f (x) = (x1 +2x2−7)2 +(2x1 + x2−5)2 (A.4)

Bukin No.6 function
f (x) = 100

√∣∣x2−0.01x2
1

∣∣+0.01 |x1 +10| (A.5)

Colville function

f (x) = 100(x2
1− x2)

2 +(x1−1)2 +(x3−1)2 +90(x2
3− x4)

2 +10.1((x3−1)2 +(x4−1)2)+19.8(x2−1)(x4−1)
(A.6)

Cosine Mixture function

f (x) =−
N

∑
i=1

[
1

10
cos(5πxi)− x2

i

]
(A.7)

Dixon-Price function

f (x) = (x1−1)2 +
N

∑
i=2

[
i(2x2

i − xi−1)
2] (A.8)

Easom function
f (x) =−cos(x1)cos(x2)e−(x1−π)2−(x2−π)2

(A.9)
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Exponential function

f (x) =−exp

(
−1

2

N

∑
i=1

x2
i

)
(A.10)

Freudenstein-Roth function

f (x) = (−13+ x1 +((5− x2))x2−2)x2)
2 +(−29+ x1 +((x2 +1)x2−14)x2)

2 (A.11)

Goldstein-Price function

f (x) =
[
1+(x1 + x2 +1)2(19−14x1 +3x2

1−14x2 +6x1x2 +3x2
2)
]

·
[
30+(2x1−3x2)

2(18−32x1 +12x2
1 +48x2−36x1x2 +27x2

2)
] (A.12)

Griewank function

f (x) = 1+
N

∑
i=1

xi

4000
−

N

∏
i=1

cos(xi/
√

i) (A.13)

Hartman n.3 function

f (x) =−
4

∑
i=1

aiexp

[
−

3

∑
j=1

bi j(x j−di j)
2

]
(A.14)

with

a =


1.0
1.2
3.0
3.2

 b =


3.0 10.0 30.0
0.1 10.0 35.0
3.0 10.0 30.0
0.1 10.0 35.0

 d =


0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828


Hartman n.6 function

f (x) =−
4

∑
i=1

aiexp

[
−

6

∑
j=1

bi j(x j−di j)
2

]
(A.15)

with

a =


1.0
1.2
3.0
3.2

 b =


10.0 3.0 17.0 3.5 1.7 8.0
0.05 10.0 17.0 0.1 8.0 14.0
3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

 (A.16)

d =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


Levy 5n function

f (x) =
π

N

{
10sin2(πy1)+

N−1

∑
i=1

[
(yi−1)2(1+10sin2(πyi+1))

]
+(yN−1)2

}
(A.17)

with yi = 1+ 1
4 (xi−1)

Levy 10n function

f (x) =
π

N

{
10sin2(πx1)+

N−1

∑
i=1

[
(xi−1)2(1+10sin2(πxi+1))

]
+(xN−1)2

}
(A.18)

Levy 15n function

f (x) =
1

10

{
sin2(3πx1)+

N−1

∑
i=1

[
(xi−1)2(1+ sin2(3πxi+1))

]}
+

1
10

(xN−1)2 [1+ sin2(2πxN)
]

(A.19)
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Matyas function
f (x) = 0.26(x2

1 + x2
2)−0.48x1x2 (A.20)

Multi Modal function

f (x) =
N

∑
i=1
|xi|

N

∏
i=1
|xi| (A.21)

Powell function

f (x) =
N/4

∑
i=2

[
(x4i−3 +10x4i−2)

2 +5(x4i−1 + x4i)
2 +(x4i−2−2x4i−1)

4 +10(x4i−3− x4i)
4] (A.22)

Quartic function

f (x) =
x4

1
4
− x2

1
2
+

x1

10
+

x2
2

2
(A.23)

Rastrigin function

f (x) = 10N +
N

∑
i=1

[
x2

i −10cos(2πxi)
]

(A.24)

Rosenbrock function
f (x) = (1− x1)

2 +100
(
x2− x2

1
)2

(A.25)

Schaffer n.2 function

f (x) = 0.5+
sin2(x2

1− x2
2)−0.5

(1+0.001(x2
1 + x2

2))
2 (A.26)

Schaffer n.6 function

f (x) = 0.5+
sin2

√
x2

1 + x2
2−0.5

(1+0.001(x2
1 + x2

2))
2 (A.27)

Schwefel function

f (x) = 418.9829N−
N

∑
i=1

[
xi sin

(√
|xi|
)]

(A.28)

Shekel n.5 function

f (x) =−
5

∑
j=1

[
c j +

4

∑
i=1

(xi−Ai, j)
2

]−1

(A.29)

with

c =
1

10
[1 2 2 4 4]T A =

4 1 8 6 3
4 1 8 6 7
4 1 8 6 3
4 1 8 6 7


T

Shekel n.7 function

f (x) =−
7

∑
j=1

[
c j +

4

∑
i=1

(xi−Ai, j)
2

]−1

(A.30)

with

c =
1

10
[1 2 2 4 4 6 3]T A =

4 1 8 6 3 2 5
4 1 8 6 7 9 5
4 1 8 6 3 2 3
4 1 8 6 7 9 3


T
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Shekel n.10 function

f (x) =−
10

∑
j=1

[
c j +

4

∑
i=1

(xi−Ai, j)
2

]−1

(A.31)

with

c =
1

10
[1 2 2 4 4 6 3 7 5 5]T A =

4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 5 1 2 3.6
4 1 8 6 3 2 3 8 6 7
4 1 8 6 7 9 3 1 2 3.6


T

Shubert penalty 1 function

f (x) =
2

∏
i=1

(
5

∑
j=1

j cos(( j+1)xi + j)

)
+
(
(x1 +1.42513)2 +(x2 +0.80032)2)/2 (A.32)

Shubert penalty 2 function

f (x) =
2

∏
i=1

(
5

∑
j=1

j cos(( j+1)xi + j)

)
+(x1 +1.42513)2 +(x2 +0.80032)2 (A.33)

Six-humps Camel Back function

f (x) =
(

4−2.1x2
1 +

1
3

x4
1

)
x2

1 + x1x2 +
(
4x2

2−4
)

x2
2 (A.34)

Sphere function

f (x) =
N

∑
i=1

x2
i (A.35)

Styblinski-Tang function

f (x) =
1
2

N

∑
i=1

(
x4

i −16x2
i +5xi

)
(A.36)

Test Tube Holder function
f (x) =−4

∣∣∣e|cos( 1
200 x2

1+
1

200 x2
2)| sin(x1)cos(x2)

∣∣∣ (A.37)

Three-humps Camel Back function

f (x) = 2x2
1−1.05x4

1 +
1
6

x6
1 + x1x2 + x2

2 (A.38)

Treccani function
f (x) = x4

1 +4x3
1 +4x2

1 + x2
2 (A.39)

Tripod function
f (x) = 1−sign(x2)

2 (|x1|+ |x2 +50|)+
+ 1+sign(x2)

2
1−sign(x1)

2 (1+ |x1 +50|+ |x2−50|)+
+ 1+sign(x2)

2
1+sign(x1)

2 (2+ |x1−50|+ |x2−50|)
(A.40)

with

sign(xi) =

{
−1, if xi ≤ 0

1, else
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Metamodels

“Imagination is the only weapon in the war
against reality.”

— Lewis Carroll, Alice in Wonderland

The polyharmonic spline is a linear combination of polyharmonic radial basis functions (RBFs) [26] denoted
by φ :

f (x) =
N

∑
i=1

wiφ(||x− ci||)+vT
(

1
x

)
(B.1)

where x = [x1 . . .xd ]
T is a real-valued vector of d independent variables, ci = [ci,1 . . .ci,d ]

T are the N vectors of
the same size as x that the curve/surface must interpolate, w = [w1 . . .wN ]

T are the N weights of the RBFs, and
v = [v1 . . .vd+1]

T are the d +1 weights of the polynomial. The polynomial with the coefficients v improves fitting
accuracy for polyharmonic smoothing splines and also improves extrapolation away from the centers ci.

The polyharmonic RBFs are of the form:

φ(r) =

{
rk with k = 1,3,5, . . .
rkln(r) with k = 2,4,6, . . .

(B.2)

where r = ||x− ci||.
The weight vector w = {wi} and v = {v j} are the solution of the linear system[

A B
BT 0

][
w
v

]
=

[
f
0

]
(B.3)

where

Ai, j = φ(||ci− c j||), B =

[
1 . . . 1
c1 . . . cN

]T

, f = [ f1, . . . , fN ]
T (B.4)
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